Advanced Configuration and Power
| nterface Specification

Intel

Microsoft
Toshiba
Revision 1.0b
February 2, 1999

Intel Microsoft Toshiba

Copyright © 1996, 1997, 1998, 1999 Intel Corporation, Microsoft Corporation, Toshiba Corp.
All rightsreserved.

INTELLECTUAL PROPERTY DISCLAIMER
THISSPECIFICATION ISPROVIDED “ASI1S’ WITH NO WARRANTIESWHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESSFOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESSOR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTSIS GRANTED OR INTENDED HEREBY.
INTEL, MICROSOFT, AND TOSHIBA, DISCLAIM ALL LIABILITY,INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEM ENTATION OF INFORMATION IN
THISSPECIFICATION. INTEL, MICROSOFT, AND TOSHIBA, DO NOT WARRANT OR REPRESENT THAT
SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
I2C isatrademark of Phillips Semiconductors.

All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Affected

Revision | Change Description Sections
Feb. Fixed previous errata that deleted wrong paragraph in the 4.7.3.1.2
1999 | RTC_EN description
1.0b

Clarified P_BLK requirements on MP systems 4.7.2.6.3

Changed definition of SCI_INT pinin Table 5-5 525

Replaced section 5.2.8 adding new structures and clarifications to 528

support MP configurations.

Expanded Name Space description — clarified the name search 53

rules, added Parent operator to operator list, described name

padding

Expanded ASL definition - defined global objects, clarification 55.3

that OpRegion accesses may block, Added description of the

scope and life of variables in control methods.

Changed notify values 5.6.3

Added\ PIC method to table 5-33 and new section 5.8 56.5& 5.8

Added USB ADR vauesto Table 6-1. 6.1.1

ACPI Control Method added for floppy enumeration (FDE) 10.8

ASL Grammar darifications - initid and default SyncLeve 15.2.3

vaues, ObjectType behavior for specific objects, usage of the

RefOf operator and behavior of nonpackage method eva uation.

Added top level AML definition 16.2

Changed concat arguments to be TermArgs resolving to data 16.2.4.4

Added the _GLK object and referenced it in the Smart Battery and 6.5.6 &

the Control Method Battery sections. 1114 &
1122 &
13.8&
139
&13.12

Added Video Extensions as an Appendix Appendix
A

1.0a | Added PRT requirement for PCI root bridges. 1.7

Clarification H/W behavior - PM timer may be stopped when not 4.7.2.1

in the GO/SO gtate, Lid Switch behavior and correction of the

RTC EN bitin Table 4-10

Clarification of tables - trailing blank required in Sgnaturein 5.2.X

Table5-1, FLUSH_SIZE and FLUSH_STRIDE darification

Table 5-5

Clarified placement of APIC related structures and genera clean 528

up, added Interrupt source overrides

Various removas - figure 5-4, DCK_CAP flag from Table 5-6,

_SBCand _SBS methods from Table 5-33

Various additions - AC device PnP ID to table 5-32, DDN 5.6.4

(logicd name association) to Table 6-1, ADR vauesfor floppy,

_FDI —floppy configuration info, requirementsfor _ CRS used
with bus devices, battery presence bit to _STA definition,
QWORD to Large Resource datatype, INI Method
Wake/Seep daifications- _PTS not executed for S5 and SCI 91&93
cannot occur before enabled
Rewrote the IDE Controller Device section 10.8
Corrected the passive cooling equation for TC1 and TC2 12.3.7 (&8)
Removed requirement that PRx contain numeric lowest state 7.2x (0-2)
Removed Duplicate Section “ General Purpose Register Blocks’ 4.7.4.3
Clarified that Clisrequired and C2 & C3 are optiond and 4726 &
reiterate requirement for C1 processor state in Table 5-6 525
Clarified the Passve Cooling Equation 1215
Numerous grammar updates and corrections. 15& 16
Added SxD objects 7.287.2X
1.0 Origind Release
Contents
(@@ A = N I8 SO SRPRRRS 4
N |V I 0 15 1 @3 N] S 15
11 PrinCipal GOaIS.....ccooiiiiiiieeice ettt e 15
1.2 Power Management Rationale..........cccooeeiiieiiieese e 16
1.3 LEJACY SUPPOIT ..ottt ettt sttt st et e ae e s e e ssn e e nbe e snseeneesmseesneeenneenneeas 17
1.4 OEM Implementation SIrategyccoceverereriieieniesee e 17
15 Power and SIeep BULLONS........ccoiieiice ettt s 17
1.6 ACPI Specification and the Structure Of ACPI ..o 18
1.7 Minimum Requirementsfor OSPM/ACPI SyStems.......ccccvveverienieneenenee e 20
1.8 Targel AUdIENCEociiieiecieeiee ettt sttt ettt bbb 20
1.9 Document OrganiZationccceeceeiiueiiieeiiieesseesiieesseesseessessseesseesseesseesseessessseessenss 21
191 ACPI OVEIVIBW...ceecieeieeiieiiesiesiesie e stesse s seeaesaesaessesbessesseeseeseessessessessessessessessennes 21
1.9.2 Programming MOGEIS........ccciiieiieiecie et nne s 21
1.9.3 Implementation DELailS.........cccceeiieieieeieee e 22
194 TechniCal REFEIENCE.cooiiieeeee e 22

1.10

RE IO DOCUMBNTS .. oo 22

2. DEFINITION OF TERMS ...ttt st 25
21 General ACPI TeMINOIOGY ...ccceereirierieriieriesieeieeseesiesseesseessessesseesseseesseessessessesssens 25
2.2 Global System State DEfiNItIONSccooeieriiieierese e 31
2.3 Device Power State DEfiNItIONScccociviiiririeieiese st 33
24 Seeping State DEfiNITIONScooiiiiieeee e 34
25 Processor Power State DEfiNITIONS.......cccovieerieiesieseee e e e 35
3. OVERVIEW ...ttt sb e st 37
3.1 System Power Management ... 38
3.2 POWES SEALES......eiieieitieeie ettt ettt be et e sbe e s b e e nbe e e e e e nbe e eaneenneeennas 38
3.21 New Meanings for the POWer BULLON............cccooieiieiiieeseee e 39
3.2.2 Platform Power Management CharaCteristiCs.........ccoovvvvereeienieesierie e s 39
3.3 Device POWEr ManagemMENtcooiiiiiieie ettt e e nee s 40
3.3.1 Power Management Standards...........cccererirerenereninieeeee e 40
3.3.2 DEVICE POWES SEELES......ccuiiviriiitirieeiieieee ettt e bbb b b e 41
3.3.3 Device Power State DefiNItIONScccooveireriinienieie e 41
34 Controlling DEVICE POWENccoiiiiiiiiieieeieeeee ettt 42
34.1 Getting Device Power Capabiliti€S.......ccceveeiieeeniee e 42
342 Setting Device POWEN SEALESccceeiieiiiie ettt st 42
3.4.3 Getting DeviCe POWEN SEALUS........ccceeeieeieierie sttt 43
344 Waking the COMPULESccoieiicieceee ettt ae e e naeas 43
345 Example: Modem Device Power Management...........cceveeveeeeneeiiesieeseeseeseennns 44
34.6 Getting the Modem’S POWEr SEALUS..........ccooeriuiieeiieie et 46
3.5 Processor POWEr ManagemMentcoveeiieiiiinieesiee ettt sne e 47
G ST = (Vo 1= o = YRS 47
3.6.1 Example: Configuring the MOdem............ooeriiiiiiieie e a7
.7 SYSLEM EVENES. ...ttt sttt st e b s ab e be e st e e be e anas 48
3.8 Battery ManagemMeENTc.cooiiiiiiiieiiir e s nne e 48
381 CMBAE Diagram.....cccccciviiiiiiiiisiieieieee e sie et see s sse st s sbesre e e neenees 49
3.8.2 BaEIY EVENLS.....co i e 49
TS G N = T 1 (= VA O o 7= o | PSP 49
3.8.4 Baery GaS GaAUJEceeviiueiiiiieieiieiesiteeesiteessieessresssssesssssessssaessseessseessseessssesssnns 50
3.9 Thermal ManagemeNtcccoiiiiiiiereee et e e e s e e e 52

39.1 Active and PassiVe COOIING.......ccuriririieriiniesie et sre e 53

3.9.2 PerformanCe Vs. SIENCE.......cc i 53
3.9.3 Other Thermal IMpIeMENtatioNSccoceieriiieriee e 56
3.9.4 Multiple Thermal ZONES.........cccoiiiriiieeere e 56
4. ACPIHARDWARE SPECIFICATIONcoiiiiiiisesesesesesee et 57
4.1 Fixed Hardware Programming MOdel..........ccooiiiiniinenceeeee e 57
4.2 Generic Programming MOGEocoveeiiiienieie e e 57
VG T B TF=To = T g T I = T £ 59
4.4 Register Bit NOLALIONc.cciiiiiieiie et e nneesnne e 60
45 The ACPI Hardwar € MOUEL.........ccooiiirieiiseseee et 60
451 Hardware RESEIVED BitS.......cccviiiririiiiiieiesiesie s 64
452 Hardware Ignored BitS.........cccciiiieiieie ettt 64
453 Hardware Write-Only BitS......ccooiiiiiieiineeriieiesee e 65
454 Cross Device DEPendEnCiEs........ccuueiirerierieriesie ettt s 65
4.6 ACPI FEALUINES........eeeeeeeeeeee et r e e n e san e ne e s n e e sneennne e 65
4.7 ACPI ReQISLEr MOGEL.....cooiiieieeieceeeee et 67
471 ACPI REQISIEr SUMMEIY......coiiuiiririeriireeieieessesse s et se e s ssesnessessessessesnenes 70
4.7.2 Required FIXed FEALUIES.........cccoiiie et ee et nns 73
4.7.3 Fixed Feature Space REJISIENScccuiiiieeiiicciee ettt et 88
474 GENEriC ACAIrESS SPACE......c.ceieiiiiriieieeiee ettt 96
5. ACPI SOFTWARE PROGRAMMING MODELccccuviririiierienene e 105
5.1 Overview of the System Description Table Architecture.........ccccocevevcenenenennene, 105
5.2 Description Table SPeCIfiCatioNsSccooveieiieienieeeree e 108
521 Resarved Bitsand Fields.......cccoiiiiieiiee s 108
5.2.2 Root System Description POINLENcccoovveeiieie e 109
523 System Description Table Headercccoveiiiriieeieeeceeeeeee e 109
524 Root System Description Table.........cooiiiiiiiieeee e 111
525 Fixed ACPI Description Table.......ccceiveiieieesece e 112
52.6 Firmware ACPI CONtrol SLIUCLUIEcccueriiieriienieseeie e 119
527 DEfINITION BIOCKSocueiiiiieiiiesieee st 123
5.2.8 Multiple APIC Description Table......ccvcceveeiieeii e 124
5.2.9 Global System INterrupt VECIOIS........ccvevueieeiieeie et 131
5210 Smart Battery Table.....ccco i 132
5.3 ACPI NAME SPACE......ccueiiueeieeieerieesie ettt sre s e sresnenneenne e e e 133
531 Defined ROOt NamMES SPACES.......ccceieeiiieieiiesieeie ettt 135

TG © o] = o £ PR 135

5.4 Definition BIOCK ENCOTINGcoivieiiieiiciesiece ettt 136
5.5 Usingthe ACPI Control Method SourceLanguagecccceveeveneeneenieseeseeenenn 137
551 ASL SEBEMENTS.....ooitiiiiieiee ettt sttt st be et re e st ae e e nne e nnee e 137
O9.5.2 ASL MAECIOSoeiiiieiee ettt r e san e e n e n e nn e 138
55.3 Control Method EXECULION.........cocuiiiiriieie ettt 138
554 Control Method Arguments, Local Variables, and Return Values...................... 139
5.6 ACPI Event Programming MOGEcccoeevieiieiiciecece s 140
5.6.1 ACPI Event Programming Model Components...........ccoecceevenviieeneesiiecsiee e 140
56.2 TypeS of ACPI EVENLS.......ccoiiiiriiieieieeseeste et 141
5.6.3 Device Object NOtIfICAlIONS.ccvieereeie s e 145
5.6.4 Device Class SpeCifiC ODJECES.....c.oiieiiieieieesece e 148
5.6.5 Defined Generic Object and Control Methods...........ccoooeveeveeinnieneeie e 149
5.7 OS-Defined ODJECE NAMESccoiiiiiiierieeiee e 152
571 \ GL GlObal LOCK MULEX........ccieiiitierieeie s sieeie st eee e s 152
5.7.2 \ OSNAMEODJECEccueeeieieiieesieeie ettt st be e sre e 152
573 \ REV 0aa0hJECTcceoiieiieeeeeeee e 152
5.8 System Configuration ODJECES.......cccviieieee e 152
oIS 0 R = [O 1Y 1 oo o P 152
6 CONFIGURATION ...ttt sttt st esesaessesaesnesseeneeneens 153
6.1 Deviceldentification ODJECIS.....cccucciiieiiee e 153
G0 0 I T SO 153
G300 © | TSP 154
G300 I | 5 155
B.1.4 HID oottt b bbbt 155
G0 L | U 155
G700 LG | TP 155
6.2 Device Configuration ODJECLS........cccviieiieiiiiese e 155
G320 R O = S SO 156
LG © T 1 TSP 157
B.2.3 PRI ittt b et bbbt 157
B.2.4 PRS .. ettt t b b nr e b e e 159
T A TSP 160
6.3 Devicelnsertion and Removal ODJECES........ccooviiiininiiince s 161
B.3. 1 EJD i et bt bbbt 163
LT T N P 164
G325 T 1 P 164
B.3.4 RMV L bbb bbbt 165
LTS S T] 1 SO 165

6.4 ResourceData TYPeSTOr ACPI ... 165
6.4.1 ASL Macros for RESOUICE DESCIPLOISccueeiveeieieesieeie et 165
6.4.2 SMall RESOUICE Dala TYPE.....eiuereerierieeieie ettt sttt 166
6.4.3 Large ReSOUICE Data TYPE.....c.uiiiiiiiiiieisiie e siee sttt st nanee e 174

6.5 Other Control MEthodScoeeiiiiiiieee e s 195
305700 1\ P 195
B.5.2 DK ittt bttt b bbbt 195
LTSI T =1 NS P 196
B.5.4 REG.... ittt ettt a e aenre e ne e neennens 196
B.5.5 BB ittt b bbbt 197
B.5.6 _GLK o bbb bbbt 197

7. POWER MANAGEMENTooiiititseeieie ettt sttt ene e enes 199

7.1 Declaring a Power Resour Ce ODJECL........ccoouiiiriririninereeeeee s 199

7.2 Device Power Management ODjECtS........cccviieieie e 200
A R . AV 201
A (O P 202
T.2.3 PR ettt b e b bt 202
T24 PR2 e ettt b bR ne e ens 202
A T] 5 TSP 203
T.2.8 _SID ittt b bbbt et 203
A A 7.1 O USRS 203
A T C | B TSP 203
A T | I TSP 203
T.210 _SBD i bbb bbbt 203

7.3 Power ReSOUrCeSTOr OFF ..ot e 203
748 35 1 = (P 203
T.3.2 PO e bt b et bbb bt 204
A T = OSSP 204
A = ISP 204
7,35 PSS ettt bbbt 204
S T = USRS 205
A A = C TS 205

7.4 Defined Child Objectsfor a POWer RESOUICE.........ccevveruererieieniesie e 205
TAL ST A et bbb b nE bt ae e 205
A © ST 206
A T O | P 206

7.5 OEM -Supplied System Level Control Methods..........ccoceveiiienininencnencceee 206
751 \ PTSPrepare TO SIEED .oooiiiiieiie ettt ettt 206
752 SYSTEM \ S SHBLES. ... coiiiiiiieecterieeiee et e e 207

753 L WAK (SYSIEM WEKE) ..corrrveeeeereeeeeeeeeseseeseseeesessesseseesessssssseesssesssssseseseessees 211

8. PROCESSOR CONTROL .ottt 213
8.1 Declaring aProcessor ODJECt ..o e 213
8.2 Processor POWEN SLALES........cociiiiiiiieiie et see ettt sre e s sseennee e 213
8.2.1 Processor POWEr SEAE COcoceeiiieieeiieeiee e 213
8.2.2 Processor POWEN SEAIE CLcocueiiiiiiieiieeriee ettt ne e 214
8.2.3 Processor POWES SEAE C2ooiuiiiiiiieeeieeiee et 214
8.2.4 Processor POWEr SEAE C3cooeiiiieieerie e 214
8.3 Processor StatE POlICYccoeiiiiiiieie ettt 214
9. WAKING AND SLEEPING.......oooi ittt 219
S RS == o 1 [0 [= TS 220
0.1.1 SLYIEEPING SEAE......ccueeieeeecee sttt ee e e ne e 222
0.1.2 S2 SIEEPING SEAL......ccueeieeie ittt st 222
0.1.3 S TIEENING SLAE.....c.eeeeeiierieeteriee ettt b 223
0.1.4 SATEEPING SEALE......cceeieeeiecieesieete ettt re e st e s reete e sreeneens 224
0.15 S5 SOft Off SEAE ..uveuveieieiee et 225
9.1.6 Trangtioning from the Working to the Sleeping Stateccoceveverenireneenne. 225
9.1.7 Trangtioning from the Working to the Soft Off State..........cccccveeevievvvceerieene, 226
0.2 FlUSNING CACES.....cceeeeecee e e 226
LS G T 1 0T A= 122§ o o PR 226
9.3 1 TUMING ON ACPI ...ttt reeee e e sne e e e 228
9.3.2 BIOSInitialization Of MEMOIYccccveieiieiicie e 228
LSRG TG B © 7 0 7=o oo [PPSR 231
9.3.4 TUMING OFf ACP ... 231
10. ACPI-SPECIFIC DEVICE OBJECTS......oociiireneneseseeee et 233
10.1 \ Sl SystemM INAICALOIScueiieieiieiieeieeie ettt sb e s se e e ne e e 233
050t 1 I 233
LO.1.2 MSG it bbbttt bbb et 233
10.2 Control Method Battery DeVICEccccveviiiieeiee et 234
10.3 Control Method Lid DEVICEccueiueeiieie ettt nee s 234
05 350 R I I OSSPSR 234
104 Control Method Power and Sleep Button DeVICES..........ccveeeveeciereesieeie e 234
10.5 Embedded Controller DeVICE........ccoiieiieieeieseee et 235

O T =T o [B LY/ Lol = N 235

10

10.7 Generic BUSBIidgE DEVICEocuicueeiece ettt nae s 235
10.8 IDE CONroller DEVICE.......coieeiieiiitieie ettt nne s 235
L0 R € I e (€T i =S g 1 =) 237
1082 _GTM (Get TIMING MOCE)ccerieriiriirieiirie e 237
10.83 _STM (Set TIMING MOUE)cceeieeiieriiniiesieeie ettt 239
10.9 Floppy CONtroller DEVICE.cciiiuieieieieseese et 239
10.9.1 FDE- Floppy Disk ENUMEIAE........cceeeerieeiesieesie e seesie e sae e enee e 239
11. POWER SOURCE DEVICES.......ocoiieeiee sttt 241
11.1 Smart Battery SUDSYSIEMS.......ooeiiiecee e 241
11.1.1 ACPI Smart Battery Charger REqQUIrEMENES........cccoecveeeerireie e eeeseesee e 243
11.1.2 ACPI Smart Battery Selector Requirements...........occveeevveveveeseccee e 243
11.1.3 Smart Battery ODJECES.....cceoiiiieiierieeiesee et 243
1114 Smart Battery Subsystem Control Methods............ccooeeerieienenene s, 244
112 Control Method BatteriES........cccuririeiiieiere ettt 246
1121 Baery EVENLS......oooeicieee ettt sne e 246
1122 Battery Control Methods...........cccooiiiiiiieiiie e 247
11.3 AC Adaptersand Power Source ODJECES........ccviveiiereerieieceeseeie e s seeneens 251
35t . ST 251
0 T 1 251
114 Power Source Name Space EXamPIe........ccevvieeieeinnie e 251
12. THERMAL MANAGEMENT ...ttt st 253
121 Thermal CONEIOlooeiieeieiieee et sa et aeenne s 253
12.1.1 Active, Passive, and Critical POIICIES.........coocuvieiieeiie et 253
12.1.2 Dynamically Changing Cooling TEMPEraturesS..........cccevvevereereeieeseesieeeeenes 253
12.1.3 Hardware Thermal EVENLS ...t 254
1214 Active Cooling SIrength...........ooo e 255
1215 Passive Cooling EQUALIONc.cieeieeiesiese et 255
1216 Critical SNULAOWN ..o e 257
12.2 Other Implementation Of Thermal Controllable Devices..........cccocceveerieneenen. 257
123 Thermal Control MENOUSccoveiiiiieiiesee e 258
2 5t R 5 OSSR 258
T N I G 259
0 T T o 259
1234 PSLeee bttt bbb ae e 259
12.35 S Y SRS 259

(X X R o: = OO 259

2 A 1 SRR 260
G T S 260
20 5 T 1 1 260
0 50 O 1 OSSP 260
124 Thermal Block and Name Space Example for One Thermal Zone 261
125 Controlling Multiple Fansin a Thermal Zone..........cccoooevveeeneeiesceeseeseseeens 262
13. ACPIEMBEDDED CONTROLLER INTERFACE SPECIFICATION. 265
13.1 Embedded Controller Interface DesCription.........ccccecceeveeviieeiiesieesiee s 265
13.2 Embedded Controller Register DESCriptionsccccveeveveeneneenesiieseeseeee e 268
13.2.1 Embedded Controller Status, EC_SC (R).....ccceoevvrienierr e 268
13.2.2 Embedded Controller Command, EC_SC (W)cceeviieiiiie e 270
13.2.3 Embedded Controller Data, EC_ DATA (R/W) ..couiriiiiiiie e 270
13.3 Embedded Controller Command Sel..........ccceeouereerenieeriene e see s 270
13.3.1 Read Embedded Controller, RD_EC (0X80)cccvevrereerrrriieseenieeeeseesee e 270
13.3.2 Write Embedded Controller, WR_EC (OX8L).......cccecurerreriienierienieenee e 271
13.3.3 Burst Enable Embedded Controller, BE_EC (0X82)cccceverirerenirierennn 271
13.3.4 Burst Disable Embedded Controller, BD_EC (0X83)cccccevieereeieseeriereene 272
13.35 Query Embedded Controller, QR _EC (OX84).......ccccceevieeiieiieciee e 272
134 SMBusHost Controller Notification Header (Optional), OS SMB_EVT 272
135 Embedded Controller FirMWare ... 272
136 INtETUPL MOAE ...t bbb 273
13.6.1 Event INterrupt MOGEL.........ccoiiiiieecee e 273
13.6.2 Command INterryot MOEL..........ooiiiriiieeee e 274
13.7 Embedded Controller Interfacing Algorithmscccooeveiininninenneneens 274
13.8 Embedded Controller Description Information...........ccocceeeeneeieniensenieseenens 275
13.9 SMBusHost Controller Interface via Embedded Controller.........cccccevvreenen. 275
MECTC I I =(C o TS (= gl B L= o 101 o o 1S 276
13.9.2 ProtoCOl DESCIPLIONcciiieieeiieciee ettt sreeennas 280
13.9.3 SMBUS REQISIEN SEL.....ooeiiiieiee e 284
13.10 SMBUSDEVICES.......coiiiiiriirie sttt sttt ettt st bbbt ne e 285
13.10.1 SMBuUS Device ACCESS RESIIICLIONSccorueriirierierieseseeee e 285
13.10.2 SMBus Device Command Access RESIICHION........cccvreeierienienenee e 285
13.11 Defining an Embedded Controller Device in ACPI Name Space..........c.cceue..... 285

13.11.1 Example EC Definition ASL COE........ccceiveieiieiece e 286

12

13.12 Definingan EC SMBusHost Controller in ACPI Name Spacecccccecueeee. 286
13.12.1 Example EC SMBus Host Controller ASL-Code.........cccooeriereeneninnienieeeeee 287
14. QUERY SYSTEM ADDRESS MAP ...ttt 289
14.1 INT 15H, E820H - Query System Address Map......c.cceceveeverenenenesesesesenens 289
142 Assumptions and LimitationsScccooeeieeiienenieeneerie et 291
14.3 EXaMPIe AdAreSSM APccoieiirieriieiieieee ettt 291
144 Sample Operating System USAQE.......ccccceiierieeeesierie e seeste e steeee e sse e sneenaens 292
15. ACPI SOURCE LANGUAGE (ASL) REFERENCE.......ccccocoiiiiiineieneneneeienns 295
151 ASL Language GramMalccccooeerrerieeneenriaeeseere e e s s seessesnesseesnens 295
1511 ASL Grammar NOBLION.........ccurireriririeiesie et sre e 296
1512 ASL NAITIES. ..c.eiitiitieieeiieie ettt st st b e b et e et e nbesbesresbenrensennens 298
15.1.3 ASL Language and TEMISccceieirieiiiniene ettt 298
15.2 FUll ASL REFEIENCE......cieie ettt st sre e sneenne s 311
1521 ASL NAITIES.....eiiiiitiiiieiieie ettt sttt b et st e et e b e sbesbesbeneesnenneens 311
1522 ASL DE8 TYPES....ciiueieieeaieieiee e eiee st e it sieeste e s e e seesseesbeesneeeneesaeesaneesneesnnas 312
1523 ASL TEIMS. ..ottt sttt st ae e e n e sae e st e e naeeeanas 312
16. ACPI MACHINE LANGUAGE (AML) SPECIFICATIONccoovoiiiriiinereeeenns 359
16.1 NOLation CONVENTIONSocueiiiiiiiiiirieeie ettt sbe b s aeesa e e saeenaeas 359
16.2 AML Grammar DefiNitiON.......cccciiieiiniiesierieeee et nee s 360
16.21 TOP LEVE AML .ottt e 360
16.2.2 Name ObjeCtS ENCOAING.......cccoveiieiieeieciese ettt 361
16.2.3 Data ObjectS ENCOUING.......coiuirieiierieeieniesie ettt 361
16.24 Package Length ENCOUING.........ccceririririiieriese e 362
16.25 Term ObjeCtS ENCOAING ...c.cevvieieiieiieceeeese e 362
16.2.6 Miscellaneous ObJectS ENCOTINGc.cuererriirirrienienienee e 368
16.3 AML Byte Stream Byt VaAlUEScoveiiiiieereeee s 369
164 AML Encoding of Namesin the Name Spacecccocevveveeeeveececeeseee e 373
APPENDDX A ettt ettt bbb st n et et e te et b e ebenneeneeneenean 375
gL oo [U Tt o] o 1 PSPPSR 375

DEFINITIONS .ot e e e e e ettt e e e e e e e e e e eeeeeeeaeae e eeeeeeeeaaaennneeeeeeeeeaaannnnes 375

Booting and Waking from Sleep and Waking from Hibernate...........cccooeoevveiennenene 375
F Y O I oo (| T USSR 376
ACPI NAIMEIPACE. ..ottt st b e sbe e sae s s e sse e b e e e e saeesreenesneenneas 376
Display-SpeCific MEINOASccoiieciee e nre s 378
_DOS — Enable/Disable Output SWItChing..........coiieiiniinieeee s 378
_DOD - Enumerate all devices attached to the display adapterccoveviiineneneeenne 379
_ROM — GEt ROM Da@a......c.coieirieriisiisiisiiseseeee ettt st sbe b enes 380
Output Device-SpeCific MEthods.........ccooviiiiiiicec e 381
_ADR - Return the unique ID for thiSAeviCe..........covoiriiinineeee e 381
_BCL — Query list of brightness control levels supportedcccccovveeveenenieseenieceee 381
_BCM — Set the brightNeSS IEVELoceeieeeeee e e 382
_DDC - Return the EDID for thiS AEVICEcccueieeiieeeeree e s 383
_DCS — Return the status of OULPUL AEVICE.........ccueiuerireresiesieseeee e 383
_DGS- QUENY GraphiCS SEALE......cceeiieeieceesieeiee et eee et te e sreense e e s reeseeneesnes 384
_DSS — DEVICE SEE SLAL.......coeeeieeieeeiee ettt sttt s be b e nns 384
NOLE ON SEALE CHANGES......c.eiieeeieie et e et sr e sb e 385

1. Introduction

The Advanced Configuration and Power Interface (ACPI) specification is the key element in
Operating System Directed Power Management (OSPM). OSPM and ACH! both gpply to all
classes of computers, explicitly including desktop, mobile, home, and server machines.

ACPI evolvesthe existing collection of power management BIOS code, APM APIs,
PNPBIOS APIs, and so on into awell-specified power management and configuration
mechanism. It provides support for an orderly trangtion from existing (legacy) hardware to
ACPI hardware, and it dlows for both mechanismsto exist in a angle machine and be used
as needed.

Further, new system architectures are being built that stretch the limits of current Plug and
Play interfaces. ACPI evolves the existing motherboard configuration interfaces to support
these advanced architecturesin a more robust, and potentialy more efficient manner.

This document describes the structures and mechanisms necessary to move to operating
system (OS) directed power management and enable advanced configuration architectures—
that is, the Sructures and mechanisms necessary to implement ACPI-compatible hardware
and to use that hardware to implement OSPM support.

1.1 Principal Goals

ACP isthe key dement in implementing OSPM. ACPI isintended for wide adoption to
encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-
compdible) implementations.

The principd goals of ACPI and OSPM are to:
1. Enadledl PCsto implement motherboard configuration and power management
functions, using gppropriate cost/function tradeoffs.
?? PCsinclude mobile, desktop, workstation, server, and home machines.
?? Machine implementers have the freedom to implement awide range of solutions,
from the very smple to the very aggressive, while till maintaining full OS support.
?? Wide implementation of power management will makeit practical and compelling for
applications to support and exploit it. It will make new uses of PCs practicd and
exigting uses of PCs more economicdl.

2. Enhance power management functiondity and robustness.

?? Power management policies too complicated to implement in aROM BIOS can be
implemented and supported in the OS, alowing inexpensive power managed
hardware to support very elaborate power management policies.

?? Gahering power management information from users, gpplications, and the hardware
together into the OS, will enable better power management decisions and execution.

?? Unification of power management agorithmsin the OS will reduce opportunities for
miscoordination and will enhance rdiahility.

3. Facilitate and accderate industry-wide implementation of power managemen.

?? OSPM and ACPI will reduce the amount of redundart invesment in power
management throughout the indudtry, as this investment and function will be gathered
into the OS. Thiswill dlow industry participants to focus their efforts and
investments on innovation rather than smple parity.

Intel Microsoft Toshiba

16

?? The OS can evolve independently of the hardware, dlowing al ACPI-compatible
meachines to gain the benefits of OS improvements and innovations.

?? The hardware can evolve independently from the OS, decoupling hardware ship
cyclesfrom OS ship cycles and dlowing new ACPI-compatible hardware to work
well with prior ACPI-competible operating systems.

4. Create arobus interface for configuring motherboard devices.
?? Endble new advanced designs not possible with exigting interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abdtract interface

(ACP1) between the OS and the hardware to achieve the principa gods set forth above.

?? Today, power management only exists on a subset of PCs. Thisinhibits application
vendors from supporting or explaiting it.

?? Moving power management functiondity into the OS makes it available on every
meachine that the OSisingaled on. Theleve of functiondity (power savings, €etc)
will vary from machine to machine, but users and gpplications will see the same
power interfaces and semantics on al OSPM machines.

?? Thiswill enable application vendors to invest in adding power management
functiondity to their products.

?? Today, power management agorithms are restricted by the information available to the

BIOS that implements them. This limits the functiondity that can be implemented.

?? Centrdizing power management information and directives from the user,
goplicaions, and hardware in the OS alows implementation of more powerful
functiondity. For example, an OS could have apalicy of dividing 1/0 operationsinto
normd and lazy. Lazy 1/0 operations (such as aword processor saving filesin the
background) would be gathered up into clumps and done only when the required 1/0
device is powered up for some other reason. A norlazy 1/0O request when the
required device was powered down would cause the device to be powered up
immediately, the nontlazy 1/0 request to be carried out, and any pending lazy 1/0

operations to be done. Such a policy requires knowing when 1/0O devices are powered

up, knowing which gpplication 1/0 requests are lazy, and being able to assure that
such lazy 1/0 operations do not Sarve.

?? Appliance functions, such as answering machines, require globaly coherent power
decisions. For example, a telephone answering gpplication could call the OS and
assart, “I am waiting for incoming phone cdls; any deep Sate the system enters must
alow me to wake up and answer the telephone in 1 second.” Then, when the user

presses the “off” button, the system would pick the degpest deep state consistent with

the needs of the phone answering service.
?? BIOS code has become very complex to deal with power management, it is difficult to
make work with an OS and is limited to Static configurations of the hardware.

?? Thereis much less ate for the BIOS to retain and manage (because the OS manages

it).
?? Power management agorithms are unified in the OS, yielding much better integration
between the OS and the hardware.
?? Because additional ACP! tables are loaded when docks, and so on are connected to
the system, the OS can ded with dynamic machine configurations.

?? Because the BIOS has fewer functions and they are ampler, it is much easer (and,
therefore, chegper) to implement.
?? The exigting structure of the PC platform congrains OS and hardware designs.
?? Because ACPI is abgtract, the OS can evolve separately from the hardware and,
likewise, the hardware from the OS.
?? ACPI isby nature more portable across operating systems and processors. ACPI’s
command methods alow very flexible implementations of particular features.

1.3 Legacy Support
ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and
dlowsfor both mechanisms to exist in a single machine and be used as needed.

Table1-1 Hardware Typevs. OS Type Interaction

17

Hardware \ | Legacy OS OSPM/ACPI OS
oS
L egacy hardware A legacy OS on legacy If the OS lacks legacy support,
hardware doeswhat it ways | legacy support is completely
did. contained within the hardware
functions.
L egacy and ACPI It worksjust likealegacy OS | During boot, the OS tdls the
hardwar e support in on legecy hardware. hardware to switch from legacy to
machine OSPM/ACPI mode and from then
on the system hasfull OSPM/ACPI
support.
ACPI -only hardware There is no power Thereisfull OSPM/ACPI support.
management.

Planned future versions of the Microsoft® Windows 95® and Windows NT® operating
systems are examples of ACPI-compatible operating systems categorized in the right-most
column of the previous table. Future ACPI-competible versions of Windows 95 will provide
the same legacy support as the current version of Windows 95.

1.4 OEM Implementation Strategy

Any OEM is, as dways, freeto build hardware as they want. Given the existence of the

ACPI specification, two generd implementation strategies are possible.

?? An OEM can adopt the OS vendor-provided ACPI driver and implement the hardware
part of the ACPI specification (for agiven platform) in one of many possible ways.

?? An OEM can develop adriver and hardware that are not ACPI-competible. This Srategy
opens up even more hardware implementation posshilities. However, OEMswho
implement hardware that is OSPM -compatible but not ACPI-compatible will bear the
cost of developing, testing, and digtributing drivers for their implementation.

1.5 Power and Sleep Buttons
OSPM provides a new appliance interface to consumers. In particular, it provides for adeep
button that isa“ soft” button that does not turn the machine physicaly off but sgnasthe OS

18

to put the machinein a soft off or deegping sate. ACPI defines two types of these “ soft”
buttons. one for putting the machine to deegp and one for putting the machine in soft off.

This givesthe OEM two different ways to implement machines: A one button mode or atwo
button model. The one button mode has a single button that can be used as a power button
or adeep button as determined by user settings. The two- button modd has an easily
accessible deep button and a separate power button. In either model, an override fesature that
forces the machine off or reset without OS consent is aso needed to dedl with various rare,
but problematic, Situations.

1.6 ACPI Specification and the Structure Of ACPI

This specification defines the ACPI interfaces; that is, the interfaces between the OS
software, the hardware, and BIOS software. This specification aso defines the semantics of
these interfaces.

Figure 1-1 lays out the software and hardware components relevant to ACPI and how they
relate to each other. This specification describes the interfaces between components, the
contents of the ACPI Tables, and the related semantics of the other ACPI components. Note
that the ACPI Tables, which describe a particular platform’s hardware, are at heart of the
ACPI implementation and the role of the ACPI BIOS is primarily to supply the ACHl Tables
(rather than an API).

ACPI isnot asoftware specification, it isnot a hardware specification, athough it addresses
both software and hardware and how they must behave. ACPI is, ingtead, an interface
specification.

19

0S
Dependent
Application
APIs

Applications

OSPM System Code

OS Specific
Device ACPI Driver/ ~ technologies,
Driver AML Interpreter interfaces, and code.
oS)
I ACPI ACPI Table
Register Interface Independgnt I
technologies,
I Interfac interfaces,
ACPI BIOS code, and I
L Interface hardware.
Existing
industry I
standard I
register . ACPI BIOS ACPI Tables
interfaces to: .
CMOS, PIC,
PITs, ...

Platform Hardware

- OS specific technology, not part of ACPI.

- ACPI Spec Covers this area.
- Hardware/Platform specific technology, not part of ACPI.

Figure1-1 OSPM/ACPI Global System

There are three runtime components to ACPI:

?? ACPI Tables- These tables describe the interfaces to the hardware. Some descriptions
limit what can be built (for example, some controls are embedded in fixed blocks of
registers, and the table specifies the address of the register block). Most descriptions
alow the hardware to be built in arbitrary ways, and can describe arbitrary operation
sequences needed to make the hardware function. ACPI Tables can make use of ap-code
type of language, the interpretation of which is performed by the OS. That is, the OS
contains and uses an AML interpreter that executes procedures encoded in AM and
stored in the ACPI tables; ACPI Machine Language (AML) is a compact, tokenized,
abgtract kind of machine language.

20

?? ACPI Registers - The condtrained part of the hardware interface, described (at least in
location) by the ACPI Tables.

?? ACPI BIOS - Refersto the portion of the firmware that is compatible with the ACPI
specifications. Typicdly, thisisthe code that boots the machine (as legacy BIOSs have
done) and implements interfaces for deep, wake, and some restart operations. It iscdled
rarely, compared to alegacy BIOS. The ACPI Description Tables are aso provided by
the ACPI BIOS. Note that in the figure above, the boxes labeled “BIOS’ and “ ACPI
BIOS’ refer to the same component on a platform; the box labeled “ACPI BIOS' is
broken out to emphasize that a portion of the BIOS is compatible with the ACPI
specifications.

1.7 Minimum Requirements for OSPM/ACPI Systems

The minimum requirements for an OSPM/ACPI-compatible system are:

A power-management timer (for more information, see section 4.7.2.1).

A power or deep button (for more information, see section 4.7.2.2).

A redl time clock wakeup aarm, (for more information, see section 4.7.2.4).
Implementation of at least one system deep State (for more information, see section 9.1).
Interrupt events generate System Control Interrupts (SCIs) and the GP_STS hardware
registers are implemented (for more information, see section 4.7.4.3).

A Destription Table provided in firmware (in the ACPI BIOS) for the platform system
(main) board. For more information, see section 5.2)

A user accessible fail-safe mechanism to ether unconditiondly reset or turn off the
mechine.

?? A _PRT method for al root PCI bridges (For more information, see section 6.2.3.)

The minimum requirements for an OSPM/A CPI-compatible operating system are:
?? Support for the following interfaces.
?? Interfaces gpecific to the |A platform:
?? The ACPI extended E820 memory reporting interface (for more information, see
section 14).
?? Smart Battery, Selector, and Charger specifications.
?? All ACPI devices defined within this specification (for more information, see section
5.6.4).
?? The ACP! therma modd.
?? The power button asimplemented in the fixed feature space (for more information,
see section 4.7.2.2).
?? ACPI AML interpreter.
?? Plug and Play configuration support.
?? OS-driven power management support (device drivers are responsible for restoring
device context as described by the Device Power Management Class Specifications).
?? Support the S1-S3 system deegping States.

3IIII

3

3

1.8 Target Audience
This specification is intended for the following users.
?? OEMswho will be building ACPI-competible hardware.

21

?? Suppliers of ACPI-compatible operating systems, device drivers, and so on.

?? Builders of ACPI descriptor tables and builders of tools to aid in constructing such tables.
?? Authors of BIOS and Firmware codes.

?? CPU and chip set vendors.

?? Periphera vendors.

1.9 Document Organization

The ACPI specification document is organized into four parts.

?? Thefirg part of the specification (sections 1, 2, and 3) introduces ACPI and provides an
executive overview.

?? The second part of the specification (sections 4 and 5) defines the ACPI hardware and
software programming models.

?? Thethird part (sections 6 through 13) specifies the ACPl implementation details; this part
of the specification is primarily for developers.

?? Thefourth part (sections 14 through 16) are technical reference sections; section 15 isthe
ACPI Source Language (ASL) reference, parts of which are referred to by most of the
other sectionsin the document.

1.9.1 ACPI Overview

Thefirg three sections of the specification provide an executive overview of ACP.

?? Section 1. Introduction: Discusses the purpose and goals of the specification, presents an
overview of the ACPI-compatible system architecture, specifies the minimum
requirements for an ACPI-compatible system, and provides referencesto related
specifications.

?? Section 2. Definition of terms. Defines the key terminology used in this specification. In
particular, the global system states (Mechanical Off, Soft Off, Seegping, Working, and
Non-Voalaile Seep) are defined in this section, along with the device power Sate
definitions. Fully Off (D3), D2, D1, and Fully-On (DO).

?? Section 3. Overview: Gives an overview of the ACPI specification in terms of the
functiona areas covered by the specification: system power management, device power
management, processor power management, Plug and Play, handling of system events,
battery management, and therma management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming modes. This part of
the specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the

specification that follow (al the rest of the sections of the specification) are based on the

models defined in sections 4 and 5. These sections are the heart of the ACPI specification.

There are extensive cross-references between the two sections.

?? Section 4. Hardware: Defines a set of hardware interfaces that meet the goals of this
specification.

?? Section 5. Software: Defines a set of software interfaces that meet the goals of this
specification.

22

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actudly

build components that work on an ACPI-compatible platform. This part of the specification

is primaxily for developers.

?? Section 6. Configuration: Defines the reserved Plug and Play objects used to configure
and assign resources to devices, and share resources and the reserved objects used to
track device insertion and remova. Also defines the format of ACPI-competible resource
descriptors.

?? Section 7. Power Management: Defines the reserved device power management objects
and the reserved system power management objects.

?? Section 8. Processor Control: Defines how the OS manages the processors power
consumption and other controls while the system isin the working state.

?? Section 9. Implementing Waking/Segping: Definesin detall the trandtions between
system working and deeping states and their relationship to wake-up events. Refers to the
reserved objects defined in sections 6, 7, and 8.

?? Section 10: ACPI-Specific Devices. Ligs the integrated devices that need support for
some device-specific ACPI controls, along with the device-specific ACPI controls that
can be provided. Most device objects are controlled through generic objects and control
methods and have generic device IDs; this section discusses the exceptions.

?? Section 11. Power Source Devices. Defines the reserved battery device and AC adapter

objects.

Section 12. Therma Management: Defines the reserved therma management objects.

Section 13. Embedded Controller and SMBus: Defines the interfaces between an ACPI-

compatible OS and an embedded controller and between an ACPI-compatible OS and an

SMBus controller.

33

1.9.4 Technical Reference

The fourth part of the specification contains reference materia for developers.

?? Section 14. Query System Address Map. Explainsthe specid INT 15 call for usein
|SA/EISA/PCI bus-based systems. This cal supplies the OS with a clean memory map
indicating address ranges that are reserved and ranges that are available on the
motherboard.

?? Section 15. ACPl Source Language (ASL) Reference. Defines the syntax of al the ASL
statements that can be used to write ACPI control methods, dong with example syntax
usage.

?? Section 16. ACPI Machine Language (AML) Specification: Defines the grammar of the
language of the ACP! virtud machine language. An ASL trandator (compiler) outputs
AML.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the
following, available from hitp:/Amwww.microsoft.comvhwdev/specy':

?? Advanced Power Management (APM) BIOS Specification, Revison 1.2

?? Plug and Play BIOS Specification, Verson 1.0a

Other specifications relevant to the ACPI specification are:

23

?? Smart Battery Charger Specification, Revison 1.0, Duracell/Intd, Inc., June, 1996

?? Smart Battery Data Specification, Revison 1.0, Duracdl/Intdl, Inc., February, 1995

?? Smart Battery System Windows Programming Interface, Revision 1.0, Intel Inc.,
February, 1995

?? System Management Bus BIOS Interface Specification, Revision 1.0, February, 1995

?? System Management Bus Specification, Revison 1.0, Intel, Inc., February, 1995

?? System Management Bus Windows Programming Interface, Revision 1.0, Intel Inc.,
February, 1995

?? The 12C-Bus and How To Use It (includes the specification), Philips Semiconductors,
January 1992

Documentation and specifications for the “On Now” power management initiative available
from hittp://Mmww.microsoft.com/hwdev/onnow.htm:

?? Toward the “ On Now” Machine: The Evolution of the PC Platform.

?? Device Class Power Management Specifications.

Device Class Power Management Reference Specification: Audio Device Class
Device Class Power Management Reference Specification: Communications Device
Class

Device Class Power Management Reference Specification: Display Device Class
Device Class Power Management Reference Specification: Input Device Class
Device Class Power Management Reference Specification: Network Device Class
Device Class Power Management Reference Soecification: PC Card Controller
Device Class

Device Class Power Management Reference Specification: Storage Device Class

NN

NN TN AN

3

2. Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section

has three parts:

?? Generd ACPI terms are defined (the definitions are presented as an dphabetical list).

?? The ACH globa system dtates (working, deeping, soft off, and mechanicd off) are
defined. Globa system dtates apply to the entire system, and are visible to the user.

?? The ACPI device power states are defined. Device power states are States of particular
devices, as such, they are generdly not visible to the user. For example, some devices
may bein the off state even though the system as awhole is in the working state. Device
states apply to any device on any bus.

2.1 General ACPI Terminology

ACPI:
Advanced Configuration and Power Interface - as defined in this document, a method for
describing hardware interfaces in terms abstract enough to alow flexible and innovative
hardware implementations and concrete enough to alow shrink-wrap OS code to use
such hardware interfaces.

ACPI Hardware:
Computer hardware with the features necessary to support OSPM and with the interfaces
to those features described using the Description Tables as specified by this document.

ACPI Name Space:
The ACPI Name Spaceis a hierarchical tree structure in OS-controlled memory that
contains named objects. These objects may be data objects, control method objects,
bus/device package objects, etc. The OS dynamically changes the contents of the Name
Space & run time by loading and/or unloading definition blocks from the ACPI Tables
that resdein the ACPI BIOS. All the information in the ACPI Name Space comes from
the Differentiated System Description Table, which contains the Differentiated Definition
Block, and one or more other definition blocks.

AML:
ACPI control method Machine L anguage. Pseudocode for a virtua machine supported by
an ACPI-compatible operating system and in which ACPI control methods are written.
The AML encoding definition is provided in section 16.

ASL:
ACPI control method Source L anguage. The programming language equivadent for AML.
ASL iscompiled into AML images. The ASL statements are defined in section 15.

Control Method:
A control method is a definition of how the OS can perform a smple hardware task. For
example, the OS invokes control methods to read the temperature of atherma zone.
Control methods are written in an encoded language called AML that can be interpreted
and executed by the ACPI-compatible OS. An ACPI-compatible sysem must provide a
minimal set of control methods in the ACPI tables. The OS provides a sat of well-defined
control methods that ACPI table developers can reference in their control methods.
OEMs can support different revisons of chip sets with one BIOS by ether including

26

control methods in the BIOS that test configurations and respond as needed or by
induding adifferent set of control methods for each chip set revision.

CPU, or processor:
The centra processor unit (CPU), or processor, isthe part of a platform that executes the
ingructions that do the work. An ACPI-compatible OS can balance processor
performance against power consumption and therma states by manipulating the
processor clock speed and cooling controls. The ACPI specification defines aworking
date, labeled GO, in which the processor executes instructions. Processor low power
dates, labeled C1 through C3, are also defined. In the low power states the processor
executes no ingructions, thus reducing power consumption and, potentially, operating
temperatures. For more information, see section 8.

Definition Block:
A definition block contains information about hardware implementation and
configuration detailsin the form of data and control methods, encoded in AML. An OEM
can provide one or more definition blocksin the ACPI Tables. One definition block must
be provided: the Differentiated Definition Block, which describes the base system. Upon
loading the Differentiated Definition Block, the OS inserts the contents of the
Differentiated Definition Block into the ACPI Name Space. Other definition blocks,
which the OS can dynamicdly insert and remove from the active ACPI Name Space, can
contain references to the Differentiated Definition Block. For more information, see
section 5.2.7.

Device:
Hardware components outside the core chip set of a platform. Examples of devicesare
LCD pandls, video adapters, IDE CD-ROM and hard disk controllers, COM ports, €tc. In
the ACPI scheme of power management, buses are devices. For more information, see
section 3.3.2.

Device Context:
The varidble data hdd by the device; it isusudly volaile. The device might forget this
information when entering or leaving certain states (for more information, see section
2.3), inwhich case the OS software is responsible for saving and restoring the
information. Device Context refers to smal amounts of information held in device
peripheras. See System Context.

Differentiated System Description Table:
An OEM mugt supply a Differentiated Syster Description Table (DSDT) to an ACHI-
compatible OS. The DSDT contains the Differentiating Definition Block, which supplies
the implementation and configuration information about the base system. The OS dways
insertsthe DSDT information into the ACPI Name Space at system boot time, and never
removesit.

Embedded Controller:
Embedded controllers are the generd class of microcontrollers used to support OEM -
gpecific implementations, mainly in mobile environments. The ACPI specification
supports embedded controllersin any platform design, as long as the microcontroller
conforms to one of the models described in this section. The embedded controller

performs complex low-level functions, through a smple interface to the host
Mi croprocessor(s).

Embedded Controller I nterface:
ACPI defines astandard hardware and software communi cations interface between an
OS driver and an embedded controller. This allows any OS to provide a standard driver
that can directly communicate with an embedded controller in the system, thus dlowing
other drivers within the system to communicate with and use the resources of system
embedded controllers (for example, Smart Battery and AML code). Thisin turn engbles
the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure:
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that
the BIOS uses for handshaking between the firmware and the OS, and is passed to an
ACPI-compatible OS viathe Fixed ACPI Description Table (FACP). The FACS contains
the systlem’ s hardware signature at last boot, the firmware waking vector, and the globa
lock.

Fixed ACPI Description Table:
An OEM mugt provide a Fixed ACPI Description Table (FACP) to an ACPI-compatible
OSin the Root System Description Table. The FACP containsthe ACPI Hardware
Register Block implementation and configuration details the OS needs to direct
management of the ACPl Hardware Register Blocks, as well asthe physica address of
the Differentiated System Description Table (DSDT) that contains other platform
implementation and configuration details. The OS aways insarts the name space
information defined in the Differentiated Definition Block in the DSDT into the ACHI
Name Space at system boot time, and the OS never removesit.

Fixed Features:
A st of features offered by an ACPI interface. The ACPI specification places redirictions
on where and how the hardware programming modd is generated. All fixed features, if
used, are implemented as described in this specification so that the ACPI driver can
directly access the fixed fegture registers.

Fixed Feature Events:
A st of eventsthat occur a the ACPI interface when a paired set of status and event bits
in the fixed festure registers are st at the same time. While afixed fegture event occurs
an SCl israised. For ACPI fixed-feature events, the ACPI driver (or an ACPl-aware
driver) acts as the event handler.

Fixed Feature Registers:
A st of hardware registers in fixed feature register space at specific address locationsin
system 10 address space. ACPI definesregister blocksfor fixed features (each register
block gets a separate pointer from the FACP ACPI table). For more information, see
section 4.6.

General Purpose Event (GPE) Registers:
The generd purpose event registers contain the event programming mode for generic
features. All generic events generate SCls.

Generic Feature:

27

28

A generic feature of aplatform is vaue-added hardware implemented through control
methods and generd- purpose events..

Global System States:
Globa system dtates gpply to the entire system, and are visible to the user. The various
globa system dates are labeled GO through G3 in the ACPI specification. For more
information, see section 2.2.

Ignored Bits:
Some unused bitsin ACPI hardware registers are designated as “Ignored” in the ACPI
gpecification. Ignored bits are undefined and can return zero or one (in contrast to
reserved bits that aways return zero).
Software ignores ignored bitsin ACPI hardware registers on reads and preserves ignored
bits on writes.

I ntel Architecture-Personal Computer (1A-PC):
A generd descriptive term for computers built with processors conforming to the
architecture defined by the Intel processor family based on the 486 instruction set and
having an industry-standard PC architecture.

Legacy:
A computer state where power management policy decisions are made by the platform
hardwareffirmware shipped with the system. The legacy power management fegtures
found in today’ s systems are used to support power management in asystem that usesa
legacy OS that does not support the OS-directed power management architecture.

Legacy Hardware:
A computer system that has no ACPI or OSPM power management support.

Legacy OS:
An operating system that is not aware of and does not direct power management
functions of the system. Included in this category are operating syslemswith APM 1.x

support.

Multiple APIC Description Table:
The Multiple APIC Description Table (APIC) is used on systems supporting the APIC to
describes the APIC implementation. Following the Multiple APIC Description Table isa
list of APIC structures that declare the APIC features of the machine.

Object:
The nodes of the ACPI Name Space are objects inserted in the tree by the OS using the
information in the system definition tables. These objects can be data objects, package
objects, control method objects, etc. Package objects refer to other objects. Objects dso
have type, Sze, and relative name.

Object name:
Object names are part of the ACPI Name Space. Thereisaset of rulesfor naming
objects.

OSPM:
OS-Directed Power Management isamode of power (and system) management in which
the OS plays a centrd role and uses globd information to optimize system behavior for
the task at hand.

29

Package:
A set of objects.

Persistent System Description Table:
Persstent System Description Tables are Definition Blocks, similar to Secondary System
Description Tables, except a Persstent System Description Table can be saved by the OS
and automaticaly loaded at every boot.

Power Button:
A user push button that switches the system from the degping/soft off state to the
working state, and sgnas the OS to trangtion to a degping/soft off Sate from the
working State.

Power Management:
Mechanismsin software and hardware to minimize system power consumption, manage
system thermd limits, and maximize system baitery life. Power management involves
tradeoffs among system speed, noise, battery life, processing speed, and AC power
consumption. Power management is required for some system functions, such as
gppliance (e.g. answering machine, furnace control) operations.

Power Resources:
Power resources are resources (for example, power planes and clock sources) that a
device requires to operate in a given power state.

Power Sources:
The battery and AC adapter that supply power to a platform.

P-Code:
P-codeisakind of ample “virtua machine language’ that ACPI uses to describe control
methods. Its principa advantages are that it is portable, compact, and powerful. There are
many kinds of p-code; ACPI defines its own for reasons of smplicity. The ACPI
specification defines an ACPl Source Language (ASL) and an ACPl Machine Language
(AML). Control methods are written in ASL, for which thereisardatively smple
specification. A compiler convertsthe ASL form of the p-code to the AML form. The
ACPI-compatible OS contains a p-code interpreter for the AML form of the language.

Register Grouping:
A register grouping consigts of two register blocks (it has two pointers to two different
blocks of registers). The fixed-pogition bits within aregister grouping can be split
between the two register blocks. This alows the bits within aregister grouping to be split
between two chips.

Reserved Bits:
Some unused bitsin ACPI hardware registers are designated as “ Reserved” in the ACPI
specification. For future extengbility, hardware register reserved bits aways return zero,
and data writes to them have no sde affects. ACPI drivers are designed such that they
will write zeros to dl reserved bits in enable and status registers and preserve bitsin
control registers.

Root System Description Pointer:

30

An ACPl compatible system must provide a Root System Description Pointer in the
systems low address space. This structure’ s only purposeisto provide the physica
address of the Root System Description Table.

Root System Description Table:
The Root System Description Table starts with the sgnature *RSDT,’ followed by an
array of physica pointersto the other System Description Tables that provide various
information on other standards that are defined on the current system. The OS locates that
Root System Description Table by following the pointer in the Root System Description
Pointer structure.

Secondary System Description Table:
Secondary System Description Tables are a continuation of the Differentiated System
Description Table. Multiple Secondary System Description Tables can be used as part of
aplatform description. After the Differentiated System Description Table is loaded into
ACPI name space, each secondary description table with aunique OEM TableID is
loaded. This dlows the OEM to provide the base support in one table, while adding
smaler system optionsin other tables. Note: Additional tables can only add data, they
cannot overwrite data from previous tables.

Sleep Button:
A user push button that switches the system from the deeping/soft off sateto the
working state, and sgnds the OS to trangition to a deeping state from the working state.

Smart Battery Subsystem:
A battery subsystem that conforms to the following specifications. --battery, charger,
selector lis—and the additional ACPI requirements.

Smart Battery Table:
An ACPI table used on platforms that have a Smart Battery Subsystem. Thistable
indicates the energy levelstrip points that the platform requires for placing the system
into different deeping Sates and suggested energy levels for warning the user to
trangtion the platform into adeeping Sate.

SMBus:
SMBusis atwo-wire interface based upon the 12C protocol. The SMBus is alow-speed
bus that provides postive addressing for devices, as well as bus arbitration.

SMBus I nterface:
ACP! defines a standard hardware and software communications interface between an
OS bus driver and an SMBus Controller via an embedded controller.

System Context:
The volatile datain the system that is not saved by a device driver.

System Control Interrupt (SCI):
A system interrupt used by hardware to notify the OS of ACPI events. The SCI isaactive
low, shareable, levd interrupt.

System Management I nterrupt (SM1):
An OS-transparent interrupt generated by interrupt events on legacy systems. By contradt,
on ACPI systems, interrupt events generate an OS-vigble interrupt that is shareable

(edge-style interrupts will not work). Hardware platforms that want to support both

legacy operating systems and ACPI systems must support away of re-mapping the
interrupt events between SMIs and SCIs when switching between ACPI and legacy
models.

Thermal States:

Thermd dtates represent different operating environment temperatures within thermal
zones of asystem. A system can have one or more therma zones; each thermad zoneis
the volume of space around a particular temperature sensing device. The trangtions from
one thermd state to another are marked by trip points, which are implemented to generate
a System Control Interrupt (SCI) when the temperature in athermal zone moves above or
below the trip point temperature.

2.2 Global System State Definitions
Globd system dates (Gx states) apply to the entire system and are visible to the user.
Globd system dtates are defined by six principd criteria

7

7
7?
7?
7?
7?

Does gpplication software run?

What isthe latency from externa events to gpplication response?
What is the power consumption?

Is an OS reboot required to return to aworking state?

Isit safe to disassemble the computer?

Can the State be entered and exited eectronically?

Following isalist of the system dates:
G3 - Mechanical Off:

A computer Sate that is entered and left by amechanicad means (eg. turning off the
system’s power through the movement of alarge red switch). This operating mode is
required by various government agencies and countries. It isimplied by the entry of this
off sate through a mechanical means that the no dectrica current is running through the
circuitry and it can be worked on without damaging the hardware or endangering the
service personnd. The OS must be restarted to return to the Working state. No hardware
context is retained. Except for the real time clock, power consumption is zero.

G2/S5 - Soft Off:

A computer state where the computer consumes a minimal amount of power. No user
mode or system mode code is run. This state requires alarge latency in order to return to
the Working state. The system’s context will not be preserved by the hardware. The
system must be restarted to return to the Working state. It is not safe to disassemble the
mechine.

G1 - Sleeping:

A computer state where the computer consumes a small amount of power, user mode
threads are not being executed, and the system “appears’ to be off (from an end user’s
perspective, the display is off, etc.). Latency for returning to the Working state varies on
the wakeup environment selected prior to entry of this Sate (for example, should the
system answer phone calls, etc.). Work can be resumed without rebooting the OS because
large ements of system context are saved by the hardware and the rest by system
software. It is not safe to disassemble the machine in this Sate.

31

32

GO - Working:

A computer state where the system dispatches user mode (gpplication) threads and they
execute. In this sate, devices (peripherads) are dynamicaly having their power state
changed. The user will be able to sdect (through some user interface) various
performance/power characterigtics of the system to have the software optimize for
performance or beattery life. The system responds to externa eventsin red time. It is not
safe to disassemble the machine in this state.

4 - Non-Volatile Sleep:

A Non-Volatile Seegp (NVS) isaspecid globa system date that allows system context
to be saved and restored (relatively dowly) when power islost to the motherboard. If the
systemn has been commanded to enter $4, the OS will write al system context to a non
volatile storage file and leave appropriate context markers. The machine will then enter
the 4 state. When the system leaves the Soft Off or Mechanica Off sate, trangtioning
to Working (G0) and restarting the OS, arestore from a NV S file can occur. Thiswill
only happen if avaid NV S data set is found, certain aspects of the configuration of the
meachine has not changed, and the user has not manually aborted the restore. If dl these
conditions are met, as part of the OS restarting it will reload the system context and
activate it. The net effect for the user is what 1ooks like a resume from a Seeping (G1)
date (albeit dower). The aspects of the machine configuration that must not change
include, but are not limited to, disk layout and memory size. It might be possible for the
user to swap a PC Card or a Device Bay device, however.

Note that for the machine to trangtion directly from the Soft Off or Seeping states to 4,
the system context must be written to non-volatile storage by the hardware; entering the
Working state first so the OS or BIOS can save the system context takes too long from
the user’ s point of view. The trangtion from Mechanicd Off to $4 islikely to be done
when the user is not there to seeit.

Because the $4 date relies only on non-volatile storage, a machine can save its sysem
context for an arbitrary period of time (on the order of many years).

Table2-1 Summary of Global Power States

Global System Software Latenc | Power (O Safeto Exit state
State Runs y Consumpti | restart disassem | electronical
on required | ble ly
computer
GO —Working Yes 0 Large No No Yes
G1 — Segping No >0, Smdler No No Yes
varies
with
seep
state.
G2/S5 - Soft Off | No Long VeynearO | Yes No Yes
G3 —Mechanicd | No Long RTC Yes Yes No
Off battery

33

Note that the entries for G2/S5 and G3 in the Latency column of the above table are“Long.”
Thisimplies that a platform designed to give the user the gppearance of “ingant-on,” smilar
to ahome appliance device, will use the GO and G1 states dmost exclusively (the G3 sate
may be used for moving the machine or repairing it).

2.3 Device Power State Definitions

Device power states are states of particular devices, as such, they are generdly not visbleto
the user. For example, some devices may be in the Off Sate even though the sysem asa
wholeisin the Working state.

Device gtates apply to any device on any bus. They are generdly defined in terms of four

principd criteria

?? Power consumption - how much power the device uses.

?? Device context - how much of the context of the device is retained by the hardware. The
OSisrespongble for restoring any lost device context (this may be done by resetting the
device).

?? Device driver - what the device driver must do to restore the device to full on.

?? Redtoretime - how long it takes to restore the device to full on.

The device power states are defined below. These states are defined very genericaly here.
Many devices do not have al four power states defined. Devices may be capable of severd
different low power modes, but if there is no user- perceptible difference between the modes
only the lowest power mode will be used. The Device Class Power Management
Soecifications, which are separate documents from this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of
each power gstate for that device class. For alist of the available Device Class Power
Management Specifications, see section 1.10.

D3 - Off:
Power has been fully removed from the device. The device context is lost when this Sate
is entered, S0 the OS software will reinitiglize the device when powering it back on. Since
device context and power are logt, devicesin this state do not decode their addresses
lines. Devices in this state have the longest restore times. All classes of devices define
this state.

D2
The meaning of the D2 Device State is defined by each class of device; it may not be
defined by many classes of devices. In generd, D2 is expected to save more power and
preserve less device context than D1 or DO. Busesin D2 may cause the device to loose
some context (i.e., by reducing power on the bus, thus forcing the device to turn off some
of itsfunctions).

D1.
The meaning of the D1 Device State is defined by each class of device; it may not be

defined by many classes of devices. In genera, D1 is expected to save less power and
preserve more device context than D2.

DO - Fully-On:

This gate is assumed to be the highest leve of power consumption. The deviceis
completdy active and responsive, and is expected to remember al relevant context
continuoudy.

Table2-2 Summary of Device Power States

Device Power Device Context Driver Restoration
State Consumption | Retained
DO - Fuly- | Asneededfor | All None
On operation.
D1 DO>D1>D2> | >D2 <D2
D3
D2 DO>D1>D2> | <D1 >D1
D3
D3 - Off 0 None Full init and load

Note: Devices often have different power modes within a given state. Devices can use these
modes as long as they can automatically switch between these modes transparently from the
software, without violating the rules for the current Dx state the deviceisin. Low power
modes that affect performance (i.e., low speed modes) or that are not transparent to software
cannot be done autometicaly in hardware; the device driver must issue commands to use
these modes.

2.4 Sleeping State Definitions

Seeping states (Sx ates) are types of degping states within the globa deeping date, G1.
The Sx dates are briefly defined below. For a detailed definition of the system behavior
within each Sx dtate, see section 7.5.2. For adetailed definition of the trangitions between
each of the Sx dtates, see section 9.1.

S1 Sleeping State:
The S1 deeping date is alow wake-up latency deeping Sate. In this state, no system
context islost (CPU or chip set) and hardware maintains dl system context.

S2 Sleeping State
The S2 deegping state is alow wake-up latency deeping date. This Sateissmilar to the
S1 deeping state except the CPU and system cache context islogt (the OSis responsible
for maintaining the caches and CPU context). Control starts from the processor’s reset
vector after the wake-up event.

S3 Sleeping State:
The S3 degping stateis alow wake-up latency deeping state where al system context is
lost except system memory. CPU, cache, and chip set context are lost in this Sate.
Hardware maintains memory context and restores some CPU and L2 configuration
context. Control starts from the processor’ s reset vector after the wake-up event.

4 Sleeping State:
The $4 deeping dateis the lowest power, longest wake-up latency deeping state
supported by ACPI. In order to reduce power to aminimum, it is assumed that the
hardware platform has powered off dl devices. Plaiform context is maintained.

35

S5 Soft Off State:
The S5 gtate is Smilar to the $4 state except the OS does not save any context nor enable
any devicesto wake the systlem. The system isin the “ soft” off state and requires a
complete boot when awakened. Software uses a different sate vaue to distinguish
between the S5 state and the 4 gtate to dlow for initid boot operations within the BIOS
to distinguish whether or not the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal
management states within the globa working state, GO. The Cx dates are briefly defined
below. For amore detailed definition of each Cx state from the software perspective, see
section 8.2. For adetailed definition of the Cx states from the hardware perspective, see
section 4.7.1.12.

CO Processor Power State:
While the processor isin this state, it executes ingtructions.

C1 Processor Power State
This processor power state has the lowest |atency, The hardware latency on this Sateis
required to be low enough that the operating software does not consider the latency
aspect of the state when deciding whether to useit. Asde from putting the processor in a
nor-executing power state, this state has no other software-visible effects.

C2 Processor Power State:
The C2 date offers improved power savings over the C1 state. The worst-case hardware
latency for this state is declared in the FACP Table and the operating software can use
thisinformation to determine when the C1 state should be used instead of the C2 dtate.
Asde from putting the processor in a norexecuting power sate, this state has no other
software-visble effects.

C3 Processor Power State:
The C3 dtate offers improved power savings of the C1 and C2 dtates. The wordt-case
hardware latency for this Sate is declared in the FACP Table, and the operating software
can use this information to determine when the C2 state should be used instead of the C3
gate. While in the C3 state, the processor’ s caches maintain state but ignore any snoops.
The operating software is responsible for ensuring that the caches maintain coherency.

3. Overview

The ACPI interface gives the operating system (OS) direct control over the power

management and Plug and Play functions of a computer. When it Starts, the ACPl OS takes

over these functions from legacy BIOS interfaces such as the APM BIOS and the PNPBIOS.

Having done this, the OS is responsible for handling Plug and Play eventsaswell as

controlling power and therma states based on user settings and gpplication requests. ACPI

provides low-leve controls so the OS can perform these functions. The functiond areas
covered by the ACPI specification are:

?? System power management - ACP! defines mechanisms for putting the computer asa
whole in and out of system deeping dates. It dso provides ageneral mechanism for any
device to wake the computer.

?? Device power management - ACPI tables describe motherboard devices, their power
states, the power planes the devices are connected to, and controls for putting devicesinto
different power states. This enables the OS to put devices into low- power states based on
gpplication usage.

?? Processor power management - While the OS isidle but not degping, it will use
commands described by ACPI to put processors in low-power states.

?? Plug and Play - ACPI specifies information used to enumerate and configure
motherboard devices. Thisinformation is arranged hierarchicaly so when events such as
docking and undocking take place, the OS has precise, a priori knowledge of which
devices are affected by the event.

?? System Events - ACPI provides agenera event mechanism that can be used for system
events such as therma events, power management events, docking, device insertion and
remova, etic. Thismechanismisvery flexiblein that it does not define specificaly how
events are routed to the core logic chipset.

?? Battery management - Battery management policy moves from the APM BIOS to the
ACPI OS. The OS determines the Low battery and battery warning points, and the OS
aso cdculates the battery remaining capacity and battery remaining life. An ACHI-
compatible battery device needs either a Smart Battery subsystem interface, which is
controlled by the OS directly through the embedded controller interface, or a Control
Method Battery (CMBaitt) interface. A CMBatt interface is completely defined by AML
control methods, dlowing an OEM to choose any type of the battery and any kind of
communication interface supported by ACP!.

?? Thermal management - Since the OS controls the power states of devices and
processors, ACPI aso addresses system therma management. It provides asimple,
scalegble modd that dlows OEMs to define therma zones, thermal indicators, and
methods for cooling therma zones.

?? Embedded Controller - ACPI defines a standard hardware and software
communications interface between an OS bus enumerator and an embedded controller.
This adlows any OS to provide a standard bus enumerator that can directly communicate
with an embedded controller in the system, thus dlowing other drivers within the system
to communicate with and use the resources of system embedded controllers. Thisin turn
enables the OEM to provide platform features that the OS and applications can use.

?? System Management Bus Controller - ACPI defines a standard hardware and software
communications interface between an OS bus driver and an SVIBus Controller. This

Intel Microsoft Toshiba

38

alows any OS to provide a standard bus driver that can directly communicate with
SMBus Devices in the sysem. Thisin turn enables the OEM to provide platform features
that the OS and applications can use.

3.1 System Power Management

Under OS-directed power management (OSPM), the operating system directs dl system and
device power gate trangtions. Employing user preferences and knowledge of how devices
are being used by applications, the OS puts devices in and out of low-power states. Devices
that are not being used can be turned off. Similarly, the OS uses information from
gpplications and user settingsto put the system as awhole into alow- power state. The OS
uses ACPI to control power state trangitions in hardware.

3.2 Power States
From auser-vigble levd, the sysem can be thought of as being in one of the saesin the
following diagram:

Power
Failure

CPU

G3 -Mech
Off

BIOS
Routine

GO (SO0) -
Working

G2 (S5) -
Soft Off

Figure3-1 Global System Power Statesand Transtions

(See section 2.2 for detailed definitions of these states)

In generd use, computers dternate between the Working and Sleeping states. In the Working
dtate, the computer is used to do some work. User-mode application threads are dispatched
and running. Individua devices can be in low-power (Dx) states and processors can bein
low-power (Cx) statesif they are not being used. Any device the system turns off because it
isnot actively in use can be turned on with short latency. (What “ short” means depends on

the device. An LCD display needs to come on in sub-second times, whileit is generdly
acceptable to wait afew seconds for a printer to wake up.)

The net effect of thisisthat the entire machineis functiond in the Working state. Various
Working sub-gtates differ in speed of computation, power used, heat produced, and noise
produced. Tuning within the Working state islargely about tradeoffs between speed, power,
hest, and noise.

When the computer isidle or the user has pressed the power button, the OS will put the
computer into one of the degping (Sx) states. No user-visble computation occursin a
deegping state. The deeping sub-states differ in what events can arouse the systemto a
Working state, and how long this takes. When the machine must awaken to al possible
events and/or do so very quickly, it can enter only the sub-states that achieve a partia
reduction of system power consumption. However, if the only event of interest isauser
pushing on a switch and alatency of minutesis alowed, the OS could save al system
context into a non-volatile sorage (NV'S) file and trangition the hardware into a Soft Off
date. In this state, the machine draws dmost zero power and retains system context for an
arbitrary period of time (years or decadesif needed).

The other states are used less often. Computers that support legacy BIOS power management
interfaces boot in the Legacy state and trangtion to the Working state when an ACPI OS
loads. A system without legacy support (eg., a RISC system) trangitions directly from the
Mechanica Off gtate to the Working state. Users put computers into the Mechanicd Off state
by flipping the computer’ s mechanica switch or by unplugging the computer.

3.2.1 New Meanings for the Power Button

In legacy systems, the power button typically either forces the machine to Soft Off or
Mechanical Off or, on alaptop, forces it to some deeping state. No allowance is made for
user policy (such asthe user wants the machine to “come on” in less than 1 second with dl
context as it was when the user turned the machine “off”), system dert functions (such asthe
system being used as an answering machine or fax machine), or gpplication function (such as
saving aus file).

In an OSPM system, there could be two switches. One is to trangtion the system to the
Mechanica Off gtate. A mechanism to stop current flow isrequired for lega reasonsin some
jurisdictions (for example, in some European countries). The other isthe “main” power

button. Thiswill bein some obvious place (for example, beside the keyboard on alaptop).
Unlike today’ s on/off button, al it doesis send arequest to the system. What the system does
with this request depends on policy issues derived from user preferences, user function
requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC
Mobile PCswill continue to have aggressive power management functionaity. Going to
OSPM/ACPI will alow enhanced power savings techniques and more refined user policies.

Aspects of mohile PC power management in the ACPI specification are therma management
(see section 12) and the embedded controller interface (see section 13).

39

40

3.2.2.2 Desktop PCs

Power-managed desktops will redly be of two types, though the first type will migrate to the

second over time.

?? Ordinary “Green PC” - Here, new appliance functions are not the issue. The machineis
redlly only used for productivity computations. At least initidly, such machines can get
by with very minima function. In particular, they need the norma ACP! timers and
controls, but don’t need to support elaborate deeping states, etc. They, however, do need
to dlow the OS to put as many of their devices/resources as possible into device standby
and device off dates, asindependently as possible (to alow for maximum compute speed
with minimum power wasted on unused devices). Such PCswill dso need to support
wake-up from the Soft-Off state by means of atimer, because this dlows adminigtrators
to force them to turn on just before people are to show up for work.

?? Home PC - Computers are moving into home environments where they are used in
entertainment centers and to perform tasks like answering the phone. A home PC needs
al of the functiondity of the Ordinary Green PC. In fact, it has dl of the ACPI power
functiondity of alaptop except for docking and lid events (and need not have any legacy
power management).

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines will often get the largest absolute power savings.

Why? Because they have the largest hardware configurations, and it’s not practical for

somebody to hit the off switch when they leave at night.

?? Day Mode - In day mode, serverswill get power managed much like a corporate
Ordinary Green PC, staying in the Working state dl the time, but putting unused devices
into low power states whenever possible. Because servers can be very large and have, for
example, many disk spindles, power management can result in large savings. OS-driven
power management alows careful tuning of when to do this, thus making it workable.

?? Night Mode - In night mode, serverslook like Home PCs. They deep as deeply asthey
can deep and ill be able to wake up and answer service requests coming in over the
network, phone links, etc, within specified latencies. So, for example, a print server might
go into deep deep until it receivesaprint job at 3 A.M., a which point it wakesup in
perhaps less than 30 seconds, prints the job, and then goes back to deep. If the print
request comes over the LAN, then this scenario depends on an intelligent LAN adapter
that can wake up the system in response to an interesting received packet.

3.3 Device Power Management

This section describes A CPI-compatible device power management. The ACPI device power
dates are introduced, the controls and information an ACPI-compatible OS needs to perform
device power management are discussed, the Wakeup operation devices use the wake the
computer from a deeping state is described, and an example of ACPI-compatible device

management, usng amodem, is given.

3.3.1 Power Management Standards

To manage power of al the devices in the system, the OS needs standard methods for
sending commands to a device. These standards define the operations used to manage power
of devices on aparticular bus and the power states that devices can be put into. Defining
these standards for each bus creates a base-line level of power management support the OS

41

can utilize. IHV's do not have to spend extra time writing software to manage power of their
hardware; because smply adhering to the sandard gains them direct OS support. For OS
vendors, the bus standards alow the power management code to be centralized in each bus
driver. Findly, bus-driven power management alows the OSto track the states of dl
devices on agiven bus. When dl the devices are in a given sate (e.g. D3 - off), the OS can
put the entire bus into the power supply mode appropriate for that state (e.g D3 - off).

Bus-leve power management specifications are being written for the following busses:
?? PCI

?? CadBus

?7? USB

?? |EEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consstent behavior across devices, andard definitions

are used for the power states of devices. Generdly, these ates are defined in terms of two

criteria

?? Power consumption - how much power the device uses.

?? Device context - how much of the context of the device is retained by the hardware. The
OS isresponsble for restoring any lost device context (this can be done by resetting the
device).

?? Devicedriver - what the device driver must do to restore the device to full on.

?? Redorelatency - how long it takes to restore the device to full on.

More specificdly, power management specifications for each class of device (e.g., modem,
network adapter, hard disk, etc) more precisely define the power states and power policy for
the class. See section 2.3 for the detailed description of the four general device power states
(DO-D3).

3.3.3 Device Power State Definitions
The device power dtate definitions are device independent, but classes of devices on abus
must support some consistent set of power-related characteristics. For example, when the
bus- specific mechanism to set the device power Sateto agiven level isinvoked, the actionsa
device might take and the specific sorts of behaviors the OS can assume while the device is
in that gate will vary from device type to device type. For afully integrated device power
management system, these class-specific power characteristics must aso be standardized:
Device Power State Characteristics. Each class of device has a standard definition of
target power consumption levels, state-change latencies, and context loss.
Minimum Device Power Capabilities. Each class of device has aminimum standard st
of power capabilities.
Device Functional Characteristics. Each class of device has a tandard definition of
what subset of device functiondity or featuresis available in each power state (for
example, the net card can receive, but cannot transmit; the sound card isfully functiona
except that the power amps are off, etc.).
Device Wake-Up Characteristics. Each cdass of device has a standard definition of its

wake-up policy.

42

Microsoft’s Device Class Power Management specifications define these power sate
characteristics for each class of device.

3.4 Controlling Device Power

ACPI provides the OS the controls and information needed to perform device power
management. ACPI describes the capabilities of dl the devicesit controlsto the OS. It dso
gives the OS the control methods used to set the power state or get the power status for each
device. Findly, it has a genera scheme for devices to wake up the machine.

Note: Some devices on the main board are enumerated by other busses. For example, PCI
devices are reported through the standard PCl enumeration mechanisms. The ACPI tablelists
legacy devices that cannot be reported through their own bus specification, the root of each
busin the system, and devices that have additiona power management or configuration
options not covered by their own bus specification. Power management of these devicesis
handled through their own bus specification (in this case, PCI). All other devices are handled
through ACPI.

For more detailed information see section 7.

3.4.1 Getting Device Power Capabilities

Asthe OS enumerates devicesin the system, it gets information about the power

management features that the device supports. The Differentiated Definition Block given to

the OS by the BIOS describes every device handled by ACPI. This description contains the

following information:

?? A description of what power resources (power planes and clock sources) the device needs
in each power state that the device supports. For example, adevice might need ahigh
power bus and a clock in the DO state but only alow power bus and no clock in the D2
state.

?? A description of what power resources a device needsin order to wake the machine (or
none to indicate that the device does not support wakeup). The OS can use this
information to infer what device and system power states the device can support wakeup
from.

?? The optiond control method the OS can use to set the power state of the device and to get
and set resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and
clock sources themselves and the control methods for turning them on and off. For detailed
information, see section 7.

3.4.2 Setting Device Power States
The Set Power State operation is used by the OS to put adevice into one of the four power
states.

When adeviceis put in alower power state, it configures itself to draw as little power from
the bus as possible. The OS will track the state of al devices on the bus, and will put the bus
into the best possible power state based on the current device requirements on that bus. For
example, if dl deviceson abus arein the D3 gate, the OS will send a command to the bus
control chip set to remove power from the bus (thus putting the bus itself in the D3 tate). Or
if aparticular bus supports alow power supply state, the OS will put the businto that state if

al deviceswereinthe D1 or D2 state. Whatever power state adeviceis put into, the OS
must be able to issue a Set Power State command to can resume the device. Note: The
device does not need to have power to do this. The OS must turn on power to the device
before it can send any commands to the device.

The Set Power State operation is aso used by the OS to enable power management features
like wakeup (described in section 7).

When adeviceisto be set in aparticular power Sate using the ACPI interface, the OSfirst
decides which power resources will be used and which can be turned off. The OS will track
al the devices on a given power resource. When al the devices on aresource have been
turned off, the OS will turn off that power resource by running a control method. If a power
resourceis turned off and one of the devices on that resource needs to be turned on, the OS
will first turn on the power resource using a control method and then signal the deviceto turn
on. Thetime that the OS must wait for the power resource to sabilize after turning it on or
off is described in the description table. The OS uses the time base provided by the Power
Management Timer to measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control
method to put the device in that power state. Note that this might not mean that power is
removed from the device. If other active devices are sharing a power resource, the power
resources will remain on.

3.4.3 Getting Device Power Status

The Get Power Status operation is used by the OS to determine the current power
configuration (states and features), aswell asthe status of any batteries supported by the
device. The device can Sgnd a System Control Interrupt (SCI) to inform the OS of changes
in power atus. For example, a device can trigger an interrupt to inform the OS that the
battery has reached low power levd.

Devices use the ACPl event mode (see below) to signa power status changes (battery status
changes, for example), the ACPI chip set sgndsthe OS viathe SCI interrupt. An SCI
interrupt status bit is set to indicate the event to the OS. The OS runs the control method
associated with the event. This control method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status
information, and batteries that support the Intel/Duracell Smart Battery Specification. For
batteries that report only basic battery statusinformation (such astota capacity and
remaining capacity), the OS uses control methods from the battery’ s description table to read
thisinformation. To read satus information for Smart Batteries, the OS can use a andard
Smart Battery driver that directly interfaces to Smart Batteries through the appropriate bus
enumerator.

3.4.4 Waking the Computer

The Wakeup operation is used by devices to wake the computer from a deeping power state.
This operation must not depend on the CPU because the CPU will not be powered. When it
puts the computer in adeeping power state, the OS will enable wakeup on those devices that
the user’ s gpplications need to wake the machine. The OS will dso make sure any bridges
between the device and the core logic are in the lowest power state in which they can il
forward the wakeup signa. When a device with wakeup enabled decides to wake the

43

44

machine, it sends the defined signa on its bus. Bus bridges must forward this signd to
upstream bridges using the appropriate sgnd for that bus. Thus, the Ssgnd eventudly
reaches the core chip set (e.g. an ACPI chip s&t), which in turn wakes the machine.

Before putting the machinein adegping power state, the OS determines which devices are
needed to wake the machine based on application requests, and then enables wakeup on those
devices. The OS enables the wakeup feature on devices by setting that device's SCI Enable
bit. The location of this bit islisted in the device s entry in the description table. Only
devicesthat have their wakeup feature enabled can wake the machine. The OS will keep

track of what power states the wakeup devices are capable of and will keep the machinein a
power state in which the wakeup can gtill wake the machinel (based on capabilities reported
in the Description Table).

When the computer isin the Sleeping power state and a wakeup device decides to wake the
machine, it sgnasto the ACPI chip set. The SCI status bit corresponding to the device
waking the machine will be sat, and the ACPI chip set will resume the machine. Once the OS
is up and running again, it will clear the bit and handle the event that caused the wakeup. The
control method for this event then uses the Notify command to tell the OS which device
caused the wakeup.

3.4.5 Example: Modem Device Power Management

Toillugtrate how these power management methods function in ACPI, consider an integrated
modem. (This example is greatly smplified for the purposes of this discussion). The power
gtates of amodem are defined as follows (this is an excerpt from the Modem Device Class
Power Management Specification):

DO- Modem controller on
Phoneinterface on
Speaker on
Can be on hook or off hook
Can be waiting for answer
D1- Modem controller in low power mode (context retained by device)
Phone interface powered by phone line or in low power mode
Speaker off
Must be on hook
D2- SameasD3
D3- Modem controller off (context lost)
Phone interface powered by phone line or off

Speaker off
On hook

The power policy for the modem are defined asfollows:

D3 = DO COM port opened
DO,D1 & D3COM port closed
D0 & D1 Modem put in answer mode

1 Some OS policies may require the OS to put the machine into agloba system state for
which the device can no longer wake the system. Such as avery low battery stuation.

D1 & DO Application requests did or the phone rings while the modem isin answer
mode

The wakeup policy for the modem is very smple: when the phone rings and wakeup is
enabled, wake the machine.

Based on that information, the modem and the COM port it is attached to can be
implemented in hardware as shown in Figure 3-2. Thisisjust an examplefor illudraing

features of ACPI. Thisexampleis not intended to describe how OEMs should build
hardware.

:

1 PWR2
Iy 2y
o= S =
H £g
PWR1_EN |———]
PWR2_EN | ':
MDM D3
MDM D1
COM_D3 ﬁ v ! !
(e}
ACPI core
) l[e] /0
chipset COM port Modem | Phone Phone
(UART) controller contro interface line
RI
WAKE |«

Figure3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part
isisolated when power isremoved from it. Isolation logic controls are implemented as power

resources in the ACPI Differentiated Description Block so that devices are isolated as power
planes are sequenced off.

3.4.5.1 Getting the Modem’s Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading
the modem’ s entry in the Differentiated Definition Block. In this case, the entry for the
modem would report:
The device supports DO, D1, and D3:
DO requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)
To wake the machine, the modem needs no power resources (implying it can wake
the machine from DO, D1, and D3)
Control methods for setting power state and resources

3.4.5.2 Setting the Modem’s Power State
While the OSis running (GO gate), it will switch the modem to different power Sates
according to the power policy defined for modems.

45

46

When an gpplication opens the COM port, the OS will turn on the modem by putting it in the
DO gtate. Then if the gpplication puts the modem in answer mode, the OS will put the modem
in the D1 state to wait for the call. To make this Sate trangtion, the ACPI first checksto see
what power resources are no longer needed. In this case, PWR2 is not needed. Then it checks
to make sure no other device in the system requires the use of the PWR2 power resource. If
the resource is no longer needed, the ACPI driver usesthe _ OFF control method associated
with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop
asserting the PWR2_EN line. Then, the ACPI driver runs a control method (_PS1) provided
in the modem’ s entry to put the device in the D1 state. This control method asserts the
MDM_D1 signd that tells the modem controller to go into alow power mode.

The ACPI driver does not always turn off power resources when agiven deviceis put into a
lower power state. For example, assume that the PWR1 power plane also powers an LPT port
that is active. Suppose the user terminates the modem application causing the COM port to
be closed, therefore causing the modem to be shut off (State D3). As dways, the ACPI driver
checks to see which power resources are no longer needed. Because the LPT port is il
active, PWR1 isin use. The ACPI driver will not turn off the PWR1 resource. It will

continue the gate trangtion process by running the modem’ s control method to switch the
device to the D3 power state. The control method will cause the MDM_D3 lineto be
asserted. The modem controller now turns off al its mgor functions so that it draws little
power, if any, from the PWR1 line. Because the COM port is now closed, the same sequence
of events would take place to put it into the D3 state. Note that these registers might not bein
the deviceitself. For example, the control method could read the register that controls
MDM_D3.

3.4.6 Getting the Modem’s Power Status

Being an integrated modem, the device has no batteries. The only power status information
for the device is the power state of the modem. To determine the modem'’ s current power
gate (DO-D3), the ACPI driver runs a control method (_PSC) supplied in the modem’s entry
in the Differentiated Definition Block. This control method reads from whatever regisers are
necessary to determine the modem’ s power date.

3.4.6.1 Waking the Computer

Asindicated in the cgpabilities, this modem can wake the machine from any device power
state. Before putting the computer in adeep date, the OS will enable wakeup on any devices
that applications have requested to wake the machine. Then, it will choose the lowest

deegping State that can il provide the power resources necessary to adlow all enabled
wakeup devices to wake the machine. Next, the OS puts each of those devicesin the
appropriate power state, and puts al other devicesin the D3 state. In this case, the OS would
put the modem in the D3 state because it supports wake up from that state. Findly, the OS
saves aresume vector and puts the machine to deep through an ACPI register.

Waking the computer viamodem gtarts with the modem'’ s phone interface asserting itsring
indicate (RI) line when it detects aring on the phone line. Thislineisrouted to the core chip
Set to generate a wake-up event. The chip set then awakens the system and the hardware will
eventually pass control back to the OS (the waking mechanism differs depending on the

deeping gate). Once the OSis running, it will put the device in the DO state and begin
handling interrupts from the modem to process the event.

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1,
C2, and C3) when the OSisidle. In these low-power states, the CPU does not run any
ingtructions, and wakes when an interrupt, such as the pre-empt interrupt, occurs.

The OS determines how much time is being spent in itsidle loop by reading the ACPI Power
Management Timer. Thistimer runs a a known, fixed frequency and dlowsthe OS to
precisdly determine idle time. Depending on thisidle time estimate, the OS will put the CPU
into different quality lower power states (which vary in power and latency) when it entersits
idle loop.

The CPU gates are defined in detail in section 8.

3.6 Plug and Play

In addition to power management, ACPI provides controls and information so that the OS
can direct Plug and Play on the motherboard. The Differentiated Description Table describes
the motherboard devices. The OS enumerates motherboard devices smply by reading
through the Differentiated Description Table looking for devices with hardware I1Ds.

Each device enumerated by ACPI includes control methods that report the hardware
resources the device could occupy and those that are currently used, and a control method for
configuring those resources. The information is used by the Plug and Play sysem to

configure the devices.

ACPI is used only to enumerate and configure motherboard devices that do not have other
hardware standards for enumeration and configuration. For example, PCI devices on the
motherboard must not be enumerated by ACPI, therefore Plug and Play information for these
devicesis not included in the Differentiated Description Table. However, power
management information for these devices can il gppear in the table if the devices power
management is to be controlled through ACH!.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices.
This includes boot devices described in the ACPI description tables aswell as devices that
are controlled through other standards.

3.6.1 Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a
driver for it when the OSfindsit in the Differentiated Description Table. Thistable will have
control methods that tell the OS the following information:

?? Thedevice can use IRQ 3, I/0 3F8-3FF or IRQ 4, 1/0 2E8-2EF

?? Thedeviceiscurrently usng IRQ 3, 1/0 3F8-3FF

The OS configures the modem’ s hardware resources using Plug and Play dgorithms. It
chooses one of the supported configurations that does not conflict with any other devices.
Then, the ACPI driver configures the device for those resources by running a control method
supplied in the modem'’ s section of the Differentiated Definition Block. This control method

47

48

will write to any /O ports or memory addresses necessary to configure the device to the
given resources.

3.7 System Events

ACPI includes a generd event mode used for Plug and Play, Thermd, and Power
Management events. There are two registers that make up the event modd: an event status
register, and an event enable regigter.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If
the corresponding bit in the enable register is s, the core logic will assert the SCI to sgnd
the OS. When the OS receivesthisinterrupt, it will run the control methods corresponding to
any hits sat in the event satus register. These control methods use AML commands to tell the
OS what event occurred.

For example, assume a machine has dl of its Plug and Play, Thermd, and Power
Management events connected to the same pin in the core logic. The event status and event
enable registers would only have one hit each: the bit corresponding to the event pin.

When the computer is docked, the core logic would set the atus bit and fire the SCI. The
OS, seeing the status bit s&t, runs the control method for that bit. The control method checks
the hardware and determines the event was a docking event (for example). It then signasto
the OS that a docking event has occurred, and can tell the OS specifically wherein the device
hierarchy the new devices will appear.

Since the event model registers are generdized, they can describe many different platform
implementations. The single pin model aboveisjust one example. Another design might
have Plug and Play, Therma, and Power Management events wired to three different pins so
there would be three status bits (and three enable bits). Y et another design might have every
individua event wired to its own pin and gatus bit. This design, at the opposite extreme from
the angle pin design, dlows very complex hardware, yet very ample control methods.
Countless variations in wiring up events are possible.

3.8 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. The OS
determines the low battery point and battery warning point. The OS dso calculates the
remaining battery capacity and remaining batery life.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a

Control Method Battery (CMBatt) interface.

?? Smart Battery is controlled by the OS directly through the embedded controller (EC). For
more information about the ACPI Embedded Controller SMIBus interface, see section
13.9.

?? CMBatt iscompletely accessed by AML code control methods, alowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI.
For more information about battery device control methods, see section 11.2.2.

This section describes how a CMBatt interface works and what kind of AML code interface
is needed .

3.8.1 CMBatt Diagram

CM Batt is accessed by an AML code interface so a system hardware designer can choose
any communication interface at the hardware level. One exampleis shown in Figure 3-3. The
battery has built-in information and can communicate with embedded contraller (EC) using
the 1°C interface. The AML code interface returns the battery information stored in the RAM
of the EC. The OS can st the battery trip point at which an SCI will be generated.

Designed Battery capacity
Designed Voltage
Designed Warning capacity
Designed Low battery capacity
Latest Full charged capacity
EC P-code Present Remaining capcacity
‘1» interface Present drain rate oS
Present Voltage
(or Present Battery Status and

other etc. Drivers

controller) | g

0

Battery

Battery capacity trip point

Figure 3-3 Control Method Battery Diagram

3.8.2 Battery Events
The AML code that handles an SCI for a battery event notifies the system of the batteries

upon which the status might have changed.

When a battery device isinserted into the system or removed from the system, the hardware
asserts a GP event. The AML code handler for this event will issue a Notify(, 0x00) onthe
battery deviceto initiate the standard device Plug and Play actions.

When the present state of the battery has changed or when the trip point set by the BTP
control method is crossed, the hardware will assert a GP event. The AML code handler for
this event issues a Notify(,0x80) on the battery device.

3.8.3 Battery Capacity

CMBatt reports the designed capacity, the latest full-charged capacity, and the present
remaining capacity. Battery remaining capacity decreases during usage, and it dso changes
depending on the environment. Therefore, the OS must use latest full-charged capacity to
caculates the battery percentage.

A sysem must use ether [mA] or [mW] for the unit of battery information calculation and
reporting. Mixing [mA] and [mW] is not dlowed on a system.

CMBatt reports the OEM -designed initid warning capacity and OEM -designed initid low
capacity . An ACPI-compatible OS determines independent warning and low battery capacity
based on these initial capacities.

49

50

Designed Capacity
L IEEEEEETEEEE Last Full charged capacity

41— Present Remaining Capacity

SR R OEM designed initial capacity for warning
- _ o e OEM designed initial capacity for Low

Figure 3-4 Reporting Battery Capacity

3.8.4 Battery Gas Gauge
At the most basic leve, the OS ca culates Remaining Baitery Percentage [%] using the
fallowing formula

_ Battery Remaining Capacity [mMAh/mWh
Remaining Battery Percentage[%] = y ining Capacity [| * 100

Last Full Charged Capacity [mAh/mWh]
CMBait aso reports the Present Drain Rate [mA or mW] for calculating the remaining
baitery life. At the most basic leved, Remaining Battery lifeis caculated by following
formula

Battery Remaining Capacity [mAh/mWh]
Battery Present Rate [mMA/mW]

Remaining Battery Life [h]=

Note that when the battery is a primary battery (a non-rechargesble battery such asan
Alkdine-Manganese battery) and cannot provide accurate information about the battery to
use in the caculation of the remaining battery life, the CMBait can report the percentage
directly to OS. Reporting the “ Last Full Charged capacity =100 and
“BatteryPresentRate=OxFFFFFFFF’ means that ” Battery remaining capacity” is a battery
percentage and the its value should be in the range 0 through 100 as follows.

Battery Remaining Capacity [=0 ~ 100]

Remaining Battery Percentage[%] = * 100
Last Full Charged Capacity [=100]

o) Battery Remaining Capacity [mMAh/mWh]
Remaining Battery Life [h] = = unknown
Battery Present Rate [=0OxFFFFFFFF]

CMBatt have an OEM -designed initid cgpacity for warning and initid capacity for low. An
ACPI-compatible OS can determine independent warning and low battery capacity values
based on the designed warning capacity and designed low capacity shown in Figure 3-5 and
Table 3-1.

Full
u B Last Full charged capacity
________ < - O/S selects low battery warning capacity according to the arid
""" Waning ' OEM designed initial capacity for warning (Minimum)
OIS selects low battery capacity according to the arid
- “Low OEM desianed initial capacity for Low (Minimum)
critical NN OEM defined Battery Critical flag

Figure 3-5 Low Battery and Warning

CMBatt and an ACPI-compatible OS manage the three battery level shown in Table 3-1.

Table3-1 Low Battery Levels

51

L evel

Description

Warning

The battery is gpproaching and is close to the Low level. Thisisan early
warning; the battery is not yet in the Low capacity.

The OS can determine a built-in low battery warning point thet will not
fal below the OEM - defined initid remaining-capacity for warning. The
OSwill usethiswarning leve to notify the user via Ul.

Low

The Battery islow.

The OS determines a built-in low battery levd that will not fal below
the OEM -ddfined initid remaining-capacity for low. At thislevd , the OS
will trangtion the system to a user defined state (i.e., adeep date,
shutdown).

If the remaining capacity is not accurate and hardware detects the low
battery before the remaining capacity reaches the OS-specified low levd,
CMBatt can report the remaining- capacity as same as (or less than)
OEM-designed initia capacity to dert the OS that the battery islow.

Critical

Battery isfully discharged and cannot supply any more power to the
system. Thislevel does not mean battery failure. The system cannot use
the battery until it has been re-charged or replaced.

The system reports this condition by setting the “Criticdl” flag in the
Battery State field of the _BST (battery status) object. Thisisan
emergency Situation because there is not enough time for anormal
shutdown procedure. Therefore, the OS runs its emergency shutdown at
this point.

Critical battery levd is defined by the OEM.

Note: The amount of time taken to complete its emergency shutdown

52

L evel Description

procedure depends on the OS and the system configuration.

If any battery in a system reaches a critical state (and it is a secondary battery) and isaso
discharging (as reported by the _BST control method), the OS will initiate an orderly but
critical shutdown of the system. If there are mulltiple batteries in the system, the OS will
continue to run even if one or more batteries reach critical so long as a critica battery device
is not dso discharging.

3.9 Thermal Management

ACPI moves the hardware cooling policies from the firmware to the OS. With the operating
software watching over the system temperature, new cooling decisions can be made based on
gpplication load on the CPU aswell asthe thermd heurigtics of the syslem. The OS will dso
be able to gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermd design is based around regions caled thermal zones. Generaly, the entire
PC isonelarge thermd zone, but an OEM can partition the system into severd therma zones
if necessary. Figure 3-6 is an example mobile PC diagram that depicts a sandard single
therma zone with a central processor as the therma-coupled device. In this example, the
whole notebook is covered as one large thermal zone. This notebook uses one fan for active
cooling and the CPU for passive cooling.

Thermal P | CPU 0
assive Cooling Memory/ A
M
Zone CPU g <«| PCIBridge
2 A .
°| (Active Cooling) Bridge z
- D) LCD
R Graphics
M l«—p{-5 CRT
El UsB
| Port1 Docking
Iﬁomemary |
vV Vv <.,| Keyboard
FO: PIC, PITs, F2: Embedded
DMA, RTC, EIO, |USB Controller PS/2
D pors
[—»{5 Mouse
F1: BM
- IDE
DPRO v ;
v sI0: < . » FDD

EPROM COMs, DPR1
LPT, 4—»04—»@ com

FDC
ACPI LT

Figure3-6 Thermal Zone
Thefollowing sections are an overview of the therma control and cooling characteristics of a
computer. For some therma implementation examples on an ACPI platform, see section
12.4.

53

3.9.1 Active and Passive Cooling

ACPI defines two cooling methods, Active and Passive:

?? Passive cooling: OS reduces the power consumption of the processor to reduce the
therma output of the machine.

?? Active cooling: OStakesadirect action such asturning on afan.

Cooling method is a user-defined function that can be set in the OS through a control pandl.
These two cooling methods are inversdy related to each other. Active cooling requires
increased power to reduce the heat within the system while Passve cooling requires reduced
power to decrease the temperature. The effect of this relationship is that Active cooling
alows maximum CPU performance, but it creates fan noise, while Passve cooling reduces
system performance, but it isquiet. (Note: Exceptions can be made. For example a battery
charger, dthough it reduces the power to reduce heet, can be implemented as an active
cooling device. For more information, see section 12. The significance of alowing the user
to choose energy utilization is most critical to the operator of a mobile computer where
battery charge preservation often has higher priority over maximum system performance. A
mohbile PC user isdso more likely to bein alocae where quietness of the system is
preferable over CPU performance. With these two cooling methods a PC user will be ableto
have achoice of performance versus quietness and some control over the rate of battery
dran.

3.9.2 Performance vs. Silence

An ACPI-compatible OS offers a cooling choice to the end user a run-time that alowsthe
user to adjust the rate of battery discharge between maximum and less than maximum. This
flexibility is most important to a mobile PC user. For example, if auser istaking noteson

her PC in aquiet environment, such asalibrary or a corporate meeting, she might want to set
the cooling mode to Silence. Thiswill sacrifice CPU speed, but it will turn off thefan to
make the system quiet. Since the user is using the CPU to edit text, high CPU performanceis
probably not needed. On the other hand, another user might be in alab running a graphics-
intensive gpplication and will need to set the cooling mode to Performance to utilize the
maximum CPU bandwidth. Either cooling mode will be activated only when the thermdl
condition requiresit. When the therma zone is at an optima temperature level where it does
not warrant any cooling, both modes will run the CPU at maximum speed and keep thefan
turned off.

M & w

He

Q0.
96
85
QN
86
R 75
‘)e(a““ 3¢ i\ PYa) I
te™ 000\‘«\9 ov
e | 55 |
| 50 |
_ACx —»| .~ |«—— _pPsv
45
| A0 | o \(‘
\C\
| Y | ea‘\m\‘ et
| 5 | e(a\“‘ '\5\“\“
v 7 v e g
6 e @
pa5
L
5
o
=4
5
fal
6

He

g

L)

Figure3-7 Active and Passive Policy Settings
To design abaanced thermd implementation, ACPI reservesthe ACx and _PSV objectsto
handle the two separate cooling modes. An OEM must choose the temperature value for each
object so the OS will initiate the cooling policies a the desired target temperatures. (The
ACPI specification defines Kelvin as the standard for temperature. All thermal control
methods and objects must report temperatures in Kelvin. All figures and examplesin this
section of the specification use Celsus for reasons of clarity. ACPl alows Kelvin to be
declared in precision of /10" of adegree (e.g, 310.5). Kelvin is expressed as 2/K = T?2C +
273.2)

As shown in Figure 3-7, both control methods can return any temperature vaue that the
OEM designates. But most importantly, the OEM can create each of the Performance and
Silence modes by assigning different temperatures to each control method. Generdly, if
_ACx isst lower than _PSV, then it effectively becomes a Performance cooling mode.
Conversdy, if _PSV isset lower than _ACX, then it becomes a Silence cooling mode.

3.9.2.1 Cooling Mode: Performance

Fgure 3-8 is an example of a performance-centric cooling mode on an optimaly
implemented hardware. Besdes setting the _ ACx astheinitia cooling policy, this sysem
notifies the OS of atemperature change by raisng an SCI every 5 degrees.

m

fa¥al

I

QL

O

» 80.

2L
T

a0

ot

55

£o

oY

AL
oo

40.

2

=g

20

3t

25

20

z

EN~
T

10

L

o

(L

<— CRT

<— PSv

<4+— _ACx

-4— Policy
> sclEvent

Figure 3-8 Performance Mode Example
This example turns the fan on when the OS receives an SCI at 50 degrees. If for some reason
the fan does not reduce the system temperature, then at 60 degrees the OS will start throttling
the CPU while running the fan. If the temperature continues to climb, the OS will be notified
of acritica temperature at 90 degrees, a which point it will quickly shutdown the system.

3.9.2.2 Cooling Mode: Silence

Figure 3-9 is an example of a cooling modd where quietnessis the desired behavior of the
sysem. The _PSV isset astheinitid cooling policy. In thisexample, the OSis natified of a
temperature change by raising an SCI every 5 degrees.

/\

Fa¥al

IO

o

O

FoYal

O

hr 14
T

80

[~

O

o

AL
G

40
v

LY

S

20

o

oY~

o

20
o)

1L
T

10

»

[~

-4— Policy
SCI Event

<— CRT

-4— _ACx

- _PSV

Figure3-9 Silence M ode Example

55

56

This example initiates system cooling by CPU throttling when the OS receives an SCI at 45
degrees. If the throttling is not enough to reduce the heet, the OS will turn the fan on a 60
degrees while throttling the CPU. If the temperature continues to climb, the OS will be
natified of a critica temperature at 90 degrees, a which point it will quickly shutdown the
sysem.

3.9.3 Other Thermal Implementations

The ACPI thermd control mode alows flexibility in therma event design. An OEM that
needs a less daborate therma implementation might consider some other design. For
example, Figure 3-10 shows three other possibilities for implementing a therma feedback
design. These are only examples, many other designs are possible.

7\ 7\ /7~ \

96—| «—_CRT — [-84—| «—_CRT

a
86

60— <4—_ACx — |54

-+—_ACx

c
o6

40—| 4—_pPSV

-4— Policy

SCI Event|

o O U

Figure3-10 Example Thermal Cooling |mplementations

3.9.4 Multiple Thermal Zones

The basic thermad management modd defines one therma zone, but in order to provide
extended thermd control in acomplex sysem ACPI specifies amultiple therma zone
implementation. Under amultiple therma zone modd the OS will independently manage
severd therma-coupled devices and a designated therma zone for each thermal-coupled
device, using Active and/or Passive cooling methods available to each therma zone. Each
therma zone can have more than one Passive and Active cooling device. Furthermore, each
zone might have unique or shared cooling resources. In amultiple therma zone
configurétion, if one zone reaches a critical sate then the OS must shut down the entire
system.

57

4. ACPI Hardware Specification

ACPI defines a standard mechanism for an ACPI-compatible OS to communicate to an
ACPI-compatible hardware platform. This section describes the hardware aspects of ACPI.
ACPI defines “hardware’ as a programming mode and its behavior. ACPI gtrives to keep
much of the existing legacy programming mode the same; however, to meet certain festure
godls, designated features conform to a specific addressng and programming scheme
(hardware that falls within this category is referred to as “fixed”). Although ACPI grivesto
minimize these changes, hardware engineers should read this section carefully to understand
the changes needed to convert alegacy-only hardware mode to an ACPI/Legacy hardware
model or an ACPI-only hardware modd.

ACPI classfies hardware into two categories. Fixed or Generic. Hardware that fals within
the fixed category meets the programming and behavior specifications of ACHl. Hardware
thet fals within the generic category has awide degree of flexibility in itsimplementation.

4.1 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI
limits features that go into fixed space by the following criteria

?? Performance sengtive fegtures.

?? Festures drivers require during wakeup.

?? Features that enable catastrophic failure recovery.

CPU clock control and the power management timer are in fixed space to reduce the
performance impact of accessing this hardware, which will result in more quickly reducing a
therma condition or extending battery life. If thislogic were dlowed to resde in PCI
configuration space, for example, severd layers of drivers would be called to access this
address space. Thistakes along time and will either adversely affect the power of the system
(when trying to enter alow power state) or the accuracy of the event (when trying to get a
time samp vaue).

Access to fixed space by the ACPI driver dlowsthe ACPI driver to control the wakeup
process without having to load the entire OS. For example, if a PCl configuration space
access is needed, the bus enumerator is loaded with al drivers used by the enumerator.
Having this hardware in the fixed space a addresses with which the OS can communicate
without any other driver’s assistance, alowsthe ACPI driver to gather information prior to
making a decision as to whether it continues loading the entire OS or puts it back to deep.
When the system has crashed, the ACPI driver can only access address spaces that need no
driver support. In such a stuation, the ACPI driver will attempt to honor fixed power button
requests to trangtion the system to the G2 state.

4.2 Generic Programming Model

Although the fixed programming model requires registers to be defined at specified address
locations, the generic programming mode allows registers to reside in most address spaces.
The ACPI driver directly accesses the fixed feature set registers, but ACPI relies on OEM -
provided “pseudo code’ (ASL-code) to access generic register space.

ASL codeiswritten by the OEM inthe ACPI System Language (ASL) to control generic
feature control and event logic. The ASL language enables a number of things:

?? Absracts the hardware from the ACPI driver.

?? Buffers OEM code from the different OS implementations.

58

One god of ACPI isto alow the OEM “value added” hardware to remain basicaly
unchanged in an ACPI configuration. One atribute of vaue-added hardwareisthat itisall
implemented differently. To enable the ACPI driver to execute properly on different types of
vaue added hardware, ACPI defines higher leve “control methods’ thet it calsto perform

an action. The OEM provides ASL code, which is associated with control methods, to be
executed by the ACPI driver. By providing ASL-code, generic hardware can take on almost
any form.

Another important god of ACH! isto provide OS independence. To do this the OEM code
would have to execute the same under any ACPI-compatible OS. ACPI dlowsfor this by
making the AML-code interpreter part of the OS. This alows the OSto take care of
synchronizing and blocking issues specific to each particular OS.

The ASL language provides many of the operators found in common object-oriented
programming languages, but it has been optimized to enable the description of platform

power management and configuration hardware. An ASL compiler converts ASL source
code to ACPI Machine Language (AML), which is a very compact machine language that the
ACPI AML code interpreter executes.

The generic feature modd is represented in the following block diagram. In thismodel the
generic feature is described to the ACPI driver through AML code. This description takes the
form of an object that Stsin ACPl name space associated with the hardware that it is adding
vaueto.

ACPI Driver

and AML-
I nterpreter

;ontr ol
vents

GP Event Statug

=
Event Status Logic
Generic Event
Logic

Figure4-1 Generic Feature Model

As an example of ageneric control feature, a platform might be desgned such that the IDE
HDD’s D3 dtate has vaued-added hardware to remove power from the drive. The IDE drive
would then have a reference to the AML PowerResource object (which controls the value
added power plane) in its name space, and associated with that object would be control
methods that the ACPI driver callsto control the D3 state of the drive:

?? _ON A control method to sequence the IDE drive to the DO state

?? _OFF A control method to sequence the IDE drive to the D3 gate

?? _STA A control method that returns the status of the IDE drive (on or off)

The control methods under this object provide an abstraction layer between the OS and the
hardware. The OS understands how to control power planes (turn them on or off or to get
their status) through its defined power resource object, while the hardware has platform:
specific AML code (contained in the gppropriate control methods) to perform the desired
function. In this example, the platform woud describe its hardware to the ACPI OS by

59

writing and placing the AML code to turn the hardware off within the OFF control method.

This enables the following sequence:

1. When the OS decides to place the IDE drive in the D3 dtate, it cals the IDE driver ad
tellsit to place the drive into the D3 state (a which point the driver savesthe device's
context).

2. When the driver returns control, the OS callsthe ACPI driver to place the drive in the D3
state.

3. The ACPI driver finds the object associated with the HDD and then finds within that
object any AML code associated with the D3 Sate.

4. The ACPI driver executes the gppropriate _ OFF control method to control the value-
added “generic”’ hardware to place the HDD into an even lower power state.

As an example of ageneric event feature, a platform might have a docking capability. In this

casg, it will want to generate an event. Notice that al ACPI events generate a System Control

Interrupt, or SCI, which can be mapped to any shareable system interrupt. In the case of

docking, the event is generated when a docking has been detected or when the user requests

to undock the system. This enables the following sequence:

1. The ACH driver respondsto the SCI and calls the AML code event handler associated
with that generic event. The ACPI table associates the hardware event with the AML
code event handler.

2. The AML-code event handler collects the gppropriate information and then executes an
AML Notify operation to indicate to the ACPI driver that a particular bus needs re-
enumeration.

The following sections describe the fixed and generic feature set of ACPI. These sections

enable areader to understand the following:

?? Which hardware isrequired or optiond.

?? How to design fixed features.

?? How to design generic features.

?? The ACPI Event Modd.

4.3 Diagram Legends

The hardware section uses smplified logic diagrams to represent how certain aspects of the
hardware are implemented. The following symbols are used in the logic diagrams to
represent programming bits.

@ Write-only control bit

& Enable, control or status bit.

X sticky status bit.

Query Vaue

The haf round symbol with an inverted “V” represents awrite-only control bit. This bit has
the behavior that it generates its control function when aHIGH vaue is programmed to it.
Reads to write-only hits are treated as ignore by software (the bit position is masked off and
ignored).

The round symbol with an“X” represents a programming bit. As an enable or control bit,
software writing this bit HIGH or LOW will result in the bit being read as HIGH or LOW
(unless otherwise noted). Asagtatus bit it directly represents the value of the sgnd.

60

The square symbol represents a sticky status bit. A sticky status bit represents a bit set by a
hardware sgnd’sHIGH leve (thishit is set by the levd of the Sgnd, not an edge). The bit is
only cleared by software writing aoneto its bit postion.

The rectangular symbol represents a query vaue from the embedded controller. Thisisthe
va ue the embedded controller returns to the system software upon a query command in
response to an SCI event. The query value is associated with the event control method
routine that will be scheduled to be executed upon an embedded controller event.

4.4 Register Bit Notation
Throughout this section there are logic diagrams thet reference bits within registers. These
diagrams use a notation that eadly references the register name and bit position. The notation
isasfollows
Registername Bit
Regi stername contains the name of the register as it gppears in this specification
Bit contains a zero-based decimd vaue of the bit position.
For example, the SLP_EN bit resdesin the PM1x_CNT register bit 13 and would be

represented in diagram notation as:
SLP_EN
PMLXx_CNT. 13

45 The ACPI Hardware Model

The ACPI hardware is provided to alow the OS and hardware to sequence the platform
between the various global system dtates (GO-G3) asilludrated in the following figure. Upon
first power-up the platform findsitsdf in the globd system state G3 or “Mechanica Off”.
This state is defined as one where power consumption is very close to zero -- the power plug
has been removed; however, the redl-time clock device il runs off abattery. The G3 dateis
entered by any power failure, defined as accidentd or user-initiated power loss.

The G3 gate trangitions into either the GO working stete or the Legacy state depending on
what the platform supports. If the platform isan ACPI only platform, then it allows a direct
boot into the GO working state by aways returning the status bit SCI_EN HIGH (for more
information, see section 4.7.2.5). If the platform supports both legacy and ACPI operations
(which is necessary for supporting anon-ACPI OS), then it would aways boot into the
Legacy State (illustrated by returning the SCI_EN LOW). In ether case, atrangtion out of
the G3 state requires atotal boot of the OS.

The Legacy system date is the globd state where anonr ACPI OS executes. This state can be
entered from ether the G3 “Mechanicd Off,” the G2 “ Soft Off,” or the GO “Working” states
only if the hardware supports both Legacy and ACPI modes. In the Legacy Sate, the ACPI
event modd is disabled (no SCls are generated) and the hardware uses legacy power
management and configuration mechanisms. While in the Legacy state, an ACPI-compliant
OS can request atrangtion into the GO working state by performing an ACPI mode request.
The OS performs this trangtion by writing the ACPI_ ENABLE vaue to the SMI_CMD
which generates an event to the hardware to trandtion the platform to its ACPl mode. When
hardware has finished the trangtion it setsthe SCI_EN bit HIGH and returns control back to
the OS. While in the GO “working state,” the OS can request atrangition to Legacy mode by
writing the ACPI_DISABLE vdue to the SMI_CMD register, which results in the hardware
going into legacy mode and resetting the SCI_EN bit LOW (for more information, see
section 4.7.2.5).

61

The GO “Working” date isthe norma operating environment of an ACPI machine. In this
date different devices are dynamicaly trangtioning between their respective power Sates

(DO, D1, D2 or D3) and processors are dynamically transitioning between their respective
power states (CO, C1, C2 or C3). Inthis state, the OS can make a policy decision to place the
platform into the system G1 “degping” sate. The platform can only enter asingle deeping
date at atime (referred to as the globa G1 state); however, the hardware can provide up to
four system deeping dates that have different power and exit latencies represented by the S1,
2, S3, or A states. When the OS decides to enter a deeping State it picks the most
appropriate deeping state supported by the hardware (OS policy examines what devices have
enabled wakeup events and what deeping these support). The OS initiates the deeping
trangition by enabling the appropriate wakeup events and then programming the SLP_TY Px
field with the desired deeping state and then setting the SLP_ENX bit HIGH. The system

will then enter a deeping state; when one of the enabled wakeup events occurs, it will
trangition the system back to the working state (for more information, see section 9).

Another globa state trangtion option while in the GO “working” stateisto enter the G2 “ soft
off” or the G3 “mechanicd off” date. These transitions represent a controlled trangtion that
dlows the OSto bring the system down in an orderly fashion (unloading applications,

cdosng files and so on). The policy for these types of trangtions can be associated with the
ACPI power button, which when pressed generates an event to the power button driver.
When the OS isfinished preparing the operating environment for a power lossit will either
generate a pop-up message to indicate to the user to remove power in order to enter the G3
“Mechanicd Off” date, or it will initiste a G2 “ soft-off” trangtion by writing the value of the
S5 “soft off” system state to the SLP_TY Px register and then setting the SLP_ENX bit HIGH.

The G1 deeping Sate is represented by five possible deeping states that the hardware can
support. Each deeping state has different power and wakeup latency characterigtics. The
deeping date differs from the working state in that the user’ s operating environment is
frozen in alow power gtate until awakened by an enabled wakeup event. No work is
performed in this date, that is, the processors are not executing ingructions. Each system
deegping state has requirements about who is respongible for system context and wakeup
sequences (for more information, see section 9).

The G2 “soft off” dateisan OS initiated system shutdown. This date isinitiated Smilar to

the deeping Sate trangtion (SLP_TYPx is st to the S5 vaue and setting the SLP_ENX bit
HIGH initiates the sequence). Exiting the G2 soft-off state requires rebooting the OS. In this
case, an ACPI-only mechine will re-enter the GO state directly (hardware returnsthe SCI_EN
bit HIGH), while an ACPI/Legacy machine transtions to the Legacy state (SCI_EN bit is
LOW).

62

Power
Failure

CPU

Legacy
Boot
(SCI_EN=0)

ACPI
Boot
(SCI_EN=1)

ACPI_ENABLE

__—— (SCLEN=) \

GO (S0) -

Workin
‘\ACPLDISABLE _ 9

(SCI_EN=0)

Sleepin
ACPI p g
Boot
Legacy (SCI_EN=1)

Boot
(SCI_EN=0)

Figure4-2 Global Statesand Their Trandgtions

The ACPI architecture defines mechanisms for hardware to generate events and control logic
to implement this behavior modd. Events are used to notify the OS that some action is
needed, and control logic is used by the OS to cause some state transition. ACPI-defined
eventsare “hardware’ or “interrupt” events. A hardware event isone that causesthe
hardware to unconditiondly perform some operation. For example, any wakeup event will
sequence the system from a deeping state (S1, S2, S3, and $4 in the globa G1 state) to the
GO working State (see Figure 10-1).

Aninterrupt event causes the execution of an event handler (AML code or an ACPI-aware
driver), which alows the software to make a policy decison based on the event. For ACPI
fixed-feature events, the ACPI driver or an ACPI-aware driver acts as the event handler. For
generic logic events the ACPI driver will schedule the execution of an OEM -supplied AML
handler associated with the event.

For legacy systems, an event normaly generates an OS-transparent interrupt, such asan
System Management Interrupt, or SMI. For ACPl systems the interrupt events need to
generate an OS-vigble interrupt that is sharegble; edge-gtyle interrupts will not work.
Hardware platforms that want to support both legacy operating systems and ACPI systems
support away of re-mapping the interrupt events between SMIs and SCls when switching
between ACPI and legacy modds. Thisisilludrated in the following block diagram.

63

- Legacy Only Event Logic

Device Idle

- ACPIl/Legacy Event Logic

- ACPI Only Event Logic

- ACPIl/Legacy Generic Control Features
- ACPIl/Legacy Fixed Control Features

Timers

Device
Traps

GLBL STBY

. SCI_EN SMI Arbiter SMI#
Timer ®
PWRBTN User ﬁ
LID Interface

SCI Arbiter Sci#

“I“

Sleep/Wake
THRM T:jerl_nal ' Statemachine
ogic
DOCK Power Plalme
STS_CHG Hardware — - SMI Events Conmiie

Generic Space

Events - SCI/SMI Events

— - Wake-up Events CPU Clock
e Control

PM Timer

RI

Figure 4-3 Example Event Structurefor a Legacy/ACPI Compatible Event M odel

Thisexample logic illugtrates the event mode for a sample platform that supports both
legacy and ACPI event modes. This example platform supports anumber of externa events
that are power-related (power button, LID open/close, thermd, ring indicate) or Plug and
Play-related (dock, status change). The logic represents the three different types of events:

1. OSTrangparent Events. These events represent OEM - specific functions that have no
OS support and use software that can be operated in an OS-trangparent fashion (that is,
SMIs).

2. Interrupt Events. These events represent features supported by ACPI-compatible
operating systems, but are not supported by legacy operating systems. When alegacy OS
isloaded, these events are mapped to the transparent interrupt (SMI# in this example),
and when in ACPI mode they are mapped to an OS-visble sharegble interrupt (SCI#).
Thislogic is represented by routing the event logic through the decoder that routes the
eventsto the SMI# arbiter when the SCI_EN hit is cleared, or to the SCI# arbiter when
the SCI_EN bit is set.

3. Hardware events. These events are used to trigger the hardware to initiate some
hardware sequence such as waking-up, resetting, or putting the machine to deep
uncondiitiondly

In this example, the legacy power management event logic is used to determine

device/system activity or idleness based on device idle timers, device traps, and the global

gandby timer. Legacy power management models use the idle timers to determine when a

device should be placed in alow-power state because it isidle— that is, the device has not

been accessed for the programmed amount of time. The device traps are used to indicate
when adevicein alow power state is being accessed by the OS. The globd standby timer is
used to determine when the system should be dlowed to go into adeeping state because it is
idle—that is, the user interface has not been used for the programmed amount of time.

Thistraditiond idle timers, trgp monitors, and globa standby timer are not used by the OSin

the ACPl mode. Thiswork is now handled by different software structuresin an ACPI-

compatible OS. For example, the driver modd of an ACPI-compatible OS is responsible for

64

placing its device into alow power sate (D1, D2, or D3) and trangtioning it back to the On
gate (DO) when needed. And the OS is responsible for determining when the sysemiisidle
by profiling the system (using the PM Timer) and other knowledge it gains through its
operating structure environment (which will vary from OSto OS). When the system is placed
into the ACPI mode, these events no longer generate SMI s, as this function is now handled
by the drivers. These events are disabled through some OEM -proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy
models (docking, the power button, and so on) and this type of interrupt event changesto an
SCI event when enabled for ACPI. The ACPI OS will generate arequest to the platform’s
hardware (BIOS) to enter into the ACPI mode. The BIOS setsthe SCI_EN bit to indicate that
the system has successfully entered into the ACPI mode, so thisis a convenient mechanism
to map the desired interrupt (SM1 or SCI) for these events (as shown in Figure 4-3).

The ACPI architecture requires some dedicated hardware not required in the legacy hardware
model: the power management timer (PM Timer). Thisis afree running timer that the ACPI
OS uses to profile system activity. The frequency of thistimer is explicitly defined in this
gpecification and must be implemented as described.

Although the ACPI architecture reuses most legacy hardware asis, it does place restrictions
on where and how the programming model is generated. If used, dl fixed features are
implemented as described in this specification so that the ACPI driver can directly access the
fixed feature regigters.

Generic location features are manipulated by ACPI control methods principdly residing in
the ACPI name space. These bits are made to be very flexible; however, their useis limited
by the defined ACPI control methods (for more information, see section 10). These bitsare
normaly associated with output bits that control power planes, buffer isolation, and device
reset resources. Additionaly, “child” interrupt status bits can reside in generic address space;
however, they have a“ parent” interrupt status bit in the GP_STSregister. ACP! defines five
address gpaces that these feature bits can reside in the following:

?7? System 1/O space

?7? System memory space

?? PCI configuration space

?? Embedded controller space

?? SMBus device space

Generic location feature bit spaceis described in the ACPI BIOS programming model. These
power management features can be implemented by spare 1/0 ports residing in any of these
1/0O spaces. The ACPI specification defines an optiona embedded controller and SMBus
interfaces needed to communicate with these 1/0 spaces.

4.5.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits dways return zero, and data
writes to them have no sde affects. ACHI drivers are desgned such that they will write zeros
to reserved bits in enable and status registers and preserve bitsin control registers, and they
will treat these bits asignored.

4.5.2 Hardware Ignored Bits
ACP! hardware registers are designed such that ignored bits are undefined and are ignored by
software. Hardware-ignored bits can return zero or one. When software reads aregister with

ignored hits, it masks off ignored bits prior to operating on the result. When software writes
to aregister with ignored hit fields, it preserves the ignored hit fields.

4.5.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by
software writing a 1 to their bit podition. Reads to write-only bit positions generate
undefined results. Upon reads to registers with write-only bits software masks out dl write-
only hits.

4.5.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the
operation of other unrelated devices, or dlows other unrelated devices to interfere with its
behavior. This condition is not supportable and can cause platform failures. ACPI provides
no support for cross device dependencies and suggests that devices be designed to not exhibit
this behavior. The following sections give two examples of cross device dependencies.

45.4.1 Examplel

This exampleillustrates a cross device dependency where a device interferes with the proper
operation of other unrelated devices. A system has two unrelated devices A and B. Device
A has adependency that when it is being configured it blocks al accesses that would
normally be targeted for Device B. Thus, the device driver for Device B cannot access
Device B while Device A is being configured; therefore, it would need to synchronize
access with the driver for Device A. High performance, multithreaded operating systems
cannot perform this kind of synchronization without serioudy impacting performance.

To further illugirate the point, assume that device A isa serid port and device B isan hard
drive contraller. If these devices demondtrate this behavior, then when a software driver
configures the seria port, accessesto the hard drive need to block. This can only be done if
the hard disk driver synchronizes access to the disk controller with the serid driver. Without
this synchronization, hard drive datawill be lost when the serid port is being configured.

45.4.2 Example 2

This example illustrates a cross-device dependency where a device demonstrates a behavior
that allows other unrelated devicesto interfere with its proper operation. Device A exhibitsa
programming behavior that requires atomic back-to-back write accesses to successfully write
to its regigters; if any other platform accessis able to break between the back-to-back
accesses, then the write to device A isunsuccessful. If the device A driver isunable to
generate atomic back-to-back accessesto its device, then it relies on software to synchronize
accesses to its device with every other driver in the system; then a device cross dependency is
created and the platform is prone to device A failure.

4.6 ACPI Features

This section describes the different festures offered by the ACPI interface. These features are
categorized as the following:

?? Fixed Features

?? Generic Features

Fixed location features resde in system 1/O space a the locations described by the ACPI
programming model. Generic location festures resde in one of five address spaces (system

65

66

1/0, system memory, PCIl configuration, embedded controller, or seria device 1/0 space) and
are described by the ACPI name space.
Fixed fegtures have exact definitions for their implementation. Although many fixed features
are optiond, if implemented they must be implemented as described. Thisisrequired

because a stlandard OS driver is talking to these registers and expects the defined behavior.
Gengric feature implementation is flexible. Thislogic is controlled by OEM -supplied
ASL/AML-code (for more information, see section 5), which can be written to support a
wide variety of hardware. Also, ACP provides specidized control methods that provide
capabilities for specidized devices. For example, the Notify command can be used to notify
the OS from the generic event handler that a docking or thermd event has taken place. A
good understanding of this section and section 5 of this specification will give desgnersa
good understanding of how to design hardware to take full advantage of an ACPI-compatible

OS.

Note that the generic features are listed for illugtration only, the ACPI specification can
support many types of hardware not listed.

Table4-1 Feature/Programming Mode Summary

Feature Name | Description Requirements Programming
M odel
Power 24-bit/32-bit free running Required for ACPI Fixed Feature
Management timer. compatibility. Control Logic.
Timer
Power Button User pushes button to Must have either a Fixed Feature Event
switch the system between power button or a and Control Logic or
the working and desping deep button. Generic Event and
states. Logic
Sleep Button User pushes button to Must have either a Fixed Feature Event
switch the system between power button or a and Control Logic or
the working and deeping deep button. Generic Event and
Sate. Logic.
Power Button User sequence (pressthe Thisor agmilar
Over-ride power button for 4 function required.
seconds) to turn off ahung
sysem.
Red Time Programmed timeto wake- | Required for ACPI Optiond Fixed
Clock Alarm up the system. compatibility (for Feature Event?
S1-S3; optiond for
S4).
Seep/Wake Logic used to trangtion the Required for ACPI Fixed Feature
Control Logic system between the compatibility. At Control and Event
deeping and working least onedeeping Logic.
states. state needs to be
supported.
Embedded ACPI Embedded Optiondl. Generic Event

2 RTC wake-up darm is required, the fixed feature status hit is optiond.

67

Feature Name | Description Requirements Programming
M odel
Controller Controller protocol and Logic, mugt resdein
Interface interface, as described in the generd purpose
section 13. register block.
Legacy/ACPI Status bit to indicates the Required. Status bit Fixed fegture
Select sysem isusing the legacy indicates the mode Control Logic.
or ACPI power of alegacy/ACH
management mode platform.
(SCI_EN).
Lid switch Button used to indicate Optiond, strongly Generic Event
whether the sysem’slid is recommended for Feature.
open or closed (mobile mobile sysems.
systems only).
C1 Power State | Processor ingtruction to Thisisarequired Processor |SA.
place the processor into a feature.
low-power state.
C2 Power Logic to place the Optiond, strongly Fixed Feature
Contral processor into a C2 power recommended for Control Logic.
state. mobile systems.
C3 Power Logic to place the Optiond, strongly Fixed Feature
Contral processor into a C3 power recommended for Control Logic.
state. mobile systems.
Thermd Logic to generate thermd Optiona Generic Event and
Control events a specified trip Control Logic. See
points. description of
thermd logicin
section 3.9.
Device Power Contral logic for switching Optiond, strongly Generic control
Management between different device recommended for logic.
power states. mobile systems.
AC Adapter Logic to detect the Optional Generic event logic
insertion and removd of
the AC adapter.
Docking/device | Logic to detect device Optiona Generic event logic
insertion and insertion and remova
removal events

4.7 ACPI Register Model

ACP hardware resides in one of five 1/0O spaces.

72 System 1/0

?? Sygem memory
?? PCI configuration

?7? SMBus

?? Embedded controller space

68

Different implementations will result in different address spaces being used for different
functions, however, dl ACPI implementations are required to support system 1/0O space (the
other address spaces are optiond). The ACPI specification consgts of “fixed registers’ and
generd purpose regigters. The fixed register spaceis required to be implemented by dll
ACPI-compatible hardware. The generad purpose register space is required for any events
generated by vaue-added hardware.

ACPI defines aregister block. An ACPI-competible system will have an ACPI table (the
FACP, built in memory at boot-up) that hasalist of 32-bit pointers to the different register
blocks used by the ACPI driver. The bits within these registers have attributes defined for
the given register block. The types of registers that ACH defines are:

?7? StaugEnable Regigters (for events)

?? Control Regigters

If aregister block is of the status/enable type, then it will contain aregister with satus bits,
and a corresponding register with enable bits. The status and enable bits have an exact
implementation definition that needs to be followed (unless otherwise noted), which is
illustrated by the following diagram:

Status Bit

Event Input >—|Z|—j—> Event Output

Enable Bit£

Figure4-4 Block Diagram of a StatusEnable Cdll

Note that the status bit, which hardware sets by the Event Input being HIGH in this example,
can only be cleared by software writing a 1 to its bit position. Also, the enable bit has no
effect on the setting or resetting of the atus bit; it only determines if the SET gtatus bit will
generate an “Event Output,” which generates an SCI when high if its enable bit is set.

ACPI dso defines register groupings. A register grouping consists of two register blocks,
with two pointers to two different blocks of registers, where each bit location within a
register grouping is fixed and cannot be changed. The bits within aregister grouping, which
have fixed bit pogtions, can be split between the two register blocks. This dlows the bits
within aregiser grouping to reside in ether or both register blocks, facilitating the ability to
map bitswithin severd different chip partitioning and providing the programming model

with asingle register grouping bit structure,

The ACPI driver treats aregister grouping as a single register; but located in multiple places.
To read aregister grouping, the ACPI driver will read the“A” register block, followed by the
“B” regiger block, and then will logicdly “OR” the two results together (the SLP_TYP field
is an exception to this rule). Reserved hits, or unused bits within aregister block dways
return zero for reads and have no sde affects for writes (which is a requirement).

The SLP_TYPx fidd can be different for each register grouping. The respective degping
object\ Sx containsaSLP_TYPaand aSLP_TYPbfidd. That is, the object returns a
package with two integer vaues of 0-7 init. The ACPI driver will aways write the

SLP TYPavduetothe“A” register block followed by the SLP_TY Pb vaue within the field
to the“B” regiger block. All other bit locations will be written with the same vaue. Also, the
ACPI driver does not read the SLP_TY Px vaue but throws it away.

69

3 & @t o

i i i i i Register
Grouping

Figure4-5 Example Fixed Feature Register Grouping

Register Block a

As an example, the above diagram represents a register grouping conssting of register block
aand register block b. Bits“a’ and “d” areimplemented in register block b and register block
areturns a zero for these bit postions. Bits“b”, “c” and “€" are implemented in register

block aand register block b returns a zero for these bit positions. All reserved or ignored bits
return their defined ACPI vaues.

When accessing this register grouping, software will read register block a, followed by
reading register block b. Software then doesalogica OR of the two registers and then
operates on the results.

When writing to this register grouping, software will write the desired vaue to register group
afollowed by writing the same vaue to register group b.

ACP! definesthe following register blocks for fixed features. Each register block getsa
separate pointer from the FACP ACPI table. These addresses are set by the OEM as static
resources, S0 they are never changed -- the Plug and Play driver cannot re-map ACPI
resources. The following register blocks are defined:

Registers Register Blocks Register Groupings

PhiaSTS — PMia_EVT_BLK
PMib STS :)— PM1 EVT Grouping
— —_}—"pPMm1b EVT BLK

PM1b_EN
PMla _CNT PMla_CNT_BLK
:)— PM1 CNT Grouping
PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
GEEEESES :)7 GPEO_BLK General Purpose Event 0
= Block
GPE1_STS _
GPEL EN ., GPE1_BLK Glentla(ral Purpose Event 1
Bloc

Figure4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping conssts of the PM1a EVT and PM1b EVT register blocks, which
contain the fixed feature event bits. Each event register block (if implemented) contains two

70

regisers. a gatus register and an enable register. Each register grouping has a defined bit
position that cannot be changed; however, the bit can be implemented in ether register block
(A or B). The A and B regigter blocks for the events alow chipsets to vary the partitioning of
events into two or more chips. For read operations, the OS will generate aread to the
associated A and B registers, OR the two values together, and then operate on this result. For
write operations, the OS will write the vaue to the associated register in both register blocks.
Therefore, there are a number of rules to follow when implementing event registers:

?? Resarved or unimplemented bits always return zero (control or enable).

?? Writesto reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed feature control bits and consst of the

PMl1la CNT_BLK and PM1b CNT_BLK register blocks. Each register block is associated
with asingle control register. Each register grouping has a defined bit position that cannot be
changed; however, the bit can be implemented in either register block (A or B). Therearea
number of rulesto follow when implementing CNT registers

?? Reserved or unimplemented bits aways return zero (control or enable).

?? Writesto reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains asingle bit for the arbiter disable
function

The generd-purpose event register contains the event programming model for generic
features. All generic events, just as fixed events, generate SClIs. Generic event status bits can
reside anywhere; however, the top level generic event residesin one of the generd-purpose
register blocks. Any generic feature event status not in the genera-purpose register spaceis
congdered a child or sbling status bit, whose parent status bit is in the genera-purpose event
register space. Notethat it is possible to have N levels of generd- purpose events prior to
hitting the GPE event datus.

The generd-purpose event register space is contained in two register blocks: The

GPEO_BLK or the GPEL1_BLK. Each register block has a separate 32- bit pointer within the
FACP ACPI table. Each register block is further broken into two registers: GPEx_STS and
GPEX_EN. The gtatus and enable registers in the generd- purpose event registers follows the
event modd for the fixed-event registers.

4.7.1 ACPI Register Summary
The following tables summarize the ACPI reg sters.

Table4-2 PM1Event Registers

Register Size (Bytes) Address (relativeto register block)

~PM1a ST | PML EVT LE | <PM1la EVT BLK >

S N/2

PM1a EN | PML EVT LE | <PMla EVT BLK >+PML1 EVT LEN/2
N/2

PM1b_STS | PML EVT LE | <PM1b EVT BLK >
N/2

PM1b EN | PML EVT LE | <PM1b EVT BLK >+PM1 EVT LEN/2
N/2

Table4-3 PM1 Control Registers

Register Size (Bytes) Address (relativeto register block)
PM1 CNT | PM1 CNT LE |<PM1la CNT BLK >
a N
PM1 CNT | PM1 CNT LE |<PM1b CNT BLK >
b N
Table4-4 PM2 Control Register
Register Size (Bytes) Address (relativeto register block)
PM2 CNT | PM2 CNT_LE | <PM2 CNT BLK >
N
Table4-5 PM Timer Register
Register Size (Bytes) Address (relativeto register block)
PM_ TMR |PM TMR LEN | <PM_TMR BLK >
Table4-6 Processor Control Registers
Register Size (Bytes) Address (relativeto register block)
P_CNT 4 <P_BLK>
PLVL2 1 <P BLK>+4h
P LVL3 1 <P BLK>+5h
Table4-7 General-Purpose Event Registers
Register Size (Bytes) Address (relativeto register block)
GPEQO_STS | GPEQ_LEN/2 <GPEO_BLK>
GPEO EN | GPEO LEN/2 | <GPEO BLK>+GPEO LEN/2
GPEL1 STS | GPEL LEN/2 <GPE1 BLK>
GPELl EN GPEL1 LEN/2 <GPE1 BLK>+GPEL1l LEN/2

4.7.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: thePMl1a EVT _BLK isa
required register block that must be supported, and the PM1b EVT BLK isan optiond
register block. Each register block has a unique 32-bit pointer in the Fixed ACHl Table
(FACP) to dlow the PM1 event bits to be partitioned between two chips. If the

PM1b EVT BLK isnot supported, its pointer contains avaue of zero in the FACP table.
Each register block in the PM 1 event grouping contains two registers that are required to be
the same sze: the PM1x_STSand PM1x_EN (where x can be“d’ or “b”). The length of the
registersis variable and is described by the PM1_EVT_LEN field in the FACP table, which
indicates the totd length of the register block in bytes. Hence if alength of “4” is given, this
indicates that each register contains two bytes of 1/0 space. The PM 1 event register block
has aminimum sze of 4 bytes.

72

4.7.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PM1a CNT_BLK isa
required register block that must be supported, and the PM1b CNT_BLK isan optiona
register block. Each register block has a unique 32-bit pointer in the Fixed ACPl Table
(FACP) to alow the PM1 event bits to be partitioned between two chips. If the

PM1b CNT_BLK isnot supported, its pointer contains avalue of zero in the FACP table.
Each register block in the PM 1 control grouping contains asingle register: the PM1x_CNT.
The length of the register is variable and is described by the PM1 CNT_LEN fied in the
FACP table, which indicates the total length of the register block in bytes. The PM1 control
register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register

The PM2 control register is contained inthe PM2_CNT_BLK register block. The FACP
table contains alength variable for this register block (PM2_CNT_LEN) that is equd to the
szein bytes of the PM2_CNT register (the only register in this register block). This register
block is optiond, if not supported its block pointer and length contains avalue of zero.

4.7.1.4 PM Timer Register

The PM timer register is contained inthe PM_TMR_BLK register block. This register block
contains the regigter that returns the running vaue of the power management timer. The
FACP table dso contains alength variable for this register block (PM_TMR_LEN) that is
equd to the szein bytes of the PM_TMR register (the only register in this register block).

4.7.1.5 Processor Control Block

Thereis an optiond processor control register block for each processor in the system. Thisis
a homogeneous feature, o adl processors must have the same level of support. The ACPI OS
will revert to the lowest common denominator of processor control block support. The
processor control block contains the processor control register (P_CNT—a 32-bit clock
control configuration register), and the P_LVVL2 and P_LVL3 clock control registers. The 32-
bit register controls the behavior of the processor clock logic for that processor, the P LVL2
register is used to force the CPU into the C2 state, and the P_L VL3 register is used to force
the processor into the C3 Htate.

4.7.1.6 General-Purpose Event Registers

The generd-purpose event registers contain the root level eventsfor dl generic features. To
facilitate the flexibility of partitioning the root events, ACP! provides for two different
genera-purpose event blocks: GPEOQ BLK and GPEL BLK. These are separate register
blocks and are not a register grouping, because there is no need to maintain an orthogona bit
arrangement. Also, each register block containsits own length variable in the FACP table,
where GPEO_LEN and GPEL_LEN represent the length in bytes of each register block.
Each register block contains two regigters of equa length: GPEx_STS and GPEx_EN (where
x is0Qor 1). Thelength of the GPEO_STS and GPEQO_EN registersisequd to haf the
GPEQ_LEN. Thelength of the GPE1_STSand GPE1 EN registersisequa to haf the
GPEL LEN. If agereric register block is not supported then its respective block pointer and
block length values in the FACP table contain zeros. The GPEO_LEN and GPEL LEN do not
need to have the same size.

4.7.2 Required Fixed Features
This section describes the ACPI required fixed features. These features are required in every
ACPI-compatible system.

4.7.2.1 Power Management Timer

The ACPI specification requires a power management timer that provides an accurate time
vaue used by system software to measure and profile system idleness (dong with other
tasks). The power management timer provides an accurate time function while the system is
in the working (GO) state. To dlow software to extend the number of bitsin the timer, the
power management timer generates an interrupt when the last bit of the timer changes (from
Oto 1 or 1to0). ACPI supports either a 24-hit or 32-bit power management timer. The PM
Timer is accessed directly by the ACPI driver, and its programming model is contained in
fixed register gpace. The programming modd can be partitioned in up to three different
register blocks. The event bits are contained inthe PM1_EVT register grouping, which has
two register blocks, and the timer value can be accessed through the PM_TMR _BLK register
block. A block diagram of the power management timer isillusirated in the following figure:

TMR_STS
- PM1x_STS.0
Counter (] PMTMR_PME
3579545 MHZ>—B15(23/31-0)
- 24/32 TMR_EN
PM1x_EN.O

TMR_VAL
PM_TMR.0-23/0-31

Figure4-7 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that
runs off a 3.579545 MHz clock. The ACPI OS checks the FACP table to determine whether
the PM Timer isa 32-bit or 24-hit timer. The programming mode for the PM Timer condsts
of event logic, and aread port to the counter value. The event logic consists of an event satus
and enable bit. The status bit is set any time the last bit of the timer (bit 23 or bit 31) goes
from HIGH to LOW or LOW to HIGH. If the TMR_EN bit is set, then the setting of the
TMR_STSwill generate an ACPI event inthe PM1_EVT regigter grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate alarger timer.

The ACPI usestheread-only TMR_VAL fied (inthe PM TMR register grouping) to read
the current vaue of the timer. The OS never assumes an initid vaue of the TMR_VAL field;
ingtead, it reeds an initid TMR_VAL upon loading the OS and assumes that the timer is
counting. . It is alowable to stop the Timer when the system trangitions out of the working
(GO/V) dete. The only timer reset requirement is that the timer functions whilein the

working state.

The PM Timer’s programming modd isimplemented as a fixed festure to incresse the
accuracy of reading the timer.

4.7.2.2 Buttons

ACPI defines user-initiated events to request the OS to trangition the platform between the
GO working state and the G1 (deeping), G2 (soft off) and G3 (mechanica off) states. ACPI
a0 defines a recommended mechanism to unconditiondly trangtion the platform from a
hung GO working state to the G2 soft-off Sate.

73

74

ACPI operating systems use power button events to determine when the user is present. As

such, these ACPI events are associated with buttons in the ACPl specification.

The ACPI specification supports two button models.

?? A dngle-button model that generates an event for both deegping and entering the soft- off
date. The function of the button can be configured using the OS ULI.

?? A dua-button model where the power button generates a soft- off trandtion request and a
degping button generates a degping trangtion request. The function of the button is
implied by the type of button.

Control of these button events is either through the fixed programming mode or the generic

programming model (control method based). The fixed programming model has the

advantage that the OS can access the button at any time, including when the sysem is
crashed. In acrashed system with afixed-feature power button, the OS can make a“best”
effort to determine whether the power button has been pressed to trangition to the system to
the soft-of f state, because it doesn't require the AML interpreter to access the event bits.

4.7.2.2.1 Power Button

The power button logic can be used in one of two modeds: single button or dual button. In
the sngle-button modd , the user button acts as both a power button for trangtioning the
system between the GO and G2 states and a degping button for trangtioning the system
between the GO and G1 states. The action of the user pressing the button is determined by
software policy or user settings. In the dua-button model, there are separate buttons for
deeping and power control. Although the buttons gill generate events that cause software to
take an action, the function of the button is now dedicated: the deeping button generates a
deeping request to the OS and the power button generates a waking request.

Support for apower button isindicated by a combination of the PWR_BUTTON flag and the
power button device object, as shown in the following:

Indicated Support PWR_BUTTON Power Button Device
Flag Object

No power button Set HIGH Absent

Fixed feature power Set LOW Absent

button

Control method power Set HIGH Present

button

The power button can dso have an additiona cgpability to unconditionaly trangtion the
system from a hung working state to the G2 soft- off state. In the case where the OS event
handler is no longer able to respond to power button events, the power button over-ride
feature provides a back-up mechanism to unconditiondly trangtion the system to the soft-off
gate. This feature can be used when the platform doesn’t have a mechanicd off button,
which can dso provide this function. ACPI defines that holding the power button active for
four seconds or longer will generate a power button over-ride event.

47.2.2.1.1 Fixed Power Button

o PWRBTN
»

ogic Statemachine PWRBTN Event
PWRBTN_STS
PM1x_STS.8
PWRBTN_EN
PM1x_EN.8

Figure 4-8 Fixed Power Button Logic

The fixed power button hasits event programming model inthe PM1x_EVT BLK. This
logic conssts of asingle enable bit and sticky status bit. When the user presses the power
button, the power button status bit (PWRBTN_STYS) is unconditionaly set. If the power
button enable bit (PWRBTN_EN) is set and the power button status bit is set
(PWRBTN_STS) due to a button press while the syslem is in the GO state, then an SCl is
generated. The ACHI driver responds to the event by clearing the PWRBTN_STSbit. The
power button logic provides debounce logic that setsthe PWRBTN_STS bit on the button
press “edge.”

Whilethe systemisin the G1 or G2 globa states (S1, S2, S3, 4 or Sb dates), any further
power button press after the button press that trangistioned the system into the deeping state
unconditiondly sets the power button status bit and awakens the system, regardless of the
vaue of the power button enable bit. The ACPI driver responds by clearing the power button
datus bit and awakening the system.

4.7.2.2.1.2 Control Method Power Button
The power button programming model can aso use the generic programming modd. This
alows the power button to reside in any of the generic address spaces (for example, the
embedded controller) instead of fixed space. If the power button programming modd uses
the generic programming mode, then the OEM needs to define the power button as adevice
with an _HID object vaue of “PNPOCOC,” which then identifies this device as the power
button to the ACPI driver. The AML event handler then generates a Notify command to
notify the OS that a power button event was generated. While the system isin the working
date, a power button pressis a user request to transtion the system into either the deeping
(G1) or soft-off gate (G2). In these cases, the power button event handler issues the Notify
command with the device specific code of 0x80. This indicates to the ACPI driver to pass
control to the power button driver (PNPOCOC) with the knowledge that a transition out of the
GO date is being requested. Upon waking up from a G1 deeping sate, the AML event
handler generates a notify command with the code of 0x2 to indicate it was responsible for
waking up the system.
The power button device needs to be declared as a device within the ACPI name space for
the platform and only requiresan _HID. An example definition follows.
This example ASL code does the following:
?? Creates adevice named “PWRB” and associates the Plug and Play identifier (through the
_HID object) of “PNPOCOC.”
?? The Plug and Play identifier associates this device object with the power button
driver.

?? Creates an operationd region for the control method power button’ s programming mode!:

?? System 1/0O space at 0x200.

75

76

?? Unaccessed fields are written as Zer os. These status bits clear upon writinga 1 to
their bit pogtion, therefore preserved would fail in this case.

?? Creates afied within the operationa region for the power button status bit (caled PBP).
In this case the power button status bit is a child of the general-purpose status bit 0. This
bit iswritten HIGH to be cleared and is the responsibility of the ASL-code to clear (the
ACPI driver clears the generd- purpose status bits). The address of the Satus bit is
0x200.0 (bit O at address 0x200).

?? Creates an additional status bit called PBW for the power button wakeup event. Thisis
the next bit and its physica address would be 0x200.1 (bit 1 at address 0x200).

?? Generates an event handler for the power button that is connected to bit O of the generd-
purpose status register 0. The event handler does the following:

?? Clears the power button status bit in hardware (writes aoneto it)
?? Notifiesthe OS of the event by caling the Notify command passing the power
button object and the device specific event indicator 0x80.

/'l Define a control nethod power button
Devi ce(\ _SB. PVRB) {

Name(_HI D, EI SAI D(“PNPOCOC"))

}

Oper ati onRegi on(\ Pho, System O, 0x200, 0x1)
Fi el d(\ Pho, ByteAcc, NoLock, WiteAsZeros){
PBP, 1, /'l sleepl/off request

PBW 1 /'l wakeup request
} /1 end of power button device object

Scope(\ _GPE) { /1 Root level event handlers
Met hod(_LOO){ // uses bit O of GPO_STS register
I f (PBP){
St or e(One, PBP) /1 clear power button status
Noti fy(PWRB, 0x80)// Notify OS of event

I F(IiBV\} {
St or e(One, PBW
Noti fy(PM\RB, 0x2)

}
} // end of _LOO handl er
} /1 end of _GPE scope

4.7.2.2.1.3 Power Button Over-ride

The ACP! specification also allows that if the user presses the power button for more than
four seconds while the system isin the working state, a hardware event is generated and the
system will trangtion to the soft- off state. This hardware event is called a power button over-
ride. In reaction to the power button over-ride event, the hardware clears the power button
status bit (PWRBTN_STS).

4.7.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will
request the OS to trangtion the platform between the GO working and G1 deeping states.
Support for adeep button is indicated by a combination of the SLEEP BUTTON flag and
the deep button device object:

Indicated Support SLEEP_BUTTON Sleep Button Device Object
Flag

No deep button Set HIGH Absent

77

Fixed feature deep button Set LOW Absent
Control method deep Set HIGH Present
button

4.7.2.2.2.1 Fixed Sleeping Button

SLPBTN_STS

PM1x_STS.9
SLPBTN# Defguincce — >° St tSLPBI\N -
g atemachine SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure4-9 Fixed Sleep Button Logic

The fixed deegp button hasits event programming modd inthe PM1x_EVT BLK. This
logic conggts of asingle enable bit and sticky status bit. When the user pressesthe deep
button, the deep button status bit (SLPBTN_STS) is unconditiondly set. Additiondly, if the
deep button enable bit (SLPBTN_EN) is set, and the deep button status bit is set
(SLPBTN_STS, dueto a button press) while the system isin the GO state, then an SCl is
generated. The ACPI driver responds to the event by clearing the SLPBTN_STShit. The
deep button logic provides debounce logic that setsthe SLPBTN_STS bit on the button press
“edge”

While the system is deegping (in ether the SO, S1, S2, S3 or $4 dates), any further deep
button press (after the button press that caused the system trangition into the deeping state)
sets the deep button status bit (SLPBTN_STS) and awakensthe if the SLP_EN bit is set.
The ACPI driver responds by clearing the deep button status bit and awakening the system.

4.7.2.2.2.2 Control Method Sleeping Button
The degp button programming model can aso use the generic programming modd. This
alows the deep button to reside in any of the generic address spaces (for example, the
embedded controller) instead of fixed space. If the degp button programming modd resides
in generic address space, then the OEM needs to define the deep button as adevice with an
_HID object vaue of “PNPOCOE”, which then identifies this device as the degp button to the
ACH driver. The AML event handler then generates a Notify command to notify the OS
that a deep button event was generated. While in the working state, a deep button pressisa
user request to trangition the system into the deeping (G1) state. In these casesthe deep
button event handler issues the Notify command with the device specific code of 0x80. This
will indicate to the ACPI driver to pass control to the deep button driver (PNPOCOE) with the
knowledge that atrangtion out of the GO State is being requested by the user. Upon waking-
up from a G1 deeping dtate, the AML event handler generates a Notify command with the
code of Ox2 to indicate it was responsble for waking up the system.
The deep button device needs to be declared as a device within the ACPI name space for the
platform and only requiresan _HID. An example definition is shown below.
The AML code below does the following:
?? Createsadevice named “SLPB” and associates the Plug and Play identifier (through the
_HID object) of “PNPOCOE”.
?? The Plug and Play identifier associates this device object with the deep button
driver.
?? Creates an operationa region for the control method deep button’s programming model

78

?7? System |/O space at 0x201.
?? Unaccessed fields are written as Ones (these status bits clear upon writing aoneto
their bit pogtion, hence preserved would fall in this case).

?? Creates afied within the operationd region for the deep button status bit (called PBP).
In this case the deegp button status bit isa child of the generad- purpose status bit 0. This
bit iswritten HIGH to be cleared and is the responsibility of the AML codeto clear (the
ACH driver clears the generd-purpose status hits). The address of the status bit is
0x201.0 (bit O at address 0x201).

?? Creates an additional status bit caled PBW for the deegp button wakeup event. Thisis
the next bit and its physical address would be 0x201.1 (bit 1 at address 0x201).

?? Generates an event handler for the deep button that is connected to bit O of the generd-
purpose status register 0. The event handler does the following:

?? Clearsthe deep button status bit in hardware (writes aoneto it)
?? Noatifiesthe OS of the event by caling the Notify command passing the deep
button object and the device specific event indicator 0x80.

/1 Define a control nethod sleep button

Devi ce(\ _SB. SLPB) {
Name(_HI D, EI SAI D(“PNPOCOE"))
Oper ati onRegi on(\ Boo, System O, 0x201, 0x1)
Fi el d(\ Boo, ByteAcc, NoLock, WiteAsZeros){

SBP, 1, /'l sleep request
SBW 1 /1 wakeup request
} /1 end of sleep button device object
}
Scope(\ _GPE) { /'l Root |evel event handlers
Met hod(_LO1){ // uses bit 1 of GPO_STS register
I f(SBP){
St or e(One, SBP) /'l clear sleep button status

Not i fy(SLPB, 0x80) /'l Notify OS of event

}

I F(SBW {
St or e(One, SBW
Noti fy(SLPB, 0x2)

}
} // end of _LO1 handler
} /1 end of _GPE scope

4.7.2.3 Sleeping/Wake Control

The degping/wake logic conssts of logic that will sequence the system into the defined low-
power hardware deeping state (S1-4) or soft-off state (S5) and will awaken the system back
to the working state upon a wake event. Note that the SABIOS Sate is entered in a different
manner (for more information, see section 9.1.4.2).

SLP EN SLP_TYP:3

PM1x_CNT.S4.13 PM1x_CNT.S4.[10-12]
< WAK_STS
PM1x_STS.S0.15
Sleeping H
"OR" or all
Wake Wake-up/
Events
Sleep
Logic
PWRBTN_OR

Figure4-10 Sleeping/Wake Logic

Thelogic is controlled by two bit fields: Seep Enable (SLP_EN) and Sleep Type
(SLP_TYPX). Thetype of deep state desired is programmed into the SLP_TY Px field and
upon assertion of the SLP_EN the hardware will sequence the system into the defined
deeping Sate. The ACPI driver getsvduesfor the SLP_TYPx fidd from the\ Sx objects
defined in the Satic definition block. If the object ismissing the ACPI driver assumesthe
hardware does not support that deeping state. Prior to entering the desired deeping sate, the
ACPI driver will read the designated \ Sx object and place thisvaueinthe SLP_TYPfidd.
Additiondly ACP! defines afail-safe Off protocol caled the * power switch override,” which
dlowsthe user to initiate an Off sequence in the case where the system software is no longer
able to recover the system (the system has hung). ACPI defines that this sequence be
initiated by the user pressing the power button for over 4 seconds, a which point the
hardware unconditiondly sequences the system to the Off state. Thislogic is represented by
the PWRBTN_OR sgna coming into the deep logic.

Whilein any of the degping ates (G1), an enabled “Wake' event will cause the hardware to
sequence the system back to the working state (G0). The “Wake Status’ bit (WAK_STS) is
provided for the ACPI driver to “spin-on” after setting the SLP_EN/SLP_TYP bit fields.
When waking from the S1 deeping state, execution contral is passed backed to the ACPI
driver immediately, whereas when waking from the S2- S5 states execution control is passed
to the BIOS software (execution begins at the CPU’ s reset vector). The WAK_STS bit
provides a mechanism to separate the ACPI driver’s degping and waking code during an S1
sequence. When the hardware has sequenced the system into the deeping state (defined here
as the processor is no longer able to execute ingtructions), any enabled wakeup event is
alowed to set the WAK _STS bit and sequence the system back on (to the GO gtate). If the
system does not support the S1 deeping sate, the WAK _STS bit can dways return zero.
The degping/wake logic is required for ACPI compatibility, however only asingle degping
sateis required to be supported (S1-$4). If more than asingle deeping ate is supported,
then the degping/wake logic is required to be able to dynamically sequenced between the
different deeping States by waking the system, programming the new deep state into the

SLP _TYPfidd, and then by setting the SLP_EN hit.

4.7.2.4 Real Time Clock Alarm

The ACPI specification requires that the Red Time Clock (RTC)darm generate a hardware
wake-up event from the deeping state. The RTC can be programmed to generate an darm.
An enabled RTC darm can be used to generate awake event when the system isin adeegping
state. The ACPI provides for additiond hardware to support the ACPI driver in determining
that the RTC was the source of the wakeup event: the RTC_STSand RTC_EN bits.
Although these bits are optiond, if supported they must be implemented as described here. If

79

80

the RTC_STSand RTC_EN hits are not supported, the OS will attempt to identify the RTC
as a possible wakeup source; however, it might miss certain wakeup events. The RTC wake-
up feature is required to work in the following deeping sates: S1-S3. $4 wakeup is optional
and supported through the RTC_$4 flag within the FACP table (if set HIGH, then the
platform supports RTC wakeup in the $4 state)°.

When the RTC generates an dlarm event the RTC_STS bit will be set. If the RTC_EN hit is
s, an RTC hardware power management event will be generated (which will wake the
system from a deeping state, provided the battery low signd is not asserted).

RTC_STS
PM1x_STS.10

Real Time Clock
(RTC) & RTC Wake-up
Event
RTC_EN
PM1x_EN.10

Figure4-11 RTC Alarm

The RTC wakeup event status and enable bits within the fixed feature spaceis optiond, and a

flag within the FACP table (FIXED_RTC) indicatesif the register bits are to be used by the

ACP! driver or not. Having the RTC wakeup event in fixed feature space dlows the ACPI

driver to determine if the RTC was the source of the wakeup event without loading the entire

OS. If the fixed feature event bits are not supported, then the OS will attempt to determine

this by reading the RTC's satus field.

The ACPI driver supports enhancements over the existing RTC device (which only supports

a 99 year date and 24-hour darm). Optiona extensons are provided for the following

features:

?? Day Alarm. The DAY_ALRM field points to an optiond CMOS RAM location that
selects the day within the month to generate an RTC darm.

?? Month Alarm. The MON_ALRM fidd points to an optiona CMOS RAM location that
selects the month within the year to generate an RTC darm.

?? Centenary Value. The CENT field points to an optiond CMOS RAM location that
represents the centenary vaue of the date (thousands and hundreds of years).

The RTC_STShit is set through the RTC interrupt (IRQ8 in PC architecture systems). The

OS will insure that the periodic and update interrupt sources are disabled prior to deeping.

Thisdlowsthe RTC sinterrupt pin to serve as the source for the RTC_STS bit generation.

Table4-8 Alarm Fidd Decodings within the FACP Table

Field Value Address (Location) in RTC
CMOSRAM (Must be Bank 0)

DAY _ALR Eight bit value that can The DAY _ALRM fiddinthe

M represent 0x01-0x31 daysin FACP table will contain anon
BCD or 0x01-0x1F daysin zero vaue that represents an offset
binary. Bits 6 and 7 of thisfied into the RTC'sCMOS RAM area
aretreated as Ignored by that contains the day aarm vaue.
software. TheRTC is A vdueof zerointhe

3 Note that the G2/S5 “soft off” and the G3 “mechanical off” states are not deeping states.
The OS will disable the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

Field Value Address(Location) in RTC
CMOSRAM (Must be Bank 0)
initidized such that thisfied DAY_ALRM fidd indicates that
containsadon't care vaue the day darm featureis not
when the BIOS switches from supported.
legacy to ACPI mode. A don't
care value can be any unused
vaue (not 0x1-0x31 BCD or
0x01-0x1F hex) that the RTC
reverts back to a 24 hour darm.

MON_ALR | Eight bit valuethat can The MON_ALRM fiddinthe

M represent 01-12 monthsin BCD | FACP table will contain anon
or 0x01-0xC monthsin binary. zero vaue that represents an offset
The RTC isinitidized such that into the RTC'sCMOS RAM area
thisfield containsa don’'t care that contains the month darm
vaue when the BIOS switches vaue. A vaue of zerointhe
from legacy to ACPl mode. A MON_ALRM fidd indicates that
don’t care vaue can be any the month darm feature is not
unused value (not 1-12 BCD or | supported. If the month darm is
X01-xC hex) that the RTC supported, the day alarm function
reverts back to a24 hour alarm must aso be supported.
and/or 31 day adarm).

CENTURY 8-bit BCD or binary vdue. This | The CENTURY fidd inthe FACP
vaue indicates the thousand table will contain anon-zero vaue
year and hundred year that represents an offset into the
(Centenary) variadles of the RTC'sCMOS RAM area that
date in BCD (19 for this contains the Centenary vaue for
century, 20 for the next) or the date. A vaue of zero inthe
binary (x13 for this century, CENTURY fidd indicatesthat the
x14 for the next). Centenary vaueis not supported

by thisRTC.

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previoudy, power management events are generated to initiate an interrupt or
hardware sequence. ACPI operating systems use the SCI interrupt handler to respond to
events, while legacy systems use some type of trangparent interrupt handler to respond to
these events (that is, an SMI interrupt handler). ACPI-compatible hardware can choose to
support both legacy and ACPI modes or just an ACPI mode. Legacy hardware is needed to
support these features for non- ACPI compatible OS's. When the ACPI OS loads, it scansthe
BIOS tables to determine that the hardware supports ACHI, and then if the it finds the
SCI_EN bit reset (indicating that ACPI is not enabled), issues an ACPI activate command to
the SMI handler through the SMI command port. The BIOS acknowledges the switching to
the ACPI model of power management by setting the SCI_EN bit (this bit can dso be used to
switch over the event mechanism asillugtrated below):

81

82

SCILEN
PM1x_CNT.0
Power o—— » SMILEVNT
Management Dec
i >
Event Logic ! SCI_EVNT
Shareable
Interrupt

Figure4-12 Power Management Eventsto SM1/SCI Control Logic

The interrupt events (those that generate SMs in legacy mode and SCIsin ACPI mode) are

sent through a decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which

routes the interrupt events to the SMI interrupt logic. For ACPI mode this bit is set, which

routes interrupt events to the SCI interrupt logic. This bit dways return HIGH for ACPI-

compatible hardware that does not support alegacy power management mode (the bit is

wired to read as“1” and ignore writes).

The SCI interrupt is defined to be a sharegble interrupt and is connected to an OS visble

interrupt that uses a shareable protocol. The FACP ACPI table has an entry that indicates

what interrupt the SCI interrupt is mapped to (see section 5.2.5).

If the ACPI platform supports both legacy and ACPI modes, it has aregister that generates a

hardware event (for example, SMI for |A-PC processors). The ACPI driver usesthisregister

to request the hardware to switch in and out of ACPI mode. Within the FACP tables are three

vauesthat Sgnify the system 1/0 address (SMI1_CMD) of this port and the data value written

to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state

(ACPI_DISABLE).

To trangtion an ACPI/Legecy platform from the Legacy mode to the ACPI mode the

following would occur:

1. ACHPI driver checksthat the SCI_EN hit is zero, and that it isin the Legacy mode.

2. The ACPI driver doesan OUT to the SMI_CMD port with the datain the
ACPI_ENABLE field of the FACP table.

3. The ACH driver pollsthe SCI_EN bit until it issampled as SET.

To trangtion an ACPI/Legacy platform from the ACPl mode to the Legacy mode the

following would occur:

1. ACPH driver checksthat the SCI_EN hbit isone, and that it isin the ACPI mode.

2. The ACPI driver doesan OUT to the SMI_CMD port with the datain the
ACPI_DISABLE field of the FACP table.

3. The ACPI driver pollsthe SCI_EN hit until it is sampled as RESET.

Patforms that only support ACPI dways return a1 for the SCI_EN bit.

4.7.2.6 Processor Power State Control

ACPI supports placing system processors into one of four power statesin the GO working
gate. In the CO State the designated processor is executing code; in the C1-C3 statesit is not.
Whilein the CO state, ACP! alows the performance of the processor to be atered through a
defined “throttling” process (the CO Throttling state in the diagram below). Throttling
hardware lets the processor execute at a designated performance leve rdative to its
maximum performance. The hardware to enter throttling is aso described in this section.

83

THT_EN=1
and
DTY=value

Full Speed 6{0)

Interrupt or
BM Access

P_LVL2 Interrupt

Interrupt P_LVL3,
ARB_DIS=1

(€10)
Working

Figure 4-13 Processor Power States

In aworking system (globa GO working state) the OS will dynamicdly trangtion idle CPUs
into the appropriate power state. ACPI defines logic on a per-CPU basis that the OS usesto
trangition between the different processor power states. Thislogic is optiond, and is
described through the FACP table and processor objects (contained in the hierarchica name
gpace). Thefidds and flags within the FACP table describe the symmetrica features of the
hardware, and the processor object contains the location for the particular CPU’ s clock logic
(described by the P_BLK register block). The ACPI specification defines four CPU power
states for the GO working state*: CO, C1, C2 and C3.

?? Inthe CO power dtate, the processor executes.

?? Inthe C1 power dtate, the processor isin alow power state whereit is able to maintain
the context of the system caches. This sate is supported through a native instruction of
the processor (HLT for 1A-PC processors), and assumes no hardware support is needed
from the chipset.

?? Inthe C2 power dtate, the processor isin alow power state whereit is able to maintain
the context of system caches. This state is supported through chipset hardware described
in this section. The C2 power dtate islower power and has a higher exit latency than the
C1 power state.

* Note that these CPU states map into the GO (working) state. The state of the CPU is
undefined in the deeping date (G3), the Cx dates only apply to the GO state.

84

?? Inthe C3 power state, the processor isin alow power sate whereit is not necessarily
able to maintain coherency of the processor caches with respect to other system activity
(for example, snooping is not enabled at the CPU complex). This Sate is supported
through chipset hardware described in this section. The C3 power stateislower power
and has a higher exit latency than the C2 power date.

The P_BLK registers provide optional support for placing the system processorsinto the C2

or C3 states. The P_L VL2 register is used to sequence the sdlected processor into the C2

date, and the P_LVL3 register is used to sequence the selected processor into the C3 Sate.

Additional support for the C3 stateis provided through the bus master status and arbiter

disable bits (BM_STSinthe PM1 STSregister and ARB_DISinthe PM2_CNT regider).

System softwarereadsthe P_LVL2 or P_LVL3 registersto enter the C2 or C3 power state.

Hardware is required to put the processor into the proper clock state precisely on the read

operation to the appropriate P_LVLX regidter.

Processor power state support is symmetric, al processorsin a system are assumed by

system software to support the same clock states. If processors have non-symmetric power

state support, then the BIOS will choose and use the lowest common power states supported
by al the processorsin the system through the FACP table. For example, if the PO processor
supports al power gates up to and including the C3 state, but the P1 processor only supports
the C1 power state, then the ACPI driver will only placeidle processorsinto the C1 power
state (PO will never be put into the C2 or C3 power dtates). Note that the C1 power state must
be supported; C2 and C3 are optiond. (see the PROC_Cl1 flag in the FACP table description

in section 5.2.5).

4.7.2.6.1 C2Power State

The C2 gtate puts the processor into alow power state optimized around multiprocessor (MP)
and bus magter systems. The system software will autometically cause an idle processor
complex to enter a C2 dtate if there are bus masters or MP processors active (which will
prevent the OS from placing the processor complex into the C3 state). The processor
complex is able to snoop bus master or MP CPU accesses to memory while in the C2 ate.
Once the processor complex has been placed into the C2 power state, any interrupt (IRQ or
reset) will bring the processor complex out of the C2 power State.

4.7.2.6.2 C3Power State

The C3 state puts the designated processor and system into a power state where the

processor’ s cache context is maintained, but it is not required to snoop bus master or MP

CPU accesses to memory. There are two mechanisms for supporting the C3 power state:

?? Having the OS flush and invdidate the caches prior to entering the C3 state.

?? Providing hardware mechanisms to prevent masters from writing to memory (UP only
support).

In the first case the OS will flush the system caches prior to entering the C3 state. Asthereis

normally much latency associated with flushing processor caches, the ACPI driver islikely to

only support thisin MP platforms for idle processors. Fushing of the cache is through one

of the defined ACPI mechanisms (described below, flushing caches).

In UP only platforms that provide the needed hardware functiondity (defined in this section),

the ACPI driver will attempt to place the platform into amode that will prevent system bus

meagters from writing into memory while any processor isin the C3 gate. Thisisdone by

85

disabling bus masters prior to entering a C3 power state. Upon a bus master requesting an
access, the CPU will awaken from the C3 state and re-enable bus master accesses.

The ACPI driver usesthe BM_STS hit to determine which Cx power state to enter. The
BM_STSisan optiond bit that indicates when bus masters are active. The ACPI driver uses
this bit to determine the policy between the C2 and C3 power states. lots of bus master
activity demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master
activity promotes the CPU power state to the C3 power state. The ACPI driver keepsa
running history of the BM_STS hit to determine CPU power state policy.

The last hardware feature used in the C3 power state isthe BM_RLD bit. This bit determines
if the Cx power state is exited based on bus master requests. If s&t, then the Cx power stateis
exited upon a request from a bus master; if reset, the power state is not exited upon bus
master requests. In the C3 state, bus master requests need to transition the CPU back to the
CO0 date (asthe system is capable of maintaining cache coherency), but such atrangtion is

not needed for the C2 sate. The ACPI driver can optiondly set this bit when using aC3
power state, and clear it when using a C1-C2 power state.

4.7.2.6.2.1 Flushing Caches

To support the C3 power state without using the ARB_DI S feature, the hardware must

provide functiondity to flush and invaidate the processors caches (for an |A processor, this

would be the WBINVD ingtruction). To support the S2 or S3 deeping states, the hardware
must provide functiondity to flush the platform caches. Flushing of cachesis supported by
one of the following mechanisms

1. Processor indruction to write-back and invdidate system caches (WBINVD ingtruction
for |A processors).

2. Processor ingtruction to write-back but not invalidate system caches (WBINVD
ingtruction for 1A processors and some chipsets with partid support, thet is, they don’t
invaidate the caches).

3. Manud flush of caches supported by the ACPI driver.

The ACPI specification expects dl platforms to support the locd CPU ingtruction for

flushing system caches (with support in both the CPU and chipset), and provides some

limited “best effort” support for systems that don't currently meet this capability. The
method used by the platform is indicated through the appropriate FACP fidds and flags
indicated in this section.

ACPI specifies parametersin the FACP table that describe the system’ s cache capabilities. If

the platform properly supports the processor’ s write back and invadidate ingruction

(WBINVD for IA processors), then this support is indicated to the ACPI driver by setting the

WBINVD flag in the FACP table.

If the platform supports the write back and invalidate ingtruction; however, the cacheis only

flushed but not invalidated after its execution, then this support is indicated to the ACPI

driver by setting the WBINVD_FLUSH flag in the FACP table (WBINVD flag would be
cleared).

If the platform supports neither of thefirgt two flushing options, then the ACPI driver can

atempt to manudly flush the cache if it meets the following criteria

?? A cache-enabled sequentia read of contiguous physical memory of not more than 2
Mbytes will flush the platform caches.

There are two additional FACP fields needed to support manud flushing of the caches:

86

?? FLUSH_SIZE, typicdly twice the Size of the largest cache in the system.
?? FLUSH_STRIDE, typicdly the smalest cache line Sze in the system.

4.7.2.6.3 Clock Throttling (CO Power State)

While in the CO power state, the ACPI driver can generate a policy to run the processor at
less than maximum performance. The clock throttling hardware provides the driver with the
functiondity to perform thistask. The logic dlowsthe driver to program avaueinto a
register that represents the % of maximum performance it desires the processor to execute a.
When enabled, the hardware attempts to keep the processor at this minimum performance
leve.

duty valu_e S clock off time ——
clock on time
< duty width ”
P_CNT duty value

—duty offset —<«——duty width ——

Figure4-14 Throttling Example

The FACP table contains the duty offset and duty width values. The duty offset vaue
determines the offset within the P_CNT register of the duty vaue. The duty width vaue
determines the number of bits used by the duty vaue (which determines the granularity of
the throttling logic). The performance of the processor by the clock logic can be expressed
with the following equation:

dutysettin
% Performance ? ;Tdmg *100%

Equation 1 Duty Cycle Equation

Nomind performanceis defined as “close as possible, but not below the indicated
performance level.” The ACPI driver will use the duty offset and duty width to determine
how to access the duty setting field. The ACP! driver will then program the duty setting
based on the thermal condition and desired power of the processor object. The ACPI driver
caculates the nomina performance of the processor using the equation expressed in
Equation 1. Note that a dutysetting of zero is reserved.

For example, the clock logic could use the stop grant cycle to emulate a divided processor
clock frequency on an 1A processor (through the use of the STPCLK# dgnd). Thissignd
internaly stops the processor’s clock when asserted LOW. To implement logic that provides

87

eight levels of clock control, the STPCLK# pin could be asserted as follows (to emulate the
different frequency settings):

v

5:6:7

< Duty Width (3-bits}
|
I

o , 1 , 2 , 3 , 4
| 1 1 1 1

dutysetting
0 - Reserved Value

STPCLK# Signal
w

CPU Clock Stopped
4 A CPU Clock Running PP

i
L—I—I—I—I—I—I

Figure4-15 Example Control for the STPCLK#

To gart the throttling logic the ACPI driver sets the desired duty setting and then st the
THT_EN bit HIGH. To change the duty setting the OS will first reset the THT_EN bit LOW,
write another vaue to the duty setting fidld while preserving the other unused fidds of this
register, and then set the THT_EN bit HIGH again.

The examplelogic model is shown below:

P_LVL3 P_LVL2 BM_RLD ARB_DIS BM_STS
Read Read PM1X_CNT.1 PM2_CNT PMlx STS4

[1% 77

System
Arbiter

Clock Logic

é éduty width

THT_EN THTL_DTY
P_CNT4 P_CNTx

Figure4-16 ACPI Clock Logic (One per Processor)

An ACPI platform is required to support asingle CPU gate (besides C0). All of the CPU
gates occur in the GO system state; they have no meaning when the system transitions into
the deeping sate. ACPI defines the attributes of the different CPU dtates (defines four of
them). It is up to the platform implementation to map an appropriate low power CPU date to
the defined ACPI CPU date.

ACPI clock contral is supported through the optional processor register block (P_BLK).
ACPI requires that there be a unique processor register block for each CPU in the system.
Additiondly, ACPI requires that the clock logic for MP systems be symmetricdl; if the PO
processor supportsthe C1, C2, and C3 tates, but P1 only supports the C1 state, then the
ACPI driver will limit dl processors to enter the C1 sate when idle.

The following sections define the different ACPI CPU Sates.

88

4.7.2.6.4 CO Power State

Thisisthe executing state for the CPU, in dl other CPU power states the CPU is not
executing ingructions. The CPU’ s clock is running at full frequency or isrunning a a
reduced performance (for more information, see section 4.7.2.6.3).

4.7.2.6.5 C1 Power State
The C1 CPU low power gate is supported through the execution of a CPU ingtruction that
placesit into alow power state (for 1A processors thiswould be the HLT ingtruction).

4.7.2.6.6 C2Power State

The C2 power stateis an optional ACPI clock state that needs chipset hardware support. This
clock logic consstsof aP_LVL2 register that, when read, will cause the processor complex

to precisdy trangition into a C2 power state. In a C2 power state, the processor is assumed
capable of keeping its caches coherent, for example, bus master and MP activity can take
place without corrupting cache context. The C2 power state is assumed by the ACPI driver to
have lower power and higher exit latency than the C1 power dtate.

4.7.2.6.7 C3 Power State

The C3 power stateis an optional ACPI feature that needs chipset hardware support. This
logic congsts of aP_LVL3 register which, when read, will cause the system to precisely
trangtion into a C3 power sate. When the system isin a C3 power state, the system CPU is
assumed to be unable to maintain cache coherency; it is the responsibility of the OSto place
the system into a condition where the caches will not become incoherent with memory. The
ACPI specification provides a standard way for the ACPI driver to disable bus masters that
will guarantee coherency in a uniprocessor (UP) system. In multiprocessor systems, the OS
will flush and invalidate caches prior to entering the C3 State.

4.7.3 Fixed Feature Space Registers

The fixed feature pace registers are manipulated directly by the ACP! driver. The following
sections describes fixed features under the programming modd. The ACPI driver ownsdl
the fixed resource registers, these registers are not manipulated by ASL/AML code.
Regigters are accessed with any width up to its register width (byte granular).

4.7.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bitsthat can be distributed between two different
register blocks. This dlows these registers to be partitioned between two chips, or al placed
in asingle chip. Although the bits can be split between the two register blocks (each register
blocks has a unique pointer within the FACP table), the bit positionsis maintained. The
register block with unimplemented bits (that is, those implemented in the other register
block) adways returns zeros, and writes have no sde effects.

4.7.3.1.1 Power Management 1 Status Registers
Regi ster Location: <PMla_EVT_BLK/ PMLb_EVT_BLK> System |/ O Space

Default Val ue: 00h
Attribute: Read/ Wite
Si ze: PML_EVT_LEN 2

The PM 1 dtatus registers contains the fixed feature status bits. The bits can be split between
two registers: PM1a STSor PM1b _STS. Each register grouping can be at a different 32-bit

aligned address and is pointed to by the PM1a EVT BLK or PM1b EVT BLK. Thevaues
for these pointers to the register space are found in the FACP table. Accessesto the PM1
status registers are done through byte or word accesses.

For ACPl/legacy systems, when trangitioning from the legacy to the GO working sate this
register is cleared by BIOS prior to setting the SCI_EN hit (and thus passing control to the
0S). For ACPI only platforms (where SCI_EN is always set), when trangitioning from ether
the mechanicd off (G3) or soft-off state to the GO working state this register is cleared prior
to entering the GO working state.

Thisregister contains optiona features enabled or disabled within the FACP table. If the
FACP table indicates that the feature is not supported as a fixed feature, then software treats
these bits asignored.

Table4-9 PM1 Status Registers Fixed Feature Status Bits

Bit Name Description

0 TMR_STS Thisisthetimer carry gatus bit. Thisbit gets st
anytimethe 23'%31% hit of a 24/32-hit counter
changes (whenever the MSB changes from low to
high or high to low. While TMR_EN and TMR_STS
are s, an interrupt event israised.

1-3 Reserved Reserved.

4 BM_STS Thisis the bus master datus bit. Thisbit is set any
time a system bus master requests the system bus, and
can only be cleared by writing aone to this bit
position. Note that this bit reflects bus master activity,
not CPU activity (this bit monitors any bus master

that can cause an incoherent cache for a processor in
the C3 gtate when the bus master performs a memory
transaction).

5 GBL_STS Thisbit is set when an SCI is generated due to the
BIOS wanting the attention of the SCI handler. BIOS
will have acontrol bit (sSomewhere within its address
space) that will raise an SCI and set thisbit. Thishitis
st in response to the BIOS releasing control of the
globa lock and having seen the pending bit set.

6-7 | Reserved Reserved. These bits aways return avaue of zero.

8 PWRBTN_STS Thisoptiond bit is set when the Power Button is
pressed. In the system working state, while
PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event israised. In the deeping or soft-off
states a wakeup event is generated when the power
button is pressed (regardless of the PWRBTN_EN bit
stting). Thishit isonly set by hardware and can only
be reset by software writing a one to this bit postion.
ACPI defines an optiona mechanism for

unconditiond trangtioning a crashed platform from

89

90

Bit

Name

Description

the GO working state into the G2 soft- off state caled
the power button over-ride. If the Power Button is
held active for more than four seconds, thisbit is
cleared by hardware and the system transitionsinto
the G2/S5 Soft Off gtate (unconditionaly).

Support for the power button isindicated by ether the
PWR_BUTTON flag in the FACP table being reset
zero. If the PWR _BUTTON flagisset HIGH or a
power button device object is present in ACPI name
space, than this bit field is treated asignored by
software.

If the power button was the cause of the wakeup
(from an S1-SA date), then this bit is set prior to
returning control to the OS.

SLPBTN_STS

This optiond bit is set when the deep button is
pressed. In the system working state, while
SLPBTN_EN and SLPBTN_STS are both s&t, an
interrupt event is raised. In the deeping or soft-off
states awakeup event is generated when the deeping
button is pressed and the SLPBTN_EN bit isset. This
bit isonly set by hardware and can only be reset by
software writing a one to this bit pogtion.

Support for the deep button isindicated by ether the
SLP BUTTON flag in the FACP table being reset
zero. If the SLP BUTTON flagisset HIGH or a
deep button device object is present in ACPI name
space, than this bit field istreated asignored by
software.

If the deep button was the cause of the wakeup (from
an S1-$4 gate), then this bit is set prior to returning
control to the OS.

10

RTC STS

Thisoptiond bit is set when the RTC generates an
dam (assartsthe RTC IRQ sgnd). Additiondly, if
the RTC_EN bhit is st then the setting of the
RTC_STS hit will generate a power management
event (an SCI, SMI, or resume event). Thisbit isonly
st by hardware and can only be reset by software
writing aone to this bit postion.

If the RTC was the cause of the wakeup (from an Sl1-
S3 date), then this bit is set prior to returning control
tothe OS. If the RTC_$4 flag within the FACP table
is s, and the RTC was the cause of the wakeup from
the 4 state), then this bit is set prior to returning
control to the OS.

11

Ignore

Thisbit fidd isignored by software.

Bit Name Description

12- | Resarved Reserved. These bits aways return avaue of zero.
14

15 WAK_STS Thisbit is set when the sysem isin the degping date

and an enabled wakeup event occurs. Upon setting
this bit sysem will transition to the working State.
Thisbit is set by hardware and can only be cleared by
software writing a one to this bit position.

4.7.3.1.2 Power Management 1 Enable Registers

Regi ster Location: <PMla_EVT_BLK/ PMLb_EVT_BLK>+PML_EVT_LEN/ 2 System |/ O Space
Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_EVT_LEN 2

The PM1 enable registers contains the fixed feature enable bits. The bits can be split between
two registers: PM1a EN or PM1b_EN. Each register grouping can be at a different 32-bit
digned address and is pointed to by the PM1a EVT_BLK or PM1b EVT_BLK. Thevaues
for these pointers to the register space are found in the FACP table. Accessesto the PM1
Enable registers are done through byte or word accesses.

For ACPI/legacy systems, when trangtioning from the legacy to the GO working sate the
enables are cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to the
0S). For ACPI only platforms (where SCI_EN is dways set), when trangtioning from ether
the mechanical off (G3) or soft-off state to the GO working state this register is cleared prior
to entering the GO working State.

This register contains optiona features enabled or disabled within the FACP table. If the
FACP table indicates that the feature is not supported as a fixed feature, then software treats
the enable bits as write as zero.

Table4-10 PM 1 Enable Registers Fixed Feature Enable Bits

Bit Name Description

0 TMR_EN Thisisthetimer carry interrupt enable bit. When this
bit is set then an SCI event is generated anytime the
TMR_STShitisset. When thishit is reset then no
interrupt is generated when the TMR_STS bit is st.

1-4 | Resarved Reserved. These bits adways return avaue of zero.

5 GBL_EN The globa enable bit. When both the GBL_EN bit
and the GBL_STS bit are set, an SCl israised.

6-7 | Reserved Reserved.

8 PWRBTN_EN This optiond bit is used to enable the setting of the

PWRBTN_STS hit to generate a power management
event (SCI or wakeup). The PWRBTN_STS hit is set
anytime the power button is asserted. The enable bit
does not have to be sat to enable the setting of the
PWRBTN_STS hit by the assertion of the power
button (see description of the power button hardware).

91

92

Bit Name Description

Support for the power button is indicated by either the
PWR_BUTTON flag in the FACP table being reset
zero. If the PWR_BUTTON flagisset HIGH or a
power button device object is present in ACPI name
space, than this bit field istreated asignored by
software.

9 SLPBTN_EN This optiond bit is used to enable the setting of the
SLPBTN_STS hit to generate a power management
event (SCI or wakeup). The SLPBTN_STSbit is set
anytime the deep button is asserted. The enable bit
does not have to be sat to enable the setting of the
SLPBTN_STS hit by the active assertion of the deep
button (see description of the deep button hardware).
Support for the deep button isindicated by ether the
SLP BUTTON flag in the FACP table being reset
zero. If the SLP_ BUTTON flagisset HIGH or a
deep button device object is present in ACPl name
space, than thishit field istreated as ignored by
software.

10 RTC EN This optiond bit is used to enable the setting of the
RTC_STShit to generate awakeup event. The
RTC _STShitisset anytime the RTC generates an
dam.

11- | Resarved Reserved. These bits dways return avalue of zero.
15

4.7.3.2 PM1 Control Grouping

The PM1 Control Grouping has aset of bits that can be distributed between two different
regigters. This alows these registers to be partitioned between two chips, or dl placedin a
single chip. Although the bits can be split between the two register blocks (each register
block has a unique pointer within the FACP table), the bit positions specified hereis
maintained. The register block with unimplemented bits (thet is, those implemented in the
other register block) returns zeros, and writes have no side effects.

4.7.3.2.1 Power Management 1 Control Registers

Regi ster Location: <PMla_CNT_BLK/ PMLb_CNT_BLK> System | / O Space
Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_CNT_LEN

The PM1 control registers contains the fixed feature control bits. These bits can be split
between two registers. PM1a CNT or PM1b CNT. Each register grouping can be at a
different 32-bit aligned address and is pointed to by the PM1a CNT_BLK or

PM1b CNT_BLK. The vauesfor these pointers to the register space are found in the FACP
table. Accessesto PM 1 control registers are accessed through byte and word accesses.

This register contains optiona features enabled or disabled within the FACP table. If the
FACP table indicates that the feature is not supported as a fixed feature, then software treats
these bits asignored.

Table4-11 PM1 Control Registers Fixed Feature Control Bits

Bit Name Description

0 SCI_EN Sdlects the power management event to be either an
SCI or SMI interrupt for the following events. When
thisbit is s, then power management events will
generate an SCI interrupt. When thishit is reset
power management events will generate an SM
interrupt. It is the responsibility of the hardware to set
or reset thishit. The ACPI driver ways preserves
this bit position.

1 BM_RLD When s, this bit alows the generation of abus
master request to cause any processor in the C3 state
to trangition to the CO state. When this bit isrest, the
generation of abus master request does not effect any
processor in the C3 state.

2 GBL_RLS Thiswrite-only bit is used by the ACPI software to
raise an event to the BIOS software, that is, generates
an SMI to pass execution control to the BIOS for IA-
PC platforms. BIOS software has a corresponding
enable and gtatus bit to contral its ability to receive
ACPI events (for example, BIOS_EN and

BIOS STS). The GBL_RLShit is set by the ACPI
driver to indicate arelease of the globa lock and the
Seiting of the pending bit in the FACS memory

structure.
3-8 | Resarved Reserved. These bits are reserved by the ACHI driver.
9 Ignore Software ignores this bit field.
10- | SLP_TYPx Defines the type of deeping state the system enters
12 when the SLP_EN hit is set to one. This 3-hit fied

defines the type of hardware deep state the system
enterswhen the SLP_EN bit isset. The\ Sx object
contains 3-bit binary values associated with the
respective deeping state (as described by the object).
The ACPI driver takes the two vaues from the\ Sx
object and programs each vaue into the respective
SLP_TYPX fidd.

13 SLP EN Thisisawrite-only bit and readsto it dways return a
zero. Setting this bit causes the system to sequence
into the deeping State associated with the SLP_TY Px
fields programmed with the values from the\ Sx
object.

14- | Resarved Reserved. Thisfield aways returns zero.

94

Bit Name Description

15

4.7.3.3 Power Management Timer (PM_TMR)
Regi ster Location: <PM TMR_BLK> System |/ O Space

Default Val ue: 00h
Attribute: Read- Onl y
Si ze: 32-bits

This read-only register returns the current vaue of the power management timer (PM timer).
The FACPtable hasaflag cdled TMR_VAL_EXT that an OEM setsto indicate a 32-bit PM
timer or reset to indicate a 24-bit PM timer. When the lagt bit of the timer togglesthe
TMR_STShit isset. Thisregigter is accessed as 32-hits.

Thisregister contains optiona features enabled or disabled within the FACP table. If the
FACP table indicates that the feature is not supported as a fixed feature, then software treats
these bits asignored.

Table4-12 PM Timer Bits

Bit Name Description

0-23 | TMR_VAL This read-only fidd returns the running count of the
power management timer. Thisis a 24-bit counter that
runs off a 3.579545-MHz clock and countswhilein
the S0 (working) system state. The sarting vaue of
the timer is undefined, thus dlowing the timer to be
reset (or not) by any trangtion to the SO state from
any other gate. Thetimer isreset (to any initid

vaue), and then continues counting until the sysem’s
14.31818 MHz clock is stopped upon enter its Sx
date. If the clock is restarted without a reset, then the
counter will continue counting from where it stopped.

24- | E TMR VAL This read-only field returns the upper eight bits of a
31 32-bit power management timer. If the hardware
supports a 32-hit timer, then thisfidd will return the
upper eight bits; if the hardware supports a 24-bit
timer then thisfidd returns dl zeros.

4.7.3.4 Power Management 2 Control (PM2_CNT)
Regi ster Location: <PM2_BLK> System /O

Default Val ue: 00h
Attribute: Read/ Wite
Si ze: PM2_CNT_LEN

Thisregigter block is naturdly aigned and accessed based on its length. For ACPI 1.0 this
register is byte digned and accessed as a byte.

This register contains optiond features enabled or disabled within the FACP table. If the
FACP table indicates that the feature is not supported as a fixed feature, then software treats
these bits asignored.

95

Table4-13 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system
arbiter. When thisbit is LOW the system arbiter is
enabled and the arbiter can grant the bus to other bus
magters. When this bit is HIGH the system arbiter is
disabled and the default CPU has ownership of the
system.

The ACPI driver clears this bit when using the CO, C1
and C2 power states.

1-7 Reserved Reserved.

4.7.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. Thereisone
processor register block per processor in the system. For more information about controlling
processors and control methods that can be used to control processors, see section 8. This
register block is DWORD digned and the context of this register block is not maintained
across S3 or 4 deeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32
Regi ster Location: <P_BLK> System | / O Space

Defaul t Val ue: 00h
Attribute: Read/ Wite
Si ze: 32-bits

Thisregigter is accessed asa DWORD. The CLK_VAL field iswhere the duty setting of the
throttling hardware is programmed as described by the DUTY_WIDTH and
DUTY_OFFSET vauesin the FACP table. Softwaretrestsal other CLK_VAL bitsas
ignored (those not used by the duty setting value).

Table 4-14 Processor Control Register Bits

Bit Name Description
0-3 | CLK VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock asset in

the CLK_VAL fidd. THT_EN bit must be reset
LOW when changing the CLK_VAL fidd (changing
the duty setting).

5-31 | CLK_VAL Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8
Regi ster Location: <P_BLK>+4 System |/ O Space

Default Val ue: 00h
Attribute: Read- Onl y
Si ze: 8-bits

Thisregister is accessed as a byte.

96

Table4-15 Processor LVL 2 Register Bits

Bit Name Description

0-7 |PLVL2 Reads to this register return dl zeros, writesto this
register have no effect. Reads to this register dso
generate a“enter a C2 power dtate” to the clock
contral logic.

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Regi ster Location: <P_BLK>+5h System |/ O Space

Default Val ue: 00h
Attribute: Read- Onl y
Si ze: 8-bits

Thisregister is accessed as a byte.
Table4-16 Processor LVL 3 Register Bits

Bit Name Description

0-7 |PLVL3 Reads to thisregister return al zeros, writesto this
register have no effect. Reads to thisregister dso
generate a“enter a C3 power state’ to the clock
contral logic.

4.7.4 Generic Address Space

ACP! provides amechanism that dlows a unique piece of “vaue added’ hardware to be
described to the ACPI driver in ACPI name space. There are a number of rulesto be
followed when designing ACPI-compatible hardware.

Programming bits can residein any of the defined generic address spaces (system 1/O,
system memory, PCI configuration, embedded controller, or SMBus), but the top-leve event
bits are contained in the general-purpose registers. The genera- purpose registers are pointed
to by the GP_REG block, and the generic register space can be any of the defined ACPI
address spaces. A device' s generic address space programming model is described through
an asociated object in the ACPI name space, which specifies the bit' s function, location,
address space, and address |ocation.

The programming modd for devicesis normdly broken into status and control functions.
Status bits are used to generate an event that alowsthe ACH! driver to cdl a control method
associated with the pending status bit. The called control method can then control the
hardware by manipulating the hardware control bits or by investigating child status bits and
caling ther respective control methods. ACPI requires that the top leve “parent” event
status and enable bitsresde in either the GPEQO_STS or GPEL_STSregigters, and “child’
event status bits can reside in generic address space.

The example beow illustrates some of these concepts. The top diagram shows how the logic
is partitioned into two chips: achipset and an embedded controller.

?? The chipsat contains the interrupt logic, performs the power button (whichis part of the
fixed register space, and is not discussed here), the lid switch (used in portablesto
indicate when the clam shell lid is open or closed), and the RI# function (which can be
used to awaken a deeping system).

97

?? The embedded controller chip is used to perform the AC power detect and dock/undock
event logic. Additiondly, the embedded controller supports some system management
functions usng an OS-transparent interrupt in the embedded controller (represented by
the EXTSMI# sSgnd).

Momentary
Power i
PWRBTN#

8 »
al 1 Ll

[0
o
8
g
= EC CS# i
Bution - ~ ”| Embedded |+*“—
° |le EXTSMI#
ACPI £ Controller
EXTPME#
. S le -
Compatlble B DOCK# Docking
Chipset 3 Chip
o)
Momentary 2
E 5
LID ™ L |
Switch Y D
¢ RI#
EXTSMI# SMI only
SMI Onl Y v | | rve————
GPx_REG Events EXTSMI#} LEXTSMIZ) sources
Block QSBSTS
£C.sTs -4
GP_STS.0
_(DQ EXTPMER —XEMER T T PMER .‘ DocK.sTs

ES }OQ—(DOCK# — Docx#)—DQ—-&

scis GPENO
Shareable -
Interrupt RI_STS
GP_STS.1
RI#
RI_EN

GP_EN.1

LID_STS

GP_STS.2
(=<t
lgunm
GP_EN.2

< LID_POL
$33.2

Other SCI
sources

Figure4-17 Example of General-Purpose vs Generic Address Space Events

At thetop levd, the generic eventsin the GPEX_STSregigter are the:

?? Embedded controller interrupt, which contains two query events. one for AC detection
and one for docking (the docking query event has a child interrupt status bit in the
docking chip).

?? Ring indicate Satus (used for awvakening the system).

?? Lid Satus.

The embedded controller event gatus bit (EC_STS) is used to indicate that one of two query

events are active.

?? A query event is generated when the AC# signdl is asserted. The embedded controller
returns a query vaue of 34 (any byte number can be used) upon aquery command in
response to this event; the ACPI driver will then schedule for execution the control
method associated with query value 34.

?? Another query event isfor the docking chip that generates a docking event. In this case,
the embedded controller will return a query vaue of 35 upon aquery command from
system software responding to an SCI from the embedded controller. The ACHI driver

98

will then schedule the control method associated with the query vaue of 35 to be
executed, which services the docking event.
For each of the status bitsin the GPEx_STS regidter, thereis a corresponding enable bit in
the GPEX_EN register. Note that the child status bits do not necessarily need enable bits (see
the DOCK_STS hit).
Thelid logic contains acontrol bit to determineif its Satus bit is set when the LID is open
(LID_POL isHIGH and LID isHIGH) or closed (LID_POL isLOW and LID isLOW).
This contral bit resdesin generic I/O space (in this case, bit 2 of system 1/O space 33h) and
would be manipulated with a control method associated with the lid object.
Aswith fixed events, the ACPI driver will clear the atus bits in the GPEX register blocks.
However, AML code clears dl sibling status bits in generic space.
Generic features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACHI
specification aso provides specific control methods for notifying the OS of certain power
management and Plug and Play events. Review section 5 to understand the types of
hardware functiondity that supports the different types of subsystems. The following isalist
of features supported by APCI; however, the list is not intended to be complete or
comprehengve:
Device insartion/gection (for example, docking, device bay, A/C adapter)
Batteries’
Patform therma subsystem
Turning on/off power resources
Mobilelid Interface
Embedded controller
Sysem indicators
OEM -gpecific wakeup events
Plug and Play configuration

3IIIIIIIN

4.7.4.1 General-Purpose Register Blocks

ACPI supports up to two genera-purpose register blocks. Each register block contains two
regisers. an enable and a status register. Each register block is 32-bit digned. Each register
inthe block is accessed asabyte. It isup to the specific design to determine if these bits
retain their context across deeping or soft-off dates. If they lose their context acrossa
deeping or Soft-off Sate, then BIOS resets the respective enable bit prior to passing control
to the operating system upon awakening.

4.7.4.1.1 General-Purpose Event 0 Register Block

This register block consgts of two registers: The GPEO_STS and the GPEQO_EN regigters.
Each regigter’ slength is defined to be haf the length of the GPEO register block, and is
described in the ACPI FACP table s GPEO_BLK and GPEO_BLK_LEN operators. The
ACPI driver owns the generd- purpose event resources and these bits are only manipulated
by the ACPI driver; ASL/AML code can not access the general-purpose event registers.

® ACPI OS's assume the use of the Duracell/Intel defined standard for batteries, caled the
“Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by
OEMs that use a proprietary “control method” battery interface.

99

It is envisoned that chipsetswill contain GPE event registers that provide GPE input pins for
various events. The platform designer would then wire the GPES to the various vaue added
event hardware and the AML/ASL code would describe to the OS how to utilize these
events. Assuch, there will be the case where a platform has GPE events that are not wired to
anything (they are present in the chip set), but are not utilized by the platform and have no
associated ASL/AML code. In such, cases these event pins are to be tied inactive such that
the corresponding SCI gtatus bit in the GPE register is not set by afloating input pin.

4.7.4.1.1.1 General-Purpose Event 0 Status Register
Regi ster Location: <GPEO_STS> System |/ O Space

Default Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK_LEN/ 2

The generd-purpose event 0 status register contains the genera- purpose event status bitsin
bank zero of the general-purpose registers. Each available satus bit in this register
corresponds to the bit with the same bit position in the GPEOQ_EN register. Each available
datus bit in this register is set when the event is active, and can only be cleared by software
writing aone to its respective bit position. For the general-purpose event registers,
unimplemented bits are ignored by the OS.

Each gtatus bit can optiondly wake up the system if asserted when the system isin a deeping
state with its respective enable bit set. The ACPI driver accesses GPE registers through byte
accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register
Regi ster Location: <GPEO_EN> System |/ O Space

Default Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK_LEN 2

The generd-purpose event 0 enable register contains the genera- purpose event enable bits.
Each available enable bit in this register corresponds to the bit with the same bit position in
the GPEO_STSregigter. The enable bitswork amilar to how the enadle bitsin the fixed-
event registers are defined: When the endble bit is set, then a set status bit in the
corresponding status bit will generate an SCI bit. The ACPI driver accesses GPE registers
through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block

This register block conssts of two registers: The GPEL_STS and the GPEL_EN regigters.
Each regigter’ s length is defined to be half the length of the GPEL register block, and is
described in the ACPI FACP table s GPEL BLK and GPEL BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register
Regi ster Location: <GPE1_STS> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK_LEN 2

The generd -purpose event 1 status register contains the generd-purpose event status bits.
Each avalable gatus hit in this register corresponds to the bit with the same bit postionin
the GPEL _EN regigter. Each avalable gatus bit in this register is set when the event is
active, and can only be cleared by software writing a one to its respective bit position. For
the genera- purpose event registers, unimplemented bits are ignored by the operating system.

100

Each gtatus hit can optionaly wakeup the system if asserted when the system isin adesping
dtate with its repective enable bit set.
The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.2.2 General-Purpose Event 1 Enable Register

Regi ster Location: <GPE1_EN> System |/ O Space

Default Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK_LEN 2

The generd-purpose event 1 enable register contains the generd- purpose event enable.
Each available enable bit in this register corresponds to the bit with the same bit position in
the GPEL_STSregister. The enable bitswork smilar to how the engble bitsin the fixed-
event regigers are defined: When the enable bit is set, a set gatus bit in the corresponding
datus bit will generate an SCI bit.

The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices
This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch

The Lid switch is an optiond festure present in mogt “clam shdl” style mobile computers. It
can be used by the operating system as palicy input for degping the system, or for waking up
the system from a deeping state. If used, then the OEM needsto define the lid switch asa
device with an HID object vaue of “ PNPOCOD”, which identifies this device asthe lid
switch to the ACP! driver. The Lid device needs to contain a control method that returnsits
gatus. The Lid event handler AML code re-configures the lid hardware (if it needsto) to
generate an event in the other direction, clear the status, and then notify the OS of the event.
Example hardware and ASL code is shown below for such adesign.

S

Momentary Normally
Open push button

8ms X

Debounce
LID_STS

LID_POL

Figure4-18 Example Generic Address Space Lid Switch Logic

Thislogic will set the Lid status bit when the button is pressed or released (depending on the
LID_POL hit). The ASL code defines the following:
?? An operationd region where the lid polarity resides in address space.
?? System address space in registers 0x201.
?? A fidd operator to allow AML code to access this bit:
?? Polarity contral bit (LID_POL) is called LPOL and is accessed at 0x201.0.
»
?? Createsadevice called “\LID” with the following:
?? A Plug and Play identifier “PNPOCOD” that associates the ACPI driver with this
object.
?? Defines an object that specifies achange in thelid's status bit can wake the
system from the 4 deep state and from dl higher deep States (S1, S2, or S3).

101

?? Thelid switch event handler that does the following:
?? Ddiinesthelid’ sgtatusbit (LID_STS) as a child of the genera- purpose event O
register bit 1.
?7? Dedfinesthe event handler for the lid (only event handler on this satus bit) thet
does the following:
7
?? Hipsthe polarity of the LPOL bit (to cause the event to be generated on
the opposite condition).
?? Generates anatify to the operating system that does the following:
?? Passesthe \LID object.
?? Indicates a device specific event (notify vaue 0x80).

/1 Define a Lid switch
Oper ati onRegi on(\ Pho, Systenml O, 0x201, O0x1)
Fi el d(\ Pho, ByteAcc, NoLock, Preserve) {
LPOL, 1 /1 Lid polarity control bit

}

Devi ce(\ _SB. LI D) {
Name(_HI D, EI SAI D(“PNPOCOD"))
Met hod(_LI D) { Return(LPOL) }
Name(_PRW Package(2) {
1 /1 bit 1 of GPE to enable Lid wakeup

\‘_S4} /1 can wakeup from S4 state
)
}
Scope(\ _GPE) { /1 Root level event handlers
Met hod(_LO1){ /'l uses bit 1 of GPO_STS register

Not (LPOL, LPOL) // Flip the |id polarity bit
Noti fy(LID, 0x80)// Notify OS of event
}

}

At thetop levd, the generic eventsin the GPEX_STS register are:

?? Embedded controller interrupt, which contains two query events. one for AC detection
and one for docking (the docking query event has a child interrupt Satus bit in the
docking chip).

?? Ring indicate status (used for awakening the system).

?? Lid datus.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query

events are active.

?? A query event is generated when the AC# signdl is asserted. The embedded controller
returns aquery vaue of 34 (any byte number can be used) upon a query command in
response to this event; the ACPI driver will then schedule for execution the control
method associated with query value 34.

?? Another query event isfor the docking chip which generates a docking event. In this
case, the embedded controller will return a query vaue of 35 upon aquery command
from system software responding to an SCI from the embedded controller. The ACPI
driver will then schedule the control method associated with the query value of 35 to be
executed, which services the docking event.

102

For each of the gtatus bitsin the GPEx_STS regigter, there is a corresponding endble bit in
the GPEX_EN register. Note that the child status bits do not necessarily need enable bits (see
the DOCK_STS hit).

The lid logic contains a contral bit to determine if its satus bit is set whenthe LID is open
(LID_POL isHIGH and LID isHIGH) or closed (LID_POL isLOW and LID isLOW). This
control bit resdesin generic 1/0 space (in this case, bit 2 of system 1/O space 33h) and would
be manipulated with a control method associated with the lid object.

Aswith fixed events, the ACPI driver will clear the status bits in the GPEX register blocks.
However, AML codeisrequired to clear dl sbling status bitsin generic space.

Generic features are controlled by OEM supplied AML code. ACPI provides both an event
and control modd for development of these features. The ACPI specification aso provides
gpecific control methods for notifying the OS of certain power management and Plug and
Play events. Review section 5 to understand what types of hardware hooks are required to
support the different types of subsystems. Thefollowing isalist of festures supported by
APCI, however the list is not intended to be complete or comprehensive:

Device insertion/gection (e.g. docking, device bay, A/C adapter)

Batteries®

Patform therma subsystem

Turning on/off power resources

Mobile lid interface

Embedded controller

System indicators

OEM -specific wake-up events

Plug and Play configuration

3IIIIIIIS

4.7.4.2.2 Embedded Controller
ACPH provides a standard interface that enables AML code to define and access generic logic
in “embedded controller space’. This supports current computer models where much of the
vaue added hardware is contained within the embedded controller while dlowing the AML
code to access this hardware in an abstracted fashion.
The embedded controller is defined as a device and must contain a set number of control
methods:
_HID with avaue of PNPOAQ9 to associate this device with the ACPI’ s embedded
controller’ sdriver.
_CRSto return the resources being consumed by the embedded controller.
_GPE that returns the genera purpose event bit that this embedded controller iswired
to.
Additionally the embedded controller can support up to 255 generic events per embedded
controller, referred to as query events. These query event handles are defined within the

® ACPI OS's assume the use of the Duracell/Intel defined standard for batteries, called the
“Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by
OEMs that use a proprietary “control method” battery interface.

embedded controller’ s device as control methods. An example of defining an embedded

controller device is shown baow:

Devi ce(\ _EC0) {
/1 PnP ID
Name(_HI D, EI SAlI D(PNPOCO09))
/1 Returns the “Current Resources” of EC
Name(_CRS, Buffer(){0x4B, 0x62, 0, 1, O0x4B
0x66, 0, 1, 0x79, 0})
/1 Define that the EC SCl is bit 0O of the GP_STS register
Name(_GPE, 0) /'l enmbedded controller is wired to bit 0 of GPE

Oper ati onRegi on(\ ECO, EnbeddedControl, 0, OxFF)
Fi el d(\ ECO, AnyAcc, Lock, Preserve) {
/1 Field definitions

NEt}hod(QOO){.)
Met hod(QFF) {. . }
}

For more information on the embedded controller see section 13.

4.7.4.2.3 Fan
ACPI has adevice driver to control fans (active cooling devices) in platforms. A fanis

defined as a device with the Plug and Play 1D of “PNPOCOB”. It should then contain alist

power resources used to control the FAN.
For more information, see section 10.

103

5. ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core
power management festures of amachine, as described in section 4. ACPI dso provides an
abgtract interface for controlling the power management and configuration of an ACPI

system. Findly, ACPI defines an interface between an ACPI-compatible OS and the system
BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tablesto

describe system information, features, and methods for controlling those features. These

tables list devices on the system board or devices that cannot be detected or power managed

using some other hardware standard, plus their capabilities as described in section 3. They

dso lig system capabilities such as the deeping power states supported, a description of the

power planes and clock sources available in the system, batteries, sysem indicator lights, and

30 on. This enablesthe ACPI driver to control system devices without needing to know how

the system controls are implemented.

Topics covered in this section are;

?? The ACPl system description table architecture is defined, and the role of OEM -provided
definition blocks in that architecture is discussed.

?? The concept of ACPI name space is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer structure is located in the system’s memory address
gpace and is setup by the BIOS. This structure contains the address of the Root System
Description Table, which references other Description Tables that provide datato the OS,
supplying it with knowledge of the base system’ s implementation and configuration (see
Fgure5-1).

In low memory space on

16 byte boundry Located in memory space (0 - 4G)
A A

(1 f 1

Root System Root System

Description Pointer Description Table

RSD PTR
Pointer

Entry
Entry || contents contents
Entry

Figure5-1 Root System Description Pointer and Table

All description tables gtart with identical headers. The primary purpose of the description
tablesisto define for the OS various industry- standard implementation details. Such
definitions enable various portions of these implementations to be flexible in hardware

Intel Microsoft Toshiba

106

requirements and design, yet ill provide the OS with the knowledge it needs to control
hardware directly.

The Root System Description Table (“RSDT”) points to other tablesin memory. Always the
fird table, it points to the Fixed ACPI Description table (“FACP’). The datawithin thistable
includes various fixed-length entries that describe the fixed ACPI features of the hardware.
The FACP table dways refers to the Differentiated System Description Table (“DSDT”),
which contains information and descriptions for various system fegtures. The relaionships
between these tablesis shown in Figure 5-2.

Fixed ACPI Differentiated System Firmware ACPI
Lo Control Structure

Description Table Description Table
FACS
wake vector
shared lock

Static info
FIRM SIETERIELES \ I
DSDT — Deggélkon ') g:i:vpelr |

BLKs
I
|
Software I
Hardware
GPx_BLK
OEM Specific
PM2x_BLK
PM1x_BLK
Located in
port space
L)
Y
Device IO

Device Memory
PCI configuration
Embedded Controller space

Figure5-2 Description Table Structures

The OS searches the following physica ranges on 16-byte boundaries for a Root System

Description Pointer structure. This structureis located by searching the areas listed below for

avdid sgnature and checksum match:

?? Thefirgt 1K of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the
EBDA can be found in the two- byte location 40:0Eh on the BIOS data area.

?? Inthe BIOS read-only memory space between OEOO00h and OFFFFFh.

When the OS locates the structure, it looks at the physica system address for the Root
Description Table. The Root System Description Table starts with the Sgnature ‘RSDT” and
contains one or more physica pointersto other System Description Tables that provide
various information on other standards defined on the current system. As shown in Figure 5-

107

1, thereis aways a physica addressin the Root System Description Table for the Fixed
ACPI Description table (FACP).

When the OS follows a physical pointer to another table, it examines each table for aknown
sgnature. Based on the Sgnature, the OS can then interpret the implementation-specific data
within the description table.

The purpose of the FACP isto define various datic system information regarding power
management. The Fixed ACPI Description Table starts with the *FACP’ signature. The
FACP describes the implementation and configuration details of the ACPI hardware registers
on the platform.

For a specification of the ACPl Hardware Register Blocks (PM1a EVT BLK,

PM1b EVT BLK, PMla CNT_BLK, PM1b CNT_BLK, PM2_CNT_BLK,

PM_TMR _BLK, GPO_BLK, GP1 BLK, and one or more P_BLKS), see section 4.7. The
PMla EVT BLK, PM1b EVT BLK, PMla CNT BLK, PM1b CNT BLK,

PM2 CNT _BLK, and PM_TMR_BLK blocks are for controlling low-level ACPI system
functions.

The GPO_BLK and GP1_BLK blocks provide the foundation for an interrupt processng
mode for Control Methods. The P_BLK blocks are for controlling processor features.

Besdes ACPl Hardware Register implementation information, the FACP aso contains a
physica pointer to the Differentiated System Description Table (*‘DSDT”). The DSDT
contains a Definition Block named the Differentiated Definition Block for the DSDT that
contains implementation and configuration information the OS can use to perform power
management, therma management, or Plug and Play functiondity that goes beyond the
information described by the ACPI hardware registers.

A Dfinition Block contains information about hardware implementation details in the form

of ahierarchica name space, data, and control methods encoded in AML. The OS “loads’ or
“unloads’ an entire definition block asalogica unit. The Differentiated Definition Block is
awaysloaded by the OS at boot time and cannot be unloaded.

Definition Blocks can ether define new system attributes or, in some cases, build on prior
definitions. A Definition Block can be loaded from system memory address space. One use
of a Definition Block is to describe and digtribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be
described to the ACPI-compatible OS while confining the variations to reasonable
boundaries. Definition blocks enable smple platform implementations to be expressed by
usng afew wdl-defined object names. In theory, it might be possible to define a PCl
configuration space-like access method within a Definition Block, by building it from 1O
gpace, but that is not the goa of the Definition Block specification. Such a spaceis usudly
defined asa“built in” operator.

Some operators perform smple functions and others encompass complex functions. The
power of the Definition Block comes from its ability to alow these operations to be glued
together in numerous ways, to provide functiondity to the OS. The operators present are
intended to alow many useful hardware designs to be ACPI-expressed, not to dlow all
hardware design to be expressed.

108

5.2 Description Table Specifications
This section specifies the structure of the system description tables:
?? Root System Description Pointer

System Description Table Header

Root System Description Table

Fixed ACPI Description Table

Firmware ACPI Control Structure
Differentiated System Description Table
Secondary System Description Table
Persastent Systemn Description Table
Muitiple APIC Description Table

Smart Battery Table

All numeric values from the above tables, blocks, and structures are dways encoded in little
endian format. Signature values are stored as fixed-length strings.

IIIIIIIIA

5.2.1 Reserved Bits and Fields

For future expangon, al dataitems marked as reserved in this specification have dtrict
meanings. This section lists software requirements for reserved fields. Note that the list
contains terms such as ACPI tables and AML code defined later in this section of the
specification.

5.2.1.1 Reserved Bits and Software Components

?? OEM implementations of software and AML code return the bit vaue of O for all
reserved bitsin ACPI tables or in other software vaues, such as resource descriptors.

?? ACPHI driver implementations, for al reserved bitsin ACPI tables and in other software
vaues

?? Ignore al reserved bitsthat are read.

?? Presarve reserved bit values of read/write dataitems (for example, the driver writes back

reserved bit valuesit reads).
?? Write zerosto reserved bits in write-only dataitems.

5.2.1.2 Reserved Values and Software Components

?? OEM implementations of software and AML code return only defined values and do not
return reserved values.

?? ACPI driver implementations write only defined values and do not write reserved vaues.

5.2.1.3 Reserved Hardware Bits and Software Components

?? Software ignores al reserved bits read from hardware enable or status registers.

?? Software writes zero to dl reserved bits in hardware enable registers.

?? Software ignores al reserved bits read from hardware control and status registers.

?? Software preservesthe vaue of al reserved bitsin hardware control registers by writing
back read vaues.

109

5.2.1.4 Ignored Hardware Bits and Software Components
?? Software handlesignored bitsin ACPl hardware registers the same way it handles
reserved hits in these same types of registers.

5.2.2 Root System Description Pointer

The OS searches the following physical ranges on 16-byte boundaries for aRoot System

Description Pointer. This table islocated by searching the areas listed below for avaid Root

System Description Pointer structure signature and checksum match. When the operating

system locates the Root System Description Pointer structure, it looks at the supplied

physica system address for the Root System Description Table:

?? Thefirg 1K of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the
EBDA can be found in the two- byte location 40:0Eh on the BIOS data area.

?? Inthe BIOS read-only memory space between OEOO00h and OFFFFFh.

Table5-1 Root System Description Pointer Structure

Field Byte | Byte | Description
Lengt | Offset
h

Signaure 8 0 “RSD PTR” (Note that this Sgnature must contain a
trailing blank character.)

Checksum 1 8 The entire Root System Description Pointer structure,
including the checksum field, must add to zero to be
consdered vaid.

OEMID 6 9 An OEM -supplied giring that identifies the OEM.

Reserved 1 15 Must be zero.

RsdtAddress | 4 16 Physical address of the Root System Description
Table.

5.2.3 System Description Table Header

All description tables begin with the structure shown in Table 5-1. The content of the system
description table is determined by the Sgnature fidd. System Description Table signatures
defined by this specification are listed in Table 5-2.

Table5-2 DESCRIPTION_HEADER Fidlds

Field Byte | Byte | Description
Lengt | Offset
h

110

Field

Byte | Byte | Description
Lengt | Offset

Signature

4 0 The ASCII gtring representation of the table
identifier. . Note that if the OSfindsaggnaturein a
tablethat is not lised in Table 5-3, the OS ignores
the entire table (it is not loaded into ACPI name
space); the OS ignores the table even though the
vauesin the Length and Checksum fields are correct.

Length

4 4 Thelength of thetable, in bytes, including the
header, garting from offset 0. Thisfidd isused to
record the size of the entire table.

Revison

1 8 The revison of the structure corresponding to the
sgnature field for thistable. Larger revison

numbers are backwards compatible to lower revison
numbers with the same sgnature.

Checksum

1 9 The entire table, including the checksum field, must
add to zero to be considered valid.

OEMID

(o]

10 An OEM -supplied string that identifies the OEM.

OEM Table
ID

8 16 An OEM -supplied gring that the OEM usesto
identify the particular detatable. Thisfidd is
particularly ussful when defining a definition block
to digtinguish definition block functions. The OEM
assigns each dissmilar table anew OEM TableID.

OEM
Revison

4 24 An OEM -supplied revison number. Larger numbers
are assumed to be newer revisions.

Creator ID

4 28 Vendor ID of utility that created the table. For the
DSDT, RSDT, SSDT, and PSDT tables, thisisthe ID
for the ASL Compiler.

Creator
Revison

4 32 Revigon of utility that crested the table. For the
DSDT, RSDT, SSDT, PSDT tables, thisisthe
revison for the ASL Compiler.

For OEMSs, good design practices will ensure consstency when assigning OEMID and OEM
Table ID fiddsin any table. The intent of these fidldsisto adlow for abinary control system
that support services can use. Because many support functions can be automated, it is useful
when atool can programmaticaly determine which table release is a compatible and more
recent revison of a prior table on the same OEMID and OEM Table ID.

Table 5-3 contains the Description Table sgnatures defined by this specification.

Table5-3 DESCRIPTION_HEADER Signatures

Signature | Description

“APIC” Multiple APIC Description Table. See section 5.2.8.
“DSDT” Differentiated System Description Table. See section 5.2.7.1.
"FACP’ Fixed ACPI Description Table. See section 5.2.5.

“FACS’ Frmware ACPI Control Structure. See section 5.2.6.

111

Sgnature | Description

“PSDT” Pergstent System Description Table. See section 5.2.7.3.

“RDT” Root System Description Table. See section 5.2.4.

“SSDT” Secondary System Description Table. See section 5.2.7.2.

“SBST” Smart Battery Specification Table. See section 5.2.9

5.2.4 Root System Description Table

The OS locates that Root System Description Table by following the pointer in the Root
System Description Pointer sructure. The Root System Description Table, shown in Table 5-
4, sartswith the sgnature ‘RSDT,’ followed by an array of physicd pointersto other System
Description Tables that provide various information on other standards defined on the current
system. The OS examines each table for aknown signature. Based on the signature, the OS
can then interpret the implementation-specific data within the table,

Table5-4 Root System Description Table Fields

Field Byte | Byte | Description
Lengt | Offset
h

Header

Signaure 4 0 ‘RSDT’. Signature for the Root System
Description Table.

Length 4 4 Length, in bytes, of the entire Root System
Description Table. The length implies the number
of Entry fieldsat the end of the teble.

Revison 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM TableID | 8 16 For the Root System Description Table, the table
ID is the manufacture modd ID.

OEM Revison | 4 24 OEM revison of RSDT table for supplied OEM
TableID.

Creator 1D 4 28 Vendor ID of utility that created the table. For
the DSDT, RSDT, SSDT, PSDT tables, thisisthe
ID for the ASL Compiler.

Creator 4 32 Revigon of utility that crested the table. For the

Revison DSDT, RSDT, SSDT, and PSDT tables, thisis
the revison for the ASL. Compiler.
Entry 4*n 36 An array of physica addressesthat point to other

DESCRIPTION_HEADERSs. The OS assumes at
least the DESCRIPTION_HEADER is
addressable, and then can further address the
table based upon its Length field.

112

5.2.5 Fixed ACPI Description Table

The Fixed ACPI Description Table defines various fixed ACPI information vital to an ACPI-
compatible OS, such as the base address for the following hardware registers blocks:

PMla EVT BLK, PM1b EVT BLK, PMla CNT_BLK, PM1b CNT_BLK,

PM2 CNT_BLK, PM_TMP_BLK, GPEO BLK, and GPE1 BLK.

The Fixed ACPI Description Table dso has a pointer to the Differentiated System
Description Table that contains the Differentiated Definition Block, which in turn provides
variable information to an ACPI-compatible OS concerning the base system design.

Table5-5 Fixed ACPI Description Table Format

Field Byte | Byte | Description
Lengt | Offset
h

Header

Sgnaure 4 0 ‘FACP . Signature for the Fixed ACPI
Description Table.

Length 4 4 Length, in bytes, of the entire Fixed ACPI
Description Table.

Revison 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM TableID | 8 16 For the Fixed ACPI Description Table, the table
ID isthe manufacture modd ID.

OEM Revison | 4 24 OEM revison of FACP table for supplied OEM
TableID.

Creator ID 4 28 Vendor ID of utility that crested the table. For
the DSDT, RSDT, SSDT, and PSDT tables, this
isthe ID for the ASL Compiler.

Creator 4 32 Revison of utility thet crested the table. For the

Revison DSDT, RSDT, SSDT, PSDT tables, thisisthe
revison for the ASL Compiler.

FIRMWARE CT |4 36 Physicd memory address (0-4 GB) of the

RL Firmware ACPI Control Structure, where the OS
and Firmware exchange control information. See
section 5.2.6 for a description of the Firmware
ACPI Control Structure.

DSDT 4 40 Physicd memory address (0-4 GB) of the

Differentiated System Description Table.

113

Field

Byte
Lengt

Byte
Offset

Description

INT_MODEL

The interrupt mode of the ACPI description. The
SCI vector and Plug and Play interrupt
information assume some interrupt controller
implementation modd for which the OS must
aso provide support. This vaue represents the
interrupt model being assumed in the ACHI
description of the OS. This vaue therefore
represents the interrupt modd. This vaue is not
alowed to change for a given machine, even
across reboots.

0 Dud PIC, industry standard PC-AT type
implementation with 0-15 IRQs with EISA
edge-leve-control register.

1 Multiple APIC. Local processor APICs
with one or more IO APICs as defined by
the Multiple APIC Description Table.

>1 Resarved.

Reserved

=

45

SCI_INT

46

Interrupt pin the SCI interrupt iswired to in 8259
mode. The OSis required to treat the ACPI SCI
interrupt as a sharable, leve, active low interrupt

SMI_CMD

48

System port address of the SMI1 Command Port.
During ACPI OSiinitigization, the OS can
determine that the ACPI hardware registers are
owned by SMI (by way of the SCI_EN hit), in
which case the ACPI OSissuesthe
SMI_DISABLE command to the SMI_CMD
port. The SCI_EN hit effectively tracksthe
ownership of the ACPI hardware registers. The
OS issues commands to the SMI_CMD port
synchronoudy from the boot processor.

ACPI_ENABLE

52

The value to write to SMI_CMD to disable SMI
ownership of the ACPI hardware regsters. The
last action SMI does to relinquish ownership isto
st the SCI_EN hit. The OS initiaization process
will synchronoudy wait for the ownership

transfer to complete, so the ACPI system releases
SMI ownership astimely as possible.

114

Field

Byte
Lengt

Byte
Offset

Description

ACPI_DISABLE

53

The vaueto writeto SMI_CMD to re-enable
SMI ownership of the ACPI hardware registers.
This can only be done when ownership was
originaly acquired from SMI by the OSusing
ACPI_ENABLE. An OS can hand ownership
back to SMI by rdinquishing use to the ACPI
hardware regigters, masking off adl SCI interrupts,
clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the
boot processor.

S4BIOS REQ

The vaueto writeto SMI_CMD to enter the
HABIOS state. The SABIOS state providesan
dternate way to enter the 4 state where the
firmware saves and restores the memory context.
A vaue of zero in 4ABIOS F indicates

HABIOS REQ is not supported. (See Table 5-8.)

Reserved

55

PM1a EVT BLK

56

System port address of the Power Management 1a
Event Register Block. See section 4.7.3.1 for a
hardware description layout of this register block.
Thisisarequired fied.

PM1b EVT BLK

60

System port address of the Power Management
1b Event Register Block. See section 4.7.3.1 for a
hardware description layout of this register block.
Thisfidd is optiond; if this register block is not
supported, this field contains zero.

PM1a CNT BLK

System port address of the Power Management 1a
Control Register Block. See section 4.7.3.2 for a
hardware description layout of this register block.
Thisisarequired fied.

PM1b_CNT BL
K

68

System port address of the Power Management
1b Control Register Block. See section 4.7.3.2 for
a hardware description layout of this register

block. Thisfidd is optiond; if this register block

is not supported, this field contains zero.

PM2_CNT_BLK

72

System port address of the Power Management 2
Control Register Block. See section 4.7.3.4 for a
hardware description layout of this register block.
Thisfidd isoptiond; if this register block is not
supported, thisfield contains zero.

115

Field

Byte
Lengt

Byte
Offset

Description

PM_TMR_BLK

76

System power address of the Power Management
Timer Control Register Block. See section 4.7.3.3
for ahardware description layout of this register
block. Thisisarequired fied.

GPEO BLK

80

System port address of Generic Purpose Event O
Register Block. See section 4.7.4.3 for ahardware
description of thisregister block. Thisisan

optiond field; if thisregister block is not

supported, thisfield contains zero.

GPEL BLK

System port address of Generic Purpose Event 1
Register Block. See section 4.7.4.3 for a hardware
description of thisregister block. Thisisan

optiond fidd; if this register block is not

supported, thisfield contains zero.

PML _EVT LEN

88

Number of bytesin port address space decoded
by PM1la EVT BLK and, if supported, PM1b
EVT BLK. Thisvdueis? 4.

PM1 CNT_LEN

89

Number of bytesin port address space decoded
by PM1a CNT_BLK and, if supported,
PM1b CNT BLK. Thisvaueis? 1.

PM2_CNT_LEN

90

Number of bytesin port address space decoded
by PM2 CNT_BLK. Thisvaueis? 1.

PM_TM_LEN

91

Number of bytesin port address space decoded
by PM_TM_BLK. Thisvaueis? 4.

GPEO_BLK_LEN

92

Number of bytesin port address space decoded
by GPEO BLK. Thevaueisanonnegative
multiple of 2.

GPEL BLK_LEN

93

Number of bytesin port address space decoded
by GPE1 BLK. Thevdueisanonnegdive
multiple of 2.

GPEL BASE

94

Offset within the ACPI generd- purpose event
model where GPEL based events Start.

Reserved

95

P LVL2 LAT

96

The wordt-case hardware latency, in
microseconds, to enter and exit a C2 state. A
vaue > 100 indicates the system does not support
aC2 state.

P LVL3 LAT

98

The wordt-case hardware latency, in
microseconds, to enter and exit aC3 dtate. A
vaue > 1000 indicates the system does not
support a C3 state.

116

Field

Byte
Lengt

Byte
Offset

Description

FLUSH SIZE

100

If WBINVD=0, the vdue of thisfidd isthe
number of flush strides that need to be read
(using cacheable addresses) to completdy flush
dirty lines from any processor’'s memory caches.
Note that the valuein FLUSH_STRIDE is
typicaly the smdlest cache line width on any of
the processor’ s caches (for more information, see
the FLUSH_STRIDE fidd definition). If the
system does not support amethod for flushing the
processor’ s caches, then FLUSH_SIZE and
WBINVD are set to zero. Note that this method
of flushing the processor caches has limitations,
and WBINVD=1 isthe preferred way to flush the
processors caches. In particular, it is known that
at least Intel Pentium Pro Processor, MP C3
support, 3rd leve victim caches require
WBINVD=1 support. Thisvaueistypicdly at
least 2 times the cache Sze. The maximum
dlowed vauefor FLUSH_SIZE multiplied by
FLUSH_STRIDE is2 MB for atypicd maximum
supported cache size of 1 MB. Larger cache sizes
are supported usng WBINVD=1.
Thisvaueisignored if WBINVD=1.

FLUSH_STRIDE

102

If WBINVD=0, the value of thisfield isthe cache
linewidth, in bytes, of the processor's memory
caches. Thisvdueistypicdly the smalest cache
line width on any of the processor’ s caches. For
more information, see the description of the
FLUSH_SIZE fidd.

Thisvaueisignored if WBINVD=L1.

DUTY_OFFSET

104

The zero-based index of where the processor’s
duty cycle setting is within the processor's
P_CNT register.

117

Field

Byte
Lengt

Byte
Offset

Description

DUTY_WIDTH

105

The bit width of the processor’s duty cycle setting
vaueinthe P_CNT register. Each processor's
duty cycle setting allows the software to sdlect a
nomina processor frequency below its absolute
frequency as defined by:
THTL_EN=1
BE* DC/ (2DUTY_WIDTH)

where:
BF = Base frequency
DC = Duty cycle setting
When THTL_EN is 0, the processor runs & its
absolute BF. A DUTY_WIDTH vdue of O
indicates that processor duty cycleis not
supported and the processor continuoudy runs at
its base frequency.

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month
darm vaue. If thisfied contains a zero, then the
RTC day of the month alarm festure is not
supported. If thisfidd has anon-zero vaue, then
thisfidd contains an index into RTC RAM space
that the OS can use to program the day of the
month alarm. See section 4.7.2.4 for adescription
of how the hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of
year darm vadue. If thisfidd contains azero, then
the RTC month of the year darm feature is not
supported. If thisfield has a non-zero vaue, then
thisfied contains an index into RTC RAM space
that the OS can use to program the month of the
year darm. If thisfeature is supported, then the
DAY_ALRM feature must be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of
data vaue (hundred and thousand year decimals).
If thisfidd contains a zero, then the RTC
centenary feature is not supported. If thisfied
has anon-zero vadue, then thisfidd contains an
index into RTC RAM space that the OS can use
to program the centenary field.

Reserved

w

109

Hags

112

Fixed fegture flags. See Table 5-6 for a
description of thisfidd.

118

Table5-6 Fixed ACPI Description Table Fixed Feature Flags

FACP- Flag

Bit
length

Bit
offset

Description

WBINVD

1

0

WBINVD is correctly supported. Signifies that
the WBINVD ingruction correctly flushes the
processor caches, maintains memory coherency,
and upon completion of the indruction, al caches
for the current processor contain no cached data
other than what the OS references and dlowsto
be cached. If thisflag is not set, the ACPl OSis
respongble for disabling al ACH! fegtures that
need this function.

WBINVD_FLUS
H

If set, indicates that the hardware flushes dl
caches on the WBINVD ingtruction and
maintains memory coherency, but does not
guarantee the caches are invdidated. This
provides the complete semantics of the WBINVD
ingruction, and provides enough to support the
system deeping sates. Note that on Intel Pentium
Pro Processor machines, the WBINVD
ingruction must flush and invadidate the caches.

If neither of the WBINVD flags are s, the
sysem will require FLUSH_SIZE and
FLUSH_STRIDE to support deeping states. If
the FLUSH parameters are also not supported, the
machine cannot support deeping states S1, S2, or
S3

PROC_C1

A oneindicates that the C1 power stateis
supported on al processors. A system can support
more Cx states, but is required to at least support
the C1 power dtate.

P LVL2 UP

A zero indicates that the C2 power dateis
configured to only work on a UP system. A one
indicates that the C2 power state is configured to
work on aUP or MP system.

PWR_BUTTON

A zero indicates the power button is handled asa
fixed feature programming modd; a one indicates
the power button is handled as a control method
device. If the system does not have a power
button, this value would be“1” and no deep
button device woud be present

119

FACP - Flag

Bit
length

Bit
offset

Description

SLP_BUTTON

A zero indicates the deep button is handled as a
fixed feature programming model; aone indicates
the power button is handled as a control method
device.

If the system does not have a deep button, this
vauewould be“1” and no deep button device
would be present.

FIX_RTC

A zero indicates the RTC wake-up atusis
supported in fixed register space; a one indicates
the RTC wake-up statusis not supported in fixed
register space.

RTC S4

Indicates whether the RTC darm function can
wake the system from the 4 state. The RTC
must be able to wake the system from an S1, &2,
or S3 deep state. The RTC aarm can optionaly
support waking the system from the $4 date, as
indicated by thisvaue.

TMR VAL_EXT

A zeroindicates TMR_VAL isimplemented asa
24-hit vdue. A oneindicatesTMR VAL is
implemented as a 32-bit vdue. The TMR_STS bit
IS set when the most Sgnificant bit of the
TMR_VAL toggles.

DCK_CAP

A zero indicates that the system cannot support
docking. A oneindicates that the system can
support docking. Note that this flag does not
indicate whether or not a docking sation is
currently present; it only indicates that the system
is cgpable of docking.

Reserved

22

5.2.6 Firmware ACPI Control Structure
The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the

BIOS has set asde for ACPI usage. This structure is passed to an ACPI-compatible OS using

the Fixed ACPI Description Table. For more information about the Fixed ACPI Description
Table IRMWARE_CTRL field, see section 5.2.5.
The BIOS digns the FACS on a 64- byte boundary anywhere within the 0-4G memory

address space. The memory where the FACS structure resides must not be reported as system

memory in the system’ s memory map. For example, the E820 memory reporting interface
would report the region as AddressRangeReserved. For more information about the E820
memory reporting interface, see section 14.1.

120

Table5-7 Firmware ACPI Control Structure

Field

Byte
Lengt
h

Byte
Offset

Description

Signaure

4

‘FACS

Length

4

0
4

Length, in bytes, of the entire Firmware ACPI
Control Structure. Thisvaueis 64 bytes or
larger.

Hardware
Sgnaure

The vaue of the system’s “hardware Signature’ at
last boot. Thisvalueis calculated by the BIOS on
abest effort basis to indicate the base hardware
configuration of the system such that different
base hardware configurations can have different
hardware sgnature values. The OS uses this
information in waking from an 4 date, by
comparing the current hardware sgnature to the
sgnature vaues saved in the non-volatile deep
image. If the values are not the same, the OS
assumes that the saved non-voldileimage isfrom
adifferent hardware configuration and can not be
restored.

Firmware Waking
Vector

12

Location into which the ACPI OS puts its waking
vector. Before trangtioning the system into a
globa degping date, the OSfillsin this vector
with the physicad memory address of an OS-
specific wake function. During POST, the BIOS
checksthisvaue and if it is non-zero, transfers
control to the specified address.
On PCs, the wake function address isin memory
below 1IMB and the contral istransferred whilein
real mode. The OS wake function restores the
processors context.
For PC-1A platforms, the following example
shows the relationship between the physica
address in the Firmware Waking Vector and the
real mode address the BIOS jumpsto. If, for
example, the physica addressis 0x12345, then
the BIOS must jump to real mode address
0x1234:0x0005. In generd thisrdationship is

Real-mode address =

Physical address>>4 : Physicd address &
OxO00F
Note that on PC-1A platforms, A20 must be
enabled when the BIOS jumps to the readl mode
address derived from the physical address stored
in the Firmware Waking Vector.

121

Field Byte | Byte | Description
Lengt | Offset
h
Globa Lock 4 16 The Globa Lock is used to synchronize access to

shared hardware resources between the OS
environment and the SMI environment. Thislock
isowned exclusvely by ether the OS or the
firmware a any one time. When ownership of the
lock is attempted, it might be busy, in which case
the requesting environment exits and waits for the
signal that the lock has been released. For
example, the Globa Lock can be used to protect
an embedded controller interface such that only
the OS or the firmware will access the embedded
controller interface a any one time. See section
5.2.6.1 for more information on acquiring and
releasing the Globa Lock.

Hags 4 20 Firmware control structure flags. See Table 5-8
for adescription of thisfied.
Reserved 40 24 Thisvaueis zero

Table5-8 Firmware Control Structure Feature Flags

FACS- Flag Bit Bit Description
Lengt | Offset
h
IABIOS F 1 0 Indicates whether the platform supports

ABIOS REQ. If SABIOS REQ is not supported,
the OS must be able to save and restore the
memory state in order to use the 4 Sate.

Reserved 31 1 Thevdueiszero.

5.2.6.1 Global Lock

The Globd Lock isa DWORD in read/write memory in the Firmware ACPI Control
Structure, accessed and updated by both the operating system environment and SMI
environment in a defined manner to provide an exclusive lock. By convention, thislock is
used to ensure that while one environment is ng some hardware, the other
environment is not. By this convention, when ownership of the lock fails because it is owned
by the other environment, the requesting environment sets a“pending” state within the lock,
exitsits atempt to acquire the lock, and waits for the owning environment to signa that the
lock has been released before attempting to acquire the lock again. When releasing the lock,
if the pending bit in the lock is st after thelock isreleased, asgnd is sent using an inter-
environment interrupt mechanism to the other environment to inform it that the lock has been
released. During interrupt handling for the “lock released” event within the corresponding
environment, if the lock ownership is till desired an attempt to acquire the lock would be

122

made. If ownership is not acquired, then the environment must again set “pending” and wait
for another “lock rdeass” Sgnd.

Table 5-9 shows the encoding of the Globa Lock DWORD in memory:
Table5-9 Embedded Contraller Arbitration Structure

Fied Bit Bit Description
Lengt | Offset
h
Pending 1 0 Non-zero indicates that arequest for
ownership of the Globa Lock is pending.
Owned 1 1 Non-zero indicates that the Globa Lock is
Owned.
Reserved 30 2 Reserved for future use.

The following code sequence is used by both the OS and the firmware to acquire ownership
of the Globa Lock. If non-zero is returned by the function, the caller has been granted
ownership of the Globa Lock and can proceed. If zero isreturned by the function, the caller
has not been granted ownership of the Global Lock, the “pending” bit has been set, and the
cdler must wait until it issgnded by an interrupt event that the lock is available before
attempting to acquire access again.

Acqui red obal Lock:

nmov ecx, G oballLock ; ecx = address of d obal Lock
acqlo: mv eax, [ecx] ; Value to conpare against

mv edx, eax

and edx, not 1 ; Clear pending bit

bts edx, 1 ; Check and set owner bit

adc edx, O ; i f owned, set pending bit

; Attenpt to set new val ue
Il ock cmpxchg dword ptr[ecx], edx

jnz short acqlO ; If not set, try again
cnp dl, 3 ; Was it acquired or marked pendi ng?
sbb eax, eax ; acquired = -1, pending = 0

ret

The following code sequence is used by the OS and the firmware to release ownership of the
Global Lock. If non-zero isreturned, the caller must raise the gppropriate event to the other
environment to sgnd that the Globa Lock is now free. Depending on the environment thisis
done by setting the either the GBL_RLS or BIOS_RL S within their respective hardware
register paces. Thissgnd only occurs when the other environment attempted to acquire
ownership while the lock was owned.

123

Rel eased obal Lock:

nmov ecx, G oballLock ; ecx = address of G obal Lock
rel 10: nmov eax, [ecx] ; Value to conpare against

nmov edx, eax

and edx, not O03h ; clear owner and pending field

; Attenpt to set it
|l ock cmpxchg dword ptr[ecx], edx
jnzshort rel 10 ; If not set, try again

and eax, 1 ; Was pending set?
ret

Although using the Globa Lock dlows various hardware resources to be shared, it is
important to note that its usage when there is ownership contention could entail a significant
amount of system overhead aswell as waits of an indeterminate amount of time to acquire
ownership of the Globa Lock. For this reason, implementations should try to design the
hardware to keep the required usage of the Globa Lock to a minimum. The Globa Lock is
required when alogica register in the hardware is shared. For example, if bit O isused by
ACPI (the OS) and hit 1 of the same register is used by SMI, then accessto thet register
needs to be protected under the global lock, ensuring that the register’ s contents do not
change from undernesth one environment while the other is making changesto it. Smilarly
if the entire register is shared, as the case might be for the embedded controller interface,
access to the register needs to be protected under the global lock.

5.2.7 Definition Blocks

A D#finition Block contains information about hardware implementation details in the form
of objects that contain data, AML code, or other objects. The top-levd organization of this
information after adefinition block isloaded is name-tagged in a hierarchical name space.

The OS*“loads’ or “unloads’ an entire definition block as alogica unit. As part of the Fixed
ACPI Description Table, the system provides the operating system with the Differentiated
System Description Table that contains the Differentiated Definition Block to be loaded at
operating system initidization time and cannot be unloaded.

It is possible for this Definition Block to load other Definition Blocks, either Seticdly or
dynamicadly, where they in turn can ether define new system atributes or, in some cases,
build on prior definitions. Although this gives the hardware the ability to vary widdy in
implementation, it also confinesit to reasonable boundaries. In some cases, the Definition
Block format can describe only specific and well understood variances. In other cases, it
permits implementations to be expressble only by means of a specified set of “built in”
operators. For example, the Definition Block has built in operators for 10 space.

In theory, it might be possible to define something like PCI configuration spacein a
Definition Block by building it from 10 space, but that is not the goa of the definition block.
Such aspace isusudly defined asa*“built in” operator.

Some operators perform smple functions, and others encompass complex functions. The
power of the Definition block comes from its ability to alow these operations to be glued
together in numerous ways, to provide functiondity to the OS.

The operators present are intended to dlow many useful hardware designs to be easily
expressed, not to dlow al hardware design to be expressed.

124

5.2.7.1 Differentiated System Description Table

The Differentiated System Description Tableis part of the system fixed description in
Definition Block format. This Definition Block is like dl other Definition Blocks, with the
exception that it cannot be unloaded. See section 5.2.7 for a description of Definition Blocks.

5.2.7.2 Secondary System Description Table

Secondary System Description Tables are a continuation of the Differentiated System
Description Table. There can be multiple Secondary System Description Tables present.
After the Differentiated System Description Table isloaded, each secondary description table
with aunique OEM Table ID isloaded. This dlowsthe OEM to provide the base support in
one table and add smdller system options in other tables. For example, the OEM might put
dynamic object definitionsinto a secondary table such that the firmware can congtruct the
dynamic information at boot without needing to edit the Satic Differentiated System
Description Table. A Secondary System Description Table can only rely onthe
Differentiated System Description Table being loaded prior to itsdlf.

5.2.7.3 Persistent System Description Table

Persstent System Description Tables are smilar to Secondary System Description Tables,
except a Perastent System Description Table can be saved by the OS and automatically
loaded at every boot. This can be used in the case where a Definition Block is loaded
dynamically, for example based on the presence of some device, and the Definition Block
has the ability to be loaded regardiess of the presence of its device(s). In this case, by
marking the Definition Block as persstent, the operating system can load the definition prior
to the device gppearing thus improving the load and enumeration time for the device when it
doesfinaly gppear in the system. In particular, dynamic docking station devices might want
to design their Definition Blocks as persstent.

5.2.8 Multiple APIC Description Table

The ACP! interrupt model describes dl interrupts for the entire system in a uniform interrupt
model implementation. Supported interrupt model s include the PC-AT compatible dua 8259
interrupt controller and, for Intel processor-based systems, the Intel APIC interrupt
controller. The choice of the interrupt model(s) to support is up to the platform designer. The
interrupt model cannot be dynamically changed by the system firmware; the OS will choose
which model to use and ingtdl support for that model at the time of ingdlation. If aplatform
supports both models, an OS will ingtal support for one modd or the other; it will not mix
modeds. Multi-boot capability isafeature in many modern OS's. This meansthat a system
may have multiple OS's or multiple instances of an OSinddled a any onetime. Platform
desgners mugt dlow for this.

This section provides the APIC Description Table information necessary to usean APIC
implementation on ACHI.

ACH represents al interrupt vectors as “flat” values where each system vector has a
different value. Therefore to support APICs on the ACPI, each used INTI must be mapped to
the globa system vector value used by ACPI. See Section 5.2.9 for a description of Global
System Interrupt Vectors.

Additiond APIC support isrequired to handle various multi-processor functions that APIC
implementations might support (oecificaly, identifying each processor’slocd APIC ID).

Table5-10 Multiple APIC Description Table Format

125

Field Byte | Byte | Description
Lengt | Offset
h

Header

Sgnature 4 0 ‘APIC. Signature for the Multiple APIC
Description Table.

Length 4 4 Length, in bytes, of the entire Multiple APIC
Description Table.
Revison 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM TableID | 8 16 For the Multiple APIC Description Table, the
table ID is the manufacturer modd ID.

OEM Revisgon | 4 24 OEM revison of Multiple APIC Description
Table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For
the DSDT, RSDT, SSDT, and PSDT tables, this
isthe ID for the ASL Compiler.

Creator 4 32 Revison of utility thet crested the table. For the

Revison DSDT, RSDT, SSDT, and PSDT tables, thisis
the revison for the ASL Compiler.
Loca APIC 4 36 The physical address at which each processor can
Address accessitslocal APIC.
Hags 4 40 Multiple APIC flags. See Table 5-11 for a
description of thisfidd.
APIC Structureln] | ---- 44 A ligt of APIC dructures for thisimplementation.
Thislig will contain dl of the O APIC, Locd
APIC, Interrupt Source Override and Loca NMI
Source structures needed to support this platform.
These dructures are described in the following
sections.
Table5-11 Multiple APIC Description Table Flags
Multiple APIC Bit Bit Description
Flags Lengt | Offset
h
PCAT_COMPAT |1 0 A oneindicates that the system also has a PC-AT

competible dua-8259 setup. The 8259 vectors
must be disabled (that is, masked) when enabling
the ACPI APIC operation.

126

Multiple APIC Bit Bit Description
Flags Lengt | Offset

h
Reserved 31 1 Thisvaueis zero.

Immediately after the Flags vaue in the Multiple APIC Description Table isalist of APIC
dructuresthat declare the APIC features of the machine. The first byte of each structure
declares the type of that structure and the second byte declares the length of that Structure.

Table5-12 APIC Structure Types

Value Description

0 Processor Local APIC

1 IO APIC

>1 Reserved. The OS skips structures of the reserved type.

5.2.8.1 Processor Local APIC

When using the APIC interrupt model, each processor in the system is required to have a
Processor Local APIC record and an ACPI Processor object. Processor information cannot
change during the life of an operating system boot. For example, while in the degping Sate,
processors are not allowed to be added, removed, nor can their APIC ID or Flags change.
When a processor is not present, the Processor Local APIC informétion is elther not reported
or flagged as disabled.

Table5-13 Processor Local APIC Structure

Field Byte | Byte | Description
Lengt | Offset
h
Type 1 0 0 - Processor Local APIC structure
Length 1 1 8
ACPI Processor 1 2 The Processorld for which this processor islisted
ID in the ACPI Processor declaration operator. For a
definition of the Processor operator, see section
15.2.3.3.1.15
APICID 1 3 The processor’sloca APIC ID.
Hags 4 4 Loca APIC flags. See Table 5-14 for a
description of thisfied.

Table5-14 Local APIC Flags

Local APIC - Bit Bit Description
Flags Lengt | Offset
h
Enabled 1 0 If zero, this processor is unusable, and the

operating system support will not attempt to use
it.

Reserved 31 1 Must be zero.

127

5.2.8.2 IO APIC

In an APIC implementation, thereis one or more 10 APICs. Each 10 APIC has a series of
interrupt inputs, caled INTIX, wherethe value of x isfrom O to last INTI line on the specific
IO APIC. The IO APIC gructure declares where in the system vector space the |O APICs
INTIs appear. Each IO APIC INTI has an exclusive system vector mapping. Thereisone lO
APIC gructure per 10 APIC in the system. For more information on system vectors see
Section 5.2.9.

Table5-15 10 APIC Structure

Field Byte | Byte | Description
Lengt | Offset
h
Type 1 0 1- 10 APIC structure
Length 1 1 12
IOAPICID 1 2 ThelO APIC'sID.
Reserved 1 3 0
IO APIC Address | 4 4 The physical address to access this|O APIC.

Each 10 APIC resides a a unique address.

System Vector 4 8 The system interrupt vector index where this 1O

Base APIC sINTI lines start. The number of INTI
linesis determined by the |O APIC's Max Redir
Entry regidter.

5.2.8.3 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dud 8259 interrupt models must map system interrupt
vectors 0-15 to 8259 IRQs 0-15, except where Interrupt Source Overrides are provided.
Another way of saying the samething isto say that IO APCI INTI’s 0-15 must be mapped to
system vectors 0-15 and have identical sources as the 8259 IRQs 0- 15 with the same system
INTI number, unless overrides are used. This alows such a platform to support ACPl OSes
that use the APIC moded and aswell asthose ACPI OSes that use the 8259 modd (the OS
will only use one modd; it will nat mix models).

When an ACPI OS supports the 8259 modd, it will assume that dl interrupt descriptors
reporting vectors 0-15 correspond to 8259 IRQs. In the 8259 mode all vectors greater than
15 areignored. When an ACPI OS loads APIC support, it will enable the APIC as described
by the APIC specification. It will use dl reported interrupt vectors that fal within the limits

of the INTIs defined by the IO APIC Structures. (For more information on hardware resource
configuration see section 6)

5.2.8.3.1 Interrupt Source Overrides
Interrupt Source Overrides are required to describe variances between the standard dua 8259
interrupt defintion and the platform’ s implementation.

It is assumed that the ISA interrupt vectors will, for the most part, be identity-mapped into
thefirg ISA 10 APIC sources. Mogt existing APIC designs, however, will contain at least

128

one exception to this. The following table is provided in order to describe these exceptions. It
IS not necessary to provide an Interrupt Source Override for every ISA interrupt. Only those
that are not identity-mapped into the APIC interrupt space need be described. Note: This
specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to

ISA IRQ O, but that in APIC mode, it triggers 1O APIC source 2, then you would need an
Interrupt Source Override where the source entry is‘0’ and the Globa System Interrupt

Vectoris‘2/’
Table5-16 Interrupt Source Override Structure

Field Byte | Byte | Description

Lengt | Offset

h
Type 1 0 2 - Interrupt Source Override
Length 1 1 10
Bus 1 2 0 — Congtant, meaning | SA
Source 1 3 Bus-relative interrupt source (IRQ)
Globa Sysem 4 4 The Globa System Interrupt Vector that this bus-
Interrupt Vector relative interrupt source will trigger
Hags 2 8 MPSINTI flags. See Table 5-17 for adescription

of thisfidd.

The MPSINTI flagslisted in Table 5-17 are identicdl to the flags used in table 4-10 of the
MPS verson 1.4 specification. The Polarity flags are the PO bits and the Trigger Mode flags

arethe EL bits.

Table5-17 MPSINTI Flags

Local APIC - Bit Bit Description
Flags Lengt | Offset
h
Polarity 2 0 Polarity of the APIC 1/O input Sgnals:

00 = Conforms to the specifications of
the bus
(for example, EISA isactive-low
for level-triggered interrupts)
01 = Active high
10 = Reserved
11 = Activelow

129

Local APIC - Bit Bit Description
Flags Lengt | Offset
h
Trigger Mode 2 2 Trigger mode of the APIC /O Input Sgnds
00 = Conforms to specifications of the
bus
(for example, ISA isedge-
triggered)
01 = Edge-triggered
10 = Reserved
11 = Levd Triggered
Reserved 12 4 Must be zero.

Interrupt Source Overrides are a so required when an identity mapped vector hasanon
standard polarity.

Special Note:You must have an ISA vector override entry for the IRQ mapped to the
SCI interrupt if thisIRQ is not identity mapped. This entry will override the vauein
SCI_INT in FADT. For example, if SCI is connected to IRQ 9 in PIC mode and IRQ
9isconnected to INTIN11 in APIC mode, you should have 9in SCI_INT in the
FADT and an | SA vector override entry mapping IRQ 9 to INTIN11.

5.2.8.3.2 Non-maskable Interrupt Sources (NMIs)

This structure alows a platform designer to stipulate which IO APIC sources should be
enabled as non-maskable. Any source that is non-maskable will not be available for use by
devices.

Table 5-18 Non-maskable Sour ce Structure

Field Byte | Byte | Description
Lengt | Offset
h
Type 1 0 3 — Non-maskable Interrupt Source
Length 1 1 8
Hags 2 2 Same as MPSINTI flags
Globd Sysem 4 4 The Globa System Interrupt Vector that this NMI
Interrupt Vector will trigger.

5.2.8.3.3 Local APIC NMI

This structure describeswhich Local APIC INTI (LINTIN) pinis NMI connected to for each
of the processors in the system where such a connection exigts. Thisinformation is needed by
the OS to enable the appropriate loca APIC entry.

Each NMI LINTIN connection requires a separate Local APIC NMI structure. For example,
if the platform has 4 processors with ID 0-3 and NMI is connected LININ1 for processor 3
and 2, two Loca APIC NMI entries would be needed in the MAPIC table.

130

Table5-19 Local APIC NMI Structure

Field Byte | Byte | Description
Lengt | Offset
h
Type 1 0 4 —Loca APIC NMI Structure
Length 1 1 6
ACPI Processor 1 2 Processor 1D corresponding to the ID listed in the
ID ACPI _PR object
Hags 2 3 MPSINTI flags. See Table 5-17 for adescription
of thisfidd.
Locd APIC 1 5 Loca APIC INTI pin to which NMI is connected

INTI#

131

Global System Interrupt Vector Interrupt Input Lines ‘ System Vector Base'
(ie ACPI PnPIRQ#) on|IOAPIC reported in IOAPIC Struc
24 input 0 [|INTLO 0
IOAPIC
23 [F[INTI_23
16 input 24 [INTI_O 24
I0APIC
39 [F|INTI_15
IOAPIC :
51 [FJINTI_11
55 [HINTI_23

Figure5-3 APIC — Global System Vectors

5.2.9 Global System Interrupt Vectors

Globa System Interrupt Vectors can be thought of as ACPI PnP IRQ numbers. They are
used to virtuaize Interrupts in tables and in ASL methods which perform resource dlocation
of Interrupts. Do not confuse system vectors with ISA IRQs athough in the case of the AT
style 8259 interrupt model they do correspond one to one.

There are two interrupt models used in ACPI systems.

Thefirg modd isthe APIC modd. In APIC mode the interrupt mode! isflexible. The
number of INTIs supported by each 10 APIC can vary. The OS determines the mapping of
the Globa System Interrupt Vectors by determining how many INTIs each 10 APIC supports
and determining what the range of system vectorsisfor each IO APIC. Thisisdone by
reading the |O APIC Structure to determine the System Vector Base for the |O APIC. Then
using the address from that structure, reading the Max Redirection register from the IO APIC
to determineits number of INTI lines. The system vectors mapped to that 10 APIC are the
vectors beginning at the vector base and extending for Max Redirection vectors. This
mapping is depicted in Figure 5-3.

132

Thereis exactly one |O APIC gtructure per IO APIC in the system.

Global System Interrupt Vector 8259 ISA IRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
Master | RQ3
8259
7 IRQ7
IR8
Save _
8259 IRQ11
15 IRQ15

Figure5-4 System Interrup Vectors

The other interrupt mode is the sandard AT style mentioned above which uses 1SA IRQs
attached to a master dave pair of 8259 PICs. The system vectors correspond to the |SA
IRQs. ThelSA IRQs and their mappings to the 8259 pair are part of the AT standard and are
wedl defined. This mapping is depicted in Figure 5-4.

5.2.10 Smart Battery Table

If the platform supports batteries as defined by the Smart Battery Specification 1.0, then a
Smart Battery Tableis present. Thistable indicates the energy leve trip points that the
platform requires for placing the system into the specified deeping state and the suggested
energy levels for warning the user to trandtion the platform into a deeping state. The OS
uses these tables with the capabiilities of the batteries to determine the different trip points.
For more informetion, see the section 11, which describes the control method battery.

Table5-20 Smart Battery Description Table Format

Field Byte | Byte | Description
Lengt | Offset
h
Header
Signature 4 0 ‘SBST’. Signature for the Smart Battery
Description Table.
Length 4 4 Length, in bytes, of the entire Smart Battery
Description Table.
Revison 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.

133

Field Byte | Byte | Description
Lengt | Offset
h
OEM TableID | 8 16 For the Smart Battery Description Table, the table
ID isthe menufacturer modd ID.
OEM Revisgon | 4 24 OEM revison of Smart Battery Description Table
for supplied OEM TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For

the DSDT, RSDT, SSDT, and PSDT tables, this
isthelD for the ASL Compiler.

Creator 4 32 Revison of utility thet crested the teble. For the
Revison DSDT, RSDT, SSDT, and PSDT tables, thisis
the revison for the ASL Compiler.
Warning Energy 4 36 OEM suggested energy leve in milliWait-hours
Leve (mwWh) a which the platform warns the user.
Low Energy 4 40 OEM suggested platform energy leve in mWh at
Leve which the platform is placed in adeegping Sate.
Criticd Energy 4 44 OEM suggested platform energy leved in mWh a
Leve which the platform performs an emergency
shutdown.

5.3 ACPI Name Space

For dl Definition Blocks, the sysem maintains asingle hierarchicad name space that it uses

to refer to objects. All Definition Blocks load into the same name space. Although this alows
one Definition Block to reference objects and data from another (thus enabling interaction), it
aso means that OEMs must take care to avoid any naming collisions’. Only an unload
operation of a Definition Block can remove names from the name pace, so aname collision
in an attempt to load a Definition Block is congdered fatal. Contents of the name space only
changes on aload or unload operation.

The name spaceis hierarchica in nature, with each name alowing a collection of names

“below” it. The following naming conventions gpply to dl names:

?? All names are afixed 32 bits.

?? Thefirg byteof anameaeinclusveof: ‘A’ - *Z’,* ', (0x41 - Ox5A, Ox5F).

?? Theremaining three bytes of aname areinclusveof : ‘A’ - ‘72,0 - ‘9", " ’, (0x41 -
Ox5A, 0x30 - 0x39, Ox5F).

?? By convention, when an ASL compiler pads a name shorter than 4 characters, it is done
so with trailling underscores (*_’). Seethe language definition for AML NameSeg in
Chapter 16.

’ For the most part, since the name space is hierarchicdl, typically the bulk of adynamic
definition file will load into a different part of the hierarchy. In the root of the name space,
and certain locations where interaction is being designed in, will be the areas which extra
care must be taken.

134

?? Namesbeginning with*_’ are reserved by this specification. Definition Blocks can only
use names beginning with * " as defined by this specification.

?? A name preceded with ‘\' causes the name to refer to the root of the name space (‘\' isnot
part of the 32-hit fixed-length name).

?? A name preceded with ‘' causes the name to refer to the parent of the current name
gpace (‘7' isnot part of the 32-bit fixed-length name).

Except for names preceded with a“\’, the current name space determines where in the name

gpace hierarchy a name being crested goes and where a name being referenced is found. A

nameis located by finding the matching name in the current name space, and then in the

parent name space. If the parent name space does not contain the name, the search continues

recursvely until either the name isfound or the name space does not have a parent (the root

of the name space). This indicates that the nameis not found®.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of name space paths: an absol ute name space path (that is, one which
gartswith a'\' prefix), and arelative name space path—which is rdative to the current name
gpace. The name space search rules discussed above, only apply to single NameSeg paths,
which isarelative name space path. For those relative name paths which contain multiple
NameSegs or Parent Prefixes, "V, the search rules do not gpply. If the search rules do not
apply to arelative name space path, the name space object islooked up relative to the current
name space. For example:

ABCD /Isearch rules apply
"ABCD /Isearch rules don't apply
XYZ.ABCD /Isearch rules don't apply
\XYZ.ABCD //search rules don't apply

All name references use a 32- hit fixed-length name or use a Name Extension prefix to
concatenate multiple 32-bit fixed-length name components together. Thisis useful for
referring to the name of an object, such as a control method, that is not in the scope of the
current name space.

Figure 5-5 shows a sample of the ACPI name space after a Differentiated Definition Block
has been |oaded.

8 Unless the operation being performed is explicitly prepared for failurein name resolution,
thisis consdered an error and resultsin a system crash.

135

[C) Root
\ PR - Processor Tree
4?@ CPUO - Processor 0 object
—[_‘?ﬂ \PIDO - Power resource for IDEO
™ sTA - Method to return status of power resourse
™ oON - Method to turn on power resourse
™M OFF - Method to turn off power resourse

£ \sB - System bus tree
PCIO - PCl bus

_HID - Device ID

_CRS - Current resources (PCI bus number)

IDEO - IDEO device Key

_ADR - PCI device #, function # Package

_PRO - Power resource requirements for DO Processor Object

\ GPE - General purpose events (GP_STS) Power Resource Object

_Lo1 - Method to handle level GP_STS.1 Bus/Device Object

_E02 - Method to handle edge GP_STS.2 Data Object

IERBED

_L03 - Method to handle level GP_STS.3 Control Method (AML code)

Figure5-5 Example ACPI Name Space

5.3.1 Defined Root Names Spaces
The following name spaces are defined under the name space root.

Table5-21 Name Spaces Defined Under the Name Space Root

Name Description

\ GPE Generd eventsin GPE register block.

\ PR All Processor objects are defined under this name space. For more
information about defining Processor objects, see section 8

\ SB All Device/ Bus Objects are defined under this name space.

\ Sl System indicator objects are defined under this name space. For more
information about defining system indicators, see section 10.1.

\ TZ All Therma Zone objects are defined under this name space. For more
information about defining Therma Zone objects, see section 12.

5.3.2 Objects
All objects, except locals, have a globa scope. Loca data objects have a per-invocation
scope and lifetime and are used to process the current invocation from beginning to end.

136

The contents of objects varies greatly. Neverthel ess, most objects refer to data variables of
any supported data type, a control method, or system software-provided functions.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time
only), objects, and packages. The Definition Block is encoded as a stream from begin to end.
Thelead byte in the stream comes from the AML encoding tables shown in section 16 and
sgnifies how to interpret some number of following bytes, where each following byte canin
turn Sgnify how to interpret some number of following bytes. For afull specification of the
AML encodings, see section 16.

Within the stream there are two levels of datum being defined. One is the packaging and
object declarations (load time), and the other is an object reference (package contents/ run
time).

All encodings are such that the lead byte of an encoding signifies the type of declaration or
reference being made. The type ether has an implicit or explicit length in the stream. Al
explicit length declarations take the form shown below, where PkgLength isthe length of the
inclusve length of the data for the operation.

LeadByte PkgLength data... LeadByte ...

\—b PkgLength —T

Encodings of implicit length objects ether have fixed length encodings or alow for nested
encodings that, at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytesin the stream with the most significant
two bits of byte zero, indicating how many following bytes are in the PkgLength encoding.
The next two bits are only used in one-byte encodings, which alows for one- byte encodings
on alength up to Ox3F. Longer encodings, which do not use these two bits, have amaximum
length of the following: two-byte encodings of OXOFFF, three-byte encodings of OXOFFFFF,
and four-byte length encodings of OXOFFFFFFFFF.

It isfata for a package length to not fal on alogica boundary. For example, if a packageis
contained in another package, then by definition its length must be contained within the outer
package, and smilarly for adatum of implicit length.

At some point, the system software decidesto “load” a Definition Block. Loading is
accomplished when the system makes a pass over the data and populates the ACPI name
gpace and initidizes objects accordingly. The name space for which population occursis
ether from the current name space location, as defined by al nested packages or from the
root if the nameis preceded with ‘\'.

Thefirgt object present in a Definition Block must be anamed control method. Thisisthe
Definition Block’ s initidization control.

Packages are objects that contain an ordered reference to one or more objects. A package can
also be considered a vertex of an array, and any object contained within a package can be

another package. This permits multidimensiond arrays of fixed or dynamic depths and
vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects
cannot be created in the “root” . Unnamed objects can be used as arguments in control
methods.

5.5 Using the ACPI Control Method Source Language

OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source
language (ASL) and use atrandator to produce the byte stream encoding described in section
5.4. For example, the ASL statements that produce the example byte stream shown in that
earlier section are shown in the following ASL example. For afull specification of the ASL
statements, see section 15.

/1 ASL Exanpl e
DefinitionBl ock (

"forbook.am ", /1l CQutput Filenane
" DSDT", /'l Signature

0x10, /1 DSDT Revi sion

" CEM', /1 OEM D
"forbook", /1 TABLE | D
0x1000 /1 OEM Revi si on

{ I/ start of definition block
Oper ati onRegi on(\d O Systeml O 0x125, 0x1)
Fiel d(\G O ByteAcc, NoLock, Preserve){
CcTo1, 1,
}

Scope(_SB){ // start of scope
Devi ce(PCI0) { /'l start of device
Power Resour ce(FETO, 0, 0) { /'l start of pwr

Met hod(_ON) {
Store (Ones, CT01) /'l assert power
Sl eep (30) /1 wait 30ns

}
Met hod(_OFF) ({
Store (Zero, CI01) /'l assert reset#

}
Met hod(_STA) {
Return (CTO1)

}
} // end of pw
} /1 end of device
} // end of scope
} /1 end of definition block

5.5.1 ASL Statements
ASL is principaly adeclarative language. ASL statements declare objects. Each object has
three parts, two of which can be null:

Obj ect := Object Type FixedLi st Vari abl eLi st
FixedList refersto aligt of known length that supplies datawhich dl instances of agiven
ObjectType must have. It iswrittenas(a, b, c, ...), where the number of arguments
depends on the specific ObjectType, and some e ements can be nested objects, that is (g, b,
(q,r, s t), d). Argumentsto aFixedList can have default values, in which case they can be
skipped. Some ObjectTypes can have anull FixedList.

137

138

VariableList refersto alist, NOT of predetermined length, of child objectsthat help define
the parent. It iswritten as{ X, Y, z, aa, bb, cc }, where any argument can be a nested object.
ObjectType determines what terms are lega elements of the VariablelList. Some ObjectTypes
can have anull variabdle lig.

For adetailed specification of the ASL language, see section 15. For adetailed specification
of the ACPI Control Method Machine Language (AML), upon which the output of the ASL
trandator is based, see section 16.

5.5.2 ASL Macros
The ASL compiler supports some built in macrosto assist in various ASL coding operations.
The following table lists the supported directives and an explanation of their function.

Table5-22 ASL Built-in Macros

ASL Statement Description

Offset(a) Usad inaFiddList parameter to supply the byte offset of the
next defined field within its parent region. This can be used
ingtead of defining the bit lengths that need to be skipped. All
offsats are defined from beginning to end of aregion.

EISAID(1d) Macro that converts the 7-character text argument into its

corresponding 4-byte numeric EISA ID encoding. This can be
used when declaring IDs for devices that are EISA 1Ds.

Resour ceTemplate() Macro used to supply Plug and Play resource descriptor
information in human reedable form, which is then trandated
into the appropriate binary Plug and Play resource descriptor
encodings. For more information about resource descriptor
encodings, see section 6.4.

5.5.3 Control Method Execution
The operating software will initiate well-defined control methods as necessary to elther
interrogate or adjust system+-level hardware date. Thisis caled an invocetion.

A control method can use other internal, or well defined, control methods to accomplish the
task at hand, which can include defined control methods provided by the operating software.
Interpretation of a Control Method is not preemptive, but can block. When a control method
does block, the operating software can initiate or continue the execution of a different control
method. A control method can only assume that access to globa objectsis exclusve for any
period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.3.1 Control Methods, Objects, and Operation Regions

Control Methods can reference any objects anywhere in the Name Space as well as objects
that have shorthand encodings shown in section 15.1.3.1. Shorthand encodings are provided
for common operators. The operators can access the contents of a object. An object’s
contents are either in dynamic storage (RAM) or, in some cases, in hardware registers.
Access to hardware registers from within a control method is eventualy accomplished

through an Operation Region. Operation Regions are required to have exclusive access to the
hardware registers’. Control methods do not directly access any other hardware registers,
including the ACPI-defined register blocks. Some of the ACPI registers, in the defined ACPI
registers blocks, are maintained on behdf of control method execution. For example, the
GP_BLK isnot directly accessed by a control method but is used to provide an extensible
interrupt handling model for control method invocation.

Note: Accessng an OpRegion may block, even if the OpRegion is not protected by a mutex.
For example, because of the dow nature of embedded controller, embedded controller
OpRegion field access may block.

5.5.4 Control Method Arguments, Local Variables, and Return Values

Control methods can be passed up to seven arguments. Each argument is an object, and could
inturn be a*“ package” style object that refersto other objects. Access to the argument objects
have shorthand encodings. For the definition of the Argx shorthand encoding, see section
15.2.3.34.

The number of arguments passed to any control method is fixed and is defined when the
control method package is created. For the definition of the Method operator, see section
15.2.3.4.1.6.

Control methods can access up to eight local data objects. Accessto the loca data objects
have shorthand encodings. On initid control method execution ,the local data objects are
NULL. For the definition of the Localx shorthand encoding, see section 15.2.3.3.4.2).

Upon control method execution completion, one object can be returned that can be used as
the result of the execution of the method. The “cdler” must ether use the result or saveitto a
different object if it wantsto preserveit. For the definition of the Return operator, see section
15.2.3.5.1.14.

NameSpace objects created within the scope of a method are dynamic. They exist only for
the duration of the method execution. They are created when specified by the code and are
destroyed on exit. A method may cregte dynamic objects outside of the current scope in the
NameSpace using the scope operator or using full path names. These objects will till be
destroyed on method exit. Objects created at load time outside of the scope of the method are
datic. For example:

Scope(\ XYZ) {
Name(BAR, 5) /'l Creates \ XYZ. BAR
Met hod(FOO, 1) {
St or e(BAR, CREQG) /1 same effect as Store(\XYZ. BAR, CREG)
Nanme(BAR, 7) /1l Creates \ XYZ. FOO. BAR
St or e(BAR, DREG) /1 same effect as Store(\XYZ FOO. BAR, DREG
Name(\ XYZ. FOOB, 3) // Creates \XYZ. FOOB
} // end nethod
} // end scope

® This means the registers are not used by non-ACPI OS device drivers or SMI handling
code.

139

140

The object \XYZ.BAR isadtatic object created when the table that contains the above ASL
isloaded. The object \XYZ.FOO.BAR isadynamic object that is created when the

Nanme(BAR, 7) Statement in the FOO method is executed. The object \XYZ.FOOB is a dynamic
object created by the \X'Y Z.FOO method when the Nane(\ xvz. FooB, 3) Statement is executed.
Note that the \X'Y Z.FOOB object is destroyed after the \X'Y Z.FOO method exits.

5.6 ACPI Event Programming Model

The ACPI event programming mode is based on the SCI interrupt and generd-purpose event
(GPE) register. ACPI provides an extensible method to raise and handle the SCI interrupt, as
described in this section.

5.6.1 ACPI Event Programming Model Components

The components of the ACPI event programming mode are the following:
ACPI driver

Fixed ACPI Description Table (FACP)

PM1la STS,PM1b STSand PM1a EN, PM1b EN fixed register blocks
GPEQ BLK and GPEL BLK register blocks

SCI interrupt

ACPI AML code generd- purpose event model

ACPI device-specific mode events

ACPI Embedded Controller event model

The role of each component in the ACPI event programming mode! is described in the
following teble.

3IIIIIIA

Table5-23 ACPI Event Programming Model Components

Component Description

ACPI driver Recaives dl SCl interrupts raised (receives all SCI
events). Either handles the event or masks the event
off and later invokes an OEM - provided control
method to handle the event. Events handled directly by
the ACPI driver are fixed ACPI events; interrupts
handled by control methods are genera- purpose

events.
Fixed ACPI Description Table Specifies the base address for the following fixed
(FACP) register blocks on an ACPI-compatible platform:

PM1x_STSand PM1x_EN fixed registers and the
GPEX_STSand GPEx_EN fixed registers.

PM1x_STSand PM1x_EN fixed PM1x_STSbitsraise fixed ACPI events. While a

registers PM1x_STShitisset, if the matching PM1x_EN bit is
s, the ACPI SCI event is raised.

GPEx_STS and GPEx_EN fixed GPEX_STS bits that raise generd- purpose events. For

regisers every event bit implemented in GPEX_STS, there must

be a comparable bit in GPEx_EN. Up to 256
GPEX_STS hits and matching GPEx_EN bits can be
implemented. Whilea GPEx_STShit is &, if the

141

Component Description

matching GPEx_EN bit is s&t, then the genera-
purpose SCI event is raised.

SCI interrupt. A leve-sengtive, shareable interrupt mapped to a
declared interrupt vector. The SCI interrupt vector can
be shared with other low- priority interrupts that have a
low frequency of occurrence.

ACPI AML code generd-purpose A modd that allows OEM AML codeto use

event model GPEX_STSevents. Thisincludesusing GPEX_STS
events as “wake” sources aswell as other generd
sarvice events defined by the OEM (“button pressed,”
“thermd event,” * device present/not present changed,”
and so on).

ACPI device-specific modd events Devicesin the ACPI name space that have ACPI-
gpecific device I Ds can provide additiona event modd
functiondity. In particular, the ACPI embedded
controller device provides a generic event model.

ACPI Embedded Controller event A modd that allows OEM AML codeto usethe
mode response from the Embedded Controller Query
command to provide genera- service event defined by
the OEM.

5.6.2 Types of ACPI Events

At the direct ACPI hardware level, two types of events can be signaed by an SCI interrupt:
?? Fixed ACPl events.

?? Generd-purpose events.

In turn, the generd-purpose events can be used to provide further levels of eventsto the
system. And, asin the case of the embedded controller, awell-defined second-level event
dispatching is defined to make athird type of typicd ACPI event. For the flexibility common
in today’ s designs, two firs-level generd- purpose event block are defined, and the embedded
controller construct dlows alarge number of embedded controller second-leve event-
dispatching tables to be supported. Then if needed, the OEM can aso build additiond levels
of event digpatching by usng AML code on a generd-purpose event to sub-dispatch in an
OEM defined manner.

5.6.2.1 Fixed ACPI Event Handling

When the ACPI driver receives afixed ACPI event, it directly reads and handles the event
registersitsdlf. The following table ligts the fixed ACHI events. For a detailed specification of
each event, see section 4.

Table5-24 Fixed ACPI Events

Event Comment
Power management A power management timer is required for ACPI-competible
timer carry bit set. hardware. For more information, see the description of the

TMR STSand TMR EN hits of the PM1x fixed register block in

142

Event

Comment

section 4.7.3.1 aswell asthe TMR_VAL regigter inthe
PM_TMR BLK insection 4.7.3.3.

Power button signd

A power button is required for ACPI competible platforms, but can
be supplied in two ways. One way isto Smply use the fixed status
bit, and the other uses the declaration of an ACPI power device and
AML code to determine the event. For more information about the
dternate-device based power button, see section 4.7.2.2.1.2.

Note that during the SO state, both the power and deep buttons
merely notify the OS that they were pressed.

If the system does not have a deep button, it is recommended that
the OS use the power button to initiate deep operations as
requested by the user.

Sleep button signa

A deep button isan optiona ACPI event. If supported, it can be
supplied in one of two ways. Oneway is to smply use the fixed
dtatus button. The other way requires the declaration of an ACPI
deep button device and AML code to determine the event.

RTC dam

ACPI-compatible hardware is required to have an RTC wake darm
function with a minimum of one-month granularity; however, the
ACPI gatus hit for the deviceisoptiond. If the ACPI Satus bit is
not present, the RTC status can be used to determine when an
adam has occurred. For more information, see the description of
the RTC_STSand RTC_EN bits of the PM 1x fixed register block
in section 4.7.3.1.

Wake status

At least one system deep stateis required for an ACPI-compatible
platform. The wake status bit is used to determine when the
deeping state has been completed. For more information, see the
description of the WAK_STS and WAK_EN bits of the PM 1x
fixed register block in section 4.7.3.1.

System bus master
request

Optiona. The bus-magter status bit provides feedback from the
hardware as to when a bus master cycle has occurred. Thisis
necessary for supporting the processor C3 power savings state. For
more information, see the description of the BM_STS hit of the

PM 1x fixed register block in section 4.7.3.1.

Globda release gatus

Thisgtatusis raised as aresult of the globa lock protocol, and is
handled by the ACPI driver as part of globa lock synchronization.
For more information, see the description of the GBL_STS bit of
the PM 1x fixed register block in section 4.7.3.1. For more
information on globa lock, see section 5.2.6.1.

5.6.2.2 General-Purpose Event Handling

When the ACPI driver receives a genera- purpose event, it either passes control to an ACPI-
aware driver, or uses an OEM -supplied control method to handle the event. An OEM can
implement between zero and 255 generd- purpose event inputs in hardware, each as either a
level or edge event. An example of a generd-purpose event is specified in section 4, where
EC STSand EC_EN bits are defined to enable the ACPI driver to communicate with an

ACPI-aware embedded controller device driver. The EC_STSbit is set when ether an
interface in the embedded controller space has generated an interrupt or the embedded
controller interface needs servicing. Note that if a platform uses an embedded controller in
the ACPI environment, then the embedded controller’s SCI output must be directly and
exclusvely tied to a sngle GPE input bit.

Hardware can cascade other general- purpose events from abit in the GPEx_BLK through
gtatus and enable bits in Operationa Regions (I/0 space, memory space, PCI configuration
space, or embedded controller space). For more information, see the specification of the
General- Purpose Event Blocks (GPEx_BLK) in section 4.7.4.3.

The ACPI driver manages the bitsin the GPEX blocks directly, athough the source to those
eventsis not directly known and is connected into the system by control methods. When the
ACH driver receives a generd-purpose event (the event isfrom a GPEx_BLK STS hit), the
ACPH driver doesthefollowing:
1. Disablesthe interrupt source (GPEx_BLK EN bit).
2. If an edge event, clears the gtatus bit.
3. Peformsone of the following:

?? Digpatchesto an ACPI-aware device driver.

?? Queues the matching control method for execution.

?? Manages awake event using device PWR objects.

4. If alevd event, clears the satus hit.
5. Enablesthe interrupt source.

The OEM AML code can perform OEM -specific functions custom to each event the
particular platform might generate by executing a control method that matches the event. For
GPE events, the ACPI driver will execute the control method of the name\ GPE. TXX
where XX is the hex value format of the event that needs to be handled and T indicates the
event handling type (T must be either ‘E’ for an edge event or ‘L’ for alevel event). The
event values for satus bitsin GPEO_BLK dart a zero (_T0O) and end at the

GPEO BLK_LEN - 1. The event valuesfor status bitsin GPE1_BLK sart at GPEL BASE
and end at GPE1 BASE + GPE1 BLK_LEN - 1. GPEO BLK_LEN, GPE1 BASE, and
GPEL1 BLK_LEN are dl defined in the Fixed ACPI description table.

For the ACPI driver to manage the bitsin the GPEX_BLK blocks directly:

?? Enable bits must be read/write.

?? Status bits must be latching.

?? Status bits must be read/clear, and cleared by writing a“1” to the status bit.

5.6.2.2.1 Wake Events
An important use of the generd purpose eventsis to implement device wake events. The
components of the ACPI event programming model interact in the following way:

1. When adevice sgndsitswake signd, the genera- purpose status event bit used to track
that deviceis set.

2. While the corresponding generd-purpose enable bit is enabled, the SCI interrupt is
asserted.

143

144

w

If the system is degping, thiswill cause the hardware, if possible, to trangtion the system

into the SO State.

4. Oncethe sysemisrunning, ACPI will digpatch the correspond GPE handler.

5. The handler needs to determine which device object has sgnaled wake and performs a
wake Notify operation on the corresponding device object(s) that have asserted wake.

6. Inturnthe OSwill notify the OS néetive driver(s) for each device that will wake its device

to sarviceit.

It is recommended that events that wake are not intermixed with events that do not wake on
the same GPE input. Also, al wake events not exclusively tied to a GPE input (for example,

oneinput is shared for multiple wake events) need to have individua enable and gatus bitsin
order to properly handle the semantics used by the system.

5.6.2.2.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service
the device. Such GPEs are dispatched to native OS code to be handled and not to the
corresponding GPE-specific control method.

In the case of the embedded controller, the OS-native, ACPI-aware driver is given the GPE
event for its device. This driver services the embedded controller device and determines
when events are reported by the embedded controller by using the Query command. When an
embedded controller event occurs, the ACPI-aware driver queues control methods to handle
each event. Another way the OEM AML code can perform OEM - specific functions custom
to each event on the particular platform is to queue a control method to handle these events.
For an embedded controller event, the ACPI drive will queue the control method of the name
_QXX, where XX isthe hex format of the query code. Note that each embedded controller
device can have query event control methods.

5.6.2.2.3 Queuing the Matching Control Method for Execution

When a genera-purpose event is raised, the ACPI driver uses a naming convention to
determine which control method to queue for execution and how the GPE EIO isto be
handled. The GPEX_STS hitsin the GPEx_BLK are indexed with a number from O through
FF. The name of the control method to queue for an event raised from an enable Satus bit is
adways of theform_GPE._Txx where xx isthe event vaue and T indicates the event EIO
protocol to use (either edge or level). The event vaues for gatus bitsin GPEQ BLK dart at
zero (_TOO), end a the GPEO_BLK_LEN, and correspond to each status bit index within
GPEO_BLK. Theevent vauesfor satus bitsin GPEL BLK are offset by GPE_BASE and
therefore start at GPE1L_BASE and end at GPEL BASE + GPEL BLK_LEN - 1.

For example, suppose an OEM supplies awake event for a communications port and uses bit
4 of the GPEQ_STS hitsto raise the wake event status. In an OEM -provided Definition
Block, there must be a Method declaration that usesthe name\ GPE. L04 or \GPE. E04 to
handle the event. An example of a control method declaration usng such anameisthe
following:

Met hod(\ _GPE. _L04) { /1 GPE 4 | evel wake handl er
Notify (_SB.PCl O.COMD, 2)

145

The control method performs whatever action is appropriate for the event it handles. For
example, if the event means that a device has gppeared in adot, the control method might
acknowledge the event to some other hardware register and signal a change notify request of
the appropriate device object. Or, the cause of the general- purpose event can result from
more then one source, in which case the control method for that event determines the source
and takes the appropriate action.

When a genera- purpose event is raised from the GPE hit tied to an embedded controller, the
embedded controller driver uses another naming convention defined by ACPI for the
embedded controller driver to determine which control method to queue for execution. The
queries that the embedded controller driver exchanges with the embedded controller are
numbered from 0 through FF, yielding event codes 01 through FF. (A query response of O
from the embedded controller is reserved for “no outstanding events.”) The name of the
control method to queue is dways of the form _Qxx where xx isthe number of the query
acknowledged by the embedded controller. An example declaration for a control method that
handles an embedded controller query isthe following:

Met hod(_@34) { /'l enmbedded controller event for thermal
Notify (_TZ. THML, 0x80)
}

5.6.2.2.4 Managing a Wake Event Using Device _PRW Objects

A device's_PRW object provides the zero-based bit index into the genera- purpose status
register block to indicate which generd- purpose status bit from either GPEO BLK or
GPEL BLK isused asthe specific device s wake mask. Although the hardware must
maintain individua device wake enable bits, the systlem can have multiple devices using the
same genera- purpose event bit by using OEM -specific hardware to provide second-leve
gtatus and enable bits. In this case, the OEM AML code is responsible for the second-leve
enable and status bits.

The OS enables or disables the device wake function by enabling or disabling its
corresponding GPE and by executing its_ PSW control method (which is used to take care of
the second-level enables). When the GPE is asserted, the OS till executes the corresponding
GPE control method that determines which device wakes are asserted and notifies the
corresponding device objects. The native OS driver isthen notified that its device has
asserted wake, for which the driver powers on its device to service it.

If the system isin a degping State when the enabled GPE hit is asserted the hardware will
trangtion the system into the SO date, if possible.

5.6.3 Device Object Notifications

Some objects need to notify the ACPI OS of various object-reated events. All such
natification are done with the Notify operator that suppliesthe ACPI object and a natification
vaue that ggnifies the type of natification being performed. Noatification values from O
through Ox7F are common across any device object type. Notification vaues of 0x80 and
above are device-specific and defined by each such device. For more information on the
Notify operator, see section 15.2.3.5.1.11.

1. 0- Enumeratethisbus

2. 1 - Check device (a specific device has come or gone)

3. 2- Deviceisasserting Wake

146

4. 3- Reguest Eject

Table5-25 Device Object Notification Types

Valu

Description

(@]9

Device Check. This natification is performed on a device object to indicate to
the OS that it needs to perform the Plug and Play re-enumeration operation on
the device tree starting from the point where has been notified. The OS will
only perform this operation at boot, and when natified. It is the responsbility

of the ACPl AML code to notify the OS a any other timesthat this operation
isrequired. The more accurately and closer to the actua device tree change the
natification can be done, the more efficient the operating system’ s response
will be; however, it can aso be an issue when a device change cannot be
confirmed. For example, if the hardware cannot notice a device change for a
particular location during a system deeping date, it issues a Device Check
natification on wake to inform the OS that it needs to check the configuration
for a device change.

Device Check. Used to notify the OS that the device either appeared or
disappeared. If the device has appeared, the OS will re-enumerate from the
parent. If the device has disappeared, the OS will invaidate the state of the
device. The OS may optimize out re-enumeration. If _DCK is present, then
notify(,1) is assumed to indicate an undock request.

Device Wake. Used to notify the OS that the device has Sgnaed its wake
event, and that the OS needs to notify the OS native device driver for the
device. Thisisonly used for devicesthat support PRW.

Eject Request. Used to notify the OS that the device should be gected, and
that the OS needs to perform the Plug and Play gection operation. The OS
will runthe Ejx method.

4-TF

Reserved.

Bdow are the natification values defined for specific ACPI devices. For more information
concerning the object-specific notification, see the section on the corresponding

device/object.

Table5-26 Control Method Battery Device Notification Values

Hex Description

value

80 Battery Status Changed. Used to notify that the control method battery
device status has changed.

81 Battery Information Changed. Used to notify that the control method
battery device information has changed. This only occurs when a battery
IS replaced.

>81 Reserved.

Table 5-27 Power Source Object Notification Values

Hex Description

value

80 Power Source Status Changed. Used to notify that the power source
status has changed.

>80 Reserved.

Table5-28 Thermal Zone Object Notification Values

Hex Description

value

80 Thermal Zone Status Changed. Used to notify that the thermd zone
temperature has changed.

81 Thermal Zone Trip points Changed. Used to notify thet the thermd
zone trip points have changed.

>81 Reserved.

Table5-29 Control Method Power Button Notification Values

Hex Description

value

80 S0 Power Button Pressed. Used to notify that the power button has been
pressed while the system isin the SO state. Note that when the button is
pressed while the system isin the S1- 4 state, a Device Wake naotification
must be issued instead.

>80 Reserved.

Table5-30 Control Method Sleep Button Notification Values

Hex Description

value

80 S0 Slegp Button Pressed. Used to notify that the deep button has been
pressed while the sysem isin the SO state. Note that when the button is
pressed while the system isin the S1- 4 state, a Device Wake natification
must be issued insteed.

>80 Reserved.

Table5-31 Control Method Lid Notification Values

Hex Description

value

80 Lid Status Changed. Used to notify that the control method lid device
status has changed.

>80 Reserved.

147

148

5.6.4 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they
have generic device I Ds. These generic objects, control methods, and device IDs are
specified in sections 6, 7, 8, 10, 11, and 12. Section 5.6.5 ligs al the generic objects and
control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls.
This section ligts these devices, dong with the device-specific ACPI controls that can be

provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that
represent these devices. The following table lists the Plug and Play IDs defined by the ACHI

specification.
Table5-32 ACPI DevicelDs

Plugand Play | Description

ID

PNPOCO08 ACPI. Not declared in ACPI asadevice. ThisID isused by the
operating system the ACPI driver for the hardware resources
consumed by the ACPI fixed register spaces, and the operation
regions used by AML code. It represents the core ACPIl hardware
itA=f.

PNPOAQS Generic ACPI Bus. A devicethat isonly abuswhose bus settings
aretotaly controlled by its ACPI resource information, and
otherwise needs no bus- specific driver support.

PNPOAO6 Extended 10 Bus. A specia case of the PNPOAOS device, where the
only differenceisin the name of the device. Thereis no functiona
difference between the two IDs.

PNPOC09 Embedded Controller Device. A host embedded controller
controlled through an ACPI-aware driver

PNPOCOA Control M ethod Battery. A devicethat soldy implementsthe
ACPI control method battery functions. A device that has some other
primary function would use its norma device ID. ThisID isusd
when the devices primary function isthat of abattery.

PNPOCOB Fan. A device that causes cooling when “on” (DO device State).

PNPOCOC Power Button Device. A device controlled through an ACPI-aware
driver that provides power button functiondity. This deviceisonly
needed if the power button is not supported using the fixed register
space.

PNPOCOD Lid Device. A device controlled through an ACPI-aware driver that

provides lid gatus functiondity. This deviceis only needed if thelid
date is not supported using the fixed register space.

Plugand Play | Description

ID

PNPOCOE Sleep Button Device. A device controlled through an ACPI-aware
driver that provides power button functionality. Thisdeviceis
optiond.

PNPOCOF PCI Interrupt Link Device. A devicethat alocates an interrupt
connected to a PCl interrupt pin. See section 6 for more details.

ACPI0001 SMBusHost Controller. SMIBus host controller usng the
embedded controller interface (as specified in section 13.9).

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified
in section 11.

ACPIO003 AC Device. The AC adapter specified in section 11.

5.6.5 Defined Generic Object and Control Methods
The following table ligts dl the generic object and control methods defined in this

149

Specification and gives areference to the defining section of the specification.
Table5-33 Defined Generic Object and Control Methods

Objec | Description

t

_ADR | Device identification object that evaluatesto a device s address on its parent
bus. See section 6.1.

_ACx | Therma zone object that returns Active trip point in Kelvin (to 0.1 degrees)
See section 12.2.

_ALx | Therma zone object containing list of pointersto active cooling device
objects. See section 12.2.

_CID | Deviceidentification object that evauatesto adevice s Plug and Play
Compatible ID list. See section 6.1.

_CRS | Device configuration object that specifies a device's current resource settings,
or acontrol method that generates such an object. See section 6.2.

_CRT | Therma zone object that returns critica trip point in Kelvin (to 0.1 degrees).
See section 12.2.

_DCL | Therma zone object that returnslist of pointersto Bay device objects within
the thermal zone. See section 12.2.

_DIS | Device configuration control method that disables a device. See section 6.2.

_EC | Control Method used to define the offset address and Query value of an
SMBus host controller defined within an embedded controller device. See
section 13.12.

_EJD | Deviceinsertion/remova object that evaluates to the name of a device object
upon which a device is dependent. Whenever the named device is gected, the
dependent device must receive an gection notification. See section 6.3.

_EJx | Deviceinsartion/remova control method that gjects a device. See section 6.3.

_HID | Deviceidentification object that evaluatesto adevice s Plug and Play
Hardware ID. See section 6.1.

150

Objec | Description

t

_IRC | Power management object that signifies the device has asgnificant inrush
current draw. See section 7.3.1.

_LCK | Deviceinsartion/remova control method that locks or unlocks a device. See
section 6.3.

_MS | System indicator control that indicates messages are waiting. See section 10.1.

G

_OFF | Power resource object that sets the resource off. See section 7.4.

_ON | Power resource object sets the resource on. See section 7.4.

_PCL | Power source object that contains alist of pointers to devices powered by a
power source. See section 11.3.2.

_PRS | Device configuration object that specifies adevice s possible resource
settings, or a control method that generates such an object. See section 6.2.

PR Power management object that evaluates to the device s power requirements

W in order to wake the system from a system deeping State. See section 7.2.1

_PRO | Power management object that evauates to the device' s power requirements
in the DO device ate (device fully on). See section 7.2.2.

_PR1 | Power management object that evaluates to the device' s power requirements
in the D1 device gtate. Only devicesthat can achieve the defined D1 device
date according to its given device class would supply thislevel. See section
7.2.3

_PR2 | Power management object that evaluates to the device s power requirements
in the D2 device state. Only devicesthat can achieve the defined D2 device
sate according to its given device class would supply thislevel. See section
7.2.4.

_PSC | Power management object that evaluates to the device' s current power state.
See section 7.3.3.

_PSL | Thermd zone object that returnslist of pointers to passive cooling device
objects. See section 12.2.

_PSR | Power source object that returns present power source device. See section
11.3.1.

_PSV | Therma zone object that returns Passive trip point in Kelvin (to 0.1 degrees).
See section 12.2.

_PSW | Power management control method that enables or disables the device's
WAKE function. See section 7.2.

_PS0 | Power management control method that puts the device in the DO device Sate.
(device fully on). See section 7.2.

_PS1 | Power management control method that puts the device in the D1 device Sate.
See section 7.2.

_PS2 | Power management control method that puts the device in the D2 device Sate.
See section 7.2.

_PS3 | Power management control method that puts the device in the D3 device state
(device off). See section 7.2.

151

Objec

Description

RM

<l

Device insartion/removal object that indicates that the given device is
removable. See section 6.3.

Thermd zone object that sets user cooling policy (Active or Passive). See
section 12.2.

_SLN | Deviceidentification object that evauates to the dot number for adot. See
section 6.1.4.

_STA | Deviceinsertion/remova control method that returns a device' s satus. See
section 6.3.

_STA | Power resource object that evaluates to the current on or off state of the Power
Resource. See section 7.4.

_SRS | Device configuration control method that sets a device' s settings. See section
6.2.

_SST | Sysem indicator control method that indicates the system status. See section
10.1.

_TC1 | Therma zone object that contains thermal constant for Passive cooling. See
section 12.2.

_TC2 | Thermd zone object that contains thermal constant for Passive cooling. See
section 12.2.

_TMP | Therma zone object that returns current temperature in Kelvin (to 0.1
degrees). See section 12.2.

_TSP | Thermd zone object that contains therma sampling period for Passve
cooling. See section 12.2.

_UID | Deviceidentification object that specifies adevice' s unique persgtent ID, or a
control method that generatesit. See section 6.1.

\ PIC | Configuration control method used by the OS to notify the BIOS of the
interrupt mode that the syssem is running in. See Section 5.8

\ PTS | Power management control method used to prepare to deep. See section
7.4.1.

\ SO | Power management package that defines system \ SO state mode. See section
7.4.1.

\ S1 | Power management package that defines syssem \ S1 state mode. See section
7.4.1.

\ S2 | Power management package that defines sysem \ S2 state mode. See section
7.4.1.

\ S3 | Power management package that defines system \ S3 state mode. See section
7.4.1.

\ $4 | Power management package that defines system \ S4 state mode. See section
7.4.1.

\ S5 | Power management package that defines syssem \ S5 state mode. See section

74.1.

152

Objec | Description
t

\ WA | Power management control method run once system is awakened. See section
K 7.4.1.

5.7 0OS-Defined Object Names
A lig of OS-supplied object names are shown in the following table.

Table5-34 Predefined Global Events

Name | Description

\ GL | Globd Lock

\ OS | Name of the operating system.

\ REV | Revison of the AML interpreter for the specified OS.

5.7.1 \ GL Global Lock Mutex

This object isaMutex object that behaves like a Mutex as defined in section 15.2.3.4.1.7
with the added behavior that acquiring this Mutex aso acquires the shared environment
Global Lock defined in section 5.2.6.1. Thisalows Control Methods to explicitly
synchronize with the Globa Lock if necessary.

5.7.2 _OS Name object
Thisobject is contains a string that identifies the operating system. This vaue does not
change with different revisons of the AML interpreter.

5.7.3 _ REV data object
This object is contains the revison of the AML interpreter for the specified \ OS as a Dword.
Larger vaues are newer revisons of the interpreter.

5.8 System Configuration Objects

5.8.1 _PIC Method

The\ PIC optiona method is to report to the BIOS the current interrupt model. This control
method returns nothing. The argument passed into the method signifies which interrupt
mode the OS has chosen, PIC mode or APIC mode. Note that calling this method is
optiona for the OS. If the method is never called, the BIOS must assume PIC mode. Itis
important that the BIOS save the vaue passed in by the OS for later use.

PIC(X):
_PIC(0) =>PIC Mode

_PIC(1) =>APIC Mode
_PIC(2-n) =>Reserved

6. Configuration

This section specifies the objects the OS expects to be used in control methods to

configure devices. There are three types of configuration objects.

?? Device identification objects associate platform devices with Plug and Play IDs

?? Device configuration objects configure hardware resources for devices enumerated
viaACH!.

?? Deviceinsartion and remova objects provide mechanisms for handling dynamic
insertion and removal of devices.

This section aso defines the ACPI device resource descriptor formats. Device resource
descriptors are used as parameters by some of the device configuration control method
objects.

6.1 Device Identification Objects
Device Identification Objects associate each platform device with a Plug and Play device
ID for each device. All the Device Identification Objects are listed in the following table:

Table6-1 Device ldentification Objects

Object Description

_ADR Object that evaluates to a device' s address on its parent bus.

_CID Object that evaduates to a device' s Plug and Play Compatible ID ligt.

_DDN Object that associates alogical software name (for example, COM1) with a
device.

_HID Object which evauates to a device s Plug and Play Hardware ID.

SUN Object that evauates to the dot Ul number for adot.

:UI D Object that specifies a device s unique persistent ID, or a control method that
generates it.

For any device that is not on an enumerable type of bus (for example, an 1SA bus), the
ACPI driver enumerates the devices Plug and Play ID(s) and the ACPI BIOS must
supply a_HID object (plus an optional _CID object) for each device to enable the ACPI
driver to do that. For devices on an enumerable type of bus, such asaPCl bus, the ACPI
system needs to identify which device on the enumerable busiis identified by a particular
Plug and Play ID; the ACPI BIOS must supply an _ADR object for each device to enable
this.

6.1.1 _ADR

This object is used to supply the OS with the address of adevice on its parent bus. An
_ADR object must be used to specify the address of any device on abusthat has a
gandard enumeration dgorithm.

An _ADR object can be used to provide capabilities to the specified address even if a
deviceisnot present. Thisdlows the system to provide capabilitiesto adot on the
parent bus..

Intel Microsoft Toshiba

154

The OS infers the parent bus from the location of the _ ADR object’s Device Package in
the ACPI name space. For more information about the positioning of Device Packagesin
the ACPI name space, see “Named Object Creation Encodings.”

_ADR object information must be gtatic, and can be defined for the following bus types
liged in the following table.

Table6-2 _ADR Object Bus Types

BUS Address encoding
EISA EISA dot number 0- F
Floppy Bus Drive sdlect vaues used for programming the

floppy controller to access the specified INT13 unit
number. The _ADR Objects should be sorted based

on drive select encoding from 0-3.
IDE Controller O=Primary Channdl, 1=Secondary Channel
IDE Channd O=Magter drive, 1=Save drive
PCI High word = Device #, Low word = Function #.

(e.g., device 3, function 2 is 0x00030002). To refer
to dl the functions on adevice #, use afunction
number of FFFF).

PCMCIA Socket #; O=First Socket

PC CARD Socket #; O=First Socket

SMB Lowest Save Address

USB Root HUB Only one child of the host controller. It must have
an_ADR of 0. No other children or values of
_ADR are alowed.

USB Ports Port number

6.1.2 CID

This optiona object is used to supply the OS with adevice' s Plug and Play compatible
device ID. Use _CID objects when a device has no other defined hardware standard
method to report its compatible IDs.
A _CID object evduates to a compatible device ID, or a package of compatible device
IDs, for the device in the order of preference. A compatible ID must be either anumeric
32-hit compressed EISA type ID or aPCI ID. The format of PCI IDsis one of the
following:

PCI\CC ccss

PCI\CC_ccsspp

PCIN\VEN_wvw&DEV_dddd& SUBSY'S ssssssss& REV_rr

PCI\WVEN_www&DEV _dddd& SUBSY S ssssssss

PCI\VEN_vvw&DEV_dddd& REV _rr

PCI\VEN_vvw&DEV_dddd

where:
cc = hexadecimad representation of the Class Code byte
ss = hexadecimal representation of the Subclass Code byte
pp = hexadecimal representation of the Programming interface byte

155

ww = hexadecima representation of the Vendor ID
dddd = hexadecima representation of the Device ID
Ssssssss = hexadecima representation of the Subsystem 1D
rr = hexadecima representation of the Revison byte

A compatible ID retrieved from a_CID object isonly meaningful if itisanon-NULL
value.

6.1.3 _DDN
This object is used to associate alogicd software name (for example, “COM1") with a
floppy disk drive. This name can be used by gpplications to connect to the device

6.1.4 _HID

This object is used to supply the OS with the device' s Plug and Play Hardware 1D. When
describing a platform, use of any HID objectsis optiond. However, a_HID object must
be used to describe any device that will be enumerated by the ACPI driver. The ACPI
driver only enumerates a device when no bus enumerator can detect the device ID. For
example, devices on an I SA bus are enumerated by the ACHI driver. Usethe ADR
object to describe devices enumerated by bus enumerators other than the ACPI driver.

A _HID object evauates to either a numeric 32-bit compressed EISA type ID or astring.

6.1.5 _SUN

_SUN isused by the OS user interface to identify dots for the user. For example, thiscan
be used for battery dots, PCMCIA dots, or swappable bay dotsto inform the user of
what devicesarein each dot. _SUN evduates to a DWORD which is the number to be
used in the user interface. This number must match any dot number printed on the
physica dot.

6.1.6 _UID

This object provides the OS with a serid number-style ID of a device (or battery) which
does not change across reboots. This object is optional, but is required when the device
has no other way to report a persgstent unique device ID. When a system has two devices
that report the same _HID, each device must have a_UID object. When reported, the
UID only needs to be unique amongst dl devices with the same device ID. The OS
typicaly uses the unique device ID to ensure that the device- specific informeation, such

as network protocol binding information, is remembered for the device even if itsrdative
location changes. For most integrated devices, this object contains a unique identifier. For
other devices, like a docking station, this object can be a control method which returns
the unique docking station ID.

A _UID object evaluates to either anumeric value or astring.

6.2 Device Configuration Objects

Device configuration objects are used to configure hardware resources for devices
enumerated via ACPI. Device Configuration objects provide information about current
and possible resource requirements, the relationship between shared resources, and
methods for configuring hardware resources. Note: these objects must only be provided

156

for devices that cannot be configured by any other hardware standard such as PCI,
PCMCIA, etc.

When the ACPI driver enumerates adevice, it will cdl _PRSto determine the resource
requirements of the device. It may aso cal _CRSto find the current resource settings for
the device. Usng thisinformation, the Plug and Play system will determine what
resources the device should consume and set those resources by caling the device's

_ SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide
resources (for example, aproprietary PCI bridge), or do both. Unless otherwise specified,
resources for a device are assumed to be taken from the nearest matching resource above
the device in the device hierarchy.

Some resources, however, may be shared amongst severa devices. To describethis,
devicesthat share a resource (resource consumers) must use the extended resource
descriptors (0x7-0xA) described in section 6.4.3. These descriptors point to asingle
device object (resource producer) that clamsthe shared resourceinit's_PRS. This
alowsthe OSto clearly understand the resource dependenciesin the system and move dl
related devices together if it needs to change resources. Further, it dlows the OS to only
all ocate resources to resource producers when devices that consume that resource appear.

The device configuration objects are ligted in the following table.

Table 6-3 Device Configuration Objects

Object | Description

_CRS | Anobject that specifies adevice' s current resource settings, or a control
method that generates such an object.

_DIS A control method that disables adevice.

_PRS An object that specifies adevice s possible resource settings, or a control
method that generates such an object.

PRT An object that specifies the PCI interrupt Routing Table.

SRS A control method that sets a device' s settings.

:FDI An object that returns information regarding a floppy drive.

6.2.1 CRS

This required object evauates to a byte stream that describes the system resources
currently alocated to adevice. Additiondly, abus device must supply the resources that
it decodes and can assign to its children devices. If adeviceisdisabled, then CRS
returns avalid resource template for the device, but the actua resource assgnmentsin the
return byte stream will beignored. If the deviceis dissbled when CRSiscdled, it must
remain disabled.

The format of the data contained in a_CRS object follows the formats defined in section
6.4, a compatible extenson of the formats specified in the PNPBIOS Specification. The
resource datais provided as a series of data structures, with each of the resource data
sructures having aunique tag or identifier. The resource descriptor data structures
specify the standard PC system resources, such as memory address ranges, 1/0O ports,
interrupts, and DMA channdls.

Arguments.
None.

Result Code:
Byte stream.

6.2.2 _DIS

This control method disables adevice. When the device is disabled, it must not be
decoding any hardware resources. Prior to running this control method, the OS will have
dready put the devicein the D3 date.

When adeviceisdisabled viathe _DIS, the_STA control method for this device must
return with the Disabled bit set.

Arguments.
None.

Result Code:
None.

6.2.3 _PRT

PCl interrupts are inherently non-herarchical. PCI interrupt pins are typically wired
together to four interrupt vectors in the interrupt controller. PRT provides a mapping
table from PCI interrupt pins to the interrupt vectors the pins are connected to. PRT isa
package that contains alist of packages, each of which describes the mapping of an
interrupt pin. . Note: The function number in the PRT packages must be FFFF, that is,
any function number. The PRT mapping packages have the fallowing fidds

Table 6-4 Mapping Fidds

157

Field Type Description
Address | DWOR | The address of the device (uses the same format as_ ADR)
D

Fn BYTE The PCI pin number of the device (O=INTA, 1=INTB, 2=INTC,
3=INTD)

Source Name Name of athe device that dlocates the interrupt the above pinis
connected to. If thisfied isnull, then the interrupt is dlocated from
the global interrupt vector pool.

Source BYTE An index that indicates which resource descriptor in the resource

Index template of the device pointed to in Source thisinterrupt is alocated
from. If Sourceisnull, thisfidd isthe interrupt vector number the
pin is connected to.

There aretwo waysthat PRT can beused. Typicdly, the vector that a given PCI
interrupt ison is configurable. For example, a given PCI interrupt might be configured
for either IRQ 10 or 11 on an 8259 interrupt controller. In this modd, each interrupt is
represented in the ACPI namespace as a device object.

These objectshave PRS, CRS, SRS, and DIS control methods to allocate the
interrupt vectors. Then, the PCI driver handles the interrupts not as interrupt vectors on

158

the interrupt controller, but as PCI interrupt pins. The driver looks up the device spinsin
the PRT to determine which device objects alocate the interrupts. To move the PCI
interrupt to different vectors on the interrupt controller, the OSwill use_PRS, _CRS,
_SRS, and _DIS control methods for the interrupt’ s device object.

In the second modéd, the PCI interrupts are hard-wired to specific interrupt vectors on the
interrupt controller and are not configurable. In this case, the Sourcefidd in _PRT does
point to adevice, but is null, and the Source Index field contains the globd interrupt

vector that the PCI interrupt is hard wired to.

6.2.3.1 Example: Using _PRT to describe PCI IRQ routing
The following example describes two PCI dots and a PCI video chip. Note that the
interrupts on the two PCI dots are wired up differently (barber polled).

159

Scope(_\SB) {
Devi ce(LNKA) {
Name(_HI D, EI SAI D(" PNPOCOF")) /1 PCI interrupt |ink
Name(_UI D, 1)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (ResourceProducer, ..) {10,111} // IRQ 10, 11
})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(SRS, 1) {.}

}
Devi ce(LNKB) {
Name(_HI D, EI SAI D(" PNPOCOF")) /1 PCI interrupt |ink
Name(_UI D, 2)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (ResourceProducer, ..) {11,12} // IRQ 11,12

})

Met hod(_DI'S) {.}
Met hod(_CRS) {..}
Met hod(SRS, 1) {.}

}
Devi ce(LNKC) {
Name(_HI D, EI SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Name(_UI D, 3)
Name(_PRS, ResourceTenpl ate(){
I nterrupt (ResourceProducer, ..) {12,14} // IRQ 12,14

;lk\/)bt hod(_DI'S) {.}
Met hod(_CRS) {..}
Met hod(SRS, 1) {.}

}
Devi ce(LNKD) {
Name(_HI D, EI SAl D(" PNPOCOF")) /1 PCl interrupt link
Name(_UI D, 4)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {10,15} // IRQ 10, 15

%\/Zet hod(_DI S) {.}

Met hod(_CRS) {..}

Met hod(_SRS, 1) {.}
}Devi ce(PCl0){

f\]éma(_PRT, Package{

Package{ 0x0004ffff, 0, LNKA, 0}, // Slot 1, INTA
Package{0x0004ffff, 1, LNKB, 0}, // Slot 1, INTB
Package{0x0004ffff, 2, LNKC, 0}, // Slot 1, INTC
Package{0x0004ffff, 3, LNKD, 0}, // Slot 1, INTD
Package{0x0005ffff, 0, LNKB, 0}, // Slot 2, INTA
Package{0x0005ffff, 1, LNKC, 0}, // Slot 2, |INTB
Package{0x0005ffff, 2, LNKD, 0}, // Slot 2, INTC
Package{ 0x0005ffff, 3, LNKA, 0}, // Slot 2, INTD
Package{ 0x0006ffff, 0, LNKC, 0} /1 Video, |NTA
3]
}
}
6.24 PRS

This optiona object evauates to a byte stream that describes the possible resource
settings for the device. When describing a platform, specify a_PRS for dl the
configurable devices. Static (non-configurable) devices do not specify a_PRS object.
The information in this package is used by the OS to sdlect a conflict-free resource
adlocation without user intervention.

The format of the datain a_PRS object follows the same format asthe _ CRS object (for
more information, seethe CRS object definition).

160

If the deviceis dissbled when PRSis cdled, it must remain disabled.

Arguments.
None.

Result Code:
Byte stream.

6.25 _SRS

Thisoptiona control method takes one byte stream argument that specifiesanew

resource alocation for a device. The resource descriptorsin the byte stream argument
must be specified in the same order aslisted in the _ CRS byte stream (for more
information, seethe CRS object definition). A _CRS object can be used as atemplate to
ensure that the descriptors are in the correct format.

The settings must take effect before the SRS control method returns.

If the device is disabled, SRS will enable the device at the specified resources. _SRSis
not used to disable adevice; usethe _DIS control method instead.

Arguments.
Byte stream.

Result Code:
None.

6.2.5 FDI

This object returns information about a floppy disk drive. Thisinformation isthe same as
that returned by the INT 13 Function 08H on Intel Architecture PCs.

Results code;

Package {
Drive Number /1 BYTE
Devi ce Type /1 BYTE
Maxi mum Cyl i nder Number /1 WORD
Maxi mum Sect or Number / 1 WORD
Maxi mum Head Number /1 WORD
di sk_specify_1 /1 BYTE
di sk_specify_2 /1 BYTE
di sk_mot or _wai t /1 BYTE
di sk_sector_siz /1 BYTE
di sk_eot /1 BYTE
di sk_rw_gap /1 BYTE
di sk_dt| /1 BYTE
di sk_fornt _gap /1 BYTE
di sk_fill /1 BYTE
di sk_head_sttl /1 BYTE
di sk_motor_strt /1 BYTE

}
Table6-4a ACPI Floppy Drive Information

Fidd Format Definition

Drive Number BYTE Asreported by INT 13 Function 08H

Device Type BYTE Asreported by _INT 13 Function 08H

161

Field Format Definition

Maximum WORD Asreported by INT 13 Function 08H

Cylinder

Number

Maximum Sector |WORD Asreported by INT 13 Function 08H

Number

Maximum Heed |WORD Asreported by INT 13 Function 08H

Number

disk specify 1 |BYTE Asreported in ES.D1 from INT 13 Function
08H

disk specify 2 |BYTE Asreported in ES:D1 from INT 13 Function
08H

disk_motor wait |BYTE Asreported in ES.D1 from INT 13 Function
08H

disk sector sz |BYTE Asreported in ES:D1 from INT 13 Function
08H

disk_eot BYTE Asreported in ES:D1 from INT 13 Function
08H

disk_rw_gap BYTE Asreported in ES:D1 from INT 13 Function
08H

disk_dtl BYTE Asreported in ES:.D1 from INT 13 Function
08H

disk formt_gagp |BYTE Asreported in ES:D1 from INT 13 Function
08H

disk fill BYTE Asreported in ES:D1 from INT 13 Function
08H

disk_head sl BYTE Asreported in ES:D1 from INT 13 Function
08H

disk_ motor strt |[BYTE Asreported in ES:D1 from INT 13 Function
08H

6.3 Device Insertion and Removal Objects

Device insartion and remova objects provide mechanisms for handling dynamic insertion
and remova of devices. These same mechanisms are used for docking and undocking.
These objects give information about whether or not devices are present, which devices
are physcdly in the same device (independent of which bus the devices live on), and
methods for controlling gection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-
style gection mechanism indead of a* surprise-gyle’ gection mechaniam. In this
system, the gect button for a device does not immediately remove the device, but Smply
sgnas the operating system. The OS then shuts down the device, closes open files,
unloads the driver, and sends a command to the hardware to gect the device.

In ACPI, the sequence of events for dynamically inserting a device follows the process
below. Note that this process supports hot, warm, and cold insertion of devices.

162

1. If thedeviceis physicaly inserted while the computer isin the working gate (i.e., hot
insertion), the hardware generates an SCI generd purpose event.

2. The _ control method for the event uses the Notify(device,0) command to inform the
OS of which busthe new device is on, or the device object for the new device. If the
Notify command points to the device object for the new device, the control method
must have changed the device' s status returned by _STA to indicate that the device is
now present. Performance can be optimized by having Notify point as closdy as
possible in the hierarchy to where the new device resides. The Notify command can
aso be used from the_ WAK control method (for more information about _ WAK, see
section 7.5.3) to indicate device changes that may have occurred while the computer
was deeping. For more information about the Notify command, see section 5.6.3.

3. The OS uses the identification and configuration objects to identify, configure, and
load a device driver for the new device and any devices found below the devicein the
hierarchy.

4. If thedevicehasa_LCK control method, the OS may later run this control method to
lock the device.

The new device referred to in step 2 need not be asingle device, but could be awhole
tree of devices. For example, it could point to the PCI-PCI bridge docking connector. The
OSwill then load and configure dl devicesin found below that bridge. The control

method can aso point to severd different devicesin the hierarchy if the new devices do

not dl live under the same bus. (i.e. more than one bus goes through the connector).

For removing devices, ACPI supports both hot removal (systemisin the SO state), and
warm remova (sysemisin adeep sae S1-HA). Thisisdone usng the _EJx control
methods. Devices that can be gected include an _EJx control method for each deeping
date the device supports (a maximum of 2 _EJx objects can be listed). For example, hot
remova deviceswould supply an _EJ0; warm remova devices would use one of _EJ1-
EJ. These control methods are used to signal the hardware when an gect isto occur.
The sequence of events for dynamicaly removing a device goes as follows

1. Thegect button is pressed and generates an SCI generd purpose event. (If the system
was in adeeping date, it should wake the computer.

2. The control method for the event uses the Notify(device, 1) command to inform the
OS which specific device the user has requested to gect. Notify does not need to be
cdled for every device that may be gected, but for the top level device. Any child
devicesin the hierarchy or any gjection dependent devices on this device (as
described by _EJD, below) will automatically be removed.

3. The operating system will shut down and unload devices that will be removed.

4. If thedevicehasa LCK control method, the OSwill run this control method to
unlock the device.

5. The operating system looks to see what _EJx control methods are present for the
device. If the remova event will cause the system to switch to battery power (i.e. an
undock) and the battery islow, dead, or not present, the OS will use the lowest
supported deep state EJx liged; otherwise it will use the highest state EJx. Having
made this decison, the OS will run the appropriate _EJx control method to prepare
the hardware for gect.

6. If theremovd will be awarm removd, the OS puts the system in the appropriate Sx
date. If the removal will be ahot remova, the OS skipsto step 8, below.

7. When the hardware is put into the deep state, it can use any motors, etc to gect the
device. Immediately after gection, the hardware will wake the computer to an 0
date. If the system was deegping when the gect notification camein, the operating
system will return the computer to a degping state consistent with the user’ s wakeup
Settings.

8. The OSwill cdl _STA to determine if the gect successfully occurred. (In this case,
control methods do not need to call Notify() to tell the OS of the changein _STA) If
there were any mechanicd falures, STA will return 3: device present and not
functioning, and the OS will inform the user of the problem.

Note: this mechanism is the same for removing asingle device aswell asfor removing
severa devices, asin an undock.

ACP! does not disdlow surprise-style remova of devices, however, this type of remova
is not recommended since system and data integrity cannot be guaranteed when a
surprise-style remova occurs. Because the operating system is not informed, its device
drivers cannot save data buffers and it cannot stop accesses to the device before the
device isremoved. To handle surprise-style remova a genera purpose event must be
rased. Itsassociated control method must use the Notify command to indicate which bus
the device was removed from.

The Device insertion and remova objects are listed in the following table.

Table 6-5 Devicelnsertion and Removal Objects

163

Object | Description

_ED Object that evauates to the name of a device object upon which adeviceis
dependent. Whenever the named device is gected, the dependent device must
receive an gection notification.

EJx A control method that g ects a device.

:L CK | A control method that locks or unlocks a device.

_RMV | Object that indicates that the given device isremovable.

STA A control method that returns a device' s satus

6.3.1 EJD

This object is used to name the device object of another device upon which adeviceis
dependent and is primarily used to support docking stations. Whenever the named device
is gected, the dependent device will also receive an gection notification.

An _EJD object evauates to the name of another device object. This object’s EXx
methods will be used to gect dl the dependent devices. Devicesthat havean EID
object cannot have any _EJx control methods.

A device s dependents will be gected when the device itsdlf is gected.

When describing a platform that includes a docking station, usudly more than one _EJID
object will be required. For example, if adock attaches both a PCl device and an ACPI-
configured device to a portable, then both the PCI device description package and the
ACPI-configured device description package must include an _EJD object that evauates
to the name of the docking station (the name specified inan _ADR or _HID object in the

164

docking station’ s description package). Thus, when the docking connector submits an
gect notify (_EIN) request, the OS would first attempt to disable and unload the drivers
for both the PCl and ACPI configured devices.

6.3.2 _EJxX

These control method are optiond and are only supplied for a device which supports a
software-controlled V CR-style g ection mechanism. To support warm and hot removad,
an_EJx control method is listed for each deep state the device supports remova from,
where x isthe deeping Sate supported. For example, _EJO indicates the device supports
hot remova; _EJ1-EJ indicate the device supports warm removal.

For hot removdl, the device must be immediately gjected when the OS calsthe EJO
control method. The _EJO control method does not return until gection is complete. After
cdling _EJX0, the OSwill cal _STA to determine whether or not the gect succeeded.

For warm removd, the _EJ1- EJA control methods do not cause the device to be
immediately gected. Instead, they only set proprietary registersto prepare the hardware
to gect when the system goesinto the given deep state. The hardware gects the device
only after the OS has put the system into a deep state by writing to the SLP_EN regider.
After the system resumes, the OS will cal _STA to determine if the gect succeeded.

The EJx control methods take one parameter to indicate whether g ect should be enabled
or disabled:

1 = Hot gect or enable warm gect.
0 = Disgble (cancd) warm gect (EJO will never be cdled with this vaue).

A device object may have a most 2 _EJx control methods. Firg, it lists an EXx control

method for the preferred deeping state to gect the device. Optionaly, the device may

list an EJ4 or EJ5 control method to be used when the system will not have power (eg.

no battery) after the gect. For example, a hot-docking notebook might liss EJO and
EJ.

6.3.3 _LCK

This control method is optiond and is only required for a device which supportsa
software-controlled locking mechanism. When the operating software invokes this

control method, the associated deviceisto be locked or unlocked based upon the vaue of
the argument that is passed. On alock request, the control method must not complete
until the deviceis completely locked.

The LCK control method takes one parameter that indicates whether or not the device
should be locked:

1 = Lock thedevice
0 = Unlock the device

When describing a platform, devices use either a_L CK control method or an _EJx
control method for adevice.

6.3.4 _RMV

The RMYV object indicates to the OS that the device can be removed while the system is
in the working state (i.e., any device that only supports surprise-style remova). Any such
removable device that does not have LCK or _EJX control methods must havean RMV
object. Thisadlowsthe OSto indicate to the user that the device can be removed and for
the OS to provide away for shutting down this device before removing it.

6.3.5 _STA
This object returns the status of a device, which can be one of the following: Enabled,
Disabled, or Removed.

Arguments.
None.

Result Code (bitmap):
bit0: Setif thedeviceis present
bit1: Setif thedeviceisenabled and decoding its resources
bit2: Setif the device should be shown in the user interface
bit3: Setif thedeviceisfunctioning properly (cleared if the devicefalled its
diagnogtics)
bit 4: Set if the battery is present.
Bits 5-31 Reserved (must be cleared)

If bit Ois cleared, then bit 1 must also be cleared (i.e., adevice that is not present cannot
be enabled).

A device can only decode its hardware resources if both bits 0 and 1 are st. If the device
is not present (bit O cleared) or not enabled (bit 1 cleared), then the device must not
decode its resources.

If adeviceis present in the machine, but should not be displayed in the OS user interface,
bit 2 is cleared. For example, a notebook could have joystick hardware in the notebook
(thusit is present and decoding its resources), but the connector for plugging in the
joystick requires a port replicator. If the port replicator is not plugged in, the joystick
should not appear inthe Ul, so bit 2 is cleared.

If adevice object does not have an _STA object, then the OS will assumethat dl of the
above hits are st (i.e. the device is Present, Enabled, Shown in the U, and Functioning).

6.4 Resource Data Types for ACPI
The CRS, PRS, and _SRS control methods use packages of resource descriptors to
describe the resource requirements of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ResourceTemplate
macro creates Buffer for in which resource descriptor macros can belisted. The
ResourceTemplate macro automatically generates an End descriptor and caculates the
checksum for the resource template. The format for the ResourceTemplate macro is as
follows:

165

166

ResourceTenpl at e()

/'l List of resource macros

}

The following is an example of how these macros can be used to create aresource
template that can be returned from a_PRS control method:

Resour ceTenpl at e()

{
St art Dependent Fn(1, 1)

| RQ(Level, ActivelLow, Shared){10, 11}

DMA(TypeF, Not BusMaster, Transfer16){4}

| O(Decodel6, 0x1000, 0x2000, 0, 0x100)

|)(Decodel6, 0x5000, 0x6000, 0, 0x100, 101)

}
St art Dependent Fn(1, 1)

| RQ(Level , ActivelLow, Shared){}

DMA(TypeF, NotBusMaster, Transfer16){5}

| O(Decodel6, 0x3000, 0x4000, 0, 0x100)

| O(Decodel6, 0x5000, 0x6000, 0, 0x100, |O2)

}
EndDependent Fn()
}

Occasiondly, it is necessary to change a parameter of a descriptor in an existing resource
template. To facilitate this, the descriptor macros optiondly include a name declaration
that can be used later to refer to the descriptor. When aname is declared with a
descriptor, the ASL compiler will autométicaly create field names under the given name
to refer to individud fidds in the descriptor.

For example, given the above resource template, the following code changes the
minimum and maximum addresses for the 10 descriptor named 102:

St or e(0XA000, 1 Q2. _M N)
St or e(0xB000O, | 0O2. _MAX)

The resource template macros for each of the resource descriptors are listed below, after
the table that defines the resource descriptor. The resource template macros are formaly
defined in section 15.

The reserved names (such as_MIN and _MAX) for the fields of each resource descriptor
are defined in the appropriate table entry of the table that defines that resource descriptor.

6.4.2 Small Resource Data Type
A smadl resource data type may be 2 to 8 bytesin size and adheres to the following
format:

Table6-6 Small Resource Data Type Tag Bit Definitions

Offset Fied

Byte 0 Tag Bit[7] Tag Bitg6:3] Tag Bits[2:0]
Type=0 Smdl item name Length = n bytes

Bytes1lton Data bytes

The fallowing smdl information items are currently defined for Plug and Play devices

167

Table6-7 Small Resource ltems

Small Item Name Value
Reserved Ox1
Reserved 0x2
Reserved 0x3
IRQ format Ox4
DMA format 0x5
Start dependent Function Ox6
End dependent Function Oox7
I/O port descriptor 0x8
Fixed location /O port descriptor 0x9
Reserved OxA - 0xD
Vendor defined OxE
End tag OxF

6.4.2.1 IRQ Format (Type 0, Small ltem Name 0x4, Length=2 or 3)

The IRQ data structure indicates that the device uses an interrupt level and suppliesa
mask with bits set indicating the levelsimplemented in this device. For sandard PC-AT
implementation there are 15 possible interrupts so atwo byte field is used. This structure
is repeated for each separate interrupt required.

Table6-8 IRQ Descriptor Definition

Offset Field Name
ByteO Vaue =0010001nB (Type =0, smdl item name = 0x4, length=(2

or 3))
Byte 1 IRQ mask bitg[7:0], INT.
Bit[Q] represents IRQO, bit[1] isIRQ1, and so on.
Byte 2 IRQ mask bitg15:8] , INT.
Bit[O] represents IRQS, bit[1] isIRQ9, and so on.
Byte 3 IRQ Information. Each bit, when set, indicates this device is

capable of driving a certain type of interrupt. (Optiond--if not

included then assume edge sengtive, high true interrupts)

NOTE: These hits can be used both for reporting and setting IRQ
resources.

Bit[7:5] Reserved and must be O

Bit[4] Interrupt issharable, SHR

Bit[3] Low truelevd sengtive, LL

Bit[2:1] Ignored

Bit[O] High true edge sendtive, HE

NOTE: Low true, level sensitive interrupts may be electrically shared, the process
of how this might work is beyond the scope of this specification.

NOTE: If byte 3 is not included, High true, edge sensitive, non shareable is assumed.

168

6.4.2.1.1 ASL Macro for IRQ Descriptor
The following macro generates a short IRQ descriptor with optiona 1RQ Information

byte:

I R
Edge | Level, /1
ActiveHi gh | ActivelLow, Il
Shared | Exclusive | Nothing,//
NameString | Nothing 11

_LL, _HE

_LL, _HE

_SHR, Nothing defaults to Exclusive
A nanme to refer back to this resource

{
ByteConst [, ByteConst ...]// List of IRQ nunbers (valid values: O0-15)
}

The following macro generates a short IRQ descriptor without optiona IRQ Information
byte:
| RQNoFI ags(

NameString | Nothing /1 A name to refer back to this resource

{
Byt eConst [, ByteConst ...] /1 list of IRQ nunmbers (valid values: 0-15)

6.4.2.2 DMA Format (Type 0, Small Item Name 0x5, Length=2)

The DMA data structure indicates that the device usesa DMA channd and suppliesa
mask with bits set indicating the channds actudly implemented in thisdevice. This
structureis repeated for each separate chamne required.

Table6-9 DMA Descriptor Definition

Offset Field Name

Byte O Vaue = 00101010B (Type = 0, smal item name = Ox5, length = 2)

Byte 1 DMA channel mask bitg7:0], DMA
Bit[O] is channd 0.

169

Offset Fidd Name
Byte 2 Bit[7] Reserved and must be 0
Bitg6:5] DMA channed speed supported, TYP
Satus
00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA
Specification
10 Indicates Type B DMA
11 Indicates Type F
Bit[4:3] Ignored

Bit[2] Logica device bus master status, BM
Satus
O Logicd deviceisnot abus master
1 Logicd deviceisabus maser
Bit§1.0] DMA trandfer type preference, SIZ
Satus
00 8-hbit only
01 8- and 16-hit
10 16-bit only
11 Reserved

6.4.2.2.1 ASL Macro for DMA Descriptor
The following macro generates a short DMA descriptor.

DMA(
Compatibility | TypeA | TypeB | TypeF
BusMaster | NotBusMaster,
Transfer8 | Transfer16 | Transfer8_16
NameString | Nothing

_TYP, DMA channel speed

_BM Not hing defaults to BusMaster
_Slz, Transfer size

A nane to refer back to this resource

~—~

/
/
/
/

{

Byt eConst [, ByteConst ...] /1 List of channel nunbers
//(valid values: 0-17)

}

6.4.2.3 Start Dependent Functions (Type 0, Small Item Name 0x6, Length=0
orl)

Each logical device requires a set of resources. This set of resources may have
interdependencies that need to be expressed to allow arbitration software to make

resource alocation decisions about the logica device. Dependent functions are used to

express these interdependencies. The data structure definitions for dependent functions

are shown here. For a detailed description of the use of dependent functions refer to the

next section.

Table6-10 Start Dependent Functions

Offset Fidd Name
Byte 0 Vaue=0 0110 00nB (Type =0, smdl item name = 0x6, length
=(0or 1))

170

Start Dependent Function fields may be of length 0 or 1 bytes. The extrabyteis
optiondly used to denote the compatibility or performance/robustness priority for the
resource group following the Start DF tag. The competibility priority isaranking of
configurations for compatibility with legacy operaing sysems. Thisisthe same asthe
priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM 1 is IRQ4, 1/0 3F8-3FF. The performance/robustness
performance is aranking of configurations for performance and robustness reasons. For
example, adevice may have a high-performance, bus mastering configuration that may
not be supported by legacy operating systems. The bus-meastering configuration would
have the highest performance/robustness priority while it's polled 1/0 mode might have
the highest compatibility priority.

If the Priority byteis not included, this indicates the dependent function priority is
‘acceptable’ . Thisbyteis defined as:

Table6-11 Start Dependent Function Priority Byte Definition

Bits Definition

10 Compatibility priority. Acceptable vaues are;

0= Good configuration - Highest Priority and preferred
configuration

1= Acceptable configuration - Lower Priority but acceptable
configuration

2= Sub-optima configuration - Functiond configuration but not
optimal

3= Reserved

32 Performance/robustness. Acceptable values are:

0= Good configuration - Highest Priority and preferred
configuretion

1= Acceptable configuration - Lower Priority but acceptable
configuration

2= Sub-optima configuration - Functiona configuration but not
optimal

3= Reserved

74 Reserved; must be O

Note that if multiple Dependent Functions have the same priority, they are further
prioritized by the order in which they gppear in the resource data structure. The
Dependent Function which appears earliest (nearest the beginning) in the structure has
the highest priority, and so on.

6.4.2.3.1 ASL Macro for Start Dependent Function Descriptor
The following macro generates a Start Dependent Function descriptor with the optiona

priority byte:

171

St art Dependent Fn(
Byt eConst, /] Conpatibility priority (valid values: 0-2)
Byt eConst /'l Performance/ Robustness priority (valid values: 0-2)

)
{

/1 List of descriptors for this dependent function

}
The following macros generates a Start Dependent Function descriptor without the
optiond priority byte

St art Dependent FnNoPr i (

)
{

Descriptors

}

6.4.2.4 End Dependent Functions (Type 0, Small tem Name 0x7, Length=0)
Table6-12 End Dependent Functions

Offset Field Name
Byte O Vaue=0 0111 000B (Type=0, smdl item name=0x7 length
:O)

Note that only one End Dependent Function item is alowed per logical device. This
enforces the fact that Dependent Functions cannot be nested.

6.4.2.4.1 ASL Macro for End Dependent Functions descriptor
The following macro generates an End Dependent Functions descriptor:

EndDependent Fn(
)

6.4.2.5 1/0O Port Descriptor (Type 0, Small ltem Name 0x8, Length=7)
There are two types of descriptors for 1/0 ranges. Thefirst descriptor isafull function
descriptor for programmable devices. The second descriptor isaminima descriptor for
old ISA cardswith fixed 1/0O requirements that use a 10-bit ISA address decode. Thefirst
type descriptor can aso be used to describe fixed 1/0O requirements for 1SA cards that
require a 16-bit address decode. Thisis accomplished by setting the range minimum base
address and range maximum base address to the same fixed 1/0O vaue.

Table6-13 1/0 Port Descriptor Definition

Offset Field Name Definition
Byte O 1/O port descriptor Vaue=01000111B (Type= 0, Smdl item
name = 0x8, Length=7)

172

Offset Field Name Definition

Byte 1 Information Bitg7:1] are reserved and must be 0
Bit[O] (_ DEC)
If s, indicates the logical device decodes
16-hit addresses. If bit[0] is not s, this
indicates the logica device only decodes
address bitd9:0].

Byte 2 Rangemnimumbase |Address bitg7:0] of the minimum base I/0
address, MIN address that the card may be configured for.
bitg 7:0]

Byte 3 Rangeminimumbase | Address bit 15:8] of the minimum base 1/0O
address, MIN address that the card may be configured for.
bitq15:8]

Byte4 Range maximumbase |Address bitd7:0] of the maximum base I/O
address, MAX address that the card may be configured for.
bitg7:0]

Byte5 Range maximumbase | Address bitg 15:8] of the maximum base I/0
address, MAX address that the card may be configured for.
bitg 15:8]

Byte 6 Base dignment, ALN |Alignment for minimum base address,

increment in 1 byte blocks.

Byte 7 Range length, LEN The number of contiguous I/0 ports

requested.

6.4.2.5.1 ASL Macros for 10 Port Descriptor
The fallowing macro generates a short 1O descriptor:

e
Decodel6 | DecodelO, /1 _DEC
Wor dConst , /1 _MN
Wor dConst , /1 _MAX
Byt eConst , /1 _ALN
Byt eConst /1 _LEN
/1

NameString | Nothing

6.4.2.6 Fixed Location I/O Port Descriptor (Type 0, Small ltem Name 0x9,

Length=3)

, Address m ni mum

, Address max

_ , Base alignnent

_ , Range length

A name to refer back to this resource

This descriptor is used to describe 10-hit 1/0 locations.

Table6-14 Fixed-Location I/O Port Descriptor Definition

Offset

Fiedd Name

Definition

Byte O

Fixed Location 1/0
port descriptor

Vaue=01001011B (Type= 0, Smdl item

name = 0x9, Length = 3)

173

Offset Field Name Definition
Byte 1 Range base address, Address bit§7:0] of the base 1/0 address that
_BAS the card may be configured for. This
bitg7:0] descriptor assumes a 10 bit I1SA address
decode.
Byte 2 Range base address, Address bitg9:8] of the base 1/0 address that
_BAS the card may be configured for. This
bitq9:8] descriptor assumes a 10 bit I1SA address
decode.
Byte 3 Range length, _LEN The number of contiguous I/O ports
requested.

6.4.2.6.1 ASL Macro for Fixed 10 Port Descriptor
The following macro generates a short Fixed 10 descriptor:

Fi xedl O(
Wor dConst , /1 _BAS, Address base
Byt eConst /1 _LEN, Range |ength

NameString | Nothing// A nane to refer back to this resource

6.4.2.7 Vendor Defined (Type 0, Small tem Name OxE, Length=1-7)
The vendor defined resource datatype is for vendor use.

Table6-15 Vendor-Defined Resource Descriptor Definition

Offset Fiedd Name

Byte O Vaue = 01110nnnB (Type = 0, smdl item name = OxE, length = (1-
7)

Bytelto | Vendor defined
7

6.4.2.7.1 ASL Macro for Vendor Defined Descriptor
The following macro generates a short vendor specific descriptor:

Vendor Short (
NameString | Nothing /1 A name to refer back to this resource

{
Byt eConst [, ByteConst ...] // List of bytes, up to 7 bytes

6.4.2.8 End Tag (Type 0, Small Item Name OxF, Length 1)

The End tag identifies an end of resource data. Note: If the checksum fidld is zero, the
resource datais treated as if the checksum operation succeeded. Configuration proceeds
normdly.

Table6-16 End Tag Definition

Offset Fiedld Name

ByteO Vaue=01111001B (Type =0, smal item name = OxF, length = 1)

174

Offset Field Name

Byte 1 Check sum covering dl resource data after the serid identifier. This
check sum is generated such that adding it to the sum of al the data
bytes will produce azero sum.

6.4.2.8.1 ASL Macro for End Tag
The End Tag is automaticaly generated by the ASL compiler at the end of the
Resour ceTemplate statement.

6.4.3 Large Resource Data Type

To dlow for larger amounts of data to be included in the configuration data structure the
large format is shown below. Thisincludes a 16-bit length field dlowing up to 64 K of
data

Table6-17 Large Resource Data Type Tag Bit Definitions

Offset Fiedd Name

Byte O Vaue = IxxxxxxxB (Type = 1, Large item name = XXXXXXX)

Byte 1 Length of data items bitq 7:0]

Byte 2 Length of dataitems bitg 15:8]

Bytes3to | Actud dataitems
n

Therefallowing large information items are currently defined for Plug and Play 1SA
devices.

Table6-18 Large Resourceltems

Largeltem Name Value
24-bit memory range descriptor Ox1
Reserved ox2
Reserved O0x3
Vendor defined Ox4
32-bit memory range descriptor O0x5
32-hit fixed location memory range descriptor Ox6
DWORD address space descriptor Ox7
WORD address space descriptor 0x8
Extended |RQ descriptor 0x9
QWORD address space descriptor OxA
Reserved OxB - Ox7F

6.4.3.1 24-Bit Memory Range Descriptor (Type 1, Large Item Name 0x1)
The 24-bit memory range descriptor describes a device' s memory range resources within
a 24-bit address space.

Table6-19 Large Memory Range Descriptor Definition

175

Offset Field Name, ASL Field | Definition
Name

ByteO Memory range descriptor | Vaue = 10000001B (Type =1, Largeitem

name = O0x1)

Byte 1 Length, bitd7:0] Vaue = 00001001B (9)

Byte 2 Length, bit§15:8] Value = 00000000B (0)

Byte 3 Information Thisfidd provides extrainformation about

thismemory.
Bit[7:1] Ignored
Bit[O] Write satus, RW
Status
1 writegble
0 non-writeable (ROM)

Byte4 Range minimum base Address bitg 15:8] of the minimum base
address, MIN memory address for which the card may be
bitd 7:0] configured.

Byte5 Range minimum base Address bitg23:16] of the minimum base
address, MIN memory address for which the card may be
bit§15:8] configured

Byte 6 Range maximum base Address bitg15:8] of the maximum base
address, MAX, memory address for which the card may be
bitg7:0] configured.

Byte 7 Range maximum base Address bitq23:16] of the maximum base
address, MAX, memory address for which the card may be
bitg15:8] configured

Thisfidd contains the lower eight bits of

Byte 8 Basedignment, ALN, the base dignment. The base dignment

bit7:0] provides the increment for the minimum
base address. (0x0000 = 64 KByte)
Thisfield contains the upper eght bits of

Byte 9 Base dignment, _ALN, the base dignment. The base dignment

bitd 15:8] provides the increment for the minimum
base address. (0x0000 = 64 KByte)
Thisfied contains the lower eght bits of

Byte10 |[Rangelength, LEN, the memory range length. The range length

bitg7:0] provides the length of the memory rangein
256 byte blocks.
Thisfied contains the upper eight bits of

Byte1ll [Rangelength, LEN, the memory range length. The range length

bitg15:8]

field provides the length of the memory
range in 256 byte blocks.

176

NOTE: Address bits[7:0] of memory base addresses are assumed to be O.

NOTE: A Memory range descriptor can be used to describe a fixed memory address by
etting the range minimum base address and the range maximum base address to the
same vaue.

NOTE: 24-bit Memory Range descriptors are used for legacy devices.
NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same deviceis not
allowed.

6.4.3.1.1 ASL Macro for 24-bit Memory Descriptor
The following macro generates along 24 bit memory descriptor:

Menory24(
ReadWite | ReadOnly, _Rw
Wor dConst , _MN, M ninum base menory address [23: 8]
Wor dConst , _MAX, Maxi mum base nenory address [23: 8]

Il
Il
/1 ,
Wor dConst , /1 _ALN, Base alignment
Wor dConst /1 _LEN, Range |ength

NameString | Nothing /1 A name to refer back to this resource
)

6.4.3.2 Vendor Defined (Type 1, Large Item Name 0x4)
The vendor defined resource data type is for vendor use.

Table6-20 Large Vendor-Defined Resour ce Descriptor Definition

Offset Fidd Name Definition

ByteO Vendor defined Vaue=10000100B (Type=1, Largeitem
name = 0x4)

Byte 1 Length, bitg 7:0] Lower eight bits of vendor defined data length

Byte 2 Length, bitq15:8] Upper eight bits of vendor defined data length

N * bytes |Vendor Defined Vendor defined data bytes

6.4.3.2.1 ASL Macro for Vendor Defined Descriptor
The following macro generates along vendor specific descriptor:

Vendor Long(
NameString | Nothing /1 A name to refer back to this resource

{
Byt eConst [, ByteConst ...] // List of bytes

6.4.3.3 32-Bit Memory Range Descriptor (Type 1, Large Iltem Name 0x5)

This memory range descriptor describes a device' s memory resources within a 32-bit
address space.

Table6-21 Large 32-Bit Memory Range Descriptor Definition

Offset Fidd Name Definition

name = 0x5)

Byte O Memory range descriptor | Vaue = 10000101B (Type =1, Largeitem

177

Offset Fied Name Definition

Byte 1 Length, bitq7:0] Vaue = 00010001B (17)

Byte 2 Length, bitg15:8] Vaue = 00000000B (0)

Byte 3 Information Thisfidd provides extra information about

this memory.
Bit[7:1] Ignored
Bit[O] Write satus, RW
Satus
1 writesble
0 non-writeable (ROM)

Byte4 Range minimum base Address bitd 7:0] of the minimum base
address, _MIN memory address for which the card may
bit7:0] be configured.

Byte 5 Range minimum base Address bitd 15:8] of the minimum base
address, _MIN memory address for which the card may
bitd 15:8] be configured

Byte 6 Range minimum base Address bitd23:16] of the minimum base
address, _MIN memory address for which the card may
bitg 23:16] be configured.

Byte 7 Range minimum base Address bitd 31:24] of the minimum base
address, _MIN memory address for which the card may
bitg 31:24] be configured

Byte 8 Range maximum base Address bitd 7:0] of the maximum base
address, _MAX memory address for which the card may
bitg 7:0] be configured.

Byte 9 Range maximum base Address bitd15:8] of the maximum base
address, _MAX memory address for which the card may
bitd 15:8] be configured

Byte10 [Range maximum base Address bitq23:16] of the maximum base
address, _MAX memory address for which the card may
bitg23:16] be configured.

Byte1ll [Range maximum base Address bitq31:24] of the maximum base
address, _MAX memory address for which the card may
bitq 31:24] be configured

Thisfidd contains Bitq 7:0] of the base

Byte12 |[Basedignment, ALN dignment. The base dignment provides

bit7:0] the increment for the minimum base
address.
Thisfield contains Bit§ 15:8] of the base

Byte13 |[Basedignment, ALN dignment. The base dignment provides

bitg 15:8]

the increment for the minimum base
address.

178

Offset Fied Name Definition
Thisfidd contains Bitq23:16] of the base
Byte14 |[Basedignment, ALN adignment. The base dignment provides
bitg23:16] the increment for the minimum base
address.
Thisfield contains Bitg31:24] of the base
Byte15 |[Basedignment, ALN adignment. The base dignment provides
bitq31:24] the increment for the minimum base
address.
Thisfidd contains Bitq 7:0] of the
Byte16 |Rangelength, LEN memory range length. The range length
bit7:0] provides the length of the memory range
in 1 byte blocks.
Thisfied contains Bitd15:8] of the
Byte1l7 |[Rangelength, LEN memory range length. The range length
bitd15:8] provides the length of the memory range
in 1 byte blocks.
Thisfidd contains Bitq23:16] of the
Byte18 |[Rangelength, LEN memory range length. The range length
bitq23:16] provides the length of the memory range
in 1 byte blocks.
Thisfidd contains Bitg31:24] of the
Byte19 |Rangelength, LEN memory range length. The range length
bitq 31:24] provides the length of the memory range
in 1 byte blocks.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same deviceis not
allowed.

6.4.3.3.1 ASL Macro for 32-Bit Memory Descriptor
The following macro generates along 32-bit memory descriptor:

Menory32(
ReadWite | ReadOnly, /'l _RW
DWr dConst , /1 _MN, Mnimm base menory address
DWor dConst , /1 _MAX, Maxi num base menory address
DWr dConst , /'l _ALN, Base alignnment
DWor dConst /1 _LEN, Range |ength
NameString | Nothing /1 A nane to refer back to this resource

6.4.3.4 32-Bit Fixed Location Memory Range Descriptor (Type 1, Large Item
Name 0x6)

This memory range descriptor describes a device's memory resources within a 32-bit

address space.

Table6-22 Large Fixed-Location Memory Range Descriptor Definition

179

Offset Field Name Definition

Byte O Memory range Vaue=10000110B (Type=1, Largeitem
descriptor name = 6)

Byte 1 Length, bitq7:0] Vaue = 00001001B (9)

Byte 2 Length, bitg15:8] Vaue = 00000000B (0)

Byte 3 Information Thisfied provides extrainformation about this

memory.
Bit[7:1] Ignored
Bit[0] Write satus, RW
Satus
1 writegble
0 non-writeable (ROM)

Byte4 Range base address, | Address bitg7:0] of the base memory address
_BAS for which the card may be configured.
bitd7:0]

Byte5 Range base address, | Address bitg15:8] of the base memory address
_BASbitd15:8] for which the card may be configured

Byte 6 Range base address, | Address bitg23:16] of the base memory
_BAShItd23:16] address for which the card may be configured.

Byte 7 Range base address, | Address bitg31:24] of the base memory
_BASDhitg31:24] address for which the card may be configured

Thisfidd contains Bitq 7:0] of the memory

Byte 8 Range length, LEN range length. The range length providesthe

bit7:0] length of the memory range in 1 byte blocks.
Thisfidd contains Bitd 15:8] of the memory

Byte 9 Range length, LEN range length. The range length provides the

bitq15:8] length of the memory range in 1 byte blocks.
Thisfidd contains Bitg23:16] of the memory

Byte10 |Rangelength, LEN |rangelength. Therangelength providesthe

bitq23:16] length of the memory range in 1 byte blocks.
Thisfidd contains Bitg 31:24] of the memory

Byte1l |[Rangelength, LEN |rangelength. Therangelength providesthe

bitq 31:24] length of the memory range in 1 byte blocks.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same device is not

alowed.

6.4.3.4.1 ASL Macros for 32-bit Fixed Memory Descriptor
The following macro generates along 32 bit fixed memory descriptor:

180

Menor y32Fi xed(
ReadWite |
DWr dConst
DWor dConst
NameStri ng

)

ReadOnl y,

| Not hi ng

BAS, Range base
LEN, Range | ength

name to refer back to this resource

6.4.3.5 Address Space Descriptors

The QWORD, DWORD, and WORD Address Space Descriptors are genera purpose

structures for describing a variety of types of resources. These resources also include
support for advanced server architectures (such as multiple root busses), and resource

types found on some RISC processors.

6.4.3.5.1 QWORD Address Space Descriptor (Type 1, Large Item Name

OxA)

The QWORD address space descriptor is used to report resource usage in a 64-bit address

space (like memory and 1/0O).
Table6-22a QWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte O QWORD Address Vaue=10001010B (Type=1, Largeitem
Space Descriptor name = OxA)

Bytel Length, bitd7:0] Vaiade Vadue = 43 (minimum)

Byte 2 Length, bitg15:8] Vaidble Vdue =0 (minimum)

Byte 3 Resource Type Indicates which type of resource this

descriptor describes. Defined values are:
0 Memory range

1 1/Orange

2 Busnumber range

3-255 Reserved

181

Offset Field Name Definition

Byte 4 Generd Hags Flags that are common to al resource types.
Bity 7:4] Reserved, must be O
Bit[3] _MAF:

1: The specified max addressis fixed.
0: The specified max addressiis not fixed
and
can be changed.
Bit[2] _MIF
1. The specified min addressis fixed.
0: The specified min address is not fixed
and
can be changed.
Bit{1l] _DEC:
1: This bridge subtractively decodes this
address (top leve bridges only)
O: This bridge positively decodes this
address.
Bit[0]
1: This device consumes this resource.
0: This device produces and consumes
this
resource.

Byte5 Type Specific Hags Flags that are specific to each resource type.
The meaning of the flagsin thisfied depends
on the value of the Resource Type field (see
above)

Byte 6 Address space A st hit in this mask meansthat thisbit is
granularity, GRA decoded. All bitsless 9gnificant than the
bitg 7:0] mog significant st bit mugt dl be set. That is,

the vaue of the full Address Space
Granularity fidd (al 32 bits) must bea
number (2"-1)

Byte 7 Address space
granularity, GRA
bitq15:8]

Byte 8 Address space
granularity, GRA
bitq23:16]

Byte 9 Address space
granularity, GRA
bitq31:24]

Byte 10 | Address space
granularity, GRA

bitg[39:32]

182

Offset

Fieddd Name

Definition

Byte 11

Address space
granularity, GRA
bitq47:40]

Byte 12

Address space
granularity, GRA
bitg55:48]

Byte 13

Address space
granularity, GRA
bitg63:56]

Byte 14

Address range
minimum, _MIN
bitg7:0]

For bridges that trand ate addresses, thisis the
address space on the primary side of the
bridge.

Byte 15

Address range
minimum, _MIN
bitq15:8]

Byte 16

Address range
minimum, _MIN
bitq23:16]

Byte 17

Address range
minimum, _MIN
bitq31:24]

Byte 18

Address range
minimum, _MIN
bit§39:32]

Byte 19

Address range
minimum, _MIN
bitq47:40]

Byte 20

Address range
minimum, _MIN
bitq55:48]

Byte 21

Address range
minimum, _MIN
bitq 63:56]

Byte 22

Address range
maximum, _MAX
bitg7:0]

For bridges that trandate addresses, thisis the
address space on the primary side of the
bridge.

Byte 23

Address range
maximum, _MAX
bitg 15:8]

Byte 24

Address range
maximum, _MAX
bitg23:16]

183

Offset

Fieddd Name

Definition

Byte 25

Address range
maximum, MAX
bitq31:24]

Byte 26

Address range
maximum, MAX
bitq39:32]

For bridges that trand ate addresses, thisis the
address space on the primary side of the
bridge.

Byte 27

Address range
maximum, MAX
bitq47:40]

Byte 28

Address range
maximum, MAX
bitg55:48]

Byte 29

Address range
maximum, _MAX
bitq63:56]

Byte 30

Address Trandation
offset, TRA
bitq7:0]

For bridges that trand ate addresses across the
bridge, thisis the offset that must be added to
the address on the primary side to obtain the
address on the secondary side. Non-bridge
devicesmugt list O for dl Address Trandation
offset bits.

Byte 31

Address Trandation
offset, TRA
bitg 15:8]

Byte 32

Address Trandation
offset, TRA
bitq23:16]

Byte 33

Address Trandation
offset, TRA
bitq 31:24]

Byte 34

Address Trandation
offset, TRA
bitq39:32]

Byte 35

Address Trandation
offset, TRA
bitq47:40]

Byte 36

Address Trandation
offset, TRA
bitg55:48]

Byte 37

Address Trandation
offset, TRA
bitq 63:56]

184

Offset Field Name Definition
Byte38 | Addresslength,
_LEN
bitg7:0]
Byte39 | Addresslength,
_LEN,
bitq15:8]
Byte40 | Addresslength,
_LEN
bitq23:16]
Byte41l | Addresslength,
_LEN
bitg31:24]
Byte42 | Addresslength,
_LEN
bitg39:32]
Byte43 | Addresslength,
_LEN
bitq47:40]
Byte44 | Addresslength,
_LEN
bitg55:48]
Byte45 | Addresslength,
_LEN
bitg63:56]
Byte46 | Resource Source (Optiond) Only present if Resource Source
Index (below) is present. Thisfidd gives an index to
the specific resource descriptor that this
device consumes from in the current resource
template for the device object pointed to in
Resource Source.

String Resource Source (Optiond) If present, the device that usesthis
descriptor consumes its resources from the
resources produced by the named device
object. If not present, the device consumes its
resources out of aglobal pool.

If not present, the device consumesthis
resource from its hierarchica parent.

6.4.3.5.2 ASL Macros for QWORD Address Space Descriptor
The following macro generates a QWORD Address descriptor with ResourceType =

Memory:

QWor dMenor y (

Resour ceConsumer | ResourceProducer | Nothing,// Nothing=>ResourceConsumer
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hi ng=>MaxNot Fi xed
Cacheable | WiteConbining | Prefetchable | NonCacheable | Nothing,

/1 _MEM Not hi ng=>NonCacheabl e
ReadWite | ReadOnly, /1 _RW Nothing == ReadWite
Qnor dConst , /1 _GRA, Address granularity
QM\or dConst /1 _M N, Address range m ni mum
Qnor dConst , /1 _MAX, Address range nmax
QM\or dConst /1 _TRA, Translation
Byt eConst | Not hi ng, /'l Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

/1 to this resource

)

The following generates a QWORD Address descriptor with ResourceType = |O:

QWORDI
Resour ceConsumer | ResourceProducer | Nothing,// Nothing == ResourceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing => M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Nothing => MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Nothing => PosDecode
| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange | Not hing,
/'l _RNG, Nothing => EntireRange
Qnor dConst , /1 _GRA: Address granularity
Qnor dConst , /1 _M N Address range m ni num
QM\or dConst /1 _MAX: Address range max
Qnor dConst , /1 _TRA: Transl ation
Byt eConst | Not hing, /'l Resource Source |ndex;
/1 if Nothing, not generated
NameString | Nothing /| Resource Source;
/1 if Nothing, not generated
NameString | Nothing /1 A name to refer back to this
resource

)

185

6.4.3.5.3 DWORD Address Space Descriptor (Type 1, Large Item Name 0x7)
The DWORD address space descriptor is used to report resource usage in a 32-bit address

gpace (like memory and 1/0).

Table6-23 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Vaue=10000111B (Type=1, Largeitem
Space Descriptor name = 0x7)

Byte 1 Length, bitg7:0] Vaiadle Vdue = 23 (minimum)

Byte 2 Length, bitg15:8] Vaiable Vdue =0 (minimum)

Byte 3 Resource Type I ndicates which type of resource this

descriptor describes. Defined vaues are:
0 Memory range

1 I/Orange

2 Busnumber range

3-255Reserved

186

Offset Field Name Definition

Byte 4 Generd Hags Flagsthat are common to all resource types.
Bity 7:4] Reserved, must be O
Bit[3] _MAF:

1: The specified max addressis fixed.
0: The specified max addressis not fixed
and
can be changed.
Bit[2] _MIF
1. The specified min addressis fixed.
0: The specified min addressis not fixed
and
can be changed.
Bit{1l] _DEC:
1: This bridge subtractively decodesthis
address (top level bridges only)
O: Thisbridge positively decodes this
address.
Bit[0]
1: This device consumes this resource.
0: This device produces and consumes this
resource.

Byte 5 Type Specific Hags Hags that are specific to each resource type.
The meaning of the flagsin thisfield depends
on the value of the Resource Type field (see
above)

Byte 6 Address space A =t bit in thismask meansthat thisbit is

granularity, GRA decoded. All bitsless 9gnificant than the
bitg7:0] mogt sgnificant set bit must dl be s&t. (i.e
The vaue of the full Address Space
Granularity field (dl 32 bits) must bea
number (2"-1)
Byte 7 Address space
granularity, GRA
bitq15:8]
Byte 8 Address space
granularity, GRA
bits [23:16]
Byte 9 Address space
granularity, GRA
bits [31:24]
Byte10 | Addressrange For bridges that trandate addresses, thisis the
minimum, _MIN address space on the primary side of the
bits [7:0] bridge.

187

Offset

Fieddd Name

Definition

Byte 11

Address range
minimum, _MIN
bits [15:8]

Byte 12

Address range
minimum, _MIN
bits [23:16]

Byte 13

Address range
minimum, _MIN
bits [31:24]

Byte 14

Address range
maximum, MAX
bits[7:0]

For bridges that trand ate addresses, thisis the
address space on the primary side of the
bridge.

Byte 15

Address range
maximum, _MAX
bits [15:8]

Byte 16

Address range
maximum, _MAX
bits [23:16]

Byte 17

Address range
maximum, _MAX
bits [31:24]

Byte 18

Address Trandation
offset, TRA
bits[7:0]

For bridges that trand ate addresses across the
bridge, thisis the offset that must be added to
the address on the primary side to obtain the
address on the secondary side. Non-bridge
devicesmugt list O for dl Address Trandation
offst hits.

Byte 19

Address Trandation
offset, TRA
bits [15:8]

Byte 20

Address Trandation
offset, TRA
bits [23:16]

Byte 21

Address Trandation
offset, TRA
bits [31:24]

Byte 22

Address Length,
_LEN,
bits[7:0]

Byte 23

Address Length,
_LEN,
bits[15:8]

Byte 24

Address Length,
_LEN,
bits [23:16]

188

Offset Field Name Definition

Byte25 | AddressLength,
_LEN,
bits [31:24]

Byte 26 | Resource Source (Optiond) Only present if Resource Source
Index (below) is present. Thisfidd gives an index to

the specific resource descriptor that this
device consumes from in the current resource
template for the device object pointed to in
Resource Source.

String Resource Source (Optiond) If present, the device that usesthis
descriptor consumes its resources from the
resources produced by the named device
object. If not present, the device consumes its
resources out of aglobal pool.

If not present, the device consumesthis
resource from its hierarchica parent.

6.4.3.5.4 ASL Macros for DWORD Address Space Descriptor
The following macro generates a DWORD Address descriptor with ResourceType =
Memory:

DWORDMenor y (
Resour ceConsumer | ResourceProducer | Nothing,// Nothi ng=>Resour ceConsumner
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hi ng=>MaxNot Fi xed

Cacheable | WiteConbining | Prefetchable | NonCacheabl e | Nothing,
/1 _MEM Not hi ng=>NonCacheabl e

ReadWite | ReadOnly, _RW Not hing == ReadWite
DWr dConst , _CGRA, Address granularity
Dwér dConst , _MN, Address range m ni num
DWr dConst , _MAX, Address range max

Dwér dConst , TRA, Transl ation

Byt eConst | Not hi ng,
i f Nothing, not generated
Resour ce Source;

i f Nothing, not generated
A nanme to refer back

to this resource

NameString | Nothing

NameString | Nothing

)

R e T

/

/

/

/
I
/| Resource Source |ndex;
/

/

/

/

/

The following generates a DWORD Address descriptor with ResourceType = 10:

189

pll

Byt eConst | Not hing, esource Source |ndex;
f Not hi ng, not generated

Resour ce Source;

NameString | Nothing |

i f Nothing, not generated
A nane to refer back to this

DWORDI O(

Resour ceConsumer | ResourceProducer | Nothing,// Nothing == ResourceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing => M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Nothing => MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Nothing => PosDecode
| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange | Not hing,

/' _RNG, Nothing => EntireRange
DWor dConst , /| _GRA: Address granularity
DWr dConst , /' _MN: Address range m ni mum
DWor dConst , / _MAX: Address range max
DWr dConst , /[_TRA: Transl ation

/

/

/

/

/

~ e e e~ e~~~ e~~~

NameString | Nothing
resource

)

6.4.3.5.5 WORD Address Space Descriptor (Type 1, Large Item Name 0x8)
The WORD address space descriptor is used to report resource usage in a 16-bit address
gpace (like memory and 1/0). NOTE: This descriptor is exactly the same as the DWORD
descriptor specified in Table 7-19; the only differenceis that the addressfidds are 16 bits
wide rather than 32.

Table6-24 WORD Address Space Descriptor Definition

Offset Field Name Definition
Byte O WORD Address Vaue=10001000B (Type =1, Largeitem
Space Descriptor name = 0x8)

Bytel Length, bitg 7:0] Vaiable Vdue = 13 (minimum)

Byte 2 Length, bitg15:8] Vaiable Vdue =0 (minimum)

Byte 3 Resource Type I ndicates which type of resource this
descriptor describes. Defined values are:
0 Memory range
1 I/Orange
2 Busnumber range
3-255Reserved

190

Offset Field Name Definition

Byte 4 Generd Hags Flagsthat are common to all resource types.
Bity 7:4] Reserved, must be O
Bit[3] _MAF:

1: The specified max addressis fixed.

0: The specified max addressis not fixed
and

can be changed.
Bit[2] _MIF

1. The specified min addressis fixed.

0: The specified min addressis not fixed
and

can be changed.
Bit{1l] _DEC:

1: This bridge subtractively decodesthis

address (top leve bridges only)

O: Thisbridge positively decodes this
address.
Bitf0] 1. Thisdevice consumesthis
resource.

0: Thisdevice produces and consumesthis

resource.

Byte 5 Type Specific Hags Hags that are specific to each resource type.
The meaning of the flagsin thisfield depends
on the value of the Resource Type field (see
above)

Byte 6 Address space A =t bit in thismask meansthat thisbit is

granularity, GRA decoded. All bitsless 9gnificant than the

bitg7:0] mogt sgnificant st bit must dl be s&t. (i.e
The vaue of the full Address Space
Granularity field (dl 16 bits) must bea
number (2"-1)

Byte 7 Address space
granularity, GRA
bitq15:8]

Byte 8 Addressrange For bridges that trandate addresses, thisisthe
minimum, _MIN address space on the primary side of the
bits [7:0] bridge.

Byte 9 Addressrange
minimum, _MIN
bits [15:8]

Byte10 | Addressrange For bridges that trandate addresses, thisis the

maximum, MAX
bits [7:0]

address space on the primary side of the
bridge.

191

Offset Field Name Definition

Byte1l | Addressrange
maximum, MAX
bits [15:8]

Byte 12 | Address Trandation For bridges that trand ate addresses across the
offset, TRA bridge, thisis the offset that must be added to
bits[7:0] the address on the primary side to obtain the

address on the secondary side. Non-bridge
devicesmugt list O for dl Address Trandation
offst hits.

Byte 13 | Address Trandation
offset, TRA
bits [15:8]

Byte14 | AddressLength,

_LEN, bits[7:0]

Byte 15 | AddressLength,
_LEN, bits[15:8]

Byte 16 | Resource Source (Optiond) Only present if Resource Source
Index (below) is present. Thisfidd gives an index

to the specific resource descriptor that this
device consumes from in the current resource
template for the device object pointed to in
Resource Source.

String Resource Source (Optiond) If present, the device that usesthis
descriptor consumes its resources from the
resources produced by the named device
object. If not present, the device consumes its
resources out of a globa pool.

If not present, the device consumesthis
resource from its hierarchica parent.

6.4.3.5.6 ASL Macros for WORD Address Descriptor
The following macro generates a WORD Address descriptor with ResourceType =10

192

WORDI O(

Resour ceConsuner | ResourceProducer | Nothing, /1 Not hi ng=>Resour ceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hi ng=>MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange, /'l _RNG
Wor dConst , /1 _GRA: Address granularity
Wor dConst , /1 _MN: Address range m ni mum
Wor dConst , /1 _MAX: Address range nmax
Wor dConst , /1 _TRA: Translation
Byt eConst | Not hi ng, /'l Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

11l

)

to this resource

The following macros generates a WORD Address descriptor with ResourceType =

BusNumber:

WORDBusNunber (

Resour ceConsuner | ResourceProducer | Not hing, /1 Not hi ng=>Resour ceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hi ng=>MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Nothi ng=>PosDecode
Wor dConst , /'l _GRA, Address granularity
Wor dConst , /1 _MN, Address range m ni num
Wor dConst , /1 _MAX, Address range nmax
Wor dConst , /1 _TRA: Transl ation
Byt eConst | Not hi ng, /'l Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

/1 to this resource

)

6.4.3.5.7 Resource Type Specific Flags

The meaning of the flags in the Type Specific Hags fied of the Address Space
Descriptors depends on the value of the Resource Type field in the descriptor. The flags

for each resource type are defined in the following tables:

Table6-25 Memory Resour ce Flag (Resour ce Type = 0) Definitions

Bits M eaning

Bity 7:5] Reserved; must be O

Bitq4:1] Memory éttributes, MEM
Vdue Meaning
0 Thememory is noncacheable

1 Thememory is cachegble

3 Thememory is cacheable and prefetchable
>3 Resarved

2 Thememory is cacheable and supports write combining

Bit[O] Write gatus, RW
1: Thismemory range is read-write

0: Thismemory range is read-only

193

Table6-26 1/0 Resource Flag (Resour ce Type = 1) Definitions

Bits Meaning
Bit[7:2] Reserved; must be 0
Bit[1] _RNG

Thisflag isfor bridges on sysems with multiple bridges. Setting
this bit means the memory window specified in this descriptor is
limited to the ISA 1/0O addresses that fal within the specified
window. ThelSA 1/O ranges are: n000-nOFF, n400-n4FF, n800-
n8FF, NCO0-nCHF. This bit can only be set for bridges entirely
configured through ACPl name space.

Bit[Q] _RNG

Thisflag isfor bridges on sysems with multiple bridges. Setting
this bit means the memory window specified in this descriptor is
limited to the non 1SA 1/0 addresses that fall within the specified
window. The non-1SA 1/0 ranges are: n100-n3FF, n500-n7FF,
n900-nBFF, nDOO-nFFF. Thisbit can only be set for bridges entirely
configured through ACPI names pace.

Table6-27 BusNumber Range Resour ce Flag (Resour ce Type = 2) Definitions

Bits Meaning
Bit[7:0] Reserved; must be 0

6.4.3.6 Extended Interrupt Descriptor (Type 1, Large Item Name 0x9)
The Extended Interrupt Descriptor is necessary to describe interrupt settings and
possibilities for systems that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor alows vendorsto list an array of
possible interrupt numbers, any one of which can be used.

Table6-28 Extended Interrupt Descriptor Definition

Offset Fied Name Definition

Byte O Extended Interrupt Vaue=10001001B (Type=1, Largeitem
Descriptor name = 0x9)

Byte 1 Length, bitg7:0] Vaidble Vaue = 6 (minimum)

Byte 2 Length, bitq15:8] Vaiade Vaue =0 (minimum)

Byte 3 Interrupt Vector Interrupt Vector Information.
Hags Bit[7:4] Reserved, must beO.

Bit[3] Interrupt is sharesble, SHR
Bit[2] Low trueleve sengtive, _LL

Bit[1] High true leve sengtive, HE
Bit[0] 1: This device consumes this resource
0: This device produces and
consumes
this resource

194

Offset Field Name Definition

Byte4 Interrupt table length Indicates the number of interrupt numbers
that follow. When this descriptor is returned
from _CRS, or when the OS passes this
descriptor to _ SRS, thisfield must be st to
1

Byte Interrupt Number, [nterrupt number.

4n+5 CINT

bits[7:0]
Byte Interrupt Number,
4n+6 CINT
bits [15:8]
Byte Interrupt Number,
an+7 CINT
bits [23:16]
Byte Interrupt Number,
4n+8 CINT
bits [31:24]
Additiond interrupt numbers
Byte x Resource Source (Optiona) Only present if Resource Source
Index (below) ispresent. Thisfidd givesanindex
to the specific resource descriptor thet this
device consumes from in the current resource
template for the device object pointed to in
Resource Source.

String Resource Source (Optiond) If present, the device that uses
this descriptor consumesiits resources from
the resources produces by the named device
object. If not present, the device consumes
its resources out of agloba poal.

If not present, the device consumesthis
resource from its hierarchica parent.

NOTE: Low true, level sensitive interrupts may be electrically shared, the process of

how this might work is beyond the scope of this specification.

If the operating system is running using the 8259 interrupt mode, only interrupt number
vaues of 0-15 will be used, and interrupt numbers grester than 15 will be ignored.

6.4.3.6.1 ASL Macro for Extended Interrupt Descriptor
The following macro generates an extended interrupt descriptor:

195

I nterrupt(
Resour ceConsuner | ResourceProducer | Nothing, Not hi ng=>Resour ceConsuner
Edge | Level, _LL, _HE

Il
11l
ActiveHi gh | ActivelLow , /1 __LL, _HE
Shared | Exclusive | Nothing, /1 _SHR: Not hi ng=>Excl usi ve
Byt eConst | Not hing, /'l Resource Source |ndex;
/1 if Nothing, not generated
/| Resource Source;
/1 if Nothing, not generated
11l
11l

NameString | Nothing

A name to refer back
to this resource

NameString | Nothing

)

{
DWor dConst [, DwWordConst ...] /1 _INT, list of interrupt nunbers
}

6.5 Other Control Methods

6.5.1 _INI

_INI isadeviceinitidization object that performs device specific initidization. This

control method, located under a device object, isrun shortly after ACPI has been enabled,
and is run exactly once. There are redtrictions related to when this method is caled and
governing writing code for this method. The _INI can only access system 10, system
Memory, and the PCI ConfigSpace. It cannot access the embedded controller, or the
SMBus. This control method isrun before ADR, CID, HID, SUN, and _UID are
run.

The_INI control method is generaly used to switch devices out of alegacy operating
mode. For example, BIOSes often configure CardBus controllersin alegacy mode to
support legacy operating systems. Before enumerating the device with an ACPI operating
system, the CardBus controllers must be initidized to CardBus mode. For such systems,
the vendor can include an _INI control method under the CardBus controller to switch the
device into CardBus mode.

6.5.2 _DCK

This control method is located in the device object that represents the docking station
(that is, the device object with dl the EJx control methods for the docking station). The
presence of DCK indicatesto the operating system that the device is redly a docking
dation.

_DCK aso controlsthe isolation logic on the docking connector. This alows an
operating system to prepare for docking before the busis activated and devices appear on
the bus.
Arguments.
Arg0
1 = Dock (thet is, remove isolation from connector)
0 = Undock (isolate from connector)
Return codes:
1if successful, Oif faled.

196

Note: When DCK iscdled with 0, the OS will ignore the return value. The _STA object
that followsthe _EJx control method will notify whether or not the portable has been
g ected.

6.5.3 _BDN

_BDN is used to correlate a docking station reported via ACPI and the same docking
dation reported vialegacy interfaces. 1t is primarily used for upgrading over nornt ACPI
environments.

_BDN must appear device object that represents the dock, that is, the device object with
_Ejx methods. This object must return a DWORD that is the EI SA-packed DockID
returned by the Plug and Play BIOS Function 5 (Get Docking Stetion Identifier) for a
dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.54 REG

The operating system runs _ REG controls methods to inform AML code when the device
driver that controls an operation region isready? or no longer ready? for access. Before
an operation region device driver isready, AML cannot access registersin that operation
region. (Operation region writeswill be ignored and reads will return indeterminate data.)
Once the OS has run the REG for a particular operation region and indicated that the
handler is ready, the AML can access the operation region.

For example, until the Embedded Controller driver is ready, the AML cannot access the
Embedded Controller. Oncethe OS hasrun REG for the Embedded Controller
NameSpace with Arg 1 set to 1, the AML can then access operation regions in Embedded
Controller space.

Place REG in the same scope as operation region declarations. The operating system
will run the REG in a given scope when the operation regions declared in that scope are
availablefor use.

For example:

Scope(_SB. PCI 0) {
Oper ati onRegi on(OPR1, PCl Config, ...)
Met hod(_REG, 2) {...}
Devi ce(| SA0) {
Met hod(_REG, 2) {...}
Oper ationRegi on(OPR2, 10, ...)
Devi ce(EC) {
Name(_HI D, Eisal D("PNPOC09"))
Met hod(_REG, 2) {...}
Oper ati onRegi on(OPR3, EC, ...)
}
}

When the PCI driver loads, the OS will run _REG in PCIO0 to indicate that PCI Config
gace isavallable. When 1SAOQ is configured, the OSwill run _REG in that scopeto
indicate that the 10 used by OPR2 isavailable. Findly, when the Embedded Controller
isgarted, REG in the EC scope will be run to indicate OPR3 can be used.

Note: The operating system only runs_REG methods that appear in the same scope as
operation region declarations that use the operation region type that has just been made
avallable. For example, REG in the EC device would not be run when the PCI bus
driver isloaded since the operation regions declared under EC do not use any of the
operation region types made available by the PCI driver (namely config space, 10, and
memory).

Arguments.

Arg0: Integer: Operation region space:
0 =Memory
1=10
2=PCl_Config
3 = Embedded Controller
4 =SMBus
Argl: Integer: 1 for connecting the handler, O for disconnecting the handler

6.55 BBN

For multi-root PCI machines, BBN is the PCI bus number that the BIOS sets up. If you
need to get to a PCl operation region in order to run the _CRS control method, the system
must have a means of the PCI bus number in order for the OS to generate the correct PCI
configuration cycles.

6.5.6 _GLK

This optiona named object islocated in adevice object. This object returns a vaue that
indicates to the OS whether the global lock must be acquired when accessing the device.
OS-based device accesses must be performed while in acquisition of the globa lock

when potentidly cortentious accesses to device resources are performed by non-OS code,
such as System Management Mode (SMM)-based code in Intel architecture-based
systems.

An example of this device resource contention is a device driver for an SMIBus- based
device contending with SMM-based code for access to the Embedded Controller, SMBus
Host Controller, and SMBus target device. In this case, the device driver must acquire
and release the globd lock when ng the device to avoid resource contention with
SMM-based code that accesses any of the listed resources.

Return codes:
1 globa lock required, O global lock not required

197

7. Power Management

This section specifies the device power management objects and system power
management objects the OS can use to perform power management on a plaiform. The
system state indicator objects are aso specified in this section.

7.1 Declaring a PowerResource Object
An ASL PowerResource statement is used to declare a PowerResource object. A Power
Resource object refers to a software-controllable power plane, clock plane, or other
resource upon which an integrated ACPI power-managed device might rely. Power
resource objects can gppear wherever is convenient in name space.
The syntax of a PowerResource statement is:

Power Resour ce(resour cename, systemlevel, resourceorder) {NamedL ist}

where the systemlevel parameter isanumber and the resourceorder parameter isa
numeric constant (a Word). For aformal definition of the PowerResource statement
gyntax, see section 14.

Systemlevel isthe lowest power system deep leve the OS must maintain to keep this
power resource on (0 equates to SO, 1 equatesto S1, and soon) .

Each power-managed ACPI device lists the resources it requires for its supported power
levels. The OS multiplexes this information from al devices and then enables and

disables the required Power Resources accordingly. The resourceorder| fidd in the
Power Resource object is a unique value per Power Resource, and it provides the system
with the order in which Power Resources must be enabled or disabled. Power Resources
are enabled from low vaues to high vaues and are disabled from high vauesto low
vaues. The operating software enables or disables dl affected Power Resourcesin any
one resourceorder level a atime before moving on to the next ordered level. Putting
Power Resources in different order levels provides power sequencing and seridization
where required.

A Power Resource can have named objects under its Name Space location. For a
description of the ACPI-defined named objects for a Power Resource, see section 7.2.

Thefollowing block of ASL sample code shows a use of Power Resour ce.

Intel Microsoft Toshiba

200

Power Resour ce(PI DE, 0, 0) {
Met hod(_STA) {
Return (Xor (Gl O IDElI, One, Zero))// inverse of isolation

}

Met hod(_ON) {
Store (One, G O. | DEP)
Sl eep (10)
Store (One, G O | DER)
Stall (10)
Store (Zero, G O | DEl)

assert power

wait 10ns

de-assert reset#
wait 10us

de-assert isolation

~———
~———

}

Met hod(_OFF) {
Store (One, G
Store (Zero, G
Store (Zero, QG

assert isolation
assert reset#
de- assert power

ooO

R 7o
332

}
}

7.2 Device Power Management Objects

For adevice that is power-managed usng ACPI, a Definition Block contains one or more
of the objects found in the table below. Power management of a device is done using two
different paradigms

?? Power Resource contral.

?? Device-specific control.

Power Resources are resources that could be shared amongst multiple devices. The
operating software will automaticaly handle control of these devices by determining
which particular Power Resources need to be in the ON state at any given time. This
determination is made by consdering the state of al devices connected to a Power
Resource.

For many devices the Power Resource control isal that is required; however, device
objects may include their own device-specific control method.

These two types of power management controls (through Power Resources and through
specific devices) can be gpplied in combination or individudly as required.

For systems that do not control device power states through power plane management,
but whose devices support multiple D-gtates, more information is required by the
operating system to determine the S-state to D- State mapping for the device. The ACPI
Bios can give thisinformation to the OS by way of the SxD methods. These methods
tell the OSfor S-State “x”, the highest D-State supported by the deviceis“y”. The OSis
alowed to pick alower D-gtate for agiven S-state, but the OSis not alowed to exceed
the given D-state.

Further rules that apply to device power management objects are:
1. For agiven S-State, adevice cannot be in a higher D-State than its parent device.
2. Each _PRx object must have a corresponding _PSx object and vice-versa. The
only exception isthe _PRW object which does not need a corresponding _PSW
object.

Table7-1 Device Power Management Child Objects

Object | Description

_IRC Object that Sgnifies the device has asgnificant inrush current draw.

201

Object | Description

_PRW | Object that evaluates to the device' s power requirements in order to wake the
system from a system deeping Sate.

_PRO Object that evauates to the device' s power requirements in the DO device State
(devicefully on).

_PR1 Object that evauates to the device' s power requirementsin the D1 device
date. The only devices that supply thisleve are those which can achieve the
defined D1 device State according to the related device class.

_PR2 Object that evauates to the device s power requirementsin the D2 device
date. The only devices that supply thisleve are those which can achieve the
defined D2 device State according to the related device class.

_PSC Object that evduates to the device' s current power state.

_PSW | Control method that enables or disables the device s WAKE function.

_PSO Control method that puts the device in the DO device state (device fully on).

_PS1 Control method that puts the device in the D1 device Sate.

_PS2 Control method that puts the device in the D2 device Sate.

_PS3 Control method that puts the device in the D3 device state (device off).

_S0D Highest D- State supported by the device in the SO state

_S1D Highest D- State supported by the device in the S1 state

_S2D Highest D-State supported by the device in the S2 state

_S3D Highest D- State supported by the device in the S3 state

4D Highest D-State supported by the device in the 4 state

_S5D Highest D- State supported by the device in the S5 state

721 PRW

This object isonly required for devices that have the ability to “wake’ the system from a

system deeping Sate. This object eval uates to a package of the following definition:

Table 7-2 Wake Power Requirements Package

Object Description
0 | numeric The bit index in GPEX_EN of the endble bit thet is
enabled for the wake event.
1 | numeric The lowest power system deeping state that can be
entered while ill providing wake functiondity.
2 | object Reference to required Power Resource #0.
reference
N | object Reference to required Power Resource #N.
| reference

For the OS to have the defined wake capability properly enabled for the device, the
following must occur:

1. All Power Resources referenced by elements 2 through N are put into the ON tate.

202

2. |If present, the PSW control method is executed to set the device- specific regigtersto
enable the wake functiondity of the device.

Then, if the system wants to enter adeegping date:
1. Interrupts are disabled.

2. The deeping state being entered must be greater or equd to the power state declared
in dement 1 of the PRW object.
3. The proper general-purpose register bits are enabled.

7.22 _PRO
This object evaluates to a package of the following definition:

Table 7-3 Power Resour ce Requirements Package

Object Description
1 | object Reference to required Power Resource #0.
reference
N | object Reference to required Power Resource #N.
reference

For the OSto put the device in the DO device Sate, the following must occur:

1. All Power Resources referenced by eements 1 through N must bein the ON date.

2. All Power Resources no longer referenced by any device in the system must be in the
OFF dtate.

3. If present, the P30 control method is executed to set the device into the DO device
state.

723 PR1

This object evauates to a package as defined in Table 7-3. For the OS to put the devicein

the D1 device Sate, the following must occur:

1. All Power Resources referenced by eements 1 through N must bein the ON sate.

2. All Power Resources no longer referenced by any device in the sysem must bein the
OFF state.

3. If present, the PS1 control method is executed to set the device into the D1 device
state.

724 PR2

This object evauates to a package as defined in Table 7-3. For the OSto put the device in

the D2 device gate, the following must occur:

1. All Power Resources referenced by dements 1 through N must be in the ON date.

2. All Power Resources no longer referenced by any devicein the sysem must bein the
OFF dtate.

3. If present, the _PS2 control method is executed to set the device into the D2 device
state.

203

7.25 _SOD

This object evaluates to an integer, which corresponds to the highest D-state supported in
S-dtate 0. See Table 7-4 for the result code. This particular method is redundant since the
device mugt support DO whilein the SO gate. It isincluded for consistency purposes.

7.26 _S1D
This object evauates to an integer, which corresponds to the highest D-state supported in
S-dtate 1. See Table 7-4 for the result code.

7.27 _S2D
This object evaluates to an integer, which corresponds to the highest D-state supported in
S-dtate 2. See Table 7-4 for the result code.

728 _S3D
This object evaluates to an integer, which corresponds to the highest D-state supported in
S-dtate 3. See Table 7-4 for the result code.

7.29 _S4D
This object evaluates to an integer, which corresponds to the highest D-state supported in
S-dtate 4. See Table 7-4 for the result code.

7.2.10 _S5D
This object evduates to an integer, which corresponds to the highest D-state supported in
S-state 5. See Table 7-4 for the result code.

7.3 Power Resources for OFF

By definition, adevice that is OFF does not have any power resource or system power
sate requirements. Therefore, device objects do not list power resources for the OFF
power state.

For the OS to put the device in the D3 dtate, the following must occur:

1. All Power Resources no longer referenced by any device in the sysem must bein the
OFF gtate.

2. |If present, the _PS3 control method is executed to set the device into the D3 device
date.

The only trangtion alowed from the D3 device sate is to the DO device state.

731 _IRC

The presence of this object signifies that trangtioning the device to its DO Seate causes a
system-ggnificant in-rush current load. In general, such operations need to be seridized
such that multiple operations are not attempted concurrently. Within ACH, this type of
seridization can be accomplished with the resourceorder parameter of the device's
Power Resources, however, this does not serialize ACPI-controlled devices with non-
ACPI controlled devices. IRC is used to sgnify thisfact outside of the ACPI driver to the
OS such that the OS can seridize dl devicesin the system that have in-rush current
seridization requirements. The OS can only trangtion one device flagged with _IRC to
the DO state at atime.

204

732 _PSW

In addition to PSR, this control method can be used to enable or disable the device's
ability to wake a deeping system. This control method can only access Operation
Regions that are either dways available while in a system working State or that are
available when the Power Resources references by the PRW object are all ON. For
example, do not put a power plane control for abus controller within configuration space
located behind the bus.

Arguments.
0: Enable/ Disable. 0 to disable the device s wake capahilities.
1 to enable the device s wake capabilities.
Result code:
None
7.3.3 _PSC

This control method evauates to the current device state. This control method is not
required if the device state can be inferred by the Power Resource settings. Thiswould be
the case when the device does not requirea_PS0, PS1, PS2, or _PS3 control method.

Arguments.
None

Reault code:
The result codes are shown in Table 7-4.

Table7-4 PSC Control Method Result Codes

Result Device State
0 DO
1 D1
2 D2
3 D3

734 _PSO

This Control Method is used to put the specific device into its DO state. This Control
Method can only access Operation Regions that are either dways availadble whilein a
system working state or that are available when the Power Resources references by the
_PRO object are all ON.

Arguments.
None

Result code:
None

735 PS1

This control method is used to put the specific device into its D1 state. This control
method can only access Operation Regions that are either dways available whileina
system working state or that are available when the Power Resources references by the
_PR1 object are all ON.

Arguments.

None
Reault code:
None

7.3.6 _PS2

This control method is used to put the specific deviceinto its D2 gate. This control
method can only access Operation Regions that are either dways available whilein a
system working state or that are available when the Power Resources references by the
_PR2 object are al ON.

Arguments
None

Result code:
None

7.3.7 _PS3

This control method is used to put the specific deviceinto its D3 tate. This contral
method can only access Operation Regions that are aways available while in asystem
working state.

A devicein the D3 state must no longer be using its resources (for example, its memory
gpace and 1O ports are available to other devices).

Arguments.
None

Result code:
None

7.4 Defined Child Objects for a Power Resource

Each power resource object is required to have the following control methods to alow
basic control of each power resource. Asthe OS changes the state of device objectsin
the system, the power resources which are needed will change which will cause the ACH
driver to turn power resources on and off. To determinetheinitid power resource
settingsthe _STA method can be used.

Table7-5 Power Resource Child Objects

205

Object | Description

_STA Object that evaluates to the current on or off state of the Power Resource.
0=0FF,1=0ON

_ON Set the resource on.

_OFF Set the resource off.

741 STA
Returns the current ON or OFF status for the power resource.

Arguments.
None

Result code:
0 indicates the power resourceis currently off

206

1 indicates the power resource is currently on

7.4.2 ON

This power resource control method puts the power resource into the ON state. The
control method does not complete until the power resourceison. The ACPI driver only
turns on or off one resource a atime, so the AML code can obtain the proper timing
sequencing by using Stall or Sleep within the ON (or OFF) method to cause the proper
sequencing delays between operations on power resources.

Arguments.
None

Reault code:
None

7.43 OFF

This power resource control method puts the power resource into the OFF state. The
control method does not complete until the power resourceis off. The ACPI driver only
turns on or off one resource a atime, so the AML code can obtain the proper timing
sequencing by using Stal or Sleep within the ON (or off) method to cause the proper
sequencing delays between operations on power resources.

Arguments.
None

Reault code:
None

7.5 OEM-Supplied System Level Control Methods

An OEM -supplied Definition Block provides some number of controls appropriate for
systemn level management. These are used by the OS to integrate to the OEM - provided
features. The following table lists the defined OEM system controls that can be provided.

Table7-6 BIOS-Supplied Control Methodsfor System Level Functions

Object | Description

\ PTS | Control method used to prepare to deep

\ SO Package that defines system \ SO state mode.

\:Sl Package that defines system \ S1 state mode.

\ S2 Package that defines system \ S2 state mode.

\ S3 Package that defines system\ S3 state mode.

\ A Package that defines system \ $4 state mode.

\ S5 Package that defines system \ S5 state mode.

\ WAK | Control method run once awakened.

7.5.1 \ PTS Prepare To Sleep

The _PTS control method is executed by the operating system at the beginning of the
deep processfor S1, S2, S3, 4, and for orderly S5 shutdown. The deeping State value
(1, 2, 3, 4, or 5) is passed to the _PTS control method. Before the OS notifies native

device drivers and prepares the system software for a system deeping state, it executes
this ACP!I control method. Thus, this control method can be executed arelatively long
time before actudly entering the desired deeping state. In addition, the OS can abort the
deeping operation without notification to the ACPI driver, in which case another PTS
would occur some time before the next attempt by the OS to enter a deeping state.
The_PTS control method cannot modify the current configuration or power state of any
device in the system. For example, PTS would smply store the deep typein the
embedded controller in sequencing the system into a deep state when the SLP_EN bit is
Set.

Arguments.
0: The vaue of the deeping state (1 for S1, 2 for 2, and so on).

7.5.2 System\ Sx states

All system states supported by the system must provide a package containing the Dword
vaue of the following format in the gatic Definition Block. The system gtates, known as
S0 - S5, arereferenced in the name space as\ SO - \ S5 and for clarity the short Sx
names are used unless specificaly referring to the named _Sx object. For each Sx Htate,
there is a defined system behavior.

Table7-7 System State Package

207

Byte Byte Description
Length | Offset

1 0 Vauefor PM1a CNT.SLP TYPregister to enter this system state.

1 1 Valuefor PM1b CNT.SLP_TYP register to enter this system dtate.
To enter any given date, the OS must write the

PM1la CNT.SLP_TYPregister beforethe PM1b CNT.SLP_TYP
register.

2 2 Reserved

States S1- A represent some system degping sate. The SO Sateis the system working
date. Trangtion into the SO state from some other system dtate (such as deegping) is
automatic, and, by virtue that ingtructions are being executed, the OS assumes the system
to be in the SO ate. Trangtion into any system deeping state is only accomplished by
the operating software directing the hardware to enter the appropriate Sate, and the
operating software can only do this within the requirements defined in the Power
Resource and Bus/ Device Package objects.

All runtime system date trangtions (for example, to and from the SO state), except S4
and S5, are done smilarly such that the code sequence to do thisis the following:

208

/*
Intel Architecture Set Sl eepingState exanple

*/

ULONG

Set Syst enfSl eepi ng (

IN ULONG NewsState

{

PROCESSOR_CONTEXT Cont ext ;

ULONG Power Seqgeunce;

BOOLEAN Fl ushCaches;

USHORT Sl pTyp;
/1 Required environment: Executing on the system boot
/'l processor. All other processors stopped. Interrupts
/1l disabled. Al Power Resources (and devices) are in
/1 corresponding device state to support NewState.

/1 Get h/w attributes for this systemstate
Fl ushCaches= Sl eepType[NewSt at e] . Fl ushCache;

Sl pTyp = Sl eepType[NewSt ate] . Sl pTyp & SLP_TYP_MASK;
_asm {

| ea eax, OsResuneCont ext

push eax ; Build real node handler the resune
push of fset sp50 ; context, with eip = sp50

call SaveProcessor State

nmov eax, ResunmeVector ; set firmware’'s resume vector
mv [eax], offset OsReal ModeResumeCode

mv edx, PMla_STS ; Make sure wake status is clear
nmv ax, WAK_STS ; (cleared by asserting the bit
out dx, ax ; in the status register)

mv edx, PMlb_STS ;
out dx, ax ;

and eax, not SLP_TYP_MASK

or eax, Sl pTyp ; set SLP_TYP

or ax, SLP_EN ; set SLP_EN

cnp Fl ushCaches, 0

jz short spl0 ; I'f needed, ensure no dirty data in
call Fl ushProcessor Caches ; the caches while sl eeping

spl0: nov edx, PMla_SLP_TYP get address for PMla_SLP_TYP

out dx, ax start h/w sequencing

nmv edx, PMLlb_SLP_TYP ; get address for PMLb_SLP_TYP
out dx, ax ; start h/w sequencing

mv edx, PMla_STS ; get address for PMLx_STS

mov ecx, PMLb_STS

sp20: in ax, dx ; wait for WAK status
xchg edx, ecx
test ax, WAK_STS

jz short sp20
sp50:
}
/'] Done..
*ResunmeVect or = NULL;
return O;
}

7.5.2.1 System\ SO State (Working)

209

While the system isin the SO ate, it isin the system working sate. The behavior of this

date is defined as:

?? The processors arein the CO, C1, C2, or C3 dtates. The processor complex context is
maintained and ingtructions are executed as defined by any of these processor states.

?? Dynamic RAM context is maintained and is read/write by the processors.

?? Devices daes areindividualy managed by the operating software and can be in any
device state (DO, D1, D2, or D3).

?? Power Resources are in a state compatible with the current device States.

Trangtion into the S0 state from some system dleeping state is automatic, and by virtue
that ingtructions are being executed the OS assumes the system to be in the SO state.

7.5.2.2 System\ Sl State (Sleeping with Processor Context Maintained)

While the system isin the S1 deeping Sate, its behavior is the following:

?? The processors are not executing ingtructions. The processor complex context is
maintained.

?? Dynamic RAM context is maintained.

?? Power Resources are in a state compatible with the system S1 state. All Power

Resources that supply a System Levd reference of SO are in the OFF dtate.

?? Devices sates are compatible with the current Power Resource states. only devices
which solely reference Power Resources which are in the ON date for a given device
state can bein that device state. In dl other cases, the device isin the D3 (off) state™®.

?? Devicesthat are enabled to wake the system and that can do so from their current
device gtate can initiate a hardware event which trangtions the system state to 0.
This trangtion causes the processor to continue execution where it I€eft off.

To trandtion into the S1 State, the operating software does not have to flush the
processor’s cache.

7.5.2.3 System\ S2 State

The S2 deeping dateislogicaly lower then the S1 state and is assumed to conserve more

power. The behavior of this stateis defined as.

?? The processors are not executing instructions. The processor complex context is not
maintained.

?? Dynamic RAM context is maintained.

?? Power Resources are in a state compatible with the system S2 state. All Power

Resources that supply a System Level reference of SO or S1 are in the OFF state.

?? Devices states are compatible with the current Power Resource states. only devices
which solely reference Power Resources which arein the ON state for a given device
date can bein that device state. In dl other cases, the device isin the D3 (off) state.

?? Devicesthat are enabled to wake the system and that can do so from their current
device sate can initiate a hardware event which trangtions the system state to SO.

10 Oris at least assumed to be in the D3 state by its device driver. For example, if the
device doesn't explicitly describe how it can stay in some state non-off state while the
system isin adeeping sate, the operating software must assume that the device can lose
its power and dtate.

210

This trangition causes the processor to begin execution &t its boot location. The BIOS
performsinitiaization of core functions as needed to exit an S2 Sate and passes
control to the firmware resume vector. See section 9.3.2 for more details on BIOS
initidization.
Because the processor context can be lost while in the S2 ate, the trangition to the S2
date requires that the operating software flush al dirty cache to DRAM.

7.5.2.4 System\ S3 State

The S3 dateislogically lower then the 2 sate and is assumed to conserve more power.

The behavior of this Sate is defined asfollows:

?? The processors are not executing ingtructions. The processor complex context is not
maintained.

?? Dynamic RAM context is maintained.

?? Power Resources are in a state compatible with the system S3 state. All Power

Resources that supply a System Level reference of SO, S1, or S2 are in the OFF state.

?? Devices states are compatible with the current Power Resource states. only devices
which solely reference Power Resources which arein the ON state for a given device
date can be in that device state. In all other cases, the deviceisin the D3 (off) State.

?? Devicesthat are enabled to wake the system and that can do so from their current
device ate can initiate a hardware event which trangtions the system state to SO.
Thistrangtion causes the processor to begin execution at its boot location. The BIOS
performsinitiaization of core functions as required to exit an S3 state and passes
contral to the firmware resume vector. See section 9.3.2 for more details on BIOS
intialization.

From the software view point, this state is functionaly the same asthe S2 gate. The

operationa difference can be that some Power Resources that could be left ON to bein

the S2 state might not be available to the S3 state. As such, additional devices can be

required to beinlogicaly lower DO, D1, D2, or D3 gate for S3 than S2. Similarly, some

device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 date, the trangtion to the S3
state requires that the operating software flush dl dirty cache to DRAM.

7.5.2.5 System\ S4 State

Whilethe sygem isin this sete, it isin the sysem $4 degping date. The Sateislogicaly

lower then the S3 state and is assumed to conserved more power. The behavior of this

date is defined asfollows:

?? The processors are not executing ingtructions. The processor complex context is not
maintained.

?? Dynamic RAM context is not maintained.

?? Power Resources are in a state compatible with the system $4 gate. All Power
Resources that supply a System Leve reference of S0, S1, S2, or S3 arein the OFF
state.

?? Devices gtates are compatible with the current Power Resource states. In other words,
al devices are in the D3 dtate when the system date is 4.

?? Devicesthat are enabled to wake the system and that can do so from their D4 device
date can initiate a hardware event which trangtions the system date to 0. This
trangition causes the processor to begin execution at its boot location.

After the OS has executed the PTS control method and put the entire system gtate into

main memory, there are two ways which the OS may handle the next phase of the S4

date for saving and restoring main memory. Thefirs way is where the operating system
uses its drivers to access the disks and file system structures to save a copy of memory to
disk, and then initiates the hardware $4 sequence by setting the SLP_EN register bit.

When the system wakes, the firmware performs anorma boot process and loads the

OSesloader. The loader then restores the systems memory and wakes the OS.

The dternate method for entering the $4 gate isto utilize the BIOS viathe SABIOS

trangtion. The BIOS usesfirmware to save acopy of memory to disk and then initiates

the hardware $4 sequence. When the system wakes, the firmware restores memory from
disk and wakes the OS by transferring control to the FACS waking vector.

The SABIOS trangtion is optiond, but any system which supports this mechanism is

required to support entering the 4 gate via the direct OS mechanism. Thusthe preferred

mechanism for $4 support isthe direct OS mechanism asiit provides broader platform
support. The dternate ABIOS trangition provides away to achieve $4 support on OSes
which do not have support for the direct method.

7.5.2.6 System\ S5 State (Soft Off)

The S5 date issmilar to the 4 state except that the OS has not saved any context nor set
any devicesto wake the systlem. The system isin the “soft” off state and requires a

compl ete boot when awakened (BIOS and OS). Software uses a different Sate vaue to
digtinguish between this sate and the $4 state to dlow for initia boot operations within

the BIOS to distinguish whether or not the boot is going to wake from a saved memory
image. The OS mugt have dl wake events disabled before initiating SLP_EN for the S5
state.

7.5.3 _ WAK (System Wake)

After the system has awakened from a deeping date, it will invoke the\ WAK method
and pass the degping state vaue that has ended. This operation occurs asynchronoudy
with other driver natifications in the system and is not the first action to be taken when

the system wakes up. The AML code for this control method issues device, thermd, and
other notifications to ensure that the OS checks the state of devices, thermal zones, and so
on that could not be maintained during the system deeping date. For example, if the
system cannot determine whether a device was inserted or removed from abus whilein
the S2 state, the . WAK method would issue a devicecheck type of natification for thet
bus when issued with the deeping state vaue of 2 (for more information about types of
notifications, see section 5.6.3). Note that a device check notification from the\ SB node
will cause the OS to re-enumerate the entire tree™.

1 Only buses that support hardware-defined enumeration methods are done automatically
at run time. Thiswould include ACPI enumerated devices.

211

212

Hardware is not obligated to track the state needed to supply the resulting status;
however, this method can return status concerning the last deep operation initiated by the
OS. The result codes can be used to provide additiona information to the OS or user.

Arguments.
0 The vaue of the degping state (1 for S1, 2 for S2, and so on).
Result code (2 Dword package):
Status Bit field of defined conditions that occurred during deep.
0x00000001 Wake was signaed but failled dueto lack of power.
0x00000002 Wake was sgnded but failed due to therma condition.
Other Reserved.
PSS If non-zero, the effective S-state the power supply really entered.
Thisvaueis used to detect when the targeted S-state was not entered because of too
much current being drawn from the power supply. For example, this might occur
when some active device' s current consumption pushes the system’ s power
requirements over the low power supply mark, thus preventing the lower power mode
to be entered as desired.

8. Processor Control

This section describes the OS runtime aspects of managing the processor’ s power
consumption and other controls while the system isin the working state'?. The mgjor controls
over the processors are;

?? Processor power states: CO, C1, C2, C3

?? Processor clock throttling

?? Cooling control

These controls are used in combination by the operating software to achieve the desired
ba ance of the following, sometimes paradoxicd, goas.

?? Peformance

?? Power consumption and battery life

?? Thermd requirements

?? Noiseleve requirements

Because the godsinteract with each other, the operating software needs to implement a
policy as to when and where tradeoffs between the goals are to be made™®. For example, the
operating software would determine when the audible noise of the fan is undesirable and
would trade off that requirement for lower thermd requirements, which can lead to lower
processing performance. Each processor contral is discussed in the following sections dong
with how the contral interacts with the various goals.

8.1 Declaring a Processor Object

A processor object is declared for each processor in the system using an ASL Processor
statement. A processor object provides processor configuration information and points to the
P_BLK. For more information, see section 14.

8.2 Processor Power States

By putting a processor into a power state (C1, C2, or C3), the processor consumes |ess power
and dissipates less heat than leaving the processor in the CO state. While in adeeping Sate,

the processor does not execute any ingructions. Each deeping sate has alatency associated
with entering and exiting that corresponds to the power savings. To conserve power, the
operating software puts the processor into one of its supported deeping states when idle.

8.2.1 Processor Power State CO
While the processor isin this state, it executes ingtructions. No specific power or therma
savings are redized.

12 1n any system deeping State, the processors are not executing instructions (that is, not
“runtime”), and the power consumption is fixed as a property of that system Sate.

13 A therma warning leaves room for operating system tradeoffs to occur (to start the fan or
to reduce performance), but a critical therma dert does not occur.

Intel Microsoft Toshiba

214

8.2.2 Processor Power State C1

All processors must support this power state. This processor power state has the lowest
latency, and on | A-PC processorsis entered by the “STI-HLT” instruction sequence™®. The
hardware latency on this state is required to be low enough that the operating software does
not consider the latency aspect of the state when deciding whether to useit . Asdefrom
putting the processor in a power state, this state has no other software-visible effects.

The hardware can exit this sate for any reason, but must dways exit this sate whenever an
interrupt is to be presented to the processor.

8.2.3 Processor Power State C2

This processor power state is optionaly supported by the system. If present, the state offers
improved power savings of the C1 state and is entered by using the P_L VL2 command
register for the local processor. The worst-case hardware latency for this sate isdeclared in
the FACP Table and the operating software can use thisinformation to determine when the
C1 date should be used instead of the C2 state. Aside from putting the processor in a power
date, this state has no other software-visble effects.

The hardware can exit this sate for any reason, but must dways exit this state whenever an
interrupt isto be presented to the processor.

8.2.4 Processor Power State C3

This processor power state is optiondly supported by the system. If present, the state offers
improved power savings of the C1 and C2 state and is entered by using the P LVL3
command register for the loca processor. The worst-case hardware latency for this sateis
declared in the FACP Table, and the operating software can use this information to determine
when the C2 state should be used instead of the C3 state. While in the C3 dtate, the
processor’ s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency. Ina uniprocessor environment,
this can be done by using the PM2_CNT.ARB_DIS bus master arbitration disable register to
ensure bus master cycles do not occur while in the C3 dtate. In a multiprocessor environmernt,
the processors' caches can be flushed and invdidated such that no dynamic information
remains in the caches before entering the C3 date.

The hardware can exit this sate for any reason, but must dways exit this sate whenever an
interrupt is to be presented to the processor or when BM_RLD is set and abus master is
attempting to gain access to memoary.

8.3 Processor State Policy
The operating software can implement control policies based on what is best suited for it.
Bdow isan example policy for |A-PC processors.

14 The C1 deeping state specificaly defines interrupts to be enabled while halted.

Processorldl eHandlers is initialized at
It contains the handler to use for

, states.

215

systeminitialization tine.
each of the Cl, C2, C3 processor

If the given processor state is not supported, the next
best handler is installed
Processor | dl eHanders dd 4 dup (?)
Processor | dl e:
; System determ nes that processor is idle, and has interrupts

; disabled as that
; interrupt
call [1dl eHandl er]

;1 dl eHandl er
j mp TopOf | dl eCode

i dl eness can only be nmaintained unti

enabl ed interrupts
Go check to see if we are stil

t he next

I nvoke currently selected idle handler

idle

Example idle handers are shown below. The strategy shown isfor each idle handler to
quickly determine that the ingtalled IdieHandler should be demoted to the next lower leve.
Not shown is an operating environment-specific task of very low priority that waits for the
processor's “idleness’ to get sufficiently high for along amount of time, a which point it
promotes the IdieHandler to its next higher levd.

I dl eCl:
st
hlt
ret

I dl eC2:

nmov eax, Last |l dl eStart]

sub eax, [Last | dl eEnd]

and eax, Of fffffh

cnp eax, Requi redC2l dl eTi ne

jc short |dleC2Short

mov edx, PM TMR

in eax, dx

mov [LastldleStart], eax
mov edx, P_LVL2

in al, dx

mov edx, PM_TMR

in eax, dx

in eax, dx

mov [Last | dl eEnd], eax

st
ret

(eax) = last idle start tine
(eax) = length of last idle
mask of f sign

was | ast idle |ong enough?

no, go check for denotion

Get current tine
This is new LastldleStart

Enter C2

Ensure C2 entered
Get current tine
This is new Last!dl eEnd

A demoation palicy from C2 could be to demote to C1 after two short C2 idlesin arow.

216

| dl eC3Uni processor:
mov edx, PMla_STS
in al, dx
mov edx, PMLb_STS
nmov ah, al
in al, dx
or ah, al
test ah, BM_STS ; Any bus nmaster activity?
jnz short Setldl eHandl er C2 ; Yes, switch to C2 idle

mov eax, [LastldleStart] ; (eax) = last idle start tinme
sub eax, [Lastldl eEnd] ; (eax) = length of last idle
and eax, Offffffh ; mask of f sign

cnp eax, RequiredC3ldleTine ; was last idle |ong enough?
Jc short Idl eC3Short ; no, go check for denotion

mov edx, PM TMR

in eax, dx ; Get current time

mov [Last I dl eStart], eax ; This is new LastldleStart

mov edx, PM2_CNT ; disable bus master arbitration
in al, dx

nmov ah, al

or al, ARB DI'S

out dx, al

mov edx, P_LVL3

in al, dx . Enter C3.

Mov edx, PM_TMR

in eax, dx ; Ensure C3 entered

in eax, dx ; Get current tine

mov [Last | dl eEnd], eax ; This is new Lastldl eEnd

mov edx, PM2_CNT ; enabl e bus master arbitration
mov al , ah

out dx, al

sti

ret

A demotion policy from the C3 handler could be to demote to C2 after two short C2 idlesin
arow or on one short C3 idletime if the RequiredC3ldieTime and last execution time
(difference from current time to LagtldieEnd time) are sufficiently high.

The 1dleC3Multiprocessor handler can be used only on systems that identify themselves as
having working WBINDV ingructions. The handler can teke along time to enter the C3
state, so both the promotion and demotion from this handler would likely be conservetive.

I dl eC3Mul ti processor:
mov eax, [LastldleStart]
sub eax, [Lastldl eEnd]
and eax, Offffffh
cnp eax, RequiredMPC3ldl eTi ne
Jc short 1dl eC3Short

whi nvd

mov edx, PM_TMR
in eax, dx
nov esi, eax

mov edx, P_LVL3
in al, dx

mov edx, PM_TMR

in eax, dx

in eax, dx

mov [Lastldl eStart], esi
mov [Last | dl eEnd], eax

sti
ret

(eax) last idle start tinme
(eax) Il ength of last idle
mask of f sign

was | ast idle |ong enough?
no, go check for denotion

requires whinvd support

Get current tine
Remenmber it

Enter C3.

Ensure C3 entered
Get current tine
New Last | dl eStart
New Last | dl eEnd

217

219

9. Waking and Sleeping

ACP! defines amechanism to trangtion the system between the working state (GO) and a
deeping sate (G1) or the soft-off (G2) state. During trangtions between the working and
deeping sate, the context of the user’ s operating environment is maintained. ACPI defines
the qudity of the G1 deeping sate by defining the system attributes of four types of ACH
degping sates (S1, 2, S3, and H4). Each deeping Sate is defined to alow implementations
that can trade-off cost, power, and wake-up latencies. Additiondly, ACPI definesthe
degping states such that an ACPI platform can support multiple degping ates, dlowing the
platform to trangtion into a particular deeping state for a predefined period of time and then
trangition to alower power/higher wake-up latency deeping state (trangtioning through the
GO state) ©°.

ACP! defines aprogramming model that provides a mechanism for the ACPI driver to
initiate the entry into a deegping or soft-off state (S1-Sb); this conssts of a 3-hit fidd
SLP_TY Px!® that indicates the type of deep state to enter, and asingle control bit SLP_EN
to start the deeping process. The hardware implements different low-power deeping states
and then associates these states with the defined ACPl deeping states (through the

SLP _TYPx fields). The ACPI hardware creates a deeping object associated with each
supported deeping state (unsupported deeping states are identified by the lack of the
deeping object). Each deeping object contains two constant 3-hit values that the ACH! driver
will program into the SLP_TYPaand SLP_TYPb fields (in fixed register space).

ACPI dso defines an dternate mechanism for entering and exiting the 4 state that passes
control to the BIOS to save and restore platform context. Context ownership issmilar in
definition to the S3 state, but hardware saves and restores the context of memory to non-
volatile storage (such as a disk drive), and the OS treats this as an 4 sate with implied
latency and power congraints. This dternate mechanism of entering the 4 stateis referred
to as the $ABIOS trangtion.

Prior to entering a deeping state (S1-H4), the ACPI driver will execute OEM - specific
AML/ASL code contained in the Prepare To Seep, PTS, control method. One use of the
_PTS control method indicates to the embedded controller what deeping state the system
will enter when the SLP_EN hit is set. The embedded controller can then respond by
executing the proper power-plane sequencing upon this bit being set.

Upon waking up, the OS will execute the Wake (WAK) control method. This control
method again contains OEM -specific AML/ASL code. One use of the_WAK control method
requests the OS to check the platform for any devices that might have been added or removed
from the system while the system was adegp. For example, a PC Card controller might have

15 The OS uses the RTC wakeup feature to program in the time transition delay. Prior to
deegping, the OS will program the RTC darm to the closest (in time) wakeup event: either a
trangition to alower power deeping state, or acaendar event (to run some application).

16 Note that there can be two fixed PM1x_CNT registers, each pointing to a different system
1/O spaceregion. Normally aregister grouping only alows abit or bit fiedld to resdein a
sngle register group instance (a or b); however, each platform can have two instances of the
SLP_TYP (onefor each grouping register: aand b). The\ Sx control method givesa
package with two vaues thefirst isthe SLP_TYPavaue and the second isthe SLP_TY Pb
vaue.

220

had a PC Card added or removed, and because the power to this device was off in the
deeping date, the status change event was not generated.

This section discusses the initidization sequence required by an ACPI platform. This
includes the boot sequence, different wake-up scenarios, and an example to illustrate how to
sue the new E820 cdlls.

9.1 Sleeping States
Theillugtration below shows the trangitions between the working state, the deeping Sates,

and the Soft Off state.

S1

Sleeping

Wake SLP_TYPx=S1
Event and

S2
Sleeping

GO (S0) - - S3
Working Sleeping

SLP_TYPx=S5
and
SLP_EN
or SLP_TYPx=S4
PWRBTN_OR S4BIOS._REQ and
o SLP_EN
SMI_CMD S4
¢ ‘ Sleeping
SLP_TYPx=54
OEM S4 BIOS and
Handler SLP_EN

Figure9-1 Example Sleeping States

ACP! defines digtinct differences between the GO and G1 system dtates.

?? Inthe GO gate, work is being performed by the OS and hardware. The CPU or any
particular hardware device could bein any one of the defined power sates (CO-C3 or DO-
D3); however, some work will be taking place in the system.

?? Inthe G1 gate, the system is assumed to be doing no work. Prior to entering the G1 state,
the OS will place devicesin the D3 state; if adevice is enabled to “wake up the system,”
then the OS will place these devices into the lowest Dx state for which the device il
supports wakeup. Thisis defined in the power resource description of that object; for
information, see section 0. This definition of the G1 date implies

?? The CPU executes no OS code whilein the G1 state.

?? Tothe OS, hardware devices are not operating (except possbly to generate a
wakeup event).

?? ACP regigters are affected asfollows:

221

?? Wakeup event bits are enabled in the corresponding fixed or generd-
purpose registers according to enabled wakeup options.

?? PM1 control register is programmed for the desired deeping state.

?7? WAK_STSis st by hardware in the deeping Sate.

All deeping states have these specifications. ACPI defines additiond attributes thet allow an

ACPI platform to have up to four different deeping states, each of which have different

attributes. The attributes were chosen to dlow differentiation of deeping Satesthat vary in

power, wakeup latency, and implementation cost tradeoffs.

Running the processor a adivided clock rate is not an ACPI degping date (G1); thisisa

working (G0) state. The CPU cannot be executing any ingtructions when in the degping

date; the ACPI driver rdlieson thisfact. A platform designer might be tempted to support a

deeping system by reducing the clock frequency of the system, which dlows the platform to

maintain alow power state while at the same time maintaining communication sessons thet
require congtant interaction (as with some network environments). Thisis definitely a GO
activity where an OS policy decison has been made to turn off the user interface (screen) and
run the processor in a reduced performance mode. This type of reduced performance state as
adeeping Sate is not defined by the ACPI specification; ACPl assumes no code execution
during deeping dates.

ACPI defines attributes for four degping states. S1, S2, S3 and 4. (Notethat $4 and S5 are

very Smilar from a hardware sandpoint.) At least one degping state must be implemented by

ACPI-compatible hardware. Many platforms will support multiple deeping states. ACPI

specifies that a 3-bit binary number be associated with the deeping ate (these numbers are

given objectswithin ACPI’sroot name space: \ SO, \ S1,\ S2,\ S3,\ S and\ S5). The

ACP driver will do the following:

1. Pick the closest deeping state supported by the platform and enabled waking devices.

2. Executethe Prepare To Seep (_PTS) control method (which passes the type of intended
deep state to OEM AML code) if it isan S1-S4 deeping Sate.

3. If OS palicy decides to enter the $4 state and chooses to use the S4BIOS mechanism and
HABIOS is supported by the platform, the ACPI driver will pass contral to the BIOS
software by writing the S4BIOS_REQ vaue to the SMI_CMD port.

4. If not usng the $4BIOS mechanism, the ACP! driver getsthe SLP_TY Px vaue from the
associated deeping object (_S1,\ S2,\ S3,\ S or\ S5H).

5. Program the SLP_TY Px fidds with the vaues contained in the selected degping object.

6. Setthe SLP_EN bit to start the deeping sequence. (This actualy occurs on the same
write operation that programsthe SLP_TYPx field in the PM1_CNT regiger.)

The Prepare To Sleep (_PTS) control method provides the BIOS a mechanism for

performing some housekeeping, such aswriting the deep type value to the embedded

controller, before entering the system deeping state. Control method execution occurs *just
prior” to entering the degping Sate and is not an event synchronized with the write to the

PM1 CNT register. Execution can take place several seconds prior to the system actudly

entering the deeping state, so no hardware power- plane sequencing takes place by execution

of the PTS control method.

When the ACPI driver gets control again (after waking up) it will cal the wakeup control

method (_ WAK). This control method executes OEM -specific ASL/AML code to have the

OS search for any devices that might have been added or removed during the deeping Sate.

The following sections describe the deeping Sate attributes.

222

9.1.1 S1 Sleeping State

The S1 state is defined as alow wakeup latency deeping state. In this state no system context
islost (CPU or chip st), and the hardware is reponsible for maintaining dl system context,
which includes the context of the CPU, caches, memory, and al chipset I/0. Examples of S1
degping date implementation dternatives follow.

9.1.1.1 S1 Sleeping State Implementation (Example 1)

This example references an | A processor that supports the stop grant state through the
assertion of the STPCLK# sgnd. When SLP_TY Px is programmed to the S1 value (the
OEM chooses avaue, which isthen placed in the_S1 object) and the SLP_ENXx hit is
subsequently set, the hardware can implement an S1 dtate by asserting the STPCLK# signd
to the processor, causing it to enter the stop grant state.

In this case, the system clocks (PCI and CPU) are il running. Any enabled wakeup event
should cause the hardware to de-assert the STPCLK# signal to the processor.

9.1.1.2 S1 Sleeping State Implementation (Example 2)

When SLP_TYPx is programmed to the S1 vaue and the SLP_ENX bit is subsequently s,

the hardware will implement an S1 ate by doing the following:

1. Placethe processor into the stop grant state.

2. Stop the processor’sinput clock, placing the processor into the stop clock state.

3. Places sysem memory into a saif-refresh or suspend-refresh sate. Refresh is maintained
by the memory itsdf or through some other reference clock that is not stopped during the
degping date.

4. Sop dl system clocks (assarts the standby signd to the system PLL chip). Normadly the
RTC will continue running.

Inthis case, dl clocks in the system have been stopped (except for the RTC' s clock).

Hardware must reverse the process (restarting system clocks) upon any enabled wakeup

event.

9.1.2 S2 Sleeping State

The S2 state is defined as alow wakeup latency deep state. This sate is Smilar to the S1
deeping state, except that the CPU and system cache context is lost (the OS is responsible for
maintaining the caches and CPU context). Additiondly, control starts from the processor’s
reset vector after the wakeup event. Before setting the SLP_EN bit, the ACPI driver will
flush the system caches. If the platform supports the WBINVD ingtruction (as indicated by
the WBINVD and WBINVD_FLUSH flagsin the FACP table), the OS will execute the
WBINVD ingruction. If the platform does not support the WBINV D ingtruction to flush the
caches, then the ACPI driver will attempt to manudly flush the caches using the
FLUSH_SIZE and FLUSH_STRIDE fiddsin the FACP table. The hardwareis responsible
for maintaining chipset and memory context. An example of a S2 deeping Sae
implementation follows.

9.1.2.1 S2 Sleeping State Implementation Example

When SLP_TYPx is programmed to the S2 value (found in the\ S2 object) and then the
SLP_EN bit is s, the hardware will implement an S2 date by doing the following:

?? Stop system clocks (the only running clock isthe RTC).

?? Place system memory into a self or suspend refresh state.

?? Power off the CPU and cache subsystem.

In this case, the CPU is reset upon detection of the wakeup event; however, core logic and

memory maintain their context. Execution control starts from the CPU’ s boot vector. The

BIOS isrequired to:

?? Program theinitial boot configuration of the CPU (such asthe CPU'sMSR and MTRR
registers).

?? Initidize the cache controller to itsinitia boot Sze and configuration.

?? Enable the memory controller to accept memory accesses.

?? Cdl the waking vector.

9.1.3 S3 Sleeping State

The S3 ate is defined as alow wakeup latency deep state, where dl system context islost
except for system memory. CPU, cache, and device context are logt in this ate; the OS and
drivers must restore al device context. Hardware must maintain memory context and restore
some CPU and L2 configuration context. Control starts from the processor’ s reset vector
after the wakeup event. Prior to setting the SLP_EN bit, the ACPI driver will flush the
system caches. If the platform supports the WBINVD ingruction (asindicated by the
WBINVD and WBINVD_FLUSH flagsin the FACP table), the OS will execute the
WBINVD ingruction. If the platform does not support the WBINVD ingruction then the
ACPI driver will attempt to manudly flush the cache using the FLUSH_SIZE and
FLUSH_STRIDE fiddswithin the FACP table. The hardware isresponsible for maintaining
chip set and memory context. Examples of an S3 degping sate implementation follows.

9.1.3.1 S3 Sleeping State Implementation Example

When SLP_TYPx is programmed to the S3 value (found in the_S3 object) and then the

SLP_EN hit is s, the hardware will implement an S3 gtate by doing the following:

?? Memory is placed into alow power auto or sdif refresh Sate.

?? Devicesthat are maintaining memory isolate themsdves from other devicesin the
sysem.

?? Power isremoved from the system. At this point, only devices supporting memory are
powered (possibly partialy powered). The only clock running in the system isthe RTC
clock

In this case, the wakeup event re-powers the system and resets most devices (depending on

the implementation). Execution control starts from the CPU’s boot vector. The BIOS is

required to:

?? Program the initid boot configuration of the CPU (such asthe MSR and MTRR
regisers).

?? Initidize the cache contraller to itsinitid boot size and configuration.

?? Enable the memory controller to accept memory accesses.

?? Jump to the waking vector.

Note that the BIOS is required to reconfigure the L2 and memory controller to their pre-

deeping states. The BIOS can store the values of the L2 controller into the reserved memory

gpace, where it can then retrieve the values after waking up. The OSwill call the Prepare To

Sleep method (_PTS) once a session (prior to deeping).

The BIOS s dso respongble for restoring the memory controller’ s configuration. If this

configuration data is destroyed during the S3 deeping state, then the BIOS needs to store this

223

224

in anon-volatile memory area (as with RTC CMOS RAM) to enable it to restore the vaues
during the waking process.

When the OS re-enumerates buses coming out of the S3 deeping State, it will discover any
devices that have come and gone, and configure devices as they are turned on.

9.1.4 5S4 Sleeping State

The $4 deeping date is the lowest power, longest wakeup latency deeping state supported
by ACPI. In order to reduce power to aminimum, its assumed that the hardware platform
has powered off dl devices. Because thisis a degping state, the platform context is
maintained. Depending on how the trangtion into the $4 deeping State occurs, the
respongbility for maintaining system context changes. 4 supports two entry mechanisms:
OSinitiated and BIOS initiated. The OS-initiated mechanism is smilar to the entry into the
S1-S3 deeping states, the OS driver writesthe SLP_TY Px fields and setsthe SLP_EN bit.
The BIOS-initiated mechanism occurs by the OS transferring control to the BIOS by writing
the ABIOS REQ vaueto the SMI_CMD port.

In the OS-initiated $4 deeping Sate, the OS is responsible for saving dl system context.
Before entering the $4 gtate, the OS will save context of al memory. Upon awakening, the
OS will then restore the system context. When the OS re-enumerates buses coming out of the
A degping Sate, it will discover any devices that have come and gone, and configure
devices asthey are turned on.

In the BIOS-initiated $4 deeping Sate, the OS is respongble for the same system context as
described in the S3 deeping state (BIOS restores the memory and some chip set context).
The $ABIOS trangtion transfers control to the BIOS, dlowing it to save context to non-
volatile memory (such asadisk partition).

9.1.4.1 OS Initiated S4 Transition

If the OS supports the OS-initiated S4 trangtion, it will not generate a BIOS-initiated S4
trangtion. Platforms that support the BIOS-initiated $4 transtion aso support the OS-
initiated $4 trangtion.

The OS-initiated $4 trandtion isinitiated by the OS driver by saving system context, writing
the SLP_TYPx fields, and setting the SLP_EN bit. Upon exiting the $4 deeping Sate, the
BIOS restores the chipset to its POST condition, updates the hardware signature (described
later in this section), and passes contral to the OS through a normal boot process.

When the BIOS builds the ACPI tables, it generates a hardware Sgnature for the system. If
the hardware configuration has changed during an OS-initiated $4 trangtion, the BIOS
should update the hardware signature in the FACS table. A change in hardware configuration
is defined to be any change in the platform hardware that would cause the platform to fall
when trying to restore the $4 context; this hardware is normaly limited to boot devices. For
example, changing the graphics adapter or hard disk controller while in the $4 sate should
cause the hardware signature to change. On the other hand, removing or adding a PC Card
device from a PC Card dot should not cause the hardware signature to change.

9.1.4.2 The S4BIOS Transition

For the BIOS-initiated $4 trangition, entry into the $4 state occurs by the ACPI driver
passing control to BIOS to software. Transfer of control occurs by the OS driver writing the
HABIOS REQ vaueinto the SMI_CMD port (these vaues are specified in the FACP table).

225

After BIOS has contral, it then saves the gppropriate memory and chip set context, and then
places the platform into the $S4 state (power off to dl devices).

In the FACS memory table, there isthe SABIOS _F hit that indicates hardware support for the
BIOS-initiated $4 trangtion. If the hardware platform supports the SABIOS state, it setsthe
IABIOS F flag within the FACS memory sructure prior to the OS issuing the
ACPI_ENABLE command. If the ABIOS F flag in the FACStableis s, thisindicates that
the ACPI driver can request the BIOS to trangtion the platform into the SABIOS deeping
gate by writing the S4BIOS_REQ vdue (found in the FACP table) to the SMI_CMD port
(identified by the SMI_CMD vaue in the FACP table).

Upon waking up the BIOS, software restores memory context and calls the waking vector
(gmilar to wakeup from an S3 state). Coming out of the SABIOS date, the BIOS must only
configure boot devices (so it can read the disk partition where it saved system context). When
the OS re-enumerates buses coming out of the SABIOS state, it will discover any devices that
have come and gone, and configure devices asthey are turned on.

9.1.5 S5 Soft Off State

The S5 soft off state is used by the OS to turn the machine off. Note that the S5 state isnot a
degping date (it isa G2 gate) and no context is saved by the OS or hardware. Also note that
from a hardware perspective, the S4 and S5 sates are identical. When initiated, the hardware
will sequence the system to astate Smilar to the off state. The hardware has no respongbility
for maintaining any system context (memory or 1/0); however, it does alow the wakeup due
to a power button press. Upon waking up, the BIOS does a normal power-on reset, [oading
the boot sector, and executing (not the waking vector, asit does not exist yet).

9.1.6 Transitioning from the Working to the Sleeping State

On atrangtion of the system from the working to the deeping state, the following occurs:

1. The OS decides (through a policy scheme) to place the system into the deeping Sate.

2. The OS examines dl deviceswho are enabled to wake up the system and determines the
deepest possible degping state the system can enter to support the enabled wakeup
functions. The _PRW named object under each device is examined, as well as the power
resource object it pointsto.

3. The OS executes the Prepare To Sleep (_PTS) control method, passing an argument that
indicates the desired deeping state (1, 2, 3, or 4 representing S1, S2, S3, and $4).

4. The OS places dl device driversinto their respective Dx dtate. If the deviceis enabled for

wakeup, it enters the Dx dtate associated with the wakeup capability. If the device is not

enabled to wakeup the system, it enters the D3 Sate.

OS saves any other processor’ s context (other than the local processor) to memory

OS savesthe loca processor’ s context to memory

OS writes the waking vector into the FACS table in memory.

OS clearsthe WAK_STSinthePM1a STSand PM1b STSregisters.

OS flushes caches (only if entering S2 or S3).

0. If entering an $4 dtate using the SABIOS mechanism, the OS writesthe ABIOS REQ
vaue (from the FACP table) to the SMI_CMD port. This passes control to the BIOS,
which then trangtions the platform into the SABIOS date.

11. If not entering an S4BIOS state, then the OS writes SLP_TY Pa (from the associated

deegping object) with the SLP_ENa bit set to the PM1a CNT regider.

12. The OS writes SLP_TY Pb with the SLP_EN bit set to the PM1b_CNT register.

2O NoO

226

13. The OS loops on the WAK _STS bit (in both the PM1a CNT and PM1b_CNT registers).
14. The system enters the specified deeping date.

9.1.7 Transitioning from the Working to the Soft Off State

On atrangtion of the system from the working to the soft off state, the following occurs:

1. The OS preparesits components to shut down (flushing disk caches).

2. The OSwrites SLP_TYPa(from the\ S5 object) with the SLP_ENabit set to the
PM1a CNT register.

3. TheOSwritesSLP_TYPb (from the\ S5 object) with the SLP_END bit set to the
PM1b CNT register.

4. The system enters the Soft Off State.

9.2 Flushing Caches

Before entering the S2 or S3 degping dates, the OS is respongble for flushing the system

caches. ACPI provides a number of mechanismsto flush system caches:

1 Usethe lA ingruction WBINVD to flush and invdidate platform caches.
WBINVD_FLUSH flag set HIGH in the FACP table indicates this support.

2. UselA ingruction WBINVD to flush but NOT invdidate the platform caches.
WBINVD flag set HIGH in the FACP table indicates this support.

3. Use FLUSH_SIZE and FLUSH_STRIDE to manualy flush system caches.
Both the WBINVD and WBINVD_FLUSH flags both reset LOW indicate this
support.

The manud flush mechanism has anumber of cavedts.

1. Lages cacheis1 MB insze (FLUSH_SIZE isamaximum vaue of 2 MB).

2. No victim caches (for which the manud flush dgorithm is unrdiable).

Processors with built-in victim caches will not support the manua flush mechanism and are

therefore required to support the WBINVD mechanism to use the S2 or S3 Hate.

The manua cache flushing mechanism relies on the two FACP fidds:

?? FLUSH_SIZE: Indicates twice the Size of the largest cache in bytes

?? FLUSH_STRIDE: Indicatesthe smdlest line Sze of the cachesin bytes.

The cache flush size vaue istypicdly twice the Sze of the largest cache size, and the cache

flush gride vaue is typicdly the Sze of the smdlest cache line size in the platform. The OS

will flush the system caches by reading a contiguous block of memory indicated by the cache

flushgze

9.3 Initialization

This section covers the initiaization sequences for an ACPI platform. After areset or
wakeup from an S2, S3, or 4 deeping State (as defined by the ACH deeping state
definitions), the CPU will start execution from its boot vector. At this point, the initidization
software has many options, depending on what the hardware platform supports. This section
describes a a high level what should be done for these different options. Figure 9-2
illugtrates the flow of the boot-up software.

C Boot \{ector)

Initialize CPU

Init Memory Controller
Enable Memory
Configure Caches
Enable Caches Initialize CPU
Initialize Chipset Enable Memory
Configure Caches

Yes:

LP_TYP=
S4BIOS
?

Restore memory
Image

\ 4

Yesh|

No

v
POST (Call Waking Vector>

A 4

Initialize Memory
Image

* System

* Reserved

* ACPI NVS

* ACPI Reclaim
* ACPI Tables
*
*

MPS Tables

A 4

(Boot OS Loader)

Figure9-2 BIOS Initialization
The processor will start executing at its power-on reset vector when waking from an S2, S3,
or 4 degping Sate during a power-on sequence or during a hard or soft reset. The deeping
attributes are such that the power-on sequence (and hard and soft reset) is Smilar to waking
up from an $4 date, the system is configured to a boot configuration, and then the OS loader

227

228

iscdled. Waking up in the S2, S3, or 4 states only requires apartia configuration by the
hardware, followed by caling the waking vector (found in the FACP table).

Firg, the BIOS determines whether thisis an S2 wakeup by examining the SLP_TYP register
vaue, which should be preserved between deeping sessions. If thisis an S2 wakeup, then the
BIOS handler should enable the memory controller to accept memory accesses (some
programming might be required to exit the memory controller from the auto refresh ate). At
this point, the BIOS reconfigures the caches (cache configuration data having been saved in
the ACPI NVS RAM area prior to degping), and then calls the waking vector (thus passng
control on to the OS).

If this was not awakeup from an S2 deeping date (an S3, $4, or boot), then the BIOS
initidizes the memory contraller, configures the caches, and enables access to memory and
caches. For the S3 dtate, there are two classes of hardware: those that |ose the configuration
of the memory controller when maintaining memory context, and those that don't. If the
memory controller’s configuration islost while in the S3 gate, then this configuration
information should be stored in BIOS non-volatile memory (like RTC CMOS memory)
before suspending. Other information such as the cache controller’ s configuration and
processor configuration can be stored in ACPI NVS RAM area, which is available after the
memory controller has been enabled and read/write access is enabled. After thisis done, the
BIOS can cdl the waking vector.

As mentioned previoudy, waking up from an $4 date is treated the same as a cold boot: the
BIOS runs POST and then initiaizes memory to contain the required system tables. After it
has finished this, it can call the OS |loader, and control is passed to the OS.

To wake from $4 using the $4BIOS mechanism, the BIOS runs POST, restores memory
context, and calls the waking vector.

9.3.1 Turning On ACPI

When aplatform initidizes from a cold boot (mechanica off or from an $4 date), the
hardware platform is assumed to be configured in alegacy configuration. From these dtates,
the BIOS software initidizes the computer as it would for alegacy operating sysem. When
control is passed to the operating system, the OS will then enable the ACPI mode by first
scanning memory for the ACPI tables, and then generates awrite of the ACPI_ENABLE
vaue to the SMI_CMD port (as described in the FACP table). The hardware platform will set
the SCI_EN hit to indicate to the OS that the hardware platform is now configured for ACPI.
Note: Before SCI is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur
immediately after ACPI ison. The SCI interrupt can only fire once the OS has enabled one of
the GPE/PM 1 enable hits.

When the platform is awakening from an S1, S2 or S3 date, the OS assumes the hardware is
dready in the ACPI mode and will not issue an ACPI_ ENABLE command to the SMI_CMD
port.

9.3.2 BIOS Initialization of Memory

During a power-on reset, an exit from an $4 deeping date, or an exit from an Sb soft-off
date, the BIOS needs to initidize memory. This section explains how the BIOS should
configure memory for use by anumber of festures:

?? ACPI tables.

?? BIOS memory that wants to be saved across 4 degping sessions and should be cached.
?? BIOS memory that does not require saving and should be cached.

229

For example, the configuration of the platform’s cache controller requires an area of memory
to store the configuration data. During the wakeup sequence, the BIOS will re-enable the
memory controller and can then use its configuration data to reconfigure the cache

controllers. To support these three items, the |A-PC INT15 E820 specification has been

updated with two new memory range types.

?? ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables.
This memory can be any place above 1 MB and contains the ACPI tables. When the OS
isfinished usng the ACPI tables, it is free to reclam this memory for system software
use (application space).

?? ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being
reserved by the BIOS for itsuse. The OSis required to tag this memory as cacheable, and
to save and restore its image before entering an $4 state. Except as directed by control
methods, the OSis not dlowed to use this physica memory. The ACPI driver will call
the Prepare To Sleep (_PTS) control method some time before entering a deeping State,
to dlow the platform’s AML code to update this memory image before entering the
degping date. After the system awakes from an 4 state, the OS will restore this memory
areaand cal the wakeup control method (WAK) to enable the BIOS to reclaim its
memory image.

Note: The memory information returned from INT15 E820 should be the same before and

after an 4 deep.

These new memory range types are in addition to the previous E820 memory types of system

and reserved.

When the OS isfirgt booting, it will make E820 callsto obtain a syslem memory map. Asan

example, the following memory map represents atypica 1A-PC platform physicd memory

map.

For more information about the INT15H, E820H definition, see section 14.1.

4 Ghyte
Boot ROM

Boot Base

No Memory

Top of Memoryl
Above 8 Mbyte
RAM

8 MBytes
Contiguous
RAM

1 MByte
Compatibility
Holes

640 KByte
Compatibility
Memory
0

Figure9-3 Example Physical Memory Map

The names and attributes of the different memory regions are listed below:
?? 0- 640K: Compatibility Memory. Application executable memory for an 8086 system.

230

?? 640K - 1M B: Compatibility Holes. Holes within memory space that allow accessesto be
directed to the PC-compatible frame buffer (A0000h BFFFFH), to adapter ROM space
(C0000h-DFFFFh), and to system BIOS space (E0000h- FFFFFH).

?? 1MB - 8M B: Contiguous RAM. An area of contiguous physicad memory addresses. The
OS requires this memory to be contiguous in order for its loader to load the OS properly
on boot up. (No memory-mapped /0O devices should be mapped into this area.)

?? 8MB - Top of Memoryl: Thisarea contains memory to the “top of memory1” boundary.
In this area, memory-mapped /O blocks are possible.

?? Top of Memoryl- Boot Base: This area contains the bootstrap ROM.

The platform should decide where the different memory structures belong, and then

configure the E820 handler to return the appropriate values.

For this example, the BIOS will report the system memory map by E820 as shown in Figure

9-4. Note that the memory range from 1 MB to top of memory is marked as syssem memory,

and then asmdl rangeis additiondly marked as ACP! reclaim memory. A legacy OS that

does not support the E820 extensions will ignore the extended memory range cdls and
correctly mark that memory as syssem memory.

Reserved Boot ROM
Memory
. No Memory - System Memory (E820)
ﬁzzgzs;es ace - Reserved Memory (E820)
P - ACPI Reclaim Memory (E820)

Reserved - ACPI NVS Memory (E820)
Memory
ACPINVS
Memory Top of Memory1

Above 8 Mbyte

RAM
ACPI Reclaim
Memory ACPI Tables
8 MBytes
Contiguous
System Memory RAM
Reserved R il 1 MByte
ompatibili
Memory H’Z)|SS v
Available
Address space
640 KByte
Compatibility

System Memory Memory

0
Figure9-4 Memory as Configured after Boot
Also, from the Top of Memory1 to the Top of Memory2, the BIOS has set aside some
memory for its own use and has marked as reserved both ACPI NV S Memory and Reserved
Memory. A legacy OS will throw out the ACPI NVS Memory and correctly mark this as
reserved memory (thus preventing this memory range from being alocated to any add-in
device).
The OSwill call the _PTS control method prior to initisting adeep (by programming the
deep type, followed by setting the SLP_EN hit). During a catastrophic falure (where the
integrity of the AML code interpreter or driver structure is questionable), if the OS decidesto
shut the system off, it will not issuea_PTS, but will immediady issueaSLP_TYP of “soft
off” and then set the SLP_EN hit. Hence, the hardware should not rely soldy onthe PTS
control method to sequence the system to the “ soft off” dtate. After waking up from an 4
date, the OS will restore the ACPI NV S memory image and then issue the _WAK control
method that informs BIOS that its memory image is back.

231

9.3.3 OS Loading

At this point the BIOS has passed control to the OS, either by using the OS boot loader (a
result of awakening from an $4/S5 or boot condition) or the OS waking vector (aresult of
awakening from an S2 or S3 date). For the Boot OS Loader path, the OS will get the system
memory map through an INT15H E820h cdl. If the OSis booting from an $4 date, it will
then check the NV Simagefil€ s hardware signature with the hardware signature within the
FACS table (built by BIOS) to determine whether it has changed since entering the deegping
date (indicating that the platforms fundamenta hardware configuration has changed during
the current deeping state). If the Signature has changed, the OS will not restore the system
context and can boot from scratch (from the $4 state). Next, for an S4 wakeup, the OS will
check the NV Sfile to see whether it isvalid. If valid, then the OS will load the NVSimage
into system memory. Next, the OS will ask BIOS to switch into ACPI mode and will reload
the memory image from the NV Sfile.

Boot OS Loader os
Waking Vector

Get Memory Map
(E820)

* ACPINVS

* ACPI Reclaim
* Reserved

Sanity Check
Compare memory and,
volume SSN

A,

Yes

Tum on ACPI
Memory Copy

)

Execute_ WAK

Figure9-5 OSinitialization
If an NV S imagefile did not exig, then the OS loader will load the OS from scratch. At this
point, the OS will generatea_ WAK call that indicates to the BIOS that its ACPI NVS

memory image has been successfully and completdly updated.

9.3.4 Turning Off ACPI
ACPI provides amechanism that enables the operating system to disable ACHI. The
following occurs:

232

el SN

The OS unloads dl ACPI drivers (including the APIC driver).

The OS disablesdl ACPI events.

The OSfinishesusng dl ACPI regiders.

The OS issues an 1/0 access to the port at the address contained in the SMI_CMD field
(in the FACP table) with the value contained in the ACPI_DISABLE fidd (in the FACP
table).

5. BIOSthen remapsal SCI eventsto legacy events and resetsthe SCI_EN bit.

6.

Upon seeing the SCI_EN bit cleared, the ACPI operating system passes contral to the
legacy mode.

When and if the legacy operating system returns control to the ACPI OS, if the legacy OS
has wiped out the ACPI tables (in reserved memory and ACPI NV S memory), then the ACPI
OS will reboot the system to dlow the BIOS to re-initidize the tables

10. ACPI-Specific Device Objects

This section specifies the ACPI device-specific objects. The system status indicator objects,

whichgointhe\ S region of the Name Space, are dso specified in this section.

The device-specific objects specified in this section are objects for the following types of

devices.

?? Control method battery devices (for more information about control method battery
devices, see section 11.2).

?? Control method lid devices (for more information about control method lid devices, see
section 10.3.)

?? Control method power and deep button devices (for more information about control
method power and deep button devices, see section 4.7.2.2.)

?? Embedded controller devices (for more information about embedded controller devices,
See section 13).

?? Sysem Management Bus (SMBus) host controller (for more information, see section
13.9)

?? Fan devices (for more information about fan devices, see section 12).

?? Generic bus bridge devices.

?? IDE control methods.

For alist of the ACPl Plug and Play ID vauesfor al these devices, see section 5.6.4.

10.1 \ SI System Indicators

ACP provides an interface for avariety of smple and iconstyle indicators on asystem. Al
indicator controls areinthe\ S| portion of the name space. The following table lists dl
defined system indicators. (Note that there are aso per-device indicators specified for battery
devices).

Table10-1 System Indicator Control Methods

Object | Description

SST System dtatus indicator

:M SG | Messages waiting indicator

10.1.1 _SST
Operating software invokes this control method to set the system status indicator as desired.

Arguments.
0 0 - No system gate indication. Indicator off.
1 - Working.
2 - Waking.
3 - Seeping. Used to indicate system state S1, S2 or S3.
4 - Seeping with context saved to non volatile storage.

10.1.2 _MSG
This control method sets the systems message waiting status indicator.

Arguments.
0 Number of messages waiting.

Intel Microsoft Toshiba

234

10.2 Control Method Battery Device

A battery deviceisrequired to either have a ACPI Smart Battery Table or a Control Method
Battery (CMBatt) interface. In the case of an ACPI Smart Baitery Table, the Definition Block
needs to include a Bus/ Device Package for the SMIBus host controller. Thiswill ingtdl an
OS specific driver for the SMB bus, which in turn will locate the battery selector, and charger
SMB devices.

The Control Method Battery interface is defined in section 11.2.

10.3 Control Method Lid Device
For systems with alid, the lid status can ether be implemented using the fixed register space
as defined in section 4, or implemented in AML code as a control method lid device.

To implement a control method lid device, implement AML code that issues notifications for
the device whenever the lid status has changed. The _LID control method for the lid device
must be implemented to report the current state of the lid as either opened or closed.

Thelid device can support PRW and _ PSW methods to sdect the wake functions for the lid
when the lid trangtions from closed to opened.

The Plug and Play ID of an ACP! control method lid device is PNPOCOD.
Table 10-2 Control Method Lid Device

Object | Description

_LID Returns the current satus of the lid

10.3.1 _LID
Evduates to the current status of the lid.
Result code:

Zeo: Thelid isclosed.

Non-zero: Thelidis open.

10.4 Control Method Power and Sleep Button Devices

The system’ s power or deep button can ether be implemented using the fixed register space
as defined in section 4.7.2.2, or implemented in AML code as a control method power button
device. In either case, the power button override function or smilar unconditiona system
power or reset functiondity is till implemented in externd hardware.

To implement a control method power or deep button device, implement AML code that
delivers two types of natifications concerning the device. Thefirst is Notify(Object, 0x80) to
sgnd that the button was pressed while the system was in the SO state to indicate that the

user wants the machine to trangtion from SO to some deeping sate. The other notification is
Notify(Object, 0x2) to sgnd that the button was pressed while the sygsem wasinanS1 to $4
state and to cause the system to wake. When the button is used to wake the system, the wake
notification (Notify(Object, 0x2)) must occur after the OS has actualy awakened, and a
button pressed notification (Notify(Object, 0x80)) must not occur.

The Wake Noatification indicates that the system has awakened because the user pressed the
button and therefore a compl ete system resume should occur (for example, turn on the
display immediately, and so on).

10.5 Embedded Controller Device

Operation of the embedded controller host controller register interface requires that the
embedded controller driver has ACPI-specific knowledge. Specificdly, the driver needsto
provide an “operationa region” of its embedded controller address space, and needsto use a
general- purpose event (GPE) to service the host controller interface. For more information
about an ACPI-compatible embedded controller device, see section 13.

The embedded controller device object providesthe HID (Hardware 1D) of an ACPI
integrated embedded controller device of PNPOC09 and the host controller register locations
using the device standard methods. In addition, the embedded controller must be declared as
anamed device object that includes a set of control methods. For more information, see
section 13.11).

10.6 Fan Device

A fan device is assumed to be in operation when it isin the DO state. Thermd zones
reference fan device(s) as being respongble for primarily cooling within that zone. Note that
multiple fan devices can be present for any one thermd zone. They might be actud different
fans, or they might be used to implement one fan of multiple speeds (for example, by turning
both “fans’ on the one fan will run full speed).

The Plug and Play ID of afan deviceis PNPOCOB. For more information about fan devices,
See section 12.

10.7 Generic Bus Bridge Device

A generic bus bridge device is a bridge that does not require a specid OS driver because the
bridge does not provide/require any features not described within the slandard ACPI device
functions. The resources the bridge supports are supported through the standard ACPI
resource handling. All device enumeration for child devicesis supported through standard
ACP! device enumeration (for example, name space), and no other features of the bus are
needed by OS drivers. Such a bridge device isidentified with the Plug and Play 1D of
PNPOAO5 or PNPOAOG.

A generic bus bridge deviceis typicaly used for integrated bridges that have no other means
of controlling them and that have a set of well-known devices behind them. For example, a
portable computer can have a* generic bus bridge” known as an EIO bus that bridges to some
number of Super-10 devices. The bridged resources are likely to be positively decoded as
ether afunction of the bridge or the integrated devices. In ether case, for thisexample, a
generic bus bridge device would be used to declare the bridge, then further devices would be
declared below the bridge for the integrated Super-10 devices.

10.8 IDE Controller Device

Most device drivers can save and restore the registers of their device. For IDE controllers and
drives, thisis not true because there are severd drive settings for which ATA does not
provide mechanisms to read. Further, thereis no industry standard for setting timing
information for IDE controllers. Because of this, ACPI mechanisms are required to provide
the operating system information about the current settings for the drive and channdl, and for
Setting the timing for the channdl.

235

236

The operating system and IDE driver will follow these steps when powering off the IDE

Subsystem:

1. ThelDE driver will cdl the_GTM control method to get the current transfer timing
settings for the IDE channd. This includes information about DMA and PIO modes.

2. ThelDE driver will cal the sandard OS services to power down the drives and channd.

3. Asareallt, the ACPI driver will execute the appropriate _PS3 methods and turn off
unneeded power resources.

To power on the IDE subsystem, the operating system and IDE driver will follow these steps:

1. ThelDE driver will cal the slandard OS services to turn on the drives and channd.

2. Asaresllt, the ACPI driver will execute the appropriate PSO methods and turn on
required power resources.

3. ThelDE driver will call the_STM control method passing in transfer timing settings for
the channd, aswell asthe ATA drive ID block for each drive on the channel. The _STM
control method will configure the IDE channd based on this information.

4. For each drive on the IDE channd, the IDE driver will run the GTF to determine the
ATA commands required to reinitidize each drive to bootup defauts.

5. ThelDE driver will finish initidizing the drives by sending these ATA commandsto the
drives, possbly modifying or adding commands to suit the festures supported by the
operating system.

The following shows the namespace for these objects.

_SB - System bus
PCl O - PCl bus
| DE1 - I DE channel
_ADR - Indicates address of the channel on the PCl bus
_GIM - Control method to get current |DE channel settings
_STM - Control nmethod to set current |IDE channel settings
_PRO - Power resources needed for DO power state

DRV1 - Drive O

_GTF - Control nmethod to get task file
DRV2 - Drive 1

GTF - Control nethod to get task file

| DE2 - Second | DE channel
_ADR - Indicates address of the channel on the PClI bus
_GITM - Control nmethod to get current |IDE channel settings
_STM - Control nmethod to set current |DE channel settings
_PRO - Power resources needed for DO power state

DRV1 - Drive O

_GTF - Control method to get task file
DRV2 - Drive 1

_GTF - Control method to get task file

The sequentid order of operationsis asfollows:
Powering down:
Cdl_GTM
Power down drive (calls _PS3 method and turns off power planes)
Powering up:
Power up drive (calls_PS0 method if present and turns on power planes)
Cdl _STM passing info from _GTM (possbly modified), with ID datafrom each drive
Initalizes the channd.
May modify theresultsof _GTF

237

For each drive:
Cdl _GTF
Execute task file (possibly modified)

Table 10-3 IDE Specific Controls

Object | Description

_GTF Optiona control method to get the ATA task file needed to re-initidize the
drive to bootup defaults.

GTM | Optiona control method to get the IDE controller timing informeation.

STM | Optiond control method to use to set the IDE controller transfer timings.

10.8.1 _GTF (Get Task File)

ThisControl Method returns abuffer containing the ATA commands to execute in order to
restore the drive to bootup defaults (that is, the state of the drive after POST). The returned
buffer isalist congsting of seven, eight bit register vaues (56 bits) corresponding to ATA
task registers 1F1 thru 1F7. Each entry in the array defines acommand to the drive. Normdly
seven or eight commands are necessary. In addition, the array has a header byte (1-based),
with the number of commandsin the array. The first byte in eech element is register 1F0.

ATA task file array definition:

Seven register vaues for command 1,
Reg vaues. (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
Seven regigter values for command 2
Seven regigter values for command 3
Seven regigter vaues for command 4
Seven register values for command 5
Seven regigter vaues for command 6
Seven regigter values for command 7

After powering up the drive, the operating system will send these commands to the drive, in
the order specified. The IDE driver may modify some of the feature commands or append its
own to better tune the drive for the OS features before sending the commands to the drive.

This Control Method is listed under each drive device object. _ GTF must be caled after
cdling_STM.

Arguments.
None

Result code:
A Buffer that is abyte stream of ATA commands to send to the drive.

10.8.2 _GTM (Get Timing Mode)
This Control Method returns the current settings for the IDE channdl.

This control method is listed under each channd device object.

238

Arguments.
None

Result code:
A buffer with the current settings for the IDE channd!:

Buffer ()({

Pl O Speed 0 / | D\WORD
DVA Speed 0 / | DWORD
Pl O Speed 1 / | D\WORD
DVA Speed 1 / | DWORD
Fl ags / | D\WORD

Table10-4 GTM Method Result Codes

Fied Format Description

PIO Speed 0 DWORD | The PIO bus-cydetiming for driveQin
nanoseconds. OxFFFFFFFF indicates that this mode
is not supported by the channel. If the chipset
cannot set timing parameters independently for

each drive, thisfidd represents the timing for both
drives.

DMA Speed 0 | DWORD | The DMA bus-cycle for drive 0 timing in
nanoseconds. If Bit O of the Flags register is s,
this DMA timing isfor UltraDMA mode, otherwise
the timing is for multi-word DMA mode.
OxFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set
timing parameters independently for each drive,
thisfied represents the timing for both drives.

PIO Speed 1 DWORD | The PIO bus-cydetiming for drive 1in
nanoseconds. OxFFFFFFFF indi cates that this mode
is not supported by the channd. If the chipset
cannot set timing parameters independently for

each drive, this field must be OxFfffffff.

DMA Speed1 | DWORD | The DMA bus-cydetiming for drive 1in
nanoseconds. If Bit O of the Flags register is s,
this DMA timing is for UltraDMA mode, otherwise
the timing isfor multi-word DMA mode.
OxFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set
timing parameters independently for each drive,
this fiddd must be OxFFFFFFFF.

239

Field Format Description

Fags DWORD | Mode flags

Bit[Q]: 1 indicates usng UltraDMA on drive O
Bit[1]: 1 indicates |OChannelReady is used on
drive 0

Bit[2]: 1 indicates usng UltraDMA on drive 1
Bit[3]: 1 indicates IOChannelReady isused on
drive1

Bit[4]: 1 indicates chipset can set timing
independently for each drive

Bitg5-31]: reserved (must be 0)

10.8.3 _STM (Set Timing Mode)

ThisControl Method setsthe IDE channd’ s transfer timings to the setting requested. The
AML codeis required to convert and set the nanoseconds timing to the appropriate transfer
mode settings for the IDE controller. _ STM may aso make adjustments so that GTF
control methods return the correct commands for the current channd settings.

This control method takes three arguments. Channd timing information (as described in
Table 10-4), and the ATA drive ID block for each drive on the channd. The channd timing
information is not guaranteed to be the same vaues as returned by _ GTM; the operating
system may tune these vaues as needed.

The ATA drive ID block is the raw data returned by the I dentify Drive, ATA command,
which has the command code “Ech”. The _STM control method is responsible for correcting
for drives that misreport thelr timing information.

Arguments.
ArgO Buffer Channd timing information (formatted as described in table 10-4)

Argl Buffer ATA drive IDE block for drive O
Arg2 Buffer ATA drive IDE block for drive 1
Result code:
None

10.9 Floppy Controller Device

The floppy disk controller enumeration is atime consuming function. In order to speed up
the process of floppy enumeration, ACPI supports an enumeration control method. The
_FDE method is optiond an is only used for device enumeration.

10.9.1 FDE - Floppy Disk Enumerate

This method appears directly under the device object for the floppy disk controller. It returns
abuffer of five 32 bit vaues. Thefirg four vaues are boolean vaues indicating the presence
or absence of the four floppy drives which are potentidly attached to the controller. A non
zero vaue indicates that the floppy deviceis present. Thefifth vaue returned is used to
indicate the presence or absence of atape controller. Defintions of the tape presence value
can befound in Table 10-5.

240

Arguments.
None

Reault code:

A buffer containing vaues that indicate the presence or abosence of floppy devices.

Buffer ()({
Fl oppy O
Fl oppy 1
Fl oppy 2

Fl oppy 3
Tape

~—— =
~—~— -

Bool ean DWORD
Bool ean DWORD
Bool ean DWORD
Bool ean DWORD
See table bel ow

Table10-5 Tape Presence

Value

Description

Unknown if deviceis present

Deviceis present

Deviceis never present

>2

Reserved

241

11. Power Source Devices

This section specifies the battery and AC adapter device objects the OS uses to manage
power resources.

A battery device isrequired to either have a Smart Battery subsystem or a Control M ethod
Battery (CM Batt) interface as described in this section. The OSisrequired to be able to
connect and manage a battery on either of these interfaces. This section describes these
interfaces.

In the case of acompatible ACPI Smart Battery Table, the Definition Block needs to include
aBus/ Device package for the SVIB host controller. Thiswill ingal an OS-specific driver
for the SMBus, which in turn will locate the battery and battery selector SMIB devices.

11.1 Smart Battery Subsystems
Smart Batteries are defined as using the smart battery subsystem as defined by the:

?? System Management Bus Specification (SMBYS),

?? Smart Battery Data Specification (SBDS),

?? Smart Battery Selector Specification (SBSS), and the

?? Smart Battery Charger Specification (SBCS)
An ACPI compatible smart battery subsystem consists of:

?? An SMBus host controller (CPU to SMB hogt controller) interface

?? Atleast one smart battery

?? A smart battery charger

?? A smart battery sdlector if more than one smart battery is supported
In such a subsystem, a standard way of communicating with a smart battery (SBDS) and
smart charger (SBCS) isthrough the SMIBus (SMBS) physicd protocols. The smart battery
selector provides event notification (battery insertion/removd, ...) and charger SMBus
routing capability for any smart battery subsystem. A typicad smart battery subsystem is
illustrated below:

SMBu: SBS
—b BatteryO
0xB
SMBu SBS
Batteryl
SMBus OxB
Host
Interface SMBU SBS
Host 4= Selector
Controller o SBS
XA SMBuU
(0x8) Battery2
I 0xB
SMBus
SBS SBS
SMBus
Charger Battery3
0x9 0xB

242

Figure11-1 Typical Smart Battery Subsystem

SMBus defines afixed 7-bit dave address per device. Thismeansthat al batteriesin the
system have the same address (defined to be OxB). The dave addresses associated with
smart battery subsystem components are shown in the following table.

Table 11-1 Example SMBus Device Slave Addresses

SMBus Device Description | SMBus Slave Address (A0-A6)
SMBus Hogt Save Interface 0x8

SBS Charger/Charger 0x9

Selector

SBS Selector OxA

SBS Battery OxB

Each SMBus device has up to 256 regigters that are addressed through the SMIBus protocol’ s
Command vaue. SMBus devices are addressed by providing the dave address with the
desired register’s Command vaue. Each SMBus register can have nortlinear registers, that
is command register 1 can have a 32 byte string, while command register 1 can have a byte,
and command register 2 can have aword.

The SMBus host dave interface provides a stlandard mechanism for the host CPU to generate
SMBus protocol commands which are required to communicate with SVIBus devices (i.e,
the smart battery components). ACPI defines such an SMBus host controller that resdesin
embedded controller address space, however an OS can support any SMBus host controller
which has a native SMBus host controller device driver.

The SBS sdlector provides a sandard programming model to control multiple smart batteries
in asmart battery subsystem. A smart battery selector provides the following types of battery
management functions:

Event natification for battery insertion/remova

Event notification for AC power connected or disconnected

Status/Control of which battery is communicating with the SMIBus host controller
Statug/Control of which battery is powering the system

Status/Control of which battery is connected to the charger

Status of which batteries are present in the system

Event natification when the sdector switches from one power source to another
Hardware switching to a secondary battery upon the primary battery running low
?? Hardware switchingto AC

A smart battery selector function can reside in a standaone SMBus dave device (SBS
Selector which responds to the OxA dave address), or may be present within a smart charger
device (SBS Charger which responds to the 0x9 dave address). If both smart charger and
stand aone selectors are present in the same smart battery subsystem, then the driver
assumes that the stand aone selector iswired to the batteries.

The SBS charger isan SMBus device that provides astandard programming mode to
control the charging of smart batteries present in a smart battery subsystem. For single
battery systems the smart charger is dso responsible for notifying the systlem of the beattery
and AC datus.

The smart battery provides intelligent chemistry-independent power to the syssem. The
battery is capable of informing the smart charger its charging requirements (which provides

IIIIIIIII

243

chemistry independence), and providing battery status and aarm features needed for platform
battery management.

11.1.1 ACPI Smart Battery Charger Requirements

The smart battery charger specification 1.0 defines an optiona mechanism for notifying the
system that the battery or AC status has changed. ACPI requires that this interrupt
mechanism be through the SVIBus Alarm Notify mechanism.

For acharger only device this requires the smart charger, upon a battery or AC status change,
to generate an SMBus Alarm Notify. This generates an event from the SMBus host controller
after the contents of the ChargerStatus() command register (0x13) are placed in the SMBus
host dave data port and the dave address of the messaging device (in this case, the charger
17) is placed in the SMBus host Save command port (at slave address 0x8).

If asmart battery charger contains the optiona selector function (asindicated by
ChargerSpecinfo() command register, 0x11, bit 4), this requires the smart charger, upon a
battery or AC status change, to generate an SMBus Alarm Notify. This generates an event
from the SMBus host controller after the contents of the SelectorState() command register
(0x21) are placed in the SMBus host dave data port and the dave address of the messaging
device (in this case, the charger®”) is placed in the SMBuUs host Slave command port (a dave
address 0x8). When the selector function is present in the smart charger, Battery and AC
status changes should be reported through the SelectorState() notify and not the
ChargerStatuy() notify.

11.1.2 ACPI Smart Battery Selector Requirements

The smart battery selector specification 1.0 defines an optiond mechanism for notifying the
system that the battery or AC status has changed. ACPI requires that this interrupt
mechanism be through the SMBus Alarm Notify mechanism.

For a smart battery selector device this requires the smart battery selector, upon a battery or
AC datus change, to generate an SMBus Alarm Notify. This generates an event from the
SMBus host controller after the contents of the SelectorState() command register (0x1) are
placed in the SVIBus host dave data port and the dave address of the messaging device (in
this case, the sdlector’’) is placed in the SMBus host save command port (at slave address
0x8).

11.1.3 Smart Battery Objects
The smart battery subsystems requires anumber of objectsto defineitsinterface. These are
summarized below:

17 Note that the 1.0 SMBus protocol specification is ambiguous about the definition of the
“dave address’ written into the command field of the host contraller. In this case, the dave
addressis actudly the combination of the 7-bit dave address and the Write protocol bit.
Therefore, bit O of the initiating device' s dave address is digned to bit 1 of the host
controller’ s dave command register, bit 1 of the dave addressis digned to bit 2 of the
controller’ s dave command register, and so on.

244

Table 11-2 Smart Battery Objects

Object | Description

_HID Thisis the hardware ID named object which containsastring. For smart
battery subsystems this object returns the value of “ACPI0002". This
identifies the smart battery subsystem to the smart battery driver.

SBS Thisisthe smart battery named object which contains a Dword. This named
object returns the configuration of the smart battery subsystem and is encoded
asfollows.

0: Maximum of one smart battery and no selector.

1. Maximum of one smart battery and a selector.

2: Maximum of two smart batteries and a selector.

3. Maximum of three smart batteries and a selector.

4: Maximum of four smart batteries and a sdector.
The maximum number of batteriesis for the system. Therefore, if the platform
is capable of supporting four batteries, but only two are normaly present in the
system, then this field should return 4. Note that avalue of O indicatesa
maximum support of one battery and there is no sdector present in the system.

11.1.4 Smart Battery Subsystem Control Methods

Asthe SMBusis not an enumerable bus, al devices on the bus must be declared in the ACPI
name space. Asthe smart battery driver understands the SBS battery, charger, and selector;
only asingle device needs to be declared per smart battery subsystem. The driver gets
information about the subsystem through the hardware ID (which defines a smart battery
subsystem) and the number of batteries supported on this subsystem (_SBS named object).
The ACPI smart battery table indicates the energy levels of the platform at which the system
should warn the user and then enter adeeping State. The smart battery driver then reflects
these as threshold darms for the smart batteries.

The SBS control method returns the configuration of the smart battery subsystem. This
named object returns a Dword value with a number from 0 to 4. If the number of batteriesis
greater than O, then the smart battery driver assumes that an SBS sdector is present. If O, then
the smart battery driver assumes a single smart battery and no SBS selector.

A Smart Battery device declaration in the ACPI name space requiresthe _GLK object if
potentially contentious accesses to device resources are performed by non-OS code. See
Chapter 6 (6.5.6) for details about the _GLK object.

11.1.4.1 Single Smart Battery Subsystem: Example
This section illustrates how to define a smart battery subsystem containing a single smart
battery and charger. The platform implementation isillustrated below:

Embedded
Controller
Ports: 0x62, 0x66 SBS
Offset: 0x80 >
Query: 0);30 o Battery
0xB
Host
Interface SMBUS SMBus
Host [P¢
Controller
(0x8) SBS
L_»| Charger
0x9

Figure11-2 Single Smart Battery Subsystem

In this example the platform is usng an SMIBus host controller that resdes within the
embedded controller and meets the ACPI standard for an embedded controller interface and
SMBus host controller interface. The embedded controller interface sits a system /O port
addresses 0x62 and 0x66. The SMBus host controller is at base address 0x80 within
embedded controller address space (as defined by the ACPI embedded controller
specification) and responds to events on query value 0x30.

In this example the smart battery subsystem only supports asingle battery. The ASL code
for describing this interface is shown below:

Devi ce(ECO) {
Name(_HI D, EI SAI D(" PNPOC09"))
Nanme(_CRS,
ResourceTenpl at e() { /'l port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
Name(_GPE, 0)
Devi ce (SMBO) {
Name(_H D, "ACPI 0001") /1 Smart Battery Host Controller
Name(_EC, 0x8030) /'l EC offset (0x80), Query (0x30)
Devi ce(SBSO) { /1 Smart Battery Subsystem
Name(_HI D, "ACPI 0002")// Smart Battery Subsystem |ID
Name(_SBS, 0x1) /1 1ndicates support for one battery
} I/ end of SBSO
} /1 end of SMBO
} /'l end of EC

11.1.4.2 Multiple Smart Battery Subsystem: Example
This section illustrates how to define a smart battery subsystem that contains three smart
batteries, a SBS sdlector and a charger. The platform implementation isillustrated below:

245

246

Embedded
Controller SMBU SBS
Ports: 0x100, 0x101 BatteryO
Offset: 0x90
Queit/: 0x31 OXB
Host
Interface SMBU SBS
4> SMBUS -—p Se(l)ector SBS
XA SMBU:
Host > Batteryl
Controller MBS I 0xB
(0x8)
SBS SBS
SMBus
Charger Battery2
0x9 0xB

Figure11-3 Smart Battery Subsystem

In this example, the platform is usng an SMBus host controller thet resdes within the
embedded controller and meets the ACPI standard for an embedded controller interface and
SMBus host controller interface. The embedded controller interface sits at system 1/0 port
addresses 0x100 and 0x101. The SMBus host controller resides at base address 0x90 within
embedded controller address space (as defined by the ACPI embedded controller
specification) and responds to events on query value 0x31.

In this example the smart battery subsystem supports three smart batteries, an SBS charger
and an SBS selector. The ASL code for describing thisinterface is shown below:

Devi ce(EC1) {
Name(_HI D, EI SAI D(" PNPOC09"))
Nanme(_CRS,
ResourceTenpl at e() { /1l port 0x100 and Ox101
| O(Decodel6, 0x100, 0x100, 0, 2)
}
)
Name(_GPE, 1)
Devi ce (SMB1) {
Name(_H D, "ACPI 0001") /1 Smart Battery Host Controller
Name(_EC, 0x9031) /1 EC offset (0x90), Query (0x31)
Devi ce(SBS1) { /1 Smart Battery Subsystem
Nane(_H D, "ACPI0002")// Smart Battery Subsystem ID
Name(_SBS, 0x3) /1 Indicates support for three batteries
} // end of SBS1
} /1 end of SMBl
} /1 end of EC

11.2 Control Method Batteries
The following section illugtrates the operation and definition of the control method battery.

11.2.1 Battery Events

The AML code handling an SCI for a battery event notifies the system which battery’ s the
status may have changed. The OS usesthe BST control method to determine the current
datus of the batteries and what action, if any, should be taken (for more information about
the BST control method, see section 11.2.2). Thetypicd actionisto notify gpplications
monitoring the battery status to provide the user with an up-to-date display of the system
battery state. But in some cases the action may involve generating an dert or even forcing a
system into adegping state. In any case, any changesin battery status should generate an SCl

in atimely manner to keep the system power state Ul consistent with the actud State of the
system battery (or batteries).

Aswith other devices, when a battery deviceisinserted to the system or removed from the
gystem, the hardware asserts a GP event. The AML code handler for this event will issue a
Notify(battery device, 0x00) or Notify(battery device, 0xO1) on the battery device to
initiate the standard device Plug and Play actions.

When the present state of the battery has changed or when the trip point set by the BTP
control method is crossed, the hardware will assert a GP event. The AML code handler for
this event issues aNotify(battery _device, 0x80) on the battery device.

In the unlikely case that the battery becomes critical, AML code interface can issue
Notify(battery device, 0x80) and reports the battery critica flaginthe BST object. The OS
performs critical shutdown.

11.2.2 Battery Control Methods

The Control Method Battery (CMBatt) is a battery with an AML code interface between the
battery and the host PC. The battery interface is completely accessed by AML code control
methods, alowing the OEM to use any type of battery and any kind of communication
interface supported by ACPI.

A Control Method Battery is described as a device object. Each device object supporting the
CMBatt interface contains the following additiona control methods. When there are two or
more batteries in the system, each battery will have an independent device object in the name
space.

Table 11-3 Battery Control Methods

247

Object | Description

_BIF Returns gatic information about a battery (i.e., model number, serid number,
design voltage, €tc.)

_BST Returns the current battery status (i.e., dynamic information about the battery
such as whether the battery is currently charging or discharging, an estimate of
the remaining battery capacity, tc.).

_BTP Sets the Battery Trip point which generates an SCI when the battery(s)
capacity reaches the specified point.

PCL Ligt of pointers to the device objects representing devices powered by the
battery.

_STA Returns generd status of the battery (for adescription of the _STA control
method, see section 6.3.5.

A control method battery device declaration in the ACPI name space requiresthe _GLK
object if potentialy contentious accesses to device resources are performed by non-OS code.
See Chapter 6 (6.5.6) for details about the _ GLK object.

11.2.2.1 BIF
This object returns the static portion of the Control Method Battery information. This
information remains congtant until the battery is changed.

Arguments.
None

Reaults code:

248

Package{

/1 ASCI1Z is ASCI| character string term nated with

/1 a 0x00.

Power Uni t

Desi gn Capacity
Last Full Charge Capacity

Batt ery Technol ogy

Desi gn Vol t age
Desi gn Capacity of Warning

Desi gn Capacity of Low

Battery Capacity Granularity 1
Battery Capacity Granularity 2
Model Nunber

Serial Number

Battery Type

OEM | nf or mati on

/ DWORD
/ DWORD
/ DWORD
/ DWWORD
/ DWORD
/ DWWORD
/ DWORD
/ DWWORD
/ DWORD
[/ ASCI | Z
[/ ASCI | Z
[/ ASCI | Z
/

/
/
/
/
/
/
/
/
/
/
/
/
/1'ASCI | Z

Table11-4 BIF Method Result Codes

Field

Format

Description

Power Unit

DWORD

Indicates the units used by the battery to report its
capacity and charge/discharge rate information to
the OS.

0x00000000 = Capeacity information is reported in
[MWh] and charge/discharge rate information in
[mwW].

0x00000001 = Capacity information is reported in
[mAh] and charge/discharge rate information in
[MA].

Desgn
Capecity

DWORD

Battery’ s design capacity. Design Capecity isthe
nomina capacity of anew battery. The Design
Capacity vaueis expressed as power [mWh] or
current [mAh] depending on the Power Unit vaue.
0x000000000 - OX7FFFFFFF (in [mWh] or [mAh])
OxFFFFFFFF = Unknown design capacity

Lagt Full
Charge
Capacity

DWORD

Predicted battery capacity when fully charged. The
Last Full Charge Capacity vaueis expressed as
power (mMWh) or current (mAh) depending on the
Power Unit vaue

0x000000000h - Ox7FFFFFFF (in [mWh] or [mAh]

)
OxFFFFFFFF = Unknown last full charge capacity

Baitery
Technology

DWORD

0x00000000 = Primary (ex., non-rechargeable)
0x00000001 = Secondary (ex., rechargeable)

Desgn
Voltage

DWORD

Nomindl voltage of anew battery.
0x000000000 - OX7FFFFFFF in [mV]
OxFFFFFFFF = Unknown design voltage

Desgn
capacity of
Warning

DWORD

OEM -designed beattery warning capecity.
0x000000000 - Ox7FFFFFFF in [mWh] or [mAh]

Field Format Description

Desgn DWORD | OEM-designed low battery capacity.

capacity of 0x000000000 - OX7FFFFFFF in [mWh] or [mAh]

Low

Battery DWORD | Battery capacity granularity between low and

capacity warning in[mAh] or [mWh]|

granularity 1

Battery DWORD | Battery cagpacity granularity between warning and

capacity Full in [mAh] or [mWh]

granularity 2

Modd Number | ASCIIZ | OEM-specific Control Method Battery model
number

Serid Number | ASCIIZ | OEM -gpecific Control Method Battery serid
number

Battery Type ASClIZ | The OEM-gpecific Control Method Battery type.

OEM ASCIIZ | OEM -gpecific information for the battery thet the

Information Ul usssit to display the OEM information about
the Battery. If the OEM does not support this
information, this should be reserved as Ox00.

Note: A secondary-type battery should report the corresponding capacity (except for

Unknown).

Note: On amultiple battery system, al batteries in the system should return the same

granularity.

Note: OSes prefer these control methods to report datain terms of power (watts).

11.2.22 BST

This object that returns the present battery status. Whenever the Battery State value changes,

the sygem will generate an SCI to notify the OS.

Arguments.
None

Results code:

249

250

Package{
Battery State / | DWORD
Battery Present Rate / | D\WORD
Battery Remai ni ng Capacity / | DWORD
Battery Present Voltage / | D\WORD

Table11-5 BST Method Result Codes

Field Format Description

Battery State DWORD | Bit vdues. Note: The Charging bit and the
Discharging bit are mutualy exclusve and must
not both be set at the sametime.

Bit0 = 1 indicates the battery is discharging

Bitl = 1 indicates the battery is charging

Bit2 = 1 indicates the battery isin the critical
energy date

Evenin criticd gate, hardware should report the
corresponding charging/discharging state. When
the battery reports critical energy state and dso
reports the battery is discharging (bitsO and 2 are
both set) the OS will perform acriticd system

shutdown.
Battery Present | DWORD | Returns the power or current being supplied or
Rate accepted through the battery's terminas (direction

depends on the Battery State value). The Battery
Present Ratevalue is expressed as power [mMWh] or
current [mAh] depending on the Power Unit vaue.
Batteries that are rechargeable and are in the
discharging state are required to return avaid
Battery Present Ratevdue.

0x00000000 - Ox7FFFFFFF in [mW] or [mA]
OxFFFFFFFF = Unknown rate

Battery DWORD | Returnsthe estimated remaining battery capacity.
Remaning The Battery Remaining Capacity vaueis expressed
Capacity as power [mMWh] or current [mAh] depending on

the Power Unit vaue.

Batteries that are rechargeable are required to return
avdid Battery Remaining Capacity vaue.
0x00000000 - Ox7FFFFFFF in [mWh] or [mAh]
OxFFFFFFFF = Unknown capacity

Battery Present | DWORD | Battery Present Voltage returns the voltage across
Voltage the battery’ sterminds.

Batteries thet are rechargeable must report Battery
Present Voltage.

0x000000000 - OX7FFFFFFF in [mV]
OxFFFFFFFF = Unknown voltage (Note: Only isa
Primary battery can report Unknown voltage).

11.2.2.3 _BTP
This object is used to set atrip-point to generate an SCI when the Battery Remaining
Capacity reaches the vaue specified inthe _BTP object. Thisinformation will be kept by the
sysem.
If the battery does not support this function, the _BTP control method is not located in the
name space. In this case, the OS must poll the Battery Remaining Capacity vaue.
Arguments.
Leve a which to set the trip point:
0x00000001 - Ox7FFFFFFF (in units of mWh or mAh, depending on the Power Units
vaue)
0x00000000 = Clear thetrip point
Results code:
None.

11.3 AC Adapters and Power Source Objects
The Power Source objects describe the power source used to run the system.

Table11-6 Power Source Control Methods

251

Object | Description

_PSR Returns present power source device

_PCL List of pointers to powered devices.

11.3.1 PSR
Returns the current power source devices. Used for the AC adapter and is located under the
AC adapter object in name space. Used to determine if system is running off the AC adapter.
Arguments.

None
Results code:

0x00000000 = Off-line

0x00000001 = Or+-lire

11.3.2 PCL

This object evaluatesto alist of pointers, each pointing to adevice or a bus powered by the
power source device. Pointing to a bus indicates that al devices under the bus are powered
by the power source device.

11.4 Power Source Name Space Example

The ACPI name space for a computer with an AC adapter and two batteries associated with a
docking gtation that has an AC adapter and a battery is shown in the illustration (Figure 11.4)
below.

252

_SB

—{2] ADP1

ifi

—{] BAT1

aaanao

—{d} BAT

00 o

L2 PcCI0

DOCK

ADP2

tg _PSR
_PCL

System Bus
AC Adapterl

Power Source type
Power Class List

Battery 1

PnP ID for the BAT1
Staus of the BAT1 Object
Batteryl Information
Batteryl Satus

Batteryl Trip Point
Power Class List

Battery 2
PnP ID for the BAT2
Status of the BAT2 object

Battery2 Information

Battery2 Status
Battery2 Trip Point
Power Class List

AC Adapter 2

Power Source type
Power class list

Figure11-4 Power Source Name Space Examplethat Includes a Docking Station

12. Thermal Management
This section specifies the objects the OS uses for thermd management of a platform.

12.1 Thermal Control

ACPI dlowsthe OSto be proactivein its system cooling policies. With the OS in control
of the operating environment, cooling decisions can be made based on gpplication load
on the CPU and the therma heurigtics of the system. Graceful shutdown of the OS at
critical heet levels becomes possible as well. The following sections describe the therma
objects available to the OS to control platform temperature. ACPI expectsdl
temperaturesto be given in tenths of Kelvin.

The ACPI therma design is based around regions called thermal zones. Generdly, the
entire PC is one large thermd zone, but an OEM can partition the system into severd
therma zonesif necessary.

12.1.1 Active, Passive, and Critical Policies

There are three primary cooling policies that the OS uses to contral the therma Sate of

the hardware. The policies are Active, Passive and Critical:

?? Passive cooling: The OS reduces the power consumption of the system to reduce the
thermal output of the machine by dowing the processor clock. The _PSV control
method is used to declare the temperature to start passive cooling.

?? Active cooling: The OS takes adirect action such asturning on afan. The _ACx
control methods declare the temperatures to start different active cooling levels.

?? Critical trip point: Thisisthe threshold temperature at which the OS performs an
orderly, but critica, shut down of the syssem. The CRT object declares the critica
temperature at which the OS must perform a critical shutdown.

When athermal zone appears, the OS runs control methods to retrieve the three
temperature points a which it executes the cooling policy. Whenthe OS receives a
therma SCI it will run the _TMP control method, which returns the current temperature

of the therma zone. The OS checks the current temperature againg the therma event
temperatures. If _TMP is greater than or equal to _ACx then the OSwill turn on the
associated active cooling device(s). If _ TMPis greater than or equa to _PSV then the OS
will perform CPU throttling. Findly if _TMP is greater than or equd to _CRT then the
OS will shutdown the system.

An optimaly designed system that uses severd SCI events can notify the OS of thermal
increase or decrease by raising an interrupt every severd degrees. This enables the OS to
anticipate _ACx, PSV, or _CRT events and incorporate heuristics to better manage the
systems temperature.

The operating system can request that the hardware change the priority of active cooling
Vs passive cooling.

12.1.2 Dynamically Changing Cooling Temperatures

An OEM canreset ACx and _PSV and notify the OS to reeva uate the control methods
to retrieve the new temperature settings. The following three causes are the primary uses
for thistherma natification:

253

254

?? When ausar changes from one cooling mode to the other.

?? When a swappable bay device isinserted or removed. A swappable bay isadot that
can accommodate severd different devices that have identical form factors, such asa
CD-ROM drive, disk drive, and so on. Many mobile PCs have this concept dready in
place.

?? When the temperature reaches an _ACx or the_PSV policy settings

In each dtuation, the OEM -provided AML code must execute a Notify(thermal _zone,

0x81) statement to request the OS to re-evauate each policy temperature by running the

_PSV and _ACx control methods.

12.1.2.1 Resetting Cooling Temperatures from the User Interface

When the user employs the Ul to change from one cooling mode to the other, the

following occurs:

1. The OS natifies the hardware of the new cooling mode by running the Set Cooling
Policy (_SCP) control method.

2. When the hardware receives the notification, it can set a new temperature for both
cooling palicies and natify the OS that the therma zone policy temperatures have
changed.

3. TheOSre-evduates PSV and _ACXx.

12.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion
or Removal
The hardware can adjust the therma zone temperature to accommodate the maximum
operating temperature of abay device as necessary. For example,
1. Hardware detects that a device was inserted into or removed from the bay and resets
the PSV and/or _ ACx and then natifies the OS of the therma and device insartion
events.
2. The OS reenumerates the devices and reevaluates PSV and _ACX.

12.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis

An OEM can build hysteress into platform thermal design by dynamically resetting

cooling temperatures. For example,

1. When the heat increases to the temperature designated by _ ACx, the OSwill turn on
the associated active cooling device and the hardware will reset the_ACx valueto a
lower temperature.

2. The hardware will then run the Notify command and the OS will reevauate the new
temperatures. Because of the lower _ACx vaue now, the fan will be turned off a a
lower temperature than when turned on.

3. When the temperature hits the lower _ ACx vadue, the OS will turn off the fan and
reevauate the control methods when notified.

12.1.3 Hardware Thermal Events

An ACPI-compatible OS expects the hardware to generate athermd event notification
through the use of the SCI. When the OS receives the SCI event, it will runthe_TMP
control method to evauate the current temperature. Then the OSwill compare the value
to the cooling policy temperatures. If the temperature has crossed over one of the three

255

policy thresholds, then the OS will actively or passively cool (or stop coaling) the system,
or shutdown the system entirely.

7
This is an SCl and you

can define how ever -

many as necessary \ . 96 <— CRT
85
80
751 <4 ACO
66— <—_ACl
55

50
45— <4—_PSV

40

IS1e)

U

25
20

15

16

)

<4— Method
SCI Even

Figure12-1 SCI Events
Both the number of SCI events to be implemented and the granularity of the temperature
separation between each SCI event is OEM - pecific. However, it isimportant to note that
since the OS can use heurigtic knowledge to help cool the system, the more events the OS
receives the better understanding it will have of the systlem’sthermad characteridtic.

12.1.4 Active Cooling Strength

The Active cooling methods (_ ACX) in conjunction with active cooling lists (. ALX),

alows an OEM to use a device that offers varying degrees of cooling capability or

multiple cooling devices. The _ ACx method designates the temperature a which the

Active cooling is enabled or disabled (depending upon the direction in which the

temperature is changing). The ALX object evduatesto alist of devicesthat actively coal

the zone. For example:

?? If astandard sngle-gpeed fan isthe Active cooling device, then the policy is
represented by the temperature to which _ ACO evauates, and thefan islisted in

ALO.

?? If the zone uses two independently- controlled single-speed fans to regulate the
temperature, then _ ACO will evauate to the maximum cooling temperature using two
fans, and _AC1 will evauate to the standard cooling temperature using one fan.

?? If azone hasasingle fan with alow speed and a high speed, the _ ACO will evduate
to the temperature associated with running the fan a high-speed, and _AC1 will
evauate to the temperature associated with running the fan at low speed. ALO and
_AL21 will both point to different device objects associated with the same physica
fan, but control the fan at different speeds.

For ASL coding examplesthat illustrate these points, see sections 12.4 and 12.5..
12.1.5 Passive Cooling Equation

Unlike the case for _ ACX, during passive cooling the OS takes the initiative to actively
monitor the temperature in order to cool the platform. On an ACPI-competible platform

256

that properly implements CPU throttling, the temperature trangitions will be smilar to the
following figure.

>
>
=
o
Q
B3

Temperature
; — .
? '
/g :
R
o

(@)

0

C

/ n T

@

T, / o
5

/ S

o

(0]

_TSP (Sampling period)

50%

>

Time
Figure12-2 Temperature and CPU Performance Versus Time

For the OS to assess the optimum CPU performance change required to bring the
temperature down, the following equation must be incorporated into the OS.

Equation #1: ?P[%] = TC1* (Tn - Tnl)+ TC2* (Tn- Tt)
where

Tn = current temperature

Tt = target temperature (_ PSV)
The two coefficients_ TC1l and _TC2 and the sampling period _ TSP are hardware-
dependent congtants the OEM must supply to the OS (for more information, see section
12.3). The object _ TSP contains atimeinterval that the OS uses to poll the hardware to
sample the temperature. Whenever _ TSP time has elgpsed, the OSwill run_TMPto
sample the current temperature (shown as Tn in the above equation). Then the OSwill
use the sampled temperature and _PSV (which isthe target temperature Tt) to evaluate
the equation for ? P. The granularity of ? P is determined by the CPU duty width of the
System.

Note: Equation #1 has an implied formula

Equation #2: Pn=Pn-1 + HW[- ?P] where 0% <= Pn <= 100%
For this Equation #2, whenever Pr+1 + ?P lies outsde the range 0-100%, then Pn will be
truncated to 0-100%. For hardware that cannot assume al possible values of Pn between
0 and 100%, a hardware- specific mapping function HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as
follows

257

(&) If theright hand sde of Equation #1 is negative, HW[?P] is rounded to the next
available higher setting of frequency;

(b) If the right hand sSide of Equation #1 is positive, HW[? P] is rounded to the next
available lower setting of frequency.

The calculated Pn becomes Prt 1 during the next sampling period.

(For more information about CPU throttling, see section 4.7.2.6). A detailed explanation
of this therma feedback equation is beyond the scope of this specification.

12.1.6 Critical Shutdown

When the heet reaches the temperature indicated by _ CRT, the OS must immediately

shutdown the system. The system must disable the power either after the temperature

reaches some hardware-determined level above CRT or after a predetermined time has

passed. Before disabling power, platform designers should incorporate some time that

dlowsthe OSto runitscritical shutdown operation. There is no requirement for a

minimum shutdown operation window that commences immediately after the

temperature reaches CRT. Thisis because

?? Heat might rise rapidly in some systems and dower on others, depending on casing
design and environmentd factors.

?? Shutdown can take several minutes on a server and only afew short secondson a
hand-held device.

Because of thisindigtinct discrepancy and the fact that a critical heat Stuationisa
remarkably rare occurrence, ACPI does not specify atarget window for a safe shutdown.
It isentirdy up to the OEM to build in a safe buffer thet it seesfit for the target platform.

12.2 Other Implementation Of Thermal Controllable Devices

The ACPI thermd event mode is flexible enough to accommodate control of amost any
system device capable of controlling heet. For example, if amobile PC requiresthe
battery charger to reduce the charging rate in order to reduce heat it can be seamlessy
implemented as an ACPI cooling device. Thisis done by associating the charger as an
Active cooling device and reporting to the OS target temperatures that will enable or
disable the power resource to the device. Figure 12- 3 illudtrates the implementation.
Because the example does not creete noise, this will be an implementation of silence
mode.

258

90— = _CRT

85.

66

55— = _Aco Fan on/off
50— « _psv Throttle CPU

45—~ 4«—— _AC1 Reduce charge |
rate

40
%t

oY~
3

20-

25,

20.
zZt

ar
T

10
TU

I~
=)

(U

Figure 12-3 Other Thermal Control

12.3 Thermal Control Methods
Control methods and objects related to thermal management are listed in Table 12-1.

Table12-1 Thermal Control Methods

Object | Description

_ACx | Returns Activetrip point in tenths Kelvin

_AlLx | Lig of pointersto active cooling device objects
_CRT | Returnscriticd trip point in tenths Kelvin

_PSL | Ligt of pointersto passive cooling device objects
_PSV | ReturnsPassvetrip point in tenths Kelvin

_SCP | Setsuser cooling palicy (Active or Passve)
_TC1 | Thermd congant for Passve cooling

_TC2 | Thermd congtant for Passive cooling

_TMP | Returns current temperature in tenths Kelvin
_TSP | Thermd sampling period for Passive cooling in tenths of seconds
12.3.1 _ACx

This control method returns the temperature at which the OS must start or stop Active
cooling, where X is a vaue between 0 and 9 that designates multiple active cooling levels
of the therma zone. If the Active cooling device has one cooling levd (that is, “on”) then
that cooling level isnamed _ACO. If the cooling device hastwo levels of cgpability, such
as ahigh fan speed and alow fan speed, thenthey arenamed ACOand _ACl
repectively. The smdler the vaue of x, the greater the cooling strength _ ACX represents.
In the above example, _ACO represents the greater level of cooling (the faster fan speed)
and _AC1 represents the lesser level of cooling (the dower fan speed). For every ACXx
method, there must be a matching ALX object.

259

Arguments.
None.

Result Code:
Temperature in tenths Kelvin.

The result code is an integer value which describes up to 0.1 precison in Kevin. For
example, 300.0K is represented by the integer 3000.

12.3.2 _ALx
This object evduaesto alist of Active cooling devices to be turned on when the
associated _ACx trip point is exceeded. For example, these devices could be fans.

12.3.3 _CRT
This control method returns the critical temperature a which the OS must shutdown the
sysem.

Arguments.
None.

Result Code:
Temperature in tenths Kelvin.

The result is an integer value that describes up to 0.1 precision in Kelvin. For example,
300.0K is represented by the integer 3000.

12.34 _PSL
This object evaluatesto alist of processor objects to be used for Passive cooling.

12.35 _PSV
This control method returns the temperature at which the OS must activate CPU
throttling.

Arguments.
None.

Result Code:
Temperature in tenths Kelvin.

The reault code is an integer vaue that describes up to 0.1 precison in Kelvin. For
example, 300.0 Kelvin isrepresented by 3000.

12.3.6 _SCP
This control method notifies the hardware of the current user cooling mode setting. The
hardware can use thisas atrigger to reassign _ ACx and _PSV temperatures. The
operating system will automaticaly evduate ACx and _PSV objects after executing
SCP.

Arguments.

0 - Acdive

1 - Passve
Result Code:

None.

260

12.3.7 _TC1
Thisisathermd object that evduatesto the constant _ TC1 for usein the Passive cooling
formula

?Performance[%]= _TC1l* (Tn - Tn1)+ _TC2* (Tn.- Tt)

12.3.8 _TC2
Thisisatherma object that evauates to the constant _TC2 for use in the Passve cooling
formula

?Performance[%]=_TC1* (Tn - Tnr1)+ _TC2*(Tn - Tt)

12.39 TMP
This control method returns the therma zone's current operating temperature in Kelvin.

Argument:
None.

Result Code:
Temperaure in tenths Kelvin.

Thereault is an integer value that describes up to 0.1 precison in Kevin. For example,
300.0K isrepresented by the integer 3000.

12.3.10 _TSP

Thisis an object that evauates to atherma sampling period used by the OS to

implement the Passive cooling equation. Thisvaue, dongwith _TCland _TC2, will
enable the OS to provide the proper hysteresis required by the system to accomplish an
effective passve cooling policy. The granularity of the sampling period is 0.1 seconds.

For example, if the sampling period is 30.0 seconds, then _ TSP needs to report 300; if the
sampling period is 0.5 seconds, then it will report 5. The OS can normalize the sampling

over alonger period if necessary.

12.4 Thermal Block and Name Space Example for One Thermal Zone
Following is an example ASL encoding of athermd zone. Thisisan example only.

Scope(\ _PR) {
Processor (
CPUO,
1, //uni que nunber for this processor
0x110, //System | O address of Pblk Registers
0x06 //length in bytes of PBIk

) {1}
} //end of _PR scope

Scope(_SB) {
Devi ce(ECO) {
Narme(_HI D, EI SAI D(" PNPOC09")) /1 1D for this EC
/1l current resource description for this EC
Name(_CRS, Buffer (){ 0x4B, 0x62, 0x00, 0x01, O0Ox4B,
0x66, 0x00, 0x01, 0x79, 0x00})
Name(_GPE, 0) // GPE index for this EC

/'l create EC s region and field for thermal support
Oper ati onRegi on(ECO, EmbeddedControl, 0, OxFF)
Fi el d(ECO, AnyAcc, Lock, Preserve) {

MODE, 1, /1 thermal policy (quiet/perform
FAN, 1, /1 fan power (on/off)
, 5,
ACO, 8, /'l active cooling tenp (fan high)
PSv, 8, /'l passive cooling tenmp
CRT, 8, /'l critical tenp
}
/1 following is a nethod that the OS will schedule after

/1 it receives an SClI and queries the EC to receive value 7
Met hod(_Q07) {
Notify (_TZ. THRM 0x80)
} // end of Notify method
/1 end of ECO device
} /1 end of scope

Scope(\ _TZ) {
Power Resour ce(PFAN, 0, 0)
Met hod(_STA) { Return (E®. FAN } /'l check power state
Met hod(_ON) { Store (One, ECO.FAN) } /1 turn on fan
Met hod(_OFF) { Store (Zero, ECO.FAN) }// turn off fan

/1 Create FAN device object
Devi ce (FAN) {
/1 Device ID for the FAN
Name(_HI D, EI SAI D(" PNPOCOB"))
/1l list power resource for the fan
Name(_PRO, Package(){PFAN})

}

/1l create a thermal zone
Ther mal Zone (THRM) {

Met hod(_TMP) { Return (ECO. TMP)} /1l get current tenp
Met hod(_AC0) { Return (ECO0. ACO) } /1 fan high tenp
Name(_ALO, Package(){FAN}) /'l fan is act cool dev
Met hod(_PSV) { Return (ECO.PSV) } /| passive cooling tenp
Nanme(_PSL, Package (){_PR CPW}) /1l cpu is pass cool dev
Met hod(_CRT) { Return (ECO.CRT) } /1 get critical tenp
Met hod(_SCP, 1) { Store (Argl, ECO.MODE) }// set cooling node
Name(_TC1, 4) // bogus exanpl e constant
Name(_TC2, 3) // bogus exanpl e constant
Name(_TSP, 600) /'l sanple every 60 sec

261

262

12.5 Controlling Multiple Fans in a Thermal Zone
Thefollowing is an example encoding of atherma block with atherma zone and a
sngle fan tha has two cooling gpeeds. Thisis an example only.

Scope(_PR) {
Processor (
CPUO,
1, /1 uni que nunber for this processor
0x110, /1 System | O address of Pblk Registers
0x06 //length in bytes of PBIk

) {1}
} //end of _PR scope

Scope(_SB) {
Devi ce(ECO)
Name(_HI D, EI SAI D(" PNP0OC09")) /1 1D for this EC
/'l current resource description for this EC
Nanme(_CRS, Buffer (){ 0x4B, 0x62, 0x00, 0x01, O0x4B,
0x66, 0x00, 0x01, 0x79, 0x00})
Name(_GPE, 0) /1 GPE index for this EC

/'l create EC' s region and field for thermal support
Oper at i onRegi on(ECO, EmbeddedControl, 0, OxFF)

/1 following is a nethod that the OS will schedule after it
/'l receives an SCl and queries the EC to receive value 7
Met hod(_Q07)

Notify (_TZ. THML, 0x80)
}

}

Scope(\ _TZ) {
/1 fan cooling node high/off - engaged at ACO tenp
Power Resour ce(FN10, 0, 0)

Met hod(_STA) { Return (THML. FANO) }
Met hod(_ON) { Store (One, THML. FANO) }
Met hod(_OFF) { Store (Zero, THML. FANO) }

/'l check power state
/1 turn on fan at high
/1 turn off fan

}

/1 fan cooling node | ow off - engaged at ACl tenp

Power Resour ce(FN11, 0, 0)
Met hod(_STA) { Return (THML. FAN1) } /'l check power state
Met hod(_ON) { Store (One, THML. FAN1) }// turn on fan at |ow
Met hod(_OFF) { Store (Zero, THML.FAN1) }// turn off fan

}

/'l Following is a single fan with two speeds. This is represented
/1 by creating two |logical fan devices. Wen FN2 is turned on then
/'l the fan is at a | ow speed. When FN1 and FN2 are both on then
/1 the fan is on high.
11l
/1 Create FAN device object FN1
Device (FN1) {
/1 Device ID for the FAN
Name(_HI D, EI SAI D(" PNPOCOB"))
Name(_PRO, Package(){FN10, FN11})

}

/'l Create FAN device object FN2

Devi ce (FN2) ({
/1 Device ID for the FAN
Name(_HI D, EI SAI D(" PNPOCOB"))
Name(_PRO, Package(){FN10})

}

/1 create a thermal zone
Ther mal Zone (THML) {
/1 field used by this thermal zone

Fi el d(\ ECO, AnyAc
MODE,
FANO,
FAN1,

TWP,
ACO,
AC1,
PSV,
CRT,

DOO®®DOUR PR

}

Met hod(_TMP) { Return (TWMP)}

Lock, Preserve) {

thermal policy (quiet/perform
fan strength high/off

fan strength | ow of f

reserved

current tenp

active cooling tenp (high)
active cooling tenp (I ow)
passive cooling tenp

critical tenp

get current

Met hod(_AC0) { Return (ACO) }
Met hod(_AC1) { Return (ACl) }
Name(_ALO, Package() {FNL, FN23})
Name(_AL1, Package() {FN2})
Met hod(_PSV) { Return (PSV) }
Name(_PSL, Package() {_PR CPW})
Met hod(_CRT) { Return (CRT) }
Met hod(_SCP, 1) { Store (Argl,

MODE)

}

Il
11l
Il
11l
Il
11l
Il
Il
Il

Name(_TC1, 1) // bogus exanpl e constant
Name(_TC2, 2) // bogus exanpl e constant
Name(_TSP, 150) /1

/1 END: declare objects for thermal zone

}
} /1 end of TZ

fan high tenp

fan | ow tenp

active cooling (high)
active cooling (|ow)
passive cooling tenp
cpu is pass cool dev
get crit. tenp

set cooling node

sanpl e every 15 seconds

263

13. ACPI Embedded Controller Interface Specification

ACPI defines astandard hardware and software communi cations interface between an
OS driver and an embedded controller. This alows any OS to provide a standard driver
that can directly communicate with an embedded controller in the system, thus dlowing
other drivers within the system to communicate with and use the resources of system
embedded contrallers. Thisin turn enables the OEM to provide platform fegtures thet the
OS and applications can take advantage of.

ACPI a0 defines a sandard hardware and software communi cations interface between
an OS driver and an SMBus Host Controller via an Embedded Contraller.

The ACPI standard supports multiple embedded controllersin a system, each with its

own resources. Each embedded controller has aflat byte-addressable 1/0 space, currently

defined as 256 bytes. Features implemented in the embedded controller have an event
“query” mechanism that dlows feature hardware implemented by the embedded
controller to gain the attention of an OS driver or ASL/AML-code handler. The interface
has been specified to work on the most popular embedded controllers on the market
today, only requiring changes in the way the embedded controller is*“wired” to the host
interface.

Two interfaces are pecified:
?? A private interface, exclusively owned by the embedded controller driver.
?? A shared interface, used by the embedded controller driver and some other driver.

The specification supports optiond extensons to the interface that dlow the driver to
communicate to an SMBus controller within the embedded controller (actua or
emulated). Thiswill dlow standard driversto be created for SMIBus devices that appear
on the SVIBus whether they are actud or emulated.

Thisinterface is separate from the traditional PC keyboard controller. Some OEMs might
choose to implement the ACPI Embedded Controller Interface (ECI) within the same
embedded controller as the keyboard controller function, but the ECI requiresits own
unique host resources (interrupt event and access registers).

Thisinterface does support sharing the ECI with an inter-environment interface (such as
SMI) and relies on the ACPI defined “global lock” protocol. For information about the

globa lock interface, see section 5.2.6.1 of the ACPI specification. Both the shared and
private EC interfaces are described in the following sections.

The ECI has been designed such that a platform can useit in either the legacy or ACPI
modes with minimal changes between the two operating environments. Thisisto
encourage stlandardization for thisinterface to enable faster development of platforms as
well as opening up features within these contrallers to higher levels of software.

13.1 Embedded Controller Interface Description

Embedded controllers are the general class of microcontrollers used to support OEM -
specific implementations. The ACPI specification supports embedded controllersin any
platform design, as long as the microcontroller conforms to one of the models described
in this section. The embedded controller is a unique fegture in that it can perform
complex low-leve functions through a smple interface to the host microprocessor(s).

265

266

Although there is alarge variety of microcontrollers in the market today, the most
commonly used embedded controllersinclude a host interface that connects the
embedded controller to the host data bus, alowing bi-directiona communications. A bi-
directiond interrupt scheme reduces the host processor latency in communicating with
the embedded controller.

Currently, the most common host interface architecture incorporated into
microcontrollersis modeled after the standard 1A-PC architecture keyboard controller.
This keyboard controller is accessed at 0x60 and 0x64 in system 1/O space. Port 0x60 is
termed the data register, and allows bi-directiond data transfers to and from the host and
embedded controller. Port 0x64 is termed the command/status register; it returns port
gtatus information upon a read, and generates a command sequence to the embedded
controller upon awrite. This same class of controllers aso includes a second decode
range that shares the same properties as the keyboard interface by having a
command/gtatus register and a data register. The following diagram graphicaly depicts

thisinterface.
VAN

COMMAND WRITE (SMI/SCI)

EC INPUT
BUFFER

7 7

SMI
INTERFACE
CODE

= K=

DATA WRITE (SMI/SCI)

INTERFACE

< DATA READ (SMI/SCI)

EC OUTPUT
BUFFER

ARBITRATION
CODE

SCI

MAIN
FIRMWARE

K=

110

=

INTERFACE
CODE

K=

< STATUS READ (SMI/SCI) EC STATUS

REGISTER

EC_SMI_STS

EC_SMI
v
EC_SMI_EN

EC_SCI_STS

HED_, EC_scl
EC_SCI_EN

Figure13-1 Shared Interface
The diagram above depicts the generd register mode supported by the ACPI Embedded
Controller Interface.

The first method uses an embedded controller interface shared between the OS and the
systern management code, which requires the globa lock semaphore overhead to arbitrate
ownership. The second method is a dedicated embedded controller decode range for sole
use by the OS driver. The following diagram illustrates the embedded control ler
architecture that includes a dedicated ACPI interface.

EC_SMI_STS

—lng_' EC_SMI
EC_SMI_EN

267

VAN
COMMAND WRITE (SMI) > < >
SMI INPUT A h "
| > BUFFER < >
DATA WRITE (SMI)
DATA READ (SMI) SMI OUTPUT Ml
K Sl K= INTERFACE K=
CODE
STATUS READ (SMI) SMI STATUS
< REGISTER : :
MAN k= 1o
COMMAND WRITE (SCI) JI> T AR RE
| > BUFFER E
DATA WRITE (SCI)
DATA READ (SCI) SCI OUTPUT =c!
<": INTERFACE K #)
< BUFFER CODE
STATUS READ (SCI) SCI STATUS :1‘ D < >
< REGISTER < »

EC_SCI_STS

4&?_; EC_SCI
EC_SCI_EN

Figure13-2 PrivateInterface

The private interface alows the OS to communicate with the embedded controller
without the additiona software overhead associated with using the globa lock. Severa
common system configurations can provide the additionad embedded controller
interfaces:

?? Non-shared embedded controller - Thiswill be the most common case where there is
no need for the system management handler to communicate with the embedded
controller when the system transtionsto ACPl mode. The OS processes dl normal
types of systlem management events, and the system management handler does not
need to take any actions.

?? Integrated keyboard controller and embedded controller - This provides three host
interfaces as described earlier by including the standard keyboard controller in an
existing component (chip set, 1/0 controller) and adding adiscrete, sandard
embedded controller with two interfaces for system management activities.

268

?? Standard keyboard controller and embedded controller - This provides three host
interfaces by providing akeyboard controller as a distinct component, and two host
interfaces are provided in the embedded controller for system management activities.

?? Two embedded controllers - This provides up to four host interfaces by using two
embedded controllers; one controller for system management activities providing up
to two host interfaces, and one controller for keyboard controller functions providing
up to two host interfaces.

?? Embedded controller and no keyboard controller - Future platforms might provide
keyboard functiondity through an entirely different mechanism, which would dlow
for two hogt interfaces in an embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface)
model, a method is available to make the embedded controller a sharegble resource
between mulltiple tasks running under the operating systent s control and the system
management interrupt handler. This method, as described in this section, requires severd
changes.

?? Additiond externd hardware

?? Embedded controller firmware changes

?? System management interrupt handler firmware changes

?? Operating software changes

Access to the shared embedded controller interface requires additiona softwareto
arbitrate between the operating system’ s use of the interface and the system management
handler’ s use of the interface. Thisis done usng the Globa Lock as described in section
5.2.6.1.

This interface sharing protocol aso requires embedded controller firmware changes, in
order to ensure that collisons do not occur at the interface. A collison could occur if a
byteis placed in the system output buffer and an interrupt is then generated. Thereisa
smal window of time when the data could be received by the incorrect recipient. This
problem is resolved by ensuring that the firmware in the embedded controller does not
place any datain the output buffer until it is requested by the OS or the system
management handler.

More detailed agorithms and descriptions are provided in the following sections.

13.2 Embedded Controller Register Descriptions

The embedded controller contains three registers at two address locations: EC_SC and
EC DATA. The EC_SC, or Embedded Controller Status’Command register, acts astwo
registers. a satus register for readsto this port and a command register for writesto this
port. The EC_DATA (Embedded Controller Data register) acts as a port for transferring
data between the host CPU and the embedded controller.

13.2.1 Embedded Controller Status, EC_SC (R)
Thisisaread-only register that indicates the current status of the embedded controller
interface.

269

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl BitO
IGN SMI EV | SCI_EV | BURS [CMD |IGN IBF OBF
T T T

Where:

IGN: Ignored

SMI_EVT: 1=Indicates SMI event is pending (requesting SMI query).
0=No SMI events are pending.

SCI_EVT: 1=Indicates SCI event is pending (requesting SCI query).
0=No SCI events are pending.

BURST: 1=Controller isin burst mode for polled command processing.
O=Contro||er isin norma mode for interrupt-driven command
processing.

CMD: 1=Bytein dataregister isacommand byte (only used by controller).
O0=Byte in dataregister is a data byte (only used by controller).

IBF: 1=Input buffer isfull (dataready for embedded contraller).

O=Input buffer is empty.
OBF: 1=Cutput buffer isfull (dataready for host).

0=Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte
of datainto the command or data port but the host has not yet read it. After the host reads
the gtatus byte and sees the OBF flag set, the host reads the data port to get the byte of
data that the embedded controller has written. After the host reads the data byte, the OBF
flag is cleared automatically by hardware. This sgnds the embedded controller that the
data has been read by the host and the embedded controller is free to write more data to
the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the
command or data port, but the embedded controller has not yet read it. After the
embedded controller reads the status byte and sees the IBF flag set, the embedded
controller reads the data port to get the byte of data that the host has written. After the
embedded controller reads the data byte, the IBF flag is automatically cleared by
hardware. Thisisthe signd to the host that the data has been read by the embedded
controller and that the host is free to write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an
internal event that requires the operating system’ s attention. The embedded controller sets
this bit in the Satus register, and generates an SCI to the OS. The OS needs this bit to
differentiate command- complete SCls from natification SCIs. The OS uses the query
command to request the cause of the SCI_EVT and take action. For more information,
see section 13.3)

270

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an
interna event that requires the syslem management interrupt handler’ s atention. The
embedded controller setsthis bit in the status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst
enable command from the hogt, has hadted normal processing, and is waiting for a series
of commands to be sent from the host. Thisalows the OS or system management handler
to quickly read and write several bytes of data at atime without the overhead of SCls
between the commands,

13.2.2 Embedded Controller Command, EC_SC (W)

Thisisawrite-only register that alows commands to be issued to the embedded
controller. Writes to this port are latched in the input deta register and the input buffer
full flag is set in the Satus register. Writes to this location also cause the command bit to
be st in the Satus regigter. This alows the embedded controller to differentiate the Start
of a command sequence from a data byte write operation.

13.2.3 Embedded Controller Data, EC_DATA (R/W)

Thisis aread/write register that alows additional command bytes to be issued to the
embedded controller, and allows the OS to read data returned by the embedded
controller. Writesto this port by the host are latched in the input data register, and the
input buffer full flag is st in the status register. Reads from this register return data from
the output dataregister and clear the output buffer full flag in the status regigter.

13.3 Embedded Controller Command Set

The embedded controller command set dlows the OS to communicate with the embedded
controllers. ACPI defines the commands and their byte encodings for use with the
embedded controller that are shown in the following teble.

Table 13-1 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding

Read Embedded Controller (RD_EC) 0x80

Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller 0x82
(BE_EC)
Burst Disable Embedded Controller 0x83
(BD_EC)

Query Embedded Controller (QR_EC) O0x84

13.3.1 Read Embedded Controller, RD_EC (0x80)

This command byte alows the OS to read a byte in the address space of the embedded
controller. This command byte is reserved for exclusve use by the OS, and it indicates to
the embedded controller to generate SClsin response to related transactions (that is,
IBF=0 or OBF=1 in the EC Status Register), rather than SMIs. This command cons s of
acommand byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register

271

(EC_DATA). The embedded controller then returns the byte at the addressed |ocation.
The dataisread at the data port after the OBF flag is set.

13.3.2 Write Embedded Controller, WR_EC (0x81)

This command byte alows the OS to write a byte in the address space of the embedded
controller. This command byte is reserved for exclusive use by the OS, and it indicates to
the embedded controller to generate SClsin response to related transactions (that is,
IBF=0 or OBF=1 in the EC Status Regigter), rather than SMIs. This command alows the
OS to write abyte in the address space of the embedded controller. It conssts of a
command byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register

(EC _DATA), followed by a data byte written to the Embedded Controller Data Register
(EC_DATA); thisisthe data byte written at the addressed location.

13.3.3 Burst Enable Embedded Controller, BE_EC (0x82)

This command byte allows the OS to request dedicated attention from the embedded
controller and (except for critica events) prevents the embedded controller from doing
tasks other than receiving command and data from the host processor (either the system
management interrupt handler or the OS). This command is an optimization that alows
the host processor to issue several commands back to back, in order to reduce latency at
the embedded controller interface. When the contraller isin the burst mode, it should
trangtion to the burdt dissble Sate if the host does not issue a command within the
fallowing guiddines

?? First Access - 400 microseconds

?? Subsequent Accesses - 50 microseconds each

?? Totd Burgt Time - 1 millisscond

In addition, the embedded controller can disengage the burst mode at any time to process
acriticd event. If the embedded controller disables burst mode for any reason other than
the burst disable command, it should generate an SCI to the OS to indicate the change.

While in burst mode, the embedded contraller follows these guiddines for the OS driver:
?? SClsare generated as normd, including IBF=0 and OBF=1.
?? Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

1. The OSdriver writes the Burst Enable Embedded Controller, BE_EC (0x82)
command byte and then the Embedded Controller will prepare to enter the Burst
mode. This includes processing any routine activities such that it should be able to
remain dedicated to the OS interface for ~ 1 ms.

2. The Embedded Controller setsthe Burst bit of the Embedded Controller Status
Regiger, puts the Burst Acknowledge byte (0x90) into the SCI output buffer, setsthe
OBF hit, and generates an SCI to Sgna the OSthat it isin Burst mode.

Burg modeis exited the following manner:
1. The OSdriver writes the Burst Disable Embedded Controller, BD_EC (0x83)
command byte and then the Embedded Controller will exit Burst mode by clearing

272

the Burgt bit in the Embedded Controller Status register and generating an SCI signd
(due to IBF=0).

2. The Embedded Controller clears the Burst bit of the Embedded Controller Status
Regider.

13.3.4 Burst Disable Embedded Controller, BD_EC (0x83)

This command byte rel eases the embedded controller from a previous burst enable
command and adlowsit to resume norma processing. This command is sent by the OS or
system management interrupt handler after it has completed its entire queued command
sequence to the embedded controller.

13.3.5 Query Embedded Controller, QR_EC (0x84)

The OS driver sends this command when the SCI_EVT flag inthe EC_SC regigter is set.
When the embedded controller has detected a system event that must be communicated to
the OS, it first setsthe SCI_EVT flag in the EC_SC reg gter, generates an SCI, and then
waits for the OS to send the query (QR_EC) command. The OS detects the embedded
controller SCI, seesthe SCI_EVT flag set, and sends the query command to the
embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a natification byte with a vaue between 0-255, indicating the cause of
the notification. The natification byte indicates which interrupt handler operation should
be executed by the OS to process the embedded controller SCI. The query vaue of zero
isreserved for a purious query result and indicates “no outstanding event.”

13.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT

This query command notification header is the specia return code that indicates events
with an SMBus controller implemented within an embedded controller. These events
indude:

?? Command completion

?? Command error

?? Alarm reception

The actud notification vaue is declared in the SMBus host controller device object in the
ACPI name space.

13.5 Embedded Controller Firmware

The embedded controller firmware must obey the following rulesin order to be ACPI-

compatible:

1. SMI Processing: Although it is not explicitly stated in the command specification
section, a shared embedded controller interface has a separate command st for
communicating with each environment it plans to support. In other words, the
embedded controller knows which environment is generating the command request,
aswell aswhich environment is to be notified upon an event detection, and can then
generae the correct interrupts and natification values. Thisimpliesthat a system
management handler uses commands thet pardle the functiondity of dl the
commands for ACP! including query, read, write, and any other implemented specific
commands.

273

2. SCI/SMI Task Queuing: If the system design is sharing the interface between both a
system management interrupt handler and the OS, the embedded controller should
aways be prepared to queue anatification if it receives acommand. The embedded
controller only sets the appropriate event flag in the status (EC_SC) regidter if the
controller has detected an event that should be communicated to the operating system
or system management handler. The embedded controller must be able to fid
commands from ether environment without loss of the notification event. At some
later time, the operating system or system management handler issues a query
command to the embedded controller to request the cause of the notification event.

3. Notification Management: The use of the embedded controller means using the
query (QR_EC) command to natify the OS of system events requiring action. If the
embedded controller is shared with the operating system, the SMI handler usesthe
SMI_EVT flag and an SMI query command (not defined in this document) to receive
the event natifications. The embedded controller doesn't place event notificationsinto
the output buffer of a shared interface unless it receives a query command from the
OS or the system management interrupt handler.

13.6 Interrupt Model

The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The

Interrupt is firmware generated using an EC generd- purpose output and has the

waveform shown in Figure 13-3. The embedded controller SCI is dwayswired directly

to a GPE input, and the OS driver treats this as an edge event (the EC SCI GPE cannot be

shared).

Interrupt detected

T —»

HOLD Interrupt serviced

\\ and cleared
\\

Figure 13-3 EC Interrupt Waveform

13.6.1 Event Interrupt Model
The embedded controller must generate SCls for the events listed in the following table.

Table13-2 Eventsfor which Embedded Controller Must Generate SCls

Event Description

IBF=0 Signals that the embedded controller has read the last command or
data from the input buffer and the hogt is free to send more data.

OBF=1 Sgnalsthat the embedded controller has written a byte of datainto
the output buffer and the host is free to read the returned data.

274

Event Description

SCI_EVT=1 | Signdsthat the embedded controller has detected an event that
requires OS attention. The OS should issue aquery (QR_EC)
command to find the cause of the event.

13.6.2 Command Interrupt Model
The embedded controller must generate SCls for commands as follows:

?? READ COMMAND (Three Bytes)
Byte#1 (Command byte Header) Interrupt on IBF=0

Byte#2 (Address byte to read) No Interrupt
Byte#3 (Dataread to host) Interrupt on OBF=1

?? WRITE COMMAND (Three Bytes)
Byte#1 (Command byte Header) Interrupt on IBF=0

Byte#2 (Addressbyteto write) Interrupt on IBF=0
Byte#3 (Datatoread) Interrupt on IBF=0

?7? QUERY COMMAND (Two Bytes)
Byte#1 (Command byteHeader) No Interrupt

Byte#2 (Query vaueto host) Interrupt on OBF=1

?? BURST ENABLE COMMAND (Two Bytes)
Byte#1 (Command byteHeader) No Interrupt

Byte#2 (Burst acknowledgebyte) Interrupt on OBF=1

?7? BURST DISABLE COMMAND (One Byte)
Byte#1 (Command byteHeader) Interrupt on IBF=0

13.7 Embedded Controller Interfacing Algorithms

To initiate communications with the embedded controller, the OS or system management
handler acquires ownership of the interface. This ownership is acquired through the use
of the Globa Lock (described in section 5.2.6.1), or is owned by default by the OS as a
non-shared resource (and the Global Lock is not required for accessibility).

After ownership is acquired, the protocol aways conssts of the passing of a command
byte. The command byte will indicate the type of action to be taken. Following the
command byte, zero or more data bytes can be exchanged in either direction. The data
bytes are defined according to the command byte that is transferred.

275

The embedded controller aso has two status bits that indicate whether the registers have
been read. Thisis used to ensure that the host or embedded controller has received data
from the embedded controller or host. When the host writes data to the command or data
register of the embedded controller, the input buffer flag (IBF) in the Satus register is set
within 1 microsecond. When the embedded controller reads this data from the input
buffer, the input buffer flag is reset. When the embedded controller writes data into the
output buffer, the output buffer flag (OBF) in the Status register is set. When the host
processor reads this data from the output buffer, the output buffer flag is reset.

13.8 Embedded Controller Description Information

Certain aspects of the embedded controller’ s operation have OEM -definable vaues
associated with them. The following isaligt of vaues that are defined in the software
layers of the ACPI specification:

?? Statusflag indicating whether the interface requires the use of the global lock.

?? Bit pogtion of embedded controller interrupt in generd- purpose status register.
?? Decode address for command/status register.

?? Decode address for data register.

?? Base address and query value of any SMBus controller.

For implementation details of the above listed information, see sections 13.11 and 13.12.

An embedded controller will require the incluson of the_GLK object inits ACPI
namespace if potentialy contentious accesses to device resources are performed by non-
OS code. See Chapter 6 (6.5.6) for details about the GLK object.

13.9 SMBus Host Controller Interface via Embedded Controller

This section describes the System Management Bus (referred to as SMBus) Host
Interface, which is amechanism to alow the OS to address components on the SMIBus.
SMBus address space is one of the generic address spaces defined in the ACPI
specification, and this section specifies how to implement a host contraller interfacein
order to have the OS communicate directly with SMIBus devices.

SMBusis atwo-wire interface based upon the 12C protocol. The SMBusis alow-speed
bus that provides positive addressing for devices, as well as bus arbitration. For more
information, refer to the complete set of SMBus Specifications published by Intel
Corporation.

The SMBuUs hogt interface provides a method of communicating on the SVIBus through a
block of registers that reside in embedded controller space. Some SMBus host controller
interfaces have specia requirements that certain SMBus commands are filtered by the
host controller. For example, to prevent an errant gpplication or virus from potentialy
damaging the battery subsystem. Thisis most easily accomplished by providing the host
interface controller through an embedded controller, because the embedded controller can
eeglly filter out the potentidly problematic commands.

The SMBus host controller interface alows the host processor (under control of the OS)
to manage devices on the SMIBus. Among typical devices that resde on the SVIBus are
smart batteries, smart chargers, contrast/backlight control, and temperature sensors.

276

A SMBus interface will require the inclusion of the _GLK object in its ACPI namespace
if potentialy contentious accesses to device resources are performed by non-OS code.
See Chapter 6 (6.5.6) for details about the GLK object.

This section specifies a standard set of registers an ACPI-compatible OS can use to
communicate with SMIBus devices. Any SMBus host interface that does not comply with
this standard can be communicated with using control methods (as described in section
5).

13.9.1 Register Description
The SMBus host interface isaflat array of registers that are arranged sequentialy in
address space.

13.9.1.1 Status Register, SMB_STS

This register indicates generd status on the SVIBus. This includes SMBus host controller
command completion status, darm received status, and error detection status (the error
codes are defined later in this section). Thisregister is cleared to zeroes (except for the
ALRM bit) whenever anew command isissued using awrite to the protocol
(SVMIB_PRTCL) regigter. Thisregigter is aways written with the error code before
clearing the protocol register. The SMBus host controller query event (that is, an SMIBus
host controller interrupt) is raised after the clearing of the protocol register.

NOTE: The OS driver must ensure the ALRM bit is cleared after it has been serviced by
writing ‘00" to the SMB_STSregider.

Bit7 Bit6 | Bit5 Bit4 |Bit3 |[Bit2 |Bitl |Bit0

DONE | ALR | RES STATU
M S
Where:
DONE: Indicates the last command has completed and no error.
ALRM: Indicates an SMBus dlarm message has been received.
RES: Reserved.
STATUS: Indicates SMBus communication status for one of the reasonslisted in
the following table.

Table13-3 SMBus Status Codes

Status Name Description
Code
00h SMBus OK Indi cates the transaction has been successfully
completed.
07h SMBus Unknown Indicates falure because of an unknown SMBus
Falure eror.

277

Status Name Description
Code
10h SMBus Device Address | Indicates the transaction failed because the dave
Not Acknowledged device address was not acknowledged.
11h SMBus Device Error Indicates the transaction failed because the dave
Detected device sgnded an error condition.
12h SMBus Device Indicates the transaction failed because the SMBus
Command Access host does not allow the specific command for the
Denied device being addressed. For example, the SMIBus
host might not alow acaler to adjust the Smart
Battery Charger's output.
13h SMBus Unknown Error Indicates the transaction failed because the SMBus
host encountered an unknown error.
17h SMBus Device Access Indicates the transaction failed because the SMBus
Denied host does not alow access to the device addressed.
For example, the SMBus host might not dlow a
cdler to directly communicate with an SMBus
device that controls the systemm's power planes.
18h SMBus Timeout Indicates the transaction failed because the SMBus
host detected a timeout on the bus.
19h SMBus Host Indicates the transaction failed because the SMBus
Unsupported Protocol host does not support the requested protocol.
1Ah SMBus Busy Indicates that the transaction failed because the

SMBus host reports that the SVIBusis presently
busy with some other transaction. For example,
the Smart Battery might be sending charging
informetion to the Smart Battery Charger.

All other error codes are reserved

13.9.1.2 Protocol Register, SMB_PRTCL

Thisregister determines the type of SMBus transaction generated on the SVIBus. In
addition to indicating the protocol type to the SMBus host controller, awrite to this
register initiates the transaction on the SMIBus.

|Bit6 |Bit5 |Bit4 |[Bit3 |[Bit2 |[Bitl [Bit0
PROTOCOL
Where:
PROTOCOL: 0x00=Controller Not In Use

0x01=Reserved

0x02=Write Quick Command
0x03=Read Quick Command

278

0x04=Send Byte
Ox05=Receive Byte
O0x06=Write Byte
0x07=Read Byte
0x08=Write Word
0x09=Read Word
OxOA=Write Block
0x0B=Read Block
0xOC=Process Cal

When the OS initiates a new command such as write to the SMB_PRTCL regigter, the
SMBus Controller first updates the SMB_STS register and then clearsthe SMB_PRTCL
register. After the SMB_PRTCL register is cleared, the host controller query vaueis
raised.

13.9.1.3 Address Register, SMB_ADDR
Thisregister contains the 7-bit address to be generated on the SMBus. Thisisthe first
byte to be sent on the SMBusfor dl of the different protocols.

Bit7 |Bité |Bits |Bit4 [Bit3 [Bit2 [Bitl [Bit0

ADDRESS (A6:A0) RES

Where:
RES: Reserved.

ADDRESS: 7-bit SVIBus address. Thisaddressis not zero digned (i.e. itisonly a
7-bit address (A6:AQ) that is digned from bit 1-7).

13.9.1.4 Command Register, SMB_CMD

This register contains the command byte that will be sent to the target device on the
SMBus and is used for the following protocols. send byte, write byte, write word, read
byte, read word, process call, block read and block write. It is not used for the quick
commands or the receive byte protocol, and as such, itsvaueisa“don’t care’ for those
commands.

Bit7 |Bit6 [Bit5 |Bit4 |Bit3 |[Bit2 |[Bitl1 |[Bit0

COMMAND

Where:
COMMAND: Command byte to be sent to SMBus device.

279

13.9.1.5 Data Register Array, SMB_DATA][i], i=0-31

This bank of registers contains the remaining bytes to be sent or received in any of the
different protocols that can be run on the SVIBus. The SMIB_DATA([i] registers are
defined on a per-protocol basis and, as such, provide efficient use of register space.

Bit7 |Bit6 [Bit5 |Bit4 |Bit3 |[Bit2 |[Bitl1 |[Bit0
DATA

Where:
DATA: One byte of datato be sent or received (depending upon protocol).

13.9.1.6 Block Count Register, SMB_BCNT

This bank of registers contains the remaining bytes to be sent or received in any of the
different protocols that can be run onthe SVIBus. The SMIB_DATA([i] registers are
defined on a per-protocol basis and, as such, provide efficient use of register space.

Bit7 |Bit6 |[Bit5 |[Bit4 |Bit3 |[Bit2 |[Bitl1 |[Bit0

RES BCNT
Where:
RES: Reserved
BCNT: Block Count for Block Read and Block Write Protocols

13.9.1.7 Alarm Address Register, SMB_ALRM_ADDR

Thisregister contains the address of an alarm message received by the host controller, at
dave address 0x8, from the SMBus magter that initiated the larm. The address indicates
the dave address of the device on the SMBus that initiated the larm message. The satus
of thedarm messageis contained in the SVIB_ALRM_DATAX regigers. Once an darm
message has been recaived, the SVIBus host controller will not receive additiond darm
messages until the ALRM gatus bit is cleared.

Bit7 |Bité [Bits |Bit4 [Bit3 [Bit2 [Bitl [Bit0

ADDRESS (A6:A0) RES
Where:
RES: Reserved
ADDRESS: Save address (A6:A0) of the SVIBus device that initiated the SVIBus
adarm message.

13.9.1.8 Alarm Data Registers, SMB_ALRM_DATAJ[0], SMB_ALRM_DATA[1]
These regigters contain the two data bytes of an darm message received by the host
controller, a dave address 0x8, from the SMBus master that initiated the dlarm. These

data bytes indicate the specific reason for the alarm message, such that the OS can take

280

immediate corrective actions. Once an darm message has been received, the SMBus host
controller will not receive additiond darm messages until the ALRM status bit is cleared.
Bit7 |Bit6 [Bit5 |Bit4 |Bit3 |[Bit2 |[Bitl1 |[Bit0
DATA (D7:D0)

Where:
DATA: Data byte received in darm message.

The darm address and darm data registers are not read by the OS driver until thedarm
dtatus bit is set. The OS driver then reads the three bytes, and clears the darm status bit to
indicate that the darm registers are now available for the next event.

13.9.2 Protocol Description

This section describes how to initiate the different protocols on the SMBus through the
interface described in the section 13.9.1. The registers should al be written with the
gppropriate vaues before writing the protocol vaue that starts the SMBus transaction.
All transactions can be completed in one pass.

13.9.2.1 Write Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x02 to initiate quick write protocol.

Data Returned:
SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.2 Read Quick
Data Sent:

SMB_ADDR: Address of SMIBus device.
SMB_PRTCL: Write Ox03 to initiate quick read protocol.

Data Returned:
SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.3 Send Byte
Data Sent:

SMB_ADDR: Address of SMBus device.
SMB_CMD: Command byte to be sent.

SMB_PRTCL:

Data Returned:
SMB_STS:
SMB_PRTCL:

Write Ox04 to initiate send byte protocol.

Status code for transaction.
0x00 to indicate command completion.

13.9.2.4 Receive Byte

Data Sent:
SMB_ADDR:
SMB_PRTCL:

Data Returned:

SMIB_DATA[O
]:

SMB_STS:
SMB_PRTCL:

Address of SMBus device.
Write Ox05 to initiate receive byte protocol.
Data byte received.

Status code for transaction.
0x00 to indicate command completion.

13.9.2.5 Write Byte

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_DATA[O
]:
SMB_PRTCL:
Data Returned:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.
Command byte to be sent.
Data byte to be sent.

Write Ox06 to initiate write byte protocol.

Status code for transaction.

0x00 to indicate command completion.

13.9.2.6 Read Byte

Data Sent:
SMB_ADDR:
SMB_CMD:
SMB_PRTCL:

Data Returned:

Address of SMBus device.
Command byte to be sent.
Write Ox07 to initiate read byte protocol.

281

282

SMB _DATA[O Databyte received.

]:

SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.7 Write Word
Data Sent:

SMB_ADDR: Address of SMIBus device.
SMB_CMD: Command byte to be sent.

SMB_DATA[O Low databyte to be sent.

]:

SMB _DATA[1 High databyteto be sent.

]:

SMB PRTCL: Write Ox08 to initiate write word protocol.

Data Returned:
SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.8 Read Word
Data Sent:

SMB_ADDR: Address of SMBus device.
SMB_CMD: Command byte to be sent.
SMB_PRTCL: Write 0x09 to initiate read word protocol.

Data Returned:

SMB_DATA[O Low databyte received.

]:

SMB_DATA[1 High data byte received.

]:

SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.9 Write Block
Data Sent:

SMB_ADDR: Address of SMIBus device.

SMB_CMD:

SMB_DATA[O-
31]:

SMB_BCNT:
SMB_PRTCL:

Data Returned:
SMB_PRTCL.:
SMB_STS:

Command byte to be sent.
Data bytes to write (1-32).

Number of data bytes (1-32) to be sent.

Write OXO0A to initiate write block protocol.

0x00 to indicate command completion.
Status code for transaction.

13.9.2.10 Read Block

Data Sent:
SMB_ADDR:
SMB_CMD:
SMB_PRTCL:

Data Returned:
SMB_BCNT:

SMIB_DATA[O:
3:

SMB_STS:
SMB_PRTCL:

Address of SMIBus device.
Command byte to be sent.
Write OxOB to initiate read block protocol.

Number of data bytes (1-32) received.
Data bytes received (1-32).

Status code for transaction.
0x00 to indicate command completion.

13.9.2.11 Process Call

Data Sent:
SMB_ADDR:
SMB_CMD:

SMB_DATA[0]:
SMB_DATA[1]:

SMB_PRTCL:

Data Returned:

SMB_DATA[O]:
SMB_DATA[1]:

SMB_STS:
SMB_PRTCL:

Address of SVIBus device.
Command byte to be sent.
Low data byte to be sent.
High data byte to be sent.
Write OxOC to initiate process call protocol.

Low data byte received.

High data byte received.

Status code for transaction.

0x00 to indicate command completion.

284

13.9.3 SMBus Register Set

The regigter st for the SMBus host controller has the following format. All registers are

aght bit.

Table13-4 SMB EC Interface
LOCATIO | REGISTER NAME | DESCRIPTION
N
BASE+0 SMB_PRTCL Protocol register.
BASE+1 SMB_STS Status register.
BASE+2 SMB_ADDR Address regigter.
BASE+3 SMB_CMD Command register.
BASE+4 SMB DATA[Q] Dataregister zero.
BASE+S5 SMB_DATA[1]] Data register one.
BASE+6 SMB DATA[2] Data register two.
BASE+7 SMB_DATA[3] Data register three.
BASE+8 SMB_DATA[4] Data register four.
BASE+9 SMB DATA[5] Dataregiger five.
BASE+10 | SVIB_DATA[6] Dataregister Sx.
BASE+11 | SMB DATA[7] Dataregister seven.
BASE+12 | SMB_DATA[S8] Dataregigter eight.
BASE+13 | SMB DATA[9] Dataregigter nine.
BASE+14 | SMB_DATAJ[10] Dataregister ten.
BASE+15 | SMB _DATA[1]] Dataregigter eeven.
BASE+16 | SMB DATA[12] Dataregister twelve.
BASE+17 | SMB_DATA[13] Data regigter thirteen.
BASE+18 | SMB DATA[14] Data register fourteen.
BASE+19 | SMB DATA[15] Data regigter fifteen.
BASE+20 | SMB_DATA[16] Dataregister Sixteen.
BASE+21 | SMB_DATAJ[17] Data register seventeen.
BASE+22 | SMB_DATA[18] Dataregister eighteen.
BASE+23 | SMB DATA[19] Data register nineteen.
BASE+24 | SMB DATA[20] Dataregister twenty.
BASE+25 | SMB _DATA[2]1] Data register twenty-one.
BASE+26 | SMB DATA[22] Data register twenty-two.
BASE+27 | SMB_DATA[23] Data register twenty-three.
BASE+28 | SMB _DATA[24] Data register twenty-four.
BASE+29 | SMB DATA[25] Data register twenty-five.
BASE+30 | SVIB_DATA[26] Dataregister twenty-Sx.
BASE+31 | SMIB_DATA[27] Data register twenty-saven.
BASE+32 | SVIB_DATA[28] Data register twenty-eight.
BASE+33 | SMB DATA[29] Data register twenty-nine.
BASE+34 | SVIB_DATA[30] Dataregiger thirty.
BASE+35 | SMB DATA[3]] Dataregigter thirty-one.
BASE+36 | SMB BCNT Block Count Register

285

LOCATIO | REGISTER NAME | DESCRIPTION
N

BASE+37 | SMB ALRM_ADDR | Alarm address.

BASE+38 | SMB_ALRM_DATA[| Alarm dataregister zero.
0

BASE+39 | SMB_ALRM_DATA[| Alarm dataregister one.
1]

13.10 SMBus Devices

The embedded controller interface provides the system with a standard method to access
devices on the SMBus. It does not define the data and/or access protocol (s) used by any
particular SMBus device. Further, the embedded controller can (and probably will) serve
as a gatekeeper to prevent accidental or malicious access to devices on the SMIBus.

SMBus devices are defined by their address and a specification that describes the data
and the protocol used to access that data. For example, the Smart Battery System devices
are defined by a series of oecificationsincluding:

?? Smart Battery Data specification

?? Smart Battery Charger specification

?? Smart Battery Sdlector specification

The embedded controller can aso be used to emulate (in part or totaly) any SMBus
device.

13.10.1 SMBus Device Access Restrictions

In some cases, the embedded controller interface will not alow accessto a particular
SMBus device. Some SMBus devices can and do communicate directly between
themsalves. Unexpected accesses can interfere with their normal operation and cause
unpredictable results.

13.10.2 SMBus Device Command Access Restriction

There are cases where part of an SMBus device's commands are public while others are
private. Extraneous attempts to access these commands might cause interference with the
SMBus device s normal operation.

The Smart Battery and the Smart Battery Charger are agood example of devices that
should not have their entire command set exposed. The Smart Battery commands the
Smart Battery Charger to supply a specific charging voltage and charging current.
Attempts by the anyone to ater these vaues can cause damage to the battery or the
mobile system. To protect the system’ sintegrity, the embedded controller interface can
redtrict access to these commands by returning one of the following error codes. Device
Command Access Denied (0x12) or Device Access Denied (0x17).

13.11 Defining an Embedded Controller Device in ACPI Name Space
An embedded controller device is created using the named device object. The embedded
controller’s device object requires the following eements.

286

Table 13-5 Embedded Controller Device Object Control Methods

Object | Description

_CRS | Named object that returns the Embedded Controller’s current resource settings.
Embedded Controller’ s are consdered static resources, hence only return their
defined resources. The embedded controller resides only in system 1/0 or
memory space. Thefirst address region returned is the data port, and the
second address region returned is the status/'command port for the embedded
controller. _ CRSis astandard device configuration control method defined in
section 6.2.1.

_HID Named object that provides the Embedded Controller’s Plug and Play
identifier. Thisvaueisbe set to PNPOAQ9. HID isastandard device
configuration control method defined in section 6.1.3.

_GPE Named object that returns what SCI interrupt within the GPx_STS regigter (bit
assgnment). This control method is specific to the embedded controller.

13.11.1 Example EC Definition ASL Code
Example ASL code that defines an embedded controller device is shown below:

Devi ce(ECO) {
/1 PnP ID
Name(_HI D, EI SAI D(“PNP0OC09”))
/'l Returns the “Current Resources” of EC
Name(_CRS,
ResourceTenpl at e() { /1l port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
/1 Define that the EC SClI is bit 0 of the GP_STS register
Name(_GPE, 0)

Oper ati onRegi on(ECOR, EnmbeddedControl, 0, OxFF)
Fi el d(ECOR, ByteAcc, Lock, Preserve) {
/1 Field definitions go here

}
}

13.12 Defining an EC SMBus Host Controller in ACPI Name Space
An embedded controller device is created using the named device object. The embedded
controller’ s device object requires the following eements.

Table13-6 EC SMBusHost Controller Device Objects

Object | Description

_HID Named object that provides the Embedded Controller’s Plug and Play
identifier. Thisvalueisbe set to ACPIO001. HID isasandard device
configuration control method defined in section 6.1.

_EC Named object that evaluates to a WORD that defines the SMIBus attributes
needed by the SMIBus driver. EC isthe Embedded Controller Offset Query
Control Method. The mogt significant byte is the address offset in embedded
controller space of the SVIBus controller; the least Sgnificant byte is the query
vauefor al SMBus events.

287

13.12.1 Example EC SMBus Host Controller ASL-Code
Example ASL-code that defines an SMBus Host Controller from within an embedded
controller device is shown below:

Devi ce(ECO)
Name(_HI D, EI SAI D(" PNPOC09"))
Name(_CRS,
ResourceTenpl at e() { /1l port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1), // Status port
| O(Decodel6, 0x66, 0x66, 0, 1) /1 command port

}
Name (_GPE,) 0)

Devi ce (SMB1) {
Name (_HI D, "ACPI0001")
Name(_EC, 0x8030) /1 EC offset, Query
Oper ati onRegi on(PHOL, SMBus, 0x51, 0x1)
Devi ce(DEVA) {
Name(_ADR, 0x51)
Fi el d(PHOL, ByteAcc, NoLock, Preserve) {
TSTO,
TST1,
NULL,
TST7,

(S WS

}
} /1 end of DEVA
} /1 end of SMB1

Devi ce (SMB2)
Name (_HI D, "ACPI0001")
Name(_EC, 0x9031) /1 EC offset, Query
Oper at i onRegi on(PHOL, SMBus, 0x62, 0Ox1)
Oper ati onRegi on(PHO2, SMBus, 0x50, 0x2)
Devi ce(DEVB) {
Name(_ADR, 0x62)
Fi el d(PHOL, SMBQui ckAcc, NolLock, Preserve) {
TSTC, 8
} /1 end of DEVB
Devi ce(EPRM {
Name(_ADR, 0x50)
Fi el d(PHO2, AnyAcc, NoLock, Preserve){
FLD1, 256,
FLD2, 8,
FLD3, 16,
FLD4, 8,
FLD5, 224

} /'l end of EPRM
} /1 end of SMB2
} /1 end of EC

289

14. Query System Address Map

This section explainsthe specid INT 15 cdl that Intel and Microsoft developed for usein
|A-PC based systems. The call supplies the operating system with a clean memory map
indicating address ranges that are reserved and ranges that are available in the
motherboard.

14.1 INT 15H, E820H - Query System Address Map
Thiscal can be usad in real mode only.

This cdl returnsamemory map of dl theingaled RAM, and of physca memory ranges
reserved by the BIOS. The address map is returned by making successve calsto this
API, each returning one run of physica addressinformation. Each run has atype that
dictates how this run of physical address rangeis to be treated by the operating system.

If the information returned from E820 in some way differsfrom INT-15 88 or INT-15
E801, the information returned from E820 supersedes the information returned from
INT-15 88 or INT-15 E801. Thisreplacement dlows the BIOSto return any information
that it requiresfrom INT-15 88 or INT-15 E801 for compatibility reasons. For
compatibility reasons, if E820 returns any AddressRangeACPI or AddressRangeNVS
memory ranges below 16Mb, the INT-15 88 and INT-15 E801 functions must return the
top of memory beow the AddressRangeACPl and AddressRangeNV S memory ranges.

Table 14-1 Input

EAX | Function E820h
Code
EBX | Continuation | Containsthe continuation value to get the next run of physica
memory. Thisisthe vaue returned by a previous cdl to this
routine. If thisisthefirg call, EBX must contain zero.
ESD | Buffer Pointer to an Address Range Descriptor structure that the BIOS
I Pointer fillsin.
ECX | Buffer Sze The length in bytes of the structure passed to the BIOS. The
BIOSfillsin the number of bytes of the structure indicated in
the ECX regigter, maximum, or whatever amount of the
gructure the BIOS implements. The minimum size that must
be supported by both the BIOS and the caller is 20 bytes.
Future implementations might extend this structure.
EDX | Signature 'SMAP Used by the BIOS to verify the cdler isrequesting the
system map informetion to be returned in ES.DI.
Table 14-2 Output
CF Carry Flag Non-Carry - Indicates No Error
EAX | Sgnature 'SMAP - Sgnature to verify correct BIOS revison.
ESD | Buffer Returned Address Range Descriptor pointer. Same vaue ason
I Pointer input.

290

CF Carry Flag Non-Carry - Indicates No Error

ECX | Buffer Sze Number of bytes returned by the BIOS in the address range
descriptor. The minimum size structure returned by the BIOS
is 20 bytes.

EBX | Continuation | Contains the continuation value to get the next address
descriptor. The actud significance of the continuation valueis
up to the discretion of the BIOS. The caller must passthe
continuation value unchanged asinput to the next iteration of
the E820 call in order to get the next Address Range Descriptor.
A return value of zero meansthat thisisthe last descriptor.
NOTE: the BIOS can dsoindicate that the last descriptor has
aready been returned during previous iterations by returning a
cary. The caler will ignore any other information returned by
the BIOS when the carry flag is <.

Table 14-3 Address Range Descriptor Structure

Offset in Name Description

Bytes

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

8 LengthLow Low 32 Bitsof Length in Bytes

12 LengthHigh High 32 Bits of Length in Bytes

16 Type Address type of thisrange

The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of this range.
The base address is the physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-hbit length of thisrange. Thelength
isthe physica contiguous length in bytes of arange being specified.

The Type field describes the usage of the described address range as defined in the

following table.
Table 14-4 AddressRangesin the TypeField

Valu | Mnemonic Description

e

1 AddressRangeMemo | Thisrunisavailable RAM usable by the operating

ry sysem.

2 AddressRangeReserv | Thisrun of addressesisin use or reserved by the system

ed and must not be used by the operating system.

3 AddressRangeACPlI | ACPI Reclam Memory. Thisrunisavalable RAM
usable by the operating system after it reads the ACPI
tables.

4 AddressRangeNV'S ACPI NVSMemory. Thisrun of addressesisin use or

reserve by the system and must not be used by the
operating system. Thisrangeis required to be saved
and restored across an NV S deep.

291

Valu | Mnemonic Description

e

Other | Undefined Undefined - Reserved for future use. Any range of this
type must be treated by the OS asif the type returned
was AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various

addresses as not suitable for use by a programmable device. Some of the reasons aBIOS

would do thisare:

?? The address range contains system ROM.

?? The address range contains RAM in use by the ROM.

?? The address rangeisin use by amemory-mapped system device.

?? Theaddressrangeis, for whatever reason, unsuitable for a standard deviceto useas a
device memory space.

14.2 Assumptions and Limitations

?? The BIOS returns address ranges describing base board memory and 1SA or PCI
memory that is contiguous with that base board memory.

?? The BIOS does not return arange description for the memory mapping of PCI
devices, ISA Option ROMSs, and 1SA Plug and Play cards because the operating
systemn has mechanisms available to detect them.

?? The BIOS returns chip set-defined address holes that are not being used by devices as
reserved.

?? Address ranges defined for base board memory-mapped 1/0 devices, such as APICs,
are returned as reserved.

?? All occurrences of the system BIOS are mapped as reserved, including the areas
below 1 MB, at 16 MB (if present), and at end of the 4-GB address space.

?? Standard PC address ranges are not reported. Example video memory at A0000 to
BrFFFF physica are not described by this function. The range from E0000 to EFFFF is
specific to the base board and is reported as it applies to that base board.

?? All of lower memory is reported as norma memory. The operating system must
handle standard RAM locations that are reserved for specific uses, such asthe
interrupt vector table (0:0) and the BIOS data area (40:0).

14.3 Example Address Map

This sample address map (for an Intel processor-based system) describes amachine
which has 128 MB of RAM, 640K of base memory and 127 MB of extended memory.
The base memory has 639K available for the user and 1K for an extended BIOS data
area. A 4-MB Linear Frame Buffer (LFB) isbased at 12 MB. The memory hole created
by the chip set isfrom 8 MB to 16 MB. Memory-mapped APIC devices arein the
system. The 1/0O Unit is & Fecooooo and the Loca Unit is a FEeooooo. The system BIOS
isremapped to 1 GB-64K.

The 639K endpoint of the first memory range is dso the base memory size reported in the
BIOS data segment at 40:13. The following table shows the memory map of atypica
sysem.

292

Table 14-5 Sample Memory Map

Base Lengt | Type Description

(Hex) h

0000 639K | AddressRangeMem | Avallable Base memory - typicdly the

0000 ory samevaue asisreturned usng the INT
12 function.

0009 1K AddressRangeReser | Memory reserved for use by the BIOS(s).

FC00 ved Thisareatypicaly includes the Extended
BIOS data area.

O000F 64K AddressRangeReser | System BIOS

0000 ved

0010 7MB | AddressRangeMem | Extended memory, which is not limited

0000 ory to the 64-MB address range.

0080 AMB | AddressRangeReser | Chip set memory hole required to support

0000 ved the LFB mapping a 12 MB.

0100 120M | AddressRangeMem | Base board RAM relocated above a chip

0000 B ory st memory hole.

FECO 4K AddressRangeReser | 1/0 APIC memory mapped I/O at

0000 ved FEC00000.

FEEO 4K AddressRangeReser | Loca APIC memory mapped I/0O at

0000 ved FEEO0000.

FFFF 64K AddressRangeReser | Remapped System BIOS at end of

0000 ved address space.

14.4 Sample Operating System Usage

The following code segment illustrates the dgorithm to be used when caling the Query
System Address Map function. It is an implementation example and uses non-standard

mechaniams.

293

E820Pr esent = FALSE;

Reg. ebx = 0;

do {
Reg. eax = OxE820;
Reg.es = SEGMVENT (&Descriptor);
Reg.di = OFFSET (&Descriptor);
Reg. ecx = sizeof (Descriptor);
Reg. edx = ' SMAP';

_int(15, regs);

if ((Regs.eflags & EFLAG CARRY) || Regs.eax != 'SMAP') {
br eak;

}

if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {

/1 bug in bios - all returned descriptors nust be
/1 at least 20 bytes long, and cannot be larger then
/1l the input buffer.

br eak;

}
E820Pr esent = TRUE;

Add .addr ess range Descriptor.BaseAddress through
Descri pt or. BaseAddress + Descriptor.Length
as type Descriptor. Type

} while (Regs.ebx !'= 0);

if (!E820Present) {

cal I. I NT-15 88 and/or |INT-15 E801 to obtain old style
menory i nformation

15. ACPI Source Language (ASL) Reference

This section formaly defines the ACPI Control Method Source Language (ASL). ASL isa
source language for writing ACPI control methods. OEMs and BIOS devel opers write
control methods in ASL and then use atrandator tool (compiler) to generate ACPI
Machine Language (AML) versions of the control methods. For aforma definition of
AML, seethe ACPI Control Method Machine Language (AML) Specification, section 16.

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OSes must support AML. A given user can define some arbitrary
source language (to replace ASL) and write atoal to trandateit to AML.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for
debugging. (Debuggers and smilar tools are expected to be AML leve tools, not source
leve tools.) An ASL trandator implementer must understand how to read ASL and
generate AML. An AML interpreter author must understand how to execute AML.

This section has two parts.

?? The ASL grammar, which isthe forma ASL specification and dso serves asaquick
reference.

?7? A full ASL reference, which repeatsthe ASL term syntax and adds information about
the semantics of the language.

15.1 ASL Language Grammar
The purpose of this section isto state unambiguoudy the grammar rules used by the syntax
checker of an ASL compiler.

ASL dtatements declare objects. Each object has three parts, two of which can be null.
Obj ect := ObjectType FixedList VariablelList

FixedList refersto aligt, of known length, that supplies data thet al instances of agiven
ObjectType mud have. A fixed ligiswrittenas(a, b, c, ...) where the number of
arguments depends on the specific ObjectType, and some eements can be nested objects,
thatis(a, b, (g, r, s t), d). Argumentsto a FixedL ist can have default vaues, in which
case they can be skipped. Thus, (a,,¢) will cause the default value for the second argument
to be used. Some Obj ectTypes can haveanull FixedL ist, which issmply omitted.
Trailing arguments of some object types can be left out of afixed lig, in which casethe
default value is used.

VariableList refersto aligt, not of predetermined length, of child objectsthat help define
the parent. Itiswritten as{ x, y, z, aa, bb, cc } where any argument can be a nested

295

296

object. ObjectType determines what terms are legal dements of the Variablel ist. Some
ObjectTypes may have anull variiddle ligt, which is smply omitted.

Other rulesfor writing ASL statements are the following:

?? Multiple blanks are the same asone. Blank, (,), *,” and newline are dl token
separators.

/I marks the beginning of a comment, which continues from the // to the end of the line.
* marks the beginning of a comment, which continues from the /* to the next */.

“” surround an ASCII string.

Numeric congtants can be written in two ways. ordinary decimd, or hexadecimd,
using the notation Oxdd

nothing indicates an empty item. For example { nothing } isequivaent to {}

NI TN AN

3

15.1.1 ASL Grammar Notation
The notation used to expressthe ASL grammear is specified in the following table.

Table15-1 ASL Grammar Notation

Notation Convention Description Example
Term:=Tem Term ... Theterm to the left of := can aterm := bterm cterm means
be expanded into the sequence | that aterm can be expanded
of terms on theright. into the two-term sequence of
bterm followed by cterm.

Angle brackets (< >) Used to group items. <ab> | <c d> means either
aborcd.

Bar symbal (|) Separates dternatives. aterm ;= bterm | <cterm
dterm> meansthefollowing
congtructs are possible:

bterm
cterm dterm

aterm ;= <bterm | cterm>
dterm meansthe following
congtructs are possible:
bterm dterm
cterm dterm

Term Term Term Terms separated from each N/A.
other by spacesform an
ordered list.

297

Notation Convention Description Example
Word in bold. Denotesthe name of atermin Inthe following ASL term
the ASL grammar, definition:
representing any instance of ThermalZone (ZoneName)
such aterm.
{NamedObjectList}
theitem in bold is the name of
the term.
Word initdics Names of argumentsto objects | Inthefollowing ASL term

that are replaced for agiven
instance.

definition:
ThermalZone (ZoneName)

{ NamedObjectList}
theitdicized itemisan
argument. The item thet is not
bolded or itdicized is defined
edsewhereinthe ASL

grammar.

Singlequotes(‘ ') Indicate congtant characters. ‘A’

Oxdd Refersto a byte value 0x21 means avaue of
expressed as 2 hexadecimal hexadecima 21, or decimal
digits 37. Note that avaue

expressed in hexadecimal
must start with aleading zero
(0).

Dash character (-) Indicates arange. 1-9meansasgngledigitinthe

range 1 to 9inclusive.

298

15.1.2 ASL Names

LeadNanmeChar =‘AN | ‘B | *C | ‘D | ‘E | *F |G| *H]|"I"|""X
| K L | M N | 0 | P Q| RS
LUV WXty]

NameChar ='0 | ‘| 2| '3 | 4|56 | T8]Y
| LeadNameChar

Root Char =\

NameSeg = <LeadNanmeChar NameChar NameChar NameChar> |
<LeadNanmeChar NameChar NameChar > |
<LeadNameChar NameChar> |
<LeadNaneChar >

NameStri ng = <Root Char NamePat h> | <PrefixPath NamePat h>

Prefi xPath = Nothing | <*~" PrefixPath>

NamePat h = Nothing | <NanmeSeg NamePat hTail >

NanmePat hTai | = Nothing | <'.’ NaneSeg NanePathTail >

15.1.3 ASL Language and Terms

ASLCode ;= DefinitionBl ockTerm

DefinitionBl ockTerm ;= DefinitionBlock(
AMLFi | eNane, /1String
Tabl eSi gnat ure, /1String
Conpl i anceRevi si on, //ByteConst
OEM D, /1String
Tabl el D, /1String
OEMRevi si on /| DWbr dConst

) {TernList}

Ter nLi st
Term

Not hi ng | <Term Ter nmLi st >
Obj ect | TypelOpcode | Type2Opcode

Conpi l erDirective I ncludeTerm | External Term

Obj ect Li st = Not hing | <Object ObjectlList>

Obj ect = ConpilerDirective | NanedObject | NaneSpaceMdifier |
User Term

Dat aObj ect Buf fer Term | PackageTerm | Literal Data | DataMacros

Literal Dat a
Conput at i onal Dat a
Dat aMacr os

Integer | String | ConstTerm
Integer | String | BufferTerm
El SAl DTerm | ResourceTenpl ateTerm

NamedObj ect = BankFi el dTerm| CreateBitFieldTerm| O eateByteFieldTerm |
Creat eDWr dFi el dTerm | CreateFiel dTerm |
Creat eWordFi el dTerm | DeviceTerm | EventTerm| FieldTerm
| I'ndexFi el dTerm | MethodTerm | MitexTerm | OpRegi onTerm
| PowerResTerm | ProcessorTerm | Thernal ZoneTerm

NameSpaceModi fi er := AliasTerm | NanmeTerm | ScopeTerm

User Term = NameString(// NameSt ri ng=>Met hodTer m

ArgLi st

) => Dat aObj ect

ArgLi st = Nothing | <TermArg ArgListTail>

Ar gLi st Tai | = Nothing | <',” TermArg ArglListTail>

TermArg Type2Qpcode | DataCbject | UserTerm| ArgTerm| Local Term

299

TypelOpcode := BreakTerm | BreakPointTerm | Fatal Term | |fElseTerm |
LoadTerm | NoOpTerm | NotifyTerm | ReleaseTerm |
Reset Term | ReturnTerm | Signal Term | SleepTerm |
Stall Term | UnloadTerm | \WhileTerm
/1 A TypelOpCode termcan only be used standing al one on
a
/1 line of ASL code; because these types of terns do not
/'l return a value so they cannot be used as a termin an
/1 expression.

Type2Opcode = AcquireTerm | AddTerm | AndTerm | Concat Term |
CondRef Of Term | DecTerm | DerefOf Term | DivideTerm |
FindSet LeftBit Term | FindSetRightBitTerm| FronBCDTerm |
IncTerm | IndexTerm | LAndTerm | LEqual Term |
LGreaterTerm | LGreaterEqual Term | LLessTerm |
LLessEqual Term | LNot Term | LNotEqual Term | LOrTerm |
MatchTerm | MultiplyTerm| NAndTerm | NOTerm| NotTerm |
Obj ect TypeTerm | OrTerm| RefOfTerm | ShiftLeftTerm |
ShiftRi ght Term | SizeOfTerm | StoreTerm| SubtractTerm |
ToBCDTerm | WaitTerm | XorTerm
/1 A Type2Qpcode termreturns a value that can be used in
/1 an expression.

I ncl udeTer m = I ncl ude(
I ncFi | ePat hName /1String
)
Ext ernal Term ;= External (
Obj Nane, // NameString
Obj Type // Nothing | ObjectTypeKeyword
)
BankFi el dTerm ;= BankFi el d(
Regi onNarme, // NameString
BankName, // NameString
BankVal ue, /| Ter mAr g=>DWor dConst
AccessType, /1 AccessTypeKeyword
LockRul e, // LockRul eKeywor d
Updat eRul e / 1 Updat eRul eKeywor d

) {Fiel dUnitList}

Not hing | <FieldUnit FieldUnitListTail>
Nothing | <',’ FieldUnit FieldUnitlListTail>

Fi el dUni t Li st
Fi el dUni t Li st Tai |

Fi el dUni t = FieldUnitEntry | OffsetTerm | AccessAsTerm
Fiel dUnitEntry = <Nothing | NameSeg> ‘,’ Integer
Of fset Term = Offset(
Byt eOf f set /11 nteger
)
AccessAsTerm ;= AccessAs(
AccessType, /1 AccessTypeKeyword
AccessAttribute /1 Not hing | ByteConst
)
CreateBitFieldTerm := CreateBitField(
Sour ceBuffer, // Ter mMAr g=>Buf f er Term
Bi t | ndex, /| Ter mAr g=>I nt eger
Bi t Fi el dNanme /1 NameString

300

Creat eByt eFi el dTerm

Creat eDWor dFi el dTerm

CreateFi el dTerm

Creat eWor dFi el dTerm

Devi ceTerm

Event Term

Fi el dTerm

I ndexFi el dTerm

Met hodTer m

Mut exTerm

Cr eat eByt eFi el d(
Sour ceBuffer,
Byt el ndex,

Byt eFi el dName

)

Cr eat eDWOr dFi el d(
Sour ceBuffer,
Byt el ndex,

DWor dFi el dNane

)

Creat eFi el d(
Sour ceBuf fer,
Bi t | ndex,
NumBi t s,
Fi el dName

)

Cr eat eWor dFi el d(
Sour ceBuffer,
Byt el ndex,
Wor dFi el dName

)

Devi ce(
Devi ceNane

) {ObjectList}

Event (
Event Name
)

Fi el d(
Regi onNare,
AccessType,
LockRul e,
Updat eRul e

) {FieldUnitlList}

I ndexFi el d(
I ndexNane,
Dat aName,
AccessType,
LockRul e,
Updat eRul e

) {FieldUnitlList}

Met hod(
Met hodNane,
NumAr gs,
SerializeRul e

) {TernlList}
Mut ex(

Mut ex Name,
SynclLevel

/| Ter mMAr g=>Buf f er Term
/| Ter mAr g=>I nt eger
/1 NameString

/| Ter mMAr g=>Buf f er Term
/| Ter mAr g=>I nt eger
/1 NameString

/] Ter mMAr g=>Buf f er Term
/| Ter mAr g=>I nt eger

/| Ter MAr g=>I nt eger

// NameString

/| Ter mAr g=>Buf f er Term
/| Ter MAr g=>I nt eger
// NameString

// NameString

// NameString

// NameString

/1 AccessTypeKeyword
// LockRul eKeywor d

/ 1 Updat eRul eKeywor d

// NameString

/I NameString

/1 AccessTypeKeyword
/1 LockRul eKeyword
/1 Updat eRul eKeywor d

// NameString

/1 Not hing | ByteConst
/1 Not hi ng |

/1 SerializeRul eKeyword

/1 NameString
/1 Byt eConst

OpRegi onTer m

Power ResTer m

Processor Term

Ther mal ZoneTerm

AliasTerm

NameTer m

ScopeTerm

BreakTerm
Br eakPoi nt Term

Fat al Term

| fEl seTerm

I fTerm

El seTerm

LoadTerm

Oper ati onRegi on(
Regi onNarme,
Regi onSpace,
O fset,
Length

)

Power Resour ce(
Resour ceNane,
Syst enmLevel ,
Resour ceOr der

) {ObjectList}

Processor (
Processor Nane,
Processorl D,
PBI ockAddr ess,
Pbl ockLengt h

) {ObjectList}

Ther mal Zone(

Ther mal ZoneNane

) {ObjectList}

Ali as(
Sour ceObj ect,
Al i asObj ect

)

Name (
Obj ect Nane,
Obj ect

)

Scope(
Locati on

) {ObjectList}
Br eak
Br eakPoi nt

Fat al (
Type,
Code,
Arg

)

| f Term El seTerm

I f(
Predi cate
) {TernlList}

// NameString

/ | Regi onSpaceKeywor d
/| Ter mAr g=>DWor dConst
/| Ter mAr g=>DWor dConst

/1 NameString
/1 Byt eConst
/1 Wor dConst

/I NameString
/1 Byt eConst
/ 1 DWor dConst
/1 Byt eConst

// NameString

// NameString
// NameString

// NameString
/ | Dat aObj ect

// NameString

/1 Byt eConst
/| DWor dConst
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

Not hi ng | <Else {TernmnList}>

Load(
Obj ect,
DDBHandl e

/1 NameString
/| Super Name

301

302

NoOpTer m

Noti fyTerm

Rel easeTerm

Reset Term

Ret urnTerm

Si gnal Term

Sl eepTerm

Stall Term

Unl oadTerm

Wi | eTerm

AcquireTerm

AddTer m

AndTer m

Concat Term

Noop
Not i fy(
Obj ect,
Noti fi cati onVal ue
)
Rel ease(
SyncObj ect
)
Reset (
SyncObj ect
)
Ret ur n(
Arg
)
Si gnal (
SyncObj ect
Sl eep(
M I1iSecs
)
Stall (
M croSecs
)
Unl oad(
DDBHandl e
)
Whi | e(
Predi cate

) {TernlList}

Acqui re(
SyncObj ect,
Ti meout Val ue
) => Bool ean

Add(
Addendl,
Addend2,
Resul t

) => Integer

And(
Sourcel,
Sour ce2,
Resul t

) => Integer

Concat enat e(
Sourcel,
Sour ce2,
Resul t

) => Conput ati onal Dat a

/1 Super Name
/| Ter mAr g=>Byt eConst

/1 Super Name

/1 Super Name

/| Ter mMAr g=>Dat aObj ect

/ / Super Name

/| Ter MAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/1 Super Name

/| Ter mMAr g=>I nt eger

/1 Super Name
/1 Wor dConst
// Ones means ti ned-out

/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger
/1 Not hing | Super Name

/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger
// Not hing | Super Name

/| Ter mAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a
// Not hing | Super Name

CondRef Of Term

DecTer m

Der ef Of Term

Di vi deTerm

Fi ndSet LeftBit Term

Fi ndSet Ri ght Bi t Term

Fr onBCDTer m

IncTerm

I ndexTerm

LAndTer m

LEqual Term

CondRef Of (
Sour ce,
Desti nation
) => Bool ean

Decr enent (
Addend

) => Integer

Der ef Of (
Sour ce

) => Obj ect Reference

Di vi de(
Di vi dend,
Di vi sor,
Remai nder,
Resul t

) => Integer

Fi ndSet Left Bi t (
Sour ce,

Resul t
) => Integer

Fi ndSet Ri ght Bi t (
Sour ce,
Resul t

) => Integer

Fr omBCD(
BCDVal ue,
Resul t

) => Integer

I ncrement (
Addend

) => Integer

I ndex(
Sour ce,

I ndex,
Destination
) => Obj ectReference

LANnd(
Sourcel,
Sour ce2

) => Bool ean

LEqual (
Sour cel,
Sour ce2

) => Bool ean

303

/ / Super Name
/1 Super Name

/1 Super Name

/1 Ter mMAr g=>0bj ect Ref erence
/] Obj ect Reference is an obj ect
// produced by terms such as
/1l ndex, RefOf or CondRef Of.

/| Ter MAr g=>I nt eger

/| Ter mAr g=>I nt eger

// Not hing | Super Name
// Not hing | Super Nane
//returns Result

/| Ter mAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
// Nothing | Super Nane

/| Ter mAr g=>I nt eger
/1 Not hing | SuperNane

/1 Super Name

[/ Ter MAr g=>

/1 <BufferTerm | PackageTer n>
/| Ter mAr g=>I nt eger

/1 Not hing | Super Name

/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

304

LGreaterTerm

LGr eat er Equal Term

LLessTerm

LLessEqual Term

LNot Ter m

LNot Equal Term

LOr Term

Mat chTer m

Mul tiplyTerm

NAndTer m

NOr Ter m

LGreater(
Sourcel,
Sour ce2

) => Bool ean

LG eat er Equal (
Sour cel,
Sour ce2

) => Bool ean

LLess(
Sourcel
Sour ce2

) => Bool ean

LLessEqual (
Sour cel,
Sour ce2

) => Bool ean

LNot (
Sour ce,

) => Bool ean

LNot Equal (
Sour cel,

Sour ce2
) => Bool ean

LOr (
Sourcel,
Sour ce2
) => Bool ean

Mat ch(
Sear chPackage,
Op1,
Mat chObj ect 1,
Op2,
Mat chObj ect 2,
Startl ndex

) => Ones | I|nteger
Mul tiply(
Mul ti plicand,
Mul tiplier,
Resul t

) => Integer

NAnd(
Sour cel,
Sour ce2
Resul t

) => Integer

NOr (
Sour cel,
Sour ce2
Resul t

) => Integer

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter MAr g=>I nt eger
/| Ter mAr g=>I nt eger

/| Ter mAr g=>I nt eger

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger

/| Ter mMAr g=>Package
/1 Mat chOpKeywor d
/| Ter mAr g=>I nt eger
/1 Mat chOpKeywor d
/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

// Not hing | Super Nane

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

// Not hing | Super Nane

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

// Not hing | Super Nane

Not Ter m

Obj ect TypeTerm

Or Term

Ref Of Term

ShiftLeftTerm

Shi ft Ri ght Term

Si zeOf Term

StoreTerm

Subtract Term

ToBCDTer m

Wai t Term

XOr Term

Not (
Sour ce,
Resul t

) => Integer

Obj ect Type(
Obj ect

) => Integer

O (
Sourcel,
Sour ce2
Resul t

) => Integer

Ref Of (
Obj ect

) => Obj ect Reference

ShiftLeft(
Sour ce,
Shi ft Count
Resul t

) => Integer

Shi ft Ri ght (
Sour ce,
Shi ft Count
Resul t

) => Integer

Si zeOf (
Dat aObj ect
) => Integer

St ore(
Sour ce,
Destination

) => Dat aObj ect

Subt ract (
Addendl,
Addend2,
Resul t

) => Integer

ToBCD(
Val ue,
Resul t

) => Integer

Wai t (
SyncObj ect,
Ti meout Val ue
) => Bool ean

XOr (
Sourcel,
Sour ce2
Resul t

) => Integer

[/ Ter mAr g=>1
/1 Not hi ng |

/ / Super Name

/] Ter mAr g=>|
[/ Ter mAr g=>1
/1 Not hi ng |

/ / Super Name

/1 Ter mAr g=>I
[/ Ter mAr g=>I
/1 Not hi ng |

/1 Ter mAr g=>1
[/ Ter mAr g=>I
/1 Not hing |

/1 Super Nane=>Dat aCbj ect

nt eger
Super Name

nt eger
nt eger
Super Name

nt eger
nt eger
Super Nanme

nt eger
nt eger
Super Nane

/| Ter mAr g=>Dat aObj ect

/| Super Name

/1 Ter mAr g=>|
[/ Ter mAr g=>1
/1 Not hi ng |

/1 Ter mAr g=>|
// Not hing |

/| Super Name
/] Ter mAr g=>|

/] Ter mAr g=>|
[/ Ter mAr g=>I
/' Not hi ng |

nt eger
nt eger
Super Name

nt eger
Super Name

nt eger

nt eger
nt eger
Super Name

305

306

Obj ect TypeKeywor d

AcessTypeKeywor d

LockRul eKeywor d
Updat eRul eKeywor d

Regi onSpaceKeywor d
User Def Regi onSpace
Seri al i zeRul eKeyword
Mat chOpKeywor d

DMATypeKeywor d
BusMast er Keywor d
Xf er TypeKeywor d

Resour ceTypeKeywor d
M nKeywor d
MaxKeywor d
DecodeKeywor d
RangeTypeKeywor d
MemTypeKeywor d
ReadW it eKeywor d

I nterrupt TypeKeywor d
I nterruptLevel

Shar eTypeKeywor d

| ODecodeKeywor d

Super Name
ArgTerm
Local Term

DebugTer m

I nt eger
Byt eConst
Wor dConst
DWor dConst
String
Asci i Char Li st
Asci i Char
Nul | Char
Const Term
Bool ean
True

Fal se

Buf fer Term

Byt eLi st
Byt eLi st Tai |

UnknownObj | IntObj | StrOCbj | BuffObj | PkgObj |

Fiel dUnitObj | DeviceObj | EventObj | MethodObj |

Mut exObj | OpRegi onObj | Power ResObj | Thermal Zone(hj |
Buf f Fi el dObj | DDBHandl eObj

AnyAcc | ByteAcc | WordAcc | DWordAcc | Bl ockAcc |
SMBSendRecvAcc | SMBQui ckAcc

Lock | NoLock

Preserve | WiteAsOnes | WiteAsZeros

User Def Regi onSpace | Systeml O | SystemMenory | PA_Config
| EnmbeddedControl | SMBus
0x80- Oxf f

Serialized | NotSerialized
MIR| MEQ| ME | MT | MGEE | MST

Conpatibility | TypeA | TypeB | TypeF
BusMaster | Not BusMaster
Transfer8 | Transferl1l6 | Transfer8_16

Resour ceConsumer | ResourceProducer

M nFi xed | M nNot Fi xed

MaxFi xed | MaxNot Fi xed

SubDecode | PosDecode

| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange
Cacheabl e | WiteConbining | Prefetchable | NonCacheabl e
ReadWite | ReadOnly

Edge | Level

ActiveHi gh | ActivelLow

Shared | Excl usive

Decodel6 | DecodelO

NanmeString | ArgTerm | Local Term | DebugTerm | |ndexTerm
Arg0 | Argl | Arg2 | Arg3 | Argd4 | Args | Argé6

Local 0 | Locall | Local2 | Local3 | Local4 | Local5 |
Local 6 | Local 7

Debug

Byt eConst | WordConst | DwordConst
0x00- Oxf f
0x0000- Oxffff
0x00000000-Oxffffffff
Asci i Char Li st ’
Not hi ng | <Ascii Char Ascii CharlList>
0x01- Ox7f
0x00
Zero | One | Ones | Revision
True | Fal se
Ones
Zero

Buf f er (
Buf f Si ze /1 Not hi ng |
/| Ter mAr g=>I nt eger

) {String | ByteList}

Not hi ng | <ByteConst BytelistTail>
Not hing | <',’ ByteConst BytelistTail>

DWor dLi st
DWor dLi st Tai |

PackageTerm

Packageli st
PackagelLi st Tai |
PackageEl ement

El SAI DTer m

Resour ceTenpl at eTer m

Resour ceMacr oLi st
Resour ceMacroTerm

DMATer m

DWor dl OTer m

307

Not hi ng | <DwordConst DWordLi st Tail >
Not hing | <‘,’ DwrdConst DWordListTail >

Package(
NurEl ement s /1 Not hing |
/1 Byt eConst
) {PackagelLi st}

Not hi ng | <PackageEl enent Packageli st Tail >
Not hing | <',’ PackageEl enent PackagelLi st Tail >
Dat aObj ect | NanmeString

El SAl D(
El SAI DSt ri ng /1String
) => DWérdConst

ResourceTenpl at e() {ResourceMacrolList} => BufferTerm

Not hi ng | <ResourceMacroTer m Resour ceMacroLi st >
DMATerm | DWordl OTerm | DWor dMenmoryTerm |

EndDependent FnTerm | Fi xedl OTerm| InterruptTerm| |COlerm
| 1 RQNoFl agsTerm | | RQTerm | Menory24Term |

Menmor y32Fi xedTerm | Menmory32Term | QW\ordl OTer m |

QWor dMemoryTerm | St art Dependent FnTer m |

St art Dependent FnNoPri Term | Vendor LongTerm |

Vendor Short Term | Wor dBusNunber Term | Wordl OTerm

DMVA
(DMAType, /| DMATypeKeyword (_TYP)
BusMast er, /1 BusMast er Keyword (_BM
XferType, /1 Xf er TypeKeyword (_SI 2)
Resour ceTag /1 Nothing | NanmeString
) {BytelList} //List of channels (0-17)
DWORDI O(
Resour ceType, /1 Not hi ng (ResourceConsuner) |
/1 Resour ceTypeKeywor d
M nType, // Not hi ng (M nNot Fi xed) |
/1 M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeyword (_MAF)
Decode, /1 Not hi ng (PosDecode) |
/ | DecodeKeywor d (_DEC)
RangeType, // Not hi ng (EntireRange) |

/1 RangeTypeKeyword (_RNG)
AddressGranul arity, //DWrdConst (_GRA)

M nAddr ess, /1 DWbrdConst (_M N)
MaxAddr ess, /1 DWor dConst (_MAX)
Transl ati on, /1 DWordConst (_TRA)
Addr esslLen, /1 DWbrdConst (_LEN)
ResSour cel ndex, /1 Not hing | ByteConst
ResSour ce, /I Nothing | String
Resour ceTag // Not hing | NameString

308

DWor dMenoryTer m

EndDependent FnTer m

Fi xedl OTer m

Interrupt Term

| OTerm

| RONoFIl agsTerm

DWORDMenor y (

)

Resour ceType,
Decode,

M nType,
MaxType,
MemType,

ReadW it eType,
AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ation,

Addr esslLen,
ResSour cel ndex,
ResSour ce,

Resour ceTag

EndDependent Fn()

Fi xedl (

)

Addr essBase,
RangelLen,
Resour ceTag

I nterrupt(

Resour ceType,

I nterrupt Type,
I nterruptLevel,
Shar eType,
ResSour cel ndex,

ResSour ce,
Resour ceTag

) {DWordLi st}

e

)

| ODecode,

M nAddr ess,
MaxAddr ess,
Ali gnment ,
RangelLen,
Resour ceTag

| RQNoFI ags(

Resour ceTag

) {BytelList}

/1 Not hi ng (ResourceConsurmer) |
/1 Resour ceTypeKeyword

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

// Not hi ng (M nNot Fi xed) |
/1 M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeywor d (_MAF)

/1 Not hi ng (NonCacheabl e) |
/1 MenTypeKeyword (_MEM

// ReadW it eKeyword (_RW
/1 DWor dConst (_GRA)

// DWbrdConst (_MN)

/1 DWor dConst (_MAX)

/1 DWordConst (_TRA)

/1 DWor dConst (_LEN)

// Not hing | ByteConst

/I Nothing | String

/ /' Nothing | NaneString

/1 Wor dConst (_BAS)
/1 Byt eConst (_LEN)
// Nothing | NaneString

/1 Not hi ng (ResourceConsuner) |
/1 Resour ceTypeKeywor d

/11 nterrupt TypeKeyword

/1 (_LL, _HE)

/1 nterruptlLevel Keyword

/1 (_LL, _HE)

/1 Not hi ng (Excl usive)

/1 Shar eTypeKeyword (_SHR)
/1 Not hing | ByteConst

/I Nothing | String

/1 Nothing | NameString
//1ist of interrupts (_INT)

/11 ODecodeKeyword (_DEC)
/I WordConst (_MN)

/1 WordConst (_MAX)

/1 Byt eConst (_ALN)

/1 ByteConst (_LEN)

/I Nothing | NaneString

/I Nothing | NaneString
/11ist of interrupts (0-15)

309

| RQTer m = | RY
I nterrupt Type, /11 nterrupt TypeKeyword
/1 (_LL, _HE)
I nterruptLevel, /11 nterruptlLevel Keyword
/1 (_LL, _HE)
Shar eType, /1 Not hi ng (Excl usive)
/1 Shar eTypeKeyword (_SHR)
Resour ceTag /I Nothing | NaneString
) {BytelList} /11ist of interrupts (0-15)
Menmory24Ter m = Menory24(
ReadW it eType, // ReadW it eKeyword (_RW
M nAddr ess[23: 8], /1 WordConst (_MN)
MaxAddr ess[23: 8], /1 WordConst (_MAX)
Al'i gnnment , /I Wor dConst (_ALN)
RangelLen, /1 Wor dConst (_LEN)
Resour ceTag /I Nothing | NameString

)

Menmor y32Fi xedTer m Menor y32Fi xed(

ReadW it eType, /1 ReadW it eKeyword (_RW

Addr essBase, /1 DWor dConst (_BAS)

RangelLen, /1 DWor dConst (_LEN)

Resour ceTag / /' Nothing | NaneString

)
Menmory32Ter m = Menory32(

ReadW it eType, /1 ReadW it eKeyword (_RW

M nAddr ess, /1 DWordConst (_MN)

MaxAddr ess, // DWor dConst (_MAX)

Ali gnment , /1 DWordConst (_ALN)

RangelLen, // DWordConst (_LEN)

Resour ceTag /1 Nothing | NanmeString

)
QWor dl OTer m = QWORDI O(

Resour ceType, /1 Not hi ng (ResourceConsuner) |
/1 Resour ceTypeKeywor d

M nType, // Not hi ng (M nNot Fi xed) |
/1 M nKeyword (_MF)

MaxType, /1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeyword (_MAF)

Decode, /1 Not hi ng (PosDecode) |
/ | DecodeKeywor d (_DEC)

RangeType, // Not hi ng (EntireRange) |

/1 RangeTypeKeywor d (_RNG)
AddressGranul arity, [//QArdConst (_GRA)

M nAddr ess, /1 QWordConst (_MN)
MaxAddr ess, /1 QnordConst (_MAX)
Transl ati on, /1 WbrdConst (_TRA)
Addr esslLen, /1 QuordConst (_LEN)
ResSour cel ndex, /1 Not hing | ByteConst
ResSour ce, /I Nothing | String

Resour ceTag // Not hing | NameString

310

QWor dMenoryTer m

St art Dependent FnTer m

St art Dependent FnNoPri Ter m

Vendor LongTer m

Vendor Short Term

Wor dBusNunber Ter m

QNORDMenor y (

Resour ceType,
Decode,

M nType,
MaxType,
MemType,

ReadW it eType,
AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ation,

Addr esslLen,
ResSour cel ndex,
ResSour ce,

Resour ceTag

)

St art Dependent Fn(
Conpat Priority,
Per f Robust Priority

) {ResourceMacroli st}

/1 Not hi ng (ResourceConsurmer) |
/1 Resour ceTypeKeyword

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

// Not hi ng (M nNot Fi xed) |
/1 M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeywor d (_MAF)

/1 Not hi ng (NonCacheabl e) |
/1 MenTypeKeyword (_MEM

// ReadW it eKeyword (_RW
/1 QWor dConst (_GRA)

/1 QuordConst (_MN)

/1 WordConst (_MAX)

/1 QuordConst (_TRA)

/1 Q\ordConst (_LEN)

// Not hing | ByteConst

/I Nothing | String

/ /' Nothing | NaneString

/1 Byt eConst (0-2)
/1 ByteConst (0-2)

: =St art Dependent FnNoPri () {ResourceMacroli st}

Vendor Long(
Resour ceTag

) {BytelList}

Vendor Shor t (
Resour ceTag

) {BytelList}

Wor dBusNumnber (
Resour ceType,

M nType,
MaxType,
Decode,

AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ation,

Addr esslLen,
ResSour cel ndex,
ResSour ce,

Resour ceTag

/I Nothing | NanmeString

/1 Nothing | NanmeString
/lup to 7 bytes

/1 Not hi ng (ResourceConsuner) |
/1 Resour ceTypeKeywor d

/1 Not hi ng (M nNot Fi xed) |

/1 M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |

/1 MaxKeyword (_MAF)

/1 Not hi ng (PosDecode) |

/| DecodeKeywor d (_DEC)

/1 Wor dConst GRA

/1 Wor dConst
/1 WordConst (_MAX)

/1 WordConst (_TRA)

/1 WordConst (_LEN)

/1 Not hing | ByteConst
/I Nothing | String

// Not hing | NameString

Wor dl OTer m = Wordl O(

Resour ceType,
M nType,
MaxType,
Decode,

RangeType,

AddressGranul arity,

M nAddr ess,
MaxAddr ess,
Transl ation,
Addr esslLen,

ResSour cel ndex,

ResSour ce,
Resour ceTag

15.2 Full ASL Reference

311

/1 Not hi ng (ResourceConsurmer) |
/1 Resour ceTypeKeyword

// Not hi ng (M nNot Fi xed) |
/1 M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeywor d (_MAF)

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

// Not hi ng (EntireRange) |
/1 RangeTypeKeyword (_RNG)
/I Wor dConst _GRA)

/I WordConst (_MN)

/1 WordConst (_MAX)

/1 WordConst (_TRA)

/1 Wor dConst (_LEN)

/1 Not hi ng | ByteConst

/I Nothing | String

// Not hing | NameString

This reference section isfor devel opers who are writing ASL code while developing

definition blocks for platforms.

15.2.1 ASL Names

This section describes how to encode object namesusing ASL.

The following table lists the characters legd in any position in an ASL object name.
Table15-2 Control Method Named Object Reference Encodings

Value Description
41-5A, 5F Lead character of name (A’ - *Z, LeadNameChar
30-39, 41-5A, 5F Nor+lead (trailling) character of NameChar

name (A’ -‘Z','’,’0-9)

The following table lists the name modifiers.

Table 15-3 Definition Block Name M odifier Encodings

Description NamePrefix := | Followed by ...
5C Name space root (*\') RootPrefix Name
5E Parent name space (‘') ParentPrefix Name
2E Name extender: 1 DuaNamePrefix Name Name
2F Name extender: N MultiNamePrefix ~ count Name®™'™

312

15.2.2 ASL Data Types

The contents of an object, or the data it references, may be absiract entities (for example,
“Device Object”) or can be one of three computational data types. The computationd data
type can be used as arguments to many of the ASL Operator terms.

Table 15-4 Data Types

Data Type Description

Integer 32-hit little endian unsgned vaue.

Buffer Arbitrary fixed length array of bytes.

String ASCIIZ gring 1 to 200 charactersin length (including NullChar).

15.2.3 ASL Terms

This section describes al the ASL terms and provides sample ASL code that uses the
terms.

The ASL terms are grouped into the following categories:
Definition block term

Compiler directive terms

Object terms

Opcode terms

User terms

Data objects

Miscellaneous objects

N3NNI NIN

15.2.3.1 Definition Block Term

DefinitionBl ockTerm ;= DefinitionBlock(
AMLFi | eName, /1String
Tabl eSi gnat ure, /1String
Conpl i anceRevi sion, //ByteConst
OCEM D, /1String
Tabl el D, /1String
OEMRevi si on /| DWor dConst

) {Terniist}

The DefinitionBlock term specifies the unit of dataand/or AML code that the OS will
load as part of the Differentiated Definition Block or as part of an additiona Definition
Block. This unit of data and/or AML code describes elther the base system or some large
extenson (such as adocking station). The entire DefinitionBlock will be loaded and
compiled by the OS as asingle unit, and can be unloaded by the OS as a single unit.

15.2.3.2 Compiler Directive Terms
The compiler directives are:

313

7? Includeterm

?? Externd term
15.2.3.2.1 Include —Include Another ASL File
I ncl udeTer m ;= Include(
I ncFi | ePat hNanme /1String

)
IncFilePathname is the full OS file system path to another file that contains ASL termsto
be included in the current file of ASL terms.

15.2.3.2.2 External — Declare External Objects

Ext ernal Term ;= External (
Obj Nane, /1 NameString
Obj Type // Nothing | ObjectTypeKeyword

)
The External compiler directiveisto let the assembler know that the object is declared
externd to thistable so that the assembler will not complain about the undeclared object.
During compiling, the assembler will create the externa object & the specified place in the
name space (if afull path of the object is specified), or the object will be created at the
current scope of the External term. Obj Typeisoptiond. If not specified, "UnknownObj"
type is assumed.

15.2.3.3 Object Terms
Object terms includes: Named Object terms and Name Space Modifiers.

15.2.3.3.1 Named Object Terms
The ASL terms that can be used to create named objects in a definition block are ligtedin
the following table.

Table 15-5 Named Object Terms

ASL Statement Description

BankField Declaresfidds in a banked configuration object.
CreateBitField Declare ahit field object of a buffer object.
CreateByteField Declare a byte field object of a buffer object.
CreateDWordField Declare adword field object of a buffer object.
CreateField Declare afield object of any bit length of a buffer object.
CreateWordField Declare a dword field object of abuffer object.
Device Declares a bus/device object.

Event Declares an event synchronization object.

Field Declares fields of an operation region object.
IndexField Dedaresfidds in an index/data configuration object.
Method Declares a control method.

314

ASL Statement Description

Mutex Declares amutex synchronization object.
OperationRegion Declares an operationa region.

Power Resour ce Declares a power resource object.

Pr ocessor Declares a processor package.
ThermalZone Declares atherma zone package.

15.2.3.3.1.1 BankField - Declare Bank/Data Field

BankFi el dTerm ;= BankFi el d(
Regi onNarme, // NameString
BankNane, /I NameString
BankVal ue, /| Ter mAr g=>DWor dConst
AccessType, /1 AccessTypeKeyword
LockRul e, // LockRul eKeywor d

Updat eRul e /1 Updat eRul eKeywor d
) {FieldUnitlList}

This statement creates data field objects. The contents of the created objects are obtained
by areference to abank sdection regiter.

This encoding is used to define named data field objects whose data vaues are fidlds
within alarger object selected by abank sdlected register. Accessing the contents of a
banked field data object will occur automatically through the proper bank setting, with
synchronization occurring on the operation region that contains the BankName data
variable, and on the globd lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FiedUnitList are the same format asthe
Field operator.

Thefollowing isablock of ASL sample code usng BankField:

?? Creates a4-hit bank sdlect register in system /O space.

?? Creates overlgpping fidlds in the same system 1/0O space which are selected viathe
bank regigter.

315

/1 define 256-byte operational region in System O space
/1 and nane it G OO
Oper ati onRegi on (Gl 00, System O, 0x125, 0x100)

/1 create sonme field in GO including a 4 bit bank select register
Field (Gl 00, ByteAcc, NoLock, Preserve) {

GLB1, 1,
GLB2, 1,
Offset(1), /1 nove to offset for byte 1
BNK1, 4

}

/1 Create FETO & FET1 in bank 0 at byte offset 0x30
BankFi el d (Gl 00, BNK1, 0, ByteAcc, NoLock, Preserve) {
O fset (0x30),

/1l Create BLVL & BAC in bank 1 at the sanme offset
BankFi el d (Gl 00, BNK1, 1, ByteAcc, NoLock, Preserve) {
Of fset (0x30),

BLVL, 7,
BAC, 1
}
15.2.3.3.1.2 CreateBitField
CreateBitFiel dTerm ;= CreateBitField(
Sour ceBuffer, /| Ter mAr g=>Buf f er Term
Bi t | ndex, /| Ter mMAr g=>I nt eger
Bi t Fi el dNane // NameString

)
SourceBuffer is evauated as abuffer. Bitindex isevauated as aninteger. A new buffer
fidd object BitFieldNameis created for the bit of SourceBuffer a the bit index of Bitlndex.
The bit-defined fidd within Sour ceBuffer must exis.

15.2.3.3.1.3 CreateByteField

Creat eByteFi el dTerm ;= CreateByteField(
Sour ceBuffer, /| Ter mAr g=>Buf f er Term
Byt el ndex, /| Ter mAr g=>I nt eger
Byt eFi el dName // NameString

)
SourceBuffer isevauated as abuffer. Bytelndex isevauated as an integer. A new buffer
field object ByteFieldNameis created for the byte of SourceBuffer at the byte index of
Bytelndex. The byte-defined fidd within Sour ceBuffer must exig.

15.2.3.3.1.4 CreateDWordField

Cr eat eDWOr dFi el dTerm ;= Creat eDWor dFi el d(
Sour ceBuffer, /| Ter mAr g=>Buf f er Term
Byt el ndex, /| Ter mAr g=>I nt eger

DWor dFi el dNane /I NameString

316

SourceBuffer isevduated as abuffer. Bytelndex isevauated asan integer. A new buffer
field object DWordFieldNameis crested for the DWord of SourceBuffer at the byte index
of Bytelndex. The DWord-defined fidd within SourceBuffer must exis.

15.2.3.3.1.5 CreateField - Field

CreateFi el dTerm 1= CreateField(
Sour ceBuffer, /| Ter mAr g=>Buf f er Term
Bi t | ndex, /| Ter MAr g=>I nt eger
NumBi t s, /| Ter mAr g=>I nt eger
Fi el dNanme /1 NameString

)
SourceBuffer isevauated as abuffer. Bitindex and NumBitsare evauated asintegers. A
new buffer field object FieldNameis created for the bits of SourceBuffer at Bitindex for
NumBits The entire bit range of the defined field within SourceBuffer must exig.

15.2.3.3.1.6 CreateWordField

Creat eWor dFi el dTerm ;= Creat eWordFi el d(
Sour ceBuffer, /| Ter mMAr g=>Buf f er Term
Byt el ndex, /| Ter mAr g=>I nt eger
Wor dFi el dNanme /1 NameString

)
SourceBuffer isevduated as abuffer. Bytelndex isevduated asan integer. A new
bufferfield object WordFieldNameis created for the word of SourceBuffer at the word
index of Bytelndex. The word-defined fidd within SourceBuffer must exig.

15.2.3.3.1.7 Device - Declare Bus/Device Package
Devi ceTerm ;= Device(
Devi ceName // NameString

) {ObjectList}
Creates a Device object, which represents either abus or adevice or any other such entity
of use. Device opens a name scope.

A Bug/Device Package is one of the basic ways the Differentiated Definition Block
describes the hardware devices in the system to the operating software. Each Bus/Device
Package is defined somewhere in the hierarchical name space corresponding to that
device s location in the system. Within the name space of the device are other names that
provide information and control of the device, dong with any sub-devicesthat in turn
describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in anon
hardware standard manner. Thistype of “vaue added” function is expressible in the ACPI
Definition Block such that operating software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added
function outsde the device' s norma capabiilities and for any Device Object required to fill
in the tree for such adevice. For example, if the system includes a PCI device (integrated

or otherwise) with no additiond functions such as power management, the BIOS would
not report such adevice; however, if the system included an integrated | SA device below
the integrated PCI device (deviceisan ISA bridge), then the system would include a
Device Package for the ISA device with the minimum feeture being added being the ISA
device' s ID and configuration information and the parent PCI device, becauseit is required

to get the ISA Device Package placement in the Name Space correct.

The following block of ASL sample code shows a nested use of Device objects to describe

an IDE controller connected to the root PCI bus.

Devi ce (I DEO) { /1 primary controller

Name(_ADR, 0) /'l put PClI Address (device/function) here

/1 define region for |DE node register
Oper ati onRegi on (PCIC, PCl_Config, 0x50, 0x10)
Field (PCIC, AnyAcc, NoLock, Preserve) {

}

Device(PRIM { /1 Primary adapter
Name(_ADR, 0) //Primary adapter = 0
Devi ce(MSTR) { /1 master channel

Name(_ADR, 0)
Name(_PRO, Package(){0, PIDE})
Met hod (_STM 2) {

}
}

Devi ce(SLAV) {
Name(_ADR, 1)
Nanme(_PRO, Package(){0, PIDE})
Met hod (_STM 2) {

}
}
}
}

15.2.3.3.1.8 Event - Declare Event Synchronization Object

Event Term ;= Event(
Event Name

)
Creates an event synchronization object named EventName.

// NameString

317

318

For more information about the uses of an event synchronization object, see the ASL
definitions for the Wait, Signa, and Reset function operators.

15.2.3.3.1.9 Field - Declare Field Objects

Fiel dTerm = Field(
Regi onName, // NameString
AccessType, /1 AccessTypeKeyword
LockRul e, /1 LockRul eKeywor d
Updat eRul e /1 Updat eRul eKeyword

) {Fiel dUnitList}

Declares a series of named data objects whose data values are fields within alarger object.
The fields are parts of the object named by RegionName, but their names appear in the
same scope as the Field term.

For example, the field operator alows alarger operation region that represents a hardware
register to be broken down into individua bit fields that can then be accessed by the bit
field names. Extracting and combining the component field from its parent is done
automaticaly when the field is accessed.

Accessing the contents of afield data object provides access to the corresponding field
within the parent object. If the parent object supports Mutex synchronization, accesses to
modify the component data objects will acquire and release ownership of the parent object
around the modification

All accesses within the parent object are performed naturdly digned. If desired,
AccessType can be used to force minimum access width. Note that the parent object must
be able to accommodate the AccessType width. For example, an access type of WordAcc
cannot read the last byte of an odd-length operation region. Not al access types are
meaningful for every type of operationd region.

The following table relates region types declared with an Oper ationRegion term to the
different access types supported for each region.

Table 15-6 OperationRegion Region Types and Access Types

Region Types Access Type Description
SystemMemory | ByteAcc
Systeml O WordAcc
PCI_Config DWordAcc
AnyAcc Read/Write Byte, Word, DWord
access
EmbeddedCont | ByteAcc
rol
SMBus ByteAcc Read/Write SMBus byte protocol

WordAcc Read/Write SMBus word protocol

319

Region Types Access Type Description
BlockAcc Read/Write SMBus block protocol
AnyAcc Read/Write linear SMBus byte, word,
block protocol
SM BSendRecvAcc Send/Receive SMBuUs protocol
SM BQuickAcc QuickRead/QuickWrite SMBus
protocol

If LockRule is st to L ock, accesses to modify the component data objects will acquire and
release the globa lock. If both types of locking occur, the global lock is acquired after the
parent object Mutex.

UpdateRule is used to specify how the unmodified bits of afield are trested. For example,
if afield defines a component data object of 4 bitsin the middle of aWordAcc region,
when those 4 hits are modified the UpdateRul e specifies how the other 12 bits are treated.

The named data objects are provided in FieldList as a series of names and bit widths. Bits
assigned no name (or NULL) are skipped. The ASL compiler supports an
Offset(ByteOffset) macro within aFieldList to skip to the bit position of the supplied byte
offst.

For support of non-linear address devices, such as SMBus devices, a protocol is required
to be associated with each command value. The ASL compiler supports the
AccessAs(AccessType, AccessAttribute) macro within aFieldList. The AccessAttribute
portion of the macro is interpreted differently depending on the address space. For
SystemMemory, Systeml O, PCI_Config or EmbeddedControl space the
AccessAttribute isreserved. For SMBus devices the AccessAttribute indicates the
command vaue of the SMBus device to use for the field being defined. The
AccessAttribute alows a specific protocol to be associated with the fields following the
macro and can contain any of the Access Type listed in the table.

15.2.3.3.1.9.1 SMBus Slave Address

SMBus device Addressing supports both alinear and nontlinear addressing mechanism.
This section darifies how ACPI treats these types of devices and how they should be
defined and accessed. SMBus devices are defined to have afixed 7-bit dave address.
This can beilludrated by the smart battery subsystem devices:

Table 15-7 Examples of SMBus Devices and Slave Addresses

SMBus Device Description | Slave Address (AO-A6)
SMBus Hogt Save Interface 0x8
SBS Charger 0x9
SBS Selector OxA

320

SMBus Device Description | Slave Address (AO-A6)
SBS Battery 0xB

The SMBus driver expects a 7-bit dave address for the deviceto be passed to it. The 1.0
System Management Bus specification defines the address protocols (how datais passed
on thewiggling pins) as

7 6 543 210

T T T T T [&

Slave Address (A6-A0) /
I I O A

Figure 15-1 SMBus Slave Address Protocol

Thisindicates that bit O of the protocol represents whether this accessisaread or write
cycle, and the next six bits represent the dave address. Note that the driver expects a zero-
based address, not a one-based address. For example, the SBS battery has a dave address
of OxB, or 0001011b (bits O, 1 and 4 being set). This vaueis represented by 0x16 for
writes or Ox17 for reads to the smart battery in the SVIBus protocol format. The protocol
format of the dave address and the actua dave address should not be confused asthe
SMBus driver expects the actud dave address, not the protocol format with the read/write
vaue; the driver will shift the dave address Ieft by 1 bit and mask in the read/write

protocol.

15.2.3.3.1.9.2 SMBus Addressing

Associated with each SMIBus device is an 8-bit command register that represents an
additional address space within the device, dlowing up to 256 registers within an SMBus
device. For some devicesthisistreated as alinear address space; for other devices such as
the Smart Battery, thisistreated as a non-linear address space. The SMIBus driver
differentiates these types of devices so that it can understand how to use the different
SMBus protocols on the device.

A linear address device treats the command and dave address fields as a byte-linear 15-hit
address space where the address is formed as follows:
1413121110 9 8 7 6 5 43 21 O

T T 17T 17T T 7 17T 1T T T T T 1
Slave Address Command Address

I I S Y N
Figure15-2 SMBusLinear Address Decode

For example an SMBus memory device that consumes dave address 0x40 would be
accessing alinear address range of 0x4000-0x40FF (256 bytes of address space). A byte

access to 0x4000 (dave 0x40, command 0) would access byte location 0x4000 (dave
0x40, command 0), and aword access to 0x4000 (dave 0x40, command 0) would access
byte locations 0x4000-0x4001 (dave 0x40, commands 0-1). For adevice that behavesin
this manner, ASL should indicate an AnyAcc in the field operator defining the SMBus
device. Thisindicatesto the SVIBusdriver that it can use the read/write block, read/write
word, or read/write byte protocols to access this device.

A nortlinear address device (such as the smart battery) defines each command value
within the device to be a potentidly different sze. The ACPI driver treats such adevice
differently from alinear address device by only accessng command vaues with the
specified protocol only. For example the smart battery device has a dave address of OxB
and a definition for the first two command vaues asfollows:

Table 15-8 Example Command Codes from the Smart Battery

Command Address | Data Type Protocol to Access

(00 Manufacture Access Word Read/Write

Oox1 Remaining Capacity Word Read/Write
Alam

Ox2 Remaining Time Alam Word Read/Write

0x20 Manufacture Name Block Read/Write

0x21 Device Name Block Read/Write

The Smart Battery uses anor+linear programming model. Each command register can be a
different size and has a pecific SMBuUs protocol associated with it. For example command
register OxO contains aword of data (which in alinear device would take up two command
registers 0 and 1) that represents the “Manufacture Access’ and command register Ox1
contains the next word of data (which in alinear device would take up two command
registers 0 and 1) that represents the “Remaining Capacity.” In alinear address mode
these registers would overlap; however, thisis legitimate SMBus device definition. Asa
further example command register 0x20 can represent up to 32 bytes of data (block
read/write) and command register 0x21 also represents up to 32 bytes of data.

15.2.3.3.1.9.3 SMBus Protocols
This section describes the different SVIBus protocols and how the SMIBus driver treats
them. It 0 gives examples of how to define and then access such devicesin ASL.

15.2.3.3.1.9.3.1 Quick Protocol (QuickAcc)

The SMBus Quick protocol does not transfer any data. This protocol is used to control
smple devices and conggis of the dave address with the R/W it set high or low.
Therefore, two types of Quick commands can be generated: QuickRead with the RIAW

321

322

protocol bit reset LOW or QuickWrite with the R/W protocol bit set HIGH. A device
defined to use the quick protocol has no command registers, and consumes the entire 7-bit
dave address.

To define aquick device an operation region is generated using the SMBus address type.
Next afield is generated in the operation region using the “QuickAcc” accesstype. To
generate a QuickWrite protocol to thisdevice, ASL would generate awrite to thisfield.
To generate a QuickRead protocol to this device, ASL would generate aread to this field.
Note that even though the ASL read the fidld and a QuickRead protocol was sent to the
device, the device does not return any data and the numeric result returned by the SMB
driver to the ASL will be 0. For example,

Devi ce(\ _SB. EC0) {
Nanme(_HI D, EI SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) {
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /'l EC of fset(0x80), Query (0x30)
Oper at i onRegi on(PHOL, SMBus, 0x61, 0x1)
Devi ce(DEVA) {
Name(_ADR, 0x61) /1 Slave Address 0x61
Fi el d(PHO1, QuickAcc, NoLock, Preserve) {
QCKA, 1
}

} /1 end of DEVA
} /1 end of SMB1
} /1 end of ECO

This example creates a quick SMBus device residing at dave address 0x61 cdled
“QCKA”. Examples of generating the QuickO and Quickl commands from ASL is
illustrated below:

Met hod(Test) {
Store(1l, QCKA) /'l CGenerates a Qui ckRead command to sl ave address 0x61
Store(QCKA, Local0) // Generates a QuickWite command to slave address 0x61

}

15.2.3.3.1.9.3.2 Send/Receive Command Protocol (SMBSendRecvAcc)
The SMBus Send/Receive protocol transfers a byte of data between the selected SMIBus
dave address and the ASL code performing aread/write to the field. The SMBus protocol
for send-command is defined that the byte being written is presented in the “ command’
fidd, while the data returned from a read-command is defined to be the byte in the data

323

fidd. The SMBus driver will read and write the data to a SMBSendRecvAcc field
accordingly.

To define a send/receive command to a device an operation region is generated using the
SMBus addresstype. Next afidd is generated in the operation region using the
“SMBSendRecvAcc” accesstype. To generate a send byte protocol to this device, ASL
would generate awrite to thisfield. To generate areceive byte protocol to this device,
ASL would generate aread to thisfield. For example,

Devi ce(\ _SB. EC0) {
Name(_HI D, EI SAI D("PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1l port 0x62 and 0x66
|) Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
) }
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) {
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /'l EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x62, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x62) /'l Slave Address 0x62
Fi el d(PHO1, SMBSendRecvAcc, NoLock, Preserve) {
TSTA, 1,
TSTB, 1,
TSTC, 5
}
} /1 end of DEVB
} /1 end of SMB1
} /'l end of ECO

This example creates a send/receive byte SMBus device residing at dave address 0x62.
There are three fidds that reference thissingle byte cdled “TSTA”, “TSTB” and “TSTC”.
Examples of generating the send/receive byte protocols from ASL areillustrated below:

Met hod(Test) {

Store(1l, TSTA) /'l Sets TSTA, preserved TSTB and TSTC, sendbyte
Store(0, TSTB) /1 Clears TSTB, preserved TSTA and TSTC, sendbyte
St ore(0x7, TSTC) /'l Sets TSTC to 0111b, preserved TSTA and TSTB, sendbyte

Store(TSTA, Local0) // returns 1, receive byte
Store(TSTB, Local0Q0) // returns 0, receive byte
Store(TSTC, Local0Q) // returns 7, receive byte

}
Read/Write Byte Protocol (ByteAcc)
The SMBus Read/Write Byte protocol transfers a byte of data between the selected
SMBus dave address and command value. The command address is defined through the
use of the AccessAg(AccessType, AccessAttribute) macro. In this case the AccessAtrribute
represents the byte digned command vaue, and AccessType would be set to ByteAcc.

-~

324

To define a ByteAcc device an operation region is generated using the SMBus address
type. Next afidd is generated in the operation region using the “ByteAcc” accesstype. In
thefidd list an AccessAgByteAcc, command_value) macro is used to define what
command address is associated with this field. The absence of the macro assume a sarting
command vaue of 0. The SMBus driver assumes that after the AccessAg(ByteAcc,
command_value) macro is declared, the next 8-hits represent this command regider. If a
field is defined that crosses over this 8-bit boundary, then the SMIBus driver assumesthis
field resdes in multiple byte-wide command registers with a command address vaue of
command_value+1 (for each new register) usng the ByteAcc protocol.

To generate awrite byte protocol to thisdevice, ASL would generate awrite to this fied.
To generate aread byte protocol to this device, ASL would generate aread to thisfield.
For example,

Devi ce(\ _SB. EC0) {
Name(_HI D, EI SAI D(" PNPOC09"))
Nanme(_CRS,
ResourceTenpl at e() { /'l port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
}

)
Name(_GPE, Zero) /IECis wired to bit 0 of GPE
Devi ce (SMB1l) {
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /'l EC of fset(0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x63, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x63) /1 Slave Address 0x63
Fi el d(PHOL, ByteAcc, NoLock, Preserve) {
AccessAs(Byt eAcc, 0),

TSTA, 1,
TSTB, 1,
TSTC, 5,
TSTD, 4 /1 this field spans command address 0 and 1
}
} /1 end of DEVB
} /1 end of SMB1
} /1 end of ECO

This example creates a read/write byte SVIBus device residing at dave address 0x63.
There are four fields that use two command registers (0 and 1), caled “TSTA”, “TSTB”,
“TSTC”, and “TSTD”. TSTA, TSTB and TSTC reference command register 0. TSTD
references both command registers 0 and 1. bitO of TSTD represents bit 7 of command
register O, while bits 1-3 of field TSTD represent bits 0-2 of command register 1.
Examples of generating the read/write byte protocols from ASL isillustrated below:

325

Met hod(Test) {

Store(1l, TSTA) /'l Sets TSTA, preserved TSTB and TSTC, write byte
Store(0, TSTB) /1 Clears TSTB, preserved TSTA and TSTC, write byte

St ore(0x7, TSTC) // Sets TSTC to 0111b, preserved TSTA and TSTB, wite byte
St ore(OxF, TSTD) /1 Sets TSTD to OxF, conmand registers 0 and 1

Store(TSTA, Local0) // returns 1, read byte
Store(TSTB, Local0) // returns 0, read byte
Store(TSTC, Local0) // returns 7, read byte
Store(TSTD, Local0) // returns OxF from command registers 0 and 1

15.2.3.3.1.9.3.3 Read/Write Word Protocol (WordAcc)

The SMBus Read/Write Word protocol transfers aword of data between the selected
SMBus dave address and command vaue. The command addressis defined through the

use of the AccessAg(AccessType, AccessAttribute) macro. In this case the AccessAttribute
represents the byte digned command vaue, and AccessType should be set to WordAcc.

To define aWordA cc device an operation region is generated using the SMBus address
type. Next afield is generated in the operation region using the “WordAcc” accesstype. In
the field list an AccessAs(WordAcc, command_value) macro is used to define what
command address is associated with this field. The absence of the macro assume agtarting
command vaue of 0. The SMIBus driver assumes that after the AccessAs(WordAcc,
command_value) macro is declared, the next 16-bits represent this command register. If a
field is defined that crosses over this 16-bit boundary, then the SMBus driver assumes this
fidd resdes in multiple word wide command registers with a command address va ue of
command_value+2 (for each new register) using the WordAcc protocol.

To generate awrite word protocol to thisdevice, ASL would generate awrite to this field.
To generate aread word protocol to this device, ASL would generate aread to thisfield.

15.2.3.3.1.9.3.4 Read/Write Block Protocol (BlockAcc)

The SMBus Read/Write Block protocol transfers up to a 32 byte buffer of data between
the sdlected SMBus dave address and command value. The command address is defined
through the use of the AccessAg(AccessType, AccessAttribute) macro. Inthis casethe
AccessAttribute represents the byte digned command vaue, and AccessType would be set
to BlockAcc.

To define a BlockAcc device an operation region is generated using the SMBus address
type. Next afield is generated in the operation region using the “BlockAcc” access type.
Inthefidd list an AccessAg(BlockAcc, command_value) macro is used to define what
command address is associated with this field. The absence of the macro assume a starting
command value of 0. The SMIBus driver assumes that after the AccessAS(BlockAcc,
command_value) macro is declared the command register is 32 bytes or less. Each block
fidd must gart on the acommand_val ue boundary.

326

The SMBus driver passes block datato and from ASL through the buffer data type. The
buffer is structured such that the byte count of the data to writeisin record O followed by
the buffer data. For example a5 byte buffer with the contents of 1, 2, 3, 4 would be
generated as.

Buffer(5){4, 1, 2, 3, 4}

Where the length of the buffer isits byte data width plus 1, and the firgt entry isthe length
of data (buffer length minus 1). On reads, ASL will return a buffer with the first entry set
to the number of data bytes returned. For example,

Devi ce(\ _SB. ECO) {
Name(_HI D, EI SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /'l port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1l) {
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC offset(0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x65, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x65) /1 Slave Address 0x65
Fi el d(PHO1, Bl ockAcc, NoLock, Preserve) {
AccessAs(Bl ockAcc, 0),
FLD1, 128,
AccessAs(Bl ockAcc, 0x10),
FLD2, 32
}
} /1 end of DEVB
} /1 end of SMB1
} /1 end of ECO

This example creates aread/write block SMBus device resding a dave address Ox65.
There are two fidlds that use two command registers (0 and 0x10), caled “FLD1”, and
“FLD2". Examples of generating the read/write block protocols from ASL isillugtrated
below:

327

Met hod(Test) {
Nanme(BUF1, Buffer(){8, 1, 2, 3, 4, 5 6, 7, 8}// 8 is the number of bytes
Narme(BUF2, Buffer(){4, 9, 10, 11, 12} /1 4 is the nunmber of bytes
St or e(BUF1, FLD1) /'l Sets FLDl1 SMBus device bl ock register
St or e(BUF2, FLD2) /1 Sets FLD2 SMBus device block register
Store(FLD1, LocalO) // localO contains buf: 8,1,2,3,4,5,6,7,8
Store(FLD2, Local0) // local0 contains buf: 4,9,10,11, 12

}

15.2.3.3.1.9.3.5 SMBus Memory Devices (AnyAcc)

The AnyAcc access type alows any of the Read/Write byte, word or Block protocol
transfers to be made to the selected SMBus dave address and command vaue. The
combined dave and command vaue generates a single byte granular address space. The
command address (AO-A7 of the 15-bit address) is defined through the use of the
AccessAg(AccessType, AccessAtrribute) macro. In this case the AccessAttribute represents
the byte aligned command vaue, and AccessType would be set to AnyAcc.

To define a AnyAcc device an operation region is generated using the SMBus address
type. Next afield is generated in the operation region using the “AnyAcc” accesstype. In
the fidd list an AccessA(AnyAcc, command_value) macro is used to define what
command addressis associated with this field. The absence of the macro assume agtarting
command vaue of 0. The SMBus driver assumes that after the AccessAS/AnyAcc,
command_value) macro is declared then command registers are byte-granular and lineer. If
afied is defined that crosses over a byte boundary, then the SMBus driver assumes this
field resdes in multiple command registers with a command address vaue of
command_valuet+1 (for each new register). The SMBus driver will use the most
appropriate protocol for ng the registers associated with the fieds. For example, if a
field gpans more than three bytes a read/write block protocol access can be made, while if
only spanning a byte then the read/write byte protocol can be used.

For example, a 5-byte buffer with the contents of “ACPI” would be generated as.

Buf f er () {“ACPI "}

On reads, ASL will return abuffer with the first entry set to the number of data bytes
returned. For example,

328

Devi ce(\ _SB. EC0) {
Name(_HI D, EI SAI D(" PNPOC09"))
Name(_CRS,
ResourceTenpl at e() { /'l port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
}

)
Nanme(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1l) {
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /'l EC of fset(0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x66, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x66) /1 Slave Address 0x66
Fi el d(PHOL, AnyAcc, NoLock, Preserve) {
FLD1, 512,
FLD2, 256,
FLD3, 32,
FLD4, 16,
FLD5, 8
}
} /1 end of DEVB
} /1 end of SMB1l
} /1 end of ECO

This definition creates alinear SMIBus device resding at dave address 0x66. There are Six
fields that use 102 command registers (0-101), cdled “FLD1", “FLD2" , “FLD3", “FLD4"
and “FLD5". FLD1 references command registers 0-63 (first 64 bytes) and will be
accessed by the block protocol (dataiis over 3 bytes). FLD2 represents command registers
64-95 (next 32 bytes) and will be accessed by the block command protocol (datais over 3
bytes). FLD3 represents command registers 96-99 (next four bytes) and will be accessed
by the block command protocol (datais over 3 bytes). FL D4 represents command
registers 100- 101 (next two bytes) and will be accessed by the word command protocol .
FLD5 represents command register 102 (next byte) and will be accessed by the byte
command protocol. Examples of generating the accesses from ASL isillustrated below:

Met hod(Test) {

Name (BUF1,
Nanme(BUF2,
Name (BUF3,
St or e(BUF1
St or e(BUF2
St or e(BUF3

)

, FLD2) /'l wites “Scipio Africanus”
, FLD3) /'l wites “Zam”

Buf fer () {“Hanni bal "}
Buf fer(){"“Scipio Africanus”}

Buffer(){“zam"}

FLD1) /1 writes “Hanni

St or e(OxFF12, FLD4) // sets FLD4 to
FLD5) /1l sets FLD5 to
Local 0) // local O contai
Local 0) // local 0 contai

St or e(OXEF,
St or e(FLD1,
St or e(FLD2,

Africanus”, 0, ...

}

St or e(FLD3,
St or e(FLD4,
St or e(FLD5,

Local 0) // local 0 contai
Local 0) // local O contai
Local 0) // local O contai

bal” to linear addresses for FLD1

OxFF12
OXEF

ns 64 byte
ns 32 byte

ns 4 bytes:
ns 2 bytes:
ns 1 byte:

15.2.3.3.1.9.3.6 Mixed Example (AnyAcc)
Some devices can be accessed through multiple protocols. This section gives an example
of such adevice.

Devi ce(\ SB. _ECO0) {
Nanme(_HI D, EI SAI D(" PNPOC09"))

}

Name(_CRS,

Resour ceTenpl at e() {
| O(Decodel6, 0x62, 0x62, 0, 1),

| O(Decodel6, 0x66, 0x66, O,

}
)
Name(_GPE,

Zer 0)

Devi ce (SMB1) {
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030)
Oper ati onRegi on(PHOL, SMBus, 0x67,

Devi ce(

DEVB) {

Name(_ADR, 0x67)
Fi el d(PHO1l, ByteAcc,

AccessAs(AnyAcc,
FLD1, 512,

FLD2, 256,

FLD3, 32,

AccessAs(Wor dAcc,

FLD4, 16,

AccessAs(Byt eAcc,

FLD5, 8

// end of DEVB
// end of SMB1
/'l end of ECO

to linear addresses for

buffer wth:
buf fer with:

“Zam”
OxFF12
OxEF

/1l port 0x62 and 0x66

1)

/I/ECis wired to bit

/'l EC off

set (0x80),
0x1)

0 of GPE

Query (0x30)

/] Slave Address 0x67

NoLock,

0),

0x70) ,

0x80) ,

Preserve) {

FLD3

329

to linear addresses for FLD2

“Hanni bal ", 0, ...

“Scipio

This definition creates an SMBus device using various protocols residing at dave address
0x67. There are three fields that use four command registers (0, 1, 2 and 3), caled
“FLDY1, “FLD2" and “FLD3". FLD1 references command registers 0-1 (32 bytes per
command register) and will be accessed by the byte, word and block linear protocols.

FL D2 represents command register 064 and will be accessed by the byte, word and block

330

linear protocols. FLD3 represents command register 96 and will be accessed by the byte,
word and block linear protocols. FL D4 represents command register 0x70 and will be
accessed by the word command protocol. FLD5 represents command register 0x80 and
will be accessed by the byte command protocal.

15.2.3.3.1.10 IndexField - Declare Index/Data Fields

I ndexFi el dTerm ;= I ndexFi el d(
| ndexNane, // NameString
Dat aNamne, // NameString
AccessType, /'l AccessTypeKeywor d
LockRul e, /1 LockRul eKeywor d
Updat eRul e / I Updat eRul eKeywor d

) {FieldUnitList}
Creates a series of named data objects whose data va ues are fields within a larger object
accessed by an index/data-style reference to |ndexName and DataName.

This encoding is used to define named data objects whose data vaues are fidlds within an
index/data register pair. This provides asmple way to declare register variables that occur
behind atypica index and detaregister pair.

Accessng the contents of an indexed field data object will automaticaly occur through the
DataName object by using an IndexName object digned on an AccessType boundary, with
synchronization occurring on the operation region which contains the index data variable,

and on the globa lock if specified by LockRule.

AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field term.
Thefallowing isablock of ASL sample code using I ndexField:

?? Creates an index/data register in system 1/0 space made up of 8-bit registers.
?? Creates a FETO fidd within the indexed range.

Met hod(_EX1) {
/1 define 256-byte operational region in System O space
/1 and name it Gl OO
Oper ati onRegi on (G 00, 1, 0x125, 0x100)
/1 create field named Preserve structured as a sequence
/1 of index and data bytes
Field (G 00, ByteAcc, NoLock, WiteAsZeros) {
| DX0, 8,
DATO, 8,

}
/] Create an IndexField within |IDX0O & DATO whi ch has
// FETs in the first two bits of indexed offset O,
/1 and another 2 FETs in the high bit on indexed
/'l 2f and the low bit of indexed offset 30
I ndexField (I DX0, DATO, ByteAcc, NoLock, Preserve) {

FETO, 1,

FET1, 1,

Of f set (0x2f), /'l skip to byte offset 2f
, 7, /'l skip another 7 bits
FET3, 1,

FET4, 1

}
/'l Clear FET3 (index 2f, bit 7)
Store (Zero, FET3)

}

15.2.3.3.1.11 Method - Declare Control Method

Met hodTer m ;= Met hod(
Met hodName, /I NameString
NumAr gs, // Not hing | ByteConst
SerializeRule /' / Not hi ng |

/1 SerializeRul eKeyword
) {Terniist}
Declares a named package containing a series of object references that collectively
represent a control method, which is a procedure that can be invoked to perform
computation. M ethod opens a name scope.

System software executes a control method by referencing the objects in the package in
order. For more information on control method execution, see section 5.5.3.

The current name space location used during name creation is adjusted to be the current
location on the name space tree. Any names created within this scope are “below” the
name of this package. The current name space location is assigned to the method package,
and dl name space references that occur during control method execution for this package
are rldive to that location.

If amethod is declared as Serialized, an implicit mutex associated with the method object
isacquired at SyncLeve 0. The seridize-rule can be used to prevent re-entering of a
method. Thisisespecidly useful if the method crestes name space objects. Without the

331

332

seridize-rule, the re-entering of amethod will faill when it atempts to creete the same
name space object.

Also note that al name space objects created by a method have temporary lifetime. When
method execution exits, the created objects will be destroyed.

Thefollowing block of ASL sample code shows a use of M ethod for defining a control
method that turns on a power resource.

Met hod(_ON) {

Store (One, Gl O |DEP) /] assert power

Sl eep (10) /1 wait 10ns

Store (One, Gl O |IDER) /1 de-assert reset#
Stall (10) /1 wait 10us

Store (Zero, Gl O.|DEl) /1 de-assert isolation

}

15.2.3.3.1.12 Mutex - Declare Synchronization / Mutex Object

Mut exTer m := Mut ex(
Mut exNane, // NameString
SynclLevel /1 Byt eConst

)
Creates a data mutex synchronization object named MutexName, with level from O to 15
specified by SyncLevel.

A synchronization object provides a control method with a mechanism for waiting for
certain events. To prevent deadlocks, wherever more than one synchronization object must
be owned, the synchronization objects must dways be released in the order opposite the
order in which they were acquired. The SyncLevel parameter declares the logica nesting
level of the synchronization object. All Acquire terms must refer to a synchronization

object with an equal or greater SyncLevel to current level, and dl Release terms must refer
to a synchronization object with equa or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutudly exclusve ownership. Ownership
Isacquired usng an Acquire term and is released using a Rel ease term. Ownership of a
Mutex must be relinquished before completion of any invocation. For example, the top
level control method cannat exit while till holding ownership of a Mutex. Acquiring
ownership of aMutex can be nested. The SyncLevel check isnot performed on a Mutex
when the ownership count is nesting.

The SyncLevel of athread before acquiring any mutexesis zero. The SyncLevd of the
goba lock (\ GL) iszero. A method marked seridized has an inherent mutex of
SyncLeve 0.

333

15.2.3.3.1.13 OperationRegion - Declare Operation Region

OpRegi onTer m ;= OperationRegi on(
Regi onNarme, // NameString
Regi onSpace, /| Regi onSpaceKeywor d
Offset, /| Ter mAr g=>DWor dConst

Lengt h /1 Ter mAr g=>DWor dConst

)
Declares an operation region. Offset is the offset within the selected RegionJpace & which
the region starts (byte-granular), and Length isthe length of the region in bytes.

An Operation Region is atype of data object where read or write operations to the data
object are performed in some hardware space. For example, the Definition Block can
define an Operation Region within abus, or system 10 space. Any reads or writes to the
named object will resultsin accesses to the 1O space.

Operation regions are regions in some space that contain hardware registers for exclusive
use by ACPI control methods. In general, no hardware register (at least byte granular)
within the operation region accessed by an ACPI control method can be shared with any
accesses from any other source, with the exception of using the Globa Lock to sharea
region with the firmware. The entire Operation Region can be dlocated for exclusve use
to the ACPI subsystem in the host OS.

Operation Regions have “virtud content” and are only accessible viaField objects
Operation Region objects may be defined down to actua bit controlsusing Field data
object definitions. The actud bit content of aField are bits from within alarger Buffer

that are normdized for that field (i.e., shifted down and masked to the proper length), and
as such the data type of aField isBuffer. Therefore fields which are 32 bits or lessin Sze
may be read and stored as Integers.

An Operation Region object implicitly supports Mutex synchronization. Updates to the
object, or aField data object for the region, will automaticaly synchronize on the
Operation Region object; however, a control method may aso explicitly synchronizeto a
region to prevent other accesses to the region (from other control methods). Note that,
according to the control method execution modd, control method execution is nor-
preemptive. Because of this, explicit synchronization to an Operation Region needsto be
done only in cases where a control method blocks or yields execution and where the type
of regigter usage requires such synchronization.

Origindly there were five Operation Region types specified in ACPI:
0 = SysemMemory
1=SysemlO
2 =PCl_Config
3 = EmbeddedControl
4 =SMBus

334

These are now extended to include vendor-defined Operation Regions, with 0x80 to OxFF
user defined.

The following example ASL code shows the use of Oper ationRegion combined with
Field to describe IDE 0 and 1 controlled through generd 10 space, using one FET.

Oper ati onRegi on (Gl O, System O, 0x125, 0x1)
Field (Gl O ByteAcc, NoLock, Preserve) {

| DElI, 1, // 1 DElI SO_EN - isolation buffer
| DEP, 1, /1 1 DE_PWR_EN - power
I DER, 1 /1 1 DERST#_EN - reset#

}

15.2.3.3.1.14 PowerResource - Declare Power Resource

Power ResTerm : = Power Resour ce(
Resour ceNanme, /I NameString
Syst enmLevel , /1 Byt eConst
Resour ceOr der / 1 Wor dConst

) {ObjectList}
Declares a power resource. Power Resour ce opens a name scope.
For a definition of the Power Resour ce term, see section 7.1.

15.2.3.3.1.15 Processor - Declare Processor

Processor Term ;= Processor(
Processor Nane, // NameString
Processor | D, / 1 Byt eConst
PBI ockAddr ess, /| DWor dConst
Pbl ockLengt h /] Byt eConst

) {ObjectList}

Declares a named processor object. Processor opens a name scope. Each processor is
required to have a unique Processor D vaue from any other Processor D vaue.

The ACPI BIOS declares one processor object per processor in the system under the\ PR
name space. PBlockAddress provides the system |O address for the processors register
block. Each processor can supply adifferent such address. PBlockLength isthe length of
the processor register block, in bytes which is either O (for no P_BLK) or 6. With one
exception, al processors are required to have the same PBlockLength. The exception is
that the boot processor can have a non-zero PBlockLength when dl other processors have
azero PBlockLength.

The following block of ASL sample code shows a use of the Processor term.

Processor (

\ _PR. CPUO, /1l nanme space name

1,

0x120, /1 PBlk system | O address
6 /1 PBIl kLen

)
{}

15.2.3.3.1.16 ThermalZone - Declare Thermal Zone

Ther mal ZoneTer m := Ther mal Zone(
Ther mal ZoneNane // NameString

) {ObjectList}
Declares anamed Therma Zone object. ThermalZone opens a name scope.
Each use of a ThermalZone term declares one therma zone in the system. Each thermd
zonein asysem isrequired to have a unique Ther malZoneName

For sample ASL code that uses a Thermal Zone statement, see section O.

15.2.3.3.2 Name Space Modifiers
The name space modifiers are as follows:

Table 159 Name Space Modifiers

335

ASL Statement Description

Alias Definesaname dias

Name Defines agloba name and attaches a buffer, literd data
item, or packagetoiit.

Scope Declares the placement of one or more object namesin
the ACPI name space when the definition block that
contains the Scope statement is loaded.

15.2.3.3.2.1 Alias - Declare Name Alias

AliasTerm = Alias(
Sour ceObj ect, // NameString
Al i asObj ect /1 NameString

)
Creates a new name, AliasObject, which refers to and acts exactly the same as
SourceObject.

AliasObject is created as an dias of SourceObject in the name space. The SourceObject

name must dready exist in the name space. If the diasis to a name within the same
definition block the SourceObject name must be logicaly ahead of this definition in the
block. The following example shows use of an Alias term:

336

Al'i as(\ SUS. SET. EVEN, SSE)

15.2.3.3.2.2 Name - Declare Named Object

NameTer m : = Nanme(
Obj ect Nane, // NameString
Obj ect / | Dat aObj ect

)
Attaches Object to ObjectName in the Globad ACPI name space.

This encoding isto creste ObjectName in the name space, which references the Object.

Thefollowing example creates the name PTTX in the root of the name space that
references a package.

Name(\ PTTX /'l Port to Port Translate Table
Package() { Package() { 0x43, 0x59 }, Package() { 0x90, Oxff }}

The following example creates the name CNT in the root of the name space that references
an integer data object with the vaue 5.

Name(\ CNT, 5)

15.2.3.3.2.3 Scope - Declare Name Scope
ScopeTerm 1= Scope(
Locati on // NameString
) {ObjectlList}
Gives a base scope to a collection of objects. All object names defined within the scope
act relative to Location. Note that Location does not have to be below the surrounding
scope. Note also that the Scope term does not create objects, but only locates objects in the

name space; the located objects are created by other ASL terms.

The Scope term alters the current name space location to Location. This causes the defined
objectswithin TermList to occur relative to the new location in the name space.

Thefollowing example ASL code

Scope(\PClI 0) {

Name(X, 3)

Scope(\) {
Met hod(_RQ { Return(0) }

}lf\lame(’\Y, 4)
}

places the defined objectsin ACPI name space as shown in the following:

\ PCI 0. X
_RQ
\'Y

337

15.2.3.4 Opcode Terms

There are two types of ASL opcode terms: Type 1 opcodes and Type 2 opcodes.

?? A Typel opcode term can only be used standing alone on aline of ASL code; because
these types of terms do not return a value, they cannot be used asatermin an

expresson.

?? A Type2 opcode term can be used in an expression because these types of terms return
avdue. When used in an expression the argument that names the object in which to
store the result can be optional.

Note that in the opcode definitions below, when the definition says “result is stored in” this
literdly means that the Stor e operator is assumed and the “execution result” isthe Sour ce
operand to the Stor e opcode.

15.2.3.4.1 Type 1 Opcodes

TypelOpcode

:= BreakTerm | BreakPointTerm | Fatal Term| IfElseTerm |
LoadTerm | NoOpTerm | NotifyTerm | ReleaseTerm |
Reset Term | ReturnTerm | Signal Term | SleepTerm |
Stall Term | UnloadTerm | WhileTerm

The Type 1 opcodes are listed in the following table.

Table 15-10 Type 1 Opcodes

ASL Statement Description

Break Stop executing the current code package at this point

BreakPoint Used for debugging. Stops execution in the debugger

Else Else

Fatal Fatal check

If If

Load Load differentiating definition block

Noop No operation

Notify Notify the OS that a specified notification vaue for a
NotifyObject has occurred

Release Reease a synchroni zation object

Reset Reset a synchronization object

Return Return from a control method, optiondly setting areturn value

Sgnd Signd a synchronization object

Seep Seep n milliseconds (yields the processor)

Sl Delay n microseconds (does not yield the processor)

Unload Unload differentiating definition block

While While

338

15.2.3.4.1.1 Break - Break

BreakTerm ;= Break

The break operation causes the current package execution to complete.

15.2.3.4.1.2 BreakPoint - BreakPoint

Br eakPoi nt Term ;= BreakPoi nt

Used for debugging, the Breakpoint opcode stops the execution and entersthe AML
debugger. In the retail verson of the interpreter, Break Point is equivadent to Noop.

15.2.3.4.1.3 Else - Else Operator
El seTerm := Nothing | <Else {TernList}>

Inan If tarm, if Predicateevduatesto O, it isfase, and theterm lig inthe Else termis
executed. If Predicate evaluatesto Not O on the I f term, then it is considered true, and the
term lig in the El se term is not executed.

Thefollowing example checks LocalO to be zero or non-zero. On non-zero, CNT is

incremented; otherwise, CNT is decremented.
If (Local 0) {
I ncrement (CNT)

} Else {
Decrenent (CNT)
}

15.2.3.4.1.4 Fatal - Fatal Check

Fat al Term ;= Fatal (
Type, /1 Byt eConst
Code, /| DWor dConst
Arg /| Ter mAr g=>I nt eger

)
This operation is used to inform the OS that there has been an OEM -defined fatd error. In
response, the OS must log the fatal event and perform a controlled OS shutdown in a
timey fashion.

15.2.3.4.1.5 If —If Operator

I fTerm = f(
Predi cate /| Ter mAr g=>I nt eger
) {Terniist}

Predicateis evaduated as an integer. If the integer is nonzero, the term ligt of the If termis
executed.

The following examples dl check for bit 3in L ocalO being set, and clear it if set.

/'l example 1
if (And(Local 0, 4)) {
XOr (Local 0, 4, Local 0)

}

/'l exanple 2

Store(4, Local 2)

if (And(Local 0, Local2)) {

XOr (Local 0, Local 2, Local 0)
}

15.2.3.4.1.6 Load - Load Differentiated Definition Block

LoadTerm ;= Load(
Obj ect, // NameString
DDBHandl e /1 Super Name

)
Performs arun time load of a Definition Block. The Object parameter can either refer to an

operation region field or an operation region directly. If the object is an operation region,
the operation region must be in SysemMemory space. The Definition Block should
contain a DESCRIPTION_HEADER of type SSDT or PSDT. The Definition Block must
be totally contained within the supplied operationd region or operation region field. This
table is read into memory, the checksum is verified, and then it is loaded into the ACPI
name space. The DDBHandle parameter is the handle to the Differentiating Definition
Block that can be used to unload the Definition Block at afuture time.

The OS can dso check the OEM Table ID and Revision ID against a database for a newer
revison Definition Block of the same OEM Table ID and load it instead.

The default name space location to load the Definition Block is rdative to the current
name space. The new Definition Block can override this by specifying absolute names or
by adjusting the name space location usng the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation,
the Definition Block has been loaded. The control methods defined in the Definition Block
are not executed during load time.

15.2.3.4.1.7 Noop Code - No Operation

NoOpTer m ;= Noop
This operation has no effect.
15.2.3.4.1.8 Notify - Notify
Noti fyTerm 1= Notify(
Obj ect, /| Super Name

Noti fi cati onVal ue /| Ter mMAr g=>Byt eConst

)
Notifies the OS that the NotificationVal ue for the Object has occurred. Object must be a
reference to a device or therma zone object.
Notification values are determined by the Object type. For example, the notify vauesfor a
thermal zone object are different from the notify vaues used for adevice object.
Undefined notification vaues are treated as reserved and are ignored by the OS.
For lists of defined Notification values, see section 5.6.3.

339

340

15.2.3.4.1.9 Release - Release a Mutex Synchronization Object

Rel easeTer m ;= Rel ease(
SyncObj ect /| Super Name

)
SynchObject must be amutex synchronization object. If the mutex object is owned by the
current invocation, ownership for the Mutex is released once. It isfata to release
ownership on aMutex unlessit is currently owned. A Mutex must be totaly released
before an invocation completes.

15.2.3.4.1.10 Reset - Reset an Event Synchronization Object

Reset Term ;= Reset (
SyncObj ect /| Super Name

)
SynchObject must be an Event synchronization object. Thisencoding is used to reset an
event synchronization object to anon-signaled state. See dso the Wait and Signd function
operator definitions.

15.2.3.4.1.11 Return - Return

Ret urnTerm 1= Return(
Arg /| Ter mAr g=>Dat aObj ect

)
Returns contral to the invoking control method, optionally returning a copy of the object
namedin Arg.

15.2.3.4.1.12 Signal - Signal a Synchronization Event
Si gnal Term ;= Signal (
SyncObj ect /1 Super Name

)
SynchObject must be an Event synchronization object. The Event object is signaed once,
alowing one invocation to acquire the event.

15.2.3.4.1.13 Sleep - Sleep

Sl eepTerm ;= Sleep(
MI1i Secs /| Ter mAr g=>I nt eger

)
The Sleep term is used to implement long-term timing requirements. Execution is delayed
for a least the required number of milliseconds. The implementation of Sleep isto round
the request up to the closest deep time supported by the OS and relinquish the processor.

15.2.3.4.1.14 Stall - Stall for a Short Time

Stall Term 1= Stall(
M croSecs /| Ter MAr g=>I nt eger

)

341

The Stall term is used to implement short-term timing requirements. Execution is delayed
for at least the required number of microseconds. The implementation of Stall is OS-
specific, but must not relinquish control of the processor. Because of this, delays longer
than 100 microseconds must use Sleep ingtead of Stall.

15.2.3.4.1.15 Unload - Unload Differentiated Definition Block

Unl oadTerm ;= Unl oad(
DDBHandl e /1 Super Name

)
Performs a run time unload of a Definition Block thet was loaded using aL oad term.
Loading or unloading a Definition Block is a synchronous operation, and no control
method execution occurs during the function. On completion of the Unload operation, the
Definition Block has been unloaded (al the name space objects created as aresult of the
corresponding Load operation will be removed from the name space).

15.2.3.4.1.16 While - While
Whi | eTerm = Wil e(
Predi cate /| Ter mMAr g=>I nt eger
) {TernlList}

Predicateisevaduaed as an integer. If the integer is non-zero, theligt of termsin
TermLig is executed. The operation repeats until the Predicate evauates to zero.

15.2.3.4.2 Type 2 Opcodes

Type2Opcode = AcquireTerm | AddTerm | AndTerm | Concat Term |
CondRef Of Term | DecTerm | DerefOf Term | DivideTerm |
Fi ndSet LeftBit Term | FindSetRi ghtBitTerm | FronBCDTerm |
IncTerm | IndexTerm | LAndTerm | LEqual Term |
LGreaterTerm | LGreaterEqual Term | LLessTerm |
LLessEqual Term | LNot Term | LNotEqual Term | LOrTerm |
MatchTerm | MultiplyTerm| NAndTerm | NO Term| NotTerm |
Obj ect TypeTerm | OrTerm| RefOf Term| ShiftLeftTerm |
ShiftRight Term| SizeOTerm | StoreTerm| SubtractTerm|
ToBCDTerm | WaitTerm | XorTerm | UserTerm

The ASL termsfor Type 2 Opcodes are listed in the following table.
Table15-11 Type 2 Opcodes

ASL Statement Description

Acquire Acquire a synchronization object
Add Add two vaues

And Bitwise And

Concatenate Concatenate two strings
CondRefOf Conditional reference to an object
Decrement Decrement avaue.

DerefOf Dereference of an object reference

342

ASL Statement Description

Divide Divide

FHndSetLeftBit Index of first set Lsb
FHndSetRightBit Index of first set Msb
FromBCD Convert from BCD to numeric
Increment Increment avaue

Index Reference the nth dement of a package
LAnd Logicd And

LEqua Logica Equd

LGreater Logicd Greater

L GreaterEqual Logica Not less

LLess Logicd Less

LLessEqua Logica Not greater

LNot Logica Not

LNotEqual Logica Not equa

LOr Logica Or

Match Search for match in package array
Multiply Multiply

NANnd Bitwise Nand

NOr Bitwise Nor

Not Bitwise Not

ObjectType Type of object

Or Bitwise Or

RefOf Reference to an object
ShiftLeft Shift vdue left

ShiftRight Shift vdueright

SizeOf Get the Sze of abuffer, string, or package
Store Store vaue

Subtract Subtract values

ToBCD Convert numeric to BCD
Wait Wait

Xor Bitwise Xor

15.2.3.4.2.1 Acquire - Acquire a Mutex Synchronization Object

AcquireTerm

= Acqui re(
SyncObj ect, /| Super Name
Ti meout Val ue /1 Wor dConst

) => Bool ean

// Ones neans ti med-out

SynchObject must be a mutex synchronization object. It refersto the mutex to be
acquired.

Ownership of the Mutex is obtained. If the Mutex is dready owned by a different
invocation, the processor is relinquished until the owner of the Mutex releasesit or until at

least TimeoutValue milliseconds have elapsed. A Mutex can be acquired more than once
by the same invocation.

This operation returns a non-zero vaue if atimeout occurred and the mutex ownership was
not acquired. A TimeoutValue of OXFFFF indicates that there is no time out and the
operation will wait indefinitely.

15.2.3.4.2.2 Add - Add

AddTer m := Add(
Addend1, /| Ter mMAr g=>I nt eger
Addend2, /| Ter mMAr g=>I nt eger
Resul t /1 Not hing | Super Nane

) => Integer
Addendl and Addend?2 are evaluated as integer data types and are added, and the result is
optionaly stored into Result. Overflow conditions are ignored.

15.2.3.4.2.3 And - Bitwise And

AndTer m 1= And(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2, /| Ter mAr g=>I nt eger
Resul t /1 Not hing | Super Name

) => Integer
Sourcel and Source2 are evaluated as integer data types, abit-wise AND is performed,
and the result is optiondly stored into Result.

15.2.3.4.2.4 Concatenate - Concatenate

Concat Term ;= Concat enat e(
Sour cel, /| Ter mMAr g=>Conput at i onal Dat a
Sour ce2, /| Ter mMAr g=>Conput at i onal Dat a

Resul t // Not hing | Super Nane
) => Conput ati onal Dat a

Sourcel and Source? are evaluated. Sourcel and Source2 must be of the same data type
(that is, both integers, both strings, or both buffers). Source2 is concatenated to Sourcel
and the result datais optionally stored into Resullt.

Table 15-12 Concatenate Data Types

Sourcel Data Type Source2 Data Type Result Data Type
Integer Integer Buffer
String String String
Buffer Buffer Buffer

344

15.2.3.4.2.5 CondRefOf - Conditional Reference Of

CondRef Of Ter m ;= CondRef O (
Sour ce, /| Super Name
Desti nation /1 Super Name

) => Bool ean
Attempts to set Destination to refer to Source. The Source of this operation can be any
object type (e.g., data package, device object, etc.). On success, the Destination object is
et to refer to Source and the execution result of this operation is the constant Ones object.
On failure the execution result of this operation is the constant Zer o object and the
Destination object is unchanged. This can be used to reference items in the name space
which may gppear dynamicdly (e.g., from adynamicaly loaded differentiation definition
block).
CondRefOf is equivaent to RefOf except that if the Source object does not exig, itis
fatd for RefOf but not for CondRefOf.

15.2.3.4.2.6 Decrement - Decrement

DecTerm ;= Decrenment (
Addend /| Super Name

) => Integer

This operation decrement the Addend by one and the result is stored back to Addend.

15.2.3.4.2.7 DerefOf — Dereference Of Operator
Der ef Of Ter m 1= DerefOf (
Sour ce /1 Ter mMAr g=>0bj ect Ref erence

) => Obj ectReference

Returns the object referred by the Source object reference. The object returned can be any
object type (for example, a package, a device object, and so on).

15.2.3.4.2.8 Divide - Divide

Di vi deTerm := Divide(
Di vi dend, /| Ter mAr g=>I nt eger
Di vi sor, /| Ter mMAr g=>I nt eger
Remai nder, // Not hing | Super Nane
Resul t /1 Not hing | Super Name
) => Integer //returns Result

Dividend and Divisor are evauated as integer data. Dividend isdivided by Divisor, then
the resulting remainder is optionaly stored into Remainder and the resulting quotient is
optionaly stored into Result. Divide-by-zero exceptions are fatd.

15.2.3.4.2.9 FindSetLeftBit — Find Set Left Bit

Fi ndSet LeftBit Term = FindSetLeftBit(
Sour ce, /| Ter mAr g=>I nt eger
Resul t // Not hing | Super Name
) => Integer

Sourceis evauated as integer data type, and the one-based bit location of the firss MSh
(most sgnificant st bit) is optionaly stored into Result. The result of O means no bit was

345

=, 1 means the left-mogt bit sat isthe fird bit, 2 means the left-most bit set is the second
bit, and so on.

15.2.3.4.2.10 FindSetRightBit - Find Set Right Bit

Fi ndSet Ri ght Bi t Term ;= FindSet Ri ghtBit(
Sour ce, /| Ter mMAr g=>I nt eger
Resul t /1 Not hing | Super Name

) => Integer
Source isevauated asinteger datatype, and the one-based bit location of the most LSb (
least Sgnificant set bit) is optionaly stored in Result. The result of O means no bit was s,
32 means the first bit set isthe 32" bit, 31 means the first bit set is the 31% bit, and so on.

15.2.3.4.2.11 FromBCD - Convert from BCD

FromBCDTer m 1= FronmBCD(
BCDval ue, /| Ter mAr g=>I nt eger
Resul t // Not hing | Super Name

) => Integer

The FromBCD operation is used to convert BCDValue to a numeric format and store the
numeric valuein Result.

15.2.3.4.2.12 Increment - Increment
IncTerm ;= Increment (
Addend /| Super Name
) => Integer

Equivdent to Add(Addend, 1, Addend)

15.2.3.4.2.13 Index - Index

I ndexTerm ;= I ndex(
Sour ce, /1 Ter mAr g=>
/1 <BufferTerm | PackageTernm>
I ndex, /| Ter mAr g=>I nt eger
Desti nation /I Nothing | SuperName

) => Obj ect Reference
Sourceis evaluated to either buffer or package data type. Index is evauated to an integer.
The object at Index within Source is optiondly stored as areference into Destination. The
following example ASL code shows away to use the | ndex term to Store into aloca
variable the sixth element of the first package of a set of nested packages:

346

Name(| Q0D, Package() {
Package() {
0x01, OxO03F8, 0x03F8, 0x01, 0x08, 0x01,
0x25, OxFF, OxFE, 0x00, 0x00

b,

Package() {

0x01, Ox02F8, O0x02F8, 0x01, 0x08, 0x01,
0x25, OxFF, OxBE, 0x00, 0x00

b,

Package() {

0x01, Ox03E8, O0x03E8, 0x01, 0x08, 0x01,
0x25, OxFF, OxFA, 0x00, 0x00

},

Package() {

0x01, Ox02E8, O0x02E8, 0x01, 0x08, 0x01,
0x25, OxFF, O0xBA, 0x00, 0x00

b

Package() {

0x01, 0x0100, Ox03F8, 0x08, 0x08, 0x02,
0x25, 0x20, O0x7F, 0x00, 0x00,

})
/1Get the 6'" element of the first package

St or e(DeRef Of (|1 ndex(DeRef Of (1 ndex(1 0COD, 0)), 5)), Local0)

The following example ASL code shows away to store into the 3 byte of a buffer:
Name(BUFF, Buffer() {
0x01, 0x02, 0x03, 0x04, 0x05
})

//Store 0x55 into the third byte of the buffer
St or e(0x55, | ndex(BUFF, 2))

15.2.3.4.2.14 LAnNd - Logical And

LAndTer m ;= LAnd(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mAr g=>I nt eger

) => Bool ean
Sourcel and source2 are evauated asintegers. If both values are non-zero, the constant

object Ones isreturned, otherwise the constant object Zero isreturned.

15.2.3.4.2.15 LEqual - Logical Equal

LEqual Term ;= LEqual (
Sour cel, /| Ter MAr g=>I nt eger
Sour ce2 /| Ter mAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evauated as integers. If the values are equd, the constant object
Ones isreturned; otherwise, the constant object Zero is returned.

15.2.3.4.2.16 LGreater - Logical Greater

LGreaterTerm 1= LGreater(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mAr g=>I nt eger

) => Bool ean

Sourcel and Source2 are evauated asintegers. If Sourcel is greater than Source2, the
constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.17 LGreaterEqual - Logical Greater Than Or Equal

LGr eat er Equal Term ;= LGreater Equal (
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evauated asintegers. If Sourcel is greater than or equd to
Source2, the constant object Ones isreturned; otherwise, the constant object Zero is
returned.

15.2.3.4.2.18 LLess -Logical Less

LLessTerm := LLess(
Sour cel, /| Ter mAr g=>I nt eger
Sour ce2 /| Ter MAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evauated asintegers. If Sourcel islessthan Source2, the
constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.19 LLessEqual - Logical Less Than Or Equal

LLessEqual Term ;= LLessEqual (
Sour cel, /| Ter mAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger

) => Bool ean

Sourcel and Source2 are evauated asintegers. If Sourcel islessthan or equd to Source2,

then the constant object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.20 LNot - Logical Not

LNot Term : = LNot (
Sour ce, /| Ter mAr g=>I nt eger
) => Bool ean

Sourcel isevaduated as an integer. If the valueis nontzero, the constant object Zero is
returned; otherwise, the constant object Ones is returned.

15.2.3.4.2.21 LNotEqual - Logical Not Equal

LNot Equal Term : = LNot Equal (
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evauated asintegers. If Sourcel isnot equa to Source2, then
the constant object Ones is returned; otherwise, the congtant object Zero is returned.

15.2.3.4.2.22 LOr - Logical Or
LOr Term 1= LOr (
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
) => Bool ean

347

348

Sourcel and Source2 are evauated asintegers. If @ther vauesis non-zero, the constant
object Ones isreturned; otherwise, the constant object Zero is returned.

15.2.3.4.2.23 Match - Find Object Match
Mat chTerm ;= Mat ch(

Sear chPackage, /| Ter mMAr g=>Package

Op1, /1 Mat chOpKeywor d

Mat chObj ect 1, /| Ter mMAr g=>I nt eger

Op2, /1 Mat chOpKeywor d

Mat chObj ect 2, /| Ter mMAr g=>I nt eger

Startl ndex /| Ter mMAr g=>I nt eger
) => Ones | I|nteger

SearchPackage is evauated to a package object and is treated as a one-dimendon array. A
comparison is performed for each eement of the package, sarting with the index value
indicated by Startindex (0 isthe first ement). If the dement of SearchPackage being
compared againg iscdled P[], then the comparison is.

if (P[i] Opl MatchObjectl) and (P[i] Op2 MatchObject2) then Match =>iis
returned.
If the comparison succeeds, the index of the eement that succeeded is returned; otherwise,
the congtant object Ones is returned.
Op1 and Op2 have the following vaues and meanings listed in the following teble.

Table 15-13 Match Term Operator Meanings

Operator Encoding | Macro
TRUE - adon't care, dways returns TRUE 0 MTR
EQ - returns TRUE if P[i] == MatchObject 1 MEQ
LE - returns TRUE if P[i] <= MatchObject 2 MLE
LT - returns TRUE if F[i] < MatchObject 3 MLT
GE - reurns TRUE if F{i] >= MatchObject 4 MGE
GT - returns TRUE if F[i] > MatchObject 5 MGT

Following are some example uses of Match:

349

Name(P1,
Package() {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

/1 match 1993 == P1[i]
Mat ch(Pl, MEQ, 1993, MIR, 0, 0)// -> 7, since P1[7] == 1993

/1 match 1984 == P1[i]
Match(P1, MEQ 1984, MIR, 0, 0)// -> ONES (not found)

/1 match Pi[i] > 1984 and P1[i] <= 2000
Mat ch(P1, MGT, 1984, M.E, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

/1 match P1[i] > 1984 and P1[i] <= 2000, starting with 3" el ement
Mat ch(P1, MGT, 1984, ME, 2000, 3) // -> 3, first match at or past Start

15.2.3.4.2.24 Multiply - Multiply

Mul tiplyTerm = Ml tiply(
Mul ti plicand, /| Ter mMAr g=>I nt eger
Mul tiplier, /| Ter mMAr g=>I nt eger
Resul t // Not hing | Super Nane

) => Integer
Multiplicand and Multiplier are evaluated asinteger data types. Multiplicand is multiplied
by Multiplier, and the result is optionaly stored into Result. Overflow conditions are
ignored.

15.2.3.4.2.25 NAnNd - Bit-wise NAnd

NAndTer m : = NAnd(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mAr g=>I nt eger
Resul t /1 Not hing | Super Name

) => Integer
Sourcel and Source2 are evauated asinteger deta types, a bit-wise NAND is performed,
and the result is optionaly stored in Result.

15.2.3.4.2.26 NOr - Bitwise NOr

NOr Ter m = NOr (
Sour cel, /| Ter mAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
Resul t // Not hing | Super Nane

) => Integer

Sourcel and Source? are evaluated as integer data types, abit-wise NOR is performed,
and theresult isoptiondly stored in Result.

15.2.3.4.2.27 Not - Not

Not Ter m ;= Not (
Sour ce, /| Ter mAr g=>I nt eger
Resul t // Not hing | Super Nane
) => Integer

Sourcel is evauaed as an integer datatype, abit-wise NOT is performed, and the result is
optionaly stored in Resullt.

350

15.2.3.4.2.28 ObjectType - Object Type
Obj ect TypeTerm ;= Obj ect Type(
Obj ect /| Super Name
) => Integer

The execution result of this operation is an integer that has the numeric vaue of the object
type for Object. The object type codes are listed in the following table. Note that if this
operation is performed on an object reference such as one produced by the Alias, I ndex or
RefOf statements, the object type of the base object isreturned. For typeless objects such
as scope names, type vaue “Uninitialized” is returned.

Table15-14 Values Returned By the ObjectType Oper ator

Valu | Meaning

e

0 Uninitidized

1 I nteger

2 String

3 Buffer

4 Package

5 FHdd Unit

6 Device

I Event

8 Method

9 Mutex

10 Operation Region
11 Power Resource
12 Processor

13 Thermd Zone
14 Buffer Held

15 DDB Handle

16 Debug Object
>16 | Resarved

The ObjectType of namespace objects whose primary purposeisto act as a container is
Uninitialized. For example:
ObjectType(_SB) ==

The ObjectType of an object "reference” isthe object type of the referenced object. For
example:

Name(ABCD, “Thisisagring’)

351

Name(XY Z, RefOf(ABCD))
ObjectType(XYZ) is equal to ObjectType(ABCD)

The argument to ObjectType() must be SuperName, so ObjectType(Index(Buffer, Index,))
isillegd.

15.2.3.4.2.29 Or - Bit-wise Or
O Term = O (

Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mAr g=>I nt eger
Resul t /1 Not hing | Super Nane

) => Integer
Sourcel and Source2 are evauated asinteger data types, a bit-wide OR is performed, and
the result is optionaly stored in Resullt.

15.2.3.4.2.30 RefOf - Reference Of

Ref Of Ter m ;= Ref OF (
Obj ect /| Super Name

) => Obj ectReference
Returns an object reference to Object. Object can be any object type (for example, a
package, a device object, and so on).
The primiary purpose of RefOf() isto allow the reference of an object to be passed to a
method as an argument without the object being evauated at the time of method
invocation.
If the Object does not exigt, the result of a RefOf operation isfatal. Use the CondRefOf
term in cases where the Object might not exig.

15.2.3.4.2.31 ShiftLeft - Shift Left

ShiftLeft Term = ShiftLeft(
Sour ce, /| Ter mAr g=>I nt eger
Shi ft Count /| Ter MAr g=>I nt eger

Resul t // Not hing | Super Nane
) => Integer

Source and ShiftCount are evaluated as integer data types. Source is shifted left with the
least Sgnificant bit zeroed ShiftCount times. The result is optionally stored into Resullt.

15.2.3.4.2.32 ShiftRight - Shift Right

Shi ft Ri ght Term ;= ShiftRight(
Sour ce, /| Ter mAr g=>I nt eger
Shi ft Count /| Ter mAr g=>I nt eger
Resul t // Not hing | Super Name

) => Integer
Source and ShiftCount are evaluated as integer data types. Source is shifted right with the
mogt significant bit zeroed ShiftCount times. The result is optionally stored into Resullt.

352

15.2.3.4.2.33 SizeOf - SizeOf Data Object

Si zeOf Term = SizeOf (
Dat aObj ect /1 Super Nane=>Dat aObj ect

) => Integer
Returns the sze of abuffer, sring, or package data object. For a buffer it returnsthe size
in bytes of the data. For adtring, it returns the size in bytes of the string NOT counting the
trailing NULL. For a package, it returns the number of eements.

15.2.3.4.2.34 Store - Store

StoreTerm 1= Store(
Sour ce, /| Ter mMAr g=>Dat aObj ect
Destination /'] Super Name
) => Dat aObj ect

This operation evauates Sour ce converts to the data type of Destination and writesthe
results into Destination. If the Destination is of the type Uninitidized, then the Destination
object isinitidized as shown in the following table.

Table15-15 Store Operator Initialization Data Typesfor Uninitialized Destinations

Data Type Description

Integer Dedtination initidized as integer.
Buffer Dedtindtion initidized as buffer.
String Dedtination initidized as gring.

The Buffer datatype is afixed length data type. If the source argument has a grester length
than the destination Sze, extra data are truncated. If the source argument has asmaller
length than the degtination Size, the rest of the destination data are zeroed. Storesto
Operationd Region Field data types may relinquish the processor depending on the region
type.

All stores (of any type) to the constant zero, constant one, or constant ones object are not
allowed. Storesto read-only objects are fatal. The execution result of the operation isthe
same as the data written to Destination.

The following example creates the name CNT that references an integer data object with
the value 5 and then stores CNT to L ocal 0. After the Store operation, L ocalO is an integer

object with the value 5.
Name(CNT, 5)
St or e(CNT, Local 0)

15.2.3.4.2.35 Subtract - Subtract

Subtract Term ;= Subtract (
Addendl, /| Ter mAr g=>I nt eger
Addend2, /| Ter mMAr g=>I nt eger
Resul t // Not hing | Super Nane

) => Integer

353

Addendl and Addend?2 are evaluated as integer data types. Addend?2 is subtracted from
Addend1, and the result is optiondly stored into Result. Underflow conditions are ignored.

15.2.3.4.2.36 ToBCD -Convertto BCD

ToBCDTer m ;= ToBCD(
Val ue, /| Ter mMAr g=>I nt eger
Resul t /1 Not hing | Super Name

) => Integer

The ToBCD operation is used to convert Value from anumeric format to a BCD format
and optiondly store the numeric valuein Result.

15.2.3.4.2.37 Wait - Wait for a Synchronization Event
WAi t Term = Wit (
SyncObj ect, /1 Super Name
Ti meout Val ue /| Ter mAr g=>I nt eger
) => Bool ean

SynchObject must be an event synchronization object. The calling method blocks waiting
for the event to be sgnaed.

The pending signa count is decremented. If there is no pending sgna count, the processor
isrdinquished until asigna count is posted to the Event or until a least TimeoutValue
milliseconds have eapsed.

This operation returns a non-zero value if atimeout occurred and a Sgna was not
acquired. A TimeoutValue of OxFFFF indicates that thereis no time out and the operation
will wait indefinitely.

15.2.3.4.2.38 XOr - Bitwise XOr
XOr Term 1= XOr (
Sour cel, /| Ter mAr g=>I nt eger
Sour ce2 /| Ter mAr g=>I nt eger
Resul t /I Not hing | SuperName
) => Integer

Sourcel and Source2 are evaluated as integer data types, a bit-wise XOR is performed,
and theresult is optiondly stored in Resullt.

15.2.3.5 User Terms

User Term ;= NameString(/I NameSt ri ng=>Met hodTerm
Ar gLi st
) => Dat aObj ect

NameString must be referring to an existing method object in the Name Space. It can
either be an absolute Name Space path or else it must be accessible at the current scope of
invocation. The number of argumentsin ArgList must maich the number of arguments
declared in the method object.

354

15.2.3.6 Data Objects

There are four different types of data objects.
?? Buffer teems

?? Package terms

?? Literd dataterms

?? Datamacros

15.2.3.6.1 Buffer — Declare Buffer Object

Buf f er Term ;= Buffer(
Buf f Si ze /1 Not hi ng |

/| Ter mAr g=>I nt eger
) {String | BytelList}

Declares a Buffer, of Sze BuffSze and initid vaue of Initializer (ByteLis).

The optiona BuffSze parameter soecifies the 9ze of the buffer and the initid vaueis
specified in Initializer Bytelig. If BuffSze isnot specified, it defaults to the size of
initidizer. If the count istoo smdl to hold the value specified by initidizer, initidizer Sze
Isused. For example, dl four of the following examples generate the same datum in name
gpace, dthough they have different ASL encodings:

Buf f er (10) {“P00. 00A"}

Buf f er (Arg0) {0x50 0x30 0x30 O0x2e 0x30 0x30 0x41}

Buf fer (10) {O0x50 0x30 0x30 Ox2e 0x30 0x30 0x41l 0x00 0x00 0x00}
Buf fer() {O0x50 0x30 Ox30 Ox2e 0x30 0x30 0x41 0x00 0x00 0x00}

15.2.3.6.2 Package — Declare Package Object

PackageTer m ;= Package(
NunEl ement s // Not hi ng |

/1 Byt eConst

) {Packageli st}
Declares an unnamed aggregetion of dataitems, constants, and/or references to control
methods. The size of the package is NumElements Packagelist containsthe list data
items, congtants, and/or control method references used to initidize the package. If
NumElementsis absent, it is set to match the number of dementsin the Packagelid. If
NumElementsis present and greater than the number of eementsin the Packagel.igt, the
default entry Undefined is used to initidize the package e ements beyond those initidized
from the Packagel.ist. Evauating an undefined dement will yield an error, but they can be
assigned vaues to make them defined. It is an error for NumElementsto be less than the
number of dementsin the Packagelist

There are two types of package eementsin the Packagel ist: data objects and referencesto
control methods.

Note: If non-method code package objects are implemented in an ASL compiler,
evauations of these objects are performed within the scope of the invoking method and are
performed when the containing definition block is loaded. This means that the targets of

al stores, loads, and referencesto the locas, arguments, or constant terms are in the same
name scope as the invoking method.
Example 1.
Package () {
3,
9,
“ACPlI 1.0 COMPLI ANT”,
Package () {
“CheckSume=>",
Package () {
7,
9
}
},
0
}
Example 2: This example defines and initidizes atwo-dimensiond array.
Package () {
Package () {11, 12, 13},

Package () {21, 22, 23}
}

Example 3: Thisexampleisalega encoding, but of no gpparent use.
Package (){}

Example 4: This encoding alocates space for ten things to be defined later (see the Name
and I ndex term definitions).

Package (10) {}

15.2.3.6.3 Literal Data Terms
Literd Datatermsinclude:

?? Integers

?? Srings

?? Congant data terms

15.2.3.6.3.1 Integers

I nt eger = ByteConst | WbrdConst | DwbrdConst
Byt eConst = 0x00- Oxf f

Wor dConst = 0x0000- Oxffff

DWor dConst = 0x00000000- Oxffffffff

Using the above grammar to defl ne an object containing the value of integer causes the
ASL compiler to automatically generate the proper width of the defined integer (Byte,
Word, or DWord).

355

356

15.2.3.6.3.2 Strings

String = " AsciiCharlList *"’

Asci i Char Li st = Not hing | <Ascii Char Ascii Charlist>
Asci i Char = 0x01-Ox7f

Nul | Char : = 0x00

The above grammar can be used to define an object containing a read-only sring vaue.
The default string vaue is the null string, which has O bytes available for storage of other
vaues.

Since litera strings are read-only congtants, the following ASL statement (for example) is
not supported:

Store(“ABC', "DEF")

However, the following sequence of statements is supported:
Name(STR, " DEF")

Store(“ABC’, STR)

15.2.3.6.3.3 Constant Data Terms

Const Term := Zero | One | Ones | Revision
The constant declaration terms are Zero, One, Ones, and Revision.

15.2.3.6.3.3.1 Zero - Constant Zero Object
The congtant Zer 0 object is an object of type Integer that will dwaysread asdl bits clear.
Writes to this object are not allowed.

15.2.3.6.3.3.2 One - Constant One Object
The congtant One object is an object of type Integer that will dways read the LSb as set
and dl other bitsasclear (that is, the value of 1). Writesto this object are not allowed.

15.2.3.6.3.3.3 Ones - Constant Ones Object
The congtant Ones object is an object of type Integer that will ways read as dl bits set.
Writes to this object are not allowed.

15.2.3.6.3.3.4 Revision — Constant Revision Object
The congtant Revision object is an object of type Integer that will dways read asthe
revison of the AML interpreter.

15.2.3.6.4 Data Macors
The data macros are:

?? EISAID terms.

?? ResourceTemplate terms.

357

15.2.3.6.4.1 EISAID Macro - Convert EISA ID String To Integer

El SAl DTer m ;= El SAI D(
El SAI DSt ri ng /1String

) => DWbrdConst
Converts EISAIDSIring, a 7-character text string argument, into its corresponding 4-byte
numeric EISA 1D encoding. The can be used when declaring IDs for devices that have
EISA IDs.

15.2.3.6.4.2 ResourceTemplate Macro — Convert Resource To Buffer Format
Resour ceTenpl at eTerm .= ResourceTenpl ate() {ResourceMacroList} => BufferTerm

For afull definition of the ResourceTemplateTerm macro, see section 6.4.1.

15.2.3.7 Miscellaneous Objects
Miscellaneous objects include:

?? Debug objects

?? ArgX objects

?? LocaX objects

15.2.3.7.1 Debug Data Object
DebugTer m : = Debug
The debug data object isavirtual data object. Writesto this object provide debugging
information. On at least debug versions of the interpreter any writes into this object are
appropriately displayed on the systent’s native kernel debugger. All writes to the debug
object are otherwise benign. If the system isin use without akernel debugger, then writes
to the debug object are ignored. The following table relatesthe ASL term types that can be
written to the Debug object to the format of the information on the kerndl debugger
display.

Table 15-16 Debug Object Display Formats

ASL Term Display Format

Type

Numeric data All digits dislayed in hexadecimd format.

object

String data String is displayed

object

Object reference | Information about the object is displayed (for example, object
type and object name), but the object is not evaluated.

The Debug object is awrite-only object; attempting to read from the debug object is not
supported.

358

15.2.3.7.2 ArgX - Argument Data Objects

ArgTerm := Arg0 | Argl | Arg2 | Arg3 | Argd4 | Args | Argé6
Up to 7 argument object references can be passed to a control method. On entry to a
control method, only the argument objects that are passed are usable.

15.2.3.7.3 LocalX -Local Data Objects

Local Term := Local0O | Locall | Local2 | Local3 | Local4 | Local5
Local 6 | Local 7

Up to 8 local objects can be referenced in a control method. On entry to a control method
these objects are uninitidized and cannot be used until some vaue or referenceis stored
into the object. Once initidlized, these objects are preserved in the scope of execution for
that control method.

359

16. ACPI Machine Language (AML) Specification

This section formally defines the ACPI Control Method Machine Language (AML)
language. AML isthe ACPI Control Method virtua machine language, machine code for a
virtud machine which is supported by an ACPI-compatible OS. ACPI control methods can
be written in AML, but humans ordinarily write control methodsin ASL.

AM L isthe language processed by the ACPI method interpreter. It is primarily a
declarative language. It's best not to think of it as a stream of code, but rather as a set of
declarations that the ACPI interpreter will compile into the ACPI name space at definition
block load time. For example, notice that DefByte dlocates an anonymous integer varigble
with abyte szeinitid vauein ACPI space, and passesin aninitid vaue. The byte in the
AML dream that definesthe initid vdueis not the address of the variable' s storage
location.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for
debugging. (Debuggers and other ACPI control method language tools are expected to be
AML leve toals, not source leve tools) An ASL trandator implementer must understand
how to read ASL and generate AML. An AML interpreter author must understand how to
execute AML.

AML and ASL aredifferent languages though they are closely related.

All ACHI-compatible OSes must support AML. A given user can define some arbitrary
source language (to replace ASL) and write atool to trandate it to AML. However, the
ACPI group will support asingle trandator for asingle language, ASL.

16.1 Notation Conventions
The notation conventions in the table below help the reader to interpret the AML formal
grammar.

Table16-1 AML Grammar Notation Conventions

Notation Convention Description Example
Oxdd Refersto abyte value 0x21
expressed as 2 hexadecimal
digits.
Number in bold. Denotes the encoding of the
AML term.
Term => Evauated Shows the resulting type of the
Type evaudion of Term.
Singlequotes(‘ ') Indicate constant characters. ‘A’ =>0x41
Term:=Tem Tem... Thetermtotheleft of :=canbe | aerm := bterm cterm means

360

Notation Convention Description Example
expanded into the sequence of that aterm can be expanded into
terms on the right. the two-term sequence of bterm
followed by cterm.
Term Term Term ... Terms separated from each
other by spacesform an
ordered list.
Angle brackets (< >) Used to group items. <ab> | <c d> means either
aborcd.
Bar symbal (|) Separates alternatives. aterm ;= bterm | [cterm
dterm]
means the following constructs
arepossble:
bterm
cterm dterm
aterm := [bterm | cterm] dterm
means the following congtructs
are possble:
bterm dterm
cterm dterm
Dash character (-) Indicates arange. 1-9meansasngledigitin the
range 1 to 9 inclusve.
Parenthesized term The parenthesized term isthe aterm(3) means aterm aterm
following another term. repeet count of the previous aterm.
term. bterm(N) means N number of
bterms.

16.2 AML Grammar Definition

This section defines the byte vaues that make up an AML byte stream.
The AML encoding can be categorized in the following groups:

?? Name objects encoding

?? Data objects encoding

?? Package length encoding

?? Term objects encoding

?? Miscellaneous objects encoding

16.2.1 Top Level AML
AM.Code
Def Bl ockHdr

Def Bl ockHdr Ter nLi st
<as described in section 5.2.3>

16.2.2 Name Objects Encoding

LeadNameChar :

NameChar

Root Char
Par ent Pr ef i xChar

A

g

NameSeg

NanmeStri ng

Prefi xPath
NamePat h

Nul | Name

Dual NamePat h
Dual NamePr efi x
Mul ti NamePat h
Mul ti NamePrefi x
SegCount

Super Name

16.2.3 Data Objects Enco
Dat aObj ect :
Dat aObj ect Li st

Li teral Dat a

Conput at i onal Dat a
Byt eConst

Byt ePrefi x
Wor dConst
Wor dPrefi x
DWor dConst
DWor dPr efi x
String
StringPrefix
Const Obj

Byt eLi st

Byt eDat a

Wor dDat a

‘A B | ‘C | ‘D | ‘E | F ‘G| CH |1y
[K | ‘L' | ‘M | ‘N | ‘O | 'P |'Q] ‘R | ‘S |
T ULV WX Y]

O L | 2 | 3| 4| 5 | 6 | T e | Y
| LeadNameChar
o\
Y
0x41- 0x5a
Ox5f
0x30-0x39
0x5¢c
Ox5e
= <LeadNaneChar NameChar NanmeChar NameChar >

di

/'l Note that NameSegs shorter than 4 characters are

/'l filled with trailing ‘_’s.

<Root Char NanePat h> | <PrefixPath NamePat h>
Not hing | <'~" PrefixPath>

Nul | Name | NanmeSeg | Dual NamePath | Ml ti NamePat h
0x00

Dual NamePr efi x NameSeg NaneSeg

Ox2e

Mul ti NamePrefi x SegCount NameSeg(SegCount)
0ox2f

Byt eDat a

/'l SegCount can be from 1 to 255.

/1 Multi NamePrefix(35) => 0x2f 0x23

I
11l
I
11l
I
11l

and follow ng by 35 NaneSegs.
So, the total encoding length
will be 1 + 1 + 354 = 142.
Note that:
Dual NamePr efi x NameSeg NameSeg
has a snmaller encoding than the
/'l equival ent encodi ng of:
11 Mul ti NamePrefix(2) NaneSeg NameSeg

NanmeString | ArgObj | Local Obj | DebugObj | Defl ndex

ng
Literal Dat a
Not hi ng |
Byt eConst |
Revi si onOp

Literal Data | Def Buffer
Byt ePrefix ByteData

Ox0a

Wor dPrefi x Wor dDat a

0x0b

DWor dPr ef i x DWor dDat a
0x0c

StringPrefix AsciiCharlLi st

0oxo0d

ZeroOp | OneOp | OnesOp

Not hi ng | <ByteData BytelList>
0x00- Oxf f

Byt eDat a Byt eDat a

/1 0x0000-Oxffff

Def Buf fer | Def Package
<Dat aObj ect Dat aObj ect Li st >

WordConst | DWordConst | String | ConstQbj |

Nul | Char

362

DWor dDat a

Asci i Char Li st
Asci i Char
Nul | Char

Zer oOp

OneOp

OnesOp
Revi si onOp
Ext OpPrefi x

Byt eDat a Byt eData ByteData Byt eDat a
/1 0x00000000-Oxffffffff

Not hi ng | <Ascii Char Ascii CharlList>
0x01- Ox7f

0x00

0x00

0x01

Oxf f

Ext OpPrefi x 0x30

0x5b

16.2.4 Package Length Encoding

PkgLengt h

PkgLeadByt e

PkgLeadByt e

<PkgLeadByt e Byt eDat a>

<PkgLeadByt e ByteDat a ByteDat a>

<PkgLeadByt e ByteData ByteData ByteData>

<bit 7-6: follow ByteData count>

<bit 5-4: reserved>

<bit 3-0: least significant package |ength byte>

/1 Note: The high 2 bits of the first byte reveal how
/1 many follow bytes are in the PkgLength. [|f the
/'l PkgLength has only one byte, bit 0 through 5 are
/'l used to encode the package length (i.e. values
/1 0-63). |If the package length value is nore than
/1 63, nore than one byte nmust be used for the

/1 encoding in which case bit 5 and 4 of the

/'l PkgLeadByte are reserved and nust be zero. |If
/1 multiple bytes encoding is used, bits 3-0 of the
/'l PkgLeadByte become the |least significant 4 bits
/1 of the resulting package | ength value. The next
/1 ByteData will become the next |east significant
/1 8 bits of the resulting value and so on.

16.2.5 Term Objects Encodlng

Ter mObj

Ter nii st
Ter mArg
User Ter nObj
Ter mAr gLi st

Obj ect Li st
Obj ect

NameSpaceModi fierObj | NanedObj | TypelOpcode
Type2Opcode | User Ter mObj
Not hing | <TermObj TernLi st >

Type2Qpcode | DataChject | UserTernmObj | ArgObj | Local Qbj
NanmeString Ter mAr gLi st
Not hing | <TermArg Ter mArgLi st>

Not hi ng | <Object ObjectlList>
NanmeSpaceModi fi er Obj | NamedObj

16.2.5.1 Name Space Modlfler Objects Encoding

NameSpaceModi fi er Obj

Def Al'i as
Ali asOp

Def Nane
NameOp

Def Scope
ScopeOp

Def Alias | DefNane | Def Scope

AliasOp NanmeString NameString
0x06

NameOp NaneString Dat aObj ect
0x08

ScopeOp PkgLength NameString TernlLi st
0x10

363

16.2.5.2 Named Objects Encoding

NamedObj

Def BankFi el d

BankFi el dOp
BankVal ue
Fi el dFl ags

Fi el dLi st

Fi el dEI enent
NamedFi el d
ReservedFi el d
AccessFi el d
AccessType

AccessAttrib

Def CreateBitField
CreateBitFiel dOp
Sour ceBuf f

Bi t | ndex

Def Cr eat eByt eFi el d
Cr eat eByt eFi el dOp
Byt el ndex

Def Cr eat eDWOr dFi el d
Cr eat eDWor dFi el dOp

Def Creat eFi el d
Creat eFi el dOp
NumBi t s

Def Cr eat eWor dFi el d
Cr eat eWor dFi el dOp

Def Devi ce
Devi ceOp

Def Event

Def BankField | DefCreateBitField | DefCreateByteField |
Def CreateDWrdField | DefCreateField | Def OreateWrdField
| DefDevice | DefEvent | DefField | DeflndexField |
Def Met hod | Def Mutex | Def OpRegion | Def PowerRes |
Def Processor | Def Ther mal Zone

BankFi el dOp PkgLength NanmeString NameString BankVal ue
Fi el dFl ags Fi el dLi st

Ext OpPrefi x 0x87

Ter mAr g=>I nt eger

Byt eDat a

/1 bit 0-3: AccessType
11 0: AnyAcc

/1 1: ByteAcc

1/ 2: WordAcc

/1 3: DwsrdAcc

1/ 4: Bl ockAcc

/1 5: SMBSendRecvAcc
1/ 6: SMBQui ckAcc
/'l bit 4: LockRule

1/ 0: NolLock

/1 1: Lock

/'l bit 5-6: UpdateRule
/1 0: Preserve

1/ 1: WiteAsOnes
/1 2: WiteAsZeros

/'l bit 7: reserved (must be 0)

Not hi ng | <Fi el dEl ement Fi el dLi st >
NanmedField | ReservedField | AccessField
NameSeg PkgLength

0x00 PkglLength

0x01 AccessType AccessAttrib

Byt eDat a

/1 Same as AccessType bits of Fiel dFlags

= Byt eDat a

CreateBitFiel dOp SourceBuff Bitlndex NameString
0x8d

Ter mAr g=>Buf f er Obj

Ter mAr g=>I nt eger

Creat eByt eFi el dOp Sour ceBuff Bytel ndex NameStri ng
0x8c
Ter mAr g=>I nt eger

Creat eDWOr dFi el dOp SourceBuff Bytel ndex NaneString
Ox8a

CreateFi el dOp SourceBuff Bitlndex NumBits NaneString
Ext OpPrefix 0x13
Ter mAr g=>I nt eger

Creat eWor dFi el dOp SourceBuff Bytel ndex NameString
0x8b

Devi ceOp PkgLength NameString ObjectList
Ext OpPrefix 0x82

Event Op NaneString

364

Event Op

Def Fi el d
Fi el dOp

Def | ndexFi el d
I ndexFi el dOp

Def Met hod
Met hodOp
Met hodFl ags

Def Mut ex
Mut exOp
SyncFl ags

Def OpRegi on
OpRegi onOp

Regi onSpace

Regi onOf f set
Regi onLen

Def Power Res

Power ResOp
Syst enLevel
Resour ceOr der

Def Processor

Processor Op
Procl D

PBI kAddr

PBI kLen

Def Ther mal Zone

Ther mal ZoneOp

Ext OpPrefix 0x02

Fi el dOp PkgLength NameString Fiel dFl ags Fi el dLi st
Ext OpPrefi x 0x81

I ndexFi el dOp PkgLength NaneString NameString Fiel dFl ags
Fi el dLi st

= Ext OpPrefix 0x86

Met hodOp PkgLength NameString Met hodFl ags TernmlLi st
0x14

Byt eDat a

/1 bit 0-2: ArgCount (0-7)

/1 bit 3: SerializeFlag

/1l 0: NotSerialized

/1 1: Serialized

/1 bit 4-7: reserved (must be 0)

Mut exOp NameString SyncFl ags

Ext OpPrefi x 0x01

Byt eDat a

/1 bit 0-3: SyncLevel (0x00-0x0f)
/1 bit 4-7: reserved (must be 0)

OpRegi onOp NaneString Regi onSpace Regi onOf f set Regi onLen
Ext OpPrefi x 0x80

Byt eDat a

/1 0x00: Systemvenory

/1 0x01: System O

/1 0x02: PCl_Config

/1 0x03: EnbeddedContr ol

/1 0x04: SMBus

/1 0x80-0xff: user defined
Ter mAr g=>DWor dDat a

Ter mAr g=>DWbr dDat a

Power ResOp PkgLengt h NaneString Systenievel ResourceOrder
Obj ect Li st

Ext OpPrefi x 0x84

Byt eDat a

Wor dDat a

= Processor Op PkgLength NanmeString Procl D PBI kAddr PBI kLen

Obj ect Li st

Ext OpPrefi x 0x83
Byt eDat a

DWor dDat a

Byt eDat a

Ther mal ZoneOp PkgLength NaneString ObjectlList
Ext OpPrefi x 0x85

16.2.5.3 Type 1 Opcodes Encoding

TypelOpcode

Def Br eak
Br eak Op

Def Break | DefBreakPoint | DefFatal | DeflfH se | DeflLoad
| DefNoop | DefNotify | DefRel ease | Def Reset | DefReturn
| DefSignal | DefSleep | DefStall | DefUnload | DefWile

Br eak Op
Oxa5

Def Br eakPoi nt
Br eakPoi nt Op

Def El se
El seOp

Def Fat al
Fat al Op
Fat al Type
Fat al Code
Fat al Arg

Def | f El se
1fOp

Predi cate

Def Load
LoadOp
DDBHandl eObj ect

Def Noop
NoopOp

Def Noti fy

Noti f yOp
Not i f yObj ect
Not i f yVal ue

Def Rel ease
Rel easeOp
Mut exObj ect

Def Reset
Reset Op
Event Obj ect

Def Ret urn
Ret ur nOp
Ar gObj ect

Def Si gnal
Si gnal Op

Def Sl eep

Sl eepOp
MsecTi me

Def St al |
Stall Op

UsecTi me

Def Unl oad
Unl oadOp

Def \hi | e
Vihi | eOp

365

Br eakPoi nt Op
Oxcc

Not hi ng | <El seOp PkgLength TerniList>
Oxal

Fat al Op Fatal Type Fatal Code Fatal Arg
Ext OpPrefi x 0x32

Byt eDat a

DWor dDat a

Ter mAr g=>I nt eger

| fOp PkgLength Predicate TernlList DefElse
Oxa0
Ter mAr g=>I nt eger

LoadOp NaneString DDBHandl eObj ect
Ext OpPrefi x 0x20
Super Name

NoopOp
Oxa3

Noti fyOp NotifyObject NotifyVal ue
0x86

Super Nanme

Ter mAr g=>I nt eger

Rel easeOp Mut exObj ect
Ext OpPrefix 0x27
Super Nanme

Reset Op Event Obj ect
Ext OpPrefix 0x26
Super Nanme

Ret urnOp ArgObj ect
Oxa4
Ter mAr g=>Dat aObj ect

Si gnal Op Event Obj ect
Ext OpPrefix 0x24

Sl eepOp MSecTi me
Ext OpPrefi x 0x22
Ter mMAr g=>I nt eger

Stall Op USecTi me
Ext OpPrefi x 0x21
Ter mAr g=>Byt eDat a

Unl oadOp DDBHandl eCbj ect
Ext OpPrefi x Ox2a

Wil eOp PkgLength Predicate TernList
Oxa2

366

16.2.5.4 Type 2 Opcodes Encoding

Type2Opcode

Def Acquire
Acqui reOp
Ti meout

Def Add
AddOp
Oper andl
Oper and2
Tar get

Def And
AndOp

Def Buf f er
Buf f er Op
Buf ferSize

Def Concat
Concat Op
Dat al
Dat a2

Def CondRef Of
CondRef Of Op

Def Decr ement
Decr enent Op

Def Der ef Of
Der ef OF Op
Obj Ref erence

Def Di vi de
Di vi deOp
Di vi dend
Di vi sor
Remai nder
Quoti ent

Def Fi ndSet LeftBi t
Fi ndSet Left Bi t Op

Oper and

Def Fi ndSet Ri ght Bi t
Fi ndSet Ri ght Bi t Op

Def Acquire | Def Add | DefAnd | DefBuffer | DefConcat |
Def CondRef Of | Def Decrenent | DefDerefOf | DefDivide |
Def Fi ndSet LeftBit | DefFindSetRi ghtBit | DefFromBCD |
Def I ncrement | Deflndex | DefLAnd | DefLEqual |

Def LGreater | DefLG eaterEqual | DeflLLess | DeflLLessEqual
| DefLNot | DefLNotEqual | DefLOr | DefMatch |

Def Multiply | DefNAnd | Def NOr | Def Not | Def Object Type |
Def Or | DefPackage | DefRef Of | Def ShiftLeft |

Def Shift Right | DefSizeOf | DefStore | DefSubtract |
Def ToBCD | DefWait | Def XOr

Acqui reOp Miut exObj ect Ti meout
Ext OpPrefi x 0x23
Wor dDat a

AddOp Operandl Operand2 Tar get
0x72

Ter mMAr g=>I nt eger

Ter mMAr g=>I nt eger

Super Name | Nul | Name

AndOp Operandl Operand2 Tar get
0x7b

Buf f er Op PkgLength BufferSize Byteli st
0x11
Ter mMAr g=>I nt eger

Concat Op Datal Data2 Target
0x73

Ter mAr g=>Conput at i onal Dat a
Ter mAr g=>Conput at i onal Dat a

CondRef Of Op Super Nane Super Nane
Ext OpPrefi x 0x12

Decrenment Op Super Nane
0x76

Der ef Of Op Obj Ref erence

0x83

Ter mAr g=>Cbj ect Ref erence

/1 Obj ect Reference is an object produced by terns
/I'such as Index, RefOf or CondRef Of .

Di vi deOp Di vidend Divi sor Remai nder Quoti ent
0x78

Ter mAr g=>I nt eger

Ter mAr g=>I nt eger

Tar get

Tar get

Fi ndSet Left Bit Op Operand Tar get
0x81
Ter mAr g=>I nt eger

Fi ndSet Ri ght Bi t Op Operand Tar get
0x82

367

Def Fr omBCD = FromBCDOp BCDVal ue Tar get
Fr omBCDOp = Ext OpPrefix 0x28
BCDVal ue = Ter mAr g=>| nt eger

Def | ncr ement
I ncrement Op

I ncrement Op Super Name
0x75

Def | ndex = I ndexOp BuffPkgObj | ndexVal ue Target
I ndexOp = 0x88

Buf f PkgObj = Ter mArg=>Buffer or Package object

I ndexVal ue = Ter mAr g=>| nt eger

Def LANnd = LAndOp Operandl Operand2

LAndOp = 0x90

Def LEqual = LEqual Op Operandl Oper and2

LEqual Op = 0x93

Def LGr eat er = LGreaterOp Operandl Operand2

LG eater Op = 0x94

Def LGr eat er Equal
LGr eat er Equal Op

LGr eat er Equal Op Operandl Operand2
LNot Op LLessOp

Def LLess
LLessOp

LLessOp Operandl Operand2
0x95

Def LLessEqual
LLessEqual Op

LLessEqual Op Operandl Operand2
LNot Op LG eaterOp

Def LNot
LNot Op

LNot Op Oper and
0x92

Def LNot Equal LNot Equal Op Operandl Operand2

LNot Equal Op LNot Op LEqual Op
Def LOr = LOrOp Operandl Operand2
LOr Op = 0x91
Def Mat ch = MatchOp SearchPkg Opcodel Operandl Opcode2 Operand2
Start| ndex
Mat chOp = 0x89
Sear chPkg = Ter mAr g=>PackageObj ect
Opcodel = Byt eDat a
/1 0: MIR
/1 1: MEQ
/1 2: ME
/1 3: MT
/1 4: MGE
/1 5: MGT
Opcode2 Byt eData (sanme as Opcodel)

Startl ndex Ter mAr g=>I nt eger

Def Mul ti ply = MultiplyOp Operandl Operand2 Target
Mul ti pl yOp = 0x77

Def NAnd = NAndOp Operandl Operand2 Target
NAndOp = Ox7c

Def NOr NOr Op Operandl Operand2 Target

NOr Op 0x7e

368

PackageEl ement Li st
PackageEl ement

Not hi ng | <PackageEl ement PackageEl enent Li st >
Dat aObj ect | NanmeString

Def Not = Not Op Operand Target

Not Op = 0x80

Def Obj ect Type = Obj ect TypeOp Super Name

Obj ect TypeOp = 0x8e

Def Or = OrOp Operandl Operand2 Target

Or Op = 0x7d

Def Package = PackageOp PkgLength NunEl ements PackageEl enent Li st
PackageOp = 0x12

NunEl ement s = Byt eData

Def Ref Of
Ref Of Op

Ref Of Op Super Name
0x71

Def Shi ftLeft ShiftLeft Op Operand ShiftCount Target

ShiftLeftOp = 0x79

Shi ft Count = Ter mMAr g=>I nt eger

Def Shi ft Ri ght = Shift Ri ght Op Operand Shift Count Target
Shi ft Ri ght Op = Ox7a

Def Si zeOf = Si zeOf Op Super Nane

Si zeOf Op = 0x87

Def St or e = StoreOp Operand Super Name

St oreOp = 0x70

Def Subt r act = Subtract Op Operandl Operand2 Tar get
Subtract Op = 0x74

Def ToBCD = ToBCDOp Operand Target

ToBCDOp = Ext OpPrefix 0x29

Def Wi t = WAit Op Event Obj ect Ti meout

Wai t Op = Ext OpPrefix 0x25

Def XOr = XOr Op Operandl Operand2 Target

XOr Op = Ox7f

16.2.6 Miscellaneous Objects Encoding
Miscellaneous objects include:

?? Arg objects

?? Locd objects

?? Debug objects

16.2.6.1 Arg Objects Encoding

Ar gObj 1= 'XQOB%)pl ArglOp | Arg20p | Arg30p | Arg4Op | Arg50p |
rg

Ar g0Op = 0x68

Argl0Op = 0x69

Arg20p = Ox6a

Arg30p = 0x6b

Ar g40p
Ar g50p
Ar g60p

16.2.6.2 Local Objects En

Local Obj

Local 00Op
Local 10p
Local 20p
Local 30p
Local 40p
Local 50p
Local 60p
Local 70p

0x6¢
0Ox6d
Ox6e

coding

Local 00p |
Local 50p
0x60

0x61

0x62

0x63

0x64

0x65

0x66

0x67

16.2.6.3 Debug Objects Encoding

DebugObj
DebugOp

DebugOp

Local 10p |
Local 60p |

Local 20p |
Local 70p

Ext OpPrefi x 0x31

16.3 AML Byte Stream Byte Values
The following table ligs dl the byte vaues that can be found in an AML byte stream and

the meaning of each byte vaue. Thistableis useful for debugging AML code.

Table16-2 AML Byte Stream Byte Values

Local 30p |

369

Local 4 |

Encodin | Encoding Name | Encoding Fixed List VariableList
g Value Group Arguments Arguments
0x00 Zer oOp Dat a Obj ect - --

0x01 OneOp Dat a Obj ect -- --

0x02-0x05 | -- -- -- --

0x06 Al i asOp Ter m Obj ect NameString NameString | --

0x07 - - - --

0x08 Name Op Ter m Obj ect NameStri ng Dat aObj ect | --

0x09 - - -- -- --

0x0A Byt ePrefix Dat a Obj ect Byt eDat a --

0x0B Wor dPrefi x Data Obj ect Wor dDat a - -

0x0C Dwor dPr ef i x Dat a Obj ect DWor dDat a - -

0x0D StringPrefix Dat a Obj ect Asci i CharList Null Char | --

OxOE- OxOF - - - - -

0x10 ScopeOp Term Obj ect NameStri ng Ter mLi st

0x11 Buf f er Op Term Obj ect TermArg Byt eLi st

0x12 PackageOp Ter m Obj ect Byt eDat a Dat aObj ect Li st

0x13

370

Encodin | Encoding Name | Encoding Fixed List VariableList
g Value Group Arguments Arguments
0x14 Met hodOp Term Obj ect NameStri ng Byt eDat a Ter mLi st
0x15-0x2D | - - - - - - --
Ox2E (‘.") | Dual NanePrefi x Name Obj ect NameSeg NaneSeg - -
Ox2F (“/") | Multi NamePrefix Name Obj ect Byt eDat a NameSeg(N) --
0x30-0x40 | -- -- -- --
0x41- 0x5A | NameChar Name Obj ect -- - -
(A-Z)
0x5B (‘[') | Ext OpPrefix -- Byt eDat a - -
0x5B 0x01 | Mut exOp Term Obj ect NameStri ng Byt eDat a --
0x5B 0x02 | Event Op Term Obj ect NanmeString --
0x5B 0x12 | CondRef Of Op Term Obj ect Super Nane Super Nane - -
0x5B 0x13 | CreateFi el dOp Term Obj ect TermArg TermArg TernArg | - -
NameStri ng
0x5B 0x20 | LoadOp Term Obj ect NameSt ri ng Super Name --
0x5B 0x21 | Stall Op Ter m Obj ect Ter mAr g - -
0x5B 0x22 | Sl eepOp Term Obj ect Ter mArg - -
0x5B 0x23 | AcquireOp Term Obj ect Super Name Wor dDat a --
0x5B 0x24 | Signal Op Term Obj ect Super Name --
0x5B 0x25 | Wai t Op Term Obj ect Super Name Ter mAr g - -
0x5B 0x26 | Reset Op Term Obj ect Super Name --
0x5B 0x27 | Rel easeOp Ter m Obj ect Super Nanme - -
0x5B 0x28 | Fr onBCDOp Term Obj ect Ter mArg Tar get --
0x5B 0x29 | ToBCD Term Obj ect TermArg Tar get --
0x5B 0x2A | Unl oadOp Ter m Obj ect Super Nane - -
0x5B 0x30 | Revi si onOp Dat a Obj ect -- --
0x5B 0x31 | DebugOp Debug Object | -- --
0x5B 0x32 | Fatal Op Term Obj ect Byt eDat a DWor dDat a - -
Ter mAr g
0x5B 0x80 | OpRegi onOp Ter m Obj ect NameStri ng Byt eDat a - -
TermArg Ter mArg
0x5B 0x81 | Fiel dOp Ter m Obj ect NameStri ng Byt eDat a Fi el dLi st
0x5B 0x82 | Devi ceOp Term Obj ect NameStri ng Obj ect Li st
0x5B 0x83 | Processor Op Term Obj ect NameStri ng Byt eDat a Obj ect Li st
DWor dDat a Byt eDat a
0x5B 0x84 | Power ResOp Term Obj ect ‘I\‘lgneét _ri ng Byt eData Obj ect Li st

371

Encodin | Encoding Name | Encoding Fixed List VariableList

g Value Group Arguments Arguments
Wor dDat a

0x5B 0x85 | Ther mal ZoneOp Term Obj ect NameStri ng Obj ect Li st

0x5B 0x86 | I ndexFi el dOp Term Obj ect NameString NameString | Fi el dLi st
Byt eDat a

0x5B 0x87 | BankFi el dOp Term Obj ect NameString NanmeString | Fiel dLi st
Ter mAr g Byt eDat a

0x5C (‘\") | Root Char Name Obj ect -- --

0x5D -- -- -- --

Ox5E (‘~') | Parent Prefi xChar Name Obj ect -- - -

Ox5F -- -- -- --

0x60 (‘') | Local 00p Local Object | -- - -

0x61 (‘a’) | Local 10p Local Object | -- - -

0x62 (‘b’) | Local 20p Local Object | -- --

0x63 (‘c’) | Local 30p Local Object | -- --

0x64 (‘d") | Local 40p Local Object | -- --

0x65 (‘e’) | Local 50p Local Object | -- --

0x66 (‘f’') | Local 60p Local Object | -- - -

0x67 (‘g’) | Local 70p Local Object | -- --

0x68 (‘h’) | Arg0Op Arg Obj ect -- --

0x69 (‘i") | ArglOp Arg Obj ect -- - -

Ox6A (“j’') | Arg20p Arg Obj ect -- --

0x6B (‘k’) | Arg30p Arg Obj ect -- --

0x6C (‘1) | Arg4Op Arg Obj ect -- - -

0x6D (‘m) | Arg50p Arg Obj ect -- --

Ox6E (‘n") | Arg60p Arg Obj ect - - - -

Ox6F - - -- -- - -

0x70 St oreOp Term Obj ect Ter mArg Super Name --

0x71 Ref Of Op Ter m Obj ect Super Nane - -

0x72 AddOp Term Obj ect TermArg TermArg Target | --

0x73 Concat Op Term Obj ect TermArg TermArg Target | --

0x74 Subtract Op Ter m Obj ect TermArg TermArg Target | --

0x75 I ncrenent Op Term Obj ect Super Nane --

0x76 Decr ement Op Ter m Obj ect Super Nane --

0x77 Mul ti pl yOp Term Obj ect TermArg TermArg Target | --

372

Encodin | Encoding Name | Encoding Fixed List VariableList
g Value Group Arguments Arguments
0x78 Di vi deOp Term Obj ect TermArg TermArg Target | --
Tar get
0x79 ShiftLeft Op Term Obj ect TermArg TermArg Target | --
OX7A Shi ft Ri ght Op Term Obj ect TermArg TermArg Target | --
0x7B AndOp Ter m Obj ect TermArg TermArg Target | --
0x7C NANndOp Term Obj ect TermArg TermArg Target | --
0x7D O Op Term Obj ect TermArg TermArg Target | --
Ox7E NOr Op Ter m Obj ect TermArg TermArg Target | --
OX7F XOr Op Term Obj ect TermArg TermArg Target | --
0x80 Not Op Ter m Obj ect Ter mArg Tar get - -
0x81 Fi ndSet Left Bi t Op Term Obj ect Ter mArg Tar get - -
0x82 Fi ndSet Ri ght Bi t Op | Ter m Obj ect Ter mArg Tar get --
0x83 Der ef OF Op Ter m Obj ect Ter mArg - -
0x84-0x85 | -- -- -- - -
0x86 Noti fyOp Term Obj ect Super Name Ter mArg --
0x87 Si zeOf Op Ter m Obj ect Super Nane - -
0x88 I ndexOp Term Obj ect TermArg TermArg Target | --
0x89 Mat chOp Term Obj ect Ter mArg Byt eDat a --
Ter mArg Byt eDat a
TermArg Ter mArg
Ox8A Creat eDWor dFi el dOp | Ter m Obj ect TermArg TernArg - -
NameStri ng
0x8B Creat eWor dFi el dOp | Term Obj ect TermArg TernmArg --
NameStri ng
0x8C Creat eByt eFi el dOp [Term Obj ect TermArg TernmArg - -
NameStri ng
0x8D CreateBitFi el dOp Term Obj ect TermArg Ter mArg --
NameStri ng
Ox8E Obj ect TypeOp Term Obj ect Super Name --
Ox8F -- -- -- --
0x90 LANndOp Term Obj ect TermArg TernmArg - -
0x91 LOr Op Term Obj ect TermArg TernmArg --
0x92 LNot Op Term Obj ect Ter mArg --
0x92 0x93 | LNot Equal Op Term Obj ect TermArg TernmArg --
0x92 0x94 | LLessEqual Op Term Obj ect TermArg Ter mArg --
0x95 0x92 | LGreat er Equal Op Ter m Obj ect TermArg TernmArg - -

373

Encodin | Encoding Name | Encoding Fixed List VariableList
g Value Group Arguments Arguments
0x93 LEqual Op Term Obj ect TermArg TernmArg --

0x94 LG eat er Op Ter m Obj ect TermArg Ter mArg - -

0x95 LLessOp Term Obj ect TermArg TernmArg - -

0x96- Ox9F | -- -- -- --

0xA0 1 fOp Term Obj ect Ter mArg Ter mLi st
0xAl El seOp Term Obj ect - Ter mLi st
0xA2 Wi | eOp Term Obj ect Ter mArg Ter mLi st
0xA3 NoopOp Ter m Obj ect - - -

0xA4 Ret ur nOp Term Obj ect Ter mArg --

0xA5 Br eakOp Term Obj ect -- --

OxA6- 0xCB | -- -- -- --

0xCC Br eakPoi nt Op Term Obj ect -- --

0xCD- OXFE | - - - - - - --

OxFF OnesOp Dat a Obj ect - - -

16.4 AML Encoding of Names in the Name Space
Assume the following name space exigts:

\
SO

S1

MEM
SET
GET

MEM
SET
GET
CPU
SET
GET

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and
loads ablock using it as a root. Assume the loaded block contains the following names:

374

STP1
AGET
ANPCI O
ANPCI 0. SBS
\'S2
\ S2. | SA. comL
I\I\/\S3
ANNS2. NEM
AAAS2. MEM SET
Scope(\ SO. CPU. SET. STP1) {
XYZ
AABC
AABC. DEF

}

Thiswill be encoded in AML as.

' STP1'

Par ent Prefi xChar ' GET_'

Par ent Pref i xChar Par ent Prefi xChar
Par ent Pref i xChar Parent Prefi xChar
Root Char 'S2__

Root Char Mul ti NamePrefix 3 'S2__'
Par ent Pref i xChar Par ent Prefi xChar
Par ent Pref i xChar Parent Prefi xChar

" PCI O’

Dual NamePr efi x

"] SA

" cow’

'PCI O’

Par ent Prefi xChar ' S3

Par ent Prefi xChar Dual NamePrefix ' S2_
Par ent Pref i xChar Parent Prefi xChar ParentPrefixChar Milti NanePrefix 3 'S2_

' SBS_

" NEM_’

"MEM' T SET

After the block isloaded, the name space will look like this (names added to the name
gpace by the loading operation are shown in itdics).

\
SO

SET
GET
CPU
SET
STP1
XYZ
ABC
DEF
GET
PCI O
SBS
S1

SET
GET

SET
GET
S2

SET
S3

APPENDIX A

ACPI Extensionsfor Display Adapters

Introduction

This section of the document describes anumber of specidized ACPI methods to support
motherboard graphics devices.

In many cases, system manufacturers need to add specia support to handle multiple output
devices such as panels and TV-out cagpabilities, aswell as specid power management
features. Thisis particularly true for notebook manufacturers. The methods described here
have been designed to enable interaction between the system BIOS, video driver, and
operating system to smoothly support these features.

Definitions

Built-in display adapter: Thisisagraphics chip that is bult into the motherboard and
cannot be replaced. ACPI information is valid for such built-in devices.

Add-in display adapter: Thisisagraphics chip or board that can be added or removed
from the computer. Because the system BIOS cannot have specific knowledge of add-in
boards, ACPI information is not available for add-in devices.

Boot-up display adapter: Thisisthe display adapter programmed by the system BIOS
during machine power-on sdf-test (POST). It is the device upon which the machine will
show the initia operating system boot screen, aswell as any system BIOS messages.

The systemn can change the boot-up display adapter, and it can switch between the built-in
adapter and the add-in adapter.

Display device: Thisisasynonym for the term display adapter discussed above.

Output device: Thisisadevice, which isarecipient of the output of adisplay device. For
example, aCRT or aTV isan output device.

Booting and Waking from Sleep and Waking from Hibernate

Intel Microsoft Toshiba

376

When an ACPI ready OS s ingdled on an ACPI-capable machine, the system BIOS must
support three different type of bootstrapping.

1. Booting the machine involves bringing up the machine from a clean (no power) date.
The operating system must do afull initidization and configuration of dl drivers. (This
is, of course, supported for both ACPI and non-ACPl machines.)

2. Booting when waking from a hibernation state involves bringing up the machine from
aclean (no power) sate. In this case the operating system will do only minimal
reinitidization of the devices, and it will continue running from a previoudy saved
state.

3. Booating when waking from deep involves bringing up the machine from a partidly
powered state and should involved little or no changes from the system BIOS itself.
The ACPI OS will, with the drivers, re-enable any devices that were powered down.

To smplify the configuration and programming of the graphics device, the following rule
should be followed:

When coming out of any of these above sates (booting, hibernation or deep); the
system BIOS must reprogram the boot-up device (whether it isabuilt-in device or
add-in device) to VGA text mode (mode 0x3). The system BIOS should use the
same interna code paths to accomplish thisin each case.

Thiswill ensure the boot-up graphics device in dways is the same state, whether booting
the machine or coming out of adeegping Sate.

ACPI Docking

The OS must be made aware of an gect or dock event. Thisisdone by issuing a
Notify(VGA, 0x81) in _EJ3 on Dock/Undock.

ACPI Namespace

Thisis an example of the display-related name space on an ACPI system

GPE /1 ACPl General purpose HW event
_LOx /1 Notify(VGA, 0x80) to tell the OS of the event, when user presses

377

/1 the hot key to switch the output status of the nonitor
/1 Notify(VGA, 0x81l) to tell the event to the OS, when there are any

/1 changes on the sub-devices for the VGA controller

/1 Define the VGA controller in the name space

PRO
PR1

/
/
/
/
/
/
/
/
/

\

~ e~~~ —

Met hod to control display output switching

Method to retrieve information about child output devices
Method to retrieve the ROM image for this device

Child device CRT

Hardware I D for this device

Get EDID information fromthe nonitor device

CGet current hardware status

Query desired hardware active \ inactive state

Set hardware active \ inactive state

Power met hods

- for the output device

/

~ e~ — — e~~~ —

\

~ e~ — i~~~ —

Child device LCD

Hardware I D for this device

Get EDID information fromthe nonitor device
Get current hardware status

Query desired hardware active \ inactive state
Set hardware active \ inactive state
Brightness control |evels

Bri ght ness control nethod

Power net hods

- for the output device

/

// Child Device TV

~——

~——

Hardware I D for this device

Get EDID information fromthe nonitor device
Get current hardware status

Query desired hardware active \ inactive state
Set hardware active \ inactive state

The LCD device represents the built-in output device if such a device exist. Mobile PCs
will dways have abuilt-in LCD digplay, but desktop systems that have a built-in graphics
adapter generdly don’t have a built-in output device.

Notify(VGA, 0x80) is an event that should be generated whenever the state of one of the
output devices attached to the VGA controller has been switched or toggled. This event
will, for example, be generated when the user presses a hotkey to switch the active display
output from the LCD pand to the CRT.

Notify(VGA, 0x81) is an event that should be generated whenever the state of any output
devices attached to the VGA controller has been changed. This event will, for example, be

378

generated when the user plugs-in or remove a CRT from the VGA port. In thiscase, the
OSwill re-enumerate al devices attached to VGA controller.

The event number is sandardized because the event will be handled by the operating
system directly under certain circumstances (see _DOS method later in this specification).

Display-specific Methods

The methods described in this section are al associated with specific display devices. This
device specific association is represented in the namespace example in the previous section
by the positioning of these methods in a device tree.

_DOS - Enable/Disable Output Switching

Many ACPI machines currently reprogram the active digplay output autometicaly when
the user presses the display toggle switch on the keyboard. Thisis done because most
video device drivers are currently not capable of being notified synchronoudy of such
state changes. However, this behavior violates the ACPI specification, because the system
modified some graphics device regigters.

The existence of the_DOS method indicates that the system BIOS is capable of
automaticaly switching the active display output. If the system is cgpable of auto

switching the output device then the _ DOS method must exidt. If the system does not have
the capability to auto switch the output device then the_DOS method must not exist. If it
exigsat dl, the_DOS method must be present for al display output devices.

Arguments.

Arg0 = 0: the system BIOS should not automaticaly switch (toggle) the active
display output, but instead just save the desired state change for the
display output devices in variables associated with each display output,
and generate the display switch event. The OS can query these state
changes by cdling the_DGS method

1. the system BIOS should automaticaly switch (toggle) the active display
output, with no interaction required on the OS part. The display switch
event should not be generated in this case.

2. _DGS vaues should be locked. 1t's highly recommended that the
system BIOS do nothing when hotkey pressed. No switch, no
notification.

Return Vdue

None

379

The DOS method controls this automeatic switching behavior. This method should do so
by saving the parameter passed to this method in agloba variable somewhere in the BIOS
data segment. The system BIOS then checks the value of this variable when doing display
switching. This method is dso used to control the generation of the display switching
Notify(VGA, 0x80/0x81).

The system BIOS, when doing switching of the active display, must verify the state of the
variable st by the DOS method. The default value of this variable must be 1.

_DOD - Enumerate all devices attached to the display adapter
This method is used to enumerate devices attached to the display adapter. This method is
required.

On many laptops today, a number of devices can be connected to the graphics adapter in
the machine. These devices are on the motherboard and generdly are not directly
enumerable by the video driver; for this reason, al motherboard VGA attached devices are
listed in the ACPl namespace.

These devicesfal into two categories. Oneisvideo output devices. For example, a
meachine with a single display device on the motherboard can have three possible output
devices attached to it, such asa TV, aCRT, or apanel. Another is nort+video output
devices, for example, TV Tuner, DVD decoder, Video Capture. They just attach to VGA
and their power management are closely relatesto VGA.

Both ACPI and the video driver have the ability to program and configure output devices.
This means that both ACP and the video driver must enumerate the devices usng the
same IDs. Because thereis no standard configurations for display output devices, no
standard ID generation mechanism can be used.

To solve this problem, the_ DOD method returns a list of devices atached to the graphics
adapter, along with device-specific configuration information. This information will alow
the cooperation between ACPI components and the video driver.

Every child device enumerated in the ACPI namespace under the graphics adapter must be
specified inthislist of devices.

Arguments.
None

380

Return Vdue
A buffer containing an array of video device attributes as described in the table
below.

Sample code:

Met hod (_DOD, 0) {
Ret urn (package(){

0x00010100, /1 CRT, detectable by BICS

0x00010110, /1 LCD panel, detectable by Bl 08

0x00000200, /1 TV, not detectable by the BI85

0x00020000}) /1 enpty(unknown) device, attached to VGA device

Table A-1 Video Output Device Attributes

Bits Definition

15.0 DeviceID - Thedevice ID must match the IDs specified by Video
Chip Vendors. They must dso be unique under VGA namespace.

16 BIOS Can detect the device

17 Non VGA output device whose power is related to the VGA device.

This can be used when pecifying deviceslike TV Tuner, DVD
decoder, Video Capture etc

20:18 For VGA multi-head devices, this specifies head ID
31:21 Resarved; must be 0
TableA-2 Commonly used device IDs
Bits Definition

0x0100 Monitor

0x0110 Pand

0x0200 TV

0 Other

Please contact the Video Chip vendors for other IDs.

_ROM - Get ROM Data
This method is used to get a copy of the display devices ROM data. This method is
optiond.

The data returned by this method can be used by the video driver to program the device.
The format of the data returned by this function is alarge linear buffer limited to 4K. The
content of the buffer is defined by the graphics IHV that builds this device. The format of
this ROM data will traditionaly be competible with the ROM format of the norma PCI

video card, which will dlow the video driver to program its device, independently of
motherboard vs. add-in card issues.

Arguments
ArgO: offset of the display device ROM data
Argl: sze of the buffer tofill in (up to 4K).

Output:
Buffer of bytes

Output Device-specific Methods

The methods in this section are methods associated with the display output device.

_ADR - Return the unique ID for this device

This method returns a unigue 1D representing the display output device. All output devices
must have a unique hardware ID. This method is required for dl The IDs returned by this
method will gppear in the list of hardware | Ds returned by the_ DOD method.

Arguments
None

Return Vdue
32 bit device ID

Sample code:
Method (_ADR, 0) {
return(0x0100) // device ID for this CRT
}

Thismethod is required for dl output display devices.

_BCL — Query list of brightness control levels supported

This method alows the operating system to query alist of brightnesslevel supported by
built-in display output devices. (This method in not alowed for externaly connected
displays) This method isoptiond.

381

382

Each brightness level isanumber between 0 and 100, and can be thought of asa
percentage. 50 can be 50% power consumption or 50% brightness, as defined by the OEM.

Arguments
None

Return Vdue
Buffer of bytes

Sample code:
Method (_BCL, 0) {
/I List of supported brightness levels
package(7){
80, // level when machine has full power
50, // level when machineis on batteries
/I other supported levels
20, 40, 60, 80, 100}
}

The first number in the package isthe leve of the pand when full power is connection to
the machine. The second number in the package isthe leve of the pand when the
machineis on batteries. All other numbers are treated as alist of levels the OS will cycle
through when the user toggles (via a keystroke) the brightness level of the display.

These levdswill be sat usng the BCM method described in the following section.

_BCM — Set the brightness level

This method dlows the OS to st the brightness leve of the built-in display output device.
The operating system will only set levels that were reported viathe BCL method.

Arguments
Arg0: desired brightness level

Return Vdue
None

Sample code:
Method (_BCM 1) { // Set the requested |evel }

The method will be called in response to a power source change or at the specific request
of the end user, for example, when the user presses a function key that represents
brightness contral.

383

_DDC - Return the EDID for this device
This method returns an EDID structure that represents the display output device. This
method is optiond.

Arguments.
Arg0: requested data length in bytes
0x01 == 128 bytes
0x02 == 256 bytes

Return Vdue
0 —falure, invdid parameter
non-zero — requested data, 128 or 256 bytes of data

Sample code:
Met hod (_DDC, 2) {
If (LEqual (Arg0, 1)) { Return (Buffer(128){ ,,,,
If (LEqual (Arg0, 2)) { Return (Buffer(256){ ,,,,
Return (0)

—
~——
—

}

The buffer will later be interpreted as an EDID data block. The format of this datais
defined by the VESA EDID specification.

_DCS — Return the status of output device
Thismethod is required.

Arguments
None
Return Vaue
32 bit device status.
Table A-3 Device Status
Bits Definition
0 Output connector exigts in the system now.
1 Output is activated
2 Outpuit is ready to switch
3 Output is not defective (it is functioning properly)
4 Deviceis attached (thisis optiond)
5-31 Reserved — Must be zero

1. If theoutput signd isactivated by _DSS, _DCS returns Ox1F or OxOF.

2. If theoutput Sgndl isinactivated by DSS, DCS returns 0x1D or Ox0D.

3. If thedeviceisnot atached or can not be detected, DCS returns OXOXxXX.
And should return OxIxxxx if it is attached.

4. |f the output Sgnal cannot be activated, _ DCS returns Ox1B or Ox0B.

5. If the output connector does not exist (when undocked), — DCS returns 0x00.

_DGS - Query Graphics State
This method is used to query the State (active or inactive) of the output device. _DGSis
an optiona method.

Arguments
None

Return Vdue
A 32hit device state.

Table A-4 Device State

Bits Definition
0 0 - next desired state is inactive

1 - means next desired state is active
1-31 Reserved — Must be zero

The desired dtate represents what the user wants to activate or deactivate, based on the
specid function keys the user pressed. The desired state will be queried by the OS when it
receives the display toggle event (describes earlier).

_DSS - Device Set State

The OS will cdl this method when it determines the outputs can be activated or
desctivated. The OS will manage thisto avoid flickering as much as possble. This
method is optiond.

Arguments:

A 32bit device sate.
Return Vdue

None

A-3 Device Status

385

Bits Definition
0 0 -- Set output device to inactive State
1 -- Set output device to active state
30 0 -- Do whatever Bit31 requiresto do
1-- Don't do actud switching. But need to change DGS to next
state.
31 0 -- Dont do actud switching, just cache the change
1 -- If Bit30=0, commit actud switching, induding any _DSSwith
MSB=0
cdled before
If Bit30=1, don't do actua switching, change DGS to next
state.
1-29 Reserved — Must be zero
Example Usage:
?? OSmay cdl in such an order to turn off CRT, and turn on LCD
CRT._DSY0);
LCD._DSS(80000001L);
or
LCD. DSS(1);

CRT._DSS(80000000L);

?? OSmay cdl in such an order to force BIOS to make _DGS jump to next state
without actua CRT, LCD switching
CRT._DSS(40000000L);
LCD._DSS(C0000001L);

Note on State Changes

It is possible to have any number of smultaneous active output devices. It is possble to
have 0, 1, 2 ... and so on active output devices. For example, it is possible for both the
LCD device and the CRT device to be active smultaneoudly. It isaso possible for all
display outputs devices to be inactive (this could happen in a sysem where multiple
graphics cards are present).

The gtate of the output device is separate from the power state of the device. The "active"
dtate represents whether the image being generated by the graphics adapter would be sent

386

to this particular output device. A device can be powered off or in alow power mode but
gtill be the active output device. A device can dso be in an off state but till be powered
on.

Example of the diplay switching mechanism:

?? Thelaptop has three output devices on the VGA adapter. At thismoment in time, the
pand and the TV are both active, while the CRT isinactive. The automatic display
switching capability has been disabled by the OS by calling _DOS(0), represented by
globd variable display _switching = 0.

The system BIOS, in order to track the state of these devices, will have three global
variable to track the sate of these devices. There are currently initiaized to:
crt_active=0
pane_active=1
tv_active=1

The user now presses the display toggle switch, which would switch the TV output to
the CRT.

The system BIOS first updates three temporary variables representing the desired state
of output devices.

want_crt_active=1

want_pand_active=1

want_tv_active=0

Then the system BIOS checks the display _switching variable. Because thisvaridbleis
Set to zero, the system BIOS does not do any device reprogramming, but instead
generate a Notify(VGA, 0x80/0x81) event for the display. This event will be sent to the
OS.

The OS will cal the_DGS method for each enumerated output device to determine
which devices should now be active. The OS will determine whether thisis possible,
and will reconfigure the interna data structure of the operating system to represent this
state change. The graphics modes will be recomputed and reset.

Findly, the OSwill cal the DSS method for each output device it has reconfigured.

NOTE: The OS may not have cdled the _DSS routines with the same vaues and the
_DGS routines returned, because the user may be overriding the default behavior of the

387

hardware-switching driver or operating system-provided Ul. The data returned by the
DGS method (the want XXX vaues) are only a hint to the operating system as to what
should happen with the output devices.

If the display_switching variable was set to 1, then the BIOS would not send the event, but
instead automatically reprogram the devices to switch outputs. Any legecy display
notification mechanism could dso be performed at thistime.

389

_Acx, 255 _Psv, 150
_ACx, 149 _PSW, 150, 201, 204
_ADR, 149, 151, 153 _PTS, 151, 206
_ALx, 149, 255 _REG, 196
_BBN, 197 _REV, 152
_BDN, 196 _RMV, 151, 165
_BIF, 247 _S0,151
result codes, 248 _ S0 state, 209
_BST, 246, 247, 249 _S1,151
result codes, 250 _S1 deeping state, 209
_BTP, 247, 251 _S1 system indicators, 233
_CID, 149, 154 82,151
_CRS, 102, 149, 156 _$3,151
_CRT, 149, 257 _$4,151
_DCK, 195, 197 _S5,151
_DCL, 149 _SBS, 244
_DDN, 155 _SCP, 151
_DIS, 149, 157 _Sl. See defined root name spaces
_EC, 149 _SLN, 151
_EJD, 149, 163 _SRS, 151, 160
_EJx, 149, 164 _SST, 151, 233
_FDI, 160 _STA, 151, 165, 205, 247
_GL, 152 _STM, 237
_GPE, 102. See defined root name spaces _SUN, 155
_GTF, 237 _TC1,151
_GTM, 237 _TC2,151
result codes, 238 _TMP, 151
_HID, 102, 149, 155, 244 _TSP, 151
_INI, 195 _TZ. See defined root name spaces
_IRC, 150, 200, 203 _UID, 151, 155
_LCK, 150, 164 _WAK, 152, 211
_LID, 234 24-bit memory range descriptor, 174
_MSG, 150, 233 32-hit fixed location memory range descriptor, 178
_OFF, 150, 206 32-hit memory range descriptor, 176
_ON, 150, 206 AC adaptors
_0s, 152 power source objects, 251
_PCL, 150, 247, 251 ACPI
_PR. See defined root name spaces ACPI-specific device objects, 233
_PRO, 150, 201, 202 battery management, 37
_PR1, 150, 201, 202 definition of, 25
_PR2, 150, 201 device class specific objects, 148
_PRS, 150, 159 device objects, 233
_PRT, 157 device power management, 37
for describing PCI IRQ routing, 158 EC (embedded controller), 37
_PRW, 150, 201 embedded controller interface specification, 265
_PS0, 150, 201, 204 event programming model, 140
_Ps1, 150, 201, 204 features, 65
_Ps2, 150, 201, 205 hardware, 25
_PS3, 150, 201, 205 hardware model, 60
_PSC, 150, 201, 204 implementation details, 22
PSL, 150 namespace, 133

“PSR, 150, 251 NameSpace, 25

390

objects, 135
overview of, 21
Plug and Play, 37
power states, 38
principal goals of, 15
processor power management. See
programming models, 21
register model, 67
register summary. See register summary
related documents, 22
runtime components, 19
smart battery charger requirements, 243
smart battery selector requirements, 243
smart battery table, 234
software programming model, 105
specification, organization of, 21
specification, structure of, 18
system events, 37
System Management Bus Controller, 37
System power management, 37
technical reference, 22
thermal control, 253
thermal management, 37
turning off ACPI, 231
turning on ACPI, 228
waking and deeping, 219
ACPI control method Source Language. See ASL
ACPI Machine Language (AML)
specification, 359
ACPI name space
defining embedded controller SMBus host controller
in, 286
ACPI namespace
defining an embedded controller in, 285
ACPI Non-Volatile-Sleeping Memory (NVS), 229
ACPI Reclaim Memory, 229
ACPI registers
genera purpose event (GPE) registers, 72
PM timer register, 72
PM1 control registers, 72
PM1 event registers, 71
PM?2 control register, 72
processor control block, 72
ACPI Source Language (ASL), 295
ACPI0001, 149
ACPI0002, 149
ACPI0003, 149
Acquire - Acquire aMutex Synchronization Object.
See ASL
active cooling, 253
active cooling methods, 255
Add - Add. See ASL
address map

example, 291

address space descriptors, 180

bus number resource flag, 193
1/0 resource flag, 193
memory resource flag, 192

Alias - Declare Name Alias. See Alias - Declare Name

Alias

AML

battery events, 246

byte stream, 369

byte values, 369

grammer definition, 360
notation conventions, 359
specification, 359

AML (ACPI-controlled Machine Language), 25
AML and ASL

relation between, 359

And - Bitwise And. See ASL
APIC, 110

description table, 28
interrupt source overrides, 127
non-maskabl e interrupt sources (NMls), 129

APIC and dual 8259 support, 127
ASL, 137, 295

Acquire - Acquire aMutex Synchronization Object,
343

Add - Add, 343

Alias - Declare Name Alias, 335

And - Bitwise And, 343

Break - Break, 338

BreakPoint - BreakPoint, 338

Concatenate - Concatenate, 343

CondRefOf - Conditional Reference Of, 344

constant terms.

CreateBitField, 315

CreateByteField, 315

CreateDWordField, 316

CreateField - Field, 316

CreateWordField, 316

data object declaration terms.

datatypes, 312

debug data object, 357

Decrement - Decrement. See Add

DerefOf - Dereference Of Operator, 344

Device-Declare Bus/Device Package, 316

Divide - Divide, 344

EISAID - Convert EISA ID, 357

Else - Else Operator, 338

Event-Declare Event Synchcronization Object, 318

example embedded controller code, 286

example embedded controller host controller code,
287

Fatal - Fatal Check, 338

Field - Declare Field Objects, 318

FindSetL eftBit - Find Set Left Bit, 344

FindSetRightBit - Find Set Right Bit, 345

FromBCD - Convert from BCD, 345

grammer, 295

If - If Operator, 338

Increment - Increment. See Add

Index - Index, 345

IndexField-Declare Index/Data Fields, 330

LANd - Logica And, 346

LEqual - Logica Equal, 346

L Greater - Logical Greater, 347

LGreaterEqud - Logica Greater Than Or Equdl,
347

LLess- Logical Less, 347

LLessEqual - Logica Less Than Or Equal, 347

LNot - Logical Not, 347

LNot Equal - Logical Not Equal, 347

Load - Load Differentiated Definition Block, 339

LOr - Logica Or, 348

macro for 24-bit memory descriptor, 176

macro for 32-bit memory descriptor, 178

macro for DMA descriptor, 168, 169

macro for end dependent functions descriptor, 171

macro for end tag, 174

macro for fixed 1/O port descriptor, 173

macro for start dependent function descriptor, 170

macro for vendor defined descriptor, 173, 176

macro for WORD address space descriptor, 191

macros, 138

macros for 32-bit fixed memory descriptor, 179

macros for DWORD address space descriptors, 188

macros for extended interrupt descriptor, 194

macros for 1/O port descriptor, 172

macros for QWORD address space descriptor, 184

macros for resource descriptors, 165

Match - Find Object Match, 348

Method - Declare control method, 331

Multiply - Multiply, 349

Mutex - Declare Synchronization/Mutex Object, 332

Name - Declare Named Object.

Name Space Modifier Terms, 335

named object terms, 313

names, 311

NAnNd - Bit-wise NAnd, 349

Noop Code - No Operation, 339

NOr - Bitwise NOr, 349

Not - Not, 349

Notify - Notify, 339

ObjectType - Object Type, 350

one constant one object, 356.

OperationRegion - Declare Operation Region, 333

Operator Terms, 337

391

Or - Bit-wise Or, 351

power resource statement, 199

PowerResource, 334

Processor - Declare Processor, 334

RefOf - Refernce Of, 351

Release - Release a Mutex Synchronization Object,
340

Reset - Reset an Event Synchronization Object, 340

Return - Return, 340

Scope - Declare Name Scope, 336

ShiftLeft - Shift Left, 351

ShiftRight - Shift Right, 351

Signd - Signal a Synchronization Event, 340

Siz XE "SizeOf - Size Of Data Object” \t "See ASL"
€Of - Size Of Data Object, 352

Sleep - Seep, 340

SMBus addressing, 320

SMBus protocols, 321

SmBus dave address, 319

Stall - Stall for a Short Time.

statements, 137

Store - Store, 352

Subtract - Subtract, 353

terms, 312

ThermaZone - Declare Thermal Zone, 335

ToBCD - Convert to BCD, 353

Type 1 Operator Term, 337

Type 2 Operators, 341

Unload - Unload Differentiated Definition Block,
341

Wait - Wait for a Synchronization Event, 353

While - While, 341

XOr - Bit-wise XOr. See. See

Zero-constant zero object.

ASL (ACPI control method Source Language), 25
ASL Language and Terms, 298
ASL Names, 298

battery

capacity, 49

events, 49

gas gauge, S0

warning, 51
battery control methods, 247
battery events, 246
battery management, 48
BD_EC (0x83), 272
BE_EC (0x82), 271
BIOISinitialization

of memory, 228
BIOS initialization, 227
Break - Break. See ASL
Burst (BURST) flag, 270
burst disable embedded controller, 272

392

burst enable embedded controller, 271
C0, 213

CO processor power state, 35

C1, 214

C1 processor power state, 35
C2,214

C2 processor power state, 35

C3, 214

C3 processor power state, 35

clock throttling, 86

CMBaitt, 234. See control method battery
Concatenate - Concatenate. See ASL

CondRefOf - Conditional Reference Of. See ASL

configuration, 153
constant terms. See ASL
control method
battery device notification values, 146
lid notification values, 147
power button natification values, 147
sleep button notification values, 147
control method batteries, 246
control method battery, 49
control method battery device, 234
control method lid device, 234
control method power button device, 234
control method sleep button device, 234
control methods, 25
arguments, 139
BI1OS-supplied, 206
objects, 138
OEM -supplied, 206
operation regions, 138
system level, 206
cooling temperatures
adjustment for bay device, 254
adjustment to implement hysteresis, 254
resetting of from user interface, 254
CPU
definition of, 26
CreateBitField. See ASL
CreateByteField. S;e ASL
CreateDWordField. See ASL
CreateField - Field. See ASL
CreateWordField. See ASL
critical shutdown, 257
critical trip point, 253
DO state, 33
D1 state, 33
D2 state, 33
D3 state, 33
data object declaration terms. See ASL
debug data object. See ASL
defined root name spaces, 135

definition block, 26
defiiniton of, 107
definition block encoding, 136
definition blocks, 123
DerefOf - Dereference Of Operator. See ASL
description header fields, 109
description table specifications, 108
desktop PCs, 40
device check, 146
device class specific objects
device IDs, 148
device configuration objects, 155
device identification objects, 153
_ADR, 153
_CID, 153
_DDN, 153
_HID, 153
_SUN, 153
_UID, 153
device insertion and removal objects, 161
device abject notifications, 145
device off state. See D3 state
device power capabilities, 42
device power management, 40
child objects, 200
device power state definitions, 33
device wake, 146
diagram legends, 59
differentiated system description table, 124
Divide - Divide. See ASL
DMA
format, 168
DSDT, 110
DSDT (Differentiated System Description Table), 26
DWORD address space descriptor, 185
dynamically changing cooling temperatures, 253
EBDA. See extended BIOS data area
EC (Embedded Controller), 26
interface, 27
EC_DATA (R/W), 270
EC_SC, 268
EC_SC (W), 270
EISAID - Convert EISA ID. See ASL
gection request, 146
Else - Else Operator. See ASL
embedded control command, 270
embedded controller, 102
burst disable embedded controller, 272
burst enable embedded controller, 271
command interrupt mode, 274
command set, 270
defining in ACPI name space, 285
description information, 275

event interrupt mode, 273

firmware, 272

interfacing agorithms, 274

interrupt mode, 273

notofication management, 273

query embedded controller, 272

read embedded controller, 270

register descriptions, 268

SCI/SMI task queuing, 273

SMBus host controller interface via, 275

SMBus host controller notification header, 272

SMI processing, 272

status, 268

write embedded controller, 271
embedded controller data, 270
embedded controller device object, 235
embedded controller interface specification, 265
end dependent functions, 171
endtag, 173
event programming model

components, 140
extended BIOS data area, 106
extended interrupt descriptor, 193
FACP, 110. Seefixed ACPI description table
FACP (Fixed ACPI Description Table), 27
FACS, 110. Seefirmware ACPI control structure
FACS (Firmware ACPI Control Structure), 27
fan, 103
fan device, 235
Fatal - Fatal Check. See ASL
FindSetLeftBit - Find Set Left Bit. Sce ASL
FindSetRightBit - Find Set Right Bit. See ASL
firmware ACPI control structure, 119
firmware control structure feature flags, 121
fixed ACPI description table, 106, 112
fixed ACPI description table fixed feature flags, 118
fixed ACPI events, 141
fixed feature control bits

BM_RLD, 93

GBL_RLS, 93

SCI_EN, 93

SLP_EN, 93

SLP_TYP, 93
fixed feature enable bits

GBL_EN, 91

PWRBTN_EN, 91

RTC_EN, 92

SLPBTN-EN, 92

TMR_EN, 91
fixed feature events, 27
fixed feature registers, 27
fixed feature space registers, 88
fixed hardware programming model, 57

393

fixed location 1/O port descriptor, 172
flushing caches, 226
FromBCD - Convert from BCD. See ASL
full on state. S,e DO state
GO state, 32
G1 state, 31
G2 state, 31
G3 state, 31
general purpose event handling, 142
general purpose events
dispatching to an ACPI-aware device driver, 144
queuing of matching control method, 144
wake events, 143
wake events, managng using device _PRW objects,
145
general purpose register blocks, 98
general purpose event O enable register, 99
general purpose event O register block, 98
general purpose event O status register, 99
general purpose event 1 enable register, 100
general purpose event 1 register block, 99
general purpose event 1 status register, 99
genera purpose registers, 96
generic bus bridge device, 235
generic devices, examples, 100
generic programming model, 57
Get Power Status, 43
global lock, 121
globa lock mutex, 152
global system state definitions, 31
Global System States, 28
GPE (General Purpose Event)
registers, 27
hardware
cross device dependencies, 65
ignored bits, 64
reserved bits, 64
write-only bits, 65
hardware thermal events, 254
1/0 port descriptor, 171
IDE
controls, 237
IDE controller device, 235
If - If Operator. Sce ASL
ignored bits, 28
Implementing ACPI
for Origina Equipment Manufacturers (OEMs), 17
Index - Index. See ASL
IndexField-Declare Index/Data Fields. See ASL
initialization, 226
Input Buffer Full (IBF) flag, 269
INT 15H, E820H, 289
I0 APIC, 127

394

IRQ
ASL macro for descriptor, 167
format, 167
LANd - Logica And. See ASL
large resource data type, 174
items, 174
tag bit definitions, 174
Legacy Support, 17
LEqua - Logica Equal. See ASL
LGreater - Logical Greater. See ASL
LGreaterEqual - Logical Greater Than Or Equal. See
ASL
lid switch, 100
LLess- Logicd Less. See ASL
LLessEqua - Logical Less Than Or Equal. Sce ASL
LNot - Logica Not. See ASL
LNot Equal - Logical Not Equal. See ASL
Load Differentiated Definition Block. See ASL
LOr - Logicd Or. See ASL
Match - Find Object Match. See ASL
mechanica off state. See G3 state
Method - Declare control method. See ASL
mobile PCs, 39
multiple APIC description table, 124
flags, 125
Multiply - Multiply. See ASL
Mutex - Declare Synchronization/Mutex Object. See
ASL
Name - Declare Named Object. See ASL
Name Space Modifier Terms. See ASL
named object terms. See ASL
NAnNd - Bit-wise NAnd. See ASL
NMIs. See non-maskable interrupt sources
non-volatile sleep state. See $4 state
Noop Code - No Operation. See ASL
NOr - Bitwise NOr. See ASL
Normal and Lazy 1/O operations, 16
Not - Not. See ASL
Notify - Notify. See ASL
ObjectType - Object Type. See ASL
OFF
power resources for, 203
one constant one object. See ASL
one-button machine model, 18
ones constant ones object. See ASL
operating system
initialization, 231
loading of, 231
sample usage, 292
operating system-defined objects, 152
OperationRegion - Declare Operation Region. See ASL
Or - Bit-wise Or. See ASL
OS name object, 152

0OS SMB_EVT, 272
OSPM (Operating System-Directed Power
Management), 15
minimum requirements of, 20
Output Buffer Full (OBF) flag, 269
passive cooling, 253
passive cooling equation, 255
P-Code, 29
persistent system description tables, 29, 124
Physical Memory Map, 229
pkg length, 136
Plug and Play, 47
PM1 control registers, 92
PM1 enable registers
fixed feature enable bits, 91
PM1 event grouping, 88
PM1 Fixed Feature Status Bits
BM_STS, 89
GBL_STS, 89
PWRBTN_STS, 89
RTC_STS, 90
SLPBTN_STS, 90
TMR_STS, 89
WAK_STS, 91
PM1 status registers
fixed feature status bits, 89
PM2 control register bits
ARB_DIS, 95
PNPOAOS5, 148
PNPOAOG, 148
PNPOCO08, 148
PNPOCQ9, 148
PNPOCOA, 148
PNPOCOB, 148
PNPOCOC, 148
PNPOCOD, 148
PNPOCOE, 149
PNPOCOF, 149
power button, 29, 39
power management, 29, 199
device power management objects, 200
power management timer, 94
power managerment
device specific control, 200
power resource
child objects, 205
Power Resource - Declare Power Resource. See ASL
power resources, 200
power source devices, 241
power source name space
example, 251
power source object naotification values, 147
PowerResource object

ASL example, 199
declaring of, 199
pre-defined global events, 152
Processor - Declare Processor. See ASL
processor control, 213
processor control register bits
CLCK_VAL, 95
CLK_VAL, 95
THT_EN, 95
processor local APIC, 126
processor LVL2
register bits, 96
processor LVL 3 register bits
P_LVL3, 96
processor object
declaring of, 213
processor power state
Co, 88
C1,88
C2, 84,88
C3,84,88
control of, 82
flushing caches, 85
processor power states, 35, 213
CO, 213
Cl, 214
C2,214
C3,214
policy, 214
PSDT, 111
QR_EC (0x84), 272
guery embedded controller, 272
guery system address map, 289
QWORD address space descriptor, 180
RD_EC (0x80), 270
read embedded controller, 270
red time clock alarm
alarm field decodings within FACP table, 80
RefOf - Refernce Of. See ASL
register bits
notation, 60
P_LVL2, 96
register blocks
power management 2 control (PM2_CNT), 94
processor register block (P_BLK), 95
register grouping, 29
register summary. See register summary
registers
processor control (P_CNT), 95
processor LVL2 register (P_LVL2), 95
processor LVL 3 register (P_LVL3), 96
Release - Release a Mutex Synchronization Object. See
ASL

395

required fixed features
buttons, 73
control method power button, 75
fixed power button, 75
fixed sleep button, 77
power button override, 76
power management timer, 73
red time clock alarm, 79
sleep button, 76
sleeping/wake control, 78
reserved bits, 29
reserved bits and fields, 108
hardware bits and software components, 108
ignored hardware bits and softwarecomponents, 109
reserved bits and software components, 108
reserved values and software components, 108
Reset - Reset an Event Synchronization Object. See
ASL
Return - Return. See ASL
rewuired fixed features
control method sleeping button, 77
root system description pointer, 29, 105, 109
structure of, 109
root system description table, 30
root system description table fields, 111
RSDT, 111. Seeroot system description table
S1 deeping state, 34, 222
implementation of, 222
S2 sleeping state, 34, 209, 222
implementation of, 222
S3 deeping state, 34, 223
implementation of, 223
S3 state, 210
$4 deeping state, 34, 224
BlIOS initiated transition, 224
operating system initiated transition, 224
A state, 32
S5 deeping state, 35
S5 soft off state, 225
S state, 211
SBST, 111
SCI (System Control Interrupt), 30
SCI event (SCI_EVT) flag, 269
Scope - Declare Name Scope. See ASL
secondary system description table, 30
secondary system description tables, 124
server PCs, 40
Set Power State, 42
ShiftLeft - Shift Left. Sce ASL
ShiftRight - Shift Right. See ASL
Signd - Signal a Synchronization Event. Sce ASL
signature fields, 109
silence mode, 257

396

SizeOf - Size Of Data Object. Sece ASL
Sleep - Sleep. See ASL
sleep button, 17
sleeping state. See G1 state
definitions of, 34
sleeping states, 220
small resource data type, 166
smart battery, 234, 241
charger requirements, 243
example command codes, 321
example of subsystem (multiple batteries), 245
example of subsystem (single battery), 244
objects, 243
smart battery selector requirements, 243
smart battery table, 132
subsystem, 30
subsystem control methods, 244
table, 30
SMB_ADDR, 278
SMB_ALRM_ADDR, 279
SMB_ALRM_DATAJ[0], SMB_ALRM_DATA[1],
279
SMB_BCNT, 279
SMB_CMD, 278
SMB_DATA][i], i=0-31, 279
SMB_PRTCL, 277
SMB_STS, 276
status codes, 276
SMBus, 30
interface of, 30
SMBus devices, 285
access restrictions, 285
SMBus interface
address register SMB_ADDR, 278
adarm address register, SMB_ALRM_ADDR, 279
darm dataregisters, 279
block count register, 279
command register, 278
dataregister array, 279
process call, 283
protocol description, 280
protocol register SMB_PRTCL, 277
read block, 283
read byte, 281
read quick, 280
read word, 282
receive byte, 281
send byte, 280
status register SMB_STS, 276
write block, 282
write byte, 281
write quick, 280
write word, 282

SMBus protocols
example of multiple protocols, 329
quick protocol (QuickAcc), 321
read/write block protocol (BlockAcc), 325
read/write byte protocol (ByteAcc), 323
read/write word protocol (WordAcc), 325
send/receive command protocol
(SMBusSendRecvAcc), 322
SMBus memory devices (AnyAcc), 327
SMBuUS register set, 284
SMI (System Management Interrupt), 30
SMI event (SMI_EVT) flag, 270
soft off, 18
soft off state. See G2 state
specification
terminology, definition of terms, 25
SSDT, 111
start dependent functions, 169
Store - Store. See ASL
Subtract - Subtract. See ASL
system_S1 state, 209
system_S2 state, 209
system_S3 state, 210
system_$4 state, 210
system _Sx states, 207
system events, 48
system indicator control methods, 233
system $4 sleeping state, 210
system \Sb state, 211
system state
package, 207
system working state, 209
thermal block
name space example (one thermal zone), 261
thermal control, 253
thermal control methods, 258
thermal events
hardware, 254
thermal management, 253
active cooling, 53
multiple thermal zones, 56
passive cooling, 53
performance cooling, 54
silent cooling mode, 55
thermal states, 31
thermal zone object notification values, 147
ThermalZone - Declare Thermal Zone. See ASL
timer bits
E_TMR_VAL, 94
TMR_VAL, 94
ToBCD - Convert to BCD. See ASL
transition from working to sleeping state, 225
transition from working to soft off state, 226

two-button machine model, 18

Type 2 Operators. See ASL

Unload - Unload Differentiated Definition Block. See
ASL

vendor defined descriptor, 173

vendor defined resource data type, 176

Wait - Wait for a Synchronization Event. See ASL

wake events, 143

wake power regquirements, 201

397

Wakeup, 43

While - While. See ASL

WORD address space descriptor, 189
working state. See GO state

WR_EC (0x81), 271

write embedded controller, 271

XOr - Bit-wise XOr. See ASL. See ASL
Zero-constant zero object. Sce ASL

