
®

S14044.A

SCSI SCRIPTS™
Processors

PROGRAMMING
GUIDE

O c t o b e r 2 0 0 0

Version 2.3

This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.

LSI Logic products are not intended for use in life-support appliances, devices,
or systems. Use of any LSI Logic product in such applications without written
consent of the appropriate LSI Logic officer is prohibited.

DB15-000159-01, Second Edition (October 2000)
This document describes the LSI Logic Corporation SCSI SCRIPTS™

Processors and will remain the official reference source for all revisions/releases
of this product until rescinded by an update.

To receive product literature, visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1995–2000 by LSI Logic Corporation. All rights reserved.

Ultra SCSI is the term used by the SCSI Trade Association (STA) to describe
Fast-20 SCSI, as documented in the SCSI-3 Fast-20 Parallel Interface standard,
X3.277-199X.

Ultra2 SCSI is the term used by the SCSI Trade Association (STA) to describe
Fast-40 SCSI, as documented in the SCSI Parallel Interface-2 standard, (SPI-2)
X3710-1142D.

TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design, NASM, SCRIPTS, LVD Link, and TolerANT are
trademarks or registered trademarks of LSI Logic Corporation. All other brand
and product names may be trademarks of their respective companies.
ii

Preface
This book is the primary reference and programming guide for the
LSI Logic PCI to SCSI I/O Processors. It contains a complete functional
description for the LSI Logic PCI to SCSI I/O Processors and includes
complete physical and electrical specifications for the LSI Logic PCI to
SCSI I/O Processors.

Audience

This manual is written for users who are familiar with the SCSI and PCI
specifications, and have a working knowledge of computer architectures
and programming. It is specifically designed for use with programming
the LSI Logic SCSI SCRIPTS™ processor in the following chip families:

• LSI53C7XX

• LSI53C8XX

• LSI53C10XX (up to the LSI53C1010 and LSI53C1010R)

Organization

This document has the following chapters and appendixes:

• Chapter 1, Using the Programming Guide, introduces the
SCRIPTS processor features and functions, and the parts of the PCI
to SCSI system that are involved in operating the chip.

• Chapter 2, Programming with SCRIPTS, describes the SCRIPTS
processor and programming language in depth, including how
SCRIPTS programs are integrated with “C” code to execute SCSI
commands.

• Chapter 3, The SCSI SCRIPTS Processor Instruction Set,
describes the SCRIPTS processor instruction set, along with detailed
Preface iii

functional descriptions and usage guidelines for all of the instructions
supported.

• Chapter 4, Using the LSI Logic Assembler NASM™, describes
use and operation of the LSI Logic Assembler (NASM).

• Chapter 5, The NASM Output File, describes the LSI Logic
Assembler (NASM) output file.

• Chapter 6, Using the Registers to Control Chip Operations,
contains functional and address information on the
LSI53C7XX/8XX/10XX family chips register set.

• Chapter 7, Integrating SCRIPTS Programs into “C” Language
Drivers, illustrates the relationship between the SCRIPTS program
and the “C” language device driver.

• Chapter 8, Writing Device Drivers with SCRIPTS, addresses
specific kinds of driver applications, with code samples for all
applications discussed.

• Chapter 9, SCRIPTS Programming Topics, addresses specific
kinds of driver applications, with code samples for all applications
discussed.

• Chapter 10, Multithreaded I/O, contains guidelines for writing
SCRIPTS for multithreaded applications.

• Chapter 11, Using the SCRIPTS Processor in Target
Applications, provides guidelines that are specific to using the
SCRIPTS processor in a target device.

• Chapter 12, Debugging the SCRIPTS Processor, provides
information on debugging SCRIPTS programs.

• Chapter 13, New SCRIPTS Processor Features, provides
information on the new 64-bit features of the latest version of this
chip family.

• Appendix A, NASM Error Messages, provides a list of NASM error
messages.

• Appendix B, Multithreaded SCRIPTS Example, provides example
SCRIPTS code.

• Appendix C, Glossary of Terms and Abbreviations, provides
definitions of terms and abbreviations.
iv Preface

Related Publications

LSI53C770 SCSI I/O Processor with Ultra SCSI Data Manual,
Version 2.0, LSI Logic Corporation, Order Number T18962I

LSI53C810A PCI-SCSI I/O Processor Data Manual, Version 2.0,
LSI Logic Corporation, Order Number T07962I

LSI53C815 PCI-SCSI I/O Processor with Local ROM Interface
Data Manual, Version 2.0, LSI Logic Corporation, Order Number T10962I

LSI53C825A/825AE PCI-SCSI I/O Processor Data Manual, Version 3.0,
LSI Logic Corporation, Order Number T40937I

LSI53C860 PCI-Ultra SCSI I/O Processor Data Manual, Version 2.0,
LSI Logic Corporation, Order Number T09962I

LSI53C875/875E PCI-Ultra SCSI I/O Processor Data Manual,
Version 4.0, LSI Logic Corporation, Order Number T42984I

LSI53C895 PCI to Ultra2 SCSI I/O Processor with LVD Link™ Universal
Transceivers Technical Manual, Version 3.1, LSI Logic Corporation,
Order Number S14030

LSI53C895A PCI to Ultra2 SCSI Controller Technical Manual,
Version 2.2, LSI Logic Corporation, Order Number S14028.B

LSI53C896 PCI to Dual Channel Ultra2 SCSI Multifunction Controller
Technical Manual, Version 3.1, LSI Logic Corporation,
Order Number S14015.B

LSI53C1000 PCI to Ultra3 SCSI Controller Technical Manual,
Version 2.0, LSI Logic Corporation, Order Number S14050

LSI53C1000R PCI to Ultra160 SCSI Controller Technical Manual,
Version 1.0, LSI Logic Corporation, Order Number S14052

LSI53C1010-33 PCI to Dual Channel Ultra3 SCSI Multifunction
Controller Technical Manual, Version 3.1, LSI Logic Corporation,
Order Number S14025.C

LSI53C1010-66 PCI to Dual Channel Ultra3 SCSI Multifunction
Controller Technical Manual, Version 2.0, LSI Logic Corporation,
Order Number S14049
Preface v

LSI53C1010R PCI to Dual Channel Ultra160 SCSI Multifunction
Controller Technical Manual, Version 1.0, LSI Logic Corporation,
Order Number S14053

Conventions Used in This Manual

The following is a list of notational conventions used throughout
this programming guide:

Notation Example Meaning and Use

square braces
[]

CALL [REL] Address,
[{IF | WHEN} [NOT] CARRY]

Optional items in instruction examples.

courier font program.exe Used for code samples, file names,
command line information, prompts, etc.
that appear in body text.

All Caps JUMP [REL] Address,
[{IF | WHEN} [NOT] CARRY]

Keywords.

Curly braces
{}

SELECT [ATN] {FROM Address |
ID}, [REL] Address

Choose between items enclosed in curly
braces.

{} “...” SET {ACK|ATN|TARGET|CARRY}
[and {ACK|ATN|TARGET|CARRY}...]

The character enclosed in the curly
braces can be repeated as often as
desired.

| INTFLY int_value,
[{IF | WHEN} [NOT] CARRY]

OR, select one item from a list.

\ RELATIVE baselabel \ Line continuation.
vi Preface

Revision Record

Revision Date Remarks

2.0 8/96 Initial release.

2.1 6/97 Added chapter on programming multifunction controllers.

2.2 6/00 Miscellaneous updates/format changes.

2.3 10/00 All product names changed from SYM to LSI.
Preface vii

viii Preface

Contents
Chapter 1 Using the Programming Guide
1.1 Product Overview 1-1
1.2 Benefits of Ultra, Ultra2, and Ultra3 SCSI 1-7
1.3 System Overview 1-8

Chapter 2 Programming with SCRIPTS
2.1 The SCSI SCRIPTS Processor 2-1
2.2 SCRIPTS and the SCSI Bus Phases 2-2
2.3 Assembling SCSI SCRIPTS 2-3
2.4 Using SCSI SCRIPTS 2-6

2.4.1 SCRIPTS Data Sizes 2-6
2.4.2 SCSI SCRIPTS Language Elements 2-6
2.4.3 SCSI SCRIPTS Expressions 2-7
2.4.4 SCSI SCRIPTS Keywords 2-7

2.5 Big and Little Endian Byte Addressing 2-8
2.5.1 SCRIPTS Instruction Sequence 2-8
2.5.2 Operating Register Access from Firmware 2-9
2.5.3 Operating Register Access from SCRIPTS

Routines 2-9
2.5.4 User Data Byte Ordering 2-9

Chapter 3 The SCSI SCRIPTS Processor Instruction Set
3.1 Overview of SCRIPTS Instructions 3-1

3.1.1 I/O Instructions 3-1
3.1.2 Memory Move Instructions 3-2
3.1.3 Transfer Control Instructions 3-2
3.1.4 Read/Write Instructions 3-3
3.1.5 Block Move Instructions 3-3
3.1.6 Load and Store Instructions 3-3
Contents ix

3.2 Instruction Descriptions 3-4
3.2.1 CALL 3-5
3.2.2 CHMOV 3-10
3.2.3 CLEAR 3-14
3.2.4 DISCONNECT 3-16
3.2.5 INT 3-17
3.2.6 INTFLY 3-21
3.2.7 JUMP 3-27
3.2.8 JUMP 64 3-32
3.2.9 LOAD 3-37
3.2.10 LOAD64 3-40
3.2.11 MOVE 3-42
3.2.12 MOVE MEMORY 3-46
3.2.13 MOVE REGISTER 3-48
3.2.14 NOP 3-53
3.2.15 RESELECT 3-54
3.2.16 RETURN 3-58
3.2.17 SELECT 3-62
3.2.18 SET 3-64
3.2.19 STORE 3-66
3.2.20 WAIT DISCONNECT 3-68
3.2.21 WAIT SELECT 3-69
3.2.22 WAIT RESELECT 3-71

3.3 Instruction Examples 3-73
3.3.1 I/O Instruction Example 3-74
3.3.2 Memory Move Instruction Example 3-74
3.3.3 Transfer Control Instruction Example 3-76
3.3.4 Read/Write Instruction Example 3-77
3.3.5 Block Move Instruction Example 3-78
3.3.6 Load/Store Instruction Example 3-79

Chapter 4 Using the LSI Logic Assembler NASM™
4.1 Overview 4-1
4.2 Using NASM 4-2
4.3 Command Line Options 4-3

4.3.1 Architecture 4-3
4.3.2 Binary Cross Reference Values 4-4
x Contents

4.3.3 Error Listing File 4-4
4.3.4 Listing File 4-4
4.3.5 Output File 4-4
4.3.6 Partial “C” Source 4-4
4.3.7 .BIN Output 4-5
4.3.8 Omit Termination Record 4-5
4.3.9 Verbose Messages 4-5
4.3.10 Patch Offsets 4-6

4.4 Example Assembler Command Lines 4-6
4.5 How NASM Parses SCRIPTS Files 4-6
4.6 Assembler Declarative Keywords 4-7

4.6.1 ABSOLUTE 4-8
4.6.2 ARCH 4-8
4.6.3 ENTRY 4-9
4.6.4 EXTERN 4-9
4.6.5 PASS 4-10
4.6.6 PROC 4-10
4.6.7 RELATIVE 4-11
4.6.8 TABLE 4-12

4.7 Conditional Keywords 4-14
4.7.1 IF 4-14
4.7.2 WHEN 4-14

4.8 Logical Keywords 4-14
4.8.1 NOT 4-15
4.8.2 AND 4-15
4.8.3 OR 4-15

4.9 Flag Fields 4-15
4.9.1 ACK 4-15
4.9.2 ATN 4-15
4.9.3 TARGET 4-16
4.9.4 CARRY 4-16

4.10 Qualifier Keywords 4-16
4.10.1 DSAREL 4-16
4.10.2 FROM 4-16
4.10.3 MASK 4-16
4.10.4 MEMORY 4-17
4.10.5 PTR 4-17
4.10.6 REG 4-17
Contents xi

4.10.7 REL 4-17
4.10.8 TO 4-17
4.10.9 WITH 4-17
4.10.10 NOFLUSH 4-17

4.11 Other Keywords 4-18
4.11.1 Action Keywords 4-18
4.11.2 SCSI Phases 4-18
4.11.3 Register Names 4-18

Chapter 5 The NASM Output File
5.1 NASM Output Overview 5-1
5.2 NASM Output File Examples 5-2

5.2.1 SCRIPTS Array 5-3
5.2.2 External 5-5
5.2.3 Relative 5-7
5.2.4 Entry 5-9
5.2.5 Label Patches 5-9
5.2.6 Absolute 5-10
5.2.7 Termination Record 5-11

Chapter 6 Using the Registers to Control Chip Operations
6.1 Overview 6-1
6.2 SCSI Registers 6-2
6.3 DMA Registers 6-4
6.4 SCRIPTS Registers 6-5
6.5 64-Bit SCRIPTS Selector Registers 6-6
6.6 Interrupt Registers 6-7
6.7 Phase Mismatch Registers 6-8
6.8 Test and Miscellaneous Registers 6-9
6.9 General Purpose Registers 6-11
6.10 Register Initialization 6-11

Chapter 7 Integrating SCRIPTS Programs into “C” Language Drivers
7.1 Initializing the SCRIPTS Processor 7-1

7.1.1 Reset 7-3
7.1.2 Table Indirect Operations 7-3

7.2 Patching 7-7
xii Contents

7.2.1 EXTERN Buffers 7-8
7.2.2 RELATIVE Buffers 7-8
7.2.3 ABSOLUTE Values 7-9
7.2.4 Buffer Addresses 7-9
7.2.5 Byte Counts 7-9
7.2.6 Absolute JUMP/CALL Addresses 7-10
7.2.7 Entry Locations 7-10
7.2.8 Self-Modifying SCRIPTS Code 7-11

7.3 Running a SCRIPTS Program 7-12

Chapter 8 Writing Device Drivers with SCRIPTS
8.1 Device Driver Overview 8-1
8.2 Command Block 8-4
8.3 Power Up Example 8-4
8.4 I/O Request Process 8-5
8.5 How to Write a Device Driver with SCRIPTS 8-6
8.6 Table Indirect Addressing 8-7

8.6.1 Block Move Instructions 8-8
8.6.2 Select/Reselect Instructions 8-9
8.6.3 Defining a Table 8-10

8.7 Relative Addressing 8-11

Chapter 9 SCRIPTS Programming Topics
9.1 Scatter/Gather Operations 9-1
9.2 Loopback Mode 9-4

9.2.1 Loopback Example – Selection 9-5
9.3 Byte Recovery on Target Disconnect 9-9

9.3.1 Saving the Processor State 9-10
9.3.2 Updating the SCRIPTS Program 9-13
9.3.3 Cleaning Up 9-13
9.3.4 Example Byte Recovery Code 9-13

9.4 Synchronous Negotiation and Transfer 9-18
9.5 Interrupt Handling 9-19

9.5.1 Polling and Hardware Interrupts 9-19
9.5.2 Registers 9-20
9.5.3 Fatal vs. Nonfatal Interrupts 9-22
9.5.4 Masking 9-23
Contents xiii

9.5.5 Stacked Interrupts 9-24
9.5.6 Halting in an Orderly Fashion 9-24
9.5.7 Sample Interrupt Service Routine 9-25

9.6 Migrating Existing Software to Ultra, Ultra2, and
Ultra3 SCSI 9-26
9.6.1 Clock Divider Bits 9-27
9.6.2 Ultra Enable Bit 9-28
9.6.3 Loading the New Register Values 9-28
9.6.4 Negotiating Synchronous Transfers 9-28
9.6.5 Using the SCSI Clock Doubler 9-29
9.6.6 Using the SCSI Clock Quadrupler 9-29

9.7 Using the SCRIPTS RAM 9-30
9.7.1 Loading SCRIPTS RAM 9-30
9.7.2 Programming Techniques when Using

SCRIPTS RAM 9-31
9.7.3 Patching Internal and External SCRIPTS

Programs 9-37

Chapter 10 Multithreaded I/O
10.1 Overview 10-1
10.2 Multithreaded Operations Flow 10-2
10.3 SCRIPTS Areas 10-4
10.4 Multithreaded SCRIPTS Example 10-4
10.5 Using the SIGP Bit to Abort an Instruction 10-10
10.6 I/O Completion 10-12

Chapter 11 Using the SCRIPTS Processor in Target Applications
11.1 SCSI and Target SCRIPTS Protocol 11-1
11.2 Registers Used for Target Operation 11-3
11.3 Using SCRIPTS for Target Operation 11-3

11.3.1 Sample Target Operation SCRIPTS Program 11-4
11.4 Synchronous Negotiation by a Target Device 11-16

Chapter 12 Debugging the SCRIPTS Processor
12.1 Chip Debugging Guidelines 12-1
12.2 Register Used for Debugging 12-3
xiv Contents

Chapter 13 New SCRIPTS Processor Features
13.1 Improved FIFO Flushing 13-1
13.2 Larger FIFO 13-2
13.3 New ISTAT Registers 13-2
13.4 New Scratch Registers 13-2
13.5 New Load/Store Feature 13-2
13.6 Phase Mismatch Handling 13-3

13.6.1 Control Bits 13-3
13.6.2 Registers 13-4
13.6.3 SCRIPTS Example 13-5

13.7 64-Bit SCRIPTS Addressing 13-6
13.7.1 Control Bits 13-6
13.7.2 Block Move 13-7
13.7.3 Direct Block Move 13-7
13.7.4 Mode 0 Table Indirect Block Move 13-7
13.7.5 Mode 1 Table Indirect Block Move 13-8
13.7.6 Table Indirect Block Move Summary 13-10
13.7.7 LSI53C1010/LSI53C1010R 13-10

Appendix A NASM Error Messages

Appendix B Multithreaded SCRIPTS Example

Appendix C Glossary of Terms and Abbreviations

Index

Customer Feedback

Figures
1.1 Single Channel Block Diagram 1-6
1.2 Dual Channel Block Diagram 1-6
1.3 Typical SCRIPTS Operation 1-9
2.1 Overview of Assembling SCSI SCRIPTS 2-5
Contents xv

3.1 CALL Format 3-6
3.2 Use of the Mask Keyword 3-9
3.3 CHMOV Format 3-11
3.4 CLEAR Format 3-15
3.5 DISCONNECT Format 3-16
3.6 INT Format 3-18
3.7 INTFLY Format 3-23
3.8 JUMP Format 3-28
3.9 JUMP 64 Format 3-34
3.10 LOAD Format 3-38
3.11 MOVE Format 3-43
3.12 MOVE MEMORY Format 3-47
3.13 MOVE REGISTER Format 3-50
3.14 NOP Format 3-54
3.15 RESELECT Format 3-55
3.16 Reselection Instruction 3-57
3.17 RETURN Format 3-59
3.18 SELECT Format 3-63
3.19 SET Format 3-65
3.20 STORE Format 3-67
3.21 WAIT DISCONNECT Format 3-69
3.22 WAIT SELECT Format 3-70
3.23 WAIT RESELECT Format 3-71
3.24 WAIT RESELECT and the SIGP Bit 3-73
3.25 I/O Instruction Type 3-74
3.26 Memory Move Instruction Part 1 3-75
3.27 Memory Move Instruction Part 2 3-76
3.28 Transfer Control Instruction 3-77
3.29 Read/Write Instruction Example 3-78
3.30 Block Move Instruction 3-79
3.31 Load/Store Instruction 3-80
5.1 Sample SCRIPTS Program 5-2
7.1 Accessing I/O Mapped Registers 7-1
7.2 Resetting the SCRIPTS Processor 7-3
7.3 SCRIPTS Table Declaration 7-4
7.4 Creating Table Indirect Entry Offsets 7-4
7.5 Data Structure and Type Definition 7-5
7.6 Data Structure and Type Definition 7-6
xvi Contents

7.7 Creating Buffers 7-7
7.8 Self-Modifying Code 7-11
7.9 General.ss SCRIPTS Source File 7-12
7.10 General.out NASM Output File 7-16
8.1 The Role of the SCSI Device Drivers 8-2
8.2 SCSI Device Driver Layers 8-3
8.3 Power Up Examples 8-5
8.4 I/O Operation 8-6
8.5 Table Indirect Addressing 8-10
8.6 Table Definitions 8-11
9.1 Scatter/Gather Operation 9-2
9.2 Alternate Scatter/Gather Operation 9-4
9.3 Loopback Mode 9-6
9.4 Target Operation 9-7
9.5 Byte Transfer 9-8
9.6 Loopback Mode Selection Procedure 9-9
9.7 SCRIPTS Sequence to Move Data 9-14
9.8 Example Function for Handling DATA IN Phase

Mismatch Interrupts 9-15
9.9 Example Function for Handling DATA OUT Phase

Mismatch Interrupts 9-16
9.10 SELECT FROM Example Code 9-19
9.11 Storing Data Structures in SCRIPTS RAM 9-31
9.12 External Script (SCRIPTS.LIS file) 9-33
9.13 External Script (SCRIPTS.OUT file) 9-34
9.14 Internal Script (SCRIPTS.LIS file) 9-34
9.15 Internal SCRIPTS Program (SCRIPTS.OUT file) 9-36
9.16 Patching Routine 9-38
10.1 Multithreaded System Operation 10-2
10.2 Multithreaded SCRIPTS Operational Flow 10-3
10.3 Multithreaded SCRIPTS Example Step 1 10-5
10.4 Multithreaded SCRIPTS Example Step 2 10-6
10.5 Multithreaded SCRIPTS Example Step 3 10-7
10.6 Multithreaded SCRIPTS Example Step 6 10-7
10.7 Multithreaded SCRIPTS Example Step 10 10-9
10.8 Multithreaded SCRIPTS Example Step 11 10-9
10.9 Multithreaded SCRIPTS Example Step 13 10-10
10.10 Sample SIGP Code 10-10
Contents xvii

11.1 SCRIPTS Source Code–Comments 11-4
11.2 SCRIPTS Source Code–ABSOLUTE Declarations 11-5
11.3 SCRIPTS Source Code–EXTERN Variables 11-5
11.4 SCRIPTS Source Code–TABLE 11-6
11.5 SCRIPTS Source Code–ENTRY Declarations 11-7
11.6 SCRIPTS Source Code–wait_select Label 11-7
11.7 SCRIPTS Source Code–CDB Functions 11-8
11.8 SCRIPTS Source Code–Message Out Phase 11-8
11.9 SCRIPTS Source Code–Extended Message 11-9
11.10 SCRIPTS Source Code–Synchronous Negotiation 11-9
11.11 SCRIPTS Source Code–Wide Negotiation 11-9
11.12 SCRIPTS Source Code–Return Negotiation 11-9
11.13 SCRIPTS Source Code–Recovery Message 11-10
11.14 SCRIPTS Source Code–Test Unit Ready 11-10
11.15 SCRIPTS Source Code–stopped_busy_tur Command 11-10
11.16 SCRIPTS Source Code–Request Sense 11-11
11.17 SCRIPTS Source Code–Read Label 11-12
11.18 SCRIPTS Source Code–read_disconnect Label 11-12
11.19 SCRIPTS Source Code–read_reconnect Label 11-13
11.20 SCRIPTS Source Code–Write 11-13
11.21 SCRIPTS Source Code–write_disconnect Label 11-13
11.22 SCRIPTS Source Code–write_reconnect Label 11-14
11.23 SCRIPTS Source Code–reserve_unit Label 11-14
11.24 SCRIPTS Source Code–release_unit Command 11-14
11.25 SCRIPTS Source Code–abort Label 11-15
11.26 SCRIPTS Source Code–stopped_busy_wait_select

Command 11-15
13.1 64-Bit Direct Block Move Format 13-7
13.2 Index Mode 1 Table Entry Format 13-9

Tables
1.1 Features and Functions of LSI53C7XX/8XX/10XX

Family Chips (part 1) 1-2
1.2 Features and Functions of LSI53C7XX/8XX/10XX

Family Chips (part 2) 1-3
2.1 SCSI Protocol and SCRIPTS Instructions 2-2
2.2 Data Sizes 2-6
2.3 SCSI SCRIPTS Language Elements 2-6
xviii Contents

2.4 Arithmetic Operators 2-7
2.5 Bitwise Operators 2-7
2.6 Big and Little Endian Byte Addressing 2-8
3.1 Opcode Bit Options 3-2
3.2 Read/Write Instructions 3-3
3.3 SCRIPTS Instructions Set 3-4
3.4 SCSI Phase Bit Values (CALL Format) 3-7
3.5 SCSI Phase Bit Values (CHMOV Format) 3-12
3.6 SCSI Phase Bit Values (INT Format) 3-18
3.7 SCSI Phase Bit Values (INTFLY Format) 3-23
3.8 SCSI Phase Bit Values (JUMP Format) 3-29
3.9 SCSI Phase Bit Values (JUMP 64 Format) 3-35
3.10 Register Address Field Definitions (LOAD Format) 3-39
3.11 LOAD64 Format 3-41
3.12 Register Address Field Definitions (LOAD64 Format) 3-42
3.13 SCSI Phase Bit Values (MOVE Format) 3-44
3.14 SCSI Phase Bit Values (RETURN Format) 3-59
3.15 Low Order Bit Options 3-68
4.1 Keywords 4-7
5.1 Relationship Between Entry and PROC Statements

and Output File 5-5
6.1 SCSI Registers 6-2
6.2 DMA Registers 6-5
6.3 SCRIPTS Registers 6-6
6.4 64-Bit Selector Registers 6-6
6.5 Interrupt Registers 6-7
6.6 Phase Mismatch Registers 6-9
6.7 Test and Miscellaneous Registers 6-10
6.8 General Purpose Registers 6-11
6.9 LSI53C815/810A/860 Startup Bits 6-12
6.10 LSI53C825A/875/876/885/895/895A/896/10XX

Startup Bits 6-14
8.1 Data Structure 8-9
8.2 I/O Data Structure 8-9
11.1 SCSI Protocol and Target SCRIPTS Instructions 11-2
11.2 Register Bits Used for Target Operation 11-3
13.1 ISTAT1 Register 13-2
13.2 Index Mapping 13-8
Contents xix

13.3 Table Indirect BMOV Upper 32-Bit Address Locations 13-10
A.1 NASM Error Messages A-1
A.2 Fatal Errors A-13
A.3 Warnings A-14
xx Contents

Chapter 1
Using the
Programming Guide
This chapter provides an overview of the LSI Logic SCSI SCRIPTS
processor. It also provides brief descriptions for some of the chips
containing the processor and their features. The chapter contains the
following sections:

• Section 1.1, “Product Overview”, page 1-1

• Section 1.2, “Benefits of Ultra, Ultra2, and Ultra3 SCSI”, page 1-7

• Section 1.3, “System Overview”, page 1-8

1.1 Product Overview

The LSI Logic SCSI SCRIPTS processor is based on the LSI53C7XX
SCSI I/O Processor family architecture, with a host interface to the
Peripheral Component Interconnect (PCI) bus. The SCRIPTS processor
connects to the PCI bus without glue logic.

Several LSI Logic product families contain the SCRIPTS processor.

• LSI53C7XX

• LSI53C8XX

• LSI53C10XX (up to the LSI53C1010 and LSI53C1010R)

Tables 1.1 and 1.2 list currently available chips using the SCRIPTS
processor and their basic specifications. More detailed information is
available in the respective chip technical manuals, listed in Related
Publications on page v.
SCSI SCRIPTS Processors 1-1

Table 1.1 Features and Functions of LSI53C7XX/8XX/10XX Family Chips (part 1)

LSI53C770 LSI53C810A LSI53C860 LSI53C815
LSI53C825A
LSI53C825AJ

Maximum Transfer
Rate

20 Mbytes/s
synchronous
(with Wide
SCSI)

5 Mbytes/s
asynchronous
10 Mbytes/s
synchronous

5 Mbytes/s
asynchronous
20 Mbytes/s
synchronous
(with Ultra
SCSI)

5 Mbytes/s
asynchronous
10 Mbytes/s
synchronous

10 Mbytes/s
asynchronous
20 Mbytes/s
synchronous

DMA FIFO Size
(bytes)

96 80 80 64 88 or 536

Synchronous
Offset (levels)

16 8 8 8 16

SCRIPTS RAM 4 Kbytes None None None 4 Kbytes

Differential SCSI No No No No HVD

Wide SCSI Yes No No No Yes

External Memory
Interface

No No No Yes Yes

Instruction Prefetch Yes Yes Yes No Yes

Load/Store
Instructions

No Yes Yes No Yes

Enhanced Move
Register Capability

No No No No Yes

SCSI Selected As
ID Bits

No Yes Yes No Yes

Number of 32-bit
SCRATCH
Registers

1 2 2 2 10

PCI Caching No Yes Yes No Yes

Selectable IRQ
Disable

No Yes Yes No Yes

Big/Little Endian
Support

Big or Little
Endian

Little Endian Little Endian Big or Little
Endian

Big or Little
Endian (except
LSI53C825AJ)

PCI Data Bus N/A 32-Bit 32-Bit 32-Bit 32-Bit
1-2 Using the Programming Guide

PCI Addressing N/A 32-Bit 32-Bit 32-Bit 32-Bit

Package 208 PQFP 100 PQFP 100 PQFP 128 PQFP 160 PQFP

Table 1.2 Features and Functions of LSI53C7XX/8XX/10XX Family Chips (part 2)

LSI53C875
LSI53C875A
LSI53C875J
LSI53C875JB
LSI53C875N

LSI53C895
LSI53C895A LSI53C896

LSI53C1000
LSI53C1000R

LSI53C1010
LSI53C1010R

Maximum
Transfer Rate

10 Mbytes/s
asynchronous
40 Mbytes/s
synchronous
(with Ultra
SCSI)

10 Mbytes/s
asynchronous
80 Mbytes/s
synchronous
(with Ultra2
SCSI)

10 Mbytes/s
asynchronous
80 Mbytes/s
synchronous
per channel
for
160 Mbytes/s

10 Mbytes/s
asynchronous
160 Mbytes/s
synchronous
(with Ultra2
SCSI)

10 Mbytes/s
asynchronous
160 Mbytes/s
synchronous
per channel
for
320 Mbytes/s

DMA FIFO
Size (bytes)

88 or 536 112 or 816
(LSI53C895)
112 or 944
(LSI53C895A)

112 or 944 896 to 920 896 to 920

Synchronous
Offset (levels)

16 31 31 62 62

SCRIPTS RAM 4 Kbytes 4 Kbytes
(LSI53C895)
8 Kbytes
(LSI53C895A)

8 Kbytes 8 Kbytes 8 Kbytes

Differential
SCSI

High Voltage
Differential
(HVD)

Low Voltage
Differential
(LVD) and HVD

LVD and HVD LVD and HVD LVD and HVD

Wide SCSI Yes Yes Yes
Dual Channel

Yes Yes
Dual Channel

External
Memory
Interface

Yes Yes Yes Yes Yes

Table 1.1 Features and Functions of LSI53C7XX/8XX/10XX Family Chips (part 1) (Cont.)

LSI53C770 LSI53C810A LSI53C860 LSI53C815
LSI53C825A
LSI53C825AJ
Product Overview 1-3

The LSI Logic SCSI SCRIPTS processors are the first products to
concentrate the functions of an intelligent SCSI adapter board onto a
single chip. These products integrate a high-performance SCSI core, a
PCI bus master DMA core, and the SCSI SCRIPTS processor to meet

Instruction
Prefetch

Yes Yes Yes Yes Yes

Load/Store
Instructions

Yes Yes Yes Yes Yes

Enhanced
Move Register
Capability

Yes Yes Yes Yes Yes

SCSI Selected
As ID Bits

Yes Yes Yes Yes Yes

Number of
32-bit
SCRATCH
Register

10 10 (LSI53C895)
18
(LSI53C895A)

18 18 18

PCI Caching Yes Yes Yes Yes Yes

Selectable IRQ
Disable

Yes Yes Yes Yes Yes

Big/Little
Endian Support

Big or Little
Endian (except
LSI53C875J,
LSI53C875JB)

LSI53C895 Big
or Little Endian
LSI53C895A
Little Endian

Little Endian Little Endian Little Endian

PCI Data Bus 32-Bit 32-Bit 64-Bit 64-Bit 64-Bit

PCI Addressing 32-Bit 32-Bit
(LSI53C895)
64-Bit
(LSI53C895A)

64-Bit 64-Bit 64-Bit

Package 160 PQFP,
169 BGA,
208 PQFP

208 PQFP 329 BGA 329 BGA 329 BGA

Table 1.2 Features and Functions of LSI53C7XX/8XX/10XX Family Chips (part 2) (Cont.)

LSI53C875
LSI53C875A
LSI53C875J
LSI53C875JB
LSI53C875N

LSI53C895
LSI53C895A LSI53C896

LSI53C1000
LSI53C1000R

LSI53C1010
LSI53C1010R
1-4 Using the Programming Guide

the flexibility requirements of SCSI-3 and future SCSI standards. It
executes multithreaded I/O algorithms with minimum host processor
intervention, reducing the protocol overhead required for SCSI operations
to as little as one interrupt per SCSI I/O. The SCRIPTS language, a high
level instruction set, provides complete programmability of I/O operations
and supports the flexibility needed for multithreaded I/O algorithms.
SCRIPTS provides:

• Phase sequencing without processor intervention

• Automatic bus arbitration

• Data or phase comparison for independent SCSI algorithm decisions

• DMA interface control

All LSI53C7XX/8XX/10XX family chips are also supported by LSI Logic
software for connecting SCSI devices. This includes BIOS support for
LSI Logic SCSI processors and drivers for most types of SCSI
peripherals under the major operating systems. These chips also feature:

• On-chip Single-Ended (SE) drivers

• Synchronous and asynchronous transfer capabilities

• LSI Logic TolerANT® driver and receiver technology

• Bus mastering

• Automatic selection/reselection time-outs

• 32-bit memory addressing

• 32-bit data bus

• PCI bursting

Newer chips, including the LSI53C895, LSI53C895A, LSI53C896,
LSI53C1000, LSI53C1010, LSI53C1010R, and LSI53C1000R also have
these features:

• On-chip LVD

• 64-bit memory addressing

• 64-bit data bus

Note: For specific information on the features and functions of the
various chips supporting SCRIPTS, refer to their respective
technical manuals. You must have the appropriate technical
Product Overview 1-5

manual in order to effectively program SCRIPTS for each
chip.

Figures 1.1 and 1.2 are block diagrams of the single and dual channel
LSI Logic chips that support SCRIPTS, with a map of SCSI data and
control paths through the chips.

Figure 1.1 Single Channel Block Diagram

Figure 1.2 Dual Channel Block Diagram

PCI Bus

External Memory

Single

External Oscillator
or Optimal Internal

Connection to
PCI Bus Clock

VDD VSS

Peripheral
SCLK

SCSI Term ConnectionSCSI Connection

SCSI Bus

(When Supported)

CPU Box

Bulkhead

CPU baseboard

Channel Chip

PCI Bus

External Memory

Dual

External Oscillator
or Optimal Internal

Connection to
PCI Bus Clock

VDD VSS

Peripheral

SCLK

SCSI Term ConnectionSCSI Connection

SCSI Bus

(When Supported)

CPU Box

Bulkhead
CPU baseboard

Channel Chip

SCSI Term ConnectionSCSI Connection

SCSI Bus

Peripheral
1-6 Using the Programming Guide

1.2 Benefits of Ultra, Ultra2, and Ultra3 SCSI

Ultra SCSI is an extension of the SCSI-3 standard that expands the
bandwidth of the SCSI bus and allows faster synchronous SCSI transfer
rates. When enabled, Ultra SCSI performs 20 megatransfers per second,
which results in approximately doubling the synchronous transfer rates of
Fast SCSI-2. The LSI53C860 and LSI53C875 can perform 8-bit or
16-bit Ultra SCSI synchronous transfers as fast as 20 Mbytes/s or
40 Mbytes/s.

Ultra2 SCSI extends SCSI performance beyond Ultra SCSI rates, up to
40 megatransfers per second. It also defines a new physical interface,
LVD SCSI, that retains the reliability of HVD SCSI while allowing a longer
cable and more devices on the bus than Ultra SCSI. The LSI53C895 can
perform 16-bit, Ultra2 SCSI synchronous transfers as fast as
80 Mbytes/s.

Ultra3 SCSI delivers data up to two times faster than Ultra2 SCSI.
Ultra3 SCSI is an extension of the SPI-3 draft standard. When enabled,
Ultra3 SCSI performs 80 megatransfers per second. Ultra3 data transfer
speed is accomplished using Double Transition (DT) clocking. Data is
clocked on both rising and falling edges of the request and acknowledge
signals, doubling data transfer speeds without increasing the clock rate.

The advantages of Ultra/Ultra2/Ultra3 SCSI are most noticeable in
heavily loaded systems, or large block size applications such as video on
demand and image processing. Not only does it significantly improve
SCSI bandwidth, it also preserves existing hardware and software
investments. LSI Logic Ultra/Ultra2/Ultra3 SCSI chips are all compatible
with Fast SCSI software; the only changes required are to enable the
chip to negotiate for the faster synchronous transfer rates.

Some changes to existing cabling or system designs may be needed to
maintain signal integrity at Ultra SCSI synchronous transfer rates. These
design issues are discussed in the chip technical manuals.
Benefits of Ultra, Ultra2, and Ultra3 SCSI 1-7

1.3 System Overview

To execute SCSI SCRIPTS programs, only a SCSI SCRIPTS starting
address is required. All subsequent instructions are fetched from external
memory or internal SCRIPTS RAM (when supported). Depending on the
chip, up to eight Dwords at a time are fetched across the DMA interface
and loaded into the internal chip registers. When the chip is operating at
its highest frequency, instruction fetching and decoding take as little as
500 ns. The chip fetches instructions until a SCRIPTS interrupt occurs or
until an external, unexpected event (such as a hardware error) causes
an interrupt. The full set of SCSI features in the instruction set allows
re-entry to the algorithm at any point. This high level interface can be
used for both normal operation and exception conditions.

A typical SCRIPTS operation is illustrated in Figure 1.3. Before SCRIPTS
operation begins, the host processor writes the Data Structure Address
register value to initialize the pointer for table indirect operations. To
begin SCRIPTS operation, the host processor writes the starting address
of the SCRIPTS instructions into the chip’s DMA SCRIPTS Pointer
Register. Once it receives this address, the chip becomes a bus master
and fetches the first SCRIPTS instruction. The chip executes all steps of
the instruction, moving through the appropriate bus phases, interrupting
only on completion of SCRIPTS operation or when service from the
external processor is required. This leaves the host processor free for
other tasks.

Software developers can create SCSI SCRIPTS source code in any text
editor. The LSI Logic Assembler, NASM, is discussed in Chapter 4,
“Using the LSI Logic Assembler NASM™.” NASM assembles SCRIPTS
code into an array of assembled SCRIPTS instructions that can be
included in the main “C” language program and linked together to create
an executable driver. When compiled, these programs control chip
operation.
1-8 Using the Programming Guide

Figure 1.3 Typical SCRIPTS Operation

SCRIPTS RAM
(when supported)

Processor

System Memory

SCRIPTS
Processor

Operating
Registers

Fetch instructions from
internal or external
memory

Write DSP

Interrupt when done

Data Structure

Message Buffer
Command Buffer

Data Buffer
Status Buffer

(Expanded View)

LSI53C7XX/8XX/10XXHost System

S
C

S
IB

u
s

S
ys

te
m

B
u

s

System Overview 1-9

1-10 Using the Programming Guide

Chapter 2
Programming with
SCRIPTS
This chapter contains the following sections:

• Section 2.1, “The SCSI SCRIPTS Processor,” page 2-1

• Section 2.2, “SCRIPTS and the SCSI Bus Phases,” page 2-2

• Section 2.3, “Assembling SCSI SCRIPTS,” page 2-3

• Section 2.4, “Using SCSI SCRIPTS,” page 2-6

• Section 2.5, “Big and Little Endian Byte Addressing,” page 2-8

2.1 The SCSI SCRIPTS Processor

The SCSI SCRIPTS processor permits instructions to be fetched from
internal or external memory. Algorithms written in the SCSI SCRIPTS
language are assembled to control the SCSI and DMA modules.
Complex SCSI bus sequences, including multiple SCRIPTS instructions,
execute independently of the host processor.

The SCSI SCRIPTS reside in host computer memory or internal
SCRIPTS RAM during system operation, allowing for fast execution. If
instructions reside in external memory, the chip fetches SCRIPTS
programs from memory using bus master DMA transfers. If instructions
reside in SCRIPTS RAM, they are fetched directly from RAM without
generating PCI bus traffic. The SCRIPTS processor allows you to fine
tune SCSI operations such as adjusting to new device types, adapting to
changes in SCSI logical definitions, or quickly incorporating new options,
such as vendor unique commands or new SCSI specifications. The
SCRIPTS processor fetches SCRIPTS instructions from system memory
to control chip operation. The SCRIPTS processor does not compile
code; SCRIPTS programs must be assembled for execution by the
NASM assembler and then compiled with a standard “C” compiler as part
of a “C” program. Third generation SCSI devices can be programmed
SCSI SCRIPTS Processors 2-1

with SCRIPTS using only a few hundred lines of SCRIPTS code.
SCRIPTS are independent of the CPU, operating system, or system bus
being used, so they are portable across platforms.

Important: The SCRIPTS processor is not used in chip families
subsequent to the LSI53C1010 and LSI53C1010R.

2.2 SCRIPTS and the SCSI Bus Phases

One important advantage of SCSI SCRIPTS is that the SCRIPTS
language corresponds directly to SCSI protocol. In conjunction with the
high level language syntax, it provides an excellent vehicle to master the
complexity of SCSI. The one-to-one relationship between protocol
phases and SCRIPTS instructions means that SCRIPTS can be
customized to specific operations on the SCSI bus, and that SCSI
software development is simplified by using SCRIPTS. SCSI uses the
bus phases in the order shown in Table 2.1. This table also shows the
SCSI SCRIPTS instructions that correspond to the SCSI bus phases for
initiator and target roles.

Table 2.1 SCSI Protocol and SCRIPTS Instructions

Bus Phase Definition

SCRIPTS
Instruction

(Initiator role)

SCRIPTS
Instruction

(Target role)

Bus Free This phase indicates that the SCSI bus is available. N/A N/A

Arbitration This phase allows the initiator to gain control of the
SCSI bus.

SELECT ATN RESELECT

Selection During this phase, the initiator selects a target
device to perform the desired function. The Attention
option notifies the target that upon successful
selection the initiator desires to send further
messages.

SELECT ATN WAIT
SELECT

Reselection The target reselects with the initiator during this
phase.

WAIT
RESELECT

RESELECT

Message-Out During this phase, the initiator can send messages
to the target, such as queuing or error recovery
information.

MOVE WHEN
MSG_OUT

MOVE WITH
MSG_OUT
2-2 Programming with SCRIPTS

2.3 Assembling SCSI SCRIPTS

The SCSI SCRIPTS are assembled with the LSI Logic Assembler
(NASM), a DOS command line driven assembler that supports LSI Logic
SCSI SCRIPTS processors. NASM assembles SCSI SCRIPTS for
inclusion in SCSI device driver software programs. NASM is described in
detail in Chapter 4, “Using the LSI Logic Assembler NASM™.”

The SCSI SCRIPTS programs are created with any text editor that
generates ASCII files. These text files must be transformed from their text
form into the SCRIPTS processors instruction language before they can
be executed by the SCRIPTS processor. This is accomplished by running
the test file through NASM. NASM generates an output file (.out) that is

Command During this phase, the initiator can send a command
in the form of a command descriptor block (CDB) to
the target buffer.

MOVE WHEN
CMD

MOVE WITH
CMD

Data In/Out Data In and Data Out phases are used to send data
to the initiator or to the target and are used
dependent on the information transferred during the
Command phase. This phase is optional. For
example, a Test Unit Ready command does not
require a data transfer.

MOVE MOVE

Status During this phase, the initiator receives status
information from the target about the previously
executed CDB.

MOVE WHEN
STATUS

MOVE WITH
STATUS

Message-In During this phase, the initiator will receive messages
from the target. These messages can acknowledge
or reject previously sent initiator messages. They
also can provide other information like queuing,
disconnect, or parity errors.

MOVE WHEN
MSG_IN

MOVE WITH
MSG_IN

Disconnect This phase is used to end the initiator's connection
with the bus.

WAIT
DISCONNECT

DISCONNECT

After successful completion of an I/O operation and
a request for disconnect, the bus returns to the Bus
Free state, indicating that it is now available.

WAIT
DISCONNECT

DISCONNECT

Table 2.1 SCSI Protocol and SCRIPTS Instructions (Cont.)

Bus Phase Definition

SCRIPTS
Instruction

(Initiator role)

SCRIPTS
Instruction

(Target role)
Assembling SCSI SCRIPTS 2-3

compatible with all standard “C” compilers, as well as a cross-reference
list file (.lis) that includes the source instruction and the assembled
output on the same line. The .lis file is useful for debugging code. All
instructions and data are represented as hexadecimal numbers in C style
array declarations. The .out file can be included in the “C” program and
linked together with other system support object files to form the final
executable code.

When the executable is run, areas of host memory are reserved for SCSI
data transfer buffers and the SCRIPTS instructions. The instructions,
which look like 32-bit integer arrays to the “C” program, are loaded into
the appropriate area of memory by the “C” code. The driver program
loads the address of the first instruction into the SCRIPTS processor to
begin the SCRIPTS execution.

Figure 2.1 illustrates an overview of assembling the SCSI SCRIPTS.
2-4 Programming with SCRIPTS

Figure 2.1 Overview of Assembling SCSI SCRIPTS

1. Write SCSI SCRIPTS source code.

2. Assemble the source code using the LSI Logic Assembler (NASM).

3. Write “C” language source code and include assembled SCRIPTS
code.

4. Compile all code using a “C” compiler.

5. The result is object (.obj) code.

6. Link all object modules together.

7. The result is an executable program.

scripts .ss
SCRIPTS

Source Code

LSI Logic
Assembler

program.c
“C” source code

scripts.lis
Cross-Reference

scripts.out
“C” compatible

support.c

C Compiler

Host Linker

program.exe
SCSI Driver

program.obj support.obj

1.

3.

4.

5.

6.

7.

(NASM)

2.

scripts.obj

File
Assembling SCSI SCRIPTS 2-5

2.4 Using SCSI SCRIPTS

The following section of the chapter describes various aspects of SCSI
SCRIPTS.

2.4.1 SCRIPTS Data Sizes

Table 2.2 describes SCSI SCRIPTS data sizes.

2.4.2 SCSI SCRIPTS Language Elements

Table 2.3 describes the SCSI SCRIPTS language elements.

Table 2.2 Data Sizes

Address a 32-bit number

Value a 32-bit number

Count a 24-bit number

Data an 8-bit number

ID a 4-bit encoded SCSI ID

Table 2.3 SCSI SCRIPTS Language Elements

Term Definition

name A name is a string of one or more consecutive characters. It may consist of letters,
numbers, underscores, and dollar signs, but must begin with an alphabetic character.
When used for labels, externals, and variables in the relative data area, names are
passed on to the host development system and are subject to the host's syntactic
restrictions. Names cannot be reserved words in the host language. For example,
Turbo C, which is used as the host development system for NASM, does not allow names
to begin with a digit or to contain a dollar sign ($). Therefore, the SCSI SCRIPTS writer
for DOS and Turbo C should avoid names of this form.

label A label is a name followed by a colon. Labels are symbolic addresses that can be used
as transfer control destination points, such as jump or call destinations. Labels are case
sensitive.

comment Comments are used to notate the SCRIPTS. They are optional and are ignored by the
compiler. Comments begin with a semicolon and continue to the end of a line.
2-6 Programming with SCRIPTS

2.4.3 SCSI SCRIPTS Expressions

There are two forms of SCSI SCRIPTS operators, arithmetic and bitwise,
described in Table 2.4 and Table 2.5.

The value of all expressions is automatically extended to 32 bits. When
expressions are used in a context where the evaluated value is less than
32 bits, the least significant bits are used. For example, if an expression
is used to represent a count, normally 24 bits, for a Move instruction, the
evaluated value is truncated to 24 bits. You are notified if the expression
has been truncated and if the value of the expression changes during
truncation. The symbols for the bitwise operators are used only for
register manipulations. Any other instruction using comparison must spell
out AND or OR.

2.4.4 SCSI SCRIPTS Keywords

The SCSI SCRIPTS keywords have eight types: Declarative, Conditional,
Logical, Flag Field, Qualifier, Action, SCSI Phase, and Register Name.
Keywords are written in all capital letters for clarity, but are not case
sensitive. Refer to Chapter 4, “Using the LSI Logic Assembler NASM™,”
for detailed descriptions of individual keywords.

Table 2.4 Arithmetic Operators

Symbol Meaning

+ addition

− subtraction

Table 2.5 Bitwise Operators

Symbol Meaning

& Logical AND

| Logical OR

XOR Exclusive OR

SHL Shift left

SHR Shift right
Using SCSI SCRIPTS 2-7

2.5 Big and Little Endian Byte Addressing

The guidelines in this section will help assure proper byte lane ordering
in big or little endian designs. Please check the technical manual for each
chip to determine whether your product supports big and/or little endian
addressing. The later series of chips that have 64-bit addressing are all
little endian.

Big endian addressing is used primarily in designs based on Motorola
processors. The SCRIPTS processor treats D[31:24] as the lowest
physical memory address. Little endian is used primarily in designs
based on Intel processors and treats D[7:0] as the lowest physical
memory address.

Table 2.6 describes big and little endian byte addressing.

2.5.1 SCRIPTS Instruction Sequence

To ensure that SCSI SCRIPTS instructions are in the correct order, each
SCRIPTS routine must be compiled in the target architecture. The “C”
output file (.OUT) lists arrays of Dword values, which are stored in
memory by the processor in the correct order for their subsequent
execution. Execution of a little endian SCRIPTS instruction on a big
endian machine requires reversal of the bytes before execution. The best
way to guarantee correct byte ordering is to make sure the SCRIPTS are
placed in memory with the opcode byte on the same byte lane as the
Data Command (DCMD) register. A PROM cannot be moved from one
environment to another without reordering bytes within each word.

Table 2.6 Big and Little Endian Byte Addressing

System Data Bus [31:24] [23:16] [15:8] [7:0]

Pins [31:24] [23:16] [15:8] [7:0]

Register SCNTL3 SCNTL2 SCNTL1 SCNTL0

Little Endian Address 0x03 0x02 0x01 0x00

Big Endian Address 0x00 0x01 0x02 0x03
2-8 Programming with SCRIPTS

2.5.2 Operating Register Access from Firmware

Developing code that works in either mode requires use of equates for
the register names, with an endian switch specified at compile time that
includes the appropriate set of address values. This change is only for
byte access. If 32 bits are accessed, there is no address change from
big to little endian.

2.5.3 Operating Register Access from SCRIPTS Routines

NASM uses logical names to access registers. Names do not change
when the mode changes, nor does the binary code required to access a
register.

2.5.4 User Data Byte Ordering

Data transfers between system memory and the SCSI bus always start
at the beginning address and continue until the last byte is sent. No
internal reordering of the data for either mode occurs. A serial stream of
data is assumed, and the first byte on the SCSI bus is associated with
the lowest address in system memory, regardless of the big or little
endian mode.
Big and Little Endian Byte Addressing 2-9

2-10 Programming with SCRIPTS

Chapter 3
The SCSI SCRIPTS
Processor Instruction Set
This chapter describes the LSI Logic SCSI SCRIPTS processor
instruction set and contains the following sections.

• Section 3.1, “Overview of SCRIPTS Instructions,” page 3-1

• Section 3.2, “Instruction Descriptions,” page 3-4

• Section 3.3, “Instruction Examples,” page 3-73

3.1 Overview of SCRIPTS Instructions

This section contains an overview of the instruction types supported by
the SCRIPTS processor. Instruction types are groups of commands with
similar functions. The commands for each instruction type, including all
legal forms, are described in detail in Sections 3.2 and 3.3.

3.1.1 I/O Instructions

The I/O instruction type is selected when the two high order bits of the
DCMD register are 0b01, with opcode bit values of 0b000–0b100. I/O
instructions perform SCSI operations such as selection and reselection.
Each function is a direct command to the SCRIPTS processor. The I/O
operations, chosen with the opcode bits in the DCMD register, are
described in Table 3.1.
SCSI SCRIPTS Processors 3-1

3.1.2 Memory Move Instructions

The Memory Move Instruction type is selected when the two high order
bits of the DCMD register are 0b11. Memory Moves allow data transfer
from one 32-bit memory location to another. The source or the
destination may be a chip register. A 24-bit byte counter allows large
moves to occur with no intervention from the host processor. If both
addresses are in system memory, the device functions as a high speed
DMA controller, able to move data at sustained speeds up to 40 Mbytes/s
without using the host processor or its cache memory. Data is moved
from the source address into the chip's DMA FIFO and then out to the
destination address. This instruction type does not allow indirect
addressing, so the physical 32-bit address must be in the SCRIPTS
instruction.

In chips supporting instruction prefetching, the NOFLUSH qualifier
prevents flushing the prefetch buffer when the chip performs a
Memory-to-Memory Move instruction.

3.1.3 Transfer Control Instructions

The Transfer Control instruction type is selected when the two high order
bits of the DCMD register are 0b10. Transfer Controls perform SCRIPTS
operations such as JUMP, CALL, RETURN, and INTERRUPT. These
instructions allow comparisons of current phase values on the SCSI bus
or the first byte of data on any asynchronous incoming bytes, and
transfer control to another address depending on the results of the
comparison test. These operations may conduct a test of the ALU carry

Table 3.1 Opcode Bit Options

Opcode Target Initiator

0b000 RESELECT SELECT, SELECT with ATN

0b001 DISCONNECT WAIT for DISCONNECT

0b010 WAIT for SELECT WAIT for RESELECT

0b011 SET SET

0b100 CLEAR CLEAR
3-2 The SCSI SCRIPTS Processor Instruction Set

bit, and may enable interrupt on the fly, so that the interrupt instruction
does not halt the SCRIPTS processor.

3.1.4 Read/Write Instructions

The Read/Write Instruction type is selected when the two high order bits
of the DCMD register are 0b01, with the opcode bit values from
0b101–0b111. Read/Write instructions perform the following register
operations, depending on the value of the operator bits in the Move
Register instructions. Table 3.2 describes these instructions.

3.1.5 Block Move Instructions

The Block Move instruction type is selected when the two high order bits
of the DCMD register are 0b00. Block Moves transfer data (user data or
SCSI information) between user memory and the SCSI bus. Data comes
from any memory address, so scatter/gather operations for user data are
transparent to the chip and the external processor. A separate Block
Move instruction is written for each piece of data being moved. This
instruction allows indirect and table indirect addressing.

3.1.6 Load and Store Instructions

The Load/Store instruction type is selected when the three high order
bits of the DCMD register are 0b111. Load and Store instructions are a
more efficient way to move data directly between memory and an internal
register than the Memory Move instruction. This is due to the fact that
they utilize two Dwords instead of three and require one PCI bus
ownership instead of two. Load and Store instructions move a maximum

Table 3.2 Read/Write Instructions

Instruction Type Definition

Move from SFBR Moves the SCSI First Byte Received (SFBR)
register (0x08) to a specified register address.

Move to SFBR Moves a specified register value to the SFBR
register.

Read/Modify/Write Reads a specified register, modifies it, and writes
the result back into the same register.
Overview of SCRIPTS Instructions 3-3

of four bytes. The memory address may map to external memory space
or to the SCRIPTS RAM.

Note: Load and Store instructions are not available to all
LSI53C7XX/8XX/10XX family chips. Refer to your chip
technical manual to determine if your specific device uses
Load and Store.

3.2 Instruction Descriptions

The SCRIPTS instructions are shown in Table 3.3, grouped by instruction
type. The individual instruction entries list the LSI53C7XX/8XX/10XX
family members that support each instruction.

The following sections in this chapter describe each command. The
sections each have:

• SCRIPTS command example

• Description of the SCRIPTS clauses

• Register contents overview

• Register field and bit descriptions

• List of legal command forms

Table 3.3 SCRIPTS Instructions Set

Instruction
Type Commands

I/O RESELECT, SELECT, SELECT WITH ATN, DISCONNECT,
WAIT DISCONNECT, WAIT SELECT, WAIT RESELECT,
SET, CLEAR

Memory Move MOVE MEMORY

Transfer Control JUMP, JUMP64, CALL, RETURN, INTERRUPT, INTFLY

Read/Write MOVE REGISTER

Block Move MOVE, MOVE64, CHMOV, CHMOV64

Load/Store LOAD, STORE
3-4 The SCSI SCRIPTS Processor Instruction Set

Each command description may also have additional command specific
information.

3.2.1 CALL

CALL {REL(Address) | Address} [, {IF | WHEN}[NOT][ATN |
Phase] [AND | OR] [data[AND MASK data]]]
CALL {REL(Address) | Address} [, {IF | WHEN}[NOT][Carry]

Supported by All LSI Logic SCRIPTS Processors.

Definition SCSI Transfer Control, Call subroutine.

Operands This command has the following operands:

REL Indicates the use of relative addressing by setting the high order
bit in the DMA Byte Counter (DBC) register.

Address Location to which execution is transferred if the subroutine is
called. Stored in the second Dword of the instruction.

WHEN Forces the SCRIPTS engine to wait for a valid SCSI bus phase
before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF Causes the SCRIPTS processor to immediately check for a valid
SCSI bus phase. IF should not be used when comparing for a
phase as this could yield unpredictable results. The only
exception is using a WHEN conditional just prior to the IF
conditional for any given sequence of phase checks.

NOT Negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. Only valid for initiator mode and should not be used
in the target mode.

ATN Indicates that a jump should take place based on an initiator
SATN/ signal. Valid only for the target mode and should not be
used in the initiator mode.

data Represents an 8-bit value that is stored in the data field of the
instruction when this field is present. In addition, the Compare
Data bit is set.
Instruction Descriptions 3-5

Example CALL REL (Address), WHEN DATA_OUT

Field(s) This command has the following fields:

The values in Table 3.4 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

MASK Represents an 8-bit value that is stored in the mask field of the
instruction when this field is present. Any bit that is set in the
mask causes the corresponding bit in the data byte to be
ignored at the time of the comparison.

CARRY Indicates that a jump should take place based on the value of
the carry bit in the ALU. Carry comparisons cannot take place
at the same time as data and phase comparisons.

Figure 3.1 CALL Format

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0

DCMD Register DBC Register

Instr
Type Opcode SCSI

Phase

Real
Addr
Mode

R1

64-bit
jump

enable2

1. All chips except LSI53C10XX.
2. LSI53C10XX chips.

Carry
Test R True Comp

Data
Comp
Phase Wait Mask Data

1 0 0 0 1 x x x x 0 0 0 x

31 0

DSPS Register

Call Address or Offset

Call Address

Opcode Transfer Control Instruction, Call subroutine.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.
3-6 The SCSI SCRIPTS Processor Instruction Set

Register
Definition(s)

The information listed below describes the DBC and DSPS registers:

Table 3.4 SCSI Phase Bit Values (CALL Format)1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.

0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3

4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

1 0 0

RES54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

Relative Address
Mode

Relative Addressing Mode indicates that the 24-bit value in
DSPS is to be used as an offset from DSP.

Carry Test When this bit is set, True/False comparisons may be made
based on the ALU Carry bit.

True Transfer on TRUE/FALSE condition.
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare Data Compare data byte to first byte of the received data.
0 - Do not compare data
1 - Perform comparison

Compare Phase Compare current SCSI phase to SCSI phase field or SATN/.
This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison
Instruction Descriptions 3-7

Description The SCSI CALL instruction is a conditional subroutine call that fetches
the next SCRIPTS instruction from memory at either the 32-bit call
address or 24-bit offset. It is invoked if all conditions in the instruction or
data are met. If the comparison is false, the SCRIPTS processor does
not branch to the destination but instead fetches the next inline
instruction and continues execution. If the subroutine is called, the next
inline instruction address is stored in the chip's Temporary (TEMP)
register, and is restored to the DMA SCRIPTS Pointer (DSP) register in
response to a RETURN instruction following the CALL.

When the optional data field is used, it is compared to the first byte of
the most recent asynchronous data, message, command, or status byte
received. The user's SCSI SCRIPTS program can determine which
routine to execute next based on actual data values received. Using a
series of these compares, the algorithm can process complex sequences
without intervention by the external processor.

When the optional MASK keyword and its associated value are specified,
the SCRIPTS processor allows selective comparisons of bits within the
data byte. This comparison is illustrated in Figure 3.2. During the
comparison, any bits that are set in the mask data will cause the
corresponding bit in the data byte to be ignored for the comparison.

Wait Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask An 8-bit field that masks the value in SFBR before the
comparison with the data field in the instruction takes place.
As a result, any bits in the data byte that correspond to set
bits in the mask field are ignored. If this field is not specified,
a mask of 0x00 is used.

Data An 8-bit field that is compared with the incoming data in
SFBR after the mask operation of the mask byte takes place.
Comparison indicates either an equal or not equal condition.
If the Data field is not specified, the compare data bit is
cleared and 0x00 is coded for both the mask and data bytes.

Call Address A 32-bit address (or 24-bit offset, if relative addressing is
used) where execution continues if the subroutine is called.
3-8 The SCSI SCRIPTS Processor Instruction Set

Figure 3.2 Use of the Mask Keyword

Note: SCRIPTS does not directly support nested CALLs. If two
CALL instructions are issued without any intervening
RETURN instruction, the first return address in the chip's
TEMP register is overwritten by the second CALL and lost.
The REL keyword, which indicates relative addressing, is
unrelated to the declarative keyword RELATIVE that
establishes relative buffers.

Legal Forms CALL address
CALL address, IF ATN
CALL address, IF Phase
CALL address, IF CARRY
CALL address, IF data
CALL address, IF data AND MASK data
CALL address, IF ATN AND data
CALL address, IF ATN AND data AND MASK data
CALL address, IF Phase AND data
CALL address, IF Phase AND data AND MASK data
CALL address, WHEN Phase
CALL address, WHEN CARRY
CALL address, WHEN data
CALL address, WHEN data AND MASK data
CALL address, WHEN Phase AND data
CALL address, WHEN Phase AND data AND MASK data
CALL address, IF NOT ATN
CALL address, IF NOT Phase
CALL address, IF NOT CARRY
CALL address, IF NOT data
CALL address, IF NOT data AND MASK data
CALL address, IF NOT ATN OR data

SFBR Mask Value

Masked
SFBR

Compare

Data
Instruction Descriptions 3-9

CALL address, IF NOT ATN OR data AND MASK data
CALL address, IF NOT Phase OR data
CALL address, IF NOT Phase OR data AND MASK data
CALL address, WHEN NOT Phase
CALL address, WHEN NOT CARRY
CALL address, WHEN NOT data
CALL address, WHEN NOT data AND MASK data
CALL address, WHEN NOT Phase OR data
CALL address, WHEN NOT Phase OR data AND MASK data
CALL REL(address)
CALL REL(address), IF ATN
CALL REL(address), IF Phase
CALL REL(address), IF CARRY
CALL REL(address), IF data
CALL REL(address), IF data AND MASK data
CALL REL(address), IF ATN AND data
CALL REL(address), IF ATN AND data AND MASK data
CALL REL(address), IF Phase AND data
CALL REL(address), IF Phase AND data AND MASK data
CALL REL(address), WHEN Phase
CALL REL(address), WHEN CARRY
CALL REL(address), WHEN data
CALL REL(address), WHEN data AND MASK data
CALL REL(address), WHEN Phase AND data
CALL REL(address), WHEN Phase AND data AND MASK data
CALL REL(address), IF NOT ATN
CALL REL(address), IF NOT Phase
CALL REL(address), IF NOT CARRY
CALL REL(address), IF NOT data
CALL REL(address), IF NOT data AND MASK data
CALL REL(address), IF NOT ATN OR data
CALL REL(address), IF NOT ATN OR data AND MASK data
CALL REL(address), IF NOT Phase OR data
CALL REL(address), IF NOT Phase OR data AND MASK data
CALL REL(address), WHEN NOT Phase
CALL REL(address), WHEN NOT CARRY
CALL REL(address), WHEN NOT data
CALL REL(address), WHEN NOT data AND MASK data
CALL REL(address), WHEN NOT Phase OR data
CALL REL(address), WHEN NOT Phase OR data AND MASK data

3.2.2 CHMOV

CHMOV {FROM | count,} [PTR] address,{WITH | WHEN} phase

Supported by LSI53C825A, LSI53C875, LSI53C876, LSI53C885, LSI53C895, LSI53C895A,
LSI53C896, LSI53C1000, LSI53C1010, LSI53C1010R, LSI53C1000R.
3-10 The SCSI SCRIPTS Processor Instruction Set

Definition Wide SCSI Block Move.

Operands This command has the following operands:

Example CHMOV FROM dev_1 WITH Data_In
CHMOV 6, data_buf, WHEN Data_Out

FROM Indicates table indirect addressing mode.
Note: FROM and PTR must not be used in the same instruction.

count Number of bytes to transfer across the SCSI bus.

PTR Sets the indirect bit if present, it is cleared otherwise.
Note: PTR and FROM must not be used in the same instruction.

address The 32-bit starting address of the data in memory, unless PTR
is present. If PTR is present, address represents the location of
the starting address.

WITH/WHEN Sets device mode; WITH for target mode and WHEN for initiator
mode.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

Figure 3.3 CHMOV Format

31 30 29 28 27 26 24 23 0

DCMD Register DBC Register

Instr
Type Indirect Table

Indirect Opcode SCSI
Phase Byte Count

0 0 x

31 0

DSPS Register

Destination Address

x x
Instruction Descriptions 3-11

Field(s) This command has the following fields:

The values in Table 3.5 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

Instruction
Type

Block Move.

Indirect Indirect Addressing Mode.
0 - Use destination field as an address
1 - Use destination field as an address to an address

Table Indirect Table Indirect Addressing Mode.
0 - Use Absolute addressing mode
1 - Use destination address as offset from the value of Data

Structure Address (DSA) register

Opcode Defines whether the instruction will be executed as a Block
Move or a Chained Block Move. This bit has different
meanings, depending on whether the chip is operating in the
target or initiator mode.

Target Initiator

MOVE Opcode = 0 Opcode = 1

CHMOV Opcode = 1 Opcode = 0

Table 3.5 SCSI Phase Bit Values (CHMOV Format)1

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3
0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1

COMMAND 0 1 0

STATUS 0 1 1

R44 (DT_DATA_OUT)3 1 0 0
3-12 The SCSI SCRIPTS Processor Instruction Set

Register
Definition(s)

The information listed below describes the DBC and DSPS registers:

Description There are various forms of the Chained Block Move instruction. The
“address” and “count” specify the address and byte count fields of the
instruction. If the optional keyword “PTR” is present, the indirect bit is set.
If PTR is present, the address specified in the instruction is the address
of the pointer to the data in memory. “Phase” specifies the phase field of
the instruction. WITH or WHEN specify the Block Move function codes.
WITH signals the target role which sets the phase values, and WHEN is
the initiator “test for phase” feature.

The SCRIPTS processor waits for a valid phase (initiator) or drives the
phase lines (target). In the initiator role, it performs a comparison looking
for a match between the phase specified in the SCRIPTS instruction and
the actual value on the bus. If the phases do not match, an external
interrupt occurs. A test prior to the Move instruction could be used to
avoid this interrupt. If the phase does match, data is then transferred in
or out according to the phase lines. When the count goes to zero, the
SCRIPTS processor fetches the next sequential SCRIPTS instruction.

R54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.
4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

Table 3.5 SCSI Phase Bit Values (CHMOV Format)1 (Cont.)

Phase Message Command/Data Input/Output

SCSI Phase These bits reflect the actual values of the SCSI phase lines.

Byte Count A 24-bit number indicating the number of bytes to transfer.

Dest Addr Address to perform data transfer on, or offset from the DSA to
fetch table indirect information.
Instruction Descriptions 3-13

The Chained Move instruction transfers data to and from memory
locations. Data may come from any data location, so scatter/gather
operations are transparent to the chip and external processor.

When the SCRIPTS processor executes several CHMOV instructions
and the ends are on an odd byte boundary, the chip temporarily stores
the residual byte in the SCSI Output Data Latch (SODL) register (send
operations) or SCSI Wide Residue Data (SWIDE) register (receive
operations). The SCRIPTS processor takes the first byte from the
subsequent CHMOV or MOVE instruction and lines it up with the residual
byte in order to complete a wide transfer and maintain a continuous wide
data flow on the SCSI bus.

For more information on Chained Block Move Instructions, please see
the appropriate chip technical manual.

Legal Forms CHMOV count, address, WITH phase
CHMOV count, address, WHEN phase
CHMOV count, PTR address, WITH phase
CHMOV count, PTR address, WHEN phase
CHMOV FROM address, WITH phase
CHMOV FROM address, WHEN phase

3.2.3 CLEAR

CLEAR {ACK | ATN | TARGET | CARRY} [and{ACK | ATN | TARGET
| CARRY} ...]

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Deasserts SCSI ACK or ATN, or clears internal flags.

Operands This command has the following operands:

Example CLEAR TARGET
CLEAR ACK and TARGET

ACK Clears the Assert SCSI ACK bit.

ATN Clears the Assert SCSI ATN bit.

TARGET Clears the Set Target role bit.

CARRY Clears the CARRY bit in the ALU.
3-14 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

Description The chip deasserts the signals indicated in the instruction. Currently four
bits are defined, clearing the SCSI SACK, target role, and SATN bits as
well as the CARRY bit in the ALU. Bit 10 is for CARRY, bit 9 is for target,
bit 6 is for Acknowledge, and bit 3 is for Attention.

Legal Forms CLEAR ACK
CLEAR ATN
CLEAR TARGET
CLEAR CARRY
CLEAR ACK and ATN
CLEAR ACK and TARGET
CLEAR ACK and CARRY

Figure 3.4 CLEAR Format

31 30 29 27 26 24 23 11 10 9 8 7 6 5 4 3 2 0

DCMD Register DBC Register

Instr
Type Opcode R R

Set/
Clear
Carry

Set/
Clear
Target

R
Assert
SCSI
ACK

R
Assert
SCSI
ATN

R

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x 0 0 x 0 0 x 0 0 0

31 0

DSPS Register

R

0 0

Instruction Type I/O.

Opcode Clear instruction.

Set/Clear
Carry

1 - clears the Carry bit in the ALU
0 - has no effect

Set/Clear
Target Mode

1 - places the chip into initiator mode
0 - has no effect

Set/Clear
SCSI ACK

1 - deasserts the SCSI acknowledge signal
0 - has no effect

Set/Clear
SCSI ATN

1 - deasserts the SCSI attention signal
0 - has no effect
Instruction Descriptions 3-15

CLEAR ATN and TARGET
CLEAR ATN and CARRY
CLEAR TARGET and CARRY
CLEAR ACK and ATN and TARGET
CLEAR ACK and ATN and CARRY
CLEAR ACK and ATN and TARGET and CARRY

3.2.4 DISCONNECT

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Perform disconnect.

Operands This command has the following operands:

None.

Example DISCONNECT

Field(s) This command has the following fields:

Description The DISCONNECT instruction physically disconnects the chip from the
bus when in the target mode.

Figure 3.5 DISCONNECT Format

31 30 29 25 24 23 0

DCMD Register DBC Register

Instr Type Opcode R R

0 1 0 0 1 0

31 0

DSPS Register

R

0 0

Instruction
Type

I/O.

Opcode Disconnect instruction.
3-16 The SCSI SCRIPTS Processor Instruction Set

Notes This instruction has no effect on the initiator when issued by a target. To
disconnect from the SCSI bus, use the SET TARGET instruction before
this instruction.

Legal Forms: DISCONNECT

3.2.5 INT

INT int_value [, {IF | WHEN}[NOT][ATN | Phase][AND | OR]
[data[AND MASK data]]]
INT int_value [, {IF | WHEN}[NOT] CARRY]

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition SCSI Transfer Control - Generate Interrupt and halt SCRIPTS operation.

Operands This command has the following operands:

Int_value A user defined 32-bit value available in the DMA SCRIPTS
Pointer Save (DSPS) register at the time of the interrupt.

WHEN Forces the SCRIPTS engine to wait for a valid SCSI bus phase
before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF Causes the SCRIPTS processor to immediately check for a valid
SCSI bus phase. IF should not be used when comparing for a
phase as this could yield unpredictable results. The only
exception is using a WHEN conditional just prior to the IF
conditional for any given sequence of phase checks.

NOT Negates the comparison. Clears the True bit if present, otherwise
the True bit is set.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

ATN Indicates that an interrupt should take place based on an initiator
SATN/ signal. This field is valid only for the target mode and
should not be used in the initiator mode.

data Represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.
Instruction Descriptions 3-17

Example INT 0x00000001, WHEN NOT COMMAND
INT 0x200010F7, IF 0xF8 AND MASK 0x07

The values in Table 3.6 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

MASK Represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the
corresponding bit in the data byte to be ignored at the time of the
comparison.

CARRY Indicates that an interrupt should take place based on the value
of the carry bit in the ALU. Carry comparisons cannot take place
at the same time as data and phase comparisons.

Figure 3.6 INT Format

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0

DCMD Register DBC Register

Instr Type Opcode SCSI
Phase R Carry

Test R True Comp
Data

Comp
Phase Wait Mask Data

1 0 0 1 1 x x x 0 0 0 0 x

31 0

DSPS Register

int_value

x x

Table 3.6 SCSI Phase Bit Values (INT Format) 1

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3
0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1
3-18 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

Register
Definition(s)

The information listed below describes the DBC and DSPS registers:

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3 1 0 0

RES54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.
4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

Table 3.6 SCSI Phase Bit Values (INT Format) (Cont.) 1

Phase Message Command/Data Input/Output

Instruction
Type

Transfer Control.

Opcode Interrupt Instruction.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.

Carry Test When this bit is set, true/false comparisons are based on the ALU
Carry bit. Carry comparisons cannot be made at the same time as
data and phase comparisons.

True Transfer on TRUE/FALSE condition.
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare
Data

Compare data byte to first byte of the received data.
0 - Do not compare data
1 - Perform comparison

Compare
Phase

Compare current SCSI phase to SCSI phase field or SATN/. This
bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison
Instruction Descriptions 3-19

Description The SCSI Interrupt instruction causes the chip to conditionally halt
execution and post an interrupt request to the external processor. It is
used if the SCSI phase, data, or attention condition compares true with
the phase, data, or attention condition described in the instruction. The
NOT qualifier determines a boolean true/false outcome for the
comparison. If the comparison is false, the SCRIPTS processor does not
post the interrupt but fetches the next instruction in line and continues
execution.

When the optional data field is used, it is compared to the first byte of
the SFBR. This contains the most recent byte of any kind of data that
has been moved into the SFBR register. The user's SCSI SCRIPTS
program determines which routine to execute next based on actual data
values received. Using a series of these compares, the algorithm
processes complex sequences without external processor intervention.

When the optional MASK keyword and its associated value are specified
the SCRIPTS processor selectively compares bits within the data byte.
Figure 3.2 illustrates this comparison. During the comparison, any bits
set in the mask byte cause the corresponding bit in the data byte to be
ignored for the comparison.

Wait Wait for valid phase. Set by the WHEN operand, cleared by the IF
operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask An 8-bit field that masks the value in SFBR before the comparison
with the data field in the instruction takes place. As a result of this
operation, any bits that are set will cause the corresponding bit in
the data byte to be ignored. If this field is not specified, a mask of
0x00 is used.

Data An 8-bit field that is compared with the incoming data after the
mask operation of the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data field is
not specified, the compare data bit is cleared and 0x00 is coded
for both the mask and data bytes.

Int_Value A 32-bit user defined value that is available to the external
processor to identify the cause of the interrupt. If the interrupt
conditions are met, the int_value will be available in the DSPS
register for the processor to use to determine the cause of the
interrupt.
3-20 The SCSI SCRIPTS Processor Instruction Set

Legal Forms INT int_value
INT int_value, IF ATN
INT int_value, IF Phase
INT int_value, IF CARRY
INT int_value, IF data
INT int_value, IF data AND MASK data
INT int_value, IF ATN AND data
INT int_value, IF ATN AND data AND MASK data
INT int_value, IF Phase AND data
INT int_value, IF Phase AND data AND MASK data
INT int_value, WHEN Phase
INT int_value, WHEN CARRY
INT int_value, WHEN data
INT int_value, WHEN data AND MASK data
INT int_value, WHEN Phase AND data
INT int_value, WHEN Phase AND data AND MASK data
INT int_value, IF NOT ATN
INT int_value, IF NOT Phase
INT int_value, IF NOT CARRY
INT int_value, IF NOT data
INT int_value, IF NOT data AND MASK data
INT int_value, IF NOT ATN OR data
INT int_value, IF NOT ATN OR data AND MASK data
INT int_value, IF NOT Phase OR data
INT int_value, IF NOT Phase OR data AND MASK data
INT int_value, WHEN NOT Phase
INT int_value, WHEN NOT CARRY
INT int_value, WHEN NOT data
INT int_value, WHEN NOT data AND MASK data
INT int_value, WHEN NOT Phase OR data
INT int_value, WHEN NOT Phase OR data AND MASK data

3.2.6 INTFLY

INTFLY [int_value] [, {IF | WHEN}[NOT][ATN | Phase] [AND |
OR] [data[AND MASK data]]]
INTFLY [int_value] [, {IF | WHEN}[NOT] CARRY]

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Generate Interrupts and continue SCRIPTS execution.

Operands This command has the following operands:
Instruction Descriptions 3-21

Example INTFLY 0x00000001, WHEN NOT COMMAND

INTFLY 0x200010F7, IF 0xF8 AND MASK 0x07

int_value A user defined 32-bit value that is written to the DSPS register
at the time of the interrupt. However, since the processor
continues to execute, the value is immediately overwritten with
the next instruction fetch. Refer to the Note at the end of this
section for more information.

WHEN Forces the SCRIPTS engine to wait for a valid SCSI bus phase
before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF Causes the SCRIPTS processor to immediately check for a
valid SCSI bus phase. IF should not be used when comparing
for a phase as this could yield unpredictable results. The only
exception is using a WHEN conditional just prior to the IF
conditional for any given sequence of phase checks.

NOT Negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

ATN Indicates that an interrupt should take place based on the state
of the initiator SATN/ signal. This field is valid only for the target
mode and should not be used in the initiator mode.

data Represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK Represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the
corresponding bit in the data byte to be ignored at the time of
the comparison.

CARRY Indicates that a jump should take place based on the value of
the carry bit in the ALU. Carry comparisons cannot be made in
the same instruction as data or phase comparisons.
3-22 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

The values in Table 3.7 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

Figure 3.7 INTFLY Format

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0

DCMD Register DBC Register

Instr Type Opcode SCSI
Phase R Carry

Test

Int
on
Fly

True Comp
Data

Comp
Phase Wait Mask Data

1 0 0 1 1 x x x 0 0 0 1 x

31 0

DSPS Register

int_value

x x

Instruction
Type

Transfer Control.

Opcode Interrupt on the Fly instruction.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.

Table 3.7 SCSI Phase Bit Values (INTFLY Format)1

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3
0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1
Instruction Descriptions 3-23

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3 1 0 0

RES54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.
4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

Table 3.7 SCSI Phase Bit Values (INTFLY Format)1 (Cont.)

Phase Message Command/Data Input/Output

Carry Test When this bit is set, true/false comparisons may be made
based on the ALU Carry bit. Carry comparisons cannot be
made in the same instruction as data or phase comparisons.

Int on Fly When this bit is set, the Interrupt instruction will not halt the
SCRIPTS processor.

True Transfer on TRUE/FALSE condition.
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare
Data

Compare data byte to first byte of the received data.
0 - Do not compare data
1 - Perform comparison

Compare
Phase

Compare current SCSI phase to SCSI phase field or SATN.
This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Wait Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)
3-24 The SCSI SCRIPTS Processor Instruction Set

Description The SCSI Interrupt on-the-Fly instruction causes the chip to conditionally
set the INTFLY bit in the Interrupt Status (ISTAT) register and post an
interrupt request to the external processor. It is invoked if the SCSI
phase, data, or attention condition compares true with the phase, data,
or attention condition described in the instruction.

The NOT qualifier is used to indicate a boolean true/false desired
outcome of the comparison. If the comparison is false, the SCRIPTS
processor will not post the interrupt but will instead fetch the next
instruction and continue SCRIPTS execution.

When the optional data field is used, it is compared to the first byte of
the SFBR. This contains the most recent byte of any kind of data that
has been moved into the SFBR register. The user's SCSI SCRIPTS
program can determine which routine to execute next based on actual
data values received. Using a series of these compares, the algorithm
can process complex sequences with no intervention required by the
external processor.

When the optional MASK keyword and its associated value are specified
the SCRIPTS processor allows selective comparisons of bits within the
data byte. This comparison is illustrated in Figure 3.2. During the
comparison, any bits that are set in the mask field will cause the
corresponding bit in the data byte to be ignored for the comparison.

Mask An 8-bit field that is used to mask the value in SFBR before
the comparison with the data field in the instruction takes
place. As a result of this operation, any bits that are set will
cause the corresponding bit in the data byte to be ignored. If
this field is not specified, a mask of 0x00 is used.

Data An 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data
field is not specified, the compare data bit is cleared and 0x00
is coded for both the mask and data bytes.

Int_Value A 32-bit user defined value that identifies the cause of the
interrupt. Even though the int_value is stored, since the
processor continues to execute, it is immediately overwritten
with the next instruction fetch. Refer to the Notes at the end
of this section for more information.
Instruction Descriptions 3-25

Notes Unlike the INT instruction, INTFLY does not allow a driver program to
make an inquiry to the chip for the int_value. Even though the
int_value is stored, since the processor continues to execute, it is
immediately overwritten with the next instruction fetch. Users who want
an accessible interrupt value can use the move memory instruction to
store a user defined value to a known memory location before executing
the INTFLY instruction.

Legal Forms INTFLY
INTFLY, IF ATN
INTFLY, IF Phase
INTFLY, IF CARRY
INTFLY, IF data
INTFLY, IF data AND MASK data
INTFLY, IF ATN AND data
INTFLY, IF ATN AND data AND MASK data
INTFLY, IF Phase AND data
INTFLY, IF Phase AND data AND MASK data
INTFLY, WHEN Phase
INTFLY, WHEN CARRY
INTFLY, WHEN data
INTFLY, WHEN data AND MASK data
INTFLY, WHEN Phase AND data
INTFLY, WHEN Phase AND data AND MASK data
INTFLY, IF NOT ATN
INTFLY, IF NOT Phase
INTFLY, IF NOT CARRY
INTFLY, IF NOT data
INTFLY, IF NOT data AND MASK data
INTFLY, IF NOT ATN OR data
INTFLY, IF NOT ATN OR data AND MASK data
INTFLY, IF NOT Phase OR data
INTFLY, IF NOT Phase OR data AND MASK data
INTFLY, WHEN NOT Phase
INTFLY, WHEN NOT CARRY
INTFLY, WHEN NOT data
INTFLY, WHEN NOT data AND MASK data
INTFLY, WHEN NOT Phase OR data
INTFLY, WHEN NOT Phase OR data AND MASK data
INTFLY int_value
INTFLY int_value, IF ATN
INTFLY int_value, IF Phase
INTFLY int_value, IF CARRY
INTFLY int_value, IF data
INTFLY int_value, IF data AND MASK data
INTFLY int_value, IF ATN AND data
INTFLY int_value, IF ATN AND data AND MASK data
3-26 The SCSI SCRIPTS Processor Instruction Set

INTFLY int_value, IF Phase AND data
INTFLY int_value, IF Phase AND data AND MASK data
INTFLY int_value, WHEN Phase
INTFLY int_value, WHEN CARRY
INTFLY int_value, WHEN data
INTFLY int_value, WHEN data AND MASK data
INTFLY int_value, WHEN Phase AND data
INTFLY int_value, WHEN Phase AND data AND MASK data
INTFLY int_value, IF NOT ATN
INTFLY int_value, IF NOT Phase
INTFLY int_value, IF NOT CARRY
INTFLY int_value, IF NOT data
INTFLY int_value, IF NOT data AND MASK data
INTFLY int_value, IF NOT ATN OR data
INTFLY int_value, IF NOT ATN OR data AND MASK data
INTFLY int_value, IF NOT Phase or data
INTFLY int_value, IF NOT Phase OR data AND MASK data
INTFLY int_value, WHEN NOT Phase
INTFLY int_value, WHEN NOT CARRY
INTFLY int_value, WHEN NOT data
INTFLY int_value, WHEN NOT data AND MASK data
INTFLY int_value, WHEN NOT Phase OR data
INTFLY int_value, WHEN NOT Phase OR data AND MASK data

3.2.7 JUMP

JUMP {REL(Address) | Address} [,{IF | WHEN}[NOT][ATN |
Phase] AND | OR] [data[AND MASK data]]]
JUMP {[REL] (Address) | Address} [, {IF | WHEN}[NOT] CARRY]

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition SCSI Transfer Control - Jump.

Operands This command has the following operands:

REL Indicates the use of relative addressing.

Address Is the location to which execution will be transferred if the
subroutine is called. If REL is used, Address is the offset from
the current DSP value.

WHEN Forces the SCRIPTS engine to wait for a valid SCSI bus phase
before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.
Instruction Descriptions 3-27

Example JUMP Do_Next_Command WHEN COMMAND
JUMP Data_Check, IF DATA_IN AND 0x80 MASK 0x7F

IF Causes the SCRIPTS processor to immediately check for a
valid SCSI bus phase. IF should not be used when comparing
for a phase as this could yield unpredictable results. The only
exception is using a WHEN conditional just prior to the IF
conditional for any given sequence of phase checks.

NOT Negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

ATN Is used to indicate that a jump should take place based on the
state of the initiator SATN/ signal. This field is valid only for
target mode and should not be used in the initiator mode.

data Represents an 8-bit value that is stored in the data field of the
instruction. In addition, this keyword indicates that the Compare
Data bit is set.

MASK Represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the
corresponding bit in the data byte to be ignored at the time of
the comparison.

CARRY Indicates that a jump should take place based on the value of
the carry bit in the ALU.

Figure 3.8 JUMP Format

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0

DCMD Register DBC Register

Instr
Type Opcode SCSI

Phase
Rel

Addr R Carry
Test R True Comp

Data
Comp
Phase Wait Mask Data

1 0 0 0 0 x x x x 0 0 0 x

31 0

DSPS Register

Destination Address

x x
3-28 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

The values in Table 3.8 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

Register
Definition(s)

The information listed below describes the DBC and DSPS registers:

Instruction
Type

Transfer Control.

Opcode Jump instruction.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.

Table 3.8 SCSI Phase Bit Values (JUMP Format)1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.

0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3

4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

1 0 0

RES54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

Relative
Address

The Relative Addressing Mode indicates that the 24-bit
address value in the instruction is to be used as an offset from
the current DSP address (which is pointing to the next
instruction, not the one currently executing).
Instruction Descriptions 3-29

Description The SCSI Jump instruction is a conditional jump to the destination
address, if the SCSI phase, data, or attention condition compares true
with the phase, data, or attention condition described in the instruction.
If the comparison is false, the SCRIPTS processor does not branch to
the destination but instead fetches the next instruction and continues
execution.

When the optional data field is used, it is compared to the SFBR. This
contains the most recent byte of any type of data that has been moved
into the SFBR register. The SCSI SCRIPTS program determines which
routine to execute next based on received data values. Using a series of

Carry Test When this bit is set, true/false comparisons are based on the
ALU Carry bit. Comparisons to the state of the Carry flag may
not be made in conjunction with other comparisons.

True Transfer on TRUE/FALSE condition.
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare
Data

Compare data byte to first byte of the received data.
0 - Do not compare data
1 - Perform comparison

Compare
Phase

Compare current SCSI phase to SCSI phase field or SATN/.
This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Wait Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask An 8-bit field that is used to mask the value in SFBR before
the comparison with the data field in the instruction takes
place. As a result of this operation, any bits that are set will
cause the corresponding bit in the data byte to be ignored. If
this field is not specified, a mask of 0x00 is used.

Data An 8-bit field that is compared with the incoming data after the
mask operation of the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data
field is not specified, the Compare Data bit is cleared and
0x00 is coded for both the mask and data bytes.

Destination
Address

A 32-bit address (or 24-bit offset) where execution will
continue if the jump is executed.
3-30 The SCSI SCRIPTS Processor Instruction Set

these compares, the algorithm processes complex sequences with no
intervention required by the external processor.

When the optional MASK keyword and its associated value are specified,
the SCRIPTS processor allows selective comparisons of bits within the
data byte. During the compare, any mask bits that are set will cause the
corresponding bit in the data byte to be ignored for the comparison.

Notes Jump instructions are used to control the flow of the SCRIPTS routines.
They are used to avoid phase mismatch interrupts in situations where
multiple phase sequences are possible.

The REL keyword, which indicates relative addressing, is unrelated to the
declarative keyword RELATIVE that establishes relative buffers.

Legal Forms JUMP address
JUMP address, IF ATN
JUMP address, IF Phase
JUMP address, IF CARRY
JUMP address, IF data
JUMP address, IF data AND MASK data
JUMP address, IF ATN AND data
JUMP address, IF ATN AND data AND MASK data
JUMP address, IF Phase AND data
JUMP address, IF Phase AND data AND MASK data
JUMP address, WHEN Phase
JUMP address, WHEN CARRY
JUMP address, WHEN data
JUMP address, WHEN data AND MASK data
JUMP address, WHEN Phase AND data
JUMP address, WHEN Phase AND data AND MASK data
JUMP address, IF NOT ATN
JUMP address, IF NOT Phase
JUMP address, IF NOT CARRY
JUMP address, IF NOT data
JUMP address, IF NOT data AND MASK data
JUMP address, IF NOT ATN OR data
JUMP address, IF NOT ATN OR data AND MASK data
JUMP address, IF NOT Phase OR data
JUMP address, IF NOT Phase OR data AND MASK data
JUMP address, WHEN NOT Phase
JUMP address, WHEN NOT CARRY
JUMP address, WHEN NOT data
JUMP address, WHEN NOT data AND MASK data
JUMP address, WHEN NOT Phase OR data
JUMP address, WHEN NOT Phase OR data AND MASK data
JUMP REL(address)
JUMP REL(address), IF ATN
JUMP REL(address), IF Phase
Instruction Descriptions 3-31

JUMP REL(address), IF CARRY
JUMP REL(address), IF data
JUMP REL(address), IF data AND MASK data
JUMP REL(address), IF ATN AND data
JUMP REL(address), IF ATN AND data AND MASK data
JUMP REL(address), IF Phase AND data
JUMP REL(address), IF Phase AND data AND MASK data
JUMP REL(address), WHEN Phase
JUMP REL(address), WHEN CARRY
JUMP REL(address), WHEN data
JUMP REL(address), WHEN data AND MASK data
JUMP REL(address), WHEN Phase AND data
JUMP REL(address), WHEN Phase AND data AND MASK data
JUMP REL(address), IF NOT ATN
JUMP REL(address), IF NOT Phase
JUMP REL(address), IF NOT CARRY
JUMP REL(address), IF NOT data
JUMP REL(address), IF NOT data AND MASK data
JUMP REL(address), IF NOT ATN OR data
JUMP REL(address), IF NOT ATN OR data AND MASK data
JUMP REL(address), IF NOT Phase OR data
JUMP REL(address), IF NOT Phase OR data AND MASK data
JUMP REL(address), WHEN NOT Phase
JUMP REL(address), WHEN NOT CARRY
JUMP REL(address), WHEN NOT data
JUMP REL(address), WHEN NOT data AND MASK data
JUMP REL(address), WHEN NOT Phase OR data
JUMP REL(address), WHEN NOT Phase OR data AND MASK data

3.2.8 JUMP 64

This command is only available on LSI53C896 and newer chips.

JUMP64 {Address} [,{IF | WHEN}[NOT][ATN | Phase] AND | OR]
[data[AND MASK data]]]
JUMP64 {Address} [, {IF | WHEN}[NOT] CARRY]

Supported by LSI53C896 and later chips.

Definition SCSI Transfer Control - Jump.

Operands This command has the following operands:
3-32 The SCSI SCRIPTS Processor Instruction Set

Example JUMP Do_Next_Command WHEN COMMAND
JUMP Data_Check, IF DATA_IN AND 0x80 MASK 0x7F

Address Is the location to which execution will be transferred if the
subroutine is called. If REL is used, Address is the offset from
the current DSP value.

WHEN Forces the SCRIPTS engine to wait for a valid SCSI bus phase
before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF Causes the SCRIPTS processor to immediately check for a valid
SCSI bus phase. IF should not be used when comparing for a
phase as this could yield unpredictable results. The only
exception is using a WHEN conditional just prior to the IF
conditional for any given sequence of phase checks.

NOT Negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

ATN Is used to indicate that a jump should take place based on the
state of the initiator SATN/ signal. This field is valid only for target
mode and should not be used in the initiator mode.

Data Represents an 8-bit value that is stored in the data field of the
instruction. In addition, this keyword indicates that the Compare
Data bit is set.

MASK Represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the
corresponding bit in the data byte to be ignored at the time of the
comparison.

CARRY Indicates that a jump should take place based on the value of
the carry bit in the ALU.
Instruction Descriptions 3-33

Field(s) This command has the following fields:

The values in Table 3.9 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

Figure 3.9 JUMP 64 Format

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0

DCMD Register DBC Register

Instr
Type Opcode SCSI

Phase
Rel

Addr
32/64 Bit

Jump Enable
Carry
Test R True Comp

Data
Comp
Phase Wait Mask Data

1 0 0 0 0 x x x x 0 0 0 x

31 0

DSPS Register

Destination Address

x x

31 0

MMRS Register

Destination Address

x x

Instruction
Type

Transfer Control.

Opcode Jump instruction.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.
3-34 The SCSI SCRIPTS Processor Instruction Set

Register
Definition(s)

The information listed below describes the DBC, DSPS, and MMRS
registers:

Table 3.9 SCSI Phase Bit Values (JUMP 64 Format)1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.

0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3

4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

1 0 0

RES54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

Relative
Address

The Relative Addressing Mode indicates that the 24-bit
address value in the instruction is to be used as an offset from
the current DSP address (which is pointing to the next
instruction, not the one currently executing).

Carry Test When this bit is set, true/false comparisons are based on the
ALU Carry bit. Comparisons to the state of the Carry flag may
not be made in conjunction with other comparisons.

True Transfer on TRUE/FALSE condition.
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare
Data

Compare data byte to first byte of the received data.
0 - Do not compare data
1 - Perform comparison
Instruction Descriptions 3-35

Description The SCSI Jump instruction is a conditional jump to the destination
address, if the SCSI phase, data, or attention condition compares true
with the phase, data, or attention condition described in the instruction.
If the comparison is false, the SCRIPTS processor does not branch to
the destination but instead fetches the next instruction and continues
execution.

When the optional data field is used, it is compared to the SFBR. This
contains the most recent byte of any type of data that has been moved
into the SFBR register. The SCSI SCRIPTS program determines which
routine to execute next based on received data values. Using a series of
these compares, the algorithm processes complex sequences with no
intervention required by the external processor.

When the optional MASK keyword and its associated value are specified,
the SCRIPTS processor allows selective comparisons of bits within the
data byte. During the compare, any mask bits that are set will cause the
corresponding bit in the data byte to be ignored for the comparison.

Compare
Phase

Compare current SCSI phase to SCSI phase field or SATN/.
This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Wait Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)

Mask An 8-bit field that is used to mask the value in SFBR before the
comparison with the data field in the instruction takes place. As
a result of this operation, any bits that are set will cause the
corresponding bit in the data byte to be ignored. If this field is
not specified, a mask of 0x00 is used.

Data An 8-bit field that is compared with the incoming data after the
mask operation of the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data field
is not specified, the Compare Data bit is cleared and 0x00 is
coded for both the mask and data bytes.

Destination
Address

A 32-bit address (or 24-bit offset) where execution will continue
if the jump is executed.
3-36 The SCSI SCRIPTS Processor Instruction Set

Notes Jump instructions are used to control the flow of the SCRIPTS routines.
They are used to avoid phase mismatch interrupts in situations where
multiple phase sequences are possible.

The REL keyword, which indicates relative addressing, is unrelated to the
declarative keyword RELATIVE that establishes relative buffers.

Legal Forms JUMP64 address
JUMP64 address, IF ATN
JUMP64 address, IF Phase
JUMP64 address, IF CARRY
JUMP64 address, IF data
JUMP64 address, IF data AND MASK data
JUMP64 address, IF ATN AND data
JUMP64 address, IF ATN AND data AND MASK data
JUMP64 address, IF Phase AND data
JUMP64 address, IF Phase AND data AND MASK data
JUMP64 address, WHEN Phase
JUMP64 address, WHEN CARRY
JUMP64 address, WHEN data
JUMP64 address, WHEN data AND MASK data
JUMP64 address, WHEN Phase AND data
JUMP64 address, WHEN Phase AND data AND MASK data
JUMP64 address, IF NOT ATN
JUMP64 address, IF NOT Phase
JUMP64 address, IF NOT CARRY
JUMP64 address, IF NOT data
JUMP64 address, IF NOT data AND MASK data
JUMP64 address, IF NOT ATN OR data
JUMP64 address, IF NOT ATN OR data AND MASK data
JUMP64 address, IF NOT Phase OR data
JUMP64 address, IF NOT Phase OR data AND MASK data
JUMP64 address, WHEN NOT Phase
JUMP64 address, WHEN NOT CARRY
JUMP64 address, WHEN NOT data
JUMP64 address, WHEN NOT data AND MASK data
JUMP64 address, WHEN NOT Phase OR data
JUMP64 address, WHEN NOT Phase OR data AND MASK data

3.2.9 LOAD

LOAD register, byte_count, [DSAREL(]source_address[)]

Supported by LSI53C810A, LSI53C860, LSI53C825A, LSI53C875, LSI53C876,
LSI53C885, LSI53C895, LSI53C895A, LSI53C896, LSI53C1000,
LSI53C1010, LSI53C1010R, LSI53C1000R.

Definition Load data from memory to an internal register of the chip.
Instruction Descriptions 3-37

Operands This command has the following operands:

Example LOAD SCRATCHA0, 4, data_buf
LOAD SCRATCHA3, 2, DSAREL (0x02)

Field(s) This command has the following fields:

Register Is one of the register names in the chip operating register set.

Byte Count Is the number of bytes [1:4] to be transferred from the
source_address.

DSA Relative Indicates that the source_address is an offset and should be
added to the DSA register to obtain the physical address
(DSA relative).

Source Address Is the physical address or offset from the DSA to obtain the
physical address of the data to be loaded into the register.

Figure 3.10 LOAD Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 3 2 0

DCMD Register DBC Register

Instr
Type

DSA
Relative R No

Flush
Load/
Store Register Address R Byte

Count

1 1 1 x 0 0 x 1 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x

31 0

DSPS Register

Source Address/DSA Offset

x x

Instruction
Type

Load/Store.

DSA Relative Indicates source address location.
0 - DSPS contains actual address of data to load
1 - DSPS contains a 24-bit offset value that is added to the

DSA to determine the source address.

No Flush Indicates a store instruction without flushing the prefetch unit.
The Pre-fetch Enable bit in the DMA Control (DCNTL) register
must be set.
3-38 The SCSI SCRIPTS Processor Instruction Set

Description The Load instruction is more efficient than a Move Memory instruction
when moving data from a memory location to an internal register of the
chip. It is a two Dword instruction, compared to three Dwords for a
Memory Move. This instruction may be used to move up to 4 bytes. The
number of bytes being loaded is indicated by the low order bits in the first
Dword of the instruction. The maximum number of bytes is defined by
the Register Address field, as illustrated in Table 3.10.

Notes The register address and memory address must have the same byte
alignment, and the byte count set so that it does not cross Dword
boundaries. The memory address may not map back to the SCRIPTS
processor operating registers, although it may map back to a location in
the SCRIPTS RAM. If these conditions are violated, a PCI illegal
read/write cycle will occur and the chip will issue an Interrupt (Illegal
Instruction Detected) immediately following, because the intended
operation did not happen.

Loads from SCRIPTS RAM cross the PCI bus, except for the
LSI53C896/10XX chips. However, it is selectable for debug.

Load/Store This field defines whether the instruction will be executed as a
Load or a Store.
0 - Store instruction
1 - Load instruction

Register
Address

These bits select the register to load within the chip operating
register set.

Byte Count Indicates the number of bytes to transfer. Valid values are 1, 2,
3, or 4.

Source
Address

Actual address (or offset from the DSA) of the data to load into
the chip register.

Table 3.10 Register Address Field Definitions (LOAD Format)

DBC Bits [17:16]
(Register Address bits A1:A0) Number of Bytes to Load

00 1, 2, 3, or 4

01 1, 2, or 3

10 1 or 2

11 1
Instruction Descriptions 3-39

Legal Forms LOAD register, byte_count, source_address

LOAD register, byte_count, DSAREL(source_address)

3.2.10 LOAD64

LOAD64 uses table indirect addressing only.

LOAD64 register, byte_count, [DSAREL(]source_address[)]

Supported by LSI53C896, LSI53C1000, LSI53C1010, LSI53C1010R, LSI53C1000R.

Definition Load 64-bit data from memory to an internal register of the chip.

Operands This command has the following operands:

Example LOAD64 SCRATCHA0, 4, data_buf
LOAD64 SCRATCHA3, 2, DSAREL (0x02)

Register Is one of the register names in the chip operating register set.

Byte Count Is the number of bytes [1:4] to be transferred from the
source_address.

DSA Relative Indicates that the source_address is an offset and should be
added to the DSA register to obtain the physical address
(DSA relative).

Source Address Is the physical address or offset from the DSA to obtain the
physical address of the data to be loaded into the register.
3-40 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

Table 3.11 LOAD64 Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 3 2 0

DCMD Register DBC Register

Instr
Type

DSA
Relative R No

Flush
Load/
Store Register Address R Byte

Count

1 1 1 x 0 0 x 1 A7 A6 A5 A4 A3 A2 A1 A0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x

31 0

DSPS Register

Source Address/DSA Offset

x x

31 0

MMRS Register

Destination Address

x x

Instruction
Type

Load/Store.

DSA Relative Indicates source address location.
0 - DSPS contains actual address of data to load.
1 - DSPS contains a 24-bit offset value that is added to the
DSA to determine the source address.

No Flush Indicates a store instruction without flushing the prefetch unit.
The Pre-fetch Enable bit in the DMA Control (DCNTL) register
must be set.

Load/Store This field defines whether the instruction will be executed as a
Load or a Store.
0 - Store instruction
1 - Load instruction

Register
Address

These bits select the register to load within the chip operating
register set.

Byte Count Indicates the number of bytes to transfer. Valid values are 1,
2, 3, or 4.

Source
Address

Actual Address (or offset from the DSA) of the data to load into
the chip register.
Instruction Descriptions 3-41

Description The LOAD64 instruction is more efficient than a Move Memory
instruction when moving data from a memory location to an internal
register of the chip. It is a two Dword instruction, compared to three
Dwords for a Memory Move. This instruction may be used to move up to
4 bytes. The number of bytes being loaded is indicated by the low order
bits in the first Dword of the instruction. The maximum number of bytes
is defined by the Register Address field, as illustrated in Table 3.12.

Notes The register address and memory address must have the same byte
alignment, and the byte count set so that it does not cross Dword
boundaries. The memory address may not map back to the SCRIPTS
processor operating registers, although it may map back to a location in
the SCRIPTS RAM. If these conditions are violated, a PCI illegal
read/write cycle will occur and the chip will issue an Interrupt (Illegal
Instruction Detected) immediately following, because the intended
operation did not happen.

Legal Forms LOAD64 register, byte_count, source_address
LOAD64 register, byte_count, DSAREL(source_address)

3.2.11 MOVE

MOVE {FROM | count,} [PTR] address, {WITH | WHEN}phase

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition SCSI Block Move.

Operands This command has the following operands:

Table 3.12 Register Address Field Definitions (LOAD64 Format)

DBC Bits [17:16]
(Register Address bits [A1:A0]) Number of Bytes to Load

00 1, 2, 3, or 4

01 1, 2, or 3

10 1 or 2

11 1
3-42 The SCSI SCRIPTS Processor Instruction Set

Example MOVE FROM dev_1, WITH MSG_IN
MOVE 6, cmd_buf, WHEN CMD

FROM Indicates the table indirect addressing mode.
Note: FROM and PTR must not be used in the same
instruction.

count A 24-bit number indicating the number of bytes being
transferred.

PTR Sets the indirect bit if present, it is cleared otherwise.
Note: Do not use PTR and FROM in the same instruction

address A 32-bit starting address of the data in memory.

WITH/WHEN Sets the mode for the device; WITH for target mode and
WHEN for initiator mode.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

Figure 3.11 MOVE Format

31 30 29 28 27 26 24 23 0

DCMD Register DBC Register

Instr Type Indirect Table
Indirect Opcode SCSI

Phase Byte Count

0 0 x

31 0

DSPS Register

Destination Address

x x
Instruction Descriptions 3-43

Field(s) This command has the following fields:

The values in Table 3.13 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

Instruction
Type

Block Move.

Indirect Indirect Addressing Mode.
0 - Use destination field as an address
1 - Use destination field as a pointer to an address

Table
Indirect

Table Indirect Addressing Mode.
0 - Use Absolute addressing mode
1 - Use destination address as offset from the value of DSA
register

Opcode This field defines whether the instruction executes as a Block
Move or a Chained Block Move.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.

Target Initiator

MOVE Opcode = 0 Opcode = 1

CHMOV Opcode = 1 Opcode = 0

Table 3.13 SCSI Phase Bit Values (MOVE Format)1

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3
0 0 0

DATA_IN2 (ST_DATA_IN)3 0 0 1

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3 1 0 0

RES54 (DT_DATA_IN)3 1 0 1
3-44 The SCSI SCRIPTS Processor Instruction Set

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description There are various forms of the Block Move instruction. The “address” and
“count” terms specify the address and byte count fields of the instruction.
If the optional keyword “PTR” is present the Indirect bit is set. If the
optional keyword FROM is present the Table Indirect bit is set (for more
information on Table Indirect addressing, refer to Chapter 9). PTR and
FROM may not be used in the same instruction. “Phase” specifies the
phase field of the instruction. WITH or WHEN are used to specify the
Block Move function codes. WITH is used to signal the target role which
sets the phase values, and WHEN is the initiator “test for phase” feature.

The SCRIPTS processor waits for a valid phase (initiator) or drives the
phase lines (target). In the initiator role, it performs a comparison looking
for a match between the phase specified in the SCRIPT and the actual
value on the bus. If the phases do not match, a phase mismatch interrupt
occurs. If the phases match, data is transferred in or out according to the
phase lines. After the last byte is transferred to its final destination, the
SCRIPTS processor fetches the next SCRIPTS instruction. If the target
changes phase in the middle of a block move, a phase mismatch
interrupt will occur.

Notes In the target mode, a MOVE instruction with a byte count of zero can be
used during a Command phase. The SCRIPTS processor will determine
the number of bytes to move from the command group code in the first
byte of the command.

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.
4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

Table 3.13 SCSI Phase Bit Values (MOVE Format)1

Phase Message Command/Data Input/Output

Byte Count A 24-bit number indicating the number of bytes to transfer.

Dest Addr Destination address for the transfer.
Instruction Descriptions 3-45

If the command code is vendor unique, the SCRIPTS processor uses the
byte count from the instruction. If this byte count is zero, the chip issues
an illegal instruction interrupt.

For LSI53C825A, LSI53C875, LSI53C876, LSI53C885, LSI53C895,
LSI53C895A, LSI53C896, LSI53C1000, LSI53C1010, LSI53C1010R,
LSI53C1000R only: If the SCSI group code is either Group 0, 1, 2, or 5
and if the Vendor Unique Enhancement bit 1 (VUE1) bit (SCNTL2 bit, 1)
is cleared, the SCRIPTS processor overwrites the DBC register with the
length of the CDB: 6, 10, or 12 bytes. If the Vendor Unique Enhancement
1 (VUE1) bit (SCNTL2, bit 1) is cleared and the SCSI group code is a
vendor unique code, the chip receives the number of bytes in the count.
If the VUE1 bit is set, the chip receives the number of bytes in the byte
count regardless of the group code.

Legal Forms MOVE count, address, WITH phase
MOVE count, address, WHEN phase
MOVE count, PTR address, WITH phase
MOVE count, PTR address, WHEN phase
MOVE FROM address, WITH phase
MOVE FROM address, WHEN phase

3.2.12 MOVE MEMORY

MOVE MEMORY[NO FLUSH]count, source_address,
destination_address

Supported by All LSI Logic SCSI SCRIPTS Processors; No Flush option is available on
all SCRIPTS processors except for the LSI53C770.

Definition Memory-to-Memory Move (DMA).

Operands This command has the following operands:

NOFLUSH Allows the SCRIPTS processor to perform the Move
Memory without flushing the prefetch buffer.

count A 24-bit expression which indicates the number of bytes
to transfer.

source_address Absolute 32-bit starting address of the data in memory.

destination_address Absolute 32-bit destination address of where to move the
data.
3-46 The SCSI SCRIPTS Processor Instruction Set

Example MOVE MEMORY 1024, Source_Buffer, Dest_Buffer

Field(s) This command has the following fields:

Register
Definition(s)

The information listed below describes the DBC, DSPS, and TEMP
registers.

Figure 3.12 MOVE MEMORY Format

31 29 28 25 24 23 0

DCMD Register DBC Register

Instr Type R No Flush Byte Count

1 1 0 0 0 0 0 x

31 0

DSPS Register

Source Address

x x

31 0

TEMP Register

Destination Address

x x

Instruction
Type

Memory-to-Memory Move.

No Flush When this bit is set, the SCRIPTS processor performs the
Move Memory without flushing the prefetch buffer. When this
bit is cleared, the instruction automatically flushes the prefetch
buffer. The No Flush option should be used if the source and
destination are not within four instructions of the current Move
Memory instruction.
This bit has no effect unless instruction Prefetching is enabled,
by setting the Prefetch Enable bit in the DMA Control (DCNTL)
register.

Byte Count A 24-bit number indicating the number of bytes to transfer.
Instruction Descriptions 3-47

Description The Move Memory instruction is able to transfer data from one 32-bit
location to another. A 24-bit counter allows large moves to occur with no
intervention required by the processor.

If both addresses are in system memory, then the SCRIPTS processor
functions as a high-speed DMA controller, able to move data at speeds
up to 47 Mbytes/s without using the processor or its cache memory.

If just the destination address is in the system memory and the source
is within the chip address space, then the instruction performs a register
store to external memory.

If just the source address is in the system memory and the destination
is within the chip address space, then the instruction performs a register
load from external memory.

Notes The Indirect Mode is not allowed for the Move Memory instruction.

If cache line bursting is not enabled, the source and destination
addresses must be on the same byte boundary. If cache line bursting is
enabled and the byte count is larger than 32, the lower four bits of the
source and destination addresses must be identical. If these conditions
are not met, an illegal instruction interrupt is generated.

If the chip is only I/O mapped, it cannot do memory-to-register or
register-to-memory moves.

Legal Forms MOVE MEMORY count, src_address, dest_address

3.2.13 MOVE REGISTER

MOVE {register | {data8} | register operator data8} TO
register [WITH CARRY]

Supported by All LSI Logic SCSI SCRIPTS Processors; additional functionality
supported by the LSI53C825A, LSI53C875, LSI53C876, LSI53C885,

Source
Address

Absolute 32-bit starting address of the data in memory.

Destination
Address

Absolute 32-bit destination address of where to move the data.
3-48 The SCSI SCRIPTS Processor Instruction Set

LSI53C895, LSI53C895A, LSI53C896, LSI53C1000, LSI53C1010,
LSI53C1010R, LSI53C1000R.

Definition Register to Register Move.

Operands This command has the following operands:

Example MOVE 0xFF TO SFBR
MOVE SCNTL1 & 0x01 TO SCNTL1

For LSI53C825A, LSI53C875, LSI53C876, LSI53C885 and LSI53C895
only:

MOVE SCRATCHA + SFBR to SFBR
MOVE SCRATCHA XOR SFBR to SFBR

Subtraction (SFBR=− SCRATCHA)

MOVE SCRATCHA XOR 0xFF to SCRATCHA
MOVE SCRATCHA + 1 to SCRATCHA
MOVE SCRATCHA + SFBR to SFBR

register One of the registers listed in the chip register set section in
Chapter 6 of this manual. Either the register address or register
name may be used in this instruction.

data8 Is an expression or value that evaluates to an 8-bit unsigned
number. In all but the LSI53C770/810/860, SFBR may be
substituted for data8 to add two register values. Bit 23 of the
first Dword of the instruction indicates that the SFBR is to be
used instead of a data8 value.

operator One of the following operators: '|' (OR), '&' (AND), SHL
(Shift Left), SHR (Shift Right), XOR, '+' (Add), '−' (Subtract).
The enhanced Move Register instruction does not support the
SHL or SHR operators. See the appropriate product technical
manual for detailed information on the supported operations.

WITH CARRY Adds in the current value of the CARRY bit from the ALU
during a “+” or “−”' operation. It is not allowed for any other
operations.
Instruction Descriptions 3-49

Field(s) This command has the following fields:

Figure 3.13 MOVE REGISTER Format

31 30 29 27 26 24 23 22 16 15 8 7 0

DCMD Register DBC Register

Instr
Type Function Operator Use data8/SFBR Register Address Immediate Data R

0 1 x 0 0 0 0 0 0 0 0

31 0

DSPS Register

R

0 0

Instruction
Type

Read/Write.

Function The function bits select the desired register operation in either
the target or initiator role.
101 - Move the SFBR register to the specified destination
register
110 - Move the specified register to the SFBR register
111 - Read a specified register, modify it, and write the result
back into the same register

Operator Specifies which logical or arithmetic operation will be
performed.
000 - Move, no modification performed
0011- Shift source left one bit, store result in destination
010 - OR immediate data with source, store result in
destination
011 - XOR immediate data with source, store result in
destination
100 - AND immediate data with source, store result in
destination
1011- Shift source right one bit, store result in destination
110 - ADD immediate data to source, store result in destination
111 - Add in immediate data plus Carry bit to source; store
result in destination

1. Data is shifted through the Carry bit and the Carry bit is shifted into the data
byte.
3-50 The SCSI SCRIPTS Processor Instruction Set

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description The Move Register instruction allows a register read-modify-write, or a
move to/from a register from/to the SFBR register.

The SCRIPTS processor does not provide a true move from any source
register to any destination register. To accomplish this, two register move
instructions must be used. First move the source register to the SFBR
register, then move the SFBR register to the desired destination register.
The two register names in each line must be identical, or one must be
SFBR. The two registers must be byte-aligned. If the 32-bit absolute
addresses of the source and destination registers are known, then a
register to register move can also be accomplished by using a Memory-
to-Memory Move instruction. However, a SCRIPTS instruction written in
this manner will be less portable to other machines than if the previous
method is used.

Caution must be exercised when this instruction is used. Writing to
certain registers could have adverse effects on the SCSI bus or chip
operation. When a register is written or read, side effects may occur; the
degree and possibility of these effects must be clearly understood. The
LSI53C7XX/8XX/10XX family technical manuals contain detailed
descriptions of individual register and bit operations.

The Add and Subtract operators can be used for loop counters in
SCRIPTS programming. To subtract one value from another, first XOR
the value to subtract (subtrahend) with 0XFF, and add 1 to the resulting
value. This creates a 2’s complement of the subtrahend. The two values
can then be added to obtain the difference.

Use
data8/SFBR
(not with the
LSI53C770/
810/860)

When this bit is set, SFBR will be used instead of the data8
value during a Read/Write instruction. This allows the user to
add two register values.

Register
Address

A 7-bit value that specifies which register to use as the source
register for the instruction.

Immediate
Data

An 8-bit value that will be used as the second operand in the
logical and arithmetic functions. For the move function, the
specified data is stored in the destination register.
Instruction Descriptions 3-51

For LSI53C825A, LSI53C875, LSI53C876, LSI53C885, LSI53C895,
LSI53C895A, LSI53C896, LSI53C1000, LSI53C1010, LSI53C1010R,
LSI53C1000R only:
These chips allow use of the SFBR register for easier addition,
subtraction, and comparison of two separate values within the chip. The
instruction can perform the specified operation on the specified register
and the SFBR, then store the result back to the specified register or the
SFBR. The SFBR is used in place of the data8 value in the Read/Write
operation. Subtraction cannot be used when the SFBR is used instead
of a data8 value, because the SFBR value is not known at compile time.

Notes The mathematical operation is performed by the chip during execution,
not by the assembler when the SCRIPTS routine is being assembled.

Legal Forms In the following, where the word register appears twice for an instruction,
the register name must be the same name for both the source and
destination, not two different register names.

Move register to register
Move data8 to REGISTER
Move REGISTER SHL REGISTER
Move REGISTER | data8 to REGISTER
Move REGISTER XOR data8 to REGISTER
Move REGISTER & data8 to REGISTER
Move REGISTER SHR REGISTER
Move REGISTER + data8 to REGISTER
Move REGISTER + data8 to REGISTER with Carry
Move REGISTER - data8 to REGISTER
Move data8 to SFBR
Move REGISTER to SFBR
Move REGISTER SHL SFBR
Move REGISTER | data8 to SFBR
Move REGISTER XOR data8 to SFBR
Move REGISTER & data8 to SFBR
Move REGISTER SHR SFBR
Move REGISTER + data8 to SFBR
Move REGISTER - data8 to SFBR
Move REGISTER + data8 to SFBR with Carry
Move SFBR SHL REGISTER
Move SFBR | data8 to REGISTER
Move SFBR XOR data8 to REGISTER
Move SFBR & data8 to REGISTER
Move SFBR SHR REGISTER
Move SFBR + data8 to REGISTER
Move SFBR - data8 to REGISTER
3-52 The SCSI SCRIPTS Processor Instruction Set

Move SFBR + data8 to REGISTER with Carry

Additional Forms for LSI53C825A/LSI53C875/LSI53C876/
LSI53C885/LSI53C895

Move SFBR to REGISTER
Move REGISTER | SFBR to REGISTER
Move REGISTER XOR SFBR to REGISTER
Move REGISTER & SFBR to REGISTER
Move REGISTER + SFBR to REGISTER
Move REGISTER + SFBR to REGISTER with Carry
Move REGISTER | SFBR to SFBR
Move REGISTER XOR SFBR to SFBR
Move REGISTER & SFBR to SFBR
Move REGISTER + SFBR to SFBR
Move REGISTER - SFBR to SFBR
Move REGISTER + SFBR to SFBR with Carry
Move SFBR to REGISTER
Move SFBR | SFBR to REGISTER
Move SFBR XOR SFBR to REGISTER
Move SFBR & SFBR to REGISTER
Move SFBR + SFBR to REGISTER
Move SFBR - SFBR to REGISTER
Move SFBR + SFBR to REGISTER with Carry

3.2.14 NOP

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition No operation.

Operands This command has the following operands:

None.
Instruction Descriptions 3-53

Field(s) This command has the following field:

Description This instruction has no operation assignment and can be used as a delay
function, or to reserve SCSI SCRIPTS patch areas.

Legal Forms NOP

3.2.15 RESELECT

Section 9.4, “Synchronous Negotiation and Transfer,” has additional
information about table indirect mode used during RESELECT.

RESELECT {FROM Address | ID}, {REL(Address) | Address}

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Reselect the SCSI initiator device.

Operands This command has the following operands:

Figure 3.14 NOP Format

31 24 23 0

DCMD Register DBC Register

Opcode R

1 0

31 0

DSPS Register

R

0 0

Opcode No Operation.

FROM
Address

Indicates the table indirect mode.

ID ID Number of the SCSI initiator being selected.
3-54 The SCSI SCRIPTS Processor Instruction Set

Example RESELECT host_1, rsel_addr
RESELECT FROM entry_2, REL rsel_addr

Field(s) This command has the following fields:

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

REL Indicates indirect addressing.

Address A 32-bit address that represents the address of the next
instruction being fetched when the chip is selected or
reselected.

Figure 3.15 RESELECT Format

31 30 29 27 26 25 24 23 20 19 16 15 0

DCMD Register DBC Register

Instr
Type Opcode Relative Table Indirect R R SCSI ID R

0 1 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0

DSPS Register

Alt Address

x x

Instruction
Type

I/O.

Opcode Reselect instruction.

Relative
Mode

Indicates that the 24-bit address is an offset from the current
program counter.

Table Indirect
Mode

The SCSI ID, synchronous, and wide parameters should be
loaded offset from the Data Structure Address.

SCSI ID Identifies the SCSI initiator to be reselected. This 4-bit field
specifics the encoded destination ID. This file is part of the
address if the table indirect mode is used.

Alternate
Address

Specifies the memory address to fetch the next instruction if
the SCRIPTS processor is selected or reselected.
Instruction Descriptions 3-55

Description The chip waits for Bus Free, arbitrates for the SCSI bus, then performs
a reselection. If the chip loses arbitration it will wait again for Bus Free
and continue trying until it is successful, unless there is a bus initiated
interrupt. Once arbitration is won, the SCRIPTS processor will continue
to execute instructions until an interrupt or any instruction related to the
SCSI bus is issued. If arbitration terminates because of a bus initiated
selection or reselection, the chip will use the 32-bit jump address value
to fetch the next instruction and begin execution at that address. When
the instruction completes then the next sequential instruction is fetched
and executed. The Reselection process is illustrated in Figure 3.16.
3-56 The SCSI SCRIPTS Processor Instruction Set

Figure 3.16 Reselection Instruction

Notes The REL keyword, which indicates relative addressing, is unrelated to the
declarative keyword RELATIVE that establishes relative buffers.

Legal Forms RESELECT scsi_id, address
RESELECT FROM table_entry, address
RESELECT scsi_id, REL(address)
RESELECT FROM table_entry, REL(address)

Start
RESELECT

Selected or
Reselected

Bus Free?

Won
Arbitration

LostArbitrate
Arbitration

Execute
SCRIPTS
Instruction

Phase
Condition
Instruction

Stop
Execution

Perform
Reselection

Reselect
To?

Continue
SCRIPTS
Execution

Interrupt
Host

Processor

Take
Alternate

Jump

No Yes

Yes

Yes

Yes

No

?

?

No

?

No

No

Yes
Instruction Descriptions 3-57

3.2.16 RETURN

RETURN [, {IF | WHEN}[NOT][ATN | Phase] [AND | OR] [data[,
AND MASK data]]]
RETURN [, {IF | WHEN}[NOT] CARRY]

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition SCSI Transfer Control - Return from a Subroutine.

Operands This command has the following operands:

Example RETURN
RETURN WHEN DATA_OUT

WHEN Forces the SCRIPTS engine to wait for a valid SCSI bus phase
before continuing. A valid phase is indicated by assertion of the
SREQ/ signal.

IF Causes the SCRIPTS processor to immediately check for a
valid SCSI bus phase. IF should not be used when comparing
for a phase as this could yield unpredictable results. The only
exception is using a WHEN conditional just prior to the IF
conditional for any given sequence of phase checks.

NOT Negates the comparison. It clears the True bit if present,
otherwise the True bit is set.

Phase Specifies the Message, Command/Data, and Input/Output bit
values that identify the SCSI phase in the instruction. The
desired phase value is compared with the actual values of the
SCSI phase lines before the SCRIPTS processor performs the
instruction. This field is only valid for the initiator mode and
should not be used in the target mode.

ATN Indicates that a return should take place based on the state of
the initiator SATN/ signal. This field is valid only for the target
mode and should not be used in the initiator mode.

data Represents an 8-bit value that is stored in the data field of the
instruction. In addition the Compare Data bit is set.

MASK Represents an 8-bit value that is stored in the mask field of the
instruction. Any bit that is set in the mask causes the
corresponding bit in the data byte to be ignored at the time of
the comparison.

CARRY Indicates that a return should take place based on the value of
the Carry bit in the ALU.
3-58 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

The values in Table 3.14 define the SCSI information transfer phase. The
LSI53C10XX chips, with dual transition timing capabilities define two
transfer phases, ST for single transition timing, and DT for dual transition
timing.

Figure 3.17 RETURN Format

31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 8 7 0

DCMD Register DBC Register

Instr
Type Opcode SCSI Phase R Carry

Test R True Comp
Data

Comp
Phase Wait Mask Data

1 0 0 1 0 x x x 0 0 0 0 x

31 0

DSPS Register

R

0 0

Opcode Transfer Control, Return instruction.

SCSI Phase These bits reflect the actual values of the SCSI phase lines.

Table 3.14 SCSI Phase Bit Values (RETURN Format)1

Phase Message Command/Data Input/Output

DATA_OUT2

(ST_DATA_OUT)3
0 0 0

DATA_IN2

(ST_DATA_IN)3
0 0 1
Instruction Descriptions 3-59

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

COMMAND 0 1 0

STATUS 0 1 1

RES44 (DT_DATA_OUT)3 1 0 0

RES54 (DT_DATA_IN)3 1 0 1

MESSAGE_OUT 1 1 0

MESSAGE_IN 1 1 1

1. 0 - False, negated; 1 - True, asserted. For these phases, SEL is negated and
BSY is asserted.

2. All chips except LSI53C10XX.
3. LSI53C10XX chips.
4. RES4 and RES5 are reserved SCSI phases except in the LSI53C10XX chips.

Table 3.14 SCSI Phase Bit Values (RETURN Format)1 (Cont.)

Phase Message Command/Data Input/Output

Carry Test When this bit is set, true/false comparisons may be made
based on the ALU Carry bit. The Carry test may not be
combined with other types of comparisons.

True Transfer on TRUE/FALSE condition.
0 - Transfer if condition is FALSE
1 - Transfer if condition is TRUE

Compare
Data

Compare data byte to the SFBR register.
0 - Do not compare data
1 - Perform comparison

Compare
Phase

Compare current SCSI phase to SCSI phase field or SATN/.
This bit is set whenever the Phase operand is used.
0 - Do not compare phase
1 - Perform comparison

Wait Wait for valid phase. This bit is set by the WHEN operand in
the instruction, and cleared by the IF operand.
0 - Perform comparison immediately
1 - Wait for valid phase (SREQ/ asserted by target)
3-60 The SCSI SCRIPTS Processor Instruction Set

Description The SCSI RETURN instruction is a conditional return from a subroutine
to the effective address, stored in the chip's TEMP register, if the SCSI
phase, data, or attention condition compares true with the condition
specified in the instruction.

When the optional data field is used, it is compared to the SFBR. This
contains the most recent byte of any kind of data that has been moved
into the SFBR register. The SCSI SCRIPTS program determines which
routine to execute next based on actual data values received. Using a
series of these comparisons, the algorithm processes complex
sequences with no intervention required by the external processor.

When the optional MASK keyword and its associated value are specified
the SCRIPTS processor allows selective comparisons of bits within the
data byte. During the comparison, any bits that are set in the mask byte
will cause the corresponding bit in the data byte to be ignored for the
comparison.

Notes If a RETURN instruction is executed without any previous CALL
instruction, then there is no proper return address in the chip's TEMP
register. This may cause the chip to generate an illegal opcode after the
return.

Legal Forms RETURN
RETURN, IF ATN
RETURN, IF Phase
RETURN, IF CARRY
RETURN, IF data
RETURN, IF data AND MASK data
RETURN, IF ATN AND data
RETURN, IF ATN AND data AND MASK data
RETURN, IF Phase AND data
RETURN, IF Phase AND data AND MASK data

Mask An 8-bit field that masks the value in SFBR before the
comparison with the data field in the instruction takes place. As
a result of this operation, any bits that are set cause the
corresponding bit in the data byte to be ignored. If this field is
not specified, a mask of 0x00 is used.

Data An 8-bit field that is compared with the incoming data after the
mask operation with the mask byte takes place. Comparison
indicates either an equal or not equal condition. If the Data field
is not specified, the compare data bit is cleared and 0x00 is
coded for both the mask and data bytes.
Instruction Descriptions 3-61

RETURN, WHEN Phase
RETURN, WHEN CARRY
RETURN, WHEN data
RETURN, WHEN data AND MASK data
RETURN, WHEN Phase AND data
RETURN, WHEN Phase AND data AND MASK data
RETURN, IF NOT ATN
RETURN, IF NOT Phase
RETURN, IF NOT CARRY
RETURN, IF NOT data
RETURN, IF NOT data AND MASK data
RETURN, IF NOT ATN OR data
RETURN, IF NOT ATN OR data AND MASK data
RETURN, IF NOT Phase OR data
RETURN, IF NOT Phase OR data AND MASK data
RETURN, WHEN NOT Phase
RETURN, WHEN NOT CARRY
RETURN, WHEN NOT data
RETURN, WHEN NOT data AND MASK data
RETURN, WHEN NOT Phase OR data
RETURN, WHEN NOT Phase OR data AND MASK data

3.2.17 SELECT

Section 9.4, “Synchronous Negotiation and Transfer,” has additional
information about table indirect mode used during SELECT.

SELECT [ATN] {FROM Address | ID}, {REL(Address) | Address}

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Select SCSI target device.

Operands This command has the following operands:

FROM
Address

Indicates table indirect mode.

ID The ID Number of the SCSI target being selected.

REL Indicates the use of relative addressing.

Address A 32-bit address (or 24-bit offset) that represents the address
of the next instruction to fetch if the chip is selected or
reselected by another device.
3-62 The SCSI SCRIPTS Processor Instruction Set

Example SELECT host_1, sel_addr
SELECT FROM entry_2, sel_addr

Field(s) This command has the following fields:

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description The chip waits for Bus Free, arbitrates for the SCSI bus, then performs
a selection. If the chip loses arbitration it repeats the process until it is
successful, unless there is a bus initiated interrupt. After winning

Figure 3.18 SELECT Format

31 30 29 27 26 25 24 23 20 19 16 15 0

DCMD Register DBC Register

Instr
Type Opcode Relative Table

Indirect
Select with

ATN R SCSI ID R

0 1 0 0 0 0 0 x 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0

DSPS Register

Destination Address

x x

Instruction
Type

I/O.

Opcode Select instruction.

Relative
Mode

Indicates that the 24-bit address is an offset from the current
program counter.

Table Indirect
Mode

Indicates that the SCSI ID and synchronous and wide
parameters should be loaded offset from the Data Structure
Address.

Select with
ATN

Indicates whether or not the SCSI ATN/ signal should be
asserted.

SCSI ID Identifies the SCSI target to be selected. This 4-bit field
specifies the encoded destination ID. This field is reserved if
table indirect mode is used.

Destination
Address

Specifies the memory address to fetch the next instruction if
the chip is selected or reselected during the selection.
Instruction Descriptions 3-63

arbitration, the SCRIPTS processor continues to execute instructions
until an interrupt or any instruction related to the SCSI bus is issued. If
arbitration terminates because of a bus initiated selection or reselection,
the chip uses the 32-bit jump address value to fetch the next instruction
and begins execution at that address. When the instruction is completed
then the next sequential instruction is fetched and executed.

Notes The REL keyword, which indicates relative addressing, is unrelated to the
declarative keyword RELATIVE that establishes relative buffers.

Legal Forms SELECT scsi_id, address
SELECT FROM table_entry, address
SELECT ATN scsi_id, address
SELECT ATN FROM table_entry, address
SELECT scsi_id, REL(address)
SELECT FROM table_entry, REL(address)
SELECT ATN scsi_id, REL(address)
SELECT ATN FROM table_entry, REL(address)

3.2.18 SET

SET {ACK|ATN|TARGET|CARRY}[and {ACK | ATN | TARGET | CARRY}
...]

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Asserts SCSI ACK or ATN, or sets internal flags.

Operands This command has the following operands:

Example SET TARGET
SET ACK and TARGET

ACK Sets the Assert SCSI ACK bit.

ATN Sets the Assert SCSI ATN bit.

TARGET Sets the Set Target role bit.

CARRY Sets the CARRY bit in the ALU.
3-64 The SCSI SCRIPTS Processor Instruction Set

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description The chip asserts the SCSI bus bits requested in the flags field. Currently
four bits are defined, allowing the SCSI ACK/, target role, and ATN/ bits
to be set, as well as the Carry bit in the ALU. Bit 10 is for Carry, bit 9 is
for target, bit 6 is for Acknowledge, and bit 3 is for Attention.

Legal Forms SET ACK
SET ATN
SET TARGET
SET CARRY
SET ACK and ATN
SET ACK and TARGET

Figure 3.19 SET Format

31 30 29 25 24 23 11 10 9 8 7 6 5 4 3 2 0

DCMD Register DBC Register

Instr
Type Opcode R R

Set
Clear
Carry

Set/
Clear
Target
Mode

R
Set/

Clear
SACK/

R
Set/

Clear
SATN/

R

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x 0 0 x 0 0 x 0 0 0

31 0

DSPS Register

R

0 0

Instruction
Type

I/O.

Opcode Set instruction.

Set/Clear
Carry

1 - sets the Carry bit in the ALU
0 - has no effect

Set/Clear
Target Mode

1 - places the chip into target mode
0 - has no effect

Set/Clear
SACK/

1 - asserts the SCSI acknowledge signal
0 - has no effect

Set/Clear
SATN/

1 - asserts the SCSI attention
0 - has no effect
Instruction Descriptions 3-65

SET ACK and CARRY
SET ATN and TARGET
SET ATN and CARRY
SET TARGET and CARRY
SET ACK and ATN and TARGET
SET ACK and ATN and CARRY
SET ACK and ATN and TARGET and CARRY

3.2.19 STORE

STORE [NOFLUSH] register, byte_count,
[DSAREL(]destination_address[)]

Supported by All except the LSI53C770 and LSI53C815.

Definition Store data from an internal chip register to memory.

Operands This command has the following operands:

Example STORE SCRATCHA0, 4, data_buf
STORE SCRATCHA3, 2, DSAREL (0x02)
STORE NOFLUSH SCRATCHA0, 4, data_buf

NOFLUSH Indicates that the prefetch buffer should not be flushed
when the instruction executes.

register The register names in the chip operating register set.

byte_count Number of bytes [1:4] to be transferred from the
source_address.

DSAREL Indicates that the source_address is an offset and
should be added to the DSA register to obtain the
physical address (DSA relative).
Note: the FROM keyword can still be used to indicate
DSA relative addressing, but it is being phased out in
favor of DSAREL.

destination_address Physical address or offset from the DSA to obtain the
physical address of the destination.
3-66 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description The Store instruction is more efficient than the Move Memory instruction
when moving data from an internal register of the chip to memory. It is
a two Dword instruction. This instruction may be used to move up to

Figure 3.20 STORE Format

31 29 28 27 26 25 24 23 22 16 15 3 2 0

DCMD Register DBC Register

Instr Type DSA
Relative R No

Flush Load/Store R Register Address R Byte Count

1 1 1 x 0 0 x 0 0 x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x

31 0

DSPS Register

Destination Address/DSA Offset

x x

Instruction
Type

Load/Store.

DSA Relative Indicates source address location.
0 - DSPS contains actual address of data to load
1 - DSPS contains a 24-bit offset value that is added to the

DSA to determine the source address

No Flush When this bit is cleared, the prefetch buffer is flushed during
the Store instruction. When set, the prefetch buffer is not
flushed automatically on a Store instruction.

Load/Store This field defines whether the instruction will be executed as a
Load or a Store.
0 - Store instruction
1 - Load instruction

Reg Addr These bits select the register to load within the chip operating
register set.

Byte Count A 3-bit number indicating the number of bytes to transfer.

Destination
Addr

Actual address (or offset from the DSA) of the destination
address.
Instruction Descriptions 3-67

4 bytes. The number of bytes to store is indicated by the low order bits
in the first Dword of the instruction, as illustrated in Table 3.15.

Notes The register address and memory address must have the same byte
alignment and the byte count set so that it does not cross Dword
boundaries. The memory address may not map back to the chip
operating registers, although it may map back to a location in the
SCRIPTS RAM. If these conditions are violated, a PCI illegal read/write
cycle will occur and the chip will issue an Interrupt (Illegal Instruction
Detected) immediately following, because the intended operation did not
happen.

Legal Forms STORE register, byte_count, destination_address
STORE register, byte_count, DSAREL (destination_address)
STORE NOFLUSH register, byte_count, destination_address

3.2.20 WAIT DISCONNECT

WAIT DISCONNECT

Supported by All LSI Logic SCSI SCRIPTS Processors.

Definition Wait for SCSI bus disconnect.

Operands This command has the following operands:

None.

Example WAIT DISCONNECT

Table 3.15 Low Order Bit Options

DBC Bits [17:16]
(Register Address bits A1-A0) Number of Bytes to Store

00 1, 2, 3, or 4

01 1, 2, or 3

10 1 or 2

11 1
3-68 The SCSI SCRIPTS Processor Instruction Set

Field(s) This command has the following fields:

Description The initiator waits for a disconnect from the SCSI bus. A legal disconnect
is a loss of busy and select for the specified bus free time, following a
DISCONNECT message or a COMMAND COMPLETE message. If the
SCSI Disconnect Unexpected (SDU) bit (SCNTL2, bit 7) is cleared and
a disconnect occurs, the next SCSI SCRIPTS instruction is executed. If
the SDU bit is set and a disconnect occurs, an Unexpected Disconnect
interrupt occurs.

Legal Forms WAIT DISCONNECT

3.2.21 WAIT SELECT

WAIT SELECT {REL(Address) | Address}

Definition Wait for selection from initiator.

Operands This command has the following operands:

Figure 3.21 WAIT DISCONNECT Format

31 30 29 25 24 23 0

DCMD Register DBC Register

Instr Type Opcode R R

0 1 0 0 1 0

31 0

DSPS Register

R

0 0

Instruction
Type

I/O.

Opcode Wait Disconnect.

REL Indicates the use of relative addressing.

Address A 32-bit address (or 24-bit offset) of the next instruction to fetch if
the chip is selected, or if the SIGP bit in the ISTAT register is set.
Instruction Descriptions 3-69

Example WAIT SELECT alt_addr
WAIT SELECT REL(alt_addr)

Field(s) This command has the following fields:

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description The chip waits for a selection by another device on the SCSI bus. If the
chip is already selected, then the next SCSI SCRIPTS is fetched and
executed. When a bus initiated interrupt or reselect occurs, the chip
changes to the initiator role, fetches the next instruction from the address
pointed to by the 32-bit jump address, and continues execution. If the
SIGP bit in the ISTAT register is set by the host processor, the chip will
also fetch the instruction at the alternate address. The SCRIPTS

Figure 3.22 WAIT SELECT Format

31 30 29 27 26 25 24 23 10 9 8 0

DCMD Register DBC Register

Instr
Type Opcode Relative

Mode R R Set Target
Role R

0 1 0 1 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

31 0

DSPS Register

Destination Address

x x

Instruction
Type

I/O.

Opcode Wait Select instruction.

Relative
Mode

Indicates that the 24-bit address is an offset from the current
program counter.

Set Target
Role

1 - places the chip into target mode
0 - places the chip into initiator mode

Destination
Address

Specifies the memory address to fetch the next instruction if
the device is reselected during the selection attempt, or if the
SIGP bit is set.
3-70 The SCSI SCRIPTS Processor Instruction Set

processor checks the SIGP bit before checking to see whether it has
been reselected.

Legal Forms WAIT SELECT Address
WAIT SELECT REL(address)

3.2.22 WAIT RESELECT

WAIT RESELECT {REL(Address) | Address}

Definition Wait for reselection from target.

Supported by All LSI Logic SCSI SCRIPTS Processors.

Operands This command has the following operands:

Example WAIT RESELECT alt_addr
WAIT RESELECT REL(alt_addr)

Field(s) This command has the following fields:

REL Indicates the use of relative addressing.

Address A 32-bit address (or 24-bit offset) of the next instruction to fetch
if the chip is selected, or if the SIGP bit in the ISTAT register is
set.

Figure 3.23 WAIT RESELECT Format

31 30 29 27 26 25 24 23 0

DCMD Register DBC Register

Instr Type Opcode Relative R R

0 1 0 1 0 x 0

31 0

DSPS Register

Destination Address

x x

Instruction
Type

I/O.
Instruction Descriptions 3-71

Register
Definition(s)

The information listed below describes the DBC and DSPS registers.

Description The initiator waits to be reselected by a previously selected target device.
If the chip is responding to a previous reselection, it fetches and executes
the next instruction. If the chip has already responded to reselection, it
immediately fetches the next instruction. If the operation completes as
expected, the next instruction is fetched and executed by the SCRIPTS
processor. However, if the chip is selected, then the alternate jump
address should contain the address of a selection algorithm. Target
instructions must include a WAIT in the address. That instruction's
alternate address is the error recovery algorithm (for initiator role–
reselect). The chip can determine exactly what happened and transfer
control to the appropriate SCSI SCRIPTS algorithm. If the SIGP bit in the
ISTAT register is set by the host processor, the chip will also fetch the
instruction at the alternate address. This allows the driver program to
schedule another I/O instead of waiting for the reselection to complete.
This driver code activity is illustrated in Figure 3.24.

Opcode Wait Reselect.

Relative Mode Indicates that the 24-bit address is an offset from the current
program counter.

Destination
Address

Specifies the memory address of the next instruction to fetch if
a reselection occurs or the SIGP bit is set by the host
processor.
3-72 The SCSI SCRIPTS Processor Instruction Set

Figure 3.24 WAIT RESELECT and the SIGP Bit

Notes With the SCRIPTS processor byte compare capability of the transfer
control instruction, the SCSI SCRIPTS algorithm can determine which
target reselected the initiator and can jump to the correct algorithm for
that particular target. The SCRIPTS processor checks the SIGP bit
before checking to see whether it has been reselected. SCSI SCRIPTS
can be tuned for the various types of available target devices and
executed with no external processor intervention.

Legal Forms WAIT RESELECT Address
WAIT RESELECT REL(address)

3.3 Instruction Examples

This section illustrates the operation of the five SCSI instruction types
supported by the SCRIPTS processor. In each diagram, the SCSI
SCRIPTS Source Code version shows how the operation would be
expressed in the SCRIPTS language. This high-level textual format is
translated by NASM into a hexadecimal format that is put inside a “C”
language data declaration. After this intermediate form is compiled, the
instruction exists in a binary form that can be loaded into host memory
and fetched and executed by the SCRIPTS processor.

WAIT RESELECT, Not_Reselected
;Code to handle RESELECT

WAIT SELECT, SIGp_Set
;Code to handle SELECT

Not_Reselected

Sigp_Set
;Code to handle SIGP
Instruction Examples 3-73

3.3.1 I/O Instruction Example

Figure 3.25 is an example of the processor when selecting the SCSI
device with SCSI ID 01. The instruction is a Select With Attention, as
indicated by the ATN keyword.

The SELECT instruction and ATN flag generates a value of 0x41 for the
high order byte of the instruction, translating to a binary 01 for I/O
Instruction type, 0b000 for the opcode, and a 1 in the ATN flag bit. The
SCSI target identity (0b01) is encoded in the next byte. The rest of the
bits are reserved and should remain cleared. The alternate address in
the original SCRIPTS instruction is loaded into the DSPS register.

Figure 3.25 I/O Instruction Type

3.3.2 Memory Move Instruction Example

In this example, the processor moves eight bytes from the source
address to the destination address relative to the source.

0 00 0 0

DSPS Register

SCSI SCRIPTS
Source Code

SELECT ATN 01, alt_address

NASM
Output

41010000 00000000

0 01 1 1

DCMD Register DCB Register

Binary
Instruction

Format
3-74 The SCSI SCRIPTS Processor Instruction Set

The MEMORY MOVE instruction generates an opcode of C0 for the high
order byte of the instruction. The remaining bits of the DCMD register are
reserved and must be set to zero. The DBC register contains a value of
eight as directed by the translation of the command_length of 0x08.
Figure 3.26 shows the original SCRIPTS language form of the
instruction, the SCRIPTS compiler output, and the binary form of the first
32-bit word of the instruction.

Figure 3.26 Memory Move Instruction Part 1

Figure 3.27 shows the Assembler output and the binary form of the
second and third 32-bit words of the Memory Move instruction.

SCSI SCRIPTS
Source Code

NASM
Output

C0000008 00000000

1 0 1 0 0 01 0 0

DCMD Register DCB Register

Binary
Instruction

Format

ABSOLUTE command_length = 8
RELATIVE rel_buf\
command_buffer = 8{??}\
scratch_buffer = 8{??}
move memory, command_length, command buffer, scratch_buffer

00000008
Instruction Examples 3-75

Figure 3.27 Memory Move Instruction Part 2

3.3.3 Transfer Control Instruction Example

In Figure 3.28, the processor performs an interrupt with a vector of
0xACB. The first version shows how the operation would be expressed
in the SCRIPTS language. NASM translates the operation into the
hexadecimal format shown. The hexadecimal format is then compiled
producing the instruction in a binary form that can be loaded into host
memory and put inside a “C” language data declaration. The INT
instruction generates a hexadecimal value of 0x98 for the high order byte
of the instruction, translating to 0b10 for Transfer Control, and 0b011 for
the opcode for Interrupt.

NASM
Output

C0000008 00000000

1 0 1 0 0 01 0 0

Binary
Instruction

Format

00000008

DSPS Register

0 00 0 0

Temp Register

Binary
Instruction

Format

(command_buffer) (scratch_buffer)
3-76 The SCSI SCRIPTS Processor Instruction Set

Figure 3.28 Transfer Control Instruction

3.3.4 Read/Write Instruction Example

This example writes 0b01 into the SCSI Chip ID (SCID) register, as
shown in Figure 3.29. This is illustrated by the translation of the
hexadecimal compiler output into binary format.

The MOVE instruction is 78 in hexadecimal, translating into 0b01 for
Read/Write; 0b111, the opcode for the Read/Modify/Write function; and
0b00 in the operator field to indicate that the instruction will operate on
the immediate data and write to the destination register. The address of
register SCID is 04 in hexadecimal, translating to a binary format for the
Register Address bits of the DBC register.

NASM
Output

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 10 0 0

Binary
Instruction

Format

DSPS Register

1 0 1 1 00 0 0

Binary
Instruction

Format

DCMD Register DBC Register

98000000 00000ACB

(0xACB)

98000000 00000ACB

INT 0xACB
SCSI SCRIPTS

Source Code
Instruction Examples 3-77

Figure 3.29 Read/Write Instruction Example

3.3.5 Block Move Instruction Example

In this example, shown in Figure 3.30, the processor waits for a valid
phase (indicated by SREQ/ being asserted) and compares it to CMD
phase. If the phase matches, the processor transfers the CDB from the
address represented by the command_buffer. In the hexadecimal version
of the first 32-bit word of the instruction, Move is represented by 0x0A,
which translates into binary as an opcode of 00, indicating a Block Move
instruction type. The 0b00 indicates that neither type of indirect
addressing bits are on, 1 indicates that the processing is in the Initiator
role, and 0b010 (Command) is the expected value of the SCSI phase
lines. The command length is six bytes, indicated by 0x06. This length is
loaded into the DBC register.

The bottom portion of the illustration shows the second 32-bit word of the
instruction, defined by command_buffer. The Block Move instruction
begins transferring data from this address. It is loaded into the DSPS
register.

NASM
Output

Binary
Instruction

Format
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 01 0 0

DCMD Register DBC Register

78040100 00000000

Move to SCID
SCSI SCRIPTS

Source Code 1
3-78 The SCSI SCRIPTS Processor Instruction Set

Figure 3.30 Block Move Instruction

3.3.6 Load/Store Instruction Example

In this example, shown in Figure 3.31, the processor waits for a valid
phase, indicated by assertion of SREQ/, and compares it to the CMD
phase. If the phase matches, the processor then transfers the CDB from
the address represented by the command_buffer. In the hexadecimal
version of the first 32-bit word of the instruction, STORE with the No
Flush option is represented by E2, which translates into binary as an
opcode of 111, indicating a Load/Store instruction type. The 0 indicates
that the DSPS value is the actual address to STORE from, and 0b0010
indicates that the prefetch buffer will not be flushed during the STORE,
and that the SCRIPTS processor is performing a STORE rather than a

NASM
Output

Binary
Instruction

Format
0 0 0 1 0 1 0 1 1 00 0 0

DCMD Register DBC Register

0A000006 00000012

SCSI SCRIPTS
Source Code

0 1 0 0 1 00 0 0

DSPS Register

Binary
Instruction

Format

0A000006 00000012

(command_buffer)

NASM
Output

MOVE command_length, command_buffer, WHEN CMD
Instruction Examples 3-79

LOAD instruction. The data will be stored to the SCRATCHA register;
one, two, three, or four bytes may be stored.

The bottom portion of the illustration shows the second 32-bit word of the
instruction, defined by the command_buffer. The Block Move instruction
begins transferring data from this address. It is loaded into the DSPS
register.

Figure 3.31 Load/Store Instruction

NASM
Output

Binary
Instruction

Format
1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 01 0 0

DCMD Register DBC Register

E2340004 00FFFE54

SCSI SCRIPTS
Source Code

STORE NoFlush SCRATCHA0,4, 0xFFFE54

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 00 0 1

DSPS Register

Binary
Instruction

Format

0 0FFFE54

(command_buffer)

NASM
Output
3-80 The SCSI SCRIPTS Processor Instruction Set

Chapter 4
Using the LSI Logic
Assembler NASM™
This chapter describes the LSI Logic Assembler (NASM) and contains
the following sections:

• Section 4.1, “Overview,” page 4-1

• Section 4.2, “Using NASM,” page 4-2

• Section 4.3, “Command Line Options,” page 4-3

• Section 4.4, “Example Assembler Command Lines,” page 4-6

• Section 4.5, “How NASM Parses SCRIPTS Files,” page 4-6

• Section 4.6, “Assembler Declarative Keywords,” page 4-7

• Section 4.7, “Conditional Keywords,” page 4-14

• Section 4.8, “Logical Keywords,” page 4-14

• Section 4.9, “Flag Fields,” page 4-15

• Section 4.10, “Qualifier Keywords,” page 4-16

• Section 4.11, “Other Keywords,” page 4-18

4.1 Overview

The LSI Logic Assembler (NASM) is a DOS command line driven
assembler that supports the LSI Logic SCSI SCRIPTS processor family.
NASM creates a “C” header file from the SCSI SCRIPTS source file. It
assembles SCSI SCRIPTS for inclusion into SCSI device driver software.

Inputs to the assembler are command line switches, as well as input and
output file names. The assembler produces comprehensive error
messages, cross referenced list files, and “C” include files. The source
file may be created using any standard text editor that creates an ASCII
file as output.
SCSI SCRIPTS Processors 4-1

To assure portability, NASM does not provide support for directory paths.
The resulting output file and the optional listing file will be placed in the
directory where NASM is executed. Since the assembler is written in “C”,
it can easily be ported to any non-DOS based development environment
that offers a “C” compiler.

4.2 Using NASM

Before running the assembler, you must copy the assembler executable
file directly into the directory from which the assembly will be performed.
Entering NASM on the command line with no arguments produces a short
description of all the valid switches. The NASM command line recognizes
DOS wild card characters(“*”, “?”) in filenames. Usage:

NASM filename [options]

where:

filename Name of the file you generated that is being assembled. Files
should be specified in the standard DOS format:[d:]
[path] name.ext
The file name is the root file name of the .ss file unless
otherwise indicated.

options A series of options, listed in brief below, that modify the
NASM output. The option is always preceded by a hyphen (-)

a [architecture] Specifies SCSI architecture.

b Generates binary cross reference values.

c Changes from little endian to big endian. Not supported by
all chips.

e [filename[.err]] Saves error messages (filename optional).

l [filename[.lis]] Generates cross reference (filename optional).

o [filename[out]] Generates “C” source output (filename optional).

p [filename[.out]] Generates partial “C” header (filename optional).

s [filename[.bin]] Generates .bin format output (filename optional).

u Excludes module termination record.
4-2 Using the LSI Logic Assembler NASM™

4.3 Command Line Options

This section of the manual describes the NASM command line options.

4.3.1 Architecture

The -a option allows you to specify the LSI Logic chip for which you are
generating code. The currently supported chips are listed in the table
below, along with the corresponding number to enter to choose the
architecture. An ARCH statement at the beginning of a SCRIPTS source
file overrides any options typed on the command line. If the source file
does not have an ARCH statement and no architecture is specified in the
command line, NASM uses the default architecture, the LSI53C700,
which is no longer supported.

v Verbose messages.

x Lists patch offsets in cross reference listing.

Product Name Command Line Entry

LSI53C770 -a 770

LSI53C810 -a 810

LSI53C810A -a 810a

LSI53C825 -a 825

LSI53C815 -a 815

LSI53C825A (all package variations) -a 825a

LSI53C875 (all package variations) -a 875

LSI53C876 -a 876
Command Line Options 4-3

4.3.2 Binary Cross Reference Values

The -b option generates binary as well as hexadecimal opcodes in the
listing file.

4.3.3 Error Listing File

The -e option generates an error message if errors occur during NASM
assembly. If no file name is given, the -e option creates a file with the
same root name as the source file, with a .err extension.

4.3.4 Listing File

The -l option creates an assembly listing (.LIS) file. When invoked, this
option creates a file with the same root name as the source file and a
.LIS extension, unless otherwise specified.

4.3.5 Output File

The -O option creates a “C” style output (.OUT) file. When invoked, this
option creates a file with the same root name as the source file and a
.OUT extension, unless otherwise specified.

4.3.6 Partial “C” Source

The -p option creates a partial “C” style output file with a .out extension,
but no patch information is listed. Since it produces a subset of the same
information as the -o option, it is mutually exclusive with the -o option,
and should not be used at the same time. If the -o and -p options are
both specified, the -p option always takes precedence. The portions of

LSI53C885 -a 885

LSI53C895 -a 895

LSI53C895A -a 895a

LSI53C896 -a 896

LSI53C1000/LSI53C1000R -a 1000

LSI53C1010/LSI53C1010R -a 1010

Product Name Command Line Entry
4-4 Using the LSI Logic Assembler NASM™

the SCRIPTS out file that are eliminated when invoking the -p option are
listed below. For additional information about the SCRIPTS output file,
refer to Chapter 5, “The NASM Output File.”

4.3.7 .BIN Output

The -s option generates a file with a .bin extension.

4.3.8 Omit Termination Record

The -u option instructs the assembler to omit the INSTRUCTIONS and
PATCHES information from the output file. It must be used when either
the -o or -p options are used.

4.3.9 Verbose Messages

The -v option instructs the assembler to generate more comprehensive
status messages.

#define Ext_Count count of external variables

char *External_Names[Ext_Count] array of external variable names

#define E_buf_name. definition of the external buffer offset
because it will always be zero

#define Rel_Count count of relative buffers

ULONG Rel Patches [Rel_Count] array of relative patches

#define R_buf_name define the relative buffer offsets

#define Abs_Count which is a count of Absolute variables

char *Absolute_Names[Abs_Count] which is an array of absolute names

ULONG A_absolute_Used[] array of locations where absolute
variables are used

Termination record termination record is removed (as in the
-U option)

#define instruction 0x???????? is
added

instruction count
Command Line Options 4-5

4.3.10 Patch Offsets

The -x option produces an assembly level output file, including a list of
patch addresses for each symbol. These addresses indicate where to
patch each individual symbol value.

4.4 Example Assembler Command Lines

The following command lines are typical examples of how to use the
various options.

NASM demoPCI.ss

This command line produces no output files, but allows a quick syntax
check on the SCRIPTS instructions in the file named DEMOPCI.SS

NASM demoPCI.ss -a 875 -l -o -e errors.txt

This command line requests that NASM check the syntax and generate
code for the LSI53C875 chip. It generates the listing, error log, and
standard C header. Since no filenames were specified for the listing and
C header files, they will take the name of the input file, but with .LIS and
.OUT as the file extensions, respectively. The error log is sent to the file
named ERRORS.TXT

4.5 How NASM Parses SCRIPTS Files

SCSI SCRIPTS programs contain a series of lines. Blank lines, lines
containing only white space, and anything after a semicolon on a line are
ignored.

The assembler is token oriented. It reads the source file and splits it up
into tokens. White space and anything from a semicolon to the end of
the line is not part of any token, and is ignored by the first pass of the
assembler.

There are two types of tokens. Any string of consecutive letters,
numbers, dollar signs, and underscores is a token. The second type of
token consists of characters that are not part of other tokens. Anything
that is not a letter, a digit, an underscore, or a dollar sign, will become a
4-6 Using the LSI Logic Assembler NASM™

token. For example, the string “xxx = 0x123; assign value to xxx”
contains three tokens. “xxx” is a token, “=” is a token, and “0x123” is a
token.

Numeric values may be specified in decimal, hexadecimal, octal, or
binary format. Decimal numbers are specified by a string of digits that
does not begin with a zero. Octal numbers are specified by a string of
digits that begins with zero. Hex numbers are specified by a string
consisting of “0x” or “0X” and the hex digits of the number. Both upper
and lower case are allowed. A binary number is specified with “0b” or
“0B”.

4.6 Assembler Declarative Keywords

To do its job efficiently, the assembler needs to recognize a set of
commands that are different from the processor instructions. These
commands, called declarative keywords, control the different aspects of
code generation and are intended for the assembler’s use. In most
cases, the declarative keywords will not produce executable code by
themselves, but must be combined with processor instructions to
generate assembled code.

The declarative keywords are grouped functionally in Table 4.1. They are
listed alphabetically and defined in the remainder of this section.

Table 4.1 Keywords

Keyword Function

Data Definition and Storage

ABSOLUTE Equates

RELATIVE, EXTERN Storage Definition
Assembler Declarative Keywords 4-7

4.6.1 ABSOLUTE

ABSOLUTE defines the symbol name by assigning it a numeric value.
After you declare a name using ABSOLUTE, NASM substitutes this
numeric value in each instruction where the name is used.

4.6.2 ARCH

ARCH directs the assembler to generate instructions that are specific to a chip
architecture.

TABLE Table Addressing

Code Generation

ARCH Code Generation

Miscellaneous

PROC Module Definition

ENTRY Code Entry Labels

Table 4.1 Keywords (Cont.)

Keyword Function

Syntax ABSOLUTE name = expression

Example ABSOLUTE bytes = 2048; A sector is 2048 bytes
ABSOLUTE sectors = 4; A cluster has 4 sectors
ABSOLUTE cluster = bytes; cluster size
ABSOLUTE bytecnt = bytes; bytecnt is an indexing
variable

Description ABSOLUTE supplies a list of names, or labels, solely for the use
of the assembler. NASM refers to this list when it is actually
assembling the program.

Syntax ARCH chip_number

Fields chip_number
4-8 Using the LSI Logic Assembler NASM™

4.6.3 ENTRY

ENTRY informs the driver program of the starting location of callable
routines contained in a given SCRIPTS instruction. ENTRY allows the
declaration of variables as entry points into the SCSI SCRIPTS
instruction array. It defines the names and values of the variables,
making them also available to the host development system.

4.6.4 EXTERN

EXTERN informs the assembler that a symbol should be resolved at link
time. This keyword allows the declaration of variables that are defined
external to the SCRIPTS program. EXTERN causes the assembler to
keep an array of offsets into the SCRIPTS array that the driver can use
to patch SCRIPTS instructions into the driver program.

Example ARCH 810A
ARCH 875

Notes If used, this keyword should be placed before any executable
statements so that the assembler knows which chip to generate
code for. The chip architecture may also be specified on the
assembler command line for the assembler using the -A
chip_number option. ARCH takes precedence over the -A option
in the NASM command line. The chip number entries should use
the last three digits of the product number, as indicated in the
example above.

Syntax ENTRY label [, label ...]

Example ENTRY start, Data_Out_Entry

Description The ENTRY keyword indicates which SCRIPTS entry points
should be made visible to the driver code. Only those entry points
named in the ENTRY keyword will generate information in the
assembler output file.

Notes All entries must be used as a label somewhere in the SCRIPTS
code, otherwise an error message will be reported.
Assembler Declarative Keywords 4-9

4.6.5 PASS

PASS allows the programmer to pass a “C” element unaltered to the
SCRIPTS output file and on to the “C” compiler. Using this option avoids
the need for run time patching of the addresses of SCRIPTS objects.
PASS is typically used for two types of “C” elements; either an include
statement or a literal string.

4.6.6 PROC

PROC builds output arrays with names other than the generic array
name SCRIPT that NASM normally assigns to SCRIPTS opcode arrays.
This is useful when more than one SCRIPTS file is used in a driver
program. It also allows several output arrays to be created with specific
code segments in each one. When SCRIPTS storage space is limited,

Syntax EXTERN label [, label ...] or
EXTERN label = data_specifier [, label =
data_specifier...]
a data specifier is:
{byte_val[, byte_val]} or count{byte_val | ??}

Fields A count is any valid constant with a value between 0 and
64 Kbytes.

Example EXTERN buffer; a buffer in the driver
EXTERN buffer=1024{??}; same buffer, but now
; the debugger will have
; information about space
; requirements

Description The first form of the EXTERN syntax is only provided for
compatibility with older versions of the SCRIPTS compiler. The
second form (with space requirements information for the
debugger) should be used in all new programs. Declarative
instructions never allocate memory, but give the debugger or driver
code the information required to allocate the memory.

Syntax PASS(element)

Examples Include statement: PASS(include”SCRIPTS.h”)
Literal string: Wait Reselect PASS(&alt_addr)

Description PASS tells NASM to pass everything between the left and right
parentheses on to the output file, literally. Therefore, the passed
statements can be read by the “C” compiler.
4-10 Using the LSI Logic Assembler NASM™

code can be divided into different sections where one section would fit in
a limited space (such as SCRIPTS RAM) and the remaining code can
be stored elsewhere.

4.6.7 RELATIVE

Use RELATIVE to begin the definition of a data structure named
baselabel with offsets into the buffer specified by the labels. It allows
the declaration of buffers to be positioned relative to one another. The
expression used is the offset from the start of the relative data area
where the buffer variable is located.

Syntax PROC label:

Fields label is the name assigned to the SCRIPTS output array.

Examples PROC Start:

Description When a PROC keyword is used, the SCRIPTS output array in the
.out file is given the name specified in label, overriding the
default name SCRIPT. If additional PROC statements are used in
the same SCRIPTS source file, NASM will create additional
output arrays in the .out file with the name specified in label for
each PROC statement.

Syntax RELATIVE label = expression [, label = expression...]
or
RELATIVE baselabel \
label = data_specifier [, label = data_specifier...]

a data specifier is:
{byte_val [, byte_val]}
or
count{byte_val |??}

Fields A byte_val is any valid constant with a value between 0 and
255. For example: 0x10 and 16 both represent a byte value of
16. Also, the special data value ‘??’ can be used to indicate
that a byte should be reserved, but that it should not be
initialized to a specific value. The SCRIPTS program does not
allocate memory; this is done by “C” code in the SCRIPTS
debugger or in the driver code. A count is any valid constant
with a value between 0 and 64 Kbytes.
Assembler Declarative Keywords 4-11

4.6.8 TABLE

TABLE describes a data structure used with the table indirect addressing
feature of the SCRIPTS processor. The starting location for the buffer is
defined by the data structure address written to the DSA register. The
expression specifies the offset into the buffer and is added to the starting
address of the buffer (DSA register) to form the absolute address. This
feature allows SCRIPTS to be programmed into a ROM.

Example This example shows the typical use of the RELATIVE keyword.
NASM syntax requires that no SCRIPTS statements span
more than one line. However, in the case of RELATIVE, this
would result in a very unreadable source code file. The
following example demonstrates the use of the logical line
continuation character ‘\’. When this character is used, the
assembler appends the next line to the end of the current line.

RELATIVE data_buffer\
identify_msg_buf = 1{??}, \
synch_msgo_buf = {1,2,3,4,5},\
synch_msgi_buf = 5{??},\
cmd_buf = 12{??},\
W_cmd_buf = 12{??},\
stat_buf = 1{??},\
msg_in_buf = 1{??},\
disc_msg_in_buf = 2{??},\
read_cap_buf = {1,2,3,4,\
5,6,7,8},\
inquiry_buf = 36{??},\
request_sense_buf = 18{??},\
data_buf = 16384{??}

Description The RELATIVE keyword defines a template for a collection of
data elements of the same or varying types, each of which can
be accessed by a descriptive name, but no storage is
allocated. It is up to the programmer to use the RELATIVE
information that is placed in the output file to declare space in
the driver program that RELATIVE maps to.

Notes The first form of the RELATIVE syntax example is only
provided for compatibility with older versions of the SCRIPTS
compiler. The second form (with baselabel definition) should
be used for all new programs.
Since the SCRIPTS array will have only offsets from the base
address of the buffer, the SCRIPTS elements containing
references to relative buffers will need to be patched by the
driver program after the buffer space is allocated.
4-12 Using the LSI Logic Assembler NASM™

Syntax TABLE tablelabel \
label = data_specifier \
[, label = data_specifier...]
a data specifier is:
{byte_val [, byte_val]} or
count{byte_val | ??} or
ID{byte_val | ??}

Fields A byte_val is any valid constant with a value between 0 and
255. For example, 0x10 and 16 both represent a byte value of
16. Also, the special data value ‘??’ can be used to indicate that
a byte should be reserved, but that it should not be initialized to
a specific value. A count is any valid constant with a value
between 0 and 64 Kbytes.

Example This example shows the typical use of the TABLE keyword.
NASM does not generate any output based on the TABLE
keyword. This example is a template for a data structure that will
be used in the driver program or in the SCRIPTS debugger.
NASM assembler syntax requires SCRIPTS statements to span
no more than one line. However, in the case of TABLE, this
would result in a very unreadable source code file. The following
example demonstrates the use of the logical line end character
(\). When this character is used, NASM appends the next line
to the end of the current line.

TABLE table_indirect\
stat_buf = {??},\ ;stat_buf = 1 byte
msg_in_buf= {??},\ ;msg_in_buf = 1 byte
data_buf = 512{??},\
R_data_buf = 512{??},\ ; read data buffer
W_data_buf = 512{0xaa},\ ; write data buffer
W_cmd_buf = {0x0A, 0x00, 0x00, 0x00, 0x01, 0x00}, \
R_cmd_buf= {0x08, 0x00, 0x00, 0x00, 0x01, 0x00}, \
dum_buf = 512{??},\
scsi_id = ID{??},\
select_id = ID{0x33, 0x00, 0x00, 0x00}

Description Table indirect addressing allows a SCRIPTS program to be
placed in ROM and still allows the driver program to dynamically
specify different parameters for the BLOCK MOVE, SELECT, or
RESELECT instructions.
Assembler Declarative Keywords 4-13

4.7 Conditional Keywords

Conditional keywords test for conditions such as an expected phase or
data byte.

4.7.1 IF

The IF keyword indicates that a comparison is to be done immediately.
Usage:
JUMP address, IF phase

4.7.2 WHEN

The WHEN keyword causes the chip, as an initiator, to wait for a phase
to become valid. A valid phase is indicated by REQ/ being asserted on
the SCSI bus. Since WHEN waits for the SCSI REQ/ signal when making
a comparison, it may not work when comparing for conditions that are
not related to the SCSI bus. Usage:
CALL address, WHEN data

4.8 Logical Keywords

Logical keywords are used in conjunction with conditional keywords to
add detail or additional comparisons to the conditions being tested.

Notes The TABLE keyword defines the table entries, each of which
can be accessed by a descriptive name, but no storage is
allocated. It is up to the programmer to provide the data
definition and allocation for the SCRIPTS table in the driver
program and load the DSA prior to execution of SCRIPTS
routines.
Currently, only one TABLE keyword per SCRIPTS routine is
allowed. An error message will be generated if multiple TABLEs
are used.
The ID parameter in the data specifier allows initialization of the
table entries for use with the FROM keyword of the SELECT
and RESELECT instructions on the LSI53C8XX family chips.
4-14 Using the LSI Logic Assembler NASM™

4.8.1 NOT

NOT negates (logically inverts) the conditions specified by the qualifiers
that follow. For example, an instruction that reads RETURN if NOT data
compares data to the contents of the SFBR register. If they are not
identical, the operation executes. Usage:
JUMP address, if NOT data

4.8.2 AND

AND is used to compound the condition being tested. All conditions that
are added with the AND keyword must be true for the operation to
execute. Usage:
RETURN, WHEN data AND MASK DATA

4.8.3 OR

OR specifies a list of conditions, one of which must be true for the
operation to execute. Usage:
CALL REL (address), IF NOT ATN OR data

4.9 Flag Fields

The Flag Fields keywords signify that a flag field bit has been set. The
flag field bits are controlled with the SET and CLEAR instructions.

4.9.1 ACK

The target checks to see if the SCSI ACK/ signal is asserted. Usage:
CLEAR ACK

4.9.2 ATN

The target checks to see if the initiator has set the SCSI ATN/ signal.
Usage:
JUMP address, IF NOT ATN
Flag Fields 4-15

4.9.3 TARGET

By setting or clearing this bit, the SCRIPTS processor is placed in the
target or the initiator role. This must be done before the chip can execute
target or initiator specific operations, such as reselection. Usage:
SET TARGET

4.9.4 CARRY

This keyword checks the ALU Carry bit in the SCRIPTS processor to
determine which SCRIPTS routine to execute next. CARRY is not valid
if phase or data clauses are used in the same instruction. Register Move
(arithmetic) operations also affect the CARRY flag. Usage:
JUMP address, IF CARRY

4.10 Qualifier Keywords

Qualifier keywords are used in conjunction with action keywords to add
details about the instructions to be performed.

4.10.1 DSAREL

This keyword is only available in the LSI Logic devices that support Load
and Store instructions. It is used in Load/Store instructions to indicate
that the data to be loaded or stored is relative to the DSA register. This
keyword replaces the RELATIVE keyword, although NASM still supports
RELATIVE as well. Usage:
STORE NOFLUSH SCRATCHA0, 4 DSAREL (address)

4.10.2 FROM

This signifies use of table indirect addressing. It can be used with Block
Move or Select operations. Usage:
MOVE FROM address, WITH phase

4.10.3 MASK

This keyword allows selective comparison of specified bits with the SFBR
register. Any bits that are set in the mask byte eliminate the
4-16 Using the LSI Logic Assembler NASM™

corresponding bits in the SFBR register. Usage:
RETURN WHEN data AND MASK DATA

4.10.4 MEMORY

The MEMORY keyword is used in conjunction with an action keyword to
signify a Memory-to-Memory Move instruction. Usage:
MOVE MEMORY 512, data_buf, data_buf1

4.10.5 PTR

PTR causes the Indirect bit to be set in a Block Move instruction. Usage:
MOVE count, PTR address, WITH phase

4.10.6 REG

This keyword allows access to a register by register number instead of
register name. The register number must be in parenthesis. Usage:
MOVE REG(10) + 0x01 TO REG(10)

4.10.7 REL

This keyword indicates that relative addressing is used. Usage:
SELECT ID, REL(address)

4.10.8 TO

This keyword indicates the destination of a Register Move operation.
Usage:
MOVE data TO register

4.10.9 WITH

The WITH keyword allows the target to drive the phase on the SCSI bus.
This keyword is used for Target Move operations. Usage:
CHMOV count, address, WITH phase

4.10.10 NOFLUSH

This keyword is used in the LSI53C8XX family products that support
instruction prefetching. It is used in conjunction with Move Memory and
Store instructions that affect the prefetch buffer. Its purpose is to
Qualifier Keywords 4-17

preserve the contents of the prefetch buffer when one of these
operations is performed. Usage:
STORE NOFLUSH SCRATCHA0, 4 DSAREL (address)

4.11 Other Keywords

This section of the manual describes NASM keywords.

4.11.1 Action Keywords

These words execute SCSI SCRIPTS instructions. They are described in
detail in Chapter 3, “The SCSI SCRIPTS Processor Instruction Set.”

4.11.2 SCSI Phases

These words describe the phases of the SCSI bus. One of these
keywords should be used in place of the word “phase” when it appears
in programming examples in this guide. The SCSI phase keywords are
CMD, COMMAND, DATA_IN, DATA_OUT, MSG_IN, MSG_OUT, STATUS,
RES4, RES5 for all chips except the LSI53C10XX. The SCSI phase
keywords for these chips are CMD, COMMAND, ST_DATA_IN,
ST_DATA_OUT, MSG_IN, MSG_OUT, STATUS, DT_DATA_IN,
DT_DATA_OUT. The phases are described in more detail in Chapter 3,
“The SCSI SCRIPTS Processor Instruction Set.”

4.11.3 Register Names

All register names are reserved keywords.
4-18 Using the LSI Logic Assembler NASM™

Chapter 5
The NASM Output File
This chapter describes the output from NASM assembler and contains
the following sections:

• Section 5.1, “NASM Output Overview,” page 5-1

• Section 5.2, “NASM Output File Examples,” page 5-2

5.1 NASM Output Overview

The NASM assembler produces an output file containing all the
necessary data structures and information needed by a programmer
writing a driver program to load and run a SCSI SCRIPTS program. The
assembler produces data structures compatible with ANSI “C”. The
structures are included in a “C” program and compiled without any
modifications.

Three command line parameters determine whether certain structures
will be produced in the output file. The -o option allows NASM to
generate all of the structures described in this chapter. The -p option
allows generation of only some of the structures; please refer to the
documentation for each section to see effects of the options. Finally, the
-u option only affects the Termination Record which is detailed later in
this chapter. The -o and -p options should not be used together. If they
are used together in the command line, the -p option takes precedence.
The -u option must be used in conjunction with either the -o or the -p
option.

The example SCRIPTS program in Figure 5.1 demonstrates the various
types of structures produced by the NASM assembler.
SCSI SCRIPTS Processors 5-1

Figure 5.1 Sample SCRIPTS Program

5.2 NASM Output File Examples

The code segments of the .out file discussed in this section correspond
to the example SCRIPTS program in Figure 5.1.

ARCH 825
ABSOLUTE Got_Selected = 0xA5
ABSOLUTE Not_Msg_Out = 0x11
ABSOLUTE Select_ID = 2
ABSOLUTE Command_Complete = 0x01
EXTERN ex_buf1
EXTERN ex_buf2
RELATIVE rel_buffer \

rel_buf1 = ??, \
rel_buf2 = 6{??}, \
rel_buf3 = ??

TABLE tbl_buffer \
tbl_buf1 = ??, \
tbl_buf2 = ??, \
tbl_buf3 = ??

ENTRY Start
ENTRY Send_CMD
ENTRY Send_DATA
Start:

SELECT ATN Select_ID, REL(Interrupt)
INT Not_Msg_Out, WHEN NOT MSG_OUT
MOVE 1, rel_buf1, WHEN MSG_OUT

Send_CMD:
MOVE 6, rel_buf2, WHEN CMD

Send_DATA:
MOVE FROM tbl_buf1, WHEN DATA_OUT
MOVE FROM tbl_buf2, WHEN DATA_OUT
MOVE FROM tbl_buf3, WHEN DATA_OUT
MOVE 1, ex_buf1, WHEN STATUS
MOVE 1, ex_buf1, WHEN MSG_IN
MOVE SCNTL2 & 0x7F to SCNTL2
CLEAR ACK
WAIT DISCONNECT
JUMP All_done

Interrupt:
INT Got_Selected

All_done:
INT Command_Complete
5-2 The NASM Output File

5.2.1 SCRIPTS Array

The SCRIPTS array is an array of unsigned long values that is the actual
contiguous machine code (opcodes) produced by the assembler. Each
line of the array contains one instruction and one or two address fields,
depending on the instruction. If a PROC directive is used in the source
program, there may be more than one SCRIPTS array. For each PROC,
a new array is declared with the name specified with the PROC directive.

For example, if the above code started with:

PROC SCSI_READ:
Start:

SELECT ATN Select_ID, REL(Interrupt)
.
.
.

Then the SCRIPTS array starts:

typedef unsigned long ULONG;
ULONG SCSI_READ[] = {

0x45020000L, 0x00000060L,

The default array name without the PROC statement is SCRIPT. The
SCRIPTS array is not affected by NASM command line options.

Example of SCRIPTS array:

typedef unsigned long ULONG;
ULONG SCRIPT[] = {

0x45020000L,0x00000060L,
0x9E030000L,0x00000011L,
0x0E000001L,0x00000000L,
0x0A000006L,0x00000001L,
0x18000000L,0x00000000L,
0x18000000L,0x00000008L,
0x18000000L,0x00000010L,
0x0B000001L,0x00000000L,
0x0F000001L,0x00000000L,
0x7C027F00L,0x00000000L,
0x60000040L,0x00000000L,
0x48000000L,0x00000000L,
0x80080000L,0x00000070L,
0x98080000L,0x000000A5L,
0x98080000L,0x00000001L
NASM Output File Examples 5-3

A PROC label generates separate arrays of SCRIPTS instructions for
each PROC occurrence. An Entry specification generates a “C” language
#define equal to the number of bytes between this entry and the
beginning of the first code array. The #define offset is not relative to the
array in which it appears, but is relative to the first code array created. In
the example shown in Table 5.1, the first SCRIPTS instruction for INC_A
is located 40 (hex) bytes after the location of MAIN[].
5-4 The NASM Output File

.

5.2.2 External

The External section contains the external variable records, if any were
declared. First, is the External Header Record which contains:

Table 5.1 Relationship Between Entry and PROC Statements and Output File

Source Output File

typedef unsigned long ULONG;

Entry MAIN #define ENT_MAIN 0x00000000L

Entry CLEAR_A #define ENT_CLEAR_A 0x00000018L

Entry INC_A #define ENT_INC_A 0x00000040L

PROC MAIN: ULONG MAIN[] = {

call CLEAR_A 0x88080000L, 0x00000018L,

call INC_A 0x88080000L, 0x00000040L,

call INC_A 0x88080000L, 0x00000040L,

};

PROC CLEAR_A: ULONG CLEAR_A[] = {

move SCRATCHA0 & 00 to SCRATCHA0 0x7C340000L, 0x00000000L,

move SCRATCHA1 & 00 to SCRATCHA1 0x7C350000L, 0x00000000L,

move SCRATCHA2 & 00 to SCRATCHA2 0x7C360000L, 0x00000000L,

move SCRATCHA3 & 00 to SCRATCHA3 0x7C370000L, 0x00000000L,

return; 0x90080000L, 0x00000000L

INC_A:

move SCRATCHA0 + 1 to SCRATCHA0 0x7E340100L, 0x00000000L,

return, if NOT Carry; 0x90200000L, 0x00000000L,

move SCRATCHA1 + 1 to SCRATCHA1 0x7E350100L, 0x00000000L,

return, if NOT Carry; 0x90200000L, 0x00000000L,

move SCRATCHA2 + 1 to SCRATCHA2 0x7E360100L, 0x00000000L,

return, if NOT Carry; 0x90200000L, 0x00000000L,

move SCRATCHA3 + 1 to SCRATCHA3 0x7E370100L, 0x00000000L,

return; 0x90080000L, 0x00000000L

};
NASM Output File Examples 5-5

#define Ext_count count

Where count is defined as number of external variables. Second is a
character array of all external names used:

char *External_Names[Ext_Count] = {
“dsa_storage”,
“in_offset”,
“out_offset”
};

Third is a list of External Contents Records:

#define E_name offset

Where name is the name of the variable and offset is defined as the
byte offset from the beginning of the data area. It is always zero for
externals.

Following this is an array of unsigned longs named by appending
“_Used” to the variable name. This array is a list of Dword offsets from
the beginning of the SCRIPTS array where the variable is used and
should be patched.

#define E_name_Used offset

The last two sections (External Contents Record and Offset Array) of the
External record are repeated for every External defined in the SCRIPT.

The output depends on which command line switches are selected. If the
-o compiler option is used then all items mentioned above are included
in the output file. If the -p (partial ‘C’ output) option is used then the
External Header Record and Character Array are omitted from the output
file. An example of the output generated using each compiler option is
listed below.

Example using -o assembler option:

#define Ext_Count 2
char *External_Names[Ext_Count] = {

“ex_buf2”,
“ex_buf1”

};
#define E_ex_buf1 0x00000000L
ULONG E_ex_buf1_Used[] = {

0x0000000FL,
5-6 The NASM Output File

0x00000011L
};

Using -p assembler option:

ULONG E_ex_buf1_Used[] = {
0x0000000FL,
0x00000011L

};

5.2.3 Relative

The Relative section contains the relative buffer records, if any were
declared. The first part is the Relative Header Record, which contains:

#define Rel_Count count

Where count is a total count of all the uses of all the Relative buffers in
the SCRIPTS program. For example, in the SCRIPTS example above,
rel_buf1 and rel_buf2 are each used once so Rel_Count is #defined to
2, indicating that there were two uses of Relative buffers in the SCRIPTS
code.

The second part of the Relative record is the Relative Patch Array which
contains:

ULONG Rel_Patches[Rel_Count] = {
Rel_Offset1,
Rel_Offset2,
Rel_Offset3,
.
.
Rel_Offsetn

};

Where Rel_Offsetn is an offset into the SCRIPTS array where a
Relative buffer is used. This array, along with the Relative Header
Record, can be used to patch all Relative buffers in a SCRIPTS program.
Please see the subsection entitled “Patching,” on page 7-7 for more
information.

The third part of the Relative record is the Relative Buffer Record, which
contains:

#define R_name offset
NASM Output File Examples 5-7

Where name is the name of the Relative buffer, for example rel_buf1,
and offset is the relative offset of this buffer from the beginning of the
entire Relative buffer. For example, in the above SCRIPTS example
rel_buf2 has an offset of 0x00000001L, indicating that it starts one byte
from the beginning of the Relative buffer.

The final part of the Relative record is the offset array which lists the
Dword offsets in the SCRIPTS array where each individual relative buffer
is used. It is the same as the offset array used for External buffers,
except that the array names are of the format R_name_Used where name
is the name of the individual relative buffer.

#define R_name_Used offset

The last two sections of the Relative record, Relative Buffer Record and
Offset Array, are repeated for every Relative defined in the SCRIPTS
program.

Command line switches also effect Relative. Using the -o compiler option
includes all items mentioned above in the output file. Using the -p, partial
‘C’ output option, omits the Relative Header Record and Relative Patch
Array from the output file. An example of the output generated using
each compiler option is listed below.

Example using -o assembler option:

#define Rel_Count 2
ULONG Rel_Patches[Rel_Count] = {

0x00000007L,
0x00000005L

};
#define R_rel_buf1 0x00000000L
ULONG R_rel_buf1_Used[] = {

0x00000005L
};

#define R_rel_buf2 0x00000001L
ULONG R_rel_buf2_Used[] = {

0x00000007L
};

Using -p assembler option:

#define R_rel_buf1 0x00000000L
ULONG R_rel_buf1_Used[] = {

0x00000005L
5-8 The NASM Output File

};
#define R_rel_buf2 0x00000001L
ULONG R_rel_buf2_Used[] = {

0x00000007L
};

5.2.4 Entry

The ENTRY section contains the entry records, if any were declared. An
entry record is a #define of the entry name prefixed with Ent_, defined
to be a byte offset into the SCRIPTS array.

Example:

Using -o or -p assembler option:

#define Ent_Send_CMD 0x00000018L
#define Ent_Send_DATA 0x00000020L
#define Ent_Start 0x00000000L

The labels defined as entries are the only ones available to the driver
code. The “C” code examples in Figure 5.1 are examples of how the
driver uses this information to start SCRIPTS routines at any location
defined as an entry. The ENTRY section is not affected by NASM
command line options.

5.2.5 Label Patches

The Label Patches section contains the label patch records. A label
patch record is an array of locations that are referred to by an absolute
Transfer Control instruction. These locations are the Dword offsets into
the SCRIPTS array. The offsets patch in the physical addresses at run
time. Please see the section on patching SCRIPTS in Chapter 7,
“Integrating SCRIPTS Programs into “C” Language Drivers,” for more
information on how to patch absolute jump instructions. The Label
Patches section is not affected by NASM command line options.

Example:

Using -o or -p assembler option:

ULONG LABELPATCHES[] = {
0x00000019L

};
NASM Output File Examples 5-9

5.2.6 Absolute

The Absolute section contains the Absolute records, if any were
declared. First is the Absolute Header Record, which contains:

#define Abs_Count count

Where count is the number of Absolutes defined in the SCRIPTS
program.

The second section is the Character Array of all Absolute names used,
it contains:

char *Absolute_Names[Abs_Count] = {
Abs_String1,
Abs_String2,
.
.
Abs_Stringn

};

Where Abs_Stringn is the name of the Absolute being defined.

Third is the Absolute Value Definition, which contains:

#define A_name value

Where name is the name of the Absolute and value is the value assigned
to this Absolute in the SCRIPTS program.

The final part of the Absolute record is the Offset Array, which lists the
offsets in the SCRIPTS array where each Absolute is used. It is the same
as the offset array used for External buffers, except that the array names
are of the format A_name_Used where name is the name of the Absolute.

The last two sections of the Absolute record, Absolute Value Definition
and Offset Array, are repeated for every Absolute defined in the
SCRIPTS program.

Command line switches also effect the output of absolute. Using the -o
compiler option includes all items mentioned above in the output file.
Using the -p option omits the Offset Array from the output file. An
example of the output generated using each compiler option is listed
below.
5-10 The NASM Output File

Example using -o assembler option:

#define Abs_Count 4
char *Absolute_Names[Abs_Count] = {

“Command_Complete”,
“Got_Selected”,
“Not_Msg_Out”,
“Select_ID”

};
#define A_Command_Complete 0x00000001L
ULONG A_Command_Complete_Used[] = {

0x0000001DL
};
#define A_Select_ID 0x00000002L
ULONG A_Select_ID_Used[] = {

0x00000000L
};

#define A_Not_Msg_Out 0x00000011L
ULONG A_Not_Msg_Out_Used[] = {

0x00000003L
};
#define A_Got_Selected 0x000000A5L
ULONG A_Got_Selected_Used[] = {

0x0000001BL
};

Using -p assembler option:

#define A_Command_Complete 0x00000001L
#define A_Select_ID 0x00000002L
#define A_Not_Msg_Out 0x00000011L
#define A_Got_Selected 0x000000A5L

5.2.7 Termination Record

The module termination record declares two variables, INSTRUCTIONS
and PATCHES. INSTRUCTIONS is assigned the number of instructions
found in the SCRIPTS program, and PATCHES is assigned the number
of label patches. Using the -o compiler option includes all items
mentioned above in the output file. Using the -p option omits the Patches
variable from the output file. The -u option, exclude module termination
record, omits both variables from the output file. An example of the
output generated using each compiler option is listed below.

Example using -o assembler option:

ULONG INSTRUCTIONS = 0x0000000EL;
NASM Output File Examples 5-11

ULONG PATCHES = 0x00000000L;

Using -p assembler option:

ULONG INSTRUCTIONS = 0x0000000EL;
5-12 The NASM Output File

Chapter 6
Using the Registers to
Control Chip
Operations
This chapter contains the following sections:

• Section 6.1, “Overview,” page 6-1

• Section 6.2, “SCSI Registers,” page 6-2

• Section 6.3, “DMA Registers,” page 6-4

• Section 6.4, “SCRIPTS Registers,” page 6-5

• Section 6.5, “64-Bit SCRIPTS Selector Registers,” page 6-6

• Section 6.6, “Interrupt Registers,” page 6-7

• Section 6.7, “Phase Mismatch Registers,” page 6-8

• Section 6.8, “Test and Miscellaneous Registers,” page 6-9

• Section 6.9, “General Purpose Registers,” page 6-11

• Section 6.10, “Register Initialization,” page 6-11

6.1 Overview

The SCRIPTS processor is initialized by setting and clearing bits in the
operating registers. This chapter lists the various registers used by the
LSI53C7XX/8XX/10XX family chips, grouped by function. The register
descriptions provide an overview of the aspects of chip operation that are
controlled in each register. The SCRIPTS processor also has a set of
PCI Configuration registers, but they are not described in this document
since they are initialized by the system, not by the SCSI driver program.
Full definitions of these registers, as well as the individual bits in the
operating registers, can be found in the chip technical manuals.
SCSI SCRIPTS Processors 6-1

6.2 SCSI Registers

Table 6.1 lists the SCSI registers. The SCSI registers are used for the
following functions:

• Performing SCSI operations by low level, register-oriented
programming.

• Obtaining data for debugging, such as checking the signal status of
the SBCL (SCSI Bus Control Lines) and SBDL (SCSI Bus Data
Lines) registers to determine exactly what is on the SCSI bus at the
time the registers are read.

• Obtaining SCSI interrupt status, which is contained in the SIST0
(SCSI Interrupt Status 0), and SIST1 (SCSI Interrupt Status 1)
registers.

• Initialization of the SCSI interface, for example, parity generation and
checking on the SCSI bus.

• Enabling or masking SCSI interrupts in the SIEN (SCSI Interrupt
Enable) registers.

Table 6.1 SCSI Registers

Name Definition Functions

SWIDE1 SCSI Wide Residue Data Contains a residual data byte that was never sent
across the DMA bus after wide SCSI operation.

AIPCNTL(0, 1)2 Arbitration in Progress Control These registers control and reflect the status of
arbitration in process sequence, values, and errors.

ISTAT13 Interrupt Status 1 Flushing the DMA FIFO; SCRIPTS engine
operating; IRQ pin disable.

MBOX (0, 1)3 Mailbox General purpose registers.

RESPID0 Response ID 0 Contains IDs the chip will respond to when it is
selected or reselected.

RESPID11 Response ID 1 Contains IDs the chip will respond to when it is
selected or reselected.

SBCL SCSI Bus Control Lines Used to return SCSI control line status.

SBDL SCSI Bus Data Lines Contains SCSI data bus status.
6-2 Using the Registers to Control Chip Operations

SCID SCSI Chip ID Enable response to selection/reselection, set SCSI
ID for chip.

SCNTL0 SCSI Control 0 Arbitration Mode bits; enable parity checking.

SCNTL1 SCSI Control 1 Add an extra clock cycle of setup to each SCSI
data transfer; disable halt on parity error;
Connected bit; parity bits; Immediate Arbitration bit.

SCNTL2 SCSI Control 2 Wide SCSI control bits, vendor unique
enhancements; DIFFSENS mismatch indicator
(LSI53C895 only).

SCNTL3 SCSI Control 3 Clock conversion factor bits, enable wide SCSI,
enable Ultra SCSI or Ultra2 SCSI.

SCNTL42 SCSI Control 4 This register is used during Table Indirect Select or
Reselect SCRIPTS instructions.

SDID SCSI Destination ID Encoded destination SCSI ID.

SFBR SCSI First Byte Received Contains the first byte received in any
asynchronous information transfer phase.

SIDL SCSI Input Data Latch Contains latched data from the SCSI bus.

SIEN0 SCSI Interrupt Enable 0 Interrupt mask bits for phase mismatch, SATN/,
function complete, selection/reselection, gross
error, unexpected disconnect, SCSI reset, parity
error.

SIEN1 SCSI Interrupt Enable 1 Interrupt mask bits for selection/reselection
time out, general purpose time-out, handshake-to-
handshake time-out.

SLPAR SCSI Longitudinal Parity Performs a bytewise longitudinal parity check on all
SCSI data.

SOCL SCSI Output Control Latch Testing SCSI control lines.

SODL SCSI Output Data Latch Data flows through this register when sending data
in any mode.

SSID SCSI Selector ID The ID of the device that selected or reselected the
chip.

SSTAT0 SCSI Status 0 SIDL, SODR, SODL least significant byte full;
arbitration reporting bits; status of RST/ and SDP0/
signals.

Table 6.1 SCSI Registers (Cont.)

Name Definition Functions
SCSI Registers 6-3

6.3 DMA Registers

Table 6.2 lists the DMA registers. The DMA registers are used for the
following functions:

• Setting up the host interface.

SSTAT1 SCSI Status 1 FIFO flags; latched SCSI parity signal; latched
SCSI phase status bits.

SSTAT2 SCSI Status 2 Reports SIDL, SODR, SODL most significant byte
full; parity detection, disconnect detection.

STEST0 SCSI Test 0 These bits are used for low level operation and
manufacturing testing, SCSI selected as ID.

STEST1 SCSI Test 1 Disable the external SCLK pin and use the PCI
clock as the internal SCSI clock; enable the SCSI
Clock doubler (LSI53C825A/875/876/885 only) or
SCSI clock quadupler (LSI53C895/896/10XX only).

STEST2 SCSI Test 2 Clear synchronous offset; Enable Differential Mode;
wide SCSI; extend SREQ/–SACK/ filtering; Low
Level Mode enable.

STEST3 SCSI Test 3 Active negation enable; SCSI FIFO test read/write;
Halt SCSI clock; Clear SCSI FIFO.

STEST44 SCSI Test 4 Contains DIFFSENS pin values that indicate the
type of SCSI device connected to the bus;
frequency lock bit for clock quadrupler.

STIME0 SCSI Timer 0 Selects the handshake-to-handshake time-out
period.

STIME1 SCSI Timer 1 Selects the general purpose time-out period.

SXFER SCSI Transfer Define synchronous transfer period and
synchronous offset.

1. Wide SCSI products only.
2. LSI53C10XX only.
3. LSI53C895 and later.
4. LSI53C895A and later only.

Table 6.1 SCSI Registers (Cont.)

Name Definition Functions
6-4 Using the Registers to Control Chip Operations

• Obtaining DMA interrupt status information contained in the DMA
Status (DSTAT) register.

• Obtaining DMA FIFO information, such as the number of bytes it
contains.

• Enabling or masking DMA interrupts with the DMA Interrupt Enable
(DIEN) registers.

6.4 SCRIPTS Registers

The SCRIPTS registers hold the SCRIPTS instruction information which
is fetched from host memory at run time by the SCRIPTS processor.
MBOX registers are also used as SCRIPTS registers. The SCRIPTS

Table 6.2 DMA Registers

Name Definition Functions

DBC DMA Byte Counter Determines the number of bytes to be transferred in a Block Move
instruction.

DCMD DMA Command Identifies the instruction that the chip will execute.

DCNTL DMA Control Enables the Single Step Mode; LSI53C700 compatibility bit; enables
the PCI Cache Line Size register; enables instruction prefetching.

DFIFO DMA FIFO May be used to determine the number of bytes in the DMA FIFO
when an interrupt occurs, when used in conjunction with DBC.

DIEN DMA Interrupt
Enable

Contains interrupt mask bits corresponding to master data parity
error, bus fault, aborted, single step interrupt, SCRIPT interrupt
instruction received, illegal instruction detected

DMODE DMA Mode Defines burst length; near or far memory access; enables PCI read
line command; Manual Start Mode bit to prevent automatic execution
of SCRIPTS.

DNAD DMA Next Address Contains the general purpose address pointer.

DSP DMA SCRIPTS
Pointer

Contains the address of the next SCRIPTS instruction to be fetched.
Placing an address in this register starts SCRIPTS.

DSPS DMA SCRIPTS
Pointer Save

Contains the second Dword of a SCRIPTS instruction.

TEMP Temporary
Register

Stores pointer to the next SCRIPTS instruction to be executed when
returning from a subroutine.
SCRIPTS Registers 6-5

registers are listed in Table 6.3. They are described in Section 6.6,
“Interrupt Registers.”

6.5 64-Bit SCRIPTS Selector Registers

Table 6.4 lists the 64-bit Selector registers. The 64-bit Selector registers
reflect/control various aspects of 64-bit operation.

Table 6.3 SCRIPTS Registers

Name Definition Functions

DBC DMA Byte Counter Determines the number of bytes to be transferred in a Block
Move instruction.

DCMD DMA Command Identifies the instruction that the SCRIPTS processor will
execute.

DNAD DMA Next Address Contains the general purpose address pointer.

DSA Data Structure Address Contains base address used for all table indirect calculations.

DSP DMA SCRIPTS Pointer Contains the address of the next SCRIPTS instruction to be
fetched; placing an address in this register starts SCRIPTS.

DSPS DMA SCRIPTS Pointer Save Contains the second Dword of a SCRIPTS instruction.

Table 6.4 64-Bit Selector Registers

Name Definition Functions

CCNTL01 Chip Control 0 Various JUMP control functions, Disable Auto-FIFO Clear, Disable
Internal Load/Store (LSI53C89X only), Disable Internal SCRIPTS RAM
Cycles (LSI53C10XX only), Disable Pipe Request

CCNTL11 Chip Control 1 Disable DAC, 64-bit Table Indirect Indexing Mode, Enable 64-bit Table
Indirect BMOV, Enable 64-bit Direct BMOV
LSI53C89X only: High Impedance Mode
LSI53C10XX only: Pull Enable, Pull Disable, Disable 64-bit Master
Operation, Disable 64-bit Slave Cycles

CCNTL22 Chip Control 2 Reserved
6-6 Using the Registers to Control Chip Operations

6.6 Interrupt Registers

Table 6.5 lists the Interrupt registers. Interrupt registers contain interrupt
status information. The DSTAT contains the DMA interrupt status
information. The SIST0 and SIST1 contain SCSI interrupt status bits. The
remaining registers contain interrupt enable bits. The ISTAT register can
be polled for interrupts. It is the only register that can be accessed while
SCRIPTS is running. Refer to Chapter 9, “SCRIPTS Programming
Topics,” for more information on handling interrupts.

CCNTL32 Chip Control 3 Skew Control, LVD Drive Strength Control.

MMRS1 Memory Move
Read Selector

Supplies AD[63:32] during data read operations for Memory-to-Memory
Move and absolute address LOAD operations.

MMWS1 Memory Move
Write Selector

Supplies AD[63:32] during data write operations during Memory-to-
Memory Moves and absolute address STORE operations.

1. LSI53C895 and later only.
2. LSI53C10XX only.

Table 6.4 64-Bit Selector Registers (Cont.)

Name Definition Functions

Table 6.5 Interrupt Registers

Name Definition Functions

CSO1 Current Inbound SCSI
Offset

Indicates current SCSI offset.

DIEN DMA Interrupt Enable Contains interrupt mask bits corresponding to master data
parity error, bus fault, aborted operation, single step
interrupt, SCRIPTS interrupt instruction received, illegal
instruction detected.

DSTAT DMA Status Reports sources of DMA interrupts: DMA FIFO empty,
Master data parity error, bus fault, aborted, single step
interrupt, SCRIPTS interrupt instruction received, illegal
instruction detected.

ISTAT2 Interrupt Status Interrupt polling; determines whether a SCSI or DMA
interrupt has occurred; checks for stacked interrupts; aborts
an operation; software reset; signal process bit; semaphore
bit; interrupt on the fly bit; indicate SCSI interrupt pending
(LSI53C885 only).
Interrupt Registers 6-7

6.7 Phase Mismatch Registers

The Phase Mismatch registers contain information generated during
BMOV instructions, particularly those executing during a phase
mismatch. The Phase Mismatch registers are listed in Table 6.6. Unless
otherwise noted, these registers are only on LSI53C895 and later chips.

ISTAT03 Interrupt Status 0 Abort operation; software reset; semaphore bit; signal
process bit; determines whether a SCSI or DMA interrupt is
pending; SCSI connection.

ISTAT13 Interrupt Status 1 Flushing the DMA FIFO; SCRIPTS engine operating; IRQ
pin disable.

MBOX (0, 1)3 Mailbox General purpose registers.

SIEN0 SCSI Interrupt Enable 0 Interrupt mask bits for phase mismatch, SATN/, function
complete, selection/reselection, gross error, unexpected
disconnect, SCSI reset, parity error.

SIEN1 SCSI Interrupt Enable 1 Interrupt mask bits for selection/reselection time-out, general
purpose time-out, handshake-to-handshake time-out;
wakeup (LSI53C885 only); SCSI bus mode change
(LSI53C895/896/10XX only).

SIST0 SCSI Interrupt Status 0 Returns the status of the following interrupt conditions:
phase mismatch (SATN/ active), function complete,
selection/reselection, SCSI gross error, unexpected
disconnect, SCSI RST/ received, parity error.

SIST1 SCSI Interrupt Status 1 Returns the status of the following interrupt conditions:
selection/reselection time-out, general purpose timer
expired, handshake-to-handshake timer expired; wakeup
(LSI53C885 only).

1. LSI53C10XX only
2. Up to LSI53C895 only.
3. LSI53C895A and later only.

Table 6.5 Interrupt Registers (Cont.)

Name Definition Functions
6-8 Using the Registers to Control Chip Operations

6.8 Test and Miscellaneous Registers

The test registers are used to test the DMA and SCSI FIFOs and perform
other miscellaneous functions. The test registers are listed in Table 6.7.
Test registers can be used to decrement the byte count or increment the
address count in the FIFOs.

Table 6.6 Phase Mismatch Registers

Name Definition Functions

CCNTL0 Chip Control 0 Various JUMP control functions, Disable Auto-FIFO Clear,
Disable Internal Load/Store (LSI53C89X only), Disable Internal
SCRIPTS RAM Cycles, Disable Pipe Request (LSI53C10XX
only).

CSBC Cumulative SCSI
Byte Count

Cumulative byte count of data transferred across the SCSI bus
during data phases.

ESA Entry Storage
Address

Contains BMOV instruction address information.

IA Instruction Address Contains the address of the BMOV instruction that was
executing at the time of a phase mismatch.

PMJAD (1, 2)1

1. LSI53C10XX only.

Phase Mismatch
Jump Address

Contains the address that will be jumped to in the case of a
phase mismatch. PMJAD is outbound, PMJAD2 is inbound.

RBC Remaining Byte
Count

Byte count that remains for the BMOV instruction that was
executing at the time of a phase mismatch.

SBC SCSI Byte Count Number of bytes transferred to or from the SCSI bus during any
given BMOV.

UA Updated Address Contains the updated data address of the BMOV that was
executing at the time of a phase mismatch.
Test and Miscellaneous Registers 6-9

Table 6.7 Test and Miscellaneous Registers

Name Definition Functions

ADDER Adder Sum Output Contains output of internal adder.

CCNTL01 Chip Control 0 Various JUMP control functions, Disable Auto FIFO Clear, Disable
Internal Load/Store (LSI53C89X only), Disable Internal SCRIPTS
RAM Cycles (LSI53C10XX only), Disable Pipe Request

CCNTL11 Chip Control 1 Disable DAC, 64-Bit Table Indirect Indexing Mode, Enable 64-Bit
Table Indirect BMOV, Enable 64-Bit Direct BMOV
LSI53C89X only: High Impedance Mode
LSI53C10XX only: Pull Enable, Pull Disable, Disable 64-Bit Master
Operation, Disable 64-Bit Slave Cycles.

CCNTL22 Chip Control 2 Reserved.

CCNTL32 Chip Control 3 Skew Control, LVD Drive Strength Control.

CTEST0 Chip Test 0 Used to enable power management modes in the LSI53C885.

CTEST1 Chip Test 1 DMA FIFO bits full or empty.

CTEST2 Chip Test 2 Data transfer direction; I/O or memory configuration;
request/acknowledge status.

CTEST3 Chip Test 3 Revision level bits, flush/clear DMA FIFO.

CTEST4 Chip Test 4 Burst disable; master parity error enable; DMA FIFO byte control.

CTEST5 Chip Test 5 Clock address incrementor; clock byte counter; DMA direction;
control of set or reset pulses.

CTEST6 Chip Test 6 Writes data to the DMA FIFO.

1. LSI53C895 and later only.
2. LSI53C10XX only.
6-10 Using the Registers to Control Chip Operations

6.9 General Purpose Registers

Table 6.8 describes SCRIPTS processor general purpose registers.

6.10 Register Initialization

The startup register values are determined by a “C” program, written by
the software developer, that can be loaded automatically by the device
driver. The appropriate startup values for the register bits depend on the
design of the individual system. Therefore, a single startup algorithm will
not support every application. The hardware default values for each bit
are provided in the appropriate chip technical manuals.

Table 6.9 and Table 6.10 list the register bits you should consider when
writing a startup program for a specific system. The startup program
does not have to initialize all bits in the chip if the default values are
acceptable. However, the bits in these lists affect features that should be
enabled or disabled and other decisions that should be made when
initializing the chip. For complete register and bit descriptions, refer to
your chip technical manual. In addition, Chapter 2, “Programming with

Table 6.8 General Purpose Registers

Name Definition

CTEST0 Chip Test 0

DWT/SBR DMA Watchdog Timer/Scratch Byte Register

GPCNTL General Purpose Control

GPREG General Purpose

MACNTL Memory Access Control

SCRATCHA General Purpose Scratchpad A

SCRATCHB General Purpose Scratchpad B

SCRATCHC–J1

1. LSI53C825A/875/876/885 only.

General Purpose Scratchpad C–J

SCRATCHC–R2

2. LSI53C895/895A/896/1000/1010/1010R/1000R only.

General Purpose Scratchpad C–R
General Purpose Registers 6-11

SCRIPTS,” contains a section on the bits and registers that affect parity
checking and generation. All reserved bits should be left cleared by the
startup program.

Table 6.9 LSI53C815/810A/860 Startup Bits

Register
Address

Register
Name Bits Remarks

0x00 SCNTL0 [7:6], 3, [1:0] Bits [7:6]: Arbitration Mode
Bit 3: Enable Parity Checking
Bit 1: Assert SATN/ on Parity Error
Bit 0: Target Mode. Bit 0 can be set either at initialization or
during SCRIPTS operation. Set it at startup if the chip
operates as a target only. If it switches between Target and
Initiator Modes, use SCRIPTS to control this bit.

0x01 SCNTL1 7, 5 Bit 7: Extra Clock Cycle of Data Setup
Bit 5: Disable Halt on Parity Error or SATN/ (for Target Mode
only)

0x03 SCNTL3 7, [6:4], [2:0] Bit 7: Ultra Enable (LSI53C860 only)
Bits [6:4]: Synchronous Clock Conversion Factor
Bits [2:0]: Clock Conversion Factor

0x04 SCID 6, 5, [2:0] Bit 6: Enable Response to Reselection
Bit 5: Enable Response to Selection
Bits [2:0]: Encoded Chip SCSI ID

0x05 SXFER [7:5], [3:0] Since the default operation for SCSI is asynchronous transfers,
these bits should probably not be set until synchronous
parameters are established between the initiator and target.
Bits [7:5]: Synchronous Transfer Period
Bits [3:0]: Max SCSI Synchronous Offset

0x10–
0x13

DSA all Must be initialized to use Table Indirect Mode.

0x1B CTEST3 1, 0 Bit 1: Fetch Pin Mode
Bit 0: Write and Invalidate Enable (LSI53C810A/860 only)

0x21 CTEST4 7, 3 Bit 7: Burst Disable
Bit 3: Master Parity Error Enable

0x2C–
0x2F

DSP all At the end of the initialization program, write the address of the
first SCRIPTS instruction to this register to begin SCRIPTS
execution.
6-12 Using the Registers to Control Chip Operations

0x38 DMODE [7:6], 5, 4, 3, 2 Bits [7:6]: Burst Length
Bit 5: Source I/O-Memory Enable
Bit 4: Destination I/O-Memory Enable
Bit 3: Enable Read Line
Bit 2: Enable Read Multiple (LSI53C810A/860 only)

0x39 DIEN 6, 5, 4, 3, 2, 0 Bit 6: Master Data Parity Error
Bit 5: Bus Fault
Bit 4: Aborted
Bit 3: Single Step Interrupt
Bit 2: SCRIPTS Interrupt Instruction Received
Bit 0: Illegal Instruction Detected

0x3B DCNTL 7, 5, 4, 3, 0 Bit 7: Cache Line Size Enable
Bit 5: Prefetch Enable (LSI53C810A/860 only)
Bit 4: Single Step Mode
Bit 3: IRQ Mode
Bit 0: LSI53C700 Compatibility

0x40 SIEN0 7, 6, 5, 4, 3, 2,
1, 0

Interrupt mask bits for:
Bit 7: Phase Mismatch or SATN/
Bit 6: Function Complete
Bit 5: Selected
Bit 4: Reselected
Bit 3: SCSI Gross Error
Bit 2: Unexpected Disconnect
Bit 1: SCSI Reset Condition
Bit 0: SCSI Parity Error

0x41 SIEN1 2, 1, 0 Interrupt mask bits for:
Bit 2: Selection or Reselection Time-out
Bit 1: General Purpose Timer Expired
Bit 0: Handshake-to-Handshake Timer Expired

0x46 MACNTL 3, 2, 1, 0 Initialize these when using the MAC_TESTOUT pin. These bits
determine local or far access for the following operations:
Bit 3: Data write
Bit 2: Data read
Bit 1: SCRIPTS pointers
Bit 0: SCRIPTS fetches

0x48 STIME0 [7:4], [3:0] Bits [7:4]: Handshake-to-Handshake Timer Period
Bits [3:0]: Selection Time-out

0x49 STIME1 3–0 Bits [3:0]: General Purpose Timer Period

0x4A RESPID all N/A

Table 6.9 LSI53C815/810A/860 Startup Bits (Cont.)

Register
Address

Register
Name Bits Remarks
Register Initialization 6-13

0x4D STEST1 7 Bit 7: SCLK

0x4E STEST2 1 Bit 1: Extend SREQ/SACK Filtering

0x4F STEST3 7 Bit 7: TolerANT Enable

Table 6.10 LSI53C825A/875/876/885/895/895A/896/10XX Startup Bits

Register
Address

Register
Name Bits Remarks

0x00 SCNTL0 [7:6], 3, 1, 0 Bits [7:6]: Arbitration Mode
Bit 3: Enable Parity Checking
Bit 1: Assert SATN/ on Parity Error
Bit 0: Target Mode. Bit 0 can be set either at initialization or
during SCRIPTS operation. Set it at startup if the chip
operates as a target only. If it switches between Target and
Initiator Modes, use SCRIPTS to control this bit.

0x01 SCNTL1 7, 5 Bit 7: Extra Clock Cycle of Data Setup
Bit 5: Disable Halt on Parity Error or SATN/ (for Target Mode
only)

0x03 SCNTL3 7, [6:4], [2:0] Bit 7: Ultra Enable (LSI53C875/876/885/895 only)
Bits [6:4]: Synchronous Clock Conversion Factor
Bits [2:0]: Clock Conversion Factor

0x04 SCID 6, 5, 3, [2:0] Bit 6: Enable Response to Reselection
Bit 5: Enable Response to Selection
Bit 3: Enable Wide SCSI
Bits [2:0]: Encoded Chip SCSI ID

0x05 SXFER 7–5, 3–0 Since the default operation for SCSI is asynchronous
transfers, these bits should not be set until synchronous
parameters are established between the initiator and target.
Bits 7–5: Synchronous Transfer Period
Bits 3–0: Max SCSI Synchronous Offset

0x10–
0x13

DSA all Must be initialized to use Table Indirect Mode.

0x1B CTEST3 1, 0 Bit 1: Fetch Pin Mode
Bit 0: Write and Invalidate Enable

Table 6.9 LSI53C815/810A/860 Startup Bits (Cont.)

Register
Address

Register
Name Bits Remarks
6-14 Using the Registers to Control Chip Operations

0x21 CTEST4 7, 3 Bit 7: Burst Disable
Bit 3: Master Parity Error Enable

0x22 CTEST2 3 SCRATCHA/B operation (when SCRIPTS RAM is enabled).

0x18 CTEST0 [2:0] Set the priority level for gaining access to the PCI bus
(LSI53C885 only).

0x2C–
0x2F

DSP all At the end of the initialization program, write the address of the
first SCRIPTS instruction to this register to begin SCRIPTS
execution.

0x38 DMODE [7:6], 5, 4, 3,
2

Bits [7:6]: Burst Length
Bit 5: Source I/O-Memory Enable
Bit 4: Destination I/O-Memory Enable
Bit 3: Enable Read Line
Bit 2: Enable Read Multiple

0x39 DIEN 4, 3, 2, 0 Bit 4: Aborted
Bit 3: Single Step Interrupt
Bit 2: SCRIPTS Interrupt Instruction Received
Bit 0: Illegal Instruction Detected

0x3B DCNTL 7, 5, 4, 3, 0 Bit 7: Cache Line Size Enable
Bit 5: Prefetch Enable
Bit 4: Single Step Mode
Bit 3: IRQ Mode
Bit 0: LSI53C700 Compatibility

0x40 SIEN0 7, 6, 5, 4, 3,
2, 1, 0

Interrupt mask bits for:
Bit 7: Phase Mismatch or SATN/
Bit 6: Function Complete
Bit 5: Selected
Bit 4: Reselected
Bit 3: SCSI Gross Error
Bit 2: Unexpected Disconnect
Bit 1: SCSI Reset Condition
Bit 0: SCSI Parity Error

0x41 SIEN1 4, 2, 1, 0 Interrupt mask bits for:
Bit 4: SCSI Bus Mode Change (LSI53C895 only)
Bit 2: Selection or Reselection Time-out
Bit 1: General Purpose Timer Expired
Bit 0: Handshake-to-Handshake Timer Expired

Table 6.10 LSI53C825A/875/876/885/895/895A/896/10XX Startup Bits (Cont.)

Register
Address

Register
Name Bits Remarks
Register Initialization 6-15

0x46 MACNTL 3, 2, 1, 0 Initialize these when using the MAC_TESTOUT pin. These bits
determine local or remote access for the following operations:
Bit 3: Data write
Bit 2: Data read
Bit 1: SCRIPTS pointers
Bit 0: SCRIPTS fetch

0x48 STIME0 [7:4], [3:0] Bits [7:4]: Handshake-to-Handshake Timer Period
Bits [3:0]: Selection Time-Out

0x49 STIME1 [3:0] Bits [3:0]: General Purpose Timer Period

0x4A RESPID0 all N/A

0x4B RESPID1 all N/A

0x4D STEST1 7, [3:2] Bit 7: SCLK
Bits [3:2]: SCSI Clock Doubler 1–0 (LSI53C875 only)

0x4E STEST2 5, 1 Bit 5: SCSI Differential Mode
Bit 1: Extend REQ/ACK Filtering

0x4F STEST3 7 Bit 7: TolerANT Enable

0xBC SCNTL4 7 Bit 7: Ultra3 Transfer Enable

Table 6.10 LSI53C825A/875/876/885/895/895A/896/10XX Startup Bits (Cont.)

Register
Address

Register
Name Bits Remarks
6-16 Using the Registers to Control Chip Operations

Chapter 7
Integrating SCRIPTS
Programs into “C”
Language Drivers
This chapter demonstrates how assembled SCRIPTS programs are
included in SCSI device drivers written in “C” language. This chapter
contains the following sections:

• Section 7.1, “Initializing the SCRIPTS Processor,” page 7-1

• Section 7.2, “Patching,” page 7-7

• Section 7.3, “Running a SCRIPTS Program,” page 7-12

7.1 Initializing the SCRIPTS Processor

The “C” code in Figure 7.1 is an example that shows how the SCRIPTS
processor accesses the operating registers at initialization. The
processor can be memory-mapped, I/O-mapped, or mapped using both
methods. The example functions in this section access I/O mapped
registers.

Figure 7.1 Accessing I/O Mapped Registers

/**
Function: IORead8

Purpose: To read a byte from an io port
Input: IO address of byte to be read
Output: byte read from IO port
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as

a ULONG it must not exceed 16 bits
in length as this is the maximum
IO address the X86 architecture can produce

Other functions called: inportb to read the io port
**/
UBYTE IORead8(ULONG IO_Addr)
{

return (inportb((UINT) IO_Addr));
SCSI SCRIPTS Processors 7-1

}
/**
Function: IOWrite8

Purpose: To write a byte out to an IO port
Input: Value to be written and IO port address
Output: None
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as a

ULONG it must not exceed 16 bits
in length as this is the maximum IO
address the X86 architecture can produce

Other functions called: outportb to write to the io port
**/
void IOWrite8(ULONG IO_Addr, UBYTE value)
{

outportb((UINT) IO_Addr, value);
}
/**
Function: IORead32

Purpose: To read a dword (32 bits) from an io port
Input: IO address of dword to be read
Output: dword read from io port
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as a

ULONG it must not exceed 16 bits in
length as this is the maximum IO
address the X86 architecture can produce

Other functions called: none
**/
ULONG IORead32(ULONG IO_Addr)
{

ULONG result;
asm
{

.386
mov dx, [IO_Addr]
in eax, dx
mov [result], eax

}
return(result);

}
/**
Function: IOWrite32

Purpose: To write a dword (32 bits) out to an IO port
Input: Value to be written and IO port address
Output: None
Assumptions: That the IO port actually exists
Restrictions: Although IO_Addr is defined as a
7-2 Integrating SCRIPTS Programs into “C” Language Drivers

ULONG it must not exceed 16 bits in
length as this is the maximum IO
address the X86 architecture can produce

Other functions called: none
**/
void IOWrite32(ULONG IO_Addr, ULONG value)
{

asm
{

.386
mov dx, [IO_Addr]
mov eax, [value]
out dx, eax

}
}

7.1.1 Reset

Figure 7.2 shows how to reset the SCRIPTS processor, by setting, then
clearing, the Software Reset (SRST) bit in the ISTAT register. It executes
a Read-Modify-Write for each register whose default value changes at
reset.

Figure 7.2 Resetting the SCRIPTS Processor

7.1.2 Table Indirect Operations

This section of the chapter provides an overview of table indirect
operations. More information on Table Indirect operation and on creating
a table is provided in Chapter 9, “SCRIPTS Programming Topics.”

7.1.2.1 Initializing a Table

Figure 7.3 is an example SCRIPTS table declaration. Although NASM
does not actually generate any output based on the table declaration, it
does place offsets into the SCRIPTS array based on the order of the
buffers in the table declaration. The actual byte values and byte counts
in the SCRIPTS instruction are not used at this stage because NASM
does not generate any output from the table declaration.

* sets SRST(bit 6) */
IOWrite8(ISTAT, (IORead8(ISTAT) | 0x40));/
* clears SRST(bit 6) */
IOWrite8(ISTAT, (IORead8(ISTAT) & 0xBF))/
Initializing the SCRIPTS Processor 7-3

Figure 7.3 SCRIPTS Table Declaration

7.1.2.2 Creating Table Indirect Entry Offsets

The “C” code example in Figure 7.4 sets up a table that can be used with
the table indirect addressing mode. Each entry in the table is a pair of
32-bit values. These entries reference the same buffers as the SCRIPTS
code examples above. For more illustration on the relationship between
these pieces of code, refer to Section 7.1.2, “Table Indirect Operations.”
For this SCRIPTS program to work correctly, the table must start on a
Dword boundary and the offset labels must be in the same order as in
the SCRIPTS table declaration.

Figure 7.4 Creating Table Indirect Entry Offsets

TABLE dsa_table \
sendmsg = ??, \
rcvmsg = ??, \
cmd_adr = ??, \
device = ID{??}, \
status_adr = ??, \
ext_buf = ??, \
sync_in = ??, \

data_adr = ??

/* The following definition sets up a table that can be
used with the LSI53C8XX table indirect addressing mode.
Each entry in the table is a pair of 32 bit values. For
the SCRIPTS routine to work correctly the table MUST start
on a word boundary and the offset labels must be in the
same order in the SCRIPTS table declaration. */
enum offsets {

SENDMSG = 0,
RCVMSG,
CMD_ADR,
DEVICE,
STATUS_ADR,
EXT_BUF,
SYNC_IN,
DATA_ADR, /* DATA_ADR must be last buffer.

};
7-4 Integrating SCRIPTS Programs into “C” Language Drivers

7.1.2.3 Defining the Table Structure

The code in Figure 7.5 defines a data structure with two fields, a count
and an address, which correspond to one element in the DSA table. A
type is then defined and a pointer to a variable of this type is also
defined. This pointer and the enumerated offsets defined above are used
to access specific elements of the table. This example defines the table
structure, but no space has been allocated in memory.

Figure 7.5 Data Structure and Type Definition

7.1.2.4 Declaring a Pointer to the Table

The code example below defines declaring a pointer to the table.

extern table *buffer_table;

7.1.2.5 Allocating Memory for the Table

The code in Figure 7.6 defines allocating memory for the table.

struct_table {
uquad count;
uquad address;

};
typedef struct_table table:
Initializing the SCRIPTS Processor 7-5

Figure 7.6 Data Structure and Type Definition

7.1.2.6 Using a Table

The example in Figure 7.7 creates two buffers, identify_msg and
test_unit_ready_cmd. The byte counts and addresses for these buffers
are then loaded into the CMD_ADR and SENDMSG elements of the
DSA_table array. These examples define a message and a command
buffer in the desired table and loads the bytes into the table. The
enumerated types are used in the Test Unit Ready example to index into
the table.

int init_table(void)
{

UBYTE *buf_ptr; /* temp ptr to ti tables */
/* allocate space for table */
buf_ptr = (UBYTE far *) malloc((TABLE_SIZE

sizeof(ti_entry))+ 4);
/* did we get the memory */
if (buf_ptr == NULL) return(COMMANDFAILED);

/* dword align the table buffer, ByteAlignBuffer does
this */

dsa_table = (ti_entry *) ByteAlignBuffer(buf_ptr, 0);

/* This initializes the DSA register to point to the
buffer table that was allocated above*/

IOWrite32(PCIDeviceIOBase+DSA, getPhysAddr(dsa_table));
return(GOOD);

}

7-6 Integrating SCRIPTS Programs into “C” Language Drivers

Figure 7.7 Creating Buffers

7.2 Patching

Sometimes it is necessary for the “C” code to modify some elements of
the SCRIPTS array after buffer allocation. This is called patching.
Patching is required when relative transfer control instructions or table
indirect addressing are not used. However, most applications will take
advantage of these features, so patching is not often required. When
patching is necessary, the general format of the patch in “C” is
SCRIPT[patch_offset] = patch_value;

When only part of the 32-bit value in the SCRIPTS array must be
modified, a Read-Modify-Write can be used. The format for this type of
operation is
SCRIPT[patch_offset]|= patch_value;
Any arithmetic or logical operator can be used in place of the logical OR
(|) symbol to make the desired modification.

The patch_offset is an index into the SCRIPTS array where the patch
must be made. This value is usually obtained from one of the sections
of the NASM output file. Please see Chapter 5, “The NASM Output File,”
for more information on the NASM output file and the patch offsets it
contains.

static ubyte identify_msg[] = {
0xc0

/* 0xc0 = allow disconnect, 0x80 = no disconnect */
};
static ubyte test_unit_ready_cmd[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/* drive is the destination ID for the I/O*/
DSA_table[DEVICE].count=(ULONG)drive<< 16;
DSA_table[CMD_ADR].count = sizeof(test_unit_ready_cmd);
DSA_table[CMD_ADR].address=getPhyAddr(test_unit_ready_cmd;

DSA_table[SENDMSG].count = 1;
DSA_table[SENDMSG].address = getPhysAddr(identify_msg);

DSA_table[STATUS_ADR].count = 1;
DSA_table[STATUS_ADR].address = getPhysAddr(status);
Patching 7-7

The patch_value is usually either a buffer physical address or a byte
count, but could be anything that modifies the part of the SCRIPTS
program.

The remainder of this section contains patching techniques for various
instructions and buffer types that require modification at run time. Please
note that this chapter only describes the most common types of patches.
Other types of patching can generally be used to modify any part of a
SCRIPTS instruction by using the ENTRY point patching method
described in this section.

7.2.1 EXTERN Buffers

This section of the chapter describes the procedure for setting up
EXTERN buffers.

1. Create a buffer in ‘C’ statically or dynamically if necessary as shown
in the example below.

UCHAR msgin_buf[4];

2. Patch the SCRIPT wherever this buffer is used, with the patch array
generated by NASM shown in the example below.

SCRIPT[E_ex_buf1_Used[1]] = VirttoPhys(msgin_buf);

See Chapter 5, “The NASM Output File,” for more information on the
_Used patch array.

7.2.2 RELATIVE Buffers

RELATIVE buffers are essentially the same as External buffers. The
SCRIPTS output file contains some additional information to aid in
patching the SCRIPTS instructions. The individual relative buffer offset is
encoded into the SCRIPTS instruction. There are two methods for
establishing RELATIVE buffers.

7.2.2.1 Procedure 1

1. Create a buffer to hold all the individual relative buffers.

UCHAR rel_buffer[8]

2. Patch the SCRIPTS array using the Patch array generated by NASM.

SCRIPT[R_rel_buf2_Used[0]] += VirttoPhys(rel_buffer)
7-8 Integrating SCRIPTS Programs into “C” Language Drivers

7.2.2.2 Procedure 2

1. Create a buffer to hold all the individual relative buffers.

UCHAR rel_buffer[8]

2. Patch all buffers in one loop if the main Patch array is accessed and
the Header record is used. The -o assembler option must be used
for this procedure to work.

for(i=0; i<Rel_Count; i++) {
SCRIPT[Rel_Patches[i]] += VirttoPhys(rel_buffer);
}

See Chapter 5, “The NASM Output File,” for more information on the
structures created for patching relative buffers.

7.2.3 ABSOLUTE Values

ABSOLUTE values are patched exactly like EXTERN buffers. The -o
compiler option must be used to patch Absolutes. See Section 5.2.6,
“Absolute,” for more information on ABSOLUTE values.

7.2.4 Buffer Addresses

Buffer addresses are usually patched into Block Move, Memory to
Memory, or Load/Store instructions. They are usually defined as
EXTERNS, RELATIVES, or ABSOLUTES. The general format of this
type of patch is:

SCRIPT[X_buffername_Used[n]] = VirttoPhys(c_buffer);

Where X is either E (Extern), R (Relative), or A (Absolute) depending on
the type of buffer used.

n is the nth occurrence of this buffer in the SCRIPTS program.

c_buffer is a buffer/array defined in ‘C’.

See Chapter 5, “The NASM Output File,” for more information on the
_Used array.

7.2.5 Byte Counts

Byte counts are usually patched into Block Move, Memory to Memory, or
Load/Store instructions. Since the byte count is usually encoded in the
Patching 7-9

first Dword along with the opcode, be sure to OR in the byte count
instead of doing a straight assignment. Byte counts to be patched are
usually defined as EXTERNS, RELATIVES, or ABSOLUTES. The
general format of this type of patch is:

SCRIPT[X_bytecount_Used[n]] |= c_byte_count;

Where X is either E, R, or A

n is the nth occurrence of this byte count in the SCRIPTS program.

c_byte_count is a variable/constant byte count value.

See Chapter 5, “The NASM Output File,” for more information on the
_Used array.

7.2.6 Absolute JUMP/CALL Addresses

Use the LABELPATCHES array to patch in absolute JUMP or CALL
addresses. The absolute offset from the beginning of the SCRIPTS
instruction is encoded in the JUMP instruction at assembly. All that needs
to be added is the base physical address of the SCRIPTS array. The
general format of this type of patch is:

SCRIPT[LABELPATCHES[n]] += VirttoPhys(SCRIPT);

Where n is the nth jump instruction to be patched.

This can be automated using a loop and the PATCHES values.

See Chapter 5, “The NASM Output File,” for more information on the
LABELPATCHES array.

7.2.7 Entry Locations

Entry offsets are byte offsets, not Dword offsets. Divide the Entry offset
by 4 to get to a SCRIPTS instruction offset. This method can be used to
modify any SCRIPTS instruction that normally does not need patching,
but needs to be modified in a special circumstance. The general format
of this type of patch is:

SCRIPT[Ent_entrylabel/4 + n] = value;

Where n is either 0, 1 or 2 depending on the particular Dword of the
instruction that needs to be accessed.
7-10 Integrating SCRIPTS Programs into “C” Language Drivers

If the first Dword of an instruction is being accessed, a Read-Modify-
Write instruction may need to be done to maintain the opcode.

See Chapter 5, “The NASM Output File,” for more information on the
Ent_offsets.

7.2.8 Self-Modifying SCRIPTS Code

It is sometimes necessary to create self-modifying SCRIPTS code. When
creating self-modifying SCRIPTS code it should be done in such a way
that external patching is only necessary at initialization time.
Self-modifying code can be accomplished by using either a Memory-to-
Memory Move instruction or a combination of LOAD and STORE
instructions. The SCRIPTS example in Figure 7.8 shows a Memory-to-
Memory Move modifying a Move Register instruction such that an offset
can be added to a base address for jumping into a table.

Figure 7.8 Self-Modifying Code

Patches to the SCRIPTS Instruction may be needed. Patch the Labels in
the Memory-to-Memory Move instructions first:

for (i=0; i<PATCHES; i++) {
SCRIPT[LABELPATCHES[i]] += VirttoPhys(SCRIPT);

}

Next patch Scratch register physical addresses:

ENTRY Patch_label1
ENTRY Patch_label2
EXTERN SCRATCHA1_addr
EXTERN SCRATCHB_addr
MOVE MEMORY 4, Patch_label2+4, SCRATCHB_addr
MOVE MEMORY 1, SCRATCHA1_addr, Patch_label1+1
Patch_label1:
MOVE SCRATCHB0 + 0 to SCRATCHB0
MOVE SCRATCHB1 + 0 to SCRATCHB1 WITH CARRY
MOVE SCRATCHB2 + 0 to SCRATCHB2 WITH CARRY
MOVE SCRATCHB3 + 0 to SCRATCHB3 WITH CARRY
MOVE MEMORY 4, SCRATCHB_addr, Patch_label2+4
Patch_label2:
JUMP REL(Jump_Table)

.

.
Jump_Table:
Patching 7-11

SCRIPT[E_SCRATCHA1_addr_Used[0]] =
VirttoPhys(chip_reg[ScratchA]) + 1;
SCRIPT[E_SCRATCHB_addr_Used[0]] =
VirttoPhys(chip_reg[ScratchB]);
SCRIPT[E_SCRATCHB_addr_Used[1]] =
VirttoPhys(chip_reg[ScratchB]);

These are the only patches required. LOAD and STORE instructions
could be used to replace the Memory-to-Memory Move instructions.

Note: SCRATCHA1 is used instead of SCRATCHA0 due to the
alignment requirements of the Memory to Memory Move
instruction.

7.3 Running a SCRIPTS Program

The SCRIPTS program is ready to run after all Command, Data, and
Message buffers have been set up for the I/O. Writing the physical
address of the program to the DSP register, starting at bit 3, initiates the
SCRIPTS program. There are sections of sample code in Figures 7.9
and 7.10.

The entry points named in this example are all different points where
SCRIPTS instructions could start.

static uquad start_offset[] = {
Ent_init_siop3, Ent_start_up4, Ent_switch5
};

This example starts the SCRIPTS program:

IOWrite32(PCIDeviceIOBase+DSP, getPhysAddr(script) +

start_offset[mode]);

In this example, mode = 0 begins at init_siop label, mode = 1 begins
at start_up, and mode = 2 begins at the switch label.

Figure 7.9 General.ss SCRIPTS Source File

; Single-threaded general purpose SCRIPTS routine

; Offset for counts and addresses in the table
TABLE dsa_table \
sendmsg = ??, \
7-12 Integrating SCRIPTS Programs into “C” Language Drivers

Figure 7.9 General.ss SCRIPTS Source File (Cont.)

rcvmsg = ??, \
cmd_adr = ??, \
device = ID{??}, \
status_adr = ??, \
ext_buf = ??, \
sync_in = ??, \
data_adr = ??

; The SCRIPTS routine has finished initializing the SIOP.
Absolute done_init = 0x01

ABSOLUTE ok = 0x00
ABSOLUTE err1 = 0x0ff01
ABSOLUTE err2 = 0x0ff02
ABSOLUTE err3 = 0x0ff03
ABSOLUTE err4 = 0x0ff04
ABSOLUTE err5 = 0x0ff05
ABSOLUTE err6 = 0x0ff06
ABSOLUTE err7 = 0x0ff07
ABSOLUTE err8 = 0x0ff08
ABSOLUTE err9 = 0x0ff09

EXTERN dsa_storage, out_offset, in_offset

; SCSI I/O entry point. This address must be loaded into the
; SIOP before initiating a SCSI I/O.

ENTRY init_siop
ENTRY start_up
ENTRY switch
ENTRY datain
ENTRY dataout

3 init_siop:
INT done_init

4 start_up:

SELECT ATN FROM device, REL(resel)

; Every phase comes back to here.
5 switch:

JUMP REL(msgin), WHEN MSG_IN
JUMP REL(msgout), IF MSG_OUT
JUMP REL(command_phase), IF CMD
JUMP REL(dataout), IF DATA_OUT
JUMP REL(datain), IF DATA_IN
Running a SCRIPTS Program 7-13

Figure 7.9 General.ss SCRIPTS Source File (Cont.)

JUMP REL(end), IF STATUS

INT err1

msgin:
MOVE FROM rcvmsg, WHEN MSG_IN
JUMP REL(ext_msg), IF 0x01
JUMP REL(disc), IF 0x04
CLEAR ACK
JUMP REL(switch), IF 0x02 ; ignore save data pointers
JUMP REL(switch), IF 0x07 ; ignore message reject)
JUMP REL(switch), IF 0x03 ; ignore restore data pointers
INT err2

ext_msg:
CLEAR ACK
MOVE FROM ext_buf, WHEN MSG_IN
JUMP REL(sync_msg), IF 0x03

INT err3

sync_msg:
CLEAR ACK
MOVE FROM sync_in, WHEN MSG_IN
CLEAR ACK
JUMP REL(switch)

disc:
MOVE SCNTL2 & 0x7f to SCNTL2 ;expect disconnect
CLEAR ACK
WAIT DISCONNECT
WAIT RESELECT REL(select_adr)

INT err4, WHEN NOT MSG_IN
MOVE FROM rcvmsg, WHEN MSG_IN
CLEAR ACK
INT err9
JUMP REL(switch)

msgout:
MOVE FROM sendmsg, WHEN MSG_OUT
JUMP REL(switch)

command_phase:
MOVE FROM cmd_adr, WHEN CMD
JUMP REL(switch)
7-14 Integrating SCRIPTS Programs into “C” Language Drivers

Figure 7.9 General.ss SCRIPTS Source File (Cont.)

; After every data transfer add 8 to data_adr. This allows
; scatter/gather operations when the list of addresses to
; read or write is appended to the end of the buffer_table.

1 dataout:
MOVE FROM data_adr, WHEN DATA_OUT
MOVE MEMORY 4, out_offset, scratch_adr
CALL REL(addscratch)
MOVE MEMORY 4, scratch_adr, out_offset
JUMP REL(switch)

2 datain:
MOVE FROM data_adr, WHEN DATA_IN
MOVE MEMORY 4, in_offset, scratch_adr
CALL REL(addscratch)
MOVE MEMORY 4, scratch_adr, in_offset
JUMP REL(switch)

addscratch:
MOVE SCRATCHA0 + 8 to SCRATCHA0
MOVE SCRATCHA0 to SFBR
JUMP REL(ck_carry), IF 0x00
RETURN

ck_carry:
MOVE SCRATCHA1 + 1 to SCRATCHA1
RETURN

end:
MOVE FROM status_adr, WHEN STATUS
INT err5, WHEN NOT MSG_IN
MOVE FROM rcvmsg, WHEN MSG_IN
MOVE SCNTL2 & 0x7f to SCNTL2 ;expect disconnect
CLEAR ACK
WAIT DISCONNECT
INT ok

resel:
INT err6

select_adr:
INT err7
Running a SCRIPTS Program 7-15

Figure 7.10 General.out NASM Output File

typedef unsigned long ULONG;

ULONG SCRIPT[] = {
0x98080000L,0x00000001L,
0x47000018L,0x000001E8L,
0x878B0000L,0x00000030L,
0x868A0000L,0x000000F0L,
0x828A0000L,0x000000F8L,
0x808A0000L,0x00000100L,
0x818A0000L,0x00000128L,
0x838A0000L,0x00000180L,
0x98080000L,0x0000FF01L,
0x1F000000L,0x00000008L,
0x808C0001L,0x00000030L,
0x808C0004L,0x00000068L,
0x60000040L,0x00000000L,
0x808C0002L,0xFFFFFFA0L,
0x808C0007L,0xFFFFFF98L,
0x808C0003L,0xFFFFFF90L,
0x98080000L,0x0000FF02L,
0x60000040L,0x00000000L,
0x1F000000L,0x00000028L,
0x808C0003L,0x00000008L,
0x98080000L,0x0000FF03L,
0x60000040L,0x00000000L,
0x1F000000L,0x00000030L,
0x60000040L,0x00000000L,
0x80880000L,0xFFFFFF48L,
0x7C027F00L,0x00000000L,
0x60000040L,0x00000000L,
0x48000000L,0x00000000L,
0x54000000L,0x00000118L,
0x9F030000L,0x0000FF04L,
0x1F000000L,0x00000008L,
0x60000040L,0x00000000L,
0x98080000L,0x0000FF09L,
0x80880000L,0xFFFFFF00L,
0x1E000000L,0x00000000L,
0x80880000L,0xFFFFFEF0L,
0x1A000000L,0x00000010L,
0x80880000L,0xFFFFFEE0L,
0x18000000L,0x00000038L,
0xC0000004L,0x00000000L,0x000DFE34L,
0x88880000L,0x00000044L,
0xC0000004L,0x000DFE34L,0x00000000L,
0x80880000L,0xFFFFFEB0L,
7-16 Integrating SCRIPTS Programs into “C” Language Drivers

Figure 7.10 General.out NASM Output File (Cont.)

0x19000000L,0x00000038L,
0xC0000004L,0x00000000L,0x000DFE34L,
0x88880000L,0x00000014L,
0xC0000004L,0x000DFE34L,0x00000000L,
0x80880000L,0xFFFFFE80L,
0x7E340800L,0x00000000L,
0x72340000L,0x00000000L,
0x808C0000L,0x00000008L,
0x90080000L,0x00000000L,
0x7E350100L,0x00000000L,
0x90080000L,0x00000000L,
0x1B000000L,0x00000020L,
0x9F030000L,0x0000FF05L,
0x1F000000L,0x00000008L,
0x7C027F00L,0x00000000L,
0x60000040L,0x00000000L,
0x48000000L,0x00000000L,
0x98080000L,0x00000000L,
0x98080000L,0x0000FF06L,
0x98080000L,0x0000FF07L

};
3 #define Ext_Count
char *External_Names[Ext_Count] = {

“dsa_storage”,
“in_offset”,
“out_offset”

};

#define E_in_offset 0x00000000L
ULONG E_in_offset_Used[] = {

0x0000005BL,
0x00000061L

};

#define E_out_offset 0x00000000L
ULONG E_out_offset_Used[] = {

0x0000004FL,
0x00000055L

};

#define Abs_Count 11
char *Absolute_Names[Abs_Count] = {

“done_init”,
“err2”,
“err1”,
Running a SCRIPTS Program 7-17

Figure 7.10 General.out NASM Output File (Cont.)

“err3”,
“err4”,
“err5”,
“err6”,
“err7”,
“err9”,
“ok”,
“scratch_adr”

};

#define A_ok 0x00000000L
ULONG A_ok_Used[] = {

0x0000007DL
};

#define A_done_init 0x00000001L
ULONG A_done_init_Used[] = {

0x00000001L
};

#define A_err1 0x0000FF01L
ULONG A_err1_Used[] = {

0x00000011L
};

#define A_err2 0x0000FF02L
ULONG A_err2_Used[] = {

0x00000021L
};

#define A_err3 0x0000FF03L
ULONG A_err3_Used[] = {

0x00000029L
};

#define A_err4 0x0000FF04L
ULONG A_err4_Used[] = {

0x0000003BL
};

#define A_err5 0x0000FF05L
ULONG A_err5_Used[] = {

0x00000073L
};

#define A_err6 0x0000FF06L
7-18 Integrating SCRIPTS Programs into “C” Language Drivers

Figure 7.10 General.out NASM Output File (Cont.)

ULONG A_err6_Used[] = {
0x0000007FL

};

#define A_err7 0x0000FF07L
ULONG A_err7_Used[] = {

0x00000081L
};

#define A_err9 0x0000FF09L
ULONG A_err9_Used[] = {

0x00000041L
};

#define A_scratch_adr 0x000DFE34L
ULONG A_scratch_adr_Used[] = {

0x00000050L,
0x00000054L,
0x0000005CL,
0x00000060L

};

2 #define Ent_datain 0x00000160L
1 #define Ent_dataout 0x00000130L
3 #define Ent_init_siop 0x00000000L
4 #define Ent_start_up 0x00000008L
5 #define Ent_switch 0x00000010L

ULONG INSTRUCTIONS = 0x0000003FL;
ULONG PATCHES = 0x00000000L;
Running a SCRIPTS Program 7-19

7-20 Integrating SCRIPTS Programs into “C” Language Drivers

Chapter 8
Writing Device Drivers
with SCRIPTS
This chapter describes writing SCSI device drivers with SCRIPTS and
contains the following sections:

• Section 8.1, “Device Driver Overview,” page 8-1

• Section 8.2, “Command Block,” page 8-4

• Section 8.3, “Power Up Example,” page 8-4

• Section 8.4, “I/O Request Process,” page 8-5

• Section 8.5, “How to Write a Device Driver with SCRIPTS,” page 8-6

• Section 8.6, “Table Indirect Addressing,” page 8-7

• Section 8.7, “Relative Addressing,” page 8-11

8.1 Device Driver Overview

The architecture of a SCSI system can be viewed in layers, with each
layer providing data to the layers immediately above and below. The
device driver interfaces between the host operating system and the chip
hardware and firmware. The device driver, host operating system, and all
applications reside in the host computer's main memory. The
LSI53C7XX/8XX/10XX family is a separate hardware component, but
has direct access to host memory. Figure 8.1 shows the relationship of
the device driver to other parts of the SCSI system.
SCSI SCRIPTS Processors 8-1

Figure 8.1 The Role of the SCSI Device Drivers

The device driver itself contains two layers, illustrated in Figure 8.2. The
top layer is the operating system interface. It accepts and interprets I/O
requests from the host operating system. These requests may vary,
depending on the type and vendor of the SCSI device. The formatted
requests are passed to the hardware interface, or lower layer of the
driver. The operating system interface must also schedule SCSI bus
accesses when more than one device is active. It schedules the I/O
requests and tracks the completed and outstanding I/Os based on status
passed back from the hardware interface. The SCRIPTS program is
compiled with the driver program and is loaded into host memory when
the device driver program starts.

Application Application Application

SCSI Device SCSI Device SCSI Device

Host Operating

SCRIPTS Processor

System

Device Driver
8-2 Writing Device Drivers with SCRIPTS

Figure 8.2 SCSI Device Driver Layers

The hardware interface layer:

• Interprets the operating system interface's formatted requests.

• Prepares the SCSI device by initializing the DMA, SCSI, and
Interrupt registers and by loading the appropriate SCRIPTS into host
memory.

• Reserves memory for any data buffers that will be used by the
SCRIPTS program.

• Initializes data buffer addresses, byte counts, and SCSI IDs
embedded in the SCRIPTS code.

• Starts the execution of the SCRIPTS routine by loading the DSP
register (0x2C–0x2F) with the address of the first SCRIPTS
instruction.

• Waits for an interrupt to signal that the I/O is complete.

• Passes I/O status information back to the operating system interface.

Operating System Interface Layer

Device Type Driver

Hardware Interface Layer

SCSI Hardware Specific Driver

SCSI SCRIPTS Sequences

Main Device Scheduler Reselected

I/O Scheduler
Vendor Specific Driver

(host adapter, mainboard)

SCRIPTSCRIPTSCRIPT
Device Driver Overview 8-3

8.2 Command Block

When the operating system interface layer of the SCSI device driver
receives an I/O request, it creates a data structure in host memory. This
data structure contains the information required by the hardware
interface for that specific request. This information generally includes:

• Length of the array

• SCSI ID for the target device

• Logical unit number (LUN)

• Length of the command block

• SCSI command containing the beginning block and the number of
blocks to be transferred

• A place for the hardware interface to write its completion status. The
operating system interface reads the completion status and uses it
to update the scheduler information.

8.3 Power Up Example

The hardware interface initializes the chip whenever the system is
powered up or reset. In the DOS example in Figure 8.3, the system BIOS
scans host memory for a ROM, signified by a 55AA code. It reads the
third byte of the ROM, which contains a jump address. The following
SCRIPTS processor initialization information is located at that address:

• diagnostics to be run

• SCRIPTS to be loaded

• data buffer areas to be reserved

After performing these tasks, the hardware interface scans for the hard
disk and after locating it, downloads the operating system. The operating
system cannot be loaded from the disk until the SCSI driver is active.
This power on sequence of activities is illustrated in Figure 8.3.
8-4 Writing Device Drivers with SCRIPTS

Figure 8.3 Power Up Examples

8.4 I/O Request Process

Figure 8.4 illustrates a typical SCSI I/O operation. The I/O begins when
the user application makes a request to the host operating system to
access data on a SCSI device. The request is passed to the SCSI device
driver's operating system interface where it is interpreted, scheduled, and
formatted for the hardware interface. The operating system interface
creates a data structure in host memory, which it passes to the hardware
interface layer for execution. The hardware interface uses the information
in the command block to determine which SCRIPTS routine to run, as
well as where to place the data in memory.

The hardware interface sets up the data areas for the command and data
buffers. These buffers are initialized table areas and buffers that are
needed for the SCRIPTS execution. It subsequently loads the SCRIPTS
starting address into the DSP register of the chip. The SCRIPTS
processor executes the subroutine, accessing the drive with the SCSI

Host Memory

55AA - Jump 0xC000

0xC2000

VGA Graphics BIOS

0xD80055AA - Jump

SCSI Driver Initialization
- diagnostics
- load SCRIPTS instruction
- initialize SCRIPTS instruction
- reserve data buffer area
- scan for hard disk
- load operating system from disk

POWER UP System BIOS Scan
I/O Request Process 8-5

device ID specified. When the I/O is complete, the hardware interface
receives an interrupt and notifies the operating system interface. The
operating system interface reads the completion status and uses it to
update the scheduler information. For more information on the scheduler,
refer to Chapter 10, “Multithreaded I/O.”

Figure 8.4 I/O Operation

8.5 How to Write a Device Driver with SCRIPTS

To develop an executable SCSI SCRIPTS program, you must first define
the SCSI functions required. To do this, you identify which functions will
be executed in SCRIPTS code and which ones must be contained in
other parts of the driver code. After determining this, you design the
specific algorithms for the functions that will be executed in the SCSI
SCRIPTS portion of the SCSI driver. A SCSI SCRIPTS program contains

Host Memory

DOS I/O Request

Command Block

Data Buffers

SCSI SCRIPTS
Buffers

User Application

Operating System

SCRIPTS

SCSI Device

I/O Request

I/O Request

Control

SCRIPTS Address;

Information

Control Information

SCSI Control Data

Device
Driver

Processor

Operating System
Interface

Hardware
Interface
8-6 Writing Device Drivers with SCRIPTS

two areas: the definition area and the SCRIPTS area. The definition area
contains variable and absolute values. These values may describe a
variable location, variable byte count, or a fixed status byte value. The
SCRIPTS area contains the SCSI instructions.

The SCRIPTS language writes instructions and assembles them to
create the SCRIPTS output file. The assembler output is a “C” include
file that includes relocation information required to load the SCRIPTS
object module into main memory, if any relocation is required. It can be
directly included in firmware written in the “C” language.

When the SCRIPTS starting address is loaded, the SCRIPTS absolute
jump addresses must be resolved. You must patch in the correct buffer
addresses, byte counts, destination ID, and so forth, if table indirect
addressing is not used.

Writing a logical I/O driver for the LSI53C7XX/8XX/10XX family is easier
than previous generation solutions. Because SCSI sequences are so
simple to implement when written in SCSI SCRIPTS, you can rapidly
prototype SCSI sequences for proof of concept and build on them to
create more complete driver programs.

8.6 Table Indirect Addressing

Table indirect addressing simplifies SCRIPTS by separating addresses
and device information from control information in Block Move and
Select/Reselect instructions. One of the major advantages of table
indirect addressing is that SCRIPTS directly loads operating system I/O
data from the tables, which increases program efficiency and simplifies
program structure. These tables eliminate the need for patching
SCRIPTS at the beginning of an I/O. The table can begin on any Dword
boundary and can cross system segment boundaries. There are three
restrictions on the placement of tables in memory:

1. The I/O data structure must lie within 8 Mbytes above or below the
base address.

2. An I/O table entry must have all 8 bytes contiguous in system
memory.

3. The table must be a contiguous data structure of 8-byte entries.
Table Indirect Addressing 8-7

Prior to the start of an I/O, load the DSA register with the base address
of the table indirect data structure. The address must be on a Dword
boundary. Adding the DSA to the 24-bit signed offset value from the
opcode at the start of a table indirect instruction generates the address
of the table entry. Both positive and negative offsets are allowed. With
table indirect addressing, it is not necessary to initialize the SCSI ID, byte
counts, clock dividers, synchronous parameters, or data buffers within
the SCRIPTS instruction. Instead, only the table in memory needs to be
updated.

To use table indirect addressing, you must set up tables in memory
similar to the one shown in Figure 8.5. These tables contain device IDs,
synchronous period information, byte counts, and data addresses. The
data in the table entry is fetched into the appropriate instruction,
depending on whether it is a Block Move or a Select/Reselect.

8.6.1 Block Move Instructions

When you select the table indirect mode by using the FROM operator in
a SCRIPTS Block Move instruction, the 32-bit start address is treated as
a 24-bit signed value. After the instruction is moved into the chip, the
24 bits are added to the DSA register to form a 32-bit physical address.
The byte count (24 bits of count plus 8 bits of high-order zeros) and the
data buffer address (32 bits) are fetched from this new address.

There are several programming implications of table indirect addressing.
First, a standard SCSI data structure can be designed with values at
predefined offsets. The Block Move instruction does not require the
actual 32-bit address or 24-bit count to be within the instruction itself. At
the start of an I/O and after the actual data structure is built, no further
firmware intervention is required except loading the data table base
address into the DSA register. Second, the SCRIPTS instructions may
be placed in a PROM because no dynamic alteration is required at the
start of an I/O. Finally, only one copy of the main SCSI SCRIPTS
program is needed for all I/O operations, with a fast context switch used
to change to another I/O. Only the data structure is unique to each I/O,
and the SCRIPTS instructions are reusable, as shown in Table 8.1.
8-8 Writing Device Drivers with SCRIPTS

8.6.2 Select/Reselect Instructions

During a Select/Reselect and when FROM is used to indicate table
indirect addressing, the 24-bit signed value in the DBC register is an
offset relative to the value of the DSA register. The table indirect feature
allows fetching the Synchronous Clock Conversion, Enable Wide SCSI,
Clock Conversion Factor, SCSI Device ID, Synchronous Offset, and
Synchronous Period bit values from an I/O data structure that is built at
the start of an I/O. Thus, an I/O can begin with no requirement to write
the values into the chip or into the actual SCRIPTS instruction in
memory. In the I/O data structure, the user must have written the
following 8-byte value, as shown in Table 8.2.

The configuration information in byte lane 3 is mapped into the SCNTL3
register (0x03). This includes the Synchronous Clock Conversion Factor,

Table 8.1 Data Structure

Dword 0 Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Byte Count

Dword 1 Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Address

Table 8.2 I/O Data Structure

Dword 0 Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

Config
(SCNTL3)

Device ID
(SDID)

Period &
Offset

(SXFER)

R1

(SCNTL4)2

1. LSI53C896 and earlier.
2. LSI53C10XX.

Dword 1 Byte
Lane 3

Byte
Lane 2

Byte
Lane 1

Byte
Lane 0

R R R R
Table Indirect Addressing 8-9

Enable Wide SCSI, Enable Ultra SCSI, and Clock Conversion Factor.
The Encoded SCSI destination ID in byte lane 2 is mapped into the SDID
register (0x06), and the period and offset information in byte lane 1 is
mapped into the SXFER register (0x05). The data must begin on a
4-byte boundary and must be located at the 24-bit signed offset from the
address contained in the DSA register. Figure 8.5 shows these
relationships.

Figure 8.5 Table Indirect Addressing

8.6.3 Defining a Table

The first step in defining a table is to describe it in SCRIPTS code in
terms of the order and size of table entries, or buffers. An example is
shown in Figure 8.6.

Host Memory (table_0)

config ID period & offset 0
0

0 cmd_byte_count
command_address

DBC Register

DSPS Register

SCNTL3 Register

SDID Register

SXFER Register

SCSI Device

DSA

(DSA + command_offset:)

Select/Reselect

Block Move
8-10 Writing Device Drivers with SCRIPTS

Figure 8.6 Table Definitions

8.7 Relative Addressing

In the relative addressing mode, the 24-bit signed value in the DSPS
register is the relative displacement from the current DMA SCRIPTS
Pointer (DSP) register. Using this mode, the 32-bit physical address is
formed at execution time, and there is no need to patch a SCRIPTS
instruction at run time. Relative addressing can be used for jumps or calls
and requires no initialization of jump and call addresses. This feature can

; Table definition and use in SCRIPTS

Table dsa_table \

SCSI_ID = ID{0x33, 0x00, 0x00, 0x00}
Data_buf = 512{??} , \
ID_msg = {0x80} , \
CMD_buf = {0x08, 0x00, 0x00, 0x00, 0x01, 0x00}

table_use:

SCRIPTS Code Output File Memory Definition

Entry table_use

SELECT ATN FROM SCI_ID, REL (resel)

MOVE FROM ID_msg, WHEN MSG_OUT

MOVE FROM CMD_buf, WHEN CMD

MOVE FROM Data_buf, WHEN DATA_IN

INT 0x0A

resel:

int 0x0B

ULONG SCRIPT [] = {

0x47000000

0x1E000000

0x1A000000

0x19000000

0x98080000

0x98080000

0x00000020

0x00000010

0x00000018

0x00000008

0x0000000A

0x0900000B
};
#define ENT_table_use
ULONG INSTRUCTIONS
ULONG PATCHES

0x00000000
= 0x00000006;
= 0x00000000;

Cmd (0x47) Table Offset (0x00)

Alternate Jump Address (0x20)

Cmd (0x1E) Not Used

Table Offset (0x10)

Cmd (0x1A) Not Used

Table Offset (0x18)

Cmd (0x19) Not Used

Table Offset (0x08)
Relative Addressing 8-11

also be used with the alternate address field of Select, Reselect, Wait
Select, and Wait Reselect instructions.

Note: Use the REL qualifier keyword in the SCRIPTS instructions
to specify relative addressing. RELATIVE is a declarative
keyword, used by the SCRIPTS assembler, to establish
relative buffers. These relative buffers are not used in
connection with relative addressing.
8-12 Writing Device Drivers with SCRIPTS

Chapter 9
SCRIPTS Programming
Topics
This chapter presents general information for some of the programming
tasks that are often performed by SCRIPTS programs. For the most
up-to-date example code for many of these operations, please contact
LSI Logic technical support.

This chapter contains the following sections:

• Section 9.1, “Scatter/Gather Operations,” page 9-1

• Section 9.2, “Loopback Mode,” page 9-4

• Section 9.3, “Byte Recovery on Target Disconnect,” page 9-9

• Section 9.4, “Synchronous Negotiation and Transfer,” page 9-18

• Section 9.5, “Interrupt Handling,” page 9-19

• Section 9.6, “Migrating Existing Software to Ultra, Ultra2, and Ultra3
SCSI,” page 9-26

• Section 9.7, “Using the SCRIPTS RAM,” page 9-30

9.1 Scatter/Gather Operations

You use scatter/gather to collect data that is scattered throughout
memory and must be transferred across the SCSI bus together. Memory
management units keep track of physical locations of user data that
cannot be stored contiguously. During an I/O request for a SCSI device
to fetch data, the memory management unit builds a gather table that
provides the addresses of all of the desired data. There may be several
entries, or pages, of data associated with a single transfer. Without
scatter/gather each entry is treated as an individual transfer, requiring a
processor interrupt and DMA setup.
SCSI SCRIPTS Processors 9-1

With SCSI SCRIPTS, it is possible for you to set up multiple data buffer
areas and then fill them rapidly without interrupting the host processor.
This allows faster and more efficient scatter/gather operations. Block
move data can come from any memory address, so scatter/gather
operations for user data are transparent to the chip and the host
processor. With the technique illustrated in Figure 9.1, a number of data
buffers (pages, or gather table entries) are defined in advance and each
is associated with a Block Move instruction. Any number of Block Moves
can be hardcoded into the buffers. If the scatter/gather list requested has
more entries than have been defined for the buffer, then an interrupt after
the last entry in the series can inform the firmware it needs to set up the
remaining scatter/gather entries after the first group is complete.

Figure 9.1 Scatter/Gather Operation

RW_Offset_patch_do:
;Relative offset will be changed so that we jump into the
;proper place in the scatter gather list
JUMP REL(Data_Out_xfer); Data_Out_xfer:
CHMOV FROM data_buf1, WHEN DATA_OUT CHMOV FROM data_buf2,
WHEN
; 16 moves to support Scatter Gather
DATA_OUT
CHMOV FROM data_buf3, WHEN DATA_OUT
CHMOV FROM data_buf4, WHEN DATA_OUT
CHMOV FROM data_buf5, WHEN DATA_OUT
CHMOV FROM data_buf6, WHEN DATA_OUT
CHMOV FROM data_buf7, WHEN DATA_OUT
CHMOV FROM data_buf8, WHEN DATA_OUT
CHMOV FROM data_buf9, WHEN DATA_OUT
CHMOV FROM data_buf10, WHEN DATA_OUT
CHMOV FROM data_buf11, WHEN DATA_OUT
CHMOV FROM data_buf12, WHEN DATA_OUT
CHMOV FROM data_buf13, WHEN DATA_OUT
CHMOV FROM data_buf14, WHEN DATA_OUT
CHMOV FROM data_buf15, WHEN DATA_OUT
CHMOV FROM data_buf16, WHEN DATA_OUT

; Check to see if we need more SG list entries
MOVE DWT & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0
; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT
JUMP REL(RW_Handle_Phase)
; *** Script move data ENTRY
9-2 SCRIPTS Programming Topics

RW_Offset_patch_di:
;Relative offset will be changed so that we jump into the
;proper place in the scatter gather list
JUMP REL(Data_In_xfer); Data_In_xfer:
CHMOV FROM rw_data_buf1, WHEN DATA_IN CHMOV FROM
rw_data_buf2, WHEN DATA_IN
; 16 moves to support Scatter Gather
CHMOV FROM rw_data_buf3, WHEN DATA_IN
CHMOV FROM rw_data_buf4, WHEN DATA_IN
CHMOV FROM rw_data_buf5, WHEN DATA_IN
CHMOV FROM rw_data_buf6, WHEN DATA_IN
CHMOV FROM rw_data_buf7, WHEN DATA_IN
CHMOV FROM rw_data_buf8, WHEN DATA_IN
CHMOV FROM rw_data_buf9, WHEN DATA_IN
CHMOV FROM rw_data_buf10, WHEN DATA_IN
CHMOV FROM rw_data_buf11, WHEN DATA_IN
CHMOV FROM rw_data_buf12, WHEN DATA_IN
CHMOV FROM rw_data_buf13, WHEN DATA_IN
CHMOV FROM rw_data_buf14, WHEN DATA_IN
CHMOV FROM rw_data_buf15, WHEN DATA_IN
CHMOV FROM rw_data_buf16, WHEN DATA_IN

; Check to see if we need more SG list entries
MOVE SBR & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0
; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT

The example in Figure 9.2 shows you an alternative method for doing
scatter/gather operations using SCRIPTS. This mechanism uses a
looping strategy to execute each scatter/gather entry. On each loop the
DSA value is incremented by 8, effectively moving to the next
scatter/gather entry in the scatter/gather list. Generally, when you use
this strategy, the scatter/gather list is located at the end of the table
indirect entries or is located separately from the other table indirect
entries that handle (re)select, message, command and status phases.
The DSA value is restored after the scatter/gather operations are
complete or the target changes phase. This method of doing
scatter/gather operations requires use of table indirect addressing.
Scatter/Gather Operations 9-3

Figure 9.2 Alternate Scatter/Gather Operation

9.2 Loopback Mode

Loopback mode provides advanced diagnostic and testing capabilities. It
allows the SCRIPTS processor to control and test all signals, regardless
of mode, Initiator or Target, virtually by talking to itself. Loopback Mode
also provides the ability to check the functionality of the part, ensuring
proper SCRIPTS instruction fetches, checking bad parity procedures,
and ensuring all data paths work properly. The SCRIPTS processor
usually executes initiator instructions through the SCRIPTS program and
the host CPU implements the Target Mode by asserting and polling the
appropriate SCSI signals in the SOCL, SODL, SBCL, and SBDL
registers. The Initiator Mode is accomplished using SCSI SCRIPTS and
the Target Mode is implemented using “C” code to access the chip
registers. The modes could be switched to test the Target Mode
applications of the SCRIPTS processor.

To run the Loopback Mode correctly, the following registers must be
initialized to the proper values.

Move_Data:
MOVE MEMORY 4, DSA_addr, ScratchB_addr ; save DSA

address
JUMP REL(Data_In_Loop), WHEN DATA_IN
Data_Out_Loop:
MOVE FROM io_data_buf, WHEN DATA_OUT
MOVE DSA0 + 8 to DSA0 ; Update DSA for scatter gather
JUMP REL(Skip_Carry_Adds_DO), IF NOT CARRY; operations
MOVE DSA1 + 0 to DSA1 WITH CARRY
MOVE DSA2 + 0 to DSA2 WITH CARRY
MOVE DSA3 + 0 to DSA3 WITH CARRY
Skip_Carry_Adds_DO:
JUMP REL(Data_Out_Loop), WHEN DATA_OUT
MOVE MEMORY 4, ScratchB_addr, DSA_addr ; restore DSA

;
address
JUMP REL(Get_Status), WHEN STATUS
JUMP REL(Handle_Message), WHEN MSG_IN
INT Unexpected_Phase
9-4 SCRIPTS Programming Topics

• STEST2

– Bits [4:3] should be set to turn on the Loopback Mode and set
the SCSI pins to high impedance, so that signals are not
asserted on to the SCSI bus. Bit 4 is reserved in the
LSI53C10XX.

– Bits [7:6] and 0 do not affect the loopback operation, but should
remain cleared.

– Bits 5 and [2:1] will not affect the running of the Loopback Mode.
Bit 2 is reserved in the LSI53C10XX.

• DCNTL

– Bit 4 should be set to turn on the Single Step Mode.

This allows the target program to monitor when an initiator
SCRIPTS instruction has completed.

– Bits [3:2] should be cleared, and the remaining bit values will not
affect the running of the Loopback Mode.

• DIEN

– Bit 3 should be set to enable single step interrupts.

This bit works in conjunction with the Single Step Mode bit to
allow for monitoring of SCRIPTS instruction completion.

– The remaining bit values in this register do not affect the running
of the Loopback Mode.

9.2.1 Loopback Example – Selection

The example in Figure 9.3 demonstrates selection in SCSI Loopback
Mode. It provides all the general code required to implement any of the
various SCSI sequences in the Loopback Mode. This example assumes
that the chip was initialized as described above. The initiator instructions
are implemented using the SCRIPTS processor and SCRIPTS. The
target instructions are implemented using the CPU and a “C” program.

When a SCRIPTS routine is executing, a waiting period is required to
fetch the SCRIPTS instructions. This fetch time must be taken into
account when writing the loopback code. To ensure proper operation, a
delay should be inserted directly after SCRIPTS instructions have started
executing. After the DSP register (0x2C–0x2F) is initialized with a
SCRIPTS instruction address, the chip registers cannot be accessed
Loopback Mode 9-5

until the instruction has been fetched and begins executing. This delay
time must include:

• Host arbitration

• SCRIPTS instruction fetch

• SCRIPTS instruction execution or internal bus moves

These delay times are system dependent due to host arbitration times,
host bus width, and chip clock speed.

Figure 9.3 Loopback Mode

In this section of code, the Initiator Select SCRIPTS routine is started by
writing the address of the Select instruction to the DSP. A delay is
inserted to ensure that the SIOP has time to fetch the instruction. Polling
the SBCL register determines when SEL/ is active and selecting itself.

As shown in Figure 9.4, the variable siop_reg should be defined as a
volatile pointer to the chip registers. This ensures that the registers are
not shadowed internally by the CPU. Polling the SBDL register
determines which SCSI ID bits are being driven. This is not a vital step
in the loopback selection process, since the SCRIPTS processor is
selecting itself. However, SBDL should be checked to make sure the
correct bits are driven on the SCSI data bus during normal selection. The
BSY/ bit is set in the SOCL register. This is a target operation performed
by the CPU. Polling the SEL/ bit of the SBCL register determines when
SEL/ is inactive. This indicates the initiator is properly responding to
BSY/ being asserted by the target.

/*Load DSP with address of Select w/ATN instruction*/
/* SELECT ATN tar_id, REL(This_wont_occur) */
write_longreg (DSP,SCRIPTS_sel_inst);
/* Delay to allow instruction to be fetched by SIOP */
delay(1); /* 1 ms delay, varies with system*/
/* TARGET, wait for SEL to go high and BSY to go low */
while ((siop_reg[SBCL] & 0x30) != 0x10;
/*TARGET, check ID, but really don’t care what it is */
printf(“Initiator: Selecting target ID
%x\n”,siop_reg[SBDL]);
/*TARGET, assert BSY*/
siop_reg[SOCL] = 0x20;
/*TARGET, wait for SEL to drop */
while ((siop_reg[SBCL] & 0x10) !=0);
9-6 SCRIPTS Programming Topics

Figure 9.4 Target Operation

The program checks the SBCL register to determine if the selection is
with or without SATN/. This effects the next phase asserted by the target.
The desired phase is asserted by setting the MSG/, C_D/, and I/O bits
in the SOCL register while maintaining BSY/. This would be MESSAGE
OUT if SATN/ was sampled asserted or COMMAND if SATN/ was
sampled deasserted in the SBCL register. At this point, selection with
ATN/ is now complete. The SIP and DIP bits in the ISTAT register are
polled for a single step interrupt and any others that may have occurred.
Reading the SIST0, SIST1 and DSTAT registers clears these interrupts.
The single step interrupt is cleared by reading the DSTAT register. Other
interrupts may occur, depending on the particular settings in the SIEN
and DIEN registers. You can safely clear all interrupts, as any pending
interrupts would inhibit the execution of further SCRIPTS instructions.
The example in Figure 9.4 uses a polled interrupt procedure. Hardware
interrupts are handled in an interrupt service routine.

The Start DMA operation bit of the DCNTL register is set so that the
Block Move SCRIPTS instruction begins execution. This Block Move
instruction transfers the identify message associated with Selection with
ATN/ to the target. A delay is inserted to ensure that the processor has
time to fetch the instruction.

The next section of code, Figure 9.5, uses loopback mode to transfer
bytes. Although this example can be used with the rest of the sample

/*TARGET, check for ATN*/
if (siop_reg[SBCL] & 0x08) {

/*TARGET, assert BSY, and MSG OUT*/
siop_reg[SOCL] = 0x26;
/*Self-Selection with ATN is now complete.*/
/* Wait for single step interrupt*/
while ((siop_reg[ISTAT] & 0x03) ==0);
/*Clear all interrupts*/
junk = siop_reg[SIST0];
junk = siop_reg[SIST1]
junk = siop_reg[DSTAT];
/*Start Script Block Move instruction*/
/*to send Identify Message to “Target” */
/*MOVE 1, identify_buf, WHEN MESSAGE OUT*/
siop_reg[DCNTL] |= 0x04;
/*Wait for SCRIPTS routine to finish using host bus*/
delay(1);
Loopback Mode 9-7

code, it can also be used as a separate function. It can also be used for
any generic data transfer between the initiator and the target, whenever
the processor is executing a Block Move instruction.

Figure 9.5 Byte Transfer

Assertion of the SREQ/ signal is the first step performed by this code.
SREQ/ is asserted by keeping the phase bits the same and setting the
SREQ/ bit in the SOCL register. This works for an initiator to target data
transfer (DATA OUT, MESSAGE OUT, or COMMAND phase). To transfer
from the target to the initiator (DATA IN, MESSAGE IN, or STATUS
phase) place the data into the SODL register before asserting SREQ/.
Because the processor clocks asynchronous data in on the rising edge
of SACK/, data corruption results if this procedure is not followed. If
SREQ/ is asserted, the processor immediately asserts ACK/ and clocks
in the data in the SOCL register. If the data has not been placed into the
SOCL register then incorrect data will be clocked in.

After asserting SREQ/, the initiator polls the SBCL register for SACK/
assertion. Subsequently, the target reads the SBDL register. It also
deasserts SREQ/ using the SOCL register and polls the SBCL register
for SACK/ deassertion of SACK/ by the initiator. The byte received by the
target is verified with the byte sent by the initiator.

The code section in Figure 9.6 shows the final step of the selection
procedure in the Loopback Mode. This selection procedure could be
placed into a function, as could procedures that implement command,
status, message in, and data transfer phases. Upon doing this, full SCSI
sequences could be implemented in the Loopback Mode by various
function calls in the proper order.

/*TARGET, Get Message Byte */
/*TARGET, assert REQ, maintain all other SCSI signals*/
siop_reg[SOCL] |=0x80;
/*TARGET, wait for ACK*/
while ((siop_reg[SBCL] & 0x40) !=0)
msg_out_buf = siop_reg[SBDL]; /*read the data bus*/
siop_reg[SOCL] &=0x7f; /*deassert REQ*/
while ((siop_reg[SBCL] & 0x40) !=0) /* wait for ACK*/
/* verify message byte */
if (msg_out_buf !=identify_buf) {
loop_err = 1;
}

9-8 SCRIPTS Programming Topics

Figure 9.6 Loopback Mode Selection Procedure

Selection without ATN/, requires only assertion of the next phase and
waiting for a single step interrupt. The MSG/, C_D/, and I_O/ signals are
set to the command phase using the SOCL register. BSY/ is also kept
asserted. The SIP and DIP bits in the ISTAT register are polled for a
single step interrupt and any other interrupts that may have occurred.
These interrupts are cleared by reading the SIST1, SIST0, and DSTAT
registers. The single step interrupt is cleared by reading the DSTAT
register, but depending on the settings in the SIEN and DIEN registers,
other interrupts may occur. You can safely clear all interrupts, as any
pending interrupts would inhibit the execution of remaining SCRIPTS
instructions. The example uses a polled interrupt procedure. If hardware
interrupts are used then this would be handled in an interrupt service
routine. After code execution, the chip is in a state to transfer command
bytes using the generic byte transfer code given earlier.

9.3 Byte Recovery on Target Disconnect

There are three potential instances of disconnect. The first is during a
Data Read, when a SCSI device may disconnect while it is seeking the
data that was requested. This is very common, occurring when a SCSI
disk drive performs a seek operation. Seeks often take many
milliseconds and it is inefficient for the disk drive to stay active on the
bus while transferring nothing. The second case may occur after a SCSI
device completes a write operation and disconnects to empty its buffers
before returning its status and command complete messages.

else{ /*select without ATN*/
printf(“Initiator: Selecting without ATN.../n);

}
/*assert BSY and Command phase*/
siop_reg[SOCL} = 0x22;
/*wait for single step int.*/
while ((siop_reg[ISTAT] & 0x03) == 0);
/* clear all interrupts */
junk = siop_reg[SIST0];
junk = siop_reg[SIST1];
junk = siop_reg[DSTAT];
/*SELECTION COMPLETE*/
Byte Recovery on Target Disconnect 9-9

The third type of disconnect may occur at any time. It occurs when data
is being written to a SCSI device and its internal buffers become full. The
device disconnects before completing the data transfer to empty its
buffers and avoid an overflow condition. When it does, the SCSI bus is
in a different phase from that expected by the initiator, creating a phase
mismatch. When this happens, the processor interrupts and the CPU
must perform byte recovery. When this type of disconnect occurs, data
may be in transition; it is important to determine how much data and its
location. In addition, you must know where in the SCRIPTS program the
transfer was interrupted so that it can be resumed at a later time. To save
the state of the chip at the time of the disconnect, get the address of the
current SCRIPTS instruction and calculate the number of bytes of active
data remaining to be transferred. After saving the state of the chip,
update the SCRIPTS program and flush or clear the FIFO.

9.3.1 Saving the Processor State

The first step in saving the state of the SCRIPTS processor is to write
the address of the current SCRIPTS instruction from the DSP register to
a special table indexed by SCSI ID. The instruction at that address can
be restored later to resume processing. The DSP increments as the
current instruction is fetched, so it always points to the next instruction.
Therefore, the DSP decrements by 8 or 12, depending on whether the
instruction was a regular SCRIPTS instruction or a Memory-to-Memory
Move. This is determined by reading the DCMD register. Typically, the
instruction is a Block Move. If table indirect addressing is used, it may
only be necessary to update the table and not the SCRIPTS code.

Target disconnect may create a need to recover bytes in the chip’s data
paths. The location of the data is dependent on whether data is being
moved into or out of the chip, and whether SCSI data is being transferred
asynchronously or synchronously. Please consult the appropriate product
technical manual for exact information on the default and extended (when
supported) DMA FIFO sizes.

Saving the processor state for each type of SCSI transfer is described in
the following sections.

9.3.1.1 Asynchronous SCSI Send

If the DMA FIFO size is set to the default size, check the DFIFO and
DBC registers and calculate if there are bytes left in the DMA FIFO. To
9-10 SCRIPTS Programming Topics

make this calculation, subtract the seven least significant bits of the DBC
register from the 7-bit value of the DFIFO register. AND the result with
0x7F for a byte count between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10 least
significant bits of the DBC register from the 10-bit value of the DMA FIFO
Byte Offset Counter, which consists of bits [1:0] in the CTEST5 register
and bits [7:0] of the DMA FIFO register. AND the result with 0x3FF for a
byte count between zero and the extended FIFO size.

Read bit 5 in the SSTAT0 and SSTAT2 registers to determine if any bytes
are left in the SODL register. If bit 5 is set in the SSTAT0 or SSTAT2
register then the least significant byte or the most significant byte in the
SODL register is full, respectively. Checking this bit also reveals bytes left
in the SODL register from a Chained Move operation with an odd byte
count.

9.3.1.2 Synchronous SCSI Send

If the DMA FIFO size is set to the default size, look at the DFIFO and
DBC registers and calculate if there are bytes left in the DMA FIFO. To
make this calculation, subtract the seven least significant bits of the DBC
register from the 7-bit value of the DFIFO register. AND the result with
0x7F for a byte count between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10 least
significant bits of the DBC register from the 10-bit value of the DMA FIFO
Byte Offset Counter, which consists of bits [1:0] in the CTEST5 register
and bits [7:0] of the DMA FIFO register. AND the result with 0x3FF for a
byte count between zero and the FIFO size.

Read bit 5 in the SSTAT0 and SSTAT2 registers to determine if any bytes
are left in the SODL register. If bit 5 is set in the SSTAT0 or SSTAT2
register then the least significant byte or the most significant byte in the
SODL register is full, respectively. Checking this bit also reveals bytes left
in the SODL register from a Chained Move operation with an odd byte
count.

Read bit 6 in the SSTAT0 and SSTAT2 registers to determine if any bytes
are left in the SODR register. If bit 6 is set in the SSTAT0 or SSTAT2
register then the least significant byte or the most significant byte in the
SODR register is full, respectively.
Byte Recovery on Target Disconnect 9-11

9.3.1.3 Asynchronous SCSI Receive

If the DMA FIFO size is set to the default size, check the DFIFO and
DBC registers and calculate if there are bytes left in the DMA FIFO. To
make this calculation, subtract the seven least significant bits of the DBC
register from the 7-bit value of the DFIFO register. AND the result with
0x7F for a byte count between zero and the FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10 least
significant bits of the DBC register from the 10-bit value of the DMA FIFO
Byte Offset Counter, which consists of bits [1:0] in the CTEST5 register
and bits [7:0] of the DMA FIFO register. AND the result with 0x3FF for a
byte count between zero and the FIFO size.

Read bit 7 in the SSTAT0 and SSTAT2 registers to determine if any bytes
are left in the SIDL register. If bit 7 is set in the SSTAT0 or SSTAT2
register then the least significant byte or the most significant byte is full,
respectively.

If any wide transfers have been performed using the Chained Move
instruction, read the Wide SCSI Receive bit (SCNTL2, bit 0) to determine
whether a byte is left in the SWIDE register.

9.3.1.4 Synchronous SCSI Receive

If the DMA FIFO size is set to the default size, subtract the seven least
significant bits of the DBC register from the 7-bit value of the DFIFO
register. AND the result with 0x7F for a byte count between zero and the
FIFO size.

If the DMA FIFO size is set to the extended size, subtract the 10 least
significant bits of the DBC register from the 10-bit value of the DMA FIFO
Byte Offset Counter, which consists of bits [1:0] in the CTEST5 register
and bits [7:0] of the DMA FIFO register. AND the result with 0x3FF for a
byte count between zero and the FIFO size.

Read the SSTAT1 register, bit 4 of the SSTAT2 register for extended
FIFO size and the binary representation of the number of valid bytes in
the SCSI FIFO, to determine if any bytes are left in the SCSI FIFO.

If any wide transfers have been performed using the Chained Move
instruction, read the Wide SCSI Receive bit (SCNTL2, bit 0) to determine
whether a byte is left in the SWIDE register.
9-12 SCRIPTS Programming Topics

9.3.2 Updating the SCRIPTS Program

After calculating the number of bytes in transition, you update the
SCRIPTS instruction so that the correct number of bytes are transferred
when the target reselects. This is done by updating the byte count and
address in the SCRIPTS program at wherever the current instruction was
at the time of disconnect. The SCRIPT is stored in the host's main
memory, so you can modify it at any time. You modify the binary version
of the instruction in host memory unless table indirect addressing is
used. If using Table Indirect Mode, you modify the byte count and
address in the data structure instead of the binary version of the
instruction.

9.3.3 Cleaning Up

Bytes that are already in transition must be processed. Depending on the
direction of transfer and how you write the code, any data left in the chip
must be flushed to memory (SCSI Receive only) or cleared and
discarded. The Flush DMA FIFO bit in the CTEST3 register flushes the
DMA FIFO data to memory. The Clear DMA FIFO bit in CTEST3
discards the data in the DMA FIFO. The Clear SCSI FIFO bit in STEST3
clears the data out of the Synchronous SCSI Receive FIFO and clears
data in any other intermediate registers.

In a normal disconnect situation, when a Phase Mismatch interrupt
occurs during a SCSI receive, no data should be left in the chip except
in the SWIDE register.

Note: The Wide SCSI Send and Wide SCSI Receive bits are
cleared by any nonwide send or receive action, such as
moving message bytes. Examine these bit values first
during byte recovery.

9.3.4 Example Byte Recovery Code

Byte recovery must be done when the SCRIPTS processor receives a
phase mismatch interrupt either during the Data In or Data Out phase.
Figure 9.7 is example code for moving data. Figures 9.8 and 9.9 are two
example functions which handle these situations.
Byte Recovery on Target Disconnect 9-13

Figure 9.7 SCRIPTS Sequence to Move Data

Move_Data:
JUMP REL(RW_Offset_patch_di), WHEN DATA_IN
;During a write command, some devices disconnect after all the
;data has been sent and reselect with Status and msg_in. The
;following instructions prevents phase mismatch when this
;happens.
JUMP REL(RW_Handle_Phase) WHEN NOT DATA_OUT
; *** Script move data out ENTRY
RW_Offset_patch_do:
;Relative offset will be changed so that we jump
;into the proper place in the scatter gather list
JUMP REL(Data_Out_xfer); Data_Out_xfer:
CHMOV FROM data_buf1, WHEN DATA_OUT CHMOV FROM data_buf2, WHEN DATA_OUT
; 16 moves to support Scatter Gather
CHMOV FROM data_buf3, WHEN DATA_OUT
CHMOV FROM data_buf4, WHEN DATA_OUT
CHMOV FROM data_buf5, WHEN DATA_OUT
CHMOV FROM data_buf6, WHEN DATA_OUT
CHMOV FROM data_buf7, WHEN DATA_OUT
CHMOV FROM data_buf8, WHEN DATA_OUT
CHMOV FROM data_buf9, WHEN DATA_OUT
CHMOV FROM data_buf10, WHEN DATA_OUT
CHMOV FROM data_buf11, WHEN DATA_OUT
CHMOV FROM data_buf12, WHEN DATA_OUT
CHMOV FROM data_buf13, WHEN DATA_OUT
CHMOV FROM data_buf14, WHEN DATA_OUT
CHMOV FROM data_buf15, WHEN DATA_OUT
CHMOV FROM data_buf16, WHEN DATA_OUT

; Check to see if we need more SG list entries
;In older LSI53C8XX chips, SBR = DWT
MOVE SBR & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0
; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT
JUMP REL(RW_Handle_Phase)
; *** Script move data ENTRY
RW_Offset_patch_di:
;Relative offset will be changed so that we jump into the
;proper place in the scatter gather list
JUMP REL(Data_In_xfer); Data_In_xfer:
CHMOV FROM rw_data_buf1, WHEN DATA_IN CHMOV FROM rw_data_buf2, WHEN DATA_IN
; 16 moves to support Scatter Gather
CHMOV FROM rw_data_buf3, WHEN DATA_IN
CHMOV FROM rw_data_buf4, WHEN DATA_IN
CHMOV FROM rw_data_buf5, WHEN DATA_IN
CHMOV FROM rw_data_buf6, WHEN DATA_IN
CHMOV FROM rw_data_buf7, WHEN DATA_IN
CHMOV FROM rw_data_buf8, WHEN DATA_IN
CHMOV FROM rw_data_buf9, WHEN DATA_IN
9-14 SCRIPTS Programming Topics

CHMOV FROM rw_data_buf10, WHEN DATA_IN
CHMOV FROM rw_data_buf11, WHEN DATA_IN
CHMOV FROM rw_data_buf12, WHEN DATA_IN
CHMOV FROM rw_data_buf13, WHEN DATA_IN
CHMOV FROM rw_data_buf14, WHEN DATA_IN
CHMOV FROM rw_data_buf15, WHEN DATA_IN
CHMOV FROM rw_data_buf16, WHEN DATA_IN

; Check to see if we need more SG list entries
MOVE SBR & RW_NEED_MORE_SG_ENTRIES to SFBR
INT RW_Need_More_SG, if not 0
; If we are here then all the data was transferred
; so we set a flag to indicate that
MOVE SBR | RW_ALL_DATA_TRANSFERRED to DWT
JUMP REL(RW_Handle_Phase)
; *** Script move SWIDE byte ENTRY
RW_Move_swide_byte:
CHMOV 1, RW_Last_di_byte_buf, WHEN DATA_IN
INT RW_SWIDE_byte_moved

Figure 9.8 Example Function for Handling DATA IN Phase Mismatch Interrupts
/***
Function: HandleDataInPM

Purpose : To handle clean up after a Phase Mismatch (PM)
during Data In phase

Input: The IO Base address of the SCSI chip
A pointer to a variable which will indicate the
Scatter Gather entry that was executing when the
PM occurred, this is needed by the upper function
if there was a byte in the SWIDE register.

Output: Current_SG_Entry is filled in with the SG
entry that was being serviced.

Assumptions: That a phase mismatch has actually
occurred during data in.

Restrictions: None
Other functions called: IORead32 to read chip info

iowrite32 to start the script
Global Variables Used:FirstDIMove_paddr is the

physical address of the first Data In
block move in the scatter/gather
list. This is needed to get the
location of the scatter/gather entry
that was being serviced when the
phase mismatch occurred.

dsa_table is the table indirect table
that is being used for this IO

script is the actual script that was
being executed when the phase
mismatch occurred.

DATA_BUF1 is the offset into the Table
Indirect entries for the first Data
In table entry.

**/
Byte Recovery on Target Disconnect 9-15

static void HandleDataInPM(ULONG PCIDeviceIOBase, INT\ *Current_SG_Entry)
{

ULONG Current_DSP; /* Holds current DSP value */
/* where am I in the SG list? */
Current_DSP = IORead32(PCIDeviceIOBase+DSP) - 8;
*Current_SG_Entry = (VINT) (Current_DSP -\ FirstDIMove_paddr) / 8;
/* On Data In phase mismatch interrupts the part is automatically flushed so there

is no need to check for residual data in the part, except for data in the SWIDE byte*/
/* now update the address and count */
dsa_table[DATA_BUF1 + *Current_SG_Entry].address +=

dsa_table[DATA_BUF1 + *Current_SG_Entry].count -
(IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl);

dsa_table[DATA_BUF1 + *Current_SG_Entry].count =
IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl;

/* update the jump offset into the SG list */
script[(INT) (Ent_RW_Offset_patch_di/4) + 1] =

(ULONG) *Current_SG_Entry * 8;
/* move the byte in SWIDE if necessary */
if (IORead8(PCIDeviceIOBase+SCNTL2) & 0x01)
{

/* patch move to get byte out of chip */
script[(INT) E_RW_Last_di_byte_buf_Used[0]] =

buffer_table[DATA_BUF1 +
*Current_SG_Entry].address;

/* start script to move byte */
iowrite32(PCIDeviceIOBase+DSP,

getPhysAddr(rw_script) +
Ent_RW_Move_swide_byte);

}
else /* nothing in swide so start the disconnect

/*script */
iowrite32(PCIDeviceIOBase+DSP,

getPhysAddr(rw_script) + Ent_RW_Handle_Phase);
}

Figure 9.9 Example Function for Handling DATA OUT Phase Mismatch Interrupts

/***
Function: HandleDataOutPM

Purpose: To handle clean up after a Phase Mismatch (PM) during Data Out phase
Input: A pointer the pcidev_record.
Output: None
Assumptions: That a phase mismatch has actually

occurred during data out.
Restrictions: None
Other functions called:IORead32/8 to read chip info

RMWon to set bits in chip registers
iowrite32 to start the script

Global Variables Used:FirstDOMove_paddr is the
physical address of the first Data
Out block move in the scatter/gather
list. This is needed to get the
location of the scatter/gather entry
9-16 SCRIPTS Programming Topics

that was being serviced when the
phase mismatch occurred.

dsa_table is the table indirect table that
is being used for this IO

script is the actual script that was being
executed when the phase mismatch
occurred.

DATA_BUF1 is the offset into the Table
Indirect entries for the first Data
In table entry.

**/
static void HandleDataOutPM(pcidev_record *PCIDevice)
{

ULONG Current_DSP;/* holds current dsp value */
INT Current_SG_Entry;/* Used to calc. Current SG entry */
UINT DFIFO_val; /* Holds chip DFIFO value */
UINT Bytes_remaining;/* Used to account for other bytes in chip */
/* where am I in the SG list? */
Current_DSP = IORead32(PCIDeviceIOBase+DSP) - 8;
Current_SG_Entry = (INT) (Current_DSP -

FirstDOMove_paddr) / 8;
/* now update the address and count */
buffer_table[DATA_BUF1 + Current_SG_Entry].address +=
buffer_table[DATA_BUF1 + Current_SG_Entry].count -

(IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl);
buffer_table[DATA_BUF1 + Current_SG_Entry].count =

IORead32(PCIDeviceIOBase+DBC) & 0x00FFFFFFl;
/* Update count and address to reflect any data left in the chip */
/* First check for data in the DMA FIFO */
/* The variable DFIFO_val is a combination of bits
/*1-0 of CTEST5 and bits 7–0 of the DFIFO register
/*this will take care of both the extended FIFO devices
/*and all others */
DFIFO_val = ((IORead8(PCIDeviceIOBase+CTEST5) & 0x03) << 8) |

(IORead8(PCIDeviceIOBase+DFIFO));
if (IORead8(PCIDeviceIOBase+CTEST5) & 0x20)/* big fifo */

Bytes_remaining = (DFIFO_val - (UINT)
IORead32(PCIDevice->base_addr2+DBC) & 0x3FF) &
0x3FF;

else /* default FIFO size*/
Bytes_remaining = (DFIFO_val - (UINT)

IORead32(PCIDevice->base_addr2+DBC) & 0x7F) &
0x7F;

/* now check the other regs that may contain data*/
/* SODL LSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT0) & 0x20)

Bytes_remaining++;
/* SODL MSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT2) & 0x20

) Bytes_remaining++;
/* SODR LSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT0) & 0x40)

Bytes_remaining++;
Byte Recovery on Target Disconnect 9-17

/* SODR MSB Full?*/
if (IORead8(PCIDevice->base_addr2+SSTAT2) & 0x40)

Bytes_remaining++;
/* Now update the TI entry */
rw_buffer_table[RW_DATA_BUF1 +
Current_SG_Entry].address -= Bytes_remaining;
rw_buffer_table[RW_DATA_BUF1 +
Current_SG_Entry].count += Bytes_remaining;
/* update the jump offset into the SG list */
rw_script[(INT) (Ent_RW_Offset_patch_do/4) + 1] =
(ULONG) Current_SG_Entry * 8;
/*clear the dma fifo to get any left over data out */
RMWon(PCIDevice->base_addr2+CTEST3, 0x04);
/* start the disconnect script */
iowrite32(PCIDeviceIOBase, getPhysAddr(rw_script) +
Ent_RW_Handle_Phase);

}

9.4 Synchronous Negotiation and Transfer

The SCRIPTS processor negotiates a set of parameters for each
synchronous device on the SCSI bus. The parameters for each SCSI
device are saved in memory and reloaded into the registers before
communication resumes between the set of devices. A sample
synchronous negotiation SCRIPTS program is supplied in Appendix B,
“Multithreaded SCRIPTS Example.” After the target receives acceptable
synchronous parameters during the Message In phase, an interrupt
returns control to the interrupt service routine. This programs the clock
dividers and the synchronous parameters in the SCTNL3 and SXFER
registers. These parameters are saved for this synchronous device.

When this device is selected again, you can use the SELECT FROM
command to indicate table indirect addressing. If table indirect
addressing is used, the SCNTL3, SDID, and SXFER registers are loaded
from the table entry. If the device reselects the initiator, reload these
parameters into the registers before the data transfer begins. One
method for loading them is the table indirect Select instruction with the
alternate address jump programmed to the next instruction. This
instruction must be executed after determining the ITLQ nexus and
loading the DSA to point to the proper I/O data structure. Example code
for these steps is shown in Figure 9.10.
9-18 SCRIPTS Programming Topics

Figure 9.10 SELECT FROM Example Code

The negotiated transfer information is stored in a table for use in later
connections to a particular target. This information can be stored in the
DSA table for use with table indirect Select and Reselect SCRIPTS
instructions. The I/O command structure must have all four bytes
contiguous in system memory, as shown below.

9.5 Interrupt Handling

The SCRIPTS processor performs most functions independently of the
host microprocessor. However, certain interrupt situations must be
handled by the external microprocessor. This section explains all aspects
of this type of interrupt.

9.5.1 Polling and Hardware Interrupts

There are two potential methods for informing the external
microprocessor of an interrupt condition: polling or hardware interrupts.
With polling the microprocessor continually loops and reads a register
until it detects a set bit, indicating an interrupt. This method is faster, but
it wastes CPU time that could be used for other system tasks. Hardware
interrupts are the preferred method of detecting interrupts in most
systems. In this case, the SCRIPTS processor asserts the Interrupt
Request (IRQ/) line. Then an interrupt condition occurs, causing the
microprocessor to execute an interrupt service routine. A hybrid
approach can also be used that would use hardware interrupts for long
waits, and polling for short waits.

SCNTL3 SDID SXFER SCNTL41

1. LSI53C10XX only.

;ITLQ nexus complete and DSA loaded prior to performing
;this Select
SELECT FROM SCSI ID, REL(Next_Instr)
Next_Instr:
;begin I/O
Interrupt Handling 9-19

9.5.2 Registers

The registers that are used for detecting or defining interrupts are the
ISTAT, SIST0, SIST1, DSTAT, SIEN0, SIEN1, and DIEN.

9.5.2.1 ISTAT

Note: LSI53C896 and newer chips have two ISTAT registers.
Refer to your chip technical manual for specific information
regarding ISTAT. If your chip has two ISTAT registers, the
instructions below refer to ISTAT0.

ISTAT registers are the only registers that can be accessed as slaves
during SCRIPTS operation. Therefore, they are the registers polled when
polled interrupts are used. It is also the first register that should be read
when the IRQ/ pin has been asserted in response to a hardware
interrupt. The INTF (Interrupt on the Fly) bit should be the first interrupt
serviced. It must be written to one that is to be cleared. This interrupt
must be cleared before servicing any other interrupts. If the SIP bit in the
ISTAT register is set, then a SCSI type interrupt has occurred and the
SIST0 and SIST1 registers should be read. If the DIP bit in the ISTAT
register is set, then a DMA type interrupt has occurred and the DSTAT
register should be read. SCSI type and DMA type interrupts may occur
simultaneously, so in some cases both SIP and DIP may be set.

9.5.2.2 ISTAT1

Note: LSI53C896 and newer only.

This register contains two read-only bits, FLSH and SRUN. When set,
these bits indicate whether the chip is flushing data from the DMA FIFO
and if the SCRIPTS engine is currently fetching and executing SCRIPTS
instructions, respectively. Writes do not affect the value of these bits. The
other nonreserved bit in this register is SI, the synch interrupt disable bit.
Setting this bit disables the INTA/ pin for Function A and the INTB/ pin
for Function B. Clearing this bit enables normal operation of the INTA/ (or
INTB/) pin. If the INTA/ (or INTB/) is already asserted and this bit is set,
INT remains asserted until the interrupt is serviced. At this point the
interrupt line is blocked for future interrupts until this bit is cleared. In
addition, this bit may be read and written while SCRIPTS are executing.
9-20 SCRIPTS Programming Topics

9.5.2.3 SIST0 and SIST1

The SIST0 and SIST1 registers contain the SCSI type interrupt bits.
Reading these registers determines which condition or conditions caused
the SCSI type interrupt and clears that SCSI interrupt condition. If the
chip is receiving data from the SCSI bus and a fatal interrupt condition
occurs, the SCRIPTS processor attempts to send the contents of the
DMA FIFO to memory before generating the interrupt. If the processor is
sending data to the SCSI bus and a fatal SCSI interrupt condition occurs,
data could be left in the DMA FIFO. Under these circumstances, check
the DMA FIFO Empty (DFE) bit in DSTAT. If this bit is cleared, set the
CLF (Clear DMA FIFO) and CSF (Clear SCSI FIFO) bits before
continuing. The CLF bit is bit 2 in CTEST3. The FLF bit is bit 3 in
CTEST3. The CSF bit is bit 1 in STEST3.

9.5.2.4 DSTAT

The DSTAT register contains the DMA type interrupt bits. Reading this
register determines which condition or conditions caused the DMA type
interrupt, and clears that DMA interrupt condition. Bit 7 in DSTAT, DFE
(DMA FIFO Empty), is purely a status bit. This bit does not generate an
interrupt under any circumstances and is not cleared when read. DMA
interrupts do not flush either the DMA or SCSI FIFOs before generating
the interrupt, so the DFE bit in the DSTAT register should be checked
after any DMA interrupt. If the DFE bit is cleared, then the FIFOs must
be cleared by setting the CLF (Clear DMA FIFO) and CSF (Clear SCSI
FIFO) bits, or flushed by setting the FLF (Flush DMA FIFO) bit.

9.5.2.5 SIEN0 and SIEN1

The SIEN0 and SIEN1 registers are the interrupt enable registers for the
SCSI interrupts in the SIST0 and SIST1 registers.

9.5.2.6 DIEN

The DIEN register is the interrupt enable register for DMA interrupts in
DSTAT.
Interrupt Handling 9-21

9.5.2.7 DCNTL (All chips except the LSI53C770, LSI53C810, LSI53C815, and
LSI53C860)

When bit 1 in this register is set, the IRQ/ pin is not asserted when an
interrupt condition occurs. The interrupt is not lost or ignored, but merely
masked at the pin. Clearing this bit when an interrupt is pending
immediately asserts the IRQ/ pin. As with any register other than ISTAT,
this register cannot be accessed except by a SCRIPTS instruction during
SCRIPTS execution.

9.5.3 Fatal vs. Nonfatal Interrupts

A fatal interrupt, as the name implies, always stops SCRIPTS execution.
All nonfatal interrupts become fatal when they are enabled by setting the
appropriate interrupt enable bit. All DMA interrupts are fatal. Interrupt
masking is discussed in Section 9.5.4, “Masking.”

Some SCSI interrupts, as indicated by the SIP bit in the ISTAT register
and one or more bits in the SIST0 or SIST1 register being set, are
nonfatal. When the SCRIPTS processor is operating in the Initiator Mode,
only the Function Complete (CMP), Selected (SEL), Reselected (RSL),
General Purpose Timer Expired (GEN), and Handshake-to-Handshake
Timer Expired (HTH) interrupts are nonfatal. When operating in the
Target Mode, CMP, SEL, RSL, Target Mode: SATN/ active (M/A), GEN,
and HTH are nonfatal. Refer to the description for the Disable Halt on a
Parity Error or SATN/ active (Target Mode only) (DHP) bit in the SCNTL1
register to configure the chip’s behavior when the SATN/ interrupt is
enabled during Target Mode operation. The Interrupt on the Fly interrupt
is also nonfatal, since SCRIPTS can continue when it occurs.

Nonfatal interrupts allow continued SCRIPTS operation when an interrupt
occurs that does not require service from the CPU. This prevents an
interrupt when:

• Arbitration is complete (CMP set)

• The SCRIPTS processor has been selected or reselected (SEL or
RSL set)

• The initiator has asserted SATN/ (Target Mode: SATN/ active)

• General Purpose or Handshake-to-Handshake timers expire
9-22 SCRIPTS Programming Topics

These interrupts are not needed for events that occur during high level
SCRIPTS operation.

9.5.4 Masking

Masking an interrupt means disabling or ignoring that interrupt. Interrupts
can be masked by clearing bits in the SIEN0 and SIEN1 (for SCSI
interrupts) interrupt enable registers or the DIEN (for DMA interrupts)
interrupt enable register. How the chip responds to masked interrupts
depends on: whether polling or hardware interrupts are being used;
whether the interrupt is fatal or nonfatal; and whether the chip is
operating in Initiator or Target Mode.

If a nonfatal interrupt is masked and that condition occurs, SCRIPTS:

• Continues execution

• Sets the appropriate bit in the SIST0 or SIST1 register

• Does not set the SIP bit in the ISTAT

• Does not assert the IRQ/ pin

See Section 9.5.3, “Fatal vs. Nonfatal Interrupts,” for a list of the nonfatal
interrupts.

If a fatal interrupt is masked and that condition occurs, then SCRIPTS
stops execution, sets the appropriate bit in the DSTAT, SIST0, or SIST1
registers, and sets the SIP or DIP bits in the ISTAT. The IRQ/ pin is not
asserted.

When the chip is initialized, you must enable all fatal interrupts if you are
using hardware interrupts. If a fatal interrupt is disabled and that interrupt
condition occurs, SCRIPTS halts. The system will not detect this unless
it times out and checks the ISTAT after a certain period of inactivity.

If the ISTAT register is being polled, instead of using hardware interrupts,
then masking a fatal interrupt has no impact. The SIP and DIP bits in the
ISTAT inform the system of interrupts, not the IRQ/ pin.

Masking an interrupt after IRQ/ is asserted will not deassert IRQ/.
Interrupt Handling 9-23

9.5.5 Stacked Interrupts

The SCRIPTS processor stacks interrupts if they occur in rapid
succession. If the SIP or DIP bits in the ISTAT register are set (first level),
then at least one pending interrupt exists. Any future interrupts are
stacked in extra registers behind the SIST0, SIST1, and DSTAT registers
(second level). When two interrupts have occurred and the two levels of
the stack are full, any further interrupts set additional bits in the extra
registers behind the SIST0, SIST1, and DSTAT registers. When the first
level of interrupts is cleared, the subsequent interrupts move into the
SIST0, SIST1, and DSTAT registers. After clearing the first interrupt by
reading the appropriate register, the IRQ/ pin deasserts for a minimum
of three CLKs, the stacked interrupt(s) move into the SIST0, SIST1, or
DSTAT registers, and the IRQ/ pin reasserts.

A masked nonfatal interrupt does not set the SIP or DIP bits. Therefore,
interrupt stacking does not occur. A masked, nonfatal interrupt still posts
the interrupt in the SIST0 register, but does not assert the IRQ/ pin.
Since no interrupt is generated, subsequent interrupts move right into the
SIST0 or SIST1 register instead of being stacked behind another
interrupt. On generation of another interrupt, the bit corresponding to the
earlier masked nonfatal interrupt remains set.

Two simultaneous interrupts cause a similar situation. Since stacking
does not occur until the SIP or DIP bits are set, a small timing window
exists in which multiple interrupts can occur. Under these circumstances,
the interrupts are not stacked. These could be multiple SCSI interrupts
(SIP set), multiple DMA interrupts (DIP set), or multiple SCSI and
multiple DMA interrupts (both SIP and DIP set).

As previously mentioned, DMA interrupts do not attempt to flush the
FIFOs before generating the interrupt. You must set either the Clear DMA
FIFO (CLF) and Clear SCSI FIFO (CSF) bits if a DMA interrupt occurs
and the DMA FIFO Empty (DFE) bit is not set. Any subsequent SCSI
interrupts are not posted until the DMA FIFO is cleared of data. These
‘locked out’ SCSI interrupts are posted as soon as the DMA FIFO is
empty.

9.5.6 Halting in an Orderly Fashion

When an interrupt occurs, the SCRIPTS processor attempts to halt in an
orderly fashion.
9-24 SCRIPTS Programming Topics

• If it is in the middle of an instruction fetch, the fetch will be
completed, except in the case of a Bus Fault. Execution will not
begin, but the DSP points to the next instruction since it is updated
when the current instruction is fetched.

• If the DMA direction is a write to memory and a SCSI interrupt
occurs, the SCRIPTS processor attempts to flush the DMA FIFO to
memory before halting. Under any other circumstances only the
current cycle will be completed before halting, so the DFE bit in the
DSTAT register should be checked to see if any data remains in the
DMA FIFO.

• SCSI SREQ/SACK handshakes that have begun will be completed
before halting.

• The SCRIPTS processor attempts to clean up any outstanding
synchronous offsets before halting.

• In the case of Transfer Control Instructions, once execution begins it
will not halt until completion.

• If the instruction is a JUMP/CALL WHEN/IF <phase>, the DSP is
updated to the transfer address before halting.

• All other instructions may halt before completion.

9.5.7 Sample Interrupt Service Routine

The following is a sample of an interrupt service routine. It can be
repeated if polling is used, or should be called when the IRQ/ pin is
asserted if hardware interrupts are used.

1. Read ISTAT (or ISTAT0 as appropriate if your system has a newer
chip).

2. If the INTF bit is set, write it to a one to clear this status.

3. If only the SIP bit is set, read the SIST0 and SIST1 registers to clear
the SCSI interrupt condition and get the SCSI interrupt status.

The bits in the SIST0 and SIST1 registers define the interrupt(s) and
determine what action is required to service them.

4. If only the DIP bit is set, read the DSTAT register to clear the interrupt
condition and get the DMA interrupt status.

The bits in the DSTAT register define the interrupt(s) and determine
what action is required to service them.
Interrupt Handling 9-25

5. If both the SIP and DIP bits are set, read the SIST0, SIST1, and
DSTAT registers to clear the SCSI and DMA interrupt condition and
get the interrupt status.

If using 8-bit reads of the SIST0, SIST1, and DSTAT registers to clear
interrupts, insert a 12 CLK delay between the consecutive reads to
ensure that the interrupts clear properly. Both the SCSI and DMA
interrupt conditions should be handled before leaving the ISR. It is
recommended that the DMA interrupt be serviced before the SCSI
interrupt, because a serious DMA interrupt condition could influence
how the SCSI interrupt is acted upon.

When using polled interrupts, go back to Step 1 before leaving the
interrupt service routine, in case any stacked interrupts moved in when
the first interrupt was cleared. When using hardware interrupts, the IRQ/
pin will be asserted again if there are any stacked interrupts. This should
cause the system to re-enter the interrupt service routine.

9.6 Migrating Existing Software to Ultra, Ultra2, and Ultra3
SCSI

Current SCSI technology extends the Fast SCSI-2 specification to allow
synchronous transfer periods to be negotiated down as low as 50 ns
(Ultra), 25 ns (Ultra2/3). Ultra3 SCSI supports dual transition clocking for
an effective period of 12.5 ns. This allows a maximum transfer rate of
20 Mbytes/s on an 8-bit SCSI bus or 40 Mbytes/s on a wide SCSI bus
for Ultra SCSI, and 40 Mbytes/s on an 8-bit bus, 80 Mbytes/s on a wide
SCSI bus for Ultra2 SCSI and 160 Mbytes/s for Ultra3. Refer to
Chapter 1, “Using the Programming Guide,” to determine which chips
support Ultra/2/3 SCSI.

To achieve transfer rates reflecting current SCSI specifications, existing
software programs must be updated to reflect changes in the following
areas of the SCRIPTS processor. Additional minor changes may be
needed to migrate existing software to support all the features in the new
device:

• SCNTL3 register CCF bits – adjust the bit values to reflect the
desired clock divider (not the LSI53C1010 or LSI53C1010R).
9-26 SCRIPTS Programming Topics

• SCNTL3 register SCF bits – adjust the bit values to reflect the SCLK
frequency, doubled or quadrupled if applicable.

• SXFER register XFERP bits – adjust the bit values to reflect the
desired divider values for the synchronous period.

• Adjust the Clock input as required for the SCSI processor being
used.

• With the LSI53C860, add an external 80 MHz SCSI clock.

• With the LSI53C875, use an 80 MHz external SCSI clock or use an
external 40 MHz clock and enable the SCSI clock doubler.

• With the LSI53C895, use an 80 MHz clock for Ultra SCSI or use an
external 40 MHz clock with the clock quadrupler for Ultra2 SCSI.

• The LSI53C885 and LSI53C876 require a 40 MHz clock and use of
the clock doubler.

• Ultra Enable bit, SCNTL3 register – set this bit to enable Ultra SCSI
or Ultra2 SCSI transfers.

• SCNTL4 U3EN bit set to enable Ultra3 (LSI53C10XX only).

9.6.1 Clock Divider Bits

Two registers divide down the clock. The first is the SCNTL3 register.
Except for the Ultra3 chips, the CCF bits determine the SCSI core speed
used for asynchronous transfers and any other timings (such as selection
time-out). These bits are set based on the input clock frequency and do
not change. The SCF bits determine the timing for synchronous transfers
and can be changed whenever the SCRIPTS processor connects to a
different device on the SCSI bus.

The SCF bits in the SCNTL3 register, in conjunction with the XFERP bits
in the SXFER register, determine the synchronous period. To get a
transfer rate of 10 Mbytes/s with a 40 MHz clock, program the SCF bits
to 0b001 for a divide by one factor and then program the XFERP bits for
0b000 for a divide by 4 factor. Forty MHz divided by 1 and then divided
by 4 is 10 Mbytes/s. Other combinations of these two sets of bits select
a variety of synchronous transfer rates. For more information on the
supported bit combinations, see the clock divider bit descriptions in your
chip technical manuals.

The LSI53C10XX has only a 40 MHz clock with no dividers.
Migrating Existing Software to Ultra, Ultra2, and Ultra3 SCSI 9-27

9.6.2 Ultra Enable Bit

The Ultra Enable bit (also known as the Fast-20 Enable bit) adjusts the
chip’s timing to be compliant with the Fast-20 proposed standard. It
should be set when the synchronous transfer period is less than 100 ns
and cleared when it is greater than or equal to 100 ns.

9.6.3 Loading the New Register Values

Since the Ultra Enable bit and the clock dividers are in the SCNTL3 and
SXFER registers, these registers can be automatically loaded during a
selection or reselection by using Table Indirect Addressing. This allows
the chips to transparently talk with any combination of Ultra, Ultra2,
Ultra3, and Fast SCSI devices on the same SCSI bus.

9.6.4 Negotiating Synchronous Transfers

The easiest way to calculate the synchronous transfer period is by
multiplying the clock period by the clock divider values. For example, a
40 MHz clock is a 25 ns period. (25 ns) x (1) x (4) = 100 ns, which is
the Fast SCSI-2 synchronous transfer period.

If you use an 80 MHz clock (12.5 ns period) and are negotiating for Fast
SCSI-2, rather than Ultra SCSI, program the SCF bits for SCLK/2 and
the XFERP bits for 4, the resulting period is (12.5 ns) x (2) x (4) = 100 ns.

The SCSI-2 specification states that synchronous transfer rates must be
a multiple of 4 ns. However, with an 80 MHz clock, the period must be a
multiple of 12.5 ns. Ultra SCSI is defined to be a 20 megatransfers per
second maximum, which would be a 50 ns period. Since 50 ns is not a
multiple of 4, most SCSI devices cannot negotiate for this exact rate.
Unless future revisions of the standard make a different
recommendation, most devices will probably negotiate for a 48 ns period.
The SCRIPTS processor cannot be programmed for a 48 ns period since
it is not a multiple of 12.5 ns. Therefore driver programs should specify
a 50 ns period and the chip should negotiate for a 48 ns period. This is
acceptable because the SCSI-2 specification allows data to be
transferred at a slower rate than what is negotiated for, but not faster.

To program the chip for a full Ultra SCSI transfer rate of 50 ns using the
required 80 MHz clock, program the SCF bits for SCLK/1 and select an
XFERP of 4. This comes out to (12.5 ns) x (1) x (4) = 50 ns.
9-28 SCRIPTS Programming Topics

9.6.5 Using the SCSI Clock Doubler

The LSI53C875, LSI53C876, and LSI53C885 can double the frequency
of a 40–50 MHz SCSI clock, allowing the system to perform Ultra SCSI
transfers in systems that do not have 80 MHz clock input. This option is
user selectable with bit settings in the STEST1, STEST3, and SCNTL3
registers. At power on or reset, the doubler is disabled and powered
down. Follow these steps to use the clock doubler:

1. Set the SCLK Doubler Enable bit (STEST1, bit 3).

2. Wait 20 µs.

3. Halt the SCSI clock by setting the Halt SCSI Clock bit (STEST3,
bit 5).

4. Set the clock conversion factor using the SCF and CCF fields in the
SCNTL3 register.

5. Set the SCLK Doubler Select bit (STEST1, bit 2).

6. Clear the Halt SCSI Clock bit.

9.6.6 Using the SCSI Clock Quadrupler

The LSI53C895/895A/10XX can quadruple the frequency of a 40 MHz
SCSI clock, allowing the system to perform Ultra2 SCSI transfers. This
option is user selectable with bit settings in the STEST1, STEST3, and
SCNTL3 registers. At power on or reset, the quadrupler is disabled and
powered down. Use the following steps to use the clock quadrupler:

1. Set the SCLK Quadrupler Enable bit (STEST1, bit 3).

2. Poll bit 5 of the STEST4 register.

The LSI53C895 sets this bit as soon as it locks in the 160 MHz
frequency. The frequency lockup takes approximately
100 microseconds.

3. Halt the SCSI clock by setting the Halt SCSI Clock bit (STEST3,
bit 5).

4. Set the clock conversion factor using the SCF and CCF fields in the
SCNTL3 register.

5. Set the SCLK Quadrupler Select bit (STEST1, bit 2).

6. Clear the Halt SCSI Clock bit.
Migrating Existing Software to Ultra, Ultra2, and Ultra3 SCSI 9-29

9.7 Using the SCRIPTS RAM

Many of the chips supported by the SCRIPTS processor contain internal,
general purpose RAM. Please refer to your chip technical manual for
your chip’s specifications. This RAM stores SCRIPTS instructions and
I/O data structure information, but is not limited to this type of
information. When the chip fetches SCRIPTS instructions or Table
Indirect information from the internal RAM, the fetches remain internal to
the chip and do not use the PCI bus. Other types of access to the RAM
by chip with internal RAM use the PCI bus, as if they were external
accesses. This section discusses loading SCRIPTS and Table Indirect
information into the SCRIPTS RAM and other programming techniques
for using internal RAM.

The RAM can be relocated anywhere in the 32-bit address (64-bit in
newer chips) space by the PCI system BIOS. The RAM Base Address
register, located in the chip’s PCI configuration space, contains the
internal RAM base address. This register is similar to the ROM Base
Address register in the PCI Configuration register set. To simplify loading
SCRIPTS instructions, the RAM base address appears in the
SCRATCHB register when bit 3 of the CTEST2 register is set. The RAM
is byte accessible from the PCI bus and is visible to any bus mastering
device on the bus. Accesses made externally, that is by the CPU, follow
the same timing sequence as a standard slave register access, except
that the required target wait states drops from 5 to 3.

9.7.1 Loading SCRIPTS RAM

SCRIPTS instructions can be loaded into the internal RAM in one of two
ways. You can simply copy the instructions into the RAM with the CPU.
Alternatively, you can use a MOVE MEMORY instruction, which copies
the SCRIPTS instructions from their initial location in host memory to the
SCRIPTS RAM. This method is especially useful in the Intel processor
real mode of operation because the SCRIPTS RAM is generally mapped
by the PCI system BIOS outside the region where the processor can
access it. The syntax of the move instruction is:

MOVE MEM Script_Inst_Bytes, SRC_Phys_Addr, \
Script_RAM_Phys_Addr
9-30 SCRIPTS Programming Topics

Script_Inst_Bytes is the number of instruction bytes to copy and
SRC_Phys_Addr is the physical starting address of the static SCRIPTS
array being copied into SCRIPTS RAM. Script_RAM_Phys_Addr is the
physical base address of the SCRIPTS RAM, found in the SCRATCHB
register. To create data structures such as table indirect tables, create a
pointer to the location in SCRIPTS RAM that stores the data. An example
is shown in Figure 9.11.

Figure 9.11 Storing Data Structures in SCRIPTS RAM

The routine “PhystoVirt” converts the physical address of the table
location in the SCRIPT RAM to a virtual address that can be used as a
pointer in “C”.

9.7.2 Programming Techniques when Using SCRIPTS RAM

SCRIPTS programs may be stored on the chip, outside the chip, or both.
When the SCRIPTS code is located both internally and externally, the
following techniques allow the internal SCRIPTS to successfully
communicate with the external SCRIPTS and vice versa.

1. Create two source (.SS) files, one with the SCRIPTS programs that
are to be located internally and the other with the SCRIPTS
programs that are to be located externally.

struct _table {/* Table indirect entry */
uquad count;
uquad address;

};
typedef struct table;
#define SCRAM_TABLE_OFFSET 0xC00; /* Locate table info at bottom 1K of SCRIPTS RAM*/
void main() {
table *buffer_table; /* pointer to table indirect entries */
ulong SCRAM_Phys_Addr;
ulong Table_Phys_Addr;

/* Get RAM physical address */
outpw(ChipIOBase+CTEST2, 0x08);/* Set bit 3 */
/* Get RAM Base in ScratchB */
SCRAM_Phys_Addr = (ulong) ((ulong) (inpw(ChipBaseIO+
SCRATCHB2) << 16) | inpw(ChipIOBase+SCRATCHB)); /* Read Reg*/
outpw(ChipIOBase+CTEST2, 0x00);/* Clear bit 3 */
/* Create pointer to RAM for Table */
Table_Phys_Addr = SCRAM_Phys_Addr + SCRAM_Table_Offset;
buffer_table = PhystoVirt(Table_Phys_Addr);
}

Using the SCRIPTS RAM 9-31

2. Give the internal and external SCRIPTS programs unique array
identifiers by using the PROC statement at the beginning of each so
that both can be linked into a driver.

The compiler generates the SCRIPTS arrays without the default
SCRIPTS name.

3. Compile both source files with the -p option instead of the -o option.

This prevents generation of data structures which share common
names between the two files, causing a ‘C’ compile time conflict with
both files being linked into a driver.

4. Use absolute jumps between the internal and external SCRIPTS
routines and use EXTERNs as the destination address variable.

This patches the proper jump address after the base addresses of
both SCRIPTS programs have been established at run time.

5. Define any labels being jumped to from the opposite SCRIPTS
program as entry points with the ENTRY declarative.

This causes the compiler to provide the proper offset information in
the compiled output file so that physical addresses can be resolved
at run time.

6. Assign unique names to all labels, externs, and relative buffers in
each SCRIPTS program to prevent ‘C’ compile time conflicts.

7. Use the REL modifier to process all jumps that move within the same
SCRIPTS program.

8. Use RAMFIX to process the file that contains the internal SCRIPTS
program to eliminate any other conflicts between the two files.

The RAMFIX utility can be downloaded from the LSI Logic BBS.

Figures 9.12 through 9.15 are the internal and external SCRIPTS.LIS and
.OUT files, and illustrate the interactions between the two. Certain parts
of the program text appear in bold type to highlight the coding differences
when both internal and external RAM are used for SCRIPTS program
storage. The numbered notes at the end of each example program
reference numbered items in the far left column of the program text.
9-32 SCRIPTS Programming Topics

Figure 9.12 External Script (SCRIPTS.LIS file)

1. Jump labels that are located in the internal SCRIPTS program are
defined as EXTERNs to facilitate patching at driver run time.

2. Labels that will be jumped to from the internal SCRIPTS program are
defined as ENTRYs to facilitate patching at driver run time.

3. The PROC directive is used to override the default SCRIPTS array
name and replace it with Ext_Script.

4. This is a jump to a location in the internal SCRIPTS program and
should be patched at driver init time.

5. This is a jump to a location in the internal SCRIPTS program and
should be patched at driver init time.

1 ARCH 825A
2
3 ABSOLUTE done=0xff
4

1: 5 EXTERN Int_Start
6 EXTERN Int_dataout
7

2: 8 ENTRY Ext_Start
9 ENTRY Ext_done
10

3: 11 00000000: PROC Ext_Script:
12 00000000: Ext_Start:
13 00000000: 78344500 00000000 MOVE 0x45 to SCRATCHA0
14 00000008: 78354600 00000000 MOVE 0x46 to SCRATCHA1
15 00000010: 80880000 00000018 JUMP REL(Entry_point)
16 00000018: 78364700 00000000 MOVE 0x47 to SCRATCHA2
17 00000020: 78374800 00000000 MOVE 0x48 to SCRATCHA3

4: 18 00000028: 80080000 00000000 JUMP Int_Start
19
20 00000030: Entry_point:
21 00000030: 6A360000 00000000 MOVE SFBR to SCRATCHA2
22 00000038: 785C0000 00000000 MOVE 0x00 to SCRATCHB0
23 00000040: 785D0100 00000000 MOVE 0x01 to SCRATCHB1
24 00000048: 785F0200 00000000 MOVE 0x02 to SCRATCHB3

5: 25 00000050: 80080000 00000000 JUMP Int_dataout
26
27 00000058: Ext_done:
28 00000058: 98080000 000000FF INT done
29
30
Using the SCRIPTS RAM 9-33

Figure 9.13 External Script (SCRIPTS.OUT file)

1. The use of the PROC statement has forced the array to be named
Ext_Script instead of SCRIPT so that a compile time conflict is
avoided.

2. The offsets in these data structures indicate where the internal
SCRIPTS jump address should be patched.

3. These are the offsets into the Ext_Script array of the entry points that
are being jumped to from the internal SCRIPTS program. They are
used to calculate the internal to external jump physical addresses to
be patched into the internal SCRIPTS program.

Figure 9.14 Internal Script (SCRIPTS.LIS file)

1 ARCH 825A
2
3 ABSOLUTE scsi_id=0x00
4 ABSOLUTE resel=0x01
5
6 EXTERN identify_buf={0x80}

typedef unsigned long ULONG;
1:ULONGExt_Script[] = {

0x78344500L,0x00000000L,
0x78354600L,0x00000000L,
0x80880000L,0x00000018L,
0x78364700L,0x00000000L,
0x78374800L,0x00000000L,
0x80080000L,0x00000000L,
0x6A360000L,0x00000000L,
0x785C0000L,0x00000000L,
0x785D0100L,0x00000000L,
0x785F0200L,0x00000000L,
0x80080000L,0x00000000L,
0x98080000L,0x000000FFL

};
2:ULONG E_Int_dataout_Used[] = {

0x00000015L
};
ULONG E_Int_Start_Used[] = {

0x0000000BL
};
#define A_done0x000000FFL
3:#define Ent_Ext_done 0x00000058L
#define Ent_Ext_Start 0x00000000L
9-34 SCRIPTS Programming Topics

7 EXTERN cmd_buf=6{??}
8 EXTERN data_buf=512{??}
9 EXTERN stat_buf=1{??}
10 EXTERN msgin_buf=1{??}
11

1:12 EXTERN Ext_Start
14

2:15 ENTRY Int_Start
16 ENTRY Int_dataout
17

3:18 00000000: PROC Int_Script:
19 00000000: Int_Start:
20 00000000: 45000000 00000058 SELECT ATN scsi_id, REL(reselected)
21 00000008: ident:
22 00000008: 86830000 00000008 JUMP REL(send_cmd), WHEN NOT MSG_OUT
23 00000010: 0E000001 00000000 MOVE 1, identify_buf, WHEN MSG_OUT
24 00000018: send_cmd:
25 00000018: 0A000006 00000000 MOVE 6, cmd_buf, WHEN CMD

4:26 00000020: 80080000 00000000 JUMP Ext_Start
27 00000028: Int_dataout:
28 00000028: 08000200 00000000 MOVE 512, data_buf, WHEN DATA_OUT
29 00000030: stat:
30 00000030: 0B000001 00000000 MOVE 1, stat_buf, WHEN STATUS
31 00000038: msgin:
32 00000038: 0F000001 00000000 MOVE 1, msgin_buf, WHEN MSG_IN
33
34 00000040: complete:
35 00000040: 7C027F00 00000000 MOVE SCNTL2 & 0x7F to SCNTL2
36 00000048: 60000040 00000000 CLEAR ACK
37 00000050: 48000000 00000000 WAIT DISCONNECT

5:38 00000058: 80080000 00000000 JUMP Ext_done
39
40 00000060: reselected:
41 00000060: 98080000 00000001 INT resel
42

1. Jump labels that are located in the external SCRIPTS program are
defined as EXTERNs to facilitate patching at driver run time.

2. Labels that will be jumped to from the external SCRIPTS program
are defined as ENTRYs to facilitate patching at driver run time.

3. The PROC directive is used to override the default SCRIPTS array
name and replace it with Int_Script.

4. This is a jump to a location in the external SCRIPTS program and
should be patched at driver init time.

5. This is a jump to a location in the external SCRIPTS program and
should be patched at driver init time.
Using the SCRIPTS RAM 9-35

Figure 9.15 Internal SCRIPTS Program (SCRIPTS.OUT file)

1. The use of the PROC statement has forced the array to be named
Int_Script instead of SCRIPT so that a compile time conflict is
avoided.

typedef unsigned long ULONG;
1:ULONGInt_Script[] = {

0x45000000L,0x00000058L,
0x86830000L,0x00000008L,
0x0E000001L,0x00000000L,
0x0A000006L,0x00000000L,
0x80080000L,0x00000000L,
0x08000200L,0x00000000L,
0x0B000001L,0x00000000L,
0x0F000001L,0x00000000L,
0x7C027F00L,0x00000000L,
0x60000040L,0x00000000L,
0x48000000L,0x00000000L,
0x80080000L,0x00000000L,
0x98080000L,0x00000001L

};
ULONG E_cmd_buf_Used[] = {

0x00000007L
};
ULONG E_data_buf_Used[] = {

0x0000000BL
};
2:ULONG E_Ext_Start_Used[] = {

0x00000009L
};
ULONG E_Ext_done_Used[] = {

0x00000017L
};
ULONG E_identify_buf_Used[] = {

0x00000005L
};
ULONG E_msgin_buf_Used[] = {

0x0000000FL
};
ULONG E_stat_buf_Used[] = {

0x0000000DL
};
#define A_scsi_id0x00000000L
#define A_resel0x00000001L
3:
#define Ent_Int_dataout 0x00000028L
#define Ent_Int_Start 0x00000000L
9-36 SCRIPTS Programming Topics

2. The offsets in these data structures indicate where the internal
SCRIPTS jump address should be patched.

3. These are the offsets into the Int_Script array of the entry points that
are being jumped to from the external SCRIPTS program. They are
used to calculate the external to internal jump physical addresses to
be patched into the external SCRIPTS program.

9.7.3 Patching Internal and External SCRIPTS Programs

The routine in Figure 9.16 patches the correct values into the above two
SCRIPTS programs so that they can interact properly. The following
assumptions are made in this routine:

• The Int_Script array was copied into the SCRIPTS RAM at the
starting location of the RAM.

• The Ext_Script is already 32-bit aligned.

• The variable ChipIOBase contains the IO base address of the chips
register set.

• VirttoPhys is a routine that will convert a virtual pointer to a physical
address.
Using the SCRIPTS RAM 9-37

Figure 9.16 Patching Routine

void main() {
ulong Int_Script_Phys_Addr;
ulong Ext_Script_Phys_Addr;

/* Get RAM physical address, which is assumed to be */
/* the internal SCRIPTS physical address */
outpw(ChipIOBase+CTEST2, regval | 0x08);/* Set bit 3 to get RAM Base in ScratchB*/
Int_Script_Phys_Addr = (ulong) ((ulong) (inpw(ChipBaseIO+
SCRATCHB2) << 16) | inpw(ChipIOBase+SCRATCHB)); /* Read Reg*/
outpw(ChipIOBase+CTEST5, 0x00);/* Clear bit 3 */

Ext_Script_Phys_Addr = (ulong) VirttoPhys(Ext_Script);
/* Patch External Script entries */
Ext_Script[E_Int_dataout_Used[0]] = Int_Script_Phys_Addr +
Ent_Int_dataout;
Ext_Script[E_Int_Start_Used[0]] = Int_Script_Phys_Addr + Ent_Int_Start;
/* Patch Internal SCRIPTS entries */
/* The cmd_buf, data_buf, identify_buf, stat_buf */
/* and msgin_buf should also be done but they will not be */
/* shown in this example as they are not pertinent */
Int_Script[E_Ext_done_Used[0]] = Ext_Script_Phys_Addr +
Ent_Ext_done;
Int_Script[E_Ext_Start_Used[0]] = Ext_Script_Phys_Addr +
Ent_Ext_Start;
}

9-38 SCRIPTS Programming Topics

Chapter 10
Multithreaded I/O
This chapter describes multithreaded I/O and contains the following
sections:

• Section 10.1, “Overview,” page 10-1

• Section 10.2, “Multithreaded Operations Flow,” page 10-2

• Section 10.3, “SCRIPTS Areas,” page 10-4

• Section 10.4, “Multithreaded SCRIPTS Example,” page 10-4

• Section 10.5, “Using the SIGP Bit to Abort an Instruction,”
page 10-10

• Section 10.6, “I/O Completion,” page 10-12

10.1 Overview

The SCRIPTS processor allows multithreaded I/O operations with
minimal external processor intervention in systems that support
multitasking. Multithreaded algorithms must be used any time more than
one task is active in the system. Figure 10.1 shows a situation where
multiple tasks are simultaneously accessing multiple devices. The path
between Task 1 and Disk 2 is highlighted to show how information might
be transferred. The device driver must schedule and control the I/O
requests based on such considerations as what devices are available
and the relative priorities of the requests.
SCSI SCRIPTS Processors 10-1

Figure 10.1 Multithreaded System Operation

Multithreaded algorithms are similar to single threaded algorithms with
disconnects, but a new element called the scheduler is added. The
scheduler keeps track of SCSI bus operations when more than one task
is active at a time. The SCRIPTS code must be stored in RAM to allow
multithreaded operation because SCRIPTS and the CPU dynamically
modify SCRIPTS. A multithreaded SCRIPTS algorithm contains three
parts: the main SCRIPTS, the scheduler SCRIPTS, and the reselect
SCRIPTS. These areas are described in detail after the overview of
multithreaded I/O below. This example shows how to implement a
scheduler in SCRIPTS. This is only one method of implementing a
scheduler. You can choose to schedule I/Os in an upper layer, such as
in the “C” driver code.

10.2 Multithreaded Operations Flow

Figure 10.2 shows the flow during multithreaded operation. The heavy
lines in the figure represent the initial flow of information for a new
operation. The lighter weight lines represent the flow as the chip finishes
pending steps of a multithreaded operation.

Task 1

Operating System

Task 2 Task 3

SCRIPTS

Device Driver

SCSI Bus

Processor

Disk 1

Disk 2

Disk 3
10-2 Multithreaded I/O

Figure 10.2 Multithreaded SCRIPTS Operational Flow

To begin a multithreaded operation, your application determines that an
I/O is needed and makes an I/O request of the operating system. The
operating system then sets up and starts the appropriate device driver.
The main driver program modifies the SCSI scheduler routine to call the
appropriate I/O SCRIPTS instructions. At this point, normal processing
continues as the SCRIPTS processor executes the instructions of the
SCRIPTS routine.

When the CPU issues a request for service it writes a JUMP to the
scheduler to start the I/O. The SCRIPTS processor selects the SCRIPTS
needed to perform the requested action. That instruction writes a NOP
to the scheduler to prevent restarting the same I/O. The number of
entries (JUMPs) in the scheduler at any one time is the number of I/Os
scheduled but not started. The chip then executes the SCRIPTS
subroutine and interrupts at completion.

When the SCRIPTS processor has no more instructions to execute, it
jumps to the scheduler SCRIPTS area. If no new I/Os are scheduled, the
processor jumps to a WAIT RESELECT instruction. If a new I/O is

Wait Reselect
Instruction

SIGP

Select

Write NOP to
Scheduler

Main I/O
SCRIPTS
Routine

Processor
Service
Routine

Disconnect
or

I/O Complete

Write Jump to
Scheduler to
Start New I/O

Instruction

Nothing to do...

Reselection
Multithreaded Operations Flow 10-3

scheduled, the chip executes the JUMP instruction in the scheduler entry
that corresponds to the SCSI ID of the target device to go to the main
SCRIPTS area.

If the chip’s operation halts until another peripheral device retrieves data,
a Wait RESELECT SCRIPT is executed. When the chip is reselected by
the target, it resumes execution of the main I/O routine while the chip
waits to be reselected by the target device. The CPU may call the chip
by setting the SIGP bit. The SCRIPTS processor schedules a new I/O
and repeats the cycle described above.

10.3 SCRIPTS Areas

SCRIPTS code is subdivided into three functional areas: main, scheduler
and reselect.

The main SCRIPTS area contains the SCRIPTS necessary for the
standard operations associated with a SCSI command, such as
transferring messages, commands, and data. The scheduler SCRIPTS
area contains a three SCRIPTS entry for each job the CPU schedules.
The scheduler is modified at run time. When the operating system
interface receives an I/O request, it creates an area in host memory for
the corresponding scheduler information, and then tracks each request it
receives. New requests are classified as outstanding when they are
processed and performed. Upon completion of the I/O request, the
hardware interface returns a completed status to the operating system
interface which updates the status of the request. The reselect SCRIPTS
area is the portion of SCRIPTS code that is used after the target
disconnects and the SCRIPTS processor is waiting to be reselected.

10.4 Multithreaded SCRIPTS Example

An example operation for the SCRIPTS processor is illustrated below.
Steps 1 through 13 and Figures 10.3 through 10.9 make up the example.
This example demonstrates multithreaded I/O where only one command
is sent to each target at a time. To send more than one command to any
target, you must use tagged command queueing. For more complex
situations such as this, it may be preferable to use “C” code for
scheduling I/Os. The SCRIPTS program must be modified to look at the
10-4 Multithreaded I/O

queue tag messages. There must also be a DSA table entry for each
possible outstanding tagged command per target ID instead of just one
per target ID as in this example. This program appears in Appendix B,
“Multithreaded SCRIPTS Example.”

Any item in the code examples that is preceded by “PATCH_” must be
patched by the driver. Patching only occurs when the driver is initially
loaded. After initialization, all required addresses are in the SCRIPTS
array. For more information on instruction patching, refer to Chapter 7,
“Integrating SCRIPTS Programs into “C” Language Drivers.”

Note: Both dashed and solid lines are used in some of the
program illustrations. The dashed lines indicate pointers
and the solid lines indicate data movement in the direction
indicated by the arrows.

1. The CPU writes a JUMP into the io_requestX scheduler slot as
shown in Figure 10.3.

Figure 10.3 Multithreaded SCRIPTS Example Step 1

2. The CPU may need to set the SIGP bit to indicate that an I/O needs
to be processed.

If this happens the SCRIPTS processor JUMPs to the scheduler. The
first instruction in the scheduler sets up the DSA to point to the
correct table in the Figure 10.4 example.

JUMPCPU JUMP io_request0:

rel (multi_thread)
Multithreaded SCRIPTS Example 10-5

Figure 10.4 Multithreaded SCRIPTS Example Step 2

Table0 has the nexus information about any previously negotiated
synchronous transfer period and offset. It also contains the SCSI ID
of the target device. Clock divider information for the SCNTL3
register is also included in this table. The operating system builds the
command and other buffer information into this table prior to starting
this I/O.

3. The SCRIPTS instruction moves the address of the IO_requestX into
the schedule_nop SCRIPTS destination address field.

This allows the multithreaded SCRIPT instruction to write a NOP into
the io_requestX location in the scheduler to indicate that the I/O has
started. See Figure 10.5.

Host Memory

0

0

0 cmd_byte_count

command_address

SCNTL3 device id synch period

DSA

table0:

table0_ptr

Host Memory

;Scheduler SCRIPT code
scheduler:

SCRIPTS Processor

entry0:

MOVE MEMORY 4, PATCH_addr_of_table0_ptr, PATCH_chip_physaddr+DSA
10-6 Multithreaded I/O

Figure 10.5 Multithreaded SCRIPTS Example Step 3

4. The scheduler jumps to the multithread SCRIPTS subroutine with:

io_request0:
JUMP rel (multi_thread)

5. The main SCRIPTS routine executes a Select With Attention
instruction to connect to the appropriate SCSI device:

;Main SCRIPT code
multi_thread:

SELECT ATN FROM SCSI_id, REL (wait_for_reselect)

6. After the two devices are connected, the SCRIPTS instruction writes
the NOP into the scheduler routine to avoid trying to start the I/O
again.

This is accomplished by using a Memory-to-Memory Move
command. The source address is the address of a NOP SCRIPTS
instruction. The destination address is the io_requestX location that
was patched into place_hold_addr in the scheduler, as shown in
Figure 10.6.

Figure 10.6 Multithreaded SCRIPTS Example Step 6

Before:

After:

MOVE
MEM 4

nop_physaddr

place_hold_addr

(Source Address)

(Source Address)

(Destination Address)

(Destination Address)

4

nop_physaddr

io_request0

schedule_nop:

schedule_nop: MOVE
MEM

MOVE MEMORY 4, PATCH_SCRIPTphysaddr+io_request0,
PATCH_SCRIPTphysaddr+schedule_NOP+8

NOP JUMP
nop_physaddr: io_request0:

NOP
rel (multi_thread)
Multithreaded SCRIPTS Example 10-7

7. SCRIPTS continues, as in single threaded mode, until a disconnect
occurs.

JUMP REL (to_decisions), WHEN NOT MSG_OUT
id_msg_out:

MOVE FROM identify_msg_buf, WHEN MSG_OUT
.
.
..

8. On disconnection, the initiator jumps to the wait_for_reselect
SCRIPT.

It waits for any device that had previously disconnected to reconnect.
If a reselect occurs, the code continues to run. If the device gets
selected or the processor issues a SIGP, the SCRIPTS continues at
the alternate jump address. Setting the SIGP bit allows the processor
to start a new I/O, instead of just waiting for a previous I/O to
reconnect.

;Reselected SCRIPT code
wait_for_reselect:

WAIT RESELECT REL (CPU_set_SIGP)

9. The SCRIPTS processor determines the SCSI ID if the reselected
device after the initiator is reselected.

The ID of the device that reselected the chip is in the SSID register.

SCSI_id_jump_table:
MOVE SSID to SFBR
JUMP REL (id_0), IF 0x00
JUMP REL (id_1), IF 0x01
JUMP REL (id_2), IF 0x02
INT reselect_id_error

10. The DSA is written to the address of the correct table, depending on
the SCSI ID that reselected the initiator. See Figure 10.7.
10-8 Multithreaded I/O

Figure 10.7 Multithreaded SCRIPTS Example Step 10

11. Synchronous data transfer parameters are restored to the SXFER
register and the SCNTL3 register from the information stored in the
table. See Figure 10.8.

Figure 10.8 Multithreaded SCRIPTS Example Step 11

12. Table indirect SCRIPTS receive the identify message after the DSA
points to the correct table.

MOVE FROM identify_msg_buf, WHEN MSG_IN
CLEAR ACK

Host Memory

0
0

0 cmd_byte_count
command_address

device id synch period

DSA

table0:

table0_ptr

Host Memory
SCRIPTS Processor

MOVE MEMORY 4, PATCH_addr_of_table0_ptr, PATCH_chip_physaddr+DSA

id0:

0

Host Memory

0
0

device id synch period
table0:

SCRIPTS Processor

MOVE MEMORY 1, PATCH_addr_of_table0 + 2, PATCH_chip_physaddr+SXFER

0
cmd_byte_count

command_address

SXFER

id0:
Multithreaded SCRIPTS Example 10-9

13. SCRIPTS continues with a normal I/O until I/O completion, as shown
in Figure 10.9.

Figure 10.9 Multithreaded SCRIPTS Example Step 13

10.5 Using the SIGP Bit to Abort an Instruction

The SIGP (Signal Process) bit in the ISTAT register passes a flag to a
running SCRIPTS instruction. The SIGP signals that an I/O is ready for
execution and has already been scheduled by the host processor. The
only SCRIPTS instructions directly affected by this bit are Wait Select
and Wait Reselect. Setting the SIGP bit immediately jumps the
instruction to the alternate address. For more information on this bit, refer
to your chip technical manual. The SCRIPTS code in Figure 10.10 is an
example of how to use the SIGP bit when attempting to abort a Wait
Reselect or Wait Select instruction, assuming that the device is in the
initiator role.

Figure 10.10 Sample SIGP Code

;************************************
reselect_entry:
WAIT RESELECT alt_sig_p
; if here, got reselected
handle_resel:

JUMP REL (to_decisions)
id_1:
MOVE MEMORY 4, PATCH_addr_of_table1_ptr,
PATCH_chip_physaddr+DSA
MOVE MEMORY 1, PATCH_addr_of_table 1+2,
PATCH_chip_physaddr+SXFER
MOVE FROM identify_msg_buf, WHEN MSG_IN
CLEAR ACK
JUMP REL (to_decisions)
id_2:
MOVE MEMORY 4, PATCH_addr_of_table 2_ptr,
PATCH_chip_physaddr+DSA
MOVE MEMORY 1, PATCH_addr_of_table 2+2,
PATCH_chip_physaddr+SXFER
MOVE FROM identify_msg_buf, WHEN MSG_IN
CLEAR ACK
JUMP REL (to_decisions)
10-10 Multithreaded I/O

*
*
*

;************************************
selected_entry:
WAIT SELECT alt_sig_p
; if here, got selected
handle_sel:

*
*
*

;************************************
alt_sig_p:
; We assume that the sig_p bit was set,
; and a reselection needs to be performed.
; If here because of a selection or
; reselection or if a selection or
; reselection occurred during the jump after
; sig_p bit was set, the alternate address
; 'sel_resel' will be taken.
: Setup relevant information for this IO.
RESELECT FROM scsi_id, sel_resel
; if here, sig_p was set and there was no
; selection or reselection

MOVE CTEST2 TO SFBR
; clear sig_p bit

MOVE FROM ident_msg, WITH MSG_IN
; from this point a reselection is performed
; as normal by moving through the SCSI phases

*
*
*

;************************************
sel_resel:
; if here, we have been selected or reselected
; and sig_p may or may not have been set.
MOVE SIST0 & 0x20 TO SFBR
; get selected bit

JUMP sel, IF 0x20
; if we got selected
Using the SIGP Bit to Abort an Instruction 10-11

MOVE SIST0 & 0x10 TO SFBR
; get reselected bit

JUMP resel, IF 0x10
; if we got reselected

INT sel_resel_error
; big error, should have been selected
; or reselected

;************************************
sel:
; if here, selection occurred and sig_p may or
; may not have been set. But process selection
; no matter what.
JUMP handle_sel

;************************************
resel:
; if here, reselection occurred and sig_p may or
; may not have been set. But process reselection
; no matter what.
JUMP handle_resel:

10.6 I/O Completion

On I/O completion, the SCRIPTS processor informs the host system. You
can program this operation in one of several ways:

• Write to an address to generate an external interrupt.

This allows completely interrupt driven software.

– Write to memory to signal the I/O driver.

The driver polls the memory location, or, optionally, a general
purpose output pin could be used to tell the processor the location
contains information. For example, the status_buf or msg_in_buf
would be polled for good status or command complete to signal that
an I/O had completed.
MOVE 1, status_buf, WHEN STATUS
MOVE 1, msg_in_buf, WHEN MSG_IN
INT error_not_cmd_complete, IF NOT 0
CLEAR ACK
10-12 Multithreaded I/O

WAIT DISCONNECT
MOVE MEMORY 1, IO_DONE_BUF, DONE_YET_BUF
JUMP scheduler

– Execute a SCRIPTS INT instruction.

This is the simplest method. It causes the SCSI SCRIPTS to stop
processing.
INT io_complete

– Execute a Memory-to-Memory Move to a predetermined
location, then execute an INTFLY instruction to indicate to the
processor to look at the predetermined location to verify which
I/O has completed.
I/O Completion 10-13

10-14 Multithreaded I/O

Chapter 11
Using the SCRIPTS
Processor in Target
Applications
This chapter describes using chips with the SCRIPTS processor in target
applications and includes these topics:

• Section 11.1, “SCSI and Target SCRIPTS Protocol,” page 11-1

• Section 11.2, “Registers Used for Target Operation,” page 11-3

• Section 11.3, “Using SCRIPTS for Target Operation,” page 11-3

• Section 11.4, “Synchronous Negotiation by a Target Device,”
page 11-16

11.1 SCSI and Target SCRIPTS Protocol

The LSI53C7XX/8XX/10XX family of chips run on target as well as host
devices. Target operation is very similar to host operation, except that the
SCRIPTS processor responds to SCSI commands from the host rather
than initiating the commands. The basic structure of all target operations
is:

• The SCRIPTS processor issues a Wait Select instruction.

• The SCSI bus goes into Message Out phase.

• The SCRIPTS processor performs a series of Block Moves
corresponding to the next four SCSI bus phases. See Table 11.1.

• The SCRIPTS processor issues a Disconnect instruction to
disconnect the target device from the bus.
SCSI SCRIPTS Processors 11-1

.

Table 11.1 SCSI Protocol and Target SCRIPTS Instructions

Bus Phase Definition
SCRIPTS

Instruction

Bus Free Indicates that the SCSI bus is available. N/A

Arbitration Allows the initiator to gain control of the
SCSI bus.

N/A

Selection During this phase, the target responds to
the initiator’s selection.

WAIT SELECT

Message Out Target can receive messages from the
initiator, such as queuing and error
recovery information.

MOVE WITH
MESSAGE OUT

Command Target can receive commands in the
form of a CDB to the target buffer.

MOVE

Data In/Out Data In and Data Out phases send data
to the initiator or to the target and are
used dependent on the information
transferred during the Command phase.
This phase is optional. For example, a
Test Unit Ready command does not
require a data transfer.

MOVE

Status Target sends status information to the
initiator about the previously executed
CDB.

MOVE

Message In Target sends messages to the initiator.
These messages can acknowledge or
reject previously sent initiator messages.
They also can provide other information
like queuing, disconnect, or parity errors.

MOVE

Disconnect Ends the target device's connection with
the bus.

DISCONNECT

Bus Free After successful completion of an I/O
operation and a request for disconnect,
the bus returns to the Bus Free state,
indicating that it is now available.

DISCONNECT
11-2 Using the SCRIPTS Processor in Target Applications

11.2 Registers Used for Target Operation

Only a few of the operating register values are different for target
operation when compared to initiator operation. Table 11.2 summarizes
the register bit operations specific to target operation.

11.3 Using SCRIPTS for Target Operation

SCRIPTS instructions operate identically in target or initiator mode,
except for certain forms that are valid in only one mode. These
exceptions are all noted in the individual instruction descriptions in
Chapter 3, “The SCSI SCRIPTS Processor Instruction Set.” When the
target device is moving data to the SCSI bus and is halted for any
reason, the residual data in the FIFO must be cleared before resuming
the transfer. It is most common to empty the FIFOs, send a Restore
Pointers message and start the transfer again.

Most interrupts to target operation are expected. The floppy disk provided
with this programming guide contains a sample interrupt service routine
for a target device.

Table 11.2 Register Bits Used for Target Operation

Register Name Bits Description

RESPID1, RESPID0 all Setting multiple bits in these registers
allows the processor to respond to
multiple SCSI IDs.

SCNTL0 0 Set this bit to make the chip a target
device by default.

SCID 5 Set this bit to allow the processor to
respond to bus initiated selection at the
chip ID in the RESPID1–0 registers.

SCNTL1 5 When this bit is cleared, the processor
halts the data transfer when a parity
error is detected or when the SATN/
signal is asserted.
Registers Used for Target Operation 11-3

11.3.1 Sample Target Operation SCRIPTS Program

This section illustrates programming for target operation with a sample
SCRIPTS program. This program is used for testing and development of
LSI Logic SCSI products. The full text of the SCRIPTS source file and
accompanying code for target operation can be downloaded from the
LSI Logic website under OEM Development at this link:
http://www.lsilogic.com/products/techsupp/index.html
Figures 11.1 through 11.26 are sections of the code. Each figure has
supporting text.

Figure 11.1 SCRIPTS Source Code–Comments

ABSOLUTE declarations, as shown in Figure 11.2, are interrupts
generated by the target. The SCRIPTS processor issues interrupts to
notify the host of completed actions or to find out what action to take
next.

8xxtarg.ss Revision 2.2 2/12/96
;
; This software was written by LSI Logic Inc. to
; develop and test new products. LSI Logic assumes
; no liability for its use. This software is released
; to the public domain to illustrate certain
; programming techniques for the LSI53C8xx chips in
; target mode.
;

11-4 Using the SCRIPTS Processor in Target Applications

Figure 11.2 SCRIPTS Source Code–ABSOLUTE Declarations

EXTERNs are variables used for Memory-to-Memory Move operations.
For example, Figure 11.3 demonstrates moving SCRIPTS from program
memory into RAM or moving data from one memory location to another.

Figure 11.3 SCRIPTS Source Code–EXTERN Variables

TABLE, shown in Figure 11.4, defines the table format and layout. Each
entry in the table represents a two Dword entry in a data structure. Each
entry contains a byte count and an address that points to a buffer for
Block Move instructions. The buffer must be declared in the driver code.

Note: The declared values and sizes are only for the SCRIPTS
debugger, NVPCI. The assembler does not use these and
the information is not included in the “C” code. The buffers
must be set up in the driver program.

;ABSOLUTE DECLARATIONS
ABSOLUTE read_access_medium = 0x00
ABSOLUTE write_access_medium = 0x01
ABSOLUTE last_write_disconnect = 0x02
ABSOLUTE seek_command = 0x03
ABSOLUTE set_up_synch_neg = 0x04
ABSOLUTE set_up_wide_neg = 0x05
ABSOLUTE non_handled_msg = 0x06
ABSOLUTE bad_extended_msg = 0x07
ABSOLUTE message_sent = 0x08
ABSOLUTE request_sense_command = 0x09
ABSOLUTE inquiry_command = 0x0a
ABSOLUTE read_capacity_command = 0x0b
ABSOLUTE start_stop_command = 0x0c
ABSOLUTE format_unit = 0x0d
ABSOLUTE send_diagnostic = 0x0e
ABSOLUTE command_aborted = 0x0f
ABSOLUTE illegal_cmd = 0x10
ABSOLUTE got_SIGP = 0x11
ABSOLUTE done_with_copy = 0x12
ABSOLUTE got_selected = 0x13
ABSOLUTE done_with_busy_command = 0x14

EXTERN count
EXTERN source_address
EXTERN destination_address
Using SCRIPTS for Target Operation 11-5

Figure 11.4 SCRIPTS Source Code–TABLE

ENTRY declarations are starting points in the SCRIPTS program and are
referred to in “C” code. See Chapter 5, “The NASM Output File,” for more
information on output files and how they are assembled and used in the
driver code and Figure 11.5 for example code.

TABLE table_indirect \
msg_out_buf = 1{??}, \
cmd_buf = 12{??}, \
synch_neg_msg_out = 2{??}, \
wide_neg_msg_out = 1{??}, \
neg_msg_in = {0x01, 0x03, 0x01, 0x19, 0x08}, \
stat_buf = {0x02}, \
identify_msg_in_buf = {0x80},\
msg_in_buf = 1{??}, \
data_buf = 512{??}, \
save_pointers = {0x02}, \
disconnect_msg = {0x02, 0x04}, \
selector_id = ID{0x33, 0x07, 0x00, 0x00}, \
sense_data_buf = {0x00,0x00,0x06,0x00, 0x00, 0x00, \

0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, \
0x29, 0x00, 0x00, 0x00, 0x00, 0x00}, \

inquiry_data_buf = {0x00,0x00,0x02,0x00, 0x1f,0x00, \
0x00, 0x10, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, \
0x20, 0x20, 0x20, 0x20, 0x20, 0x20}, \

capacity_data_buf = {0x00, 0x80, 0x02, 0x00}

;**
11-6 Using the SCRIPTS Processor in Target Applications

Figure 11.5 SCRIPTS Source Code–ENTRY Declarations

The wait_select label, Figure 11.6, is the generic starting point for
target operations. The SCRIPTS processor waits at this point until
selection. It jumps to Command phase if ATN is not set or performs one
of the other commands described in the comments below. If the SIGP bit
is set, it jumps to an alternate label.

Figure 11.6 SCRIPTS Source Code–wait_select Label

If the SCRIPTS processor is selected without ATN, it goes directly to the
Command phase to support SCSI-1 initiators. The chip receives the CDB
and performs various functions, described in the program comments of
Figure 11.7, depending on the contents of the command.

; ENTRY declarations
ENTRY wait_select
ENTRY msg_out_phase
ENTRY tur
ENTRY stopped_busy_tur
ENTRY request_sense
ENTRY read_return
ENTRY read_reconnect
ENTRY write_return
ENTRY write_reconnect
ENTRY synch_wide_neg_return
ENTRY msg_in_phase
ENTRY inquiry
ENTRY read_capacity
ENTRY stopped_busy_wait_select
ENTRY copy_data

wait_select:
wait select rel(SIGP_set) ;wait to be selected
jump rel(command_phase), if not atn ;SCSI-1 initiator support
move from msg_out_buf, with msg_out ;get message byte
move sfbr to scratchb0 ;save the identify message
call rel(msg_out_phase), if atn ;stay in message if atn still

;active
Using SCRIPTS for Target Operation 11-7

Figure 11.7 SCRIPTS Source Code–CDB Functions

command_phase:
move from cmd_buf, with cmd ;get SCSI command
move scntl1 & 0xdf to scntl1 ;turns on the halt on parity error or atn
jump rel(read), if 0x08 ;jump to set up read (6-byte read)
int write_access_medium, if 0x0a ;interrupt to set up write (6-byte write)
int seek_command, if 0x0b ;interrupt to perform seek
int seek_command, if 0x2b ;interrupt to perform seek
jump rel(read), if 0x28 ;jump to set up read (10-byte read)
int write_access_medium, if 0x2a ;interrupt to set up write (10-byte write)
jump rel(tur), if 0x00 ;jump to test unit ready
int request_sense_command,if 0x03 ;interrupt to set up request sense command
int inquiry_command, if 0x12 ;interrupt to set up inquiry command
int read_capacity_command,if 0x25 ;interrupt to set up read capacity command
int start_stop_command, if 0x1b ;interrupt to set up start/stop unit command

jump rel(tur), if 0x2f ;verify command, go to tur
jump rel(reserve_unit), if 0x16 ;jump to reserve unit
jump rel(release_unit), if 0x17 ;jump to release unit
int send_diagnostic, if 0x1d ;interrupt to set up send diagnostic
int format_unit, if 0x04 ;interrupt to set up format unit
int illegal_cmd ;interrupt on any other command

In Message Out phase, the initiator moves other types of messages,
such as wide or synchronous negotiation, or NOPs. See Figure 11.8 for
an example.

Figure 11.8 SCRIPTS Source Code–Message Out Phase

If the chip receives a byte in the message phase indicating an extended
message, then it jumps to these commands as shown in Figure 11.9.

msg_out_phase:
return, if not atn ;return if atn gone
move from msg_out_buf, with msg_out ;get message byte
jump rel(extended_msg), if 0x01 ;jump if extended message
jump rel(abort), if 0x06 ;jump if abort message
jump rel(msg_out_phase), if 0x08 ;jump back if nop message
int non_handled_msg ;interrupt if can't handle message
11-8 Using the SCRIPTS Processor in Target Applications

Figure 11.9 SCRIPTS Source Code–Extended Message

In synchronous negotiation, Figure 11.10, the SCRIPTS processor
moves synchronous period and offset data from the synchronous
negotiation message and interrupts to set up the synchronous operation
and return message.

Figure 11.10 SCRIPTS Source Code–Synchronous Negotiation

If the extended message indicates wide negotiation, the SCRIPTS
processor expects one more byte with SCSI bus width information, as
shown in Figure 11.11. After receiving the byte, it interrupts to set up the
answer.

Figure 11.11 SCRIPTS Source Code–Wide Negotiation

After the interrupt service routine executes, the SCRIPTS processor
sends its return negotiation message. See Figure 11.12 for an example.

Figure 11.12 SCRIPTS Source Code–Return Negotiation

extended_msg:
int bad_extended_msg, if not atn ;if atn gone, extended message was bad
move from msg_out_buf, with msg_out ;get next message byte
int bad_extended_msg, if not atn ;if atn gone, extended message was bad
move from msg_out_buf, with msg_out ;this byte shows type of message
jump rel(synch_neg), if 0x01 ;0x01 is a synchronous negotiation message
jump rel(wide_neg), if 0x03 ;0x03 is a wide negotiation message
int bad_extended_msg ;interrupt on any other type

synch_neg:
move from synch_neg_msg_out, with msg_out ;move in the period and offset
int set_up_synch_neg ;interrupt to set up synchronous and

;message

wide_neg:
move from wide_neg_msg_out, with msg_out ;move in the width
int set_up_wide_neg ;interrupt to set up answer

synch_wide_neg_return:
move from neg_msg_in, with msg_in ;move out our answer to the negotiation
jump rel(command_phase), if not atn ;jump to command_phase if atn gone
jump rel(msg_out_phase) ;jump to msg_out_phse if atn still active
Using SCRIPTS for Target Operation 11-9

If the target device goes into the Message In phase, a resulting exception
condition requires the target device to send some type of recovery
message to the initiator, as shown in Figure 11.13. These commands
indicate what the initiator must do next. The messages may include, but
are not limited to: Message Reject or Restore Data Pointers.

Figure 11.13 SCRIPTS Source Code–Recovery Message

Test Unit Ready, Figure 11.14, is the final sequence of commands for any
I/O. The SCRIPTS processor sends a status message, disconnects from
the SCSI bus, executes an interrupt on the fly, and goes back to the
wait_select label to get ready for next command.

Figure 11.14 SCRIPTS Source Code–Test Unit Ready

The stopped_busy_tur, Figure 11.15, is the same as the Test Unit
Ready label. However, the SCRIPTS processor has been selected while
processing another command or has been issued a Stop command. If
the command is one the target device does not have to accept when
busy or stopped the device stops and sends back a busy status.

Figure 11.15 SCRIPTS Source Code–stopped_busy_tur Command

msg_in_phase:
move from msg_in_buf, with msg_in ;move a message to the initiator
int message_sent ;interrupt to determine what to do next

tur: ; (Test Unit Ready)
move from stat_buf, with status ;send out status byte
move from msg_in_buf, with msg_in ;send out message byte
move 0x20 to scntl1 ;turns off the halt on parity error or atn
disconnect ;disconnect from the SCSI bus
intfly ;interrupt to signal end of process
jump rel(wait_select)

stopped_busy_tur:
move from stat_buf, with status ;send out status byte
move from msg_in_buf, with msg_in ;send out message byte
move 0x20 to scntl1 ;turns off the halt on parity error or atn
disconnect ;disconnect from the SCSI bus
move scratcha1 to sfbr ;get the busy flag
int done_with_busy_command, if 0x01 ;if busy, interrupt to continue
intfly ;interrupt to signal end of process
jump rel(stopped_busy_wait_select)
11-10 Using the SCRIPTS Processor in Target Applications

Request Sense, Figure 11.16, sends the sense, inquiry, or capacity data
requested by the initiator. The SCRIPTS processor moves the data and
checks to see which Test Unit Ready command to use next.

Figure 11.16 SCRIPTS Source Code–Request Sense

The read label, Figure 11.17, is the starting point for all read commands.
If disconnects are allowed, the chip jumps to the read_disconnect label.
Read return is used after read information is set up in the data buffer. A
series of commands determine if the transfer is finished. If finished, the
SCRIPTS processor goes to Test Unit Ready or tries to disconnect
again.

request_sense:
move from sense_data_buf, with data_in ;move the sense data from the buffer
move scratcha2 to sfbr ;get the stopped/busy flag
jump rel(tur) if 0x00 ;go to the appropriate status and

;message phases
jump rel(stopped_busy_tur)

inquiry:
move from inquiry_data_buf, with data_in ;move out inquiry data
move scratcha2 to sfbr ;get the stopped/busy flag
jump rel(tur) if 0x00 ;go to the appropriate status and

;message phases
jump rel(stopped_busy_tur)

read_capacity:
move from capacity_data_buf, with data_in ;move out read capacity data
move scratcha2 to sfbr ;get the stopped/busy flag
jump rel(tur) if 0x00 ;go to the appropriate status and

;message phases
jump rel(stopped_busy_tur)
Using SCRIPTS for Target Operation 11-11

Figure 11.17 SCRIPTS Source Code–Read Label

The read_disconnect label, Figure 11.18 disconnects the device from
the bus and sets the Semaphore bit, which tells the interrupt service
routine it is disconnected.

Figure 11.18 SCRIPTS Source Code–read_disconnect Label

The read_reconnect label, Figure 11.19, performs reselection, moves
the identify message from the message in buffer, and jumps to send the
data.

read:
move scratchb0 to sfbr ;get identify message
jump rel(read_disconnect) if 0x40 and mask 0xbf;jump disconnect if

;disconnects are allowed
int read_access_medium ;interrupt to read data from

; medium

read_return:
move from data_buf, with data_in ;move the data out from the buffer
move scratchb1 to sfbr ;get the 'finished' flag
jump rel(tur) if 0x00 ;jump to status and message

;if transfer done
move scratchb0 to sfbr ;get identify message
jump rel(read_disconnect) if 0x40 and mask 0xbf

;jump to disconnect if disconnects
;are allowed

move from save_pointers, with msg_in ;move out the save pointers
;message

call rel(msg_out_phase) if atn ;jump to message out if atn active
int read_access_medium ;interrupt to access medium

read_disconnect:
move from disconnect_msg, with msg_in ;move out the disconnect message
call rel(msg_out_phase) if atn ;jump to message out if atn active
move 0x20 to scntl1 ;turns off the halt on parity

;error or atn
disconnect ;disconnect from the bus
move 0x10 to istat ;set the semaphore bit to say we

;are disconnected
int read_access_medium ;interrupt to read data from medium
11-12 Using the SCRIPTS Processor in Target Applications

Figure 11.19 SCRIPTS Source Code–read_reconnect Label

On a write, the SCRIPTS processor interrupts immediately to set up
counts for moving data, as shown in Figure 11.20. It takes data from the
initiator, then begins the write. When the writing is complete, control
jumps to the Test Unit Ready label.

Figure 11.20 SCRIPTS Source Code–Write

The write_disconnect label, Figure 11.21, does all the same things as
the read_ disconnect. It sets the semaphore bit and issues one of two
interrupts, depending on whether or not this is the last write of the
transfer.

Figure 11.21 SCRIPTS Source Code–write_disconnect Label
an

read_reconnect:
reselect from selector_id, rel(alt_got_selected ;reselect the initiator
move scntl1 & 0xdf to scntl1 ;turns on the halt on parity

;error or atn
move from identify_msg_in_buf, with msg_in ;move in identify message
jump rel(read_return) ;jump to send data

write_return:
move from data_buf, with data_out ;move the data into the buffer
move scratchb0 to sfbr ;get identify message
jump rel(write_disconnect) if 0x40 and mask 0xbf

;jump to disconnect if disconnects allowed
move scratchb1 to sfbr ;get the 'finished' flag
jump rel(tur) if 0x10 ;jump to status and message if transfer done
move from save_pointers, with msg_in ;move out the save pointers message
call rel(msg_out_phase) if atn ;jump to message out if atn active
int write_access_medium ;interrupt to read data from medium

write_disconnect:
move from disconnect_msg, with msg_in ;move out the disconnect message
call rel(msg_out_phase) if atn ;jump to message out if atn active
move 0x20 to scntl1 ;turns off the halt on parity error or atn
disconnect ;disconnect from the bus
move 0x10 to istat ;set the semaphore bit to say we are

;disconnected
move scratchb1 to sfbr ;get the 'finished' flag
int last_write_disconnect if 0x10 ;special interrupt after last data phase
int write_access_medium ;interrupt to read data from medium
Using SCRIPTS for Target Operation 11-13

The write_reconnect label, Figure 11.22, operates the same as
read_reconnect.

Figure 11.22 SCRIPTS Source Code–write_reconnect Label

The reserve_unit label, Figure 11.23, sets a reservation flag, gets the
ID of the initiator that sent the command, jumps to Test Unit Ready, and
completes the command.

Figure 11.23 SCRIPTS Source Code–reserve_unit Label

The release_unit command, Figure 11.24, clears the reserved flag and
goes to Test Unit Ready.

Figure 11.24 SCRIPTS Source Code–release_unit Command

The abort label turns off the halt on parity or ATN bit, and disconnects
from the bus, as shown in Figure 11.25. The chip executes this command
when it receives an Abort message for the command in process. The
interrupt service routine then cleans up the job.

write_reconnect:
reselect from selector_id, rel(alt_got_selected) ;reselect the initiator
move scntl1 & 0xdf to scntl1 ;turns on the halt on parity

;error or atn
move from identify_msg_in_buf, with msg_in ;move in identify message
move scratchb1 to sfbr ;get the 'finished' flag
jump rel(tur) if 0x00 ;jump to status and message

;if transfer complete
jump rel(write_return) ;jump to get data

reserve_unit:
move 0x01 to scratchb2 ;set 'reserved' in reservation flag
move ssid & 0x7f to sfbr ;get the ID of who reserved us
move sfbr to scratchb3 ;move ID into storage buffer
jump rel(tur) ;go to status and message

release_unit:
move 0x00 to scratchb2 ;set 'not reserved' in reservation flag
jump rel(tur) ;go to status and message
11-14 Using the SCRIPTS Processor in Target Applications

Figure 11.25 SCRIPTS Source Code–abort Label

The SCRIPTS processor only performs the stopped_busy_wait_select,
Figure 11.26, if it is selected while stopped or busy working on another
command. The Request Sense, Test Unit Ready, Inquiry, and Read
Capacity commands are valid while the target device is busy or stopped
and the chip must respond to them. If the chip is stopped, it only
responds to one of these commands or to a Start command.

Figure 11.26 SCRIPTS Source Code–stopped_busy_wait_select Command

stopped_busy_wait_select:
wait select rel(SIGP_set) ;wait to be selected
move from msg_out_buf, with msg_out ;get message byte
call rel(msg_out_phase), if atn ;stay in message if atn still active
move from cmd_buf, with cmd ;get SCSI command
move scntl1 & 0xdf to scntl1 ;turns on the halt on parity error or atn

jump rel(stopped_busy_tur), if 0x00 ;jump to test unit ready
int request_sense_command, if 0x03 ;interrupt to set up request sense command
int inquiry_command, if 0x12 ;interrupt to set up inquiry command
int read_capacity_command, if 0x25 ;interrupt to set up read capacity command

move sfbr to scratcha3 ;save the first byte of the command
move scratcha1 to sfbr ;get the busy flag
jump rel(stopped_busy_tur), if 0x01 ;if busy, go right to status and message

move scratcha3 to sfbr ;restore the first byte of the command
int start_stop_command, if 0x1b ;interrupt to set up start/stop unit command

jump rel(stopped_busy_tur) ;go to status and message for any other
;command

alt_got_selected:
int got_selected ;interrupt because got selected during

;reselect attempt

SIGP_set:
int got_SIGP ;taking interrupt because got SIGP

copy_data:
move memory count, source_address, destination_address

;memory move to write SCRIPTS RAM and to
;transfer data to and from upper memory

int done_with_copy ;signal completion of memory move

abort:
move 0x20 to scntl1 ;turns off the halt on parity error or atn
disconnect ;go to bus free
int command_aborted ;int to notify driver that command was aborted
Using SCRIPTS for Target Operation 11-15

11.4 Synchronous Negotiation by a Target Device

For target operation, negotiating occurs when a synchronous negotiation
message is received from the initiator. After receiving this message, a
SCRIPTS Interrupt instruction is executed to determine the necessary
response. After establishing the synchronous parameters for a particular
initiator, they should be saved in a table for later reconnects to the same
device. If reselecting an initiator, the RESELECT FROM command can
be used to indicate table indirect addressing. Subsequently, the SXFER,
SCNTL3, and SDID register values are loaded from the table entry.
When selected by an initiator that has previously negotiated for
synchronous transfers, these registers are reloaded from memory before
the target goes to the data transfer phase.
11-16 Using the SCRIPTS Processor in Target Applications

Chapter 12
Debugging the
SCRIPTS Processor
This chapter describes debugging the SCRIPTS processor and includes
these topics:

• Section 12.1, “Chip Debugging Guidelines,” page 12-1

• Section 12.2, “Register Used for Debugging,” page 12-3

12.1 Chip Debugging Guidelines

The list below has common problems and solutions you can use as part
of a debugging routine.

• Check the register initialization routine.

Several registers should be checked in this step. The most important
registers to verify are listed in Chapter 6, “Using the Registers to
Control Chip Operations.”

Save and print out the data values in all SCRIPTS processor
registers at the time the problem occurs.

Record the value of the ISTAT register first, since further register
accesses may trigger interrupts that were not caused by the initial
problem. If there is not an interrupt, abort the SCRIPTS operation by
writing to the ABRT bit in the ISTAT register. This will cause a DMA
abort interrupt. Reset this bit before reading the DSTAT register to
prevent further interrupts from being generated. Clear the interrupt(s)
following the method suggested in Chapter 6, “Using the Registers
to Control Chip Operations.”

Check the registers listed in Table 12.1 after clearing the interrupts.

If there is no indication of what is causing the problem, it might be
helpful to examine the remaining registers.
SCSI SCRIPTS Processors 12-1

• Use the DSP, DSPS, DCMD, and DBC registers to determine where
SCRIPTS execution was stopped.

The .LIS file generated by NASM using the -l option can be very
helpful in this step. Compare the listings to the debugging register
values to determine what might be causing the problem.

• Examine the logic analyzer traces of both the host bus and the SCSI
bus to verify that SCRIPTS fetches are occurring correctly.

This may also be helpful when comparing data transferred between
the two interfaces.

• Perform timing verification using a logic analyzer.

Signal quality issues and clock problems may require the use of an
oscilloscope.

• The CPU is accessing registers other than ISTAT while SCRIPTS are
running.

ISTAT is the only register that can be accessed during SCRIPTS
operation.

• The RESPID register(s) are not initialized.

This would keep the chip from responding to any
selection/reselection. Make sure these registers are initialized
correctly.

• Verify signal connectivity. (Make sure that the chip pins are all
connected to board traces.)

• Verify power and ground connection to the chip.

• Verify that decoupling capacitors are connected as recommended in
the chip technical manual to avoid noise problems.

• Make sure that the Enable Response to Selection/Reselection bits
are set correctly.

If you still have problems, take the information collected, along with your
code, and contact your LSI Logic field engineer.
12-2 Debugging the SCRIPTS Processor

12.2 Register Used for Debugging

The SCRIPTS registers and the SCSI registers contain information that
may be helpful in debugging the chip. Table 12.1 shows the information
contained in the registers.

Table 12.1 Registers Useful for Debugging SCRIPTS Processor

Information Register Remarks

Information regarding the
most recent interrupt

ISTAT Check this register first, since its contents may be
affected by reading or writing other registers.

Current SCRIPTS
instruction

DCMD and DBC
(first 32-bits);
DNAD or DSPS
(second 32-bits)

The DCMD and DBC always contain the opcode
of the most recently executed SCRIPTS
instruction. Use the cross reference file created
from the SCRIPTS source by NASM to interpret
the contents. The DSPS or DNAD contains the
second 32-bit field of the SCRIPTS instruction
fetched.

Next SCRIPTS
Instruction address

DSP Contains the address of the next instruction to be
fetched. This is analogous to the program counter
of a microprocessor. Instruction addresses are on
8-byte boundaries (except Memory Move, which is
on a 12-byte boundary) and so the value in the
DSP should be eight past the address of the
current instruction.

SCSI Bus Control Lines SBCL Contains the current state of the SCSI control
lines.

SCSI Bus Data Lines SBDL Contains the current status of the SCSI data lines.

Last SCSI Phase
serviced

SOCL Contains the phase to match (initiator) or the
phase driven (target) from the last SCRIPTS
instruction executed.

Last SCSI data byte sent SODL Contains the last byte transferred to the SCSI bus.

Last SCSI data byte
received

SIDL Contains the last byte transferred in from the SCSI
bus.

First byte received from
Block Move instruction
executed

SFBR Contains the first byte of a block move transferred
in from the SCSI bus. It also contains SCSI
identities after a reselection, if using the
LSI53C700 compatibility mode and if the IDs are
in the 0–7 range.

SCSI ID SCID Contains the chip’s SCSI ID.
Register Used for Debugging 12-3

Destination SCSI ID SDID Contains the identity of the target for the last
select or reselect instruction executed.

Response ID RESPID0, RESPID1
(wide SCSI devices
only)

Contains the IDs that the chip responds to on the
SCSI bus. The chip can respond to multiple IDs,
so more than one bit can be set in these registers.

Table 12.1 Registers Useful for Debugging SCRIPTS Processor (Cont.)

Information Register Remarks
12-4 Debugging the SCRIPTS Processor

Chapter 13
New SCRIPTS
Processor Features
This chapter describes features found in the LSI Logic 64-bit chips with
the SCRIPTS processor. Features described include:

• Section 13.1, “Improved FIFO Flushing,” page 13-1

• Section 13.2, “Larger FIFO,” page 13-2

• Section 13.3, “New ISTAT Registers,” page 13-2

• Section 13.4, “New Scratch Registers,” page 13-2

• Section 13.5, “New Load/Store Feature,” page 13-2

• Section 13.6, “Phase Mismatch Handling,” page 13-3

• Section 13.7, “64-Bit SCRIPTS Addressing,” page 13-6

Note: The chips covered in this section are the LSI53C895A,
LSI53C896, and the LSI53C10XX. Refer to Table 1.1 for an
overview of their specifications.

13.1 Improved FIFO Flushing

During data in phase mismatches, the SCRIPTS processor flushes at the
programmed burst size until the available burst size is less than the
programmed burst size. When the flush completes, an interrupt is
generated. If the available burst size is less than the programmed value,
it flushes as it normally would, one Dword per PCI cycle. Enhanced
flushing is enabled and disabled in parallel with phase mismatch handling
but it can also be disabled independently.
SCSI SCRIPTS Processors 13-1

13.2 Larger FIFO

FIFO size varies with the specific chip. Refer to Table 1.2 for specifics.
Max burst size is now 64 levels in the LSI53C896/10XX due to the
increased FIFO width.

13.3 New ISTAT Registers

ISTAT for these chips is now 32-bits wide. ISTAT1 is in byte lane 1. For
more details on ISTAT registers, refer to the appropriate chip technical
manual. Table 13.1 provides an overview of the registers in ISTAT1.

Byte lane 2 and 3 are general purpose mailbox registers (MBOX1 and
MBOX2) that communicate with the SCRIPTS engine. All 8 bits of a
mailbox should be either writes or reads, not a combination.

13.4 New Scratch Registers

Eight new 32-bit Scratch registers have been added to the chips, for a
total of 18. The new registers are SCRATCHK through SCRATCHR.

13.5 New Load/Store Feature

The SCRIPTS processor no longer uses the PCI bus for Load/Store
instructions when moving data between the chip registers and the
SCRIPTS RAM. This feature can be disabled by setting bit 1 of CCNTL0
(Offset 0x56).

Table 13.1 ISTAT1 Register

Bits [7:3] Reserved

Bit 2 Flushing in progress

Bit 1 SCRIPTS running

Bit 0 Synchronous IRQ disable
13-2 New SCRIPTS Processor Features

13.6 Phase Mismatch Handling

Phase Mismatch Handling eliminates the Phase Mismatch Interrupt. The
default setting for this feature is OFF. Bit 7 of CCNTL0 (offset 0x56)
enables the feature. Phase Mismatch Handling has the following
features.

• Performs all necessary byte count/pointer calculations then jumps to
a SCRIPTS phase mismatch handler.

• Supports two jump vectors with programmable jump control.

• Supports jump enable/disable during nondata phases.

• Supports Loadable Cumulative SCSI Byte Count to maintain total
bytes transferred for a given I/O.

Note: Overhead to jump is approximately 16 PCI clocks, not
including time to flush.

13.6.1 Control Bits

This section describes the control bits used for phase mismatch
handling. All bits are located in CCNTL0 (0x56).

• Bit 7: ENPMJ, Enable Phase Mismatch Jump (default = 0)

• Bit 6: PMJCTL, Phase Mismatch Jump Control (default = 0)

This bit controls which decision mechanism is used when jumping on
phase mismatches. When PMJCTL is clear, PMJAD1 is used when
WSR is clear, PMJAD2 when WSR is set. When PMJCTL is set,
PMJAD1 is used during data out phases, PMJAD2 used during data
in phases.

• Bit 5: ENNDJ, Enable Nondata Jump (default = 0)

When this bit is clear a Phase Mismatch interrupt is generated on
nondata phase mismatches, such as Status, Msg In/Out, and
Command. When set, jumps are taken during nondata phases.

• Bit 4: DISFC, Disable Auto FIFO Clear (default = 0)

This bit disables automatic FIFO clearing on data out phase
mismatches and disables enhanced flushing.
Phase Mismatch Handling 13-3

13.6.2 Registers

This is a list of the registers that are involved with Phase Mismatch
Handling.

• Phase Mismatch Jump Address one, PMJAD1 (0xC0–0xC3) R/W

This register contains the address the SCRIPTS engine jumps to on
phase mismatch if WSR is clear or during a data out phase.

• Phase Mismatch Jump Address two, PMJAD2 (0xC4–0xC7) R/W

This register contains the address to which the SCRIPTS engine
jumps on phase mismatch if WSR is set or during a data in phase.

• Remaining Byte Count, RBC (0xC8–0xCB) R/W

This register contains the remaining byte count for the block move
that was executing when the phase mismatch occurred. The upper
byte also contains an opcode for a direct or indirect block move or
the upper byte of the table entry for table indirect block moves.

• Updated Address, UA (0xCC–0xCF) R/W

This register contains the updated source/destination data address
for the block move that was executing when the phase mismatch
occurred. If there is a byte in SWIDE, then this register points to the
address where the byte should be stored. The address must be
incremented manually.

• Entry Storage Address, ESA (0xD0–0xD3) R/W

For direct/indirect block moves, this register contains the address of
the block move instruction that was executing when the phase
mismatch occurred. For table indirect block moves this register
contains the address of the table entry being used when the phase
mismatch occurred.

• Instruction Address, IA (0xD4–0xD7) R/W

This register always contains the address of the block move that was
executing when the phase mismatch occurred.

• SCSI Byte Count/SBC (0xD8–0xDA) Read only

This register counts bytes transferred to/from the SCSI bus during
any given block move. Resets to zero at the start of each block move.
Will be off by one in the case of an odd byte count wide transfer or
13-4 New SCRIPTS Processor Features

when during a wide send and there is a chained byte from a previous
transfer.

• Cumulative SCSI Byte Count, CSBC (0xDC–0xDF) R/W

This loadable register counts bytes transferred across the SCSI bus
independent of the block move executing. Only counts bytes during
data phase transfers.

The SWIDE byte must be flushed manually. Phase Mismatch that occurs
when WSS is set condition is handled. PMJAD1 and PMJAD2 are fully
static. RBC, UA, ESA and IA only change when a phase mismatch
occurs. SBC and CSBC change from block move to block move. You can
get stuck in a tight loop in SCRIPTS if you are not careful.

13.6.3 SCRIPTS Example

The following example is a Direct/Table indirect BMOV example, with
PMJCTL = 0

HandlePhaseMismatchNoWSR:
CALL REL(Save_cumulative_byte_count)

CALL REL(Get_msg_bytes_and_ensure_save_pointers)

; Update the Direct/Table Indirect Scatter Gather entry
Update_SG_entry:

; Modify Mem to Mem move to update Table indirect entry
STORE ESA0, 4, Mem2Mem_to_be_patched + 8

; Move the new byte count and address to the entry
Mem2Mem_to_be_patched:

MOVE MEMORY 8, RBC_addr, 0

JUMP REL(Do_code_architecture_specific_update)

HandlePhaseMismatchWSR:
CALL REL(Save_cumulative_byte_count)

; If here there is a byte in SWIDE to be moved
; Patch the BMOV that will flush SWIDE
STORE UA0, 4, SWIDE_patch+4

SWIDE_patch:
; Using a BMOV here is optimal due to the fact
; that there are no alignment restrictions as
Phase Mismatch Handling 13-5

; there are in mem2mem moves or stores
CHMOV 1, 0, WHEN DATA_IN

; Now increment the data address
MOVE UA + 1 to UA
MOVE UA + 0 to UA WITH CARRY
MOVE UA + 0 to UA WITH CARRY
MOVE UA + 0 to UA WITH CARRY

; Jump back up to update the Scatter Gather entry
JUMP REL(Update_SG_entry)

13.7 64-Bit SCRIPTS Addressing

Three extended addressing modes are available.

• Full 64-bit data addressing for direct block moves (bit enabled).

• 64-bit indexed data addressing mode for table indirect block moves
(bit enabled).

• 40-bit data addressing mode for table indirect block moves (bit
enabled).

Six selectors provide the upper 32-bits of a 64-bit address. If a selector
is zero, a single address cycle is issued. If the selector is nonzero then
a dual address cycle is issued. Five of the selectors are fully static and
the remaining one is semidynamic. For table index mode, the 16 Scratch
registers are also available.

Note: Crossing 4-Gbyte boundaries is not supported.

13.7.1 Control Bits

Control bits for 64-bit addressing are located in CCNTL1 register (0x57).

• Bit 2: 64TIMOD, 64-bit Table Indirect Index mode (default = 0)

Clear: D[28:24] of first Dword of table entry is used as an index to
select one of 22 selectors (ScratchC–R, MMRS, MMWS, SFS, DRS,
DBMS, or SBMS).

Set: D[31:24] of first Dword of table entry is used as AD[39:32] to
form a 40-bit address.
13-6 New SCRIPTS Processor Features

• Bit 1: EN64TIBMV, Enable 64-bit Table Indirect BMOV (default = 0)

Enables table indirect block moves to use the upper byte of the first
Dword of the table entry for 64-bit addressing. Use of this byte is
determined by the setting of 64TIMOD.

• Bit 0: EN64DBMV, Enable 64-bit direct BMOV (default = 0)

Enables a 64-bit version of a direct block move. When set, all direct
block moves are three Dword instructions.

13.7.2 Block Move

By default, BMOV data transfers use the SBMS register. By setting the
appropriate control bits, direct BMOVs and table indirect BMOVs can
dynamically change the upper 32 (or 8) address bits. Indirect BMOVs
always use SBMS.

13.7.3 Direct Block Move

Direct block moves are enabled by setting EN64DBMV. These moves
become three Dword instructions where the third Dword is loaded into
DBMS.

Figure 13.1 64-Bit Direct Block Move Format

13.7.4 Mode 0 Table Indirect Block Move

Mode 0 is set by setting EN64TIBMV and clearing 64TIMOD, both in the
CCNTL1 register. D[28:24] of first Dword of table entry is used as an
index to choose one of 22 selectors.

31 24 23 0

DCMD Register DBC Register

Opcode Count

31 0

DSPS Register

SRC/Destination Address

31 0

DBMS Register

SRC/Destination Address
64-Bit SCRIPTS Addressing 13-7

• ScratchC–R

• MMRS

• MMWS

• SFS

• DRS

• SBMS

• DBMS

The chosen selector is moved into DNAD64 (0xB8–0xBB) to form a
64-bit address.

Table 13.2 has the Index Mode 0 table entry format.

13.7.5 Mode 1 Table Indirect Block Move

Table 13.2 Index Mapping

Index Selector Used

0x00 ScratchC

0x01 ScratchD

0x02 ScratchE

0x03 ScratchF

0x04 ScratchG

0x05 ScratchH

0x06 ScratchI

0x07 ScratchJ

0x08 ScratchK

0x09 ScratchL

0x0A ScratchM

0x0B ScratchN

0x0C ScratchO

0x0D ScratchP
13-8 New SCRIPTS Processor Features

Mode 1 is set by writing EN64TIBMV and 64TIMOD. D[31:24] of the first
Dword of the table entry is used to create a 40-bit address by copying
directly to DNAD64. Refer to Figure 13.2.

Figure 13.2 Index Mode 1 Table Entry Format

0x0E ScratchQ

0x0F ScratchR

0x10 MMRS

0x11 MMWS

0x12 SFS

0x13 DRS

0x4 SBMS

0x15 DBMX

0x16–0x1E Illegal, results in UD interrupt

Table 13.2 Index Mapping (Cont.)

Index Selector Used

31 24 23 0

DCMD Register DBC Register

Scr/Destination
Address[39:32] Byte Count

31 0

DSPS Register

Source/Destination Address
64-Bit SCRIPTS Addressing 13-9

13.7.6 Table Indirect Block Move Summary

Table 13.3 summarizes the address locations for a table indirect move.

13.7.7 LSI53C1010/LSI53C1010R

This chip supports Ultra3 SCSI, which is enabled in SCNTL4. It uses DT
timing. It also has two new SCSI phases.

• DT_DATA_OUT

• DT_DATA_IN

The chip also supports Byte Recovery and shadowed registers SIST0
and SIST1. Specifics for these registers are listed below.

• SIST0

Pad Request with no CRC Request Following

Force CRC

Switch from DT to ST timings during a transfer

Phase Change with no final CRC Request

Multiple CRC Requests with the same offset

• SIST1

Residual Data in SCSI FIFO

Phase Change with outstanding Offset

Offset Overflow

Offset Underflow

Data Overflow

Data Underflow

Table 13.3 Table Indirect BMOV Upper 32-Bit Address Locations

EN64TIBMOV 64TIMOD Upper 32-bit Address Source

0 0 SBMS

0 1 SBMS

1 0 ScratchC–R, MMWS, MMRS, SPS, DRS, DBMS

1 1 First table entry Dword bits 31–24 (40-bit addressing)
13-10 New SCRIPTS Processor Features

Appendix A
NASM Error Messages
Table A.1 NASM Error Messages

Error Description

24-bit value expected The value specified is not within the range of a 24-bit unsigned
integer. The value must be between 0 and 4 Mbytes.
Something other than a value was found.

8-bit value expected The value specified is not within the range of an 8-bit unsigned
integer. The value must be between 0 and 255.
Something other than a value was found.

ACK, ATN, TARGET or CARRY
expected string

String was found instead of ACK, ATN, TARGET or CARRY.

AND or OR expected string String was found instead of AND or OR.

ATN specified multiple times The ATN field may only be specified once per instruction.

Cannot compare CARRY and
Data

The command is requesting that both a comparison of the SFBR
register to the specified data and a test of the carry bit take place,
but only one test is allowed.

Cannot compare PHASE and
Data

The command is requesting that both a comparison of the SCSI
bus phase and a comparison of the SFBR register to the
specified data take place, but only one test is allowed.

Cannot specify PHASE when
using ATN

The use of PHASE and ATN are mutually exclusive.

Cannot use MASK without
compare Data

Valid Data must be present when using the MASK field.

Cannot use Pass for count
address

The PASS feature cannot be used in a count field. The current
format of the output file does not support this.

Carry operations not available on
LSI53C700 architectures

The Carry feature is only available on the LSI53C710 or higher
architectures.

CARRY specified multiple times CARRY may only be specified once per instruction.
SCSI SCRIPTS Processors A-1

CHMOV LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The CHMOV instruction is only available on the chips that
support wide SCSI.

Comma expected string String was found instead of a comma.

CTEST7 LSI53C700 and
LSI53C710 architectures only

The CTEST7 register is only available on the LSI53C700/710
architectures.

CTEST8 LSI53C700 and
LSI53C710 architectures only

The CTEST8 register is only available on the LSI53C700/710
architectures.

Data list expected string String was found instead of a list of initialized data.

Data specified multiple times The Data field may only be specified once for a given instruction.

Data specifier expected string String was found instead of a Data specifier. A Data specifier is
used to specify the size of a data area and to initialize that data
area.

Declaration expected string String was found when a declaration was expected. A declaration
is an assignment of a variable to some value or data specifier.

Divide or mod by zero

DSAREL: LSI53C810A,
LSI53C825A, LSI53C860,
LSI53C875, and LSI53C895
architectures only

The DSAREL keyword is only supported by the chips that
support Load and Store instructions.

Entry identifier expected name Name was found instead of an identifier. An identifier is a symbol
that has not previously been declared.

Expression must evaluate to a
constant string

A label, relative, external, or an undeclared identifier, string, does
not evaluate to a known value. The value must be known at
assembly time.

Expression or External expected

GPCNTL LSI53C720,
LSI53C770, and LSI53C8XX only

The GPCNTL register is available only on the LSI53C720 and
higher architectures.

GPREG LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The GPREG register is only available on the LSI53C720 and
higher architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-2 NASM Error Messages

ID specifier only valid for table entries

IF or WHEN expected string String was found instead of one of IF or WHEN.

INTFLY: LSI53C720, LSI53C770,
and LSI53C8XX architecture only

The INTFLY instruction is only available on the LSI53C720 and
higher architectures.

Invalid Address string String was found instead of a valid address. A valid address is
an expression, external, relative, table, or an absolute.

Invalid assignment

Invalid character/s

Invalid constant type

Invalid destination address string String was found instead of a valid destination address. A valid
destination address is an expression, external, relative, table or
an absolute.

Invalid register operator string String was found instead of a valid operator. Valid operators are
'+', '−', '|', '&'.

Invalid register value Value must be in the range 0x0–0x3F for the LSI53C700/710 and
0x0–0x5C for the LSI53C720.

Invalid SCSI id Value must have only one bit set (bits [0:7]) for the
LSI53C700/710/810. Must be in the range of [0:15] for the
LSI53C720/820/825.

Invalid syntax string String was found and not expected causing an unknown syntax
error.

Invalid test condition string String was found instead of a valid test condition. The valid test
conditions are CARRY, a PHASE, an 8-bit value, or a MASK.

LCRC LSI53C710 architectures
only

The LCRC register is only available on the LSI53C710
architecture.

Left parenthesis expected string String was found instead of a left parentheses.

LOAD: LSI53C810A,
LSI53C825A, LSI53C860,
LSI53C875, LSI53C876,
LSI53C885, and LSI53C895
architectures

The LOAD instruction is only supported by the LSI53C810A and
higher architectures.

LOAD: Count must not exceed
4 bytes

Four bytes is the maximum byte count to LOAD.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-3

Logical end of line '\' expected
string

A logical line separator is needed before continuing the directive
on a new line.

MACNTL LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The MACNTL register is available only on LSI53C720 and higher
architectures.

MASK specified multiple times MASK may only be specified once per instruction.

Memory Move operations not
available on LSI53C700
architectures

The Memory Move instruction is only available on LSI53C710
and higher architectures.

Memory Move Noflush only
available on LSI53C810A,
LSI53C825A, LSI53C860,
LSI53C875, LSI53C876,
LSI53C885, and LSI53C895
architectures

The No Flush option is only available in the LSI53C810A and
higher architectures.

Old EXTERNAL directive, use
new EXTERNAL directive string

When the Debug switch is on, the operand string must be
declared with the new EXTERNAL directive syntax. The new
syntax informs the debugger of the size of the external variable.

Old RELATIVE directive, use new
RELATIVE directive string

When the Debug switch is on, the operand string must be
declared with the new RELATIVE directive syntax. The new
syntax informs the debugger of the size of the relative data area.

One register must be SFBR or
both the same

The Register Move instruction requires either the source or
destination register be the SFBR register, or that both the source
and destination be the same register.

Only use CARRY with Addition or
Subtraction

The CARRY bit can only be checked when either an addition or
subtraction operation is used.

Operand must be a TABLE entry
string

When the Debug switch is on, the operand where the string
resides must be of type TABLE entry. This is used for table
indirect addressing and to inform the debugger about the size of
the table.

Parenthesis must match when
PASS is used as an argument

When a PASS variable is used as an argument the parentheses
must match.

PHASE expected string String was found instead of a PHASE.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-4 NASM Error Messages

PHASE specified multiple times

Redeclaration of Label string The string has previously been declared as a label or some other
type of identifier other than an ENTRY.

Redeclaration of TABLE identifier The string has previously been declared as a TABLE name or
some other type of identifier. Only one TABLE declaration per
source file is allowed.

Register or Data24 value
expected string

String was found instead of a register or a 24-bit value.

Register right of operand must be
SFBR

In a Move to SFBR operation, SFBR must be to the right of the
operand.

Relative addressing not available
on LSI53C700 architecture

Relative addressing is not supported by the LSI53C700
architecture.

RESPID LSI53C81X architecture
only

The RESPID register is only one byte in the LSI53C810.

RESPID0 LSI53C720,
LSI53C770, LSI53C82X,
LSI53C875, LSI53C876,
LSI53C885, and LSI53C895
architectures only

The RESPID0 register is only available in devices that support
Wide SCSI.

RESPID1 LSI53C720,
LSI53C770, LSI53C82X,
LSI53C875, LSI53C876,
LSI53C885, and LSI53C895
architectures only

The RESPID1 register is only available in devices that support
Wide SCSI.

Right parenthesis expected string String was found instead of a right parentheses.

SBDL LSI53C700, LSI53C710,
and LSI53C81X architectures
only

The SBDL register is only one byte in the LSI53C700,
LSI53C710, and LSI53C81X architectures.

SBDL0 LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SBDL register is two bytes in the devices that support Wide
SCSI.

SBDL1 LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SBDL register is two bytes in the devices that support Wide
SCSI.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-5

SCNTL2 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SCNTL2 register is only available on the LSI53C720 and
higher architectures.

SCNTL3 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SCNTL3 register is only available on the LSI53C720 and
higher architectures.

Scratch0 LSI53C710
architectures only

The SCRATCH0 register is only available on the LSI53C710
architecture.

Scratch1 LSI53C710
architectures only

The SCRATCH1 register is only available on the LSI53C710
architecture.

Scratch2 LSI53C710
architectures only

The SCRATCH2 register is only available on the LSI53C710
architecture.

Scratch3 LSI53C710
architectures only

The SCRATCH3 register is only available on the LSI53C710
architecture.

Scratcha0 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHA0 register is only available on the LSI53C720
and higher architectures.

Scratcha1 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHA1 register is only available on the LSI53C720
and higher architectures.

Scratcha2 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHA2 register is only available on the LSI53C720
and higher architectures.

Scratcha3 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHA3 register is only available on the LSI53C720
and higher architectures.

Scratchb0 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHB0 register is only available on the LSI53C720
and higher architectures.

Scratchb1 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHB1 register is only available on the LSI53C720
and higher architectures.

Scratchb2 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHB2 register is only available on the LSI53C720
and higher architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-6 NASM Error Messages

Scratchb3 LSI53C720,
LSI53C770, and LSI53C8XX
architectures only

The SCRATCHB3 register is only available on the LSI53C720
and higher architectures.

Scratchc0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchc1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchc2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchc3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchd0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchd1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchd2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchd3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratche0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-7

Scratche1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratche2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratche3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchf0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchf1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchf2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchf3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchg0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchg1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-8 NASM Error Messages

Scratchg2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchg3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchh0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchh1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchh2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchh3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchi0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchi1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchi2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-9

Scratchi3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchj0 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchj1 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchj2 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

Scratchj3 LSI53C770,
LSI53C825A, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SCRATCHC–J registers are only available on the
LSI53C770, LSI53C825A, LSI53C875, and LSI53C895
architectures.

SELID0: LSI53C720, LSI53C770, and LSI53C8XX architectures only

SELID1: LSI53C720, LSI53C770, and LSI53C8XX architectures only

Separator expected ',' or '\\' A comma or a logical line separator is needed to delimit
declarations.

SIDL LSI53C700, LSI53C710,
and LSI53C81X architectures
only

The SIDL register is only one byte on the LSI53C700,
LSI53C710, and LSI53C81X chips.

SIDL0 LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SIDL register is two bytes on the chips that support Wide
SCSI.

SIDL1 LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SIDL register is two bytes on the chips that support Wide
SCSI.

SHL LSI53C720, LSI53C770, and
LSI538XX architectures only

The shift left instruction is only supported on LSI53C720 and
higher architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-10 NASM Error Messages

SHR LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The shift right instruction is only supported on LSI53C720 and
higher architectures.

SIEN LSI53C700 and LSI53C710
architectures only

The SIEN register is only available on the LSI53C700/710
architectures.

SIEN0 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SIEN0 register is only available on the LSI53C720 and
higher architectures.

SIEN1 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SIEN1 register is only available on the LSI53C720 and
higher architectures.

SIST0 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SIST0 register is only available on the LSI53C720 and
higher architectures.

SIST1 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SIST1 register is only available on the LSI53C720 and
higher architectures.

SLPAR LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SLPAR register is only available on the LSI53C720 and
higher architectures.

SODL LSI53C700, LSI53C710,
and LSI53C81X architectures
only

The SODL register is one byte only on the LSI53C700,
LSI53C710, and LSI53C81X chips.

SODL0 LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SODL register is two bytes on the chips that support Wide
SCSI.

SODL1 LSI53C720, LSI53C770,
LSI53C82X, LSI53C875,
LSI53C876, LSI53C885, and
LSI53C895 architectures only

The SODL register is two bytes on the chips that support Wide
SCSI.

SSID LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The SSID register is only available on the LSI53C720 and higher
architectures.

STEST0 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The STEST0 register is only available on the LSI53C720 and
higher architectures.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-11

STEST1 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The STEST1 register is only available on the LSI53C720 and
higher architectures.

STEST2 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The STEST2 register is only available on the LSI53C720 and
higher architectures.

STEST3 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The STEST3 register is only available on the LSI53C720 and
higher architectures.

STEST4 LSI53C895 architecture
only

The STEST4 register is only available on the LSI53C895.

STIME0 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The STIME0 register is only available on the LSI53C720 and
higher architectures.

STIME1 LSI53C720, LSI53C770,
and LSI53C8XX architectures
only

The STIME1 register is only available on the LSI53C720 and
higher architectures.

STORE: LSI53C810A,
LSI53C825A, LSI53C860,
LSI53C875, LSI53C876,
LSI53C885, and LSI53C895
architectures

The STORE instruction is only supported by the LSI53C810A
and higher architectures.

STORE: Count must not exceed 4
bytes

Four bytes is the maximum byte count to STORE.

SWIDE LSI53C720, LSI53C82X,
LSI53C875, LSI53C876,
LSI53C885, and LSI53C895
architectures only

The SWIDE register is only available on the LSI Logic SCSI
processors that support wide SCSI.

TABLE directive not available on
LSI53C700 architecture

Table indirect operations are not supported by the LSI53C700.

Table indirect operations not
available on LSI53C700
architecture

Table indirect addressing is not supported by the LSI53C700
architecture.

Table name expected string The directive TABLE was found without a table name declaration.

Unexpected EOF End of file was found when not expected.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-12 NASM Error Messages

Unresolved Label or Identifier
string

String was used but never declared as a label, external, relative,
absolute or table.

WITH or WHEN expected

XOR LSI53C720, LSI53C810,
and LSI53C825 only

XOR operations are only supported on LSI53C720 and higher
architectures

Table A.2 Fatal Errors

Error Description

Fatal Error allocating input file buffer(s)

Fatal File Not found The file named filename was not found in the path specified.

Fatal Memory allocation error Not enough dynamic memory available to complete assembly of
the file. Try dividing up file or freeing memory.

Fatal No source file specified A source file to assemble must be specified on the command line.
Try specifying source files first before options.

Fatal Opening file The filename specified cannot be opened for some unknown
reason.

Fatal read permission denied for
file

The filename specified cannot be opened with read access.

Table A.1 NASM Error Messages (Cont.)

Error Description
A-13

Table A.3 Warnings

Error Description

ACK specified multiple times The ACK bit can only be specified once per instruction.

ATN specified multiple times The ATN bit can only be specified once per instruction.

Cannot extract pass information
correctly

The pass variable is poorly formatted and may not have been
correctly interpreted.

CARRY specified multiple times The CARRY bit can only be specified once per instruction.

Initializer value truncated to byte
value

Initialization of data by byte offset only.

Debug record contains old format
EXTERNAL statement, data size
unknown

Use the new style EXTERNAL directive where data specifiers are
used.

Debug record contains old format
RELATIVE statement, Data size
unknown

Use the new style RELATIVE directive where data specifiers are
used.

Initializer value truncated to byte

Possible truncation of constant
value

The value of the constant may have been truncated. This is
caused by the ASCII conversion of the value.

Relative offset value truncated

Source and .bin file have the
same name

The binary file has the same name as the source. The binary file
will be renamed or not created.

Source and Error file have the
same name

The error file has the same name as the source. The error file will
be renamed or not created.

Source and listing file have the
same name

The listing file has the same name as the source. The listing file
will be renamed or not created.

Source and Object file have the
same name

The object file and source file have the same name. The object
file will be renamed or not created.

Source and Out file have the
same name

The output file and source file have the same name. The output
file will be renamed or not created.

TARGET specified multiple times The TARGET bit can only be specified once per instruction.
A-14 NASM Error Messages

Appendix B
Multithreaded SCRIPTS
Example
**

; 53C810 MULTI THREAD EXAMPLE
;***
********; ABSOLUTE declarations

ABSOLUTE SCSI_id = 0
ABSOLUTE MATCH_SCSI_ID = 0x81

; Messages
ABSOLUTE CMD_COMPLETE_ = 0x00
ABSOLUTE EXTEND_MSG_= 0x01
ABSOLUTE SAVE_DATAPTR_= 0x02
ABSOLUTE DISCONNECT_= 0x04
ABSOLUTE MSG_REJECT_= 0x07

; Interrupt codes
ABSOLUTE error_not_cmd_phase = 0x01
ABSOLUTE error_not_data_in_phase = 0x02
ABSOLUTE error_not_data_out_phase = 0x03
ABSOLUTE error_not_msg_in_phase = 0x04
ABSOLUTE error_not_msg_out_phase = 0x05
ABSOLUTE error_not_status_phase = 0x06
ABSOLUTE error_unexpected_phase = 0x07
ABSOLUTE error_jump_not_taken = 0x10
ABSOLUTE error_not_cmd_complete = 0x20
ABSOLUTE error_not_extended_msg = 0x21
ABSOLUTE io_complete = 0x0A
ABSOLUTE setup_SXFER = 0x888
ABSOLUTE reselect_id_error = 0x999
ABSOLUTE select_error = 0xfff
;***

; TABLE declarations for Table Indirect offsets in bytes
Table Table_Indirect \
SCSI_ID=ID{0x00,0x00,0x00,0x00}, \
identify _msg_buf = {0xc0}, \
SCSI SCRIPTS Processors B-1

synch_msgi_buf = 5{??}, \
cmd_buf = 12{??}, \
status_buf = 1{??}, \
msg_in_buf = 1{??}, \
data_buf = 512{??}

;***

; ENTRY declarations
ENTRY multi_thread
ENTRY to_decisions
ENTRY id_msg_out
ENTRY msg_in_phase
ENTRY cmd_phase
ENTRY data_in_phase
ENTRY data_out_phase
ENTRY status_phase
ENTRY disconnected
ENTRY entry0
ENTRY entry1
ENTRY entry2
ENTRY io_request0
ENTRY io_request1
ENTRY io_request2
ENTRY schedule_NOP

; Scheduler SCRIPT code
scheduler:

entry0:
;Initialize DSA register with table base address for

using table
;indirect addressing
MOVE MEMORY 4, PATCH_addr_of_table0_ptr,

PATCH_chip_physaddr+DSA
;Initilize address for changing jump to nop after

starting new I/O
;(after SELECT instruction in main SCRIPT code)
MOVE MEMORY 4,

PATCH_SCRIPTphysaddr+io_request0,PATCH_SCRIPTphysaddr+schedu
le_NOP+8
io_request0:

JUMP REL(multi_thread)

entry1:
MOVE MEMORY 4, PATCH_addr_of_table1_ptr,

PATCH_chip_physaddr+DSA
MOVE MEMORY 4,
B-2 Multithreaded SCRIPTS Example

PATCH_SCRIPTphysaddr+io_request1,PATCH_SCRIPTphysaddr+schedu
le_NOP+8
io_request1:

JUMP REL(multi_thread)

entry2:
MOVE MEMORY 4, PATCH_addr_of_table2_ptr,

PATCH_chip_physaddr+DSA
MOVE MEMORY 4,

PATCH_SCRIPTphysaddr+io_request2,PATCH_SCRIPTphysaddr+schedu
le_NOP+8
io_request2:

JUMP REL(multi_thread)

JUMP REL(wait_for_reselect)

;***

; main SCRIPT code
multi_thread:

SELECT ATN FROM SCSI_id, REL(wait_for_reselect)

;Change jump to nop in scheduler after starting new I/O
;the destination address is initialized from scheduler
SCRIPT
schedule_NOP:

MOVE MEMORY 4, PATCH_nop_physaddr, PATCH_place_hold_addr

JUMP REL(to_decisions), WHEN NOT MSG_OUT

id_msg_out:
MOVE FROM identify_msg_buf, WHEN MSG_OUT
JUMP REL(to_decisions), WHEN NOT CMD

cmd_phase:
CLEAR ATN
MOVE FROM cmd_buf, WHEN CMD
JUMP REL(to_decisions), WHEN NOT DATA_IN

data_in_phase:
MOVE FROM data_buf, WHEN DATA_IN
JUMP REL(status_phase), WHEN STATUS
JUMP REL(to_decisions)

data_out_phase:
MOVE FROM data_buf, WHEN DATA_OUT
JUMP REL(to_decisions), WHEN NOT STATUS
B-3

status_phase:
MOVE FROM status_buf, WHEN STATUS
JUMP REL(to_decisions), WHEN NOT MSG_IN

msg_in_phase:
MOVE FROM msg_in_buf, WHEN MSG_IN
JUMP REL(disconnected), IF DISCONNECT_
JUMP REL(msg_in_phase), WHEN SAVE_DATAPTR_ ;compare data,

wait for phase
INT error_not_cmd_complete, IF NOT 0x00
CLEAR ACK
MOVE SCNTL2 & 0x7F TO SCNTL2
WAIT DISCONNECT
INT io_complete

disconnected:
MOVE SCNTL2 & 0x7F TO SCNTL2
WAIT DISCONNECT
JUMP REL(wait_for_reselect)

to_decisions:
JUMP REL(msg_in_phase), WHEN MSG_IN
JUMP REL(cmd_phase), IF CMD
JUMP REL(data_in_phase), IF DATA_IN
JUMP REL(data_out_phase), IF DATA_OUT
JUMP REL(status_phase), IF STATUS
INT error_unexpected_phase

;Reselect SCRIPT code
wait_for_reselect:

WAIT RESELECT REL(CPU_set_SIGP)

SCSI_id_jump_table:
MOVE SSID TO SFBR
JUMP REL(id_0), IF 0x00 ;
JUMP REL(id_1), IF 0x01
JUMP REL(id_2), IF 0x02
INT reselect_id_error

id_0:
MOVE MEMORY 4, PATCH_addr_of_table0_ptr,

PATCH_chip_physaddr+DSA
;initialize SXFER for synchronous transfers from table
MOVE MEMORY

1,PATCH_addr_of_table0+2,PATCH_chip_physaddr+SXFER
MOVE MEMORY

1,PATCH_addr_of_table0,PATCH_chip_physaddr+SCNTL3
B-4 Multithreaded SCRIPTS Example

; This will set up the clock dividers as defined in the
SCNTL3 register

MOVE FROM identify_msg_buf, WHEN MSG_IN
CLEAR ACK
JUMP REL(to_decisions)

id_1:
MOVE MEMORY 4, PATCH_addr_of_table1_ptr,

PATCH_chip_physaddr+DSA
;initialize SXFER for synchronous transfers from table
MOVE MEMORY 1,

PATCH_addr_of_table1+2,PATCH_chip_physaddr+SXFER
MOVE MEMORY

1,PATCH_addr_of_table1,PATCH_chip_physaddr+SCNTL3
; This will set up the clock dividers as defined in the

SCNTL3 register
MOVE FROM identify_msg_buf, WHEN MSG_IN
CLEAR ACK
JUMP REL(to_decisions)

id_2:
MOVE MEMORY 4, PATCH_addr_of_table2_ptr,

PATCH_chip_physaddr+DSA
;initialize SXFER for synchronous transfers from table
MOVE MEMORY

1,PATCH_addr_of_table2+2,PATCH_chip_physaddr+SXFER
MOVE MEMORY

1,PATCH_addr_of_table2,PATCH_chip_physaddr+SCNTL3
; This will set up the clock dividers as defined in the

SCNTL3 register
MOVE FROM identify_msg_buf, WHEN MSG_IN
CLEAR ACK
JUMP REL(to_decisions)

CPU_set_SIGP:
JUMP scheduler
B-5

B-6 Multithreaded SCRIPTS Example

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

12 pc

34.732
34.5 pc

Appendix C
Glossary of Terms and
Abbreviations
12.938 pc
13.851 pc

48.583 pc
pc

160/m An industry initiative extension of the Ultra160 SCSI specification that
requires support of Double Transition (DT) Clocking, Domain Validation,
and Cyclic Redundancy Check (CRC).

Active
Termination

The electrical connection required at each end of the SCSI bus,
composed of active voltage regulation and a set of termination resistors.
Ultra, Ultra2, and Ultra160 SCSI require active termination.

Address A specific location in memory, designated either numerically or by a
symbolic name.

AIP Asynchronous Information Protection provides error checking for
asynchronous, nondata phases of the SCSI bus.

Asynchronous
Data Transfer

One of the ways data is transferred over the SCSI bus. It is slower than
synchronous data transfer.

BIOS Basic Input/Output System. Software that provides basic read/write
capability. Usually kept as firmware (ROM based). The system BIOS on
the mainboard of a computer is used to boot and control the system. The
SCSI BIOS on your host adapter acts as an extension of the system
BIOS.

Bit A binary digit. The smallest unit of information a computer uses. The
value of a bit (0 or 1) represents a two-way choice, such as on or off,
true or false, and so on.

Bus A collection of unbroken signal lines across which information is
transmitted from one part of a computer system to another. Connections
to the bus are made using taps on the lines.
SCSI SCRIPTS Processors C-1 52.5 pc

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

Bus Mastering A high-performance way to transfer data. The host adapter controls the
transfer of data directly to and from system memory without interrupting
the computer’s microprocessor. This is the fastest way for multitasking
operating systems to transfer data.

Byte A unit of information consisting of eight bits.

CISPR A special international committee on radio interference (Committee,
International and Special, for Protection in Radio).

Configuration Refers to the way a computer is set up; the combined hardware
components (computer, monitor, keyboard, and peripheral devices) that
make up a computer system; or the software settings that allow the
hardware components to communicate with each other.

CRC Cyclic Redundancy Check is an error detection code used in Ultra160
SCSI. Four bytes are transferred with the data to increase the reliability
of data transfers. CRC is used on the Double Transition (DT) Data In and
DT Data Out phases.

CPU Central Processing Unit. The “brain” of the computer that performs the
actual computations. The term Microprocessor Unit (MPU) is also used.

DMA Bus
Master

A feature that allows a peripheral to control the flow of data to and from
system memory by blocks, as opposed to PIO (Programmed I/O) where
the processor is in control and the flow is by byte.

Device Driver A program that allows a microprocessor (through the operating system)
to direct the operation of a peripheral device.

Differential SCSI A hardware configuration for connecting SCSI devices. It uses a pair of
lines for each signal transfer (as opposed to Single-Ended SCSI which
references each SCSI signal to a common ground).

Domain
Validation

Domain Validation is a software procedure in which a host queries a
device to determine its ability to communicate at the negotiated Ultra160
data rate.

Double
Transition (DT)
Clocking

In Double Transition Clocking data is sampled on both the asserting and
deasserting edge of the REQ/ACK signal. DT clocking may only be
implemented on an LVD SCSI bus.
52.5 pcC-2 Glossary of Terms and Abbreviations

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

Dword A doubleword is a group of four consecutive bytes or characters that are
stored, addressed, transmitted, and operated on as a unit. The lower two
address bits of the least significant byte must equal zero in order to be
Dword aligned.

EEPROM Electronically Erasable Programmable Read Only Memory. A memory
chip typically used to store configuration information. See NVRAM.

EISA Extended Industry Standard Architecture. An extension of the 16-bit ISA
bus standard. It allows devices to perform 32-bit data transfers.

External SCSI
Device

A SCSI device installed outside the computer cabinet. These devices are
connected in a continuous chain using specific types of shielded cables.

Fast-20 The SCSI Trade Association (STA) supports the use of “Ultra SCSI” over
the term “Fast-20”. Please see Ultra SCSI.

Fast-40 The SCSI Trade Association (STA) supports the use of “Ultra2 SCSI”
over the term “Fast-40”. Please see Ultra2 SCSI.

Fast SCSI A standard for SCSI data transfers. It allows a transfer rate of up to
10 Mbytes/s over an 8-bit SCSI bus and up to 20 Mbytes/s over a 16-bit
SCSI bus.

FCC Federal Communications Commission.

File A named collection of information stored on a disk.

Firmware Software that is permanently stored in ROM. Therefore, it can be
accessed during boot time.

Hard Disk A disk made of metal and permanently sealed into a drive cartridge. A
hard disk can store very large amounts of information.

Host The computer system in which a SCSI host adapter is installed. It uses
the SCSI host adapter to transfer information to and from devices
attached to the SCSI bus.

Host Adapter A circuit board or integrated circuit that provides a SCSI bus connection
to the computer system.

Internal SCSI
Device

A SCSI device installed inside the computer cabinet. These devices are
connected in a continuous chain using an unshielded ribbon cable.
52.5 pcC-3

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

IRQ Interrupt Request Channel. A path through which a device can get the
immediate attention of the computer’s CPU. The PCI bus assigns an IRQ
path for each SCSI host adapter.

ISA Industry Standard Architecture. A type of computer bus used in most
PCs. It allows devices to send and receive data up to 16 bits at a time.

Kbyte Kilobyte. A measure of computer storage equal to 1024 bytes.

Local Bus A way to connect peripherals directly to computer memory. It bypasses
the slower ISA and EISA buses. PCI is a local bus standard.

Logical Unit A subdivision, either logical or physical, of a SCSI device (actually the
place for the device on the SCSI bus). Most devices have only one logical
unit, but up to eight are allowed for each of the eight possible devices on
a SCSI bus.

LUN Logical Unit Number. An identifier, zero to seven, for a logical unit.

LVD Link Low Voltage Differential Link allows greater Ultra2 SCSI device
connectability and longer SCSI cables. LVD Link lowers the amplitude of
noise reflections and allows higher transmission frequencies.

Mainboard A large circuit board that holds RAM, ROM, the microprocessor, custom
integrated circuits, and other components that make a computer work. It
also has expansion slots for host adapters and other expansion boards.

Main Memory The part of a computer’s memory which is directly accessible by the CPU
(usually synonymous with RAM).

Mbyte Megabyte. A measure of computer storage equal to 1024 kilobytes.

Motherboard See Mainboard. In some countries, the term Motherboard is not
appropriate.

Multitasking The executing of more than one command at the same time. This allows
programs to operate in parallel.

Multithreading The simultaneous accessing of data by more than one SCSI device. This
increases the data throughput.

NVRAM NonVolatile Random Access Memory. Actually an EEPROM
(Electronically Erasable Read Only Memory chip) used to store
configuration information. See EEPROM.
52.5 pcC-4 Glossary of Terms and Abbreviations

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

Operating
System

A program that organizes the internal activities of the computer and its
peripheral devices. An operating system performs basic tasks such as
moving data to and from devices, and managing information in memory.
It also provides the user interface.

Parity Checking A way to verify the accuracy of data transmitted over the SCSI bus. The
parity bit in the transfer is used to make the sum of all the 1 bits either
odd or even (for odd or even parity). If the sum is not correct, the
information may be retransmitted or an error message may appear.

Passive
Termination

The electrical connection required at each end of the SCSI bus,
composed of a set of resistors. It improves the integrity of bus signals.

PCI Peripheral Component Interconnect. A local bus specification that allows
connection of peripherals directly to computer memory. It bypasses the
slower ISA and EISA buses.

Peripheral
Devices

A piece of hardware (such as a video monitor, disk drive, printer, or
CD-ROM) used with a computer and under the computer’s control. SCSI
peripherals are controlled through a SCSI host adapter.

Pin-1
Orientation

The alignment of pin 1 on a SCSI cable connector and the pin-1 position
on the SCSI connector into which it is inserted. External SCSI cables are
always keyed to insure proper alignment, but internal SCSI ribbon cables
sometimes are not keyed.

PIO Programmed Input/Output. A way the CPU can transfer data to and from
memory using the computer’s I/O ports. PIO is usually faster than DMA,
but requires CPU time.

Port Address Also Port Number. The address through which commands are sent to a
host adapter board. This address is assigned by the PCI bus.

Port Number See Port Address.

Queue Tags A way to keep track of multiple commands that allow for increased
throughput on the SCSI bus.
52.5 pcC-5

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

RAM Random Access Memory. The computer’s primary working memory in
which program instructions and data are stored and are accessible to the
CPU. Information can be written to and read from RAM. The contents of
RAM are lost when the computer is turned off.

RISC Core LSI Logic SCSI chips contain a RISC (Reduced Instruction Set
Computer) processor, programmed through microcode SCRIPTS.

ROM Read Only Memory. Memory from which information can be read but not
changed. The contents of ROM are not erased when the computer is
turned off.

SCAM SCSI Configured AutoMatically. A method to automatically allocate SCSI
IDs using software when SCAM compliant SCSI devices are attached.

SCSI Small Computer System Interface. A specification for a high-performance
peripheral bus and command set. The original standard is referred to as
SCSI-1.

SCSI-2 The SCSI specification which adds features to the original SCSI
standard.

SCSI-3 The current SCSI specification which adds features to the SCSI-2
standard.

SCSI Bus A host adapter and one or more SCSI peripherals connected by cables
in a linear chain configuration. The host adapter may exist anywhere on
the chain, allowing connection of both internal and external SCSI
devices. A system may have more than one SCSI bus by using multiple
host adapters.

SCSI Device Any device that conforms to the SCSI standard and is attached to the
SCSI bus by a SCSI cable. This includes SCSI host adapters and SCSI
peripherals.

SCSI ID A way to uniquely identify each SCSI device on the SCSI bus. Each SCSI
bus has eight available SCSI IDs numbered 0 through 7 (or 0 through
15 for Wide SCSI). The host adapter usually gets the highest ID (7 or 15)
giving it priority to control the bus.

SCSI SCRIPTS A SCSI programming language that works with the SCRIPTS processor
that is embedded on the LSI53C7XX, LSI53C8XX, or LSI53C10XX
device. These SCRIPTS reside in in host computer system memory.
52.5 pcC-6 Glossary of Terms and Abbreviations

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

SCRIPTS
Processor

The SCRIPTS processor allows users to fine tune SCSI operations with
regard to unique vendor commands or new SCSI specifications. The
SCRIPTS processor fetches SCRIPTS instructions from system memory
to control operation of the LSI53C7XX, LSI53C8XX, or LSI53C10XX
device.

Single-Ended
SCSI

A hardware specification for connecting SCSI devices. It references each
SCSI signal to a common ground. This is the most common method (as
opposed to differential SCSI which uses a separate ground for each
signal).

STA SCSI Trade Association. A group of companies that cooperate to
promote SCSI parallel interface technology as a viable mainstream I/O
interconnect for commercial computing.

Synchronous
Data Transfer

One of the ways data is transferred over the SCSI bus. Transfers are
clocked with fixed frequency pulses. This is faster than asynchronous
data transfer. Synchronous data transfers are negotiated between the
SCSI host adapter and each SCSI device.

System BIOS Controls the low-level POST (Power-On Self-Test), and basic operation
of the CPU and computer system.

TolerANT
Technology

A technology developed and used by LSI Logic to improve data integrity,
data transfer rates, and noise immunity through the use of active
negation and input signal filtering.

Ultra SCSI A standard for SCSI data transfers. It allows a transfer rate of up to
20 Mbytes/s over an 8-bit SCSI bus and up to 40 Mbytes/s over a 16-bit
SCSI bus. SCSI Trade Association (STA) supports using the term “Ultra
SCSI” over the older term “Fast-20”.

Ultra2 SCSI A standard for SCSI data transfers. It allows a transfer rate of up to
40 Mbytes/s over an 8-bit SCSI bus, and up to 80 Mbytes/s over a
16-bit SCSI bus. SCSI Trade Association (STA) supports using the term
“Ultra2 SCSI” over the term “Fast-40”.

Ultra160 SCSI A standard for SCSI data transfers. It allows a transfer rate of up to
160 Mbytes/s over a 16-bit SCSI bus.

VCCI Voluntary Control Council for Interference.

VDE Verband Deucher Elektroniker (Association of German Electrical
Engineers).
52.5 pcC-7

3.75 pc 10.25 pc 11.25 pc 38.25 pc

4.333 pc

48.583 pc

44.25 p
34.5 pc

c

Virtual Memory Space on a hard disk that can be used as if it were RAM.

Wide SCSI A SCSI-2 feature allowing 16-bit or 32-bit transfers on the SCSI bus. This
dramatically increases the transfer rate over the standard 8-bit SCSI bus.

Wide Ultra SCSI The SCSI Trade Association (STA) term for SCSI bus width 16-bits, SCSI
bus speed maximum data rate 40 Mbytes/s.

Wide Ultra2
SCSI

The SCSI Trade Association (STA) term for SCSI bus width 16-bits, SCSI
bus speed maximum data rate 80 Mbytes/s.

Word A two byte (or 16-bit) unit of information.
52.5 pcC-8 Glossary of Terms and Abbreviations

Index
Symbols

"C" code
compiling SCRIPTS 2-4
examples

allocating table entries 7-4
allocating table memory 7-5
chip initialization 7-1
patching 7-7
pointing to table 7-5
running SCRIPTS 7-12
storing data structures in SCRIPTS RAM 9-31
table definition 7-5
table initialization 7-3
using a table 7-6

Numerics

160/m C-1

A

abort label 11-14
ABSOLUTE 4-8

declarations 11-4, B-1
values 7-9

ACK 4-15
active termination C-1
AND 4-15
ARCH 4-8
arithmetic operators 2-7
assembler, see NASM
ATN 4-15

B

big endian byte addressing 2-8
block diagram

dual channel 1-6
single channel 1-6

block move 13-7
block move instruction 3-3, 3-42

scatter/gather 9-2
buffer addresses 7-9
buffers

EXTERN 7-8
RELATIVE 7-8

bus arbitration 1-5
byte addressing 2-8
byte counts 7-9
byte ordering 2-8, 2-9
SCSI SCRIPTS Processors
byte recovery 9-9
examples 9-13

C

CALL addresses 7-10
CALL instruction 3-5
CARRY 4-16
chained block moves 3-10
chip debugging 12-1
chip initialization example 7-1
CHMOV instruction 3-10
CISPR C-2
CLEAR instruction 3-14
clock divider bits 9-27
clock doubler 9-29
clock quadrupler 9-29
clocking double transition C-2
command block 8-4
command line 4-2
command_phase 11-7
compiler, see NASM
conditional keywords 4-14
control bits

64-bit addressing 13-6
phase mismatch 13-3

D

data byte ordering 2-9
data comparison 1-5
data in phase mismatch 9-15
data out phase mismatch 9-16
debugging routine 12-1
device driver 8-5

block diagram 8-2
how to write 8-6
layers 8-2 to 8-3

hardware interface 8-3, 8-5
operating system interface 8-2

overview 8-1
diagnostics loopback mode 9-4
direct block moves 13-7
direct/table SCRIPTS example 13-5
disconnect 3-68, 3-69

byte recovery 9-9
causes 9-9
illegal 9-10
legal 9-9
phase mismatch 9-10

DISCONNECT instruction 3-16
IX-1

DMA
FIFO flush 9-13
interface 1-5
registers 6-4 to 6-5
transfers 2-1

domain validation C-2
double transition clocking C-2
DSAREL 4-16
dual channel block diagram 1-6

E

ENTRY 4-9
declarations 11-6, B-2

entry offsets 7-10
entry statements 5-5
error messages NASM A-1
extended_msg 11-8
EXTERN 4-9, 11-5
EXTERN buffers 7-8
external SCRIPTS 9-33, 9-34

F

Fast-20. See Ultra SCSI
Fast-40. See Ultra2 SCSI
FIFO flushing 13-1
FIFO size 13-2
flag fields 4-15
FROM 4-16

G

General Purpose registers 6-11
glossary C-1

H

hardware interrupts 9-19

I

I/O
completion 10-12
instructions 3-1
operation 8-6
request flow 8-5

IF 4-14
initialization 6-11, 7-1
instructions

block move 3-3
example 3-78

CALL 3-5
CHMOV 3-10
CLEAR 3-14
DISCONNECT 3-16
examples 3-73 to 3-80
INT 3-17
INTFLY (interrupt on the fly) 3-21
JUMP 3-27
JUMP64 3-32
LOAD 3-37
load and store 3-3

example 3-79
LOAD64 3-40
IX-2 Index
memory move 3-2
example 3-74

MOVE 3-42
MOVE MEMORY 3-46
MOVE REGISTER 3-48
no operation 3-53
NOP 3-53
patching 7-7
read/write 3-3

example 3-77
RESELECT 3-54
RETURN 3-58
SELECT 3-62
SET 3-64
STORE 3-66
transfer control 3-2

example 3-76
types

I/O description 3-1
I/O example 3-74

WAIT DISCONNECT 3-68
WAIT RESELECT 3-71
WAIT SELECT 3-69

internal SCRIPTS 9-34, 9-36
interrupt

handling 9-19 to 9-26
instruction 3-17
on the fly instruction 3-21
registers 6-7 to 6-8, 9-20
service routine 9-25

interrupts
fatal vs. nonfatal interrupts 9-22
hardware 9-19
masking 9-23
polling 9-19
sample interrupt service routine 9-25
stacked 9-24

ISTAT registers 9-20
ISTAT1 register 13-2

J

JUMP addresses 7-10
JUMP instruction 3-27
JUMP64 instruction 3-32

K

keywords
ABSOLUTE 4-8
ACK 4-15
AND 4-15
ARCH 4-8
ATN 4-15
CARRY 4-16
conditional 4-14
DSAREL 4-16
ENTRY 4-9
EXTERN 4-9
flag fields 4-15
FROM 4-16
IF 4-14
logical 4-14
MASK 4-16
MEMORY 4-17
NOFLUSH 4-17

keywords (Cont.)
NOT 4-15
OR 4-15
other 4-18
PASS 4-10
PROC 4-10
PTR 4-17
qualifier 4-16
REG 4-17
register names 4-18
REL 4-17
RELATIVE 4-11
SCSI phase 4-18
TABLE 4-12
TARGET 4-16
TO 4-17
WHEN 4-14
WITH 4-17

L

language elements 2-6
legal disconnect 3-69
little endian byte addressing 2-8
LOAD instruction 3-37
load instructions 3-3
Load/Store instructions 13-2
LOAD64 instruction 3-40
loading register values 9-28
logical keywords 4-14
loopback mode 9-4 to 9-9
LSI Logic assembler, see NASM
LVD SCSI 1-7

M

MASK 4-16
masking interrupts 9-23
MEMORY 4-17
memory move instructions 3-2
Memory to Memory Move 3-46
Miscellaneous registers 6-9
MOVE instruction 3-42
MOVE MEMORY instruction 3-46
MOVE REGISTER instruction 3-48
msg_in_phase 11-10
msg_out_phase 11-8
multithreaded I/O 10-4 to 10-13

example 10-4 to 10-10
operations flow 10-2
overview 10-1
SCRIPTS example B-1
system operation 10-2
use of the SIGP bit 10-10

N

NASM 2-3
assembler 4-2

output 5-1
command line 4-2

.bin output option 4-5
binary cross reference option 4-4
error listing option 4-4
example 4-6
Index
listing file option 4-4
omit termination record option 4-5
options 4-3 to 4-5
output file option 4-4
partial "C" source option 4-4
patch offsets option 4-6
verbose messages option 4-5

description 4-1
error messages A-1
fatal errors A-13
keywords 4-7

ABSOLUTE 4-8
ACK 4-15
AND 4-15
ARCH 4-8
ATN 4-15
CARRY 4-16
conditional 4-14
DSAREL 4-16
ENTRY 4-9
EXTERN 4-9
flag fields 4-15
FROM 4-16
IF 4-14
logical 4-14
MASK 4-16
MEMORY 4-17
NOFLUSH 4-17
NOT 4-15
OR 4-15
other 4-18
PASS 4-10
PROC 4-10
PTR 4-17
qualifier 4-16
REG 4-17
register names 4-18
REL 4-17
RELATIVE 4-11
TABLE 4-12
TARGET 4-16
TO 4-17
WHEN 4-14
WITH 4-17

output file example 5-2 to 5-12
output overview 5-1

new register values 9-28
NOFLUSH 4-17
NOP instruction 3-53
NOT 4-15

O

opcode options 3-2
operating system interface 8-5
OR 4-15
output file

examples 5-2, 7-16
absolute 5-10
ENTRY 5-9
label patches 5-9
module termination 5-11
SCRIPTS array 5-3

sections relative 5-7
IX-3

P

PASS 4-10
patching 7-7
patching routine 9-38
PCI bus 1-1
PCI bus master DMA core 1-4
phase comparison 1-5
phase mismatch

data in 9-15
data out 9-16
handling 13-1, 13-3

registers 13-4
registers 6-8

phase sequencing 1-5
pin-1 orientation C-5
power up 8-4
PROC 4-10

statements 5-5
processor 2-1
product overview 1-1
PTR 4-17

Q

qualifier keywords 4-16
queue tags C-5

R

RAM, see SCRIPTS RAM
RAMFIX utility 9-32
read instructions 3-3
read label 11-11
read_disconnect label 11-12
read_reconnect label 11-12
REG 4-17
register access

firmware 2-9
SCRIPTS 2-9

register initialization 6-11
default values 6-11

register to register move instruction 3-49
registers

DMA registers 6-4 to 6-5
general purpose 6-11
initialization 6-11 to 6-16

default values 6-11
interrupt 9-20
interrupt registers 6-7
loading values 9-28
miscellaneous 6-9
overview 6-1
phase mismatch 6-8
SCRIPTS 64-bit registers 6-6
SCRIPTS registers 6-5
SCSI registers 6-2 to 6-4
test registers 6-9
used in debugging 12-3

REL 4-17
RELATIVE 4-11

buffers 7-8
keyword output 5-7

relative addressing 8-11
relative buffers
IX-4 Index
in the output file 5-7
records 5-7

release_unit command 11-14
request_sense 11-11
RESELECT instruction 3-54
reselection 3-71

in multithreaded I/O 10-4
reserve_unit label 11-14
RETURN instruction 3-58

S

saving processor state 9-10
SCAM C-6
scatter/gather operation

block move 9-2
scatter/gather operations 9-1

alternative method 9-3
scheduler 8-6
Scratch registers 13-2
SCRIPTS C-6

64-bit registers 6-6 to 6-7
addressing 64-bit 13-6
and "C" language program 2-4 to 2-5
code self-modifying 7-11
compiler, see NASM
correspondence with SCSI bus phases 2-2 to 2-3, 11-2
data sizes 2-6
examples

multithreaded I/O B-1
output file 7-16, 7-17, 7-18, 7-19
source code 7-12, 7-13, 7-14, 7-15

expressions 2-7
external file 9-33, 9-34
features 1-8
for target operation 11-3
how NASM parses 4-6
inclusion in "C" program 7-1 to 7-12
initiator select routine 9-6
instructions 1-8, 2-1, 3-4

block move 9-7
described 3-1 to 3-80
move data 9-14
SCSI protocol 11-2
sequence 2-8
updating 9-13

internal file 9-34, 9-36
keywords 2-7
language elements 2-6

comment 2-6
label 2-6
name 2-6

main area 10-4
numeric values 4-7
operation 1-8, 1-9
operators bitwise 2-7
output file example 7-16
program sample 5-2
registers 6-5 to 6-6
reselect area 10-4
running a program 7-12
scheduler area 10-4
source code example 7-12
system overview 1-8

SCRIPTS processor 2-1, C-7
example operation 10-4

SCRIPTS processor (Cont.)
I/O completion 10-12
interrupts 9-24
multithreaded I/O overview 10-1
registers used for debugging 12-3
reset 7-3
SCSI commands 11-1
state 9-10

SCRIPTS RAM 9-30
loading 9-30
parts that support 1-2, 1-3
patching internal and external programs 9-37
programming techniques 9-31

SCRIPTS.LIS file 9-33, 9-34
SCRIPTS.OUT file 9-34, 9-36
SCSI

adapter board 1-4
bus phases 2-2, 11-2
Clock Doubler-using 9-29
clock quadrupler 9-29
core 1-4
device drivers 8-2
I/O process 8-5
I/O processor 1-1
loopback mode 9-5
phase keywords 4-18
protocol 2-2
receive

asynchronous 9-12
synchronous 9-12

registers 6-2 to 6-4
send

asynchronous 9-10
synchronous 9-11

SCSI SCRIPTS 1-1, C-6
assembler 2-3
assembling 2-5
expressions 2-7
features and functions 1-2, 1-3
instruction set 3-1
keywords 2-7
language elements 2-6
operators 2-7
processor 1-4, 2-1

SELECT instruction 3-62
SET instruction 3-64
SIGP bit 10-10

use in multithreaded I/O 10-4
single channel block diagram 1-6
single-ended drivers 1-5
STA C-7
stacked interrupts 9-24
starting NASM 4-2
startup bits 6-12
stopped_busy_tur 11-10
stopped_busy_wait_select 11-15
STORE instruction 3-66
store instructions 3-3
synch_neg 11-9
synch_wide_neg_return 11-9
synchronous negotiation 9-18, 11-16
synchronous transfers 9-18, 9-28
system overview 1-8
Index
T

TABLE 4-12, 11-5
declarations B-1

table indirect
block move mode 0 13-7
block moves mode 1 13-8

table indirect addressing
block move instructions 8-8
defining a table 8-10
Select/Reselect instructions 8-9

table indirect operation
addressing 8-7
allocating memory 7-5
defining the table structure 7-5
entry offset 7-4
initializing a table 7-3
pointing to the table 7-5
using a table 7-6

TARGET 4-16
target disconnect 9-9
target operation 9-7

basic structure 11-1
registers used 11-3
sample SCRIPTS 11-4
synchronous negotiation 11-16

technical support 12-2
Test registers 6-9 to 6-10
test unit ready 11-10
TO 4-17
token 4-6
TolerANT technology 1-5, C-7
transfer capabilities 1-5
transfer control instructions 3-2
transfers synchronous 9-28

U

ultra enable bit 9-28
Ultra SCSI 1-7

benefits 1-7
migrating from existing software 9-26
parts that support 1-2, 1-3
using the SCSI clock doubler 9-29

Ultra160 SCSI C-7
Ultra2 SCSI

benefits 1-7
migrating from existing software 9-26

Ultra3 SCSI 13-10
migrating from existing software 9-26

V

VCCI C-7
VDE C-7

W

WAIT DISCONNECT instruction 3-68
WAIT RESELECT instruction 3-71
WAIT SELECT instruction 3-69
wait_select 11-7
WHEN 4-14
wide_neg 11-9
WITH 4-17
IX-5

write instructions 3-3
write label 11-13
write_disconnect label 11-13
write_reconnect label 11-14
write_return 11-13
IX-6 Index

Customer Feedback
We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: SCSI SCRIPTS™ Processors
Programming Guide. Place a check mark in the appropriate blank for
each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____

Technical content ____ ____ ____ ____ ____
Usefulness of examples and

illustrations
____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax
Customer Feedback

U.S. Distributors
by State
A. E. Avnet Electronics
http://www.hh.avnet.com
B. M. Bell Microproducts,

Inc. (for HAB’s)
http://www.bellmicro.com
I. E. Insight Electronics
http://www.insight-electronics.com
W. E. Wyle Electronics
http://www.wyle.com

Alabama
Daphne
I. E. Tel: 334.626.6190
Huntsville
A. E. Tel: 256.837.8700
B. M. Tel: 256.705.3559
I. E. Tel: 256.830.1222
W. E. Tel: 800.964.9953

Alaska
A. E. Tel: 800.332.8638

Arizona
Phoenix
A. E. Tel: 480.736.7000
B. M. Tel: 602.267.9551
W. E. Tel: 800.528.4040
Tempe
I. E. Tel: 480.829.1800
Tucson
A. E. Tel: 520.742.0515

Arkansas
W. E. Tel: 972.235.9953

California
Agoura Hills
B. M. Tel: 818.865.0266
Granite Bay
B. M. Tel: 916.523.7047
Irvine
A. E. Tel: 949.789.4100
B. M. Tel: 949.470.2900
I. E. Tel: 949.727.3291
W. E. Tel: 800.626.9953
Los Angeles
A. E. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
A. E. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
A. E. Tel: 858.385.7500
B. M. Tel: 858.597.3010
I. E. Tel: 800.677.6011
W. E. Tel: 800.829.9953
San Jose
A. E. Tel: 408.435.3500
B. M. Tel: 408.436.0881
I. E. Tel: 408.952.7000
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
A. E. Tel: 818.594.0404
Westlake Village
I. E. Tel: 818.707.2101
Colorado
Denver
A. E. Tel: 303.790.1662
B. M. Tel: 303.846.3065
W. E. Tel: 800.933.9953
Englewood
I. E. Tel: 303.649.1800
Idaho Springs
B. M. Tel: 303.567.0703

Connecticut
Cheshire
A. E. Tel: 203.271.5700
I. E. Tel: 203.272.5843
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
A. E. Tel: 800.526.4812

Tel: 800.638.5988
B. M. Tel: 302.328.8968
W. E. Tel: 856.439.9110

Florida
Altamonte Springs
B. M. Tel: 407.682.1199
I. E. Tel: 407.834.6310
Boca Raton
I. E. Tel: 561.997.2540
Bonita Springs
B. M. Tel: 941.498.6011
Clearwater
I. E. Tel: 727.524.8850
Fort Lauderdale
A. E. Tel: 954.484.5482
W. E. Tel: 800.568.9953
Miami
B. M. Tel: 305.477.6406
Orlando
A. E. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
A. E. Tel: 727.507.5000

Georgia
Atlanta
A. E. Tel: 770.623.4400
B. M. Tel: 770.980.4922
W. E. Tel: 800.876.9953
Duluth
I. E. Tel: 678.584.0812

Hawaii
A. E. Tel: 800.851.2282

Idaho
A. E. Tel: 801.365.3800
W. E. Tel: 801.974.9953
Illinois
North/South
A. E. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
B. M. Tel: 847.413.8530
W. E. Tel: 800.853.9953
Schaumburg
I. E. Tel: 847.885.9700

Indiana
Fort Wayne
I. E. Tel: 219.436.4250
W. E. Tel: 888.358.9953
Indianapolis
A. E. Tel: 317.575.3500

Iowa
W. E. Tel: 612.853.2280
Cedar Rapids
A. E. Tel: 319.393.0033

Kansas
W. E. Tel: 303.457.9953
Kansas City
A. E. Tel: 913.663.7900
Lenexa
I. E. Tel: 913.492.0408

Kentucky
W. E. Tel: 937.436.9953
Central/Northern/ Western
A. E. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
W. E. Tel: 713.854.9953
North/South
A. E. Tel: 800.231.0253

Tel: 800.231.5775

Maine
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

Maryland
Baltimore
A. E. Tel: 410.720.3400
W. E. Tel: 800.863.9953
Columbia
B. M. Tel: 800.673.7461
I. E. Tel: 410.381.3131

Massachusetts
Boston
A. E. Tel: 978.532.9808
W. E. Tel: 800.444.9953
Burlington
I. E. Tel: 781.270.9400
Marlborough
B. M. Tel: 800.673.7459
Woburn
B. M. Tel: 800.552.4305
Michigan
Brighton
I. E. Tel: 810.229.7710
Detroit
A. E. Tel: 734.416.5800
W. E. Tel: 888.318.9953
Clarkston
B. M. Tel: 877.922.9363

Minnesota
Champlin
B. M. Tel: 800.557.2566
Eden Prairie
B. M. Tel: 800.255.1469
Minneapolis
A. E. Tel: 612.346.3000
W. E. Tel: 800.860.9953
St. Louis Park
I. E. Tel: 612.525.9999

Mississippi
A. E. Tel: 800.633.2918
W. E. Tel: 256.830.1119

Missouri
W. E. Tel: 630.620.0969
St. Louis
A. E. Tel: 314.291.5350
I. E. Tel: 314.872.2182

Montana
A. E. Tel: 800.526.1741
W. E. Tel: 801.974.9953

Nebraska
A. E. Tel: 800.332.4375
W. E. Tel: 303.457.9953

Nevada
Las Vegas
A. E. Tel: 800.528.8471
W. E. Tel: 702.765.7117

New Hampshire
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

New Jersey
North/South
A. E. Tel: 201.515.1641

Tel: 609.222.6400
Mt. Laurel
I. E. Tel: 856.222.9566
Pine Brook
B. M. Tel: 973.244.9668
W. E. Tel: 800.862.9953
Parsippany
I. E. Tel: 973.299.4425
Wayne
W. E. Tel: 973.237.9010

New Mexico
W. E. Tel: 480.804.7000
Albuquerque
A. E. Tel: 505.293.5119

U.S. Distributors
by State
(Continued)
New York
Hauppauge
I. E. Tel: 516.761.0960
Long Island
A. E. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
A. E. Tel: 716.475.9130
I. E. Tel: 716.242.7790
W. E. Tel: 800.319.9953
Smithtown
B. M. Tel: 800.543.2008
Syracuse
A. E. Tel: 315.449.4927

North Carolina
Raleigh
A. E. Tel: 919.859.9159
I. E. Tel: 919.873.9922
W. E. Tel: 800.560.9953

North Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Ohio
Cleveland
A. E. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
A. E. Tel: 614.888.3313
I. E. Tel: 937.253.7501
W. E. Tel: 800.575.9953
Strongsville
B. M. Tel: 440.238.0404
Valley View
I. E. Tel: 216.520.4333

Oklahoma
W. E. Tel: 972.235.9953
Tulsa
A. E. Tel: 918.459.6000
I. E. Tel: 918.665.4664

Oregon
Beaverton
B. M. Tel: 503.524.1075
I. E. Tel: 503.644.3300
Portland
A. E. Tel: 503.526.6200
W. E. Tel: 800.879.9953

Pennsylvania
Mercer
I. E. Tel: 412.662.2707
Philadelphia
A. E. Tel: 800.526.4812
B. M. Tel: 877.351.2355
W. E. Tel: 800.871.9953
Pittsburgh
A. E. Tel: 412.281.4150
W. E. Tel: 440.248.9996

Rhode Island
A. E. 800.272.9255
W. E. Tel: 781.271.9953
South Carolina
A. E. Tel: 919.872.0712
W. E. Tel: 919.469.1502

South Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Tennessee
W. E. Tel: 256.830.1119
East/West
A. E. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Arlington
B. M. Tel: 817.417.5993
Austin
A. E. Tel: 512.219.3700
B. M. Tel: 512.258.0725
I. E. Tel: 512.719.3090
W. E. Tel: 800.365.9953
Dallas
A. E. Tel: 214.553.4300
B. M. Tel: 972.783.4191
W. E. Tel: 800.955.9953
El Paso
A. E. Tel: 800.526.9238
Houston
A. E. Tel: 713.781.6100
B. M. Tel: 713.917.0663
W. E. Tel: 800.888.9953
Richardson
I. E. Tel: 972.783.0800
Rio Grande Valley
A. E. Tel: 210.412.2047
Stafford
I. E. Tel: 281.277.8200

Utah
Centerville
B. M. Tel: 801.295.3900
Murray
I. E. Tel: 801.288.9001
Salt Lake City
A. E. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
A. E. Tel: 800.272.9255
W. E. Tel: 716.334.5970

Virginia
A. E. Tel: 800.638.5988
W. E. Tel: 301.604.8488
Haymarket
B. M. Tel: 703.754.3399
Springfield
B. M. Tel: 703.644.9045
Washington
Kirkland
I. E. Tel: 425.820.8100
Maple Valley
B. M. Tel: 206.223.0080
Seattle
A. E. Tel: 425.882.7000
W. E. Tel: 800.248.9953

West Virginia
A. E. Tel: 800.638.5988

Wisconsin
Milwaukee
A. E. Tel: 414.513.1500
W. E. Tel: 800.867.9953
Wauwatosa
I. E. Tel: 414.258.5338

Wyoming
A. E. Tel: 800.332.9326
W. E. Tel: 801.974.9953

Direct Sales
Representatives by State
(Components and Boards)
E. A. Earle Associates
E. L. Electrodyne - UT
GRP Group 2000
I. S. Infinity Sales, Inc.
ION ION Associates, Inc.
R. A. Rathsburg Associ-

ates, Inc.
SGY Synergy Associates,

Inc.

Arizona
Tempe
E. A. Tel: 480.921.3305

California
Calabasas
I. S. Tel: 818.880.6480
Irvine
I. S. Tel: 714.833.0300
San Diego
E. A. Tel: 619.278.5441

Illinois
Elmhurst
R. A. Tel: 630.516.8400

Indiana
Cicero
R. A. Tel: 317.984.8608
Ligonier
R. A. Tel: 219.894.3184
Plainfield
R. A. Tel: 317.838.0360

Massachusetts
Burlington
SGY Tel: 781.238.0870

Michigan
Byron Center
R. A. Tel: 616.554.1460
Good Rich
R. A. Tel: 810.636.6060
Novi
R. A. Tel: 810.615.4000

North Carolina
Cary
GRP Tel: 919.481.1530

Ohio
Columbus
R. A. Tel: 614.457.2242
Dayton
R. A. Tel: 513.291.4001
Independence
R. A. Tel: 216.447.8825

Pennsylvania
Somerset
R. A. Tel: 814.445.6976
Texas
Austin
ION Tel: 512.794.9006
Arlington
ION Tel: 817.695.8000
Houston
ION Tel: 281.376.2000

Utah
Salt Lake City
E. L. Tel: 801.264.8050

Wisconsin
Muskego
R. A. Tel: 414.679.8250
Saukville
R. A. Tel: 414.268.1152

Sales Offices and Design
Resource Centers
LSI Logic Corporation
Corporate Headquarters
1551 McCarthy Blvd
Milpitas CA 95035
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine
18301 Von Karman Ave
Suite 900
Irvine, CA 92612

♦ Tel: 949.809.4600
Fax: 949.809.4444

Pleasanton Design Center
5050 Hopyard Road, 3rd Floor
Suite 300
Pleasanton, CA 94588
Tel: 925.730.8800
Fax: 925.730.8700

San Diego
7585 Ronson Road
Suite 100
San Diego, CA 92111
Tel: 858.467.6981
Fax: 858.496.0548

Silicon Valley
1551 McCarthy Blvd
Sales Office
M/S C-500
Milpitas, CA 95035

♦ Tel: 408.433.8000
Fax: 408.954.3353
Design Center
M/S C-410
Tel: 408.433.8000
Fax: 408.433.7695

Wireless Design Center
11452 El Camino Real
Suite 210
San Diego, CA 92130
Tel: 858.350.5560
Fax: 858.350.0171

Colorado
Boulder
4940 Pearl East Circle
Suite 201
Boulder, CO 80301

♦ Tel: 303.447.3800
Fax: 303.541.0641

Colorado Springs
4420 Arrowswest Drive
Colorado Springs, CO 80907
Tel: 719.533.7000
Fax: 719.533.7020

♦

♦

Fort Collins
2001 Danfield Court
Fort Collins, CO 80525
Tel: 970.223.5100
Fax: 970.206.5549

Florida
Boca Raton
2255 Glades Road
Suite 324A
Boca Raton, FL 33431
Tel: 561.989.3236
Fax: 561.989.3237

Georgia
Alpharetta
2475 North Winds Parkway
Suite 200
Alpharetta, GA 30004
Tel: 770.753.6146
Fax: 770.753.6147

Illinois
Oakbrook Terrace
Two Mid American Plaza
Suite 800
Oakbrook Terrace, IL 60181
Tel: 630.954.2234
Fax: 630.954.2235

Kentucky
Bowling Green
1262 Chestnut Street
Bowling Green, KY 42101
Tel: 270.793.0010
Fax: 270.793.0040

Maryland
Bethesda
6903 Rockledge Drive
Suite 230
Bethesda, MD 20817
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham
200 West Street
Waltham, MA 02451
Tel: 781.890.0180
Fax: 781.890.6158

Burlington - Mint Technology
77 South Bedford Street
Burlington, MA 01803
Tel: 781.685.3800
Fax: 781.685.3801

Minnesota
Minneapolis
8300 Norman Center Drive
Suite 730
Minneapolis, MN 55437
Tel: 612.921.8300
Fax: 612.921.8399

♦

New Jersey
Red Bank
125 Half Mile Road
Suite 200
Red Bank, NJ 07701
Tel: 732.933.2656
Fax: 732.933.2643

Cherry Hill - Mint Technology
215 Longstone Drive
Cherry Hill, NJ 08003
Tel: 856.489.5530
Fax: 856.489.5531

New York
Fairport
550 Willowbrook Office Park
Fairport, NY 14450
Tel: 716.218.0020
Fax: 716.218.9010

North Carolina
Raleigh
Phase II
4601 Six Forks Road
Suite 528
Raleigh, NC 27609
Tel: 919.785.4520
Fax: 919.783.8909

Oregon
Beaverton
15455 NW Greenbrier Parkway
Suite 235
Beaverton, OR 97006
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
9020 Capital of TX Highway North
Building 1
Suite 150
Austin, TX 78759
Tel: 512.388.7294
Fax: 512.388.4171

Plano
500 North Central Expressway
Suite 440
Plano, TX 75074
Tel: 972.244.5000
Fax: 972.244.5001

Houston
20405 State Highway 249
Suite 450
Houston, TX 77070
Tel: 281.379.7800
Fax: 281.379.7818

♦

♦

♦

♦

♦

♦

♦

Canada
Ontario
Ottawa
260 Hearst Way
Suite 400
Kanata, ON K2L 3H1
Tel: 613.592.1263
Fax: 613.592.3253

INTERNATIONAL

France
Paris
LSI Logic S.A.
Immeuble Europa
53 bis Avenue de l'Europe
B.P. 139
78148 Velizy-Villacoublay
Cedex, Paris
Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
Munich
LSI Logic GmbH
Orleansstrasse 4
81669 Munich
Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Mittlerer Pfad 4
D-70499 Stuttgart
Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Italy
Milan
LSI Logic S.P.A.
Centro Direzionale Colleoni
Palazzo Orione Ingresso 1
20041 Agrate Brianza, Milano
Tel: 39.039.687371
Fax: 39.039.6057867

Japan
Tokyo
LSI Logic K.K.
Rivage-Shinagawa Bldg. 14F
4-1-8 Kounan
Minato-ku, Tokyo 108-0075
Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Crystal Tower 14F
1-2-27 Shiromi
Chuo-ku, Osaka 540-6014
Tel: 81.6.947.5281
Fax: 81.6.947.5287

Sales Offices and Design
Resource Centers
(Continued)
Korea
Seoul
LSI Logic Corporation of
Korea Ltd
10th Fl., Haesung 1 Bldg.
942, Daechi-dong,
Kangnam-ku, Seoul, 135-283
Tel: 82.2.528.3400
Fax: 82.2.528.2250

The Netherlands
Eindhoven
LSI Logic Europe Ltd
World Trade Center Eindhoven
Building ‘Rijder’
Bogert 26
5612 LZ Eindhoven
Tel: 31.40.265.3580
Fax: 31.40.296.2109

Singapore
Singapore
LSI Logic Pte Ltd
7 Temasek Boulevard
#28-02 Suntec Tower One
Singapore 038987
Tel: 65.334.9061
Fax: 65.334.4749

Sweden
Stockholm
LSI Logic AB
Finlandsgatan 14
164 74 Kista

♦ Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Taiwan
Taipei
LSI Logic Asia, Inc.
Taiwan Branch
10/F 156 Min Sheng E. Road
Section 3
Taipei, Taiwan R.O.C.
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869

United Kingdom
Bracknell
LSI Logic Europe Ltd
Greenwood House
London Road
Bracknell, Berkshire RG12 2UB

♦ Tel: 44.1344.426544
Fax: 44.1344.481039

♦ Sales Offices with
Design Resource Centers

International Distributors
Australia
New South Wales
Reptechnic Pty Ltd
3/36 Bydown Street
Neutral Bay, NSW 2089

♦ Tel: 612.9953.9844
Fax: 612.9953.9683

Belgium
Acal nv/sa
Lozenberg 4
1932 Zaventem
Tel: 32.2.7205983
Fax: 32.2.7251014

China
Beijing
LSI Logic International
Services Inc.
Beijing Representative
Office
Room 708
Canway Building
66 Nan Li Shi Lu
Xicheng District
Beijing 100045, China
Tel: 86.10.6804.2534 to 38
Fax: 86.10.6804.2521

France
Rungis Cedex
Azzurri Technology France
22 Rue Saarinen
Sillic 274
94578 Rungis Cedex
Tel: 33.1.41806310
Fax: 33.1.41730340

Germany
Haar
EBV Elektronik
Hans-Pinsel Str. 4
D-85540 Haar
Tel: 49.89.4600980
Fax: 49.89.46009840

Munich
Avnet Emg GmbH
Stahlgruberring 12
81829 Munich
Tel: 49.89.45110102
Fax: 49.89.42.27.75

Wuennenberg-Haaren
Peacock AG
Graf-Zepplin-Str 14
D-33181 Wuennenberg-Haaren
Tel: 49.2957.79.1692
Fax: 49.2957.79.9341

♦

Hong Kong
Hong Kong
AVT Industrial Ltd
Unit 608 Tower 1
Cheung Sha Wan Plaza
833 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105

Serial System (HK) Ltd
2301 Nanyang Plaza
57 Hung To Road, Kwun Tong
Kowloon, Hong Kong
Tel: 852.2995.7538
Fax: 852.2950.0386

India
Bangalore
Spike Technologies India
Private Ltd
951, Vijayalakshmi Complex,
2nd Floor, 24th Main,
J P Nagar II Phase,
Bangalore, India 560078
Tel: 91.80.664.5530
Fax: 91.80.664.9748

Israel
Tel Aviv
Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392
Tel: 972.3.6458777
Fax: 972.3.6458666

Japan
Tokyo
Daito Electron
Sogo Kojimachi No.3 Bldg
1-6 Kojimachi
Chiyoda-ku, Tokyo 102-8730
Tel: 81.3.3264.0326
Fax: 81.3.3261.3984

Global Electronics
Corporation
Nichibei Time24 Bldg. 35 Tansu-cho
Shinjuku-ku, Tokyo 162-0833
Tel: 81.3.3260.1411
Fax: 81.3.3260.7100
Technical Center
Tel: 81.471.43.8200

Marubeni Solutions
1-26-20 Higashi
Shibuya-ku, Tokyo 150-0001
Tel: 81.3.5778.8662
Fax: 81.3.5778.8669

Shinki Electronics
Myuru Daikanyama 3F
3-7-3 Ebisu Minami
Shibuya-ku, Tokyo 150-0022
Tel: 81.3.3760.3110
Fax: 81.3.3760.3101
Yokohama-City
Innotech
2-15-10 Shin Yokohama
Kohoku-ku
Yokohama-City, 222-8580
Tel: 81.45.474.9037
Fax: 81.45.474.9065

Macnica Corporation
Hakusan High-Tech Park
1-22-2 Hadusan, Midori-Ku,
Yokohama-City, 226-8505
Tel: 81.45.939.6140
Fax: 81.45.939.6141

The Netherlands
Eindhoven
Acal Nederland b.v.
Beatrix de Rijkweg 8
5657 EG Eindhoven
Tel: 31.40.2.502602
Fax: 31.40.2.510255

Switzerland
Brugg
LSI Logic Sulzer AG
Mattenstrasse 6a
CH 2555 Brugg
Tel: 41.32.3743232
Fax: 41.32.3743233

Taiwan
Taipei
Avnet-Mercuries
Corporation, Ltd
14F, No. 145,
Sec. 2, Chien Kuo N. Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2516.7303
Fax: 886.2.2505.7391

Lumax International
Corporation, Ltd
7th Fl., 52, Sec. 3
Nan-Kang Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568

Prospect Technology
Corporation, Ltd
4Fl., No. 34, Chu Luen Street
Taipei, Taiwan, R.O.C.
Tel: 886.2.2721.9533
Fax: 886.2.2773.3756

Wintech Microeletronics
Co., Ltd
7F., No. 34, Sec. 3, Pateh Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2579.5858
Fax: 886.2.2570.3123

♦

United Kingdom
Maidenhead
Azzurri Technology Ltd
16 Grove Park Business Estate
Waltham Road
White Waltham
Maidenhead, Berkshire SL6 3LW
Tel: 44.1628.826826
Fax: 44.1628.829730

Milton Keynes
Ingram Micro (UK) Ltd
Garamonde Drive
Wymbush
Milton Keynes
Buckinghamshire MK8 8DF
Tel: 44.1908.260422

Swindon
EBV Elektronik
12 Interface Business Park
Bincknoll Lane
Wootton Bassett,
Swindon, Wiltshire SN4 8SY
Tel: 44.1793.849933
Fax: 44.1793.859555

Sales Offices with
Design Resource Centers

	SCSI SCRIPTS™ Processors
	Chapter�1 Using the Programming Guide
	1.1 Product Overview
	Table 1.1 Features and Functions of LSI53C7XX/8XX/10XX Family Chips (part 1) �
	Table 1.2 Features and Functions of LSI53C7XX/8XX/10XX Family Chips (part 2) �
	Figure�1.1 Single Channel Block Diagram
	Figure�1.2 Dual Channel Block Diagram

	1.2 Benefits of Ultra, Ultra2, and Ultra3 SCSI
	1.3 System Overview
	Figure�1.3 Typical SCRIPTS Operation

	Chapter�2 Programming with SCRIPTS
	2.1 The SCSI SCRIPTS Processor
	2.2 SCRIPTS and the SCSI Bus Phases
	Table 2.1 SCSI Protocol and SCRIPTS Instructions�

	2.3 Assembling SCSI SCRIPTS
	Figure�2.1 Overview of Assembling SCSI SCRIPTS

	2.4 Using SCSI SCRIPTS
	2.4.1 SCRIPTS Data Sizes
	Table 2.2 Data Sizes

	2.4.2 SCSI SCRIPTS Language Elements
	Table 2.3 SCSI SCRIPTS Language Elements

	2.4.3 SCSI SCRIPTS Expressions
	Table 2.4 Arithmetic Operators
	Table 2.5 Bitwise Operators

	2.4.4 SCSI SCRIPTS Keywords

	2.5 Big and Little Endian Byte Addressing
	Table 2.6 Big and Little Endian Byte Addressing
	2.5.1 SCRIPTS Instruction Sequence
	2.5.2 Operating Register Access from Firmware
	2.5.3 Operating Register Access from SCRIPTS Routines
	2.5.4 User Data Byte Ordering

	Chapter�3 The SCSI SCRIPTS Processor Instruction Set
	3.1 Overview of SCRIPTS Instructions
	3.1.1 I/O Instructions
	Table 3.1 Opcode Bit Options

	3.1.2 Memory Move Instructions
	3.1.3 Transfer Control Instructions
	3.1.4 Read/Write Instructions
	Table 3.2 Read/Write Instructions

	3.1.5 Block Move Instructions
	3.1.6 Load and Store Instructions

	3.2 Instruction Descriptions
	Table 3.3 SCRIPTS Instructions Set
	3.2.1 CALL
	Figure�3.1 CALL Format
	Table 3.4 SCSI Phase Bit Values (CALL Format)
	Figure�3.2 Use of the Mask Keyword

	3.2.2 CHMOV
	Figure�3.3 CHMOV Format
	Table 3.5 SCSI Phase Bit Values (CHMOV Format)�

	3.2.3 CLEAR
	Figure�3.4 CLEAR Format

	3.2.4 DISCONNECT
	Figure�3.5 DISCONNECT Format

	3.2.5 INT
	Figure�3.6 INT Format
	Table 3.6 SCSI Phase Bit Values (INT Format)�

	3.2.6 INTFLY
	Figure�3.7 INTFLY Format
	Table 3.7 SCSI Phase Bit Values (INTFLY Format)�

	3.2.7 JUMP
	Figure�3.8 JUMP Format
	Table 3.8 SCSI Phase Bit Values (JUMP Format)

	3.2.8 JUMP 64
	Figure�3.9 JUMP 64 Format
	Table 3.9 SCSI Phase Bit Values (JUMP 64 Format)�

	3.2.9 LOAD
	Figure�3.10 LOAD Format
	Table 3.10 Register Address Field Definitions (LOAD Format)

	3.2.10 LOAD64
	Table 3.11 LOAD64 Format
	Table 3.12 Register Address Field Definitions (LOAD64 Format)

	3.2.11 MOVE
	Figure�3.11 MOVE Format
	Table 3.13 SCSI Phase Bit Values (MOVE Format)

	3.2.12 MOVE MEMORY
	Figure�3.12 MOVE MEMORY Format

	3.2.13 MOVE REGISTER
	Figure�3.13 MOVE REGISTER Format

	3.2.14 NOP
	Figure�3.14 NOP Format

	3.2.15 RESELECT
	Figure�3.15 RESELECT Format
	Figure�3.16 Reselection Instruction

	3.2.16 RETURN
	Figure�3.17 RETURN Format
	Table 3.14 SCSI Phase Bit Values (RETURN Format)�

	3.2.17 SELECT
	Figure�3.18 SELECT Format

	3.2.18 SET
	Figure�3.19 SET Format

	3.2.19 STORE
	Figure�3.20 STORE Format
	Table 3.15 Low Order Bit Options

	3.2.20 WAIT DISCONNECT
	Figure�3.21 WAIT DISCONNECT Format

	3.2.21 WAIT SELECT
	Figure�3.22 WAIT SELECT Format

	3.2.22 WAIT RESELECT
	Figure�3.23 WAIT RESELECT Format
	Figure�3.24 WAIT RESELECT and the SIGP Bit

	3.3 Instruction Examples
	3.3.1 I/O Instruction Example
	Figure�3.25 I/O Instruction Type

	3.3.2 Memory Move Instruction Example
	Figure�3.26 Memory Move Instruction Part 1
	Figure�3.27 Memory Move Instruction Part 2

	3.3.3 Transfer Control Instruction Example
	Figure�3.28 Transfer Control Instruction

	3.3.4 Read/Write Instruction Example
	Figure�3.29 Read/Write Instruction Example

	3.3.5 Block Move Instruction Example
	Figure�3.30 Block Move Instruction

	3.3.6 Load/Store Instruction Example
	Figure�3.31 Load/Store Instruction

	Chapter�4 Using the LSI Logic Assembler NASM™
	4.1 Overview
	4.2 Using NASM
	4.3 Command Line Options
	4.3.1 Architecture
	4.3.2 Binary Cross Reference Values
	4.3.3 Error Listing File
	4.3.4 Listing File
	4.3.5 Output File
	4.3.6 Partial “C” Source
	4.3.7 .BIN Output
	4.3.8 Omit Termination Record
	4.3.9 Verbose Messages
	4.3.10 Patch Offsets

	4.4 Example Assembler Command Lines
	4.5 How NASM Parses SCRIPTS Files
	4.6 Assembler Declarative Keywords
	Table 4.1 Keywords�
	4.6.1 ABSOLUTE
	4.6.2 ARCH
	4.6.3 ENTRY
	4.6.4 EXTERN
	4.6.5 PASS
	4.6.6 PROC
	4.6.7 RELATIVE
	4.6.8 TABLE

	4.7 Conditional Keywords
	4.7.1 IF
	4.7.2 WHEN

	4.8 Logical Keywords
	4.8.1 NOT
	4.8.2 AND
	4.8.3 OR

	4.9 Flag Fields
	4.9.1 ACK
	4.9.2 ATN
	4.9.3 TARGET
	4.9.4 CARRY

	4.10 Qualifier Keywords
	4.10.1 DSAREL
	4.10.2 FROM
	4.10.3 MASK
	4.10.4 MEMORY
	4.10.5 PTR
	4.10.6 REG
	4.10.7 REL
	4.10.8 TO
	4.10.9 WITH
	4.10.10 NOFLUSH

	4.11 Other Keywords
	4.11.1 Action Keywords
	4.11.2 SCSI Phases
	4.11.3 Register Names

	Chapter�5 The NASM Output File
	5.1 NASM Output Overview
	Figure�5.1 Sample SCRIPTS Program

	5.2 NASM Output File Examples
	5.2.1 SCRIPTS Array
	Table 5.1 Relationship Between Entry and PROC Statements and Output File

	5.2.2 External
	5.2.3 Relative
	5.2.4 Entry
	5.2.5 Label Patches
	5.2.6 Absolute
	5.2.7 Termination Record

	Chapter�6 Using the Registers to Control Chip Operations
	6.1 Overview
	6.2 SCSI Registers
	Table 6.1 SCSI Registers�

	6.3 DMA Registers
	Table 6.2 DMA Registers�

	6.4 SCRIPTS Registers
	Table 6.3 SCRIPTS Registers�

	6.5 64-Bit SCRIPTS Selector Registers
	Table 6.4 64-Bit Selector Registers�

	6.6 Interrupt Registers
	Table 6.5 Interrupt Registers�

	6.7 Phase Mismatch Registers
	Table 6.6 Phase Mismatch Registers�

	6.8 Test and Miscellaneous Registers
	Table 6.7 Test and Miscellaneous Registers�

	6.9 General Purpose Registers
	Table 6.8 General Purpose Registers�

	6.10 Register Initialization
	Table 6.9 LSI53C815/810A/860 Startup Bits�
	Table 6.10 LSI53C825A/875/876/885/895/895A/896/10XX Startup Bits�

	Chapter�7 Integrating SCRIPTS Programs into “C” Language Drivers
	7.1 Initializing the SCRIPTS Processor
	Figure�7.1 Accessing I/O Mapped Registers
	7.1.1 Reset
	Figure�7.2 Resetting the SCRIPTS Processor

	7.1.2 Table Indirect Operations
	Figure�7.3 SCRIPTS Table Declaration
	Figure�7.4 Creating Table Indirect Entry Offsets
	Figure�7.5 Data Structure and Type Definition
	Figure�7.6 Data Structure and Type Definition
	Figure�7.7 Creating Buffers

	7.2 Patching
	7.2.1 EXTERN Buffers
	7.2.2 RELATIVE Buffers
	7.2.3 ABSOLUTE Values
	7.2.4 Buffer Addresses
	7.2.5 Byte Counts
	7.2.6 Absolute JUMP/CALL Addresses
	7.2.7 Entry Locations
	7.2.8 Self-Modifying SCRIPTS Code
	Figure�7.8 Self-Modifying Code

	7.3 Running a SCRIPTS Program
	Figure�7.9 General.ss SCRIPTS Source File
	Figure�7.10 General.out NASM Output File

	Chapter�8 Writing Device Drivers with SCRIPTS
	8.1 Device Driver Overview
	Figure�8.1 The Role of the SCSI Device Drivers
	Figure�8.2 SCSI Device Driver Layers

	8.2 Command Block
	8.3 Power Up Example
	Figure�8.3 Power Up Examples

	8.4 I/O Request Process
	Figure�8.4 I/O Operation

	8.5 How to Write a Device Driver with SCRIPTS
	8.6 Table Indirect Addressing
	8.6.1 Block Move Instructions
	Table 8.1 Data Structure

	8.6.2 Select/Reselect Instructions
	Table 8.2 I/O Data Structure
	Figure�8.5 Table Indirect Addressing

	8.6.3 Defining a Table
	Figure�8.6 Table Definitions

	8.7 Relative Addressing

	Chapter�9 SCRIPTS Programming Topics
	9.1 Scatter/Gather Operations
	Figure�9.1 Scatter/Gather Operation
	Figure�9.2 Alternate Scatter/Gather Operation

	9.2 Loopback Mode
	9.2.1 Loopback Example – Selection
	Figure�9.3 Loopback Mode
	Figure�9.4 Target Operation
	Figure�9.5 Byte Transfer
	Figure�9.6 Loopback Mode Selection Procedure

	9.3 Byte Recovery on Target Disconnect
	9.3.1 Saving the Processor State
	9.3.2 Updating the SCRIPTS Program
	9.3.3 Cleaning Up
	9.3.4 Example Byte Recovery Code
	Figure�9.7 SCRIPTS Sequence to Move Data
	Figure�9.8 Example Function for Handling DATA IN Phase Mismatch Interrupts
	Figure�9.9 Example Function for Handling DATA OUT Phase Mismatch Interrupts

	9.4 Synchronous Negotiation and Transfer
	Figure�9.10 SELECT FROM Example Code

	9.5 Interrupt Handling
	9.5.1 Polling and Hardware Interrupts
	9.5.2 Registers
	9.5.3 Fatal vs. Nonfatal Interrupts
	9.5.4 Masking
	9.5.5 Stacked Interrupts
	9.5.6 Halting in an Orderly Fashion
	9.5.7 Sample Interrupt Service Routine

	9.6 Migrating Existing Software to Ultra, Ultra2, and Ultra3 SCSI
	9.6.1 Clock Divider Bits
	9.6.2 Ultra Enable Bit
	9.6.3 Loading the New Register Values
	9.6.4 Negotiating Synchronous Transfers
	9.6.5 Using the SCSI Clock Doubler
	9.6.6 Using the SCSI Clock Quadrupler

	9.7 Using the SCRIPTS RAM
	9.7.1 Loading SCRIPTS RAM
	Figure�9.11 Storing Data Structures in SCRIPTS RAM

	9.7.2 Programming Techniques when Using SCRIPTS RAM
	Figure�9.12 External Script (SCRIPTS.LIS file)
	Figure�9.13 External Script (SCRIPTS.OUT file)
	Figure�9.14 Internal Script (SCRIPTS.LIS file)
	Figure�9.15 Internal SCRIPTS Program (SCRIPTS.OUT file)

	9.7.3 Patching Internal and External SCRIPTS Programs
	Figure�9.16 Patching Routine

	Chapter�10 Multithreaded I/O
	10.1 Overview
	Figure�10.1 Multithreaded System Operation

	10.2 Multithreaded Operations Flow
	Figure�10.2 Multithreaded SCRIPTS Operational Flow

	10.3 SCRIPTS Areas
	10.4 Multithreaded SCRIPTS Example
	Figure�10.3 Multithreaded SCRIPTS Example Step 1
	Figure�10.4 Multithreaded SCRIPTS Example Step 2
	Figure�10.5 Multithreaded SCRIPTS Example Step 3
	Figure�10.6 Multithreaded SCRIPTS Example Step 6
	Figure�10.7 Multithreaded SCRIPTS Example Step 10
	Figure�10.8 Multithreaded SCRIPTS Example Step 11
	Figure�10.9 Multithreaded SCRIPTS Example Step 13

	10.5 Using the SIGP Bit to Abort an Instruction
	Figure�10.10 Sample SIGP Code

	10.6 I/O Completion

	Chapter�11 Using the SCRIPTS Processor in Target Applications
	11.1 SCSI and Target SCRIPTS Protocol
	Table 11.1 SCSI Protocol and Target SCRIPTS Instructions�

	11.2 Registers Used for Target Operation
	Table 11.2 Register Bits Used for Target Operation

	11.3 Using SCRIPTS for Target Operation
	11.3.1 Sample Target Operation SCRIPTS Program
	Figure�11.1 SCRIPTS Source Code–Comments
	Figure�11.2 SCRIPTS Source Code–ABSOLUTE Declarations
	Figure�11.3 SCRIPTS Source Code–EXTERN Variables
	Figure�11.4 SCRIPTS Source Code–TABLE
	Figure�11.5 SCRIPTS Source Code–ENTRY Declarations
	Figure�11.6 SCRIPTS Source Code–wait_select Label
	Figure�11.7 SCRIPTS Source Code–CDB Functions
	Figure�11.8 SCRIPTS Source Code–Message Out Phase
	Figure�11.9 SCRIPTS Source Code–Extended Message
	Figure�11.10 SCRIPTS Source Code–Synchronous Negotiation
	Figure�11.11 SCRIPTS Source Code–Wide Negotiation
	Figure�11.12 SCRIPTS Source Code–Return Negotiation
	Figure�11.13 SCRIPTS Source Code–Recovery Message
	Figure�11.14 SCRIPTS Source Code–Test Unit Ready
	Figure�11.15 SCRIPTS Source Code–stopped_busy_tur Command
	Figure�11.16 SCRIPTS Source Code–Request Sense
	Figure�11.17 SCRIPTS Source Code–Read Label
	Figure�11.18 SCRIPTS Source Code–read_disconnect Label
	Figure�11.19 SCRIPTS Source Code–read_reconnect Label
	Figure�11.20 SCRIPTS Source Code–Write
	Figure�11.21 SCRIPTS Source Code–write_disconnect Label
	Figure�11.22 SCRIPTS Source Code–write_reconnect Label
	Figure�11.23 SCRIPTS Source Code–reserve_unit Label
	Figure�11.24 SCRIPTS Source Code–release_unit Command
	Figure�11.25 SCRIPTS Source Code–abort Label
	Figure�11.26 SCRIPTS Source Code–stopped_busy_wait_select Command

	11.4 Synchronous Negotiation by a Target Device

	Chapter�12 Debugging the SCRIPTS Processor
	12.1 Chip Debugging Guidelines
	12.2 Register Used for Debugging

	Chapter�13 New SCRIPTS Processor Features
	13.1 Improved FIFO Flushing
	13.2 Larger FIFO
	13.3 New ISTAT Registers
	Table 13.1 ISTAT1 Register

	13.4 New Scratch Registers
	13.5 New Load/Store Feature
	13.6 Phase Mismatch Handling
	13.6.1 Control Bits
	13.6.2 Registers
	13.6.3 SCRIPTS Example

	13.7 64-Bit SCRIPTS Addressing
	13.7.1 Control Bits
	13.7.2 Block Move
	13.7.3 Direct Block Move
	Figure�13.1 64-Bit Direct Block Move Format

	13.7.4 Mode 0 Table Indirect Block Move
	13.7.5 Mode 1 Table Indirect Block Move
	Table 13.2 Index Mapping�
	Figure�13.2 Index Mode 1 Table Entry Format

	13.7.6 Table Indirect Block Move Summary
	Table 13.3 Table Indirect BMOV Upper 32-Bit Address Locations

	13.7.7 LSI53C1010/LSI53C1010R

	Appendix�A NASM Error Messages�
	Table�A.1 NASM Error Messages�
	Table�A.2 Fatal Errors
	Table�A.3 Warnings

	Appendix�B Multithreaded SCRIPTS Example
	Appendix�C Glossary of Terms and Abbreviations
	Index
	Customer Feedback

