Book 9—Communications Support

o
D
TI'I Version 2.0 beta

edia

Book 9—Communications Support

Table of Contents

Chapter 1 Synchronous Serial Interface (SSI) API

SSI APl Overview 10
Levels of Control 10

SSI Device Library 10

TriMedia BSP 10

SSI MMIO Macro-Only Interface 10
Introduction 10

Notes on the Hardware 11

SSI API Data Structures 11
ssiCapabilities_t 12
ssilnstanceSetup_t 13
ssiFrameSetup_t 14

SSI API Functions 15
ssiGetCapabilities 16
ssiOpen 17
ssiClose 18
ssilnstanceSetup 19
ssiSetFraming 20
ssiGetFraming 21
ssiStop 22
ssiStart 23
ssiConfigure 24
ssiOffHook 25
ssiOnHook 26

Chapter 2 UART API

UART API Overview 28
Uart API Callback Functions 29
tsaUartErrorHandlerFunc_t 30
tsaUartWriteCompletionFunc_t 31
tsaUartReadCompletionFunc_t 31

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support i

Table of Contents

tsaUartControlHandler_t 32
tsaUartConfigHandler_t 33
Uart API Data Structures 34
tsaUartParity_t 35
tsaUartBaud_t 36
tsaUartConfig_t 37
tsaUartConfigEvent_t 38
tsaUartControl_t 39
tsaUartCapabilities_t 40
tsaUartInstanceSetup_t 41
tsaUartControlMode_t 42
UART API Functions 43
tsaUartGetNumberOfUnits 44
tsaUartGetCapabilities 45
tsaUartOpen 46
tsaUartInstanceSetup 47
tsaUartWrite 48
tsaUartRead 49
tsaUartWriteAbort 50
tsaUartReadAbort 51
tsaUartControl 52
tsaUartInstanceConfig 53
tsaUartClose 54

Chapter 3 V34 Modem API

Overview 56
TriMedia V34 Modem API Overview 57
Interfacing V42 with the Modem 59
Modem Data Structures 60
tmModemCallMode_t 61
tmModemCommandCode_t 62
tmModemCapabilities_t 63
tmModemV25Capabilities_t 64
tmModemStatus_t 65
tmModemStatusCode_t 66
tmModemV42Command_t 67
tmModemV42CommandCode_t 68
tmModemlnstanceSetup_t 69

iv Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Table of Contents

tmModemV8BisConfig_t 70
tmModemV8BisStatus_t 70
tmModemV8Protocol_t 71
Modem Functions 72
tmModemAfelnit 73
tmModemOpen 73
tmModemClose 74
tmModemV25SendCommand 75
tmModemCommandHandler 76
tmModemGetCapabilities 76
tmModemlnstanceSetup 77
tmModemDataWrite 78
tmModemStart 79
tmModemStop 79
tmModemV42Process 80
tmModemV42DataRead 80
tmModemV42DataWrite 81
tmModemV42DataReadPending 81
tmModemV42DataWritePending 82
tmModemV42CommandHandler 82
tmModemV42GetCharFromTxBuffer 83
tmModemV42PutCharInTxBuffer 84
tmModemV42GetCharFromRxBuffer 85
tmModemV42PutCharInRxBuffer 86
1/0 Handlers 87
ModemDataReceiveHandler 88
ModemDataTransmitHandler 89
Status Handlers 20
modemLocalStatusHandler 91
V42LocalStatusHandler 91
Modem Example: exModem.c 92
PPP Example: exModemPPP.c 94
Known Bugs 95
Chapter 4 1394 FireWire API
IEEE 1394 Overview 98
Glossary 98

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support

v

Table of Contents

1394 API Overview 929
Asynchronous Transmission API 101
Isochronous Transmission API 101
Serial Bus Manager API 101
Transaction Layer 102
Memory Utility API 102
APl Usage 102

Asynchronous Transmission API 103
Isochronous Transmission API 103
Serial Bus Management API 104
Memory Management API 104

1394 APl Enumerated Types 106
tsa1394FwError_t 107
tsa1394SbmeError_t 110
tsa1394SupportMuxMode_t 112
tsa1394Speed_t 113
tsa1394AsynClbkType_t 114
tsa1394ExtTCode_t 115
tsa1394RespCode_t 116
tsa1394trType_t 117
tsa1394trReqStatus_t 118
tsa1394SbEvent_t 119
tsa1394MaxRec_t 120
tsa1394SbmCntrlOp_t 121
tsa1394AddrType_t 122
tsa1394CtrlEvent_t 123

1394 API Data Structures 124
tsa1394Capabilities_t 126
tsa1394Setup_t 128
tsa1394EUld_t 130
tsa1394DestOffset_t 130
tsa1394FreeRtn_t 131
tsa1394Tdatab_t 132
tsa1394MBlock_t 133
tsa1394MblkBufConfig_t 134
tsa1394DblkLink_t 135
tsa1394BusTime_t 136
tsa1394trDataCnfm_t 137
tsa1394trDatalnd_t 138
tsa1394lecTxInfo_t 140

vi Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Table of Contents

tsa1394lecRxUnpackinfo_t 141
tsa1394IsochHdrInfo_t 142
tsa1394SbResetEventinfo_t 143
tsa1394SbEventinfo_t 144
tsa1394SbmCntrlResetlnitParams_t 144
tsa1394SbmCntrlPhyConfigParams_t 145
tsa1394SbmStatusinfo_t 146
tsa1394PhysWritelnfo_t 147
tsa1394CtrlEventinfo_t 147
tsa1394RdBlockReq_t 148
tsa1394RdQuadReq_t 149
tsa1394WrBlockReq_t 150
tsa1394WrQuadReq_t 151
tsa1394RdBIkResp_t 152
tsa1394RdQuadResp_t 153
tsa1394WrResp_t 154
tsa1394LockResp_t 155
1394 API Functions 156
tsa1394GetCapabilities 158
tsa13940pen 158
tsa1394Close 159
tsa1394GetInstanceSetup 160
tsa1394InstanceSetup 161
tsa1394AsyncCreateChannelHandle 162
tsa1394AsyncDestroyChannelHandle 162
tsa1394AsyncRegisterAddressSpace 163
tsa1394AsyncRegisterSbEvent 166
tsa1394AsyncRegisterControlEvent 168
tsa1394AsyncSendRequest 170
tsa1394AsyncSendResponse 174
tsa1394AsyncDeregisterAddressSpace 176
tsa1394AsyncDeregisterSbEvent 177
tsa1394AsyncDeregisterControlEvent 178
tsa1394lsochCreateChannelHandle 179
tsa1394lsochDestroyChannelHandle 180
tsa1394lsochSetupChannel 181
tsa1394lsochStart 182
tsa1394lsochStop 183
tsa1394SbmGetLocalNodeld 184
tsa1394SbmGetSpeed2Node 185
tsa1394SbmGetNodeldForEuid 186

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support vii

Table of Contents

tsa1394SbmGetMaxRec 187
tsa1394SbmGetBusNodeCount 188
tsa1394SbmCntrlReq 189
tsa1394SbmGetBusld 191
tsa1394Mblkinit 192
tsa1394Allocb 193
tsa1394AllocbFromPool 194
tsa1394EsbAlloc 195
tsa1394EsbAllocFromPool 196
tsa1394Freeb 197
tsa1394FreeMsg 198
tsa1394DupB 199
tsa1394DupMsg 200
1394 Callback Functions 201
tsa1394AllocCbFp_t 202
tsa1394FreeCbFp_t 202
tsa1394AddrReqCbFp_t 203
tsa1394AtReqCbFp_t 204
tsa1394SbEventCbFp_t 205
tsa1394CtrlEventCbFp_t 206

viii Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1
Synchronous Serial Interface (SSI) API

Topic Page
SSI APl Overview 10
SSI API Data Structures 1
SSI APl Functions 15
Note

For a general overview of TriMedia device libraries, see Chapter 5, Device
Libraries, of Book 3, Software Architecture, Part A.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 9

Chapter 1: Synchronous Serial Interface (SSI) API

SSI API Overview

This module describes the public interface to the TriMedia Synchronous Serial Interface
(SSI) portion of the TriMedia device library. For more information on SSI, refer to chapter
16 of the appropriate TriMedia data book.

Levels of Control

The SSI library, like the hardware, was designed with a telecom interface in mind. The SSI
library provides control at three levels:

= High-Level: SSI Device Library
= Intermediate-Level: TriMedia Board Support Package (BSP)

s Low-Level: SSI MMIO macro-only interface

SSI Device Library

At the highest level is the SSI device library described in the SSI header file.

TriMedia BSP

At the intermediate level, the SSI device library relies on part of the TriMedia BSP. Using
the functions in the board support table, you can customize the functionality of the SSI
library.

SSI MMIO Macro-Only Interface

At the lowest level is a macro-only interface, defined by tmSSImmio.h, which is used to
set the SSI's MMIO control registers directly. The BSP must use the macro interface exclu-
sively. However, it may be appropriate to use the macro interface directly, particularly in
an interrupt service routine.

Introduction

ssiGetCapabilities is provided so that a system resource controller can find out about the
SSI library before installing it.

The interface starts by claiming the device, with ssiOpen. Currently no sharing can be
done, so only one instance can be given out.

Initialization starts with a call to ssilnstanceSetup. The SSI device is reset and the Board
Support Package (BSP) is queried for any init function. If present, it is called.

The BSP's init function is designed to set any mode controlling MMIO registers. It is not
designed to install an ISR, as ssilnstanceSetup will install an ISR.

The address of the ISR and its priority are determined with the call to ssilnstanceSetup.

10 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssiStart starts the audio transmit by enabling a transmission on the SSI bus.The interrupt
sources which were requested in ssilnstanceSetup are actually enabled here.This is done
to prime the transmit fifo before receiving a series of TX interrupts.

ssiSetFraming and ssiGetFraming are used to determine the characteristics of a “frame”
on the SSI bus. Frames are made up of a number of slots, and some or all of these slots
may be valid. For more information, refer to chapter 16 of the databook.

ssiStart and ssiStop enable and disable transmission on the SSI bus. The interrupt sources
which were requested in ssilnstanceSetup are actually enabled here. This is done so that
the user can prime the transmit fifo before receiving a series of TX interrupts.

WARNING
Stopping the SSI bus may necessitate a reset of the off chip peripheral.

In an acknowledgment of the intended use of the SSI as a telecom interface, the entry
points, ssiOffHook and ssiOnHook, are provided with the SSI library. By default, these
entry points control the hardware pin I02. The BSP interface can be used to override this
behavior. Refer to tmSSImmio.h for more information.

Notes on the Hardware

The SSI can store 16 words in the transmit FIFO. However, the maximum value indicated
by the WAW register is 15 (because it has a 4 bit register field). When the FIFO is empty,
WAW has the value 15. When the FIFO is full, WAW has the value O and the SSI will
ignore any further attempts to add words to the FIFO. Similarly, the receive FIFO can
only indicate the storage of 15 words.

Early versions of the TriMedia chip clocked some items like interrupt acknowledge off of
the TX clock. In production versions, this clocking was moved to the fast highway
domain. Because of this, early silicon is not recommended for development of SSI pro-
grams.This API is frozen and will be supported on future chips.

The SSI library depends on the SSI component of the Board Support Package, including
dependencies on tmSSImmio.h, tmInterrupts.h, tmLibdevErr.h and MMIO.h

SSI API Data Structures

This section presents the SSI API data structures.

Name Page
ssiCapabilities_t 12
ssilnstanceSetup_t 13
ssiFrameSetup_t 14

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 11

Chapter 1: Synchronous Serial Interface (SSI) API

ssiCapabilities_t

typedef struct ssiCapabilities_t{
tmVersion_t version;

Int32 numSupportedInstances;
Int32 numCurrentInstances;
Char afeName[16];

Int32 connectionFlags;

} ssiCapabilities_t, *pssiCapabilities_t;

Fields

version Enables version compatibility checking.

numSupportedInstances 1.

numCurrentInstances 0, until the device is opened, then 1.

afeName Device-specific, for humans to read.

connectionFlags Device-specific, a logic OR of
tmSSlAnalogConnection_t.

Description

Used by ssiGetCapabilities.

12 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssilnstanceSetup_t

typedef struct ssiSetup_t {

void (*isr)(void);

intPriority_t interruptPriority;

UInt8 interruptlLevelSelect;

Bool txInterruptEnable;

Bool rxInterruptEnable;

Bool changeDetectorInterruptEnable;
void *configBuffer;

UInt32 configBufferLength;

} ssiSetup_t, *pssiSetup_t;

Fields

isr Interrupt Service Routine.
interruptPriority SSI needs high priority.
interruptLevelSelect A number between 0 and 15, 10 works well.
txInterruptEnable Interrupt when transmit FIFO is empty.
rxInterruptEnable Interrupt when receive FIFO is full.

changeDetectorInterruptEnable Interrupt when there is a change in state at the
101 pin. Used for ring detect.

configBuffer Anything else which the BSP might need.
configBufferLength Passed to the BSP’s init function.
Description

Used by ssilnstanceSetup.

Implementation Notes

interruptLevelSelect sets the mark where interrupts are generated, as the FIFO is 16 deep.
Setting interruptLevelSelect higher means less interrupts, but consequently, a tighter
interrupt latency requirement.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 13

Chapter 1: Synchronous Serial Interface (SSI) API

ssiFrameSetup_t

typedef struct ssiFrameSetup_t{
UInt8 validSlotsPerFrame;
UInt8 slotsPerFrame;

} ssiFrameSetup_t, *pssiFrameSetup_t;

Fields

validSlotsPerFrame Referred to as VSS in the data book.
slotsPerFrame Referred to as FSS in the data book.
Description

The data book describes the SSI's transmission of data in frames, each of which have a
number of slots, but only some slots are valid. The st7545, for example, uses a frame
with § slots, but only four of them are valid. The FIFOs are only accessed in valid frames.

14 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

SSI API Functions

This section describes the SSI device library functions. Errors are not described in the

Return Codes section, but can be found in tmLibDevErr.h. The standard AV formats can

be found in tmAvFormats.h

Name Page
ssiGetCapabilities 16
ssiOpen 17
ssiClose 18
ssilnstanceSetup 19
ssiSetFraming 20
ssiGetFraming 21
ssiConfigure 24
ssiStop 22
ssiStart 23
ssiOffHook 25
ssiOnHook 26

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support

15

Chapter 1: Synchronous Serial Interface (SSI) API

ssiGetCapabilities

tmLibdevErr_t ssiGetCapabilities(
pssiCapabilities_t *pcap
)s

Parameters

pcap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBDEV_OK Success.

The function can also return a code produced by the BSP.

Description

Provided so that a system resource controller can find out about the SSI library before
installing it, and it fills in the address of a static capabilities structure. The pcap pointer is
valid until the SSI library is unloaded.

16 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssiOpen

tmLibdevErr_t ssiOpen(
Int *instance
)3

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBDEV_OK Success.
ITC_ERR_NO_MORE_INSTANCES An instance is already open.
TMLIBDEV_ERR_NULL_PARAMETER In the debug version of the library, this assertion

is triggered if the instance is null.

Description

The interface starts by claiming the device, with ssiOpen. Currently no sharing can be
done, so only one instance can be given out.

The instance variable is assigned. Please remember the variable assigned, as it will be
required for further access to the library.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 17

Chapter 1: Synchronous Serial Interface (SSI) API

ssiClose

tmLibdevErr_t ssiClose(
Int instance
)s

Parameters

instance Instance variable assigned at ssiopen.

Return Codes

TMLIBDEV_OK Success.
TMLIBDEV_ERR_NOT_OWNER Asserts, in debug mode, on illegal values.
Description

Causes an internal reference count to be decremented. If this is the last open instance, so
the ISR is deinstalled, the intINTV34 interrupt is closed with intClose, and the device is
shut down with the term_func function from the board API.

Implementation Notes

Errors could also be returned by Int close and the BSP’s term function.

18 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssilnstanceSetup

tmLibdevErr_t ssilnstanceSetup(
Int instance,
pssiSetup_t setup

)3

Parameters
instance The instance, as returned by ssiOpen.
setup Pointer to setup structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERROR_NOT_OWNER Error from boardGetConfig.
TMLIBDEV_ERR_NULL_PARAMETER Will assert in debug mode on illegal values.
Description

Used to initialize the SSI and the devices connected to it. It calls the BSP’s SSI init func-
tion to complete the initialization sequence (look at the Board API). If a isr is provided, it
will open and setup the intINTV34 interrupt with intOpen and intlnstanceSetup func-
tions.Leaves the device stopped until ssiStart is called.

Implementation Notes

Due to the low latency requirement of the SSI interface, it is recommended that the SSI
be run at interrupt priority 6. Priorities lower than 4 may be blocked for as long as a mil-
lisecond by host interaction. The ssilnstanceSetup function also determines which inter-
rupt sources are enabled, and at which level the FIFO triggers an interrupt.

Responsibility for initialization of an AFE like the Thomson ST7545 used on the IREF
board is left to the application. Any initialization data which must be transmitted over
the SSI interface must be transmitted by the application. At exit, the interface is stopped.
MMIO registers FSS (slots per frame), VSS (valid slots per frame) are not initialized.

Interrupts are not actually enabled until ssiStart is called.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 19

Chapter 1: Synchronous Serial Interface (SSI) API

ssiSetFraming

tmLibdevErr_t ssiSetFraming(
Int instance,
pssiFrameSetup_t frame

)3

Parameters
instance The instance, as returned by ssiOpen.
frame Pointer to frame descriptor structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERROR_NOT_OWNER Asserts in debug mode on illegal values.
TMLIBDEV_ERR_NULL_PARAMETER Asserts in debug mode on illegal values.
Description

Used to control the structure of a frame on the SSI bus, e.g., determining the characteris-
tics of a frame on the SSI bus. It sets the MMIO registers with the ssiSetValidSlotSizeVSS
and ssiSetFrameSizeFSS macros.

Implementation Notes

The FSS and VSS fields are changed.

20 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssiGetFraming

tmLibdevErr_t ssiGetFraming(
Int instance,
pssiFrameSetup_t frame

)3

Parameters
instance Instance variable assigned at ssiOpen.
frame Pointer to frame descriptor structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERROR_NOT_OWNER Asserts in debug mode on illegal values.
TMLIBDEV_ERR_NULL_PARAMETER Asserts in debug mode on illegal values.
Description

Used to retrieve the structure of a frame on the SSI bus, e.g. determining the characteris-
tics of a frame on the SSI bus. This is achieved by reading the MMIO registers with the
ssiGetFrameSizeFSS and ssiGetValidSlotSizeVSS macros.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 21

Chapter 1: Synchronous Serial Interface (SSI) API

ssiStop

tmLibdevErr_t ssiStop(
Int instance
)3

Parameters

instance The instance, as returned by ssiOpen.

Return Codes

TMLIBDEV_OK Success.
TMLIBDEV_ERROR_NOT_OWNER Asserts in debug mode on illegal values.
Description

ssiStop stops the audio transmit by disabling a transmission on the SSI bus. This is imple-
mented as a call to the ssiDisable macro.

Implementation Notes

Stopping the SSI bus may necessitate a reset of the off chip peripheral. Interrupt enable
bits are not affected by ssiStop.

22 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssiStart

tmLibdevErr_t ssiStart(
Int instance
)s

Parameters

instance Instance, as returned by ssiOpen.

Return Codes

TMLIBDEV_OK Success.
TMLIBDEV_ERROR_NOT_OWNER Asserts, in debug mode, on illegal values.
Description

Enables the interrupt sources requested in setup and starts the SSI transmission. After
making the setup of IRQ with the macros ssiEnableRIE, ssiEnableChangeDetectCDE,
ssiEnableTIE, this function enables the SSI with the ssiEnable macro.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 23

Chapter 1: Synchronous Serial Interface (SSI) API

ssiConfigure

tmLibdevErr_t ssiConfigure(
Int instance,
pssilnstanceSetup_t setup

)3

Parameters
instance Instance, as returned by ssiOpen.
setup Pointer to setup structure.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Asserts in debug mode on illegal values.
TMLIBDEV_ERROR_NOT_OWNER Asserts in debug mode on illegal values.
BOARD_ERR_NULL_FUNCTION No config function is specified in the BSL.
Description

Gateway to a board support function that you supply. The interruptLevelSelect, config-
Buffer and configBufferLength are passed to the configure function specified in the BSP
(look at the Board API).

24 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 1: Synchronous Serial Interface (SSI) API

ssiOffHook

tmLibdevErr_t ssiOffHook(
Int instance
)s

Parameters

instance Instance, as returned by ssiOpen.

Return Codes

TMLIBDEV_OK Success.
TMLIBDEV_ERROR_NOT_OWNER Asserts, in debug mode, on illegal values.
Description

Used for telecom line control. If the board support package provides a hook function, it
is called to pick up the phone line. If not, the 102 bit is set low to go off hook with the
macros ssiSetWIO2 and ssiSetModelO2.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 25

Chapter 1: Synchronous Serial Interface (SSI) API

ssiOnHook

tmLibdevErr_t ssiOnHook(
Int instance
)s

Parameters

instance Instance, as returned by ssiOpen.

Return Codes

TMLIBDEV_OK Success.
TMLIBDEV_ERROR_NOT_OWNER Asserts, in debug mode, on illegal values.
Description

Used for telecom line control. If the board support package provides a hook function, it
is called If not, the IO2 bit is set high to go on hook with the ssiSetWlO2 and
ssiSetModelO2 macros.

26 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2
UART API

Topic Page
UART API Overview 28
Uart API Callback Functions 29
Uart API Data Structures 34
UART API Functions 43
Note

This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

Note
This APl is preliminary and subject to change.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 27

Chapter 2: UART API

UART API Overview

The UART device library provides a TSA compatible interface to access serial interfaces
connected to the TriMedia chip.

Before an application can use a serial port, it must open an instance of the port and ini-
tialize it. The application must also implement the callback functions required by the
device library. The following code is an example of such a callback function.

typedef struct {
_AppSem_Semaphore writeSemaphore;
_AppSem_Semaphore readSemaphore;
}localScope_t;

localScope_t TocalScope = {
_AppSem_INITIALISED_SEM,
_AppSem_INITIALISED_SEM};

void myWriteCompletion(Int instance, Int count, Pointer handle){
localScope_t *s = (*1ocalScope_t) handle;
AppSem_V(s->writeSemaphore);

}

void myReadCompletion(Int instance, Int count, Pointer handle){
localScope_t *s = (*1ocalScope_t) handle;
AppSem_V(s->readSemaphore) ;

err = tsalartOpen(&instance, UART_COM1);
CHECK(err); /* CHECK is an application macro that handles errors. */

UART_BAUD_38400;

8;

g

UART_PARITY_NONE;
UART_CONTROL_OFF;
(Pointer) &localScope;
myWriteCompletion;
myReadCompletion;

setup.baudRate
setup.numDataBits
setup.numStopBits
setup.parity
setup.controlMode
setup.handle
setup.writeCompletionFunc =
setup.readCompletionfunc =
setup.controlHandler = Null;
setup.errorHandler = Null;

err = tsalartSetup(instance, &setup);
CHECK(err);

After the setup succeeded the application can write to the UART, thus:

/* initiate write */
err = tsalartWrite(instance, dataBuffer, dataSize);
CHECK(err);

/* wait for completion function to release semaphore */
AppSem_P(localScope.writeSemaphore);

It can also read from the UART, thus:

/* initiate read */
err = tsalartRead(instance, dataBuffer, dataSize);
CHECK(err);

/* wait for completion function to release semaphore */
AppSem_P(TocalScope.readSemaphore);

28 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

Uart API Callback Functions

This section presents the UART callback functions.

Name Page
tsaUartErrorHandlerFunc_t 30
tsaUartWriteCompletionFunc_t 31
tsaUartReadCompletionFunc_t 31
tsaUartControlHandler_t 32
tsaUartConfigHandler_t 33

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 29

tsaUartErrorHandlerFunc_t

Chapter 2: UART API

typedef void (*tsalartErrorHandlerFunc_t)(

Int instance,
tmLibdevErr_t err,
Pointer handle
);
Parameters
instance Instance that called this function.
err Error that occured.
handle Handle passed to the UART library by the applica-
tion.
Errors

UART_ERR_TX_ERROR
UART_ERR_RX_OVERRUN_ERROR
UART_ERR_PARITY_ERROR
UART_ERR_FRAME_ERROR
UART_ERR_BREAK_ERROR

UART_ERR_OTHER_ERROR
UART_ERR_MULTIPLE_ERRORS

Description

Error while transmitting data.
Overrun error while receiving data.
Parity error.

Framing error (no stopbit received).

Received data were kept in silent state for a full
word time, including the start bit, data bits, parity
bit and stop bits.

Another error occurred while sending or receiving
data.

Multiple errors have occurred.

The UART library calls this error callback function from its interrupt handler to report
errors that occur while transmitting or receiving data.

For errors returned by the API functions, see tsaUartControlMode_t.

30 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartWriteCompletionFunc_t

typedef void (*tsalUartWwriteCompletionFunc_t)(
Int instance,
Int count,
Pointer handle

);

tsalUartReadCompletionFunc_t

typedef void (*tsaUartReadCompletionFunc_t)(
Int instance,
Int count,
Pointer handle

)3

Parameters

instance Instance that called the completion function.
count Number of characters that have been written.
handle Handle passed to the library by the application.
Description

The UART library uses non-blocking function calls to initiate reads and writes. To notify
the application about the completion of those reads and writes, it uses completion call-
back functions. The application must provide the completion functions. Pointers to the
functions get passed to the library when you call tsaUartInstanceSetup.

The completion functions also get called when a read/write is aborted. See also tsaUart-
WriteAbort and tsaUartReadAbort).

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 31

Chapter 2: UART API

tsaUartControlHandler _t

typedef void (*tsalUartControlHandler_t)(

Int instance,
tsalartControl_t event,
Pointer handle
);
Parameters
instance Instance that called this function.
event Control event that occurred.
handle Handle passed to the UART library by the applica-
tion.
Description

The UART library calls this function when a flow control event is detected. These are the
possible events:

FLOW_ON The connected device requests a pause in the flow of characters
FLOW_OFF The connected device can accept more characters

This function is called in the same way for hardware and software flow control. (If hard-
ware flow control is enabled, it is called when CTS changes value. If software flow con-
trol is enabled, it is called when an x-on or x-off character is received.)

32

Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartConfigHandler_t

typedef void (*tsalartConfigHandler_t)(

Int instance,
tsalartConfigEvent_t event,
Pointer handle
);
Parameters
instance Instance that called this function.
event Config event that occurred.
handle Handle passed to the UART library by the applica-
tion.
Description

The UART library calls this function when a configuration event is detected. Thes are the
possible events:

UART_DSR_ON DSR goes high (“connected device is available”).
UART_DSR_OFF DSR goes low (“connected device is not available”).
UART_CTS_ON CTS goes high (“connected device can receive”).
UART_CTS_OFF CTS goes low (“connected device is busy”).
UART_RI_ON RI goes high (“incoming call ringing”).
UART_RI_OFF RI goes low (“end of ring”).

UART_DCD_ON DCD goes high (“call placed successfully”).
UART_DCD_OFF DCD goes low (“call ended”).

If hardware flow control is enabled, the events UART_CTS_ON and UART_CTS_OFF do not
cause this function to be called: instead, the controlHandler function is called with
events FLOW_ON or FLOW_OFF. This enables an application to be written independently
of the flow control regime. This type is a bitmask: more than one of the bits may be set
when the configuration event callback is called.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 33

Chapter 2: UART API

Uart API Data Structures

This section presents the UART device library data structures.

Name Page
tsaUartParity_t 35
tsaUartBaud_t 36
tsaUartConfig_t 37
tsaUartConfigEvent_t 38
tsaUartControl_t 39
tsaUartCapabilities_t 40
tsaUartInstanceSetup_t 41
tsaUartControlMode_t 42

34 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartParity_t

typedef enum {
UART_PARITY_NONE = @,
UART_PARITY_EVEN,
UART_PARITY_O0DD,
UART_PARITY_MARK,
UART_PARITY_SPACE

} tsaUartParity_t;

Fields

UART_PARITY_NONE No parity bit is sent or expected.

UART_PARITY_EVEN The parity bit is set or cleared so that the number
of logic ones is even.

UART_PARITY_ODD The parity bit is set or cleared so that the number
of logic ones is odd.

UART_PARITY_MARK The parity bit is always 1.

UART_PARITY_SPACE The parity bit is always 0.

Description

This type sets the parity mode for the UART in the tsaUartinstanceSetup_t struct.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 35

Chapter 2: UART API

tsaUartBaud _t

typedef enum {
UART_BAUD_9608 = 0x00000001,
UART_BAUD_14400 = 0x00000002,
UART_BAUD_19200 = 0x00000004,
UART_BAUD_38400 = 0x00000008,
UART_BAUD_57600 = 0x00000010,
UART_BAUD_115200 = 0x00000020,
UART_BAUD_230400 = 0x00000040,
UART_BAUD_460800 = 0x00000080,
UART_BAUD_921600 = 0x00000100

} tsaUartBaud_t;

Fields

UART_BAUD_9600 9600 baud.
UART_BAUD_14400 14,400 baud.
UART_BAUD_19200 19,200 baud.
UART_BAUD_38400 38,400 baud.
UART_BAUD_57600 57,600 baud.
UART_BAUD_11526@ 115,200 baud.
UART_BAUD_230400 230,400 baud.
UART_BAUD_46@800 460,800 baud.
UART_BAUD_92166@ 921,600 baud.
Description

This type sets the baud rate for the UART in tsaUartInstanceSetup_t. It is also used in
tsaUartCapabilities_t to report the hardware-supported baud rates.

36 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsalartConfig_t

typedef enum {
UART_RTS_ON
UART_RTS_OFF
UART_DTR_ON
UART_DTR_OFF
UART_GET_SCRATCH_REGI
UART_SET_SCRATCH_REGI
UART_SET_LOOP_BACK

} tsaUartConfig_t;

Fields

UART_RTS_ON Sets RTS high (“this device can accept charac-
ters”).

UART_RTS_OFF Sets RTS low (“this device is busy”).

UART_DTR_ON Sets DTR high (“this device is available”).

UART_DTR_OFF Sets DTR low (“this device is not available”).

UART_GET_SCRATCH_REGI Read the scratch register.

UART_SET_SCRATCH_REGI Write to the scratch register.

UART_SET_LOOP_BACK Put the UART into loopback mode. (This mode
can be used for debugging.)

Description

This type is used in tsaUartlnstanceConfig to set the configuration command.

Although this function can be used to change the flow control line (RTS), normally you
would use tsaUartControl for that.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 37

Chapter 2: UART API

tsaUartConfigEvent_t

typedef enum tsalartConfigEvent_t {

UART_DSR_ON
UART_DSR_OFF
UART_CTS_ON
UART_CTS_OFF
UART_RI_ON
UART_RI_OFF
UART_DCD_ON
UART_DCD_OFF

} tsaUartConfigEvent_t;

Fields

1

= e e

1

<<

<<
<<
<<
<<
<<

UART_DSR_ON
UART_DSR_OFF

UART_CTS_ON
UART_CTS_OFF
UART_RI_ON
UART_RI_OFF
UART_DCD_ON
UART_DCD_OFF

Description

DSR goes high (“connected device is available”).

DSR goes low (“connected device is not avail-
able”).

CTS goes high (“connected device can receive”).
CTS goes low (“connected device is busy”).

RI goes high (“incoming call ringing”).

RI goes low (“end of ring”).

DCD goes high (“call placed successfully”).
DCD goes low (“call ended”).

This type is used in the config callback function.

38 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartControl_t

typedef enum tsalUartControl_t {
FLOW_OFF,
FLOW_ON

} tsaUartControl_t;

Fields

FLOW_ON Data flow is enabled.
FLOW_OFF Data flow is paused.
Description

This type is used in tsaUartControl to pause or resume the flow of received characters;
and also in the control callback function to indicate that the connected device has
paused or resumed the flow of transmitted characters.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 39

Chapter 2: UART API

tsaUartCapabilities_t

typedef struc {
tmVersion_t version;

Int numSupportedInstances;
UInt numCurrentInstances;

Char name[DEVICE_NAME_LENGTH];
UInt32 baudRates;

} tsaUartCapabilities_t, *ptsaUartCapabilities_t;

Fields

version Version of the UART library.

numSupportedInstances Number of supported instances.

numCurrentInstances Number of instances currently in use.

name Name of the UART (e.g., the UART chip in use).

baudRates OR’d values of supported baud rates (of type
tsaUartBaud_t).

Description

A structure of this type is used in tsaUartGetCapabilities to report the capabilities of a
UART port.

40 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartinstanceSetup_t

typedef struct{

tsalartBaud_t baudRate;
Int numDataBits;
Int numStopBits;
tsalartParity_t parity;
tsalartControlMode_t controlMode;
Pointer handle;

tsalartWriteCompletionFunc_t writeCompletionFunc;
tsalartReadCompletionFunc_t readCompletionFunc;
tsalartControlHandler_t controlHandler;
tsalartErrorHandlerFunc_t errorHandlerFunc;

tsalartConfigHandler_t

configHandler;

}tsalUartInstanceSetup_t,*ptsalartinstanceSetup_t;

Fields

baudRate Baud rate.

numDataBits Number of data bits: 5, 6, 7 or 8.

numStopBits Number of stop bits: 1 or 2.

parity Parity: odd, even, or none. See tsaUartParity_t on

controlMode
handle

writeCompletionFunc

readCompletionFunc

controlHandler

errorHandlerFunc

configHandler

Description

page 35 for acceptable values.
Flow control mode.
One parameter of the callback functions.

Write completion function, called by the library
after a transmission has completed or after it has
been aborted.

Read completion function, called by the library
after a reception has completed or after it has
been aborted.

This function is called by the UART library if a
flow-control event occurs. This field can be set to
Null if the application does not want to do flow
control.

This function is called if an error occurs. If this
field is set to Null, an internal error function gets
called instead.

This function is called by the UART library when
a configuration event occurs.

A structure of this type is passed to tsaUartinstanceSetup to initialize a UART port.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 41

Chapter 2: UART API

tsaUartControlMode_t

typedef enum{
UART_CONTROL_OFF,
UART_CONTROL_SW,
UART_CONTROL_HW

} tsaUartControlMode_t;

Fields

UART_CONTROL_OFF No flow control.
UART_CONTROL_SW Software flow control.
UART_CONTROL_HW Hardware flow control.
Description

This type is used in the tsaUartInstanceSetup_t struct to set the mode for flow control. If
the application wants to do flow control, then it also has to provide the controlHandler
function.

42 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

UART API Functions

This section describes the UART device library’s functional interface.

Name Page
tsaUartGetNumberOfUnits 44
tsaUartGetCapabilities 45
tsaUartOpen 46
tsaUartInstanceSetup 47
tsaUartWrite 48
tsaUartRead 49
tsaUartWriteAbort 50
tsaUartReadAbort 51
tsaUartControl 52
tsaUartInstanceConfig 53
tsaUartClose 54

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 43

Chapter 2: UART API

tsaUartGetNumberOfUnits

extern tmLibdevErr_t tsaUartGetNumberOfUnits(
UInt32 *pNoOfCommPort
)3

Parameters

pNoOfCommPort Pointer to a variable in which to return the num-
ber of available units.

Return Codes

TMLIBAPP_OK Success.

TMLIBDEV_ERR_NULL_PARAMETER Asserts if pNoOfCommPort is a null pointer (but
only in the debugging version).

Description

This function returns the number of UART ports available on the board on which the
application is running.

44 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartGetCapabilities

extern tmLibdevErr_t tsaUartGetCapabilities(
unitSelect_t portID,
ptsaUartCapabilities_t *caps

)3

Parameters

portID The port for which the application wants to get
the capabilities.

caps Pointer to a variable in which to return a pointer

to the capabilities of the selected UART port.

Return Codes

TMLIBAPP_OK Success.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
No UART is available in the hardware.

TMLIBDEV_ERR_NULL_PARAMETER Asserts if caps is a null pointer (but only in debug-
ging version).

Description

This function gets the capabilities for a UART port.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 45

Chapter 2: UART API

tsaUartOpen

extern tmLibdevErr_t tsalUartOpen(
Int *instance,
unitSelect_t portID

)3

Parameters

instance Pointer to the (returned) instance. This instance
must be used for subsequent calls to the API.

portID UART port that will be opened.

Return Codes

TMLIBAPP_OK Success.

TMLIBDEV_ERR_NOT_AVAILABLE_IN_HW
The requested UART port is not available in the

hardware.

TMLIBDEV_ERR_NO_MORE_INSTANCES No more instances are available for the selected
port.

TMLIBDEV_ERR_NULL_PARAMETER Asserts if instance is a null pointer (but only in

the debugging version).
TMLIBDEV_ERR_MEMALLOC_FAILED Memory allocation failed.
The function can also return error codes produced by the board support package. The
function can assert BOARD_ERR_NULL_FUNCTION (in the debugging version) if the
needed functions from the BSP are not available. The function can also return error
codes produced by the PIC library.

Description

This function opens an instance of an UART port. All necessary resource are allocated. It
also installs the interrupt handler using the PIC library.

46 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartinstanceSetup

extern tmLibdevErr_t tsaUartInstanceSetup(

Int
tsalartInstanceSetup_t
)3

instance,
*setup

Parameters
instance Instance, as returned by tsaUartOpen.
setup Pointer to the setup data structure.

Return Codes

TMLIBAPP_OK
TMLIBDEV_ERR_NULL_PARAMETER

TMLIBDEV_ERR_NOT_OWNER

UART_ERR_NO_TX_COMPLETION_FUNC

UART_ERR_NO_RX_COMPLETION_FUNC

UART_ERR_INVALID_BAUDRATE

UART_ERR_INVALID_NUM_DATA_BITS

UART_ERR_INVALID_PARITY
BOARD_ERR_NULL_FUNCTION
TMLIBDEV_ERR_MEMALLOC_FAILED

Success.

Asserts if setup is a null pointer (but only in the
debugging version).

Asserts if instance is invalid (but only in the
debugging version).

Asserts if no read completion function is supplied
(but only in the debugging version).

Asserts if no write completion function is sup-
plied (but only in the debugging version).

Invalid baud rate.

Invalid number of data bits.
Invalid parity setting.

No init function in BSP.

Memory allocation failed.

The function can also return error codes produced by the board support package and the

PIC library.

Description

Initializes an instance of the UART port.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 47

Chapter 2: UART API

tsaUartWrite

extern tmLibdevErr_t tsalartWrite(

Int instance,
Address buffer,
UInt32 size

)

Parameters

instance Instance previously opened by tsaUartOpen

buffer Pointer to a buffer containing data that will be
sent to the UART.

size Size of the buffer.

Return Codes

TMLIBAPP_OK
UART_ERR_INVALID_SIZE
UART_ERR_WRITE_DEVICE_IN_USE
TMLIBDEV_ERR_NOT_OWNER

UART_ERR_NO_SETUP

TMLIBDEV_ERR_NULL_PARAMETER

Success.

Size is 0.

The previous write has not finished.

Asserts if the instance is invalid (but only in the
debugging version).

Asserts if UART port has not been initialized (but
only in the debugging version).

Asserts if buffer is a null pointer (but only in the
debugging version).

The function can also return error codes produced by the board support package.

Description

Writes a buffer to the UART. This function is not a blocking function; it returns immedi-
ately. When the write is finished, the UART library calls the application’s write comple-

tion function.

The application can stop the transmission by calling tsaUartWriteAbort.

48 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartRead

extern tmLibdevErr_t tsalartRead (
Int instance,
Address buffer,
UInt32 size

)

Parameters

instance Instance, as returned by tsaUartOpen.
buffer Pointer to a buffer that will receive the data.
size Size of the buffer.

Return Codes

TMLIBAPP_OK Success.

UART_ERR_INVALID_SIZE Size is O.

UART_ERR_READ_DEVICE_IN_USE The previous read has not been finished.

TMLIBDEV_ERR_NOT_OWNER Asserts if the instance is invalid (but only in the
debugging version).

UART_ERR_NO_SETUP Asserts if UART port has not been initialized (but

only in the debugging version).

TMLIBDEV_ERR_NULL_PARAMETER Asserts if buffer is a null pointer (but only in the
debugging version).

The function can also return error codes produced by the board support package.

Description

This function transfers data from the UART to a buffer.

This function is not a blocking function; it returns immediately. After receiving the spec-
ified number of characters, the UART library calls the application’s read completion
function.

The application can stop the receive process by calling tsaUartReadAbort.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 49

Chapter 2: UART API

tsaUartWriteAbort

extern tmLibdevErr_t tsaUartWriteAbort(
Int instance
)s

Parameters

instance Instance previously opened by tsaUartOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBDEV_ERR_NOT_OWNER Asserts if the instance is invalid (but only in the
debugging version).

The function can also return error codes produced by the board support package.

Description

This function aborts a running write operation.

50 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartReadAbort

extern tmLibdevErr_t tsaUartReadAbort (
Int instance
)s

Parameters

instance Instance previously opened by tsaUartOpen.

Return Codes

TMLIBAPP_OK Success.

TMLIBDEV_ERR_NOT_OWNER Asserts if the instance is invalid (but only in the
debugging version).

The function can also return error codes produced by the board support package.

Description

This function aborts a running read operation.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 51

Chapter 2: UART API

tsaUartControl

extern tmLibdevErr_t tsaUartControl(
Int instance,
tsalartControl_t command

);

Parameters
instance Instance previously opened by tsaUartOpen.
command Control command.

Return Codes

TMLIBDEV_OK Success.

Description

This function sends a control command to the UART port.

52 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 2: UART API

tsaUartinstanceConfig

extern tmLibdevErr_t tsaUartInstanceConfig(

Int instance,

tsalartConfig_t command,
Pointer value
)

Parameters

instance
command

value

Return Codes

Instance, as returned by tsaUartOpen.
Configuration command.

Pointer to the configuration value.

TMLIBDEV_OK
TMLIBDEV_ERR_NOT_OWNER

Success.

Asserted if instance is invalid (but only in the
debugging version).

The function can also return error codes produced by the board support package.

Description

This function configures the UART.

Because it passes the command and value directly to the board support package, it can

also be used to implement features of UARTSs that are not supported by the current

implementation.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 53

Chapter 2: UART API

tsaUartClose

extern tmLibdevErr_t tsalartClose(
Int instance
)s

Parameters

instance Instance, as returned by tsaUartOpen.

Return Codes

TMLIBDEV_OK Success.

TMLIBDEV_ERR_NOT_OWNER Asserts if instance is invalid (but only in the
debugging version).

The function can also return error codes produced by board support package or PIC
device library.

Description

This function closes an instance of a UART port. All running writes and reads are aborted
and all allocated resources are freed.

To use this UART port again, you must reopen it using tsaUartOpen.

54 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3
V34 Modem API

Topic Page
Overview 56
TriMedia V34 Modem API Overview 57
Interfacing V42 with the Modem 59
Modem Data Structures 60
Modem Functions 72
I/0 Handlers 87
Status Handlers 90
Modem Example: exModem.c 92
PPP Example: exModemPPP.c 94
Known Bugs 95
Disclaimer

The API described in this document is pre-alpha.Changes in the API,in the
data structure,and in the I/0 and status handlers are expected in the next
release.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 55

Chapter 3: V34 Modem API

Overview

The V34/V34bis is a standard for reliable data transmission using plain old telephone
service (POTS). The V34bis standard is usually implemented with a V25Ter front-end (AT
command set) and with the V42/V42bis standard for compression and error correction.

The TM softmodem V34bis API data library comprises the following modules:

= Dialer. Issues commands to the analog front end (AFE). Puts the modem onhook or
ofthook, generates a dialing signal, and detects tones such as busy signal. It is con-
trolled by the V25Ter module.

= V34bis Datapump. Implements all the modules for V34/V34bis functionality, includ-
ing modulation, demodulation, equalization and echo cancellation. The V34bis data-
pump interfaces with the AFE through internal interrupt service routines (ISRs). The
V34bis datapump described in Figure 1 has V32/V22 functionality to keep backward
compatility with previous ITU modem standards.

n V25Ter. AT command set. Issues commands to the AFE, V34 datapump and V42
module to handle dialing, call answering, and mode settings.

» V42, Provides V42/V42bis for error correction and compression.

Figure 1 illustrates these modules. The solid arrows represent data flow and the dashed
arrows represent control signals.

T - - -
Dialer |- -| V25Ter !
- - - - -, '
. A ']
Y Y Y
POTS < - »| AFE |=-» _V34Dis V42 PPP TCP/IP
Datapump 1/0
Handlers
TM Modem Application

Figure 1 Structure of TM Modem

An application, such as a TCP/IP stack over PPP, can be implemented with the use of the
TM V34 softmodem API, as shown in Figure 1. The application interfaces with the
modem, using AT commands, by calling an API function that sends commands to the
V25Ter module. The V25Ter module interacts with the V34bis Datapump, dialer and V42
module to change mode settings and to handle dialing and answering. I/O handlers sup-
plied by the application perform the data transfer between the application and the V34
modem.

56 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

TriMedia V34 Modem API Overview

This version of the TriMedia V34 Modem API supports the Philips TriMedia TM-1100
Reference Platform and the Philips DTV Reference Platform. This release of the V34
Modem API supports only the AFEs based on the STL7545 originally present on these
plaforms.

A typical modem application would use the following sequence of API calls to initialize
and run the modem:

= tmModemAfelnit() Initialize supported platforms.
= tmModemGetCapabilities(&cap) Obtain modem capabilities structure.

= tmModemOpen(&instance) Open a modem instance. The current version supports
one instance.

= tmModeminstanceSetup(instance, &mdmSetup) Initialize the modem instance
according to the settings present in the mdmSetup structure.

= tmModemStart(instance) Start the modem.
= tmModemStop(instance) Stop datapump processing.

s tmModemClose(instance) Release an instance of the modem and free memory allo-
cated for internal variables.

The receive and transmit tasks use I/O handlers defined by the application. The Modem-
DataReceiveHandler is invoked whenever the modem has finished processing data
received from the AFE. The ModemDataTransmitHandler is invoked when modem is
ready to accept data to be processed and sent to the AFE. The I/O handlers are identified
in the root application by the tmModeminstanceSetup_t structure. Figure 2 illustrates
the scheme, where “RxTask” and “TxTask” represent the receive and transmit tasks.

Ce ModemDataReceiveHandler
tmModemAfelnit(); il
tmModemGetCapabilies(&cap);
tmModemOpen(&instance);
tmModemInstanceSetup
(instance,&mdmSetup);

tmModemStart(instance);
tmModemStop (instance); ModemDataTransmitHandler

tmModemClose(instance) TTask
Modem Application
Figure 2 Modem application interfaced with the receive and transmit tasks by

1/0 handlers.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 57

Chapter 3: V34 Modem API

Note that the I/O handlers are not invoked by the modem application directly or by the
Rx/Tx tasks. The I/O handlers are to be called by the modem only when it needs to
obtain input data or to release output data.

When the V42 module is active, the I/O handlers and the receive and transmit tasks can
use buffer-handling routines supplied by the V34 Modem API for exchanging data. These
functions are:

= tmModemV42PutCharIinRxBuffer. This function should be used by the receive handler
to place a character in the receive buffer.

= tmModemV42GetCharFromRxBuffer. This function should be used by the receive task
to get a character from the receive buffer.

= tmModemV42PutCharIinTxBuffer. This function should be used by the transmit task
to place a character in the transmit buffer. .

= tmModemV42GetCharFromTxBuffer. This function should be used by the transmit
handler to receive a character fom the transmit buffer.

Figure 3 illustrates these functions:

Rx tmModemV42GetCharFromRxBuffer
Buffer RxTask
Modem V42 tmModemV42PutCharlnRxBuffer
Tx tmModemV42PutCharlnTxBuffer
Buffer TxTask
tmModemV42GetCharFromTxBuffer
Figure 3 Buffer handling routines used in the 1/0 handlers and transmit/receive tasks

The application can send commands to the modem to place and answer calls using
V25Ter/AT command syntax. For example, the application can obtain an AT command
string from a terminal, and send it to the modem by calling tmModemV25Send-
Command.

The V42 module interfaces with the modem using specific API calls used in the modem
status handlers, described in the following section.

58 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

Interfacing V42 with the Modem

The receive and transmit applications and the I/O handlers must handle cases when the

V42 module is on or off. To turn V42 on or off, set the V42ModuleActive field TRUE or

FALSE, respectively, in the tmModeminstanceSetup_t structure passed to modeminstance-
Setup.

The status handler must execute some commands during particular states of the modem
and V42 status handlers. These commands are necessary to restart the V42 module once

a modem connection is established, to pause the V42 processing during retrains and

restarts, to generate empty frames, and to stop the modem if the V42 module detects dis-
connection. In particular:

Handler: ModemLocalStatusHandler

Status: tmModemConnected

If the V.42 module is active, the following commands must be issued:
tmModemV42Command_t cmd;
cmd.params.dataRate = modemStatus.state.connect.dataRate;

cmd.command = tmModemV42RestartCmd;
tmModemV42CommandHandler(&cmd) ;

Handler: ModemLocalStatusHandler
Status: tmModemRetrainStarted and mRateRenegotiated
The following commands must be issued:

tmModemV42Command_t cmd;
cmd.command = tmModemV42PauseCmd;
tmModemV42CommandHandler (&cmd) ;

Handler: V42LocalStatusHandler
Status: tmModemV42HandShakelnProgress, vConnectedCompression and
tmModemV42ConnectedErrorControl.
The following commands must be issued:
tmModemCommand_t cmd;
cmd.param.emptyFrame = tmModemHDLCFrame;

cmd. command = tmModemSetEmptyFrameCmd;
tmModemCommandHandler (&cmd) ;

Handler: V42LocalStatusHandler

Status: tmModemV42DisconnectedState.
The following commands must be issued.
tmModemCommand_t cmd;

cmd.command = tmModemStopCmd;
tmModemCommandHandler (&cmd) ;

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support

59

Chapter 3: V34 Modem API

Modem Data Structures

This section presents the V34 modem library data structures.

Name Page
tmModemCallMode_t 61
tmModemCommandCode_t 62
tmModemCapabilities_t 63
tmModemStatus_t 65
tmModemStatusCode_t 66
tmModemV42Command_t 67
tmModemV42CommandCode_t 68
tmModeminstanceSetup_t 69
tmModemV8BisConfig_t 70
tmModemV8BisStatus_t 70
tmModemV8Protocol_t 71

60 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemCallMode_t

typedef enum {
tmModemAnswerMode,
tmModemCallerMode,
tmModemInitiatorMode
} tmModemCallMode_t;

Fields

tmModemAnswerMode Used by V25Ter to put the modem in answering
mode.

tmModemCallerMode Used by V25Ter to put the modem in calling
mode.

tmModemInitiatorMode Reserved.

Description

Enumerates values used by the dialer module to put the mode in calling or answering
mode.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 61

Chapter 3: V34 Modem API

tmModemCommandCode_t

typedef enum {
tmModemStartCmd,
tmModemStopCmd,
tmModemStartClearDownCmd,
tmModemSetStatusHandlerCmd,
tmModemSetEmptyFrameCmd,
tmModemSetDesiredModeCmd,
tmModemSetDteCapabilitiesCmd,
tmModemSetDataReadHandlerCmd,
tmModemSetDataWriteHandlerCmd,
tmModemSetV8_bisParametersCmd,
tmModemSetTotalHardwareDelayCmd,
tmModemGetConnectionDetailsCmd,
tmModemForceRetrainCmd,
tmModemForceRenegotiationCmd,
tmModemSetConstellationHandlerCmd

} tmModemCommandCode_t;

Fields
tmModemStartCmd Used to start the modem.
tmModemStopCmd Used to stop the modem, if an escape code is

tmModemStartClearDownCmd
tmModemSetStatusHandlerCmd
tmModemSetEmptyFrameCmd
tmModemSetDesiredModeCmd
tmModemSetDteCapabilitiesCmd
tmModemSetDataReadHand1erCmd
tmModemSetDataWriteHandlerCmd
tmModemSetV8_bisParametersCmd
tmModemSetTotalHardwareDelayCmd
tmModemGetConnectionDetailsCmd
tmModemForceRetrainCmd

tmModemForceRenegotiationCmd

issued or if carrier is dropped.

Used to start clear down procedure.
Used to set modem status handler.
Used to set emply frame.

Reserved.

Reserved.

Used to set modem data read handler.
Used to set modem data write handler.
Reserved.

Used to set the total hardware delay.
Reserved.

Reserved.

Reserved.

tmModemSetConstellationHandlerCmd

Description

Reserved.

These values are used to issue commands to the modem command handler.

62 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemCapabilities_t

typedef struct {
tsaDefaultCapabilities_t
capsStruct
Int
Int

} tmModemCapabilities_t;

Fields

*default_cap;

*Caps;
v42ModuleActive;
numCurrentInstances;

default_cap
Caps
v42ModuleActive

numCurrentInstances

Description

Pointer to default capabilities structure.
Pointer to capabilities structure.
Integer with non-zero value if V42 is active.

Number of instances being used.

Holds a list of capabilities. The V34 Modem maintains a structure of this type to describe
itself. The application can retrieve the address of this structure by calling modemGet-

Capabilities.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 63

Chapter 3: V34 Modem API

tmModemV25Capabilities_t

typedef struct {

Int32
Int32
Int32
Int32
Int32
Float

dteMask;
dceMask;
symMask;
rateMask;
miscMask;
levelTX;

} tmModemV25Capabilities_t;

Fields

dteMask
dceMask
symMask
rateMask
miscMask
TevelTX

Description

DTE mask.
DCE mask.
Reserved.

Data rate mask.
Reserved.

Transmit level for hardware adjustment.

Structure with masks used by the tmModemCapabilities_t structure.

64 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemStatus_t

typedef struct {

tmModemStatusCode_t

struct {
struct {

status;

Int32 modulation;

Int32 dataRate;

Int32 symbolRate;

} connect;
struct {

Int32 remoteDteCapabilities;
Int32 remoteDceCapabilities;
Int32 remoteDteDesiredMode;
Int32 remoteDceDesiredMode;

Int time;

tmModemV8CallFunction_t callf@d;
tmModemV8Protocol_t protd;
tmModemV8BisStatus_t status;

} V8_bis;

Int sampleFrequency;
tmModetmModemConnectionDetails_t connDetails;
tmModetmModemExitCode_t exitCode;

} state;
} tmModemStatus_t;

Fields

status

modulation

dataRate
symbolRate
V8_bis
sampleFrequency
connDetails

exitCode

Modem status. See tmModemStatusCode_t.

Codes with allowed modem modulation types.

Possible values, defined in tmModem.h, are:
MODEM_DTE_PROTOCOL_DATA Ox00000001L

MODEM_DCE_PROTOCOL_ALL OxFFFFFFFFL
MODEM_DCE_PROTOCOL_V21 Ox00000001L
MODEM_DCE_PROTOCOL_V22 0x00000002L
MODEM_DCE_PROTOCOL_V22BIS ©@x@00000@4L
MODEM_DCE_PROTOCOL_V23 Ox00000008L
MODEM_DCE_PROTOCOL_V32 Ox00000010L

MODEM_DCE_PROTOCOL_V32BIS @x00000020L
MODEM_DCE_PROTOCOL_V34BIS ©@x00000040L
Modem data rate.

Modem symbol rate.

Reserved for future use.

Sampling frequency used in datapump.
Reserved for internal use.

Returned modem exit code. See
tmModetmModemExitCode_t.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support

65

Chapter 3: V34 Modem API

Description

Structure used to verify modem status in the modem status handler.

tmModemStatusCode_t

typedef enum {
tmModemExit,
tmModemBusy,
tmModemCarrierPresent,
tmModemCarrierLost,
tmModemConnected,
tmModemSampleFrequency,
tmModemV8Info,
tmModemV8bisInfo,
tmModemRateRenegotiationStarted,
tmModemRetrainStarted,
tmModemClearDownStarted,
tmModemConnectionDetails

} tmModemStatusCode_t;

Fields

tmModemExit Indicates that the modem has exited.
tmModemBusy Indicates busy signal.
tmModemCarrierPresent Indicates that a carrier is beging received.
tmModemCarrierLost Indicates that carrier was lost.
tmModemSampleFrequency Indicates the used sampling frequency.
tmModemV8Info Reserved for future use.

tmModemV8bisInfo Reserved for future use.

tmModemRateRenegotiationStarted Indicates start of rate renegotiation.

tmModemRetrainStarted Indicates start of retrain.
tmModemClearDownStarted Indicates start of clear down procedure.
tmModemConnectionDetails Reserved

Description

These values contain status codes generated by the modem datapump.

66 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

tmModemV42Command_t

Chapter 3: V34 Modem API

typedef struct tmModemV42Command_t {

tmModemV42CommandCode_t command;
union {
tmModemV420ptionalParam_t opParams;
tmModemV42StartParam_t startParams;
tmModemV42LockState_t lTockState;
tmModemV42BreakSignalParam_t breakSignalParams;
tmModemV42DatapumpFunctions_t dpFunctions;
Int dataRate;
struct {
tmtmModemV42DataReadHandler_t dataReadHandlerPtr;
Int blockSize;
}dataReadIO;
tmModemV42DataWriteHandler_t dataWriteHandlerPtr;

tmModemV42StatusHandler_t
}params;
}tmModemV42Command_t;

statusHandlerPtr;

Fields

command Command to be sent to V42 module.
opParams Reserved.

startParams Reserved.

lockState Reserved.

breakSignalParams Reserved.

dpFunctions Reserved.

dataRate

dataReadIO
dataWriteHandlerPtr
statusHandlerPtr

Description

Data rate. Should be initialized to the current dat-
arate when the command tmModemV42Restart-
Cmd is sent to the V42 module. The current
datarate can be obtained from modem-
Status.state.connect.datarate.

Reserved.
Reserved.

Reserved.

The first field of this structure contains the command to be sent to the V42 module. The

other parameters contain fields that are used internally upon issuing commands to the

V42 module.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 67

Chapter 3: V34 Modem API

tmModemV42CommandCode _t

typedef enum tmModemV42CommandCode_t {
tmModemV42StartCmd,
tmModemV42StopCmd,
tmModemV42PauseCmd,
tmModemV42RestartCmd,
tmModemV42SetOpParametersCmd,
tmModemV42SetDataReadHandlerCmd,
tmModemV42SetDataWriteHandlerCmd,
tmModemV42SetStatusHandlerCmd,
tmModemV42SendBreakCmd,
tmModemV42SetBreakParametersCmd,
tmModemV42GetConnectionDetailsCmd,
tmModemV42DataDeliveryCmd,
tmModemV42ResetTimeReferenceCmd,
tmModemV42SetDatapumpFunctionsCmd

}tmModemV42CommandCode_t;

Fields

tmModemV42StartCmd Command to start V42 module
tmModemV42StopCmd Command to stop V42 module.
tmModemV42PauseCmd Command to pause v42 during modem retrain
tmModemV42RestartCmd Command to perform restarting after pausing.

tmModemV42SetOpParametersCmd Reserved.
tmModemV42SetDataReadHandlerCmd Reserved.
tmModemV42SetDataWriteHandlerCmd

Reserved.
tmModemV42SetStatusHandlerCmd Reserved.
tmModemV42SendBreakCmd Command to send a BREAK to v42.

tmModemV42SetBreakParametersCmd Commandtoset BREAK Parametersforv42.

tmModemV42GetConnectionDetailsCmd
Command to get V42 connection information.

tmModemV42DataDeliveryCmd Command to start/stop v42 data dilevery.
tmModemV42ResetTimeReferenceCmd Command to Reset the time.

tmModemV42SetDatapumpFunctionsCmd
Command to set the data pump functions.

Description

These values contain command codes used by tmModemV42CommandHandler.

68 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemInstanceSetup_t

typedef struct {
modemDataWriteHandlerType
modemDataReadHandTerType
modemStatusHandlerType
tmModemV42StatusHandler_t
Bool

} tmModemInstanceSetup_t;

ModemDataTxHandler;
ModemDataRxHandler;
ModemStatusHandler;
V42StatusHandler;
V42ModuleActive;

Fields

ModemDataTxHandler Pointer to transmit handler.

ModemDataRxHandler Pointer to receive handler.

ModemStatusHandler Pointer to handler that manages status informa-
tion about the modem. Typically, it uses informa-
tion from tmModemStatusCode_t. See section
about modem status handlers.

V42StatusHandler Pointer to handler that manages status informa-
tion about the V42 module. Typically, it uses
information from tmModemV42Status_t. See sec-
tion about modem status handlers.

V42ModuleActive Variable of type Bool. It should be set to TRUE if
V42 is chosen to be active and FALSE otherwise.

Description

This structure contains the modem handlers used for transmitting and receiving data,
and also the status handlers for the modem and the V42 module. In addition, it contains
one boolean variable that determines if V42 is active or not. It is used by the function

tmModemlnstanceSetup to initialize a modem instance properly.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 69

Chapter 3: V34 Modem API

tmModemV8BisConfig_t

typedef struct {
UInt getRemoteCapabilities 1
UInt remoteHasV8bis H
UInt msclocal 1
UInt modeAcceptanceCriteria : 1
UInt retransmitCounterLimit : 2
UInt unused :10;

} tmModemV8BisConfig_t;

Description

Reserved for future use.

tmModemV8BisStatus_t

typedef struct {
UInt sessionResult
UInt timerExpired
UInt modeSelectionFail
UInt ansamDetected
UInt ansDetected
UInt transactionError
UInt callerMode
UInt unused

} tmModemV8BisStatus_t;

[e

Description

Reserved for future use.

70 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemV8Protocol_t

typedef enum {
tmModemV80ctetProtocolLAPM Gx2A,
tmModemV80ctetProtocolExt = @xEA
} tmModemV8Protocol_t;

Description

Reserved for future use.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 71

Chapter 3: V34 Modem API

Modem Functions

This section presents the V34 Modem library functions.

Name Page
tmModemAfelnit 73
tmModemOpen 73
tmModemClose 74
tmModemV25SendCommand 75
tmModemCommandHandler 76
tmModemGetCapabilities 76
tmModemlnstanceSetup 77
tmModemDataWrite 78
tmModemStart 79
tmModemStop 79
tmModemV42Process 80
tmModemV42DataRead 80
tmModemV42DataWrite 81
tmModemV42DataReadPending 81
tmModemV42DataWritePending 82
tmModemV42CommandHandler 82
tmModemV42GetCharFromTxBuffer 83
tmModemV42PutCharInTxBuffer 84
tmModemV42GetCharFromRxBuffer 85
tmModemV42PutCharlnRxBuffer 86

72 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemAfelnit

tmLibappErr_t tmModemAfeInit(void);

Description

Initializes the analog front end. Must be called before tmModemOpen.

tmModemOpen

tmLibappErr_t tmModemOpen(
Int *instance
)3

Parameters

instance Pointer (returned) to an instance variable, used to
identify the instance in subsequent transactions.

Return Codes

TMLIBAPP_OK Success.

Description

Creates an instance of a V34 modem and sets the instance variable. This instance vari-
able must be used in subsequent function calls for this modem. The open function allo-
cates memory for the internal instance variables. The current version of this API only
allows one instance.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 73

Chapter 3: V34 Modem API

tmModemClose

tmLibappErr_t tmModemClose(
Int instance
)3

Parameters

instance Instance, as returned by tmModemOpen.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

Description

This function releases the instance of the modem. It frees the memory allocated for
internal variables.

74 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemV25SendCommand

tmLibappErr_t tmModemV25SendCommand (
UInt32 instance,

String cmd

)

Parameters

cmd Pointer to chars containing V25Ter commands
supported by the TM V34 softmodem API.

instance Modem instance being used to send V25Ter com-
mand.

Return Codes

TMLIBAPP_OK Success.

Description

Executes V25Ter (AT) command in cmd. Supported AT commands in this release are
shown in Table 1. Additional commands are planned for the next release of the TM

modem.
Table 1 Supported AT command set (V25Ter).
ATDT Dials a phone number.
ATS0=X Connects upon receiving a call after ringing X times.
AT&F1 Restores factory settings.
ATI Obtains information about the modem.
ATZ Restarts the modem.
ATH Hangs up the phone connection.
A/ Repeats previous command.
AT Same as ATZ.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 75

Chapter 3: V34 Modem API

tmModemCommandHandler

tmLibappErr_t tmModemCommandHandler(
tmModemCommand_t *cmd
)3

Parameters

cmd Pointer to the command.

Return Codes

TMLIBAPP_OK Success.

Description

Processes commands sent to datapump. Returns value with error code. See
tmModemCommand_t.

tmModemGetCapabilities

tmLibappErr_t tmModemGetCapabilities(
ptmModemCapabilities_t *cap
)3

Parameters

cap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

This function can be used to retrieve a pointer to the capabilities struct of the TriMedia
V34 Modem library. For more information, refer to tmModemCapabilities_t on page 63.

76 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemInstanceSetup

tmLibappErr_t tmModemInstanceSetup(
Int instance,
tmModemInstanceSetup_t *setup

)3

Parameters
instance Instance, as returned by tmModemOpen.
setup Pointer to the setup structure.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

Description

Initializes V42 module if V42 is chosen to be active and installs modem I/O handlers
(ModembDataReceiveHandler and ModemDataTransmitHandler). It resets the modem and
the V42 module.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 77

Chapter 3: V34 Modem API

tmModemDataWrite

Int tmModemDataWrite(
Int nBytes,
Byte “*srcPtr

);

Parameters

nBytes Number of bytes to be sent to datapump.

scrPtr Pointer to data to be sent to datapump.

Return

(Int) An integer containing the number of bytes actu-
ally stored in the buffer. It may be less than
nBytes if buffer overflow happens.

Description

This function stores nBytes of given data into the internal modem buffer for later trans-
mission. The return value is the number of bytes actually stored in the buffer and may be
less than nBytes if not enough space is available. Buffer overflow can be avoided by call-
ing tmModemDataWritePending before tmModemDataWrite. This API call should only
be used inside I/O handlers.

78 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemStart

tmLibappErr_t tmModemStart (
Int instance
)3

Parameters

instance Instance, as returned by tmModemOpen.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

Description

Initializes V42 module if requested to be active, sends commands to V25Ter module and
creates a modem task.

tmModemStop

tmLibappErr_t tmModemStop (
Int instance
)3

Parameters

instance Instance, as returned by tmModemOpen.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Invalid instance number.

Description

The function stops datapump processing.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 79

Chapter 3: V34 Modem API

tmModemV42Process

tmLibappErr_t tmModemV42Process (void);

Return Codes

V42 Exit Code.

Description

Executes the main V42 process.

tmModemV42DataRead

tmLibappErr_t tmModemV42DataRead(
Int nBytes,
Byte *RcvPtr

)3

Parameters
nBytes Number of bytes to be read from V42 buffer.
RevPtr Pointer to data to be copied from V42 buffer.
Description

Copies nBytes of data from V42 read buffer.

80 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemV42DataWrite

tmLibappErr_t tmModemV42DataWrite(
Int nBytes,
Byte *xmtPtr

)3

Parameters

nBytes Number of byes to be transmitted to the V42
module.

xmtPtr Pointer to bytes to be transmitted to the V42
module.

Return Codes

Variable of type tmModemV42ReturnErrorCode_t containing return errors.

Description

Transfers nBytes bytes from data location pointed by xmtPtr to V42 module, that will be
later sent to the datapump. This API call should only be used inside I/O handlers; a direct
call inside the root task will cause incorrect operation.

tmModemV42DataReadPending

Int tmModemV42DataReadPending (void);

Return

(Int) Number of bytes in the V.42 read buffer in num-
ber of bytes.

Description

Before the Modem can deliver data to V.42, it must poll the status of the V.42 receive
buffer for empty space by a call to tmModemV42DataReadPending. The function returns
the empty space in the buffer (in bytes).

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 81

Chapter 3: V34 Modem API

tmModemV42DataWritePending

Int tmModemV42DataWritePending (void);

Return

(Int) Returns the number of bytes in V42 internal
buffer.

Description

Before the application can send data to V42, it must poll the status of the V42 receive
buffer. This is accomplished by a call to the function tmModemV42DataWritePending.
The function returns the empty space in the buffer in number of bytes.

tmModemV42CommandHandler

tmLibappErr_t tmModemV42CommandHandler(
tmModemV42Command_t *cmd
)3

Parameters

cmd Pointer to structure containing V42 command to
be executed.

Return Codes

Variable containing error code.

82 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemV42GetCharFromTxBuffer

UInt32 tmModemV42GetCharFromTxBuffer(
UInt32 Tength,
Byte *Buffer

)3

Parameters

Tength Number of characters to be obtained from trans-
mit buffer.

Buffer Pointer to character with locations to be used to
obtain data from transmit buffer.

Return

(UInt32) Number of characters successfully copied.

Description

Copies length characters from transmit buffer into memory locations pointed by Buffer.
Should be used by the modem receive handler to obtain data from the buffer between
the V42 module and application.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 83

Chapter 3: V34 Modem API

tmModemV42PutCharInTxBuffer

Int tmModemV42PutCharInTxBuffer(
Int length,
Byte *Buffer

)3

Parameters

length Number of characters to be copied into transmit
buffer.

Buffer Pointer to character with locations to be used to
copy data into transmit buffer.

Return

(Int) Number of characters successfully copied into
transmit buffer.

Description

Copies length characters from memory locations pointed by Buffer into transmit buffer.
Should be used by the application to copy data into the transmit buffer between the
application and the V42 module.

84 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

tmModemV42GetCharFromRxBuffer

UInt32 tmModemV42GetCharFromRxBuffer(
UInt32 Tength,
Byte *databyte

)3

Parameters

length Integer containing number of characters to be
copied to memory locations pointed by databyte
from the receive buffer.

databyte Pointer to the receiver buffer.

Return

(UInt32) Number of bytes successfully copied.

Description

Copies length elements from the modem receive buffer into memory locations pointed
by databyte. Should be used by the application to receive data from the receive buffer
between the V42 module and the application.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 85

Chapter 3: V34 Modem API

tmModemV42PutCharinRxBuffer

Int tmModemV42PutCharInRxBuffer(
Int Tength,
Byte *Buffer

);

Parameters

length Integer containing number of characters to be
copied from memory locations pointed by Buffer
into the receive buffer.

Buffer Pointer to the receive buffer.

Return

(Int) The number of elements, of type char, success-
fully copied into the receive buffer.

Description

Copies length elements pointed by Buffer into the modem receive buffer. Should be used
by the modem receive handler to copy data into the receive buffer between the V42
module and the application.

86 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

1/0 Handlers

Modem input and output is performed by I/O handlers provided by the application. Two
1/0 handlers are needed: ModemDataReceiveHandler and ModemDataTransmitHandler.
The I/0O handlers are installed by calling ModemInstanceSetup, which requires an input
parameter of type tmModeminstanceSetup_t containing pointers to the I/O handlers.

Name Page
ModemDataReceiveHandler 88
ModemDataTransmitHandler 89

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 87

Chapter 3: V34 Modem API

ModemDataReceiveHandler

UInt32 ModemDataReceiveHandler(
Int nBytes,
Byte *data

);

Parameters

nBytes Number of bytes available at receive buffer.

data Pointer to memory locations from receive buffer.

Description

ModemDataReceiveHandler must be supplied by the application to handle the interface
between the modem output and the application’s input. If the V42 module is not active,
send data to the application by copying nBytes starting at address data. If V42 module is
active, use tmModemV42PutCharinRxBuffer to put data in the buffer between V42 and
the application (see Interfacing V42 with the Modem on page 59). Figure 4 shows an exam-

ple.

UInt32
ModemDataReceiveHandler(
int nBytes,
Byte *data
){
int i, dataWriteInAppRxBuff;

if(lv42ModuleActive){
for(i=0; i<nBytes; i++) dest[i] = datali];
destnBytes = nBytes;
telse{
dataWriteInAppRxBuff = tmModemV42PutCharInRxBuffer(nBytes, data);
return(dataWriteInAppRxBuff);

}

Figure 4 Code example for ModemDataReceiveHandler.

88 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

ModemDataTransmitHandler

void ModemDataTransmitHandler(void);

Description

ModemDataTransmitHandler must be supplied by the application to handle the modem
input and the application’s output. If the V42 module is active, use tmModemV42Data-
Write to send data to the V42 module. If the V42 module is inactive, use tmModem-
DataWrite to send data directly to the modem. Figure 5 shows an example.

void ModemDataTransmitHandler(void){
Byte Buffer[TX_APP_BUFF_SIZE];
static Byte datal[1001;
static Int message = 0;
static Int Count = 0;
Int numOfBytes;
Int numOfBytesGet;

if(v42ModuleActive){
if(sendV42DataToRemote){
num0fBytes = tmModemV42DataWritePending();
numOfBytesGet = tmModemV42GetCharFromTxBuffer(numOfBytes, Buffer);
tmModemV42DataWrite(numOfBytesGet, Buffer);

}

telse{
if((Count++ != MODEM_V42_DTE_BLOCK_SIZE) && (message==0)) return;
Count = 0;

numOfBytes = TEXT_BLOCK_SIZE;

numOfBytesGet = tmModemV42GetCharFromTxBuffer(numOfBytes,Buffer);
if(numOfBytesGet == TEXT_BLOCK_SIZE){
if(message==0){
addStartStopBits(TEXT_BLOCK_SIZE, Buffer, data);
message = 2*TEXT_BLOCK_SIZE*8;

}

if(tmModemDataWritePending() > message){
tmModemDataWrite(message, data);
message = 0;

}

}
}
}

Figure 5 Code example for ModemDataTransmitHandler

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 89

Chapter 3: V34 Modem API

Status Handlers

The modem should handle status by using handlers. Two status handlers are used:
modemLocalStatusHandler and V42StatusHandler.

Name Page
modemLocalStatusHandler 91
V42LocalStatusHandler 91

90 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

modemLocalStatusHandler

void ModemLocalStatusHandler(
tmModemStatus_t modemStatus
)s

Parameters

modemStatus Status of the modem.

Description

The application should supply a ModemLocalStatusHandler function to handle different
modem conditions. In particular, if the V42Module is active, it must be properly initial-
ized at state tmModemConnected. See the application example exModem.c on page 92.

V42LocalStatusHandler

void V42LocalStatusHandler(
tmModemV42Status_t v42Status
)

Parameters

v42Status Status of V42 module.

Description

The application should create a V42LocalStatusHandler to handle different V42 condi-
tions. See the application example exModem.c on page 92.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 91

Chapter 3: V34 Modem API

Modem Example: exModem.c

A modem example is included in this release. It is available in the file exModem.c. The
root task in exModem.c executes the sequence of function calls described in TriMedia
V34 Modem API Overview.
void root(void){
UInt32 targs[4] = {0, 0, 0, 0};

ptmModemCapabilities_t cap;
tmModemInstanceSetup_t mdmSetup = {

ModemDataTransmitHandler, /* Name of Transmit Handler w)
ModemDataReceiveHandler, /* Name of Receive Handler =/
ModemLocalStatusHandler, /* Name of Local Status Handler*/
V42LocalStatusHandler, /* Name of V42 Status Handler */
True /* True if V42 is active */

IE
mprintf("Start V.34 modem program.\n");
tmModemAfelInit();

/* Start the pSOS system timer.*/
de_init(DEV_TIMER, 0, &ioretval, &dummy);

tmModemGetCapabilities(&cap);

/* Stores in the variable v42ModuleActive the status of V42 module*/
v42ModuleActive = mdmSetup.V42ModuleActive;
if(tmModemOpen(&instance) != TMLIBAPP_OK){

mprintf("Error opening modem Instance"); exit(0);
}
targs[0] = (UInt32)instance;
if(tmModemInstanceSetup(instance, &mdmSetup) != TMLIBAPP_OK){
mprintf("Invalid Instance"); exit(0);
}

tmModemStart(instance);

/* Start keyboard task */
if((err_code = t_create("PHO02", KEYBOARD_PRIO, 40960, 40960, O,
&key_task)) != PSOS_OK)
mprintf("Can’t create keyboard_task (err = 0x%x).\n", err_code);
if((err_code = t_start(key_task, T_PREEMPT | T_TSLICE | T_ISR,
KeyboardTask, targs)) != PSO0S_OK)
mprintf("Can’t start keyboard task (err = 0x%x).\n", err_code);
t_suspend(0L);
}

The code above shows that, first, the AFE is initialized by a call to tmModemAfelnit. It
obtains the modem capabilities structure by calling tmModemGetCapabilities. It then
calls tmModemOpen to obtain a modem instance, which is passed to tmModeminstance-
Setup. tmModeminstanceSetup uses a variable with the instance settings (mdmSetup),
chosen in the definition of mdmSetup. mdmSetup contains the names of the transmit,
receive and status handlers, and also determines whether the V42 module is active. The
modem is started by invoking tmModemStart. After the modem is started, a “keyboard
task” is started. The purpose of the keyboard task is to obtain V25Ter commands from
the console, and invoke tmModemV255SendCommand.

92 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

The application tasks are created in the tmModemConnected status of the ModemLocal-
StatusHandler. The function creatTxRxTasks creates the receive and transmit tasks.

The receive task is named DataRxTask. It receives data from the V42, if the V42 module is
active, by invoking tmModemV42GetCharFromRxBuffer. If V42 is not active, it obtains
data directly from the datapump using the variable dest.

The transmit task is named DataTxTask. It sends a string “TriMedia softmodem” or “THE
QUICK BROWN FOX JUMPED OVER THE LAZY DOG’S BACK” to the V42 module by
invoking tmModemV42PutCharinTxBuffer.

The receive handler is named ModemDataReceiveHandler. If V42 is not active, it gets
data from the variable data. If V42 is active, it invokes tmModemV42PutCharInRxBuffer
to transfer memory locations pointed by data to the V42 buffer. If V42 is active, it sends
characters to the screen by invoking mprintf.

The transmit handler is named ModembDataTransmitHandler. It invokes tmModemV42-
GetCharFromTxBuffer to transmit data directly to the datapump or to the V42 module in
both cases. tmModemV42DataWritePending verifies the number of entries that are avail-
able in the buffer before transmission.

If the V42 module is active, some commands must be issued in the ModemLocalStatus-
Handler and the V42LocalStatusHandler. See Interfacing V42 with the Modem on page 59.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 93

Chapter 3: V34 Modem API

PPP Example: exModemPPP.c

Point-to-Point protocol (PPP) is a data link layer protocol that uses multiple network
layer packets to operate over a serial connection. PPP defines a protocol for link control,
various network control protocols (NCP), and authetication protocols. The TM V34
Modem uses pSOS/pNA+ to establish a PPP connection. Figure 6 shows the overall archi-
tecture of the PPP protocol stack using pSOS.

Open TCP/IP

pNA+
ENET DLPI

NI Interface

PPP driver

Generic Physical Layer Interface

DISI specific layer

Asynchronous Serial Interface

!

| DISI Driver |

Physical Layer Interface

| Modem Interface |

Figure 6 pNA+ PPP Protocol Stack

Figure 6 shows that the interface between the modem and PPP is performed by the
Device Independent Serial Interface (DISI) driver and the DISI specific layer. The DISI
specific layer provides a generic interface to the PPP driver, but specifically deals with the
DISI driver. The DISI specific layer communicates with the DISI driver through an asyn-
chronous serial interface, which is suitable for low bit rates from V34 modems. Refer to
pSOS/pNA+ documentation for additional information.

exModemPPP.c is the name of the file containing the example of integration of modem
and PPP. In the root task, a sequence of calls starts the modem, as described in the exMo-
dem.c example. The main difference here is the naming of the I/O handlers: in the mdm-
Setup variable containining the modem setup structure, the receive handler is
TcpipModemDataReceiveHandler and the transmit handler is TcpipModemDataTran-
smitHandler. Also, in the “keyboard task,” once it is verified that the command string

94 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 3: V34 Modem API

contains a dialing command (ATDT), the tcpip function is invoked. The tcpip function is
defined in the file client.c.

The I/O Handlers are defined in the file serial.c. They use the same functions described in

the exModem.c example for transferring data to/from the V42 module: tmModemV42-
PutCharInRxBuffer and tmModemV42GetCharFromRxBuffer. These functions transmit and
receive data from the TCP/IP connection to/from the V42 module. Refer to pNA docu-

mentation for additional information.

The example in exModemPPP.c uses several other files for the PPP implementation,
described below:

Known Bugs

diti.c The “Device-Independent Terminal Interface,” as supplied by ISI. This file con-
verts the pSOS device interface (de_write, etc) into the “Device-Independent Serial
Interface” (SerialSend, etc) in disi.c.

pppconf.c Defines the PPP configuration, including serial and modem configura-
tions, the hostname, the error callout and the PAP and CHAP secrets information.
Other drivers can be hooked in by modifying this file.

serial.c Implements a thin layer between the pSOS device interface and the set of
functions used by the main application.

trace.h Allows simple tracing to be enabled by compiling with ~-DTRACING=1.

client.c File that contains main PPP code. The phone number for a PPP server, user
name, password, and command for invoking PPP should be properly set in this file.

Modem might fail to detect busy tone.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 95

Chapter 3: V34 Modem API

96 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4
1394 FireWire API

Topic Page
IEEE 1394 Overview 98
1394 API Overview 99
1394 APl Enumerated Types 106
1394 API Data Structures 124
1394 API Functions 156
1394 Callback Functions 201

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 97

Chapter 4: 1394 FireWire API

IEEE 1394 Overview

IEEE-1394 is a high-performance serial bus standard. The serial bus enables high-speed
transmissions (100 Mbps to 400 Mbps) over a low-cost bus. The standard is currently
being enhanced for transmission rates of 800 Mbps, 1.6 Gbps, and 3.2 Gbps. The serial
bus standard also provides hot-pluggability. Although these features are good, they prove
challenging for software developers.

Other committees have defined protocols on top of the IEEE-1394 specifications. The
SBP-2 protocol provides mechanisms for delivering commands, data, and status, inde-
pendent of the command set or device class of the peripheral. Printer and disk drive
manufacturers have adopted this generic framework. Another protocol being developed
is the DPP protocol for connecting to a printer. The future DTV equipped with these pro-
tocols can be used to print photographs from a TV directly to an IEEE-1394 printer.

The ‘IP over 1394’ protocol enables standard TCP/IP protocols to be used on top of the
1394 specifications. A web browser can be built on top of ‘IP over 1394’ and can access
web pages through the IEEE-1394 cable.

The AV/C protocol permits connection to 1IEEE-394 digital camcorders. These camcord-
ers stream video data on isochronous channels which can be received by a DTV and can
be streamed to other streaming components in the DTV before being displayed.

The SD-DVCR Decoder component would allow data received from existing DV cam-
corders to be displayed on a television.

Glossary

AV/C. Audio/Video Control, as in the AV/C Digital Interface Command Set.
BMC. Bus Management Capability.

CIP. Common Isochronous Protocol.

CM. Cycle Master.

CSC. Cycle Start Capability.

CSR. Control and Status Register of a node or unit, as defined by IEEE 1394-1995.

EUID. Extended Unique Identifier, 64 bits, as defined by the IEEE. The EUID is a concat-
enation of a 24-bit company ID and a 40-bit number the vendor (identified by company
ID) guarantees unique for all of its products.

IEC. International Electrotechnical Commission.
IRM. Isochronous Resource Management.
ISC. Isochronous Capability.

Isochronous. The essential characteristic of a time-scale or signal such that the time
intervals between consecutive data transfers have either the same duration or durations
that are integral multiples of the shortest duration.

98 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

mblock. A memory block allocated by the memory utility API defined in this document.

Node. An addressable device attached to Serial Bus with at least the minimum set of con-
trol registers defined by IEEE Standard 1394-1995.

Node ID. A 16-bit number, unique within the context of an interconnected group of
serial buses. The node ID identifies both the source and the destination of asynchronous
data packets on the serial bus. It can identify either one single device within the address-
able group of serial buses (unicast) or all devices (broadcast).

Quadlet. Four bytes of data.

SBM. Serial Bus Manager. A set of functions defined in this document that handles serial
bus management.

Serial Bus. The physical interconnections and higher-level protocols for the peer-to-peer
transport of serial data, as defined by IEEE Standard 1394-1995.

1394 API Overview

These are the fundamental assumptions of the 1394 APIL.

1. There can be multiple link controllers (for example, PDIL11) to handle 1394 commu-
nication in a DTV platform. Each link controller is called a device.

2. There can be multiple instances of the 1394 API referencing the same device. A partic-
ular link controller is identified by the base memory address specified in the tsa1394
instance setup.

3. The API follows TSSA guidelines. Typically, applications call tsa1394GetCapabilities,
tsa13940pen, tsa1394GetInstanceSetup, tsal394InstanceSetup and tsa1394Close.

4. When the first application calls tsa13940pen, an instance number is returned to it.
The application uses this instance number to call tsa1394InstanceSetup.

5. In the call to tsa1394InstanceSetup, the application passes BaseAddress as well as
other parameters such as
— the number of other nodes to which this link controller is connected.
— the number of labels associated with each node to which it is connected.
— the base address of the bus information block of ConfigROM.
— the length of configROM.
— the GREF size.
— other FIFO sizes.
— memory allocation function pointer.
— ‘free’ function pointer.
See tsa1394InstanceSetup on page 161.

6. The Isochronous Resource Management (IRM) capability, Bus Management (BM)
capability, Cycle Master (CM) capability and ISC (Isochronous) capability are derived

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 99

Chapter 4: 1394 FireWire API

from configROM information, which is part of the setup structure passed to
tsa1394InstanceSetup.

7. If a second application calls tsa13940pen, it will also be returned an instance num-
ber. The second application will also try to call an tsa1394InstanceSetup. When it
does so, it passes the same base address as a parameter. If the device to which it refers
is already opened by another application, indicating that this instance has been set
up, the new values passed with this tsa1394InstanceSetup call will be ignored. How-
ever, an internal reference count indicating how many instances are tied to the link
controller will be incremented.

Each time tsa1394Close is called, the internal reference count decrements. When the
reference count is O, the library releases all memory used by the device (using the
‘free’ function specified in the tsal394 instance setup structure).

The figure below shows the 1394 FireWire Library in a system having multiple applica-
tions that wish to use the services of the library. The 1394 FireWire Device can commu-
nicate with multiple link controllers as shown below. The figure below also shows the
major blocks in the 1394 FireWire library. The main blocks in the 1394 library are the
Dispatcher (for asynchronous transmission), Serial Bus Manager (SBM), Transaction
Layer, and Hardware Adaptation Layer (HAL). The 1394 library also has utilities for
memory pool management and for timer functionality.

Application 1 Application 2 Application n

SBP2 Initiator IP over 1394 SBP2 Target

' Asynch. Interface '
' (Dispatcher) i
1 .. Serial H
' Utilities Bus soch '
| Mblock SOChI. |
i Manager Interface !
]
H Transaction Layer i
= :
: |
]
P 1 :
! i
| HAL :
' i
H]
: 1394 FireWire Device i
L M
Link Controller 1 Link Controller 2 vee Link Controller n

100 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Asynchronous Transmission API

The Dispatcher block allows applications to:
= Create an asynchronous channel.
= Register their Control and Status Register (CSR) address space with the 1394 library.

= Register for serial bus events (e.g., bus reset) and control events (e.g., CSR content
update into physical memory). This means the application is notified of events.

= Send asynchronous requests and responses to target nodes on the bus.

The application also specifies the FireWire device to which it wants to create an asyn-
chronous channel, through the 1394 API instance. After completing necessary opera-
tions, applications may deregister their address spaces and the serial bus and control

events registered earlier. Subsequently, an application may destroy the asynchronous
channel.

Isochronous Transmission API

The isochronous setup provides an API, which the application uses to set up the relevant
parameters in the link controller to facilitate transmission and reception of isochronous
data across the 1394 serial bus. API functions pertaining to actual data flow do not fall
under the scope of this document, as they are tightly coupled with Video-In/Video-Out
Pins of a Trimedia processor. An application must create a channel handle with the 1394
FireWire library. The application can then use the isochronous setup APIs for setting up
the IEC-61883-specific parameters and the CIP header parameters in the link controller
registers. The isochronous setup API also includes start transmission and stop transmis-
sion, start reception and stop reception functions. A function to delete the channel han-
dle is also provided.

Serial Bus Manager API

The Serial Bus Manager (SBM) does node discovery and bus enumeration on every bus
reset. It reads the configuration ROM of each node and maintains information such as
maximum record size and EUID corresponding to each node. It also records the maxi-
mum speed between different nodes on the bus.

Applications can access this information maintained in the 1394 library. Applications
specify the tsal394 instance to obtain the information regarding a particular instance of
FireWire device. Applications may also invoke control requests that force a reset or force
a particular node to make its link layer active. Applications may also query the SBM to
obtain information regarding, for example, topology and speed maps.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 101

Chapter 4: 1394 FireWire API

Transaction Layer

The transaction layer does not provide any services for applications. Other blocks in the
1394 library use the services of the transaction layer. The transaction layer provides ser-
vices for split transaction management and transaction label management. The services
provided by the transaction layer are used by the other blocks of the 1394 software
library and are not directly available to applications. A retry mechanism is not provided
by the transaction layer, but is instead directly supported by the link controllers.

Memory Utility API

This utility provides services for managing a memory pool. The purpose of memory
block management is to avoid copying memory when data is passed between different
layers in the system, thus providing efficient throughput. When different layers in a
hierarchy want to add headers required by their protocol, they can add the required
information in new memory blocks and link them with the original blocks. Applications
will benefit from the memory management API of the 1394 library. It creates a pool of
memory blocks of different sizes. Applications may request the allocation of memory
blocks, which they can use for transferring data to other nodes on the system. Once data
is sent by the HAL, it frees the blocks to be reused by the system. Applications may also
use their own memory. The pool also recognizes the concept of messages. A message
consists of one or more data blocks. Data blocks in a message are linked and messages
themselves are also linked.

APl Usage

This section describes the way an application may use the services of the 1394 library.

TSA Generic API

When an application wants to use the 1394 FireWire Library services, it will typically get
the capabilities of the FireWire library using tsa1394GetCapabilities. It then requests an
instance of a FireWire device using tsa13940pen. tsa13940pen creates an instance for
the application, and return a unique instance number to the application. This instance
number is to be used by the application in all subsequent calls to the 1394 FireWire
library.

A call to tsa1394GetinstanceSetup returns the default instance setup information, if the
device is not set up, or the current instance setup, if the device is already setup.
tsa1394InstanceSetup, when called for the first time, initializes that particular FireWire
device and allocates memory using the application-provided ‘alloc’ function. In all other
cases, tsa1394InstanceSetup increases the reference count of the FireWire device that
uses it. It installs the interrupt handler and make the 1394 FireWire device active. By
calling tsa1394Close, an application informs the FireWire library that it is no longer
interested in using the device. When the last call to tsa1394close is made, (i.e., the refer-

102 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

ence count to the device is 0) tsa1394close then releases all resources allocated to all
1394 FireWire devices.

tsa1394Close calls the application’s ‘free’ routine to release the memory used by the
device. The FireWire device will remain open until all applications have called
tsa1394Close. Each call to tsa1394Close decreases the reference count for the device. The
application should never attempt to free the memory allocated using the ‘alloc’ call.

Asynchronous Transmission API

Whenever an application wants to use the services of the 1394 library, it determines
whether an instance of the FireWire device exists. Using this instance, it creates a con-
text in the library by calling tsa1394AsyncCreateAsyncChHandle, which returns an asyn-
chronous channel to be used in subsequent calls to the library. The application then
registers its address space, serial bus management events and control events, by calling
tsa1394AsyncRegisterAddressSpace, tsa1394AsyncRegisterSbEvent, and tsa1394Async-
RegisterControlEvent. The address space can be registered for read, write, and lock opera-
tions. For an example of usage of these functions, see 1394 API Functions.

Subsequently, the application calls tsa1394AsyncSendRequest to send read or write
requests to any other node using asynchronous mechanisms. Applications can register
callback functions while sending read, write, and lock requests. If the application does
register a callback function, the 1394 library calls this callback function, when it receives
corresponding read, write, or lock confirmation for the request sent. For an example of
tsa1394AsyncSendRequest, where data must be written to a destination node after allo-
cating memory from a block (tsa1394AllocbFromPool), see 1394 API Functions.

Subsequently, upon completion of all required transactions, the application deregisters
address space, serial bus events and control events, and finally destroys the asynchro-
nous channel itself. It calls tsa1394AsyncDeregisterAddressSpace, tsa1394Async-
DeregisterSbEvent, tsa1394AsyncDeregisterControlEvent, and tsa1394AsyncDestroy-
ChannelHandle for these purposes.

The application may destroy its context. If it has not done so, the 1394 library detects
read and writes to the registered address space. When it detects these, it calls the regis-
tered callback functions. Also, whenever serial bus events such as bus reset, bus resets
complete, etc., occur, their corresponding callback functions are called.

When an application wants to send a read, write or lock transaction to a destination
node, it calls tsa1394AsyncSendRequest. This can optionally specify a callback function
to be called when a confirmation to this request is received.

Isochronous Transmission API

An application uses Isochronous APIs to send or receive Isochronous data. To send Isoch-
ronous data, the application would use tsa1394lsochCreateChannelHandle to allocate a

channel handle. Subsequently the application will use tsa1394lsochSetupChannel for set-
ting the IEC61883 Tx packing information and the CIP header information. The applica-

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 103

Chapter 4: 1394 FireWire API

tion would then call tsa1394IsochStart for starting the transmission. If the application
wishes to stop isochronous data transmit, it would make a call tsa1394lsochStop and
subsequently to start it would use, tsa1394lsochStart. After completion, applications can
call tsa1394IsochDestroyChannelHandle.

To receive Isochronous data, the application would use tsa1394lsochCreateChHandle to
allocate a channel handle. Subsequently, the application will use
tsa1394lsochSetupChannel for setting the IEC61883 Rx unpacking information and the
CIP header information. The application would then call tsa1394lsochStart for starting
the reception. If the application wishes to stop isochronous data receive, it would make a
call tsa1394IsochStop and subsequently to start it would use, tsa1394lsochStart. After
completion, applications can call tsa1394IsochDestroyChannelHandle.

Serial Bus Management API

At any time during its operation, an application may use the Serial Bus manager (SBM)
APIs to get information about the state of the bus or node and the application may
request certain control actions like initiating bus reset, or initializing the transaction
layer in the node. For initiating the above specified control actions, tsa1394SbmCntrlReq
must be used with appropriate parameters passed. Due to bus reset, the node ID of a des-
tination for data transfer may have changed. The application may wish to confirm the
node ID for a given EUID and may use the services of the SBM to get this information.
This uses tsa1394SbmGetNodeldForEuid. All these functionalities are made available
through the SBM APIs listed above.

When data has to be transferred to another node, the maximum speed between these
two nodes may be obtained from the SBM. This information may be used by the applica-
tion while initiating a data transfer. If there are problems encountered during the data
transfer, the application may choose to try the data transfer again with a lower speed.
tsa1394SbmGetSpeed2Node returns the speed between the current node and a destina-
tion node. Though a particular speed may allow a record size, a destination node may
specify a different record size. This is stored in the BusInfoBlock of the configuration
ROM. An application may use tsa1394SbmGetMaxRec to get this information

Memory Management API

There are some utilities provided for managing memory. This is provided by the mblock
utility. During initialization, a memory pool is created to receive packets from remote
nodes. This is done by internals in the library. There can be a default memory pool cre-
ated in a system with multiple applications. Applications can separately create their own
memory pools. A memory pool consists of multiple blocks of different sizes. For exam-
ple, a memory pool can be created with 5 blocks of size 512, 20 blocks of size 1024, etc.
The application can allocate this buffer size, and pass it to tsa1394Mblkinit for mblock
pool initialization.

104 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Whenever an application needs memory for data transfer, it can request an mblock allo-
cation. This could be requested from a specified pool, or from a default pool which can
all applications can use. When an application requests an mblock from a default pool, it
need not specify the pool ID. For allocation from a specified pool,
tsa1394AllocbFromPool should be used, else tsa1394Allocb may be used.

When an application tries to use the Asynchronous transmission API and resources are
not available the 1394 library would return error messages to the application. The appli-
cation has to register for a callback when the resources are available. This callback will be
called when resources become available. If multiple applications had registered for the
callback, the callbacks of all applications will be called.

The mblocks received from a pool can be used by applications to form messages. A mes-
sage is a list of mblocks linked together. The pointer used to link the blocks of a message
is pCont. Multiple messages can also be linked together and the pNext pointer does this.

The following is a pictorial view of this linked list of memory blocks:

Points to the Next message

pNext j pNext j pNext j pNext
pCount pNext pNext pNext
PRptr —
pWptr

pData

Mblock Mblock Mblock

Message #1
DbRef

pDbLim
pDbBase
pFreeFn
pFreeFnArg Dblock

e e ——————————————————————————— = = =

Data Area

An application may determine whether it uses its own memory for the data area rather
than asking for allocation of blocks from the memory pool. Utilities are also provided for
this function. Use tsa1394EsbAlloc or tsa1394EsbAllocFromPool as appropriate.

Utilities are also provided to applications for freeing blocks, copying blocks and duplicat-
ing blocks. Applications also have facilities to link blocks and unlink them as necessary.

Applications also need to free memory blocks earlier allocated by the HAL (hardware
layer). Applications will use tsa1394Freeb or tsa1394FreeMsg as appropriate.

All these functionalities are made available through the API, presented next.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 105

Chapter 4: 1394 FireWire API

1394 APl Enumerated Types

These are the enumerated types:

Name Page
tsa1394FwError_t 107
tsa1394SbmError_t 110
tsa1394SupportMuxMode_t 112
tsa1394Speed_t 113
tsa1394AsynClbkType_t 114
tsa1394ExtTCode_t 115
tsa1394RespCode_t 116
tsa1394trType_t 117
tsa1394trReqStatus_t 118
tsa1394SbEvent_t 119
tsa1394MaxRec_t 120
tsa1394SbmCntrlOp_t 121
tsa1394AddrType_t 122
tsa1394CtrlEvent_t 123

106 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394FwError t

typedef enum _tsal394FwError {

/*

/*

/*

/*

/*

General Errors */
P1394_GENERR_NULLARG
P1394_GENERR_INTERNAL
P1394_GENERR_CLIINIT
P1394_GENERR_INVALID_FN_PTR

System Errors */
P1394_SYSERR_NOMEM
P1394_SYSERR_NORESOURCES

Errors from the Dynamic Q manipulation T1ib

P1394_DQ_ERR_NOUNLOCKFN
P1394_DQ_ERR_NOLOCKFN
P1394_DQ_ERR_LOCKING
P1394_DQ_ERR_UNLOCKING
P1394_DQ_ERR_INCOMPATIBLE

= P1394_FW_GENERR_BASE,

= P1394_FW_GENERR_BASE+1,
= P1394_FW_GENERR_BASE+2,
= P1394_FW_GENERR_BASE+3,

= P1394_FW_SYSERR_BASE,
= P1394_FW_SYSERR_BASE+1,

= P1394_DQ_ERR_BASE,

= P1394_DQ_ERR_BASE+1,
= P1394_DQ_ERR_BASE+2,
= P1394_DQ_ERR_BASE+3,
= P1394_DQ_ERR_BASE+4,

Errors from the Transparent Mem manipulation 1ib */

P1394_TSDM_ERR_INVALID_MEMID

Errors from the Dispatcher module */

P1394_DSPT_ERR_GEN_ERR
P1394_DSPT_ERR_INVALID_TRANS_TYPE

P1394_DSPT_ERR_ADDR_NOT_REGISTERED
P1394_DSPT_ERR_INVALID_SBEVENT_REGISTER_ID

P1394_DSPT_ERR_INVALID_SBEVENT

P1394_DSPT_ERR_INVALID_EXTENDED_TCODE

P1394_DSPT_ERR_NOCALLBACK
P1394_DSPT_ERR_INVALID_DATA_IND
P1394_DSPT_ERR_INVALID_DATA_CNFM
P1394_DSPT_ERR_NOTREGISTERED
P1394_DSPT_ERR_ADDRSPACE_INUSE
P1394_DSPT_INVALID_FWDRV
P1394_DSPT_INVALID_APPCONTEXT
P1394_DSPT_TOOMANY_FWIFS
P1394_DSPT_ERR_DUPLICATE_SBEVEN
P1394_DSPT_ERR_INVALID_NOTICE
P1394_DSPT_ERR_DUPLICATE_NOTICE
P1394_DSPT_INVALID_IFNUM
P1394_DSPT_TX_DISABLED
P1394_DSPT_ERR_INVALID_ADDR_TYPE
P1394_DSPT_ERR_INVALID_FN_PTR
P1394_DSPT_ERR_NO_MEMORY
P1394_DSPT_ERR_NULL_FREE_FN

} tsal394FwError_t;

= P1394_TSDM_ERR_BASE,

= P1394_DSPT_ERR_BASE+#,
= P1394_DSPT_ERR_BASE+1,
= P1394_DSPT_ERR_BASE+2,
= P1394_DSPT_ERR_BASE+3,
= P1394_DSPT_ERR_BASE+4,
= P1394_DSPT_ERR_BASE+5,
= P1394_DSPT_ERR_BASE+6,
= P1394_DSPT_ERR_BASE+7,
= P1394_DSPT_ERR_BASE+8,
= P1394_DSPT_ERR_BASE+9,
= P1394_DSPT_ERR_BASE+10,
= P1394_DSPT_ERR_BASE+11,
= P1394_DSPT_ERR_BASE+12,
= P1394_DSPT_ERR_BASE+13,
= P1394_DSPT_ERR_BASE+14,
= P1394_DSPT_ERR_BASE+15,
= P1394_DSPT_ERR_BASE+16,
= P1394_DSPT_ERR_BASE+17,
= P1394_DSPT_ERR_BASE+18,
= P1394_DSPT_ERR_BASE+19,
= P1394_DSPT_ERR_BASE+20,
= P1394_DSPT_ERR_BASE+21,
= P1394_DSPT_ERR_BASE+22,

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support

107

Fields

Chapter 4: 1394 FireWire API

P1394_GENERR_NULLARG
P1394_GENERR_INTERNAL
P1394_GENERR_CLIINIT
P1394_GENERR_INVALID_FN_PTR
P1394_SYSERR_NOMEM
P1394_SYSERR_NORESOURCES
P1394_DQ_ERR_NOUNLOCKFN
P1394_DQ_ERR_NOLOCKFN
P1394_DQ_ERR_LOCKING
P1394_DQ_ERR_UNLOCKING
P1394_DQ_ERR_INCOMPATIBLE
P1394_TSDM_ERR_INVALID_MEMID
P1394_DSPT_ERR_GEN_ERR

NULL argument.
Internal error.

General error in client initialization.
Invalid function pointer.
No memory.

No resources.

No unlock function.

No lock function.
Locking error.

Unlocking error.

Data quest incompatible.
Invalid memory ID.

General error.

P1394_DSPT_ERR_INVALID_TRANS_TYPE

Invalid transmition type.

P1394_DSPT_ERR_ADDR_NOT_REGISTERED

Address not registered.

P1394_DSPT_ERR_INVALID_SBEVENT_REGISTER_ID

P1394_DSPT_ERR_INVALID_SBEVENT

Invalid serial bus event register ID.

Invalid serial bus event.

P1394_DSPT_ERR_INVALID_EXTENDED_TCODE

P1394_DSPT_ERR_NOCALLBACK

Invalid extended transaction code.

No callback function provided.

P1394_DSPT_ERR_INVALID_DATA_IND Invalid data Indication.

P1394_DSPT_ERR_INVALID_DATA_CNFM

P1394_DSPT_ERR_NOTREGISTERED
P1394_DSPT_ERR_ADDRSPACE_INUSE
P1394_DSPT_INVALID_FWDRV
P1394_DSPT_INVALID_APPCONTEXT
P1394_DSPT_TOOMANY_FWIFS

P1394_DSPT_ERR_DUPLICATE_SBEVENT

P1394_DSPT_ERR_INVALID_NOTICE

Invalid data confirmation.
Address/functions not registered.
Address space already in use.
Invalid device.

Invalid asynchronous channel.

Too many interfaces.

Duplicated serial bus event.

Invalid notice.

P1394_DSPT_ERR_DUPLICATE_NOTICE Duplicated notice.

P1394_DSPT_INVALID_IFNUM
P1394_DSPT_TX_DISABLED

Invalid interface number.

Transmission disabled.

108 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

P1394_DSPT_ERR_INVALID_ADDR_TYPE
Invalid address type.

P1394_DSPT_ERR_INVALID_FN_PTR Invalid function pointer.

P1394_DSPT_ERR_NO_MEMORY No memory is available.
P1394_DSPT_ERR_NULL_FREE_FN Null memory free function.
Description

Enumerates the 1394 FireWire errors.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 109

tsa1394SbmError _t

Chapter 4: 1394 FireWire API

typedef enum _tsal394SbmError {
P1394_SBM_ERR_UNEXPECTED_CSROP =

P1394_SBM_ERR_INVALID_CSRO

P1394_SBM_ERR_NON_QUAD_CSROP

P1394_SBM_TOOMANY_FWIFS
P1394_SBM_ERR_IN_RESET
P1394_SBM_ERR_IF_REGISTERED

P1394_SBM_ERR_IF_NOTREGISTERED =

P1394_SBM_INVALID_FWDRV
P1394_SBM_SPEED_UNKNOWN
P1394_SBM_EUID_UNKNOWN

P1394_SBM_MAXREC_UNSPECIFIED

P1394_SBM_MAXREC_RESERVED
P1394_SBM_MAXREC_UNKNOWN
P1394_SBM_INVALID_CNTRLOP

P1394_SBM_TOPOLOGY_NOT_BUILT

P1394_SBM_NO_IRM_ON_BUS
P1394_SBM_INVALID_PHYS_ID
P1394_SBM_CLBITS_UNKNOWN

P1394_SBM_COMPARE_SWAP_FAILED

P1394_SBM_ERR_NO_MEMORY

P1394_SBM_ERR_INVALID_FN_PTR

P1394_SBM_ERR_INVALID_FREE_FN
P1394_SBMBUF_ERR_INVALID_FREE_FN =
P1394_SBMBUF_ERR_INVALID_FN_PTR =

P1394_SBMBUF_ERR_NO_MEMORY
} tsal394SbmError_t;

Fields

P1394_SBM_ERR_BASE,
= P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+
P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+
= P1394_SBM_ERR_BASE+

0O NOoOY O BAW N

9’

= P1394_SBM_ERR_BASE+10,
= P1394_SBM_ERR_BASE+11,
= P1394_SBM_ERR_BASE+12,
= P1394_SBM_ERR_BASE+13,
= P1394_SBM_ERR_BASE+14,
= P1394_SBM_ERR_BASE+15,
= P1394_SBM_ERR_BASE+16,
= P1394_SBM_ERR_BASE+17,
= P1394_SBM_ERR_BASE+18,
= P1394_SBM_ERR_BASE+19,
= P1394_SBM_ERR_BASE+20,
= P1394_SBM_ERR_BASE+21,

P1394_SBM_ERR_BASE+22,
P1394_SBM_ERR_BASE+23,

= P1394_SBM_ERR_BASE+24

P1394_SBM_ERR_UNEXPECTED_CSROP
P1394_SBM_ERR_INVALID_CSROP
P1394_SBM_ERR_NON_QUAD_CSROP
P1394_SBM_TOOMANY_FWIFS
P1394_SBM_ERR_IN_RESET
P1394_SBM_ERR_IF_REGISTERED
P1394_SBM_ERR_IF_NOTREGISTERED
P1394_SBM_INVALID_FWDRV
P1394_SBM_SPEED_UNKNOWN
P1394_SBM_EUID_UNKNOWN
P1394_SBM_MAXREC_UNSPECIFIED
P1394_SBM_MAXREC_RESERVED
P1394_SBM_MAXREC_UNKNOWN

Unexpected read, write, or lock CSR operation.

Invalid Control

and Status Register operation.

Request blocked on quadlet registration.

Too many FireWire instances.

Reset error.
Registered error.
Not registered.

Invalid device.

Speed unknown.

EUID unknown

error.

Maxrec unspecified.

Maxrec reserved.

Maxrec unknown.

110 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

P1394_SBM_INVALID_CNTRLOP Invalid control loop.
P1394_SBM_TOPOLOGY_NOT_BUILT Topology not built error.
P1394_SBM_NO_IRM_ON_BUS No IRM on bus error.
P1394_SBM_INVALID_PHYS_ID Invalid physical ID.
P1394_SBM_CLBITS_UNKNOWN Info enquired on a node in remote bus.
P1394_SBM_COMPARE_SWAP_FAILED Compare swap failed.
P1394_SBM_ERR_NO_MEMORY SBM no memory.

P1394_SBM_ERR_INVALID_FN_PTR SBM invalid function pointer.
P1394_SBM_ERR_INVALID_FREE_FN SBM invalid free memory function.

P1394_SBMBUF_ERR_INVALID_FREE_FN
SBM buffer invalid free memory function.

P1394_SBMBUF_ERR_INVALID_FN_PTR SBM buffer invalid function pointer.
P1394_SBMBUF_ERR_NO_MEMORY SBM buffer no memory.

Description

Enumerates the 1394 Serial Bus Management (SBM) errors.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 111

Chapter 4: 1394 FireWire API

tsa1394SupportMuxMode_t

typedef enum _tsal394SupportMuxMode {

P1394_MUX_V0_T0_1394_MODE

P1394_MUX_1394_T0_VI_MODE,

P1394_MUX_CPU_BYPASS_MODE
} tsal394SupportMuxMode_t;

Fields

gx0a1,

P1394_MUX_V0_T0_1394_MODE

P1394_MUX_1394_T0_VI_MODE
P1394_MUX_CPU_BYPASS_MODE

Description

1394 coupled with video-out in transmitting
mode.

1394 coupled with video-in in receiving mode.

The data path bypasses the TM chip.

Flags to indicate the configuration of the 1394 multiplexed with either video-in or video-
out in receiving or transmiting operation.

112 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394Speed_t

typedef enum _tsal394Cb1PhySpeed {
P1394_FWCPHY_SPEED_S100 =0,
P1394_FWCPHY_SPEED_S208,
P1394_FWCPHY_SPEED_S409,
P1394_FWCPHY_SPEED_HIGHEST = P1394_FWCPHY_SPEED_S404,
P1394_FWCPHY_SPEED_SANY,
P1394_FWCPHY_SPEED_UBOUND
} tsal394Speed_t;

P1394_FWCPHY_SPEED_SANY

Fields

P1394_FWCPHY_SPEED_S10@ Transmission speed, 100 Mbps (i.e., base speed).
P1394_FWCPHY_SPEED_S200 Transmission speed, 200 Mbps.
P1394_FWCPHY_SPEED_S400 Transmission speed, 400 Mbps.
P1394_FWCPHY_SPEED_HIGHEST Transmission speed, 400 Mbps.
P1394_FWCPHY_SPEED_SANY Any of $§100, S200 and $400.
P1394_FWCPHY_SPEED_UBOUND For internal bound checks.

Description

Enumerates 1394 speed types.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 113

Chapter 4: 1394 FireWire API

tsa1394AsynClbkType_t

typedef enum _tsal394AsynClbkType {

P1394_FW_CLBK_IND = @,

P1394_FW_CLBK_CNF,
P1394_FW_CLBK_PHW,
P1394_FW_CLBK_DES,

P1394_FW_CLBK_RESET,
P1394_FW_CLBK_SIDCOMP,
P1394_FW_CLBK_ISORX,
P1394_FW_CLBK_ISOTX

} tsal394AsynClbkType_t;

Fields

P1394_FW_CLBK_IND
P1394_FW_CLBK_CNF
P1394_FW_CLBK_PHW
P1394_FW_CLBK_DES
P1394_FW_CLBK_RESET
P1394_FW_CLBK_SIDCOMP

P1394_FW_CLBK_ISORX
P1394_FW_CLBK_ISOTX

Description

Callback indication.

Callback confirmation.

Callback physical write.

Descriptor available; not applicable.
Control block reset type.

Self-ID completion callback function. This call-
back function is trickled when communication is
reset or changed and after the root node has
received all its children’s ID information.

Isochronous receiving type.

Isochronous transmitting type.

Enumerates 1394 asynchronous control block types.

114 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394ExtTCode t

typedef enum _tsal394ExtTCode {
P1394_FWLL_ETC_RESERVED1 =0,
P1394_FWLL_ETC_MASK_SWAP,
P1394_FWLL_ETC_COMPARE_SWAP,
P1394_FWLL_ETC_FETCH_ADD,
P1394_FWLL_ETC_LITTLE_ADD,
P1394_FWLL_ETC_BOUNDED_ADD,
P1394_FWLL_ETC_WRAP_ADD,
P1394_FWLL_ETC_VENDOR_DEPENDENT,
P1394_FWLL_ETC_RESERVED_2,
P1394_FWLL_ETC_RESERVED_N = OxFFFF

} tsal394ExtTCode_t;

Fields

P1394_FWLL_ETC_RESERVED1 Extended transaction code reservedl.
P1394_FWLL_ETC_MASK_SWAP Extended transaction code swap.
P1394_FWLL_ETC_COMPARE_SWAP Extended transaction code compare swap.
P1394_FWLL_ETC_FETCH_ADD Extended transaction code fetch add.
P1394_FWLL_ETC_LITTLE_ADD Extended transaction code little add.
P1394_FWLL_ETC_BOUNDED_ADD Extended transaction code bounded add.
P1394_FWLL_ETC_WRAP_ADD Extended transaction code swap add.
P1394_FWLL_ETC_VENDOR_DEPENDENT Extended transaction code vendor-dependent.
P1394_FWLL_ETC_RESERVED_2 Extended transaction code reserved2.
P1394_FWLL_ETC_RESERVED_N Extended transaction code reserved n.
Description

Enumerates 1394 extended transaction codes.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 115

Chapter 4: 1394 FireWire API

tsa1394RespCode_t

typedef enum _tsal394RespCode {
P1394_FWLL_RC_COMPLETE =0,
P1394_FWLL_RC_RESERVED1,
P1394_FWLL_RC_RESERVED2,
1394_FWLL_RC_RESERVED3,
P1394_FWLL_RC_CONFLICT_ERR,
P1394_FWLL_RC_DATA_ERR,
P1394_FWLL_RC_TYPE_ERR,
P1394_FWLL_RC_ADDRESS_ERR,
P1394_FWLL_RC_RESERVED_4,
P1394_FWLL_RC_RESERVED_N = Ox0@F,
P1394_FWLL_RC_UBOUND = P1394_FWLL_RC_RESERVED_N

} tsal394RespCode_t;

Fields
P1394_FWLL_RC_COMPLETE Response code complete.
P1394_FWLL_RC_RESERVED1 Response code reserved 1.
P1394_FWLL_RC_RESERVED2 Response code reserved 2.
P1394_FWLL_RC_RESERVED3 Response code reserved 3.
P1394_FWLL_RC_CONFLICT_ERR Response code conflict error.
P1394_FWLL_RC_DATA_ERR Response code data error.
P1394_FWLL_RC_TYPE_ERR Response code type error.
P1394_FWLL_RC_ADDRESS_ERR Response code address error.
P1394_FWLL_RC_RESERVED_4 Response code reserved 4.
P1394_FWLL_RC_RESERVED_N Response code reserved n.
P1394_FWLL_RC_UBOUND For internal software use.
Description

Enumerates 1394 response codes.

116 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394trType_t

typedef enum _tsal394trType {
P1394_FWTR_READBLOCK =40,
P1394_FWTR_LB = P1394_FWTR_READBLOCK,
P1394_FWTR_READQUAD,
P1394_FWTR_WRITEBLOCK,
P1394_FWTR_WRITEQUAD,
P1394_FWTR_LOCK,
P1394_FWTR_UB

} tsal39%4trType_t;

P1394_FWTR_LOCK

Fields
P1394_FWTR_READBLOCK Transaction type read block.
P1394_FWTR_LB Lower boundary.
P1394_FWTR_READQUAD Transaction type read quad.
P1394_FWTR_WRITEBLOCK Transaction type write block.
P1394_FWTR_WRITEQUAD Transaction type write quad.
P1394_FWTR_LOCK Transaction type lock.
P1394_FWTR_UB Upper boundary.
Description

Enumerates 1394 transaction types.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 117

Chapter 4: 1394 FireWire API

tsa1394trReqStatus_t

typedef enum _tsal394trReqStatus{

P1394_FWTL_RSTAT_COMPLETE
P1394_FWTL_RSTAT_LB
P1394_FWTL_RSTAT_TIMEOUT,
P1394_FWTL_RSTAT_ACK_MISS,
P1394_FWTL_RSTAT_RETRY_LIMIT,
P139g4_FWTL_RSTAT_DATA_ERR,
P1394_FWTL_RESET_EV,
P1394_FWTL_RSTAT_UB

} tsal394trReqStatus_t;

Fields

= ﬂ’
= P1394_FWTL_RSTAT_COMPLETE,

= P1394_FWTL_RESET_EV

P1394_FWTL_RSTAT_COMPLETE
P1394_FWTL_RSTAT_LB
P1394_FWTL_RSTAT_TIMEOUT
P1394_FWTL_RSTAT_ACK_MISS
P1394_FWTL_RSTAT_RETRY_LIMIT
P1394_FWTL_RSTAT_DATA_ERR
P1394_FWTL_RESET_EV

P1394_FWTL_RSTAT_UB

Description

Request status complete.

Transaction layer request status lower boundary.
Request status timeout.

Request status acknowledge missing.

Request status retry limit.

Request status data error.

Transaction layer request status bus reset event.
Not applicable on PDI1394L11.

Transaction layer request status upper boundary.

Enumerates returned 1394 transaction

request status codes.

118 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbEvent_t

typedef enum _tsal394SbEvent {

P1394_FWSBM_EV_OCCUPANCY_VIOLATION = @,
P1394_FWSBM_EV_LB = P1394_FWSBM_EV_OCCUPANCY_VIOLATION,
P1394_FWSBM_EV_RESET_START = 1,
P1394_FWSBM_EV_RESET_COMPLETE = 2,
P1394_FWSBM_EV_CYCLE_TOO_LONG = 3,
P1394_FWSBM_EV_POWER_FAIL = 4,
P1394_FWSBM_EV_DUPLICATE_CHANNEL = 5,
P1394_FWSBM_EV_CRC_ERROR = 6,
P1394_FWSBM_EV_REQ_DATA_ERROR 7,
P1394_FWSBM_EV_RESP_ACK_MISSING = 8,
P1394_FWSBM_EV_RESP_DATA_ERROR = 9,
P1394_FWSBM_EV_RESP_FORMAT_ERROR =10,
P1394_FWSBM_EV_RESP_RETRY_FAILED =11,
P1394_FWSBM_EV_UNEXPECTED_CHANNEL = 12,

P1394_FWSBM_EV_UNKNOWN_TRANS_CODE = 13,

P1394_FWSBM_EV_UNSOLICITED_RESPONSE = 14,

P1394_FWSBM_EV_UB = P1394_FWSBM_EV_UNSOLICITED_RESPONSE
} tsal394SbEvent_t;

Fields

P1394_FWSBM_EV_OCCUPANCY_VIOLATION
SBM event occupancy violation.

P1394_FWSBM_EV_LB SBM event lower boundary.
P1394_FWSBM_EV_RESET_START SBM event reset start.
P1394_FWSBM_EV_RESET_COMPLETE SBM event complete
P1394_FWSBM_EV_CYCLE_TOO_LONG SBM event cycle too long.
P1394_FWSBM_EV_POWER_FAIL SBM event power fail.

P1394_FWSBM_EV_DUPLICATE_CHANNEL
SBM event duplicated channel.

P1394_FWSBM_EV_CRC_ERROR SBM event CRC error.
P1394_FWSBM_EV_REQ_DATA_ERROR SBM event request data error.
P1394_FWSBM_EV_RESP_ACK_MISSING Response acknowledge missing.
P1394_FWSBM_EV_RESP_DATA_ERROR Response data error.

P1394_FWSBM_EV_RESP_FORMAT_ERROR
Response format error.

P1394_FWSBM_EV_RESP_RETRY_FAILED

Response retry failed.
P1394_FWSBM_EV_UNEXPECTED_CHANNEL

Unexpected channel.

P1394_FWSBM_EV_UNKNOWN_TRANS_CODE
Unknown transcation code.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 119

Chapter 4: 1394 FireWire API

P1394_FWSBM_EV_UNSOLICITED_RESPONSE
Unsolicited response.

P1394_FWSBM_EV_UB SBM event upper boundary.

Description

Enumerates 1394 SBM (Serial Bus Manager) event types.

tsa1394MaxRec_t

typedef enum _tsal394MaxRec {

P1394_FWSBM_S1@0@_MAXREC = 512,

P1394_FWSBM_S20@_MAXREC = 1024,

P1394_FWSBM_S40@_MAXREC = 2048
} tsal394MaxRec_t;
Fields
P1394_FWSBM_S100_MAXREC Maximum record size at 100 Mbps.
P1394_FWSBM_S20@_MAXREC Maximum record size at 200 Mbps.
P1394_FWSBM_S40@_MAXREC Maximum record size at 400 Mbps.
Description

Enumerates 1394 FireWire SBM maximum record sizes at various speeds.

120 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbmCntriOp_t

typedef enum _tsal394SbmCntri10p {
P1394_SBM_CNTRL_RESET,
P1394_SBM_CNTRL_INIT,
P1394_SBM_CNTRL_LINKON,
P1394_SBM_CNTRL_STATUS,
P1394_SBM_CNTRL_PHYCONFIG

} tsal394SbmCntr10p_t;

Fields

P1394_SBM_CNTRL_RESET SBM control reset.
P1394_SBM_CNTRL_INIT SBM control initiation.
P1394_SBM_CNTRL_LINKON SBM control link on.
P1394_SBM_CNTRL_STATUS SBM control status.
P1394_SBM_CNTRL_PHYCONFIG SBM control physical configuration.
Description

Enumerates 1394 SBM control types.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 121

Chapter 4: 1394 FireWire API

tsa1394AddrType_t

typedef enum _tsal394AddrType {
P1394_FW_ADDR_READ =0,
P1394_FW_ADDR_LB = P1394_FW_ADDR_READ,
P1394_FW_ADDR_WRITE,
P1394_FW_ADDR_LOCK,
P1394_FW_ADDR_UB

} tsal394AddrType_t;

P1394_FW_ADDR_LOCK

Fields

P1394_FW_ADDR_READ Addr type read.
P1394_FW_ADDR_LB Addr type lower boundary.
P1394_FW_ADDR_WRITE Addr type write.
P1394_FW_ADDR_LOCK Addr type lock.
P1394_FW_ADDR_UB Addr type upper boundary.
Description

Enumerates 1394 address types.

122 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394CtriEvent_t

typedef enum _tsal394CtrlEvent {
P1394_FWCE_PHYSICAL_WRITE =0,
P1394_FWCE_LB P1394_FWCE_PHYSICAL_WRITE,
P1394_FWCE_RESOURCE_AVAILABILITY 1,
P1394_FWCE_COMMAND_RESET =2,
P1394_FWCE_UB 1394_FWCE_COMMAND_RESET

} tsal394CtrlEvent_t;

Fields
P1394_FWCE_PHYSICAL_WRITE Physical write.
P1394_FWCE_LB Control event lower boundary.

P1394_FWCE_RESOURCE_AVAILABILITY
Resource availability.

P1394_FWCE_COMMAND_RESET Command reset.
P1394_FWCE_UB Control event upper boundary.
Description

Enumerates 1394 control event types.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 123

Chapter 4: 1394 FireWire API

1394 API Data Structures

These are the data structures:

Name Page
tsa1394Capabilities_t 126
tsa1394Setup_t 128
tsa1394EUld_t 130
tsa1394DestOffset_t 130
tsa1394FreeRtn_t 131
tsa1394Tdatab_t 132
tsa1394MBlock_t 133
tsa1394MblkBufConfig_t 134
tsa1394DblkLink_t 135
tsa1394BusTime_t 136
tsa1394trDataCnfm_t 137
tsa1394trDatalnd_t 138
tsa1394lecTxInfo_t 140
tsa1394lecRxUnpackinfo_t 141
tsa1394lsochHdrinfo_t 142
tsa1394SbResetEventinfo_t 143
tsa1394SbEventinfo_t 144
tsa1394SbmCntrlResetInitParams_t 144
tsa1394SbmCntrlPhyConfigParams_t 145
tsa1394SbmStatusinfo_t 146
tsa1394PhysWritelnfo_t 147
tsa1394CtrlEventinfo_t 147
tsa1394RdBlockReq_t 148
tsa1394RdQuadReq_t 149
tsa1394WrBlockReq_t 150
tsa1394WrQuadReq_t 151

124 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Name Page
tsa1394RdBIkResp_t 152
tsa1394RdQuadResp_t 153
tsa1394WrResp_t 154
tsa1394LockResp_t 155

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 125

Chapter 4: 1394 FireWire API

tsa1394Capabilities_t

typedef struct _tsal394Capabilities {

tmVersion_t versionNum;

ulNumtsal394MaxNodesConnected;

UInt32 ulNumSupportedInstances;
UInt32 uTNumCurrentlInstances;
UInt32

UInt32 ulNumtsal394Labels;
UInt32 ull394Capability;

} tsal394Capabilities_t, *ptsal394Capabilities_t;

Fields

ulNumSupportedInstances
ulNumCurrentInstances
ulNumtsal394MaxNodesConnected
UTNumtsal394Labels

ull394Capability

Maximum number of tsal394 instances.
Number of current instances.
Maximum number of nodes connected.

Maximum number of rransaction labels. This
indicates the maximum number of asynchronous
transactions that can coexist.

The field can be bitwise OR’d by the following
masks:

ISOC_PORT. There are link controllers which need
not have a isoch port which can be directly con-
nected to a port on the TriMedia such as VI or
VO. In this case, the library would need to read
isochronous data also through the general-pur-
pose inputs. This is currently not supported for
the PDI1394L11.

AVC_HDR. The capability to add CIP headers in
the software library.

MPEG_CIP. Indicates whether the Link controller
can add MPEG headers.

CHAN_AVL. Indicates whether the
CHANNEL_AVAILABLE register is implemented in
the link controller itself.

BWTH_AVL. Indicates whether the
BANDWIDTH_AVAILABLE register is imple-
mented in the link controller itself.

PLUG_CTRL. Indicates whether the
PLUG_CONTROL register is implemented in the
link controller.

IRM_CAP. A capability available in the tsa1394
library because isochronous functionality is nec-
essary for most applications.

126 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

BMC_CAP. A capability available in the tsal1394
library because isochronous functionality is nec-
essary for most applications.

CMC_CAP. A capability available in the tsal394
library because isochronous functionality is nec-
essary for most applications.

Description

Capabilities of the 1394 library.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 127

Chapter 4: 1394 FireWire API

tsa1394Setup_t

typedef struct _tsal394Setup {

tsal394Drv_t
UInt32

UInt32

UInt32

UInt32

UInt32

Byte

UInt32
tsal394A11ocCbFp_t
tsal394FreeCbFp_t
void
tsal394A11ocCbFp_t
tsal394FreeCbFp_t
void

UInt32

void
tsaErrorFunc_t
tsaProgressFunc_t

ulDrvId;
ulBaseAddr;
ullrq;
ulBusId;
ulNumNodesConnected;
ulNumTLabels;
*pCfgRomData;
ulCfgRomDatalen;
cacheAllocFp;
cacheFreefp;
*cFreeUserData;
nCacheAllocFp;
nCacheFreefFp;
*nCFreeUserData;
uTNumGruBufCount;
*pSpecific;
errorfFunc;
progresskunc;

} tsal394Setup_t, *ptsal394Setup_t;

Fields

ulDrvId The distinguishing Driver ID.

ulBaseAddr Where the controller is mapped in address space.
ullrq The controller interrupt.

ulBusId The 1394 Bus ID.

ulNumNodesConnected
ulNumTLabels

pCfgRomData
ulCfgRomDatalen
cacheAllocFp
cacheFreeFp
cFreeUserData
nCacheAllocFp

nCacheFreeFp

cFreeUserData
nCacheAllocFp
nCFreeUserData
uTNumGruBufCount

Max number of 1394 Nodes on the bus.

Simultaneous maximum number of T Labels to a
Node.

Configuration ROM data.

Length of the configuration ROM.
Allocation function for cached memory.
Free Function for cached memory.

User data passed to cached free.
Non-cached memory allocation function.

Non-cached memory free function for cached
memory.

User data passed to cached free.
Non-cached memory Allocation function.
User data passed to non-cached free.

Determines general receive buffers.

128 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

pSpecific Any other specific parameters.
errorFunc Error callback function.
progressFunc Progress function pointer.
Description

The pCfgRomData is a valid pointer to the Config ROM bus information, which specifies
the Bus Management Capability (BMC), Cycle Start Capability (CSC), Isochronous
Resource Management Capability (IRM) and Isochronous capability. The total length of
the Configuration ROM is given by ulCfgRomDatalLen.

The cacheAllocFp will be called to allocate a cache-enabled memory pool . The nCacheAl-
locFp will be called to allocate a non-cached memory pool. The cacheFreeFp will be
called to free a cache-enabled memory pool and nCacheFreeFp will be called to release a
non-cached memory pool. For all memory needed by the device, memory would be allo-
cated from non cache area. The memory for other layers of FireWire would be allocated
from cache area. nCFreeUserData/cFreeUserData are optional application specific param-
eters, which can be passed as parameters when calling nCacheFreeFp/cacheFreeFp call-
back functions.

The ulDrvld is set by the library. The library generates a unique ulDrvld for every device
that gets initialized. ulBaseAddr refers to the address where the device is mapped, ullrq is
the controller irq and ulBusld is the 1394 Busld. The application can obtain ulBaseAddr,
ullrq by making a call to tsa1394GetInstanceSetup. ulNumNodesConnected refers to the
max no of 1394 nodes connected, ulNumTLabels refers to the number of synchronous
connections at any time and ulNumGruBufCount refers to the number of general receive
buffers. Any other specific parameters can be passed as *pSpecific.

Note
The application should never release memory which is allocated through
this alloc call for the entire run of the system.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 129

Chapter 4: 1394 FireWire API

tsa1394EUId_t

typedef struct _tsal394EUId {
UInt32 ulQuadLo;
UInt32 ulQuadHi;

} tsal394EUId_t, *ptsal394EUId_t;

Fields

ulQuadLo The lower quadlet of the EUID.
ulQuadHi The higher quadlet of the EUID.
Description

The data structure defines the Extended Unique Identifier (EUID), 64 bits, as defined by
the IEEE. The EUID is a concatenation of the 24-bit company_ID and a 40-bit number
that the vender (identified by company_ID) guarantees unique for all its products.

tsa1394DestOffset_t

typedef struct _tsal394DestOffset {
UInt32 ullow;
UIntlé usHi;
} tsal394DestOffset_t, *ptsal394DestOffset_t;

Fields

ullow 32-bit low portion.
usHi 16-bit high portion.
Description

The data structure represents 48-bit 1394 address.

130 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394FreeRtn_t

typedef struct _tsal394FreeRtn {
void (*FreeFunc) (void*);
void *FreeArg;
} tsal39%4FreeRtn_t, *ptsal394FreeRtn_t;

Fields

FreeFunc Application provided ‘free’ function.
FreeArg Pointer to data to be freed.
Description

The data structure identifies the free function and points to data to be freed.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 131

Chapter 4: 1394 FireWire API

tsa1394Tdatab_t

typedef struct _tsal394Tdatab {

Tong 1Poo11d;
tsal394Tdatab_t *pDbFreep;
Byte *pDbBase;
Byte *pDbLim;

Byte ucDbRef;
Byte ucDbType;

tsal394FreeRtn_t DbFrtn;
tsal394MBlock_t *pParent;
} tsal394Tdatab_t, *ptsal394Tdatab_t;

Fields

1Poo11d Pool ID to which data buffer belongs.
pDbFreep Field used internally.

pDbBase First byte of buffer.

pDbLim Last byte+1 of buffer.

ucDbRef Count of messages pointing to this block.
ucDbType Message type.

DbFrtn Pointer to function to free data buffer.
pParent Pointer to the Parent’s memory block.
Description

Data block type definition.

132 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394MBlock _t

typedef struct _tsal394MBlock {

Tong

struct _tsal394MBlock
struct _tsal394MBlock
Byte

Byte

struct _tsal394Tdatab
UInt32

UInt32

void

1Pool11d;

*pNext;

*pCont;

*pRptr;

*pWptr;

*pData;
ulRequestedCount;
ulUserArg;

*allocatorInfo;

} tsal394MBlock_t, *ptsal394MBlock_t;

Fields

1Poo11Id The ID of the pool to which mblk belongs.
pNext Next message on queue.

pPrev Previous message on queue.

pCont Next message block of message.

pRptr First unread data byte in buffer.

pWptr First unwritten data byte in buffer.

pData Data block.

ulUserArg Reserved for internal use.

ulRequestedCount

allocatorInfo

Description

Reserved for internal use.

Allocator Info:Internal field, optional parameter.

The data structure is used in memory block utility functions.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 133

Chapter 4: 1394 FireWire API

tsa1394MblkBufConfig_t

typedef struct _tsal394MbTkBufConfig {
UInt32 ulBuffers;
UInt32 ulBufSize;
} tsal394MblkBufConfig_t, *ptsal394MblkBufConfig_t;

Fields

ulBuffers Number of buffers.
ulBufSize Buffer size.
Description

The last entry in the array of tsa1394MblkBufConfig is essentially {0, 0}.

Each element in the array contains information on the number of buffers (ulBuffers)
required by the application.

134 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394DblkLink_t

typedef struct _tsal394DblkLink {
struct DblkLink *pNext;

Tong 1Twait;
tsal394Tdatab_t *pDb1k;
Tong 1Size;
Tong 1Db1ks;
Tong 1Free;
Tong TWait;
Tong 1Drops;

} tsal394DblkLink_t, *ptsal394DblkLink_t;

Fields

pNext Next data block link.

1Twait Wait flag for the data block.

pDb1k Pointer to the data block.

1Size Buffer size.

1DbTks Number of data blocks.

1Free Number of free data blocks.

TWait Number of tasks waited for data block.
1Drops Number of times failed to get data blk.
Description

This structure defines the Data Block Pool Header Link information.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 135

Chapter 4: 1394 FireWire API

tsa1394BusTime _t

typedef struct _tsal394BusTime {
UInt32 ulMode;
UInt32 ulValue;

} tsal394BusTime_t, *ptsal394BusTime_t;

Fields

ulMode Specify the mode to get cycle time.

ulValue Specify the value used in cycle time calculation.
Description

This structure defines the mode and value to be used in calculating cycle time.

136 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394trDataCnfm_t

typedef struct _tsal394trDataCnfm{
tsal394trReqStatus_t eTrStatus;

tsal394RespCode_t eRespCode;
void *pData;
UIntle usDatalen;

} tsal394trDataCnfm_t, *ptsal394trDataCnfm_t;

Fields

eTrStatus Contains the transaction status.

eRespCode Contains response code which is filled by the
Remote node.

pData Contains the data itself

usDatalen Contains the length of data.

Description

The tsa1394trDataCnfm_t is passed to the callback fuction specified in tsa1394Async-
SendRequest. eTrStatus takes following values.

typedef enum {
P1394_FWTL_RSTAT_COMPLETE,
P1394_FWTL_RSTAT_TIMEOUT,
P1394_FWTL_RSTAT_ACK_MISS,
P1394_FWTL_RSTAT_DATA_ERR
} tsal394trReqStatus_t;

Other fields in tsa1394trDataCnfm_t are valid only if eTrStatus is
P1394_FWTL_RSTAT_COMPLETE. P1394_FWTL_RSTAT_TIMEOUT indicates there is no
response to the request sent. P1394_FWTL_RSTAT_ACK_MISS and
P1394_FWTL_RSTAT_DATA_ERR indicate that problem was encountered while sending a
request to the remote node. eRespCode takes following values.
typedef enum {

P1394_FWLL_RC_COMPLETE,

P1394_FWLL_RC_RESERVED1,

P1394_FWLL_RC_RESERVEDZ,

P1394_FWLL_RC_RESERVED3,

P1394_FWLL_RC_CONFLICT_ERR,

P1394_FWLL_RC_DATA_ERR,

P1394_FWLL_RC_TYPP1394_ERR,

P1394_FWLL_RC_ADDRESS_ERR
} tsal394RespCode_t;

P1394_FWLL_RC_COMPLETE indicates that request was successful. pData and ucDatalLen
are valid only if eRespCode is RC_COMPLETE.

pData and ucDatalen are valid only for Read block, Read Quad and lock response only.
In case of Read Quad, pData should be typecasted to 32-bit integer to get the quadlet
value. Otherwise, it contains pointer to tsa1394MBlock_t which contains the data.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 137

tsa1394trDataind _t

Chapter 4: 1394 FireWire API

typedef struct _tsal394trDatalnd {

tsal394trType_t
tsal394DestOffset_t
tsal394Nodeld_t
tsal394ExtTCode_t
UIntl6
UInt8
UInt8
BOOL
tsal394Speed_t
void

} tsal394trDatalnd_t;

Fields

eTrType;
destOffset;
requesterld;
eETrCode;
usDatalen;
ucTrlLabeTl;
ucPriority;
bBrdCast;
eCb1Speed;
*pData;

eTrType
destOffset
requesterlId
eETrCode

usDatalen

ucTrLabel

pData

eCb1Speed

ucPriority
bBrdCast

The transaction type.
48-bit 1394 address.
Indicates the type and ID of the requester node.

Extended transaction code valid only for lock
transactions.

Indicates the byte count in pData for write and
lock requests. In case of 'read’ it indicates the
number of bytes requested by the sender of this
request.

Transaction label associated with this request. The
sender expects the response with this label to
match the request to the response. This should be
preserved by the application and needs to be used
while sending the response for this request.

pData is not valid in 'read’ requests. In case of
write quadlet, pData should be typecasted to
UInt32 to get the quadlet value. In write block and
lock requests, it points to tsa1394MBlock_t ,
which is described in 1394 API Data Structures on
page 124.

The speed at which the request is received. In
some link controllers, it is not possible to find
this. In which case this value is set to
P1394_FWCPHY_SPEED_SANY.

ucPriority is not used and contains value 0.

A result of a broadcast.

138 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Description

eTrType takes following values:

typedef enum {
P1394_FWTR_READBLOCK,
P1394_FWTR_READQUAD,
P1394_FWTR_WRITEBLOCK,
P1394_FWTR_WRITEQUAD,
P1394_FWTR_LOCK

} tsal39%4trType_t;

eCblSpeed contains following values:

typedef {
P1394_FWCPHY_SPEED_S100,
P1394_FWCPHY_SPEED_S204@,
P1394_FWCPHY_SPEED_S400,
P1394_FWCPHY_SPEED_SANY
} tsal394Speed_t;

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 139

Chapter 4: 1394 FireWire API

tsa1394lecTxInfo_t

typedef struct _tsal394IecTxInfo {

UInt32 trdelay;
UInt32 maxbT;
UInt32 pm;

UInt32 dbs;
UInt32 fn;

UInt32 qpc;
UInt32 bEnableSph;
UInt32 fmt;
UInt32 fdf;
UInt32 syt;

Char bEnableFs;

} tsal394lecTxInfo_t;

Fields

Trdelay Specifies the transport delay.

maxb]1 Specifies the maximum payload size in data
blocks.

pm Specifies the packing mode.

dbs Specifies the data block size.

n Specifies the number of data blocks (fractions)
into which each source packet is divided.

qpc Specifies the quadlet packing count.

bEnableSph When set, instructs the transmitter to attach a
packet delivery time stamp to every application
packet.

fmt Specifies the format.

fdf Specifies the format dependent flags.

syt Specifies the format dependent flags.

bEnableFs Controls enabling/disabling processing of avf-
syncin pulses.

Description

Specifies the IEC 61883 International Standard specific packing parameters to be set for
transmit mode.

140 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394lecRxUnpackinfo_t

typedef struct _tsal394IecRxUnpackInfo {
UInt32 bpad;
Char bEnableFs;

} tsal394IecRxUnpackInfo_t;

Fields

bpad Specifies the byte padding.

bEnableFs Specifies when set/cleared enables/disables pro-
cessing of received syt stamps in the second CIP
header quadlet and corresponding generation of
avfsyncout pulses.

Description

Specifies the IEC 61883 International Standard specific unpacking parameters to be set
for receive mode.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 141

Chapter 4: 1394 FireWire API

tsa1394IsochHdrinfo_t

typedef struct _tasl394IsochHdrInfo {
UInt8 ucChannel;
UInt8 ucTag;
UInt8 ucSync;
UInt8 ucSpeed;
} tsal394IsochHdrInfo_t;

Fields

ucChannel Specifies the channel number.

ucTag Specifies the tag value. Normally the value is
0x01.

ucSync Specific sync value.

ucSpeed Specifies the isochronous speed.

Description

The data structure specifies the Common Isochronous Protocol header specific parame-
ters to be set for isochronous reception.

142 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbResetEventinfo_t

typedef struct _tsal394SbResetEventInfo {
Tong bwSetAside;
tsal394PhysNodeld_t bmPhysId;
tsal394PhysNodeld_t cmPhyslId;
Byte gapCount;
tsal394PhysNodeld_t irmPhysId;
tsal394PhysNodeld_t physId;
tsal394PhysNodeld_t rootPhysld;
Byte attribs;
} tsal394SbResetEventInfo_t, *ptsal394SbResetEventInfo_t;

Fields

bwSetAside Bandwidth setaside.

bmPhysId Bus master node’s physical ID.

cmPhysId Cycle master node’s physical ID.

gapCount Gap count, not used.

irmPhysId Isochronous resource manager physical ID.
physId This node’s physical ID.

rootPhysId Root node’s physical ID.

attribs Attributes. Not used.

Description

Serial bus reset event information structure.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 143

Chapter 4: 1394 FireWire API

tsa1394SbEventinfo_t

typedef struct _tsal394SbEventInfo {
union {
tsal394SbResetEventInfo_t resetInfo;
} evi;
} tsal394SbEventInfo_t;

Fields

resetInfo Reset Information.

Description

Serial bus event information data structure. Contains all the information, collected dur-
ing self-ID read following a bus reset.

tsa1394SbmCntriResetlInitParams_t

typedef struct _tsal394SbmCntrlResetInitParams {
UInt32 ulBandWidthSetAside;
Char bEnablelrm;

} tsal394SbmCntriResetInitParams_t;

Fields

ulBandWidthSetAside Bandwidth set aside.

bEnableIrm Enable isochronous resource manager.
Description

Flags to enable/disable Isochronous Resource Manager. This structure is not applicable to
the PDI1394L11 link controller.

See tsa1394SbmCntrlReq on page 189.

144 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbmCntriPhyConfigParams_t

typedef struct tsal394SbmCntriPhyConfigParms_t {
tsal394PhysNodeld_t physNode;

UIntlé usGapCount;
Char bSetForceRoot;
Char bSetGapCount;

} tsal394SbmCntr1PhyConfigParams_t;

Fields

physNode Physical Node ID.

usGapCount Gap count.

bSetForceRoot Flag which, when set, forces the node specified in
physNode field to be root, after a bus reset.

bSetGapCount Flag which, when set, forces the value specified in
field usGapCount to be set for gapCount in the
physical register.

Description

Refer to tsa1394SbmCntrlReq on page 189.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 145

Chapter 4: 1394 FireWire API

tsa1394SbmStatusinfo_t

typedef struct _tsal394SbmStatusInfo {

UInt32
tsal394PhysNodeld_t
tsal394PhysNodeld_t
tsal394PhysNodeld_t
tsal394PhysNodeld_t
tsal394PhysNodeld_t
Char

UIntlé

} tsal394SbmStatusInfo_t

ulBandWidthSetAside;
bmId;

cmld;

irmld;

lTocalPhysId;
rootPhysId;
bForceRootSet;
usGapCount;

Fields

ulBandWidthSetAside Bandwidth set aside.

bmId For BMC/IRMC only, INVALID(0x3f) otherwise.

cmId For BMC/IRMC only, INVALID(0x3f) otherwise.

irmld For IRMC/BMC only, INVALID(0x3f) otherwise.

localPhysId Local node physical ID.

rootPhysId Root node physical ID.

bForceRootSet Flag indicating whether the node will be forced to
be a root node on the next serial bus reset.

usGapCount Gap count.

Description

Refer to tsa1394SbmCntrlReq on page 189.

146 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394PhysWritelnfo_t

typedef struct _tsal394PhysWriteInfo {
tsal3940ffset_t addr0ffset;
UIntlé datalen;

} tsal394PhysWriteInfo_t, *ptsal394PhysWritelnfo_t;

Fields

addr0offset Address offset for phyical write.
datalen Length of data.

Description

tsal394 physical write information data structure. Not applicable to PDI1394L11 link
controller.

tsa1394CtrlEventinfo_t

typedef struct _tsal394CtriEventInfo {

union {
tsal394PhysWriteInfo_t phwInfo;
UInt32 descrAvailable;
} tni;

} tsal394CtrilEventInfo_t, *ptsal394CtriEventInfo_t;

Fields

phwInfo Physical write information.
descrAvailable Descriptor available.
Description

tsal394 control event information data structure. Not applicable to PDI1394L11.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 147

Chapter 4: 1394 FireWire API

tsa1394RdBlockReq_t

typedef struct _tsal394RdBlockReq{
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8 ucPriority;
UIntle usDatalen;

} tsal394RdBlockReq_t;

Fields

destOffset Indicates the 48-bit offset on the destination
node.

usDatalen Length of data the sender is requesting from the
remote node at the destination offset specified by
destOffset.

eSpeed Transmission speed.

ucPriority Not used currently and should be set to 0.

Description

The structure above is used to send ‘Read Block’ request to the remote node.

148 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394RdQuadReq_t

typedef struct _tsal394RdQuadReq{
tsal394Dest0ffset_t destOffset;
tsal394Speed_t eSpeed;
UInt8 ucPriority;
} tsal394RdQuadReq_t;

Fields

destOffset The 48-bit 1394 address.
eSpeed Transmission speed.
ucPriority Priority of the request
Description

The structure is used to request quadlet data from the remote node at the destination off-
set specified by destOffset.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 149

Chapter 4: 1394 FireWire API

tsa1394WrBlockReq_t

typedef struct _tsal394WrBlockReq_t {
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8 ucPriority;
UIntle usDatalen;
tsal394MBlock_t *pData;

} tsal394WrBlockReq_t;

Fields

destOffset Indicates 48-bit 1394 address.

eSpeed Transmission speed.

ucPriority Priority.

usDatalen Indicates the amount of data being written .
pData The mblk pointer containing the data.
Description

This structure is used to send write block request to the destination offset specified by
destOffset at the remote node.

eCblSpeed contains following values:

typedef {
P1394_FWCPHY_SPEED_S100,
P1394_FWCPHY_SPEED_S20@,
P1394_FWCPHY_SPEED_S400,
P1394_FWCPHY_SPEED_SANY
} tsal394Speed_t;

150 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394WrQuadReq_t

typedef struct _tsal394WrQuadReq {
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8 ucPriority;
UInt32 ulData;

} tsal394WrQuadReq_t;

Fields

destOffset Indicates 48-bit 1394 address.
eSpeed Transmission speed.
ucPriority Priority.

ulData Contains the quadlet data.
Description

This structure is used to send quadlet size data to the destination offset specified by dest-
Offset at the remote node. ulData contains the quadlet data.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 151

Chapter 4: 1394 FireWire API

tsa1394RdBIkResp_t

typedef struct _tsal394RdBTkResp {

UInt8 ucTLabel;
tsal394RespCode_t eRespCode;
UIntlé usDatalen;
tsal394MBlock_t *pData;
tsal394Speed_t eSpeed;
UInt8 ucPriority;

} tsal394RdB1kResp_t;

Fields

ucTLabel Transaction label associated with this request.

eRespCode Contains response code which is filled by the
remote node.

usDatalen Indicates the data length in pData.

pData Contains the data itself.

eSpeed Transmission speed.

ucPriority Priority.

Description

The structure is used to send Read Block response to the requester. It is expected that
ucTLabel, eSpeed and ucPriority are copied from tsa1394trDatalnd_t structure. eResp-
Code should be filled to indicate the request is successful or return an error if the request
cannot be completed. The values this variable takes are defined in previous sections.
usDataLen and pData should be set to Null if eRespCode is any other value than
P1394_FWLL_RC_COMPLETE. If the response code is P1394_FWLL_RC_COMPLETE, then
pData should set to contain data to be sent and usDataLen should indicate the data
length in pData.

152 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394RdQuadResp_t

typedef struct _tsal394RdQuadResp {

UInt8

tsal394RespCode_t

UInt32

tsal394Speed_t

UInt8

} tsal394RdQuadResp_t;

Fields

ucPriority;

ucTlable
eRespCode
ulData
eSpeed

ucPriority

Description

Transaction label associated with this request.
Contains response code filled by the remote node.
Contains the quadlet value.

Transmission speed.

Priority

tsa1394RdQuadResp_t structure is used to send read quadlet response to the requester.

Except for ulData, all field are same as above. ulData contains the quadlet value.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 153

Chapter 4: 1394 FireWire API

tsa1394WrResp_t

typedef struct _tsal394WrResp {

UInt8 ucTLabeTl;
tsal394RespCode_t eRespCode;
tsal394Speed_t eSpeed;
UNIT8 ucPriority;

} tsal394WrResp_t;

Fields

ucTLabel Transaction label associated with this request.
eRespCode Contains response code filled by the remote node.
eSpeed Transmission speed.

ucPriority Priority.

Description

The structure is used to send write response to the requester. All fields in this structure
are same as tsa1394RdBIkResp_t.

154 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394LockResp_t

typedef struct _tsal394LockResp {
UInt8 ucTLabeTl;
tsal394RespCode_t eRespCode;
tsal394ExtTCode_t eETrCode;

UIntle usDatalen;
tsal394MBlock_t *pData;
tsal394Speed_t eSpeed;
UInt8 ucPriority;

} tsal394LockResp_t;

Fields

ucTLabel Transaction label associated with this request.
eRespCode Contains response code filled by the remote node.
eETrCode Specifies the type of lock operation to be done.
usDatalen Indicates the data length in pData.

pData Contains the data itself.

eSpeed Transmission speed.

ucPriority Priority.

Description

The structure can be used to send lock response to the requester.

eETrCode has following values:

typedef enum {
P1394_FWLL_ETC_MASK_SWAP,
P1394_FWLL_ETC_COMPARE_SWAP,
P1394_FWLL_ETC_FETCH_ADD,
P1394_FWLL_ETC_LITTLE_ADD,
P1394_FWLL_ETC_BOUNDED_ADD,
P1394_FWLL_ETC_WRAP_ADD,
P1394_FWLL_ETC_VENDOR_DEPENDENT

} tsal394ExtTCode_t;

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 155

Chapter 4: 1394 FireWire API

1394 API Functions
Name Page
tsa1394GetCapabilities 158
tsaUartinstanceSetup 47
tsa1394Close 159
tsa1394GetlnstanceSetup 160
tsa1394InstanceSetup 161
tsa1394AsyncCreateChannelHandle 162
tsa1394AsyncDestroyChannelHandle 162
tsa1394AsyncRegisterAddressSpace 163
tsa1394AsyncRegisterSbEvent 166
tsa1394AsyncRegisterControlEvent 168
tsa1394AsyncSendRequest 170
tsa1394AsyncSendResponse 174
tsa1394AsyncDeregisterAddressSpace 176
tsa1394AsyncDeregisterSbEvent 177
tsa1394AsyncDeregisterControlEvent 178
tsa1394lsochCreateChannelHandle 179
tsa1394lsochDestroyChannelHandle 180
tsa1394lsochSetupChannel 181
tsa1394lsochStart 182
tsa1394lsochStop 183
tsa1394SbmGetLocalNodeld 184
tsa1394SbmGetSpeed2Node 185
tsa1394SbmGetNodeldForEuid 186
tsa1394SbmGetMaxRec 187
tsa1394SbmGetBusNodeCount 188
tsa1394SbmCntriReq 189
tsa1394SbmGetBusld 191
tsa1394Mblkinit 192
tsa1394Allocb 193

156 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Name Page
tsa1394AllocbFromPool 194
tsa1394EsbAlloc 195
tsa1394EsbAllocFromPool 196
tsa1394Freeb 197
tsa1394FreeMsg 198
tsa1394DupB 199
tsa1394DupMsg 200

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 157

Chapter 4: 1394 FireWire API

tsa1394GetCapabilities

extern tmLibappErr_t tsal394GetCapabilities (
ptsal394Capabilities_t *pCap
)3

Parameters

pCap Pointer to a variable in which to return a pointer
to capabilities data.

Return Codes

P1394_FS_OK Success.

Description

This function returns the capabilities of the FireWire Library.

tsa13940pen

extern tmLibappErr_t tsal3940pen(
Int *instance
)3

Parameters

instance Pointer (returned) to the instance.

Return Codes

P1394_FS_0OK Success.
P1394_FS_ERR_NO_MORE_INSTANCES No instances available.

Description

The instance returned by tsal394Open is read-only to the application. The instance
number returned to the application is a unique number and shall be used by the applica-
tion in all subsequent calls to the library.

158 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394Close

extern tmLibappErr_t tsal394Close(
Int instance
);

Parameters

instance A 1394 instance, as returned by tsa13940pen.

Return Codes

P1394_FS_OK Success.
P1394_FS_ERR_INVALID_INST If passed an invalid instance.
Description

This function decreases the reference count to the device each time it is called. If the ref-
erence count becomes 0 it releases all resources associated with this FireWire Device. The
application-provided cacheFreeCbFp/nCacheFreeCbFp call releases any allocated mem-
ory . Refer to Section 3.5 for more details on cacheFreeCbFp/nCacheFreeCbFp. The device
will have to be reopened using tsa13940pen call for further operations. The Firewire
library maintains a reference count value for each open device.

Note

When the application which initially provided memory calls tsa1394Close,
and the reference count indicates another application is using the device,
the memory provided by the first application will not get freed.The
application should not make assumptions about the memory it provided to
the FireWire library until the application provided cacheFreeCbFp/
nCachefreeCbFp is called.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 159

Chapter 4: 1394 FireWire API

tsa1394GetinstanceSetup

extern tmLibappErr_t tsal394GetInstanceSetup(
Int instance,
ptsal394Setup_t *setup

)3

Parameters
instance A 1394 instance, as returned by tsa13940pen.
setup Setup info.

Return Codes

P1394_FS_OK Success
P1394_FS_ERR_INVALID_INST Invalid instance
Description

This function returns the default instance setup information if the device is not set up. If
the device is set up it returns the current instance setup information in setupInfo.

Default Values :
setup->cacheAllocFp and setup->nCacheAlloFp are assigned by default to malloc.
setup->cacheFreeFp and setup->nCacheFreeFp are assigned by default to free.
setup->pCfgRomData is Null.
setup->ulCfgRomDatalen is 0.
setup->ulBaseAddress, setup->ullrq are obtained by making a call to BSP.
setup->ulNumNodesConnected is 64.
setup->ulNumTLabels is 64.
setup->ulNumGruBufCount is 100.

The application when calling tsa1394InstanceSetup should set appropriate values for
pCfgRomData and ulCfgRomDatalLen.

160 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394InstanceSetup

extern tmLibappErr_t tsal394InstanceSetup(
Int instance,
ptsal394Setup_t setup

)3

Parameters
instance A 1394 instance, as returned by tsa13940pen.
setup Setup information.

Return Codes

P1394_FS_OK Success
P1394_FS_ERR_INVALID_INST Invalid instance
P1394_FS_ERR_NOT_SETUP Instance already set up; application-specified

parameters are ignored.

Description

The instance number is specified in instance. If the device is already initialized, it
increases the refCount of this device. User configurable parameters are defined and
passed in the structure setuplnfo.

This function does hardware initialization of the FireWire device (if it is not yet initial-
ized) in accordance to the setup information provided by the application.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 161

Chapter 4: 1394 FireWire API

tsa1394AsyncCreateChannelHandle

extern tmLibappErr_t tsal394AsyncCreateChannelHandle(
Int instance,
Int* asyncChHandle

)3

Parameters
instance A 1394 instance, as returned by tsa13940pen.
asyncChHandle An asynchronous channel handle to be created.

Return Codes

Returns a value of tmLibappErr_t.

Description

Create Channel Handle for the Async Operation.

tsa1394AsyncDestroyChannelHandle

extern tmLibappErr_t tsal394AsyncDestroyChannelHandle(
Int instance,
Int asyncChHandle

)s

Parameters
instance A 1394 instance, as returned by tsa13940pen.
asyncChHandle Asynchronous Channel Handle.

Return Codes

Returns a value of tmLibappErr_t.

Description

Destroy Channel Handle for the Async Operation. This routine should be called at the
end of Async operation.

162 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394AsyncRegisterAddressSpace

extern tmLibappErr_t tsal394AsyncRegisterAddressSpace(

Int instance;
Int asyncChHandle
tsal3940ffset_t startAddr,
tsal3940ffset_t dAddr,
tsal394AddrType_t addrType,
Bool isConceptual,
tsal394AddrReqCbFp_t addrReqCallBk,
void *userData
)3
Parameters
instance 1394 instance, as returned by tsa13940pen.
asyncChHandle Asynchronous Channel Handle.
startAddr tsa13940ffset_t indicates 48-bit 1394 address, rep-
resented as 32-bit low portion and 16-bit high
portion as ulLow and usHigh respectively.
endAddr End of Address
addrType Address Type, read/write/lock.

isConceptual

addrReqCal1Bk

userData

Return Codes

If set to T_TRUE, incoming requests whose
destination offset matches with any address in
registered address spaces are accepted. If set to
T_FALSE, the destination offset and destination
offset + data length should be within the
startAddr and endAddr of the registered address
space

Function called with userData when incoming
requests match the registered address space and
transaction type.

Application-provided data pointer.

P1394_FS_OK

Success

P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel
P1394_DSPT_ERR_INVALID_TRANS_TYPE

P1394_DSPT_ERR_NOCALLBACK

Invalid transaction type passed.

Callback function pointer is Null

P1394_DSPT_ERR_ADDRSPACE_INUSE Address space given was already registered.

P1394_SYSERR_NOMEM

Too many address spaces were registered and ran
out of memory.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 163

Chapter 4: 1394 FireWire API

Description

Used to register address space with the 1394 library for a given transaction type. The call-
back function is called with application data when an incoming request whose destina-
tion offset and transaction type match the registered address space.

Any address or address space can be registered only once for a transaction type. If an
application tries to register address space already registered by the same or other applica-
tions, it returns an error to the caller.

startAddr and endAddr are 48-bit 1394 addresses (inclusive) indicating the address range.
eAddrType indicates the type of transactions the caller is interested in getting over the
specified address range. The parameter blsConceptual takes two values: TRUE and FALSE.
If set to TRUE, incoming requests whose destination offset matches any address in regis-
tered address spaces are accepted. If set to FALSE, the destination offset and destination
offset+data length should be within the startAddr and endAddr of the registered address
space. Otherwise, the 1394 library rejects the incoming request by sending an error
response to the remote node. The structure tsa13940ffset_t has the following format:

typedef struct {
UInt32 ullow;
UIntl6 usHigh;

} tsal3940ffset_t;

tsa13940ffset_t indicates a 48-bit 1394 address, represented as 32-bit low portion and
16-bit high portion as ulLow and usHigh respectively.

The enum tsa1394AddrType_t has following values defined:

typedef struct {
P1394_FW_ADDR_READ,
P1394_FW_ADDR_WRITE,
P1394_FW_ADDR_LOCK
} tsal394AddrType_t;

This is its callback format:
void AppTransIndCallback (
tsal394AppContext_t asyncChannel,

tsal394trDatalnd_t *datalnd,
void *pUserData

Description

The 1394 library calls the application-supplied callback function with asyncChannel
indicating the asynchronous channel, datalnd which has transaction parameters corre-
sponding to the incoming request, and pUserData which was passed while registering
the address space.

Note

The application should call tsa1394FreeMsg on datalnd->pData, on an
incoming read response, after it has processed the data. Refer to section 7.8
on more information about tsa1394FreeMsg.

164 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

The structure tsa1394trDatalnd_t has following parameters:

typedef struct {

tsal39%4trType_t eTrType;
tsal394Dest0ffset_t destOffset;
tsal394Nodeld_t requesterld;
tsal394ExtTCode_t eETrCode;
UIntl6 usDatalen;
UInt8 ucTrLabel;
UInt8 ucPriority;
BOOL bBrdCast;
tsal394Speed_t eCb1Speed;
void *pData;

} tsal394trDatalnd_t;
eTrType indicates the transaction type and takes following values:

typedef enum {
P1394_FWTR_READBLOCK,
P1394_FWTR_READQUAD,
P1394_FWTR_WRITEBLOCK,
P1394_FWTR_WRITEQUAD,
P1394_FWTR_LOCK

} tsal39%4trType_t;

destOffset indicates a 48-bit 1394 address. requesterld is the 16-bit node ID that initiated
the request. eETrCode is an extended transaction code and is valid only for lock transac-
tions. ucTrLable is transaction label associated with this request. The sender expects the
response with this label to match the request to the response. This should be preserved
by the application and needs to be used while sending a response for this request.
usDatalen indicates the byte count in pData for write and lock requests. In case of 'read’
it indicates the number of bytes requested by the sender of this request. pData is not
valid in a 'read’ request. ucPriority is not used and contains value 0. eCbISpeed indicates
the speed at which the request is received. The boolean field bBrdCast indicates if the
indication has arrived as a result of a broadcast. In some link controllers it is not possible
to find out at which speed the request is received. In this case, this value is set to
P1394_FWCPHY_SPEED_SANY.

eCblSpeed contains following values

typedef {
P1394_FWCPHY_SPEED_S10@,
P1394_FWCPHY_SPEED_S20@,
P1394_FWCPHY_SPEED_S400,
P1394_FWCPHY_SPEED_SANY
} tsal394Speed_t;

In case of write quadlet, pData should be typecasted to UInt32 to get the quadlet value.
In write block and lock requests, it points to tsa1394MBlock_t, which is described in
1394 API Data Structures on page 124.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 165

Chapter 4: 1394 FireWire API

tsa1394AsyncRegisterSbEvent

extern tmLibappErr_t tsal394AsyncRegisterSbEvent(

Int instance,
Int asyncChHandle,
tsal394SbEvent_t eventld,
tsal394SbEventCbFp_t sbEventCall1Bk,
void *userData
);
Parameters
instance 1394 instance, as returned by tsa13940Open.
asyncChHandle Asynchronous Channel Handle.
eventId Event ID.
sbEventCal1Bk Function called by the library when the event
occurs.
userData Application Data.

Return Codes

P1394_FS_OK Success
P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel
P1394_DSPT_ERR_INVALID_SBEVENT Invalid sbEvent value is passed.
P1394_DSPT_ERR_NOCALLBACK Callback function passed is Null.

P1394_DSPT_ERR_DUPLICATE_SBEVENT
This sbevent is already registered in this context.

P1394_SYSERR_NOMEM Too many registrations, out of memory.

Description

This function is used to register callback function for serial bus events. asyncChannel
indicates the asynchronous channel which is interested in serial bus events. instance
indicates the FireWire device which the application is interested in. sbEvent indicates the
interested serial bus event. pSbEvCallback is an application function, which will be called
when serial bus event occurs. pUserData will be passed to callback function.

Only one registration for sbEvent is allowed in one asynchronous channel.

166 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Using this function, the application can register its functions for following bus events.

P1394_FWSBM_EV_OCCUPANCY_VIOLATION

P1394_FWSBM_EV_RESET_START

P1394_FWSBM_EV_RESET_COMPLETE

P1394_FWSBM_EV_CYCLE_TOO_LONG

P1394_FWSBM_EV_POWER_FAIL

P1394_FWSBM_EV_DUPLICATE_CHANNEL

P1394_FWSBM_EV_CRC_ERROR

P1394_FWSBM_EV_REQ_DATA_ERROR

P1394_FWSBM_EV_RESP_ACK_MISSING

P1394_FWSBM_EV_RESP_DATA_ERROR

P1394_FWSBM_EV_RESP_FORMAT_ERROR

P1394_FWSBM_EV_RESP_RETRY_FAILED

P1394_FWSBM_EV_UNEXPECTED_CHANNEL

P1394_FWSBM_EV_UNKNOWN_TRANS_CODE

P1394_FWSBM_EV_UNSOLICITED_RESPONSE
Most of the applications require only RESET_START and RESET_COMPLETE events to be
notified to them. Reset of bus events are normally used by management applications.

This is its callback format:

void AppSbEventIndCallback (
tsal394AppContext_t asyncChannel,
tsal394SbEvent_t sbEvent,
void *pUserData

)

This function is called by the 1394 library to report bus events. asyncChannel indicates
the context of the application which registered this callback function. sbEvent is passed
to the callback function indicating the bus event (as specified above) occurred. event-
Data is not used.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 167

Chapter 4: 1394 FireWire API

tsa1394AsyncRegisterControlEvent

extern tmLibappErr_t tsal394AsyncRegisterControlEvent(

Int instance,

Int asyncChHandle,

tsal394CtrlEvent_t eventld,

tsal394Ctrl1EventCbFp_t ctrlEventCallBk,

void *userData
)3
Parameters
instance 1394 instance, as returned by tsa13940Open.
asyncChHandle Handle for the asynchronous channel acquired

from tsa1394AsyncCreateChannelHandle.

eventId Event ID.
ctrlEventCall1Bk Function called by the library when event occurs.
userData Application’s data pointer to be passed into the

ctrlEventCallBk.

Return Codes

P1394_FS_OK Success
P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel.
P1394_DSPT_ERR_INVALID_SBEVENT Invalid control event specified.

P1394_DSPT_ERR_NOCALLBACK Callback function pointer is Null.
P1394_SYSERR_NOMEM Out of memory.
Description

Used to register control events such as notification of physical write and resource avail-
ability in HAL (Hardware layer). asyncChannel indicates the application which is inter-
ested in control event specified by controlEvent. instance indicates the FireWire instance
number which the application is interested in. pCtrlCbFp is the function to be called
when controlEvent is generated in 1394 library. pUserData is the application-specified
data and will be passed to callback function.

The following control events are supported in this call.

typedef enum {
P1394_FWCE_PHYSICAL_WRITE,
1394_FWCE_RESOURCE_AVAILABILITY
} tsal394CtrlEvent_t;

The P1394_FWCE_PHYSICAL_WRITE event can be generated only if Link controller sup-
ports physical write transactions and generated interrupt on physical write.

168 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

The P1394_FWCE_RESOURCE_AVAILABILITY event is generated when the HAL layer gets
resources to send the transaction packets out. This event is required because there could
be more than one application, or an application which is generating lot of traffic on
1394 library. The number of resources allocated to HAL to send packets out are limited.
When these resources are used, any call to 1394 library to send the packets will fail. At
this time, applications can register for this event with the 1394 library. When the
resources are available in HAL, the 1394 library calls the application-supplied callback
function and the application can start sending packets again. In this case, after calling
the application-supplied function, the 1394 library removes the registration. Applica-
tions are required to register with this event only if they cannot send packets out due to
HAL resource crunch.

This is its callback format:

void AppControlEventCallback (
tsal394AppContext_t asyncChannel,
sal394CtriEvent_t controlEvent,
void *pUserData

)

This function is called by the 1394 library when the control event occurs. asyncChannel
indicates the asynchronous channel which registered this callback function for control
event specified as controlEvent. pUserData is a callback function argument which is
passed using registration call.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 169

Chapter 4: 1394 FireWire API

tsa1394AsyncSendRequest

extern tmLibappErr_t tsal394AsyncSendRequest(

Int instance,

Int asyncChHandle,

tsal394Nodeld_t nodeld,

tsal394trType_t transType,

void *transData,

tsal394AtReqCbFp_t atReqCal1Bk,

void *userData
);
Parameters
instance 1394 instance, as returned by tsa13940pen.
asyncChHandle Application sending the TransType asynchronous

request to the node specified by nodeld.

nodeld Node ID.
transType Read/write block, read/write quad etc.
transData Information associated with the request.

atReqCal1Bk

userData

Return Codes

Function called by the library when request com-
pletes.

Application-supplied data passed by the 1394
library to the callback function.

P1394_FS_OK
P1394_DSPT_INVALID_APPCONTEXT
P1394_GENERR_NULLARG

P1394_DSPT_INVALID_EXTENDED_CODE

P1394_SYSERR_NOMEM
P1394_TR_ERR_IN_RESET_MODE
P1394_TR_ERR_UNKNOWN_NODE
P1394_TR_ERR_UNKNOWN_BUS
P1394_TR_ERR_DATALEN_MISMATCH

P1394_TR_ERR_SPEED_MISMATCH
P1394_TR_ERR_OUTOF_TLABELS
HAL_INVALID_DATALEN

Success
Invalid asynchronous channel.

Null argument is passed.

Invalid extended code.

No memory.

Bus reset processing.

Unknown destination physical ID.
Unknown bus.

Payload in the request packet exceeds the maxi-
mum.

Speed mismatch.
Out of transactions labels.

Invalid data length.

170 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

Description

This function is called to send an asynchronous request to the remote node. asyncChan-
nel indicates the application sending the asynchronous request of type eTransType to the
node specified by nodeld. instance indicates the FireWire instance number which the
application is calling. pTransData contains the information associated with the request.
pAtRqCbFp specifies the function pointer which is called with the response received
from the remote node to this request. pUserData is application supplied data which will
be passed by the 1394 library to the callback function.

tsa1394Nodeld_t is defined as unsigned short and should have ‘busid’ and ‘phsical id.”

The enum tsa1394trType_t has following values.

typedef enum {
P1394_FWTR_READBLOCK,
1394_FWTR_READQUAD,
P1394_FWTR_WRITEBLOCK,
P1394_FWTR_WRITEQUAD,
P1394_FWTR_LOCK

} tsal39%4trType_t

P1394_FWTR_READBLOCK is used to request block of data from the remote node.
P1394_FWTR_READ_QUAD is used to request 4 bytes of data from the remote node.

P1394_FWTR_WRITEBLOCK is used to send block of data to the remote node, whereas
P1394_FWTR_WRITEQUAD can be used to send 4 bytes of data to the remote node.

P1394_FWTR_LOCK is used to perform lock operation on the remote node.

pTransData contains different information based on the transaction type. The following
structures describe information for each transaction type.

typedef struct {
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8 ucPriority;
UIntlé6 usDatalen;

} tsal394RdBlockReq_t;
The structure above is used to send ‘Read Block’ request to the remote node. destOffset
indicates the 48-bit offset on the destination node. usDatalen indicates the length of
data, the sender is requesting from the remote node at the destination offset specified by
destOffset. eSpeed indicates the speed, the packet should be sent. ucPriority is not used
currently and should be set to 0.

typedef struct {
tsal394Dest0ffset_t destOffset;
tsal394Speed_t eSpeed;
UInt8 ucPriority;
} tsal394RdQuadReq_t;

The structure above is used to request quadlet data from the remote node at the destina-
tion offset specified by DestOffset.

typedef struct {
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8 ucPriority;
UIntlé6 usDatalen;

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 171

Chapter 4: 1394 FireWire API

tsal394MBlock_t *pData;
} tsal394WrBlockReq_t;

The structure above is used to send write block request to the destination offset specified
by destOffset at the remote node. usDatalen indicates the amount of data being written
and pData is mblk pointer containing the data.

typedef struct {
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8 ucPriority;
UInt32 ulData;

} tsal394WrQuadReq_t;
The structure above is used to send quadlet size data to the destination offset specified by

destOffset at the remote node. ulData contains the quadlet data.

typedef struct {
tsal394Dest0ffset_t destOffset;

tsal394Speed_t eSpeed;
UInt8UInt16 ucPriority;
tsal394ExtTCode_t eETrCode;
UIntlé6 usDatalen;
tsal394MBlock_t *pData;

} tsal394LockReq_t;
The structure above is used to send lock request to the destination offset specified by
destOffset at the remote node. usDatalLen contains the data to be sent in lock request.
pData should contain the data itself. eETrCode specifies the type of lock operation to be
done and has following values.
typedef enum {
P1394_FWLL_ETC_MASK_SWAP,
P1394_FWLL_ETC_COMPARE_SWAP,
P1394_FWLL_ETC_FETCH_ADD,
P1394_FWLL_ETC_LITTLE_ADD,
P1394_FWLL_ETC_BOUNDED_ADD,
P1394_FWLL_ETC_WRAP_ADD,

P1394_FWLL_ETC_VENDOR_DEPENDENT
} tsal394ExtTCode_t;

This is its callback format:

void AppRecvRespCallback (
tsal394AppContext_t asyncChannel,
tsal394trDataCnfm_t *pDataCnf,
void *pUserData

)

This function is called by the 1394 library once it receives the response for the request
sent. asyncChannel indicates the asynchronous channel which sent the request. dataCnf
contains information related to the response received.

The structure tsa1394trDataCnfm_t has following fields.

typedef struct {
tsal394trReqStatus_t eTrStatus;

tsal394RespCode_t eRespCode;
tsal394MBlock_t *pData
UIntl6 usDatalen;

tsal394trDataCnfm_t;

172 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

eTrStatus contains the transaction status. It takes following values.

typedef enum {
P1394_FWTL_RSTAT_COMPLETE,
P1394_FWTL_RSTAT_TIMEOUT,
P1394_FWTL_RSTAT_ACK_MISS,
P1394_FWTL_RSTAT_DATA_ERR
} tsal394trReqStatus_t;

Other fields in tsa1394trDataCnfm_t are valid only if eTrStatus is
P1394_FWTL_RSTAT_COMPLETE. P1394_FWTL_RSTAT_TIMEOUT indicates there is no
response to the request sent. P1394_FWTL_RSTAT_ACK_MISS and
P1394_FWTL_RSTAT_DATA_ERR indicate a problem was encountered while sending
request to the remote node.

eRespCode contains response code which is filled by the remote node. It takes following
values.

typedef enum {
P1394_FWLL_RC_COMPLETE,
P1394_FWLL_RC_RESERVEDI,
P1394_FWLL_RC_RESERVED2,
P1394_FWLL_RC_RESERVED3,
P1394_FWLL_RC_CONFLICT_ERR,
P1394_FWLL_RC_DATA_ERR,
P1394_FWLL_RC_TYPE_ERR,
P1394_FWLL_RC_ADDRESS_ERR

} tsal394RespCode_t;

P1394_FWLL_RC_COMPLETE indicates that request was successful. pData and ucDatalLen
are valid only if eRespCode is RC_COMPLETE.

pData and ucDatalen are valid only for Read block, Read Quad, and lock response. In
case of Read Quad, pData should be typecasted to 32-bit integer to get the quadlet value.
Otherwise, it contains pointer to ‘mblk’ which contains the data.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 173

Chapter 4: 1394 FireWire API

tsa1394AsyncSendResponse

extern tmLibappErr_t tsal394AsyncSendResponse(
Int instance,
Int asyncChHandle,
tsal394Nodeld_t nodeld,
tsal394trType_t transType,

void *response
)3
Parameters
instance 1394 instance, as returned by tsa13940Open.
asyncChHandle Application which is sending the response.
nodeld Node idenfification number.
transType Transaction type.
response Information an application sends as part of
response.
Return Codes
P1394_FS_OK Success

P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel.

P1394_DSPT_ERR_INVALID_TRANS_TYPE
Invalid transaction type is passed.

P1394_DSPT_ERR_ADDRESS_NOT_REGISTERED
Address specified was not registered.

Description

This function sends a response to the request received from the remote node. asyncChan-
nel indicates the application which is sending the response. It should be same as async-
Channel received as part of incoming request. instance indicates the FireWire instance
number which the application is interested in. nodeld is the node ID of the requester
and pResponse should contains information the application wants to send as part of a
response. The response information depends on transaction type eTransType. eTransType
should be the same as eTrType of tsa1394trDatalnd_t. nodeld should be the same as
requesterld of tsa1394trDatalnd_t.

pResponse takes following structure based on eTrType.

typedef struct {

UInt8 ucTLabel;
tsal394RespCode_t eRespCode;
UIntl6 usDatalen;
tsal394MBlock_t *pData;
tsal394Speed_t eSpeed;

174 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

UInt8 ucPriority;
} tsal394RdB1kResp_t;

tsa1394RdBlIkResp_t structure is used to send Read Block response to the requester. It is
expected that ucTLabel, eSpeed and ucPriority are copied from tsa1394trDatalnd_t struc-
ture. eRespCode should be filled to indicate the request is successful, or return an error if
request cannot be completed. The values this variable takes are defined in previous sec-
tions. usDataLen and pData should be set to Null if eRespCode is any other value than
P1394_FWLL_RC_COMPLETE. If the response code is P1394_FWLL_RC_COMPLETE, then
pData should set to contain data to be sent and usDatalLen should indicate the data
length in pData.

typedef struct {

UInt8 ucTlable;
tsal394RespCode_t eRespCode;
UInt32 ulData;
tsal394Speed_t eSpeed;
UInt8 ucPriority;

}tsal394RdQuadResp_t;
tsa1394RdQuadResp_t structure is used to send read quadlet responses to the requester.
Except for ulData, all fields are the same as above. ulData contains the quadlet value.

typedef struct {
UInt8 ucTLabel;
tsal394RespCode_t eRespCode;
tsal394Speed_t eSpeed;
UNIT8 ucPriority;

} tsal394WrResp_t;

tsa1394WrResp_t is used to send write responses to the requester. All fields in this struc-
ture are same as tsa1394RdBlkResp_t.

typedef struct {
UInt8 ucTLabel;
tsal394RespCode_t eRespCode;
tsal394ExtTCode_t eETrCode;

UIntl6 usDatalen;
tsal394MBlock_t *pData;
tsal394Speed_t eSpeed;
UInt8 ucPriority;

} tsal394LockResp_t;
tsa1394LockResp_t can be used to a send lock responses to the requester.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 175

Chapter 4: 1394 FireWire API

tsa1394AsyncDeregisterAddressSpace

extern tmLibappErr_t tsal394AsyncDeregisterAddressSpace (
Int instance,
Int asyncChHandle,
tsal3940ffset_t address,
tsal394AddrType_t addrType
)3

Parameters

instance 1394 instance, as returned by tsa13940pen.
asyncChHandle Async Channel Handle.

address Start Address of the address space.
addrType Address Type: READ, WRITE, or LOCK.

Return Codes

P1394_FS_0OK Success
P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel.

P1394_DSPT_ERR_INVALID_TRANS_TYPE
Invalid transaction type is passed.

P1394_DSPT_ERR_ADDR_NOT_REGISTERED
Address specified was not registered.

Description

Applications can use this function to deregister address space which was registered
before using tsa1394AsyncRegisterAddressSpace. Address space is uniquely identified by
startAddr and type of transactions supported as indicated by the address type eAddrType.
instance indicates the FireWire instance number which the application is interested in.

The structure tsa13940ffset_t has the format.

typedef struct {
UInt32 ullow;
UIntlé6 usHigh;

} tsal394DestOffset_t;

typedef tsal394DestOffset_t tsal3940ffset_t;
tsa13940ffset_t indicates a 48-bit 1394 address, represented as 32-bit low portion and
16-bit high portion as ulLow and usHigh respectively.

The enum tsa1394AddrType_t has following values defined:

typedef enum {
P1394_FW_ADDR_READ,
P1394_FW_ADDR_WRITE,
P1394_FW_ADDR_LOCK

}tsal394AddrType_t;

176 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394AsyncDeregisterShEvent

extern tmLibappErr_t tsal394AsyncDeregisterSbEvent(
Int instance,
Int asyncChHandTle,
tsal394SbEvent_t event

)

Parameters

instance 1394 instance, as returned by tsa13940pen.
asyncChHandle Asynchronous Channel Handle.

event Serial Bus Event, previously registered.

Return Codes

P1394_FS_OK Success.
P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel.
P1394_DSPT_ERR_INVALID_SBEVENT Invalid serial bus event.
P1394_DSPT_ERR_NOTREGISTERED Serial bus event was not registered.

Description

This function is used to deregister previously registered serial bus event sbEvent for the
asynchronous channel asyncChannel. instance indicates the FireWire instance number
which the application is querying.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 177

Chapter 4: 1394 FireWire API

tsa1394AsyncDeregisterControlEvent

extern tmLibappErr_t tsal394AsyncDeregisterControlEvent(
Int instance,
Int asyncChHandle,
tsal394CtrlEvent_t eventId

)

Parameters

instance 1394 instance, as returned by tsa13940pen.
asyncChHandle Asynchronous channel handle.

eventId Event ID to deregister.

Return Codes

P1394_FS_OK Success.
P1394_DSPT_INVALID_APPCONTEXT Invalid asynchronous channel.
P1394_DSPT_ERR_INVALID_SBEVENT Invalid control event.
P1394_DSPT_ERR_NOTREGISTERED Control event was not registered.

Description

This function is used to deregister a previously registered control event controlEvent for
asynchronous channel asyncChannel.

The following control events are supported in this call.

typedef enum {
P1394_FWCE_PHYSICAL_WRITE,
P1394_FWCE_RESOURCE_AVAILABILITY
} tsal394CtrlEvent_t;

178 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394IsochCreateChannelHandle

extern tmLibappErr_t tsal394IsochCreateChannelHandle(
Int instance,
Int *isochChHandle

)3

Parameters
instance 1394 instance, as returned by tsa13940pen.
isochChHandle Isochronous channel handle.

Return Codes

Returns a value of tmLibappErr_t.

Description

Creates an Isochronous channel handle.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 179

Chapter 4: 1394 FireWire API

tsa1394IsochDestroyChannelHandle

extern tmLibappErr_t tsal394IsochDestroyChHandle(
Int instance,
Int isochChHandle

)3

Parameters
instance A 1394 instance, as returned by tsa13940pen.
isochChHandle Isochronous Channel Handle.

Return Codes

Returns a value of tmLibappErr_t.

Description

Destroys an isochronous channel handle.

180 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

tsa1394IsochSetupChanne

Chapter 4: 1394 FireWire API

extern tmLibappErr_t tsal394IsochSetupChannel(

Int instance,
Int isochChHandle,
UInt8 txRxFlag,
tsal394IsochHdrInfo_t* isochHeader,
void *plecPackInfo
)s
Parameters
instance A 1394 instance, as returned by tsa13940pen.
isochChHandle Isochronous Channel Handle.
txRxFlag Either P1394_ISOCH_TX_MODE or

isochHeader

pIecPackInfo

Return Codes

P1394_ISOCH_RX_MODE.
pointer to tsa1394lsochHdrInfo_t.

tsa1394lecTxInfo_t, or tsa1394lecRxUnpackinfo_t.

Returns a value of tmLibappErr_t.

Description

Sets up an Isochronous Channel.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support

181

Chapter 4: 1394 FireWire API

tsa1394lIsochStart

extern tmLibappErr_t tsal394IsochStart(
Int instance,
Int isochChHandle

)3

Parameters
instance 1394 instance, as returned by tsa13940pen.
isochChHandle Isochronous Channel Handle.

Return Codes

P1394_FS_OK Success.

Description

The application calls tsa1394lsochStart for starting the transmission or reception.

182 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394IsochStop

extern tmLibappErr_t tsal394IsochStop(
Int instance,
Int isochChHandle

)3

Parameters
instance 1394 instance, as returned by tsa13940pen.
isochChHandle Isochronous Channel Handle.

Return Codes

P1394_FS_OK Success.

Description

Stop the Isochronous operation.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 183

Chapter 4: 1394 FireWire API

tsa1394SbmGetLocalNodeld

extern tmLibappErr_t tsal394SbmGetLocalNodelId(

Int instance,

tsal394NodeId_t *pNodeld
)3

Parameters
instance 1394 instance, as returned by tsa13940pen.
pNodeld Node idenfification number.

Return Codes

P1394_FS_OK
P1394_SBM_ERR_IN_RESET

Description

Success.
The 1394 bus is in Reset mode

Gets the value of the local node ID. This is returned in a tsa1394Node. instance indicates
the FireWire instance number which the application is querying.

184 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbmGetSpeed2Node

extern tmLibappErr_t tsal394SbmGetSpeed2Node(
Int instance,
tsal394Nodeld_t nodeld,
tsal394Speed_t *pSpeed

);

Parameters

instance 1394 instance, as returned by tsa13940pen.
nodeld Node idenfification number.

pSpeed Transmission speed at which the packet is sent.

Return Codes

P1394_FS_OK Success.
P1394_SBM_INVALID_FWDRV Invalid device.
P1394_SBM_ERR_IN_RESET Reset error.
P1394_SBM_SPEED_UNKNOWN Speed unknown.
Description

Returns the speed between the current node, whose instance is instance and
atsa1394Node in pSpeed.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 185

Chapter 4: 1394 FireWire API

tsa1394SbmGetNodeldForEuid

extern tmLibappErr_t tsal394SbmGetNodeIdForEuid(
Int instance,
tsal394EUId_t Euld,
tsal394Nodeld_t *pNodeld

);

Parameters

instance 1394 instance, as returned by tsa13940pen.

Euld Extended Unique Identifier, 64 bits, as defined by
the IEEE.

pNodeld Node idenfification number.

Return Codes

P1394_FS_OK Success.

P1394_SBM_INVALID_FWDRV Invalid device.

P1394_SBM_ERR_IN_RESET Reset error.

P1394_SBM_EUID_UNKNOWN Unknown EUID.

Description

Returns the node ID of instance in aNode.

186 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbmGetMaxRec
extern tmLibappErr_t tsal394SbmGetMaxRec(
Int instance,
tsal394Nodeld_t nodeld,
UIntl6 *pMaxRec
);
Parameters
instance 1394 instance, as returned by tsa13940pen.
nodeld Node idenfification number.
pMaxRec an input/output field to hold the max record

Return Codes

value read from config rom data.

P1394_FS_OK
P1394_SBM_INVALID_FWDRV
P1394_SBM_ERR_IN_RESET
P1394_SBM_MAXREC_UNKNOWN

Description

Success.
Invalid device.
Reset error.

Maxrec unknown.

The maximum record length of the specified node, whose instance is instance is

returned in aUsMaxRecLen.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 187

Chapter 4: 1394 FireWire API

tsa1394SbmGetBusNodeCount

extern tmLibappErr_t tsal394SbmGetBusNodeCount(
Int instance,
UInt32 *pNodeCount

)3

Parameters
instance 1394 instance, as returned by tsa13940pen.
pNodeCount pointer to Node Count.

Return Codes

P1394_FS_OK Success.
P1394_SBM_INVALID_FWDRV Invalid device.
P1394_SBM_ERR_IN_RESET Reset error.
Description

The number of nodes on the bus will be returned in aNodeCount.

188 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbmCntriReq
extern tmLibappErr_t tsal394SbmCntri1Req(
UInt32 instance,
tsal394SbmCntri0p_t controlCommand,
void *controlParams
)3
Parameters
instance The 1394 instance, as returned by tsa13940pen.
controlCommand Control command: one of the following:
E_SBM_CNTRL_RESET,
E_SBM_CNTRL_INIT,
E_SBM_CNTRL_LINKON,
E_SBM_CNTRL_STATUS,
E_SBM_CNTRL_PHYCONFIG.
controlParams Input parameter, if any.

Return Codes

P1394_FS_OK Success.
P1394_SBM_INVALID_FWDRV Invalid device.
P1394_SBM_ERR_IN_RESET Reset error.
P1394_SBM_INVALID_CNTRLOP Invalid control loop.
Description

tsa1394SbmCntrlOp_t defines the possible control requests that can be requested:

typedef enum {
P1394_SBM_CNTRL_RESET,
P1394_SBM_CNTRL_INIT,
P1394_SBM_CNTRL_LINKON,
P1394_SBM_CNTRL_STATUS,
P1394_SBM_CNTRL_PHYCONFIG
} tsal394SbmCntri0Op_t;
Depending on the type of Control operation selected, appropriate parameters need to be
passed. If P1394_SBM_CNTRL_RESET or P1394_SBM_CNTRL_INIT is selected, aCntrlParams
will point to the structure defined below. ulBandWidthSetAside and bEnablelrm should
be 0.
typedef struct SbmCntrlResetInitParams_t {
UInt32 ulBandWidthSetAside;
BOOL bEnablelrm;
} SbmCntr1ResetInitParams_t;
If P1394_SBM_CNTRL_LINKON is selected, aCntrlParams will be the actual PhysId value of

the node whose Link needs to be activated.

If P1394_SBM_CNTRL_STATUS is selected, aCntrlParams will point to the structure defined
below, and the values will be returned at the appropriate locations in the structure.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 189

Chapter 4: 1394 FireWire API

typedef struct _SbmStatusInfo_t {
UInt32 ulBandWidthSetAside;
tsal394PhysNodelId_t bmlId;

/* For BMC / IRMC only, INVALID(@x3f) otherwise */
tsal394PhysNodeld_t cmld;

/* For BMC / IRMC only, INVALID(@x3f) otherwise */
tsal394PhysNodeld_t irmld;

/* For IRMC / BMC only, INVALID(@x3f) otherwise */
tsal394PhysNodeld_t TocalPhysld;
tsal394PhysNodeld_t rootPhyslId;

BOOL bForceRootSet;
UIntl6 usGapCount;
} SbmStatusInfo_t

If P1394_SBM_CNTRL_PHYCONFIG is selected, aCntrlParams will point to the structure
defined below, and the appropriate values as required need to be programmed.

typedef struct SbmCntr1PhyConfigParms_t {
tsal394PhysNodeld_t physNode;

UIntlé usGapCount;
BOOL bSetForceRoot;
BOOL bSetGapCount;

}SbmCntri1PhyConfigParams_t;
Depending on the parameter passed, appropriate actions are taken.

190 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbmGetBusid

extern UInt32 tsal394SbmGetBusId(

UInt32 instance,
UIntl6 *pBusld
)3

Parameters
instance 1394 instance, as returned by tsa13940pen.
pBusId Input/output parameter to hold the Bus ID.

Return Codes

P1394_FS_OK
P1394_SBM_INVALID_FWDRV

Description

Success.

Invalid device.

The bus ID is returned in aBusld.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 191

Chapter 4: 1394 FireWire API

tsa1394Mblkinit
extern tmLibappErr_t tsal394MblkInit(

Int instance,

Tong *1PoollId,

Char *pPoolName,

Byte *pBuffer,

Tong 1BuflLength,

Tong TNoMb1ks,

tsal394Mb1kBufConfig_t *pBufCfg,

short iAlignment,

Bool bDefault,

void (*pFreefFn)(void*),

void *pFreeFnArg
)3
Parameters
instance 1394 instance, as returned by tsa13940pen.
1Poo11d Returned ID of the memory pool to be processed.
pPoolName Name of the memory pool.
pBuffer The application-provided buffer to be configured.
1BufLength The length of the application-provided buffer.
TNoMbTks Total number of all ulBuffers in the array of

tsa1394MblkBufConfig_t.

pBufCfg Desired configuration of the memory pool.

iAlignment

Alignment of the memory blocks, e.g., 64 indicat-
ing 64 byte aligned blocks.

bDefault Boolean flag indicating whether this pool is a
default pool.

pFreefn Function to free the entire memory.

pFreefFnArg The pointer to the argument to be passed to
pFreeFn.

Return Codes

P1394_FS_OK Success

Description

This function provides a mechanism to organize a data buffer into a set of memory

blocks in tsa1394MBlock _t.

The function pFreeFn if set to a valid value by the application, will be called with

pFreeFnArg, when a mblock is returned (freed) to the mblock pool using tsa1394FreeMsg

192 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

or tsa1394Freeb. This provides a mechanism to inform the application that mblocks are
available for application usage.

tsa1394Alloch

extern tmLibappErr_t tsal394Allocb(
Int instance,
Tong 1Size,
tsal394MBlock_t **retBlk

);

Parameters

instance 1394 instance, as returned by tsa13940pen.

1Size The size of the requested buffer from the default
pool.

retBlk Pointer a pointer to the allocated block.

Return Codes

P1394_FS_OK Success.

Description

A pointer to the allocated tsa1394MBlock_t is returned. The size of the buffer to be allo-
cated is ISize, which is an input parameter. ISize is the size of the requested buffer from
the default pool. The buffer allocated is equal to or greater than the size requested. If the
default pool is not set up, this returns an error.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 193

Chapter 4: 1394 FireWire API

tsa1394AllocbFromPool

extern tmLibappErr_t tsal394AllocbFromPool(

Int instance,
Tong TPool1Id,
Tong 1Size,

tsal394MBlock_t **retBlk
);

Parameters

instance 1394 instance, as returned by tsa13940pen.

1Poo11d ID of the memory pool where the mblock is to be
allocated.

1Size The size of the requested buffer.

*retBlk Pointer to a pointer to the returned memory
block.

Return Codes

P1394_FS_OK Success.

Description

The function allocates a memory block from a memory pool.

194 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394EsbAlloc

extern tmLibappErr_t tsal394EsbAlloc(

Int instance,
Byte *pBase,
Tong 1Size,

tsal394FreeRtn_t *pFrtn,
tsal394MBlock_t **retBlk
)

Parameters

instance 1394 instance, as returned by tsa13940Open.

pBase Pointer to the base of the data passed by the
application.

1Size The size of the data.

pFrtn Pointer to the routine called for freeing the data
block.

*retBlk Pointer to the returned memory block.

Return Codes

P1394_FS_OK Success.

Description

In tsa1394EsbAlloc, the data buffer is given by the application. If no pool is set as the
default pool, this function will return error.

An mblock structure is returned:
IPoolld has the pool ID information.

pNext is Null.

pCont is Null.

pRptr = pBase.

pWptr = pBase.

pData->IPoolld stands for the pool ID.

pData->pDbFreep is used internally, set to Null when application obtains an mblock.
pData->pDbBase = pBase.

pData->pDbLim = pBase + ISize.

pData->ulDbRef = 0.

pData->ucDbType is used internally, this field should not be modified by the application.
pData ->DbFrtn = pFrtn.

ulRequestedCount = ISize.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 195

Chapter 4: 1394 FireWire API

Difference between tsa1394EsbAlloc and tsa1394Alloch

tsa1394EsbAlloc is typically called by an application when it provides its own data buffer
and requires only an mblock header from the mblock pool.

pFrtn will be called when the data block is freed.

tsa1394EsbAllocFromPool

extern tmLibappErr_t tsal394EsbAllocFromPool(

Int instance,
Tong 1Pool11d,
Byte *pBase,
Tong 1Size,
tsal394FreeRtn_t *pFrtn,
tsal394MBlock_t **retBlk
)3
Parameters
instance 1394 instance, as returned by tsa13940pen.
1Poo11d Identification of the pool used for allocation
pBase Pointer to the base of the data passed by the
application.
1Size The size of data.
pFrtn Pointer to the routine to be called for freeing the

data buffer.

*retBlk Pointer to the returned memory block.

Return Codes

P1394_FS_0OK Success.

Description

In tsa1394EsbAllocFromPool, the data buffer is given by the application.

196 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394Freeb

extern tmLibappErr_t tsal394Freeb(
Int instance,
tsal394MBlock_t *bp

)3

Parameters
instance 1394 instance, as returned by tsa1394Open.
bp Pointer to the single mblock to be freed.

Return Codes

P1394_FS_OK Success.

Description

Frees a message block and the associated data block if the reference count for the data
block is 0. Otherwise, it frees only the message block. bp points to the block which has
to be freed. The message block and associated data block are freed into the pool specified
in bp->IPoolld and bp->pData->IPoolld. If the mblock was obtained using tsa1394Esb-
Alloc or tsa1394EsbAllocFromPool, the associated bp->pData->DbFrtn is called.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 197

Chapter 4: 1394 FireWire API

tsa1394FreeMsg

extern tmLibappErr_t tsal394FreeMsg(
Int instance,
tsal394MBTlock_t *mp

)3

Parameters
instance 1394 instance, as returned by tsa1394Open.
mp Pointer to the chained mblocks to be freed.

Return Codes

P1394_FS_OK Success.

Description

Frees the entire message with all its associated data buffers. mp points to the block which
has to be freed

For each mblock within the message, the mblock and the associated data block are freed
into respective mblk->IPoolld, mblk->pData->IPoolld, if the reference count,
pData->ucRefCount = 0. If the data bock is freed and the mblock was allocated using
tsa1394EsbAlloc/tsa1394EsbAllocFromPool, the application provided callback is called. If
the reference count on the data block is not 0, only the mblock is freed.

Difference between tsa1394FreeMsg and tsa1394Freeb

Assume a logical message containing an mblock chain:

Mblk 1

pCont----- > Mblk 2

pDatal pCont-------- > Mb1k3
pData2 pCont-> Null.

pData3

tsa1394Freeb(Mblk1) This would free only Mblk1 & its associated pData1.
tsa1394Freeb(Mblk2) This would free only Mblk2 & its associated pData2.
whereas

tsa1394FreeMsg (Mblk1) This would try to free Mblk1, Mblk2, and Mblk3.

tsa1394FreeMsg This would follow through pCont and get to the next mblock and free
that mblock as well.

198 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394DupB

extern tmLibappErr_t tsal394Dupb(

Int

tsal394MBlock_t

tsal394MBlock_t
)

instance,

*bp,
**retBlk

Parameters

instance 1394 instance, as returned by tsa13940pen.
bp Poiner to the single mblock to be duplicated.
*retBlk Pointer to the returned memory block.

Return Codes

P1394_FS_OK

Description

Success.

Duplicates the message block. It creates a new message block header, sets the data block

pointer to the old message block's data block, and increments the count in the data

block. Input is a pointer to the block to be duplicated.

©1999 Philips Semiconductors 10/08/99

Book 9—Communications Support 199

Chapter 4: 1394 FireWire API

tsa1394DupMsg

extern tmLibappErr_t tsal394DupMsg(
Int instance,
tsal394MBTlock_t *mp,
tsal394MBlock_t **retBlk

)3

Parameters

instance 1394 instance, as returned by tsa13940Open.

mp Poiner to the chained mblocks to be duplicated.

retBlk Pointer to a pointer to the returned memory
block.

Return Codes

P1394_FS_0OK Success.

Description

Duplicates the entire message. Input is a pointer to the message to be duplicated This
results in a duplicate copy of an entire mblock chain within a single message, with each
data area within each mblock of the message pointing to the same as the corresponding
mblock in the original message.

200 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

1394 Callback Functions

Name Page
tsa1394AllocCbFp_t 202
tsa1394FreeCbFp_t 202
tsa1394AddrReqCbFp_t 203
tsa1394AtReqCbFp_t 204
tsa1394SbEventCbFp_t 205
tsa1394CtrlEventCbFp_t 206

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 201

Chapter 4: 1394 FireWire API

tsa1394AllocCbFp_t

typedef void *(*tsal394A1TocCbFp_t)(
UInt32 size
)3

Parameters

size Size in bytes.

Return

void* Pointer to a new buffer.

Description

The function is called to allocate a cache-enabled memory pool. It is registered when set
up.

tsa1394FreeChFp_t

typedef void (*tsal394FreeCbFp_t) (
void *buf,
void *userdata

)3

Parameters
buf Pointer to be freed.
userdata Any application data, if provided.

Return Codes

void No return codes.

Description

The function is called to free a cache-enabled memory pool. It is registered when set up.

202 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394AddrReqCbFp_t

typedef void *(*tsal394AddrReqCbFp_t)(

Int ach,

tsal394trDatalnd_t *ind,

void *data
)3
Parameters
ach Indicates the async channel handle of the appli-

cation which registered this callback function.

ind Pointer to tsa1394trDatalnd_t (data indication).
data Pointer to application data.

Return Codes

void No return codes.

Description

Function to be called with user data when incoming requests match the registered
address space and transaction type. Registered by tsa1394AsyncRegisterAddressSpace.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 203

Chapter 4: 1394 FireWire API

tsa1394AtReqCbFp_t

typedef void (*tsal394AtReqCbFp_t)(

Int

tsal394trDataCnfm_t

void
)3
Parameters
ach Indicates the Async channel handle of the appli-
cation which registered this callback function.
conf Pointer to tsal394trDataCnFm_t (data confirma-
data Pointer to application data

Return Codes

void

Description

No return codes.

Specifies the function pointer which is called with the response received from the

remote node to this request. Registered by tsa1394AsyncSendRequest.

204 Book 9—Communications Support

©1999 Philips Semiconductors 10/08/99

Chapter 4: 1394 FireWire API

tsa1394SbEventCbFp_t

typedef void (*tsal394SbEventCbFp_t)(

Int ach,
tsal394SbEvent_t busEvent,
void *data,

tsal394SbEventInfo_t *info
);

Parameters

ach Indicates the Async channel handle of the appli-
cation, which registered this callback function.

busEvent Passed to the callback function indicating the bus
event (as specified above) occurred.

data Pointer to void application data.

info Pointer to tsa1394SbEventinfo_t (not used cur-
rently).

Return Codes

void No return codes.

Description

The application function called when serial bus event occurs. Registered by
tsa1394AsyncRegisterSbEvent.

©1999 Philips Semiconductors 10/08/99 Book 9—Communications Support 205

Chapter 4: 1394 FireWire API

tsa1394CtrlEventCbFp_t

typedef void (*tsal394CtrlEventCbFp_t) (

Int ach,
tsal394CtrlEvent_t event,
void *data,

tsal394CtrlEventInfo_t *info
);

Parameters

ach Indicates the Async channel handle which regis-
tered this callback function for control event
specified as controlEvent.

event Control Event.

data Pointer to void application data.

info Pointer to tsa1394CtrlEventinfo_t (not used cur-
rently).

Return Codes

void No return codes.

Description

This function is called by the 1394 library when the control event occurs. Registered by
tsa1394AsyncRegisterControlEvent.

206 Book 9—Communications Support ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 9—Communications Support
	1: SSI API
	SSI API Overview
	Levels of Control
	SSI Device Library
	TriMedia BSP
	SSI MMIO Macro-Only Interface

	Introduction
	Notes on the Hardware

	SSI API Data Structures
	ssiCapabilities_t
	ssiInstanceSetup_t
	ssiFrameSetup_t

	SSI API Functions
	ssiGetCapabilities
	ssiOpen
	ssiClose
	ssiInstanceSetup
	ssiSetFraming
	ssiGetFraming
	ssiStop
	ssiStart
	ssiConfigure
	ssiOffHook
	ssiOnHook

	2: UART API
	UART API Overview
	Uart API Callback Functions
	tsaUartErrorHandlerFunc_t
	tsaUartWriteCompletionFunc_t
	tsaUartReadCompletionFunc_t
	tsaUartControlHandler_t
	tsaUartConfigHandler_t

	Uart API Data Structures
	tsaUartParity_t
	tsaUartBaud_t
	tsaUartConfig_t
	tsaUartConfigEvent_t
	tsaUartControl_t
	tsaUartCapabilities_t
	tsaUartInstanceSetup_t
	tsaUartControlMode_t

	UART API Functions
	tsaUartGetNumberOfUnits
	tsaUartGetCapabilities
	tsaUartOpen
	tsaUartInstanceSetup
	tsaUartWrite
	tsaUartRead
	tsaUartWriteAbort
	tsaUartReadAbort
	tsaUartControl
	tsaUartInstanceConfig
	tsaUartClose

	3: V34 Modem API
	Overview
	TriMedia V34 Modem API Overview
	Interfacing V42 with the Modem
	Modem Data Structures
	tmModemCallMode_t
	tmModemCommandCode_t
	tmModemCapabilities_t
	tmModemV25Capabilities_t
	tmModemStatus_t
	tmModemStatusCode_t
	tmModemV42Command_t
	tmModemV42CommandCode_t
	tmModemInstanceSetup_t
	tmModemV8BisConfig_t
	tmModemV8BisStatus_t
	tmModemV8Protocol_t

	Modem Functions
	tmModemAfeInit
	tmModemOpen
	tmModemClose
	tmModemV25SendCommand
	tmModemCommandHandler
	tmModemGetCapabilities
	tmModemInstanceSetup
	tmModemDataWrite
	tmModemStart
	tmModemStop
	tmModemV42Process
	tmModemV42DataRead
	tmModemV42DataWrite
	tmModemV42DataReadPending
	tmModemV42DataWritePending
	tmModemV42CommandHandler
	tmModemV42GetCharFromTxBuffer
	tmModemV42PutCharInTxBuffer
	tmModemV42GetCharFromRxBuffer
	tmModemV42PutCharInRxBuffer

	I/O Handlers
	ModemDataReceiveHandler
	ModemDataTransmitHandler

	Status Handlers
	modemLocalStatusHandler
	V42LocalStatusHandler

	Modem Example: exModem.c
	PPP Example: exModemPPP.c
	Known Bugs

	4:1394 FireWire API
	IEEE 1394 Overview
	Glossary

	1394 API Overview
	Asynchronous Transmission API
	Isochronous Transmission API
	Serial Bus Manager API
	Transaction Layer
	Memory Utility API
	API Usage
	Asynchronous Transmission API
	Isochronous Transmission API

	Serial Bus Management API
	Memory Management API

	1394 API Enumerated Types
	tsa1394FwError_t
	tsa1394SbmError_t
	tsa1394SupportMuxMode_t
	tsa1394Speed_t
	tsa1394AsynClbkType_t
	tsa1394ExtTCode_t
	tsa1394RespCode_t
	tsa1394trType_t
	tsa1394trReqStatus_t
	tsa1394SbEvent_t
	tsa1394MaxRec_t
	tsa1394SbmCntrlOp_t
	tsa1394AddrType_t
	tsa1394CtrlEvent_t

	1394 API Data Structures
	tsa1394Capabilities_t
	tsa1394Setup_t
	tsa1394EUId_t
	tsa1394DestOffset_t
	tsa1394FreeRtn_t
	tsa1394Tdatab_t
	tsa1394MBlock_t
	tsa1394MblkBufConfig_t
	tsa1394DblkLink_t
	tsa1394BusTime_t
	tsa1394trDataCnfm_t
	tsa1394trDataInd_t
	tsa1394IecTxInfo_t
	tsa1394IecRxUnpackInfo_t
	tsa1394IsochHdrInfo_t
	tsa1394SbResetEventInfo_t
	tsa1394SbEventInfo_t
	tsa1394SbmCntrlResetInitParams_t
	tsa1394SbmCntrlPhyConfigParams_t
	tsa1394SbmStatusInfo_t
	tsa1394PhysWriteInfo_t
	tsa1394CtrlEventInfo_t
	tsa1394RdBlockReq_t
	tsa1394RdQuadReq_t
	tsa1394WrBlockReq_t
	tsa1394WrQuadReq_t
	tsa1394RdBlkResp_t
	tsa1394RdQuadResp_t
	tsa1394WrResp_t
	tsa1394LockResp_t

	1394 API Functions
	tsa1394GetCapabilities
	tsa1394Open
	tsa1394Close
	tsa1394GetInstanceSetup
	tsa1394InstanceSetup
	tsa1394AsyncCreateChannelHandle
	tsa1394AsyncDestroyChannelHandle
	tsa1394AsyncRegisterAddressSpace
	tsa1394AsyncRegisterSbEvent
	tsa1394AsyncRegisterControlEvent
	tsa1394AsyncSendRequest
	tsa1394AsyncSendResponse
	tsa1394AsyncDeregisterAddressSpace
	tsa1394AsyncDeregisterSbEvent
	tsa1394AsyncDeregisterControlEvent
	tsa1394IsochCreateChannelHandle
	tsa1394IsochDestroyChannelHandle
	tsa1394IsochSetupChannel
	tsa1394IsochStart
	tsa1394IsochStop
	tsa1394SbmGetLocalNodeId
	tsa1394SbmGetSpeed2Node
	tsa1394SbmGetNodeIdForEuid
	tsa1394SbmGetMaxRec
	tsa1394SbmGetBusNodeCount
	tsa1394SbmCntrlReq
	tsa1394SbmGetBusId
	tsa1394MblkInit
	tsa1394Allocb
	tsa1394AllocbFromPool
	tsa1394EsbAlloc
	tsa1394EsbAllocFromPool
	tsa1394Freeb
	tsa1394FreeMsg
	tsa1394DupB
	tsa1394DupMsg

	1394 Callback Functions
	tsa1394AllocCbFp_t
	tsa1394FreeCbFp_t
	tsa1394AddrReqCbFp_t
	tsa1394AtReqCbFp_t
	tsa1394SbEventCbFp_t
	tsa1394CtrlEventCbFp_t

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

