
fax id: 5712 

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
December 14, 1995

An SVIC to 68020 Arbiter Design

Introduction
VME board functionality and their interfaces vary quite widely
from application to application. The most complex type of
VME interface is a VMEbus System Controller, which has
complete VME master and slave capability and is the VME
Interrupt handler. There are many devices on the market that
can satisfy this need and Cypress has devices that can per-
form this function, namely the VIC068A and VAC068A 32-bit
VMEbus Interface Controllers. In addition to this, the VIC64
provides all the functionality of the VIC068A but with the ad-
dition of D64 VME block transfer capability.

However there are many applications that do not require the
complexity of the VIC/VAC products. These VME boards
might often be slave-only type applications. Cypress has in-
troduced the Slave VIC devices (SVIC for short), the
CY7C960 and CY7C961. These devices are simple VME in-
terface controllers, without having any of the complexity of
being a VME System Controller or VME Interrupt Handler.
The CY7C960 is a slave and the CY7C961 is a slave with
DMA master.

Typical applications for slave-only products are memory
boards and I/O boards. Memory boards can be as diverse as
SRAM, DRAM, UVEPROM or FLASH EPROM (in, say, solid
state mass storage). The I/O type applications could be for
Ethernet, SCSI, FDDI, MIL STD 1553, RACE, Parallel/Serial
I/O or even a VSB bridge. Memory boards do not require the
use of a microprocessor, as they invariably rely on the VME
master to initiate either a read or a write. Local timing and
bank switching, etc., can be controlled with programmable
logic devices (either CPLDs or FPGAs) and a microcontroller
may also be needed.

Again, most I/O applications operate in a similar way to the
memory card, in that reads and writes are initiated by the
VME master. However, if there are several interfaces on the
I/O card, then a local microprocessor may be useful for reduc-
ing the overhead of the main system processor. If the local
processor could take over much of this overhead, such as
pre-processing, then the VME master may only be required
to extract data on a block transfer basis. Such a set-up could
allow data to be transferred at up to 80 Mbytes/second.

This application note provides an example of how to design
the arbiter between one of the SVIC devices and a micropro-
cessor. It has been assumed that the local microprocessor is
a Motorola 68020. The arbitration associated with this device
is fairly standard with most of the Motorola processors. Also,
the Motorola processors are well suited to the VMEbus, re-
quiring some byte swapping for 8- or 16-bit transfers, but little
else.

The SVIC Devices (CY7C960 and CY7C961)
Features List
• 80 Mbyte per second Block Transfer Rates
• VME64 compliance (A64, A40, A32, A24, A16)

• Auto Slot ID
• All standard VMEbus transactions implemented
• VMEbus Interrupter
• No Local CPU necessary
• Programmable from VMEbus or Serial PROM
• DRAM Controller including refresh
• Local I/O Controller
• Flexible VMEbus address scheme
• User-configured VMEbus personality
• Limited VME Master support (CY7C961 Only)
• TQFP, PQFP, CQFP packaging

Slave VIC Operational Overview

The Slave VMEBus Interface Controller (SVIC) provides the
board designer with an integrated, full-featured VME64 Inter-
face. This device can be programmed to handle every trans-
action defined in the VME64 specification (as a slave device).
The SVIC contains all the circuitry needed to control large
DRAM arrays and local I/O circuitry without the necessity of
complex programmable logic to drive the timing. There are no
registers to read or write and no complex command blocks to
be constructed in memory. The SVIC simply fetches its own
configuration parameters during the power-on reset period.
After reset, the SVIC responds to VMEBus activity and local
circuitry transparently.

The SVIC acts as a bridge between the VMEbus and the local
DRAM, as well as the local I/O. The VMEbus control signals
are connected directly to the SVIC. The VMEbus address and
data signals are connected to address and data transceivers
that are controlled by the SVIC. Typically, these are devices
such as the FCT543T. The SVIC may also be seamlessly
connected to the ideal companion device, the CY7C964
VMEbus Interface Logic Circuit from Cypress. For an
A32/D32 application, there is one CY7C964 required per byte
width of address and data. Thus a total of four devices are
required—maximum. The CY7C964 provides a slice of data
and address logic that has been optimized for VME64 trans-
actions. As well as providing the required drive strength and
timing for VME64 transactions, the CY7C964s contain all the
circuitry needed to multiplex the address/data bus functions
for multiplexed VMEbus transactions. The CY7C964 contains
counters and latches needed during block transfer opera-
tions. It also contains the address comparators that are used
in the board’s Slave Address Decoder. For an A32 or larger
application four CY7C964 devices are required. For A24/D32
applications, then, three CY7C964s and the SVIC are re-
quired. For A24/D16 applications, only two CY7C964s, the
SVIC and an FCT543T (or equivalent) are required. For
A16/D16 applications, only two CY7C964s and the SVIC are
required.

VMEbus transactions supported by the SVIC include D8,
D16, D32 (include unaligned transfers (UAT)), MD32, D64,



An SVIC to 68020 Arbiter Design

2

A16, A24, A32, A40, A64 single cycle and block transfer
reads and writes.

Figure 1 shows the internal blocks that comprise the SVIC.
The architecture includes several functions that remove most
of the VMEbus problems from the board designer’s shoul-
ders. All VMEbus signals are handled automatically. The user
has to program the Region AM table during configuration and
then the SVIC handles the transactions as defined by the
table set-up. Local circuitry is simplified by the Refresh Con-
troller, the DRAM Controller, and the output pattern table.
Block transfers are supported by the local address controller
together with the CY7C964 circuitry (if used). Local timing is
determined during initial configuration and the handshaking
is determined from the Data Byte Enable Controller. Local
interrupts are supported through the VME Interrupt Interface.
The SVIC contains an internal Power-On Reset circuit and
also responds to the VME SYSRESET* signal.

Design Example
Intr oduction

The design example has been chosen as a typical example
of a VME board design. Figure 2 shows that the design is
based on a Motorola 68020 microprocessor. The processor
has boot software located in the Boot EEPROM. After setting
up the stack and implementing the reset exception routine,
the processor would normally jump to running code from the
EPROM. This will allow the processor to set up the DUART,
RTC and any other programmable functions within the periph-
erals. This may well include setting up the SVIC, even though

this is normally performed by either a serial EPROM or, alter-
natively, via the VMEbus.

There are two potential local bus masters in this design—ei-
ther the 68020 or the SVIC. The task of arbitration (i.e., de-
termining which master has control) is done by the Arbiter.
The design is based on a single bus structure. The presence
of the FCT245T devices reduces capacitive bus loading to
maintain better performance.

Overview of the Motorola 68020

The Motorola 68020 was the first 32-bit implementation of the
M68000 family of microprocessors from Motorola. The 68020
is object-code compatible with other members of the 68000
family. The non-multiplexed bus structure of the 68020 uses
32 bits of data and 32 bits of address. This lends itself very
well to the VMEbus architecture, which is based on a 32-bit
data and 32-bit address structure. For the purposes of data
transfers, a D64 block transfer on the VMEbus is automatical-
ly split up into two 32-bit data transfers on the local bus, which
keeps the 68020 compliant even in a D64 environment as
provided by the SVIC.

The 68020 provides support for a dynamic bus sizing ar-
rangement where the processor can transfer operands to or
from devices while dynamically allowing the local bus logic to
determine the port width for the 68020 on a cycle by cycle
basis. This allows for access to devices of differing port width
without the software engineer having to take special care over
data alignment restrictions.

Figure 1. SVIC Block Diagram

VME CONTROL
INTERFACE

REGION/
AM TABLE

CY7C964 CONTROLLER

POWER-ON
RESET

GENERATOR

AM[5:0]

SYSRESET*

AS*
DS0*
DS1*

DTACK*
WRITE*

CLK

REGION[3:0]

IRQ*
IACK*

IACKIN*
IACKOUT*

LOCAL ADDRESS
CONTROLLER

CHIP SELECT
OUTPUT PATTERN

TABLE

DATA BYTE
ENABLE

CONTROLLER
DATA BYTE

LANE
DECODER

LOCAL
CONTROL
CIRCUIT

DRAM
CONTROLLER

REFRESH
CONTROLLER

TIMING
GENERATOR

VME INTERRUPT
INTERFACE

CS[5:0]

DBE[3:0]

LACK*

LDEN*
PREN*
SWDEN*
R/W

LA[7:1]

LWORD



An SVIC to 68020 Arbiter Design

3

68020 Arbitration Meth odology

Bus arbitration is the process in which a device on a bus may
become bus master. The 68020 has a bus controller that con-
trols the bus arbitration for the local bus that the processor
sits on. This means that the 68020 has the lowest priority on
the local bus. The design of the 68020 allows for a single bus
master to be on the local bus at any one time. This includes
an external device or the processor itself.

68020 Bus Arbitration Sequence

The bus arbitration sequence for the 68020 is:

1. An external device asserts the BR* signal.

2. The processor asserts the BG* signal to indicate that the 
local bus will become available at the end of the current 
bus cycle.

3. Once the local bus is released, the external device asserts 
the BGACK* signal back to the processor to indicate that 
it has assumed bus mastership.

The 68020 Bus Request Mechanism

Any devices on the local bus that are capable of becoming a
local bus master must assert the BR* signal to the processor.
The BR* signals from many potential bus masters can be ar-
ranged in a wire-ORd fashion even though they need not be
open collector signals. (Rescinding three-statable signals are
preferable to wire-ORd as the circuit does not rely on RC
effects for the signal to drift up to an inactive level.) Once BR*
has been asserted to the processor, this indicates that some
external device wants control of the local bus. The design of
the 68020 is such that it is always at a lower level bus priority
than the external device that wants control of the bus and so

the processor is compelled to relinquish the bus after it has
completed its current cycle. If the BGACK* signal is inactive
while the BR* signal is asserted, then the processor remains
the bus master once BR* is negated. This feature reduces
unnecessary interruptions in ordinary processing if the arbi-
tration circuitry inadvertently responds to noise or if the alter-
nate bus master decides that it doesn’t need to be bus master
before it has been granted bus mastership.

The 68020 Bus Grant Mechanism

The processor issues a bus grant in response to the bus re-
quest issued by the external device. BG* assertion immedi-
ately follows after internal synchronization. However, if the
processor is performing a read-modify-write cycle or has al-
ready made an internal decision to perform a single bus cycle,
then it must complete that operation first. During a read-mod-
ify-write cycle, the processor cannot assert the BG* signal
unless the entire cycle has completed. The RMC* signal is
asserted to indicate that the bus has been locked. When an
internal decision has been made to execute another bus cy-
cle, then the BG* cannot be asserted to the external device
until the bus cycle has begun. The 68020 design allows the
BG* signal to be routed through a daisy-chained network or,
alternatively, through a priority encoded network such as an
external arbiter. (The 68020 allows any kind of external arbiter
as long as the arbitration sequencing is followed precisely.)

The 68020 Bus Grant Acknowledge Mechanism

Once the external device has received the BG* from the
68020, then it must wait until the local AS*, DSACK0*,
DSACK1*, and BGACK* are negated before asserting its own
BGACK* to the processor. The removal of the AS* signal in-

Figure 2. Typical VMEbus Design

VMEbus

SVIC 964

ARBITER GLOBAL
DRAM

SCSI
ENET

FCT245T
DUART RTC

RS232

RS423

Boot
EEPROM

EPROM68020



An SVIC to 68020 Arbiter Design

4

dicates that the previous master has released the bus. The
negation of the DSACK0* and DSACK1* signals indicates
that the previous slave has terminated the cycle with the pre-
vious master. 

The SVIC Local Bus Philo sophy

The bus arbitration of the SVIC is much simpler than the
68020. This is known as the BUS HOLDOFF feature of the
SVIC.

The SVIC is intended to be the highest priority on the local
bus. This implies that when a VME slave transaction occurs,
then nothing will prevent the SVIC from reading or writing to
local resources. Normally the SVIC starts a local cycle as-
suming that no other master may be in control of the local bus.
This optimizes the response time of the SVIC by preventing
the VME cycle being extended by local bus contention. This
philosophy is not beneficial in all cases, such as where there
is a local processor to consider. Some rudimentary control of
the local bus shall be required from time to time by other de-
vices.

SVIC Local Bus Arbitration Methodology

The SVIC can be prevented from starting a local cycle or a
refresh of any local DRAM by using a BUS HOLD OFF func-
tion. To explain how this works, first consider the VMEbus
activity. Without the bus hold function being enabled, when-
ever the AS* is asserted by the VME master, the SVIC will
drive LADI HIGH and RAS* LOW (Row Address Strobe to
DRAM) (see Figure 3). Then the VMEbus address is driven
onto the local address bus under control of the SVIC. This
happens for all VMEbus cycles whether the cycle is intended
for the slave or not (the reason for this is to reduce bus laten-
cy).

When the BUS HOLD OFF feature is enabled, LADI is a ‘local
bus busy’ signal. It indicates to the local arbitration logic that
the SVIC has control of the local bus for either VME slave
accesses or when the SVIC is performing DRAM refresh cy-
cles.

As can be seen from Figure 4, the LADI signal goes HIGH
when there is a VME AS* signal. If the cycle is not intended
for the SVIC then the LADI signal is deasserted. It can be

seen that LADI is also used to indicate to the local bus arbiter
that a DRAM refresh cycle is taking place. 
The local bus arbiter monitors the LADI signal to determine
when the SVIC does not have control of the local bus. Once
the LADI signal is LOW, there is no current VME slave cycle
or DRAM refresh taking place.

There are two scenarios that need to be considered for hold-
ing off the SVIC from further accesses:

1. Once the LADI signal goes LOW, the local arbiter is able 
to prevent the SVIC from regaining control of the local bus. 
As can be seen in Figure 4, the local bus arbiter sets the 
LACK signal to a ‘1’ to ‘hold off’ the SVIC from regaining 
control of the local bus. If the LACK signal is set to a ‘1’ by 
the SECOND RISING EDGE of the SVIC clock, then the 
local arbiter is guaranteed to have prevented the SVIC 
from getting control of the local bus. 

2. The other condition for an alternate master gaining control 
of the local bus is when the LADI signal has been set LOW 
for greater than two clock cycles (i.e., when there is little 
VMEbus traffic). When the alternate master desires control 
of the local bus, the local arbiter drives the LACK signal to 
be a ‘1’. However, after TWO RISING EDGES of the SVIC 
clock signal, the arbiter must sample the LADI signal to 
make sure that it is still LOW. This takes account of poten-
tial metastable conditions as a result of a VME AS* being 
asserted to the SVIC at the same time as LACK is assert-
ed.

When the local bus is not available to the SVIC, all VME slave
transactions and will hold until the local bus is made available
again. Once control of the local bus has been returned to the
SVIC the refresh engine shall have priority and burst all the
missed refresh cycles up to modulo 64. After this, the SVIC
will respond to a pending VME slave request.

The ‘bus hold off’ function is enabled by a bit in the configu-
ration bit stream. If the bit is not enabled then the SVIC cannot
be prevented from performing DRAM refresh or from starting
a local cycle. The function of LACK* is then simply to extend
the completion of local cycles, allowing for slow local periph-
erals.

Figure 3. LADI with BUS HOLD OFF Disabled

VME AS*

LADI

Figure 4. LADI with BUS HOLD OFF Enabled

VME AS*

LADI

LACK

SVIC
not

addressed

Refresh
cycle

Slave access
suspended

SVIC is
addressed

Refresh
cycle



An SVIC to 68020 Arbiter Design

5

Design Considerations

There are certain special cases that the design engineer must
consider when designing the SVIC into a VME board that can
have more than one local bus master.

In the most basic applications where the SVIC is the only bus
master, slave select logic is straightforward. Figure 5 shows
how this might be accomplished.

As can be seen from Figure 5, the three most significant ad-
dress bytes are permanently enabled by connecting the
LAEN inputs of the three most significant 964s to VCC. This
allows the VME addresses to flow directly from the VMEbus
and onto the local bus. The region decoder then decodes the
local addresses and the four REGION bits are fed directly into
the SVIC. When a VME address appears which targets the
VME board, one of the REGION bits becomes active which is
then validated by the falling edge of VME AS*.

If the VME board design is such that there may be more than
one bus master, then a more suitable arrangement can be
seen in Figure 6.

Figure 6 shows that when the SVIC does not have control of
the local bus, then the local addresses become isolated from
the VME interface. The VME addresses are still monitored,
however, by the region decoder. The output of the region de-
coder can then be used as the SVIC local bus request signals.

These signals can be fed into the arbiter along with VME AS*
to qualify the local bus request. 

SVIC to 68020 Arbiter Design

The arbiter design represents a challenge to the designer.
The reason for this is that the assumption of the SVIC is that
it requires the highest priority and normally has control of the
local bus all of the time. On the other hand, the 68020, which
contains its own arbitration circuit, has the lowest priority. 

The arbiter design must allow control of the local bus to de-
fault to the 68020. In addition the SVIC must not be allowed
to take control of the local bus if there is any activity on the
VME AS* signal unless the VME cycle is targeted towards the
SVIC itself.

Coping with Metastable Events

The arbiter design is based on a state machine. The state
machine is driven at the processor bus clock frequency of 20
MHz. The SVIC is driven at a higher frequency of 80 MHz.
The design will require the use of RoboClock to keep the ris-
ing edges of the two clock frequencies aligned. This will great-
ly reduce the instances of metastability. The crystal oscillator
required to drive the RoboClock will be 20 MHz (see Figure
7) This crystal oscillator frequency is a common frequency
and is easily obtained from many crystal oscillator vendors.
In addition, this frequency oscillator is easily available to mil-
itary specifications. 

.

Figure 5. Basic SVIC

REGION3

REGION2
REGION1

REGION0

REGION
DECODER

LOGIC

VCOMP3
VCOMP2
VCOMP1
AM[5:0]
LA[31:0]

LAEN

964
LA[7:1] A[7:1]

LAEN

964
LA[15:8] A[15:8]

VCC

LAEN

964
LA[23:15] A[23:16]

VCC

LAEN

964
LA[31:24] A[31:24]

VCC

SVIC

LA[7:0]

L
O
C
A
L

B
U
S

V
M
E
B
U
S



An SVIC to 68020 Arbiter Design

6

.

Figure 6. SVIC Implementation with More than One Bus Master

REGION3

REGION2

REGION1

REGION0

REGION
DECODER

LOGIC

VCOMP3
VCOMP2
VCOMP1
AM[5:0]

LA[31:0]

LAEN

964
A[7:1]

LAEN

964
BLA[15:8] A[15:8]

VCC

LAEN

964
BLA[23:15] A[23:16]

VCC

LAEN

964
BLA[31:24] A[31:24]

VCC

SVIC

LAEN

EN

FCT
244T

EN

EN

FCT
244T

FCT
244T

LA[7:1]

LA[15:8]

LA[23:15]

LA[31:24]

LA[7:0]

L
O
C
A
L

B
U
S

V
M
E
B
U
S

Figure 7. RoboClock Freq uency

20 MHz

VCC

20 MHz

80 MHz

80 MHz

REF
FB

REF
FS

4F0
4F1

3F0
3F1

2F0
2F1

1F0
1F1

4Q0
4Q1

3Q0
3Q1

2Q0
2Q1

1Q0
1Q1

80 MHz



An SVIC to 68020 Arbiter Design

7

Using RoboClock is one method of reducing potential meta-
stable events by using clock edges that line up. There are
signals, however, that are totally unpredictable as to when
they arrive. One of these is the VME AS* signal. The VMEbus
is totally asynchronous to both the SVIC 80-MHz clock and
also the processor 20-MHz clock. To make sure that these
types of signals don’t make the arbiter metastable, one of two
methods should be employed. One is to utilize a register that
is resilient to being metastable, (i.e., it catches an event or
doesn’t); the other more straightforward method is to use dou-
ble registering. This saves on board space and can easily be
implemented in programmable logic devices. The
FLASH370™ series of CPLDs supports double registering at
the dedicated inputs.

Handling the DRAM Refresh

Once the SVIC has been put into holdoff mode, it has no way
of indicating to the local logic that there are any pending
DRAM refreshes. The SVIC can store up to 64 refresh events
while it is held off, (if the number of pending refreshes ex-
ceeds 64 then the count will roll around to 0 again and 64
pending refreshes will be lost). Once the SVIC gets control of
the local bus, it will initiate a burst of refresh pulses. The most
straightforward way for the SVIC to get hold of the local bus
is when a slave access takes place from the VMEbus. Once
the SVIC has been granted control of the local bus, the SVIC
will perform the pending DRAM refresh cycles as a higher
priority. Once all of the pending refreshes have been done,
then the VME master is allowed to proceed with the data
transfer.

There is a case, however, when there are minimal VMEbus
access requests to the SVIC. Such a situation would mean
that the pending DRAM refresh cycles would build up without

any chance of the SVIC of being granted control of the local
bus. Hence part of the arbiter design requires the use of a
counter timer that counts 125 ms. If there have been no VME
cycles targeted towards the SVIC in this time (which is quite
possible), then the arbiter needs to hand over control of the
local bus to the SVIC and then monitor the LADI signal being
inactive. Once LADI is inactive, this will indicate to the arbiter
that the DRAM refresh cycles are complete and control can
be taken from the SVIC. Figure 8 shows the state diagram
that is the basis of the state machine. 

The source code for the design has been written in VHDL.
The target device is a FLASH371-110 device. However if more
registers and/or combinatorial logic is required for future up-
grades or additions then the designer can migrate to a
FLASH372 without having to change the real estate in the PCB
that is already being used.

The flow of the state machine is shown in the timing diagram
shown in Figure 9.

Appendix A shows the VHDL source code for the double buff-
ering section. This was designed as hierarchical VHDL (the
designer only has to instantiate the function as a single line
of VHDL in the main code). This will be especially useful if a
25-MHz or 33-MHz 68020 is used. These frequencies are not
a multiple of 2 so the clock domain of the 68020 and the clock
domain of the SVIC (80 MHz) will be entirely asynchronous.
The method of instantiating the double buffer saves time and
effort.

Appendix B shows the main source code which contains the
state machine design and also the DRAM refresh holdoff tim-
eout counter.

 



An SVIC to 68020 Arbiter Design

8

.

Figure 8. State Diagram of SVIC to 68020 Arbiter

Signal definition (*=active LOW)
BR* = bus request to the 68020
BG* = bus grant from the 68020
BGACK* = bus grant acknowledge to the 68020
SVICREQ* = SVIC requests local bus (VME cycle targets SVIC or refresh hold off times out)
SVICPROC*=SVICgrantedlocalbus(VMEcycletargetstheSVICorDRAMrefreshholdofftimesout)
LACK* = SVIC bus grant (input to SVIC)
LADI* = SVIC bus busy (output from SVIC
dsacks = dsack0 AND dsack1
as* = 68020 address strobe

PBG
br* =1
bgack* =Z
svicproc*=1

SVICR1
br* =0
bgack* =Z
svicproc*=1

svicreq*=0

svicreq*=1

bg*=1

SVICR2
br* =0
bgack* =Z
svicproc*=1

bg*=0

SVICG1
br* =0
bgack* =0
svicproc*=0

as*=1

SVICG3
br* =1
bgack* =0
svicproc*=0

br* =1
bgack* =0
svicproc*=1

SVICG2
lack*=0

br* =1
bgack* =0
svicproc*=1

SVICWAIT
lack*=1

br* =1
bgack* =0
svicproc*=1

SVICDECIDE

ladi*=1

br* =1
bgack* =1
svicproc*=1

SVICREL

ladi*=0

as*=0



An SVIC to 68020 Arbiter Design

9

FLASH370 is a trademark of Cypress Semiconductor Corporation.

Figure 9. Timing Diagram with States

CLK20

BR*

BG*

BGACK*

SVICREQ*

SVICPROC*

LACK

LADI

DSACKS*

AS*

PBG SVICR1 SVICR2 SVIC
DECIDE

SVICRELSVICG2SVICG2 SVICWAITSVICG1 PBG



An SVIC to 68020 Arbiter Design

10

Appendix A. Source Code for Double Buffering

--This package description describes the double buffering technique
--for metastability hardening

PACKAGE sync_tools IS
COMPONENT synchronise PORT(
datain,clk:IN BIT;
dataout:OUT BIT);
END COMPONENT;

END sync_tools;

ENTITY synchronise IS PORT(

datain,clk:IN BIT;
dataout:OUT BIT);

END synchronise;

ARCHITECTURE archsynchronise OF synchronise IS

SIGNAL datain1:BIT;

BEGIN

firstreg:PROCESS (clk)

BEGIN

IF clk’EVENT AND clk = ’1’ THEN
datain1<= datain;

END IF;

end PROCESS firstreg;

secondreg: PROCESS (clk)

BEGIN
IF clk’EVENT AND clk = ’1’ THEN

dataout<= datain1;
END IF;

END PROCESS secondreg;

END archsynchronise;



An SVIC to 68020 Arbiter Design

11

Appendix B. Source Code for State Machine and Refresh Hold Off Timer

--**********************************************************************
--**********************************************************************
--**                                                                  **
--**     This design is an arbiter for the SVIC (960 or 961) and      **
--**     and the Motorola MC68020 (20MHz)                             **
--**                                                                  **
--**********************************************************************
--**********************************************************************

ENTITY arbiter IS PORT(

-- Port list for the 68020

clk20: IN BIT;-- 20MHz Bus clock for the 68020
dsack0,dsack1:IN BIT;-- data strobe acknowledge to 68020
as: IN BIT;-- 68020 address strobe

-- Arbiter signals for the MC68020

svicbg: IN BIT;-- 68020 bus grant to SVIC
svicack: INOUT X01Z;-- SVIC bus grant to 68020
svicbr: OUT BIT;-- SVIC bus request
outpen: INOUT BIT;-- Output enable for bus grant

-- Arbiter signals for the SVIC

ladi: IN BIT;-- latch address in (SVIC)
lack: BUFFER BIT;-- local data acknowledge (SVIC)

--Port list for the 960

reset: IN BIT;-- reset from reset handler
clk80: IN BIT;-- SVIC 80 MHz clock
vmeas: IN BIT;-- VME address strobe
region: IN BIT_VECTOR(2 DOWNTO 0)); -- local VME slave selects

END arbiter;

USE WORK.rtlpkg.ALL;
USE WORK.int_math.ALL;

-- The library sync_tools is a metastability hardening technique utilising
-- double buffering. 

USE WORK.sync_tools.ALL;

ARCHITECTURE archarbiter OF arbiter IS

-- Definition of the states for the state machine controlling the
-- arbitration logic

TYPE state_labels IS (pbg,svicr1,svicr2,svicg1,svicg2,svicg3,svicwait,
      svicdecide,svicrel);

SIGNAL state_bits:state_labels;

SIGNAL svicreq:BIT;-- SVIC request to arb logic
SIGNAL svicproc:BIT;-- SVIC proceed from arb logic
SIGNAL bgack,bgackin:BIT;-- Bus grant from/to controller direct
SIGNAL count256:BIT_VECTOR(11 downto 0);-- Refresh interval timer
SIGNAL co: BIT;-- carry our from refresh timer
SIGNAL vmeasdel:BIT;-- synchronised VME AS



An SVIC to 68020 Arbiter Design

12

--bgack is driven by the CPLD internally. SVICACK is tristate out and
--bgackin is monitored at pin and driven in to device.

BEGIN

--Instantiation pf bufoe to tristate bgack to 68020

bf:bufoe PORT MAP (bgack,outpen,svicack,bgackin);

outpen <= ’1’ WHEN (state_bits=svicg1) OR (state_bits=svicg2)
       OR (state_bits=svicrel) ELSE ’0’;

--The following process drives the 68020 arbitration

arbcntrl: PROCESS (reset,clk20)

BEGIN

IF reset = ’0’ THEN
state_bits<= pbg;
svicbr<= ’1’;
bgack<= ’1’;
svicproc<= ’1’;

ELSIF (clk20’EVENT AND clk20=’1’) THEN

CASE state_bits IS

-- PBG is the idle state where the processor has been granted the bus.

WHEN pbg =>IF svicreq = ’0’
THEN state_bits <= svicr1;

svicbr<= ’0’;
bgack<= ’1’;
svicproc<= ’1’;

ELSE state_bits<= pbg;
svicbr<= ’1’;
bgack<= ’1’;
svicproc<= ’1’;

END IF;

-- SVICREQ1 is where the SVIC requires the bus but is waiting for bus grant
-- from the 68020 

WHEN svicr1=>IF svicbg = ’0’
THEN state_bits<= svicr2;

svicbr<= ’0’;
bgack<= ’1’;
svicproc<= ’1’;

ELSE state_bits <= svicr1;
svicbr<= ’0’;
bgack<= ’1’;
svicproc<= ’1’;

END IF;

-- SVICR2 is where the SVIC has been granted the bus but the 68020 is
-- still performing a bus cycle

Appendix B. Source Code for State Machine and Refresh Hold Off Timer  (continued)



An SVIC to 68020 Arbiter Design

13

WHEN svicr2=>IF as = ’1’
THEN state_bits<= svicg1;

svicbr<= ’0’;
bgack<= ’0’;
svicproc<= ’0’;

ELSE state_bits<= svicr2;
svicbr<= ’0’;
bgack<= ’1’;
svicproc<= ’1’;

END IF;

-- SVICG1 is where the the 68020 has completed its last cycle, the SVIC
-- has been granted the bus and the arbiter asserts bus grant to the 68020
-- and the SVIC is allowed to proceed

WHEN svicg1=>state_bits<= svicg2;
svicbr<= ’1’;
bgack<= ’0’;
svicproc<= ’0’;

-- SVICG2 waits for the SVIC to terminate a session

WHEN svicg2=>IF lack = ’1’
THEN state_bits<= svicwait;

svicbr<= ’1’;
svicproc<= ’1’;
bgack<= ’0’;

ELSE state_bits<= svicg2;
svicbr<= ’1’;
bgack<= ’0’;
svicproc<= ’1’;

END IF;

-- SVICG3 allows the SVIC to proceed again in the event of a metastable
-- condition where the SVIC misses the LACK* signal going inactive

WHEN svicg3=>state_bits<= svicg2;
svicbr<= ’1’;
bgack<= ’0’;
svicproc<= ’1’;

-- SVICWAIT is a timing period before sampling LADI

WHEN svicwait=>state_bits<= svicdecide;
svicbr<= ’1’;
bgack<= ’0’;
svicproc<= ’1’;

-- SVICDECIDE samples LADI. If LADI is inactive then the SVIC is in
-- hold off mode. If LADI is active then the arbiter failed to hold off
-- the SVIC

Appendix B. Source Code for State Machine and Refresh Hold Off Timer  (continued)



An SVIC to 68020 Arbiter Design

14

WHEN svicdecide=>IF ladi = ’0’ THEN
state_bits<= svicrel;

svicbr<= ’1’;
bgack<= ’1’;
svicproc<= ’1’;

ELSIF ladi = ’1’ THEN
state_bits<= svicg3;

svicbr<= ’1’;
bgack<= ’0’;
svicproc<= ’0’;

END IF;

-- SVICREL hands control of the local bus back to the 68020

WHEN svicrel=>state_bits<= pbg;
svicbr<= ’1’;
bgack<= ’1’;
svicproc<= ’1’;

-- The when others clause prevents implicit memory generation and copes
-- with any illegal states

WHEN OTHERS=>state_bits<= pbg;
svicbr<= ’1’;
bgack<= ’1’;
svicproc<= ’1’;

END CASE;

END IF;
END PROCESS arbcntrl;

-- The following process defines the counter that defines 128 uS
-- before control is given to the SVIC for the purposes of DRAM
-- refresh. Making the counter wider increases the time period by a factor
-- of 2 every time, but may make logic synthesis more difficult

cnt:PROCESS (reset,clk20)
BEGIN

IF (reset = ’1’) THEN       -- asynch reset
count256 <= x”000”;

ELSIF (clk20’EVENT AND clk20 = ’1’) THEN
IF (state_bits = svicrel) THEN

count256 <= x”000”;
ELSIF ((state_bits = pbg) AND (co =  ’0’)) THEN

count256 <= inc_bv(count256);
END IF;

END IF;
END PROCESS cnt;

-- The co signal is used to inhibit the counter when it gets to the
-- terminal count

co <= ’1’ WHEN (count256 = x”9FF”) ELSE ’0’;

--The following section defines the SVIC arbiter

--The VME AS* is asynchronous to the 80MHz clk so needs to be synchronised

Appendix B. Source Code for State Machine and Refresh Hold Off Timer  (continued)



An SVIC to 68020 Arbiter Design

© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

sync1:synchronise PORT MAP (vmeas,clk80,vmeasdel);

svicreq <= ’0’WHEN (((region /= ”000”) AND (vmeasdel = ’0’))
OR count256 = x”9FF”) ELSE ’1’;

lack<= ’0’WHEN (svicproc = ’0’)
OR ((lack = ’0’) AND (ladi = ’1’)) else ’1’;

END archarbiter;

Appendix B. Source Code for State Machine and Refresh Hold Off Timer  (continued)


