Book 8—~Graphics Libraries

o
D
TI'I Version 2.0 beta

edia

Book 8—Graphics Libraries

Table of Contents

Chapter 1 Introduction to the Graphics Libraries

Chapter 2 2D Graphics API

2D Graphics Library Overview
Rectangle Coordinates Specification

Supported Buffer Types

16
16
16

Graphics and Video Images Blending Specification in the DTV Buffer Types ..

17
Drawing Primitives APIs

Clipping
Drawing Rules

Fonts:TMFont and TMFont2

TMFont

Font TM Font Files

TMFont2

TMFont2 Font Files

How to Use the 2D Graphics Library

Necessary Items
Programs that use 2D Graphics Library

How to Load Fonts

PCHost

stand-alone

Technical Difficulties with 2D Graphics Library

Returned Error Messages

2D API Data Structures

tsa2DCapabilities_t
tsaYUVAColor_t

tsaYUVColor_t

tsaRGBColor_t
tsa2DColorType_t

tsa2DColor_t

tsaYUVA4Color_t
tsa2DIndexColorLUT_t

18
19
19
19
19
19
20
21

22
22
22
22
22
22
23

23

24
26
26
27
27
28
28
29
30

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

Table of Contents

tsa2DCoordinate_t 30
tsa2DRect_t 31
tsa2DImageType_t 31
tsa2DImage_t 32
tsa2DTextStyle_t 33
tsa2DFontlInfoFlag_t 33
tsaFontTMCharMetrics_t 34
tsaFontTM_t 35
tsaTMFont2CharMetrics 36
tsaTMFont2 37
tsa2DFontType_t 38
tsa2DFont_t 38
tsa2DContext_t 39
2D API Functions 40
tsa2DGetCapabilities 42
tsa2DOpen 43
tsa2DClose 43
tsa2DRGBtoYUV 44
tsa2DYUVtoRGB 45
tsa2DLoadIndexColorLUT 46
tsa2DUnLoadIndexColorLUT 47
tsa2DGetColorFmIndex 48
tsa2DPointNC 49
tsa2DLineNC 50
tsa2DFillRectNC 51
tsa2DImageNC 52
tsa2DTextNC 53
tsa2DSetPixel 55
tsa2DGetPixel 56
tsa2DPoint 57
tsa2DLine 58
tsa2DFillRect 59
tsa2DFillPoly 60
tsa2DImage 61
tsa2DText 62
tsa2DBIt 64
tsa2DBItRegion 65
tsa2DPolyPoint 66
tsa2DPolyLine 67
tsa2DPolyFillRect 68
tsa2DPolylmage 69

iv Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Table of Contents

tsa2DPolyText 70
tsa2DPolyBIt 72
tsa2DGetStrWidth 73
tsa2DGetFontinfo 74
tsa2DTMFontSetCharSpacinglnString 75
tsa2DTMFontGetCharSpacingInString 76
tsa2DLoadFont 77
tsa2DUnLoadFont 78
Chapter 3 Closed-Captioning (EIA-608) API
DTVCC Decoder (EIA-608) Overview 80
Operation 81
Sample Application 82
VrendEia608 API Functions 83
tmalVrendEia6080pen 84
tmolVrendEia6080pen 85
tmalVrendEia608Close 86
tmolVrendEia608Close 86
tmalVrendEia608Start 87
tmolVrendEia608Start 87
tmalVrendEia608Stop 88
tmolVrendEia6085top 88
tmalVrendEia608GetCapabilities 89
tmolVrendEia608GetCapabilities 89
tmolVrendEia608GetlnstanceSetup 20
tmalVrendEia608InstanceConfig 90
tmolVrendEia608InstanceConfig 91
tmalVrendEia608InstanceSetup 92
tmolVrendEia608InstanceSetup 92
tmalVrendEia608RedrawFunc 93
tmalVrendEia608DecodePacket 94
tmalVrendEia608FieldVsync 95
VrendEia608 APl Enumerations and Data Structures 96
Eia608_Field_t 97
Eia608_Service_t 98
Eia608_XDSPackTypes_t 99
tmalVrendEia608ConfigTypes_t 102
tmalVrendEia608InstanceSetup_t 103
tmolVrendEia608InstanceSetup_t 105

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries v

Table of Contents

Eia608_ATVEFPackTypes_t 107
tmVrendEia608ProgressVCHIP_t 108
tmVrendEia608ProgressXDS_t 109
tmVrendEia608ProgressATVEF_t 110
Chapter 4 Closed-Captioning (EIA-708) API
DTVCC Decoder (EIA-708) Overview 112
Background 112
DTVCC Decoder (EIA-708) Inputs and Outputs 112
Compliance With the DTVCC Standard 113
Multiple Service Channel Decoding 113
DTVCC Decoder (EIA-708) Progress 113
DTVCC Decoder (EIA-708) Error 114
Error codes 114
DTVCC Decoder (EIA-708) APl Data Structures 114
tmolVrendEia708Capabilities_t 115
tmalVrendEia708Capabilities_t 115
tmalVrendEia708InstanceSetup_t 116
tmolVrendEia708InstanceSetup_t 116
tmVrendEia708Fonts_t 118
tmVrendEia708FontStyles_t 119
tmVrendEia708AR_t 120
tmVrendEia708ServDecSetup_t 120
tmVrendEia708ConfigCommands_t 121
tmVrendEia708ConfigParams_t 124
DTVCC Decoder (EIA-708) API Functions 125
tmolVrendEia708GetCapabilities 126
tmolVrendEia7080pen 127
tmolVrendEia708Close 127
tmolVrendEia708GetInstanceSetup 128
tmolVrendEia708InstanceSetup 129
tmolVrendEia708Start 130
tmolVrendEia708Stop 130
tmolVrendEia708InstanceConfig 131
tmolVrendEia708FieldVsync 132

vi Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Table of Contents

Chapter 5 HTML Parser (HtmlParser) API

Overview 134
Modules 134
Header Files 135
Resource Files in the Database 135
HTML Pages 135

TM Fonts 135
Widget Images 136
Other Image Files 137
TriMedia Extensions to the HTML 137
Button in INPUT tag 137
Horizontal Slider 137

How to Use the HTML Parser and HTML Renderer Libraries 138
HTML Renderer Navigation Functions 139

HTML Renderer ‘Get Information’ Functions 139
Example (exHtml) Overview 139
Wrapper Function: myGetObject 140
HTML Data Structures 141
tsaHtmlFont_t 142
tsaHtmIWidgetStateGeneric_t 142
tsaHtmIWidgetStateTextline_t 143
tsaHtmIWidgetStatePassword_t 144
tsaHtmIWidgetStateRadio_t 145
tsaHtmIWidgetStateCheckbox_t 146
tsaHtmIWidgetStateButton_t 147
tsaHtmIWidgetStateSubmit_t 148
tsaHtmIWidgetStateReset_t 149
tsaHtmIWidgetStatelmage_t 150
tsaHtmIWidgetStateFile_t 151
tsaHtmIWidgetStateHidden_t 152
tsaHtmIWidgetStateSelect_t 153
tsaHtmIWidgetStateTextarea_t 155
tsaHtmIWidgetStateSlider_t 156
HTML Enumerated Types 157
tsaHtmIHotspotType_t 158
tsaHtmIFontStyle_t 159
tsaHtmllmageAlign_t 159

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries vii

Table of Contents

HTML API Data Structures 160
tsaHtmIParserCapabilities_t 161
tsaHtmlParserlnstanceSetup_t 162
tsaHtmlParserFrameState_t 163
tsaHtmIParserSetupFlags_t 164

HTML API Functions 165
tsaHtmlParserGetCapabilities 166
tsaHtmlIParserOpen 167
tsaHtmIParserGetinstanceSetup 168
tsaHtmlParserlnstanceSetup 169
tsaHtmlParserClose 170
tsaHtmlParserLoadUrl 171
tsaHtmlParserLoadHtml 172
tsaHtmlParserUnload 173

HTML Tags Supported 174

Chapter 6 HTML Renderer (HtmIRender) API

Overview. 180
Modules 180
Header Files 180
The TriMedia HTML Parser (HtmlParser) 180

HTML Renderer API Data Structures 181
tsaHtmIRenderCapabilities_t 182
tsaHtmIRenderInstanceSetup_t 183
tsaHtmIRenderWidgetState_t 185
tsaHtmIRenderSetupFlags_t 186
tsaHtmIRenderHotspotDir_t 186
tsaHtmIRenderScrolIDir_t 187

HTML Renderer API Functions 188
tsaHtmIRenderGetCapabilities 189
tsaHtmIRenderOpen 190
tsaHtmIRenderGetInstanceSetup 191
tsaHtmIRenderInstanceSetup 192
tsaHtmIRenderClose 193
tsaHtmIRenderFrameStateCreate 194
tsaHtmIRenderFrameStateDestroy 195
tsaHtmIRenderRenderFrame 196
tsaHtmIRenderRenderAllFrames 197
tsaHtmIRenderRenderHotspot 198

viii Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Table of Contents

tsaHtmIRenderGetFrameld 199
tsaHtmIRenderGetCurrentHotspot 200
tsaHtmIRenderGetHotspot 201
tsaHtmIRenderGetNumHotspots 202
tsaHtmIRenderGetSubFrame 203
tsaHtmIRenderGetNumSubFrames 204
tsaHtmIRenderFollowNamedLink 205
tsaHtmIRenderScrollScreen 206
Chapter 7 Object Manager (OM) API

Object Manager Overview 208
Object Manager 208
Object Manager Database Builder 208
Database Builder 209

Database Loader 209

Database Format 210
Object Manager API Data Structures 212
tsaOMCapabilities_t 213
tsaOMInstanceSetup_t 213
tsaOMHTML_t 214
Object Manager APl Enumerated Types 215
tsaOMType_t 216
Object Manager API Functions 217
tsaOMGetCapabilities 218
tsaOMOpen 218
tsaOMGetlInstanceSetup 219
tsaOMInstanceSetup 220
tsaOMClose 221
tsaOMGetObject 222

Chapter 8 Widget API

Introduction 224
Widget Library Overview 224

Basic Operations 225

How to Create a Standard Widget 225
Widget Example Programs (exWidget) Overview 226
Wrapper Function: myGetObject 226

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries ix

Table of Contents

Widget Library Data Structures 227
tsaWidgetCapabilities_t 228
tsaWidgetinstanceSetup_t 229
tsaWidgetinstVar_t 230
_tsaWidgetObject_t 231

Widget Library Functions 232
tsaWidgetGetCapabilities 233
tsaWidgetOpen 234
tsaWidgetGetinstanceSetup 235
tsaWidgetinstanceSetup 236
tsaWidgetClose 237

Standard Widget Set 238

Standard Widget Set Enumerated Types 239
tsaWidgetButtonIindex_t 240
tsaWidgetimagelndex_t 241
tsaWidgetPasswordIndex_t 242
tsaWidgetSelectindex_t 243
tsaWidgetSliderindex_t 245
tsaWidgetTextarealndex_t 246
tsaWidgetTextlinelndex_t 248
tsaWidgetTogglelndex_t 249

Standard Widget Set Functions and Macros 250
tsaWidgetCreateButton 252
tsaWidgetCreatelmage 253
tsaWidgetCreatePassword 254
tsaWidgetCreateSelect 255
tsaWidgetCreateSlider 256
tsaWidgetCreateTextarea 257
tsaWidgetCreateTextline 258
tsaWidgetCreateToggle 259
tsaWidgetPlot 260
tsaWidgetPLOT 261
tsaWidgetUpdate 262
tsaWidgetUPDATE 263
tsaWidgetGet 264
tsaWidgetGET 265
tsaWidgetSet 266
tsaWidgetSET 267
tsaWidgetGetPacket 268

X Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Table of Contents

tsaWidgetSetPacket 268
tsaWidgetGetX 269
tsaWidgetSetX 269
tsaWidgetGetY 270
tsaWidgetSetY 270
tsaWidgetGetWidth 271
tsaWidgetSetWidth 271
tsaWidgetGetHeight 272
tsaWidgetSetHeight 272
tsaWidgetGetuserData 273
tsaWidgetSetuserData 273
tsaWidgetFill 274
tsaWidgetDestroy 275
How to Write Widgets 276
Widget Library Framework 276
Widget Example (WidgetTemplate) Overview 277
WidgetTextBox.h 277
WidgetTextBoxInternal.h 278
WidgetTextBox.c and WidgetTextBox2.c 278
tsaWidgetCreateTextBox 278
TextBoxGet 278
TextBoxSet 279
TextBoxPlot 279

Chapter 9 Window Manager (WM) API

Introduction 282
Windows 282
Window Types 282
Instances 282
Video Out 283
Redrawing 283
Moving 283
Stacking Order 283
Display and Hiding 284
Scrolling 284
Locking by User 284
Reentrancy 284
Parent Windows 285
Returned Error Messages 286

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries xi

Table of Contents

Window Manager API Data Structures 287
tsaWMStackingOrder_t 288
ptsaRedrawCallbackFun_t 289
tsaWMCapabilities_t 290
tsaWMInstanceSetup_t 290

Window Manager API Functions 291
tsaWMGetCapabilities 292
tsaWMOpen 292
tsaWMClose 293
tsaWMInstanceSetup 293
tsaWMCreateRealWindow 294
tsaWMCreateVirtualWindow 295
tsaWMDestroyWindow 296
tsaWMMoveWindow 297
tsaWMRaiseWindow 298
tsaWMLowerWindow 299
tsaWMRaiseAllWindows 300
tsaWMLowerAllWindows 300
tsaWMDisplayWindow 301
tsaWMHideWindow 302
tsaWMRedrawWindow 303
tsaWMChangeViewingWindow 304
tsaWMLockWindow 305
tsaWMUnlockWindow 306

xii

Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 1
Introduction to the Graphics Libraries

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 13

Chapter 1:Introduction to the Graphics Libraries

Graphics support on the Trimedia is provided by eight libraries that implement such ser-
vices as HTML browsing, close captioning, GUI building blocks, and low-level graphics
primitives. Graphics libraries are layered, from the 2D Graphics Library and the Object
Manager at the lowest level to higher level services like close captioning and rendering
HTML pages. All libraries comply with the Trimedia Software Architecture (TSA).

The 2D Graphics library implements low-level primitives such as bitblts (bit block trans-
fers), polygons, points, line, image drawing, and filled rectangles. The Object Manager
(OM) provides a way to create a database of HTML pages, images and fonts. These two
components are at the lowest level, in the sense that all other graphics components use
one or both of these to implement their own services.

At the next level, there are three components, dealing with more abstract primitives. The
Window Manager (WM) allows independent windows to be composited together. The
WM is dependent on the 2D library. The Widget library provides primitives, such as but-
tons and sliders, that can be used to build user interfaces, and is dependent on both the
2D and OM libraries. Finally the HTML Parser enables an application to parse HTML
pages into a format that can be rendered by the HTML Renderer. The HTML Parser also
uses the 2D and OM libraries internally.

The HTML Renderer and Close-Captioning APIs exist at the highest level. The HTML
Renderer processes the output of the HTML Parser and uses the 2D, OM, Widget, and
WM libraries to render HTML pages to the screen. Two close-captioning APIs exist, one
to support the Eia608 standard and another to support the DTVCC (Eia708) standard.
Both use the WM and 2D libraries to integrate close-captioning with video and other
onscreen graphics, and both are TSSA-compliant.

14 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2
2D Graphics API

Topic Page

2D Graphics Library Overview 16

How to Use the 2D Graphics Library 22

Returned Error Messages 23

2D API Data Structures 24

2D API Functions 40
Note

This component library is not included with the basic TriMedia SDE, but is
available as a part of other software packages, under a separate licensing
agreement. Please visit our web site (www.trimedia.philips.com) or contact
your TriMedia sales representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries

15

Chapter 2: 2D Graphics API

2D Graphics Library Overview

The 2D Graphics Library draws 2D lines, points, text, rectangles and polygons on a
buffer that the user passes in. It is compliant with TriMedia Software Architecture (TSA).
The 2D Graphics Library is decoupled from the hardware, hence, it does not have an
instance setup function. It renders on the packet buffer passed in from the user. It sup-
ports eight buffer types, and they are: YUV422 planar, video-overlay sequence, DTVCM-
YUV422 planar, DTVCM-overlay sequence, YUV422 planar with 4-bit alpha, RGB888S,
RGBS565, and RGB555A.

The font renderer renders two font types: TMFont and TMFont2. It provides color con-
version between RGB and YUV color spaces. The supported drawing primitives are:
Point, Line, Text, Fill Rectangle, Fill Polygon, Image, and Blt.

Rectangle Coordinates Specification

The packet buffer size is derived from the imageWidth and imageHeight fields of the
tmVideoFormat_t of the packet buffer. The 2D Graphics Library draws only within the
packet boundary. The origin (0,0) of the rectangle is at the top left corner of the buffer.
Therefore the upper left coordinate of the tsa2DRect_t structure is defined to be less than
or equal, in both X and Y, to the bottom right coordinate. All API functions that draw
rectangles generate an upper left and bottom right point from user-specified arguments.
Since this kind of min/max box can be derived from any two points, no ordering is
assumed for points supplied as arguments to the 2D Graphics Library.

(0,0)

» x
packet
boundary

specification (width, height)

i 4

Figure 1 Rectangle Coordinates

Supported Buffer Types

2D Library supports the following buffer types:
= vdfYUV422Planar

= vdfYUV422Sequence

= vdfDTVCMPlanar

= vdfDTVCMSequence

= vdfRGB24

16 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

= vdfRGB16
= vdfRGBSS55A
» vdfYUV422PlanarAlpha4

Buffer type are specified through the dataSubtype entry of the video format. For exam-
ple, to specify vdfDTVCMPlanar, use the following code entry shown below:

yuvFmt.dataSubtype = vdfYUV422PTanar

Graphics and Video Images Blending Specification in the DTV Buffer Types

In the DTV environment, the vdfDTVCMPlanar and vdfDTVCMSequence buffer types are
the corresponding YUV422 and overlay buffer types with the consideration of color mul-
tiplexing between Graphics and Video.

Blending Graphics and Video Streams

The following flags are used to specify the blending between Graphics and Video:
= vdfDTVCM_0Video

= vdfDTVCM_25Video

= vdfDTVCM_50Video

= vdfDTVCM_75Video

s vdfDTVCM_DontCare

The blending factor are specified through the description entry of the video format. For
example, to specify a blending factor ratio of 25% of video and 75% of graphics, enter
the following:

yuvFmt.description = vdfDTVCM_25Video; /* 25% Video, 75% graphics */

Note
When the graphics buffers are filled with color key values, it displays 100% of
Video and 0% of Graphics.

Blending of Anti-Aliased Text and Video Streams

The following two additional flags are used to specify the blending between anti-aliased
Text and Video streams:

= vdfDTVCM_MAP_GAtoVA_W_FC
= vdfDTVCM_MAP_GAtoVA_W_FCBC

vdfDTVCM_MAP_GAtoVA_W_FC maps the encoded alpha blending values (0-15) in the
text to the color multiplexor blending values (that is, LSBs of UV: 00, 01, 10, 11) with the
foreground color.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 17

Chapter 2: 2D Graphics API

vdfDTVCM_MAP_GAtoVA_W_FCBC maps the encoded alpha blending values (0-15) in the
text to the color multiplexor blending values (i.e. LSBs of UV: 00, 01, 10, 11) with the
resulting color of alpha blended foreground and background colors.

For example:

((ptmVideoFormat_t)pYuvPkt->header->format)->description =
vdfDTVCM_MAP_GAtoVA_W_FC;

Table 1 Blending Values
Flag Graphics Alpha Video Alpha
Blending Values Blending Values
vdfDTVCM_MAP_GAtoVA_W_FC 0to 15 00,01,10,11
vdfDTVCM_MAP_GAtoVA_W_FCBC 0to 15 00,01,10,11

Drawing Primitives APIs

There are three sets of drawing primitive APIs:
= No Graphics Context APIs

= Poly APIs

= Graphics Context APIs

No Graphics Context APIs

The following drawing primitives API do not use graphics context:tsa2DPointNC,
tsa2DLineNC, tsa2DFillRectNC, tsa2DImageNC, and tsa2DTextNC.

Instead, the required information is supplied through input arguments.

Poly APIs

The following poly APIs are: tsa2DPolyPoints, tsa2DPolyLine, tsa2DPolyFillRect, tsa2D-
Polylmage, tsa2DPolyText, and tsa2DPolyBIt.

These Poly functions do drawing on multiple packets (i.e. numPkt).

Within each packet or each set of packets, they can also draw multiple times (i.e. specify
in pNumPerPkt).

pPKkList is a pointer to an array of packet pointers. The number of packet pointers should
equal to numPkt. pPtList is a pointer to an array of 2D coordinates. The number of coor-
dinates should equal to:

(pNumPerPkt[0] + ... + pNumPerPkt[numPkt-11)
pColor is a pointer to tsa2DColor_t. The entry, pColor->pColorData, is a pointer to an
array of 2D colors (ex: tsaYUVColor_t). The number of colors should be equal to:

2D API Data Structure Descriptions(pNumPerPkt[0]+...+pNumPerPkt[numPkt-1])

18 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

Graphics Context APIs

The following drawing primitive APIs do use graphics context of the input parameter:
tsa2DGetPixel, tsa2DSetPixel, tsa2DPoint, tsa2DLine, tsa2DText, tsa2DImage,
gsa2DFillRect, tsa2DFillPoly, tsa2DBIt, and tsa2DBItRegion.

Clipping
The 2D Graphics Library supports clipping on all primitives. Only the portion of a prim-

itive falling within the packet boundary, if any, is drawn. The clipping is pixel exact,
meaning that the pixels generated for a clipped primitive are a subset of the pixels gener-
ated for the unclipped primitive.

Drawing Rules

The 2D Graphics Library uses the ‘upper left pixel in, bottom right pixel out’ rule when
determining which pixels belong to filled rectangle, image, and BitBlt drawing primi-
tives. This means that the bottom row and rightmost column of the primitives men-
tioned are not drawn. This rule ensures that in the case of adjacent primitives, pixels
along shared borders belong to exactly one primitive.

Fonts: TMFont and TMFont2

2D Graphics Library supports two types of fonts, TMFont and TMFont2. They are both

bitmap type of fonts with slight variation in the font information data structures.

TMFont

The information of a particular font is stored in (font.mtr and font.bit) files. When
tsa2DLoadFont is called, it loads the information into library. You need to provide infor-
mation regarding the path of font files and the library returns a fonID after it loads in
the font. tsa2DUnLoadFont unloads the font specified in the fontID.

Font TM Font Files

Below is a picture description of the TMFont font files. The .mtr file contains informa-
tion for the font and each character. The .bit file has character bitmaps information.
Figure 3 provides a graphic example.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 19

Chapter 2: 2D Graphics API

Fontfile.mtr Fontfile.bit
BITMAP
litf (]
: charmetrics->
1:minChar - Maxg, character s
1:maxChar 1:charNo s - A bitmap . ‘2;?;5
1:fontType 1:cWi.dth 1:charNo Tl character |« @,;(}
1:maxHeight 1:pWidth | 1.cwidth T-charNo bitmap .
1:maxAscent 1: pHeight 1: pWidth 1+ cWidith D
1:maxDescent || 1:Ascent 1: pHeight 1: Width . character
1:charMetrics 1:Descent | 1. Ascent 1 :zHeight . bitmap
1:bitmaps 1: Offset 1: Descent 1;Ascent .
T s | 1:Offset 1: Descent iR
T 1: Offset

Bitmap array for each character
Figure 2 TMFont Font Files

TMFont2

The information of a particular font is stored in (font.tm and font.bit) files. When
tsa2DLoadFont is called, it loads the information into the 2D library. You need to provide
information regarding the path of font files and the library returns a fontID after it loads
in the font. tsa2DUnLoadFont unloads the font specified in the fontID.

TMFont2 Character Metrics

Each pixel is represented with 4 bits of blending information (i.e. the color blending
between text color and background color). OxF shows the pixel with the text color. 0x0
shows the background color. The values in between are blended proportionally.

20 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Pixel Width Pixel Width
- -
First Line
LastLine Y
abcA abcC abcA abcC
—> —> - -
> B T —
abcB abcB
Figure 3 TMFont Character Metric Graphic Representation

TMFont2 Font Files

Chapter 2: 2D Graphics API

Below is a picture description of entries in the tsaTMFont2CharMetrics:

Fontfile.mtr Fontfile.bit
BITMAP
Ifnt []
charmetrics-> N
1:fontType - _Maxch,, character Y
1:minChar 1:charNo S bitmap . +05
1:maxChar 1:pixWidth | 1. charNo Tl character |« %,
. i = N
1:defChar 1:firstLine 1:pixWidth [1. charNo bitmap R
T:maxHeight || 1:lastline | :firstline | . i width : :
1:maxAscent 1:abcA . ; P . N character
T:lastline | q:firstline .)
1:maxDescent || 1:abcB 1:abcA 1 lastLine N bitmap
1:maxWidth 1:abcC 1:abcB 1:abcA N
1:charMetrics 1:spare 1:abcC 1:ach N
1:bitmaps 1: offset 1:spare 1:abcC
Tl 1: offset 1;spare
T 1: offset Bitmap array for each character
Figure 4 TMFont2 Font Files

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

21

Chapter 2: 2D Graphics API

How to Use the 2D Graphics Library

To use the 2D Graphics Library, you must use the specified hardware, and programs dis-
cussed in this section.

Necessary ltems

The following items are necessary in order to use 2D Graphics:

1. TriMedia board with TV.

2. TriMedia Compilation System (TCS).

3. TriMedia Application Software (TAS) and specifically libtm2D.a.
4. Optional: Example program using 2D Library.

Programs that use 2D Graphics Library

An application program needs to get an instance ID from tsa2DOpen first, before using:
font APIs, drawing APIs, and color conversion APIs. Use tsa2DClose when done.

1. Call tsa2Dopen to get an instance ID.

2. Use font APIs: tsa2DGetStrWidth, tsa2DGetFontInfo, tsa2DLoadFont, and tsa2D-
UnLoadFont.

3. Use color conversion APIs: tsa2DRGBtoYUV, tsa2DYUVtoRGB, tsa2DLoadIndexColor-
LUT, tsa2DUnLoadIndexColorLUT, and tsa2DGetColorFmIndex.

4. Use drawing APIs: tsa2DLine (NC), tsa2Dpoint (NC), tsa2DFillRect (NC), tsa2Dimage
(NC) to draw to the YUV422 buffer or overlay buffer or DTVCM buffer.

5. Call tsa2Dclose to finish.

How to Load Fonts

There are two configurations that the user can load font in: PC host and stand-alone.

PC Host

In PC host configuration, the user calls tsa2DLoadFont to load font files. In TMFont
type, they are file.bit and file.tm.

stand-alone

In stand-alone configuration, you need only do the following:

#include "plainl6.h"
pFont->fontID = &plainl6;

22 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

There is no need to load the font.

Technical Difficulties with 2D Graphics Library

Chapter 2: 2D Graphics API

1. In the YUV422 image, two Y pixels share one set of U and V. It is difficult to render

exactly two colors for two neighboring pixels and have two sharp colors next to each

other.

2. For the DTVCM buffer, it uses the two least significant bits (LSBs) of U and V to indi-
cate the blending level of video and graphics. This results in loss of colors.

Returned Error Messages

The following error messages are returned for the corresponding API.

Error code

API

TWOD_ERR_COLOR_TYPE

All the drawing APIs

TWOD_ERR_INDCOLOR_ALLOC

tsa2DLoadIndexColorLUT

TWOD_ERR_TMFONT_ALLOC

tsa2DLoadFont, tsa2DGetFontinfo

TWOD_ERR_TMFONT_MTR_FILE

tsa2DLoadFont, tsa2DGetFontInfo

TWOD_ERR_TMFONT_BIT_FILE

tsa2DLoadFont

TWOD_ERR_TMFONT_GETSTRWIDTH

tsa2DGetStrWidth

TWOD_ERR_TMFONT_NULL

tsa2DTextNC, tsa2DPolyText, tsa2DText

TWOD_ERR_TMFONT2_ALLOC

tsa2DLoadFont, tsa2DGetFontInfo

TWOD_ERR_TMFONT2_TM_FILE

tsa2DLoadFont, tsa2DGetFontinfo

TWOD_ERR_TMFONT2_BIT_FILE

tsa2DLoadFont

TWOD_ERR_TMFONT2_GETSTRWIDTH

tsa2DGetStrWidth

TWOD_ERR_TMFONT2_NULL

tsa2DTextNC, tsa2DPolyText, tsa2DText

TWOD_ERR_ALLOC

tsa2DOpen, tsa2DFillPoly

TWOD_ERR_NOT_SUPPORTED

tsa2DTextNC, tsa2DPolyText, tsa2DText,
tsa2DImageNC, tsa2DPolylmage, tsa2DImage

TWOD_ERR_INVALID_RECT

tsa2DTextNC, tsa2DPolyText, tsa2DText,
tsa2DFillRectNC, tsa2DPolyFillRect,
tsa2DFillRect

TWOD_ERR_INVALID_POINTER

All the drawing APIs

TWOD_ERR_INVALID_FLAG

tsa2DGetFontInfo

TWOD_ERR_ODD_STRIDE

none

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

23

Chapter 2: 2D Graphics API

Error code API

TWOD_ERR_INVALID_POLYGON tsa2DFillPoly

TWOD_ERR_BLIT_INVALID_OPS_STRING | none

TWOD_ERR_FORMAT_MISMATCH tsa2DBlt, tsa2DPolyBIt, tsa2DBItRegion

TWOD_ERR_TMFONT_FILENAME_LEN tsa2DLoadFont

TWOD_ERR_TMFONT2_FILENAME_LEN tsa2DLoadFont

2D API Data Structures

This section presents the 2D graphics API data structures. These data structures are
defined in the tsa2D.h header file

Name Page
tsa2DCapabilities_t 26
tsaYUVAColor_t 26
tsaYUVColor_t 27
tsaRGBColor_t 27
tsa2DColorType_t 28
tsa2DColor_t 28
tsa2DIndexColorLUT _t 30
tsa2DCoordinate_t 30
tsa2DRect_t 31
tsa2DImageType_t 31
tsa2DImage_t 32
tsa2DTextStyle_t 33
tsa2DFontInfoFlag_t 33
tsaFontTMCharMetrics_t 34
tsaFontTM_t 35
tsaTMFont2CharMetrics 36
tsaTMFont2 37

24 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

Name Page
tsa2DFontType_t 38
tsa2DFont_t 38
tsa2DContext_t 39

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 25

Chapter 2: 2D Graphics API

tsa2DCapabilities_t

typedef struct tsa2DCapabilities_t {
ptsaDefaultCapabilities_t defaultCapabilities;
tmVideoRGBYUVFormat_t supportedBufferFormats;
} tsa2DCapabilities_t; *ptsa2DCapabilities_t;

Fields

defaultCapabilities Default capabilities.

Description

The structure holds a list of capabilities. The 2D maintains a structure of this type to
describe itself. The user can retrieve the address of this structure by calling tsa2DGet-
Capabilities.

tsaYUVAColor t

typedef struct tsaYUVAColor_t {

UInt8 Y;
UInt8 U;
UInt8 V;

UInt8 reserved;
} tsaYUVAColor_t, *ptsaYUVAColor_t;

Fields

Y Y value.
U U value.
v V value.
reserved Reserved.
Description

For the 2D display color value represent YUV values, each value takes up 8 bits of the
integer value in the following order:

31 24 23 16 15 87 0

26 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsaYUVColor t

typedef struct tsaYUVColor_t {

UInt8 V;
UInt8 U;
UInt8 Y

} tsaYUVColor_t, *ptsaYUVColor_t;

Fields

Vv V value.
] U value.
Y Y value.
Description

For the 2D display color value represent YUV values.

tsaRGBColor_t

typedef struct {

UInt8 B;
UInt8 G;
UInt8 R;

} tsaRGBColor_t, *ptsaRGBColor_t;

Fields

B Blue color level.
G Green color level.
R Red color level.
Description

This structure describes RGB color.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 27

Chapter 2: 2D Graphics API

tsa2DColorType_t

typedef enum {

noColor = 0,
indexColor = 1,
YUVColor = 2,
YUVAColor = 4,
RGB888Color = 8
RGB565Color =16
RGB555AColor = 32
YUVA4Color = 64

} tsa2DColorType_t;

Description

This enum describes the available color type. According to colorType specified, pColor-
Data points to particular color data. If it is indexColor, pColorData specifies the index
color (i.e. an index number) of the current loaded and active index color LUT.

tsa2DColor t

typedef struct {
tsa2DColorType_t ColorType;
Pointer pColorData;
} tsa2DColor_t, *ptsa2DColor_t;

Fields

ColorType Color specified.

pColorData Pointer to particular color data.
Description

According to the ColorType specified, pColorData points to particular color data. If it is
indexColor, pColorData specifies the index color (for example, an index number) of the
current loaded and active index color LUT.

28 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsaYUVA4Color t

typedef struct {

UInt8 Y;
UInts U;
UInt8 V;
UInt8 A;

} tsaYUVA4Color_t, *ptsaYUVA4Color_t;

Fields

Y Y value.

U U value.

\% V value.

A Alpha value: only the 4 least-significant bits are
used.

Description

This structure describes a YUV color with 4-bit alpha value.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 29

Chapter 2: 2D Graphics API

tsa2DIndexColorLUT _t

typedef struct tsa2DIndexColorLUT_t {

Int32 numEntry;
tsa2DColorType_t LUTCoTlorType;
Pointer pLUTColorData;
UInt32 indexColorLUTID;

} tsa2DIndexColorLUT_t, *ptsa2DIndexColorLUT_t;

Fields

numEntry Entry number.

LUTColorType Color specified.
pLUTColorData Color specified.
indexColorLUTID Pointer to particular color data.
Description

This is the data structure used in loading the index color LUT. numEntry specifies the
number of index colors in this LUT. LUTColorType specifies the color type in the look up
table. pLUTColorData is a pointer, points to the corresponding colors in the look up table.
Library fills in the indexColorLUTID after loading it successfully.

tsa2DCoordinate_t

typedef struct tsa2DCoordinate_t {
Int X;
Int Y;
} tsa2DCoordinate_t, *ptsa2DCoordinate_t;

Fields

X X coordinate.
Y Y coordinate.
Description

X and Y represent the cartesian coordinates in a 2D plane.

30 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DRect_t

typedef struct tsa2DRect_t {
tsa2DCoordinate_t uplLt;
tsa2DCoordinate_t btRt;
} tsa2DRect_t, *ptsa2DRect_t;

Fields

uplLt Specifies the (x,y) coordinates of the upper left
position of the rectangle.

btRt Specifies the (x,y) coordinates of the bottom right
position of the rectangle.

Description

This data structure describes a rectangle through the positions of the upper left and bot-
tom right coordinates.

tsa2DIimageType_t

typedef enum {

nolmage = 0,
YUV422Image = 1,
YUV42@Image = 2,
OverlaylImage = 4,
BMP8BPPCLUTImage = 8,
PPMImage = 16,
GIFImage = 32,
RGB8881Image = 33,
RGB565Image = 34,
RGB555AImage = 35,
YUV422A4Image = 36,

YUV422ChromaKeyImage = 37
} tsa2DImageType_t;

Description

This type definition enumerates the available image types. Only YUV422Imagetype is
currently being supported.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 31

Chapter 2: 2D Graphics API

tsa2DIimage_t

typedef struct tsa2DImage_t {
tsa2DImageType_t imageType;

Int iWidth;
Int iHeight;
Int iStride;
Pointer pHeader;
Pointer pDatal;
Pointer pData2;
Pointer pData3;
Pointer pData4;
ptsa2DColor_t chromaKey;

} tsa2DImage_t, *ptsa2DImage_t;

Fields

imageType Specifies the image type.

iWidth Specifies the width of the image.

iHeight Specifies the height of the image.

iStride Specifies the stride of the image.

pHeader Pointer to the header information of the image.

pDatal Pointer to the first data of the image.

pData2 Pointer to the second data of the image.

pData3 Pointer to the third data of the image.

pData4 Pointer to the fourth data of the image.

chromaKey Pointer to the color the drawing operation is to
treat as transparent.

Description

This data structure provides information regarding various images. First, the user speci-
fies image type. pHeader points to image header information. pDatal, pData2, pData3,
and pData4 can be used flexibly, pointing to image data.

32 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DTextStyle_t

typedef enum {
noTextStyle =
textOnly =
textBackColor =
textUnderline =

} tsa2DTextStyle_t;

E N NSRS

Description

This type definition enumerates the supported text styles.
Text style can be either of the following:
= textOnly. Draw text with foreground color.

» textBackColor.Draw text with foreground color and fill the background with the
background color.

= textUnderline. Draw the text and underline with foreground color.

tsa2DFontinfoFlag_t

typedef enum {

NOFONTINFOFLAG = @,
MINCHAR = 1,
MAXCHAR = 2,
MAXHEIGHT = 4,
MAXASCENT = 8,
MAXDESCENT = 16,
MAXWIDTH = 32,
DEFCHAR = 64

} tsa2DFontInfoFlag_t;

o+

Description

This type definition enumerates the supported flags to get specific information regarding
font, and is used in tsa2DGetFontinfo.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 33

Chapter 2: 2D Graphics API

tsaFontTMCharMetrics_t

typedef struct tsaFontTMCharMetrics_t {
UInt8 charNo;
UInt8 chWidth;
UInt8 pixWidth;
UInt8 pixHeight;
char Ascent;
char Descent;
UInt32 Offset;
} tsaFontTMCharMetrics_t, *ptsaFontTMCharMetrics_t;

Fields

charNo Number of characters.

chWidth Character width.

pixWidth Pixel width.

pixHeight Pixel height.

Ascent Ascent.

Descent Descent.

O0ffset Offset to the corresponding bitmap in the bit file.
Description

TriMedia Font Character Metrics Specification of tsaFontTM_t.

34 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsaFontTM _t

typedef struct tsaFontTM_t {
UInt8
UInt8
UInt8
UInt8
UInt8
UInt8

minChar;
maxChar;
fontType;
maxHeight;
maxAscent;
maxDescent;

tsaFontTMCharMetrics_t **charMetrics;
UInt8 *bitmaps;

} tsaFontTM_t, *ptsaFontTM_t;

Fields

minChar Minimum number of characters in this font set.
maxChar Maximum number of characters in this font.
fontType Font type.

maxHeight Maximum height.

maxAscent Maximum ascent.

maxDescent Maximum descent.

charMetrics

bitmaps

Description

Pointer to pointer of character metrics array.

Pointer to bitmap array.

TriMedia font general data structure.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 35

Chapter 2: 2D Graphics API

tsaTMFont2CharMetrics
typedef struct tsaFontTM_t {
UInt8 charNo;
UInt8 pixWidth;
UInt8 firstLine;
UInt8 TastLine;
Int8 abcA;
UInt8 abcB;
Int8 abcC;
UInt8 spare;
UInt offset;

} tsaTMFont2CharMetrics_t, *ptsaTMFont2CharMetrics_t;

Fields

charNo
pixWidth
firstLine
lastLine
abcA

abcB

abcC
spare
offset

Description

Number of characters.
Pixel width.

First line.

Last line.

Point A.

Point B.

Point C.

Spare.

Offset.

TriMedia font character metrics specification of tsaTMFont2_t.

36 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsaTMFont2

typedef struct tsaFontTM_t {
UInt8
UInt8
UInt8
UInt8
UInt8
UInt8
UInt8
UInt8

fontType;
minChar;
maxChar;
defChar;
maxHeight;
maxAscent;
maxDescent;
maxWidth;

tsaTMFont2CharMetrics_t **charMetrics;
UInt8 *bitmaps;

} tsaTMFont2_t, *ptsaTMFont2_t;

Fields

fontType Font type.

minChar Minimum number of characters in this font set.
maxChar Maximum number of characters in this font.
defChar Character definition.

maxHeight Maximum height.

maxAscent Maximum ascent.

maxDescent Maximum descent.

maxWidth Maximum width.

charMetrics

bitmaps

Description

Pointer to pointer of character metrics array.

Pointer to bitmap array.

TriMedia Font general data structure.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

37

Chapter 2: 2D Graphics API

tsa2DFontType_t

typedef enum {

NoFont =0,
TMFont =1,
TMFont2 =2

} tsa2DFontType_t;

Description

This type definition enumerates the font types. Only TMFont is currently supported.

tsa2DFont_t

typedef struct tsa2DFont {
tsa2DFontType_t fontType;
UInt32 fontlID;
Pointer pFontPath;

} tsa2DFont_t, *ptsa2DFont_t;

Fields

fontType Font type. Must be a member of the
tsa2DFontType_t enum.

fontID ID used internally by the library. You shouldn’t
set this field.

pFontPath Base name of font, including relative or absolute
path (e.g., "../../data/fonts/plain20").

Description

The user specifies fontType and fpontPath to locate the font file. Once this font is loaded,
the library fills in the fontID. Only TMFont fontType is currently supported.

38 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DContext_t

typedef struct tsa2DContext {

ptsa2DColor_t
ptsa2DColor_t
ptsa2DColor_t
ptsa2DColor_t
ptsa2DColor_t
UInt32
UInt32
UInt32
UInt32

pPointColor;
pLineColor;
pFil1Color;
pTextColor;
pBgColor;
TineStyle;
textStyle;
fillStyle;
b1tStyle;

} tsa2DContext_t, *ptsaz2DContext_t;

Fields

pPointColor Color used in drawing the point.
pLineColor Color used in drawing the line.
pFillColor Color used in drawing the fill the rectangle.
pTextColor Color used in drawing the text.
pBgColor Color used in drawing the background.
TineStyle Line style.

textStyle Text style.

fillStyle Fill rectangle style.

b1tStyle Bullet style.

Description

This graphic context data structure contains graphic context information that is used in

various APIs.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 39

Chapter 2: 2D Graphics API

2D API Functions

This section presents the 2D API data functions. These data functions are defined in the
tsa2D.h header file.

Name Page
tsa2DGetCapabilities 42
tsa2DOpen 43
tsa2DClose 43
tsa2DRGBtoYUV 44
tsa2DYUVtoRGB 45
tsa2DLoadIndexColorLUT 46
tsa2DUnLoadIndexColorLUT 47
tsa2DGetColorFmindex 48
tsa2DPointNC 49
tsa2DLineNC 50
tsa2DFillRectNC 51
tsa2DImageNC 52
tsa2DTextNC 53
tsa2DSetPixel 55
tsa2DGetPixel 56
tsa2DPoint 57
tsa2DLine 58
tsa2DFillRect 59
tsa2DFillPoly 60
tsa2DImage 61
tsa2DText 62
tsa2DBIt 64
tsa2DBItRegion 65
tsa2DPolyPoint 66
tsa2DPolyLine 67

40 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

Name Page
tsa2DPolyFillRect 68
tsa2DPolylmage 69
tsa2DPolyText 70
tsa2DPolyBIt 72
tsa2DGetStrWidth 73
tsa2DGetFontInfo 74
tsa2DTMFontSetCharSpacingInString 75
tsa2DTMFontGetCharSpacingInString 76
tsa2DLoadFont 77
tsa2DUnLoadFont 78

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 41

Chapter 2: 2D Graphics API

tsa2DGetCapabilities

tmLibappErr_t tsa2DGetCapabilities(
ptsa2DCapabilities_t *pCap
)3

Parameters

pCap Pointer to variable in which to return a pointer to
capabilities data.

Return Codes

TMLIBDEV_OK Success.

Description

Retrieves global and 2D capabilities.

42 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2D0pen

tmLibappErr_t tsa2DOpen(
Int *instance
)3

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBDEV_OK Success.
TWOD_ERR_ALLOC The function failed to allocate memory.
Description

User calls tsa2DOpen to get an instance ID. This function assigns a unique 2D instance
to the caller.

tsa2DClose

tmLibappErr_t tsa2DClose(
Int instance
)3

Parameters

instance The instance to close.

Return Codes

TMLIBDEV_OK Success.

Description

User calls tsa2DClose when exit. This routine deallocates the 2D instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 43

Chapter 2: 2D Graphics API

tsa2DRGBtoYUV
tmLibappErr_t tsa2DRGBtoYUV(

Int instance,

UInt8 r,

UInt8 g,

UInt8 b,

UInt8 *y,

UInt8 *u,

UInt8 *y
)
Parameters
instance Instance.
r Red value.
g Green value.
b Blue value.
y Y value.
u U value.
v V value.
Return Codes
TMLIBDEV_OK Success.

Description

The function takes in RGB color and converts it to YUV. The returned Y, U, V, values are
placed in *y, *u, and *v, respectively. The values are restricted to the range 16-35.

44 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DYUVtoRGB
tmLibappErr_t tsa2DYUVtoRGB(

Int instance,

UInt8 Y,

UInt8 u,

UInt8 v,

UInt8 *r,

UInt8 *q,

UInt8 *b
)
Parameters
instance Instance.
y Y value.
u U value.
v V value.
r Red value.
g Green value.
b Blue value.
Return Codes
TMLIBDEV_OK Success.

Description

The function takes in YUV values and converts them to RGB. The returned R, G, B values
are placed in *r, *g, and *b, respectively.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

45

Chapter 2: 2D Graphics API

tsa2DLoadIindexColorLUT

tmLibappErr_t tsa2DLoadIndexColorLUT(
Int instance,
ptsa2DIndexColorLUT_t pIndCir

)3

Parameters
instance Instance.
pIndCir Pointer to the index color LUT. The user specifies:

1. Number of entries (numEntry) in the index
color.

2. The corresponding LUT color type (LUTColor-
Type).

3. Pointer to the corresponding array of colors
(pLUTColorData). Library returns indexColorLUTID.

Return Codes

TMLIBDEV_OK Success.
TWOD_ERR_INDCOLOR_ALLLOC The function failed in memory allocation.
Description

This routine loads user’s index color Look Up Table (LUT) to the 2D Library.

46 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DUnLoadIndexColorLUT

tmLibappErr_t tsa2DUnLoadIndexColorLUT(
Int instance,
ptsa2DIndexColorLUT_t pIndCir

)3

Parameters
instance The instance.
pIndCir Pointer to the index color LUT. Library unloads

this index color LUT in the library.

Return Codes

TMLIBDEV_OK Success.

Description

This routine unloads the specified index color Look Up Table (LUT) in the 2D Library.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 47

Chapter 2: 2D Graphics API

tsa2DGetColorFmindex
tmLibappErr_t tsa2DGetColorFmIndex(
Int instance,
Int index,
ptsa2DIndexColorLUT_t pIndexCLUT,
ptsa2DColor_t pColor
)3
Parameters
instance The instance.
index Index in the index color look up table (LUT).
pIndexCLUT Pointer to the index color LUT.
pColor Pointer to ptsa2DColor_t.

Return Codes

TMLIBDEV_OK Success.

Description

This function returns the color in pColor according to the specified index number in the
index and index color look up table in the pIndexCLUT.

The user sets the index color number, specifies the index color look up table to be used,
allocates space on pColor. The function gets the corresponding color from the CLUT and
put those color values in pColor. Only YUV color type is currently supported.

48 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DPointNC
tmLibappErr_t tsa2DPointNC(
Int instance,
ptmAvPacket_t pPacket,
ptsa2DCoordinate_t pPoint,
ptsa2DColor_t pColor
)3
Parameters
instance The instance.
pPacket Pointer to input buffer packet header tmAvFor-
mats.h and packet data.
pPoint Pointer to coordinate of a point within the input
buffer.
pColor Color to draw the point.

Return Codes

TMLIBDEV_OK Success.

TWOD_ERR_OUT_OF_BOUNDARY The point specified is out of the packet boundary.

TWOD_ERR_INVALID_POINTER The function encounters an invalid pointer.

TWOD_ERR_COLOR_TYPE The color type is not consistent with the packet
buffer type.

Description

The function draws a point in the input packet buffer with specified coordinate and
color.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 49

Chapter 2: 2D Graphics API

tsa2DLineNC

tmLibappErr_t tsa2DLineNC(
Int instance,
ptmAvPacket_t pPacket,

ptsa2DCoordinate_t pPtl,
ptsa2DCoordinate_t pPt2,

ptsa2DV0Color_t pColor
)3
Parameters
instance The instance.
pPacket Pointer to input buffer packet header and packet
data.
pPtl Pointer to point 1.
pPt2 Pointer to point 2.
pColor The color of the line.

Return Codes

TMLIBDEV_OK
TWOD_ERR_UPLT_BTRT

TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER

TWOD_ERR_COLOR_TYPE

Description

Success.

Error in the upper left and bottom right coordi-
nates specification.

The line specification is out of the packet bound-
ary.
The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function draws a line from point 1 to point 2, with color specified by pColor, into

the input packet buffer.

50 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DFillRectNC

tmLibappErr_t tsa2DFilT1RectNC(
Int instance,
ptmAvPacket_t pPacket,
ptsa2DCoordinate_t pPtl,
ptsa2DCoordinate_t pPt2,

ptsa2DV0Color_t pColor
)3
Parameters
instance The instance.
pPacket Pointer to input buffer packet header and packet
data.
pPt1 Pointer to upper left point.
pPt2 Pointer to bottom right point.
pColor The color of the rectangle.

Return Codes

TMLIBDEV_OK
TWOD_ERR_INVALID_RECT
TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The rectangle specified is invalid.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function fills a rectangle in the input packet buffer according to the rectangle speci-
fication of the upper left and the bottom right coordinates, and the rectangle’s fill color.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 51

Chapter 2: 2D Graphics API

tsa2DimageNC

tmLibappErr_t tsa2DImageNC(
Int instance,
ptmAvPacket_t pPacket,

ptsa2DCoordinate_t pPtl,
ptsa2DCoordinate_t pPt2,

ptsa2DImage_t pImage
)3
Parameters
instance The instance.
pPacket Pointer to input buffer packet header and packet
data.
pPt1 Pointer to top left point.
pPt2 Pointer to bottom right point.
pImage Pointer to image.

Return Codes

TMLIBDEV_OK
TWOD_ERR_UPLT_BTRT

TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER

TWOD_ERR_COLOR_TYPE

Description

Success.

Error in the upper left and bottom right coordi-
nates specification.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function displays an image to the input packet buffer (pPacket) according to the

rectangle specified in the upper left and bottom right coordinates.

Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DTextNC
tmLibappErr_t tsa2DTextNC(
Int instance,
ptmAvPacket_t pPacket,
ptsa2DCoordinate_t pPt,
const char *string,
ptsa2DFont_t pFont,
ptsa2DColor_t pFColor,
ptsa2DColor_t pBColor,
ptsa2DTextStyle_t textStyle
)3
Parameters
instance Instance.
pPacket Pointer to input buffer packet header and packet
data.
pPt Pointer to (x, y) of starting position.
string A string of characters to be drawn; can be one sin-
gle character.
pFont Pointer to font structure being used.
pFColor Character string is drawn with this foreground
color.
pBColor Background is filled with this color. User should
supply a valid background color, even if it is not
used.
textStyle Character string is drawn with this text style. See

Return Codes

tsa2DTextStyle_t.
1. textOnly—draw text with foreground color.

2. textBackColor—draw text with the foreground
color and fill the background with the back-
ground color.

3. textUnderline—draw the text and underline
with the foreground color.

TMLIBDEV_OK
TWOD_ERR_TMFONT_NULL
TWOD_ERR_TMFONT2_NULL
TWOD_ERR_NOT_SUPPORTED

TWOD_ERR_INVALID_RECT

Success.
The TMFont pointer is null.
The TMFont2 pointer is null.

The specified font type or text style are not sup-
ported.

Error in the rectangle coordinates specification.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 53

Chapter 2: 2D Graphics API

TWOD_ERR_OUT_OF_BOUNDARY Returned if the rectangle specification is out of
the packet boundary.

TWOD_ERR_INVALID_POINTER The function encounters an invalid pointer.

TWOD_ERR_COLOR_TYPE The color type is not consistent with the packet
buffer type.

Description

The function draws a string of characters in the input buffer pPacket by specifying the
(x,y) coordinate pPt. The specified starting position is the base point (point between
ascent and descent of a character) of the first character in the string. It supports two font
types (TMFont and TMFont2), and three text drawing styles (textOnly, textBackColor, text-
Underline). User also specifies the desired background and foreground color.

54 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DSetPixel
tmLibappErr_t tsa2DSetPixel(
Int instance,
ptmAvPacket_t pPacket,
ptsa2DCoordinate_t pPixelSet,
ptsa2DContext_t pContext
)3
Parameters
instance Instance.
pPacket Pointer to the input buffer packet header and
packet data.
pPixelSet Pointer to coordinate of a pixel.
pContext Pointer to 2D context. pPointColor of pContext is

Return Codes

the color to be used to set the pixel color.

TMLIBDEV_OK
TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The point specified is out of the packet boundary.
The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function sets a pixel in the packet buffer with the pPointColor of the pContext.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 55

Chapter 2: 2D Graphics API

tsa2DGetPixel
tmLibappErr_t tsa2DGetPixel(
Int instance,
ptmAvPacket_t pPacket,
ptsa2DCoordinate_t pPixelGet,
ptsa2DContext_t pContext
)3
Parameters
instance Instance.
pPacket Pointer to the input buffer packet header and
packet data.
pPixelGet Pointer to coordinate of a pixel.
pContext Return color in the pPointColor of pContext

Return Codes

when success.

TMLIBDEV_OK
TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The point specified is out of the packet boundary.
The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function gets a pixel color of a specified position in the packet buffer.

56 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DPoint
tmLibappErr_t tsa2DPoint(
Int instance,
ptmAvPacket_t pPacket,
ptsa2DCoordinate_t pPtl,
ptsa2DContext_t pContext
)3
Parameters
instance Instance.
pPacket Pointer to buffer information, type, and data.
pPtl Pointer to 2D point.
pContext Pointer to 2D context.

Return Codes

TMLIBDEV_OK Success.

TWOD_ERR_OUT_OF_BOUNDARY The point specified is out of the packet boundary.

TWOD_ERR_INVALID_POINTER The function encounters an invalid pointer.

TWOD_ERR_COLOR_TYPE The color type is not consistent with the packet
buffer type.

Description

The function draws a point to the specified position in the packet buffer with the pPoint-
Color of the pContext.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 57

Chapter 2: 2D Graphics API

tsa2DLine

tmLibappErr_t tsa2DLine(
Int instance,
ptmAvPacket_t pPacket,

ptsa2DCoordinate_t pPtl,
ptsa2DCoordinate_t pPt2,

ptsa2DContext_t pContext
);
Parameters
instance Instance.
pPacket Pointer to buffer information, type, and data.
pPt1 Pointer to first 2D point.
pPt2 Pointer to end 2D point.
pContext Pointer to 2D context line color.

Return Codes

TMLIBDEV_OK
TWOD_ERR_UPLT_BTRT

TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER

TWOD_ERR_COLOR_TYPE

Description

Success.

Error in the upper left and bottom right coordi-
nates specification.

The line specification is out of the packet bound-
ary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function draws a line in the input packet buffer with the pLinrColor of the pContext.

58 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DFillRect

tmLibappErr_t tsa2DFillRect(
instance,
pPacket,
ptsa2DCoordinate_t pPtl,
pPt2,

Int
ptmAvPacket_t

ptsa2DCoordinate_t
ptsa2DContext_t
);

Parameters

instance Instance.

pPacket Pointer to buffer info, type and data.
pPt1 Pointer to top left point.

pPt2 Pointer to bottom right point.
pContext Pointer to 2D context.

Return Codes

TMLIBDEV_OK
TWOD_ERR_INVALID_RECT
TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The rectangle specified is invalid.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function fills a rectangle in the input packet buffer according to the rectangle speci-
fication, and the pFillColor of the pContext.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 59

Chapter 2: 2D Graphics API

tsa2DFillPoly

tmLibappErr_t tsa2DFilT1Poly(
instance,

Int
ptmAvPacket_t
ptsa2DCoordinate_t
Int
ptsa2DContext_t

);

pPolyPoints,
numPoints,

Parameters

instance Instance.

pPacket Pointer to buffer info, type and data.
pPolyPoints Pointer to a list of points that form a polygon.
numPoints Number of points in the polygon.

pContext Pointer to 2D context.

Return Codes

TMLIBDEV_OK
TWOD_ERR_ALLOC
TWOD_ERR_INVALID_POLYGON
TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The function failed in memory allocation.
The polygon specified is invalid.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function fills a convex polygon in the input packet buffer according to the polygon
specification, and the pFillColor of the pContext.

60 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DIimage

tmLibappErr_t tsa2DImage(
Int instance,
ptmAvPacket_t pPacket,

ptsa2DCoordinate_t pPtl,
ptsa2DCoordinate_t pPt2,

ptsa2DImage_t pImage,
ptsa2DContext_t pContext
)3
Parameters
instance Instance.
pPacket Pointer to buffer info, type, and data.
pPtl Pointer to top left point.
pPt2 Pointer to bottom right point.
pImage Pointer to image.
pContext Pointer to 2D context.

Return Codes

TMLIBDEV_OK
TWOD_ERR_UPLT_BTRT

TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER

TWOD_ERR_COLOR_TYPE

Description

Success.

Error in the upper left and bottom right coordi-
nates specification.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function copies an image to the input packet buffer (pPacket) according to the rect-
angle specified in the upper left and bottom right coordinates.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 61

Chapter 2: 2D Graphics API

tsa2DText

tmLibappErr_t tsa2DText(
Int instance,
ptmAvPacket_ pPacket,
ptsa2DCoordinate_t pPt,
const char *str,
ptsa2DFont_t pFont,
ptsa2DContext_t pContext

)5

Parameters

instance Instance.

pPacket Pointer to input buffer packet header and packet
data.

pPt Pointer to (x, y) of starting position.

*str Pointer to a string of characters to be drawn; can
be one single character.

pFont Pointer to a valid font.

pContext Pointer to the 2D Context text and background

Return Codes

color.

TMLIBDEV_OK
TWOD_ERR_TMFONT_NULL
TWOD_ERR_TMFONT2_NULL
TWOD_ERR_NOT_SUPPORTED

TWOD_ERR_INVALID_RECT
TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The TMFont pointer is null.
The TMFont2 pointer is null.

The specified font type or text style are not sup-
ported.

Error in the rectangle coordinates specification.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function draws a string of characters in the input buffer pPacket by specifying the
(x,y) coordinate pPt. The specified starting position is the base point (point between

ascent and descent of a character) of the first charcater in the string. It supports two font
types (TMFont and TMFont2), and three text drawing styles (textOnly, textBackColor,

62 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

textUnderline). It uses the pTextColor of the pContext as the text foreground color and it
uses the pBgColor of the pContext as the background color.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 63

Chapter 2: 2D Graphics API

tsa2DBIt

tmLibappErr_t tsa2DB1t(
Int instance,

ptmAvPacket_t pDstPacket,

ptmAvPacket_t pSrcPacket,

ptmAvPacket_t pDstStartPt,

ptsa2DContext_t pContext
);
Parameters
instance Instance.
pDstPacket Pointer to destination buffer.
pSrcPacket Pointer to source buffer.
pDstStartPt Pointer to start (x, y) in destination buffer.
pContext Pointer to context information.

Return Codes

TMLIBDEV_OK
TWOD_ERR_NOT_SUPPORTED

TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Success.

The specified font type or text style are not sup-
ported .

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet

Description

buffer type.

The function copies the entire source buffer pSrcPacket to the specified location in the

destination packet buffer pDstPacket.

64 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DBItRegion

tmLibappErr_t tsa2DB1t(
Int instance,
ptmAvPacket_t pDstPacket,
ptmAvPacket_t pSrcPacket,

ptsaCoordinate_t pDstStartPt,
ptsaCoordinate_t pSrcStartPt,

Int width,
Int height,
ptsa2DContext_t pContext
Int ops
)3
Parameters
instance Instance.
pDstPacket Pointer to destination buffer.
pSrcPacket Pointer to source buffer.
pDstStartPt Pointer to start (x, y) in destination buffer.
pSrcStartPt Pointer to start (x, y) in source buffer.
width Width of the region to be BLT’d.
height Height of the region to be BLT'd.
pContext Pointer to context information. Only the YUV422
buffer type is supported and pContext is not cur-
rently used.
ops Logical operation to be performed on the source

and destination pixels.

Return Codes

TMLIBDEV_OK Success.

TWOD_ERR_NOT_SUPPORTED The specified font type or text style are not sup-
ported.

TWOD_ERR_OUT_OF_BOUNDARY The rectangle specification is out of the packet
boundary.

TWOD_ERR_INVALID_POINTER The function encounters an invalid pointer.

TWOD_ERR_COLOR_TYPE The color type is not consistent with the packet
buffer type.

Description

The function copies the source buffer with the specified starting position and (width,
height) to the destination packet buffer at the sepcified destination starting position.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 65

tsa2DPolyPoint

Chapter 2: 2D Graphics API

tmLibappErr_t tsa2DPolyPoint(
instance,
*pPktList,

Int

ptmAvPacket_

Int
ptsa2DCoordinate_t

Int *pNumPerPk,

ptsa2DColor_t
)3

Parameters

instance Instance.

*pPktList Pointer to an array of packet pointers.

numPkt Number of packets to pass in.

pPtList Pointer to an array of 2D points.

pNumPerPk Pointer to array of Int which specifies the number
of points to be drawn in each packet.

pColor Color pointer, the pColor->pColorData is a pointer

Return Codes

to an array of 2D colors.

TMLIBDEV_OK
TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The point specified is out of the packet boundary.
The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function draws multiple numbers of points on multiple numbers of packets accord-

ing to the supplied positions and colors.

66 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

tsa2DPolyLine

Chapter 2: 2D Graphics API

tmLibappErr_t tsa2DPolylL

ine(

Int instance,
ptmAvPacket_t *pPktList,
Int numPkt,
ptsa2DCoordinate_t pPtlList,
ptsa2DCoordinate_t pPt2List,
Int pNumPerPkt,
ptsa2DColor_t pColor
)3
Parameters
instance Instance.
pPktList Pointer to an ‘array’ of packet pointers.
numPkt Number of packets to pass in.
pPtiList Pointer to an array of beginning 2D points.
pPt2List Pointer to an array of ending 2D points.
pNumPerPkt Pointer to array of Int that specifies number of
lines to be drawn in each packet.
pColor Color pointer, the pColor->pColorData is a pointer

Return Codes

to an array of 2D colors.

TMLIBDEV_OK
TWOD_ERR_UPLT_BTRT

TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER

TWOD_ERR_COLOR_TYPE

Description

Success.

Error in the upper left and buttom right coordi-
nates specification.

The line specification is out of the packet bound-
ary.
The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function draws multiple numbers of lines on multiple numbers of packets according

to the supplied lines and colors.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 67

Chapter 2: 2D Graphics API

tsa2DPolyFillRect

tmLibappErr_t tsa2DPolyFillRect(

Int instance,
ptmAvPacket_t *pPktList,
Int numPkt,

ptsa2DCoordinate_t pPtlList,
ptsa2DCoordinate_t pPt2List,
Int *pNumPerPkt,
ptsa2DColor_t pColor

)3

Parameters

instance Instance.

pPktList Pointer to an array of packet pointers.

numPkt Number of packets to pass in.

pPtiList Pointer to an array of upper left 2D points.

pPt2List Pointer to an array of bottom right 2D points.

pNumPerPkt Pointer to array of Int which specifies number of
fill-rectangles to be drawn in each packet.

pColor Color pointer, the pColor->pColorData is a pointer

Return Codes

to an array of 2D colors.

TMLIBDEV_OK
TWOD_ERR_INVALID_RECT
TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Description

Success.
The rectangle specified is invalid.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function fills multiple numbers of rectangles on multiple numbers of packets
according to the supplied rectangles and colors.

68 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DPolylmage

tmLibappErr_t tsa2DPolyImage(
Int instance
ptmAvPacket_t *pPktList
Int numPkt

ptsa2DCoordinate_t pPtlList

ptsa2DCoordinate_t pPt2List

Int *pNumPerP

ptsa2DImage_t *pImagelist
)3

’

kt

Parameters

instance Instance.

pPktList Pointer to an array of packet pointers.

numPkt Number of packets to pass in.

pPtiList Pointer to an array of beginning 2D points..

pPt2List Pointer to an array of ending 2D points.

pNumPerPkt Pointer to array of Int which specifies number of
lines to be drawn in each packet.

pImagelist Pointer to an array of image pointers.

Return Codes

TMLIBDEV_OK
TWOD_ERR_UPLT_BTRT

TWOD_ERR_OUT_OF_BOUNDARY
TWOD_ERR_INVALID_POINTER

TWOD_ERR_COLOR_TYPE

Description

Success.

Error in the upper left and bottom right coordi-
nates specification.

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

The function copies multiple numbers

of images to multiple numbers of packets accord-

ing to the supplied images and destination rectangle locations.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 69

Chapter 2: 2D Graphics API

tsa2DPolyText

tmLibappErr_t tsa2DPolyText(
instance,
*pPktList,

Int

ptmAvPacket_t
ptsa2DCoordinate_t
const char
ptsa2DFont_t
ptsa2DColor_t
ptsa2DColor_t

*pFontlList,

tsa2DTextStyle_t *textStyle,
Int *pNumPerPkt

)3

Parameters

instance Instance.

pPktList Pointer to an array of packet pointers.

pPktList Number of packets to pass in.

pPtlList Pointer to an array of starting positions.

string Pointer to an array of string of characters to be
drawn.

pFontlList Pointer to an array of loaded fonts.

pFColor foreground (or text) color pointer, the
pColor->pColorData is a pointer to an array of 2D
colors.

pBColor Background is filled with this color. User should
supply a valid background color, even if it is not
used.

textStyle Pointer to an array of text styles. It can be either:
textOnly (drawstext with foreground color), text-
BackColor (draws text with foreground color and
fill the back with background color), or tex-
tUnderline (draws the text and underline with
foreground color).

pNumPerPkt Pointer to array of Int which specifies number of

Return Codes

lines to be drawn in each packet.

TMLIBDEV_OK
TWOD_ERR_TMFONT_NULL
TWOD_ERR_TMFONT2_NULL
TWOD_ERR_NOT_SUPPORTED

Success.
The TMFont pointer is null.
The TMFont2 pointer is null.

The specified font type or text style are not sup-
ported.

70 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

TWOD_ERR_INVALID_RECT Error in the rectangle coordinates specification.

TWOD_ERR_OUT_OF_BOUNDARY The rectangle specification is out of the packet
boundary.

TWOD_ERR_INVALID_POINTER The function encounters an invalid pointer.

TWOD_ERR_COLOR_TYPE The color type is not consistent with the packet
buffer type.

Description

The function draws multiple strings of characters to multiple numbers of packets accord-
ing to the supplied input information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 71

Chapter 2: 2D Graphics API

tsa2DPolyBIt

tmLibappErr_t tsa2DPolyB1t(
Int instance,
ptmAvPacket_t *pDstPktList,
ptmAvPacket_t *pSrcPktlList,
int numPkt,
ptsa2DCoordinate_t pDstStartPtList,
ptsa2DCoordinate_t pSrcStartPtList,

Int *pNumPerPkt,
Int *pWidthList,
Int *pHeightList,

ptsa2DContext_t pContext

)5

Parameters

instance Instance.

pDstPktList Pointer to an array of dst packet pointers.

pSrcPktlList Pointer to an array of src packet pointers.

numPkt number of packet pass in.

pDstStartPtList Pointer to an array of destination (dst) starting
points.

pSrcStartPtList Pointer pointer to an array of source (src) starting
points.

pNumPerPkt Pointer to array of int which specifies number of
fill-rectangles to be drawn in each packet.

pWidthList Pointer to an array of width.

pHeightList Pointer to an array of height.

pContext Pointer to context. This is not used currently.

Return Codes

TMLIBDEV_OK
TWOD_ERR_NOT_SUPPORTED

TWOD_ERR_OUT_OF_BOUNDARY

TWOD_ERR_INVALID_POINTER
TWOD_ERR_COLOR_TYPE

Success.

The specified font type or text style are not sup-
ported .

The rectangle specification is out of the packet
boundary.

The function encounters an invalid pointer.

The color type is not consistent with the packet
buffer type.

Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

Description

The function copies a number of rectangles from the source to the destination. User
specifies the source and destination starting points and width and height for each Blt.

tsa2DGetStrWidth

tmLibappErr_t tsa2DGetStrWidth(
Int instance,
const char *string,
Int *width,
ptsa2DFont_t pFont

);

Parameters

instance Instance.

string String for which to get the pixel width.

width The calculated pixel width, returning to caller.
pFont Pointer to a valid font.

Return Codes

TMLIBDEV_OK Success.
TWOD_ERR_TMFONT_GETSTRWIDTH The function failed on TMFont font type.
TWOD_ERR_TMFONT2_GETSTRWIDTH The function failed on TMFont2 font type.

Description

The function gets the width, in pixels, of the passed string.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 73

Chapter 2: 2D Graphics API

tsa2DGetFontinfo
tmLibappErr_t tsaGetFontInfo(
Int instance,
tsa2DFontInfoFlag_t flag,
Int *retVal,
ptsa2DFont_t pFont
)3
Parameters
instance Instance.
flag Flag to indicate the requested font entry.
retVal Return value to caller.
pFont Pointer to a valid font.

Return Codes

TMLIBDEV_OK
TWOD_ERR_TMFONT_ALLOC
TWOD_ERR_TMFONT2_ALLOC
TWOD_ERR_TMFONT_MTR_FILE

TWOD_ERR_TMFONT2_TM_FILE
TWOD_ERR_INVALID_FLAG

Description

Success.
Failed in TMFont alloc.
Failed in TMFont2 alloc.

Failed in reading information from *.mtr file on
TMFont type of font.

When failed in reading information from *.tm file
on TMFont?2 type of font.

When invalid flag passed in.

The function gets the specific font information according to the specified flag value.

74 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 2: 2D Graphics API

tsa2DTMFontSetCharSpacinglInString

tmLibappErr_t tsa2DTMFontSetCharSpacingInString(
Int instance,
Int spacingTMFont,

)3

Parameters
instance Instance.
spacingTMFont Value of spacing to be set on the TMFont.

Return Codes

TMLIBDEV_OK Success.

Description

Sets the spacing between characters in a string. The default is 2. This applies only to the
TMFont type of fonts.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 75

Chapter 2: 2D Graphics API

tsa2DTMFontGetCharSpacingInString

tmLibappErr_t tsa2DTMFontGetCharSpacingInString(
Int instance,
Int *spacingTMFont,

)3

Parameters
instance Instance.
spacingTMFont Value of spacing to be retrieved on the TMFont.

Return Codes

TMLIBDEV_OK Success.

Description

Gets the spacing between characters in a string. The default is 2. This applies only to the
TMFont type of fonts.

76 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

tsa2DLoadFont

Chapter 2: 2D Graphics API

tmLibappErr_t tsa2DLoadFont(
Int instance,

ptsa2DFont_t pFont
)3

Parameters
instance Instance.
pFont Pointer to tsa2DFont_t. The user provides infor-

Return Codes

mation regarding font type and font path. Library
loads in the specified font and return a fontID in
the tsa2DFont_t structure.

TMLIBDEV_OK
TWOD_ERR_TMFONT_ALLOC
TWOD_ERR_TMFONT2_ALLOC
TWOD_ERR_TMFONT_MTR_FILE

TWOD_ERR_TMFONT2_TM_FILE

TWOD_ERR_TMFONT_BIT_FILE

TWOD_ERR_TMFONT2_BIT_FILE

TWOD_ERR_TMFONT_FILENAME_LEN

TWOD_ERR_TMFONT2_FILENAME_LEN

Description

Success.

Failed in TMFont alloc.

Failed in TMFont2 alloc.

Failed in reading information from *.mtr file on
TMFont type of font.

Failed in reading information from *.tm file on
TMFont2 type of font.

Failed in reading information from *.bit file on
TMFont type of font.

Failed in reading information from *.bit file on
TMFont2 type of font.

The expanded name of a TMFont .mtr or .bit file
is too long.

The expanded name of a TMFont2 .tm or .bit file
is too long.

The function loads the font specified in the font path to the 2D Library.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 77

Chapter 2: 2D Graphics API

tsa2DUnLoadFont

tmLibappErr_t tsaUnLoadFont(
instance,

Int
ptsa2DFont_t
)3

pFont

Parameters
instance Instance.
pFont Pointer to tsa2DFont_t. Library looks up the font

Return Codes

type on the fontID in the tsa2DFont_t struct and
unloads it.

TMLIBDEV_OK

Description

Success.

The function unloads the font specified by pFont from the 2D Library.

78 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 3
Closed-Captioning (EIA-608) API

Topic Page

DTVCC Decoder (EIA-608) Overview 80

Operation 81

Sample Application 82

VrendEia608 API Functions 83

VrendEia608 APl Enumerations and Data Structures 96
Note

This component library is available as a part of the TriMedia DTV software
system.It is not included with the basic TriMedia SDE, but it is available
under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 79

Chapter 3: Closed-Captioning (EIA-608) APl

DTVCC Decoder (EIA-608) Overview

The TriMedia VrendEia608 library fulfills the requirements contained in Recommended
Practice For Line 21 Data Service (EIA-608A). The line 21 data, compatible to EIA608A rec-
ommendation, consists of data on field 1 and field 2 of the video signal. Either field can
contain data for more than one channel.

Field 1 contains the following channels.

= CC1 (Primary Synchronous Caption Service)
» CC2 (Special Non-synchronous Use Captions)
s T1 (First Text Service)

s T2 (Second Text Service).

Field 2 contains the following channels.

= CC3 (Secondary Synchronous Caption Service)
» CC4 (Special Non-synchronous Use Captions)
» T3 (Third Text Service)

s T4 (Fourth Text Service)

s XDS (Extended Data Service)

= ATVEF service

The VrendEia608 component decodes those channels and displays the result using the
video out unit of the TriMedia chip. The library makes use of the 2D library and of the
window manager, which makes it possible to overlap non-VrendEia608 specific informa-
tion like on-screen display (OSD).

The library retrieves the required data from the input pin. The VrendEia608 library is a
renderer and therefore does not provide any output pin. The decoded information is
placed in a pre-allocated output buffer. The example application exolVrendEia608 dem-
onstrates how to use the VrendEia608 library.

The performance of the VrendEia608 decoder can be parted in different categories. Since
the processor load largely depends on the decoded data, worst case scenarios and test
tape performances are published. The decoding itself does not require much effort—the
performance-consuming part is the rendering. Only the changes on the screen force the
display driver of the VrendEia608 component to re-render the screen. Therefore, a scroll-
ing, flashing text in the biggest window available needs the highest processor load.

Below are some results:

EIA/CEG Test Tape for Closed Captioning proposal, version 3.0 DECODED (record Date
23 January 1992) gives an average processor load of 1.6 MHz.

80 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

worst case processor load flashing, scrolling text mode with eight displayed rows gives a
processor load of 21.2 MHz. The code sequence for this worst case is:

14 2A 14 28 "OlabcdefghijkImnopgrstuvwxyz123
14 2D 14 28 "02abcdefghijkImnopgrstuvwxyz123

14 2D 14 28 "2EabcdefghijkImnopgrstuvwxyz123
14 2D 14 28 "2FabcdefghijkImnopgrstuvwxyz123

Operation

After creating an instance with tmolVrendEia6080pen the component is ready for setup
with the required parameters by calling tmolVrendEia608InstanceSetup. During the
opening process an instance of the 2D library and of the window manager is created.

The default values of the VrendEia608 component can be retrieved by calling tmolVrend-
Eia608GetInstanceSetup. After that it is easier to call the tmolVrendEia608InstanceSetup
function, because the setup structure tree is allocated by the library and only some
instance specific parameters have to be modified. Among the default values, the instance
setup function needs to get two handles to the two different fonts the EIA-608A standard
requires. One plain font and one italic font. Depending on the font size the output area
size will be calculated based on the character dimensions and the number of columns
and rows. EIA-608A has 32 columns and 15 rows. It is recommended to use a font with a
character width of 16 pels (TV-pixels) and a height of 26 scanlines. The height of the
font must be always multiple of 13. The field pBackPlane of the instance setup function
structure has to be initialized. This parameter is used by the VrendEia608 component to
initialize the window manager.

After this procedure the decoder is ready to run by calling tmolVrendEia608Start. After
that the decoding is running in a separate task. The component retrieves EIA-608A data
from the input pin and renders the decoded data to the back-plane it received during the
setup phase. The decoder allocates a memory saving virtual window for its operation.
The input format of the packets arriving at the input pin, is a generic format. One packet
consists of only one buffer. The size of this buffer is four bytes. Byte one contains the
type of the retrieved data. It can be either data or others. Byte two marks the next two
bytes as valid or invalid. Byte three represents character one and byte four represents
character two of a line 21. The decoder handles invalid line 21 data bytes even if the byte
two says that the data bytes are valid.

During decoding it is always possible to change some settings of the decoder by calling
tmolVrendEia608InstanceConfig. The user can choose between the services EIA-608A pro-
vides. Furthermore it can be retrieved what services are currently available.

The EIA-608A standard specifies some features that are real-time related and therefore
synchronized to the video output. If the application wants to update the display content
in a synchronous way it calls the tmolVrendEia608FieldSync function. Using this func-
tion flashing and scrolling are possible in a field synchronous way.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 81

Chapter 3: Closed-Captioning (EIA-608) APl

The new data service ATVEF is supported by decoding the included ATVEF data from the
Text 2 channel. That means only URL addresses that are transmitted will be decoded. As
soon as a complete address arrives the VrendEia608 decoder calls the progress function
(if the progress report flag was set in the instance setup function). With the URL string a
time-stamp will be passed to the application. This is done only if the incoming EIA-608
data already contained valid time stamps. To use the ATVEF decoding capabilities an
ATVEF buffer has to be provided using the instance setup function.

Sample Application

The example application demonstrates the available features of the EIA-608A decoder. It
is possible to change some settings when the VrendEia608 component is running by
issuing commands at the prompt. The following commands are available and are also
briefly described by the help output.

Togo This command enables and disables the TriMedia
DTV logo. This feature demonstrates the clipping
functionality of the VrendEia608 library. If the
logo is on, the entire screen is divided into four
sub-windows.

services This command retrieves information from the
EIA-608A decoder. It displays which services are
or aren’t available.

cc<number> This command tells the decoder which closed
caption service to decode. Valid numbers are
between 1 through 4. If the decoder was previ-
ously disabled ('off') it is switched on.

t<number> This command tells the decoder which text ser-
vice to decode. Valid number are 1 through 4. If
the decoder was previously disabled ('off") it is
switched on.

of f This command switches the decoder off.

xds This command enables the extended data service
functionality.

wx<number> This command specifies the horizontal location

of the display window. The number represents
the number of pels.

wy<number> This command specifies the vertical location of
the display window. The number represents the
number of scanlines.

stopinput This commands stops the input file reader. It is
used to test interruptions on the input.

startinput This commands restarts the file reader. It is used
to test interruptions on the input.

82 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

This command issues a rapid sequence of ‘off’ and
‘ccl’ commands. It is used to test stability of the
decoder in terms of enabling and disabling.

stress

During start-up the following command line program arguments are checked.

infile <filename>

wy<number>
wx<number>
cc<number>

t<number>

VrendEia608 API Functions

This argument specifies an input file (if not speci-
fied the default input file is used: t_jan.bin). If not
specified, the default search path is ../../data/

eia608.

See above.
See above.
See above.

See above.

This section describes the functions contained in the VrendEia608 API.

Name Page
tmalVrendEia6080pen 84
tmolVrendEia6080pen 85
tmalVrendEia608Close 86
tmolVrendEia608Close 86
tmalVrendEia608Start 87
tmolVrendEia608Start 87
tmalVrendEia608Stop 88
tmolVrendEia608Stop 88
tmalVrendEia608GetCapabilities 89
tmolVrendEia608GetCapabilities 89
tmolVrendEia608GetInstanceSetup 20
tmalVrendEia608InstanceConfig 920
tmolVrendEia608InstanceConfig 91
tmalVrendEia608InstanceSetup 92
tmolVrendEia608InstanceSetup 92
tmalVrendEia608RedrawFunc 93
tmalVrendEia608DecodePacket 94
tmalVrendEia608FieldVsync 95

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

83

Chapter 3: Closed-Captioning (EIA-608) APl

tmalVrendEia6080pen

tmLibappErr_t tmalVrendEia6880pen(
Int *instance
)

Parameters

instance Pointer (returned) to the instance.

Description

This function creates an instance and returns a pointer to the opened instance. The error
value must be checked to decide whether the instance value is valid or not. The Vrend-
Eia608 library uses the 2D library and creates an instance of this library during Open. If
an error occurred during the creation of the 2D library instance, it is returned as the
return value of the Open function.

84 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmolVrendEia6080pen

extern tmLibappErr_t tmolVrendEia6@80pen(
Int *instance
)

Parameters

instance Pointer (returned) to the instance.

Description

This function creates an instance and returns a pointer to the opened instance. The error
value must be checked to decide whether the returned value is valid or not.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 85

Chapter 3: Closed-Captioning (EIA-608) APl

tmalVrendEia608Close

tmLibappErr_t tmalVrendEia6@8Close(
Int instance
)

Parameters

instance The instance to be closed.

Description

This function closes an instance of the VrendEia608 and the 2D library.

tmolVrendEia608Close

extern tmLibappErr_t tmolVrendEia688Close(
Int instance
)

Parameters

instance The instance to be closed.

Description

This function closes an instance of the VrendEia608 library.

86 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmalVrendEia608Start

tmLibappErr_t tmalVrendEia6@8Start(
Int instance
)

Parameters

instance The instance.

Description

This function puts the instance into streaming mode. All input data is requested by the
instance. This is implemented in a loop that calls the datain callback function to retrieve
data from an upstream component. The decoder exits the loop when the corresponding
stop is called. The tmalVrendEia608DecodePacket function is called to process incoming
data. The a decision is made to possibly update the screen.

tmolVrendEia608Start

extern tmLibappErr_t tmolVrendEia6@8Start(
Int instance
)

Parameters

instance The instance.

Description

This function puts the instance into streaming mode. All input data is requested by the
instance. This is implemented in a loop that calls the datain callback function to retrieve
data from an upstream component. The decoder exits the loop when the corresponding
stop is called. The tmalVrendEia608DecodePacket function is called to process incoming
data. The a decision is made to possibly update the screen.

The loop is runs in a separate task and is fed with incoming data via data queues and
controlled via control queues.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 87

Chapter 3: Closed-Captioning (EIA-608) APl

tmalVrendEia608Stop

tmLibappErr_t tmalVrendEia6@8Stop(
Int instance
)

Parameters

instance The instance.

Description

This function is the counterpart of the tmalVrendEia608Start function. Calling this func-
tion causes an exit out of the processing loop.

tmolVrendEia608Stop

extern tmLibappErr_t tmolVrendEia6@8Stop(
Int instance
)

Parameters

instance The instance.

Description

This function is the counterpart of the tmalVrendEia608Start function. Calling this func-
tion causes an exit out of the processing loop. The decoding task is destroyed.

88 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmalVrendEia608GetCapabilities

tmLibappErr_t tmalVrendEia608GetCapabilities(
ptmalVrendEia6@8Capabilities_t *cap
)

Parameters

cap Pointer to a variable in which to return a pointer
to capabilities data.

Description

This function returns a pointer to the library-allocated capability structure.

tmolVrendEia608GetCapabilities

extern tmLibappErr_t tmolVrendEia6@8GetCapabilities(
ptmolVrendEia6@8Capabilities_t *cap
)

Parameters

cap Pointer to a variable in which to return a pointer
to capabilities data.

Description

This function returns a pointer to the library-allocated capability structure. This struc-
ture can be used in the tsaDefaultinOutDescriptorCreate function to establish a connec-
tion between two components.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 89

Chapter 3: Closed-Captioning (EIA-608) APl

tmolVrendEia608GetinstanceSetup

extern tmLibappErr_t tmolVrendEia6@8GetInstanceSetup(
Int instance,
ptmolVrendEia6@8InstanceSetup_t *setup

Parameters

instance The instance.

setup Pointer to a variable in which to return a pointer
to setup data.

Description

This function returns a pointer to the instance setup structure. The memory required for
this structure is allocated by the library. The returned structure contains default values.
The current setup of an instance can be retrieved by calling this function.

tmalVrendEia608InstanceConfig

tmLibappErr_t tmalVrendEia6@8InstanceConfig(
Int instance,
ptsaControlArgs_t args

Parameters

instance The instance.

args Control arguments.
Description

This function makes it possible to change component parameters when it is running.
Certain parameters can be modified and status information can be retrieved. The EIA-
608A decoder allows setting of the service and retrieval of the available service informa-
tion.

90 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmolVrendEia608InstanceConfig

extern tmLibappErr_t tmolVrendEia6@8InstanceConfig(
Int instance,
UInt32 flags,
ptsaControlArgs_t args

Parameters

instance The instance.

flags Flags to control the behavior of this function.
When reading information, it is important to pass
the tsaControlWait flag.

args Control arguments.

Description

This function makes it possible to change component parameters when it is running.
Certain parameters can be modified and status information can be retrieved. The EIA-
608A decoder allows setting of the service and retrieval of the available service informa-
tion.

The control queues have to be set up. This is done by using the tsaDefaultControl-
DescriptorCreate function.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 91

Chapter 3: Closed-Captioning (EIA-608) APl

tmalVrendEia608InstanceSetup

tmLibappErr_t tmalVrendEia6@8InstanceSetup(
Int instance,
tmalVrendEia6@8InstanceSetup_t *setup

Parameters

instance The instance.

setup Pointer to instance setup data.
Description

This function initializes an instance of the EIA-608A library. The library-specific fields are
copied. All information passed to the instance setup function can be thrown away after
calling this function. Section tmolVrendEia608InstanceSetup_t describes the setup struc-
ture. A window manager virtual window is created, its dimensions dependent on the
font size. The EIA-608A decoder is initialized.

tmolVrendEia608InstanceSetup

extern tmLibappErr_t tmolVrendEia6@8InstanceSetup(
Int instance,
tmolVrendEia6@8InstanceSetup_t *setup

Parameters

instance The instance.

setup Pointer to instance setup data.
Description

This function initializes an instance of the EIA-608A library. The library-specific fields are
copied. All information passed to the instance setup function can be thrown away after
calling this function. Section tmolVrendEia608InstanceSetup_t describes the setup struc-
ture. A window manager virtual window is created, its dimensions dependent on the
font size. The EIA-608A decoder instance is initialized.

92 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmalVrendEia608RedrawFunc

static tmLibappErr_t tmalVrendEia6@8RedrawFunc()

Description

This is the VrendEia608 library internal callback function that is called by the window
manager in case of an update condition. This function can be called in two different
contexts. The first one is the VrendEia608 context when the screen is to be updated
because of a change in the EIA-608A buffer. The second one is the application context
when something happens with the virtual window owned by the VrendEia608 library
(for instance, the clipping area has changed through display or hide of windows overlap-
ping the EIA-608A window).

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 93

Chapter 3: Closed-Captioning (EIA-608) APl

tmalVrendEia608DecodePacket

tmLibappErr_t tmalVrendEia6@8DecodePacket(
Int instance,
tmAvPacket_t *inpacket

Parameters

instance Contains instance ID.

inpacket Pointer to the input packet. The packet must con-
tain four valid bytes in the data buffer. Byte O is
the type. Byte 1 is 1 for valid and O for invalid
data. Bytes 2 and 3 contain the EIA-608A data.

Description

This function decodes one input packet. The internal output of the decoder is stored in a
character buffer. The content of this buffer is rendered in the context of the callback

function.

Depending of the outcome of the interpretation, this function can force the window
manager to redraw the EIA-608A related virtual window. Normally this function is called
in the tmalVrendEia608Start function. If the application is working in data-push mode,
this function is called directly. The decode packet function is called every frame to fulfill
the EIA-608A requirements (even when no data is delivered from the upstream compo-
nent). This means automatic switch off after 45 frames of no data and automatic activa-
tion after receiving 12 valid data packets.

94 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmalVrendEia608FieldVsync

extern tmLibappErr_t tmalVrendEia6@8FieldVsync()

Description

This function decides in conjunction with the L21_Interpret_Data function whether the
screen needs to be updated or not. It is used to manage dynamic effects (e.g. flashing or
scrolling).

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 95

Chapter 3: Closed-Captioning (EIA-608) APl

VrendEia608 APl Enumerations and Data Structures

This section presents the enumerations and data structures of the VrendEia608 API.

Name Page
Eia608_Field_t 97
Eia608_Service_t 98
Eia608_XDSPackTypes_t 99
tmalVrendEia608ConfigTypes_t 102
tmalVrendEia608InstanceSetup_t 103
tmolVrendEia608InstanceSetup_t 105
Eia608_ATVEFPackTypes_t 107
tmVrendEia608ProgressVCHIP_t 108
tmVrendEia608ProgressXDS_t 109
tmVrendEia608ProgressATVEF_t 110

96 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

Eia608_Field_t

enum Eia6@8_Field_t {
EIA6@8_FIELDL,
EIA6@8_FIELD2

}s

Fields

EIA6@8_FIELD1 First field of the TV frame.
ETA608_FIELD2 Second field of the TV frame.
Description

This enum defines keywords for field 1 and field 2 (see also L21_Interpret_Data).

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 97

Chapter 3: Closed-Captioning (EIA-608) APl

Eia608_Service t

enum Eia6@8_Service_t {

EIA608_CC1,
EIA688_CC2,
EIA608_CC3,
EIA608_CC4,
EIA608_T1,
EIA608_T2,
EIA608_T3,
EIA608_T4,
EIA608_XDS,
EIA6G8_ATVEF,
EIA608_OFF,
EIA6@8_UNKNOWN

s

Fields

EIA608_CC1 Closed Caption channel 1, field 1
EIA6@8_CC2 Closed Caption channel 2, field 1
EIA608_CC3 Closed Caption channel 1, field 2
EIA608_CC4 Closed Caption channel 2, field 2
EIA608_T1 Text channel 1, field 1

EIA608_T2 Text channel 2, field 1

EIA608_T3 Text channel 1, field 2

EIA608_T4 Text channel 2, field 2
EIA6@8_XDS Extended Data Services
EIA6@8_ATVEF ATVEF Data Services

EIA6@8_OFF Decoder is switched off. Only the service detec-

EIA6@8_UNKNOWN

Description

tion is working (L21_Is_Service_Present).

Only for internal use of the decoder. If the
decoder is not synchronized to the Line 21 data
stream, the internal service variable(s)
(tL21_acq.iService) is (are) set to
EIA608_UNKNOWN.

Line 21 Data Service Data Channel and source definitions (see also L21_Set_Mode).

98 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

Eia608_XDSPackTypes_t

enum Eia6@8_XDSPackTypes_t {

}s;

EIA6@8_NO_XDS_PACKAGE,
EIA608_PROGRAM_ID_NO,
EIA6@8_LENGTH,
EIA608_PROGRAM_NAME,
EIA608_PROGRAM_TYPE,
EIA608_PROGRAM_RATING,
EIA688_AUDIO_SERVICE,
EIA6@8_CAPTION_SERVICE,
EIA6@8_ASPECT_RATIO,

EIA608_COMPOSITE_PACK1,

EIA608_PROG_DESCR_ROW1,
EIA608_PROG_DESCR_ROW3,
EIA608_PROG_DESCR_ROW5,
EIA608_PROG_DESCR_ROW7,

EIA608_F_PROGRAM_ID_NO,
EIA6@8_F_LENGTH,
EIA608_F_PROGRAM_NAME,
EIA6@08_F_PROGRAM_TYPE,
EIA608_F_PROGRAM_RATING,
EIA6@8_F_AUDIO_SERVICE,
EIA6@88_F_CAPTION_SERVICE,
EIA6@8_F_ASPECT_RATIO,

EIA608_F_COMPOSITE_PACK1,

EIA608_F_PROG_DESCR_ROW1,
EIA6@88_F_PROG_DESCR_ROW3,
EIA6@8_F_PROG_DESCR_ROW5,
EIA608_F_PROG_DESCR_ROW7,

EIA6@8_NETWORK_NAME,
EIA6@8_CALL_LETTERS,
EIA6@8_TAPE_DELAY,
EIA6@8_TIME_OF_DAY,
EIA6@8_CAPTURE_ID,
EIA6@8_DATA_LOCATION,
EIA608_LOCAL_TIME_ZONE,
EIA6088_OUT_BAND_CH_NO,
EIA6@8_WEATHER_CODE,
EIA608_WEATHER_MESSAGE

Fields

EIA6@8_COMPOSITE_PACKZ,

EIA6@8_PROG_DESCR_ROWZ,
EIA608_PROG_DESCR_ROW4,
EIA6@8_PROG_DESCR_ROW6,
EIA6@8_PROG_DESCR_ROWS,

EIA6@8_F_COMPOSITE_PACK2,

EIA6@8_F_PROG_DESCR_ROWZ,
EIA6@8_F_PROG_DESCR_ROW4,
EIA6@8_F_PROG_DESCR_ROWG6,
EIA6@8_F_PROG_DESCR_ROW8,

EIA6@8_NO_XDS_PACKAGE
EIA6@8_PROGRAM_ID_NO

No XDS package available.

Program identification number of the current

program.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

929

EIA6@8_LENGTH
EIA608_PROGRAM_NAME
EIA6@8_PROGRAM_TYPE
EIA6@8_PROGRAM_RATING
EIA6@8_AUDIO_SERVICE
EIA6@8_CAPTION_SERVICE

EIA6@8_ASPECT_RATIO
EIA608_COMPOSITE_PACK1
EIA6@8_COMPOSITE_PACK2

EIA6@8_PROG_DESCR_ROW1

EIA6@8_PROG_DESCR_ROW2

EIA6@8_PROG_DESCR_ROW3

EIA6@8_PROG_DESCR_ROW4

EIA608_PROG_DESCR_ROW5

EIA6@8_PROG_DESCR_ROW6

EIA6@8_PROG_DESCR_ROW7

EIA6@8_PROG_DESCR_ROW8

EIA6@8_F_PROGRAM_ID_NO

EIA6@8_F_LENGTH
EIA6@8_F_PROGRAM_NAME
EIA6@8_F_PROGRAM_TYPE
EIA608_F_PROGRAM_RATING
EIA6@8_F_AUDIO_SERVICE

EIA6@8_F_CAPTION_SERVICE

EIA6@8_F_ASPECT_RATIO

EIA6@8_F_COMPOSITE_PACK1
EIA6@8_F_COMPOSITE_PACK2
EIA6@8_F_PROG_DESCR_ROW1

Chapter 3: Closed-Captioning (EIA-608) APl

Length of the current program.

Name of the current program.

Type of the current program.

Program rating (V-Chip) of the current program.
Audio service availability of the current program.

Caption service availability of the current pro-
gram.

Aspect ratio of the current program.
First composite package of the current program.

Second composite package of the current pro-
gram.

First program description row of the current pro-
gram.

Second program description row of the current
program.

Third program description row of the current pro-
gram.

Fourth program description row of the current
program.

Fifth program description row of the current pro-
gram.

Sixth program description row of the current pro-
gram.

Seventh program description row of the current
program.

Eighth program description row of the current
program.

Program identification number of the future pro-
gram.

Length of the future program.

Name of the future program.

Type of the future program.

Program rating (V-Chip) of the future program.
Audio service availability of the future program.
Caption service availability of the future program.
Aspect ratio of the future program.

First composite package of the future program.
Second composite package of the future program.

First program description row of the future pro-
gram.

100 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

EIA6@8_F_PROG_DESCR_ROW2
EIA6@8_F_PROG_DESCR_ROW3
EIA608_F_PROG_DESCR_ROW4
EIA6@8_F_PROG_DESCR_ROW5
EIA6@8_F_PROG_DESCR_ROW6
EIA6@8_F_PROG_DESCR_ROW7
EIA6@8_F_PROG_DESCR_ROW8

EIA6@8_NETWORK_NAME
EIA6@8_CALL_LETTERS
EIA6@8_TAPE_DELAY
EIA6@8_TIME_OF_DAY
EIA6@8_CAPTURE_ID
EIA6@8_DATA_LOCATION
EIA6@8_LOCAL_TIME_ZONE
EIA6@8_OUT_BAND_CH_NO
EIA6@8_WEATHER_CODE
EIA6@8_WEATHER_MESSAGE

Description

Second program description row of the future
program.

Third program description row of the future pro-
gram.

Fourth program description row of the future pro-
gram.

Fifth program description row of the future pro-
gram.

Sixth program description row of the future pro-
gram.

Seventh program description row of the future
program.

Eighth program description row of the future pro-
gram.

Name of the network.

Call letters of the broadcaster.
Delay of the tape.

Time of the day.

Capture identification.

Data location.

Local time zone.

Out of band channel number.
Weather code.

Weather message.

Definition of XDS types (see also L21_Set_XDSfunc)

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 101

Chapter 3: Closed-Captioning (EIA-608) APl

tmalVrendEia608ConfigTypes_t

enum tmalVrendEia6@8ConfigTypes_t {
VRENDEIA608_CONFIG_SET_SERVICE,
VRENDETIA608_CONFIG_IS_SERVICE_PRESENT

}s

Fields

VRENDEIA6@8_CONFIG_SET_SERVICE Selects a new service or switches the decoder off.

VRENDEIA6@8_CONFIG_IS_SERVICE_PRESENT
Retrieves the information on service availability.

Description

Definition of flags for the configuration functions. See also tmalVrendEia608Instance-
Config and tmolVrendEia608InstanceConfig.

102 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmalVrendEia608InstanceSetup_t

typedef struct {
struct defaultSetup;
struct plainFont;
struct italicFont;
struct x0ffset;
struct yOffset;
struct pBackPlane;
struct wmStackingOrder;
struct frameRate;
struct colorKeyY;
struct colorKeyU;
struct colorKeyV;
struct textModeHeight;
struct service;

} tmalVrendEia6@8InstanceSetup_t;

Fields

defaultSetup This field points to the default setup structure
that contains a.o. the callback functions. The
chapter TriMedia Software Architecture has more
information about default structures

plainFont This field points to an pre-created font structure
that contains the plain font. It has no default
value. It must be initialized during the setup pro-
cedure. Creation of a font can be accomplished by
opening the 2D library, creating a font and clos-
ing the 2D library.

italicFont This field points to an pre-created font structure
that contains the italic font. It has no default
value. It must be initialized during the setup pro-
cedure.

x0ffset This field contains the horizontal offset at which
the library will paint in the virtual window. Since
the window has an offset itself, the default value
is zero.

yO0ffset This field contains the vertical offset at which the
library will paint in the virtual window. Since the
window has an offset itself, the default value is
Zero.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 103

Chapter 3: Closed-Captioning (EIA-608) APl

pBackPlane

wmStackingOrder

frameRate

colorKeyY

colorKeyU

colorKeyV

textModeHeight

service

pATVEFbuffer

ulATVEFlength

Description

This field contains the pointer to the back plane
packet. The VrendEia608 decoder draws in this
back plane. Since the decoder window is a virtual
window, all 2D library calls manipulate this buffer
directly. The application has to provide a back
plane with a proper size.

This field specifies the stacking order of the EIA-
608 decoder window. The default is
wmSO_ALWAYS_ON_BOTTOM.

This field specifies the frame rate of the displayed
video. It is used to implement flashing that will
be on/off for half second intervals. Default value
is 30.

This field specifies the luminance of the back-
ground color, the color that is 100 percent trans-
parent. The default is 0x00.

This field specifies the chrominance of the back-
ground color - the color that is 100 percent trans-
parent. The default is 0x20.

This field specifies the chrominance of the back-
ground color, the color that is displayed 100 per-
cent transparent. The default is 0x20.

This field specifies the height of the box if the
user changes to one of the text services. Default is
eight rows.

This field specifies what service is active after
start-up. The default is EIA608_CC1.

Points to ATVEF buffer. If buffer pointer is Null,
no ATVEF service will be provided. Default is
Null.

Size of the ATVEF buffer. This value will be
ignored if pointer to buffer is Null.

Definition of the instance setup structure. All fields have to be initialized by the applica-

tion during setup.

104 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmolVrendEia608InstanceSetup_t

typedef struct {

ptsaDefaultInstanceSetup_t defaultSetup;

ptsa2DFont_t plainFont;
ptsa2DFont_t italicFont;
UInt32 x0ffset;

UInt32 y0ffset;
ptmAvPacket_t pBackPlane;
tsaWMStackingOrder_t wmStackingOrder;
UInt8 frameRate;
UInt8 colorKeyY;
UInt8 colorKeyU;
UInt8 colorKeyV;
UInt32 textModeHeight;
UInt32 service;

Int8 *pATVEFbuffer;
UInt32 UuTATVEFlength;

} tmolVrendEia6@8InstanceSetup_t;

Fields

defaultSetup This field points to the default setup structure
that contains a.o. the callback functions. For
more information on default structures, see TSSA
documentation.

plainFont This field points to an pre-created font structure

italicFont

x0ffset

y0ffset

pBackPlane

that contains the plain font. It has no default
value. It must be initialized during the setup pro-
cedure. Creation of a font can be accomplished by
opening the 2D library, creating a font and clos-
ing the 2D library.

This field points to an pre-created font structure
that contains the italic font. It has no default
value. It must be initialized during the setup pro-
cedure.

This field contains the horizontal offset at which
the library will paint in the virtual window. Since
the window has an offset itself, the default value
is zero.

This field contains the vertical offset at which the
library will paint in the virtual window. Since the
window has an offset itself, the default value is
zero.

This field contains the pointer to the back plane
packet. The VrendEia608 decoder draws in this
back plane. Since the decoder window is a virtual

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 105

Chapter 3: Closed-Captioning (EIA-608) APl

wmStackingOrder

frameRate

colorKeyY

colorKeyU

colorKeyV

textModeHeight

service

pATVEFbuffer

ulATVEF1ength

Description

window, all 2D library calls manipulate this buffer
directly. The application has to provide a back
plane with a proper size.

This field specifies the stacking order of the EIA-
608 decoder window. The default value is
wmSO_ALWAYS_ON_BOTTOM.

This field specifies the frame rate of the displayed
video. It is used to implement flashing that will
be on/off for half second intervals. Default value
is 30.

This field specifies the luminance of the back-
ground color - the color that is 100 percent trans-
parent. The default is 0x00.

This field specifies the chrominance of the back-
ground color - the color that is 100 percent trans-
parent. The default is 0x20.

This field specifies the chrominance of the back-
ground color - the color that is 100 percent trans-
parent. The default is 0x20.

This field specifies the height of the box if the
user changes to one of the text services. Default is
eight rows.

This field specifies what service is active after
start-up. The default is EIA608_CC1.

Points to ATVEF buffer. If buffer pointer is Null,
no ATVEF service will be provided. Default is
Null.

Size of the ATVEF buffer. This value will be
ignored if pointer to buffer is Null.

Definition of the instance setup structure. A pointer to this structure is returned by the
tmolVrendEia608GetinstanceSetup function. At least three fields (plainFont, italicFont,
wmlnstance) have to be initialized by the application. The other fields contain default

values.

106 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

Eia608_ATVEFPackTypes_t

enum Eia6@8_ATVEFPackTypes_t {
EIA608_ATVEF_RECEIVED,
ETA608_ATVEF_BUFFER_FULL

s

Fields

EIA6@8_ATVEF_RECEIVED Everything was working properly and the URL
string is located in pBuffer of the tmVrendEia608-
ProgressXDS_t structure.

EIA6@8_ATVEF_BUFFER_FULL The provided buffer was not big enough resulting
in a overflow. The string located in pBuffer is
invalid.

Description

Those flags are part of the codes that the progress function sends to the application.
These flags specify how the ATVEF-URL has been sent out by the decoder.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 107

Chapter 3: Closed-Captioning (EIA-608) APl

tmVrendEia608ProgressVCHIP_t

typedef struct {
UInt8 *pBuffer;
Bool validTimeStamp;
tmTimeStamp_t time;
} tmVrendEia6@8ProgressVCHIP_t, *ptmVrendEia6@8ProgressVCHIP_t;

Fields

pBuffer Pointer to the two bytes, which have been
decoded by the VrendEia608 decoder. No buffer
size is necessary, since VCHIP data is always two
bytes.

validTimeStamp Flag that tells the application that the time struc-
ture is valid.

time Contains time stamp. Is only valid if validTime-
Stamp is True.

Description

Structure sent out by the progressFunc callback. The application can determine the type
of the received structure from the progress flags. VrendEia608_Progress_VCHIP indicates a
Vchip progress report.

108 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 3: Closed-Captioning (EIA-608) API

tmVrendEia608ProgressXDS_t

typedef struct {
tEia6@8_XDSPackTypes type;

UInt8 numBytes;

UInt8 *pBuffer;

Bool validTimeStamp;
tmTimeStamp_t time;

} tmVrendEia6@8ProgressXDS_t, *ptmVrendEia6@8ProgressXDS_t;

Fields

type Flags that describes the type of XDS service
received and how to interpret the received buffer.

numBytes Contains number of valid Bytes in the buffer
pointed to by pBuffer.

pBuffer Pointer to the decoded bytes.

validTimeStamp Flag that tells the application that the time struc-
ture is valid.

time Contains time stamp. Is only valid if validTime-
Stamp is True.

Description

Structure sent out by the progressFunc callback. The application can determine the type
of the received structure from the progress flags. VrendEia608_Progress_XDS indicates an
XDS progress report.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 109

Chapter 3: Closed-Captioning (EIA-608) APl

tmVrendEia608ProgressATVEF _t

typedef struct {
tEia6@8_XDSPackTypes type;

UInt8 numBytes;

UInt8 *pBuffer;

Bool validTimeStamp;
tmTimeStamp_t time;

} tmVrendEia6@8ProgressATVEF_t, *ptmVrendEia6@8ProgressATVEF_t;

Fields

type Flags that describes the type of ATVEF service
received and how to interpret the received buffer.

numBytes Number of valid bytes in *pBuffer.

pBuffer Pointer to the decoded bytes. The received string
is not terminated by a null byte.

validTimeStamp Flag that tells the application that the time struc-
ture is valid.

time Contains time stamp. Is only valid if validTime-
Stamp is True.

Description

Structure sent out by the progressFunc callback. The application can determine the type
of the received structure from the progress flags. VrendEia608_Progress_ATVEF indicates
an ATVEF progress report.

110 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4
Closed-Captioning (EIA-708) API

Topic Page
DTVCC Decoder (EIA-708) Overview 112
DTVCC Decoder (EIA-708) Inputs and Outputs 112
DTVCC Decoder (EIA-708) Progress 113
DTVCC Decoder (EIA-708) Error 114
DTVCC Decoder (EIA-708) API Data Structures 114
DTVCC Decoder (EIA-708) APl Functions 125

Note
This component library is available as a part of the TriMedia DTV software
system.It is not included with the basic TriMedia SDE, but it is available

under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 111

Chapter 4: Closed-Captioning (EIA-708) API

DTVCC Decoder (EIA-708) Overview

DTVCC (Digital Television Closed Caption) is a migration of the closed-captioning con-
cepts and capabilities developed in the 1970°s for the NTSC television video signals to
the high-definition television environment defined by the ATV (Advanced Television)
Grand Alliance and standardized by the ATSC (Advanced Television Systems Commit-
tee). This new television environment provides for larger screens and higher screen reso-
lutions, and higher data rates for transmission of closed-captioning data.

NTSC Closed Caption consist of an analog waveform inserted into Line 21 of the NTSC
Vertical Blanking Interval (VBI). This waveform provides a transport channel which can
deliver 2 bytes of data on every field of video. This translates to 120 bytes per second, or
960 bits per second (bps). In contrast, ATV Closed Captioning is transported as a logical
data channel in the ATV digital bit stream. Of the ATV bitstream bit rate (which is 19.4
Mbps for terrestrial broadcast, and 38.4 Mbps for cable), ATV-specifies that closed cap-
tioning is allocated 9600 bps. This increased capacity opens the possibilities for the
simultaneous transmission of captions in multiple languages and at multiple reading
levels.

The ATV standard boasts an increased screen resolution range 480, 720 or 1080 active
scan lines, vs. 525 scan lines for NTSC. These added resolution of 720 or 1080 lines pro-
vide for more defined representations of character fonts and other on-screen objects. The
heart of DTVCC caption display is the caption "window" which is identical to the win-
dow concept found in all computer Graphical User Interfaces (GUI). Windows are placed
within the ATV screen, and caption text is placed within windows. Windows and text
have a variety of color, size and other attributes.

Background

This document assumes that the reader is familiar with the concepts of TSSA as docu-
mented in Book 3, Software Architecture, Part B.

DTVCC Decoder (EIA-708) Inputs and Outputs

The DTVCC Decoder (EIA-708) expects its inputs data via a standard TSSA queue. The
decoder output is a updated video packet. The update is done using the window man-
ager and the 2D library.

The decoder does not support multiple instances.

112

Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

Compliance With the DTVCC Standard

The DTVCC decoder supports the following EIA-708 features:

= All EIA-708 (Chapter. 8) 'minimum decoder' features with single fixed-space font
(except for center and right text justification).

= Maximum of one 7 row visible window or four single row visible windows on the dis-
play at any one time.

= Automatic word-wrapping in fixed size windows

= All 64 foreground/background colors

Multiple Service Channel Decoding

A single decoder instance supports multiple service channel decoding. This feature
allows to switch from one service channel to another without delay.

Channel Buffer 0

/ AN Window

DTVCC DTVCC Manager
Acquisition ” Display

\ - 2D Library

Channel Buffer 1

!

Number of
Service
Channel Channels Display
Setups Channel

The application controls the multiple channel decoding mainly with three settings.

Channel setup Determines which service should be decoded in
which channel buffer.

Number of service channels Determines how many services can be decoded in
parallel.

Display channel Determines which channel should be displayed.

See also tmolVrendEia708InstanceSetup on page 129 and tmolVrendEia708InstanceConfig
on page 131.

DTVCC Decoder (EIA-708) Progress

The DTVCC Decoder does not support progress functions.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 113

Chapter 4: Closed-Captioning (EIA-708) API

DTVCC Decoder (EIA-708) Error

The DTVCC Decoder (EIA-708) reports errors to the error function, if the soft errors are
activated, see tmolVrendEia708InstanceSetup_t on page 116.

Error codes

VRENDEIA7@8_ERR_DTVCC_PKT_LEN The received DTVCC packet has an invalid
length.

VRENDEIA7@8_ERR_NO_SERV_DATA Their are no data for the selected service.

VRENDEIA7@8_ERR_DATA_INCONSISTENCY
The received DTVCC data are inconsistent.

DTVCC Decoder (EIA-708) API Data Structures

This section presents the DTVCC Decoder (EIA-708) data structures.

Name Page
tmolVrendEia708Capabilities_t 115
tmalVrendEia708Capabilities_t 115
tmolVrendEia708InstanceSetup_t 116
tmalVrendEia708InstanceSetup_t 116
tmVrendEia708Fonts_t 118
tmVrendEia708FontStyles_t 119
tmVrendEia708AR_t 120
tmVrendEia708ServDecSetup_t 120

114 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708Capabilities_t

typedef tmalVrendEia7@8Capabilities_t
tmolVrendEia7@8Capabilities_t,
*ptmolVrendEia7@8Capabilities_t;

tmalVrendEia708Capabilities_t

typedef struct {
ptsaDefaultCapabilities_t defaultCapabilities;
} tmalVrendEia7@8Capabilities_t, *ptmalVrendEia7@8Capabilities_t;

Fields

defaultCapabilities TSA default capabilities

Description

This structure passes the DTVCC Decoder (EIA-708) capabilities to the application.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 115

Chapter 4: Closed-Captioning (EIA-708) API

tmalVrendEia708InstanceSetup_t

typedef struct {
ptsaDefaultInstanceSetup_t defaultSetup;

Int gfxInstance;
ptmVrendEia7@8Fonts_t fontRefs;
tsaYUVColor_t colorKey;

Int wmInstance;
ptmVideoFormat_t displayFormat;

Int safeAreaScaleX;

Int safeAreaScaleY;

Int safeAreaOffsetX;

Int safeAreaOffsetY;

UInt timeOutDelay;

Ulnt frameRate;

Bool reportSoftErrors;

Bool autoResyncOnStreamkErr;
tmVrendEia7@8AR_t dispAspectRatio;

Bool displayActive;

Int numServDecChannels;
Int displayChannel;
tmVrendEia7@8ServDecSetup_t chanSetups[2];

Bool servDatalnputTestMode;

} tmalVrendEia7@8InstanceSetup_t, *ptmalVrendEia7@8InstanceSetup_t;

tmolVrendEia708InstanceSetup_t

typedef tmalVrendEia7@8InstanceSetup_t
tmolVrendEia7@8InstanceSetup_t,
*ptmolVrendEia7@8InstanceSetup_t;

Fields

defaultSetup For compliance with TSA, this is a pointer to
structure of the standard type.

gfxInstance 2D library instance (required for output)

fontRefs 2D font reference

colorKey Transparent Color

wmInstance Window Manger instance (required for output)

displayFormat Format of WM BackPlane pkt

116 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

safeAreaScaleX
safeAreaScaleY
safeAreaOffsetX

safeAreaOffsetY

timeOutDelay

frameRate
reportSoftErrors
autoResyncOnStreamkErr
dispAspectRatio
displayActive

numServDecChannels

displayChannel
chanSetups[2]
servDatalnputTestMode

Description

Chapter 4: Closed-Captioning (EIA-708) API

These setup parameters (safeAreaScaleX, safeAr-
eaScaleY, safeAreaOffsetX and safeAreaOffsetY)
are for adjusting the safe area scale and offset.
Nominal safe area scale and offset is set to the
center 90% of the size of the WM Backplane
packet referenced by displayFormat (above).

1) The safeAreaScale is expressed as a % of dis-
playFormat pkt size.

2) The safeAreaOffset is expressed as a % of the
combined nominal safe area and the above scale
setting.

3) If safeAreaScale is set to a value = +10%, then
the safe area will occupy the whole of the display-
Format pkt size so safeAreaOffset settings will
have no effect.

Defines the time in seconds (default 1 min.)
between the last received packet on a decoder
channel and the automatic de-activation of that
channel. If the channel is currently being dis-
played then the display is also cleared.

Picture frame rate in frames/second.

Report non-fatal (soft) stream errors.

Re-sync when possible. stream corruption.
Aspect Ratio of display device.

Initial display state on/off.

Number of channels which should be simulta-
neously decoded (1 or 2).

Initial decoder display channel.
Initial settings for the channels.

TESTING ONLY: Set input data stream to be
DTVCC service (block) data (not DTVCC packets).

This structure passes the instance setup to the DTVCC Decoder (EIA-708).

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 117

Chapter 4: Closed-Captioning (EIA-708) API

tmVrendEia708Fonts_t

typedef struct {
ptmVrendEia7@8FontStyles_t
ptmVrendEia7@8FontStyles_t
ptmVrendEia7@8FontStyles_t
ptmVrendEia7@8FontStyles_t
ptmVrendEia7@8FontStyles_t
ptmVrendEia7@8FontStyles_t

TargePlain;
Targeltalic;
stdPTain;
stdItalic;
smallPlain;
smallltalic;

} tmVrendEia7@8Fonts_t, *ptmVrendEia7@8Fonts_t;

Fields

TargePlain
largeltalic
stdPTain
stdItalic
smallPlain

smallltalic

Description

Large plain fonts.
Large Italic fonts.
Standard size plain fonts.
Standard size italic fonts.
Small Plain fonts.

Small Italic fonts.

This structure is used to define the various EIA-708 fonts sizes.

Note

Only standard sized (Plain/Italic) fonts are currently supported.

118 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

tmVrendEia708FontStyles_t

typedef struct {
ptsa2DFont_t defaultStyle;
ptsa2DFont_t monoSerif;
ptsa2DFont_t propSerif;
ptsa2DFont_t mono;
ptsa2DFont_t prop;
ptsa2DFont_t casual;
ptsa2DFont_t cursive;
ptsa2DFont_t smallCaps;
} tmVrendEia7@8FontStyles_t, *ptmVrendEia7@8FontStyles_t;

Fields

defaultStyle Default font.

monoSerif Font in mono-spaced serif style.
propSerif Font in proportionally spaced serif style.
mono Font in mono-spaced style.

prop Font in proportionally spaced style.
casual Font in casual style.

cursive Font in cursive style.

smallCaps Font in small caps style.

Description

This structure defines the various EIA-708 font styles.

Note
Only default style is currently supported.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 119

Chapter 4: Closed-Captioning (EIA-708) API

tmVrendEia708AR _t

typedef enum {
VRENDEIA708_AR_4T03 g,
VRENDEIA7@8_AR_16T09 =1

} tmVrendEia7@8AR_t, *ptmVrendEia7@8AR_t;

Values

VRENDEIA7@08_AR_4T03 The Aspect Ratio is 4 to 3.
VRENDEIA7@8_AR_16T09 The Aspect Ratio is 16 to 9.
Description

This enumerates aspect ratios of the display as well as the decoder channels.

tmVrendEia708ServDecSetup_t

typedef struct {
Bool chanActive;
Int servNum;
tmVrendEia7@8AR_t srcAspectRatio;
} tmVrendEia7@8ServDecSetup_t, *ptmVrendEia7@08ServDecSetup_t;

Fields

channActive Activates/deactivates decoding.
servNum Caption service (1-6).
srcAspectRatio Caption Aspect Ratio.
Description

This structure defines the settings for an individual channel.

120 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

tmVrendEia708ConfigCommands_t

typedef enum {

VRENDEIA7@8_CONFIG_SET_SERV_NUM = tsaCmdUserBase + @x41,
VRENDEIA7@8_CONFIG_SET_SOURCE_AR = tsaCmdUserBase + @x42,
VRENDEIA7@8_CONFIG_SET_CHANNEL_ON = tsaCmdUserBase + @x43,
VRENDEIA7@08_CONFIG_SET_CHANNEL_OFF = tsaCmdUserBase + @x44,
VRENDEIA7@08_CONFIG_SET_DISPLAY_CHANNEL = tsaCmdUserBase + @x45,
VRENDETA7@8_CONFIG_SET_DISPLAY_ON = tsaCmdUserBase + 0x46,
VRENDEIA7@8_CONFIG_SET_DISPLAY_OFF = tsaCmdUserBase + @x47,
VRENDEIA7@08_CONFIG_REFRESH_DISPLAY = tsaCmdUserBase + @x48,
VRENDEIA7@8_CONFIG_SET_FRAME_RATE = tsaCmdUserBase + @x49,
VRENDETA7@8_CONFIG_RESET_CHANNELS = tsaCmdUserBase + @x4a,
VRENDEIA7@8_CONFIG_GET_SERV_NUM = tsaCmdUserBase + @x81,
VRENDEIA7@08_CONFIG_GET_SOURCE_AR = tsaCmdUserBase + @x82,
VRENDEIA7@08_CONFIG_GET_CHANNEL_ACTIVE = tsaCmdUserBase + 0x83,
VRENDEIA7@8_CONFIG_GET_DISPLAY_INFO = tsaCmdUserBase + 0x84,
VRENDEIA7@8_CONFIG_GET_FRAME_RATE = tsaCmdUserBase + @x85,

} tmVrendEia7@8ConfigCommands_t, *ptmVrendEia7@8ConfigCommands_t;

Values

VRENDEIA7@8_CONFIG_SET_SERV_NUM Sets caption service number to be decoded
(selected from available list in PMT) on specified
service decoder channel (relevant service data
extracted from supplied DTVCC packet data).
Input Parameters: servDecChannel, p.servNum
Output Parameters: none

VRENDEIA7@8_CONFIG_GET_SERV_NUM Input Parameters: servDecChannel
Output Parameters: p.servNum

VRENDEIA7@8_CONFIG_SET_SOURCE_AR
Sets intended aspect ratio for caption service
being decoded on specified service decoder chan-
nel (from PMT data).

Input Parameters: servDecChannel, p.srcAspect-
Ratio

Output Parameters: none

VRENDEIA7@8_CONFIG_GET_SOURCE_AR
Input Parameters: servDecChannel
Output Parameters: p.srcAspectRatio

VRENDEIA7@8_CONFIG_SET_CHANNEL_ON
Turns specified caption channel ON (causes decod-
ing from selected DTVCC service data to be per-
formed on specified channel).

Input Parameters: servDecChannel
Output Parameters: none

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 121

Chapter 4: Closed-Captioning (EIA-708) API

VRENDEIA7@8_CONFIG_SET_CHANNEL_OFF
Turns specified caption channel OFF (causes
decoding to be disabled on specified channel).

Input Parameters: servDecChannel
Output Parameters: none

VRENDEIA7@8_CONFIG_GET_CHANNEL_ACTIVE
Input Parameters: servDecChannel
Output Parameters: p.chanActive

VRENDEIA7@8_CONFIG_SET_DISPLAY_CHANNEL
Sets which service channel owns the output dis-
play.
Input Parameters: servDecChannel
Output Parameters: none

VRENDEIA7@8_CONFIG_SET_DISPLAY_ON
Turns current caption display ON (causes output
display to be rendered according to decoded/
stored caption data for current channel).

Input Parameters: none
Output Parameters: none

VRENDEIA7@8_CONFIG_SET_DISPLAY_OFF
Turns current caption display OFF (clears all active
windows, decoding and storage of caption data
continues but output display is not rendered).

Input Parameters: none
Output Parameters: none

VRENDEIA708_CONFIG_GET_DISPLAY_INFO
Input Parameters: none
Output Parameters: servDecChannel, p.display-
Active

VRENDEIA7@8_CONFIG_SET_FRAME_RATE
Sets the frame rate in frames/second. Some
dynamic effects e.g. the flash frequency is derived
from the frame rate.
Input Parameters: p.frameRate
Output Parameters: none
VRENDEIA7@8_CONFIG_GET_FRAME_RATE
Input Parameters: none
Output Parameters: p.frameRate

122 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

VRENDEIA7@8_CONFIG_REFRESH_DISPLAY
Refreshes current output display (clears and then
redraws all active windows according to decoded/
stored caption data for current channel).

Input Parameters: none
Output Parameters: none

VRENDEIA7@8_CONFIG_RESET_CHANNELS
Resets all decoder channels and clears the display.

Input Parameters: none
Output Parameters: none

Description

This enum is used in tmolVrendEia708InstanceConfig on page 131. The input and output
parameter (p.xxxx) are described in tmVrendEia708ConfigParams_t on page 124.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 123

Chapter 4: Closed-Captioning (EIA-708) API

tmVrendEia708ConfigParams_t

typedef struct {
Int servDecChannel;

union {
Int servNum;
tmVrendEia7@8AR_t srcAspectRatio;
Bool chanActive;
Bool displayActive;
UInt frameRate;
}ops
} tmVrendEia7@8ConfigParams_t, *ptmVrendEia7@8ConfigParams_t;
Fields
servDecChannel Service decoder channel number.
servNum Caption service (1-6).
srcAspectRatio Caption Aspect Ratio.
chanActive Set the channel to active or inactive.
displayActive Set the display to active or inactive.
frameRate Define the frame rate of the video.
Description

This structure is used to pass additional parameters to tmolVrendEia708InstanceConfig on
page 131.

124 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

DTVCC Decoder (EIA-708) API Functions

This section contains the DTVCC Decoder API function description.

Name Page
tmolVrendEia708GetCapabilities 126
tmolVrendEia7080pen 127
tmolVrendEia708Close 127
tmolVrendEia708GetInstanceSetup 128
tmolVrendEia708InstanceSetup 129
tmolVrendEia708Start 130
tmolVrendEia708Stop 130
tmolVrendEia708InstanceConfig 131
tmolVrendEia708FieldVsync 132

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 125

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708GetCapabilities

tmLibappErr_t tmalVrendEia708GetCapabilities(
ptmalVrendEia7@8Capabilities_t *pCap
)3

Parameters

pCap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Gets the capabilities of the DTVCC Decoder (EIA-708).

126 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia7080pen

tmLibappErr_t tmalVrendEia7@80pen(
Int *instance
)3

Parameters

instance Address of an integer that will hold the instance
value for this DTVCC Decoder (EIA-708).

Return Codes

TMLIBAPP_OK Success.

Description

The open function creates an instance of the DTVCC Decoder (EIA-708) and informs the
user of its instance ID. The DTVCC Decoder (EIA-708) does not support multiple
instances.

tmolVrendEia708Close

tmLibappErr_t tmalVrendEia7@8Close(
Int instance
)3

Parameters

instance The instance, as opened by
tmolVrendEia7080pen.

Return Codes

TMLIBAPP_OK Success.

other See tsaClockClose.

Description

Closes a stopped instance of the DTVCC Decoder (EIA-708).

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 127

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708GetinstanceSetup

tmLibappErr_t tmolVrendEia7@8GetInstanceSetup(
Int instance,
ptmolVrendEia7@8InstanceSetup_t *setup

)3

Parameters

instance Instance previously opened by
tmolVrendEia7080pen.

setup Pointer to a DTVCC Decoder (EIA-708) setup data
structure, see tmolVrendEia708InstanceSetup_t on
page 116.

Return Codes

TMLIBAPP_OK Success.

Description

This function is used during initialization of the decoder. It returns the default settings
for the decoder instance. The setup can then be further initialized by the application
which normally is filling all the queues and the progress and error functions and then
passed to tmolVrendEia708InstanceSetup.

128 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708InstanceSetup

tmLibappErr_t tmalVrendEia7@8InstanceSetup(
Int instance,
tmalVrendEia7@8InstanceSetup_t *setup

)3

Parameters

instance Instance previously opened by
‘tmolVrendEia7080pen’

setup Pointer to a DTVCC Decoder (EIA-708) setup data
structure, see tmolVrendEia708InstanceSetup_t on
page 116.

Return Codes

TMLIBAPP_OK Success

VRENDEIA7@8_ERR_SETUP_SERV_NUM The service number is invalid (legal values are
from 1 to 6).

VRENDEIA7@8_ERR_SETUP_SRC_AR_TYPE
The aspect ratio of a source channel is wrong, see
tmVrendEia708AR_t on page 120.
VRENDEIA7@8_ERR_SETUP_DISP_AR_TYPE
The aspect ratio of the display is wrong, see
tmVrendEia708AR_t‘ on page 120.
VRENDEIA7@8_ERR_SETUP_DISPLAY_CHAN
The display channel is invalid. Valid channels are
1 and 2.
VRENDEIA7@8_ERR_SETUP_NUM_SERV_CHANS
The number of service channels is invalid. A valid
number is 1 and 2.

VRENDEIA7@8_ERR_INTERNAL An internal error has occurred.
TMLIBAPP_ERR_MEMALLOC_FAILED The required memory could not be allocated.

Description

The instance previously opened by tmolVrendEia7080pen is set up. Memory is allocated
to store run-time instance data. The instance is marked as setup. tmolVrendEia708Setup
should be called only once for each instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 129

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708Start

tmLibappErr_t tmalVrendEia7@8Start(
Int instance
)3

Parameters

instance Instance previously opened by
tmolVrendEia7080pen.

Return Codes

TMLIBAPP_OK Success.

Description

The DTVCC Decoder (EIA-708) represented by its instance ID is started. An independent
task to execute the decoder code is started.

tmolVrendEia708Stop

tmLibappErr_t tmalVrendEia7@8Stop(
Int instance
)3

Parameters

instance Instance previously opened by
tmolVrendEia7080pen.

Return Codes

TMLIBAPP_OK Success.

Description

The DTVCC Decoder (EIA-708) represented by the instance ID is stopped. All packets
held by the decoder are returned to their respective queues, and the decoder exits its pro-
cessing loop in accordance with standard TSSA guidelines.

130 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708InstanceConfig

tmLibappErr_t tmalVrendEia7@8InstanceConfig(
Int instance,
ptsaControlArgs_t args

)3

Parameters

instance Instance previously opened by
tmolVrendEia7080pen.

args Pointer to a control structure (TSSA) used to mod-
ify the operation of the DTVCC Decoder (EIA-
708).

Return Codes

TMLIBAPP_OK Success.

The following codes are returned via args—>retval.

VRENDEIA7@8_ERR_CONFIG_SERV_CHAN_NUM
The service channel number is invalid. Valid
numbers are 1 or 2.
VRENDEIA7@8_ERR_CONFIG_SRC_AR_TYPE
The aspect ratio of the source channel is invalid,
see tmVrendEia708AR_t on page 120.
VRENDEIA7@8_ERR_CONFIG_CODE The configuration command is invalid, see
tmVrendEia708ConfigCommands_t on page 121.

VRENDEIA7@8_ERR_CONFIG_SERV_NUM The display service number is invalid. Valid ser-
vice numbers are 1-6.

Description

This function prepares a command to be sent to the DTVCC Decoder (EIA-708) task,
which then synchronously reacts on it. The command is sent with default priority. The
command (see tmVrendEia708ConfigCommands_t on page 121) is passed in the com-
mand field of the args structure. A possible return value is returned via the parameter
field of the args structure.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 131

Chapter 4: Closed-Captioning (EIA-708) API

tmolVrendEia708FieldVsync

tmLibappErr_t tmalVrendEia7@8FieldVsync(
Int instance,
Bool evenField,
Bool *screenNeedsUpdate

);

Parameters

instance Instance, previously opened by tmolVrendEia708-
Open.

evenField Current displayed video field.

screenNeedsUpdate Request to update the whole screen.

Return Codes

TMLIBAPP_OK Success

Description

Some of the DTVCC features have a dynamic behavior. This function is used to synchro-
nize the dynamic DTVCC effects of the video display.

It needs to be called once a field. A call during the VBI (Vertical Blank Interval) is recom-
mended.

132

Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5
HTML Parser (HtmlParser) API

Topic Page
Overview 134
HTML Data Structures 141
HTML Enumerated Types 157
HTML API Data Structures 160
HTML API Functions 165
HTML Tags Supported 174
Note

This component library is available as a part of the TriMedia DTV software
system.It is not included with the basic TriMedia SDE, but it is available
under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 133

Chapter 5: HTML Parser (HtmlParser) API

Overview

The TriMedia HTML Parser library gives your application the ability to parse HTML
(hypertext markup language) which can then be passed to the HTML renderer library for
display. The library is based on the HTML 3.2 standard' and complies with the TriMedia
Software Architecture (TSA).

In addition to the HTML 3.2 standard, the parser provides several extensions.

= In INPUT tag, in addition to the input type of text fields, radio buttons, check boxes,
etc., an input type of button can beused as a general purpose button such as push
button and toggle button.

= An HSLIDER (HTML tag for horizontal slider) makes it possible to specify sliders (such
as volume control bar) in HTML pages.

= The parser supports transparent background for the HTML document body. A “trans-
parent” color (RGB color values) is chosen in the bgcolor attribute of the BODY tag.
This “transparent” color (in tsa2D color) is also needed to set the transparent field in
the HTML renderer setup structure. See the HTML Renderer API document for more
information.

This is the HTML parser intended for use in a stand-alone DTV system. HTML pages can
either be stored statically in a database or generated dynamically from the applications.

Currently, the HtmlParser does not support re-entrancy. Re-entrancy and other issues
will be addressed in a future release. In this document, HtmlParser is the name given to
the TriMedia HTML parser library.

Modules

The HtmlParser consists of several modules, each performs a different function in the
HTML parser. These modules are:

» Core Parser—converts HTML into an internal token list.

= Layout—converts the token list into a display list that specifies size and position of
each HTML token to be displayed. In order to determine the size and position of
HTML tokens, it must know the size of the screen, the sizes of text strings according
to available fonts, and the sizes of any images or widgets. That information is
retrieved from the object manager.

= Navigation—builds a hotspot list and name list for navigation within the display
device. Hotspot list contains hyperlinks in an HTML that jump to another page
whereas name list contains hyperlinks for positions within the page.

1. At present, the HTML Parser is not entirely compliant with the HTML 3.2 standard. See the section HTML
Tags Supported. The HTML 3.2 standard will be fully supported in a future release.

134 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

Header Files

The header file for HtmlParser is tsaHtmlParser.h. However, there are data types shared
between the HtmlParser library and the HtmlIRender library. These shared data types are
declared in tsaHtml.h and described in this chapter and are not duplicated in the HTML
Renderer API chapter. You can distinguish these data types from the data types found in
tsaHtmlParser since their prefix is tsaHtml instead of tsaHtmlParser.

Resource Files in the Database

Besides the HTML pages, the TriMedia fonts (TM font) and some widget images are
important to the HTML parser. Both the fonts and widget images are always put into the
particular directories where the HTML parser gets the resources. Suppose HTML_DIR is
the root directory where all the resources are put into it. The figure below shows a possi-
ble directory structure in the database. The following three sections discuss how and
what to put into this directory. Note that the fonts, images, widgets and stock subdirec-
tories are required by the library whereas the html_srcl and html_src2 are provided by
users. For the information about TM fonts, see Chapter 2, 2D Graphics API. To learn how
to build a database, see Chapter 7, Object Manager (OM) API for details.

HTML_DIR

html_src1

html_src2

fonts

images
widgets
stock

index.htm

HTML Pages

These are the HTML files. The file extension can be either ‘htm’ or ‘html’. These files can
be put under HTML_DIR or its subdirectories. The images associated with those HTML
files can also be put in the same directory (for example, html_srcl).

TM Fonts

For each TM font, there are two associated font files: XXX.mtr (font characteristic) and
XXX.bit (font bitmap). Currently, HTML parser supports TM font only. By default, the
font files are put under the subdirectory of HTML_DIR/fonts. Since the HTML parser
needs the font sizes (absolute font size) ranging from 1 to 7, TM font of sizes 12, 14, 16,
18, 20, 22 and 24 are used respectively. In addition to the different font sizes, different
font styles are also needed.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 135

Chapter 5: HTML Parser (HtmlParser) API

The followings are the font requirements:

= Default font uses plain style and size of 14 (plain14.mtr and plain14.bit).
= Regular texts need plain style fonts.

= ADDRESS, I tags need italic style fonts (e.g. italic14.mtr and italic14.bit).

= HI1, H2,..., H6, B and STRONG tags need bold style fonts (e.g. bold14.mtr and
bold14.bit).

= PRE and TT tags need fixed style fonts (e.g. fixed14.mtr and fixed14.bit).

You are advised to put these fonts in the directory if the tags described above are used,
otherwise an error of OM_ERR_OBJECT_NOT_IN_DATABASE is returned from ‘get object’
function when tsaHtmlParserInsatnceSetup is called.

Widget Images

Widget images are needed when INPUT, SELECT, TEXTAREA and HSLIDER fields are used
within FROM elements. INPUT can be used for a variety of from fields including single
line text fields, password fields, checkboxes, buttons, radio buttons, submit and reset
buttons and image buttons. SELECT elements are used for single or multiple choice
menus. TEXTAREA elements are used to define multi-line text fields. The HSLIDER ele-
ments are used to define a horizontal slider such as volume control slider (will be dis-
cussed in the following section). Note that HSLIDER is TriMedia HTML parser extension
which is not supported by the HTML 3.2 Reference Specification. By default, all the wid-
get images are put under a directory of HTML_DIR/images/widgets. There are a total of
13 widget images in GIF file format. The associated file(s) for each widget is/are:

= Checkbox
cb_off.gif—box without check
cb_on.gif—box with check

= Horizontal Slider
hs_l.gif—the left part of the horizontal slider
hs_m.gif—the middle part of the horizontal slider
hs_r.gif—the right part of the horizontal slider
hs_sl.gif—the slider

= Radio Button
rb_off.gif—'oft’ radio button
rb_on.gif—‘on’ radio button

= Select Menu
sel_dn.gif—the arrow pointing downward

sel_Ift.gif—the arrow pointing to the left

136 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

sel_rgt.gif—the arrow pointing to the right
sel_up.gif—the arrow pointing upward

» Text Cursor
tx_caret.gif—the text box cursor

It is possible to have user designed widget images, but the file names should not be
changed.

Other Image Files

Besides the widget images, there are some images for the list (Unordered Lists, UL) item.
The filenames of the bullet image on UL and LI elements are:

» licircle.gif—circle bullet.
= lidisc.gif—disc bullet.
= lisquare.gif—square bullet.

Moreover, if an image cannot be found from the database, an image (broken.gif) will be
used instead.

The default path to put these images is HTML_DIR/images/stock.

TriMedia Extensions to the HTML

The syntax of the two TriMedia extensions, which are not supported in the HTML 3.2
standard, to the HTML are presented here.

Button in INPUT tag

In INPUT tag, in addition to the input type of text fields, radio buttons, check boxes,
etc., a input type of button is added which is used as a general purpose button such as
push button and toggle button. The usage of this type attribute is the same as the others
defined in the HTML 3.2 standard. The command is:

<INPUT type=button name=toggle value="toggle">

Horizontal Slider

This horizontal slider is a device that could be used as, for example, a volume
control slider. The start tag of the horizontal slider is <HSLIDER> and there is
no associated end tag. For example, to put a horizontal slider in a HTML page
The command is this:
<HSLIDER name="volume_bar" pixwidth=100 nopos=10 curpos=5>
There are four attributes for the HSLIDER tag. They are:

= name is the name that is assigned to the horizontal slider.

= pixwidth is the width of the horizontal slider in units of pixel.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 137

Chapter 5: HTML Parser (HtmlParser) API

= nopos is the number of positions of the slider.
= curpos is the current position of the slider.

Since Horizontal slider is designed as a form field, HSLIDER should be used within FORM
elements. For example, the HTML code segment could be
<FORM>
<HSLIDER name="a_slider" pixwidth=108 nopos=2@ curpos=1>
<pP>

<HSLIDER name="b_slider" pixwidth=108 nopos=18 curpos=8>
<p>

</FORM>

How to Use the HTML Parser and HTML Renderer Libraries

This section describes the procedure to use the HTML parser and the HTML renderer
APIs. Since both the HTML parser and the HTML renderer work together to perform the
parsing, rendering, and navigating features, it is good to discuss these two libraries in
one section. For information about the TriMedia HTML renderer API, please see
Chapter 6, HTML Renderer (HtmlRender) API. This is the procedure:

1. Set up the instances of the 2D Graphics, Window Manager, Object Manager and Wid-
get libraries. These instances are required for the HTML parser instance and/or the
HTML renderer instance.

2. Create an instance of the HTML parser/renderer library by calling tsaHtmIParserO-
pen/tsaHtmIRenderOpen.

3. Call tsaHtmlParserGetInstanceSetup/tsaHtmlRenderGetInstanceSetup to get the
instance setup structure.

4. Fill in any non-default setup values to the parser/renderer instance.

5. Call tsaHtmlParserSetupInstance/tsaHtmIRenderSetupInstance to complete the
instance setup.

After obtaining a valid HTML parser/renderer library instance, parse HTML pages and

navigate hotspot links by calling the parser and renderer APIs. For example,

1. Call tsaHtmlParserLoadUrl/tsaHtmlParserLoadHtml to get a HTML page specified by a
particular URL or a HTML buffer generated by the application. Here the page is parsed
and the associated render, hotspot and named lists are generated. A pointer to the
parser frame state (of type tsaHtmlParserFrameState_t) data structure is returned.

2. The data structure of the parser frame state is used for the HTML renderer. A render
frame state is created and returned by calling tsaHtmIRenderFrameStateCreate.

3. Call tsaHtmlRenderRenderFrame to render the HTML page. By default, the first
hotspot, if any, on the page is highlighted.

138 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

Moreover, the HTML renderer also has several navigation and ‘get information’ func-
tions. These functions can be called if necessary.

HTML Renderer Navigation Functions

= tsaHtmlRenderHotspot
» tsaHtmlRenderFollowNamedLink

» tsaHtmlRenderScrollScreen

HTML Renderer ‘Get Information’ Functions

= tsaHtmlRenderGetFrameld

= tsaHtmlRenderGetNumHotspots

= tsaHtmlRenderGetHotspot

= tsaHtmlRenderGetCurrentHotspot

To close the HTML parser and the HTML renderer instances:

1. Call tsaHtmIRenderFrameStateDestroy to free the memory allocated for the HTML
renderer and a pointer to the parser state is returned which is used in the step 2.

2. Call tsaHtmlParserUnload to free the memory allocated for the parser frame state
obtained from step 1.

3. Call tsaHtmlParserClose/tsaHtmIRenderClose to close the instance.

Example (exHtml) Overview

exHtml demonstrates the TriMedia HtmlParser/HtmIRender components, which uses the
TriMedia WM, 2D, Widgets, and OM components. It is designed as a simple web
browser, providing features such as back/forward page navigation, hotspot navigation,
and up/down scrolling. It also demonstrates the use of ‘widgets’, an HTML extension
specific to the TriMedia HtmlParser/HtmlRender libraries.

The example first sets up the WM/2D/Widgets/OM and HtmlParser/HtmlRender compo-
nents with the screen size, database information, hotspot rendering preference, widget
initialization and values to be loaded from the application, and callback functions for
packet creation/destruction. Specific memory functions can be passed to the HtmlParser
and HtmlRender. By default, it uses malloc, realloc, and free. exHtml parses each HTML
page, while keeping a history to be used in back/forward page navigation. It then renders
each frame in the page and processes hotspot navigation and widget control activation
commands.

The example starts with displaying an HTML page which is generated by the application.
The example code, a HTML generator in exHtml_ui.c, shows how to generate HTML on
the fly. The index page of the demo is shown after pressing Enter key. There are three

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 139

Chapter 5: HTML Parser (HtmlParser) API

hotspots. The first hotspot is an image (TriMedia Digital TV). By selecting this hotspot, a
table of contents is shown which has nine hotspots. Each hotspot in the page demon-
strates different HTML tags supported by the HtmlParser, such as inline image, table,
horizontal slider, etc.

Run-time user interactions are printed as the program begins. They are also printed in
instructions.htm, which is acessible from index.htm. Each command must be followed
by a return when using TriMedia tmman for PC-TriMedia communication. Please note
that this is tmman specific, and is not part of the HtmlParser library.

Wrapper Function: myGetObject

In exHtml, the Object Manager library is used to get the objects from its database. In
some cases, if the required object cannot be not found from the database, object man-
ager returns an error code of OM_ERR_OBJECT_NOT_FOUND to the application. However,
such scalar error message does not give enough information of which object (and its
URL) was not found from the database. In order to resolve this problem, a wrapper func-
tion, myGetObiject, is used instead of calling tsaOMGetObject directly. myGetObject
actually calls tsaOMGetObject and prints the error code with the associated URL if error
occurs.

The wrapper function can be found in the example/exHtml/exHtml_init.c.

140 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

HTML Data Structures

This section presents the shared HTML data structures.

Name Page
tsaHtmlIFont_t 142
tsaHtmIWidgetStateGeneric_t 142
tsaHtmIWidgetStateTextline_t 143
tsaHtmIWidgetStatePassword_t 144
tsaHtmIWidgetStateRadio_t 145
tsaHtmIWidgetStateCheckbox_t 146
tsaHtmIWidgetStateButton_t 147
tsaHtmIWidgetStateSubmit_t 148
tsaHtmIWidgetStateReset_t 149
tsaHtmIWidgetStatelmage_t 150
tsaHtmIWidgetStateFile_t 151
tsaHtmIWidgetStateHidden_t 152
tsaHtmIWidgetStateSelect_t 153
tsaHtmIWidgetStateTextarea_t 155
tsaHtmIWidgetStateSlider_t 156

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 141

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlFont_t

typedef struct {

ptsa2DFont_t font;
Int size;
Int color;

tsaHtmlFontStyle_t style;
} tsaHtmlFont_t, *ptsaHtmlFont_t;

Fields

font The TriMedia 2D graphics library font.
size The size of the font (HTML level 1-7).
color The color of the font (an HTML color).
style The style (e.g., bold) of the font.
Description

This data type specifies the font, color, and style to be used in rendering the text.

tsaHtmIWidgetStateGeneric_t

typedef struct {

Int id;
Char *name;
ptsa2DFont_t font;

} tsaHtmIWidgetStateGeneric_t;

Fields

id The widget ID.

name The property name of the widget.
font Pointer to the TM font used.
Description

This is the header of each widget state data structure.

142 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateTextline_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;

Char *text;

Int size;

Int maxLength;

Int firstChar;

Int cursorPos;

Bool showCursor;

Char *cursor_image_url;

} tsaHtmlWidgetStateTextline_t;

Fields

id The widget ID.

name The property name of the textline widget.

font Pointer to the TM font used.

text Pointer to the text (the value attribute of the
input field).

size Visible size of the text box (the size attribute of
the input field).

maxLength Maximum number of characters permitted to be
entered.

firstChar Offset of the first character that is visible in the
text box.

cursorPos Cursor position.

showCursor True, shows the cursor.

cursor_image_url URL of the cursor image.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to text.

For example, the HTML would be

<INPUT type=text size=40 name=user value="your name">

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 143

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStatePassword_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;

Char *text;

Int size;

Int maxLength;

Int firstChar;

Int cursorPos;

Bool showCursor;

Char *cursor_image_url;

} tsaHtmlWidgetStatePassword_t;

Fields

id The widget ID.

name The property name of the password widget.

font Pointer to the TM font used.

text Pointer to a text (the value attribute of the input
field).

size Visible size of the password box (the size attribute
of the input field).

maxLength Maximum number of characters permitted to be
entered.

firstChar Offset of the first character that is visible in the
text box.

cursorPos Cursor position.

showCursor True, shows the cursor.

cursor_image_url

Description

URL of the cursor image.

This data structure is used when using INPUT tag with the type attribute of the input

field set to password.

For example, the HTML would be

<INPUT type=password size=12 name=pw>

144 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlIWidgetStateRadio_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;

Char *value;

Bool checked;

Char *on_image_url;
Char *off_image_url;

} tsaHtmIWidgetStateRadio_t;

Fields

id The widget ID.

name The property name of the radio button.

font Pointer to the TM font used.

value A text string from the value attribute of the input
field.

checked Checked state of the radio button.

on_image_url URL of the ‘checked’ image.

off_image_url URL of the ‘unchecked’ image.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to radio.

For example, the HTML would be

<INPUT type=radio name=age value="@-12">

<INPUT type=radio name=age value="13-17">

<INPUT type=radio name=age value="18-25">

<INPUT type=radio name=age value="26-35" checked>
<INPUT type=radio name=age value="36-">

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 145

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateCheckbox_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;

Char *value;

Bool checked;

Char *on_image_url;
Char *off_image_url;

} tsaHtmIWidgetStateCheckbox_t;

Fields

id The widget ID.

name The property name of the checkbox widget.

font Pointer to the TM font used.

value A text string from the value attribute of the input
field.

checked Checked state of the checkbox.

on_image_url URL of the ‘checked’ image.

off_image_url URL of the ‘unchecked’ image.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to checkbox.

For example, the HTML would be

<INPUT type=checkbox checked name=uscitizen value=yes>

146 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateButton_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;
Char *value;

} tsaHtmIWidgetStateButton_t;

Fields

id The widget ID.

name The property name of the button widget.

font Pointer to the TM font used.

value A text string from the value attribute of the input
field.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to button.
For example, the HTML would be

<INPUT type=button name=toggle value="toggle">

Note that this is a TriMedia extension only which does not support in HTML 3.2 stan-
dard.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 147

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateSubmit_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;
Char *value;

} tsaHtmIWidgetStateSubmit_t;

Fields

id The widget ID.

name The property name of the submit widget.

font Pointer to the TM font used.

value A text string from the value attribute of the input
field.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to submit.

For example, the HTML would be
<INPUT type=submit value="Party on...">

148 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlIWidgetStateReset_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;
Char *value;

} tsaHtmIWidgetStateReset_t;

Fields

id The widget ID.

name The property name of the reset widget.

font Pointer to the TM font used.

value A text string from the value attribute of the input
field.

Description

This data structure is used when using INPUT tag with the type attribute of the input

field set to reset.

For example, the HTML would be

<INPUT type=submit value="Start over...">

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 149

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStatelmage_t

typedef struct {

Int
Char

ptsa2DFont_t

Char

tsaHtmlImageAlign_t

Int
Int

} tsaHtmIWidgetStateImage_t;

Fields

id
name
font
src

align

Description

The widget ID.

The property name of the image widget.
Pointer to the TM font used.

URL of the image.

Alignment of the image (the align attribute of the
input field).

X position of the click.

y position of the click.

This data structure is used when using INPUT tag with the type attribute of the input

field set to image.

For example, the HTML would be

<INPUT type=image name=point align=middle
src="file:\\\images\stock\map.gif">

Note the x and y values of the location clicked are not supported in the current release.

150 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateFile_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;

Char *text;

Int size;

Int maxLength;

Char *accept;

Int firstChar;

Int cursorPos;

Bool showCursor;

Char *cursor_image_url;
Char *browser_image_url;

} tsaHtmIWidgetStateFile_t;

Fields

id The widget ID.

name The property name of the file widget.

font Pointer to the TM font used.

text Pointer to the text (the value attribute of the
input field).

size Visible size of the text box (the size attribute of
the input field).

maxLength Maximum number of characters permitted to be
entered.

accept Pointer to the text which is specified by the
accept attribute of the input field.

firstChar Offset of the first character that is visible in the
text box.

cursorPos Cursor position.

showCursor True, shows the cursor.

cursor_image_url URL of the cursor image.

browser_image_url URL of the file browser image button.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to file.

For example, the HTML would be

<INPUT type=file name=photo size=2@ accept="image/*">

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 151

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateHidden_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;
Char *value;

} tsaHtmIWidgetStateHidden_t;

Fields

id The widget ID.

name The property name of the hidden widget.

font Pointer to the TM font used.

value A text string from the value attribute of the input
field.

Description

This data structure is used when using INPUT tag with the type attribute of the input
field set to hidden.

For example, the HTML would be
<INPUT type=hidden name=customerid value="c2415-345-8563">

152 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateSelect_t

typedef struct {

Int id;

Char *name;

ptsa2DFont_t font;

Int size;

Bool multiple;

Int numOptions;

Char **optionText;

Char **optionValue;

Bool *optionSelected;
Int maxLength;

Int topPos;

Int cursorPos;

Char *uparrow_image_url;
Char *dnarrow_image_url;
Char *larrow_image_url;
Char *rarrow_image_url;

} tsaHtmIWidgetStateSelect_t;

Fields

id The widget ID.

name The property name of the select widget.
font Pointer to the TM font used.

size Number of visible options.

multiple True, multiple selections.

numOptions
optionText
optionValue

optionSelected

Total number of options found from HTML.
An array of text for each option.
An array of value for each option.

An array to indicate which option is selected or
not.

maxLength Maximum number of characters allowed for each
option.

topPos Offset to the first option to be displayed first.

cursorPos Cursor position.

uparrow_image_url
dnarrow_image_url
Tarrow_image_url

rarrow_image_url

URL of the up arrow image.
URL of the down arrow image.
URL of the left arrow image.
URL of the right arrow image.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 153

Chapter 5: HTML Parser (HtmlParser) API

Description

This data structure is used when SELECT tag is used.
For example, the HTML would be

<SELECT name="flavor">

<OPTION value=a>Vanilla

<OPTION value=b>Strawberry
<OPTION value=c>Rum and Raisin
<OPTION value=d>Peach and Orange
</SELECT>

154 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateTextarea_t

typedef struct {

Int id;

Char *name;
ptsa2DFont_t font;

Char **text;

Int rows;

Int cols;

Int rowOffset;
Int col0ffset;
Int cursorRow;
Bool cursorCol;
Int showCursor;
Char *cursor_image_url;

} tsaHtmIWidgetStateTextarea_t;

Fields

id The widget ID.

name The property name of the textarea widget.

font Pointer to the TM font used.

text An array of text bracketed by TEXTAREA tag.

rows Number of visible text lines (the rows attribute).

cols The visible width in average character widths (the
cols attribute).

rowOffset Top visible row.

col0ffset First visible character for each row.

cursorRow Row position of the cursor.

cursorCol Cursor position within the row.

showCursor True, shows the cursor.

cursor_image_url URL of the cursor image.

Description

This data structure is used when TEXTAREA tag is used.

For example, the HTML would be

<TEXTAREA name=address rows=4 cols=40>
Your address here...
</TEXTAREA>

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 155

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIWidgetStateSlider_t

typedef struct {
Int
Char
ptsa2DFont_t
Int
Int
Int
Char
Char
Char
Char

id;
*name;

font;

pixWidth;

maxPositions;

curPosition;
*right_image_url;
*left_image_url;
*mid_image_url;
*tab_image_url;

} tsaHtmlWidgetStateSilder_t;

Fields

id The widget ID.

name The property name of the slider widget.

font Pointer to the TM font used.

pixWidth Slider width in pixel (the pixwidth attribute).

maxPositions

curPosition

right_image_url
Teft_image_url
mid_image_url

tab_image_url

Description

Total number of position (the nopos attribute).

Current position of the slider (the curpos
attribute).

URL of the right part of the slider.
URL of the left part of the slider.
URL of the middle part of the slider.
URL of the slider tab of the slider.

This data structure is used when SLIDER tag is used.

For example, the HTML would be

<HSLIDER name="volume_bar" pixwidth=10@ nopos=18 curpos=5>

Note that this is a TriMedia extension only which does not support in HTML 3.2 stan-

dard.

156 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

HTML Enumerated Types

This section presents the shared HTML enumerated types.

Name Page
tsaHtmIHotspotType_t 158
tsaHtmIFontStyle_t 159
tsaHtmlimageAlign_t 159

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 157

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIHotspotType_t

typedef enum {

tsaHtmlHotspotTypelLinkText = gx101,
tsaHtmlHotspotTypeLinkClient = @§x102,
tsaHtmlHotspotTypelLinkServer = @x103,
tsaHtmlHotspotTypelLinkError = @x104,

tsaHtmlHotspotTypeWidgetTextline = @x201,
tsaHtmlHotspotTypeWidgetPassword = @x202,

tsaHtmlHotspotTypeWidgetRadio = @x203,
tsaHtmlHotspotTypeWidgetCheckbox = @x204,
tsaHtmlHotspotTypeWidgetButton = @x2@5,
tsaHtmlHotspotTypeWidgetSubmit = 0x206,
tsaHtmlHotspotTypeWidgetReset = @x207,
tsaHtmlHotspotTypeWidgetFile = (Px208,
tsaHtmlHotspotTypeWidgetImage = @x209,
tsaHtmlHotspotTypeWidgetHidden = @x210,
tsaHtmlHotspotTypeWidgetSelect = @x211,
tsaHtmlHotspotTypeWidgetTextarea = @x212,
tsaHtmlHotspotTypeWidgetSlider = Px213,

} tsaHtmlHotspotType_t ;

Description

This enumerates all possible types of hotspots supported by TriMedia HTML.

158 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlFontStyle_t

typedef enum {

tsaHtmlFontStyleNormal = @,

tsaHtmlFontStyleBold = 1,
tsaHtmlFontStyleltalic = 2,
tsaHtmlFontStyleFixed = 4, // fixed pitch
tsaHtmlFontStyleStrike = 8, // strike-through
tsaHtmlFontStyleUnder = 16 // underlined

} tsaHtmlFontStyle_t;

Description

This enumerates all possible HTML font styles.

tsaHtmlimageAlign_t

typedef enum {
tsaHtmlATignImagelLeft,
tsaHtmlAlignImageRight,

tsaHtml1AlignImageTop,
tsaHtmlAlignImageMiddle,
tsaHtmlAlignImageBottom,

tsaHtmlAlignImageTexttop,

tsaHtmlAlignImageAbsmiddle,

tsaHtmlAlignImageBaseline,

tsaHtml1ATignImageAbsbottom
} tsaHtmlImageAlign_t;

Description

This enumerates various image alignment options.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 159

Chapter 5: HTML Parser (HtmlParser) API

HTML API Data Structures

This section presents the HtmlParser API data structures.

Name Page
tsaHtmIParserCapabilities_t 161
tsaHtmlParserlnstanceSetup_t 162
tsaHtmlIParserFrameState_t 163
tsaHtmlParserSetupFlags_t 164

160 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserCapabilities_t

typedef struct {
ptmolDefaultCapabilities_t defaultCapabilities;
} tsaHtmlParserCapabilities_t, *ptsaHtmlParserCapabilities_t;

Fields

defaultCapabilities Pointer to a default capabilities structure (see
tsa.h).

Description

The structure describes the capabilities of HtmlParser. The parser does not have any
other capabilities data other than those in defaultCapabilities.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 161

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserinstanceSetup_t

typedef struct {

Int tsa2DInst;
Int tsaOMInst;
tsaHtmlParserSetupFlags_t flags;
Int ScreenWidth;
Int ScreenHeight;
void *(*MallocFn)(size_t size);
void *(*ReallocFn)(void *ptr, size_t size);
void (*FreeFn)(void *ptr);
tmLibappErr_t (*GetObjectFn)(

Int instance,

Char *Url,

tsaOMType_t type,
Pointer *pObject);

} tsaHtmlParserInstanceSetup_t, *ptsaHtmlParserInstanceSetup_t;

Fields

tsa2DInst The 2D instance previously opened and set up by
the application. HtmlParser uses this to obtain
text rendering information.

tsaOMInst The OM (object manager) instance previously
opened and set up by the application. HtmlParser
uses this as first argument to the GetObjectFn call-
back.

ScreenWidth The display’s width. The default value is 720.

ScreenHeight The display’s height. The default value is 480.

MallocFn Callback memory allocation function.

ReallocFn Callback reallocation function.

Freefn Callback free function.

GetObjectFn Callback ‘get object’ function used by HtmlParser
to obtain database objects. Typically, you would
use the OM function tsaOMGetObject.

Description

The structure holds initial information, from the application, to set up the HtmlParser
instance. Not all members of this structure need be set before setting up the HtmlParser
instance. The HtmlParser will use default values for each member not set by the applica-

tion before instance setup.

162 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlIParserFrameState_t

typedef struct ParserFrameState_t {

Int frameld;

Char *url;

Int X3

Int Y

Int width;

Int height;

void *background;
Int textcolor;
Int Tinkcolor;
Int vlinkColor;
Int alinkColor;
Int endline;

char *renderlList;
char *widgetStates;
int numHotspots;
HOTSPOT *hotspotList;
int numAnchors;
NAMEDLINK *anchorlList;
int numSubFrames;

struct ParserFrameState_t *subFrames;
} tsaHtmlParserFrameState_t, *ptsaHtmlParserFrameState_t;

Fields

frameld Identifier for this frame.

url URL name of this page.

X X offset of the frame on screen.

y Y offset of the frame on screen.

width Width of the frame.

height Height of the frame.

The remaining fields are used by the HtmlRender library. You should not use their values
directly.

Description

This structure passes information from the HtmlParser library to the HtmIRender library.
Other than the fields described above, you should not inspect or store values in the
remaining fields.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 163

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserSetupFlags_t

typedef enum {
tsaHtmlParserFlagNone = @0x00000000,
} tsaHtmlParserSetupFlags_t;

Description

This enumerates flags in the instance setup structure. Currently there are no flags.

164 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

HTML API Functions

This section presents the HTML Parser API library functions.

Name Page
tsaHtmlParserGetCapabilities 166
tsaHtmIParserOpen 167
tsaHtmlParserGetinstanceSetup 168
tsaHtmlIParserInstanceSetup 169
tsaHtmlParserClose 170
tsaHtmlParserLoadUrl 171
tsaHtmlParserLoadHtml 172
tsaHtmlParserUnload 173

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 165

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserGetCapabilities

tmLibappErr_t tsaHtmlParserGetCapabilities(
tsaHtmlParserCapabilities_t **cap
)s

Parameters

cap Pointer to a variable in which to return a pointer
to the parser capabilities structure.

Return Codes

TMLIBAPP_OK Success.

Description

Returns a pointer to the parser capabilities.

166 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserOpen

tmLibappErr_t tsaHtmlParserOpen(
Int *instance
)3

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No instance is available. Because HtmlParser is
not yet re-entrant, only one instance can run at
any given time.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory was available to allocate
instance variables.

Description

Allocates an instance of the HTML parser. Initializes the setup structure to default values.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 167

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserGetinstanceSetup

tmLibappErr_t tsaHtmlParserGetInstanceSetup(
Int instance,
ptsaHtmlParserInstanceSetup_t *setup

)3

Parameters
instance The instance, as returned by tsaHtmlIParserOpen.
setup Pointer to a variable in which to return a pointer

to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.

Description

Returns the instance setup structure.

168 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserinstanceSetup

tmLibappErr_t tsaHtmlParserInstanceSetup(
Int instance,
tsaHtmlParserInstanceSetup_t *setup

)3

Parameters
instance The instance, as returned by tsaHtmlIParserOpen.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.

HTMLPARSER_ERR_NULL_WININST WMInst in setup structure not filled with valid
WM instance id.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

HTMLPARSER_ERR_NULL_GET_OBJECT_FUNC
No callback ‘get object’ function is available.

Description

Sets up the instance of HtmlParser according to the setup structure in the opened
instance. Loads a default font, a TM plain style font of the size of 14, from the object
manager database. Note that the database must have this font, plain14.mtr and
plain14.bit, otherwise an error, OM_ERR_OBJECT_NOT_IN_DATABASE is returned when
‘get object’ function is trying to load this font. (See Resource Files in the Database on page
135, Resource Files in the Database and Chapter 7, Object Manager (OM) API for details.)

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 169

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmIParserClose

tmLibappErr_t tsaHtmlParserClose(
Int instance
)3

Parameters

instance The instance, as returned by tsaHtmlIParserOpen.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.

Description

Deallocates the instance previously opened by tsaHtmlParserOpen. Closes the parser and
widget modules. Free all memory associated with the instance.

170 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlIParserLoadUrl

tmLibappErr_t tsaHtmlParserLoadUrl(
Int instance,
char *Url,
ptsaHtmlParserFrameState_t *frameStates
);

Parameters

instance The instance, as returned by tsaHtmIParserOpen.
Url The name of the HTML page to be loaded.
frameStates A pointer to a variable in which to return a

pointer to a parser frame state structure.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

HTMLPARSER_ERR_NULL_GET_OBJECT_FUNC
No callback ‘get object’ function is available.

Description

Loads the HTML page specified by the URL and returns a pointer to the parser state data
structure which contains the information from the HtmlParser library to the Html-
Render library.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 171

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserLoadHtml

tmLibappErr_t tsaHtmlParserLoadHtml(

Int instance,
char *Url,
ptsaHtmlParserFrameState_t *frameStates,
Char *data,
Int size
)3
Parameters
instance The instance, as returned by tsaHtmlParserOpen.
url The name of the HTML page, identifying the
page.
frameStates A pointer to a variable in which to return a parser
frame state structure.
data A pointer to the buffer containing the HTML page
description.
size The size of the buffer containing the HTML page

Return Codes

description.

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE

TMLIBAPP_ERR_NOT_SETUP
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.

Instance not previously opened.
Instance not previously set up.

Not enough memory.

Loads the HTML page in the buffer given as described by data and size and returns a
pointer to the parser state data structure which contains the information from the Html-
Parser library to the HtmlRender library.

172 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

tsaHtmlParserUnload

tmLibappErr_t tsaHtmlParserUnload(
Int instance,
ptsaHtmlParserFrameState_t frameStates
)3

Parameters
instance The instance.
frameStates A pointer to the parser frame state structure.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.
Description

Unloads the parser state which is returned from tsaHtmlRenderFrameStateDestroy.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 173

Chapter 5: HTML Parser (HtmlParser) API

HTML Tags Supported

The HtmlParser module currently supports most of HTML 3.2 with a few minor excep-
tions. The supported HTML tags and attributes are listed in Table 2. Those tags that are
not yet supported are listed in Table 3. Attributes marked with (N) are Netscape exten-
sions to the standard. It should be noted that the parser module will skip over any tag
that is not yet supported so pages containing these tags can be safely parsed without
generating any errors.

Table 2 Supported HTML Tags

tag attributes parser support layout support
A href yes yes

name yes

rel yes

rev yes

title yes
ADDRESS none yes yes
AREA alt yes

href

nohref

shape

coords
B none yes yes
BASE href yes yes

target (N) yes
BLOCKQUOTE none yes yes
BODY text yes yes

link yes

alink yes

vlink yes

bgcolor yes

background yes
BR clear yes yes
CAPTION align yes no
CENTER none yes yes
DD none yes yes
DL compact yes yes
DT none yes yes
FONT size yes yes

color yes

174 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

Table 2 Supported HTML Tags

FORM action yes yes
method yes
enctype yes
FRAME src yes yes
name yes
noresize yes
marginwidth yes
marginheight yes
FRAMESET rows yes yes
cols yes
border yes
bordercolor yes
framespacing yes
H1 align yes yes
H2 align yes yes
H3 align yes yes
H4 align yes yes
H5 align yes yes
H6 align yes yes
HEAD none yes yes
HR align yes yes
noshade
size
width
HSLIDER? name yes
pixWidth yes yes
nopos yes
curpos yes yes
HTML none yes yes
| none yes yes
IMG alt yes yes
src yes yes
align yes yes
width yes yes
height yes yes
border yes no
hspace yes no
vspace yes no
ismap yes yes
usemap yes yes

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

175

Chapter 5: HTML Parser (HtmlParser) API

Table 2 Supported HTML Tags
INPUT type yes yes
name yes
value yes
align yes
checked yes
src yes
size yes
maxlength yes
LI type yes yes
value
MAP name yes yes
NOFRAMES none yes yes
oL type yes yes
start yes yes
compact yes no
OPTION value yes yes
selected yes
P align yes yes
PRE width yes yes
SELECT name yes yes
size yes
multiple yes
STRONG none yes yes
TABLE align yes yes
width yes
border yes
bgcolor (N) yes
cellspacing yes
cellpadding yes
TD,TH align yes yes
valign yes yes
width yes yes
height yes yes
rowspan yes yes
colspan yes yes
bgcolor (N) yes yes
nowrap yes no
TEXTAREA name yes yes
cols yes
rows yes
TITLE none yes no

176 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 5: HTML Parser (HtmlParser) API

Table 2 Supported HTML Tags
TR align yes yes
valign yes
bgcolor (N) yes
T none yes yes
UL type yes yes
compact yes no
A. HSLIDER is not supported by the HTML 3.2 Reference Specification. It is the TriMedia HTML parser
extension.
Table 3 Unsupported HTML Tags
tag attribute parser support layout support
BIG none no no
CITE none no no
CODE none no no
DFN none no no
DIR none no no
DIV none no no
EM none no no
ISINDEX prompt no no
KBD none no no
LINK none no no
LISTING OBSOLETE no no
MENU none no no
META none no no
PARAM none no no
PLAINTEXT OBSOLETE no no
SAMP none no no
SCRIPT none no no
SMALL none no no
STRIKE none no no
STYLE none no no
SUB none no no
SUP none no no

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries

177

Chapter 5: HTML Parser (HtmlParser) API

Table 3 Unsupported HTML Tags
u none no no
VAR none no no
XMP OBSOLETE no no

178 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 6
HTML Renderer (HtmiRender) API

Topic Page
Overview 134
HTML Renderer API Data Structures 181
HTML Renderer API Functions 188

Note
This component library is available as a part of the TriMedia DTV software
system.It is not included with the basic TriMedia SDE, but it is available

under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 179

Chapter 6: HTML Renderer (HtmIRender) API

Overview

The TriMedia HTML renderer library processes the output of the HTML parser and calls
the TriMedia 2D graphics library and widget library to render text and images into video
buffers, which are then put on the screen by the TriMedia window manager. A window
manager instance is passed to the HtmlRender during setup.

HtmlRender supports navigation and the rendering of hotspots. The HtmlRender library
also supports vertical scrolling of the HTML page when the page height is greater than
the displayed window height.

The example for the HtmlRender library is exHtml which is discussed in the HtmlParser
API document.

Modules

The HtmlRender consists of several modules each performs a different function in the
HTML renderer. These modules are:

= HTML Page Rendering—renders the parsed HTML page to the HtmIRender frame.

= Navigation—navigates the hotspots and scrolls the rendered frame up/down if the
HTML page height is greater than the displayed window height.

= Get Information—gets the information about the renderer frame state and hotspots.

Header Files

The header file for the HtmlRender is tsaHtmIRender.h. However, there are data types
that are shared between the HTML parser and the HTML renderer. These data types are
declared in tsaHtml.h and are described in the HtmlParser chapter and not duplicated in
this chapter. Please see the TriMedia HtmlParser API chapter for descriptions of the
shared data types.

The TriMedia HTML Parser (HtmlParser)

Since the HtmlRender library uses the results, the parser state information, from the

HtmlParser library to perform the rendering and navigating features, users are advised to
read the HtmlParser API document also. Moreover, a section in the HtmlParser API docu-
ment is provided to describe how to use both the HTML parser and renderer libraries.

180 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

HTML Renderer APl Data Structures

This section presents the HtmIRender API data structures.

Name Page
tsaHtmIRenderCapabilities_t 182
tsaHtmIRenderInstanceSetup_t 183
tsaHtmIRenderWidgetState_t 185
tsaHtmIRenderSetupFlags_t 186
tsaHtmIRenderHotspotDir_t 186
tsaHtmIRenderScrollDir_t 187

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 181

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderCapabilities_t

typedef struct {
ptmolDefaultCapabilities_t defaultCapabilities;
} tsaHtmlRenderCapabilities_t, *ptsaHtmlRenderCapabilities_t;

Fields

defaultCapabilities Pointer to a default capabilities structure (see
tsa.h).

Description

This structure describes the capabilities of HtmlRender. HtmlRender does not have any
capabilities other than those in defaultCapabilities.

182 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmlIRenderinstanceSetup_t

typedef struct {

Int

Int

Int

Int
tsaHtmlRenderSetupFlags_t
Int

Int

Int

Int

void

void

void
ptmAvPacket_t

void
tmLibappErr_t

ptsa2DColor_t
Int

tsa2DInst;
tsaWMInst;
tsaOMInst;
tsaWidgetInst;
flags;
ScreenWidth;
ScreenHeight;
ScreenVOff;
ScreenHOff;

*(*MallocFn)(size_t size);
*(*ReallocFn)(void *ptr, size_t size);
(*FreeFn)(void *ptr);
(*CreatePkt)(

Int rootWinWidth,
Int rootWinHeight);

(*DestroyPkt) (ptmAvPacket_t pkt);
(*Get0ObjectFn)(

Int instance, Char *Url,
tsaOMType_t type,
Pointer *0Object);
transparent;

alpha;

} tsaHtmlRenderInstanceSetup_t, *ptsaHtmiRenderInstanceSetup_t;

Fields

tsa2DInst

tsaWMInst

tsaOMInst

tsaWidgetInst

ScreenWidth
ScreenHeight
ScreenVOff
ScreenHOff

The 2D instance previously opened and set up by
the application. HtmlRender uses this to draw the
HTML contents.

The WM (window manager) instance previously
opened and set up by the application. HtmlRen-
der uses this to manage the window (frames).
The OM (object manager) instance previously
opened and set up by the application. HtmlRen-
der uses this as first argument to the ‘get object’
callback function.

The Widget instance previously opened and setup
by the application. HtmlRender uses this to draw
the widgets.

The display’s width. The default value is 720.
The display’s height. The default value is 480.
The display’s vertical offset. The default value is O.

The display’s horizontal offset. The default value
is 0.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 183

Chapter 6: HTML Renderer (HtmIRender) API

MallocFn
ReallocFn
Freefn
CreatePkt

DestroyPkt

GetObjectFn

transparent

alpha

Description

Callback memory allocation function.
Callback reallocation function.
Callback free function.

Callback function to create a packet with specific
width, height, and YUV buffers.

Callback function to destroy a packet created by
CreatePkt.

Callback function to obtain database objects. Typ-
ically, you would use a wrapper function, myGet-

Object which calls tsaOMGetObject.

The tsa2D color used for the color “transparent.”

The alpha value applied to colors when the out-
put buffer type is vdfYUV422PlanarAlpha4.

The structure holds initial information, from the application, to set up the HtmlRender

instance.

184 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderWidgetState_t

typedef struct {
tsaWidget_t widgetld;

UInt32 winld;
Boolean displayed;
Pointer initState;
Int formld;

} tsaHtmlRenderWidgetState_t, *ptsaHtmlRenderWidgetState_t;

Fields

widgetId The Widget library object.

winId The Window Manager window ID.

displayed True if widget is displayed on screen currently.
initState The initial state of the widget objects.

formld The ID of the form of the widget.

Description

This is the structure returned by tsaHtmIRenderGetCurrentHotspot or tsaHtmIRender-
GetHotspot. Note that initState should be casted to a variable type specified by the
hotspot type.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 185

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderSetupFlags_t

typedef enum {
tsaHtm1RenderFlagNone Ox00000000,
tsaHtmlRenderFlagHotspotActionNone Ix00000001,
tsaHtmlRenderFlagHotspotActionBorder = Gx00000002,
} tsaHtmlRenderSetupFlags_t;

Description

This enumerates flags in the instance setup.

The value tsaHtmIRenderFlagHotspotActionBorder causes hotspots to be highlighted
with a rectangular border when activated.

tsaHtmIRenderHotspotDir_t

typedef enum {
tsaHtmlRenderHotspotFirst
tsaHtmlRenderHotspotUp
tsaHtmlRenderHotspotDown
tsaHtmlRenderHotspotLeft
tsaHtmlRenderHotspotRight
tsaHtmlRenderHotspotInView =
tsaHtmlRenderHotspotSelect

} tsaHtmlRenderHotspotDir_t;

1}
OORWwN RS

Description

This enumerates the directions of the next hotspot to activate. It is used as an argument
to tsaHtmIRenderRenderHotspot.

The value tsaHtmIRenderHotspotFirst activates the first hotspot on the HTML page.

The values
tsaHtmIRenderHotspotLeft tsaHtmI1RenderHotspotUp
tsaHtm1RenderHotspotRight tsaHtmTRenderHotspotDown

are directions in the two-dimensional list of hotspots, if one was created.

The value tsaHtmIRenderHotspotInView activates the first hotspot in current view, if the
HTML page is larger than the display window and the current view is not the top of the
HTML page.

The value tsaHtmIRenderHotspotSelect can be used to select any specific hotspot on the
HTML page.

186 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderScrolIDir_t

typedef enum {
tsaHtmlRenderScrol1Up
tsaHtmlRenderScrol1Down

} tsaHtmlRenderScrol1Dir_t;

o
= 2

Description

This enumerates the direction in which to scroll the screen. It is used as an argument to
the function, tsaHtmIRenderScrollScreen. Because long lines are wrapped during the lay-
out process, left and right scrolling is not necessary and not supported.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 187

Chapter 6: HTML Renderer (HtmIRender) API

HTML Renderer API Functions

This section presents the HTML Render API library functions.

Name Page
tsaHtmIRenderGetCapabilities 189
tsaHtmIRenderOpen 190
tsaHtmIRenderGetInstanceSetup 191
tsaHtmIRenderInstanceSetup 192
tsaHtmIRenderClose 193
tsaHtmIRenderFrameStateCreate 194
tsaHtmIRenderFrameStateDestroy 195
tsaHtmIRenderRenderFrame 196
tsaHtmIRenderRenderAllFrames 197
tsaHtmIRenderRenderHotspot 198
tsaHtmIRenderGetFrameld 199
tsaHtmIRenderGetCurrentHotspot 200
tsaHtmIRenderGetHotspot 201
tsaHtmIRenderGetNumHotspots 202
tsaHtmIRenderGetSubFrame 203
tsaHtmIRenderGetNumSubFrames 204
tsaHtmIRenderFollowNamedLink 205
tsaHtmIRenderScrollScreen 206

188 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetCapabilities

tmLibappErr_t tsaHtmlRenderGetCapabilities(
tsaHtmlRenderCapabilities_t **cap
)3

Parameters

cap Pointer to a variable in which to return a pointer
to a renderer capabilities structure.

Return Codes

TMLIBAPP_OK Success.

Description

Returns a pointer to the renderer capabilities.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 189

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderOpen

tmLibappErr_t tsaHtmlRenderOpen(
Int *instance
)3

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No instance is available. Because HtmIRender is
not yet re-entrant, only one instance can run at
any given time.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory was available to allocate
instance variables.

Description

Allocates an instance of HtmlRender. Initializes the setup structure to default values.

190 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmlIRenderGetinstanceSetup

tmLibappErr_t tsaHtmlRenderGetInstanceSetup(
Int instance,
ptsaHtmlRenderInstanceSetup_t *setup

)3

Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
setup Pointer to a variable in which to return a pointer

to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.

Description

Gets the instance setup structure.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 191

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmlIRenderlnstanceSetup

tmLibappErr_t tsaHtmlRenderInstanceSetup(

Int

tsaHtmlRenderInstanceSetup_t

)5

instance,
*setup

Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE
HTMLRENDER_ERR_NULL_WININST

TMLIBAPP_ERR_MEMALLOC_FAILED

HTMLRENDER_ERR_NULL_DATABASE

HTMLRENDER_ERR_NO_2D_INSTANCE

HTMLRENDER_ERR_NO_WM_INSTANCE

Success.
Instance not previously opened.

WMInst in setup structure not filled with valid
WM instance id.

Not enough memory available to allocate object
database.

Data in setup structure not filled with valid data-
base.

tsa2DInst instance in setup structure not filled
with valid 2D instance id.

tsaWMInst in setup structure not filled with valid
WM instance id.

HTMLRENDER_ERR_NO_WIDGET_INSTANCE

HTMLRENDER_ERR_NO_CREATEPKT_FUNC

tsaWidgetInst in setup structure not filled with
valid widget instance id.

CreatePkt in setup structure not filled with valid
‘create packet’ function pointer.

HTMLRENDER_ERR_NO_DESTROYPKT_FUNC

DestroyPkt in setup structure not filled with valid
‘destroy packet’ function pointer.

Sets up the instance of HtmlRender according to the setup structure in the opened

instance.

Description

Sets up the instance of HtmlRender according to the setup structure in the opened

instance.

192

Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderClose

tmLibappErr_t tsaHtmlRenderClose(
Int instance
)3

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.

Description

Deallocates the instance previously open in tsaHtmlRenderOpen. Frees all memory asso-
ciated with the instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 193

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderFrameStateCreate

tmLibappErr_t tsaHtmlRenderFrameStateCreate(

Int instance,

ptsaHtmlParserFrameState_t parserState,

Int *frameState
);
Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
parserState The parser state, from the HTML parser.
frameState Pointer to a variable in which to return the ren-

derer frame state.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory was available.

HTMLRENDER_ERR_INVALID_WIDGET_TYPE
The widget type is not supported. (see the Widget
API documentation for supported widget types).

Description

Creates the HtmlIRender frame state, given the HTML parser state. The returned Html-
Render frame state is a parameter in many of the HtmlRender API functions.

Note that once parserState is passed into tsaHtmlRenderFrameStateCreate, it cannot be
freed (calling tsaHtmlParserUnload) until the renderer is done (calling tsaHtmIRender-
FrameStateDestroy).

194 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderFrameStateDestroy

tmLibappErr_t tsaHtmlRenderFrameStateDestroy(
Int instance,
Int frameState,
ptsaHtmlParserFrameState_t *parserState
);

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmlRender frame state.

parserState The HtmlParser parser state.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.

Description

Destroys the HtmIRender frame state (deallocates memory) and returns the associated
parser state to the application so that the application can then call tsaHtmIParserUnload
to free the parserState data structure.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 195

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderRenderFrame

tmLibappErr_t tsaHtmlRenderRenderFrame(
Int instance,
Int frameState

)3

Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmIRender frame state.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory was available.

HTMLRENDER_ERR_NULL_GET_OBJECT_FUNC
No ‘get object’ function is available.

Description

Renders the frame given by frameState and displays the results on the screen. This func-
tion renders only the top frame in frameState. See also tsaHtmIRenderRenderAllFrames.

Note that tsaHtmIRenderRenderFrame will automatically render the first hotspot if one
exists in view, so the user does not have to make a call to tsaHtmIRenderHotspot after
calling tsaHtmIRenderRenderFrame.

196 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderRenderAllFrames

tmLibappErr_t tsaHtmlRenderRenderAl1Frames(
Int instance,
Int frameState

)3

Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmIRender frame state.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory was available.

HTMLRENDER_ERR_NULL_GET_OBJECT_FUNC
No ‘get object’ function is available.

Description

Renders the frame given by frameState and all of its subframes, and displays the results
on the screen.

Note that tsaHtmIRenderRenderAllFrames automatically renders the first hotspot if one
exists in view, so the user does not have to make a call to tsaHtmIRenderHotspot after
calling tsaHtmIRenderRenderAllFrames.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 197

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderRenderHotspot

tmLibappErr_t tsaHtmlRenderRenderHotspot(

Int instance,

Int frameState,

tsaHtmlRenderHotspotDir_t dir,

Int hotspotId
)3
Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmlIRender frame state.
dir The direction in which to find the next hotspot.
hotspotld The ID of the hotspot to be rendered (in the case

that dir is tsaHtmIRenderHotspotSelect).

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory available to allocate the his-
tory list for this page.
HTMLRENDER_ERR_NO_HOTSPOT The current page contains no hotspots.
HTMLRENDER_ERR_NO_HOTSPOT_ACTION
No hotspot action was specified during instance
setup.

HTMLRENDER_ERR_INVALID_HOTSPOT_ID
Hotspotld is invalid.

HTMLRENDER_ERR_INVALID_HOTSPOT_DIRECTION
dir is invalid.

Description

The function renders the next hotspot according to the direction specified. If an alink is
specified in the HTML page, the hotspot will show the alink color. If flags in the instance
setup is tsaHtmIRenderHotspotActionBorder, then the hotspot will be highlighted with a
box. See tsaHtmIRenderSetupFlags_t and tsaHtmIRenderHotspotDir_t.

198 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetFrameld

tmLibappErr_t tsaHtmlRenderGetFrameId(
Int instance,
Int frameState,
Int *framelD

);

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.

frameState The HtmlRender frame state.

framelD Pointer to a variable in which to return the frame
ID.

Return Codes

TMLIBAPP_OK Success.

Description

Returns the frame ID associated with the given HtmlRender frame state.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 199

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetCurrentHotspot

tmLibappErr_t tsaHtmlRenderGetCurrentHotspot(

Int

Int
tsaHtmlHotspotType_t
char

ptsaHtmlRenderWidgetState_t

)3

instance,
frameState,
*hotspotType,

**url,

*widgetState

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.

frameState The HtmlRender frame state.

hotspotType Pointer to a variable in which to return the
hotspot type.

url Pointer to a variable in which to return (a pointer
to) the URL string.

widgetState Pointer to a variable in which to return a pointer

Return Codes

to the widget state associated with the current
hotspot.

TMLIBAPP_OK
TMLIBAPP_ERR_NO_HOTSPOT

Description

Success.

No hotspot was found.

Returns the type, URL, and the widget state associated with the current hotspot.

Note that url is valid only for the hyperlinks and widgetState is valid only for widgets.

200 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetHotspot

tmLibappErr_t tsaHtmlRenderGetHotspot(

)5

Int instance,
Int frameState,
Int hotspotId,
tsaHtmlHotspotType_t *hotspotType,
char **url,

ptsaHtmlRenderWidgetState_t *widgetState

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.

frameState The HtmlRender frame state.

hotspotlId The ID of the hotspot to get.

hotspotType Pointer to a variable in which to return the
hotspot type.

url Pointer to a variable in which to return (a pointer
to) the URL string.

widgetState Pointer to a variable in which to return a pointer
to the widget state associated with the current
hotspot.

Return Codes

TMLIBAPP_OK Success.

HTMLRENDER_ERR_INVALID_HOTSPOT_ID

hotspotld is invalid.

Description

Returns the type, URL, and the widget state associated with the hotspot specified by
hotspotld.

Note that url is only valid fot the hyperlinks and widgetState is only valid for widgets.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 201

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetNumHotspots

tmLibappErr_t tsaHtmlRenderGetNumHotspots(
Int instance,
Int frameState,
Int *numHotspots

);

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.

frameState The HtmlIRender frameState.

numHotspots Pointer to a variable in which to return the num-
ber of hotspots in the current (parsed) HTML
page.

Return Codes

TMLIBAPP_OK Success.

Description

Returns the number of hotspots in the current parsed HTML page.

202 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetSubFrame

tmLibappErr_t tsaHtmlRenderGetSubFrame(
Int instance,
Int frameState,
Int frameld,
Int *subFrameState
)3

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmlIRender frameState.

frameld The ID of the frame to reference.

subFrameState Pointer to a variable in which to return the sub-

frame state.

Return Codes

TMLIBAPP_OK Success.

Description

Returns the subframe state associated with the given frame ID.

Note that the current HTML parser does not support frames. This function is provided
for future extension.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 203

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderGetNumSubFrames

tmLibappErr_t tsaHtmlRenderGetNumSubFrames(
Int instance,
Int frameState,
Int *numSubFrames

);

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmlIRender frameState.

numSubFrames Pointer to a variable in which to return the num-

ber of subframes in the current frame.

Return Codes

TMLIBAPP_OK Successful.

Description

Gets the number of subframes in the current frame.

Note that the current HTML parser does not support frames. This function is provided
for future extension.

204 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderFollowNamedLink

tmLibappErr_t tsaHtmlRenderFollowNamedLink(

Int instance,
Int frameState,
char *url
)
Parameters
instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmlIRender frameState.
url The named link.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.

HTMLRENDER_ERR_NAMED_LINK_NOT_FOUND
The URL was not found in list of named links.

Description

Follows a named link by scrolling the page (if the named location is not currently in
view) and then selecting the first hotspot following the named location. This function
should be called when the URL of a link hotspot contains #. Assuming the named loca-
tion is on the same page, the page does not have to be parsed again.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 205

Chapter 6: HTML Renderer (HtmIRender) API

tsaHtmIRenderScrollScreen

tmLibappErr_t tsaHtmlRenderScrollScreen(
Int instance,
Int frameState,
tsaHtmTRenderScrol1Dir_t direction
);

Parameters

instance The instance, as returned by tsaHtmIRenderOpen.
frameState The HtmlIRender frameState.

direction The direction in which to scroll the screen.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_INVALID_INSTANCE Instance not previously opened.
TMLIBAPP_ERR_NOT_SETUP Instance not previously set up.

HTMLRENDER_ERR_INVALID_SCROLL_DIRECTION
direction is invalid.

Description

Scrolls the screen up or down according to direction. If there is no additional image in
that direction, the function returns immediately. The first hotspot on the new part of the
page then becomes the current hotspot.

The image scrolls up or down in increments of the screen size.

206 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7
Object Manager (OM) API

Topic Page

Object Manager Overview 208

Object Manager API Data Structures 212

Object Manager APl Enumerated Types 215

Object Manager API Functions 217
Note

This component library is available as a part of the TriMedia DTV software
system.It is not included with the basic TriMedia SDE, but it is available
under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 207

Chapter 7: Object Manager (OM) API

Object Manager Overview

The TriMedia Object Manager (OM) library provides a way to retrieve the objects from a
database. The database must be built by an utility application called Object Manager Data-
base Builder (OMDB). Currently, the database supports only three type of objects: HTML
object, Image (both GIF and JPEG) object and Font (TM font only) object. The library
complies with TriMedia Software Architecture (TSA).

Object Manager

The interface of the OM is very simple. There is only one other function besides the basic
TSA functions. To request an object in the database, specify the location and the type of
the object. The OM then returns a pointer to the object data structure. Memory needed
for the object (including the necessary data structures) will have been allocated when the
database is loaded. The OM does not allocate memory except for instance variables. It
simply checks whether the requested object is in the database and returns a pointer to
the object if found. Otherwise, the OM returns an error code.

To use the object manager, follow these basic steps:
1. Create an instance of the object manager library by calling tsaOMtOpen.

2. Call tsaOMGetlInstanceSetup to get a copy of the instance setup structure. The field
ObjectData in the setup structure should point to the data array generated by the
OMDB (discussed below).

3. Complete the instance setup by calling tsaOMSetuplnstance.

After obtaining a valid object manager instance, you can retrieve objects in the database
by calling tsaOMGetObject.

Object Manager Database Builder

The object manager looks for information from an object database. You must build this
database using a utility program called the Object Manager Database Builder (OMDB).
The OMDB brings together HTML, image, and font objects. The database is in the form
of a data file for host-assisted applications and an array of binary data for no-host appli-
cation.

The role of the OMDB is to read a set of HTML pages, images or fonts, identify their data
type from their file extension, decode the data if needed, allocate spaces for the object
data structures and create a database from the resulting data. The object database is
indexed by file name, and contains information describing the objects’ type, size, font
characteristics, and other attributes. The object manager returns a pointer to an object as
a response to a select query.

208 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

The OM supports three types of objects:
= HTML pages (tsaOMHTML_t)

= Images (tsa2DImage_t)

» Fonts (tsa2DFont_t)

Encoded data such as GIF and JPEG images must be decoded to YUV (4:2:2) format
before writing to the database. Font data must be loaded from raw data files. Each TM
font has two associated files, a font bitmap file (*.bit) and a font metrics file (*.mtr).

Database Builder

For UNIX platforms, the database builder software is named omdb.out. Those who use
Microsoft Windows 95/NT may use omdb.exe (note that a runtime DLL, cygwin1.dll, is
required for the omdb.exe to run on Win95/NT).

The database builder assembles all files (currently it supports only files that have exten-
sions htm, html, jpg, gif, bit and mtr) into one data array and adds directory informa-
tion. As it traverses a sub-directory, it processes any supported file it finds and creates an
associated database index, data structures and object data.

To run the utility, you must change to the directory where the data resources are located
and then simply type the following at the command prompt:

omdb.exe pathname (under Windows)
where pathname is the absoulte path and name of the output database. You can also
type

omdb.exe -h

at the command prompt to get the latest help information.

Assuming that the output database is named omdb, two output data files will be gener-
ated in the directory specified by pathname, omdb.dat and omdb_data.c. The omdb.dat
is a binary data file and omdb_data.c is a C-language data array which can be compiled
with other applications. The data array is for no-host applications in which all execut-
able code and data reside in flash memory.

Database Loader

When the object manager sets up an OM instance, the database that has been loaded
into memory is patched to improve access speed. First, the OM checks the version of the
database, preventing the older version of the database from being used. You should
always use the updated OMDB to build a new database. Second, it checks whether the
database has been patched already. The database can be patched one time only because
the loader patches the database by writing directly into the memory where the database
is. If the database is patched, the loader has nothing to do, so it quits.

In the instance setup structure, there is a field ObjectData which is a pointer to UInt8.
This field points to the data array (generated by omdb.exe). You need only assign the

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 209

Chapter 7: Object Manager (OM) API

address of the data array to the ObjectData pointer before the OM instance is set up. All
other loading and patching processes are transparent.

Database Format

The object manager database consists of these areas:
= Database index area

= Object data structure area

= Raw data area

= URL string area

n Zero fill area

Must be long-word aligned

Database Object Data Raw Data Area URL String Zero Fill
Index Area Structure Area Area Area

Figure 5 Database Object Format

Figure S illustrates a database object. The database index area is the object’s header. It
contains the type, size and URL of the object, addresses of the object data structure area
and the next database object.

Depending on the complexity of the object, the data structure area can contain several
layers of structural information. The object data itself is stored in the raw data area. An
HTML obiject is stored as ASCII data. A decoded image is stored in YUV (4:2:2) format. A
font bitmap is stored in binary form. The URL string area contains a null-terminated
string. The format of a URL is

protocol:///<database path>/<object.type>
For instance, to specify an HTML page, an image object and a plain style TM font of size
14, the URLSs could be

file:///html/trimedia.html

file:///images/trimedia.jpg

file:///fonts/plainl4.font
Note that only file:// protocol is supported and the types of the object supported in URL
are ‘htm’ or ‘html’ for HTML objects, ‘gif’ or ‘jpg’ for image objects and ‘font’ for font
objects. The size of the database index and object data structure areas are multiple of 4

210 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

bytes. The other areas need not be aligned. To make sure that each object in the database
is long-word aligned, the OM adds zeros at the end of the URL string area when needed.

Figure 6 and Figure 7 show the content of the object data structure area. The HTML
object has one associated data structure. The data structure for an HTML object is dis-
cussed on page 214. An image object has 3 levels of hierarchy in its associated data struc-
ture. The data structure for an image object is discussed in Chapter 2, 2D Graphics API.

ptsaOMHTML_t data X
L L size
Structure of type Raw Data Area:
tsaOMHTML_t HTML buffer

Figure 6 HTML Object Data Structure

ptsa2DImage_t ptsa2DColor_t pColorData pDatal pData2 pData3
Structure of type | Structure of type Color R‘aw Data Aréa
tsa2DImage_t tsa2DColor_t Components : :
Y | u | v
Figure 7 Image Object Data Structure

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 211

Chapter 7: Object Manager (OM) API

The data structure of font objects, shown in Figure 8, is more complicated than the other
two object types. There are four levels of hierarchy in the object data structure area con-
taining the font information and characteristics. You can find the details of each of these
font-related data structures in Chapter 2, 2D Graphics API.

(ptsaFontTMCharMetrics_t *) X
ptsaFontTMCharMetrics_t
(ptsa2DFont_t) fontID ﬁ l \\‘
T [[
Structure of type | Structure of type 2 : : Raw
tsa2DFont_t tsaFontTM_t | .« | 1 [n
: | | Data
[n] | | Area
Pointer to the nth structure of type Structure of type
tsaFontTMCharMetrics_t tsaFontTMCharMetrics_t
Figure 8 Font Object Data Structure
Object Manager API Data Structures
This section presents the Object Manager data structures.
Name Page
tsaOMCapabilities_t 213
tsaOMInstanceSetup_t 213
tsaOMHTML_t 214

212 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

tsaOMCapabilities_t

typedef struct OMCapabilities {
ptsaDefaultCapabilities_t defaultCapabilities;
} tsaOMCapabilities_t, *ptsaOMCapabilities_t;

Fields

defaultCapabilities Pointer to the default capabilities structure (see
tsa.h)

Description

Describes the capabilities of the Object Manager. It does not have any capabilities other
than those in defaultCapabilities.

tsaOMInstanceSetup_t

typedef struct OMInsatnceSetup {
UInt8 *ObjectData;
} tsaOMInstanceSetup_t, *ptsaOMInstanceSetup_t;

Fields

ObjectData Pointer to a data array (HTML pages, images and
fonts) previously created by OMDB. The data
array originated in the file omdb_data.c.

Description

Holds initial information from the application to set up the Object Manager instance.
Only the one member of this structure must be set before setting up the Object Manager
instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 213

Chapter 7: Object Manager (OM) API

tsaOMHTML _t

typedef struct OMHTML {
Char *data;
Int size;
} tsaOMHTML_t, *ptsaOMHTML_t;

Fields

data An HTML ASCII buffer.

size Size of the HTML ASCII buffer.
Description

Holds the text of the HTML object from the database.

214 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

Object Manager APl Enumerated Types

This section presents the (one) Object Manager enumerated type.

Name Page

tsaOMType_t 216

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 215

Chapter 7: Object Manager (OM) API

tsaOMType_t

typedef enum {
OM_TYPE_INVALID = @,
OM_TYPE_HTML,
OM_TYPE_IMAGE,
OM_TYPE_FONT

} tsaOMType_t;

Description

Enumerates the supported object types in the Object Manager. It is used in calls to
tsaOMGetObject to specify the type of the requested object.

216 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

Object Manager API Functions

This section presents the Object Manager library functions.

Name Page
tsaOMGetCapabilities 218
tsaOMOpen 218
tsaOMGetInstanceSetup 219
tsaOMiInstanceSetup 220
tsaOMClose 221
tsaOMGetObject 222

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 217

Chapter 7: Object Manager (OM) API

tsaOMGetCapabilities

tmLibappErr_t tsaOMGetCapabilities(
ptsaOMCapabilities_t *cap
)

Parameters

cap Pointer to a variable in which to return a pointer
to the OM capabilities structure.

Return Codes

TMLIBAPP_OK Success.

Description

Gets the capabilities of the Object Manager.

tsaOMOpen

tmLibappErr_t tsaOMOpen(
Int *instance
)

Parameters

instance Pointer (returned) to the instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No instance available.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory to allocate for the instance
data.

Description

Allocates an instance of the Object Manager. Initializes the instance setup structure to
default values.

218 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

tsaOMGetinstanceSetup

tmLibappErr_t tsaOMGetInstanceSetup(
Int instance,
ptsaOMInstanceSetup_t *setup

Parameters
instance The instance, as returned by tsaOMOpen.
setup Pointer to a variable in which to return a pointer

to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.

Description

Returns an instance setup structure.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 219

Chapter 7: Object Manager (OM) API

tsaOMinstanceSetup

tmLibappErr_t tsaOMInstanceSetup(
Int instance,
tsaOMInstanceSetup_t *setup

Parameters
instance The instance, as returned by tsaOMOpen.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.

OM_ERR_NULL_DATABASE The database is empty.

OM_ERR_DB_NOT_4_BYTES_ALIGNED The starting address of the database is not 4-byte
aligned.

OM_ERR_DB_VERSION_MISMATCHED The version of the database does not match that
of the current OMDB. This error occurs if you pass
an older database to the OM. Always use an
updated OMDB to build the database.

Description

Sets up the instance of the Object Manager. If the database is empty, the function returns
an error code. The function also checks whether the database is 4-byte aligned, has cor-
rected database version, and is unpatched. If so, it patches the database. The OMDB pro-
duces a database with the same version number as the OMDB itself. The version of the
OMDB can be found from the program banner when it is executed.

220 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 7: Object Manager (OM) API

tsaOMClose

tmLibappErr_t tsaOMClose(
Int instance
)

Parameters

instance The instance, as returned by tsaOMOpen.

Return Codes

TMLIBAPP_OK Success.

Description

Deallocates the instance previously open by tsaOMOpen. Frees all memory associated
with the instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 221

Chapter 7: Object Manager (OM) API

tsaOMGetObject
tmLibappErr_t tsaOMGetObject(
Int instance,
Char *url,
tsaOMType_t type,
Pointer *pObject
)
Parameters
instance The instance, as returned by tsaOMOpen.
url The name of the database object to be retrieved.
type The type of the requested object.
pObject Pointer to a variable in which to return a pointer

to the object.

Return Codes

TMLIBAPP_OK Success.
TMLIBAPP_ERR_NOT_SETUP The Object Manager instance is not set up.
OM_ERR_OBJECT_NOT_IN_DATABASE The requested object is not found in the database.

OM_ERR_UNSUPPORTED_URL_PROTOCOL The protocol used in the URL is not supported. At
present, only file:// protocol is supported.

Description

Get the object from the database by specifying its location and type. The function
returns a pointer to the requested object.

222 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8
Widget API

Topic Page
Introduction 224
Widget Library Overview 224
Widget Example Programs (exWidget) Overview 226
Widget Library Data Structures 227
Widget Library Functions 232
Standard Widget Set 238
Standard Widget Set Enumerated Types 239
Standard Widget Set Functions and Macros 250
How to Write Widgets 276
Note

This component library is available as a part of the TriMedia DTV software
system. It is not included with the basic TriMedia SDE, but it is available
under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 223

Chapter 8: Widget API

Introduction

Widgets are general-purpose graphic devices which can help you build a user interface.
They also support TriMedia’s HTML parser and renderer.

The widget library provides a framework in which you design the graphics (using TriMe-
dia 2D graphics) of a widget and some or all of its behavior and the library takes care of
operating the widgets.

The widget library provide these widget types, described later:

Button Image Toggle
Select menu Slider (horizontal)
Text area Text line Password

This chapter has three sections. The first section presents the concepts and the basic
operations of the widget library. It tells you how to create and use a standard widget. It
also presents the TSA data structures and API. An example widget program is also
described here.

The second section describes the currently supported widget set. Each widget has its own
specific attributes described by an enumerated type. This section also presents the widget
creation functions. Although the implementations of the widgets are different, the wid-
get creation functions are consistent.

The third section describes the TriMedia’s Widget library framework, internal macros,
and data structures. An example which can be used as a template to write new widgets
can be found in the example/exWidgetTemplate directory. This section is for the users
who want to implement their own widgets.

Widget Library Overview

Using the widgets library itself is very simple. After you create an instance of the widget
library, you can create and use widget objects as needed. Widget attributes can be
accessed any time by functions and macros.

Widgets created by this library have some common attributes:

= All widgets have pointers to plot, update, get value, and set value functions.

= All widgets have pointers to user-specific data.

= All widgets have a rectangular boundary (width and height, and coordinate location).
= All widgets point to their associated output packet.

Each widget also has its own specific attributes which differ from one widget to the next.
Once a widget’s attributes have been initialized (or changed), the widget can be rendered
(or updated) to its associated packet.

224 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

Basic Operations

The basic widget operations include the following:
= Widget creation.

= Widget rendering.

= Get widget attributes.

= Set widget attributes.

After you have created a widget object, the widget’s data structure contains both the
common and widget-specific attributes. Function pointers in the common attributes
define the widget-specific operations. These functions operate on the rest of the fields in
the widget data structure. The widget data structure contains everything to implement a
widget.

Thus, the interface to the widget library is comparatively simple. Each widget type has its
own creation function. There is a single plot function, a single update function, and sev-
eral get and set functions shared by all widgets.

How to Create a Standard Widget

1. Create an instance of the widget library by calling tsaWidgetOpen.
2. Call tsaWidgetGetlnstanceSetup to get the instance setup structure.

3. Set up instances of the 2D Graphic library and the Object Manager library. They are
required for the widget instance. In some cases, you might want to use your own wid-
gets which do not use the Object Manage. In those cases there is no need to set up the
instance of the Object Manager library.

4. Call tsaWidgetSetuplnstance to complete the instance setup.

After obtaining a valid widget library instance, create and manipulate widgets by calling
widget functions. For example, to create a button:

1. Call tsaWidgetCreateButton to create a button-specific data structure. A pointer to the
data structure is returned.

2. Set widget-specific attributes, such as the text and border color for the button, using
tsaWidgetSet.

3. Call tsaWidgetPlot to render the widget (to its associated packet).

If you want to change widget attributes (e.g., when you want to change the border color
when the button is activated) call tsaWidgetSet with appropriate attribute index and
new color, and then call tsaWidgetPlot or tsaWidgetUpdate to make the change.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 225

Chapter 8: Widget API

Widget Example Programs (exWidget) Overview

Two example programs are provided. One of the example program can be found in
example/exWidget/ directory. This example program demonstrates the use of the TriMe-
dia Widget Library. Using the standard HTML Widget Set, this example program demon-
strates what might be a possible Graphical User Interface (GUI) for Digital Television.
This example program requires the 2D Graphics Library, the Widget Library and the
Object Manager Library. The output is via TriMedia’s Video Out.

Note
For simplicity, no anti-flicker filtering is done.

The demo is self-running and does not take any argument. Once the program is started,
it will run thru the preprogrammed demos to completion. The demo starts with a back-
ground screen, followed by three different demo screens: the Login Screen demo, the
Order Screen demo and the Audio Screen demo.

The other example is discussed in the How to Write Widgets on page 276.

Wrapper Function: myGetObject

In exWidget, the Object Manager library is used to get the objects from its database. In
some cases, if the required object cannot be not found from the database, object man-
ager returns an error code of OM_ERR_OBJECT_NOT_FOUND to the application. However,
this scalar error message does not give enough information of which object (and its URL)
was not found from the database. In order to resolve this problem, a wrapper function,
myGetObject, is used instead of calling tsaOMGetObject directly. myGetObject actually
calls tsaOMGetObject and prints the error code with the associated URL if error occurs.

The wrapper function can be found in the example /exWidget/Support.c.

226 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

Widget Library Data Structures

This section presents the widget library TSA data structures.

Name Page
tsaWidgetCapabilities_t 228
tsaWidgetinstanceSetup_t 229
tsaWidgetInstVar_t 230
_tsaWidgetObject_t 231

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 227

Chapter 8: Widget API

tsaWidgetCapabilities_t

typedef struct {
ptsaDefaultCapabilities_t defaultCapabilities;
} tsaWidgetCapabilities_t, *ptsaWidgetCapabilities_t;

Fields

defaultCapabilities Pointer to the default capabilities structure. (See
tsa.h.)

Description

tsaWidgetCapabilities_t describes the capabilities of the Widget. It does not have any
other capabilities data other than those in defaultCapabilities.

228 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetinstanceSetup_t

typedef struct {
Pointer (*MallocFn)(size_t size);
void (*FreeFn) (Pointer pPtr);
tmLibappErr_t (*GetObjectFn)(
Int instance,
Char *url,
tsaOMType type,
Pointer *pObject);
Int tsa2DInst;
Int tsaOMInst;
} tsaWidgetInstanceSetup_t, *ptsaWidgetInstanceSetup_t;

Fields

MallocFn Memory allocation function from the
application.

Freefn A function that releases a previously allocated
block of memory by MallocFn.

GetObjectFn A callback function that retrieves an object (speci-
fied by both URL and type) from the Object Man-
ager database. Typically, you would use awrapper
function myGetObject which calls tsaOMGet-
Object if you are using the TriMedia Object Man-
ager. You can set this field to null if you are not.

tsa2DInst 2D Graphics library instance.

tsaOMInst Object Manager library instance.

Description

The structure holds initial information from the application to set up the Widget
instance. All fields except GetObjectFn must be initialized by the application during
setup. The callback function GetObjectFn is called indirectly to get objects from the data-
base. Since you might want to have your own widgets which do not use the Object Man-
ager, you can set GetObjectFn to null.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 229

Chapter 8: Widget API

tsaWidgetinstVar_t

typedef struct WidgetInstVar {
ptsaWidgetInstanceSetup_t setup;
tsaWidgetInstanceSetup_t actual;

} tsaWidgetInstVar_t, *ptsaWidgetInstVar_t;

Fields

setup Pointer to the instance setup structure.
actual Actual instance setup structure.
Description

tsaWidgetInstVar_t is used for internal implementation only.

230 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

_tsaWidgetObject_t

struct _tsaWidgetObject_t {
tmLibappErr_t (* Plot) (Int instance, tsaWidget_t widget);
tmLibappErr_t (* Update)(Int instance, tsaWidget_t widget);
tmLibappErr_t (* Get) (Int instance, tsaWidget_t widget);
tmLibappErr_t (* Set) (Int instance, tsaWidget_t widget);

Int instance;

ptmAvPacket_t pPcaket;

Int X3

Int Y

Int width;

Int height;

Pointer userData;
s
Fields
Plot Function pointer to the widget plot function.
Update Function pointer to the widget update function.
Get Function pointer to the widget get function.
Set Function pointer to the widget set function.
instance The widget instance.
pPacket Pointer to a packet where the widget is rendered.
X,y Coordinate of the widget.
width Width of the widget.
height Height of the widget.
userData Pointer to a user-specific data.
Description

tsaWidgetObject_t describes the common fields of a widget object. Note that users must
not access this data structure directly. Instead, a set of macros is provided to access each
field within the widget object.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 231

Chapter 8: Widget API

Widget Library Functions

This section presents the widget library TSA (streaming architecture) functions.

Name Page
tsaWidgetGetCapabilities 233
tsaWidgetOpen 234
tsaWidgetGetinstanceSetup 235
tsaWidgetinstanceSetup 236
tsaWidgetClose 237

232 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetGetCapabilities

tmLibappErr_t tsaWidgetGetCapabilities(
ptsaWidgetCapabilities_t *cap
)

Parameters

cap Pointer to a variable in which to return a pointer
to the capabilities structure.

Return Codes

TMLIBAPP_OK Success.

Description

Gets the capabilities of the widget library.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 233

Chapter 8: Widget API

tsaWidgetOpen

tmLibappErr_t tsaWidgetOpen(
Int *instance
)

Parameters

instance Pointer to the (returned) instance.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NO_INSTANCE_AVAILABLE
No instance available.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory to allocate for instance vari-
able.

Description

Allocates an instance of the widget library. Initializes the setup structure to default
values.

234 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetGetinstanceSetup

tmLibappErr_t tsaWidgetGetInstanceSetup(
Int instance,
ptsaWidgetInstanceSetup_t *setup

Parameters
instance The instance.
setup Pointer to a variable in which to return a pointer

to the instance setup structure.

Return Codes

TMLIBAPP_OK Success.

Description

Gets the instance’s setup structure.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 235

Chapter 8: Widget API

tsaWidgetinstanceSetup

tmLibappErr_t tsaWidgetInstanceSetup(

Int

tsaWidgetInstanceSetup_t

instance,
*setup

Parameters
instance The instance.
setup Pointer to the instance setup structure.

Return Codes

TMLIBAPP_OK
WIDGET_ERR_NO_2D_INSTANCE
WIDGET_ERR_NO_MALLOC_FUNC
WIDGET_ERR_NO_FREE_FUNC

Description

Success.
2D Graphics instance is missing.
Memory allocation function is missing.

Memory free function is missing.

Sets up the instance of the widget library. Checks for the presence of instance of the 2D

Graphics library. Checks for the presence of callback functions for memory allocation.

236 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetClose

tmLibappErr_t tsaWidgetClose(
Int instance
)

Parameters

instance The instance.

Return Codes

TMLIBAPP_OK Success.

Description

Deallocates the instance previously open in tsaWidgetOpen. Frees all memory associated
with the instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 237

Chapter 8: Widget API

Standard Widget Set

This section presents the standard widget set. Currently, the widget library supports

these widget types:

Button

A rectangular region that displays some text.

Image

A rectangular region that displays an image (identified by a URL).

Password

A rectangular region that supports text entry. The text entered is not echoed.
Select menu

A rectangular region that displays some textual choices and possibly allows scrolling
to display choices hidden from view. End-users can select the items.

Slider (horizontal)

A rectangular region consisting of a left part, middle part, right part, and a slider. (A
volume control bar is an example of a slider.)

Text area

A rectangular region that supports the entry of multi-line text.

Text line

A rectangular region that supports the entry of some text. The text entered is echoed.
Toggle

A rectangular region that functions like a check box or a radio button.

Each widget type has its own create function.

Use the plot and update functions plot and update a widget to its associated packet.

Other functions and macros set or get some particular widget attribute.

To erase a widget, call tsaWidgetFill to fill it with the background color. To terminate a

widget, call tsaWidgetDestroy which releases the memory allocated for the widget data

structures.

238 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

Standard Widget Set Enumerated Types

This section presents the standard widget enumerated data type.

Name Page
tsaWidgetButtonIndex_t 240
tsaWidgetimagelndex_t 241
tsaWidgetPasswordIndex_t 242
tsaWidgetSelectindex_t 243
tsaWidgetSliderindex_t 245
tsaWidgetTextarealndex_t 246
tsaWidgetTextlinelndex_t 248
tsaWidgetToggleIndex_t 249

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 239

Chapter 8: Widget API

tsaWidgetButtonindex_t

typedef enum {
WIDGET_BUTTON_FONT =1,
WIDGET_BUTTON_TEXT,
WIDGET_BUTTON_FONTCOLOR,
WIDGET_BUTTON_BACKGROUNDCOLOR,
WIDGET_BUTTON_BORDERCOLORRIGHT,
WIDGET_BUTTON_BORDERCOLORBOTTOM,
WIDGET_BUTTON_BORDERCOLORLEFT,
WIDGET_BUTTON_BORDERCOLORTOP

} tsaWidgetButtonIndex_t;

Fields

WIDGET_BUTTON_FONT TM font for the button widget.
WIDGET_BUTTON_TEXT Text for the button widget.
WIDGET_BUTTON_FONTCOLOR Text color.

WIDGET_BUTTON_BACKGROUNDCOLOR Color for the button.
WIDGET_BUTTON_BORDERCOLORRIGHT Border color on the right side of the widget.
WIDGET_BUTTON_BORDERCOLORBOTTOM Border color on the bottom of the widget.
WIDGET_BUTTON_BORDERCOLORLEFT Border color on the left side of the widget.
WIDGET_BUTTON_BORDERCOLORTOP Border color on the top of the widget.

Description

Enumerates the attributes specific to the button widget. All button attributes are initial-
ized to null when a button widget is created. You must call tsaWidgetSet to set all these
attributes before rendering the widget.

The data type associated with button colors is ptsa2DColor_t. The data type associated
with fonts is ptsa2DFont_t. The data type associated with button text is String.

240 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetimagelndex_t

typedef enum {
WIDGET_IMAGE_URL_IMAGE = 1,
} tsaWidgetImageIndex_t;

Fields

WIDGET_IMAGE_URL_IMAGE The URL of the image.

Description

Enumerates the (one) attribute is specific to the image widget. The URL is initialized to
null when the widget is created. You must call tsaWidgetSet to set the URL before render-
ing the image widget.

The data type associated with the image URL is String.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 241

Chapter 8: Widget API

tsaWidgetPasswordindex_t

typedef enum {
WIDGET_PASSWORD_FONT =1,
WIDGET_PASSWORD_TEXT,
WIDGET_PASSWORD_FONTCOLOR,

WIDGET_PASSWORD_BACKGROUNDCOLOR,
WIDGET_PASSWORD_BORDERCOLORBOTTOM,
WIDGET_PASSWORD_BORDERCOLORLEFT,
WIDGET_PASSWORD_BORDERCOLORTOP,

WIDGET_PASSWORD_FIRSTCHAR,

WIDGET_PASSWORD_SHOWCURSOR,

WIDGET_PASSWORD_URL_CURSOR
} tsaWidgetPasswordIndex_t;

Fields

WIDGET_PASSWORD_FONT
WIDGET_PASSWORD_TEXT
WIDGET_PASSWORD_FONTCOLOR
WIDGET_PASSWORD_BACKGROUNDCOLOR

WIDGET_PASSWORD_BORDERCOLORRIGHT

TM font for the password widget.
Text for the password widget.
Text color.

Color for the password23 box.

Border color on the right side of the widget.

WIDGET_PASSWORD_BORDERCOLORBOTTOM

WIDGET_PASSWORD_BORDERCOLORLEFT
WIDGET_PASSWORD_BORDERCOLORTOP
WIDGET_PASSWORD_FIRSTCHAR

WIDGET_PASSWORD_SHOWCURSOR

WIDGET_PASSWORD_URL_CURSOR

Description

Border color on the bottom of the widget.
Border color on the left side of the widget.
Border color on the top of the widget.

The location of the first character in the text
string to display. (Associated variable type: Int)
Control the display of the text cursor. If True,
show the cursor. (Associated variable type: Bool)

The URL of the text cursor image. (Associated
variable type: String)

Enumerates the attributes specific to the password widget. Currently, all the attributes
are initialized to default values when the widget is created. You must call tsaWidgetSet to
set all these attributes before rendering the widget.

The data type associated with colors is ptsa2DColor_t. The data type associated with
fonts is ptsa2DFont_t. The data type associated with text (e.g., for a URL) is normally
String, except for WIDGET_SELECT_OPTION_VAL which associates with Char**.

242 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetSelectindex_t

typedef enum {

WIDGET_SELECT_NUM_VISIBLE =1,
WIDGET_SELECT_FIRST_VISIBLE,
WIDGET_SELECT_CURSOR_POS,
WIDGET_SELECT_NUM_OPTIONS,
WIDGET_SELECT_OPTION_VAL,
WIDGET_SELECT_OPTION_SELECTED,
WIDGET_SELECT_SHOWCURSOR,
WIDGET_SELECT_FONT,
WIDGET_SELECT_FONTCOLOR,
WIDGET_SELECT_BACKGROUNDCOLOR,
WIDGET_SELECT_SCROLLBARCOLOR,
WIDGET_SELECT_HIGHLIGHTCOLOR,
WIDGET_SELECT_BORDERCOLORRIGHT,
WIDGET_SELECT_BORDERCOLORBOTTOM,
WIDGET_SELECT_BORDERCOLORLEFT,
WIDGET_SELECT_BORDERCOLORTOP,
WIDGET_SELECT_URL_CURSOR_UP,
WIDGET_SELECT_URL_CURSOR_DOWN,
WIDGET_SELECT_URL_CURSOR_LEFT,
WIDGET_SELECT_URL_CURSOR_RIGHT

} tsaWidgetSelectIndex_t;

Fields

WIDGET_SELECT_NUM_VISIBLE

WIDGET_SELECT_FIRST_VISIBLE

WIDGET_SELECT_CURSOR_POS

WIDGET_SELECT_NUM_OPTION

WIDGET_SELECT_OPTION_VAL

WIDGET_SELECT_OPTION_SELECTED

WIDGET_SELECT_SHOWCURSOR

WIDGET_SELECT_FONT
WIDGET_SELECT_FONTCOLOR
WIDGET_SELECT_BACKGROUNDCOLOR
WIDGET_SELECT_SCROLLBARCOLOR
WIDGET_SELECT_HIGHLOGHTCOLOR

Number of items displayed on the select menu.
(Associated variable type: Int)

Which line is currently at the top of the visible
window. (Associated variable type: Int)

On which line the cursor is positioned. (Associ-
ated variable type: Int)

Number of options, total, for the select menu.
(Associated variable type: Int)

Text string. One for each option. (Associated vari-
able type: Char*¥)

Whether this option been selected. (Associated
variable type: Bool*)

If True, show the cursor at the selected item.
(Associated variable type: Bool)

T™ font.

Text color.

Color for the select menu.
Color for the scroll bar.

Color for the selected item.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 243

Chapter 8: Widget API

WIDGET_SELECT_BORDERCOLORRIGHT Border color on the right side of the widget.
WIDGET_SELECT_BORDERCOLORBOTTOM Border color on the bottom of the widget.
WIDGET_SELECT_BORDERCOLORLEFT Border color on the left side of the widget.
WIDGET_SELECT_BORDERCOLORTOP Border color on the top of the widget.
WIDGET_SELECT_URL_CURSOR_UP The URL of the cursor image.
WIDGET_SELECT_URL_CURSOR_DOWN The URL of the cursor image.
WIDGET_SELECT_URL_CURSOR_LEFT The URL of the cursor image.
WIDGET_SELECT_URL_CURSOR_RIGHT The URL of the cursor image.

Description

Enumerates the attributes specific to the select menu widget. Currently, all the attributes
are initialized to default values when the widget is created. You must call tsaWidgetSet to
set all these attributes before rendering the widget.

The data type associated with colors is ptsa2DColor_t. The data type associated with
fonts is ptsa2DFont_t. The data type associated with text (e.g., for a URL) is normally
String, except for WIDGET_SELECT_OPTION_VAL which associates with char**.

244 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetSliderindex_t

typedef enum {
WIDGET_SLIDER_CUR_VAL =1,
WIDGET_SLIDER_NUM_POS,
WIDGET_SLIDER_URL_LEFT,
WIDGET_SLIDER_URL_MIDDLE,
WIDGET_SLIDER_URL_RIGHT,
WIDGET_SLIDER_URL_TAB

} tsaWidgetSliderIndex_t;

Fields

WIDGET_SLIDER_CUR_VAL The current value of the slider. (Associated vari-
able type: Int)

WIDGET_SLIDER_NUM_POS Number of levels available for the slider. (Associ-
ated variable type: Int)

WIDGET_SLIDER_URL_LEFT The URL of the image of the left part of the slider.

WIDGET_SLIDER_URL_MIDDLE The URL of the image of the middle part of the
slider.

WIDGET_SLIDER_URL_RIGHT The URL of the image of the right part of the
slider.

WIDGET_SLIDER_URL_TAB The URL of the image of the slider tab.

Description

Enumerates the attributes specific to the slider widget. Currently, all the attributes are
initialized to default values when the widget is created. You must call tsaWidgetSet to set
all these attributes before rendering the widget.

The data type associated with text (e.g., for a URL) is String.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 245

Chapter 8: Widget API

tsaWidgetTextarealndex_t

typedef enum {
WIDGET_TEXTAREA_TEXT =1,
WIDGET_TEXTAREA_ROWS,
WIDGET_TEXTAREA_NUM_VISIBLE,
WIDGET_TEXTAREA_FIRST_COL_CHAR,
WIDGET_TEXTAREA_FIRST_ROW_CHAR,
WIDGET_TEXTAREA_CURSOR_ROW,
WIDGET_TEXTAREA_CURSOR_POS,
WIDGET_TEXTAREA_SHOWCURSOR,
WIDGET_TEXTAREA_URL_CURSOR,
WIDGET_TEXTAREA_FONT,
WIDGET_TEXTAREA_FONTCOLOR,
WIDGET_TEXTAREA_BACKGROUNDCOLOR,
WIDGET_TEXTAREA_BORDERCOLORRIGHT,
WIDGET_TEXTAREA_BORDERCOLORBOTTOM,
WIDGET_TEXTAREA_BORDERCOLORLEFT,
WIDGET_TEXTAREA_BORDERCOLORTOP

} tsaWidgetTextarealndex_t;

Fields

WIDGET_TEXTAREA_TEXT Text string for the textarea widget.

WIDGET_TEXTAREA_ROWS Total number of rows in the textarea. (Associated
variable type: Int)

WIDGET_TEXTAREA_NUM_VISIBLE Number of visible rows in the textarea widget.

(Associated variable type: Int)

WIDGET_TEXTAREA_FIRST_COL_CHAR The first column to be displayed. (Associated vari-
able type: Int)

WIDGET_TEXTAREA_FIRST_ROW_CHAR The first row to be displayed. (Associated variable

type: Int)
WIDGET_TEXTAREA_CURSOR_ROW The location of the cursor in the textarea. (Associ-
ated variable type: Int)
WIDGET_TEXTAREA_CURSOR_POS The location (column position) of the cursor in
the textarea. (Associated variable type: Int)
WIDGET_TEXTAREA_SHOWCURSOR If true, display the cursor. (Associated variable
type: Bool)
WIDGET_TEXTAREA_URL_CURSOR The URL of the image of the cursor.
WIDGET_TEXTAREA_FONT TM font for the textarea widget.
WIDGET_TEXTAREA_FONTCOLOR Text color.

WIDGET_TEXTAREA_BACKGROUNDCOLOR Color for the textarea box.

WIDGET_TEXTAREA_BORDERCOLORRIGHT
Border color on the right side of the widget.

246 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

WIDGET_TEXTAREA_BORDERCOLORBOTTOM
Border color on the bottom of the widget.

WIDGET_TEXTAREA_BORDERCOLORLEFT Border color on the left side of the widget.
WIDGET_TEXTAREA_BORDERCOLORTOP Border color on the top of the widget.

Description

Enumerates the attributes specific to the textarea widget. Currently, all the attributes are
initialized to default values when the widget is created. You must call tsaWidgetSet to set
all these attributes before rendering the widget.

The data type associated with colors is ptsa2DColor_t. The data type associated with
fonts is ptsa2DFont_t. The data type associated with text (e.g., for a URL) is String.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 247

Chapter 8: Widget API

tsaWidgetTextlinelndex_t

typedef enum {
WIDGET_TEXTLINE_FONT =1,
WIDGET_TEXTLINE_TEXT,
WIDGET_TEXTLINE_FONTCOLOR,
WIDGET_TEXTLINE_BACKGROUNDCOLOR,
WIDGET_TEXTLINE_BORDERCOLORRIGHT,
WIDGET_TEXTLINE_BORDERCOLORBOTTOM,
WIDGET_TEXTLINE_BORDERCOLORLEFT,
WIDGET_TEXTLINE_BORDERCOLORTOP,
WIDGET_TEXTLINE_FIRSTCHAR,
WIDGET_TEXTLINE_SHOWCURSOR,
WIDGET_TEXTLINE_URL_CURSOR

} tsaWidgetTextlinelndex_t;

Fields

WIDGET_TEXTLINE_FONT TM font for textline widget.
WIDGET_TEXTLINE_TEXT Text on the textline widget.
WIDGET_TEXTLINE_FONTCOLOR Text color.

WIDGET_TEXTLINE_BACKGROUNDCOLOR Color for the textline box.

WIDGET_TEXTLINE_BORDERCOLORRIGHT
Border color on the right side of the widget.

WIDGET_TEXTLINE_BORDERCOLORBOTTOM
Border color on the bottom of the widget.

WIDGET_TEXTLINE_BORDERCOLORLEFT Border color on the left side of the widget.
WIDGET_TEXTLINE_BORDERCOLORTOP Border color on the top of the widget.

WIDGET_TEXTLINE_FIRSTCHAR The location of the first character in the text
string to be display. (Associated variable type: Int).

WIDGET_TEXTLINE_SHOWCURSOR If true, display the text cursor. (Variable type:
Bool).

WIDGET_TEXTLINE_URL_CURSOR The URL of the text cursor image.

Description

Enumerates the attributes specific to the textline widget. Currently, all the attributes are
initialized to default values when the widget is created. You must call tsaWidgetSet to set
all these attributes before rendering the widget.

The data type associated with colors is ptsa2DColor_t. The data type associated with
fonts is ptsa2DFont_t. The data type associated with text (e.g., for a URL) is String.

248 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetToggleindex_t

typedef enum {
WIDGET_TOGGLE_CHECKED =1,
WIDGET_TOGGLE_URL_ON,
WIDGET_TOGGLE_URL_OFF

} tsaWidgetTogglelndex_t;

Fields

WIDGET_TOGGLE_CHECKED The initial state of the toggle widget. (Associated
variable type: Bool)

WIDGET_TOGGLE_URL_ON The URL of the image for ‘on’.

WIDGET_TOGGLE_URL_OFF The URL of the image for ‘off’.

Description

Enumerates the attributes specific to the toggle widget. Currently, all the attributes are
initialized to default values when the widget is created. You must call tsaWidgetSet to set
all these attributes before rendering the widget.

The data type associated with text (e.g., for a URL) is String.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 249

Chapter 8: Widget API

Standard Widget Set Functions and Macros

This section presents the standard widget API functions and macros. A macro call can

improve speed (at the expense of code size).

Name Page
tsaWidgetCreateButton 252
tsaWidgetCreatelmage 253
tsaWidgetCreatePassword 254
tsaWidgetCreateSelect 255
tsaWidgetCreateSlider 256
tsaWidgetCreateTextarea 257
tsaWidgetCreateTextline 258
tsaWidgetCreateToggle 259
tsaWidgetPlot 260
tsaWidgetPLOT (macro) 261
tsaWidgetUpdate 262
tsaWidgetUPDATE (macro) 263
tsaWidgetGet 264
tsaWidgetGET (macro) 265
tsaWidgetSet 266
tsaWidgetSET (macro) 267
tsaWidgetGetPacket 268
tsaWidgetSetPacket 268
tsaWidgetGetX 269
tsaWidgetSetX 269
tsaWidgetGetY 270
tsaWidgetSetY 270
tsaWidgetGetWidth 271
tsaWidgetSetWidth 271
tsaWidgetGetHeight 272
tsaWidgetSetHeight 272
tsaWidgetGetuserData 273

250 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetSetuserData 273
tsaWidgetFill 274
tsaWidgetDestroy 275

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 251

Chapter 8: Widget API

tsaWidgetCreateButton

tmLibappErr_t tsaWidgetCreateButton(
Int instance,
ptmAvPacket_t pPacket,
Int X,
Int Yy,
Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is rendered.
X,y Coordinate of the button.

width Width of the button.

height Height of the button.

pWidget Pointer (returned) to the newly created button.

Return Codes

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet found.

Memory allocation failed while creating the but-
ton data structure.

Creates a button widget. First, it checks the validity of the widget library instance and

the packet. If a null packet is found, the function returns an error code. Then it allocates

memory for the button-specific data structure. The common widget attributes are initial-
ized at this time whereas the specific widget attributes are going to be set later using tsa-
WidgetSet. The function returns a pointer to the button data structure to the

application.

252 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetCreatelmage

tmLibappErr_t tsaWidgetCreatelImage(

Int instance,
ptmAvPacket_t pPacket,
Int X,

Int Y,

Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is rendered.
X, ¥ Coordinate of the widget.

width Width of the widget.

height Height of the widget.

pWidget Pointer (returned) to the newly created image

Return Codes

object.

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet pointer found.

Memory allocation failed while creating the
image data structure.

Creates an image widget. First, it checks the validity of the widget packet. If a null packet
is found, the function returns an error code. Then it allocates memory for the image-spe-

cific data structure. The common widget attributes are initialized at this time whereas

the specific widget attributes are going to be set later using tsaWidgetSet. The function

returns a pointer to the widget data structure to the application.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 253

Chapter 8: Widget API

tsaWidgetCreatePassword

tmLibappErr_t tsaWidgetCreatePassword(

Int instance,
ptmAvPacket_t pPacket,
Int X,

Int Y,

Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is rendered.
X, ¥ Coordinate of the widget.

width Width of the widget.

height Height of the widget.

pWidget Pointer (returned) to the newly created password.

Return Codes

TMLIBAPP_OK
TMLIBAPP_ERR_INVALID_INSTANCE
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Invalid input instance found.
Null input packet pointer found.

Memory allocation failed while creating the pass-
word data structure.

Creates a password widget. First, it checks the validity of the widget library instance and

the packet. If a null packet is found, the function returns an error code. Then it allocates

memory for the password-specific data structure. The common widget attributes are ini-

tialized at this time, whereas the specific widget attributes will be set later using tsaWid-

getSet. The function returns a pointer to the widget data structure to the application.

254 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetCreateSelect

tmLibappErr_t tsaWidgetCreateSelect(
Int instance,
ptmAvPacket_t pPacket,
Int X,
Int Y,
Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is rendered.
X, ¥ Coordinate of the widget.

width Width of the widget.

height Height of the widget.

pWidget Pointer (returned) to the newly created select

Return Codes

menu.

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet pointer found.

Memory allocation failed while creating the select
menu data structure.

Creates an select menu. First, it checks the validity of the widget packet. If a null packet
is found, the function returns an error code. Then it allocates memory for the select-spe-

cific data structure. The common widget attributes are initialized at this time whereas

the specific widget attributes are going to be set later using tsaWidgetSet. The function

returns a pointer to the widget data structure to the application.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 255

Chapter 8: Widget API

tsaWidgetCreateSlider

tmLibappErr_t tsaWidgetCreateSlider(

Int instance,
ptmAvPacket_t pPacket,
Int X,

Int Y,

Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is plotted.
X, ¥ Coordinate of the widget.

width Width of the widget.

height Height of the widget.

pWidget Pointer to the address of the newly created widget

Return Codes

object.

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet pointer found.

Memory problem while creating slider widget
data structure.

Creates a slider widget. First, it checks the validity of the widget packet. If an invalid
instance or a null packet is found, the function returns an error code. Then it allocates

memory for the slider-specific data structure. The common widget attributes are initial-

ized at this time whereas the specific widget attributes are going to be set later using tsa-

WidgetSet. The function returns a pointer to the widget data structure to the application.

256 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetCreateTextarea

tmLibappErr_t tsaWidgetCreateTextarea(

Int instance,
ptmAvPacket_t pPacket,
Int X,

Int Y,

Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is rendered.
X, ¥ Coordinate of the widget.

width Width of the widget.

height Height of the widget.

pWidget Pointer (returned) to the newly created textarea.

Return Codes

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet pointer found.

Memory allocation failed while creating the tex-
tarea data structure.

Creates a textarea widget. First, it checks the validity of the widget packet. If a null
packet is found, the function returns an error code. Then it allocates memory for the tex-

tarea-specific data structure. The common widget attributes are initialized at this time
whereas the specific widget attributes are going to be set later using tsaWidgetSet. The
function returns a pointer to the widget data structure to the application.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 257

Chapter 8: Widget API

tsaWidgetCreateTextline

tmLibappErr_t tsaWidgetCreateTextline(

Int instance,
ptmAvPacket_t pPacket,
Int X,
Int Y,
Int width,
Int height,
tsaWidget_t *pWidget
)
Parameters
instance The instance.
pPacket Pointer to a packet where the widget is rendered.
X, ¥ Coordinate of the widget.
width Width of the widget.
height Height of the widget.
pWidget Pointer (returned) to the newly created textline.

Return Codes

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet pointer found.

Memory allocation failed while creating the text-
line data structure.

Creates a textline widget. First, it checks the validity of the widget packet. If a null packet

is found, the function returns an error code. Then it allocates memory for the textline-

specific data structure. The common widget attributes are initialized at this time whereas

the specific widget attributes are going to be set later using tsaWidgetSet. The function

returns a pointer to the widget data structure to the application.

258 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetCreateToggle

tmLibappErr_t tsaWidgetCreateToggle(
Int instance,
ptmAvPacket_t pPacket,
Int X,
Int Y,
Int width,
Int height,

tsaWidget_t *pWidget

Parameters

instance The instance.

pPacket Pointer to a packet where the widget is rendered.
X, ¥ Coordinate of the widget.

width Width of the widget.

height Height of the widget.

pWidget Pointer (returned) to the newly created widget

Return Codes

object.

TMLIBAPP_OK
TMLIBAPP_ERR_NULL_PACKET
TMLIBAPP_ERR_MEMALLOC_FAILED

Description

Success.
Null input packet pointer found.

Memory problem while creating toggle widget
data structure.

Creates a toggle widget. First, it checks the validity of the widget packet. If a null packet
is found, the function returns an error code. Then it allocates memory for the toggle-spe-

cific data structure. The common widget attributes are initialized at this time whereas

the specific widget attributes are going to be set later using tsaWidgetSet. The function

returns a pointer to the widget data structure to the application.

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 259

Chapter 8: Widget API

tsaWidgetPlot

tmLibappErr_t tsaWidgetPlot(
Int instance,
tsaWidget_t widget

Parameters
instance The instance.
widget The widget data structure.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_NULL_WIDGET The widget was not created.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is invalid.

Description

The function plots (renders) a widget using the widget-specific plot function placed in
the data structure when the widget was created.

Before you call tsaWidgetPlot, you must initialize all the widget-specific attributes in the
data structure using tsaWidgetSet.

260 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetPLOT

#define tsaWidgetPLOT(inst, w)
((struc _tsaWidgetObject *)w)->Plot((inst),(w)))

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is invalid.

WIDGET_ERR_NULL_GET_OBJECT_FUNC The function to the pointer to the get object is
invalid.

Description

A macro version of tsaWidgetPlot.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 261

Chapter 8: Widget API

tsaWidgetUpdate

tmLibappErr_t tsaWidgetUpdate(
Int instance,
tsaWidget_t widget

Parameters
instance The instance.
widget The widget data structure.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_NULL_WIDGET The widget is not created.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.

WIDGET_ERR_NULL_GET_OBJECT_FUNC The function pointer to the get object function is
invalid.

Description

The function updates (renders) the widget using the widget-specific update function
placed in the data structure when the widget was created. After changing widget-specific
attributes, you can call this function to redisplay the changes.

262 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetUPDATE

#define tsaWidgetUPDATE(inst, w)
(((struc _tsaWidgetObject *)w)->UPDATE((inst),(w)))

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.

WIDGET_ERR_NULL_GET_OBJECT_FUNC The function pointer to the get object function is
invalid.

Description

A macro version of tsaWidgetUpdate.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 263

Chapter 8: Widget API

tsaWidgetGet
tmLibappErr_t tsaWidgetGet(
Int instance,
tsaWidget_t widget,
Int index,
Pointer *pvalue
)
Parameters
instance The instance.
widget The widget data structure.
index Index of the widget attribute.
pvalue Pointer to a variable in which to return a pointer

to the value of requested attribute.

Return Codes

TMLIBAPP_OK Success.

WIDGET_ERR_NULL_WIDGET The widget is not created.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.
WIDGET_ERR_INVALID_INDEX The index of the widget attribute is invalid
Description

Gets a widget attribute. The function uses the widget-specific get function placed in the
data structure when the widget was created. Refer to Standard Widget Set Enumerated Types
starting on page 239 for specific attributes.

264 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetGET

#define tsaWidgetGET(inst, w, i, p)
(((struc _tsaWidgetObject *)w)->Get((inst),(w),(i),(p)))

Parameters

instance The instance.

W Pointer to the widget data structure.

i Index of the widget attribute.

p Pointer to a variable in which to return a pointer

to the value of requested attribute.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.
WIDGET_ERR_INVALID_INDEX The index of the widget attribute is invalid.
Description

A macro version of tsaWidgetGet.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 265

Chapter 8: Widget API

tsaWidgetSet
tmLibappErr_t tsaWidgetSet(
Int instance,
tsaWidget_t widget,
Int index,
Pointer value
)
Parameters
instance The instance.
widget The widget data structure.
index Index of the widget attribute.
value Pointer to the value for the attribute to be
changed.
Return Codes
TMLIBAPP_OK Success.
WIDGET_ERR_NULL_WIDGET The widget is not created.
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.
WIDGET_ERR_INVALID_INDEX The index of the widget attribute is invalid.

Description

Sets a widget attribute. The function uses the widget-specific set function placed in the
data structure when the widget was created. Refer to Standard Widget Set Enumerated Types
starting on page 239 for specific attributes.

266 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetSET

#define tsaWidgetSET(inst, w, i, p)
(((struc _tsaWidgetObject *)w)->Set((inst),(w),(i),(p)))

Parameters

inst The instance.

W Pointer to the widget data structure.

i Index of the widget attribute.

p Pointer to the value of the attribute to be
changed.

Return Codes

TMLIBAPP_OK Success.

WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.

WIDGET_ERR_INVALID_INDEX The index of the widget attribute is invalid

Description

A macro version of tsaWidgetSet.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 267

Chapter 8: Widget API

tsaWidgetGetPacket

#define tsaWidgetGetPacket(inst, w)
(((struc _tsaWidgetObject *)w)->pPacket)

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

None.

Description

This macro gets the packet pointer from the widget data structure.

tsaWidgetSetPacket

#define tsaWidgetSetPacket(inst, w, v)
(((struc _tsaWidgetObject *)w)->pPacket = (v))

Parameters

inst The instance.

w Pointer to the widget data structure.

v Pointer to a packet of type tmAvPacket_t.

Return Codes

None.

Description

This macro sets the packet pointer in the widget data structure.

268 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetGetX

#define tsaWidgetGetX(inst, w)
(((struc _tsaWidgetObject *)w)->x)

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

None.

Description

This macro gets the current x coordinate of the widget.

tsaWidgetSetX

#define tsaWidgetSetX(inst, w, v)
(((struc _tsaWidgetObject *)w)->x = (v))

Parameters

inst The instance.

w Pointer to the widget data structure.
v Value of the x coordinate.

Return Codes

None.

Description

This macro sets the current x coordinate of the widget.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 269

Chapter 8: Widget API

tsaWidgetGetY

#define tsaWidgetGetY(inst, w)
(((struc _tsaWidgetObject *)w)->y)

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

None.

Description

This macro gets the current y coordinate of the widget.

tsaWidgetSetY

#define tsaWidgetSetY(inst, w, v)
(((struc _tsaWidgetObject *)w)->y = (v))

Parameters

inst The instance.

w Pointer to the widget data structure.
v Value of the y coordinate.

Return Codes

None.

Description

This macro sets the current y coordinate of the widget.

270 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetGetWidth

#define tsaWidgetGetWidth(inst, w)
(((struc _tsaWidgetObject *)w)->width)

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

None.

Description

This macro gets the width of the widget.

tsaWidgetSetWidth

#define tsaWidgetSetWidth(inst, w, v)
(((struc _tsaWidgetObject *)w)->width = (v))

Parameters

inst The instance.

w Pointer to the widget data structure.
v Width of the widget.

Return Codes

None.

Description

This macro sets the width of the widget.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 271

Chapter 8: Widget API

tsaWidgetGetHeight

#define tsaWidgetGetHeight(inst, w)
(((struc _tsaWidgetObject *)w)->height)

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

None.

Description

This macro gets the height of the widget.

tsaWidgetSetHeight

#define tsaWidgetSetHeight(inst, w, v)
(((struc _tsaWidgetObject *)w)->height = (v))

Parameters

inst The instance.

w Pointer to the widget data structure.
v Height of the widget.

Return Codes

None.

Description

This macro sets the height of the widget.

272 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetGetuserData

#define tsaWidgetGetuserData(inst, w)
(((struc _tsaWidgetObject *)w)->userData)

Parameters
inst The instance.
W Pointer to the widget data structure.

Return Codes

None.

Description

This macro gets the pointer to the user-specific data from the widget data structure.

tsaWidgetSetuserData

#define tsaWidgetSetuserData(inst, w, v)
(((struc _tsaWidgetObject *)w)->userData = (v))

Parameters

inst The instance.

w Pointer to the widget data structure.
v Pointer to the user data buffer.

Return Codes

None.

Description

This macro sets the pointer to the user-specific data.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 273

Chapter 8: Widget API

tsaWidgetFill

tmLibappErr_t tsaWidgetFill(
Int instance,
tsaWidget_t widget,

ptsa2DColor_t pColor

Parameters

instance The instance.

widget The widget data structure.
pColor Pointer to a color.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_NULL_WIDGET The widget is not created
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.

Description

The function erases the widget with the background color.

274 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

tsaWidgetDestroy

tmLibappErr_t tsaWidgetDestroy(
Int instance,
tsaWidget_t widget

Parameters
instance The instance.
widget The widget data structure.

Return Codes

TMLIBAPP_OK Success.
WIDGET_ERR_NULL_WIDGET The widget is not created
WIDGET_ERR_INCORRECT_INSTANCE The widget instance is incorrect.

Description

The function frees the memory for the widget object.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 275

Chapter 8: Widget API

How to Write Widgets

The TriMedia Widget Library can be easily extended by adding user-designed widgets. In
this section, the widget library framework, C header files and internal macros are
described. These materials are needed when users want to implement their own widgets.

Widget Library Framework

The widget library is designed in the object-oriented approach. Each widget has its own
private data structure which includes common and specific fields. The common fields
have a set of function pointers (which define the widget implementation and operate
only on the rest of the fields in the data structure), the instance, the geometry of the
widget and the pointer to the user data. The specific fields are widget specific and depend
on the widget implementation. When tsaWidgetCreateXXX is called, a pointer to the
data structure of the widgetXXX is returned.

The widget library framework is defined in two header files: tsaWidget.h and tsaWidget-
Internal.h. tsaWidget.h defines a common widget object fields (see page 231). tsaWidget-
Internal.h defines the macros for the widget internal implementation that needs to
access the widget data structure. The following table lists the macros defined in tsa-
WidgetInternal.h.

WIDGET_DEFAULT_FIELDS Declaration of the default widget fields in the private
internal widget data structure.

WIDGET_FILL_DEFAULT_FIELDS | Fillin the default values to the widget common fields
when tsaWidgetCreateXXX is called.

WIDGET_CHECK_INSTANCE Check the existence and validity of the input widget
instance.This macro makes sure that the input widget
instance is associated with the widget being used.

WIDGET_GET_PACKET Macro to get the widget associated packet.
WIDGET_GET_X Macro to get the x coordinate of the widget.
WIDGET_GET_Y Macro to get the y coordinate of the widget.
WIDGET_GET_WIDTH Macro to get the width of the widget.
WIDGET_GET_HEIGHT Macro to get the height of the widget.
WIDGET_2DINST Macro to get the instance of the 2D Graphics.
WIDGET_OMINST Macro to get the instance of the Object Manager
WIDGET_GETOBJECT Macro to get the function pointer of the get object
function.

276 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

WIDGET_MALLOC Macro to call the application-specific memory alloca-
tion function.

WIDGET_FREE Macro to call the application-specific memory free
function.

Widget Example (WidgetTemplate) Overview

The TextBox example program can be found in example/exWidgetTemplate/ directory.
This example shows you how to write a widget that complies with the widget library
framework. The details will be discussed in section three in this chapter. This example
program requires the 2D Graphics Library and the Widget Library. This is no need of the
Object Manager Library. The output is via TriMedia’s Video Out.

Note

For simplicity no anti-flicker filtering is done.The demo is self-running and
does not take any argument.Once the program is started, it shows a
TextBox widget (3D look) on the screen, followed by another TextBox widget
(Windows look) and the demo is done.

A TextBox widget is provided as an example to show how to write a widget module that
works with the framework. This example contains twelve files. One is the Makefile and
six of them are supportive modules: Color.c, Color.h, Font.c, Font.h, Support.c and Sup-
port.h. exWidgetTemplate.c is the main program.

There are four files for the TextBox widget:
» WidgetTextBox.h.

= WidgetTextBoxInternal.h.

= WidgetTextBox.c.

= WidgetTextBox2.c.

WidgetTextBox.h

WidgetTextBox.h defines the widget attribute indices, the public widget creation API,
and the error codes. The figure below shows the TextBox attribute indices enumeration,
tsaWidgetTextBoxIndex_t. This enumerates the possible widget-specific fields of the Text-
Box widget. Note that each index should have an associated widget specific field in the
private widget data structure except WIDGET_TEXTBOX_INVALID.

typedef enum{

/* index */ /* argument type */
WIDGET_TEXTBOX_INVALID = @
WIDGET_TEXTBOX_TEXT, /*string */
WIDGET_TEXTBOX_BGCOLOR, /* ptsa2DColor_t */
WIDGET_TEXTBOX_FGCOLOR, /* ptsa2DColor_t */
WIDGET_TEXTBOX_FONT /* ptsa2DFont_t */

} tsaWidgetTextBoxIndex_t;

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 277

Chapter 8: Widget API

WidgetTextBoxInternal.h

WidgetTextBoxInternal.h defines the private data structure of the TextBox widget. This
header file is used only for the widget implementation, so it is not public. The data struc-
ture contains two parts: standard widget object fields and the widget-specific fields. The
standard widget fields are declared via the macro WIDGET_DEFAULT_FIELDS and the wid-
get specific fields follows. The figure below shows the TextBox widget data structure.

typedef struct {

/* Standard widget object fields */
WIDGET_DEFAULT_FIELDS();

/* Widget specific fields */

String text;
ptsa2DColor_t bgcolor;
ptsa2DColor_t fgcolor;
ptsa2DFont_t font;

} TextBox, *pTextBox;

WidgetTextBox.c and WidgetTextBox2.c

WidgetTextBox.c contains the widget initialization, attributes access and implementa-
tion modules. There are four functions:

= tsaWidgetCreateTextBox
» TextWidgetGet

» TextWidgetSet

» TextWidgetPlot

Also, WidgetTextBox2.c is provided as a second TextBox based on the same data struc-
ture (same header files). The only difference between these two widgets is in the TextPlot
function whereas the other three functions remain the same.

tsaWidgetCreateTextBox

tsaWidgetCreateTextBox is a public function used to allocate the memory for the TextBox
data structure. Checking on the widget instance and the packet are needed. The macro
WIDGET_FILL_DEFAULT_FIELDS is used to fill the common widget fields using the get/set
value, plot/update functions, and the input parameters. Users can set some default val-
ues to the widget-specific attributes. A pointer to the TextBox widget data structure is
returned to the application.

TextBoxGet

TextBoxGet is a static function which is used to report the current value of the widget
specific attribute with appropriate attribute index.

278 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 8: Widget API

TextBoxSet

TextBoxSet is a static function which is used to set the value of the widget specific
attribute with appropriate attribute index.

TextBoxPlot

TextBoxPlot is also a static function which is a widget implementation module. It defines
the widget appearance, accesses the current values of the widget attributes from the data
structure, and renders the widget to its associated packet. Since the widget library is just
a general-purpose graphic device, it only reflects the status of the system by means of
visual effects. No aspect of system control issue is implemented in the plot function. In
this example, both the Plot and Update function pointers in the data structure are
assigned to the address of the TextBoxPlot function. To increase the rendering speed for
updating the widget, the TextBoxUpdate function may be needed to modify only the
part that is changed instead of drawing the whole widget again.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 279

Chapter 8: Widget API

280 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9
Window Manager (WM) API

Topic Page
Introduction 282

Windows 282
Returned Error Messages 286

Window Manager API Data Structures 287

Window Manager API Functions 291
Note

This component library is available as a part of the TriMedia DTV software
system.It is not included with the basic TriMedia SDE, but it is available
under a separate licensing agreement. Please contact your TriMedia sales
representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 281

Chapter 9: Window Manager (WM) API

Introduction

Windows

The TriMedia Window Manager is a TSA compliant library that manages windows from
multiple users. TSA compliant means that the structure of the API (like to opening and
setting up an instance before use), and the main types of data structures (tmAvPacket_t,
etc.) are shared with other TSA compliant software.

The window manager is limited in its functionality to make sure the performance and
memory requirements are acceptable for a broad range of embedded applications. The
main users that were kept in mind when defining the functionality are close captioning,
OSD, and web browser. The first version window manager manages graphics only, and is
not capable of handling a real-time video stream. To keep the window manager simple
and general, the 2D library is used whenever possible to draw or ‘bIt’ something to a
buffer, and the displaying of the resulting composition of windows is left to the applica-
tion (which can use the video renderer or a mechanism of its own).

Windows are rectangular and are ordered so that for every two windows, one of the two
is higher than the other. A higher window obscures a lower window if they overlap. A
window is created using the function tsaWMCreateRealWindow or tsaWMCreateVirtual-
Window.

Window Types

The window manager supports several types of windows.

The most straightforward type is the real window. In this case, the user keeps a complete
image of the window in memory so that the window manager can at any time copy
those parts that are visible (the cliplist) to the backplane. This is fast and simple, but can
be memory consuming.

A second type of window is the virtual window. In this case, the window manager calls a
callback function, provided by the user, for every rectangle in the cliplist. The callback
function has as arguments the ID of the window, the rectangle in the form of a complete
packet, the rectangle in coordinates relative to the window, and the window in coordi-
nates relative to the parent. The packet can be given to any 2D function to draw some-
thing, while the coordinates of the clip can be used to adjust the location of where to
draw to fit the packet of the clip. For details on how to adjust, see the example program
exWM.c.

Instances

Before the user can create a window, it needs to obtain and setup an instance using the
function tsaWMOpen and tsaWMiInstanceSetup. The instance is a parameter in every

282 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

WM function that manipulates a window, and is checked to see the window is manipu-
lated by the user who created it. Windows of instances stick together, i.e. for every two
instances A and B, all windows of A will be on top of all windows of B, or the other way
around.

Video Out

The window manager does not provide the functionality to actually output the assem-
bled windows to video-out. Instead, the first instance has to provide a tmAvPacket_t that
contains a buffer that is used as the backplane. The color of the upper left pixel is taken
as the background color. The window manager copies those parts of the windows that
are visible to the backplane, and restores the backplane whenever the background
becomes visible. The user is responsible for displaying the buffer. This provides more
flexibility in video formats, as the window manager does not need to understand how to
display the buffer. Note that the user cannot delete the tmAvPacket_t that holds the
backplane buffer until all instances are closed.

Note
The WM does an optimized cache copyback after it updates the backplane.

Redrawing

To change the contents of a real window, the in-memory buffer has to be updated after
which the function tsaWMRedraw can be called. This will force the window manager to
update the backplane in those areas that are occupied by that window.

For a virtual window, the function tsaWMRedraw will in turn call the window specific
callback function, to update those parts of the backplane that the window occupies
directly. The cliplist of a window is not given out directly and should not be ‘remem-
bered’, because it can change by WM calls by other users.

Moving

The function tsaWMMoveWindow can be used to move a window. The size of window
will remain the same and the parts of other windows or the background that become vis-
ible are updated automatically. Every window is clipped to the size of the backplane, and
to its parent, if it has one. Child windows will move with the parent; the location of a
child window is relative to the parent window.

Stacking Order

As mentioned, windows of the same instance stick together. To raise or lower a window
relative to the other windows of the instance tsaWMRaiseWindow and tsaLWMowerWin-
dow can be used. To raise or lower (all windows of) an instance, tsaWMRaiseAllWindows
and tsaWMLowerAllWindows can be used. When setting up an instance or creating a win-

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 283

Chapter 9: Window Manager (WM) API

dow, a stacking order can be defined to tell the window manager that an instance or win-
dow should always stay on top (wmSO_ALWAYS_ON_TOP) or bottom
(wmSO_ALWAYS_ON_BOTTOM) unaffected by calls to the raise and lower functions by
any user.

Display and Hiding

When a window is created, it is not visible yet. A non-visible window can be displayed
using a call to tsaWMDisplayWindow. A visible window can be hidden by a call to tsaWM-
HideWindow. Whenever a window is hidden or displayed, other windows and the back-
plane are updated when needed.

Scrolling

Scrolling can be implemented by changing the viewing window of a real window. The
viewing window is the part of the in memory buffer that is visible. It can be set using the
function tsaWMChangeViewingWindow. By making the viewing window smaller than
the size of the picture in the buffer, the offset can be varied to display different parts of
the window without changing the part of the backplane that is occupied. The default
viewing window is the complete window.

The concept of viewing window does not exist for virtual windows, so scrolling of virtual
windows has to be implemented in the user provided callback function. The window
manager does not offer a mechanism to repeatedly update the offset of the viewing win-
dow. So to scroll in a number of small steps after regular time intervals, it needs to be
implemented by the user.

Locking by User

Windows can be locked and unlocked using tsaWMLockWindow and tsaWMUnlockWin-
dow. When a window is locked, its image on the backplane is no longer updated. Lock-
ing a window gives the user the opportunity to update an in memory buffer without
worrying that the window manager displays an incomplete image. When a window is
unlocked, the backplane will be updated automatically if the window has been changed.

Reentrancy

In this release, all functions (except tsaWMGetCapabilities) suspend task scheduling. This
effectively prevents other tasks from changing the internal data structures of the window
manager.

Note
Implementation of reentrancy is now independent of tmos.

284 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

Parent Windows

A window can be created in a parent window by passing in the ID of the parent window
at creation. A child of a parent will always be clipped to the viewing window of the par-
ent. A child will always lay on top of the parent. Whenever the parent becomes invisible,
the children become invisible too, but not the other way around. The child has a certain
position relative to the upper left corner of the parent. For a real parent window with a
viewing window different from the in memory buffer, the location of the child is relative
to the upper left corner of the in memory buffer, i.e., when a parent scrolls up, the child
moves up too.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 285

Chapter 9: Window Manager (WM) API

Returned Error Messages

The following error messages are returned for the corresponding function.

Error code API
WM_ERR_INVALID_INSTANCE none
WM_ERR_INVALID_WINDOW_ID tsaWMDestroyWindow, tsaWMRaiseWindow,

tsaWMLowerWindow, tsaWMMoveWindow,
tsaWMDisplayWindow, tsaWMHideWindow,
tsaWMRedrawWindow, tsaWMChangeViewing-
Window, tsaWMLockWindow, tsaWMUnlock-
Window, tsaWMSetAbsoluteStackingOrder

WM_ERR_INVALID_PARENT_WINDOW tsaWMCreateVirtualWindow, tsaWMCreateReal-
Window

WM_ERR_NOT_CAPABLE tsaWMInstanceSetup, tsaWMCreateRealWindow

WM_ERR_OVERLAPPING_TOPWINDOWS | none

WM_ERR_NOT_OWNER tsaWMDestroyWindow, tsaWMRaiseWindow,
tsaWMLowerWindow, tsaWMMoveWindow,
tsaWMDisplayWindow, tsaWMHideWindow,
tsaWMRedrawWindow, tsaWMChangeViewing-
Window, tsaWMLockWindow, tsaWMUnlock-
Window, tsaWMSetAbsoluteStackingOrder

WM_ERR_NOT_OWNER_PARENT tsaWMCreateVirtualWindow, tsaWMCreateReal-
Window

WM_ERR_INCORRECT_COORDINATES none

WM_ERR_MEMORY AllWM APIs

WM_ERR_INVALID_STACKING_ORDER tsaWMinstanceSetup, tsaWMCreateVirtual-
Window, tsaWMCreateRealWindow, tsaWMSet-
AbsoluteStackingOrder

WM_ERR_NOT_AVAILABLE_RIGHT_NOW | All WM API functions.

WM_ERR_INCORRECT_ARGUMENT tsaWMinstanceSetup, tsaWMGetInstanceSetup,
tsaWMCreateRealWindow

WM_ERR_NOT_IMPLEMENTED tsaWMCreateRealWindow

WM_ERR_FORMAT_MISMATCH tsaWMInstanceSetup, tsaWMCreateRealWindow

286 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

Window Manager API Data Structures

This section presents the Window Manager data structures.

Name Page
tsaWMStackingOrder_t 288
ptsaRedrawCallbackFun_t 289
tsaWMCapabilities_t 290
tsaWMiInstanceSetup_t 290

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 287

Chapter 9: Window Manager (WM) API

tsaWMStackingOrder_t

typedef enum {
wmSO_NONE =
wmSO_DONT_CARE =
wmSO_ALWAYS_ON_TOP
wmSO_ALWAYS_ON_BOTTOM
} tsaWMStackingOrder_t, *ptsaWMStackingOrder_t ;

1]
w N RS

Fields

wmSO_NONE Not used.

Stacking order controlled by the functions tsa-
WMRaiseWindow, tsaWMLowerWindow, tsaWM-
RaiseAllWindows, and tsaWMLowerAllWindows.

An instance or window must be on top of others
at all times.

An instance or window has to be on the bottom
of others at all times.

Description

This type is used to tell the window manager the stacking order of windows.

288 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

ptsaRedrawCallbackFun_t

typedef tmLibappErr_t (*ptsaRedrawCallbackFun_t) (

UInt32 windowID,

ptsa2DRect_t pWindowRect,

ptsa2DRect_t pClipInWindow,

tsa2DContext_t pGrContext,

tmAvPacket_t pPacket
)
Fields
windowID The ID of the window to be updated.
pWindowRect Complete window relative to parent.
pClipInWindow Current clip in window to be updated in this call.
pGrContext The 2D lib graphical context of the window.
pPacket A packet that contains exactly the part of the win-

dow that needs to be updated.

Description

Type of callback function that is called when window manager wants client to redraw
part of a virtual window.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 289

Chapter 9: Window Manager (WM) API

tsaWMCapabilities_t

typedef struct {
ptsaDefaultCapabilities_t defaultCapabilities;
} tsaWMCapabilities_t, *ptsaWMCapabilities_t;

tsaWMinstanceSetup_t

typedef struct {
ptmAvPacket_t pBackPlane;
tsaWMStackingOrder_t stackingOrder;

} tsaWMInstanceSetup_t, *ptsaWMInstanceSetup_t ;

Fields

pBackplane Packet that holds the background as displayed
and to which the window manager will draw.
Only the packet of the instance that is set up first
is used.

Note: The upper left pixel in this back plane will
be the background color used to redraw the back-
ground.

stackingOrder Position of windows of this instance relative to
other instance’s windows.

Description

Sets up an instance.

290 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

Window Manager API Functions

This section presents the Window Manager API function descriptions.

Name Page
tsaWMGetCapabilities 292
tsaWMOpen 292
tsaWMClose 293
tsaWMinstanceSetup 293
tsaWMCreateRealWindow 294
tsaWMCreateVirtualWindow 295
tsaWMDestroyWindow 296
tsaWMMoveWindow 297
tsaWMRaiseWindow 298
tsaWMLowerWindow 299
tsaWMRaiseAllWindows 300
tsaWMLowerAllWindows 300
tsaWMDisplayWindow 301
tsaWMHideWindow 302
tsaWMRedrawWindow 303
tsaWMChangeViewingWindow 304
tsaWMLockWindow 305
tsaWMUnlockWindow 306

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 291

Chapter 9: Window Manager (WM) API

tsaWMGetCapabilities

tmLibappErr_t tsaWMGetCapabilities(
ptsaWMCapabilities_t *ppCap
)3

Parameters

ppCap Pointer to a variable in which to return a pointer
to the capabilities data.

Return Codes

TMLIBAPP_OK Success.

Description

Gets the capabilities of the window manager.

tsaWMOpen

tmLibdevErr_t tsaWMOpen(
Int *pInstance
)3

Parameters

pInstance Pointer to the (returned) instance, to be used for
other WM calls.

Return Codes

TMLIBAPP_OK Success.

Description

Opens an instance to use the window manager.

292

Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMClose

tmLibappErr_t tsaWMClose(
Int instance
)3

Parameters

instance The instance to close.

Return Codes

TMLIBAPP_OK Success.

Description

Closes an instance.

tsaWMinstanceSetup

tmLibappErr_t tsaWMInstanceSetup(
Int instance,
ptsaWMInstanceSetup_t pSetup

)3

Parameters
instance The instance.
pSetup Set up information.

Return Codes

TMLIBAPP_OK Success.

Description

Sets up an instance.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 293

Chapter 9: Window Manager (WM) API

tsaWMCreateRealWindow

tmLibappErr_t tsaWMCreateRealWindow(
Int instance,
UInt32 parentID,
tsaWMStackingOrder_t stackingOrder,
Int X,
Int Y,
Bool transparent,
Int transValue,
ptmAvPacket_t pPacket,
UInt32 *pWindowID

);

Parameters

instance Valid instance as returned by tsaWMOpen.

parentID

stackingOrder

X,y
transparent

transValue

The ID of the parent window, O for ‘no parent’.

Position of the window in the stack of windows of
this instance.

Initial position of window.
Whether window is transparent.

Value in buffer for transparent.

pPacket Packet that contains the actual picture and infor-
mation like size, etc. Its format must be compati-
ble with the back plane setup in
tsaWMinstanceSetup.

pWindowID The returned ID of the created window.

Return Codes

TMLIBAPP_OK

Description

Success.

Creates a real window (but does not yet display it).

294 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMCreateVirtualWindow
tmLibappErr_t tsaWMCreateVirtualWindow(
Int instance,
UInt32 parentID,
tsaWMStackingOrder_t stackingOrder,
Int X,
Int Y,
Int W,
Int h,
Bool transparent,
ptsa2DContext_t pGrContext,
ptsaRedrawCallbackFun_t pRedrawCbFun,
UInt32 *pWindowID
)3
Parameters
instance Valid instance as returned by tsaWMOpen.
parentID The ID of the parent window, O for ‘no parent’.

stackingOrder

X,y

w,h
transparent
pGrContext
pRedrawCbFun

pWindowID

Return Codes

Position of the window in the stack of windows of
this instance.

Initial position of window.

Initial width and height of window.
Whether window is transparent.
Graphical context used in this window.

Callback function used when the window man-
ager wants the application to update the window.

The returned ID of the created window.

TMLIBAPP_OK

Description

Success.

Creates a virtual window (but does not yet display it).

©1999 Philips Semiconductors 10/08/99

Book 8—Graphics Libraries 295

Chapter 9: Window Manager (WM) API

tsaWMDestroyWindow

tmLibappErr_t tsaWMDestroyWindow(
Int instance,
UInt32 windowID

)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to destroy.

Return Codes

TMLIBAPP_OK Success.

Description

Destroys a window.

296 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMMoveWindow

tmLibappErr_t tsaWMMoveWindow(
Int instance,
Int X,
Int Yy,
UInt32 windowID
)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

X,y New position of window.

windowID The ID of the window to move.

Return Codes

TMLIBAPP_OK Success.

Description

Moves a window, and redraws it if any part of the window has become uncovered.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 297

Chapter 9: Window Manager (WM) API

tsaWMRaiseWindow

tmLibappErr_t tsaWMRaiseWindow(
Int instance,
UInt32 windowlID

)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to raise.

Return Codes

TMLIBAPP_OK Success.

Description

Raises a window higher than other windows of the same instance with stacking order
DONT_CARE, and redraws it if any part of the window has become uncovered.

298 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMLowerWindow

tmLibappErr_t tsaWMLowerWindow(
Int instance,
UInt32 windowID

)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to lower.

Return Codes

TMLIBAPP_OK Success.

Description

Lowers a window lower other windows of the same instance with stacking order
DONT_CARE.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 299

Chapter 9: Window Manager (WM) API

tsaWMRaiseAllWindows

tmLibappErr_t tsaWMRaiseAT1Windows(
Int instance
)3

Parameters

instance Valid instance as returned by tsaWMOpen.

Return Codes

TMLIBAPP_OK Success.

Description

Raises all windows of an instance higher than windows of other instances with stacking
order DONT_CARE, and redraws those parts of windows that have become uncovered.

tsaWMLowerAllWindows

tmLibappErr_t tsaWMLowerATTWindows(
Int instance
)

Parameters

instance Valid instance as returned by tsaWMOpen.

Return Codes

TMLIBAPP_OK Success.

Description

Lowers all windows of an instance lower than windows of other instances with stacking
order DONT_CARE.

300 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMDisplayWindow

tmLibappErr_t tsaWMDisplayWindow(
Int instance,
UInt32 windowID

);

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to display.

Return Codes

TMLIBAPP_OK Success.

Description

Displays a created window. That is, the function displays those parts of the window that
are not covered by other windows, by either block transferring those parts to the back-
plane (in case of a real window) or calling the redraw callback function (in case of a vir-
tual window).

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 301

Chapter 9: Window Manager (WM) API

tsaWMHideWindow

tmLibappErr_t tsaWMHideWindow(
Int instance,
UInt32 windowID

)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to hide.

Return Codes

TMLIBAPP_OK Success.

Description

Hides a window, by displaying the parts of other windows or the backplane that have
become visible.

302 Book 8—Graphics Libraries ©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMRedrawWindow

tmLibappErr_t tsaWMRedrawWindow(
Int instance,
UInt32 windowID

)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to redraw.

Return Codes

TMLIBAPP_OK Success.

Description

Forces a redraw of those parts of the window that are not covered by other windows. For
a real window, this means copying parts of the off screen buffer. For a virtual window,
the callback redraw function is called.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 303

Chapter 9: Window Manager (WM) API

tsaWMChangeViewingWindow

tmLibappErr_t tsaWMChangeViewingWindow(

Int

Int

Int

Int

Int

UInt32
)

Parameters

instance,
X,

Y,

W’

h’
windowID

instance

X,y
w,h

windowID

Return Codes

Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

Offset from left upper corner of off screen buffer.

Width and height of viewing window. Negative
for ‘no change.’

The ID of the real window to redraw.

TMLIBAPP_OK

Description

Success.

Changes the part of the off-screen buffer that is visible.

304 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

Chapter 9: Window Manager (WM) API

tsaWMLockWindow

tmLibappErr_t tsaWMLockWindow(
Int instance,
UInt32 windowID

)3

Parameters

instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.

windowID The ID of the window to lock.

Return Codes

TMLIBAPP_OK Success.

Description

Locks a window so that the window manager does not try to redraw it when part become
uncovered. This may be useful when the off-screen buffer contains incorrect data.

©1999 Philips Semiconductors 10/08/99 Book 8—Graphics Libraries 305

Chapter 9: Window Manager (WM) API

tsaWMUnlockWindow
tmLibappErr_t tsaWMUnlockWindow(
Int instance,
UInt32 windowID
)3
Parameters
instance Valid instance as returned by tsaWMOpen, owner
of the manipulated window.
windowID The ID of the window to redraw.

Return Codes

TMLIBAPP_OK

Description

Success.

Unlocks a window, and redraws the window if it has been manipulated while locked.

306 Book 8—Graphics Libraries

©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 8—Graphics Libraries
	1: Graphics Introduction
	2: 2D Graphics API
	2D Graphics Library Overview
	Rectangle Coordinates Specification
	Supported Buffer Types
	Graphics and Video Images Blending Specification in the DTV Buffer Types
	Drawing Primitives APIs
	Clipping
	Drawing Rules

	Fonts: TMFont and TMFont2
	TMFont
	Font TM Font Files
	TMFont2
	TMFont2 Font Files

	How to Use the 2D Graphics Library
	Necessary Items
	Programs that use 2D Graphics Library
	How to Load Fonts
	PC Host
	stand-alone

	Technical Difficulties with 2D Graphics Library

	Returned Error Messages
	2D API Data Structures
	tsa2DCapabilities_t
	tsaYUVAColor_t
	tsaYUVColor_t
	tsaRGBColor_t
	tsa2DColorType_t
	tsa2DColor_t
	tsaYUVA4Color_t
	tsa2DIndexColorLUT_t
	tsa2DCoordinate_t
	tsa2DRect_t
	tsa2DImageType_t
	tsa2DImage_t
	tsa2DTextStyle_t
	tsa2DFontInfoFlag_t
	tsaFontTMCharMetrics_t
	tsaFontTM_t
	tsaTMFont2CharMetrics
	tsaTMFont2
	tsa2DFontType_t
	tsa2DFont_t
	tsa2DContext_t

	2D API Functions
	tsa2DGetCapabilities
	tsa2DOpen
	tsa2DClose
	tsa2DRGBtoYUV
	tsa2DYUVtoRGB
	tsa2DLoadIndexColorLUT
	tsa2DUnLoadIndexColorLUT
	tsa2DGetColorFmIndex
	tsa2DPointNC
	tsa2DLineNC
	tsa2DFillRectNC
	tsa2DImageNC
	tsa2DTextNC
	tsa2DSetPixel
	tsa2DGetPixel
	tsa2DPoint
	tsa2DLine
	tsa2DFillRect
	tsa2DFillPoly
	tsa2DImage
	tsa2DText
	tsa2DBlt
	tsa2DBltRegion
	tsa2DPolyPoint
	tsa2DPolyLine
	tsa2DPolyFillRect
	tsa2DPolyImage
	tsa2DPolyText
	tsa2DPolyBlt
	tsa2DGetStrWidth
	tsa2DGetFontInfo
	tsa2DTMFontSetCharSpacingInString
	tsa2DTMFontGetCharSpacingInString
	tsa2DLoadFont
	tsa2DUnLoadFont

	3: EIA-608 Closed-Captioning API
	DTVCC Decoder (EIA-608) Overview
	Operation
	Sample Application
	VrendEia608 API Functions
	tmalVrendEia608Open
	tmolVrendEia608Open
	tmalVrendEia608Close
	tmolVrendEia608Close
	tmalVrendEia608Start
	tmolVrendEia608Start
	tmalVrendEia608Stop
	tmolVrendEia608Stop
	tmalVrendEia608GetCapabilities
	tmolVrendEia608GetCapabilities
	tmolVrendEia608GetInstanceSetup
	tmalVrendEia608InstanceConfig
	tmolVrendEia608InstanceConfig
	tmalVrendEia608InstanceSetup
	tmolVrendEia608InstanceSetup
	tmalVrendEia608RedrawFunc
	tmalVrendEia608DecodePacket
	tmalVrendEia608FieldVsync

	VrendEia608 API Enumerations and Data Structures
	Eia608_Field_t
	Eia608_Service_t
	Eia608_XDSPackTypes_t
	tmalVrendEia608ConfigTypes_t
	tmalVrendEia608InstanceSetup_t
	tmolVrendEia608InstanceSetup_t
	Eia608_ATVEFPackTypes_t
	tmVrendEia608ProgressVCHIP_t
	tmVrendEia608ProgressXDS_t
	tmVrendEia608ProgressATVEF_t

	4: EIA-708 Closed-Captioning API
	DTVCC Decoder (EIA-708) Overview
	Background

	DTVCC Decoder (EIA-708) Inputs and Outputs
	Compliance With the DTVCC Standard
	Multiple Service Channel Decoding

	DTVCC Decoder (EIA-708) Progress
	DTVCC Decoder (EIA-708) Error
	Error codes

	DTVCC Decoder (EIA-708) API Data Structures
	tmolVrendEia708Capabilities_t
	tmalVrendEia708Capabilities_t
	tmalVrendEia708InstanceSetup_t
	tmolVrendEia708InstanceSetup_t
	tmVrendEia708Fonts_t
	tmVrendEia708FontStyles_t
	tmVrendEia708AR_t
	tmVrendEia708ServDecSetup_t
	tmVrendEia708ConfigCommands_t
	tmVrendEia708ConfigParams_t

	DTVCC Decoder (EIA-708) API Functions
	tmolVrendEia708GetCapabilities
	tmolVrendEia708Open
	tmolVrendEia708Close
	tmolVrendEia708GetInstanceSetup
	tmolVrendEia708InstanceSetup
	tmolVrendEia708Start
	tmolVrendEia708Stop
	tmolVrendEia708InstanceConfig
	tmolVrendEia708FieldVsync

	5: HTML Parser API
	Overview
	Modules
	Header Files

	Resource Files in the Database
	HTML Pages
	TM Fonts
	Widget Images
	Other Image Files

	TriMedia Extensions to the HTML
	Button in INPUT tag
	Horizontal Slider

	How to Use the HTML Parser and HTML Renderer Libraries
	HTML Renderer Navigation Functions
	HTML Renderer ‘Get Information’ Functions

	Example (exHtml) Overview
	Wrapper Function: myGetObject

	HTML Data Structures
	tsaHtmlFont_t
	tsaHtmlWidgetStateGeneric_t
	tsaHtmlWidgetStateTextline_t
	tsaHtmlWidgetStatePassword_t
	tsaHtmlWidgetStateRadio_t
	tsaHtmlWidgetStateCheckbox_t
	tsaHtmlWidgetStateButton_t
	tsaHtmlWidgetStateSubmit_t
	tsaHtmlWidgetStateReset_t
	tsaHtmlWidgetStateImage_t
	tsaHtmlWidgetStateFile_t
	tsaHtmlWidgetStateHidden_t
	tsaHtmlWidgetStateSelect_t
	tsaHtmlWidgetStateTextarea_t
	tsaHtmlWidgetStateSlider_t

	HTML Enumerated Types
	tsaHtmlHotspotType_t
	tsaHtmlFontStyle_t
	tsaHtmlImageAlign_t

	HTML API Data Structures
	tsaHtmlParserCapabilities_t
	tsaHtmlParserInstanceSetup_t
	tsaHtmlParserFrameState_t
	tsaHtmlParserSetupFlags_t

	HTML API Functions
	tsaHtmlParserGetCapabilities
	tsaHtmlParserOpen
	tsaHtmlParserGetInstanceSetup
	tsaHtmlParserInstanceSetup
	tsaHtmlParserClose
	tsaHtmlParserLoadUrl
	tsaHtmlParserLoadHtml
	tsaHtmlParserUnload

	HTML Tags Supported

	6: HTML Renderer API
	Overview
	Modules
	Header Files
	The TriMedia HTML Parser (HtmlParser)

	HTML Renderer API Data Structures
	tsaHtmlRenderCapabilities_t
	tsaHtmlRenderInstanceSetup_t
	tsaHtmlRenderWidgetState_t
	tsaHtmlRenderSetupFlags_t
	tsaHtmlRenderHotspotDir_t
	tsaHtmlRenderScrollDir_t

	HTML Renderer API Functions
	tsaHtmlRenderGetCapabilities
	tsaHtmlRenderOpen
	tsaHtmlRenderGetInstanceSetup
	tsaHtmlRenderInstanceSetup
	tsaHtmlRenderClose
	tsaHtmlRenderFrameStateCreate
	tsaHtmlRenderFrameStateDestroy
	tsaHtmlRenderRenderFrame
	tsaHtmlRenderRenderAllFrames
	tsaHtmlRenderRenderHotspot
	tsaHtmlRenderGetFrameId
	tsaHtmlRenderGetCurrentHotspot
	tsaHtmlRenderGetHotspot
	tsaHtmlRenderGetNumHotspots
	tsaHtmlRenderGetSubFrame
	tsaHtmlRenderGetNumSubFrames
	tsaHtmlRenderFollowNamedLink
	tsaHtmlRenderScrollScreen

	7: Object Manager (OM) API
	Object Manager Overview
	Object Manager
	Object Manager Database Builder
	Database Builder
	Database Loader

	Database Format

	Object Manager API Data Structures
	tsaOMCapabilities_t
	tsaOMInstanceSetup_t
	tsaOMHTML_t

	Object Manager API Enumerated Types
	tsaOMType_t

	Object Manager API Functions
	tsaOMGetCapabilities
	tsaOMOpen
	tsaOMGetInstanceSetup
	tsaOMInstanceSetup
	tsaOMClose
	tsaOMGetObject

	8: Widget API
	Introduction
	Widget Library Overview
	Basic Operations
	How to Create a Standard Widget
	Widget Example Programs (exWidget) Overview
	Wrapper Function: myGetObject

	Widget Library Data Structures
	tsaWidgetCapabilities_t
	tsaWidgetInstanceSetup_t
	tsaWidgetInstVar_t
	_tsaWidgetObject_t

	Widget Library Functions
	tsaWidgetGetCapabilities
	tsaWidgetOpen
	tsaWidgetGetInstanceSetup
	tsaWidgetInstanceSetup
	tsaWidgetClose

	Standard Widget Set
	Standard Widget Set Enumerated Types
	tsaWidgetButtonIndex_t
	tsaWidgetImageIndex_t
	tsaWidgetPasswordIndex_t
	tsaWidgetSelectIndex_t
	tsaWidgetSliderIndex_t
	tsaWidgetTextareaIndex_t
	tsaWidgetTextlineIndex_t
	tsaWidgetToggleIndex_t

	Standard Widget Set Functions and Macros
	tsaWidgetCreateButton
	tsaWidgetCreateImage
	tsaWidgetCreatePassword
	tsaWidgetCreateSelect
	tsaWidgetCreateSlider
	tsaWidgetCreateTextarea
	tsaWidgetCreateTextline
	tsaWidgetCreateToggle
	tsaWidgetPlot
	tsaWidgetPLOT
	tsaWidgetUpdate
	tsaWidgetUPDATE
	tsaWidgetGet
	tsaWidgetGET
	tsaWidgetSet
	tsaWidgetSET
	tsaWidgetGetPacket
	tsaWidgetSetPacket
	tsaWidgetGetX
	tsaWidgetSetX
	tsaWidgetGetY
	tsaWidgetSetY
	tsaWidgetGetWidth
	tsaWidgetSetWidth
	tsaWidgetGetHeight
	tsaWidgetSetHeight
	tsaWidgetGetuserData
	tsaWidgetSetuserData
	tsaWidgetFill
	tsaWidgetDestroy

	How to Write Widgets
	Widget Library Framework
	Widget Example (WidgetTemplate) Overview
	WidgetTextBox.h
	WidgetTextBoxInternal.h
	WidgetTextBox.c and WidgetTextBox2.c
	tsaWidgetCreateTextBox
	TextBoxGet
	TextBoxSet
	TextBoxPlot

	9: Window Manager (WM) API
	Introduction
	Windows
	Window Types
	Instances
	Video Out
	Redrawing
	Moving
	Stacking Order
	Display and Hiding
	Scrolling
	Locking by User
	Reentrancy
	Parent Windows

	Returned Error Messages
	Window Manager API Data Structures
	tsaWMStackingOrder_t
	ptsaRedrawCallbackFun_t
	tsaWMCapabilities_t
	tsaWMInstanceSetup_t

	Window Manager API Functions
	tsaWMGetCapabilities
	tsaWMOpen
	tsaWMClose
	tsaWMInstanceSetup
	tsaWMCreateRealWindow
	tsaWMCreateVirtualWindow
	tsaWMDestroyWindow
	tsaWMMoveWindow
	tsaWMRaiseWindow
	tsaWMLowerWindow
	tsaWMRaiseAllWindows
	tsaWMLowerAllWindows
	tsaWMDisplayWindow
	tsaWMHideWindow
	tsaWMRedrawWindow
	tsaWMChangeViewingWindow
	tsaWMLockWindow
	tsaWMUnlockWindow

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

