
Performance Graphics
IBM

APPLICATION NOTE SK10-3012-00 1
August 18, 1995

APPLICATION NOTE

Introduction

The RGB family of Palette DACs from IBM Microelec-
tronics are used in computer graphics adapters to take pix-
els from a frame buffer, stored in digital format, and
convert the pixels to analog signals for display on a CRT.

The pixels in the frame buffer can be 4 BPP (bits per
pixel), 8 BPP, 15 BPP (16 bits with 1 bit unused), 16 BPP
or 24 BPP. These pixels are converted within the palette
DAC to 24-bit RGB (8 bits of red, 8 bits of green, and 8
bits of blue.)

In general the smaller pixel sizes (4 and 8 BPP) are used as
indices into a palette (color lookup table), which provides
24 bits to the DACs. The 15 and 16-bit pixels are
expanded to 24 bits. 24-bit pixels are sent directly to the
DACs. The 15, 16, and 24-bit pixels can also be used as
indices into the palette, when a color transformation (such
as gamma correction) is desired.

The RGB624 Palette DAC also supports the YUV pixel
type. YUV pixels contain luminance (brightness) and
chrominance (color difference) values. A special circuit on
the Palette DAC converts the YUV pixels to 24-bit RGB
pixels.

The RGB624 has support for a 16-bit “tagged RGB/YUV”
pixel format. This format allows RGB and YUV pixels to
be intermixed in the frame buffer by using one of the bits
as a “tag”. The RGB624 uses the tag bit to interpret the
remaining 15 bits “on the fly” as either RGB or YUV.

The 8, 15/16 and 24 BPP RGB formats are supported by
most PC graphics software. Microsoft Windows supports
these formats through its GDI (Graphics Device Inter-
face).

In 1994 Microsoft and Intel released a joint specification
called DCI (Display Control Interface). This is a driver
level interface which provides for access to advanced
graphics features, including YUV formats. This applica-
tion note describes how to use DCI to exploit the RGB624
16-bit tagged RGB/YUV pixel format.

16-Bit Tagged RGB/YUV

15 BPP RGB pixels use 15 bits of a 16-bit word, with 1 bit
unused. The RGB624 tagged format uses this normally-
unused bit as a “tag” bit that identifies the remaining fif-
teen bits as either RGB or YUV. The meaning of the tag
bit is programmable. That is, the tag can be programmed
such that a tag value of 0 indicates an RGB and a 1 indi-
cates YUV, or the tag can be programmed so that a 0 indi-
cates YUV and a 1 indicates RGB.

When the tag indicates an RGB pixel, the remaining fif-
teen bits are interpreted as 5:5:5 RGB (five bits each for
red, green and blue.)

When the tag indicates a YUV pixel, the remaining 15 bits
are interpreted as 15-bit YUV, with one of four variations
selected by program control:

T

15 8 7 014 910111213 123456

R BG

Using the RGB624 Palette
DAC Tagged Pixel Format
by Kirk Haskell

Performance Graphics IBM

2 APPLICATION NOTE SK10-3012-00
August 18, 1995

1. 8 bits of Y followed by 7 bits of U/V:

2. 8 bits of U/V followed by 7 bits of Y:

3. 7 bits of Y followed by 8 bits of U/V:

4. 7 bits of U/V followed by 8 bits of Y:

The tagged RGB/YUV format is useful for mixing pixel
types in the frame buffer. For example, the background
and various windows could be written and tagged as 555
RGB, while other windows (motion video, e.g.), could be
written and tagged as YUV.

The RGB624 supports several options for 555 RGB:

❑ Palette lookup, or palette bypass

❑ Contiguous or sparse addressing of the palette

❑ When bypassing the palette, filling in the low order
bits with ‘0’s (Zero Insertion), or using the high order
bits to fill (“Linear” expansion)

These options are still available with tagged RGB/YUV
for the pixels tagged as RGB.

(There is also an option that allows the high order bit to be
used to select palette lookup or palette bypass on a pixel-
by-pixel basis. This option is not available with tagged
RGB/YUV since the high order bit is used as the tag.)

T

15 8 7 014 910111213 123456

Y U/V

T

15 8 7 014 910111213 123456

YU/V

T

15 8 7 014 910111213 123456

Y U/V

T

15 8 7 014 910111213 123456

YU/V

DCI Basics

DCI is a device level software interface that provides for:

❑ Frame buffer access

❑ Off-screen buffer access

❑ Video overlay

❑ Stretching

❑ Color space conversion

❑ Off-screen to on-screen “draw”

DCI is implemented by the DCI Manager and the DCI
Display Module.

The DCI Manager is not hardware specific and provides
general capabilities such as window overlap management.

The DCI Display Module (also calledDCI provider) is
the hardware specific portion of DCI. It can be a separate
DLL or it may be part of the display driver.

Applications do not write to the DCI directly. Instead,
requests are made of one or more DCI Clients (also called
DCI users). DCI Clients are Windows subsystems that
use graphics display features enabled by DCI. Examples
are digital video codecs, 3-D graphics libraries and games
support libraries.

DCI has the concept ofsurfaces. DCI clients write to sur-
faces, which can be theprimary surface (the on-screen
Windows display),off-screen surfaces, andoverlay
surfaces. Images drawn to off-screen surfaces may be
transferred to the primary surface using the DCIDraw
function.

All three surface types share in their characteristics, such
as width, height in pixels, bit count (bits per pixel), stride
(bytes per line), address, bitfield masks, capability flags
(bank switched, dword aligned, etc.), and format.

The pixel formats (bitmap and compression types) are rep-
resented with a four character code known as FOURCC.
The FOURCC format closest to the RGB624 tagged RGB/
YUV format (YUYV) is “YUV2”. New FOURCC formats
may be registered with Microsoft.

APPLICATION NOTE SK10-3012-00 3
August 18, 1995

IBM Performance Graphics

DCI Clients interrogate the DCI Manager to verify that a
DCI Display Module is present and to determine the DCI
capabilities provided by the DCI provider(s). The GDI is
still used by applications and DCI Clients when desired
DCI features are not provided.

A typical Multimedia Application written for Microsoft
Windows will write to an API (Application Programming
Interface) such as Microsoft Video For Windows. Since
Video For Windows is a DCI Client, it can query the sys-
tem for DCI Video capabilities such as support for the
YUV2 pixel format. If an existing DCI Driver (or Pro-
vider) responds that it can support YUV2, then the DCI
Client can set up a Video Codec (like MPEG or INDEO)
to convert video streams to YUV2 frames and call the DCI
provider to draw each frame. For an overall view of the
data flow, see the illustration below. Note that the code
required for enabling support of the Tagged YUV pixel

APPLICATIONS

GDI
DCI, MCI CLIENTS

VideoForWindows, WinG, ...
3D API’s

3DRender, OpenGL, ...

GRAPHICS SYSTEM SOFTWARE

MCI Codec

DISPLAY HARDWARE

GDI DDI DCI 3D DDI

DISPLAY DRIVERS

*** Code changes required to support RGB624 tagged RGB/YUV pixel format

*** ***

format is located in the DCI and GDI display drivers. Note
also that if tagged RGB/YUV pixel format were enabled,
then the output pixel format from the GDI display driver
would always be RGB555 whereas the output pixel format
from the DCI Display Driver could be either RGB555 or
tagged RGB/YUV.

Coding Support for Tagged Pixels

DCI Code Requirements

The bulk of the code required to support the tagged RGB/
YUV format is in the DCI provider. Simple hardware
assists can, however, make the code required very mini-
mal. There are basically 3 ways for the video data to be
converted from YUV2 to Tagged RGB/YUV:

Performance Graphics IBM

4 APPLICATION NOTE SK10-3012-00
August 18, 1995

1. Let the codec do it (requires registering the tagged
RGB/YUV format with Microsoft and that the codec
can support it.)

2. Let hardware support it by doing a simple shift-right-
1 and OR the tag bit when the video data is written to
the frame buffer.

3. Let the DCIDraw function convert the frame from
YUV2 to Tagged RGB/YUV.

Solution 1 is optimal but you cannot count on every video
codec supporting the tagged RGB/YUV format. Solution 2
is the best since it requires no additional software in the
DCI other than enabling the hardware function.

Note that solutions 1 and 3 require that the tagged RGB/
YUV formats which have fields that cross a byte boundary
(T+8Y+7U/V or T+8U/V+7Y) must set the least signifi-
cant bit of the 8-bit field to a constant value. This is
because hardware scalers will interpolate the byte fields
with neighboring pixels.Note that other device-dependent
code may be necessary depending on the functionality of
the display controller. For instance, YUV to RGB conver-
sion in the controller would need to be disabled.

DCI Code Implementation

The first step in the implementation is to determine if the
Tagged RGB/YUV pixel format can be utilized. This is
done at initialization of the Offscreen surface in DCI,
DCICreateOffScreenSurface . If the primary sur-
face (which had to be already created withDCICre-
atePrimarySurface) is RGB555, and the
compression FOURCC format of the Offscreen Surface is
YUV based (Indeo IF09, YUV2, YUV9, etc.), then it is
possible to use the tagged RGB/YUV pixel format. A glo-
bal flag should be set at this point to indicate that an Off-
screen Surface needs to be converted to tagged RGB/
YUV.

The next step is to check for this global flag in the DCI
Draw Callback Function. If the flag is set, then the Draw
function must convert the incoming FOURCC format to
the appropriate tagged RGB/YUV format. If a hardware
assist function is being utilized, then it must be reset upon
completion of the Draw Function to insure proper GDI
execution. This includes setting and resetting any avail-
able masks that are being utilized to manipulate the tag bit.

Another requirement of the DCI provider, depending upon
the implementation, may be to manage the tag bit plane
completely. For example, if a DCI surface in tagged RGB/
YUV format is re-positioned on the display, thereby
exposing GDI regions, it may be the DCI provider's
responsibility to erase the tag bit plane of the exposed GDI
region. This is possible to do in DCI with theSetCli-
pList andSetDestination Callback functions. The
DCI Client will call these functions in the DCI provider
whenever the DCI surface window moves, re-sizes, or has
its cliplist changed. The DCI provider would need to save
its window (or bounding window) dimensions and make
sure that when they changed through subsequent calls to
SetDestination andSetCliplist that the
exposed GDI regions would get the tag bit cleared.

GDI Code Requirements

The other code changes required for supporting the tagged
RGB/YUV pixel format exist in the GDI display driver.
Again, a simple hardware assist function would make the
code required very minimal. To support tagged RGB/YUV
pixel format, the GDI driver must insure that the tag bit
always equal zero. If a “Hardware Modify Mask” that
always wrote zero into the tag bit for every frame buffer
write is available, the only code required is to enable this
hardware function at initialization (DCI would need to dis-
able this function and re-enable it upon completion of a
DCI Draw Operation). A “Hardware Protect Mask” could
also be utilized and always set to0x7fff during GDI
operations. This would require DCI (which would always
operate with the protect mask equal to0xffff) to clear
tag bit regions in the DCI window which become over-
written by a GDI window; this would occur whenever a
DCI window moves or when its cliplist changes.

GDI Code Implementation

If a hardware assist as previously described was utilized,
then the code required for the GDI implementation would
be to simply enable the function at GDI initialization
(Enable Function). Code would also be placed in Enable to
check that the Pixel Depth requested is 15 bits (RGB555 --
32768 colors) and that the RGB624 Palette DAC was
present; both must be true for tagged RGB/YUV pixel for-
mat to be enabled.

APPLICATION NOTE SK10-3012-00 5
August 18, 1995

IBM Performance Graphics

If the tagged RGB/YUV pixel format was enabled and no
hardware assists were available, then the driver software
would need to play a larger role. The extent of the code
required is dependent on the hardware capabilities of the
graphics controller. To guarantee that the tag bit would
always be equal to zero in the frame buffer, the GDI driver
needs to handle 3 things:

1. When converting logical colors to physical colors,
make sure that the physical color always has the tag
bit cleared.

2. When converting DIBs (Device Independent
Bitmaps) to physical (or device dependent) bitmaps,
again make sure that the pixel data has the tag bit
cleared.

3. For BitBlt or Output Functions which have a ROP3 or
ROP2 of the types described below, the tag bit is in
danger of flipping from 0 to 1. In the following, “S”
stands for Source, “D” stands for Destination, and “P”
stands for Pattern.

• ROP2 :
if ((D == 0) & (S == 0))-> (D = 1)

This occurs for all even numbered ROP2 codes.

• ROP3:
if ((D == 0) & (S == 0) &(P == 0))
-> (D = 1)

This occurs for all odd numbered ROP3 codes.

Common ROPs that are in this class are XOR or NotD and
ONE or “set D to all ones” which both are independent of
a Source or Pattern. Drawing Operations that could poten-
tially use one of these types of ROP codes can be broken
down into 2 categories:

1. Those handled entirely in the driver and pixel-by-
pixel written directly into a linearly accessed frame
buffer.

2. Those that use some device dependent hardware
acceleration to enhance the performance of the
operation.

For those handled by linear access to a frame buffer, the
tag bit must be always set to zero for each write. For those
handled by hardware acceleration, if the hardware also
supports a Protect Mask, then this mask can be tempo-

rarily set to0x7fff during the operation and then reset
back to0xffff after the operation. In the worst case, the
hardware acceleration may not be utilized and the drawing
operation would be handled completely by direct access to
the frame buffer.

Related Documentation

1. RGB624 Data Sheet (IBM Microelectronics
document number IOG624DSU)

2. Display Control Interface (DCI) Specification

3. Microsoft Windows Software Development Kit

4. Microsoft Windows Device Driver Development Kit

5. Microsoft Video for Windows 1.1 Developer’s Kit

IBM�

© International Business Machines Corporation 1995
Printed in the United States of America
8-95

All Rights Reserved

® IBM and the IBM logo are registered trademarks of the
IBM Corporation.

™ The following terms are trademarks of the IBM Corpo-
ration: IBM Microelectronics, RGB624.

The information provided is believed to be accurate
and reliable. IBM reserves the right to make changes
to the product described without notice. No liability is
assumed as a result of its use nor for any infringement
of the rights of others.

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY
12533-6531

The IBM home page can be found at
http://www.ibm.com.

The IBM Microelectronics Division home page can be
found at
http://www.chips.ibm.com.

Fast Fax Service 415-885-4121

Document No. SK10-3012-00

