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Preface

This manual describes the technical features of the AMD5,86™ processor, and its
differences from the Pentium processor, at a level of detail suitable for a hardware
designer or system-software developer to implement system boards, core system
logic, and system software. Specifically, the manual describes the following aspects
of the processor

Internal architecture

Software differences from the 486 and Pentium processors
Performance parameters

Bus signals functions

Bus cycle timing

Design issues for system-board designs

Test and debugging features

A full description of the x86 programming environment is beyond the scope of this
manual. Instead, the software sections describe differences from the 486 processor’s
programming environment. A list of commercial books that describe the x86 pro-
gramming environment and other subjects of potential interest appears at the end of
this preface.

In addition to descriptions of the AMD5¢86 processor’s unique internal architecture,
the manual incorporates details about the behavior of bus signals and bus cycles that
are standard to the x86 processors but that are not fully documented in other x86
manuals.

Notation

The following notation is used in this manual:
b—Binary

d—Decimal

h—Hexadecimal

Set—Written with a value of 1
Clear—Written with a value of 0

'GP (0)—General-protection exception (13 decimal) with an error value of 0
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EFLAGS.IF—The IF bit in the EFLAGS register
CS:EIP—A logical address, expressed as a segment selector (CS) and offset (EIP)

000F_FFFOh—A physical-memory address using hexadecimal notation

Terminology

The following definitions apply throughout this document:

m  Pin and Signal—A pin is a piece of metal on the processor’s package. A signal is
the information about logical states that a pin carries. Pins have pin numbers; sig-
nals have signal names. On processors that multiplex signals, pins can carry more
than one signal; the AMD586 processor, however, does not multiplex signals in
this manner.

m Assert and Negate—A signal that is driven or sampled active is asserted. A signal
that is inactive is negated. In general, asserted means sampled asserted either by
the processor or target logic. Signals that are active in a Low-voltage state, such as
BRDY, are shown with an overbar. Signals that are active in a High-voltage state,
such as INTR, are shown without an overbar. Dual-state signals, such as R/S and
WB/WT, have two states of assertion and, therefore, the term asserted has no
meaning; such dual-state signals are driven High or Low.

m  Drive and Sample—A single-state signal is driven when it is asserted or negated by
a logic device; it is sampled when its driven state is detected by another device.

m  Cycle and Clock—This term commonly refers to at least four different things:
* Bus-clock period: The cycle time of the CLK signal.

*  Processor-clock period: The cycle time of the processor’s internal clock, which
has a frequency relative to CLK that is determined by the state of the BF sig-
nal during RESET. Whenever this cycle is meant, such as in the Chapter 4 de-
scription of pipeline timing and the instruction latency, the full name,
processor-clock cycle, is used.

*  Bus cycle: A signal protocol on the processor’s bus, such as a single-transfer
read cycle or a special bus cycle.

* Sequence of bus cycles: One or more contiguous bus cycles. For example, the two
bus cycles that constitute an interrupt acknowledgment are called a bus opera-
tion, so that the constituent bus cycles can be distinguished from the entire op-
eration.
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m  Writeback—This term refers to two related concepts:

e Bus Cycle—A 32-byte burst write cycle to a memory block that has been cached
in the modified state. Writebacks can be caused by inquire cycles, internal
snoops, writeback and invalidate operations (such as FLUSH or the WBINVD
instruction), cache-line replacements, or locked operations on cached loca-
tions. It is sometimes called a copyback.

* Cache-Line State—A cache line in the modified or exclusive MESI state (modi-
fied, exclusive, shared, invalid).

Writethrough—This term refers to two related concepts:

¢ Bus Cycle—A 1-to-8-byte, single-transfer write cycle caused by write misses or
write hits to lines in the shared or exclusive MESI state.

¢ Cache-Line State—A cache line in the shared MESI state.

Flush—This term commonly refers to at least four things and is usually avoided in
favor of the following specific terms:

e Pipeline Invalidation: A pipeline-flush operation invalidates instructions in the
pipeline that have not been retired (and, depending on the type of pipeline in-
validation, entries in the reorder buffer, entries in the TLB, and/or branch-pre-
diction bits) without writing their state to any storage resource.

¢ Cache Invalidation: The INVD instruction invalidates the contents of the in-
struction and data caches, without writing modified data back to memory.

e Cache Writeback and Invalidation: The WBINVD instruction writes modified
lines in the data cache back to memory while invalidating each line in the in-
struction and data caches.

e FLUSH Operation: The FLUSH input signal executes the same microcode rou-
tine as the WBINVD instruction to write modified lines in the data cache back
to memory while invalidating each line in the instruction and data caches.

Flush Acknowledge Cycle—This term commonly refers to different types of special

bus cycles driven by the processor, and is therefore avoided in favor of the follow-

ing specific terms:

» FLUSH Acknowledge: A special bus cycle driven after the FLUSH operation
completes.

* INVD Acknowledge: A special bus cycle driven after the INVD cache invalida-
tion completes.

»  WBINVD Acknowledge: A sequence of two special bus cycles driven after the
WBINVD cache writeback and invalidation completes.

Snoop—This term commonly refers to at least three different actions and is there-
fore avoided in favor of the following specific terms:

¢ Inquire Cycles: These are bus cycles driven by system logic. They cause the pro-
cessor to compare the inquire-cycle address with the processor’s physical

Xvii
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cache tags. The AMDS5,86 and Pentium processors both support inquire cycles.

¢ Internal Snooping: These snoops are initiated by the processor (rather than sys-
tem logic) during certain types of cache accesses. Both the AMD5¢86 and Pen-
tium microprocessors support this type of internal snooping for the purpose of
detecting self-modifying code. See page 2-22 for details.

* Bus Watch: Some caching devices watch their address and data bus continu-
ously while they are held off the bus. They compare every address driven by
another bus master with their internal cache tags, and they may also be able to
update their cached lines during writebacks to memory by another bus master.
Neither the AMD586 nor Pentium microprocessors support bus watching.

m Cold and Warm Reset—The terms cold or hard reset and warm or soft reset are
commonly used to mean three related but different things, and the terms are
therefore avoided. A cold or hard reset typically refers to the assertion of RESET
at power-up, but warm or soft reset can refer either to the assertion of RESET
after power-up or to the assertion of INIT.

m  System Logic—Any logic outside the processor, including a core-logic chipset,
another bus master, or separate controllers for L2 cache, memory, interrupts,
DMA, communications, video, bus bridging, bus arbitration, or any other system
function.
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Overview

The AMD5;86™ processor brings superscalar RISC perfor-
mance to desktop systems running industry-standard x86 soft-
ware. The processor implements advanced design techniques
like instruction pre-decoding, single-cycle internal RISC opera-
tions, parallel execution units, out-of-order issue and comple-
tion, register renaming, data forwarding, and dynamic branch
prediction. The processor’s many test and debug features sup-
port fast, reliable designs for x86 desktop systems.

AMD’s development and support of the popular Am386® and
Am486® processors has given it a broad foundation of experi-
ence in the x86 architecture. The AMD5¢86 processor’s binary
compatibility with DOS and Windows®-compatible software
running on the Pentium processor and all previous x86 proces-
sors has been established in extensive testing, using industry-
standard test tools. Compatibility and qualification testing has
also been provided by leading desktop-system manufacturers,
chip-set manufacturers, and the independent XXCAL testing
laboratory.

The result can be seen in the AMD5¢86 processor’s perfor-
mance. This performance plus its compatibility with an
immense library of existing x86 software make the AMD5;86
processor a leading-edge solution for desktop systems.
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Features

Pentium-Processor Standard

Compatible with the Pentium (735\90, 815\100)
processor 296-pin socket

Compatible with existing Pentium (735\90, 815\100)
processor support infrastructure and system designs

Compatible with Pentium, 486, and 386 processor soft-
ware

Compatible with x86 DOS, Microsoft® Windows® operat-
ing system, and the large installed base of x86 software

Compatible with IEEE 854 floating-point standard
Selectable bus frequencies
Support for multiprocessing

High-Performance Execution

Six execution units (two ALUs, two load/store, one
branch, one floating-point)

Up to four instructions issued per processor clock
Out-of-order issue and completion

Speculative execution along three predicted branches
Register renaming

Data forwarding

Predecoder converts x86 instructions to single-cycle
RISC operations (ROPs)

Fast integer multiply (4-cycle, fully pipelined)
Five-stage pipeline
Single-cycle cache access

Zero-delay branching, 3-clock misprediction penalty (of-
ten hidden)

No mixed-operand-size penalty

No prefix penalty

Single-cycle misalignment penalty

No instruction-pairing requirements for parallel issue
No pipeline invalidation on segment loads

Efficient support for 16- and 32-bit code, with mixed op-
erand sizes

Overview
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High-Performance Cache and TLBs

16-Kbyte instruction cache supports split-line access

8-Kbyte, dual-ported data cache with MESI cache coher-
ency protocol

Dual-tagged (both linear and physical tags)
Inquire cycles run in parallel with program cache access
4-Kbyte TLB (128 entries) and 4-Mbyte TLB (4 entries)

Extended Features

Control Register 4 (CR4)

CMPXCHGSB instruction

CPUID instruction

Time stamp counter (TSC)
Machine-Specific Registers (MSRs)
4-Mbyte page size

Global pages held in TLB during flushes

Low Power

Static, 3.3-V design
System Management Mode (SMM) with I/O trapping
Low-power halt and stop-clock states

Compatible with U.S. Department of Energy’s Energy
Star program

Compatible with Microsoft Advanced Power Manage-
ment specification

Extensive Test and Debug Features

Two built-in self-test (BIST) modes
Output-Float Test mode

Cache and TLB testing (tags and data)

Debug registers, with I/O breakpoint extension
Branch tracing ’
Functional-redundancy checking

IEEE 1149.1-1990 Test Access Port (TAP) and JTAG
boundary-scan testing

Hardware Debug Tool (HDT)

Features

1-3
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Internal Architecture

The RISC design techniques used in the processor’s internal
architecture account, in large part, for its high performance.
The following sections summarize the processor’s execution
pipeline behavior, the hardware aspects of the internal instruc-
tion cache and data cache, and the hardware aspects of mem-
ory management. ‘

Figure 2-1 shows the major logic blocks that make up the inter-
nal architecture. The blocks are organized in the figure by
stages of the processor’s execution pipeline, which are listed
vertically on the right side of the figure. The blocks are
explained throughout the section that follows.

In this chapter, the terms clock and cycle refer to processor-
clock cycles. If bus-clock cycles or bus cycles are discussed,
they are explicitly named. Processor-clock cycles occur at a
multiple of bus-clock (CLK) cycles, as determined by the BF
input signal and processor model number.
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2.1 Prefetch and Predecode

Figure 2-1 (top-left corner) shows the processor’s prefetch and
predecode logic being fed with data from the external bus via
the memory management unit. Prefetching attempts to keep
the instruction cache and prefetch cache filled ahead of the
execution pipeline’s fetch requirements. The processor only
prefetches during fetch-stage misses in the instruction cache,
which typically occur during taken branches.

When a miss occurs, the prefetcher initiates a 32-byte burst
memory read cycle on the bus to fill a prefetch cache. For cache-
able accesses, the prefetch cache also fills 32-byte lines in the
instruction cache. For non-cacheable accesses, the prefetch
cache provides instructions directly to the execution pipeline.

The instruction cache contains a copy of certain fields in the
current code-segment descriptor. During a taken branch, the
fetch logic adds the code-segment base to the effective address
and places the resulting linear address in the prefetch program
counter, which then increments as a linear address along a
sequential stream. All branches during prefetching are
assumed to be not taken.

The processor predecodes its x86-instruction stream in the
same clock in which x86 instructions come out of the prefetch
cache. An x86 instruction can be from 1 to 15 bytes long. Prede-
coding annotates each instruction byte with information that
later enables the decode stage of the pipeline to perform more
efficiently. The predecode information identifies whether the
byte is the start and/or end of an x86 instruction, whether it is
an opcode byte, and the number of internal RISC operations
(ROPs) it will require at the decode stage. The predecode
information is stored in the instruction cache with each x86
instruction byte. It is passed during instruction fetching to the
decode stage, where it allows multiple x86 instructions to be
decoded in parallel. This avoids delaying the decode of one
instruction until the decode of the prior instruction has deter-
mined its ending byte.

Prefetch and Predecode
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2.2  Execution Pipeline

Figure 2-1 shows the relation between the internal logic and
the stages of the execution pipeline. Figure 2-2 shows the func-
tions of the pipeline stages. The first five stages—Fetch,
Decode 1, Decode 2, Execute, and Result—affect throughput
performance. The sixth stage, Retire, may occur at a variable
number of clocks after the Result stage, but the Retire stage
does not affect throughput performance when the processor
operates in a non-serialized mode, which is typical of most pro-
cessing. Thus, the pipeline effectively has five stages. Because
the pipeline is moderately shallow, penalties associated with
mispredicting a branch (three clocks) or clearing the pipeline
(variable clocks) are relatively small compared with processors
that have deeper pipelines (more pipeline stages).

2-4 Internal Architecture
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Fetch

Decode 1

Decode 2 Execute Result Retire?

|

a) Calculate Address
b) Fetch instruction
Predict branch

Decode 1

a) Merge into byte queue
b) Generate ROPs

Decode 2

a) Merge register tags and immediates

b) Access registers or ROB

Execute

a) Dispatch ROPs to execution units
Calculate operand linear address'
b) Execute

Arbitrate for result bus
Access operands in data cache'
Check protection-and segment limit!

Result

Forward to execution units
Write to ROB

Correct branch prediction
Drive write cycle on bus!

Retire

Write to real-state registers
Forward from ROB

Notes:
1. Load/store instructions only.

2. The Retire stage may occur one or more clocks after completion, but it does not affect throughput.

FIGURE 2-2. Pipeline Stage Functions

Execution Pipeline
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2.2.1 Fetch

The processor can fetch up to 16 bytes per clock out of the
instruction cache. Fetching begins with the calculation of the
linear address for the next instruction along a predicted
branch of the x86 instruction stream. The address accesses the
instruction cache or, during a miss, the prefetch cache. Fetch-
ing can occur along a single execution stream with up to three
taken branches. Fetches that miss both the instruction cache
and prefetch cache are driven to the prefetcher.

In addition to fetching instructions, the fetch logic handles
branch predictions and detects conditions requiring pipeline
invalidation and restarting, such as context switches or
branches into cache lines that do not contain the correct prede-
code state. Branches are dynamically predicted on a cache-line
basis using a 1-bit algorithm. Each of the 1024 instruction-
cache lines has a tag that predicts the last byte in the cache
line to be executed, whether or not the branch will be taken,
and the cache index of the branch target (called the successor
index). When the caches are invalidated, all branch predictions
are cleared.

During prefetch all branch instructions are predicted as not-
taken. Later, if the execution of a branch instruction reveals a
misprediction, the fetch unit backs out of the branch by invali-
dating all speculative states in the prefetch cache, reorder
buffer, load/store reservation station, and store buffer. Then,
for cacheable instructions, the branch prediction stored in the
instruction cache is updated while the correct branch target is
fetched. Prediction updates are disabled when the branch
instruction is non-cacheable, because no prediction informa-
tion is saved for non-cacheable instructions.

In typical x86 desktop programs, a branch occurs about once
every seven x86 instructions. Without branch prediction,
branch targets remain unresolved until the execution phase,
which creates pipeline delays. The processor’s branch-predic-
tion mechanism accurately predicts 70% to 85% of branches
(depending on program behavior) and has a misprediction pen-
alty of only three processor clocks.

2-6 Internal Architecture
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The two-stage decode logic accepts predicted x86 instruction
bytes and their predecode bits from the fetch logic, shifts them
into a 16-byte FIFO buffer called the byte queue, merges regis-
ter tags and operands, and generates internal RISC operations
(ROPs). The decode logic also generates microcode entry
points for complex instructions, interrupts and exceptions, and
several other functions, and it manages the floating-point
stack.

ROPs are fixed-format internal instructions with up to three
operands. Most ROPs execute in a single clock. The operands
(up to two source and one destination) can be 1-, 2-, or 4-bytes
wide, or half of an 8- or 10-byte floating-point operand. ROPs
can be combined to perform every function of an x86 instruc-
tion. One x86 instruction can be decoded into as few as one
ROP (for example, a register-to-register add), or it can be
decoded into several ROPs, depending on its complexity.

The processor uses a combination of hardware and microcode
to convert x86 instructions into ROPs. The hardware consists
of four parallel fastpath converters that translate the most
commonly used x86 instructions (moves, shifts, branches,
ALUs) into one, two, or three ROPs. Translations requiring
more than three ROPs (complex instructions, serializing condi-
tions, interrupts and exceptions, etc.) are handled by micro-
code. Microcode generates the same types of ROPs as the
fastpath hardware but in streams longer than three. The prede-
code information stored with each x86 instruction byte speci-
fies the number of ROPs that instruction requires, or it
specifies that microcode is required. The decoder provides the
entry point into microcode for complex operations.

Pipeline serialization (or synchronization) is handled at the
decode stage. When the processor decodes a serializing instruc-
tion, it stops decoding at that instruction, waits for all previ-
ously decoded instructions to retire (described in Section 2.2.5
on page 2-12), then decodes and executes through retirement
the serializing instruction before decoding any additional
instructions. Thus, the serializing instruction is guaranteed to
execute in program order.

Execution Pipeline
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The serializing instructions include OUTx, invalidations
(INVD, WBINVD, INVLPG), interrupt returns (IRET, IRETD,
RSM), descriptor-table-register and task-register loads (LGDT,
LLDT, LIDT, LTR), moves to control or debug registers (MOV
to CRx or DRx), model-specific register instructions (RDMSR,
WRMSR), and CPUID. Special bus cycles and interrupt-
acknowledge operations also serialize the pipeline. INx
instructions are not executed until the stqre buffer and write-
back buffers are drained of any pending writes.

The four converters that generate fastpath or microcode ROPs
dispatch up to four ROPs in parallel per clock to the execution
unit reservation stations.

2.2.3 Execute

The processor has the following execution units that work in
parallel with one another:

m Two ALUs (integer, logic, and shift operations)
m  One floating-point unit

m Two load/store units

m  One branch unit

Each execution unit has its own FIFO reservation station with
two or four entries. ROPs are dispatched to reservation sta-
tions in program order. One ROP can be dispatched to a single
reservation station in a given clock, thus up to four reservation
stations receive an ROP each clock. ROPs are issued from a res-
ervation station to its execution unit when all operands are
available from the register file, reorder buffer, or prior execu-
tion via forwarding (including from data cache loads), and
when the execution unit has completed its prior ROP. Issue
and dispatch occur in the same clock if the operands are avail-
able and the unit is free at dispatch time.

While ROPs are issued in order to a particular execution unit,
ROPs go out of order at the point of issue because reservation
stations issue ROPs at different times relative to each other.
The use of reservation stations and out-of-order execution
reduces instruction stalls due to dependencies on execution
resources and allows a higher issue rate to be maintained. Mul-
tiple values for the same register are resolved by providing
tags for each register value (register renaming). True data
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dependencies are resolved using forwarding at all execution
units. Antidependencies (in which later instructions produce a
value that overwrites one used by an earlier instruction) are
removed automatically by buffering operands—or tags that
point to operands—at reservation stations. Output dependen-
cies (in which later instructions must be seen by software to
complete after earlier instructions in order to leave the correct
value in a register) are resolved by the reorder buffer.

Reservation stations are supplied with operands over eight 41-
bit operand buses. Execution results are sent to the reorder
buffer (ROB) over five 41-bit result buses. Tags forwarded to
the execution units represent results to watch for on one of the
result buses.

No special compiler optimizations are required for high-perfor-
mance execution on the AMDS586 processor.

Two ALUs perform integer, logic, and shift operations. Both
ALUs have two-entry reservation stations. Table 2-1 shows the
types of ROPs executed by each ALU. Unlike the Pentium pro-
cessor, the AMD586 processor has few restrictions on the pair-
ing of integer instructions needed to use both integer units in
parallel.

TABLE 2-1. ALU Instruction Classes

Instruction Class ALUO ALU1
Addition Yes Yes
Subtraction Yes Yes
Logical ] Yes Yes
Compare Yes Yes

Packed BCD Yes
Unpacked BCD Yes
Special (ADDC, SUBB) Yes
Shift '
Divide

Execution Pipeline
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Floating-Point Unit

Load/Store Units

Branch Unit

The IEEE 854-compatible floating-point unit (FPU) can issue
pipelined ROPs from its 2-entry reservation station at the rate
of one per clock. One ROP can be issued to either the add or
multiply pipeline in each clock, even when the operations are
separated by an exchange ROP. The add and multiply pipe-
lines use a common pre-detect unit and rounder. The rounder
can return one result per clock.

When data is loaded from memory, it is converted to an inter-
nal 82-bit extended format before being stored in the stack.
The format uses two of the internal 41-bit operand or result
buses.

Two load/store units read and write data-cache and memory
operands. A shared, 4-entry reservation station buffers incom-
ing ROPs, and a shared, 4-entry store buffer accepts outgoing
speculative-state operands destined for the data cache or mem-
ory. The reservation station is dual-ported and the store buffer
is single-ported, so that the processor can perform two loads or
one load and one store per clock.

Each unit holds copies of segment-descriptor fields so that it
can calculate logical and linear addresses and check protection
variables and segment limits. Data loaded by one instruction in
a load/store unit can be used by another instruction in another
execution unit in the next clock. There is no load-use penalty.
The data cache can be accessed in a single clock. These low
latencies provide an important performance advantage
because a majority of x86 instructions in typical desktop pro-
grams involve memory as one of their operands.

The load/store units can service two accesses in parallel (two
loads or one load and one store), except a load and store to the
same data-cache index and bank, or when one of the accesses is
an I/O load, a locked access, a segment-descriptor load, a data
breakpoint, or the first half of a misaligned access.

The branch unit has a 2-entry reservation station and executes
correctly predicted branches with zero delay. The unit exe-
cutes calls, returns, conditional jumps, conditional byte-sets,
floating-point exchanges, and microbranches. Speculative exe-
cution occurs whenever a conditional-branch instruction exe-
cutes. The branch unit is the only execution unit that decodes
condition codes and supports speculative flag input operands.

2-10
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The branch unit receives branch-prediction information from
the decoder. If the branch unit executes a branch differently
than predicted, it signals the instruction cache, reorder buffer,
and decode logic, and it passes the correct information to the
branch-prediction array in the fetch stage.

The processor implements a 16-entry reorder buffer (ROB) for
speculative-state register renaming, and a 4-entry store buffer
for speculative-state buffering between the load/store units
and the data cache. An ROP is said to complete when the result
of its execution is written to the ROB or store buffer. Results
may be returned out of order. Results written to the ROB are
simultaneously forwarded (that is, fed back) to all execution
units.

An entry tag is allocated at the top of the ROB for each ROP
that is dispatched to a reservation station. Entries for up to
four ROPs can be allocated simultaneously. Among other
things, the ROB keeps track of the program counter associated
with each instruction, resolves ROP-level dependencies, stores
speculative results, provides the most recent copy of a register
to execution units, recovers from mispredicted branches with-
out altering real state, and provides substitute tags to internal
resources when required operands are still outstanding.

The x86 architecture defines only eight general-purpose regis-
ters and eight entries in the floating-point stack. This limited
set of registers leads to register dependencies and register
reuse. The processor overcomes register dependencies by
renaming registers in the ROB, and it overcomes register reuse
with data forwarding. Data forwarding provides execution
results immediately to other instructions without waiting for
results to be written to and read back from registers, the data
cache, or memory. Multiple speculative-state registers for each
real-state register enable different execution units to use the
same logical register simultaneously. When the register file
detects multiple writes to the same real-state register, only the
latest write in program order is performed—all other writes
are discarded. Multiple reads of the same real-state register
are performed without detection or special handling.

Execution Pipeline
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2.25 Retire

The processor implements a real-state (non-speculative) regis-
ter file that contains the x86-architecture registers and a real-
state 8-Kbyte data cache. While ROPs complete out of order
and their results are forwarded to other execution units and to
the ROB out of order, their results are always written at retire-
ment time to the real-state x86 registers in program order.
Likewise, as results are written from the load/store units to the
store buffer out of order, they are always written at retirement
time to the data cache and/or memory in program order.

An x86 instruction is said to retire when the ROB or store
buffer writes the operands for all of its ROPs, in program
order, to the x86 real-state registers or the data cache. At the
point of retirement, the register file and data cache fully
reflect the execution of an instruction. Any associated excep-
tions are recognized (the ROB facilitates precise exception
handling), any external interrupts that were latched or are cur-
rently held asserted are recognized, and the instruction
pointer is updated. For instructions that store an operand to
memory, retirement is the time at which the store is guaran-
teed to be written externally. When a pipeline invalidation
(flush) occurs, it does so at the retirement stage, causing all
instructions in the pipeline that have not reached the retire-
ment stage to be invalidated.

The retirement stage is also called the instruction-retirement
boundary, or simply instruction boundary. The processor can
retire up to four instructions per processor clock. Thus, the
next set of up to four instructions that are candidates to retire
determines the next instruction boundary at which an external
interrupt can be recognized.

Only one store (from the store buffer or from either of the pro-
cessor’s two writeback buffers) can be among the set of up to
four instructions that retire simultaneously. Thus, for example,
the processor will only finish one in-progress store cycle on the
bus before recognizing an asserted HOLD, SMI, or STPCLK. If
the set of retirement candidates in any clock includes more
than one store, only those instructions up to (but not including)
the second store will retire. The remaining stores occur one at
a time, in their queued order, during subsequent retirements.
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23 Cache Organization and Management

The performance of the execution pipeline is enhanced by the
processor’s on-chip, 16-Kbyte instruction cache and 8-Kbyte
data cache. Both caches are linearly addressed and each has
two associated tag directories, one for linear tags and one for
physical tags.

Linearly addressed caches avoid linear-to-physical address
translation through the TLB and can be faster than physically
addressed caches. Cache accesses in the AMD5¢86 processor
take one clock. The physical tags are only accessed during
cache misses and snoops. By comparison, accesses in the Pen-
tium processor’s physically tagged caches take one or two
clocks, depending on the type of operand being accessed (oper-
ands used in address calculations for the next cache access
take two clocks). Since most x86 instructions access memory,
they benefit greatly by being cached, and the faster cache-
access time on the AMD586 processor is a performance
advantage.

The enabling and operating modes for the caches are software
controlled by the CD and NW bits of CR0. When disabled, both
caches are locked. They are accessed in all operating modes,
and the processor can still hit in a cache that has not been
invalidated, even if software has turned the caches off. These
mechanisms work the same on both the AMD5¢86 and Pentium
processors.

Any area of memory may be cached. However, the processor
prevents caching of locked operations and TLB reads, the oper-
ating system can prevent caching of certain pages by setting
the PCD bit in page-directory and/or page-table entries, and
system logic can prevent caching of certain bus cycles by
negating the KEN input signal on the first BRDY.

The processor implements a requested-word-first protocol for
line fills in both caches. Upon receiving the first 8-byte quad-
word, execution continues while the remainder of the line is
loaded into the cache. Both caches, however, are blocking—a
read hit or miss after a read miss waits until the prior miss fills
the cache. Since read misses are rare, relative to read hits,
cache blocking has little effect on overall performance.

Cache Organization and Management 2-13
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The following sections describe the basic architecture and
resources of the processor’s internal caches. For information
about how the system software and hardware control cache
configuration and coherency, see Section 6.2 on page 6-8.

2.3.1 Instruction Cache

The instruction cache has the following characteristics:
16 Kbytes

32-byte line size

Four-way, set associative

Dual-tagged (linear and physical)

Single-clock access

Supports 16-byte split-line accesses
Requested-word-first line-fill protocol

Five predecode bits per instruction byte
Round-robin replacement policy

Read-only, invalidate on write hit

Instruction-cache accesses can be to any 16 bytes within a sin-
gle 32-byte line or they can be split into two 8-byte accesses
across two contiguous lines.

Split-line fetches can provide instructions from sequential
lines in a single clock. This keeps decode logic supplied with a
steady stream of bytes. Instruction fetches can read any 16
bytes of a single line or—in a split-line fetch—the high 8 bytes
of the first line and the low 8 bytes of the next sequential line
(index + 1 as determined by the A4 address bit), starting on
either an odd or even line.

Instruction-cache lines have only two coherency states (valid
or invalid) rather than the four MESI (modified, exclusive,
shared, invalid) coherency states of data-cache lines. Only two
states are needed because these lines are only read, never writ-
ten. In addition to holding instructions, each instruction-cache
line holds 5 predecode bits per instruction byte. The informa-
tion contained in these bits is described in Section 2.1 on page
2-3.
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Parts of the current code-segment descriptor are maintained in
the instruction cache. This allows the cache to translate logical
addresses for branches and other prefetch targets to linear
address tags for the incoming cache-line fills.

Details on the instruction-cache storage formats and testing
are given in Section 7.4 on page 7-7.

2.3.2 Data Cache

The data cache has the following characteristics:

8 Kbytes

32-byte line size

Four-way, set associative

Four banks

Dual-tagged (linear and physical)

Byte-addressable

Single-clock access

Two true linear-tag ports—two parallel accesses per clock

Two logical data ports (one read-only, one read/write)—two
parallel accesses per clock, if not to the same bank

m  MESI cache-coherency protocol (maintained by physical
tags)
Requested-word-first line-fill protocol
Pseudo-random replacement policy
Read/write (writeback or writethrough modes)

The data cache overcomes load/store bottlenecks by support-
ing simultaneous accesses to two lines in a single clock, if the
lines are in separate banks. Each of the four cache banks con-
tains eight bytes, or one-fourth of a 32-byte cache line. They
are interleaved on a four-byte boundary. One instruction can
be accessing bank 0 (bytes 0-3 and 16-19), while another
instruction is accessing bank 1, 2, or 3 (bytes 4-7 and 20-23,
8-11 and 24-27, and 12-15 and 28-31 respectively).

Entries in the data cache are real-state operands. A load occurs
when one of the load/store units reads an operand from the
data cache or memory. A store occurs at the retirement pipe-
line stage when an entry from the speculative-state store
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buffer, which resides between the load/store units and the data
cache, moves to the real-state data cache or memory.

Details on the data-cache storage formats and testing are given
in Section 7.4 on page 7-7.

2,3.3 Cache Tags

The processor’s caches are dual-tagged. That is, the processor
maintains two sets of tags—linear and physical—for each line
in the two caches. The linear tags are stored in the instruction
and data caches. The physical tags are stored in the memory
management unit (MMU), where the TLB is also located. The
physical-tag directories for each cache have one port.

Linear tags are read for all accesses to the instruction and data
caches. All read misses, memory writes, and snooping—both
external inquire cycles and automatic internal snooping—go
through the physical tags. The MESI cache-coherency state is
recorded in the physical tags.

Accesses to the data-cache physical tags add two clocks to the
one-clock linear-tag access. Accesses to the instruction-cache
physical tags add three clocks to the one-clock linear-tag
access. Thus, physical-tag accesses take a total of three clocks
for the data cache or four clocks for the instruction cache, but
they occur infrequently. For write hits to the data cache, how-
ever, the additional latency for accessing the physical tags
(needed to determine the MESI state) is transparent to pro-
gram execution because write hits are pipelined and can occur
at a sustained rate of one per clock.

There is a corresponding physical tag for each linear tag. Two
or more linear addresses can be aliased to a single physical
address. When the processor detects an aliased access to the
store buffer, the TLB and physical tags forward the access
directly from the store buffer without depending on a linear-
tag match in the data cache.

The linear tags for both caches are invalidated whenever pag-
ing is turned on or off, or when CR3 (the page-directory base
register) is loaded, except that during x86-architecture task
switches, the linear tags are only invalidated if the current and
new value for CR3 are different. When linear tags are invali-
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dated, many or all of the cached lines may still be valid, but
accesses miss in the linear tags and go through the MMU to the
physical tags. If an access misses the linear tags but hits in the
physical tags, the processor restores the linear tag using the
linear address for the access. This is called a cache-tag recovery.
The revalidation of the linear tag does not add any additional
time to that of the physical-tag access itself.

The linear tags for both caches are invalidated during physical-
tag invalidation, or when the RESET or INIT input signal is
asserted. The linear and physical tags for both caches are inval-
idated when the FLUSH input signal is asserted or when the
INVD or WBINVD instruction is executed.

Cache-Line Fills

Memory reads that miss in the instruction or data cache gener-
ate read-allocate operations. These begin with an attempt to
find an invalid line in one of the four cache ways for the
accessed index. If an invalid line cannot be found in one of the
four ways for the index, a line is pseudo-randomly selected for
replacement from one of the four ways. Then the processor fills
the line by driving a four-transfer burst cycle on the bus,
aligned on 32-byte boundaries, with the target quadword
(gword) delivered first.

Instruction-cache line fills initiate four 8-byte transfers from
memory (one burst cycle) on the bus. All 32 bytes go through
the prefetch cache (which has two 32-byte lines) to the instruc-
tion cache and byte queue, with x86 instruction predecoding
performed on the fly.

Data-cache line fills also initiate four 8-byte transfers on the
bus. If a shared or exclusive line is being replaced prior to the
line fill, the first two 8-byte gqwords fill half of the cache line,
while the accessed data item is simultaneously forwarded
through the load/store unit to the ROB and execution units.
Then the remaining two gwords arrive and fill the other half of
the cache line. When the cache line is completely filled, the
state of the line is updated. If the line being filled is replacing
a modified line, the prior contents of the line are copied to a 32-
byte writeback (copyback) buffer in the bus interface unit
while the new line is being read.
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Cache Coherency

The processor’s cache-coherency mechanism is based on real
(non-speculative) state. Everything that accesses main memory
has the same view of that memory, which is never modified
speculatively. The contents of the processor’s data cache are
always real-state. Furthermore, on the AMD5;86 processor,
writes to both memory and the data cache are always done in
program order, irrespective of the state of the EWBE input sig-
nal.

The processor’s data cache implements coherency with the
MESI (Modified, Exclusive, Shared, Invalid) protocol. The
instruction cache, which is read-only, has no write-related
states. The instruction cache implements coherency with only
a valid bit, which in effect works like a shared-invalid subset of
the MESI protocol. The coherency state bits are stored in the
physical tags for each cache. The physical tags can be accessed
by external logic (using inquire cycles) or the processor (for
internal snoops) in parallel with accesses to the linear tag by
programs running on the processor.

Table 2-2 shows all possible cache-line states before and after
program-generated accesses to individual cache lines. The
table includes the correspondence between MESI states and
writethrough or writeback states for lines in the data cache.
Table 2-3 shows all possible cache-line states before and after
cache snoop or invalidation operations performed with inquire
cycles. Together, these tables show all of the conditions for
writethroughs and writebacks to memory.
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TABLE 2-2. Cache States for Read and Write Accesses

Type Tags! Cache State Access Cache State After Access
Before Type? .
Access’ P MESI State> | Writeback-
Writethrough
State
invalid single read invalid invalid
Read . iteth: h
Miss Linear invalid3 burst read shared or write Ofoug
. . .4
lgad(;e (cacheable) (line fill) exclusive writeback?
ea shared — shared writethrough
Read . : ; :
Hit Linear exclusive — exclusive writeback
modified — modified writeback
Vl\\glst: Linear invalid single write invalid invalid
Cache cache shared or writethrough
Write Writ shared update and exclusivet or
};}te Linear single write writeback#*
i
exclus'n.re O | cache update modified writeback
modified
Notes:
1. Linear tags are masked by A20M, physical tags are not.
2. Single read, single write, cache update, and writethrough = 1 to 8 bytes. Line fill = 32 bytes.
3. If CACHE and KEN are Low.
4. If PWT is Low and WB/WT is High.
5. MESI state is stored in the physical tags. Instruction-cache state consists only of valid (shared) or invalid, and there are no write-
related states.
— Not applicable or none.

Cache Organization and Management
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TABLE 2-3. Cache States for Snoops, Invalidation, and Replacements
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Type of Tags! Cache State Memory Cache State After Operation
Operation Before Access3 K
Operation? MESI State’ Writeback-
Writethrough
State
shared or . INV=0 | shared | writethrough
Inquire Physical exclusive INV=1 | invalid invalid
sica
Cycle y dified burst write |INV=0|shared| writethrough
modifie .
(writeback) | INV=1 |invalid invalid
shared or
exclusive -
g::;;al Physical - : invalid invalid
modified urst write
(writeback)
shared or
FLUSH exclusive -
Signal Physical burst wiit invalid invalid
modified urst write
(writeback)
shared or .
exclusive
WBINVD Physical : invalid invalid
Instruction dified burst write
modilie (writeback)
illjs‘ir'ilction — — — invalid invalid
shared or _ d
Cache-Line ) exclusive Depends on
Replacement Physical 5 - replacement-line
P modified ur'st write characteristics
(writeback)
Notes:
1. Linear tags are masked by A20M, physical tags are not.
2. Writeback =32 bytes.
3 M/ES/ fjtm‘e is stored in the physical tags. Instruction-cache state consists only of valid (shared) or invalid, and there are no write-
related states.
— Not applicable or none.
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2.3.6 Snooping

The term snooping commonly refers to at least three different
actions, only two of which are supported by the AMD5¢86 and
Pentium processors:

m Inquire Cycles—These are bus cycles initiated by external
logic that cause the processor to look up an address in its
physical cache tags. Both the AMD5¢86 and Pentium pro-
cessors support inquire cycles.

m Internal Snooping—This is initiated by the processor (rather
than external logic) during certain cache accesses. Internal
snooping detects self-modifying code. Both the AMD5,86
and Pentium processors support internal snooping.

m Bus Watching—Some caching devices watch their address
and data buses while they are held off the bus, comparing
addresses driven by another bus master with their internal
cache tags and optionally updating their cached lines on the
fly during writebacks by the other master. The AMD5,86
and the Pentium processor do not support bus watching.

Table 2-4 shows the conditions under which snooping occurs in
the AMDS5g86 processor and the resources that are snooped.
All such snooping is done in the processor’s physical tags, in
parallel with the processor’s own accesses to the linear tags.
Thus, there is no execution-performance penalty for snooping.

Inquire Cycles In systems with multiple caching masters, external logic main-
tains cache coherency by driving inquire cycles to the proces-
sor. System logic initiates inquire cycles by asserting AHOLD,
BOFF, or HOLD to obtain control of the address bus, and then
driving EADS, INV and an inquire address. Such bus cycles
cause the processor to compare the physical tags for both its
instruction and data caches with the inquire address. If the
compare hits a shared or exclusive line in the data cache or a
valid line in the instruction cache, the processor asserts HIT. If
the compare hits a modified line in the data cache, the proces-
sor asserts HITM.

The resulting state of a cache line that is hit depends on the
state of the INV signal at the time of the inquire cycle. If INV is
negated, the line remains in or transitions to the shared (or
valid) state. If INV is asserted, the modified line in the data
cache is written back, and the line is invalidated.
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TABLE 2-4. Snoop Action

Snooping Action
O;lng;:; I;)f Type of Access Instructions Data
Instruction | Prefetch Data Store | Writeback
Cache Cache Cache | Buffer Buffers
External Inquire Cycle yesl yes yes! no yes!
Read | es? es? es?
Instruction | Miss y y y
Cache
no no no
Read
Miss
Internal
Read
Data Hit
Cache Write
Miss
Write
Hit
Notes:

The processor’s response to a snoop hit depends on the state of the INV input signal and the state of the cache line as follows:
For instructions if INV is negated, the line remains invalid or shared, but if INV is asserted, the line is invalidated. For data if INV is
negated, valid lines remain in or transition to the shared state, a modified data cache line is written back before the line is marked
shared (with FTTM asserted), invalid lines remain invalid.

For data if INV is asserted, the line is marked invalid. Modified lines are written back before invalidation.

If the snoop hits a line in the data cache, store buffer or writeback buffer, the line is written back (if modified) and invalidated.
Then the instruction-cache read is performed again. If the line is modified, a copy of the writeback data is passed directly to the
instruction cache, thus avoiding a line-fill bus cycle after the writeback bus cycle.

If the snoop hits a line in the instruction cache, prefetch cache, or line-fill buffer, the line stays valid and the data-cache read is
performed again, but as a single, non-cacheable read.

If tffe snogp hits a line in the instruction cache, prefetch cache, or line-fill buffer, the line is invalidated and the data-cache write is
performed.

Not applicable.

Internal Snooping The processor automatically snoops its instruction cache dur-

ing read or write misses to its data cache, and it snoops its data
cache during read misses to its instruction cache. It does this to
detect the presence of self-modifying code. Table 2-4 summa-
rizes the actions taken during this internal snooping.
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Line-Fill Buffers
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If an internal snoop hits its target, the processor does the fol-
lowing:

m  During Instruction-Cache Read Miss—The line in the data
cache, store buffer, or writeback buffer is written back (if
modified) and invalidated, and the instruction-cache read is
performed again. If the data-cache line was modified, a
copy of the writeback data is passed directly to the instruc-
tion cache, thus avoiding a line-fill bus cycle after the write-
back bus cycle.

m  During Data-Cache Read Miss—The line in the instruction
cache, prefetch cache, or line-fill buffer stays valid, and the
data-cache read is performed as a single, non-cacheable
read.

m During Data-Cache Write Miss—The line in the instruction
cache, prefetch cache, or line-fill buffer is invalidated, the
reorder buffer invalidates all instructions in the pipeline
following the instruction that initiated the snoop, and the
data-cache write is performed.

The AMD5,86 processor, like the 486 processor but unlike the
Pentium processor, requires a jump (near or far) after a self-
modifying write to clear the prefetch cache. However, both the
AMD5¢86 and the Pentium processors require a serializing
instruction after self-modifying code whose physical address is
aliased to multiple linear addresses.

Several buffers are associated with the instruction and data
caches, as described below.

The processor has two 16-byte line-fill buffers in the bus inter-
face unit, one of which is used during instruction-cache line
fills and the other during data-cache line fills. The buffer holds
half of the 32-byte burst cycle that the processor drives in
response to a cacheable fetch miss.

Instruction-cache lines are 16 bytes wide. During fetch misses,
the first 16 bytes of the burst go through the prefetch cache to
the instruction cache and/or byte queue. The remaining 16
bytes from the 32-byte burst cycle, if they are not used immedi-
ately thereafter to fill the prefetch cache, are held in a 16-byte
line-fill buffer in the bus interface unit for a possible future
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Prefetch Cache

Store Buffer

access. As shown in Table 2-4, the line-fill buffer for the
instruction cache is snooped internally during read or write
misses in the data cache, but it is not snooped during inquire
cycles. The line-fill buffer for the data cache, unlike the
instruction-cache buffer, is never snooped and for this reason
does not appear in Table 2-4.

The processor prefetches instructions during fetch-stage
misses in the instruction cache, as described in Section 2.1 on
page 2-3. When a miss occurs, the processor initiates a 32-byte
access for a 16-byte line fill and additional sequentially
addressed bytes to fill the prefetch cache. During non-cache-
able accesses, the fetch logic fetches directly from the prefetch
cache.

As shown in Table 2-4 on page 2-22, the prefetch cache is
snooped internally during read or write misses in the data
cache and during inquire cycles.

The Pentium processor implements a write buffer in which
real-state data writes can be buffered, waiting for access to the
bus, and in which certain types of cacheable read cycles on the
bus are promoted ahead of certain types of write cycles when
the EWBE signal is asserted. The AMD586 processor has no
such real-state write buffer between its data cache and the bus,
although it does implement a speculative-state, 4-entry, 4-byte-
wide store buffer between the two load/store execution units
and the data cache.

The store buffer can contain both speculative- and real-state
data. Each entry in the store buffer is in speculative state until
the associated ROP is retired, after which the data is trans-
ferred to the data cache and/or memory, both of which repre-
sent the real (non-speculative) state of data. A store occurs at
the retirement stage of the pipeline, when the processor writes
an entry from the store buffer to the data cache and/or mem-
ory. For non-cacheable stores, the processor writes directly
from the store buffer to the bus interface, at which point the
store becomes real-state.

As shown in Table 2-4 on page 2-22, the store buffer is not
snooped during inquire cycles. When external logic drives an
inquire cycle, the processor’s response depends only on the
contents of the data cache at that time (that is, only on its real
state). Subsequent stores to that line—be they in the store
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buffer, load/store execution units, reservation stations, decode
unit, or prefetch cache—are not relevant to an inquire cycle or
internal snoop. Such stores are speculative and might never
occur, due to a branch misprediction, an interrupt, or other
intervening event.

As a buffered store leaves the store buffer to update the data
cache and/or memory, the processor checks the location’s
MESI state in the physical tags and observes the MESI update
rules for that state. For example, if a buffered store were going
to hit an exclusive line in the data cache when first placed in
the store buffer, but the line’s MESI state was changed from
exclusive to shared by a subsequent inquire cycle while the
store waited in the store buffer, the store would see a shared
state on being transferred to the data cache, and it would
become a writethrough, going externally to main memory at the
same time that it updates the data cache.

The processor has a 1-entry, 32-byte-wide writeback (copy-
back) buffer in the bus interface unit for replacements and
invalidations. The buffer is used for writebacks of modified
data in the data cache due to one of the following:

m Cache-line replacement during data-cache read miss
m  WBINVD instruction
m FLUSH signal

During cache-line replacements, the memory read cycle for the
new cache line is initiated on the bus before the contents of the
modified line to be replaced are copied into the writeback
buffer. When the cache-line fill is completed, the contents of
the writeback buffer are written to memory.

Writethroughs from the data cache do not go through a buffer.
These transfers are between 1 and 8 bytes in length and they
go directly onto the bus from the store buffer.

As shown in Table 2-4 on page 2-22, the writeback buffer is
snooped internally during instruction-cache read misses and
during inquire cycles.
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Snoop Writeback
Buffer

In addition to the replacement and invalidation writeback
buffer, the processor also has a 1-entry, 32-byte-wide snoop
writeback buffer in the bus interface unit that is used for
writebacks due to one of the following:

m Internal snoop during an instruction-cache read miss
m External inquire cycle in which the INV signal is asserted

A modified data-cache line can be replaced in parallel with a
snoop-hit invalidation to a modified line because the write-
backs go to separate buffers.

2.4  Memory Management Unit (MMU)

The MMU supports standard x86 demand-paged virtual memo-
ry by translating linear addresses to physical addresses. To
speed this process, the most recently accessed address transla-
tions are stored in one of two translation lookaside buffers
(TLBs), one for mapping 4-Kbyte pages and another for map-
ping 4-Mbyte pages. Mappings to 4-Kbyte and 4-Mbyte pages
can be intermixed in a given page directory, the base of which
is pointed to by the contents of control register 3 (CR3).

During memory accesses, the MMU receives a linear address
and searches the TLBs for a corresponding physical address. If
found, the physical address is passed to the physical tag direc-
tory for a validity check. If the physical address is not present
(a TLB miss), the MMU searches the page directory and page
tables in memory. If found, the MMU loads the translation into
the appropriate TLB. If not found, the processor generates a
page fault.

2.4.1 Storage Model

The AMDS5¢86 processor always observes the strongly ordered
memory-write model. All writes—whether to cache, memory, or
I/O—are performed in program order, regardless of the state
of the External Write Buffer Empty (EWBE) input signal. The
only effect of EWBE on writes is to hold additional writes off
when the signal is negated. In particular, assertion of EWBE
does not permit the AMD5;86 processor to observe a weakly
ordered memory-write model, in which writes to cache may

2-26

Internal Architecture



AMDA1
18524B/0—Mar1996 AMD?5,86 Processor Technical Reference Manual

occur out of program order with respect to writes on the bus to
memory.

In a strongly ordered memory-write model, writes to cache and
memory always appear in program order. In a weakly ordered
memory-write model, writes to cache and memory can occur
out of program order (that is, a write to cache can occur before
a prior write to memory). Weakly ordered systems may per-
form better, but they can cause problems in systems with mul-
tiple-caching masters. For example, errors may occur in weakly
ordered systems when a master that is held off the bus contin-
ues writing to exclusive or modified lines in its internal data
cache while another master writes to memory. Nevertheless,
the strongly ordered AMD5,86 processor supports high perfor-
mance without using weakly ordered memory writes by buffer-
ing speculative stores in the store buffer.

2.4.2 Read/Write Reordering

The processor reorders certain types of cacheable read cycles
on the bus ahead of certain types of write cycles. Specifically,
any read that hits in the instruction or data cache is promoted
ahead of a write in the store buffer if the read is not from the
same location to which a write in the store buffer is to be writ-
ten. The reordering allows reads, which dominate the proces-
sor’s use of the bus in Writeback mode, to take precedence
over data writes, which normally occur infrequently. The
EWBE signal has no effect on this reordering of bus cycles.

243 Segmentation

The instruction cache contains a copy of certain fields in the
current code-segment descriptor. The information is used dur-
ing prefetch for segment translation (logical-to-linear
addresses), thus providing linear-address tags for the instruc-
tion-cache entries. Likewise, the load/store units hold the cur-
rent data-segment descriptors, which are used to generate the
linear address and perform protection checks during data-
cache accesses. The processor can cache segment descriptors
in its data cache.

Memory Management Unit (MMU) 2-27
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24.4 Paging and the TLBs

The processor supports 4-Kbyte and 4-Mbyte paging with two
separate translation lookaside buffers (TLBs) that work in par-
allel:

m 4-Kbyte Pages—A 128-entry, four-way, set-associative TLB
that can cover 512 Kbytes of memory space

m 4-Mbyte Pages—A four-entry, fully-associative TLB that can
cover 16 Mbytes of memory space

The TLBs are accessed during cache accesses that miss in the
linear tags. Each TLB is organized into tag directories (linear-
address references) and data arrays (physical-address refer-
ences). The TLB entries also contain bits used to check privi-
lege and access rights. Because the caches are linearly
addressed, however, cache accesses do not go through the TLB.
The cache accesses are faster because the TLB is not involved.
Copies of the privilege and access bits from the TLB entries
are loaded into the caches when the cache lines are filled. If a
privilege-level violation is detected during a cache access, the
TLB is accessed, and it alone can issue a page-related excep-
tion.

TLB invalidations (flushes) are done in the standard ways: a
MOYV to CR3, which loads a new page-table directory, or the
INVLPG instruction, which invalidates a single TLB entry.
Both the 4-Kbyte and 4-Mbyte TLBs support global pages,
which remain in the TLBs during such TLB invalidations when
the global-page extension is enabled.

When a TLB miss or fault occurs during a prefetch, bits reflect-
ing this are passed via the prefetch cache to the decode logic
during fetch misses so that microcode can serialize the pipe-
line and initiate the TLB reload nonspeculatively. TLB replace-
ment is done using a pseudo-random algorithm. The processor
never caches TLB loads, regardless of the state of the PCD and
PWT bits, and it does not do speculative TLB reloads. A page-
fault handler, however, may cache page-table entries in the

. data cache. During a TLB reload, the physical cache tags are
snooped for the page-table entry (PTE). A hit on a modified line
causes that line to be written back to memory. The TLB then
completes the read from memory. The TLB always performs
reloads from memory, regardless of whether a page-directory
entry (PDE) or page-table entry (PTE) is in the data cache. If
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the TLB reload involves a write to memory to set the PDE
Accessed or Dirty bit, a hit during the physical-tag snoop
causes the cache line to be invalidated.

Details on software configuration for 4-Mbyte paging are given
in Section 3.1.2 on page 3-5. The global-page option is
described in Section 3.1.3 on page 3-9. Details on the TLB stor-
age formats and their testing are given in Section 7.4 on page
7-7.
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Software Environment and
Extensions

The AMD586 processor is compatible with the instruction set,
programming model, memory management mechanisms, and
other software infrastructure supported by the 486 and Pen-
tium (735\90, 815\100) processors. Operating system and appli-
cation software that runs on the Pentium processor can be
executed on the AMDS5,86 processor without modification.
Because the AMD5¢86 processor takes a significantly different
approach to implementing the x86 architecture, some subtle
differences from the Pentium processor may be visible to sys-
tem and code developers. These differences are described in
Appendix A.

The AMD5,86 processor implements the following extensions
to the 486 architecture:

4-Mbyte Page Size

Global Pages

Protected Virtual Extensions
Virtual-8086 Mode Extensions (VME)
Machine-Check Registers and Exceptions
Model-Specific Registers (MSRs)

Time Stamp Counter (TSC)

New Instructions: CPUID, CMPXCHGS8B, MOV to and from
CR4, RDTSC, RDMSR, WRMSR, and RSM

m I/O Breakpoints
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3.1

The sections that follow provide details on the architectural
extensions visible to system and application software. Some
sections include pseudo-code algorithms for suggested BIOS
modifications to support the extensions. Architectural exten-
sions visible to debug and test software, such as I/O break-
points, are described in Chapter 7.

Control Register 4 (CR4) Extensions

Control register 4 contains bits that enable or specify many of
the extensions to the 486 architecture. The majority of the bits
in CR4 are reserved. The default state for all bits in CR4 is all
zeros. Figure 3-1 shows the format of CR4. Table 3-1 describes
the fields in CR4.

— Reserved

Global Page Extension
Machine Check Enable
Page Size Extension
Debugging Extensions
Time Stamp Disable
Protected Virtual Interrupts

Virtual-8086 Mode Extensions VME

10

PV

ViMm

I'|E
GPE 7
MCE 6
PSE 4
DE 3
TSD 2
PvI 1
0

FIGURE 3-1. Control Register 4 (CR4)

3-2
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TABLE 3-1. Control Register 4 (CR4) Fields
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Bit Mnemonic Description Function
Enables retention of designated entries in the
4-Kbyte TLB or 4-Mbyte TLB during invalida-
7O | emsion |0
1 = enabled, 0 = disabled.
See Section 3.1.3 on page 3-9 for details.
_ Enables machine-check exceptions.
6 Mce | Machine-Check |y _ opapled, 0 = disabled.
Enable
See Section 3.1.1 on page 3-4 for details.
' Enables 4-Mbyte pages.
4 PSE  |pageSie 1= enabled, 0 = disabled.
xtension
See Section 3.1.2 on page 3-5 for details.
Enables I/0 breakpoints in the DR7-DRO regis-
3 DE Debugging texs.
Extensions 1 = enabled, 0 = disabled.
See Section 7.5 on page 7-16 for details.
Selects privileged (CPL=0) or non-privileged
(CPL>0) use of the RDTSC instruction, which
ime Stamp reads the Time Stamp Counter .
2 TSD Time St ds the Time S C (TSC)
Disable 1 = CPL must be 0, 0 =any CPL.
See Section 3.2.3 on page 3-27 for details.
Enables hardware support for interrupt virtu-
Protected Virtual alization in Protected mode.
1 PVI Interrupts 1 = enabled, 0 = disabled.
See Section 3.1.5 on page 3-24 for details.
Enables hardware support for interrupt virtu-
Virtual-8086 alization in Virtual-8086 mode.
0 VME Mode Extensions 1 = enabled, 0 = disabled.
See Section 3.1.4 on page 3-12 for details.

Control Register 4 (CR4) Extensions
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3.1.1

Machine-Check Exceptions

Bit 6 in CR4, the machine-check enable (MCE) bit, controls
generation of machine-check exceptions (12h). If enabled by
the MCE bit, these exceptions are generated when either of
the following occurs:

m System logic asserts BUSCHK to identify a parity or other
type of bus-cycle error

m The processor asserts PCHK while system logic asserts PEN
to identify an enabled parity error on the D63-D0 data bus

Whether or not machine-check exceptions are enabled, the
processor does the following when either type of bus error
occurs:

m Latches the physical address of the failed cycle in its 64-bit
machine-check address register (MCAR)

m Latches the cycle definition of the failed cycle in its 64-bit
machine-check type register (MCTR)

Software can read the MCAR and MCTR registers in the excep-
tion handling routine with the RDMSR instruction, as
described in Section 3.3.5 on page 3-35. The format of the regis-
ters is shown in Figure 3-8 on page 3-25 and Figure 3-9 on page
3-26.

If system software has cleared the MCE bit in CR4 to 0 before
a bus-cycle error, the processor attempts to continue execution
without generating a machine-check exception, although it still
latches the address and cycle type in MCAR and MCTR as
described above.

3-4
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3.1.2 4-Mbyte Pages

The TLBs in the 486 and 386 processors support only 4-Kbyte
pages. However, large data structures such as a video frame
buffer or non-paged operating system code can consume many
pages and easily overrun the TLB. The AMDS5,86 processor
accommodates large data structures by allowing the operating
system to specify 4-Mbyte pages as well as 4-Kbyte pages, and
by implementing a four-entry, fully-associative 4-Mbyte TLB
which is separate from the 128-entry, 4-Kbyte TLB. From a
given page directory, the processor can access both 4-Kbyte
pages and 4-Mbyte pages, and the page sizes can be intermixed
within a page directory. When the Page Size Extension (PSE)
bit in CR4 is set, the processor translates linear addresses
using either the 4-Kbyte TLB or the 4-Mbyte TLB, depending
on the state of the page size (PS) bit in the page-directory
entry. Figures 3-2 and 3-3 show how 4-Kbyte and 4-Mbyte page
translation work.

4-Kbyte 4-Kbyte 4-Kbyte
Page Page Page
Directory Table
—> PTE
—>] Byte
— PDE
I CR3 I > > >
31 22 21 121N 0
Page Directory Page Table Page
Offset Offset Offset
R .
Linear Address

FIGURE 3-2. 4-Kbyte Paging Mechanism
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4-Mbyte
Page
Directory
> Byte
! PDE
I CR3 i > >
31 22 21 0
Page Directory Page
Offset Offset

Linear Address

FIGURE 3-3. 4-Mbyte Paging Mechanism

To enable the 4-Mbyte paging option:
1. Set the Page Size Extension (PSE) bit in CR4 to 1.
2. Set the Page Size (PS) bit in the page-directory entry to 1.

3. Write the physical base addresses of 4-Mbyte pages in bits
31-22 of page-directory entries. (Bits 21-12 of these entries
must be cleared to 0 or the processor will generate a page

fault.)

4. Load CR3 with the base address of the page directory that.

contains these page-directory entries.

3-6
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Figure 3-1 and Table 3-1 show the fields in CR4. Figure 3-4 and
Table 3-2 show the fields in a page-directory entry.

4-Kbyte page translation differs from 4-Mbyte page translation
in the following ways:

m 4-Kbyte Paging (Figure 3-2)—Bits 31-22 of the linear address
select an entry in a 4-Kbyte page directory in memory,
whose physical base address is stored in CR3. Bits 21-12 of
the linear address select an entry in a 4-Kbyte page table in
memory, whose physical base address is specified by bits
31-22 of the page-directory entry. Bits 11-0 of the linear
address select a byte in a 4-Kbyte page, whose physical base
address is specified by the page-table entry.

m 4-Mbyte Paging (Figure 3-3)—Bits 31-22 of the linear
address select an entry in a 4-Mbyte page directory in mem-
ory, whose physical base address is stored in CR3. Bits 21-0
of the linear address select a byte in a 4-Mbyte page in
memory, whose physical base address is specified by bits
31-22 of the page-directory entry. Bits 21-12 of the page-
directory entry must be cleared to 0.

31 121109 8 7 6 5 43 2 10

Physical Base Address

Available to Software AL 11-9 l |
Global G 8
Page Size PS 7
Dirty=0 D 6
Accessed A 5
Page Cache Disable PCD 4
Page Writethrough PWT 3
User/Supervisor u/s 2
Write/Read W/R 1
Present (valid) P 0

FIGURE 3-4. Page-Directory Entry (PDE)
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TABLE 3-2. Page-Directory Entry (PDE) Fields

Bit Mnemonic

Description

Function

31-12 BASE

Physical Base
Address

For 4-Kbyte pages, bits 31-12 contain the physical
base address of a 4-Kbyte page table.

For 4-Mbyte pages, bits 31-22 contain the physical
base address of a 4-Mbyte page and bits 21-12
must be cleared to 0. (The processor will generate
a page fault if bits 21-12 are not cleared to 0.)

11-9 AVL

Available to
Software

Software may use this field to store any type of
information. When the page-directory entry is not
present (P bit cleared), bits 31-1 become available
to software.

Global

0 =local, 1 = global.

Page Size

0 = 4-Kbyte, 1 = 4-Mbyte.

Dirty

For 4-Kbyte pages, this bit is undefined and
ignored. The processor does not change it.

0 = not written, 1 = written.

For 4-Mbyte pages, the processor sets this bit to 1
during a write to the page that is mapped by this
page-directory entry.

0 = not written, 1 = written.

Accessed

The processor sets this bit to 1 during a read or
write to any page that is mapped by this page-
directory entry.

0 = not read or written, 1 = read or written.

4 PCD

Page Cache Dis-
able

Specifies cacheability for all pages mapped by this
page-directory entry. Whether a location in a
mapped page is actually cached also depends on
several other factors.

0 = cacheable page, 1 = non-cacheable.

3 PWT

Page
Writethrough

Specifies writeback or writethrough cache proto-
col for all pages mapped by this page-directory
entry. Whether a location in a mapped page is
actually cached in a writeback or writethrough
state also depends on several other factors.

0 = writeback page, 1 = writethough page.

u/s

User/Supervisor

0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R

Write/Read

0 = read or execute, 1 = write, read, or execute.

Present

0 = not valid, 1 = valid.

3-8
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3.1.3 Global Pages

The processor’s performance can sometimes be improved by
making some pages global to all tasks and procedures. This can
be done for both 4-Kbyte pages and 4-Mbyte pages.

The processor invalidates (flushes) both the 4-Kbyte TLB and
the 4-Mbyte TLB whenever CR3 is loaded with the base
address of the new task’s page directory. The processor loads
CR3 automatically during task switches, and the operating sys-
tem can load CR3 at any other time. Unnecessary invalidation
of certain TLB entries can be avoided by specifying those
entries as global (a global TLB entry references a global page).
This improves performance after TLB flushes. Global entries
remain in the TLB and need not be reloaded. For example,
entries may reference operating system code and data pages
that are always required. The processor operates faster if these
entries are retained across task switches and procedure calls.

To specify individual pages as global:
1. Set the Global Page Extension (GPE) bit in CR4.
2. (Optional) Set the Page Size Extension (PSE) bit in CR4.

3. Set the relevant Global (G) bit for that page:

For 4-Kbyte pages—Set the G bit in both the page-directory
entry (shown in Figure 3-4 and Table 3-2) and the page-
table entry (shown in Figure 3-5 and Table 3-3).

For 4-Mbyte pages—(Optional) After the PSE bit in CR4 is
set, set the G bit in the page-directory entry (shown in Fig-
ure 3-4 and Table 3-2).

4. Load CR3 with the base address of the page directory.

The INVLPG instruction clears both the V and G bits for the
referenced entry. To invalidate all entries, including global-
page entries, in both TLBs:

1. Clear the Global Page Extension (GPE) bit in CR4.

2. Load CR3 with the base address of another (or same) page
directory.

Control Register 4 (CR4) Extensions 39
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31 121110 9 8 7 6 5 43 2 10

Physical Base Address

Available to Software AVL 11-9 | )

Global G 8

Page Size =0 PS 7

Dirty D 6 .
Accessed A 5

Page Cache Disable PCD 4

Page Writethrough PWT 3

User/Supervisor u/s 2

Write/Read W/R 1

Present (valid) P 0

FIGURE 3-5. Page-Table Entry (PTE)
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TABLE 3-3. Page-Table Entry (PTE) Fields
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Bit Mnemonic Description Function
Physical Base .
31-12 BASE Address The physical base address of a 4-Kbyte page.
Software may use the field to store any type of
11-9 AVL Available to information. When the page-table entry is not
Software present (P bit cleared), bits 31-1 become available
to software.
8 G Global 0 =local, 1 = global.
This bit is ignored in page-table entries, although
7 PS Page Size clearing it to 0 preserves consistent usage of this
bit between page-table and page-directory entries.
The processor sets this bit to 1 during a write to
6 D Dirty the page that is mapped by this page-table entry.
0 = not written, 1 = written.
The processor sets this bit to 1 during a read or
write to any page that is mapped by this page-
5 A Accessed table entry.
0 = not read or written, 1 = read or written.
Specifies cacheability for all locations in the page
mapped by this page-table entry. Whether a loca-
4 PCD Page Cache tion is actually cached also depends on several
Disable other factors.
0 = cacheable page, 1 = non-cacheable.
Specifies writeback or writethrough cache proto-
col for all locations in the page mapped by this
Page page-table entry. Whether a location is actually
3 PWT Writethrough | cached in a writeback or writethrough state also
depends on several other factors.
0 = writeback, 1 = writethough.
2 u/s g)srer/SuperVI- 0 = user (any CPL), 1 = supervisor (CPL < 3).
1 W/R Write/Read 0 =read or execute, 1 = write, read, or execute.
0 P Present 0 = not valid, 1 = valid.

Control Register 4 (CR4) Extensions
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3.14 Virtual-8086 Mode Extensions (VME)

Interrupt Redirection
in Virtual-8086 Mode
Without VME
Extensions

The Virtual-8086 Mode Extensions (VME) bit in CR4 (bit 0)
enable performance enhancements for 8086 programs running
as protected tasks in Virtual-8086 mode. These extensions
include:

m Virtualizing maskable external interrupt control and notifi-
cation via the VIF and VIP bits in EFLAGS

m Selectively intercepting software interrupts (INTn instruc-
tions) via the Interrupt Redirection Bitmap (IRB) in the
Task State Segment (TSS)

8086 programs expect to have full access to the interrupt flag
(IF) in the EFLAGS register, which enables maskable external
interrupts via the INTR signal. When 8086 programs run in Vir-
tual-8086 mode on a 386 or 486 processor, they run as pro-
tected tasks and access to the IF flag must be controlled by the
operating system on a task-by-task basis to prevent corruption
of system resources.

Without the VME extensions available on the AMD5¢86 pro-
cessor, the operating system controls Virtual-8086 mode access
to the IF flag by trapping instructions that can read or write
this flag. These instructions include STI, CLI, PUSHF, POPF,
INTn, and IRET. This method prevents changes to the real IF
when the I/O privilege level (IOPL) in EFLAGS is less than 3,
the privilege level at which all Virtual-8086 tasks run. The
operating system maintains an image of the IF flag for each
Virtual-8086 program by emulating the instructions that read
or write IF. When an external maskable interrupt occurs, the
operating system checks the state of the IF image for the cur-
rent Virtual-8086 program to determine whether the program
is allowing interrupts. If the program has disabled interrupts,
the operating system saves the interrupt information until the
program attempts to re-enable interrupts.

The overhead for trapping and emulating the instructions that
enable and disable interrupts, and the maintenance of virtual
interrupt flags for each Virtual-8086 program, can degrade the
processor’s performance. This performance can be regained by
running Virtual-8086 programs with IOPL set to 3, thus allow-
ing changes to the real IF flag from any privilege level, but
with a loss in protection.

3-12
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Hardware Interrupts
and the VIF and VIP
Extensions

AMD5,86 Processor Technical Reference Manual

In addition to these performance problems caused by virtual-
ization of the IF flag in Virtual-8086 mode, software interrupts
(those caused by INTn instructions that vector through inter-
rupt gates) cannot be masked by the IF flag or virtual copies of
the IF flag, these flags only affect hardware interrupts. Soft-
ware interrupts in Virtual-8086 mode are normally directed to
the Real mode interrupt vector table (IVT), but it may be
desirable to redirect interrupts for certain vectors to the Pro-
tected mode interrupt descriptor table (IDT).

The processor’s Virtual-8086 mode extensions support both of
these cases—hardware (external) interrupts and software
interrupts—with mechanisms that preserve high performance
without compromising protection. Virtualization of hardware
interrupts is supported via the Virtual Interrupt Flag (VIF)
and Virtual Interrupt Pending (VIP) flag in the EFLAGS regis-
ter. Redirection of software interrupts is supported with the
Interrupt Redirection Bitmap (IRB) in the TSS of each Virtual-
8086 program.

When VME extensions are enabled, the IF-modifying instruc-
tions that are normally trapped by the operating system are
allowed to execute, but they write and read the VIF bit rather
than the IF bit in EFLAGS. This leaves maskable interrupts
enabled for detection by the operating system. It also indicates
to the operating system whether the Virtual-8086 program is
able to or expecting to receive interrupts.

When an external interrupt occurs, the processor switches
from the Virtual-8086 program to the operating system, in the
same manner as on a 386 or 486 processor. If the operating sys-
tem determines that the interrupt is for the Virtual-8086 pro-
gram, it checks the state of the VIF bit in the program’s
EFLAGS image on the stack. If VIF has been set by the proces-
sor (during an attempt by the program to set the IF bit), the
operating system permits access to the appropriate Virtual-
8086 handler via the interrupt vector table (IVT). If VIF has
been cleared, the operating system holds the interrupt pend-
ing. The operating system can do this by saving appropriate
information (such as the interrupt vector), setting the pro-
gram's VIP flag in the EFLAGS image on the stack, and return-
ing to the interrupted program. When the program
subsequently attempts to set IF, the set VIP flag causes the
processor to inhibit the instruction and generate a general-

Control Register 4 (CR4) Extensions 3-13
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protection exception with error code zero, thereby notifying
the operating system that the program is now prepared to
accept the interrupt.

Thus, when VME extensions are enabled, the VIF and VIP bits
are set and cleared as follows:

m VIF—This bit is controlled by the processor and used by the
operating system to determine whether an external
maskable interrupt should be passed on to the program or
held pending. VIF is set and cleared for instructions that
can modify IF, and it is cleared during software interrupts
through interrupt gates. The original IF value is preserved
in the EFLAGS image on the stack.

m VIP—This bit is set and cleared by the operating system via
the EFLAGS image on the stack. It is set when an interrupt
occurs for a Virtual-8086 program who’s VIF bit is cleared.
The bit is checked by the processor when the program sub-
sequently attempts to set VIF.

Figure 3-6 and Table 3-4 show the VIF and VIP bits in the
EFLAGS register. The VME extensions support conventional
emulation methods for passing interrupts to Virtual-8086 pro-
grams, but they make it possible for the operating system to
avoid time-consuming emulation of most instructions that
write or read the IF.

The VIF and IF flags only affect the way the operating system
deals with hardware interrupts (the INTR signal). Software
interrupts are handled like machine-generated exceptions and
cannot be masked by real or virtual copies of IF (see page 3-
21). The VIF and VIP flags only ease the software overhead
associated with managing interrupts so that virtual copies of
the IF flag do not have to be maintained by the operating sys-
tem. Instead, each task’s TSS holds its own copy of these flags
in its EFLAGS image.
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ID Flag

Virtual Interrupt Pending
Virtual Interrupt Flag
Alignment Check
Virtual-8086 Mode
Resume Flag

Nested Task

/O Privilege Level
Overflow Flag
Direction Flag
Interrupt Flag

Trap Flag

Sign Flag

Zero Flag

Auxiliary Flag

Parity Flag

Carry Flag
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1211109 8 7 6 5 4 3 2 10

D 21
VIP 20
VIF 19
AC 18
VW™ 17
RF 16
NT 14
I0PL  13-12
OF 11
DF 10
IF 9
T 8
SF 7
F 6
AF 4
PF 2
CF o

FIGURE 3-6. EFLAGS Register

TABLE 3-4. Virtual-Interrupt Additions to EFLAGS Register

Bit

Mnemonic

Description

Function

20

VIP

Virtual Interrupt
Pending

Set by the operating system (via the EFLAGS
image on the stack) when an external maskable
interrupt (INTR) occurs for a Virtual-8086 pro-
gram who’s VIF bit is cleared. The bit is checked
by the processor when the program subsequently
attempts to set VIF.

19

VIF

Virtual Interrupt
Flag

When the VME bit in CR4 is set, the VIF bit is
modified by the processor when a Virtual-8086
program running at less privilege than the IOPL
attempts to modify the IF bit. The VIF bit is used
by the operating system to determine whether a
maskable interrupt should be passed on to the
program or held pending.

Control Register 4 (CR4) Extensions
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Table 3-5 shows the effects, in various x86-processor modes, of
instructions that read or write the IF and VIF flag. The column
headings in this table include the following values:

m PE—Protection Enable bit in CRO (bit 0)

VM—Virtual-8086 Mode bit in EFLAGS (bit 17)
VME—YVirtual Mode Extensions bit in CR4 (bit 0)
PVI—Protected-mode Virtual Interrupts bit in CR4 (bit 1)
IOPL—1/0 Privilege Level bits in EFLAGS (bits 13-12)
GP(0)—General-protection exception, with error code =0
IF—Interrupt Flag bit in EFLAGS (bit 9)
VIF—Virtual Interrupt Flag bit in EFLAGS (bit 19)

TABLE 3-5. Instructions that Modify the IF or VIF Flags

1. All Virtual-8086 tasks run at CPL = 3.

— Not applicable.

Mode TYPE PE VM |VME | PVI | IOPL | GP(0) IF VIF
CLI 0 0 0 0 — No |IF«0 -_—
STI 0 0 0 0 — No |IF«1 —_
PUSHF 0 0 0 0 | — | no [NO —
Change
Real Mode! IF «
POPF 0 0 0 0 — No |Stack —_
Image
IF «
IRET 0 0 0 0 — No |Stack —
Image
Notes:

2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP=1.

3-16
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TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE | VM [ VME | PVI | IOPL | GP(0) IF VIF
CLI 1 0 0 0 |2CPL| No |IF« 0 —
CLI 1 | 0o | o | o |<cPL| Yes |NO —
Change )
STI 1 0 0 0 |2CPL| No |IF«1 —
STI 1 | 0o | o] o |<cPL| Yes |NO —
Change
No
PUSHF 1 0 0 0 |[=2CPL| No —
Change :
No
PUSHF 1 0 0 0 |<CPL| No Ch —
286 Protected ange
Mode IF «
POPF 1 0 0 0 (2CPL| No |Stack —
Image
POPF 1| o | o] o |<PL| N |NO —
Change
IF «
IRET 1 0 0 0 |>CPL| No |Stack —
Image
IF «
IRET 1 0 0 0 |<CPL| No |Stack —
Image
Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = ].
—  Not applicable.
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TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE | VM |VME | PVI | IOPL | GP(0) IF VIF
CLI 1 1 0 — |[(2CPL| No |IF« 0 —_
CLI 1 1 0 | — |<cPL| Yes |NO —
Change
‘STI 1 1 0 — |2CPL| No |IF«1 —_
STI 1 | 1| 0o | — |<cpL| Yes |NO —
Change
No
PUSHF 1 1 0 — |=2CPL| No —
. Change
No
386 Virtual- PUSHF 1 1 0 —_ <CPL | Yes Change -_
1
8086 Mode IF
POPF 1 1 0 — |[2CPL| No |Stack —
Image
POPF 1 | 1| 0o | — |<cPL| Yes |NO —
Change
IF «
IRETD 1 1 0 — |2CPL| No |Stack —
Image
No
| IRETD 1 1 0 — |<CPL| Yes —
Change
Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP= 1.
— Not applicable.
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TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE | VM | VME | PVI | IOPL | GP(0) IF VIF
CLI 1 1 1 | — 3 | No |[Feo |NO
Change
CLI 1 1 1 | — | o | no [NO VIF « 0
Change
STI 1 1 1 | — 3 | No |[IFe1 |NO
Change
STI 1 1 1 | — ] o | No [N VIF « 1
Change
Not
PUSHF 1 1 1 —_ 3 No |Pushed Pushed
Not Pushed
PUSHF 1 1 1 — 0 No Pushed into
stack IF
PUSHFD 1 1 1 — 3 N Pushed |Pushed
Virtual-8086 ° usae usae
Mode PUSHFD 1 1 1 — 0 Yes — —
Extensions Not
(VME). 2 POPF 1 1 1 —_ 3 No |Popped Popped
Popped
POPF 1 1 1 | — | 0 | No ggt og |from
pp stack IF
POPFD 1 1 1 | — | 3 | No |Popped |NOt
pp Popped
POPFD 1 1 1 — 0 Yes —_ —_
IF « VIF «
Return |Return
IRETD 1 1 1 — 3 No Stack Stack
Image Image
IF « VIF «
Return |Return
IRETD 1 1 1 —_ 0 No Stack Stack
Image Image

Notes:
1. All Virtual-8086 tasks run at CPL =3,
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = 1.
—  Not applicable.
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TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE | VM | VME | PVI | IOPL | GP(0) IF VIF
CLI 10| =] 1| 3| N [fFeo [N°
Change
CLI 1 o] =] 1] o | N [N VIF < 0
Change
STI 1 o | — | 1 3 | No |[IFe1 [NO
’ Change
STI 10| —1| 1] o | No [N VIF 1
Change
Not
PUSHF 1 0 —_ 1 3 No |Pushed Pushed
Not
PUSHF 1 0 —_ 1 0 No |Pushed Pushed
PUSHFD 0 —_ 1 3 No |Pushed |Pushed
Protected | PUSHFD 1 0 — 0 No |Pushed |Pushed
Virtual Not
Extensions POPF 1 0 —_ 1 3 No |Popped P:)) ed
(PVI)L.2 . o pp
: ot ot
POPF 1 0 —_ 1 0 No Popped | Popped
Not
POPFD 1 0 —_ 1 3 No |[Popped Popped
Not Not
POPFD 1 0 — 1 0 No Popped | Popped
IF « VIF «
Return |Return
IRETD 1 0 — 1 3 No Stack Stack
Image Image
IF « VIF «
|Return |Return
IRETD | 1 0 —_ 1 0 No Stack Stack
Image Image
Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP=1.
— Not applicable.
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Software Interrupts
and the Interrupt
Redirection Bitmap
(IRB) Extension

AMD5,86 Processor Technical Reference Manual

In Virtual-8086 mode, software interrupts (INTn exceptions
that vector through interrupt gates) are trapped by the operat-
ing system for emulation, because they would otherwise clear
the real IF. When VME extensions are enabled, these INTn
instructions are allowed to execute normally, vectoring
directly to a Virtual-8086 service routine via the Virtual-8086
interrupt vector table (IVT) at address 0 of the task address
space. However, it may still be desirable for security or perfor-
mance reasons to intercept INTn instructions on a vector-spe-
cific basis to allow servicing by Protected-mode routines
accessed through the interrupt descriptor table (IDT). This is
accomplished by an Interrupt Redirection Bitmap (IRB) in the
TSS, which is created by the operating system in a manner sim-
ilar to the 10 Permission Bitmap (IOPB) in the TSS.

Figure 3-7 shows the format of the TSS, with the Interrupt
Redirection Bitmap near the top. The IRB contains 256 bits,
one for each possible software-interrupt vector. The most-sig-
nificant bit of the IRB is located immediately below the base of
the IOPB. This bit controls interrupt vector 255. The least-sig-
nificant bit of the IRB controls interrupt vector 0.

The bits in the IRB work as follows:

m Set—If set to 1, the INTn instruction behaves as if the VME
extensions are not enabled. The interrupt vectors to a Pro-
tected-mode routine if IOPL = 3, or it causes a general-pro-
tection exception with error code zero if IOPL<3.

m Cleared—If cleared to 0, the INTn instruction vectors
directly to the corresponding Virtual-8086 service routine
via the Virtual-8086 program’s IVT.

Only software interrupts can be redirected via the IRB to a
Real mode IVT—hardware interrupts cannot. Hardware inter-
rupts are asynchronous events and do not belong to any cur-
rent virtual task. The processor thus has no way of deciding
which IVT (for which Virtual-8086 program) to direct a hard-
ware interrupt to. Because of this, hardware interrupts always
require operating system intervention. The VIF and VIP bits
described on page 3-13 are provided to assist the operating sys-
tem in this intervention.
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3 0
TSS Limit
| /O Permission Bitmap (IOPB) ] from TR
[ (up to 8 Kbyte)

Interrupt Redirection Bitmap (IRB)
(eight 32-bit locations)

B Operating System
T Data Structure
Base Address of IOPB 0000h TH 64h
0000h LDT Selector
0000h GS
0000h FS
0000h DS
0000h SS
0000h s
0000h ES
EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
EFLAGS
EP
CR3
0000h J SS2
ESP2
0000h | ss1
ESP1
0000h | 550

Link (Prior TSS Selector)

FIGURE 3-7. Task State Segment (TSS)
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Table 3-6 compares the behavior of hardware and software
interrupts in various x86-processor operating modes. It also
shows which interrupt table is accessed: the Protected-mode
IDT or the Real- and Virtual-8086-mode IVT. The column head-
ings in this table include:

PE—Protection Enable bit in CRO (bit 0)
VM—Virtual-8086 Mode bit in EFLAGS (bit 17)
VME—YVirtual Mode Extensions bit in CR4 (bit 0)
PVI—Protected-Mode Virtual Interrupts bit in CR4 (bit 1)
IOPL—1/O Privilege Level bits in EFLAGS (bits 13-12)
IRB—Interrupt Redirection Bit for a task, from the Inter-

rupt Redirection Bitmap (IRB) in the tasks TSS

GP(0)—General-protection exception, with error code =0
IDT—Protected-Mode Interrupt Descriptor Table
IVT—Real- and Virtual-8086 Mode Interrupt Vector Table

TABLE 3-6. Interrupt Behavior and Interrupt-Table Access

Mode I“fl?;;:pt PE | VM |VME | PVI [IOPL| IRB |GP(0)| IDT | IVT
Software 0 0 0 —_ 0 — — — 3
Real mode
Hardware 0 0 0 — 0 — — —_ 3
86 P Software 1 0 0 — — — — 3 —
2 TO-
tected mode Hardware 1 0 0 —_ —_ —_ — 3 —_
Software 1 1 0 —_ =3 —_ No 3 —_
386 Virtual Software 1 1 0 — <3 — | Yes 3 —
irtual-
8086 model Hardware 1 1 0 —_ —_ — No 3 _
Software 1 1 1 0 —_ 0 No 3
Virtual- Software 1 1 1 0 =3 1 No 3 —
8086 Mode [ goftware 1 1 1 0 | <3| 1 | Yes | 3 —
Extensions
(VME)! Hardware 1 1 1 0 — - No 3 —
Protected Software 1 0 1 1 —_ —_ No 3 —
Virtual
Extensions | Hardware 1 0 1 1 — — No 3 —
(PVD)
Notes:
1. All Virtual-8086 tasks run at CPL = 3.
—  Not applicable.
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3.15

I?rotected Virtual Interrupt (PVI) Extensions

The Protected Virtual Interrupts (PVI) bit in CR4 enables sup-
port for interrupt virtualization in Protected mode. In this vir-
tualization, the processor maintains program-specific VIF and
VIP flags in a manner similar to those in Virtual-8086 Mode
Extensions (VME). When a program is executed at CPL = 3, it
can set and clear its copy of the VIF flag without causing gen-
eral-protection exceptions.

The only differences between the VME and PVI extensions are

that, in PVI, selective INTn interception using the Interrupt
Redirection Bitmap in the TSS does not apply, and only the STI
and CLI instructions are affected by the extension.

Tables 3-5 and 3-6 show, among other things, the behavior of
hardware and software interrupts, and instructions that affect
interrupts, in Protected mode with the PVI extensions enabled.
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Model-Specific Registers (MSRs)

3.2.1

The processor supports model-specific registers (MSRs) that
can be accessed with the RDMSR and WRMSR instructions
when CPL = 0. The following index values in the ECX register
access specific MSRs:

00h: Machine-Check Address Register (MCAR)
01h: Machine-Check Type Register (MCTR)
10h: Time Stamp Counter (TSC)

82h: Array Access Register (AAR)

83h: Hardware Configuration Register (HWCR)

The RDMSR and WRMSR instructions are described in Section
3.3.5 on page 3-35. The following sections describe the format
of the registers.

Machine-Check Address Register (MCAR)

The processor latches the address of the current bus cycle in
its 64-bit Machine-Check Address Register (MCAR) when a
bus-cycle error occurs. These errors are indicated either by (a)
system logic asserting BUSCHK, or (b) the processor asserting
PCHK while system logic asserts PEN.

The MCAR can be read with the RDMSR instruction when the
ECX register contains the value 00h. Figure 3-8 shows the for-
mat of the MCAR register. The contents of the register can be
read with the RDMSR instruction.

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check
exception as described in Section 3.1.1 on page 3-4.

31

Physical Address of Last Bus Cycle that Failed

FIGURE 3-8. Machine-Check Address Register (MCAR)
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3.2.2 Machine-Check Type Register (MCTR)

The processor latches the cycle definition and other informa-
tion about the current bus cycle in its 64-bit Machine-Check
Type Register (MCAR) at the same times that the Machine-
Check Address Register (MCAR) latches the cycle address:
when a bus-cycle error occurs. These errors are indicated
either by (a) system logic asserting BUSCHK, or (b) the proces-
sor asserting PCHK while system logic asserts PEN.

The MCTR can be read with the RDMSR instruction when the
ECX register contains the value 01h. Figure 3-9 and Table 3-7
show the formats of the MCTR register. The contents of the
register can be read with the RDMSR instruction. The proces-
sor clears the CHK bit (bit 0) in MCTR when the register is
read with the RDMSR instruction.

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check
exception as described in Section 3.1.1 on page 3-4.

Locked Cycle

Memory or I/O Cycle
Data or Code Cycle

Write or Read Cycle

Valid Machine-Check Data

LOCK 4
M/10 3
D/C 2
W/R 1
CHK 0

FIGURE 3-9. Machine-Check Type Register (MCTR)
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TABLE 3-7. Machine-Check Type Register (MCTR) Fields

Bit

Mnemonic

Description Function

LOCK

Set to 1 if the processor was asserting LOCK dur-

Locked Cycle ing the bus cycle.

M/I0

Memory or I/O 1 = memory cycle, 0 = I/O cycle.

DC

Data or Code 1 = data cycle, 0 = code cycle.

4
3
2
1

W/R

Write or Read 1 = write cycle, 0 = read cycle.

CHK

The processor sets the CHK bit to 1 when both
the MCTR and MCAR registers contain valid
information. The processor clears the CHK bit to
0 when software reads the MCTR with the
RDMSR instruction.

Valid Machine-
Check Data

3.2.3

3.24

Time Stamp Counter (TSC)

With each processor clock cycle, the processor increments a 64-
bit time stamp counter (TSC) model-specific register. The
counter can be written or read using the WRMSR or RDMSR
instructions when the ECX register contains the value 10h and
CPL = 0. The counter can also be read using the RDTSC
instruction (see Section 3.3.4 on page 3-34) but the required
privilege level for this instruction is determined by the Time
Stamp Disable (TSD) bit in CR4. With any of these instruc-

- tions, the EDX and EAX registers hold the upper and lower

double-words (dwords) of the 64-bit value to be written to or
read from the TSC, as follows:

s EDX—Upper 32 bits of TSC
m EAX—Lower 32 bits of TSC

The TSC can be loaded with any arbitrary value.

Array Access Register (AAR)

The Array Access Register (AAR) contains pointers for testing
the tag and data arrays for the instruction cache, data cache, 4-
Kbyte TLB, and 4-Mbyte TLB. The AAR can be written or read
with the WRMSR or RDMSR instruction when the ECX regis-
ter contains the value 82h.

For details on the AAR, see Section 7.4 on page 7-7.
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3.25 Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) contains con-
figuration bits that control miscellaneous debugging functions.
The HWCR can be written or read with the WRMSR or
RDMSR instruction when the ECX register contains the value
83h.

For details on the HWCR, see Section 7.1 on page 7-3.

3.3 New Instructions

In addition to supporting all of the 486 processor instructions,
the AMD5¢86 processor implements the following instructions:

CPUID

CMPXCHGSB

MOYV to and from CR4

RDTSC

RDMSR

WRMSR

RSM

Illegal instruction (reserved opcode)
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3.3.1 CPUID

mnemonic opcode description
CPUID OFA2h Identify processor
Privilege: CPL=0

Registers Affected: EAX, EBX, ECX, EDX

Flags Affected: none

Exceptions Generated: Real, Virtual-8086 mode—none
Protected mode—none

The CPUID instruction identifies the type of processor and the features it supports.
A 0 or 1 value written to the EAX register specifies what information will be
returned by the instruction.

The processor implements the ID flag (bit 21) in the EFLAGS register. By writing and
reading this bit, software can verify that the processor will execute the CPUID
instruction.

If 0 is written to EAX, the following values are returned in EAX, EBX, ECX, and
" EDX:

EAX: 00000001h
EBX: 68747541h
n ECX: 444D4163h
m EDX: 69746E65h

These values decode to the ASCII string “AuthenticAMD” when read in the EBX-
EDX-ECX registers in least significant byte to most significant byte order.

If 1 is written to EAX, the following value is returned in the bit locations of EAX and
EDX:

m EAX:
« EAX[3-0] Stepping ID
« EAX][7-4] Model:

AMD-SSAS processor (0, 0000b)
AMD5,86 processor (1, 0001Db)

« EAX[11-8] Family (0101b)
« EAX[31-12] reserved
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s EDX:

« EDX]O0] FPU on chip (1 = FPU, 0 = no FPU)

¢ EDX]1] Virtual Mode Extensions (1 = support, 0 = no support)

« EDX]|2] I/O Breakpoints (1 = support, 0 = no support)

« EDX]3] 4-Mbyte Pages (1 = support, 0 = no support)

e EDXJ4] Time Stamp Counter (1 = support, 0 = no support)

« EDX]5] K86™ Model-Specific Registers (1 = support, 0 = no support)

« EDX]6] Reserved

« EDX][7] Support of machine-check exception (1 = supported)

¢ EDX]S8] Execution of CMPXCHGSB instruction (1 = supported)

« EDX]9] Global Paging Extension (1 = supported)

* EDXJ[31-10] reserved

The following pseudo-code illustrates the use of the CPUID instruction:

begin
{
if vendor string report desired
{
load EAX with Oh .
execute CPUID instruction (opcode
Result:
EBX ‘Auth’
EDX ‘enti’
ECX ‘cAMD’
} .
else if CPU information desired
{
load EAX with 1
execute CPUID instruction (opcode
Result:
EAX[3-01] stepping ID (contact AMD for specifics)
EAX[7-4] = Model
AMD-SSA5 processor -> 0000b
AMD5,86 processor -> 0001b
EAX[11-8]1 = Family
K5 CPU -> 5
EAX[31-12] = Reserved
EBX = 00000000h
ECX = 00000000h

I

OFh 0A2h)

mn

OFh 0A2h)

EDX[0] = 1b (bit 0==1 indicates FPU present)

EDX[1] = 1b (bit 1==1 indicates Virtual Mode Extensions)
EDX[2] = 1b (bit 2==1 indicates I/0 Breakpoints)

EDX[3] = 1b (bit 3==1 indicates 4-Mbyte pages)

EDX[4] = 1b (bit 4==1 indicates Time Stamp Counter)
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EDX[5] = 1b (bit 5==1 indicates K86 Model-Specific Registers)

EDX[6] = 0b Reserved
EDX[7] = Support of machine check exception (bit 7==1 indicates support)
EDX[8] = Support of CMPXCHG8B instruction (bit 8==1 indicates support)

EDX[9] = Support of global paging extension (bit 9==1 indicates support)
EDX[31-10] = Reserved
}

end
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3.3.2 CMPXCHGSB

mnemonic opcode description

CMPXCHG8B r/m64  OFC7 Compare and exchange 8-byte operand

Privilege: CPL=0
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: ZF

Exceptions Generated: Real, Virtual-8086, Protected mode—GP(0) for all standard cases. Invalid opcode if
destination is a register.
Virtual-8086 mode—Page fault

The CMPXCHGSB instruction is an 8-byte version of the 4-byte CMPXCHG instruc-
tion supported by the 486 processor. CMPXCHGS8B compares a value from memory
with a value in the EDX and EAX register, as follows:

m EDX—Upper 32 bits of compare value

m EAX—Lower 32 bits of compare value

If the memory value matches the value in EDX and EAX, the ZF flag is set to 1 and
the 8-byte value in ECX and EBX is written to the memory location, as follows:

m ECX—Upper 32 bits of exchange value
m EBX—Lower 32 bits of exchange value
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3.3.3 MOV to and from CR4

mnemonic opcode description

MOV CR4,r32 0F22 Move to CR4 from register
MOV r32,CR4 0F20 Move to register from CR4
Privilege: CPL=0

Registers Affected: CR4, 32-bit general-purpose register
Flags Affected: none

Exceptions Generated: Real mode—none
Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not=0

These instructions read and write control register 4 (CR4).
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3.3.4 RDTSC

mnemonic opcode description

RDTSC 0F31 Read time stamp counter
Privilege: Selectable by TSD bit in CR4
Registers Affected: EAX, EDX

Flags Affected: none

Exceptions Generated: Real, Virtual-8086 mode—Invalid Opcode
Protected mode—GP (0) if CPL not=0 when CR4.TSD =1

The processor’s 64-bit time stamp counter (TSC) increments on each processor clock.
In Real or Protected mode, the counter can be read with the RDMSR instruction and
written with the WRMSR instruction when CPL = 0. However, in Protected mode the
RDTSC instruction can be used to read the counter at privilege levels higher than
CPL =0.

The required privilege level for using the RDTSC instruction is determined by the
Time Stamp Disable (TSD) bit in CR4, as follows:

m CPL = 0—Set the TSD bit in CR4 to 1
m Any CPL—Clear the TSD bit in CR4 to 0

The RDTSC instruction reads the counter value into the EDX and EAX registers as
follows:

m EDX—Upper 32 bits of TSC

m EAX—Lower 32 bits of TSC

The following example shows how the RDTSC instruction can be used. After this
code is executed, EAX and EDX contain the time required to execute the RDTSC
instruction.

mov ecx,10h ;Time Stamp Counter Access via MSRs
mov eax,00000000h ;Initialize the Counter to zero

db OFh, 30h ; WRMSR

db OFh, 31h ;RDTSC

db 0Fh, 31h ;RDTSC
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3.3.5 RDMSR and WRMSR

mnemonic opcode description

RDMSR 0F32 Read model-specific register (MSR)
WRMSR OF30 Write model-specific register (MSR)
Privilege: CPL=0

Registers Affected: EAX, ECX, EDX

Flags Affected: none

Exceptions Generated: Real—GP(0) for unimplemented MSR address

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not=0
Protected mode— GP(0) for unimplemented MSR address

The RDMSR or WRMSR instructions can be used in Real or Protected mode to access
several 64-bit, model-specific registers (MSRs). These registers are addressed by the
value in ECX, as follows:

00h: Machine-Check Address Register (MCAR). This may contain the physical
address of the last bus cycle for which the BUSCHK or PCHK signal was asserted.
For details, see Section 3.1.1 on page 3-4.

01h: Machine-Check Type Register (MCTR). This contains the cycle definition of
the last bus cycle for which the BUSCHK or PCHK signal was asserted. For
details, see Section 3.1.1 on page 3-4. The processor clears the CHK bit (bit 0) in
MCTR when the register is read with the RDMSR instruction.

10h: Time Stamp Counter (TSC). This contains a time value. The TSC can be ini-
tialized to any value with the WRMSR instruction, and it can be read with either
the RDMSR or RDTSC instruction. For details, see Section 3.2.3 on page 3-27.
82h: Array Access Register (AAR). This contains an array pointer and test data
for testing the processor’s cache and TLB arrays. For details on the AAR, see Sec-
tion 7.4 on page 7-7.

83h: Hardware Configuration Register (HWCR). This contains configuration bits
that control miscellaneous debugging functions. For details, see Section 7.1 on
page 7-3.
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The above value in ECX identifies the register to be read or written. The EDX and
EAX registers contain the MSR values to be read or written, as follows:

m EDX—Upper 32 bits of MSR. For the AAR, this contains the array pointer and (in
contrast to all other MSRs) its contents are not altered by a RDMSR instruction.

m EAX—Lower 32 bits of MSR. For the AAR, this contains the data to be read/writ-
ten.

All MSRs are 64 bits wide. However, the upper 32 bits of the AAR are write-only and
are not returned on a read. EDX remains unaltered, making it more convenient to
maintain the array pointer.

If an attempt is made to execute either the RDMSR or WRMSR instruction when
CPL is greater than 0, or to access an undefined model-specific register, the proces-
sor generates a general-protection exception with error code zero.

Model-specific registers, as their name implies, may or may not be implemented by
later models of the AMD5¢86 processor.
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mnemonic opcode description

RSM OFAA Resume execution (exit System Management Mode)

Privilege: CPL=0

Registers Affected: CS, DS, ES, FS, GS, SS, EIP, EFLAGS, LDTR,
CR3, EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI

Flags Affected: none

Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode if not in SMM
Protected mode—Invalid opcode if not in SMM
Protected mode—GP(0) if CPL not=0

The RSM instruction should be the last instruction in any System Management Mode
(SMM) service routine. It restores the processor state that was saved when the SMI
interrupt was asserted. This instruction is only valid when the processor is in SMM. It
generates an invalid opcode exception at all other times.

The processor enters the Shutdown state if any of the following illegal conditions are
encountered during the execution of the RSM instruction: the SMM base value is not
aligned on a 32-Kbyte boundary, or any reserved bit of CR4 set to 1, or the PG bit is
set while the PE is cleared in CRO, or the NW bit it set while the CD bit is cleared in
CRO.
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3.3.7 Illegal Instruction (Reserved Opcode)

mnemonic opcode description

(none) OFFF lllegal instruction (reserved opcode)
Privilege: none

Registers Affected: none

Flags Affected: none

Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode
Protected mode—Invalid opcode
Protected mode—Invalid opcode

This opcode always generates an invalid opcode exception. The opcode will not be
used in future AMD K86 processors.
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Performance

This chapter provides information to assist fast execution and
details on dispatch and execution timing for x86 instructions.
Throughout the chapter, the terms clock and cycle refer to pro-
cessor clock cycles, not bus clock (CLK) cycles.

4.1  Code Optimization

The code optimization suggestions in this section cover both
general superscalar optimization (that is, techniques common
to both the AMD5,86 and Pentium processors) and techniques
specific to the AMD5,86 processor. In general, all optimization
techniques used for the Pentium processor apply to any wide-
issue x86 processor, but wider-issue designs like the AMD5¢86
processor have fewer restrictions.

4.1.1 General Superscalar Techniques

m Short Forms—Use shorter forms of instructions to increase
the effective number of instructions that can be examined
for decoding at any one time. Use 8-bit displacements and
jump offsets where possible.

m  Simple Instructions—Use simple instructions with hard-
wired decode because they often perform more efficiently.

Code Optimization
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Moreover, future implementations may increase the penal-
ties associated with microcoded instructions.

m  Dependencies—Spread out true dependencies to increase
the opportunities for parallel execution. Antidependencies
and output dependencies do not impact performance.

m  Memory Operands—Instructions that operate on data in
memory (load/op/store) can inhibit parallelism. Using sepa-
rate move and ALU instructions allows independent opera-
tions to be performed in parallel. On the other hand, if
there are no opportunities for parallel execution, use the
load/op/store forms to reduce the number of register spills
(storing register values in memory to free registers for
other uses) and increase code density.

m  Register Operands—Maintain frequently used values in reg-
isters or on the stack rather than in static storage.

m Branch Prediction—Use control-flow constructs that allow
effective branch prediction. Although correctly predicted
branches have no cost, mispredicted branches incur a three
clock penalty.

m Stack References—Use ESP for references to the stack so
that EBP remains available for general use.

m  Stack Allocation— When placing outgoing parameters on the
stack, allocate space by adjusting the stack pointer (prefer-
ably at the same time local storage is allocated on proce-
dure entry) and use moves rather than pushes. This method
of allocation allows random access to the outgoing parame-
ters so that they may be set up when they are calculated,
instead of having to be held somewhere else until the proce-
dure call. This method also uses fewer execution resources
(specifically, fewer register-file write ports when updating
ESP). -

m Shifts— Although there is only one shifter, certain shifts can
be done using other execution units: for example, shift left
1 by adding a value to itself. Use LEA index scaling to shift
left by 1, 2, or 3.

m Data Embedded in Code—When data is embedded in the
code segment, align it in separate cache blocks from nearby
code to avoid some overhead in maintaining coherency
between the instruction and data caches.

m  Undefined Flags—Do not rely on the behavior of undefined
flag results.
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Loops—Unroll loops to get more parallelism and reduce
loop overhead even with branch prediction. Inline small
routines to avoid procedure-call overhead. In both cases,
however, consider the cost of possible increased register
usage, which might add load/store instructions for register
spilling.

Indexed Addressing—There is no penalty for base + index
addressing in the AMDS5;86 processor. However, future
implementations may have such a penalty to achieve a
higher overall clock rate.

4.1.2 Techniques Specific to the AMD5,86 Processor

Jumps and Loops— JCXZ requires 1 cycle (correctly pre-
dicted) and therefore is faster than a TEST/JZ, in contrast
to the Pentium processor in which JCXZ requires 5 or 6
cycles. All forms of LOOP take 2 cycles (correctly pre-
dicted), which is also faster than the Pentium processor's 7
or 8 cycles.

Multiplies—Independent IMULSs can be pipelined at one
per cycle with 4-cycle latency, in contrast to the Pentium
processor's serialized 9-cycle time. (MUL has the same
latency, although the implicit AX usage of MUL prevents
independent, parallel MUL operations.)

Dispatch Conflicts—Load-balancing (that is, selecting
instructions for parallel decode) is still important, but to a
lesser extent than on the Pentium processor. In particular,
arrange instructions to avoid execution-unit dispatching
conflicts. (See Section 4.2 on page 4-5.)

Instruction Prefixes—There is no penalty for instruction pre-
fixes, including combinations such as segment-size and
operand-size prefixes. This is particularly important for 16-
bit code. However, future implementations may have penal-
ties for the use of these prefixes.

Byte Operations—For byte operations, the high and low
bytes of AX, BX, CX, and DX are effectively independent
registers that can be operated on in parallel. For example,
reading AL does not have a dependency on an outstanding
write to AH.

Move and Convert—MOVZX, MOVSX, CBW, CWDE, CWD,
CDQ all take 1 cycle (2 cycles for memory-based input), in
contrast to the Pentium processor's 2 or 3 cycles.

Code Optimization



AMDA

b

AMD?5,86 Processor Technical Reference Manual 18524B/0—Mar1996

Bit Scan—BSF and BSR take 1 cycle (2 cycles for memory-
based input), in contrast to the Pentium processor's data-
dependent 6 to 34 cycles.

Bit Test—BT, BTS, BTR, and BTC take 1 cycle for register-
based operands, and 2 or 3 cycles for memory-based oper-
ands with immediate bit-offset, in contrast to the Pentium
processor's 4 to 9 cycles. Register-based bit-offset forms on
the AMDS5¢86 processor take 5 cycles. If the semantics of
the register-based bit-offset form are desired (where the bit
offset can cover a very large bit string in memory), it is bet-
ter to emulate this with simpler instructions that can be
interleaved with independent instructions for greater paral-
lelism.

Floating-Point Top-of-Stack Bottleneck—The AMD5,86 pro-
cessor has a pipelined floating-point unit. Greater parallel-
ism can be achieved by using FXCH in parallel with
floating-point operations to alleviate the top-of-stack bottle-
neck, as in the Pentium processor. The AMD5,86 processor
also permits integer operations (ALU, branch, load/store) in
parallel with floating-point operations.

Locating Branch Targets—Performance can be sensitive to
code alignment, especially in tight loops. Locating branch
targets to the first 17 bytes of the 32-byte cache line maxi-
mizes the opportunity for parallel execution at the target.
NOPs can be added to adjust this alignment. The AMD5;86
processor executes NOPs (opcode 90h) at the rate of two per
cycle. Adding NOPs is even more effective if they execute
in parallel with existing code. Other instructions of greater
length, such as a register-based TEST instruction, can be
used as NOPs to minimize the overhead of such padding.

Branch Prediction—There are two branch prediction bits in
a 32-byte instruction cache line. One bit applies to the first
16 bytes of the line and the second bit applies to the second
16 bytes of the line. For effective branch prediction, code
should be generated with one branch per 16-byte line half.

Address-Generation Interlocks (AGIls)—The AMD586 proces-
sor does not suffer from the single-cycle penalty that the
486 and Pentium processors have when a result from execu-
tion or from a data-cache access is used to form a cache
address, so it is not necessary to avoid these situations.

44
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4.2  Dispatch and Execution Timing

This section documents functional unit usage for each instruc-
tion, along with relative cycle numbers for dispatch and execu-
tion of the associated ROPs for the instruction.

4.2.1 Notation

Table 4-1 on page 4-8 contains the definitions for the integer
instructions. Table 4-3 on page 4-19 contains the definitions for
the floating-point instructions. The first column in these tables
indicates the instruction mnemonic and operand types. The fol-
lowing notations are used in the AMD5¢86 microprocessor doc-
umentation:

reg—register

mem—memory location
imm—immediate value
int_16—16-bit integer

int_32—32-bit integer

int_64—64-bit integer
real_32-—32-bit floating-point number
real_64—64-bit floating-point number

real_80—80-bit floating-point number

If an operand refers to a specific register, the register name is

used (e.g., AX, DX). When the register name is of the form Exx
(e.g., EAX, ESI), the width of the register depends on the oper-
and size attribute.
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The second column contains an identifier with the following
format:

X_XX_XXXXXXXX_XXX_XXX

|— MODrm[2:0]

MODrm[5:3]

Opcode

Addressing Mode:
Ox = register
10 = memory without index
1x=memory with or without index
11 = memory with index

1 =two-byte opcode (OF xx)

The third column in the tables indicates whether the instruc-
tion is Fastpath (F) or Microcoded (M). Fastpath and MROM
ROPs cannot both be present in a decode stage at the same
time. If a microcoded instruction appears at the head of the
byte queue without having been present in the queue on the
previous cycle, there is a one-cycle penalty for MROM entry
point generation.

Each x86 instruction is converted into one or more ROPs. The
fourth column shows the execution unit and timing for each of
the ROPs. The ROP types and corresponding execution units
are:

ld—load/store

st—load/store

alu—either alu0 or alul

alu0—alu0 only

alul—alul only

brn—branch

fadd—floating-point add pipe
fmul—floating-point multiply pipe
fpmv—floating-point move and compare pipe
fpfill—floating-point upper half
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The x/y value following the ROP type indicates the relative dis-
patch and execution cycle of the opcode, in the absence of any
conflicts. The format is:

x/yl/z]

where:

m x = Dispatch Cycle—The relative cycle in which the ROP is
dispatched from decode to the reservation station.

m y = Execution Cycle—The relative cycle in which the ROP is
issued from the reservation station to the execution unit.

m z = Result Cycle—The relative cycle in which the result is
returned on the result bus. It is indicated only when the
latency is greater than one cycle. For stores, it reflects the
relative time that a store operand is available to be for-
warded from the store buffer to a dependent load opera-
tion.

Using the time that the first ROP of an instruction is dis-
patched to an execution unit as clock 1, the x/y value indicates
in which clock each ROP is dispatched and executed relative to
clock 1. The execution order and timing does not necessarily
match the dispatch order and timing.

If any of the instructions read from or write to memory, it is
assumed that the data exists in the cache.
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Table 4-1 shows the execution-unit usage for each integer
instruction, along with relative cycle numbers for dispatch and
execution of the associated ROPs for the instruction.

TABLE 4-1. Integer Instructions

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
ADD reg, reg 0_0x_000000xx_xxX_xXX F alu 1/1
1d 11
ADD reg, mem 0_1x_0000001x_xxX_xxx F alu 12
1d 11
ADD mem, reg 0_1x_0000000X_XxxXX_xxX F alu 1/2
st 1/1/3
ADD AL/AX/EAX, imm 0_xx_0000010Xx_XXX_XXX F alu 11
ADD reg, imm 0_0x_100000xx_000_xxx F alu 1/1
1d 11
ADD mem, imm 0_1x_100000xx_000_xxx F alu 1/2
st 1/1/3
AND reg, reg 0_0x_001000xX_XXX_XXX F alu 11
' 1d 11
AND reg, mem 0_1x_0010001x_xXX_XXX F alu 12
1d 11
AND mem, reg 0_1x_0010000X_XXX_XXX F alu 1/2
st 1/1/3
AND AL/AX/EAX, imm 0_xx_0010010x_xxx_xxx F alu 11
AND reg, imm 0_0x_100000xx_100_xxx F alu 11
1d 11
AND mem, imm 0_1x_100000xx_100_xxx F alu 1/2
st 1/1/3
BSF reg, reg 1_0x_10111100_XXX_XXX F alul 111
1d 1/1
BSF reg, mem 1_1x_10111100_XXX_XXX F alul 172
BSR reg, reg 1_0x_10111101_XXX_XXX F alul 171
1d 11
BSR reg, mem 1_1x_10111101_xXX_XXX F alul  1/2
BSWAP reg 1_XxX_11001XXX_XXX_XXX F alul 11
BT reg, reg 1_0x_10100011_XXX_XXX F alul 11
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TABLE 4-1. Integer Instructions (continued)

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
alut 111
alu 1/2
BT mem, reg 1_1x_10100011_xXX_XXX M alu 2/3
1d 2/4
alul  3/5
BT reg, imm 1_0x_10111010_100_xxx F alut 111
. 1d 11
BT mem, imm 1_1x_10111010_100_xxx F alul 172
BTC reg, reg 1_0x_10111011_xxx_xxx F alul 171
alul 171
alu 1/2
alu 2/3
BTC mem, reg 1_1Ix_10111011_XXX_XXX M 14 2/4
alul  3/5
st 3/5/6
BTC reg, imm 1 _0x_10111010_111_xxx F alul 1/1
1d 1/1
BTC mem, imm 1_1x_10111010_111_xxx F alul 172
st 1/1/3
BTR reg, reg 1_0x_10110011_XXX_xxX F alul 171
alul 11
alu 1/2
alu 2/3
BTR mem, reg 1_1x_10110011_xxx_xxX M 1d 2/4
alul 3/5
st 3/5/6
BTR reg, imm 1_0x_10111010_110_xxx F alul 1/1
1d 1/1
BTR mem, imm 1_1x_10111010_110_xxx F alul 172
st 1/1/3
BTS reg, reg 1_0x_10101011_XXX_XXX F alul 11
alul 111
alu 1/2
alu 2/3
BTS mem, reg 1_1x_10101011_xxX_xxx M 1d 2/4
alul 3/5
st 3/5/6
BTS reg, imm 1_0x_10111010_101_xxx F alul 111
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. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
1d 1/1
BTS mem, imm 1_1x_10111010_101_xxx F alul 1/2
st 1/1/3
alu 1/1
CALL near relative 0_xx_11101000_xXXX_XXX M st 1172
alu 11
brn 11
alu 11
CALL near reg 0_0x_11111111_010_xxx M st 1172
alu 11
brn 11
alu 11
1d 11
CALL near mem 0_1x_11111111_010_xxx M st 1/1/2
alu 11
brn  2/2
CBW/DE 0_xx_10011000_xxX_xxXx F alul 1/1
CMP reg, reg 0_0x_001110XX_XXX_XXX F alu 11
1d 11
CMP reg, mem 0_1x_0011101x_xxx_xxx F alu 12
1d 11
CMP mem, reg 0_1x_0011100x_XXX_XXX F alu 12
CMP AL/AX/EAX, imm 0_xX_0011110X_XXX_XXX F alu 1
CMP reg, imm 0_0x_100000xx_111_xxx F alu 11
CMP mem, imm 0_1x_100000xx_111_xxx F d 1
alu 1/2
CWD/DQ 0_xx_10011001_xxX_XxXxx F alul 1/1
DECreg 0_xXx_01001XXX_XXX_XXX F alu 11
DEC reg 0_0x_1111111x_001_xxx F alu 11
1d 11
DEC mem 0_1x_1111111x_001_xxx F alu 1/2
st 1/1/3
fpfill 1/1/4
IMUL AX, AL, reg 0_0x_11110110_101_xxx F fmul  1/1/4
. fpfill 1/1/4
IMUL EDX:EAX, EAX, reg 0_0x_11110111_101_xxx F fmul  1/1/4
fpfill 1/1/4
IMUL reg, reg 1_0x_10101111_xxx_xxx F fmul  1/1/4
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TABLE 4-1. Integer Instructions (continued)

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
. fpfill 1/1/4
IMUL reg, reg, imm 0_0x_011010x1_xxx_xxx F fmul  1/1/4
1d 11
IMUL AX, AL, mem 0_1x_11110110_101_xxx F fpfill 1/2/4
fmul 1/2/4
1d 11
IMUL EDX:EAX, EAX, mem |0_1x_11110111_101_xxx F fpfill 1/2/4
fmul 1/2/4
‘1d 11
IMUL reg, mem 1_1x_10101111_xxx_xxx F fpfill 1/2/4
fmul 1/2/4
1d 11
IMUL reg, reg, mem 0_1x_011010xI_XXX_XXX F fpfill 1/2/4
fmul 1/2/4
INC reg 0_xX_01000XXX_XXX_XXX F alu 11
INCreg 0_0x_1111111x_000_xxx F alu 171
1d 11
INC mem 0_1x_1111111x_000_xxx F alu 1/2
st 1/1/3
Jcc short displacement 0_XX_0T1IXXXX_XXX_XXX F brn 1/1
Jcc long displacement 1_xX_1000XXXX_XXX_XXX F brn 121
JCXZ short displacement 0_xx_11100011_xXXX_XXX F brn 11
JMP long displacement 0_xx_11101001_xxx_xxx F brn 171
JMP short displacement 0_xx_11101011_xxx_xxx F brn 1/1
JMP reg 0_0x_11111111_100_xxx F brn 171
1d 11
JMP mem 0_1x_11111111_100_xxx F brn 12
LEA 0_1x_10001101_xxX_xXX F 1d 111
. ; alu 11
LOOP short displacement 0_xx_11100010_xxx_xxx F
brn 1/2
LOOPE short displacement 0_xx_11100001_XXX_XXX M alu mn
brm 172
LOOPNE short displacement | 0_xx_11100000_xxx_Xxxx M alu n
brn 1/2
MOV reg, reg 0_0x_100010XX_XXX_XXX F alu 11
MOYV reg, mem 0_1x_1000101xX_XXX_XXX F 1d 11
MOV mem, reg 0_10_1000100X_XXX_XXX F st 11
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TABLE 4-1. Integer Instructions (continued)

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
MOV mem, re

om. Teg _ 0_11_1000100X_XXX_XXX F d-n

(base + index addressing) st 1/2/3
MOV AL/AX/EAX, mem 0_xx_1010000X_XXX_XXX F 1d 111
MOV mem, AL/AX/EAX 0_xx_1010001Xx_XXX_XXX F st 11
MOV reg, imm 0_0x_1100011x_000_xxx F alu 1/1
MOV reg, imm O_XX_I10TIXXXX_XXX_XXX F alu 11
MOV mem, imm 0_10_1100011x_000_xxx F alu 171
st 11
MOV mem, imm alu 11
) . 0_11_1100011x_000_xxx F 1d 1/1

(base + index addressing) st 1/2/3
MOVSX reg, reg 1_0x_1011111X_XXX_XXX F alul  1/1
1d 1/1
MOVSX reg, mem 1_Ix_1011111X_XXX_XXX F alul 12
MOVZX reg, reg 1_0x_1011011X_XXX_XXX F alu 11
MOVZX reg, mem 1_1x_1011011X_XXX_XXX F d 11
alu 1/2

fpfill 1/1/4

MUL AX, AL, reg 0_0x_11110110_100_xxx F fmul  1/1/4

: fpfill 1/1/4

MUL EDX:EAX, EAX, reg 0_0x_11110111_100_xxx F fmul  1/1/4
1d 11

MUL AX, AL, mem 0_1x_11110110_100_xxx F fpfill 1/2/4

fmul 1/2/4
1d 11

MUL EDX:EAX, EAX, mem 0_1x_11110111_100_xxx F fpfill 1/2/4

fmul 1/2/4
NEG reg 0_0x_1111011x_011_xxx F alu 11
1d 1/1
NEG mem 0_1Ix_1111011x_011_xxx F alu 1/2

st 1/1/3
NOP (XCHG EAX, EAX) 0_xXx_10010000_xXX_XXX F alu 11
NOT reg 0_0x_1111011x_010_xxx F alu 1/1
1d 1/1
NOT mem 0_1x_1111011x_010_xxx F alu 1/2

st 1/1/3
OR reg, reg 0_0x_000010XX_XXX_XXX F alu 11
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TABLE 4-1. Integer Instructions (continued)

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
OR reg, mem 0_1x_0000101x_XXX_XXX F d - 11
? - = - - A alu 1/2
1d 1/1
OR mem, reg 0_1x_0000100X_XXX_XXX F alu 1/2
st 1/1/3
OR AL/AX/EAX, imm 0_xx_0000110X_XXX_XXX F alu 11
OR reg, imm 0_0x_100000xx_001_xxx F alu 1/1
1d 11
OR mem, imm 0_1x_100000xx_001_xxx F alu 1/2
st 1/1/3
1d 11
POP reg 0_XX_0T0T1XXX_XXX_XXX F alu 11
1d 1/1
POP reg 0_0x_10001111_000_xxx F alu 1n
1d 1/1
1d 11
POP mem 0_1x_10001111_000_xxx M st 21213
alu 2/2
st 1/1
PUSH reg 0_xx_01010XXX_XXX_XXX F alu 11/2
PUSH reg 0_0x_11111111_110_xxx F st 11
- = - = alu 1/1/2
alu 11
PUSH imm 0_xx_011010x0_xxX_XxXX F st 1/1/2
alu 11
1d 11
PUSH mem 0_1x_11111111_110_xxx M st 1/1/2
alu 1/1
1d 11
RET near 0_xx_11000011_XXX_XXX F alu 1/1
brn 1/2
1d 1/1
. alu 11
RET near imm 0_xx_11000010_xxx_xxx M
alu 1/2
brn 1/2
ROLreg, 1 0_0x_1101000x_000_xxx F alul 171
1d 1/1
ROL mem, 1 0_1x_1101000x_000_xxx F alul 172
st 1/1/3
Dispatch and Execution Timing 4-13
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TABLE 4-1. Integer Instructions (continued)
. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing

ROL reg, imm 0_0x_1100000x_000_xxx F alul 11

1d 11

ROL mem, imm 0_1x_1100000x_000_xxx F alul 172
st 1/1/3

ROL reg, CL 0_0x_1101001x_000_xxx F alul 11

1d 11

ROL mem, CL 0_1x_1101001x_000_xxx F alul 172
st 1/1/3

RORreg, 1 0_0x_1101000x_001_xxx F alul 11

1d 1/1

ROR mem, 1 0_1Ix_1101000x_001_xxx F alul 172
st 1/1/3

ROR reg, imm 0_0x_1100000x_001_xxx F alul 111

1d 11

ROR mem, imm 0_1x_1100000x_001_xxx F alul 172
st 1/1/3

ROR reg, CL 0_0x_1101001x_001_xxx F alul 171

1d 11

ROR mem, CL 0_1x_1101001x_001_xxx F alul 172
st 1/1/3

SARreg, 1 0_0x_1101000x_111_xxx F alul 11

1d 11

SAR mem, 1 0_1x_1101000x_111_xxx F alul 1/2
st 1/1/3

SAR reg, mem 0_0x_1100000x_111_xxx F alul 11

1d 11

SAR mem, imm 0_1x_1100000x_111_xxx F alul 172
st 1/1/3

SAR reg, CL 0_0x_1101001x_111_xxx F alul 11

1d 1/1

SAR mem, CL 0_1x_1101001x_111_xxx F alul  1/2
st 1/1/3

SETccreg 1_0X_1001XXXX_XXX_XXX F brn  1/1

brn 111

SETcc mem 1_IXx_T1001XXXX_XXX_XXX F 1d 111
st 1/2/3

SHL reg, 1 0_0x_1101000x_1x0_xxx F alul 171
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TABLE 4-1. Integer Instructions (continued)

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
1d 11
SHL mem, 1 0_1x_1101000x_1x0_xxx F alul 172
st 1/1/3
SHL reg, mem 0_0x_1100000x_1x0_xxx F alul  1/1
1d 11
SHL mem, imm 0_1x_1100000x_1x0_xxx F alul 172
st 1/1/3
SHL reg, CL 0_0x_1101001x_1x0_xxx F alul 171
1d 1/1
SHL mem, CL 0_1x_1101001x_1x0_xxx F alul 172
st 1/1/3
. alul  1/1
SHLD reg, reg, imm 1_0x_10100100_XXX_XXX F alul 22
alul 171
SHLD mem, reg, imm 1_1x_10100100_xxx_xxx M ld 11
> > — 0= == alul 272
st 21213
alul 171
SHLD reg, reg, CL 1_0x_10100101_xxx_xx>§ F alul 22
alul 111
SHLD mem, reg, CL 1_1x_10100101_xxx_xxx M d 11
> > - 0= -t alul 272
st 21213
SHR reg, 1 0_0x_1101000x_101_xxx F alul 171
1d 11
SHR mem, 1 0_1x_1101000x_101_xxx F alul 172
st 1/1/3
SHR reg, mem 0_0x_1100000x_101_xxx F alul 1/1
1d 1/1
SHR mem, imm 0_1x_1100000x_101_xxx F alul 172
st 1/1/3
SHR reg, CL 0_0x_1101001x_101_xxx F alul  1/1
1d 11
SHR mem, CL 0_1x_1101001x_101_xxx F alul  1/2
st 1/1/3
. lul 11
SHRD reg, reg, imm 1_0x_10101100_xxx_xxx F :131 "
Dispatch and Execution Timing 4-15
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. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
alul 171
SHRD mem, reg, imm 1_1x_10101100_xxX_XXX M d 11
? > - = - - alul 2/2
st 2/2/3
alul 11
SHRD reg, reg, CL 1_0x_10101101_xxX_xxX F alul 272
alul 11
SHRD mem, reg, CL 1_1x_10101101_XXX_XXX M d 11
? > - = - - alul 2/2
st 21213
SUB reg, reg 0_0x_001010XX_XXX_XXX F alu 11
1d 11
SUB reg, mem 0_Ix_00I10101X_XXX_XXX F alu 12
1d 11
SUB mem, reg 0_1x_0010100X_XXX_XXX F alu 1/2
st 1/1/3
SUB AL/AX/EAX, imm 0_xX_0010110X_XXX_XXX F alu 11
SUB reg, imm 0_0x_100000xx_101_xxx F alu 11
1d 11
SUB mem, imm 0_1x_100000xx_101_xxx F alu 1/2
st 1/1/3
TEST reg, reg 0_0x_1000010X_XXX_XXX F alu 1/1
1d 11
TEST mem, reg 0_1x_1000010X_XXX_XXX F alu 12
TEST reg, imm 0_0x_1111011x_00x_xxx F alu 1/1
TEST AL/AX/EAX, imm 0_xx_1010100X_XXX_XXX F alu 11
TEST mem, imm 0_1x_1111011x_00X_xxX F la 11
alu 1/2
alu 11
XCHG EAX, reg (except EAX) | 0_xX_100T0XXX_XXX_XXX F alu 11
alu 2/2
alu 11
XCHG reg, reg 0_0x_1000011X_XXX_XXX F alu 11
alu 2/2
1d 11
XCHG mem, reg 0_1x_1000011X_XXX_XXX F st 1/1/2
alu 1/2
XOR reg, reg 0_0x_001100XX_XXX_XXX F alu 11
4-16 Performance
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TABLE 4-1. Integer Instructions (continued)

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcode Unit Timing
XOR reg, mem 0_1x_0011001x_xxXX_xXX F ld n
? - = - alu 1/2
1d 11
XOR mem, reg 0_1x_0011000x_xxx_xxx F alu 1/2
st 1/1/3
XOR AL/AX/EAX, imm 0_xx_0011010X_XXX_XXX F alu 1/1
XOR reg, imm 0_0x_100000xx_110_xxx F alu 11
1d 1/1
XOR mem, imm 0_1x_100000xx_110_xxx F alu 1/2
st 1/1/3

4.2.3

Integer Dot Product Example

This example illustrates an optimal code sequence for an inte-
ger dot product operation that performs multiply/accumulates
(MACs) at the rate of one every 3 cycles. In this example, the
array size is a constant. The loop is unrolled to perform sepa-
rate MAC operations in parallel for even and odd elements.
The final sum is generated outside the loop (as well as the final
iteration for odd-sized arrays).

mac_loop:

MoV
MoV
IMUL
IMUL
ADD
ADD
ADD
CMP
JL

EAX,
EBX,
EAX,
EBX,
ECX,
EDX,
EBP,
ECX,

mac_

[ESTICECX*4]

[ESTJLECX*4]+4

[EDIJLECX*4]

[EDIJCECX*4]+4

2

EAX

EBX

EVEN_ARRAY_SIZE
Toop

;load A(9)

;load A(i+1)
JACT) * B(1)

JACI+L) * B(i+l)
;increment index

;even sum
;odd sum

;1oop control

; Jump

;do final MAC here for odd-sized arrays

ADD

EDX,

EBP

;final sum

Table 4-2 shows the timing of internal operations from dis-
patch to retire of each ROP for nearly two iterations of this
loop. All memory accesses are assumed to hit in the cache.

EVEN_ARRAY_SIZE is set to 20.

Dispatch and Execution Timing
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TABLE 4-2. Integer Dot Product Internal Operations Timing

Instruction

9 |10 (11 (12 (13|14

MOV EAX,[ESI][ECX*4]
MOV EBX,[ESI][ECX*4]+4

IMUL EAX,[EDI][ECX*4]

IMUL EBX,[EDI][ECX*4]+4

ADD ECX,2
ADD EDX,EAX

ADD EBP,EBX

CMP ECX,20

JL LOOP

MOV EAX,[ESI][ECX*4]
MOV EBX,[ESI|[ECX*4]+4

IMUL EAX,[EDI][ECX*4]

IMUL EAX,[EDI][ECX*4]+4

Notes:
L— load execute
M- multiply execute
A- ALU execute
B— branch execute
>— result
I retire (update real state) ) ]
- — preceding execute: waiting in the reservation station
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424 Floating-Point Instructions

Floating-point ROPs are always dispatched in pairs to the FPU
reservation station. The first ROP conveys the lower halves of
the A and B operands, and it always has the fpfill ROP type.
The second ROP conveys the upper halves of the operands, as
well as the numeric opcode. Data from both ROPs is merged in
the reservation station and must be converted into an internal
floating-point format before it can be issued to the add pipe
(fadd), multiply pipe (fmul), or detect pipe (fmv). It takes one
cycle to perform the conversion, and this delay is incurred
whenever the source of the data is the register file or one of
the other functional units (e.g., load/store, ALU). If data is
being forwarded from the FPU itself, however, no format con-
version is required and operands are fast-forwarded from the
back end of a pipe to the front of any other pipe without the
one-cycle delay.

The add/subtract/reverse FPU latencies assume that cancella-
tion does not occur in the adder/subtractor. If cancellation
does occur, an extra cycle is required to normalize the result.

Table 4-3 shows the execution-unit usage for each floating-
point instruction, along with relative cycle numbers for dis-
patch and execution of the associated ROPs for the instruction.

TABLE 4-3. Floating-Point Instructions

. . Fastpath or Execution
Instruction Mnemonic Opcode Format Microcoded Unit Timing
fpfill 1/2/4
FABS 0_0x_11011001_100_xxx F fmv  1/2/4
. fpfill 1/2/5
FADD ST, ST(i) 0_0x_11011000_000_xxx F fadd  1/2/5
. fpfill 1/2/5
FADD ST(@), ST 0_0x_11011000_000_xxx F fadd  1/2/5
1d 11
FADD real_32 0_1x_11011000_000_xxx F fpfill 1/3/6
fadd 1/3/6
1d 11
1d 1/2
FADD real_64 0_1x_11011100_000_xxx M fpfill 1/4/7
fadd 1/4/7

Dispatch and Execution Timing 4-19
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Instruction Mnemonic

Opcode Format

Fastpath or
Microcoded

Execution
Unit Timing

FADDP ST(), ST

0_0x_11011110_000_xxx

F

fpfill
fadd

1/2/5
1/2/5

FCHS

0_0x_11011001_100_xxx

F

fpfill
fchs

1/2/4
1/2/4

FCOM ST()

0_0x_11011x00_010_xxx

fpfill

1/2/4

fempst 1/2/4

FCOM real_32

0_1x_11011000_010_xxx

1d
fpfill
fmv

11
1/3/5
1/3/5

FCOM real_64

0_1x_11011100_010_xxx

1d
1d
fpfill
fadd

111
1/2
1/4/6
1/4/6

FCOMP ST(i)

0_0x_11011x00_011_xxx

fpfill
fmv
alu

1/2/4
1/2/4
n

FCOMP real_32

0_1x_11011000_011_xxx

1d
fpfill
fmv

n
1/3/5
1/3/5

FCOMP real_64

0_1x_11011100_011_xxx

1d
1d
fpfill
fadd

1
1/2
1/4/6
1/4/6

FCOMPP

0_0x_11011110_011_xxx

fpfill
fmv
nop

1/2/4
1/2/4
1/1/2

FDECSTP

0_0x_11011001_110_xxx

alu
alu

1/1/2
1/1/72

FIADD int_16

0_Ix_11011110_000_xxx

1d

fpfill
fadd
fpfill
fadd

1
1/3/7
1/3/7
2/7/110
2/7/110

FIADD int_32

0_1x_11011010_000_xxx

1d

fpfill
fadd
fpfill
fadd

11
1/3/7
1/3/7
2/7110
2/7/10

4-20
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TABLE 4-3. Floating-Point Instructions (continued)

Fastpath or Execution
Microcoded Unit Timing

1d 11

fpfill 1/3/7
FICOM int_16 0_1x_11011110_010_xxx M fadd 1/3/7
fpfill 2/7/9
fmv  2/7/9

1d 11

fpfill 1/3/7
FICOM int_32 0_1x_11011010_010_xxx M fadd 1/3/7
fpfill 2/7/9
fmv  2/7/9

1d 111

fpfill 1/3/7
FICOMP int_16 0_1x_11011110_011_xxx M fadd 1/3/7
fpfill 2/7/9
fmv  2/7/9

d 11
fpfill 1/3/7
FICOMP int_32 0_1x_11011010_011_xxx M fadd 1/3/7
fpfill 2/7/9
fmv  2/7/9

1d 111
FILD int_16 0_1x_11011111_000_xxx F fpfill 1/3/7
fadd 1/3/7

1d 11
FILD int_32 0_1x_11011011_000_xxx F fpfill 1/3/7
‘ fadd 1/3/7

d 11
d 12
fpfill 1/4/8
fadd 1/4/8

1d 1
fpfill 1/3/7
FIMUL int_16 0_1x_11011110_001_xxx M fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

1d n

' fpfill 1/3/7
FIMUL int_32 0_1x_11011010_001_xxx M fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

Instruction Mnemonic Opcode Format

FILD int_64 0_1x_11011111_101_xxx M
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Instruction Mnemonic

Opcode Format

Fastpath or
Microcoded

Execution
Unit Timing

FIST int_16

0_1x_11011111_010_xxx

M

1d 11

fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FIST int_32

0_1x_11011011_010_xxx

d_ 11
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_16

0_1x_11011111_011_xxx

1d 11

fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_32

0_1x_11011011_011_xxx

1d 11

fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_64

0_1x_11011111_111_xxx

1d 11
1d 1/2
fpfill 1/2/5
fadd 1/2/5
st 2/3/6
st 2/417

FISUB int_16

0_1x_11011110_100_xxx

1d 11
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUB int_32

0_1x_11011010_100_xxx

d 11
fpfill  1/3/7
fadd 1/3/7
fpfill  2/7/10
fadd 2/7/10

FISUBR int_16

0_1x_11011110_101_xxx

1d 171
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

4-22

Performance



AMDAQ\

18524B/0—Mar1996

AMD?5,86 Processor Technical Reference Manual

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic

Opcode Format

Fastpath or
Microcoded

Execution
Unit Timing

FISUBR int_32

0_1x_11011010_101_xxx

1d

fpfill
fadd
fpfill
fadd

11
1/3/7
1/3/7
2/7110
2/7110

FLD real_32

0_1Ix_11011001_000_xxx

1d
fpfill
fmv

11
1/3/5
1/3/5

FLD real_64

0_1x_11011101_000_xxx

1d

1d
fpfill
fmv

11
1/2
1/4/6
1/4/6

FLD real_80

0_1x_11011011_101_xxx

1d

1d
fpfill
fmv

11
1/2
1/6/8
1/6/8

FLD ST(@)

0_0x_11011001_000_xxx

fpfill
fmv
nop

1/2/4
1/2/4
n

FMUL ST, ST(i)

0_0x_11011000_001_xxx

fpfill
fmul

1/2/8
1/2/8

FMUL ST(), ST

0_0x_11011100_001_xxx

fpfill
fmul

1/2/8
1/2/8

FMUL real_32

0_1x_11011000_001_xxx

1d
fpfill
fmul

11
1/3/7
1/3/7

FMUL real_64

0_1x_11011100_001_xxx

1d
1d
fpfill
fmul

11
1/2
1/4/10
1/4/10

FMULP ST, ST(i)

0_0x_11011110_001_xxx

fpfill
fmul

1/2/8
1/2/8

FMULP ST(@), ST

0_0x_11011110_001_xxx

fpfill
fmul

1/2/8
1/2/8

FNOP

0_0x_11011001_010_xxx

alu
alu

1/1/2
1/1/2

FRNDINT

0_0x_11011001_111_xxx

fpfill
fadd

1/2/9
1/2/9

Dispatch and Execution Timing
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TABLE 4-3. Floating-Point Instructions (continued)

18524B/0—Mar1996

Instruction Mnemonic

Opcode Format

Fastpath or
Microcoded

Execution
Unit Timing

FSCALE

0_0x_11011001_111_xxx

F

fpfill
fadd

1/2/8
1/2/8

FST real_32

0_1x_11011001_010_xxx

1d
fpfill
fmv
st

171

1/2/4
1/2/4
1/2/5

FST ST()

0_0x_11011101_010_xxx

fpfill
fmv

1/2/4
1/2/4

FSTP real_32

0_1x_11011001_011_xxx

1d
fpfill
fmv
st

11

1/2/4
1/2/4
1/2/5

FSTP real_64

0_1x_11011101_011_xxx

1d

1d
fpfill
fmv
st

st

11
1/2
1/2/4
1/2/4
2/3/5
2/4/6

FSTP real_80

0_1x_11011011_111_xxx

1d

1d
fpfill
fmv
st

st

11
1/2
1/2/4
1/2/4
2/3/5
2/4/6

FSTP ST(i)

0_0x_11011x01_011_xxx

fpfill
fmv

1/2/4
1/2/4

FSUB ST, ST(1)

0_0x_11011000_100_xxx

fpfill
fadd

1/2/5
1/2/5

FSUB ST(), ST

0_0x_11011100_100_xxx

fpfill
fadd

1/2/5
1/2/5

FSUB real_32

0_1x_11011000_100_xxx

1d
fpfill
fadd

11
1/3/6
1/3/6

FSUB real_64

0_1x_11011100_100_xxx

1d

fpfill
fadd

11
1/2
1/4/7
1/417

FSUBP ST(i), ST

0_0x_11011110_100_xxx

fpfill
fadd

1/2/5
1/2/5
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TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic

Opcode Format

Fastpath or
Microcoded

Execution
Unit Timing

FSUBR ST, ST(i)

0_0x_11011000_101_xxx

F

fpfill
fadd

1/2/5
1/2/5

FSUBR ST(i), ST

0_0x_11011100_101_xxx

F

fpfill
fadd

1/2/5
1/2/5

FSUBR real_32

0_1x_11011000_101_xxx

1d
fpfill
fadd

11
1/3/6
1/3/6

FSUBR real_64

0_1x_11011100_101_xxx

1d

1d
fpfill
fadd

11
1/2
1/4/7
1/4/7

FSUBRP ST(i), ST

0_0x_11011110_101_xxx

fpfill
fadd

1/2/5
1/2/5

FTST

0_0x_11011001_100_xxx

fpfill
fmv

1/2/4
1/2/4

FUCOM ST()

0_0x_11011101_100_xxx

fpfill
fmv

1/2/4
1/2/4

FUCOMP ST(i)

0_0x_11011101_101_xxx

fpfill
fmv
nop

1/2/4
1/2/4
11

FUCOMPP

0_0x_11011010_101_xxx

fpfill
fmv
nop

1/2/4
1/2/4
11

FWAIT

0_xx_10011011_xXX_xXXX

alu

n

FXAM

0_0x_11011001_100_xxx

fpfill
fmv

1/2/4
1/2/4

FXCH ST(i)

0_0x_11011001_001_xxx

brn

1/1

FXTRACT

0_0x_11011001_110_xxx

fpfill
fmv
fpfill
fadd
fpfill
fmv

1/2/4
1/2/4
2/3/11
2/3/11
3/416
3/4/6
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Bus Interface

This chapter describes two closely related subjects, bus signals
(Sections 5.1 and 5.2) and the bus-cycle protocols implemented
with those signals (Sections 5.3 and 5.4). These sections
describe only the architectural characteristics and functions of
the signals and bus cycles. The processor data sheet defines
the setup and hold times for signals.

Throughout this chapter, unless otherwise stated, the term
clock refers to bus-clock (CLK) cycles, not processor-clock
cycles. The term cycle refers to bus cycles not clock cycles. The
terms asserted and negated mean that a signal is sampled

- asserted or sampled negated by its target on the signal’s active
(typically rising) clock edge.
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Signal Overview

The signals on the AMD586 processor are compatible with the
comparable signals on the Pentium (735\90, 815\100) processor
296-pin socket. Appendix A gives a complete list of hardware
and software issues relating to this compatibility. The follow-
ing figures and tables summarize the characteristics and
behavior of the AMD5,86 processor’s signals:

m Figure 5-1 (Signal Groups) summarizes the processor’s sig-
nals, showing the functional groups to which each signal
belongs (the same figure appears in the introduction to this
manual).

m Table 5-1 (Summary of Signal Characteristics) shows each
signal’s I/O type, when it is sampled, driven, and floated,
and its internal resistor (if any).

m Table 5-2 on page 5-9 (Conditions for Driving and Sampling
Signals) shows the states and bus cycles during which the
processor effectively drives or samples each signal.

m Table 5-3 on page 5-17 (Summary of Interrupts and Excep-
tions) shows the priority and characteristics of interrupts
and exceptions.

5-2
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5.1.1 Signal Characteristics

TABLE 5-1. Summary of Signal Characteristics

18524B/0—Mar1996

driven for writes during writebacks.

. Sampled (Input) or Internal 3
Signal Type Asserted (Output)? Resistor Floated
A20M! I Every clock.
Output: From ADS until last expected
BRDY of the bus cycle. AHOLD +1,
A31-A3 I/0 . BOFF +1 or
Input: Same clock as EADS. A4-A3 are dis- HLDA
abled for input.
. BOFF +1 or
ADS (0] First clock of bus cycle. HLDA
. BOFF +1 or
ADSC (o) First clock of bus cycle. HLDA
AHOLD I Every clock.
AHOLD +1,
AP I/0 | (same as A31-A3) BOFF +1 or
HLDA
APCHK (0] Two clocks after EADS, for one clock.
BE7-BEEO From ADS until the last expected BRDY of BOFF +1 or
- O | the bus cycle. HLDA
BF I Falling edge of RESET. pullup
BOFF I Every clock.
BRDY I Every clock, from one clock after ADS until
the last expected BRDY of the bus cycle.
BRDYC I (same as BRDY) pullup
First clock of every bus cycle (same as
ADS), cache store, cache-tag recovery, and
BREQ (0] aliased cache load. Asserted continuously
while processor is held off bus and needs
access to continue.
BUSCHK I Every 'BR'DY Recognized at the next pullup
instruction boundary.
From ADS until the last expected BRDY of BOFT +1 or
CACHE (0] the bus cycle. Driven for all reads; only HLDA

1. Can be driven asynchronously or synchronously.

"

2. The term clock means bus clock (CLK). “+n” means n CLKS later.

at RESET).

3. “+n"means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH
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TABLE 5-1. Summary of Signal Characteristics (continued)

Signal

Type

Sampled (Input) or
Asserted (Output)?

Internal
Resistor

Floated3

CLK

I

Always.

D/C

(0}

From ADS until the last expected BRDY of
the bus cycle.

BOFF +1 or
HLDA

D63-D0

1/0

Output (single transfer): From one clock
after ADS until BRDY.

Output (burst transfer): From one clock after
ADS until the first BRDY, and thereafter
from one clock after each BRDY until the
next BRDY.

Input: Every BRDY.

BOFF +1 or
HLDA

DP7-DPO

1/0

(same as D63-D0)

BOFF +1 or
HLDA

Every clock while AHOLD, BOFF or HLDA
is asserted, beginning two clocks after the
assertion of AHOLD, two clocks after the
assertion of BOFF, or one clock after the
assertion of HLDA; except while the proces-
sor drives A31-A3, while it asserts HITM,
and one clock after EADS.

With BRDY of external write cycles and in
every clock thereafter until EWBE is
asserted.

Every clock.

FLUSH!

Every clock. Falling-edge-triggered. Recog-
nized at next instruction boundary.
Acknowledged with Flush-Acknowledge spe-
cial bus cycle.

FRCMC!

Every clock in which RESET is asserted.

Every clock. Changes state two clocks after
EADS and retains that state until two clocks
after next EADS.

Every clock. Changes state two clocks after
EADS and retains that state until one clock
after the last BRDY of writeback.

at RESET).

1. Can be driven asynchronously or synchronously.

u,

2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n”means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH

Signal Overview
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TABLE 5-1. Summary of Signal Characteristics (continued)

18524B/0—Mar1996

. Sampled (Input) or Internal 3
Signal Type Asserted (Output)? Resistor Floated
From two clocks after last BRDY of an in-
progress bus cycle, or two clocks after
S 0 HOLD, whichever comes last, until two
clocks after HOLD is negated.
HOLD I Every clock. Acknowledged with HLDA.
IFRR o Every clock, in the Functional-Redundancy
Checking mode.
IGNNE! I Every clock.
INIT! I Every clock. Rising-edge-triggered. Recog-
nized at next instruction boundary.
Every clock. Level-sensitive. Recognized at
INTR! I next instruction boundary. Acknowledged
with an interrupt acknowledge operation.
INV 1 Every EADS.
First BRDY or NA of bus cycle, whichever
KEN I comes first. Recognized only during read
cycles.
From ADS until last expected BRDY of the
TOCK 0 bus cycle. Negated for one clock (dead BOFF +1 or
cycle) between sequential locked opera- HLDA
tions.
MIO 0 From ADS until last expected BRDY of the BOFF +1 or
bus cycle. HLDA
From one clock after ADS until the first
NA& I expected BRDY of a bus cycle. The only
function of NA is to validate KEN or WB/
WT in place of BRDY.
NMIL I Every clock. Rising-edge-triggered. Recog-
nized at next instruction boundary.
PCD From ADS until last expected BRDY of the BOFF +1 or
bus cycle. HLDA
PCHK Two clocks after every BRDY of read cycles.
PEN I Every BRDY of read cycles, and second
BRDY of interrupt acknowledge operation.
Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKS later.
3 " ng%Jns n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH
at RESET).

5-6
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TABLE 5-1. Summary of Signal Characteristics (continued)

. Sampled (Input) or Internal 3
Signal Type Asserted (Output)? Resistor Floated
Every clock, in response to R/S. Asserted at
PRDY o instruction boundary after R/S is sampled
Low. Negated in the clock after R/S is sam-
pled High.
PWT o From ADS until last expected BRDY of the BOFF +1 or
bus cycle. HLDA
Every clock. Level-sensitive. Recognized at
R/S! I next instruction boundary. Acknowledged pullup
with PRDY.
Every clock. Recognized at next instruction
1
RESET I boundary.
scyc o From ADS until last expected BRDY of the BOFF +1 or
bus cycle. HLDA
Every clock. Falling-edge-triggered. Recog-
SMIt I nized at next instruction boundary. pullup
Acknowledged with SMTACT.
From one clock after the last expected
SMIACT BRDY of the bus cycle, while EWBE is
0 asserted, until the return from SMM inter-
rupt handler.
Every clock. Level-sensitive. Recognized at
STPCLK! I next instruction boundary. Acknowledged pullup
with Stop Grant special bus cycle.
TCK I Always. pullup
Every rising TCK edge during the shift_IR
TDI I and shift_DR states. pullup
While not in
TDO o Every falling TCK edge during the shift_IR shift_IR or
and shift_DR states. shift_DR
state.
T™S T Every rising TCK edge. pullup
TRST I Always sampled asynchronously. pullup
Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n"means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH
at RESET).

Signal Overview
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TABLE 5-1. Summary of Signal Characteristics (continued)

. Sampled (Input) or Internal 3
Signal Type Asserted (Output)? Resistor Floated
W/R 0 From ADS until last expected BRDY of the BOFF +1 or
bus cycle. HLDA
WB/WT I First BREY or NA of bus cycle, whichever
comes first.
Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKS later.
3 " ”m%ms n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH
at RESET).
5.1.2 Conditions for Driving and Sampling Signals

Table 5-2 shows the processor states, signal states, and bus
cycles during which the processor can drive or sample each sig-
nal. The table indicates when signals can be driven or sampled
so that their state has some practical (meaningful) effect on
the state of the processor or on the bus cycle being driven or
sampled. In Table 5-2, shading indicates signals that are mean-
ingfully driven or sampled. Signals that are not shaded are not
driven or sampled or are not meaningful. For details on how
each signal behaves, see Section 5.2 starting on page 5-18.

5-8 Bus Interface
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TABLE 5-2. Conditions for Driving and Sampling Signals

Signal

Conditions under which signals are meaningfully driven or sampled

Bus Cycles or Cache Accesses3? Arbitration

States and Modes®

Reset,
Debug

Memory Reads'*

Memory Writes'
Cache Hits*®

Interrupt Acknow.
AHOLD Active

BOFF Active

Inquire Cycles?
1/0 Cycles
Locked Cycles
Special Cycles
HLDA Active

RESET Active

SMIACT Active

Shutdown33
Stop Grant
Stop Clock

Halt

INIT Active
PRDY Active

AHOLD

BREQ

HLDA

HOLD

—|lolo| —| —

A20M

A31-A3?

/0 :

o

SCyC

Bus Arbitration

Cytie Definition and Control

Signal Overview
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TABLE 5-2. Conditions for Driving and Sampling Signals (continued)

Conditions under which signals are meaningfully driven or sampled
38 —_— " Reset,
Bus Cycles or Cache Accesses Arbitration | States and Modes Debug
. g S
Slgnal -‘e 3 '?n w) 8 v 4
5 Es 2, |22 2 € elgn £ 8| ol
o Bl N vl S| | < 2 2| & P Y 2| ol .3
TEEEEHEEEE R EREEEEEE
[ = o — =
sss'a:%8§§§§§=%e§525
S| =S| S| e8| & E| = TS| 2| RS 2| Z|E
Cache Control
CACHE ; |
KEN?42
PCD
PWT ‘ , \ 16
WB/WT .
Data and Data Parity
BRDY
BRDYC
D63-D0
DP7-DPO
PCHKQ
PEN®
EADS’
HIT
HITM
INV
FERR
IGNNE
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TABLE 5-2. Conditions for Driving and Sampling Signals (continued)

Conditions under which signals are meaningfully driven or sampled
- Reset,
Bus Cycles or Cache Accesses3® Arbitration | States and Modes® Debug
Signal 3 2 -, ol o § . o
S E|s|S S|s|E| 8| 2| g n - g| 2 g
2 22 5 g S S Z| 2|88 % ElS|<|E| 2|8
R E R EIEE EIHN IR
%Eéaé’*é%-gé%geé%%%éﬁ:é
S| SV ESalwE|< T|H| | AR & Z|Z| =
External Interrupts, Interrupt Acknowledgments, and Reset
FLUSHZ 1
INITZ |
INTR5.28 |
NMI27 |
PRDY (0]
RS I
RESET |
SMiz I
SMIACT (0]
STPCIR2® | | | 343434
Test and Debug
FRCMC 1
[TERR 0 (202020202020 (20{20|20(20|20|20|20|20
PRDY 0 See “External Interrupts, Interrupt Acknowledgments, and Reset”
RS | See “External Interrupts, Interrupt Acknowledgments, and Reset”
TCK I A ’
TDI |
DO (0]
™S |
TRST I
BF |
CLK 1
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Notes to Table 5-2:

1.

NO LA W

=~

10.

20.
21
22,

23.
24
25.
26.

27.
28.
29.

Shading i;u//icates signals that are meaningfully driven or sampled. Signals that are not shaded are not driven or sampled or are not
meaningful.

Inquire cycles can be driven while TOCK is asserted if AHOLD s used to obtain the bus for the inquire z/c/e. Inquire cycles never hit
locations involved in a locked aperation because the processor invalidates such locations, if found in the cache, before doing the
locked operation. If the inquire cycle hits a modified location that is different than the one involved in the locked operation, the write-
back may be done in the middle of the locked operation, between the two locked cycles, with TOCK asserted during the writeback.
A31-A5 are l/O signals (input for inquire cycles), but A4-A3 are output only.

Sampled or driven during inquire cycles or resulting writebacks.

Sampled only during inquire cycles, but not driven for resulting writebacks.

If enabled by the IF flag in EFLAGS.

Output only.

IFAHOLD is held asserted throughout an inquire cycle and writeback, system logic must use its latched copy of the inquire cycle
address for the writeback. By contrast, if system logic always negates AHOLD before the writeback, the processor will drive the write-
back address when it asserts ADS for the writeback.

Signal recognition and assertion applies to the actual state, not to the special cycle driven by the processor prior to entering the state.

Dt_;/rigg SMM, g/M/ is recognized only in response to an IRET instruction. After the return from SMM (RSM instruction), a latched NMI
will be serviced.

A20M is recognized only in Real mode, and masking is applied to linear addresses. Because the caches are linearly tagged, assertion
of A20M during Real mode affects all program-generated cache addresses, including cache-line fills (caused by reaa'q misses), cache
writethroughs (caused by write misses or write hits to lines in the shared state) and cache accesses that occur while the processor
does not control the bus. However, A20M does not mask inquire cycle addresses or any writebacks caused by inquire cycles; these
addresses are looked up only in the physical tags, which are not masked by Z20M.

. CLK can be driven with a different frequency, and/or BF can be changed when CLK is restarted on exit from the Stop-Clock state.

. Latched or (in the case of BUSCHK) otherwise sampled and held, pending exit from this state.

. SCYC may be asserted during any misaligned memory or /O cycle, but it is only meaningful during locked cycles.

. Includes Protected, Virtual-8086 and Real modes, unless otherwise indicated.

. During the Hardware Debug Tool (HDT) mode, this signal is only meaningful for cache write misses (PWT=0 and WB/WT=1 tran-

sition a shared line to an exclusive line). The signal is not meaningful during cache read misses in the HDT mode, because the caches
are never filled during the HDT mode.

. Sampled or driven only during the completion of a cycle the processor initiated before the assertion of AHOLD, or for writebacks due

to inquire cycles.
Different than the Pentium processor. The system hardware or software must exit the HDT before asserting RESET.

. NA acts as an assertion of BRDY, but only when sampled with KEN or WB/WT. It is valid only for memory reads and writes, including

writethroughs during cache hits to shared or exlusive lines. NA has no effect on any signals other than KEN and WB/WT, and
addresses are not pipelined when NA is asserted.

. If an inquire cycle occurs during a Branch-Trace Message special cycle, the branch address information driven 2%_g_/‘ze Processor on

A31-A3 can be overwritten by the inquiring bus master. In such cases, external logic should latch A31-A3 when ADS is asserted (ie,

before asserting AHOLD, or HOLD).
Used only to report errors in Functional Redundancy Checking mode and driven only by the Checker.
This signal is not meaningful during cache read misses in the HDT mode, because the caches are never filled in the HDT mode.

The debugger can force the processor into SMM, but the processor will not recognize SV until PRDY is negated. If SM1 is asserted
while PRDY is asserted, it is latched and acted upon after PRDY is negated.

During AHOLD, the system must prevent other bus masters from locking the same address that the AMD5,86 processor is locking.
Different than the Pentium processor, which ignores STPCLK in this state.
Always negated (non-cacheable).

EWBE is not checked prior to running special bus cycles or interrupt acknowledge operations. All special bus cycles (which have
W/R=1) and interrupt acknowledge operations (which have W/R=0) serialize the pipeline and do not require Is%BE for this purpose.

An edge-triggered interrupt. It is latched when sampled and recognized on an instruction boundary.
A level-sensitive interrupt. It must be held asserted until recognized, which occurs on an instruction boundary.

Unlike other level-sensitive interrupts, BUSCHIR is sampled with every BRDY and it does not need to be held asserted after sampling.
If BUSCHK is asserted during a locked operation or inquire cycle, an enabled machine-check exception will not be acted upon until
dfter the last BRDY of the locked operation or after a writeback caused by an inquire cycle.

5-12
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30.
31

by

32,

33.
34
35.
36.
37.

38.
39.
40.
41.

42.
43.
. Without ADS during cache accesses, with ADS during cache writethroughs and writebacks.

The first code fetch after register initialization during INIT or RESET does not occur if AHOLD, BOFF, or HLDA is asserted.

PRDY is asserted either when R/S goes Low or when the Test Access Port (TAP) instruction, USEHDT, is executed. In the latter case,
R/S is watched for a Low-to-High transition, which takes the processor out of the Hardware Debug Tool (HDT) mode.

The processor can go into the Hardware Debug Tool (HDT) mode from within SMM either when R/S %oes Low or when the TAP
instruction, USEHDT, is executed (the instruction causes the processor to assert PRDY). In this case, can be toggled with HDT
commands. SMIACT selects main or SMM memory.

Only NMI, INIT, RESET, and SMI gets the processor out of the Shutdown state.

The processor cannot drive the Stop-Grant special bus cycle.

HOLD is sampled, but the only practical effect is to assert HLDA.

Wiitebacks or writethroughs cannot occur when HLDA is asserted.

During writebacks.

During writebacks or writethroughs.

Including writebacks and writethroughs (except for HLDA).

The processor cannot drive the interrupt acknowledge cycle, and therefore cannot obtain the interrupt vector.

IfFLUSH is asserted while AHOLD, BOFF, or HLDA is asserted, the outcome of the flush depends on whether the flush causes write-
backs of modified lines. If no writebacks are needed, the processor invalidates all lines but does not perform the FLUSH-acknowledge
cycle until the processor gets control of the bus again. If a writeback is needed, the processor stops at that writeback without having
invalidated any lines, waits until control of the bus is returned to the processor, then completes the FLUSH operation.

Driven or sampled only during reads.

Sampled after AHOLD or HLDA is asserted, and while the processor completes an in-progress bus cycle.

Signal Overview 5-13
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5.1.3 External Interrupts

Interrupts and exceptions are often differentiated in x86 docu-
mentation as follows: an interrupt is the assertion of a hard-
ware input signal and an exception is a software event, such as
an invalid opcode or execution of an INTn instruction. In some
documents, however, the terms interrupt and exception apply to
both hardware and software events, which are then differenti-
ated as external or hardware interrupts or exceptions, and inter-
nal or software interrupts or exceptions, respectively. In still
other x86 documents, the term software interrupt means an
INTn instruction that vectors to an interrupt gate. Moreover,
some of the old rules commonly applied to interrupts do not
apply to the external interrupts defined for the Pentium pro-
cessor: for example, not all external interrupts alter the pro-
gram flow, and not all are acknowledged by the processor.

Because these variations in definition are potentially confus-
ing, this document assumes only the following definitions:

m Interrupt—The assertion (or in the case of R/S, the driving
Low) of one of eight hardware input signals (BUSCHK, R/S,
FLUSH, SMI, INIT, NMI, INTR, or STPCLK).

m Exception—Any software-initiated event that accesses an
entry in the Real mode interrupt vector table (IVT) or in
the Protected mode interrupt descriptor table (IDT).

External Interrupt—Same as interrupt.

Software Interrupt—In Real mode, any INTn instruction. In
Protected mode, any INT#n instruction that vectors to an
IDT entry that is an interrupt gate, or that is a task gate
which references a TSS with the interrupt flag (IF) cleared
in its EFLAGS image. (INTn instructions that vector to a
trap gate are not considered software interrupts because
the processor does not clear IF in such cases.)

All interrupts are recognized on the next instruction retire-
ment boundary. Most exceptions are recognized at the point in
the instruction where they occur, and are not usually deferred
to the end of the instruction. All interrupts and exceptions
invalidate (flush) the pipeline when recognized (as defined in
Section 2.2.5 on page 2-12). All exceptions are handled pre-
cisely so that the instruction causing an exception can be
restarted after the exception is serviced.
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The processor writes (pushes) its current state onto the stack
prior to entering the service routine for exceptions and for
BUSCHK, SMI, NMI, and INTR interrupts. Because of these
writes, the state of EWBE affects the processor’s response to
such interrupts and exceptions. For example, if the processor
has initiated a write cycle prior to the next instruction retire-
ment boundary on which such an interrupt would otherwise be
recognized, the bus cycle completes but the processor does not
respond to the interrupt until it samples EWBE asserted so
that it can write to the stack. Also, if the processor has written
to the stack once and EWBE is not asserted thereafter, the pro-
cessor does not write again and its response to an interrupt is
halted. A negated EWBE also pauses the processor’s response
to FLUSH if the flush causes writebacks. However, during
interrupts that do not write to memory (R/S, FLUSH if there
are no writebacks, INIT, and STPCLK), the state of EWBE has
no affect on the processor’s recognition of or response to such
interrupts.

The processor performs an interrupt by executing a microcode
routine. In this sense, an interrupt acts like the execution of a
complex instruction and the microcode routine has a comple-
tion boundary that acts like an instruction retirement bound-
ary. In effect, the microcode routine for an interrupt begins
executing when the interrupt is recognized on an instruction
boundary and it finishes executing when an associated inter-
rupt service routine begins or the hardware aspect of the inter-
rupt function otherwise completes. For example, the FLUSH
interrupt completes when all modified cache lines have been
written back to memory and all cache lines are invalidated,
whereas the R/S interrupt completes when the processor
negates PRDY, and the STPCLK interrupt completes when the
processor drives the Stop Grant special bus cycle.

The four edge-triggered interrupts (FLUSH, SMI, INIT, and
NMI) are latched on one of the edges of CLK when they are
asserted and are recognized later, even if they are negated
before being recognized. The four level-sensitive interrupts
(BUSCHK, R/S, INTR, and STPCLK) must be held asserted
until recognized, except that the BUSCHK interrupt is sampled
and latched with every BRDY.

The processor disables the recognition of interrupts or excep-
tions in the following cases:

Signal Overview
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INTR Interrupts—The processor disables INTR interrupts
during all software interrupts (that is, INTn instructions that
vector through interrupt gates or through task gates that
reference a TSS with IF cleared in its EFLAGS image). It
does this by automatically clearing the IF bit in EFLAGS. If
system logic can leave the INTR signal asserted after the
INTR service routine is entered, the interrupt vector
returned by system logic during the Interrupt acknowledge
operation must be for an interrupt gate or for a task gate
that references a TSS with IF cleared. (Software may set
the IF flag again upon entering the service routine.)

NMI Interrupts—The processor disables NMI interrupts
until the IRET of the NMI service routine.

Debug Breakpoints— After a debug breakpoint exception,
the debug service routine can disable debug exceptions for
one instruction by setting the resume flag (RF) in EFLAGS
to 1 to prevent restarted instructions from generating
another debug fault.

Table 5-3 shows the characteristics of interrupts and excep-
tions and the priority with which the processor recognizes
them. The term priority means two things here:

Simultaneous Interrupts—The order in which a single inter-
rupt or exception is selected for recognition if all occur
simultaneously, and

Latched Interrupts—The order in which latched interrupts
(any of the four edge-triggered interrupts, FLUSH, SMI,
INIT, or NMI) are recognized when the processor becomes
interruptible again after it recognizes a prior interrupt or
exception. By contrast, the term priority does not mean the
order in which level-sensitive interrupts (BUSCHK, R/S,
INTR, and STPCLK) are nested if one such interrupt occurs
while the processor is responding to another interrupt.

Interrupts are themselves interruptible only if they have a
software component, such as a service routine. All other inter-
rupts complete their action before the processor recognizes
another interrupt. Lower-priority interruptible interrupts can
be interrupted by higher-priority interrupts or exceptions at
their point of interruptibility, as shown in the right-most column
of Table 5-3, which is always on an instruction boundary.

5-16
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TABLE 5-3. Summary of Interrupts and Exceptions

Priority | Description Type Sampling® | Vector' | Acknowledgment | Point of Interruptibility®
INTn instruc-
tions and all . . . .
1 other software exceptions internal 0-255 none Entry to service routine.
exceptions
2 | BUSCHK interrupt | level-sensitive 182 none Entry to service routine.

3 R/S interrupt | level-sensitive none PRDY Negation of PRDY.

. . FLUSH-Acknowl- | ey ot FLOSH Acknowi-

4 | FLUSH interrupt | edge-triggered* | none | edge special d

b | edge bus cycle.
us cycle
. . Entry to SMM service
5 |SMI interrupt | edge-triggered* | SMM? SMIACT v 7
routine.
6 INIT interrupt | edge-tri d* | BIOS none Completion of
Pt | edge-triggere initialization.
NMI interrupts: IRET from
7 |NMI interrupt | edge-triggered* 2 none service routine. All others:
Entry to service routine.
Interrupt acknowl-
8 INTR interrupt | level-sensitive | 0-255 |edge special Entry to service routine.
bus cycle
9 | STPCIK interrupt | level-sensitive | none Stop:Grant Negation of STPCLK.
special bus cycle
Notes:

1. For interrupts with vectors, the processor saves its state prior to accessing service routine and changing program flow. Interrupts
without vectors do not change program flow; instead, they simply pause program flow for the duration of the interrupt function
and then return to where they left off.

2. Ifthe machine check enable (MCE) bit in CR4 s set to 1.

3. The entry point for the SMI interrupt handler is at offset 8000h from the SMM Base Address.

4, bOn/y Z7e edge-triggered interrupts are latched when asserted. All interrupts are recognized at the next instruction retirement

oundary.

5. Ifa bus cycle is in progress, EWBE must be asserted before the interrupt is recognized.

6. For external interrupts (most exceptions, by contrast, are rea(;qnized when they occur). External interrupts are recognized at
instruction boundaries. MOV or POP instructions that load SS delay interruptibility until after the next instruction, thus allowing both
SS and the corresponding SP to load.

7. After assertion of S, subsequent assertions of SV are masked so as to prevent recursive entry into SMM. Other exceptions or
interrupts (except INIT and NMI), however, will intervene in the SMM service routine.

The processor recognizes BOFF, HOLD, and AHOLD while any
interrupt signal is asserted, and these signals will intervene
with their normal timing in the handling of any interrupt or
exception. The interrupt or exception continues from where it
left off after the intervening signal is negated. For example, if
BOFF is asserted while a FLUSH operation is writing modified
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cache lines back to memory, an in-progress writeback will be
aborted, but it will be restarted after BOFF is negated, and the
FLUSH operation will then continue; any writebacks that com-
pleted before BOFF was asserted are not affected.

5.1.4 Bus Signal Compatibility with Pentium Processor

The differences in bus signal functions between the AMD5¢86
and Pentium processors are described in Section A.1 on page
A-2.

5.2  Signal Descriptions

The following pages describe each signal in detail. The bus
cycle protocols that use these signals are described in Section
5.3 on page 5-137. Chapter 6 describes the context in which the
SMM and clock-control signals are used, and Chapter 7 does
the same for the test signals.
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5.2.1 A20M (Address Bit 20 Mask)

Summary

Sampled

Details

Input

Assertion of AZ0M causes the processor to clear bit 20 of the
A31-A3 address bus to 0 prior to accessing the cache or mem-
ory in Real mode. The clearing of address bit 20 bit maps
addresses above 1 Mbyte to addresses below 1 Mbyte.

The processor samples AZ0M in every clock during Real mode.
System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup

and hold times).

A20M is sampled only in Real mode during memory cycles
(including cache writethroughs and writebacks) and locked
cycles; or while AHOLD, BOFF, HLDA, RESET, INIT, or PRDY
is asserted. AZ0M is not sampled when the processor is operat-
ing in Protected mode, Virtual-8086 mode or SMM; during I/O
cycles, inquire cycles, special bus cycles, or interrupt acknowl-
edge operations; or while the processor is in the Shutdown,
Halt, Stop Grant, or Stop Clock states.

The action of clearing A20 so that addresses above 1MB wrap-
around to addresses below 1 Mbyte simulates the behavior of
the 8086 processor, allowing the processor to run software
designed for DOS. AZ0M should only be asserted when the pro-
cessor runs in Real mode.

‘AZ0M should not be asserted during the first code fetch follow-
ing the RESET or INIT cycles because the masking of bit 20
leads to a fetch from an incorrect address. The BIOS and the
operating system alone are responsible for controlling the
state of AZ0M. After RESET or INIT, they do this by writing to
an external I/O port. (I/O ports 60 and 64h, or port 92h, or regis-
ter-shadowed versions of those ports are commonly used to
control the state of A2Z0M.) The instruction pipeline is serial-
ized by virtue of writing to the I/O port, thus allowing time for
the AZ0M signal to assert before the next memory or cache
access. Advanced operating systems that do not run under
DOS, such as Windows NT™ and OS/2 operating systems, do
not use Real mode and never assert AZ0M.

Programs running in Virtual-8086 mode run as tasks under Pro-
tected mode. The effect of AZ0M for these Virtual-8086-mode
tasks is normally emulated by the operating system using the
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paging mechanism. The operating system writes page table
entries so as to map all pages required for the Virtual-8086
mode task to addresses below 1 Mbyte.

Unlike the Pentium processor, the AMD5,86 processor ignores
A20M in Protected mode, Virtual-8086 mode, and System Man-
agement Mode (SMM). The Pentium processor masks the A20
bit if AZ0M is asserted in Protected mode or Virtual-8086
mode, even though this behavior is undefined and may change
in future processors. The AMD586 processor simply ignores
A20M except when the processor runs in Real mode.

The AMDS5,86 processor applies A20M masking to its linear
cache tags, through which all programs access the caches.
Thus, assertion of AZ0M affects all program-generated cache
addresses, including cache-line fills (caused by read misses),
cache writethroughs (caused by write misses or write hits to
lines in the shared state), and cache accesses that occur while
the processor does not control the bus. However, A20M does
not mask writebacks or invalidations caused by internal
snoops, inquire cycles, the FLUSH signal, or the WBINVD
instruction—such addresses are looked up only in the physical
tags, which are not masked by AZ0M. (See Table 2-3 on page 2-
20 for details.) By contrast, the Pentium processor applies
masking only to physical addresses. This difference of masking
linear vs. physical addresses is not visible to software because
linear and physical addresses are identical in Real mode.

However, the AMD5.86 processor’s A20M linear address mask-
ing can affect debug software differently than such masking on
the Pentium processor. With A20M asserted, the AMD5,86
processor does breakpoint matching (debug-register compari-
sons) on masked addresses, whereas the Pentium processor
does them on unmasked addresses.
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5.2.2 A31-A3 (Address Bus)

Summary

Driven, Sampled, and
Floated

Details

A31-A5 Bidirectional, A3-A3 Output

‘A31-A3 carries the physical address for the current bus cycle.
The processor drives addresses on A31-A3 during memory and
I/O cycles, and cycle definition information during special bus
cycles. It samples addresses on A31-A5 during inquire cycles.

As Outputs: The processor drives A31-A3 from the clock in
which ADS is asserted until the last expected BRDY of the bus
cycle. The processor also drives A31-A3 without ADS during
cache accesses. A31-A3 are driven during memory cycles
(including cache writethroughs and writebacks), I/O cycles,
inquire cycle writebacks, locked cycles, special bus cycles, and
interrupt acknowledge operations in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM, and
while PRDY is asserted. During special bus cycles and inter-
rupt acknowledge operations, the address signals simply sup-
port bus cycle definition; they do not provide an address.

The processor floats A31-A3 as outputs, one clock after system
logic asserts AHOLD or BOFF, and in the same clock that the
processor asserts HLDA.

As Inputs: While AHOLD, BOFF, or HLDA is asserted, the pro-
cessor samples A31-A5 in the same clock as EADS. A31-AS5 are
sampled in this way during inquire cycles in the normal operat-
ing modes (Real, Protected, and Virtual-8086) and in SMM,
including during the Shutdown, Halt, and Stop Grant states,
and while PRDY is asserted. The A4-A3 signals are not inter-
preted as part of the inquire cycle address but must neverthe-
less be driven at valid 0 or 1 logic levels. The processor may
again drive A31-A3 in the next clock after system logic negates
AHOLD, BOFF, or HOLD.

A31-A3 are never driven or sampled in the Stop Clock state, or
while RESET or INIT is asserted.

During processor-initiated bus cycles, the processor drives
A31-A3 with ADS to define an eight-byte (quadword) starting
address in physical memory or I/O space. System logic inter-
prets these addresses in conjunction with the BE7-BEO and
cycle definition (D/C, M/IO, and W/R) outputs, and with the
A20M input. The processor drives BE7-BEQ to define the valid-
ity of each of the eight bytes accessed by the quadword

Signal Descriptions

5-21



AMDZ
AMD?5,86 Processor Technical Reference Manual 18524B/0—Mar1996

addresses on A31-A3. In this manner, BE7-BED replace the
function of address bits A2-A0, which do not exist.

When the processor drives burst reads it drives the starting
address on A31-A3 (which is the address of the quadword that
contains the instruction or data required) and it drives BE7-
BEO to specify the required bytes in that quadword. (This
addressing method is unlike the 486 processor, which drives
separate addresses for each transfer of a burst.) System logic
must determine the remaining three quadword addresses as
shown in Table 5-4.

When the processor drives burst writes (writebacks), it drives
the starting address on A31-A3 in the same manner as for
burst reads, but it enables all eight bytes (BE7-BEO = 00h)
because it always starts writebacks at 32-byte aligned
addresses (address of the first quadword is xxxx_xx00h). Thus,
A4-A3 are always 00b for writebacks.

TABLE 5-4. Address-Generation Sequence During Bursts

Address Driven By Address of Subsequent Quadwords?!
Processor on A31-A3 Generated By System Logic
Quadword 1 Quadword 2 | Quadword 3 | Quadword 4
...00h ...08h ...10h ...18h
...08h ...00h ...18h ...10h
...10h ...18h ...00h ...08h
...18h ...10h ...08h ...00h
Notes:
1. quadword = 8 bytes

System logic can derive memory and I/O port select signals, as
well as memory row and address signals, from A31-A3 and the
cycle definition signals. Although the processor does not inter-
pret the A4-A3 signals as part of an inquire cycle address, sys-
tem logic must drive them at valid logic levels (0 or 1) during
inquire cycles, and the processor drives both bits to 0 during
writebacks.

While system logic has obtained control of the address bus via
assertion of AHOLD, BOFF or HOLD, the A31-A5 signals
become inputs and define a 32-byte, cache-line, inquire cycle
address in conjunction with the following signals:
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m The EADS input defines the beginning of the inquire cycle
and validates the input address on A31-A5.

m The AP input carries the even parity bit for the A31-A5
address.

m The APCHK output indicates a parity error for the inquire
cycle address on A31-AS5.

During such system-initiated inquire cycles, A31-A5 defines
the starting physical address of a 32-byte cache line that is
being snooped in the processor’s on-chip instruction and data
caches. The processor interprets the addresses using its physi-
cal address tags, in conjunction with the A20M input, in paral-
lel with the processor’s own cache accesses that use its linear
cache tags.

If an inquire cycle hits a modified line in the processor’s data
cache, the processor performs a writeback. During this write-
back, A31-A5 defines a 32-byte starting address in physical
memory. This address is identified by the processor’s assertion
of ADS, just as with all other processor-initiated bus cycles,
and the address must be interpreted by system logic in con-
junction with the AZ0M input.

The processor does not control the complete bus during a
writeback caused by an inquire cycle; in these cases, AHOLD,
BOFF or HOLD may still be asserted. However, in addition to
writebacks caused by inquire cycle hits, writebacks can also
occur while the processor controls the bus (by processor-initi-
ated cache-line replacements, internal snoops for self-modify-
ing code, or execution of the WBINVD instruction) or by
system-initiated assertion of the FLUSH signal.

If AHOLD is held asserted throughout an inquire cycle and
writeback, system logic must latch the inquire cycle address
when it asserts EADS. This is required so that, if the inquire
cycle hits a modified line (HITM asserted), the processor need
not drive the writeback address when it asserts ADS for the
writeback, which can occur as early as two clocks after the pro-
cessor asserts HITM. Instead, system logic must use its latched
copy of the inquire cycle address for the writeback. By con-
trast, if system logic always negates AHOLD before the write-
back, the processor will drive the writeback address when it
asserts ADS for the writeback, and system logic need not
retain a copy of the inquire cycle address.
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If an inquire cycle occurs while the processor is driving a
Branch-Trace Message special bus cycle, the branch address
information driven by the processor on A31-A3 can be over-
written by the inquiring bus master. In such cases, system logic
should latch A31-A3 when ADS is asserted (that is, before
asserting AHOLD, BOFF or HOLD).

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on A21-A3 (not including A31-
A22). The drive strength is weak for all states of BRDYC and
BUSCHK except BRDYC and BUSCHK both Low (0), in which
case the drive strength is strong. The A31-A22 signals use the
weak drive strength at all times. See the data sheet for details.

Unlike the Pentium processor, pipelined address-data transac-
tions are not supported by the AMD5¢86 processor. Thus, the
NA input has no effect on the processor’s address bus. NA only
affects the sampling time for the KEN and WB/WT inputs.
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5.2.3 ADS (Address Strobe)

Summary

Driven and Floated

Details

Output

The processor asserts ADS to specify the beginning of a mem-
ory or I/O bus cycle, or a cache writeback to memory. The sig-
nal validates the processor’s address and cycle definition
signals and it can be used by system logic to enable accesses to
memory and I/O.

During processor-initiated bus cycles, the processor asserts
ADS for one clock at the beginning of each bus cycle. During
writeback cycles, whether initiated by the processor or by sys-
tem logic, the processor asserts ADS for one clock as early as
two clocks after the processor asserts HITM. The processor can
assert ADS as early as two clocks after the assertion of BRDY
(thus allowing one idle or dead clock between any two bus
cycles), and one clock after the negation of AHOLD, BOFF, or
HLDA.

ADS is driven during memory cycles (including cache
writethroughs and writebacks), I/O cycles, locked cycles, spe-
cial bus cycles, and interrupt acknowledge operations in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM, or while PRDY is asserted. While AHOLD is
asserted, and during the Shutdown, Halt, and Stop Grant
states, ADS is driven only for writebacks that result from
inquire cycle hits. ADS is not driven during the Stop Clock
state, or while BOFF, HLDA, RESET, or INIT is asserted.

The processor floats ADS one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

The processor initiates bus cycles for the purpose of reading
and writing memory or I/O, and for writebacks of modified
cache lines. While the processor controls the bus, or while it is
writing back a modified cache line (whether in control of the
bus or not), ADS defines the beginning of the cycle. In the
clock that it asserts ADS, the processor also begins driving the
several signals that define and qualify the bus cycle, including
A31-A3 (or A31-AS5 for writebacks), AP, the cycle definition
signals (D/C, M/TO and W/R), BE7-BEO, BREQ, A20M, CACHE,
LOCK, PCD, PWT and SCYC.

If ADS initiates a cache line fill and all four ways of the cache
that could accommodate the incoming line are filled with valid
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entries, the processor uses a pseudo-random algorithm to
select a line for replacement. If the selected line is cached in
the modified state, it must be written back to memory. In this
case, the order of events is:

1. Complete the burst read, placing the incoming cache line in
the processor’s line fill buffer.

2. Write the modified line back to memory.

3. Fill the vacated cache line with the contents of the line
buffer.

Processor-initiated writebacks can occur during cache line
replacement, internal snoops for self-modifying code, and exe-
cution of the WBINVD instruction. System-initiated writebacks
can occur during inquire cycle hits to modified cache lines
(while AHOLD, BOFF or HLDA is asserted) or by assertion of
the FLUSH input. The processor drives writebacks by assert-
ing ADS and either reusing the inquire cycle address (if
AHOLD is held asserted throughout the writeback) or driving
the address itself (if AHOLD is negated for the writeback, or if
BOFF or HOLD was used to obtain the bus).

During an inquire cycle that hits a modified cache line, the
processor asserts ADS as soon as two clocks after asserting
HITM, regardless of whether AHOLD is asserted or negated.
By contrast, if BOFF or HLDA is asserted instead of AHOLD
during an inquire hit, the processor postpones the writeback
until after BOFF or HLDA is negated.

During special bus cycles and interrupt acknowledge opera-
tions, the processor drives ADS to validate A31-A3, BE7-BEO
and the cycle definition signals. This use of ADS and A31-A3
simply serves to identify the type of special bus cycle, rather
than to address a location in memory or I/O space.

The processor asserts BREQ in the same clock that it asserts
ADS, although BREQ is also asserted at other times (see the
description of BREQ on page 5-46). The processor negates ADS
for one clock between any contiguous bus operations, such as
between a single-transfer I/O write and a burst read from mem-
ory, or between two burst reads. The same is true for contigu-
ous sequences of locked operations (sequences of locked bus
cycle pairs). System logic can use the negation of ADS between
contiguous bus operations to make the bus available to other
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bus masters, thus intervening temporarily in the processor’s
sequential operations.

If BOFF is asserted while ADS is asserted, ADS remains Low
(floats asserted). System logic must consider this when inter-
preting the state of ADS after negating BOFF. In the next clock
after BOFF is negated, the processor may reassert ADS to
restart a cycle if a cycle was aborted by the assertion of BOFF.

If system logic begins driving an inquire cycle by asserting
AHOLD or BOFF and then asserting EADS with the inquire
address, and the processor is driving a Branch-Trace Message
special bus cycle at the same time that AHOLD or BOFF is
asserted, the branch address information driven by the proces-
sor on A31-A3 can be overwritten by the inquiring bus master.
In such cases, system logic should latch A31-A3 when ADS is
asserted, before asserting AHOLD or BOFF.

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on the A21-A3 (not including
A31-A22), ADS, HITM, and W/R signals. The drive strength is
weak for all states of BRDYC and BUSCHK except BRDYC and
BUSCHK both Low (0), in which case the drive strength is
strong. The A31-A22 signals use the weak drive strength at all
times. See the data sheet for details.
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5.2.4 ADSC (Address Strobe Copy)

Output

Summary ADSC is an identical copy of ADS. In systems that would other-
wise place large capacitive loads on ADS, the ADSC output can
be used instead of ADS to distribute loads, thereby increasing

response time.

Driven and Floated ADSC is driven and floated with the same timing as ADS. See
the description of ADS on page 5-25.

Details See the description of ADS on page 5-25.
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5.2.5 AHOLD (Address Hold)

Summary

Sampled

Details

System logic can assert AHOLD to obtain control of the bidi-
rectional A31-A3 address bus and AP address parity signal to
drive one or more inquire cycles to the processor.

The processor samples AHOLD in every clock and responds by
floating the bidirectional A31-A3 and AP signals one clock
after AHOLD is asserted.

AHOLD is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, inquire cycles,
locked cycles, writebacks, special bus cycles, and interrupt
acknowledge operations in the normal operating modes (Real,
Protected, and Virtual-8086) and in SMM; in the Shutdown,
Halt, or Stop Grant states; or while RESET, INIT or PRDY is
asserted. AHOLD is sampled but not effective when BOFF or
HLDA is asserted. AHOLD is not sampled during the Stop
Clock state.

The sole function of AHOLD is to support inquire cycles. There
are three methods by which system logic can obtain control of
the address bus to drive an inquire cycle: AHOLD, BOFF, or
HOLD. AHOLD obtains control only of the address bus and
allows another master or system logic to drive only inquire
cycles, whereas BOFF and HOLD obtain control of the full bus
(address and data), allowing another master to drive not only
inquire cycles but also read and write cycles. AHOLD and
HOLD both permit an in-progress bus cycle to complete, but a
writeback can occur while AHOLD is asserted, whereas a pend-
ing writeback during the assertion of BOFF or HOLD occurs
after the BOFF or HOLD is negated.

AHOLD is useful primarily in systems with multiple buses and
multiple bus masters, where operations can occur on the sepa-
rate buses independently and in parallel. This configuration
occurs, for example, if the processor shares a bus only with a
look-through L2 cache, and other caching masters work in par-
allel on another bus that is isolated from the processor by sys-
tem logic. In such designs, system logic may drive separate
AHOLD signals to each bus master in the system. For details
on how AHOLD can be driven in such configurations, see Sec-
tion 6.2.5 on page 6-14.
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When the processor releases control of A31-A3 and AP in
response to AHOLD, the processor still maintains control of
the remaining signals on the bus so that it can (a) finish driving
a bus cycle it may have begun before AHOLD was asserted,
and (b) drive a writeback if an inquire cycle hits a modified
line in the processor’s data cache. However, the processor can-
not begin driving a new bus cycle while AHOLD is asserted
because system logic controls the address bus.

System logic drives inquire cycles with the EADS, A31-A5, AP
and INV inputs. A typical sequence for an inquire cycle is:
assert AHOLD; two clocks later, assert EADS and drive A31-
A5 and INV; wait two clocks for the processor to assert HITM
and/or HIT. If HITM remains negated two clocks after EADS is
asserted, the inquire cycle ends. If HITM is asserted at that
time, the processor begins driving a four-transfer burst write-
back as early as two clocks after asserting HITM.

AHOLD can be negated as early as one clock after EADS is
asserted. If system logic holds AHOLD asserted throughout an
inquire cycle and any required writeback, system logic must
latch the inquire cycle address when it asserts EADS. This is
required so that, if the inquire cycle hits a modified line
(HITM asserted), the address used for the writeback need not
be driven by the processor when the processor asserts ADS for
the writeback. Instead, A31-A5 remains an input-only bus and
system logic must use its latched copy of the inquire cycle
address. By contrast, if system logic always negates AHOLD
before the writeback, the processor drives the writeback
address when it asserts ADS for the writeback, and system
logic need not retain a copy of the inquire cycle address. While
the processor drives the writeback address, it drives only the
beginning address for the 32-byte transfer on A31-A5. System
logic must determine the remaining addresses as shown in
Table 5-4 on page 5-22.

If system logic asserts AHOLD while the processor is driving a
locked cycle, the system must not allow accesses by other bus
masters to lock the same address that the processor is locking.

While AHOLD is asserted (after the completion of any in-
progress bus cycle by the processor), the processor continues
to execute out of its instruction and data caches, if possible. If
the processor can no longer operate out of its caches, it holds
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BREQ asserted continuously. For a list of signals recognized
while AHOLD is asserted, see Table 5-2 on page 5-9.

The processor may again drive its own cycles with ADS as early
as one clock after system logic negates AHOLD. Before negat-
ing AHOLD, however, system logic may need to arbitrate
among potential contenders for the address bus so as to avoid
deadlock contention for the bus.

Ground-bounce spikes can be avoided by following two rules
with respect to AHOLD:

m Do not negate AHOLD in the same clock that BRDY is
asserted during a write cycle.

m Do not negate AHOLD in the same clock that ADS is
asserted during a writeback.

These restrictions must be observed because the processor’s 32
address drivers turn on almost immediately after AHOLD is
negated. If the processor is driving data with BRDY on the 64-
bit data bus at the same time, the processor then drives 96 bits
simultaneously and ground-bounce spikes can occur.
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5.2.6 AP (Address Parity)

Summary

Driven, Sampled, and
Floated

Details

Bidirectional

AP carries the even parity bit for cache line addresses driven
and sampled on A31-AS5. The processor drives AP when it
drives an address for a read or write cycle. The processor sam-
ples AP during inquire cycles in order to drive the APCHK out-
put.

AP is driven, sampled, and floated with the same timing as
A31-A3. See the description of A31-A3 on page 5-21.

The bit value driven on AP is counted with the bit values
driven on A31-A5 to determine address parity. If the total
number of 1 bits is even on AP and A31-A5, the address is con-
sidered free of error (thus the term even parity). If the total
number of 1 bits is odd, the address is considered to have an
error. The bit values driven on A4-A3 are not counted during
the parity checking.

In addition to generating and checking address parity, the pro-
cessor also generates and checks data parity using the DP7—-
DPO and PCHK signals. See page 5-58 and 5-102 for detalils.
Unlike the handling of PCHK, however, the processor does not
capture the faulty address in a register when it asserts
APCHK. System logic must handle the error externally. Typi-
cal PC systems assert an interrupt signal such as NMI after a
parity error is detected.

Systems that do not implement address parity generation and
checking should tie AP either High or Low and ignore the
APCHK output.
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Summary

Driven

Details
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(Address Parity Check)
Output

The processor asserts APCHK if an even-parity error occurs on
A31-A5 during an inquire cycle.

The processor drives APCHK for one clock, two clocks after
system logic asserts EADS with an inquire address.

APCHK is driven under the same conditions in which EADS is
sampled: See the description of EADS on page 5-59.

System logic can use APCHK to initiate a remedy for the error.
Typical PC systems assert an interrupt such as NMI if a parity
error is detected.

See the description of parity error determination for the AP
input on page 5-32. Systems that do not implement address par-
ity checking should ignore APCHK.
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5.2.8 BE7-BEO (Byte Enables)

Summary

Driven and Floated

Details

Output

The eight bits of BE7-BEO, when cleared to 0, validate the
eight bytes driven on D63-D0. In this way, BE7-BE0 expands
on the function of address bits A2—-A0, which do not exist on
the A31-A3 address bus. BE7-BED also help differentiate the
special bus cycles.

The processor drives BE7-BEO from the clock in which ADS is
asserted until the last expected BRDY of the bus cycle. The

processor floats BE7-BEO one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

BE7-BED is driven with the address and cycle definition out-
puts (D/C, M/IO and W/R) during memory cycles (including
cache writethroughs and writebacks), I/O cycles, locked cycles,
special bus cycles, and interrupt acknowledge operations in
the normal operating modes (Real, Protected, and Virtual-
8086) and in SMM, or while PRDY is asserted. While AHOLD is
asserted, BE7-BED is driven only to complete a bus cycle that
had been initiated before AHOLD was asserted, or for inquire
cycle writebacks. During the Shutdown, Halt, and Stop Grant
states, BE7-BED is driven only for inquire cycle writebacks.
BE7-BED is not driven during the Stop Clock state, or while
BOFF, HLDA, RESET, or INIT is asserted.

Table 5-5 shows the relationship between BE7-BE0, D63-DO0,
DP7-DPO0, and the effective relationship with A2-A0, the non-
existent low address bits. The BE7-BEO signals expand on the
function of A2-A0Q; BE7-BEO allow the processor to address
any or all eight bytes indicated by A31-A3, whereas A2-AQ0, if
they existed, would only address one of eight bytes.

During single-transfer memory cycles and all I/O cycles, the
processor drives BE7-BED to identify all of the bytes desired
for the transfer. System logic must return valid data in those
byte lanes of D63-D0.

During burst reads (CACHE and KEN both asserted with the
first BRDY of a memory read), the processor drives BE7-BEO
with ADS to identify the bytes of the desired instruction or
operand. The processor drives BE7-BE0 with the desired bytes
at that time because it does not yet know whether the read will
be a single-transfer or a burst—this depends on how system
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logic drives KEN with the first BRDY. If system logic negates
KEN, it must return as a single transfer only the bytes speci-
fied on BE7-BEO. If system logic asserts KEN, it must ignore
BE7-BEO during all transfers of the burst and return all eight
bytes for the starting address on A31-A3. BE7-BEO does not
change during the four transfers of the burst. (This behavior is
unlike the 486 processor, which drives BE3-BEO separately for
each transfer of a burst.) System logic must determine the suc-
cessive quadword addresses for each transfer in a burst,
depending on the starting address, as shown in Section 5-4 on
page 5-22.

During single writes, which include cache writethroughs (1-to-
8-byte transfers with CACHE negated) the processor drives the
bits of BE7-BED to indicate which of the eight bytes on D63-D0
are valid. During writebacks (32-byte, four-transfer bursts with
CACHE asserted) the processor drives all bits of BE7-BEO Low
to indicate that all eight bytes on D63-D0 are valid. Write-
backs are addressed by A31-A3 but they are always aligned to
32-byte boundaries, so A4-A3 are always 0.

TABLE 5-5. Relation Of BE7-BEO To Other Signals

Byte Enable |Effective Address Bits'| pyte On | Data Parity

Output A2 Al A0 Data Bus Bit
BE7 1 1 1 D63-D56 D7
BEG 1 1 0 D55-D48 D6
BES 1 0 1 D47-D40 D5
BEZ 1 0 0 D39-D32 D4
BE3 0 1 1 D31-D24 D3
BE2 0 1 0 D23-D16 D2
BE1 0 0 1 D15-D8 D1
BEO 0 0 0 D7-D0 DO

Notes:
1. BE7-BED expand on the function of A2-A0 by allowing the processor to address any or all

eight bytes addressed by A31-A3.

The processor differentiates special bus cycles using a combi-
nation of BE7-BED, the cycle definition (D/C, M/IO, and W/R)
outputs, and A31-A3. The values on the cycle definition signals
are the same for all special cycles; only BE7-BEO and A31-A3
differentiate among those cycles. Table 5-6 shows the relation-
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ships. This function of BE7-BEO bears no relationship to the
D63-DO0 data bus. This is particularly apparent in the case of
the Branch-Trace Message special bus cycle, during which the
value of BE7-BED is DFh (1101_1111b) but, in contradiction to
the byte-enable bits, the four bytes on D31-DO0 carry valid data
during both cycles of the operation: during the first cycle, D31~
DO carries the EIP value of the source (branch) instruction;
during the second cycle, D31-D0 carries the EIP value of the
branch-target instruction.

TABLE 5-6. Encodings For Special Bus Cycles

BE7-BE0 A31-A3 Special Bus Cycle! Cause
FEh ...00h Shutdown Triple fault
FDh ...00h Cache Invalidation INVD instruction
FBh ...10h Stop Grant STPCLK
FBh ...00h Halt HLT instruction
F7h ...00h Cachc.e Wl..ltebaCk and WBINVD instruction
Invalidation
EFh ...00h FLUSH Acknowledge FLUSH
Bit 5 =1 and bits 3-1 = 001 in
the Hardware Configuration
- 2
DFh ...00h Branch-Trace Message Register (HWCR). See Section
7.1 on page 7-3 for details.
Notes:
1. For all special bus cycles, D/C =0, M/TO = 0 and W/R = 1. System logic must return BRDY in response to this cycle.
2. The message in a branch-trace message special bus cycle is different in the AMD5,86 and Pentium processors.

Certain models of the Pentium processor implement BE7-BE5
as outputs and BE4-BEO as bidirectional signals. On the
AMDS5,86 processor, however, all eight BE7-BEO signals are
outputs only.
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5.2.9 BF (Bus Frequency)

Summary

Sampled

Details

During RESET, BF selects between a high and low multiplica-
tion factor for the frequency ratio between the processor’s
internal clock and the bus clock (CLK).

The processor samples BF only on the falling edge of RESET.
The signal assertion must be stable 10 clocks prior to its sam-
pling. BF has a weak internal pullup resistor; see the data
sheet for details.

Table 5-7 shows the ratios between the processor clock and the
bus clock (CLK) for the High and Low values of BF. BF may be
tied High or Low. Due to the internal pullup resistor, the lower
ratio is selected if BF is left unconnected.

TABLE 5-7. Processor-to-Bus Clock Ratios

State of BF Input | Processor-Clock to Bus-Clock Ratio
BF=1 1.5x
BF =0 2.0x

Notes:

1. The default processor-to-clock ratios are shown in Table 5-7. Specific mod-
els of the AMD5,86 processor may implement different ratios for the Hié]h
and Low values of BF. For authorative information, see the data sheet for
each AMD5,86 processor model.
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5.2.10 BOFF (Backoff)
Input
Summary When system logic asserts BOFF, the processor floats the bus

Sampled

Details

and continues to float it until BOFF is negated. If the processor
is driving a bus cycle when BOFF is asserted, the cycle is
aborted and restarted after BOFF is negated. The processor
does not acknowledge BOFF. While BOFF is asserted, another
bus master can drive cycles on the bus, including inquire
cycles to the processor.

The processor samples BOFF in every clock. When BOFF is
asserted, the processor floats the cycle-driving outputs on the
bus in the next clock and continues to float them until BOFF is
negated.

BOFF is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, inquire cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; in the Shutdown, Halt, or Stop
Grant states; or while AHOLD, RESET, INIT, or PRDY is
asserted. BOFF is sampled but not effective when HLDA is
asserted. BOFF is not sampled during the Stop Clock state.

The assertion of BOFF, like HOLD but unlike AHOLD, forces
the processor to relinquish the full address and data bus to
another bus master. The signal can be used for the following
purposes:

m  Bus Turnaround— Another bus master can assert BOFF to
the processor to obtain control of the bus, allowing the
other bus master to drive any type of bus cycles.

m Inquire Cycles—In multi-master systems with shared mem-
ory, another bus master typically drives an inquire cycle to
the processor or its L2 cache prior to driving a read or write
cycle to any memory locations shared by both masters. Such
inquire cycles can be driven while BOFF is asserted.

m  Deadlock Resolution—When an inquire cycle by one master
hits a modified cache line in another processor, neither mas-
ter can proceed until the target of the inquire cycle gets the
bus. In such a case, system logic would back the inquiring
master off the bus by asserting BOFF to it, so that the mas-
ter with the modified line can write it back to memory.
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BOFTF provides the fastest response of the three bus-hold
inputs. Because of its ability to help resolve deadlock prob-
lems, it is required in almost all systems with multiple-caching
masters. In such designs, system logic typically drives separate
BOFF signals to each bus master in the system. See Section
6.2.5 on page 6-14 for system configurations using BOFF.

Unlike AHOLD and HOLD, BOFF does not permit an in-
progress bus cycle to complete. It forces the processor off the
bus in the next clock, aborting any in-progress bus cycle that
the processor has begun. A writeback can occur while AHOLD
is asserted, but a pending writeback during the assertion of
BOFF or HOLD waits until after BOFF or HOLD is negated.

The processor floats the bus one clock after the assertion of
BOFF. All output and bidirectional signals used for memory or
I/0 accesses are floated. Table 5-8 shows the signals floated.
The same set of signals is floated with HLDA.

TABLE 5-8. Outputs Floated When BOFF is Asserted

Address and C.yc‘le.: Data and Cache
Address Pari Definition Data Pari Control
ty and Control ty
A31-A3 DC D63-D0 CACHE
ADS LOCK DP7-DP0O PCD
ADSC M/IO N/A PWT
AP SCYC N/A N/A
BE7-BE0 W/R N/A N/A

The processor supports only one in-progress bus cycle, no
pending bus cycles are buffered. If the processor is driving a
bus cycle when BOFF is asserted the processor retains the data
that had been transferred up to the clock in which BOFF was
asserted but ignores the data transferred with or after BOFF
was asserted. BOFF has no effect on writes to the processor
store buffer, except to delay them. (The store buffer is situated
between the execution units and the data cache. It is used for
speculative stores prior to being written to the data cache.)

The bus master asserting or causing the assertion of BOFF
must wait two clocks after asserting BOFF before driving its
first bus cycle because the processor does not float its outputs
until one clock after the assertion of BOFF. System logic or
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another bus master may continue asserting BOFF for as long as
it wants. The processor has no way of breaking the hold. While
the processor is backed off, it continues to execute out of its
instruction and data caches, if possible. If it can no longer
operate out of its caches, it holds BREQ asserted continuously.

As early as one clock after BOFF is negated, the processor
restarts—from the beginning—any bus cycle that was aborted
when BOFF was asserted. This is unlike BOFF on the 486 pro-
cessor, which restarts only the transfers that did not complete
when BOFF was asserted. The processor can drive another
cycle with ADS as early as two clocks after any aborted cycle
completes. This allows one idle clock (also called a dead clock)
between any two bus cycles. If BOFF was asserted when ADS
was also asserted, however, ADS remains Low (floats asserted)
after BOFF is negated. In such a case, system logic must prop-
erly interpret the state of ADS when it negates BOFF.

If BOFF is asserted during a locked operation, only the cycle(s)
aborted before their last BRDY and the cycles not yet run are
restarted after BOFF is negated. Thus, system logic must keep
track of all cycles in the locked operation that have completed
before the assertion of BOFF and must continue the locked
operation immediately after BOFF is negated, except that if a
writeback is pending when BOFF is negated, the writeback
takes precedence over the restarting of the aborted cycles in
the locked operation.

The processor responds to inquire cycles while BOFF is
asserted and drives HIT and HITM in response to such cycles.
During the BOFF-initiated inquire cycles, BOFF can be
negated as early as one clock after EADS is asserted. If HITM
is asserted, which would occur two clocks after EADS is
asserted, the writeback is performed after BOFF is negated. If
a processor cycle was aborted by the assertion of BOFF, that
cycle is restarted as soon as BOFF is negated, except that if an
inquire cycle hits a modified line while BOFF was asserted, the
writeback is driven first when BOFF is negated, before an
aborted cycle is restarted. Multiple inquire cycles are not per-
mitted to hit modified lines. The processor implements this
restriction by ignoring EADS while HITM is asserted; when
HITM is asserted, it is held asserted until the last BRDY of the
writeback.
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If BOFF is asserted when BUSCHK is asserted, BOFF is recog-
nized and BUSCHK is ignored. For a list of signals recognized
while BOFF is asserted, see Table 5-2 on page 5-9.
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5.2.11 BRDY (Burst Ready)
Input

Summary For bus cycles that transfer data, system logic must assert
BRDY to indicate that it has received a data transfer on D63-
DO during a write and to indicate that it has placed valid data
on D63-DO0 during a read. Up to eight bytes of data—the width
of the D63-D0 data bus—are validated with each BRDY. For
special bus cycles, system logic must assert BRDY either to val-
idate data or as a simple handshake.

Sampled The processor samples BRDY every clock, from one clock after
ADS until the last expected BRDY of the bus cycle.

BRDY is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, locked cycles, spe-
cial bus cycles, and interrupt acknowledge operations in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM, or while PRDY is asserted. While AHOLD is
asserted, BRDY is sampled only to complete a bus cycle that
had been initiated before AHOLD was asserted, or for inquire
cycle writebacks. During the Shutdown, Halt, and Stop Grant
states, BRDY is sampled only for inquire cycle writebacks.
BRDY is not sampled when the processor is not driving an
external bus cycle; or during the Stop Clock state; or while
BOFF, HLDA, RESET, or INIT is asserted.

If BRDY is asserted simultaneously with BOFF, BOFF is recog-
nized and BRDY is not, but if BRDY is asserted simultaneously
with HOLD, BRDY is recognized and the HOLD waits until the
bus cycle associated with the BRDY completes.

Details BRDY is associated with a transfer of one to eight bytes on the
D63-D0 data bus. During memory and I/O reads, the processor
samples and latches the bytes on D63-D0 and the parity bits on
DP7-DPO that are enabled by BE7-BEO when system logic
asserts BRDY. During memory and I/O writes, the processor
waits for system logic to return BRDY before transferring
more data on D63-D0 or before starting another bus cycle.
Delays in returning the BRDY for a transfer (and delays in
returning EWBE for a write cycle) are said to add wait states to
the transfer, although these states are nothing more than the
absence of an expected BRDY.
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The processor samples BRDY during all types of bus cycles,
including the following:

Single-transfer reads

Single-transfer writes (including cache writethroughs)
Burst reads (cache line fills)

Burst writebacks

Special bus cycles

Interrupt acknowledge cycles

The number of BRDYs expected by the processor depends on
the type of bus cycle, as follows:

m One BRDY for an aligned single-transfer cycle, a special
bus cycle, or each of two cycles in an interrupt acknowledge
operation. Additional BRDYs are needed for misaligned
cycles.

m Four BRDYs, one for each data transfer in a burst cycle.
BRDY may be held asserted throughout the four transfers
of the burst.

All data transfers that are not performed as bursts are per-
formed as one or more single-transfer cycles. For write cycles,
EWBE must be asserted either with or after BRDY in order for
any further writes or certain other operations to be performed
(see the description of EWBE on page 5-63). If system logic
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