

82C495XLC/82C206 PC/AT Chip Set

Data Book

Revision 1.0 912-3000-009 October, 1994

Copyright

Copyright © 1994, OPTi Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of OPTi Incorporated, 2525 Walsh Avenue, Santa Clara, CA 95051.

Disclaimer

OPTi Inc. makes no representations or warranties with respect to the design and documentation herein described and especially disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, OPTi Inc. reserves the right to revise the design and associated documentation and to make changes from time to time in the content without obligation of OPTi Inc. to notify any person of such revisions or changes.

Trademarks

OPTi and OPTi Inc. are registered trademarks of OPTi Inc.

All other trademarks and copyrights are the property of their respective holders.

OPTi Inc.

2525 Walsh Avenue Santa Clara, CA 95051 Tel: (408) 980-8178 Fax: (408) 980-8860 BBS: (408) 980-9774

List of Figures

vi

List of Tables

82C495XLC/82C206 PC/AT Chip Set

1.0 Features

- Low cost, low power, CMOS Technology
- Supports 386DX, 486 DX/DX2/SX CPUs as well as Intel P24T and Cyrix Cx486S/S2 and Cx486DX/DX2 CPUs
- One 160-pin CMOS Plastic Flat Package (PFP), one 84 pin PLCC (or one 100-pin PFP)
- Internal buffers and termination to reduce external parts count
- Copy-Back Direct-Mapped Cache: 32/64/128/256KB for 386, and
	- 64/128/256/512KB for 486
- Up to 10% performance enhancement from writethrough cache scheme
- Supports 2-1-1-1 or 3-2-2-2 cache cycles
- On-chip comparator determines cache hit/miss
- Up to 64MB of local high-speed, page mode DRAM memory space
- Burst line fill during cache read-miss

Figure 1-1 System block Diagram

- Control of one non-cacheable region
- Shadow RAM support for system, video and adapter card BIOS
- Optional caching of shadowed video BIOS
- Hidden refresh support to enhance system performance
- Turbo/slow speed selection (386 mode only)
- AT bus clock selectable from CLKI (/6, /5 /4, /3)
- CAS-before-RAS refresh reduces power consumption
- Optional 0 or one wait state for cache write-hit
- 387 coprocessor support for 386 mode
- Internal CD and CA bus pull-up resistors to save components and board real-estate
- Comprehensive VL bus and OPTi high-performance local bus support
- On-chip hardware provides direct support for up to two VL bus master devices

2.0 Overview

The OPTi 82C495XLC is a low-cost two-chip solution offering optimal performance for low to mid range 386/486-based AT systems. The OPTi 82C495XLC is designed for 486 systems running at 20, 25, 33, 40 and 50MHz or 386 systems running at 20, 25, 33 and 40MHz. Please refer to the data book supplied by your third-party source for information on the 82C206.

3.0 Signal Descriptions

Figure 3-1 Pin Diagram

Pin	Name	Pin	Name	Pin	Name	Pin	Name
$\overline{4}$	A20M#/GA20	56	CA7	26	HD7	128	RFSH#
11	ADS#	55	CA8	25	HD ₈	134	ROMCS#/INTA#
61	AEN1#	54	CA ₉	24	HD ₉	106	RST _{1#}
62	AEN2#	97	CAS _{0#}	143	HDDIR#	126	SBHE#
127	ALE	96	CAS1#	145	HDHEN#	107	SD ₀
137	ASRTC	94	CAS _{2#}	144	HDLEN#	108	SD ₁
131	ATCLK	93	CAS3#	104	HLDA	118	SD ₁₀
157	BE0#	72	CAWE0#	132	HLDA1	119	SD11
158	BE1#	71	CAWE1#	5	HOLD	120	SD12
159	BE2#	141	CHCK#	58	HRQ.	122	SD13
160	BE3#	125	CHRDY	66	IGERR#/BUSY#	123	SD14
69	BEA3	$\overline{7}$	CLKI	139	IO16#	124	SD ₁₅
74	BEOE#	13	CPURST	151	IORD#	109	SD ₂
6	BLST#/PREQI	8	D/C#	152	IOWR#	110	SD ₃
68	BOA3/BEA2	60	DMADS	135	INT ₁₃	111	SD ₄
76	BOOE#	90	DWE#	$\overline{2}$	KEN#/ERR#	112	SD ₅
14	BRDY#/PREQO	3	EADS#/NPRST	154	LDEV#	113	SD ₆
53	CA10	$\mathbf{1}$	GND	156	LGNT#	114	SD7
52	CA11	15	GND	98	LGNT1#/MPOE#	116	SD ₈
51	CA12	30	GND	129	LMCS#/KBCS#	117	SD9
49	CA13	50	GND	155	LREQ#	67	SPKD
48	CA14	70	GND	138	LREQ1#/NOWS#	86	TAG0/MA3
47	CA15	81	GND	133	M16#	85	TAG1/MA4
46	CA16	95	GND	89	MA0	84	TAG2/MA5
44	CA17	115	GND	88	MA1	83	TAG3/MA6
43	CA18	130	GND	87	MA ₂	82	TAG4/MA7
42	CA19	150	GND	10	M/IO#	80	TAG5/MA8
103	CA2/MP0	34	HD ₀	148	MRD#	79	TAG6/MA9
41	CA20	33	HD1	149	MWR#	78	TAG7/MA10
40	CA21	23	HD10	12	NMI	77	TAGWE#
39	CA22	22	HD11	64	NPBUSY#/HITM#	136	TMRG2
38	CA23	21	HD12	65	NPERR#	20	VCC
37	CA24	19	HD13	105	OSC.	45	VCC
36	CA25	18	HD14	121	OSC ₁₂	75	VCC
102	CA3/MP1	17	HD15	59	OUT1/AHOLD	100	VCC
35	CA31	32	HD ₂	63	OUT2	140	VCC
73	CA32S#	31	HD ₃	92	RAS ₀ #	9	W/R#
101	CA4/MP2	29	HD4	91	RAS1#/MA11	146	XA0
99	CA5/MP3	28	HD ₅	16	RDY#	147	XA1
57	CA6	27	HD ₆	153	RDYI#	142	XDIR#

Table 3-1 Alphabetical Cross Reference List

Pin	Name	Pin	Name	Pin	Name	Pin	Name
$\mathbf{1}$	GND	41	CA20	81	GND	121	OSC ₁₂
$\overline{2}$	KEN#/ERR#	42	CA19	82	TAG4/MA7	122	SD ₁₃
3	EADS#/NPRST	43	CA18	83	TAG3/MA6	123	SD14
4	A20M#/GA20	44	CA17	84	TAG2/MA5	124	SD ₁₅
5	HOLD	45	VCC	85	TAG1/MA4	125	CHRDY
6	BLST#/PREQI	46	CA16	86	TAG0/MA3	126	SBHE#
$\overline{7}$	CLKI	47	CA15	87	MA2	127	ALE
8	D/C#	48	CA14	88	MA1	128	RFSH#
9	W/R#	49	CA13	89	MA0	129	LMCS#/KBCS#
10	M/IO#	50	GND	90	DWE#	130	GND
11	ADS#	51	CA12	91	RAS1#/MA11	131	ATCLK
$12 \overline{ }$	NMI	52	CA11	92	RAS _{0#}	132	HLDA1
13	CPURST	53	CA10	93	CAS3#	133	M16#
14	BRDY#/PREQO	54	CA9	94	CAS ₂ #	134	ROMCS#/INTA#
15	GND	55	CA8	95	GND	135	INT ₁₃
16	RDY#	56	CA7	96	CAS1#	136	TMRG2
17	HD15	57	CA6	97	CAS ₀ #	137	ASRTC
18	HD14	58	HRQ	98	LGNT1#/MPOE#	138	LREQ1#/NOWS#
19	HD ₁₃	59	OUT1/AHOLD	99	CA5/MP3	139	IO16#
20	VCC	60	DMADS	100	VCC	140	VCC
21	HD12	61	AEN1#	101	CA4/MP2	141	CHCK#
22	HD11	62	AEN2#	102	CA3/MP1	142	XDIR#
23	HD10	63	OUT2	103	CA2/MP0	143	HDDIR#
24	HD ₉	64	NPBUSY#/HITM#	104	HLDA	144	HDLEN#
25	HD8	65	NPERR#	105	OSC.	145	HDHEN#
26	HD7	66	IGERR#/BUSY#	106	RST _{1#}	146	XA0
27	HD ₆	67	SPKD	107	SD ₀	147	XA1
28	HD5	68	BOA3/BEA2	108	SD ₁	148	MRD#
29	HD4	69	BEA3	109	SD ₂	149	MWR#
30	GND	70	GND	110	SD ₃	150	GND
31	HD ₃	71	CAWE1#	111	SD ₄	151	IORD#
32	HD2	72	CAWE0#	112	SD ₅	152	IOWR#
33	HD1	73	CA32S#	113	SD ₆	153	RDYI#
34	HD0	74	BEOE#	114	SD7	154	LDEV#
35	CA31	75	VCC.	115	GND	155	LREQ#
36	CA25	76	BOOE#	116	SD ₈	156	LGNT#
37	CA24	77	TAGWE#	117	SD ₉	157	BE0#
38	CA23	78	TAG7/MA10	118	SD10	158	BE1#
39	CA22	79	TAG6/MA9	119	SD ₁₁	159	BE2#
40	CA21	80	TAG5/MA8	120	SD ₁₂	160	BE3#

Table 3-2 Numerical Pin Cross Reference List

3.1 Signal Descriptions

3.1.1 AT Bus Interface Signals

3.1.2 Bus Arbitration Interface Signals

3.1.3 Clock and Reset Interface Signals

3.1.4 CPU Interface Signals

3.1.5 External Cache Control Interface Signals

3.1.6 Local DRAM Interface Signals

3.1.7 Miscellaneous Signals

3.1.8 Numeric Processor Interface

3.1.9 Power

4.0 Functional Description

4.1 Reset Logic

The RST1# input to the 82C495XLC is used to generate the CPU reset (CPURST), the numeric coprocessor reset (NPRST). RST1# is a "cold reset" which is generated when either POWERGOOD goes low (from the power supply, indicating a low power condition) or the system reset button is activated. This reset signal is used to force the system to begin execution at a known state. When RST1# is sensed active, the 82C495XLC will assert CPURST and NPRST. CPURST is also generated when a shutdown condition is decoded from the CPU bus definition signals. CPURST and NPRST are asserted for 128 CLK2 cycles.

The 82C495XLC emulates the keyboard reset function. The keyboard reset is intercepted by monitoring the I/O write cycle "FE" command to port 64h. This fast CPU reset from the chipset will be generated directly after the I/O write is decoded unless bit 1 of index register 20h is disabled, in which case the reset will not start until a "HALT" instruction is executed.

When configured to interface with a math coprocessor, the 82C495XLC will generate the NPRST signal when the CPURST is activated, or if an I/O write to port F1h is issued.

4.2 System Clock Generation

CLK is a master single phase clock which is used to drive all host CPU synchronous signals and the 82C495XLC's internal state machines.

The 82C495XLC generates the AT bus clock (ATCLK) from an internal division of CLK. The ATCLK frequency is programmable and can be set to any of four clock division options by programming bits [1:0] of index register 25h. This allows the system designer to tailor the AT bus clock frequency to support a wide range of system designs and performance platforms.

4.3 CPU Burst-Mode Control

The 82C495XLC chipset fully supports 486 burst cycles. The 82C495XLC cache and DRAM controllers insure that data is burst into the CPU whenever the 486 requests a burst line fill. The secondary cache provides data on read-hits and the DRAM supplies the data during cache read-misses.

For a cache read-hit cycle, BRDY# (Burst Ready) is asserted at the middle of the first T2 state when a 2-1-1-1 (zero wait state) cache burst cycle is chosen, otherwise it is asserted at the middle of the second T2 state when one wait state is required. If a read-miss occurs, the DRAM data is first written into cache memory, then it is burst from the cache to the 486 CPU. BRDY# is asserted after cache memory is updated for cache read-misses. Once asserted, BRDY# stays active until BLST# (Burst Last) is detected during a zero wait state burst

cycle. BRDY# is never active during DMA or MASTER cycles.

The 82C495XLC contains separate burst counters to support DRAM and external cache burst cycles. The DRAM burst counter performs the cache read-miss line fill (DRAM to external cache) and the cache burst counter supports the 486 burst line fill (external cache to the 486 CPU). The burst order of the cache burst counter exactly matches the double-word address sequencing expected by the 486 CPU. The DRAM burst counter is used for cache read-miss cycles and dirtyline fill write operations.

4.4 Cache Subsystem

The integrated cache controller, which uses a direct-mapped, bank-interleaved scheme dramatically boosts the overall performance of the local memory subsystem by caching writes as well as reads (write-back mode). Cache memory can be configured as one or two banks and sizes of 32/64/128/ 256KB for 386 mode and 64/128/256/512KB for 486 mode. Provisions for two programmable non-cacheable regions are provided. The cache controller operates in non-pipeline mode, with a fixed 16-byte line size (optimized to match a 486 burst line fill) in order to simplify the motherboard design without increasing cost or degrading system performance. For 486 systems, the secondary cache operates independently and in addition to the CPU's internal cache.

The cache controller works as the front-end for both the DRAM and AT bus controllers. ADS# from the CPU must pass through the cache logic first. When the cache is disabled, ADS# just falls through the cache controller and delivers internal MADS# to the DRAM and AT bus controllers. When the cache is enabled, ADS# is blocked when a cache cycle is detected. If this cycle is determined to be a noncacheable address or a cache miss cycle, ADS# is delayed one CLK before outputting internal MADS# (due to the time needed for non-cacheable address and cache hit/miss detection.

4.4.1 Cache Bank Interleave

In order to support cache burst cycles at elevated frequencies and still utilize conventional speed SRAMs, a bank interleave cache access method is employed. The addresses are applied to the cache memory one cycle earlier, while cacheoutput-enable signals control even/odd bank selection and enable cache RAM data to the CPU data bus. Since the output enable time is about one-half of the address access time, the 82C495XLC can achieve a high performance cache burst mode without using the more expensive high speed SRAMs.

The 82C495XLC supports one or two cache banks. Two cache banks are required to interleave and realize the performance advantages of this cache scheme. Cache sizes of

128KB and 512KB are single bank caches, while 64KB and 256KB cache sizes are double bank. When using a double bank configuration, the even and odd banks receive the same address lines. Signals A2/A3, CAWE1#/CAWE0#, and BEOE#/BOOE# are used to dictate the even or odd bank access.

4.4.2 Write-Back Cache

The write-back cache scheme derives its superior performance by optimizing write cycles. There is no performance penalty in the cache write cycle, since the cache controller does not need to wait for the much slower DRAM controller to finish its cycle before proceeding to the next cycle.

4.4.3 Tag RAM

A built-in tag comparator improves system performance while reducing component count on the system board. The comparator internally detects the cache hit/miss status by comparing the high-order address bits (for the memory cycle in progress) with the stored tag bits from previous cache entries. When a match is detected, and the location is cacheable, a cache hit cycle takes place. If the comparator does not match, or a non-cacheable location is accessed (based on the internal non-cacheable region registers), the current cycle is a cache miss. The tag is invalidated automatically during memory reads when the cache is disabled; each memory read will write into the corresponding tag location a noncacheable address (such as A0000h or B0000h of the video memory area). To flush the cache, simply disable the cache in configuration register 21h and read a block of memory equal to the size of the cache. The advantage of this invalidation scheme is that no valid bit is necessary and expensive SRAM can be conserved.

The following tables detail which CPU address bits are stored as tags for the various cache sizes supported in the 82C495XLC.

Table 4-1 describes how the Tag RAM bits are addressed for different cache sizes.

Table 4-1 Correspondence Between Tag Bits and CPU Address Lines

ADDRESS to Tag Bit Mapping								
Tag Bit	32KB (386 only)	64KB	128KB	256KB	512KB (486 only)			
7	A22	A22	A22	A22	A22			
6	A21	A21	A21	A21	A21			
5	A20	A20	A20	A20	A20			
4	A ₁₉	A19	A ₁₉	A ₁₉	A ₁₉			
3	A ₁₈	A18	A18	A18	x			
2	A17	A17	A17	A25	A25			
1	A16	A16	A24	A24	A24			

Table 4-2 shows the cache sizes supported by the 82C495XLC, with the corresponding Tag RAM address bits, Tag RAM size, cache RAM address bits, cache RAM size, and cacheable main memory size.

Table 4-2 Cache SRAM Requirements

Cache Size	Tag Field Address/ Tag RAM Size	Cache SRAM Address Qty/ Cache RAM Size	Cacheable Main Memory
32KB	A22-A15 8Kx8	$A14-A2$ 4ea 8Kx8	8MB
64KB	A23-A16 8Kx8	A15-A2 8ea 8Kx8	16MB
128KB	A24-A17 8Kx8	$A16-A2$ 4ea, 32Kx8	32MB
256KB	A25-A18 32Kx8	A17-A2 8ea, 32Kx8	64MB
512KB	A25-A19 32Kx8	$A18-A2$ 4ea, 128Kx8	64MB

Table 4-3 shows what speed SRAM and Tag SRAM to use for a particular CPU clock rate.

Table 4-3 SRAM Speed Requirements

CPU Speed	Cache SRAM	Tag SRAM	DRAM speed	Note
20MHz	25ns	25ns	80ns	Cache Burst 3-2-2-2 Cache Write 1ws DRAM R &W = 0ws
25MHz	25ns	25ns	80ns	Cache Burst 3-2-2-2 Cache Write 1ws DRAM R &W = 0ws
33MHz	20ns	15ns	80ns	386 only: Cache Read 1ws Cache Write 1ws DRAM R&W = 0 ws
33MHz	20ns	15ns	80ns	486 only: Cache Burst 3-2-2-2 Cache Write 1ws DRAM R &W = 0ws
40MHz	20ns	15ns	80ns	386 only: Cache Read 1ws, Cache Write 1ws DRAM R &W = 1ws

NOTE DRAM and cache cycles are at their minimum wait states.

4.4.4 P24T (L1 Write-Back) Mode

The 82C495XLC supports write-back CPU cycles when TAG0 is sampled low at reset. During a DMA or bus master transfer to the memory, EADS# will be asserted for one CPU clock delay after ADS#. The HITM# signal will be sampled two CPU clocks after EADS# is generated. If HITM# is active (low), the 82C495XLC will suspend the current cycle by deasserting HOLD and then start the CPU L1 write-back cycle to update the modified line from the CPU internal write-back cache. IOCHRDY will be de-asserted for DMA and ISA bus masters until the L1 write-back cycle is completed. After completing the L1 write-back cycle, the DMA or bus master will continue the previous suspended cycle.

4.5 Local DRAM Control Subsystem

The 82C495XLC supports up to two banks of page-mode local DRAM memory for configurations of up to 64MB.

Table 4-4 illustrates the DRAM configurations supported via register index 24h.

Bank0 DRAM	Bank1 DRAM	Total Mem.	Register Bits 7654
256KB	x	1MB	0000
256KB	256KB	2MB	0001
1MB	x	4MB	1000
256KB	1MB	5MB	0010
1MB	1MB	8MB	1001
4MB	x	16MB	1100
1MB	4MB	20MB	1010
4MB	1MB	20MB	1011
4MB	4MB	32MB	1101
16MB	x	64MB	1110

Table 4-4 DRAM Configurations

Table 4-5 describes how the DRAM address lines are multiplexed when different memory device types are used.

Address to MA bus Mapping									
Memory	256KB		1MB			4MB		16MB	
Address	Col	Row	Col	Row	Col	Row	Col	Row	
MA0	A2	A12	A2	A12	A2	A23	A2	A23	
MA ₁	A3	A ₁₃	A3	A13	A3	A ₁₃	A ₃	A13	
MA ₂	A ₄	A14	A4	A14	A ₄	A14	A4	A14	
MA ₃	A ₅	A15	A ₅	A15	A ₅	A ₁₅	A ₅	A15	
MA4	A6	A16	A6	A16	A ₆	A16	A6	A16	
MA ₅	A7	A17	A7	A17	A7	A17	A7	A17	
MA6	A ₈	A18	A ₈	A18	A8	A18	A ₈	A18	
MA7	A ₉	A19	A9	A19	A ₉	A ₁₉	A9	A19	
MA8	A10	A11	A10	A20	A10	A20	A10	A20	
MA ₉	X	x	A11	A21	A11	A21	A11	A21	
MA10	x	X	X	X	A12	A22	A12	A22	
MA11	X	X	X	X	X	x	A24	A25	

Table 4-5 CPU Address to MA Bus Mapping

4.6 Parity Generation/Detection Logic

During local DRAM write cycles, the 82C495XLC generates a parity bit for each byte of write data from the processor. Parity bits are stored into local DRAM along with each data byte. During a DRAM read, the parity bit is checked for each data byte. If the logic detects incorrect parity, the 82C495XLC will generate a parity error to the CPU. The parity error will invoke the NMI interrupt, providing the parity check is enabled in configuration register 21, bit 5. Parity check must also be enabled in port B register 61h, bits [2:3].

4.7 Refresh Logic

The 82C495XLC supports both normal and hidden refresh. Normal refresh refers to the classic refresh implementation which places the CPU on "hold" while a refresh cycle takes place to both the local DRAM and any AT bus memory. This is the default condition at power-up. However, hidden refresh is performed independent of the CPU and does not suffer from the performance restriction of losing processor bandwidth by forcing the CPU into its hold state. Hidden refresh delivers higher system performance and is recommended over normal refresh. As long as the CPU does not try to access local memory or the AT bus during a hidden refresh cycle, refresh will be transparent to the CPU. The CPU can continue to execute from its internal and secondary caches as well as execute internal instructions during hidden refresh without any loss in performance due to refresh arbitration. If a local memory or AT bus access is required during hidden refresh, wait states will be added to the CPU cycle until the resource becomes available. Hidden refresh also separates refreshing of the AT bus and local DRAM. The DRAM controller arbitrates between CPU DRAM accesses and DRAM refresh cycles, while the AT bus controller arbitrates between CPU accesses to the AT bus, DMA, and AT refresh. The AT bus controller asserts the RFSH# and MEMR# commands and outputs the refresh address during AT bus refresh cycles.

The 82C495XLC implements refresh cycles to the local DRAM using CAS-before-RAS timing. CAS-before-RAS refresh has lower power consumption than RAS-only refresh—which is important when dealing with large memory arrays. CAS-before-RAS refresh is used for both normal and hidden refresh to local memory.

The output of internal counter1/timer1 (OUT1) inside the 82C495XLC is programmed as a rate generator to produce the periodic refresh request signal which occurs every 15µs. Requests for refresh cycles are generated by two sources: counter1/timer1 or 16-bit ISA masters that activate refresh when they have bus ownership. These ISA masters supply refresh cycles because the refresh controller cannot preempt the bus master to perform the necessary refresh cycles. 16 bit ISA masters that hold the bus longer than 15µs must supply refresh cycles.

4.8 Shadow RAM

Since accesses to local DRAM are much faster than those to EPROM, the 82C495XLC provides shadow RAM capability. With this feature, code from slow devices like ROM and EPROM memories can be copied to local DRAM to speed up memory accesses. Accesses to the specified EPROM space are redirected to the corresponding DRAM location. Shadow RAM addresses range from C0000h-FFFFFh. 16KB granularity is provided for the address range C0000h to EFFFFh, while the 64KB range from F0000h-FFFFFh (the location of system BIOS) can be shadowed as an entire segment.

The shadow RAM control is setup in the configuration registers. First, the ROM contents must be copied into the shadow RAM area. Then, the shadow RAM enable bit is set in the configuration register. For the system BIOS area, once the bit is set, the RAM area becomes read-only. For the video and adapter BIOS area, the user can select read only or read/ write by setting the write protect bit in index register 26h accordingly. Video BIOS at the C0000h-C8000h area can be shadowed and cached if bit 4 of register 27h is set to 1.

4.9 System ROM BIOS Cycles

The 82C495XLC supports both 8- and 16-bit EPROM cycles. If the system BIOS is 16 bits wide, ROMCS# should be connected to M16# through an open collector gate indicating to the 82C495XLC that a 16-bit EPROM is responding. The system BIOS resides on the XD bus.

ROMCS# is generated for the both the E0000h-EFFFFh and F0000h-FFFFFh segments. If a combined video/system ROM BIOS is desired, these two segments should be used.

4.10 AT Bus State Machine

The AT bus state machine gains control when the 82C495XLC's decoding logic detects a non-local memory cycle. It monitors status signals M16#, IO16#, CHRDY and NOWS# and performs the necessary synchronization of control and status signals between the AT bus and the microprocessor. The 82C495XLC supports 8- and 16-bit memory and I/O devices located on the AT bus.

An AT bus cycle is initiated by asserting ALE in AT-TS1 state. On the trailing edge of ALE, M16# is sampled for a memory cycle to determine the bus size. It then enters the AT-TC state and provides the command signal. For an I/O cycle, IO16# is sampled after the trailing edge of ALE until the end of the command. Typically, the wait states for an AT transaction are five for 8-bit and one for 16-bit. The command cycle is extended when CHRDY is detected inactive, or the cycle is terminated when zero wait state request signal (NOWS#) from the AT bus is active. Upon expiration of the wait states, the AT state machine terminates itself and passes an internal READY to the CPU state machine to generate a synchronous RDY# to the CPU. The AT bus state machine also routes

data and address when an AT bus master or DMA controller accesses memory.

4.11 Bus Arbitration Logic

The 82C495XLC provides arbitration between the CPU, DMA controller, AT bus masters, and the refresh logic. During DMA, AT bus master, and conventional refresh cycles, the 82C495XLC asserts HOLD to the CPU. The CPU will respond to an active HOLD signal by generating HLDA (after completing its current bus cycle) and placing most of its output and I/O pins in a high impedance state. After the CPU relinquishes the bus, the 82C495XLC responds by issuing RFSH# (refresh cycle) or HLDA1 (AT bus master or DMA cycle), depending on the requesting device. During hidden refresh, HOLD remains negated and the CPU continues its current program execution as long as it services internal requests or achieves cache hits (please refer to the refresh section for additional information).

The AT bus controller in the 82C495XLC arbitrates between hold and refresh requests, deciding which will own the bus once the CPU relinquishes control with the HLDA signal. The arbitration between refresh and DMA/Master is based on a FIFO (first in-first out) priority. However, a refresh request (RFSH#) will be internally latched and serviced immediately after DMA/Master finishes its request if queued behind HRQ. HRQ must remain active to be serviced if a refresh request comes first. DMA and bus masters share the same request pin, HRQ. To distinguish between DMA and bus master requests during an active HLDA1 period, the two signals AEN8# and AEN16# need to be monitored. If either AEN8# or AEN16# is active, then the cycle is an 8/16-bit DMA respectively. When these signals are inactive, then an external bus master controls the system bus. The "master" signal from the AT bus indicates an AT bus master cycle and may be sampled by external logic.

4.12 Numeric Coprocessor Cycles

The 82C495XLC monitors NPERR# and NPBUSY# to provide support for the 80387 numeric coprocessor (NPU). The NPU asserts NPERR# during a power-on reset to indicate its presence. The NPU asserts NPBUSY# while executing a floating-point calculation and asserts RDYI# to the chipset when it is finished. If NPBUSY# is active and an NPU error occurs, (NPU asserts NPERR#) the 82C495XLC latches NPBUSY# and generates INT13. Latched BUSY# and INT13 can be cleared by an I/O port F0h write command. If the NPU is not installed, the 82C495XLC treats any access to the NPU address space as an AT cycle. With the NPU in place, CPU accesses to the NPU address space are direct, except for the re-synchronizing of the NPU ready signal (RDYI#) before sending RDY# back to the CPU.

4.13 Local Bus Interface

The 82C495XLC allows peripheral devices to share the "local bus" with the CPU and numeric coprocessor. The performance of these devices (which may include the video subsystem, hard disk adapters, LAN and other PC/AT controllers) will dramatically increase when allowed to operate in this high-speed environment. These devices are responsible for their own address and bus cycle decode and must be able to operate compatibly at the elevated frequencies required for operation on the local CPU bus.

The LDEV# input signal to the 82C495XLC indicates that a local device is intercepting the current cycle. If this signal is sampled at the end of the first T2 clock cycle (end of the second T2 at 50MHz), then the 82C495XLC will allow the responding local device to assume responsibility for the current local cycle. When the device has completed its operation, it must terminate the cycle by asserting the RDYI# pin of the 82C495XLC. The RDYI# signal is synchronized by the 82C495XLC before being sent to the CPU via the RDY# line. Alternatively, the local bus device may drive RDY# directly to the CPU. The 82C495XLC supports two VL bus masters when TAG1 is sampled low at reset.

4.14 Data Bus Conversion/Data Path Control Logic

The 82C495XLC performs data bus conversion when the CPU accesses 16- or 8-bit devices through 16- or 32-bit instructions. It also handles DMA and AT master cycles that transfer data between local DRAM or cache memory and locations on the AT bus. The 82C495XLC provides all of the signals to control external bi-directional data buffers.

4.15 Turbo/Slow Mode Operations

Turbo mode is controlled through configuration register 20h, bit 4 for 386 mode only. Slow mode operation is implemented by applying a periodic clock to the HOLD input of the CPU. OSC12 is the clock source used for this operation. OSC12 is internally derived from the 14.31818MHz OSC clock input to the 82C495XLC. The HOLD is maintained for approximately 2/3 of the time, while the CPU is allowed to perform normal external operations during the remaining 1/3 interval. For system design, the TURBO pin should be pulled high through a 10KΩ resistor. In 386 mode, the LREQ# pin becomes the hard-wired TURBO input. To implement the hard-wired TURBO capability, index register 20h, bit 4 must be set to 0 (default is 1).

4.16 Fast GATEA20 and RESET Emulation

The 82C495XLC will intercept commands to ports 60h and 64h so that it can emulate the keyboard controller, allowing the generation of the fast GATEA20 and fast CPURST signals. The decode sequence is software transparent and requires no BIOS modifications to function. The fast

GATEA20 generation sequence involves writing "D1h" to port 64h, then writing data "02h" to port 60h. The fast CPU "warm reset" function is generated when a port 64h write cycle with data "FEh" is decoded. A write to port 64h with data "D0h" will enable the status of GATEA20 (bit 1 of port 60h) and the warm reset (bit 0 of port 60h) to be readable.

4.17 Special Cycles

The 486 microprocessor provides special bus cycles to indicate that certain instructions have been executed, or certain conditions have occurred internally. Special cycles such as Shutdown and Halt cycles are covered by dedicated handling logic in the 82C495XLC. Based on the operating microprocessor mode, this logic decodes the CPU bus status signals M/IO#, D/C#, and W/R# and takes the appropriate action.

5.0 Register Descriptions

There are 12 configuration registers inside the 82C495XLC. An indexing scheme is used to access all of the registers. Port 22h contains the index register and port 24h is the data register. A register is accessed by first writing the desired address to port 22h, and then reading or writing port 24h. The index resets after every access so every read or write access to port 24h requires a write first to port 22h to set the desired address, even if the same address is being accessed. Unless mentioned otherwise, all reserved bits are set to zero by default and must be set to zero for future compatibility purposes.

5.1 Control Register 1 - Index: 20h

5.2 Control Register 2 - Index: 21h

5.3 Shadow RAM Control Register 1 - Index: 22h

5.4 Shadow RAM Control Register 2 - Index: 23h

5.5 DRAM Control Register 1 - Index: 24h

5.7 Shadow RAM Control Register 3 - Index: 26h

5.8 Control Register 3 - Index: 27h

NOTE Memory area at 640K-1MB is defaulted to be non-cacheable.

5.9 Non-Cacheable Block 1 Register 1 - Index: 28h

This register is used in conjunction with index register 29h register to define a non-cacheable block. The starting address for the Non-Cacheable Block must have the same granularity as the block size. For example, if a 512KB non-cacheable block is selected, its starting address is a multiple of 512KB; consequently, only address bits of A19-A23 are significant and A16-A18 are "don't care".

5.10 Non-Cacheable Block 1 Register 2 - Index: 29h

x = Don't Care $V =$ Valid Bit

6.0 Electrical Specification

6.1 Absolute Maximum Ratings

NOTE Permanent device damage may occur if Absolute Maximum Ratings are exceeded.

6.2 DC Characteristics

6.3 AC Characteristics - 33MHz Preliminary

Temperature: 0° C to 70°C, Vcc: $5V \pm 5\%$

6.3 AC Characteristics - 33MHz Preliminary (cont.)

Temperature: 0° C to 70 $^{\circ}$ C, Vcc: 5V ± 5%

6.3 AC Characteristics - 33MHz Preliminary (cont.)

Temperature: 0° C to 70 $^{\circ}$ C, Vcc: 5 V \pm 5%

1.The capacitance loading is 50 pF

2.↓ means falling edge

3.↑ means rising edge

4.CMD equals memory read/write or I/O read/write.

6.4 AC Characteristics - 50MHz Preliminary

Temperature: 0° C to 70°C, Vcc: $5V \pm 5\%$

6.4 AC Characteristics - 50MHz Preliminary (cont.)

Temperature: 0° C to 70 $^{\circ}$ C, Vcc: 5V ± 5%

6.4 AC Characteristics - 50MHz Preliminary (cont.)

Temperature: 0° C to 70°C, Vcc: $5V \pm 5\%$

1.The capacitance loading is 50 pF

2.↓ means falling edge

3.↑ means rising edge

4.CMD equals memory read/write or I/O read/write.

6.5 Timing Characteristics

OPTH!

Figure 6-4 486 Secondary Cache Read Hit Cycle, Bank Interleave (64KB/256KB)

egeq fixen of beurifrop

Figure 6-9 Read-Miss Cycle, (128KB/512KB Cache) (3 of 3)

Figure 6-11 DMA Read Cycle - Secondary Cache Hit

Figure 6-12 DMA Read Cycle - Secondary Cache Miss

DIVIA WAITE CYCLE - SECONDARY CACHE HIT

4WELTMH

Figure 6-14 DMA Write Cycle - Secondary Cache Miss

Figure 6-17 AT BUS Hold Timing

Figure 6-18 AT BUS Timing

BITTIN

912-3000-009 Page 47

7.0 Mechanical Package

