

Version 2.1

AB

Book 3—Software Architecture

Part B:

The Streaming Architecture

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

iii

Book 3—Software Architecture
Part B: The Streaming Architecture

Table of Contents

Chapter 7 TSSA Essentials

Introduction... 12

What is TSSA? .. 12

Standardized APIs ... 13

Thoughts From the Architect .. 13

Common Data Structures.. 14

Data Packets .. 14

The Packet Structure (tmAvPacket_t) .. 15

The Header Structure (tmAvHeader_t).. 15

The Buffer Structure (tmAvBufferDescriptor_t).. 15

Allocating a Packet.. 16

Format Structures (e.g. tmAvFormat_t) ... 16

Time Structures (tmTimeStamp_t).. 17

Configuration Structures .. 17

Capabilities Structures... 18

tsaInOutDescriptor_t ... 19

tsaInOutDescriptorSetup_t ... 19

Instance Setup Structures .. 19

Types of TSSA Component Interfaces ... 22

Asynchronous Components (TSSA) ... 22

Synchronous Components .. 23

The AL layer and the OL layer ... 23

Audio Signal Processing (ASP) Components ... 24

TSSA Overview .. 25

Component Classes .. 25

Component Connections: Queues and Data Packets .. 25

Function API .. 26

Callback Functions .. 28

Table of Contents

iv

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

Chapter 8 Developing Applications Using a Streaming Model

Sample Application .. 30

Getting Component Capabilities ... 32

Opening Components ... 33

Creating InOutDescriptors ... 33

Getting Instance Setup Structures .. 34

Sending in the InOutDescriptors to the Components ... 34

Setting Up Components ... 35

Callback Functions .. 35

Task Control ... 37

Start Processing ... 38

Stop Components ... 40

Closing Instances ... 40

Destroying InOutDescriptors .. 40

More Advanced Issues ... 41

Delaying Setting of Format .. 41

Connecting a TSSA Component to a Non-TSSA Component 41

Creating Packets Without InOutDescriptorCreate .. 41

In Place Processing .. 41

Configuring Components .. 42

Reconnecting TSSA Components .. 43

Debugging TSSA Applications ... 44

Chapter 9 Applications Using a Non-Streaming Model

Introduction... 46

Sample Application .. 47

Open the AL Library Component .. 48

Getting Instance Setup Struct .. 48

Configuration of the Library Component ... 49

Set Up of the Library Component ... 49

Data Processing .. 49

Closing the Component .. 50

Further Aspects of Using AL Libraries... 52

More on Configuration .. 52

Reconfiguration During Processing .. 52

Using AL Libraries in Streaming Mode .. 53

Sample Datain Callback Function.. 54

Sample Dataout Callback Function .. 55

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

v

Chapter 10 TSSA Component Basics

Introduction... 58

Attributes of Common Components... 58

Streaming (Pull) and Non-Streaming (Push) ... 59

OS-Independent Data Processing ... 59

Task-Based Context .. 60

TSSA Layers .. 60

OL Layer .. 60

Default Layer ... 60

AL Layer ... 61

CopyIO Example and Explanation ... 63

GetCapabilities ... 63

OL GetCapabilities .. 63

Default GetCapabilities ... 63

AL GetCapabilities... 64

Open .. 66

OL Open.. 66

Default Open... 67

AL Open .. 69

GetInstanceSetup .. 71

OL GetInstanceSetup ... 71

AL GetInstanceSetup ... 71

InstanceSetup ... 71

OL InstanceSetup .. 72

Default Instance Setup .. 72

AL InstanceSetup... 78

Start .. 79

OL Start ... 79

Default Start .. 80

Default Task ... 80

AL Start.. 81

InstanceConfig ... 84

OL InstanceConfig... 84

Default InstanceConfig.. 85

AL InstanceConfig ... 86

Stop .. 87

OL Stop.. 87

Default Stop... 87

Table of Contents

vi

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

Default Task ... 88

AL Stop .. 88

Close ... 89

OL Close .. 89

Default Close... 89

AL Close... 90

ProcessData ... 90

AL ProcessData... 91

Summary of Design Models.. 92

Streaming vs. Non-Streaming ... 92

Data Processing .. 92

Pull vs. Push Model .. 92

Task-Based vs. ISR .. 93

Component Packages .. 93

Chapter 11 TSSA Design Details

Introduction... 96

Component Design Details ... 96

ISR Components .. 96

createNoTask... 97

tmal

Com

ReceiverFormatSetup .. 97

In-Place Components ...100

tsaCapFlagsInPlace ...100

Changing Formats in Components ...100

Sender: Initiating Format Change ...101

Receiver: Responding to Format Change ...101

Waiting on Multiple Input Queues with waitSemaphore ...101

Setting Up Inputs with waitSemaphore ...102

Using Datain(GetFull) with waitSemaphore..103

Calculating Memory Requirements ..104

Example ..104

Application Design Details..105

Using non-TSSA components ...105

Synchronized Stop ..106

End of Stream ...107

Changing Formats from the Application ..107

Using tsaDefaultInstallFormat ..108

Using tmolComInstanceConfig ..108

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

vii

Reconnecting Components ..109

Reconnecting Sender ..109

Reconnecting Receiver..109

Chapter 12 TSSA Compliance

Introduction...112

Header Files..112

tmol

Com

.h ...112

tmal

Com

.h ..113

tmLibappErr.h ...115

Library Code...115

tmol

Com

.c ..115

tmal

Com

.c ..117

Documentation ...120

Example/Test Code ...120

Chapter 13 tsa.h: Software Architecture Definitions

Default Capabilities Structure ..122

tsaDefaultCapabilities_t...123

tsaCapabilityFlags_t ..125

Default Instance Setup Structure ..126

tsaDefaultInstanceSetup_t ...126

Clock Handle ..129

tsaClockHandle_t ...129

InOutDescriptors...130

tsaInOutDescriptor_t ..130

tsaInOutDescriptorSetup_t ..132

tsaInOutDescSetupFlags_t ...134

ControlDescriptors ...135

tsaControlDescriptor_t...135

tsaControlDescriptorSetup_t...136

tsaControlDescSetupFlags_t..136

Default Instance Variables...137

tsaDefaultInstVar_t ..137

Default AL Function Table ...139

tsaDefaultFuncs_t ..139

Table of Contents

viii

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

Default Utility Functions ...140

tsaDefaultInOutDescriptorCreate ..141

tsaDefaultInOutDescriptorDestroy..142

tsaDefaultControlDescriptorCreate...143

tsaDefaultControlDescriptorDestroy ..144

tsaDefaultSenderReconnect ..145

tsaDefaultReceiverReconnect ...146

tsaDefaultInstallFormat..147

tsaDefaultUnInstallFormat..148

tsaDefaultSleep...149

tsaDefaultCheckQueues ..150

Default API Functions...151

tsaDefaultGetCapabilities ...152

tsaDefaultGetCapabilitiesM ...153

tsaDefaultOpen...154

tsaDefaultOpenM...155

tsaDefaultClose ...156

tsaDefaultGetInstanceSetup..157

tsaDefaultInstanceSetup ...158

tsaDefaultStart ..159

tsaDefaultStop...160

tsaDefaultInstanceConfig..161

tsaDefaultStopPin ..162

tsaDefaultUnStopPin ..163

Default Callback Functions ...164

tsaDefaultErrorFunction ..166

tsaErrorFunc_t ...167

tsaErrorFlags_t...168

tsaErrorArgs_t..168

tsaDefaultProgressFunction...169

tsaProgressFunc_t..170

tsaProgressFlags_t ...171

tsaProgressArgs_t ..171

tsaDefaultCompletionFunction ..172

tsaCompletionFunc_t ...173

tsaCompletionFlags_t...174

tsaCompletionArgs_t..174

tsaDefaultDatainFunction...175

tsaDatainFunc_t..177

tsaDatainFlags_t ...178

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

ix

tsaDatainArgs_t ..178

tsaDefaultDataoutFunction..179

tsaDataoutFunc_t...181

tsaDataoutFlags_t ..182

tsaDataoutArgs_t ...182

tsaDefaultMemallocFunction ..183

tsaMemallocFunc_t ...184

tsaMemallocArgs_t..184

tsaDefaultMemfreeFunction..185

tsaMemfreeFunc_t...186

tsaMemfreeArgs_t ...186

tsaDefaultControlioFunction ...187

tsaControlFunc_t ..188

tsaControlFlags_t ...189

tsaControlArgs_t...189

tsaDefaultControlMessage_t ...190

Table of Contents

x

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

11

7

Chapter 7

TSSA Essentials

Topic Page

Introduction 12

Common Data Structures 14

Types of TSSA Component Interfaces 22

TSSA Overview 25

Chapter 7: TSSA Essentials

12

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

Introduction

As TriMedia developers began creating large applications that handle multimedia data

processing in real time, it became clear that some standardized methods would simplify

the problem. The result is a set of guidelines collectively known as the TriMedia Stream-

ing Software Architecture (TSSA). The sole mission of TSSA is to promote interoperability

and reusability of components, thereby enabling a seamless collaboration between appli-

cation programmers and component developers.

Many software issues have been encountered during the construction of complex TriMe-

dia applications. The TSSA guidelines that have evolved from this experience will save

you immense time in solving basic programming tasks.

What is TSSA?

TSA and TSSA have several features. Some may be useful for a given application, some

may not. TSSA brings in all aspects of the TriMedia software architecture. It describes a

method of constructing and connecting autonomous, task-based components that

stream data between them.

TSSA provides a framework for components, whether streaming or not, that includes:

■

A standard Application Programmer Interface (API)

■

Common data formats (as defined in header files that are contained on the CD)

Figure 1

A TSSA-compliant component takes many shapes and sizes, but its entry points

and the data formats flowing in and out are consistent and predictable.

Full buffers

Empty buffers

Full buffers

Control

Empty buffers

Control Control

Application

Processing

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

13

7

Standardized APIs

Every library has an API reference that shares a consistent recognizable format. For

instance, there is a page outlining each function and each data structure, and there is an

overview that contains a picture of the inputs and outputs for that library.

References for TriMedia-supplied components are located in Book 5,

Device Library APIs

,

and Book 6,

Software Library APIs

 of the TriMedia SDE. If you are reading this page in its

electronic pdf format, you can navigate to the API references via the bookmarks on the

left side of the window.

Thoughts From the Architect

The following is an excerpt from an informal talk given by a key member of the original

TSA design team. This excerpt may lend a personal context to the motivations that have

led the development of the architecture.

I’d like to just go over some of the original thoughts we had early on. There were a number of

things that we were trying to do, one of which was to have a streaming architecture, because

it’s a good way to start working on multimedia applications, where data is flowing through

your system.

One of the other goals was to create some consistency in our APIs, which we did not have.

We wanted to get everybody’s noses pointed in the same direction. There were people working

on various pieces and we did not have a common view of how we did that. That led to diver-

gence and since matters were not clear to ourselves, they were not clear to our customers.

The device libraries are very similar with a number of functions that you’ll see everywhere to

control the devices on TriMedia. The idea was to build a number of layers on top of that

which had a very similar API, and a very similar way of interacting. So far, we’ve dubbed

those layers Application Libraries and OS layers, AL and OL for short. Those are now becom-

ing more common terms.

In these layers, you see a piece of software that does a certain function as a component, a

black box component that has data streaming in and data streaming out. It doesn’t have any

global awareness. The only interfaces are data streaming in and data streaming out.

Although there may be multiples of these, at some point, we didn’t really start out that way.

February 1998

Chapter 7: TSSA Essentials

14

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

Common Data Structures

Given countless ways to describe data, TSA has set some rules on formats of data used

among TSA components, so that the data is understandable to all. The standard TSA data

structures are declared in a header file called tmAvFormats.h. (Refer to Chapter 4,

tmAv-

Formats.h: Multimedia Format Definitions

 for documentation of these structures). This

chapter gives you an introduction to these commonly used data structures.

The TSA data structures are used in communication among components, and between

an application and its components. Between an application and its components,

configu-

ration structures

 set up components. Among components,

data packets

 transfer data.

Data Packets

Data travels in packets between components. Components that produce data packets are

referred to as “senders” and components that consume data are called “receivers.” The

packets are always constructed according to the TSA data packet structure, with a pointer

to the packet header as its first field. The header contains descriptive information of the

type of data in the packet. The packet has a flexible, yet consistent structure. Specific

hooks are provided where application needs can be satisfied, provided that you adhere to

a few TSA rules.

Figure 2

Example showing the hierarchical composition of a TSA packet

tmAvPacket_t

*Header

allocatedBuffers

buffersInUse

*buffers

bufSize

dataSize

data

tmAvBufferDescriptor_t

18432

18432

* Data Buffer

id

flags

userSender

userReceiver

userPointer

time

format

tmAvHeader_t

0

0

*
*
*

*

ticks

hiTicks

tmTimeStamp_t

0

0

tmAudioFormat_t

size

hash

referenceCount

dataClass

dataType

dataSubtype

description

sampleRate

sizeof tmAudioFormat

0

0

avdcAudio

atfLinearPCM

apfFiveDotOne16

0

44100.0

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

15

7

The Packet Structure (tmAvPacket_t)

The following shows he packet structure

tmAvPacket_t

:

The packet structure is declared in tmAvFormats.h, and more information is contained

in the documentation of that file. Receiving components can count on finding a pointer

to the header at the top of the packet. The last three fields combine to provide two ser-

vices: the enabling of multiple data buffers, and the reporting of packet status as it

moves from component to component.

The Header Structure (tmAvHeader_t)

The following shows he header structure

tmAvHeader_t

. Since the TSA default functions

rely on the header, it must be allocated in every case. The function

tsaDefaultInOutDe-

scriptorCreate

 provides a standard mechanism to do this:

Provision is made in the header for application-specific data. More information will be

found in the reference describing tmAvFormats.h

The timestamp field allows data packets to be easily time stamped. When the time stamp

is valid, the packet is marked with a value in the flag field.

The Buffer Structure (tmAvBufferDescriptor_t)

Like the rest of the data packet structures, the buffer structure is defined in tmAvFor-

mats.h, and it is documented in Chapter 4,

tmAvFormats.h: Multimedia Format Definitions

.

Packets can have any number of buffers. It is common for packets to have one buffer, but

video packets, for example, often have three packets, for YUV data. Attaching numerous

typedef struct tmAvPacket_t {
 ptmAvHeader_t header;
 UInt16 allocatedBuffers;
 UInt16 buffersInUse;
 tmAVBufferDescriptor_t buffers[1];
} tmAvPacket_t, *ptmAvPacket_t;

typedef struct tmAvHeader_t {
 UInt32 id; /* read only to receiver */
 UInt32 flags; /* read only to receiver */
 Pointer userSender; /* reserved for a user sender.
 read only to receiver. */
 Pointer userReceiver; /* reserved for a user receiver.
 read only to sender. */
 Pointer userPointer; /* reserved for a user.
 read/write on both ends. */
 tmTimeStamp_t time; /* time stamp */
 Pointer format; /* subclass of tmAvFormat_t */
} tmAvHeader_t, *ptmAvHeader_t;

typedef struct tmAvBufferDescriptor_t {
 UInt32 bufSize;
 UInt32 dataSize;
 Pointer data;
} tmAvBufferDescriptor_t, ptmAvBufferDescriptor_t;

Chapter 7: TSSA Essentials

16

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

buffers to one packet can be useful when the packets are small, as task switching over-

head can be reduced.

Allocating a Packet

Packets with only one data buffer can be allocated statically, because one data buffer is

provided by the packet structure by default. Packets with more than one data buffers

must be allocated dynamically with malloc. Here is a way to allocate a packet with N

data buffers. For YUV video packets, N would equal to 3, with one buffer for each of Y, U,

and V.

Format Structures (e.g. tmAvFormat_t)

Format structures describe the format of data. When used in the capabilities struct, they

enumerate the formats supported by a component. The format manager checks two

components for compatibility using the format in the capabilities struct. When used in

the instanceSetup struct, a format structure allows the application to select the desired

mode of operation. The generic form of the format struct is as follows:

The size field is required because there are different kinds of formats with different sizes.

This field allows code that handles formats to get the size right. Beware of bugs caused by

a failure to initialize the size field. The

hash

 and

referenceCount

 fields are used internally

by the TSA format manager. The format manager ensures that the formats attached to

packets are unique and valid. It enforces a safe discipline in the correct use of packets

and formats.

The

dataClass

,

dataType

, and

dataSubtype

 classify data types. Each of these fields is

defined as an enumerated type with values equal to powers of two. This allows data types

and subtypes to be ORed together when enumerating the capabilities of a component.

And it allows a format request to be checked for validity with a simple AND of the

request and the capabilities. Several example formats are described in the tmAvFormats

reference. Note that the type “none” is not zero, but a specifically defined type. This

allows the type or subtype “none” to be acceptable. Similarly, the type “generic” is

defined as

0xFFFFFFFF

. This is used in a capabilities structure to indicate the acceptance

of any type of data.

ptmAvPacket_t ppacket = (ptmAvPacket_t) malloc(sizeof(tmAvPacket_t)
 + (NÐ1) * sizeof(tmAvBufferDescriptor_t));

typedef struct tmAvFormat_t {
 UInt32 size;
 UInt16 hash;
 UInt16 referenceCount;
 tmAvDataClass_t dataClass;
 UInt32 dataType;
 UInt32 dataSubtype;
 UInt32 description;
} tmAvFormat_t, *ptmAvFormat_t;

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part B

17

7

Time Structures (tmTimeStamp_t)

Streaming data often needs a time stamp field (such as an MPEG presentation time

stamp or video SMPTE time stamp). This field is always a part of the header. The type of

the time stamp is maintained as an attribute of the stream. It is stored as the clock han-

dle given to the components that handle this data.

Configuration Structures

The next set of structures is defined in tsa.h. While structures in tmAvFormats.h were

available to and used by portions of the system below TSSA, the structures defined in

tsa.h are specific to the streaming architecture.

Configuration structures set up components. In the simplest TSA application,

Capabili-

ties

,

InstanceSetup

, and

IODescriptor

 and

IODescriptorSetup

 structures are used. While

the Capabilities and InstanceSetup structures describe each component,

InOutDescriptor

and

InOutDescriptorSetup

 describe the connection between components.

Figure 3

Typical behavior of configuration structures.

The example in Figure 3, depicts a typical start up sequence by the application to con-

nect and run two components.

The application calls

getCapabilities

 to get the capabilities structs () from each of

two component to be connected, then calls

Open

 to open each component. It then

passes the capabilities structs to a function, tsaInOutDescriptorCreate, via a InOutDe-

scriptorSetup struct. The function returns an initialized InOutDescriptor struct describ-

ing the connection between the components.

typedef struct tmTimeStamp_t {
 UInt32 ticks;
 UInt32 hiTicks;
} tmTimeStamp_t, *ptmTimeStamp_t;

App. App. App.

COM

InstanceSetup()

COM

Instance
Setup Struct
(template)

GetInstanceSetup()

Capabilties
Struct

GetCapabilties()

COM

1 2 3

V

Chapter 7: TSSA Essentials

18

Book 3—Software Architecture, Part B

©1999 Philips Semiconductors 10/08/99

Then, the application calls

getInstanceSetup

 to get an instance setup struct template

() containing initialized defaults previously set by

Open

. The application then fills

in the template and passes the modified instance setup struct back to the component via

an

InstanceSetup

 call. The component stores this information internally in an instance

variable ().

Note

A detailed example further explains the sequence in Chapter 8.

Capabilities Structures

The capabilities struct of a component is in the following form, with the default capabil-

ities struct as the first field.

tsaDefaultCapabilities_t

This default capabilities struct includes fields for the component class and version num-

ber, the resource requirements of the component, a description of all inputs and outputs

of the component, among other fields.

The capabilities struct of a component describes the capabilities of a component. The

default capabilities struct describes numerous attributes that most components have. All

components have a componentClass, a version, capabilities flags, resource requirements,

and the numbers of supported and current instances. The fields concerning inputs/out-

puts and formats apply to all TSSA (streaming) components, and are used by the format

manager to validate streams. The fields describing memory and processor usage are not

yet used.

typedef struct tsaComCapabilities {
 ptsaDefaultCapabilities_t defaultCapabilities;

 /* component specific extension */
 ...
} tsaComCapabilities_t, *ptsaComCapabilities_t;

typedef struct tsaDefaultCapabilities {
 tmComponentClass_t componentClass;
 tmVersion_t version;
 UInt32 capabilityFlags;
 Int textmemoryRequirement;
 Int datamemoryRequirement;
 Int processorRequirement;
 UInt numSupportedInstances;
 UInt numCurrentInstances;
 UInt numberOfInputs;
 ptmAvFormat_t *inputFormats;
 UInt numberOfOutputs;
 ptmAvFormat_t *outputFormats;
 tsaReceiverFormatSetupFunc_t receiverFormatSetup;
} tsaDefaultCapabilities_t, *ptsaDefaultCapabilities_t;

V

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 19

7

tsaInOutDescriptor_t

An InOutDescriptor describes the connection between two streaming components. One

instance of this structure is shared by the two connected components. The application

usually creates this connection structure by calling tsaDefaultInOutDescriptorCreate. The

internals of the InOutDescriptor structure are meant to be private.

When an InOutDescriptor is no longer being used (i.e., the application had closed both

components), the application then must call tsaDefaultInOutDescriptorDestroy on the

InOutDescriptor previously created with its counterpart.

tsaInOutDescriptorSetup_t

An InOutDescriptorSetup_t gives you access to the public fields:

Detailed descriptions of each field are found in the documentation describing tsa.h.

Instance Setup Structures

The instance setup struct of a component is in the following form, with the default

instance setup struct as the first field.

tsaDefaultInstanceSetup_t

While all components have an instance setup struct, the default instance setup structure

is applicable only to TSSA components. The default instance setup structure contains all

the information necessary to set up a TSSA component. It contains, among other fields,

typedef struct tsaInOutDescriptorSetup {
 ptmAvFormat_t format;
 tsaInOutDescSetupFlags_t flags;
 String fullQName;
 String emptyQName;
 UInt32 queueFlags;
 ptsaDefaultCapabilities_t senderCap;
 ptsaDefaultCapabilities_t receiverCap;
 UInt32 senderIndex;
 UInt32 receiverIndex;
 UInt32 packetBase;
 UInt32 numberOfPackets;
 UInt32 numberOfBuffers;
 UInt32 bufSize[1];
} tsaInOutDescriptorSetup_t, *ptsaInOutDescriptorSetup_t;

typedef struct tmalComInstanceSetup {
 ptsaDefaultInstanceSetup_t defaultInstanceSetup;

 /* component specific extension */

} tmalComInstanceSetup_t, *ptmalComInstanceSetup_t;

Chapter 7: TSSA Essentials

20 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

pointers to TSSA callback functions, descriptors for all inputs and outputs, a clock han-

dle, and a parent ID, as shown here.

Callback functions are provided for applications to control to a certain degree the opera-

tions of a component. They are a critical part of TSA and described in depth beginning in

Callback Functions on page 28.

typedef struct tsaDefaultInstanceSetup {
 Int qualityLevel;
 tsaErrorFunc_t errorFunc;
 UInt32 progressReportFlags;
 tsaProgressFunc_t progressFunc;
 tsaCompletionFunc_t completionFunc;
 tsaDatainFunc_t datainFunc;
 tsaDataoutFunc_t dataoutFunc;
 tsaMemallocFunc_t memallocFunc;
 tsaMemfreeFunc_t memfreeFunc;
 ptsaClockHandle_t clockHandle;
 ptsaInOutDescriptor_t inputDescriptors;
 ptsaInOutDescriptor_t outputDescriptors;
 UInt32 parentId;
 tsaControlFunc_t controlFunc;
 ptsaControlDescriptor_t controlDescriptor;
 UInt32 priorit;
} tsaDefaultInstanceSetup_t, *ptsaDefaultInstanceSetup_t;

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 21

7

Figure 4 Hierarchy of an instance setup structure (this example is for the Dolby Digital
AC-3 decoder)

avdcAudio

atfLinearPCM

apfFiveDotOne16

16

48000.0

size

dataClass

dataType

dataSubtype

description

samplerate

tmAudioFormat_t

defaultSetup

libraryMode

maxRepeat

tmalAdecAc3InstanceSetup_t

*
A3_LIB_MODE_PULL

0

qualityLevel

errorFunc

progressReportFlags

progressFunc

completionFunc

datainFunc

dataoutFunc

memallocFunc

memfreeFunc

clockHandle

inputDescriptors

outputDescriptors

parentId

tmalAdecAc3InstanceSetup_t

Note
For sake of clarity, some of the fields present in
the structures are omitted from this diagram.

0

*
A3_PROG_REPORT_EVERY_FRAME
A3_PROG_REPORT_FORMAT

*
NULL

*
*
*
*
NULL

*
*
Instance obtained from
tmalAdecAc3Open

error function

progress function

datain function

dataout function

memalloc function

memfree function

format

flags

emptyQueue

fullQueue

pinState

tmalInOutDescriptor_t

*
0

size

dataClass

dataType

dataSubtype

description

samplerate

tmAudioFormat_t

avdcAudio

atfAC3

0

0

0.0

format

flags

emptyQueue

fullQueue

pinState

tmalInOutDescriptor_t

*
0

Chapter 7: TSSA Essentials

22 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Types of TSSA Component Interfaces

Several distinct interface types are applied to TSSA components. These interfaces are

sometimes called the “AL” and “OL” layers. A similar distinction is sometimes made

between a “streaming” and “non-streaming” interface, although the two are not strictly

equivalent.

■ Asynchronous (sometimes referred to as streaming, pull, or data-driven) components

are components that run in their own context separate from the application. Asyn-

chronicity is generally (though not always) accomplished by means of an operating

system such as pSOS™, and exists only at what TriMedia calls the Operating System

Layer (OL).

Chapter 8, Developing Applications Using a Streaming Model, describes in more detail

the process of developing applications with asynchronous components.

■ Synchronous (sometimes referred to as non-streaming, push, or control-driven) compo-

nents are components that run within the application’s context. In general, these

components work without an operating system. This is more like a traditional library

model (i.e., a procedural or functional interface).

Chapter 9, Applications Using a Non-Streaming Model, describes in more detail the pro-

cess of developing applications with synchronous components.

Note
Chapter 10, TSSA Component Basics, describes the process of developing
TSA-compliant components.

Asynchronous Components (TSSA)

In multimedia systems, the ability for applications to switch tasks while other compo-

nents process data in their own context is essential. This is a natural model for the

encoding and decoding of audio and video, for example, where signals are processed

continuously. TSSA supports this data-driven model with its standard data types and its

default behaviors (default functions).

TSSA components are pieces of software, whose functionality is accessible through a pre-

dictable set of entry points. Components have no global awareness. They are self-con-

tained modules to be used as building blocks for applications. The application uses a

common API to set up a component and to connect it to other components. It then

starts the component, at which point the component begins to run within its own con-

text, either in a separate task or ISR. Data access is handled inside asynchronous compo-

nents. At its most basic operation, a component gets a data packet, processes the data,

and passes it on. The packets (and their associated memory buffers) are recycled by plac-

ing them in queues of empty packets.

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 23

7

Synchronous Components

Some applications may behave more in a control-driven way. In this case, the library is

used in the context of the application (i.e., the component is accessed through function

calls and does not have a separate context). The timing of the processing is completely

determined by the application. Examples of synchronous components are the 2D graph-

ics library and the window manager.

In addition, some components that are normally used asynchronously also support syn-

chronous implementation. This is further explained in Chapter 8, under the ProcessData

function. The Dolby Digital decoder can also be operated in a synchronous mode.

Figure 5 Synchronous components operate in the context of the application

When using synchronous components, data access must be handled in the application

and passed on to the components as function parameters. While this may be a detail

that the application programmer would not like to see, it is an option that provides

some flexibility in data access.

The AL layer and the OL layer

It is common for the asynchronous interface to be implemented at the OL layer, while

the synchronous interface is implemented at the AL layer. The key factor distinguishing

the AL layer from the OL layer is the use of an operating system at the OL layer to sup-

port multi-tasking. In fact, it has been suggested that “multi-tasking layer” would be a

better name than “Operating System Layer.” Historically, this distinction was introduced

to separate the types of control code that rely on operating system specific features from

the code that implements the highly optimized signal processing making up the core of

multimedia codecs. And for the implementation of codecs, this works very well. But

there are times when little is gained by separating code between the AL and OL layers. In

these cases, the OL layer interface is used exclusively and the AL layer interface may atro-

phy. You might consider that the OL layer interface is the generally required public API,

and the AL layer interface is an implementation detail. Splitting your component into

AL and OL layers makes it easy for you to re-use the default TSSA features.

ProcessData()

TSA Library Application

Chapter 7: TSSA Essentials

24 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Audio Signal Processing (ASP) Components

A special class of TSA compliant components are known as ASP (Audio Signal Processing)

components. ASP components are very similar to AL layer TSSA components. They share

the standard Open, Close, InstanceSetup, and InstanceConfig functions that are used

with all TSA modules. But ASP components do not need to provide Start and Stop func-

tions. ASP components are asynchronous. ASP components export the processData func-

tion that is normally optional in an AL layer component. The format of the data buffer

used by ASP components is also standardized, and it is driven by the requirements of

audio mixers. The tsaAspChannelBuffer_t describes the data to be processed. This buffer

structure supports circular buffering, and it standardizes the data itself to be 32-bit inte-

gers.

It is easy to convert an ASP component into an AL layer component, and by extension,

to an OL layer component. If the instance variables of an ASP component place pointers

to the default structures in their standard locations, they can be filled in later. When a

component is used only at its ASP layer, then these pointers can be Null.

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 25

7

TSSA Overview

Component Classes

The asynchronous TSSA components exist in one of three major classes: digitizers, pro-

cessors (also known as filters), and renderers. Digitizers have only outputs. Renderers

have only inputs. Filters have both outputs and inputs.

Each filter component has a task as its context, while renderers and digitizers are inter-

rupt-based, because they need signals from hardware in their operations.

Figure 6 Classes of streaming components. This example illustrates an audio processing
application.

Component Connections: Queues and Data Packets

The inputs and outputs of TSSA components are embodied in queues and the data pack-

ets populating the queues. TSSA components are data driven—a component is scheduled

based on the availability of data through its queues.

Data transmission within TSSA applications always occurs in the form of data packets

sent between components, as discussed in Data Packets starting on page 14. Every con-

nection between the output of one component and the input of another consists of at

least two data queues. One queue carries full data packets from the sender to the receiver

and the other returns empty packets to the sender to recycle packet memory.

The empty packets are returned to signal that the data has been received properly and

that the memory associated with the data packet may be reused. This “recycling” of

memory relieves the nuisance of always having to free and reallocate memory, and pre-

vents memory leaks in components.

Full buffers

Empty buffers

Full buffers

Empty buffers

Application

FilterDigitizer Renderer

Control Control Control

Chapter 7: TSSA Essentials

26 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Additionally, the choice of packet size and the number of packets influence the behavior

of the system. For example, the use of smaller packets will increase the number of task

switches in the system because most components process one buffer at a time. While the

use of larger packets will result in fewer task switches, it can also result in longer latency

as receiving components wait for packets to be filled. These and other issues (such as

cache behavior) must be balanced to produce the desired result.

Figure 7 Queues connecting TSSA components

Function API

All TSSA components contain some of the following entry points shown in Table 1.

Table 1 TSSA API Functions

Function Description

tmolComGetCapabilities Requests the component capabilities, including the compo-
nent class, the number of supported instances, the version
number, resource requirements, the number of inputs/outputs,
and supported data formats on these inputs/outputs.

tmolComOpen Requests an instance of the component. Components that use
a specific hardware device usually allow only one instance. Full
software components usually allow multiple (sometimes
unlimited) instances. Memory for instance variables is allocated
in the Open call.

tmolComClose Releases the component instance. Frees memory.

tmolComGetInstanceS-
etup

Retrieves a pointer to an accurate instance setup structure.
When the component is created, this structure is filled with
default values.

Command

Application

Response
Command

Response

Full Queue

Empty Queue

Chapter 7: TSSA Essentials

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 27

7

For most components, the previous functions appear in both OL and AL layers. The OL

layer functions are prefixed with “tmol”, and the AL layer functions are prefixed with

“tmal”.

At the OL layer, all components operate asynchronously. Components achieve asyn-

chronous operation by processing data either in a task or an ISR. Renderers and Digitiz-

ers are components that interface with peripheral devices. Since interrupt service

routines (ISRs) are usually required to communicate with the peripheral devices, it is

common for renderers and digitizers to do all of their processing in the ISR. Otherwise,

most components will have one or more operating system tasks (threads) that process

data.

All compliant TSA components implement functions that return a value of type

tmLibappErr_t. Other results are delivered via pointer parameters. The include file, tmLi-

bappErr.h, lists the different errors currently possible, either default operations or com-

ponents specific operations. Component specific error codes must be created with a

component to avoid having the same error as another component. An error base must be

defined in accordance with the rules outlined in tmLibappErr.h.

It is in the OL layer that dependencies on operating systems and the details of streaming

communications are determined. In the TriMedia implementation of the architecture,

the pSOS operating system is utilized through the Operating System Abstraction Layer

(OSAL). This layer was created to simplify the task of porting to another operating sys-

tem. Because most of the functionality of OL layers are similar, TriMedia provides a

default layer to handle most of the component’s interaction with the OS. With a default

layer included, the creation of an OL layer is a very simple extension of a working AL

layer.

tmolComInstanceSetup Sets up the component instance. All necessary information is
passed through a structure pointer.

tmolComStart Starts the data processing of the component instance.

tmolComStop Stops the data processing of the component instance.

tmolComInstanceConfig Changes the behavior of the component while it is running.
Any type of setting like channel, volume, or output mode
should be set using this function. This function operates on
control queues connecting application to component.
Note that this function provides a bidirectional interface to the
component. Not only can it be used to change settings of the
running component, but also for obtaining information from
the component.

tmolComStopPin Stop data access from or to a specific pin (connection)

tmolComUnStopPin UnStop (restart) data access from or to a specific pin

Table 1 TSSA API Functions

Function Description

Chapter 7: TSSA Essentials

28 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Callback Functions

To achieve OS-independence, the AL layer of a TSSA component uses the defined set of

callback functions shown in Table 2. This set of callback functions include data access,

event reporting, and memory management functions.

While the application programmer is encouraged to provide suitable error, progress, and

completion functions, the other callbacks are part of the default implementation which

handles most of TSSA and, in most cases, should not be overwritten.

For more information on default callback functions, see Chapter 10, TSSA Component

Basics.

Table 2 TSSA Callback Functions

Function Description

datainFunc Requests a block of data on one of the inputs of the component. The
function is called to obtain a new full buffer of data to be processed, or
to return a previously obtained buffer on which processing is complete
and is now considered to be empty.

dataoutFunc Delivers a block of processed data on one of the outputs of the compo-
nent. The function is called either to obtain an empty buffer in which
processed data can be delivered, or to deliver a previously obtained
empty buffer that now contains processed data and is now thus consid-
ered full.

memallocFunc Allocates a block of memory.

memfreeFunc Frees a previously allocated block of memory.

controlFunc Requests or acknowledges a control message.

errorFunc Reports an error encountered during the processing of the data.

progressFunc Reports that a certain amount of progress has been made on the data
processing.

completionFunc Reports completion of the data processing.

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 29

8

Chapter 8

Developing Applications Using a Streaming
Model

Topic Page

Sample Application 30

More Advanced Issues 41

Debugging TSSA Applications 44

Chapter 8: Developing Applications Using a Streaming Model

30 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Sample Application

The best way to understand how the streaming model works is to study a sample applica-

tion using components in the TSSA OL layer. This chapter contains pseudo code from a

basic TSSA application that uses three generic asynchronous components: a digitizer, a

processor, and a renderer. After the basic application has been explained in its entirety,

more advanced issues of TSSA applications will be presented starting on page 41.

Figure 8 Overall flow of the sample application showing a command/response queue
between application and component and bidirectional data queues between
components

Following is the pseudo code of the sample application. Each part of the code will

explained on the following pages. Although error checking is critical in any TSSA appli-

cation, it is omitted from this example for clarity.

void tmosMain(){
 Int digInst;
 Int procInst;
 Int rendInst;
 ptmolDigitizerInstanceSetup_t digSetup;
 ptmolProcessorInstanceSetup_t procSetup;
 ptmolRendererInstanceSetup_t rendSetup;
 ptmolDigitizerCapabilities_t digCap;
 ptmolProcessorCapabilities_t procCap;
 ptmolRendererCapabillities_t rendCap;
 ptsaInOutDescriptor_t iodesc1;
 ptsaInOutDescriptor_t iodesc2;
 ptsaInOutDescriptorSetup_t iosetup;

 tmAvFormat_t lformat = {
 sizeof(tmAvFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcGeneric, /* dataClass */

Full buffers

Empty buffers

Full buffers

Empty buffers

Application

FilterDigitizer Renderer

Response

Command

Response

Command

Response

Command

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 31

8

 avdtNone, /* dataType */
 avdsNone, /* dataSubtype */
 0, /* description */
 };

/* Get Component Capabilities */
 tmolDigitizerGetCapabilities(&digCap);
 tmolProcessGetCapabilities (&procCap);
 tmolRendererGetCapabilities (&rendCap);

/* Open Components */
 tmolDigitizerOpen(&digInst);
 tmolProcessOpen (&procInst);
 tmolRendererOpen (&rendInst);

/* Create InOutDescriptors */
/* Set up InOutDescriptorSetup struct */
 iosetup.format = &lformat;
 iosetup.flags = 0;
 iosetup.fullQName = ÒDPFQÓ;
 iosetup.emptyQName = ÒDPEQÓ;
 iosetup.queueFlags = tmosQueueFlagsStandard;
 iosetup.senderCap = digCapÐ>defaultCapabilities;
 iosetup.receiverCap = procCapÐ>defaultCapabilities;
 iosetup.senderIndex = 0;
 iosetup.receiverIndex = 0;
 iosetup.numberOfPackets = NUM_OF_PKTS;
 iosetup,numberOfBuffers = 1;
 iosetup.bufSize[0] = DATASIZE;
 tsaDefaultInOutDescriptorCreate(iodesc1, &iosetup);

/* Set up InOutDescriptorSetup struct again */
 iosetup.format = &lformat;
 iosetup.flags = 0;
 iosetup.fullQName = ÒPRFQÓ;
 iosetup.emptyQName = ÒPREQÓ;
 iosetup.queueFlags = tmosQueueFlagsStandard;
 iosetup.senderCap = procCapÐ>defaultCapabilities;
 iosetup.receiverCap = rendCapÐ>defaultCapabilities;
 iosetup.senderIndex = 0;
 iosetup.receiverIndex = 0;
 iosetup.numberOfPackets = NUM_OF_PKTS;
 iosetup,numberOfBuffers = 1;
 iosetup.bufSize[0] = DATASIZE;
 tsaDefaultInOutDescriptorCreate(iodesc2, &iosetup);

/* Get instance setup structures */
 tmolDigitizerGetInstanceSetup(digInst, &digSetup);
 tmolProcessGetInstanceSetup (procInst, &procSetup) ;
 tmolRendererGetInstanceSetup (rendInst, &rendSetup);

 digSetupÐ>outputDescriptors[0] = iodesc1;
 procSetupÐ>inputDescriptors[0] = iodesc1;
 procSetupÐ>outputDescriptors[0] = iodesc2;
 rendSetupÐ>inputDescriptors[0] = iodesc2;

/* Set up components */
 tmolDigitizerInstanceSetup(digInstance, digSetup);
 tmolProcessInstanceSetup (procInstance, procSetup);
 tmolRendererInstanceSetup (rendInstance, rendSetup);

/* Start processing */

Chapter 8: Developing Applications Using a Streaming Model

32 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Getting Component Capabilities

The first application calls the tmolComGetCapabilities function of each component that

will be used. It then extracts the default capabilities structures from the capabilities struc-

tures received from each of the components and passes each pair into the tsaDefaultI-

nOutDescriptorCreate function. The formats in the default capabilities structures are

used to guarantee that each pair of connected components is compatible.

 tmolDigitizerStart(digInst);
 tmolProcessStart (procInst);
 tmolRendererStart (rendInst);

/* Wait for a stop condition */
 while(running){}

/* Stop components */
 tmolRendererStop (rendInst);
 tmolProcessStop (procInst);
 tmolDigitizerStop(digInst);

/* Close instances */
 tmolRendererClose (rendInst);
 tmolProcessClose (procInst);
 tmolDigitizerClose(digInst);

/* Destroy InOutDescriptors */
 tsaDefaultInOutDescriptorDestroy(iodesc1);
 tsaDefaultInOutDescriptorDestroy(iodesc2);
}

tmolDigitizerGetCapabilities(&digCap);
tmolProcessGetCapabilities(&procCap);
tmolRendererGetCapabilities(&rendCap);

Sample Application

FilterDigitizer Renderer

Response

Command

Response

Command

Response

Command

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 33

8

Opening Components

The application calls the tmolComOpen function of each component in turn. This will

allocate the memory needed for the instance variables of each component. Remember to

always check the return value.

Creating InOutDescriptors

The connections between each pair of components are specified and described in a struc-

ture of the type tsaDefaultInOutDescriptor_t. This structure is created using the function

tsaDefaultInOutDescriptorCreate according to the values in the corresponding setup

structure of type tsaDefaultInOutDescriptorSetup_t.

The core of an InOutDescriptor is the pair of full and empty queues that buffer data pack-

ets and control scheduling. The setup structure can specify the names and the properties

of the full and empty queues for debugging.

Another critical part of an InOutDescriptor is the format. When specified, it is checked in

tsaDefaultInOutDescriptorCreate against the capabilities of the sender and the receiver.

To distinguish among several pins of the sender and the receiver, senderIndex specifies

the index in the output array of the sender and receiverIndex specifies the index in the

input array of the receiver. Delaying Setting of Format starting on page 41 discusses the

cases where the application does not specify the format.

tmolDigitizerOpen(&digInst);
tmolProcessOpen(&procInst);
tmolRendererOpen(&pendInst);

iosetup.format = &lformat;
iosetup.flags = 0;
iosetup.fullQName = ÒDPFQÓ;
iosetup.emptyQName = ÒDPEQÓ;
iosetup.queueFlags = tmosQueueFlagsStandard;
iosetup.senderCap = digCapÐ>defaultCapabilities;
iosetup.receiverCap = procCapÐ>defaultCapabilities;
iosetup.senderIndex = 0;
iosetup.receiverIndex = 0;
iosetup.numberOfPackets = NUM_OF_PKTS;
iosetup.numberOfBuffers = 1;
iosetup.bufSize[0] = DATASIZE;
tsaDefaultInOutDescriptorCreate(iodesc1, &iosetup);

iosetup.flags = 0;
iosetup.fullQName = ÒpRFQÓ;
iosetup.emptyQName = ÒPREQÓ;
iosetup.queueFlags = tmosQueueFlagsStandard;
iosetup.senderCap = procCapÐ>defaultCapabilities;
iosetup.receiverCap = rendCapÐ>defaultCapabilities;
iosetup.senderIndex = 0;
iosetup.receiverIndex = 0;
iosetup.numberOfPackets = NUM_OF_PKTS;
iosetup.numberOfBuffers = 1;
iosetup.bufSize[0] = DATASIZE;
tsaDefaultInOutDescriptorCreate(iodesc2, &iosetup);

Chapter 8: Developing Applications Using a Streaming Model

34 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Data is exchanged between two components using packets of the type tmAvPacket_t.

Pointers to these packets are passed as messages in the full and empty queues. The InOut-

DescriptorCreate function creates packets to be used in the connection. The InOutDe-

scriptorSetup structure can specify the number of packets, the number of buffers in each

packet, and the size of each buffer of the packet in bytes. The flags field, when set to

tsaIODescSetupFlagCacheMalloc, will cause the packets to be cache malloced and

aligned. “Creating Packets Without InOutDescriptorCreate” starting on page 41, dis-

cusses the cases where the application needs the packets to be created in a special way.

Getting Instance Setup Structures

Each component is set up according to a corresponding instance setup struct. The appli-

cation gets a template instance setup struct of the component by calling the tmolComGe-

tInstanceSetup of each component. In the function, the template instance setup struct is

initialized with default values and returned to the application. Note that tmolComGetIn-

stanceSetup can be used at any time. It will always return a pointer to the current

instance setup structure.

Sending in the InOutDescriptors to the Components

The components are connected by the InOutDescriptor structures sent in from the appli-

cation. In the previous example, the digitizer’s output index 0 is connected to the pro-

tmolDigitizerGetInstanceSetup(digInst, &digSetup);
tmolProcessGetInstanceSetup(procInst, &procSetup);
tmolRendererGetInstanceSetup(rendInst, &rendSetup);

digSetup Ð>outputDescriptors[0] = iodesc1;
procSetupÐ>inputDescriptors [0] = iodesc1;
procSetupÐ>outputDescriptors[0] = iodesc2;
rendSetupÐ>inputDescriptors [0] = iodesc2;

Sample Application

GetInstanceSetup()

InstanceSetup()

Digitizer

GetInstanceSetup()

InstanceSetup() InstanceSetup()

GetInstanceSetup()

Filter Renderer

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 35

8

cessor’s input index 0. Similarly, the processor’s output index 0 is connected to the

renderer’s input index 0.

Setting Up Components

After the instance setup structures are filled in as needed by the component, they are

passed into the components via the tmolComInstanceSetup functions. Again, it is impor-

tant to check the return value of this function.

Callback Functions

TSSA components rely on callback functions for significant parts of their functionality.

Callback functions are used by the components to communicate with the application,

while the application has full control over what the callback functions do. TSSA provides

a number of callbacks. When these are provided by the application, they will be called

back into the application from the context of the component. A number of callback

functions are listed in the default instance setup structure. More details on these can be

found in Chapter 10, TSSA Component Basics. This section describes the callback func-

tions from the point of view of an application programmer.

The Progress Function

The usage of the progress function varies with each component. The progress function

provides a flexible synchronization point between the application and the component.

It is a way for the component writer to give the application some control at that point in

the component’s code. The component can have specific progress codes as inputs to the

progress function. Some examples of component use of the progress function are:

tmolDigitizerInstanceSetup(digInst, digSetup);
tmolProcessInstanceSetup (procInst, procSetup);
tmolRendererInstanceSetup (rendInst, rendSetup);

Full buffers

Empty buffers

Full buffers

Empty buffers

Sample Application

ProcessorDigitizer Renderer

Control Queue

Chapter 8: Developing Applications Using a Streaming Model

36 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

■ Components that decode compressed data streams are likely to use the function to

inform the application of the format of the compressed stream, as this is often deter-

mined after some initial decoding.

■ The file reader calls its progress function when the end of the file has been read to

give the application a chance to stop it.

■ The audio renderer calls its progress function in the interrupt service routine. This

allows application-specific synchronization code to be called on each interrupt.

Note that progress functions might be required to be re-entrant. It is a good idea to

assume that this is the case, although component documentation should state if the

progress function is required to be re-entrant. This means that you should avoid the use

of static or global variables in your progress function.

The Error Function

The error function is called by a component when it encounters an error. Flags specify

whether the error is fatal. The error function gives the application writer an opportunity

to insert an appropriate error handler.

Note
Error functions might be required to be re-entrant. It is a good idea to
assume that this is the case, although component documentation should
state if the error function is required to be re-entrant. This means that you
should avoid the use of static or global variables in your error function.

The Completion Function

The completion function is called by task-based components when it is exiting its main

loop and again when the stop sequence is finished. Since this loop is contained in the

tmolComStart function, it is sometimes referred to as the start loop. Like the error func-

tion, it is a very specific form of a progress indication.

Memory Management Functions

Sometimes you may want to override the default memory manager, which uses TriMe-

dia’s _cache_malloc and _cache_free. When a component is opened, it is likely to request

a small amount of memory for its instance variables using malloc. The exact size of this

memory is specified in the capability structure. But components that require local mem-

ory buffers can be designed to get and free that memory using the memory callback

functions. By default, these are patched to use the TriMedia’s _cache_malloc and

_cache_free function.

Best Practice:
TSSA components should avoid calls to malloc and free while running. This
can lead to serious memory fragmentation issues. Instead, allocate all
required memory in instance setup. If your component needs to allocate
and free memory, use the memspace manager to localize this memory pool.

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 37

8

The Data Access Functions

datain and dataout should not be changed at the application level. As with each of the

callback functions, leaving them Null in the instance setup structure will result in the

installation of a default. The default datain and dataout functions are part of the TSSA

core. We do not recommend creating completely compatible substitutes for the default

datain and dataout functions.

Task Control

The default instance setup structure contains a number of fields that control the behav-

ior of the component’s task. These include the task priority, task flags, and the task

name.

Priority

Since pSOS is a priority-based multi-tasking operating system, the relative priorities of a

group of tasks is very important, and is intertwined into the working of a multitasking

system.

IMPORTANT
Unless the component in question uses no tasks, you must fill in this
variable.

You can discover whether a component uses a task by inspecting the createNoTask mem-

ber of the default instance setup structure. Components such as renderers will set this to

true, in which case the priority is ignored.

The assignment of priorities has been the topic of much research in computer science. It

is assumed that the application programmer is familiar with these issues, and this vari-

able sets the priority of tasks created by the component. Under pSOS, the lowest user pri-

ority is 1, and the highest is 239. Refer to the pSOS documentation on this CD for more

information.

Task Flags

pSOS also allows tasks to be created with a number of properties, such as whether tasks

can be preempted or are time-sliced. Otherwise, this field will be set to a recommended

default in the component.

 Task Name

The default instance setup structure reserves 16 characters for use as a task name. This

field is mainly used for debugging. For pSOS, only the first four letters of the name will

be used. When using pSOS, the tasks can be examined in tmdbg using the pSOS moni-

tor. If there are multiple instances of a component, it is recommended that you use this

field to identify tasks.

Chapter 8: Developing Applications Using a Streaming Model

38 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Stack Size

Although a default stack size is set for each component task, it can be overwritten with

this field. Remember that ISRs use the stack of the task that they interrupt.

Start Processing

When an application calls tmolComStart, a separate thread of execution is created. If the

component is task-based, as in most processor components, the thread runs in a task

with its own stack. Alternatively, renderers and digitizers are interrupt-based and there-

fore run in an ISR while using stack space from the application.

tmolDigitizerStart(digInst);
tmolProcessStart (procInst);
tmolRendererStart (rendInst);

Full buffers

Empty buffers

Full buffers

Empty buffers

Sample Application

ProcessorDigitizer Renderer

DATPULL7.MOV

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 39

8

The following is an example of the scheduling of a number of tasks in a TSSA audio

application. The tasks involved are the root task, the idle task, the processor component

task, and their interaction with two interrupt service routines (an audio digitizer and an

audio renderer).

Figure 9 Processor control flow in a TSSA system. The animation shows the dynamic
interaction between components, packets, and the application.

Following are descriptions of the task switches illustrated in Figure 9:

Task Switch t0 Audio input interrupt triggers the audio digitizer. Digitizer pro-
cures an empty packet, fills it, and sends it to the filter.

Task Switch t1 The filter task has been waiting for a full packet. Since a pSOS call
was made in the digitizer’s ISR, the pSOS scheduler is invoked on
return from the ISR. Control is transferred to the waiting filter
task.

Task Switch t2 The filter finishes processing. An input buffer has been consumed
and an output buffer is produced. Control is transferred to the
next waiting task, which is the application (root task).

Task Switch t3 The application completes its processing and control is transferred
to some other task.

Task Switch t4 The audio renderer is triggered by the audio out interrupt service
request. The audio renderer consumes a full buffer and produces
an empty buffer.

Digitizer
(Interrupt)

Processor
(Task)

Renderer
(Interrupt)

Application (Task)

Idle/Other (Task)

Progress FunctionEmpty Packet Full Packet

t3 t4 t0 t1 t2 t3 t4 t0

5 ms = 256 audio samples

TIMELINE.MOV

Chapter 8: Developing Applications Using a Streaming Model

40 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Stop Components

Since the components are running autonomously, either in a task or an ISR, it is up to

the application programmer to decide what causes components to be stopped. This

should be built into the application. The application calls tmolComStop of each compo-

nent to stop its processing. This function acts synchronously. In other words, it will not

return until the component has exited its processing loop. During a component’s stop

sequence, it will expel all internally held packets. Therefore, after all components are

stopped, all packets should be in the empty queues. More detailed information on stop-

ping can be found in Chapter 10, TSSA Component Basics.

Closing Instances

The application can start and stop various components numerous times. However, when

a component is no longer used, the application should close it by calling tmolComClose.

The close function frees up all of the resources previously allocated in open.

Destroying InOutDescriptors

When the InOutDescriptors are no longer used, they must be destroyed to free the mem-

ory allocated in the tsaDefaultInOutDescriptorCreate. This is done in the function tsa-

DefaultInOutDescriptorDestroy.

tmolRendererStop(rendInst);
tmolProcessStop(procInst);
tmolDigitizerStop(digInst);

tmolRendererClose(rendInst);
tmolProcessClose(procInst);
tmolDigitizerClose(digInst);

tsaDefaultInOutDescriptorDestroy(iodesc1);
tsaDefaultInOutDescriptorDestroy(iodesc2);

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 41

8

More Advanced Issues

Delaying Setting of Format

If it is appropriate, an InOutDescriptor can be created with a Null format. This can be

done when an application does not yet know the format of the connection. However,

the format must be specified before the connection is used, either by the application or

by the sender component. To install a format in an existing InOutDescriptor, the applica-

tion can call the function tsaDefaultInstallFormat. For details about the component

installing the format, refer to Chapter 10, TSSA Component Basics.

Connecting a TSSA Component to a Non-TSSA Component

When connecting a TSSA component to a non-TSSA component, create a default capa-

bilities of type tsaDefaultCapabilities_t with the appropriate formats supported by the

non-TSSA component, or simply with a generic format. If the non-TSSA component is to

be the sender in this connection, set the senderCap to the default capabilities struct.

Conversely, if the non-TSSA component is to be the receiver in the connection, set the

receiverCap to the default capabilities struct. Then call tsaDefaultInOutDescriptorCreate

to create an InOutDescriptor connecting the two components.

Note that the non-TSSA component must be able to understand TSSA packets. Immedi-

ately before starting the non-TSSA component, explicitly set the senderState or receiver-

State in the InOutDescriptor struct to tsaIODescFlagACTIVE. In TSSA components, these

values are automatically set by the default layer.

Creating Packets Without InOutDescriptorCreate

Sometimes the standard packet setup service provided by InOutDescriptorCreate may not

be appropriate. One example is when the application needs to create packets of different

properties for circulation in the same connection. Another is when the application needs

to set fields in the packet headers that are not set by InOutDescriptorCreate. In this case,

the application must call InOutDescriptorCreate with the numberOfPackets field in the

InOutDescriptorSetup struct to be 0. Afterwards, create the packets as desired and put

them on the empty queue of the InOutDescriptor.

In Place Processing

In TSSA, the data memory in a connection is recycled between two components. How-

ever, sometimes it is desired that the data memory pass through a component. This is

called processing data “in place.”

Chapter 8: Developing Applications Using a Streaming Model

42 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

When a component processes data “in place,” it does not copy the memory from the

input packet to the output packet. Instead, it copies a pointer to the data from one

packet to another.

The application must be aware that a component processes in place and must set up the

InOutDescriptors accordingly. First it should create the component’s input descriptor as

usual, with the appropriate buffer sizes. However, when creating the InOutDescriptor for

the output connection, specify numberOfBuffers as needed, but specify each bufsize to

be zero. No buffer memory will be allocated, but the packets with the appropriate num-

ber of buffers will be created and placed in the empty queues. Refer to Chapter 10, TSSA

Component Basics, for more details about in place processing.

Configuring Components

TSSA components support four possible methods of configuration.

■ The tmolComInstanceSetup function sets up the component to run. This function

should be called before tmolComStart. When tmolComInstanceSetup is called while

the component is running, the behavior is component-dependent.

■ The tmolComInstanceConfig function is the way of changing the state of a compo-

nent while it is running. It uses a functional interface or a queue interface. When it

uses a queue interface, it calls the function, tsaDefaultInstanceConfig, to put com-

mand messages on the control queue and wait for acknowledgment from the compo-

nent. The control queue interface serves two purposes. First, it makes it possible to

synchronize the configurations across processor boundaries. Also, it serves to syn-

chronize the access to the internal variables of a component. The component checks

the control queue only at well defined points in the code.

■ The tmolComInstanceConfig function is implemented as a functional interface to con-

figuring the component. A functional interface may be preferred when configuration

is highly time critical.

■ Each component may include other functions in its API to control its operation.

tmolComInstanceConfig is the standard way.

The capabilities flags in the component’s default capabilities struct indicates whether or

not the component supports queue-based instance configuration. When an application

plans to call a component’s tmolComInstanceConfig function, the application must pro-

vide the queues for the component at instance setup. This is done by calling tsaDefault-

ControlDescriptorCreate to create a control descriptor. Accordingly, when the control

descriptor is no longer used, tsaDefaultControlDescriptorDestroy must be called to free

the memory.

Chapter 8: Developing Applications Using a Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 43

8

Reconnecting TSSA Components

The TSSA default functions provide primitives to support the dynamic reconnection of

components. This feature is required to construct large systems that are not shut down

when you request a change of configuration. Reconnect is accomplished using the func-

tions tsaDefaultSenderReconnect and tsaDefaultReceiverReconnect. These are described

in the documentation of tsa.h.

The reconnect functions are applied to an InOutDescriptor. The component to be recon-

nected must be stopped. The receiverReconnect function does not require a format

parameter. The format of the connection is determined by the sender, and the receiver

will discover its new format at instance setup, or upon receipt of the first packet. How-

ever, the senderReconnect function does require a format parameter.

When reconnecting both ends of an InOutDescriptor, receiverReconnect should be called

first. This is because senderReconnect will check the requested format against the capa-

bilities of the receiver.

For example, the DTV audio system reconnects InOutDescriptors when you request a

new configuration.

Chapter 8: Developing Applications Using a Streaming Model

44 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Debugging TSSA Applications

TSSA programs are TriMedia programs. Therefore, they can be debugged using the TriMe-

dia debugger and DP functions.

TSSA modules are available in debuggable versions. We strongly recommend that you

use these in the early phases of your development. Aside from debugging the program,

the tmAssert mechanism might catch trivial errors often made in component setup dur-

ing initial development. Using the debuggable versions has been observed to speed the

bringup of new TriMedia programs.

Most TSSA components also use DP internally. Although the released versions of each

library are compiled with no DPs defined, it can be useful, for example, to turn on DP in

a component or in tsaDefaults.c.

Finally, for TSSA programs using pSOS, the pSOS monitor in the TriMedia debugger can

be used. For more information, see Chapter 19, Debugging TriMedia pSOS+™ Applications,

of Book 4, Software Tools, Part C.

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 45

9

Chapter 9

Applications Using a Non-Streaming Model

Topic Page

Introduction 46

Sample Application 47

Further Aspects of Using AL Libraries 52

Chapter 9: Applications Using a Non-Streaming Model

46 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter deals with the properties of applications using TriMedia AL libraries in non-

streaming or push mode.

While the OL library interfaces of different application libraries are almost identical, the

interfaces of AL layer non-streaming libraries vary. Its structure depends on the function-

ality of the library. It can have a similar interface to the corresponding OL layer library if

it implements processing on streaming data like the AC-3 or Pro Logic audio decoders.

Both provide the standard interface functions Open, Close, GetInstanceSetup, InstanceS-

etup, InstanceConfig and some special functions of the processData category. However,

an AL layer non-streaming mode library interface could also consist of less standard

functions and a variety of processData functions like the 2-D graphics library. The 2-D

library is a very special case of a TSA library because its functions are context indepen-

dent. That means the result of an individual function call depends only on the input

data and nothing else. It represents a more classical form of a function library. On the

contrary, the kind of processing of the processData functions of other libraries depends

on the state of the library instance.

The main difference between an AL application and an OL application is the way the

data input/output management is implemented during the processing phase. The OL

application just sets up connections and starts all components. After that, all data trans-

fer occurs automatically in a hidden way. In contrast, the AL application has to imple-

ment the data input/output processing itself.

The counterparts to the streaming mode start function are the processData functions,

which implement a limited time processing. They get input data, process it, generate a

certain output, and terminate. On the other hand, the start function of the OL interface

implements an unlimited time processing. It synchronizes itself with connected compo-

nents through the availability of data packets at the respective inputs and outputs. The

concepts of AL applications are explained using an example program written in pseudo

code.

Figure 10 Animations showing range of behavior of non-streaming component.
Animation 1 is an example of a simple synchronous library working on data that
does not fit the streaming model. Animation 2 is an example of a synchronous
library working on a stream of data.

DATPUSH1.MOV DATPUSH2.MOV

Chapter 9: Applications Using a Non-Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 47

9

Sample Application

This example implements a data filter application. The input data originates from a file

and the output data is written to another file.

Figure 11 Passing a process data function to a non-streaming component

The pseudo code for such an application appears as follows:

/* Open component */
status = tmalFilterOpen(&FilterInstance);

/* Get instance setup structure for the component */
status = tmalFilterGetInstanceSetup(FilterInstance, &FilterSetup);

/* Change settings in the setup structure */
((ptmalAudioFormat)(FilterSetupÐ>defaultInstSetupÐ>
 inputDescriptor[0].format))Ð>dataSubtype = apfStereo16;

/* Configure component with the modified setup struct */
status = tmalFilterInstanceSetup(FilterInstance, FilterSetup);

/* data processing loop */
while(!done){
 status = fread(inputData, 1, INBUFSIZE, infile);
 if (status < INBUFSIZE) done = 1; /* end of file reached */
/* set packet info for input packet */
 inputPacket.buffers[0].bufSize = INBUFSIZE;
 inputPacket.buffers[0].dataSize = status;
 inputPacket.buffers[0].data = inputData;
/* set packet info for output packet */
 outputPacket.buffers[0].bufSize = OUTBUFSIZE;
 outputPacket.buffers[0].dataSize = 0;
 outputPacket.buffers[0].data = outputData;
 FilterData.input = &inputPacket;
 FilterData.output = &outputPacket;
 status = tmalFilterProcessData(FilterInstance, &FilterData);
 status = fwrite(outputData,1,outputPacket.buffers[0].dataSize,outfile);

Application

Processor

Response

Process Data

Chapter 9: Applications Using a Non-Streaming Model

48 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

The following sections describe the individual parts of this code example in more detail.

In the previous code example, such things as definition of variables and structs are left

out to keep it as simple as possible. The following sections contain the definitions in the

order of occurrence.

Open the AL Library Component

All services of AL library components are only available to an application through a

unique instance handle. This instance handle is of the type Int. Instance handles are

managed by the tmalComOpen and tmalComClose functions of TSA components. The

tmalComOpen function checks if another instance of the requested component is avail-

able. In this example, the integer FilterInstance gets the instance value assigned. If no

more free instance is available the tmalComOpen function returns with the error message

TMLIBAPP_ERR_NO_FREE_INSTANCES.

In most cases, the instance handle represents a pointer to the component’s instance,

variable which stores all information about the instance’s state. Instances are a require-

ment for reentrant libraries unless the library does not store any states.

Getting Instance Setup Struct

The basic configuration of a TSA library component is done by the tmalComInstance-

Setup function. This function has a pointer to an instance setup struct as an argument. A

convenient way to acquire such a struct is provided by the tmalComGetInstanceSetup

function. It fills in a pointer to a valid configuration. The application needs to change

only those fields that don’t match its requirements.

The type ptmFilterSetup_t is a pointer to an instance variable of the component. The first

field of all instance variables is always a pointer to the default instance setup.

}

/* Closing component */
tmalFilterClose(FilterInstance);

/* Variables and structs */
Int FilterInstance;

/* Open component */
status = tmalFilterOpen(&FilterInstance);

/* Variables and structs */
ptmalFilterSetup_t FilterSetup;

/* Get instance setup structure for the component */
status = tmalFilterGetInstanceSetup(FilterInstance, &FilterSetup);

Chapter 9: Applications Using a Non-Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 49

9

Configuration of the Library Component

Most TSA library components need to be configured before the actual processing can be

performed. The instance setup received from tmalFilterGetInstanceSetup contains the

settings that are most likely to be required in the application. The necessary changes to

the instance setup struct are applied before tmalFilterInstanceSetup is called. In the

example code, the data subtype code of the input format is set to 16 bit stereo. Note that

the format pointer of the input/output descriptors is a void pointer. A type cast is there-

fore required to access the members of the format struct.

Set Up of the Library Component

After the instance setup struct is adapted to the application’s specific needs the compo-

nent gets configured by the call of tmalFilterInstanceSetup. The component is configured

successfully if the return value is TMLIBAPP_OK. Otherwise an incorrect setup struct is

used.

IMPORTANT
TSA libraries discover which input and output pins are active by checking
whether or not the associated queues are null.

This means that even if no streaming is desired, values must be assigned to the respective

empty and full queue fields of the input/output descriptors. In this example, it is

assumed that the tmalFilterGetInstanceSetup function fills the respective queue fields

with values.

Data Processing

Now that the filter library is configured, the actual data processing can start. Up to now

the steps undertaken have been very similar to those required within an OL library based

application. In contrast to the OL layer example, no action has yet been taken toward

preparing data packets that are to be sent to the component and received from the com-

ponent. In an AL layer non-streaming mode application this normally happens in con-

junction with the actual data processing. The more obvious difference is that the data

processing is started by a simple function call (tmolComStart) in the OL layer application

and continues automatically. AL layer applications on the other hand must implement

the handling of input and output data themselves.

The discussed example application reads a block of data from an input file, applies pro-

cessing to it and generates a block of output data. This block of output data is then writ-

ten to an output file. In this particular example, the process data function gets all

/* Change settings in the setup structure */
((ptmalAudioFormat) (FilterSetupÐ>defaultInstSetupÐ>
 inputDescriptor[0].format))Ð>dataSubtype = apfStereo16;

/* Configure component with the modified setup struct */
status = tmalFilterInstanceSetup(FilterInstance, FilterSetup);

Chapter 9: Applications Using a Non-Streaming Model

50 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

necessary information on the input and output data via its second parameter which is a

struct containing pointers to the input packet and output packet. To keep this example

simple, the packet header and packet format structs are omitted. However, they would

normally not change during the processing phase.

The processing is stopped when the end of the input file is reached.

All the processing implemented in the while loop corresponds to the functionality hid-

den in the start function of the streaming interface of a TSSA library. This example actu-

ally implements a sort of streaming processing by the means of using a non-streaming

TSA library interface. The implementation of the while loop depends on the nature of

the processData function(s). An application programmer must carefully study the docu-

mentation of the respective function. While some might implement internal buffering,

others expect the input/output packets to have a certain granularity. There is no general

rule on what processing is required around the processData function.

Closing the Component

When the instance of a TSA component is no longer used, the instance handle can be

returned to the library by calling the component’s close function. This function per-

/* typedef from tmalFilter.h */
typedef struct tmalFilterIOStruct_t{
 ptmAvPacket_t input;
 ptmAvPacket_t output;
} tmalFilterIOStrcut_t, *ptmalFilterIOStruct;

/* variables and structs */
tmAvPacket_t inputPacket, outputPacket;
tmalFilterIOStruct FilterData;
UChar *inputData = calloc(1, INBUFSIZE);
UChar *outputData = calloc(1, OUTBUFSIZE);

/* data processing loop */
while(!done){
 /* reading chunk of input data from file */
 status = fread(inputData, 1, INBUFSIZE, infile);
 if (status < INBUFSIZE) done = 1; /* end of file reached */
 /* set packet info for input packet */
 inputPacket.buffers[0].bufSize = INBUFSIZE;
 inputPacket.buffers[0].dataSize = status;
 inputPacket.buffers[0].data = inputData;
 /* set packet info for output packet */
 outputPacket.buffers[0].bufSize = OUTBUFSIZE;
 outputPacket.buffers[0].dataSize = 0;
 outputPacket.buffers[0].data = outputData;
 /* setting up argument struct for the process data function */
 FilterData.input = &inputPacket;
 FilterData.output = &outputPacket;
 /* process chunk of input data */
 status = tmalFilterProcessData(FilterInstance, &FilterData);
 /* writing chunk of output data to file */
 status = fwrite(outputData,1,outputPacket.buffers[0].dataSize,outfile);
}

Chapter 9: Applications Using a Non-Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 51

9

forms a cleanup of all allocated memory resources. The freed instance is now available

for a new user.

/* Closing component */
tmalFilterClose(FilterInstance);

Chapter 9: Applications Using a Non-Streaming Model

52 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Further Aspects of Using AL Libraries

More on Configuration

The entire configuration phase of the example application is very similar to the initial-

ization of the OL library components described in Chapter 2, Standard C Library. How-

ever, this does not necessarily need to be the case for all AL layer non-streaming mode

libraries. A setup of an AL component is only necessary when the library requires inter-

nal states as input/output configurations and special settings.

If a certain functionality can be implemented without any dependency on previous

events, the functional interface of the library does not have to provide the standard

functions tmalComOpen, tmalComGetInstanceSetup, tmalComInstanceSetup, tmalComIn-

stanceConfig and tmalComClose. An example for such a library is the 2-D graphics

library. The individual 2-D graphics library functions do not depend on any previous

states. They implement a single buffer oriented processing, therefore, no context needs

to be preserved.

Reconfiguration During Processing

While tmalComInstanceSetup is used for the static configuration of the library compo-

nent, tmalComInstanceConfig is used to change certain settings of the configuration dur-

ing the processing phase. The setup function is called only once before the real

processing starts. It is responsible for the configuration of the input and output pins of

the components. The component’s internal behavior aside from input/output configura-

tion can be modified by help of the tmalComInstanceConfig function.

Chapter 9: Applications Using a Non-Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 53

9

Figure 12 Non-streaming process flowchart

Figure 12 depicts the flow of a typical application applying some sort of processing to a

continuous data stream using the non-streaming mode interface of a TSA library. White

boxes represent calls to library functions and dark grey boxes stand for functionality that

needs to be implemented within the application. Note that the processing loop imple-

mented in the “Processing Phase” block corresponds to the functionality implemented

in the start function of a streaming mode interface component. A difference is that the

start function does not call the tmalComInstanceConfig function directly. This must be

implemented by the application programmer external to the start function.

Using AL Libraries in Streaming Mode

Some TSSA libraries support a streaming mode interface at the AL layer. It is possible to

develop applications based on this interface even though it is not recommended. The

application would have to provide implementations of the datain and dataout callback

functions itself in that case.

The following two examples show possible implementations of both callback functions.

Note that they must be dedicated to one instance of the TSSA library because the shown

tmalComOpen

tmalComGetInstanceSetup

tmalComInstanceSetup

Input Buffer Management

tmalComProcessData

Output Buffer Management

tmalComInstanceConfig

End?Reconfig?

Y

N

N

tmalComClose

Y

Processing Phase

Static Configuration Phase

Chapter 9: Applications Using a Non-Streaming Model

54 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

functions are not re-entrant. Both functions access files that are assumed to be opened

and closed somewhere else.

Sample Datain Callback Function

Such a datain callback function could look as follows:

This example does three different things:

■ It allocates memory for the input data when it is first called.

■ It checks if the caller requests a new data packet or returns a used one. In the case that

the start function (in which the datain function calls occur) wants to acquire a new

data packet, the datain callback function reads INBUFSIZE bytes from the input file

and sets the data pointer of the packet to the read data.

■ It declares the first packet buffer as used and sets the buffer’s data size to the number

of bytes actually read from the file.

If the end of file is reached the global EOF_reached is set to one to signal allocated data

memory of the datain and dataout callback functions can be freed, see also the imple-

/* Global variable used to indicate that allocated mem can be freed */
Int EOF_reached = 0;

tmLibappErr_t
datainFunction(Int instId, UInt32 flags, ptsaDatainArgs_t args){
 static Int iniFlag;
 static tmAudioFormat_t InFormat = {sizeof(tmAudioFormat_t), avdcAudio,
 atfLinearPCM, apfStereo16, 0, 0};
 static tmAvHeader_t InHeader = {0, 0, NULL, NULL, NULL, {0,0},
 &InFormat};
 static tmAvPacket_t InPacket = {&InHeader, 1, 0, {0,0,NULL}};
 static Address inputData
 Int status;

 if(!iniFlag){
 iniFlag = 1;
 inputData = (Address) _cache_malloc(INBUFSIZE, Ð1);
 InPacket.buffers[0].bufSize = INBUFSIZE;
 }
 if (flags & tsaDatainGetFull) {
 argsÐ>packet = &InPacket;
 status = fread(buffer, 1, INBUFSIZE, infile);
 if (status == 0) {
 EOF_reached = 1;
 free(inputData);
 tmalFilterStop(instId); /* stop filter */
 }
 InPacket.buffersInUse = 1;
 InPacket.buffers[0].data = inputData;
 InPacket.buffers[0].dataSize = status;
 }else { /* tsaDatainPutEmpty */
 /* free memory when end of stream is reached */
 if(EOF_reached) free(inputData);
 }
 return TMLIBAPP_OK;
}

Chapter 9: Applications Using a Non-Streaming Model

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 55

9

mentation of the dataoutFunction that follows. After that, the stop function of the TSA

library component is called. This forces the component to leave the loop within its start

function.

Whenever the start function returns a used packet to the datain callback function, no

processing happens unless the end of the file is reached. It then frees the allocated buffer

memory.

Sample Dataout Callback Function

The example implementation of the dataout callback function equals that of the previ-

ously described datain function. Upon first call, it allocates memory for the empty data

packet. It then checks whether a full packet is sent or an empty packet is requested by

the component’s start function. If a full packet is sent, it is written to the output file. In

the case where an empty packet is to be returned to the start function, the packet’s first

buffer data pointer is set to the beginning of the allocated memory, the data size is set to

zero and the buffer is marked as unused. When the dataout function recognizes that no

further packets will be acquired by the library, it frees the allocated buffer memory. By

use of the global EOF_reached, it is possible to allocate and free memory only once.

/* Global variable used to indicate that allocated mem can be freed */
extern Int EOF_reached;

tmLibappErr_t
dataoutFunction(Int instId, UInt32 flags, ptsaDataoutArgs_t args){
 Int status;
 static Int iniFlag = 0;
 static tmAudioFormat_t outFormat = {sizeof(tmAudioFormat_t), avdcAudio,
 atfLinearout, apfFiveDotOne16, 0, 0};
 static tmAvHeader_t outHeader = {0, 0, NULL, NULL, NULL, {0,0},
 &outFormat};
 static tmAvPacket_t outPacket = {&outHeader, 1, 0, {0,0,NULL}};
 static Address outputData;
 ptmAvBufferDescriptor_t buffer = ((ptmAvPacket_t)args->packet)->buffers;

 if(!iniFlag){
 outputData = (Address) _cache_malloc(OUTBUFSIZE, -1);
 outPacket.buffers[0].bufSize = OUTBUFSIZE;
 iniFlag = 1;
 }
 if (flags & tsaDataoutPutFull) {
 status = fwrite(buffer->data, 1, buffer->dataSize, outfile);
 if (status != buffer->dataSize) exit(Ð1); /* file write error */
 if (EOF_reached) free(buffer->data);
 }else{ /* send empty packet */
 outPacket.buffersInUse = 0;
 outPacket.buffers[0].dataSize = 0;
 outPacket.buffers[0].data = outputData;
 args->packet = &outPacket
 }
 return TMLIBAPP_OK;
}

Chapter 9: Applications Using a Non-Streaming Model

56 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

This sort of implementation assumes that the library returns a used packet before

requesting a new one. A more generalized implementation of the datain and dataout

function would allocate and free memory dynamically:

■ datain allocates memory when the flag equals tsaDatainGetFull and it frees memory

when the flag equals tsaDatainPutEmpty.

■ dataout allocates memory when the flag equals tsaDataoutGetEmpty and it frees

memory when the flag equals tsaDataoutPutFull.

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 57

10
Chapter 10

TSSA Component Basics

Topic Page

Introduction 58

Attributes of Common Components 58

TSSA Layers 60

CopyIO Example and Explanation 63

Summary of Design Models 92

Component Packages 93

Chapter 10: TSSA Component Basics

58 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

The construction of a TSSA-compliant component involves many choices. TSSA provides

only a framework within which many different types of components can be constructed.

TSSA compliance enables components designed by different developers to work together

through a common interface. Components can achieve TSSA compliance by conforming

to a few rules. The purpose of this chapter is to collect and explain some basic rules and

the reasons behind aspects of the internal structure of a TSSA component.

The TSSA framework plays an important part in the design of a component. The most

common type of TSSA components are streaming and task-based, with operating system

independent data processing cores. In this chapter, these attributes are framed and illus-

trated through the design choices made in a simple component called CopyIO. CopyIO

can be used as a template for other components that conform to a similar model.

Finally, the streaming, task-based model is not applicable to all functions. Near the end

of this chapter, some guidelines are presented to help you choose the appropriate soft-

ware model for a given functionality.

The previous three chapters (beginning with Chapter 7, TSSA Essentials) are strongly rec-

ommended as background reading.

Figure 13 A Basic Streaming Component

Attributes of Common Components

TSA-compliant components can come in various forms. A component can be streaming

or non-streaming. A streaming component acts on some data passing through it. A tradi-

tional library falls into the non-streaming model. A streaming component, however, can

support both streaming and non-streaming modes. The data processing of a component

can be operating system independent or dependent. A component can run in the con-

text of a task, of an interrupt service routine, or of the application using the component.

Task-based or ISR-based applies to streaming components, while the context of the appli-

Datain(GetFull) Dataout(PutFull)

Datain(PutEmpty) Dataout(GetEmpty)

Component

Full Queue

Empty Queue

Full Queue

Empty Queue

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 59

10

cation pertains to a traditional library through a series of function calls. The most com-

mon TSA components are streaming, task-based, and have OS-independent data

processing. CopyIO falls into this group of components.

The design process of a TSA component begins with the service that the component is to

provide. Examples of the service are MPEG2 video decoding, audio rendering, or the

parsing of HTML pages. Once the service is known, the component designer can begin

applying the component to the various component attributes mentioned previously and

that will be explained in the following section. CopyIO provides a service of copying

data packets from input to output. With this in mind, we can apply CopyIO to a stream-

ing, task-based, and OS-independent data processing model.

Streaming (Pull) and Non-Streaming (Push)

CopyIO is a streaming component because data passes through it. The data in this case

are the packets to be copied. To support streaming, CopyIO must have an OL layer,

which uses queues provided by an operating system to provide streaming. CopyIO is a

streaming component which also supports a non-streaming mode. The streaming mode

is also known as pull mode, and the non-streaming mode is also known as push mode.

The pull mode makes use of the concepts “start” and “stop.” In the pull mode, the appli-

cation starts and stops the component. After being started by the application, the com-

ponent “pulls” data from its input queue, and then processes the data. This loop of

obtaining data, processing the data, and sending out the data happens in the function

tmalComStart. Because the component needs to access a queue, it must have an OL layer.

To use CopyIO in the pull mode, an application can call tmolCopyIOStart and tmolCopy-

IOStop.

In the push mode, instead of starting and stopping the component, the application asks

the component to process some data. The application obtains the input data in some

way, “pushes” the data into the component to be processed, and then sends out the pro-

cessed data obtained by the component. By doing the task of obtaining and sending out

data, the application implements the streaming mode, while using the component in

the non-streaming mode. An application can use CopyIO in the push mode by calling

tmalCopyIOCopyPacket.

OS-Independent Data Processing

The service provided by CopyIO is the copying of packets from input to output. Since

the act of copying packets does not require the use of an operating system, the copying

of the packets happens in the AL layer. In both streaming and non-streaming modes, the

data process (i.e., the copying of packets) is done in the AL layer. In the streaming mode,

the data processing is done in tmalComStart. In the non-streaming mode, the data pro-

cessing is done in a function meant only to process data. In CopyIO, this function is

called tmalCopyIOCopyPacket, whereas in other components, the function can have the

Chapter 10: TSSA Component Basics

60 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

form tmalComProcessData. A component can also possess more than one tmalCom-

ProcessData function.

Task-Based Context

Because CopyIO is a streaming component, it must be able to run in the context of its

own task without waiting on the processor. By running in its own task during streaming

operation, it is automatically put to sleep by the operating system, while another task is

allowed to run when no data is available to be processed. Because tasks are provided by

an operating system, the use of a task by a component is implemented in its OL layer.

The application creates and starts the component’s task when it calls tmolComStart, and

stops and suspends the task when it calls tmolComStop. The task is finally destroyed in

tmolComClose. Each task is associated with a function for the task to run in. The compo-

nent’s task is associated with the tmalComStart function.

TSSA Layers

OL Layer

The OL (Operating System) Layer is the part of a component that uses an operating sys-

tem to achieve streaming and other OS-dependent functionality. The OL layer of a com-

ponent is conceptually a thin shell around the AL layer component core. To create the

OL layer of a component, you can copy the OL layer of a similar existing component

and make minor changes.

Default Layer

The OL layer is connected to the AL layer by a default layer provided by TriMedia. This

means that, for most TSSA API functions, the OL layer function calls the Default layer

function, which calls the AL layer function. GetInstanceSetup, InstanceConfig, and Pro-

cessData are exceptions to this. The default layer provides mechanisms common to the

OL layer of all components and is, therefore, used only when the application uses the OL

layer of a component. The purpose of the default layer is to remove from the component

developer the responsibility of developing code that is common to all components, and

is part of the TSSA framework.

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 61

10

For each instance of a component, the OL functions should be called by the application

in the order shown in Figure 14.

Figure 14 Order of OL Layer Function Calls

All default API functions operate on the tsaDefaultInstVar struct, which is created and

initialized by tsaDefaultOpen. All default structures and function prototypes can be

found in the header file tsa.h. The implementation of the default functions can be found

in the file tsaDefaults.c.

AL Layer

The AL (Application) Layer is the processing core of a component. Unlike the OL layer,

the AL layer is unique for each component and, therefore, cannot easily be copied from

other components. AL functions are called either from corresponding default functions

or directly from the application. When the application uses the OL layer, the AL func-

tions are called from the default functions. Alternatively, the application can use the AL

layer of a component by directly calling the AL functions. The AL layer API provides

functions for streaming and non-streaming modes of the component. The streaming

mode of a component is best accessed through its OL layer, while the non-streaming

mode is only used in the AL layer.

GetCapabilities

Open

GetInstanceSetup

InstanceSetup

[Start → InstanceConfig → Stop]

Close

1

11,2

1 Optional

2 Can be called numerous times

Chapter 10: TSSA Component Basics

62 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

For each instance of a component to be used for streaming operations, the AL functions

should be called in the order shown in Figure 15.

Figure 15 Order of AL Layer Function Calls (Streaming Operations)

For each instance of a component to be used for non-streaming operations, the AL func-

tions should be called in the order shown in Figure 16.

Figure 16 Order of AL Layer Function Calls (Non-Streaming Operations)

GetCapabilities

Open

GetInstanceSetup

InstanceSetup

[Start → InstanceConfig → Stop]

Close

3

11,2

1 Optional

3 Not all componenents provide a
GetInstanceSetup function in their AL
layer. Refer to the API documentation of
the specific component.

2 Can be called numerous times

GetCapabilities

Open

GetInstanceSetup

InstanceSetup

[ProcessData → InstanceConfig]

Close

1

1,21,2

1 Optional

3 Not all componenents provide a
GetInstanceSetup function in their AL
layer. Refer to the API documentation of
the specific component.

2 Can be called numerous times

3

1

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 63

10

CopyIO Example and Explanation

The following section explains each of the TSSA API functions with the CopyIO compo-

nent as an example. Each function is discussed in order of its OL, Default, and AL layers.

Some key concepts of TSSA will be explained as they pertain to each API function of a

component. These key concepts include instance setup parameters, instance configura-

tion mechanisms, and component stop behavior.

GetCapabilities

OL GetCapabilities

The tmolComGetCapabilities function is used by the application when using the OL layer

to obtain information about the capabilities of a component before using it. A structure

of the type tmolComCapabilities_t, which contains the struct tsaDefaultCapabilities as its

first field, is returned as a parameter. This structure is defined in tmolCom.h. For

CopyIO, a structure of the type tmolCopyIOCapabilities_t is returned through a parame-

ter. The following definition of the structure tmolCopyIOCapabilities is found in tmol-

CopyIO.h

The tmolCopyIOCapabilities struct contains the tsaDefaultCapabilities struct as its first

field. Note that this function should not be called from an ISR.

Default GetCapabilities

The tsaDefaultGetCapabilities function is called by tmolComGetCapabilities. It takes as

parameters an add_done value, a tsaDefaultFuncs structure containing AL layer API func-

tions, a pointer to a capabilities structure to be returned, and the text, data, and proces-

tmLibappErr_t tmolCopyIOGetCapabilities(ptmolCopyIOCapabilities_t * cap){

 DP(("tmolCopyIOGetCapabilities()\n"));

 return tsaDefaultGetCapabilities(&add_done, &CopyIOTmalFunc,
 (UInt32 *) cap, TEXT_MEMORY_REQUIREMENT
 DATA_MEMORY_REQUIREMENT, PROCESSOR_REQUIREMENT);
}

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmolCopyIOCapabilities_t, *ptmolCopyIOCapabilties_t;

extern tmLibappErr_t tsaDefaultGetCapabilities (
 Bool *add_done,
 ptsaDefaultFuncs_t tsaFunc,
 UInt32 *cap,
 UInt32 text,
 UInt32 data,
 UInt32 proc
);

Chapter 10: TSSA Component Basics

64 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

sor requirements. In tmalCom.c, add_done is a static variable that determines if the OL

memory requirements have been added to the AL requirements.

tsaDefaultGetCapabilities function adds the OL and AL requirements the first time it is

called. It is initially set to false and is set to true after one call to tmolComGetCapabilities.

tsaDefaultFuncs is passed as a parameter to tsaDefaultGetCapabilities because the infor-

mation is not yet stored internally because there is not yet an instance associated with

this component when this function is called. With this information, tsaDefaultGetCapa-

bilities calls tmalComGetCapabilities and simply returns the tmalComGetCapabilities

structure as a parameter.

The information returned in the default capabilities structure includes the component

class, the version information, capability flags, memory and processor requirements, the

number of instances supported, the number of current instances, the number of inputs

and outputs, and the format for each, and a receiver format setup function.

AL GetCapabilities

The tmalComGetCapabilities function simply returns, through a parameter, the statically

allocated and initialized tmalComCapabilities structure. Note that it must return

TMLIBAPP_OK for the tsaDefaultGetCapabilities function to work. For CopyIO, a struc-

ture of type tmalCopyIOCapabilities is returned. The following definition of the tmal-

CopyIOCapabilities struct is found in tmalCopyIO.h.

typedef struct tsaDefaultCapabilities {
 tmComponentClass_t commponentClass;
 tmVersion_t version;
 UInt32 capabilityFlags;
 Int textmemoryRequirement;
 Int datamemoryRequirement;
 Int processorRequirement;
 UInt numSupportedInstances;
 UInt numCurrentInstances;
 UInt numberOfInputs;
 ptmAvFormat_t *inputFormats;
 UInt numberOfOutputs;
 ptmAvFormat_t *outputFormats;
 tsaReceiverFormatSetupFunc_t receiverFormatSetup;
} tsaDefaultCapabilities_t, *ptsaDefaultCapabilities_t;

tmLibappErr_t tmalCopyIOGetCapabilities(ptmalCopyIOCapabilities_t * cap){
 DP(("tmalCopyIOGetCapabilities()\n"));
 *cap = &lcap;
 return TMLIBAPP_OK;
}

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
} tmalCopyIOCapabilities_t, *ptmalCopyIOCapabilties_t;

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 65

10

The static initialization of the previous structure (lcap) is found in tmalCopyIO.c. tmal-

CopyIOCapabilities contains tsaDefaultCapabilities (def_cap) as its first field.

The TEXT_MEMORY_REQUIREMENT, DATA_MEMORY_REQUIREMENT, and

PROCESSOR_REQUIREMENT of the OL and AL layers of the component are defined at the

top of tmolCom.c and tmalCom.c, respectively. COM_NUMBER_OF_INPUTS and

COM_NUMBER_OF_OUTPUTS are defined in tmalCom.c.

static tsaDefaultCapabilities_t def_cap = {
 ccGenericIn, /* component class */
 {1,1,0}, /* version */
 tsaCapFlagsSupportsControlQueue, /* capabilityFlags */
 TEXT_MEMORY_REQUIREMENT,
 DATA_MEMORY_REQUIREMENT,
 PROCESSOR_REQUIREMENT;
 NUM_SUPPORTED_INSTANCES,
 0, /* numCurrentInstances */
 COPYIO_NUMBER_OF_INPUTS,
 id_format, /* inputFormats */
 COPYIO_NUMBER_OF_OUTPUTS,
 od_format, /* outputFormats */
 Null /* receiverFormatSetup */
};
static tmalCopyIOCapabilities_t lcap = {
 &def_cap
};

Chapter 10: TSSA Component Basics

66 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Open

OL Open

The tmolComOpen function is used by the application when using the OL layer to allo-

cate an instance of the component for usage. tmolComOpen first allocates memory for

the InstVars struct of the OL layer. For CopyIO, the definition of the OL InstVars struct is

found in tmolCopyIO.c.

Note
TSA provides the flexibility for a component to have different sets of instance
variables for the OL and AL layers if needed. Therefore, an InstVars structure is
defined in each layer.

tmLibappErr_t tmolCopyIOOpen(Int * instance){
 pInstVars_t ivp;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmolCopyIOOpen(): "));

/* memory for the instance variable */
 ivp = (pInstVars_t) calloc(1, sizeof (InstVars_t));
 if (!ivp) return TMLIBAPP_ERR_MEMALLOC_FAILED;

/* Create setup space for default initializations */
 ivpÐ>setup =
 (ptmolCopyIOInstanceSetup_t)calloc(1,sizeof(tmolCopyIOInstanceSetup_t));
 if(!ivpÐ>setup){
 free(ivp);
 return TMLIBAPP_ERR_MEMALLOC_FAILED;
 }

/* allocates default instance variable, along with default instance setup */
 rval =
 tsaDefaultOpen(&(ivpÐ>defInstVars),INST_OPEN_MAGIC,&CopyIOTmalFunc);
 if(rval){
 free(ivp);
 return rval;
 }
 ivpÐ>setupÐ>defaultSetup = ivpÐ>defInstVarsÐ>instSetup;
 ivpÐ>setupÐ>delay = 0;

 strcpy(ivpÐ>defInstVarsÐ>instSetupÐ>taskName, "COPY");
 ivpÐ>defInstVarsÐ>instSetupÐ>stackSize = DEFAULT_STACK_SIZE;
 ivpÐ>defInstVarsÐ>instSetupÐ>taskFlags =
 tmosTaskFlagsPreempt | tmosTaskFlagsNoSliced | tmosTaskFlagsStandard;

 DP(("created instance %x\n", ivp));
 *instance = (Int) ivp;

 return rval;
}

typedef struct inst_vars {
 ptsaDefaultInstVar_t defInstvars;
 ptmolCopyIOInstanceSetup_t setup;
} InstVars_t, *pInstVars_t;

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 67

10

After allocating memory for its InstVars struct, tmolComOpen then allocates memory for

the setup field in the InstVars struct. (Refer to InstanceSetup on page 71 for more informa-

tion). Next, tmolComOpen sends the defInstVars field in the InstVars struct to tsaDefault-

Open to be allocated and initialized. After ivp->defInstVars->instSetup has been

allocated, ivp->setup->defaultSetup is manually set to point to the same memory.

Subsequently, tmolComOpen sets the taskName, stackSize, and taskFlags in the def-

InstVars to the appropriate values for the component, to be used in tsaDefaultInstance-

Setup to create the component task. Note that for ISR components, the field

createNoTask should be set to true here. Finally, the pointer to the InstVar struct is

returned as the instance id.

Note that this function should not be called from an ISR.

Default Open

The default open function first allocates a tsaDefaultInstVar structure.

The tsaDefaultInstVar structure contain information pertaining to the default functional-

ity of the instance. magic is used by the component to check the validity of the instance.

instSetup allows the application set the default functionality of the instance to the

desired behaviors. tsaDefaultOpen allocates the default instance setup struct (instSetup).

tsaDefaultOpen allocates it and sets its fields to default values.

The inputDescriptors and outputDescriptors fields of the default instance setup struct are

arrays of pointers to InOutDescriptors. In tsaDefaultOpen, the array is allocated and the

pointers initialized to Null. (Refer to InstanceSetup on page 71 for more information).

tmalInstance holds the a pointer to the AL instance variable, to be allocated by tmalCom-

Open. tmalFunc contains all the AL functions needed by the defaults. It is stored in the

extern tmLibappErr_t tsaDefaultOpen (
 ptsaDefaultInstVar_t *divp,
 UInt32 magic,
 ptsaDefaultFuncs_t tsaFunc
);

typedef struct tsaDefaultInstVar {
 UInt32 magic;
 ptsaDefaultInstanceSetup_t instSetup;
 Int tmalInstance;
 ptsaDefaultFuncs_t tmalFunc;
 volatile tsaTaskStatus_t taskstatus;
 UInt32 task;
 UInt32 numberOfInputs;
 UInt32 numberOfOutputs;
 UInt32 stopSemaphore;
 UInt32 configSemaphore;
 Int periodOfComponent;
 UInt32 reserved;
} tsaDefaultInstVar_t, *ptsaDefaultInstVar_t;

Chapter 10: TSSA Component Basics

68 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

default layer in the tsaDefaultInstVar structure during tsaDefaultOpen. An example of the

statically initialized structure CopyIOTmalFunc, is found in tmolCopyIO.c.

The taskstatus is the internal value of the task status. task stores the task id returned

from tmosTaskCreate in tsaDefaultStart, and is initially set to 0. numberOfInputs and

numberOfOutputs are copied from the component’s default capabilities structure.

stopSemaphore is used in the default stop sequence and configSemaphore is used with

default implementation of the control queues. They are both created in tsaDefaultOpen.

After initializing some values in instSetup, tsaDefaultOpen calls tmalComOpen.

Finally, periodOfComponent specifies how long a sender component waits before getting

a packet from the empty queue, when the receiver component is stopped. By default,

this value is 1, so that the sender component task will swap out and give other tasks a

chance to run.

static tsaDefaultFuncs_t CopyIOTmalFunc = {
 (tsaGetCapabilitiesFunc_t) tmalCopyIOGetCapabilities,
 (tsaOpenFunc_t) tmalCopyIOOpen,
 (tsaCloseFunc_t) tmalCopyIOClose,
 (tsaInstanceSetupFunc_t) tmalCopyIOInstanceSetup,
 (tsaStartFunc_t) tmalCopyIOStart,
 (tsaStopFunc_t) tmalCopyIOStop,
 (tsaInstanceConfigFunc_t) tmalCopyIOInstanceConfig
};

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 69

10

AL Open

Similar to the OL layer, the AL layer has an InstVars struct that is used by an instance of

the component. For CopyIO, its definition is found in tmalCopyIO.c.

tmLibappErr_t tmalCopyIOOpen(Int * instance){
 pInstVars_t ivp;

 DP(("tmalCopyIOOpen(): "));

/* memory for the instance variable */
 ivp = (pInstVars_t) calloc(1, sizeof(InstVars_t));
 if (!ivp) return TMLIBAPP_ERR_MEMALLOC_FAILED;

/* Create setup space for default initializations */
 ivpÐ>setup =
 (ptmalCopyIOInstanceSetup_t)calloc(1,sizeof(tmalCopyIOInstanceSetup_t));
 if(!ivpÐ>setup){
 free(ivp);
 return TMLIBAPP_ERR_MEMALLOC_FAILED;
 }

 ivpÐ>setupÐ>defaultSetup =
 (ptsaDefaultInstanceSetup_t)calloc(1,sizeof(tsaDefaultInstanceSetup_t));
 if(!ivpÐ>setupÐ>defaultSetup){
 free(ivpÐ>setup);
 free(ivp);
 return TMLIBAPP_ERR_MEMALLOC_FAILED;
 }
 memset(ivpÐ>setupÐ>defaultSetup,'\0',sizeof(tsaDefaultInstanceSetup_t));

 ivpÐ>setupÐ>delay = 0;
 ivpÐ>setupÐ>TimSleep = Null;
 ivpÐ>componentState = tsaCompStateNotStarted;
 ivpÐ>copyInProgress = False;
 ivpÐ>inPacket = Null;
 ivpÐ>outPacket = Null;
 ivpÐ>delay = 0;
 ivpÐ>TimSleep = Null;

 *instance = (Int) ivp;
 def_cap.numCurrentInstances++;

 DP(("created instance %x\n", ivp));
 return TMLIBAPP_OK;
}

typedef struct inst_vars {
/* common fields */
 UInt32 parent;
 tsaCompState_t componentState;
/* callback functions */
 tsaDatainFunc_t datainFunc;
 tsaDataoutFunc_t dataoutFunc;
 tsaCompletionFunc_t completionFunc;
 tsaControlFunc_t controlFunc;
/* specific to CopyIO */
 Bool copyInProgress;
 ptmAvPacket_t inPacket;
 ptmAvPacket_t outPacket;

Chapter 10: TSSA Component Basics

70 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

The memory for the AL InstVars struct is allocated and filled with default values. These

values can be overwritten when tmalComInstanceSetup is called. Streaming components

must have a component state to know when to exit the processing loop in tmalComStart.

Callback functions used by the component, and the parent field used to identify the

owner of the callback functions, should be copied from the tsaDefaultInstanceSetup

struct in tmalComInstanceSetup. Pointers to packets used by the component also belong

in the InstVars struct, as each instance of the component should have its own set of pack-

ets.

Basic Reentrancy

There are some variables that are global to all instances of a component. To enable basic

reentrancy of components, read and modify access to these variables must be protected.

One example of these global variables is the numCurrentInstances in the default capabili-

ties flags. For components that support one or a limited number of instances concur-

rently, this variable must be protected in tmalComOpen and tmalComClose when it is

read and modified. To protect the variable, it is recommended that task scheduling be

turned off during and between the reading and modifying of this variable. On TriMedia,

this is done with the functions AppModel_suspend_scheduling and

AppModel_resume_scheduling. (For more information, see Chapter 1, TriMedia Utility

Functions, of Book 5, System Utilities, Part A.)

AppModel.h must be included before using these functions. Note that all variables global

to all instances of a component and read/modify sensitive must also be protected in a

similar way to ensure basic reentrancy.

 UInt32 delay;
 tsaTimSleepFunc_t TimSleep;
} InstVars_t, *pInstVars_t;

#include <tmlib/AppModel.h>;
...
AppModel_suspend_scheduling();
lcap->numCurrentInstances++;
AppModel_resume_scheduling();

Task 1

#include <tmlib/AppModel.h>;
...
AppModel_suspend_scheduling();
lcap->numCurrentInstances++;
AppModel_resume_scheduling();

Task 2

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 71

10

GetInstanceSetup

OL GetInstanceSetup

The tmolComGetInstanceSetup function provides the application that is using the OL

layer an instance setup structure that has previously been initialized by tmolComOpen

with default values. By calling this function to obtain a template instance setup structure

before setting up a component, the application does not have to set fields that should

have default values. tsaCheckOpen checks if the component has been opened. A pointer

to the setup field in the InstVars struct is returned through a parameter.

AL GetInstanceSetup

The tmalComGetInstanceSetup function to provide an AL instance setup template for

applications using the component in the AL layer. The function returns a structure of the

type tmalComInstanceSetup_t. The application can call this function to obtain a tem-

plate instance setup structure when using the AL layer. Refer to the API reference of the

specific component for more details.

InstanceSetup

The InstanceSetup function is used to set up a component before it is started, when it is

not running. It must be called as least once before tmolComStart is called. To configure a

component while it is running, the application should call InstanceConfig. (See Instance-

Config on page 84 for more information).

tmLibappErr_t tmolCopyIOGetInstanceSetup(
 Int instance, ptmolCopyIOInstanceSetup_t *setup
){
 pInstVars_t ivp = (pInstVars_t) instance;

 DP(("tmolCopyIOGetInstanceSetup(%x)\n", instance));
 tsaCheckOpen(ivpÐ>defInstVars, INST_OPEN_MASK, INST_OPEN_MAGIC);

 *setup = ivpÐ>setup;
 return TMLIBAPP_OK;
}

tmLibappErr_t tmalCopyIOGetInstanceSetup(
 Int instance, ptmalCopyIOInstanceSetup_t *setup
){
 pInstVars_t ivp = (pInstVars_t) instance;

 DP(("tmalCopyIOGetInstanceSetup(%x)\n", instance));

 *setup = ivpÐ>setup;
 return TMLIBAPP_OK;
}

Chapter 10: TSSA Component Basics

72 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

OL InstanceSetup

tmolComInstanceSetup is called by the application when using the OL layer to set up an

instance of the component. For CopyIO, the type definition of the setup field, tmolCopy-

IOInstanceSetup, is found in tmolCopyIO.h.

The tsaDefaultInstSetup struct is the first field of the tmolComInstanceSetup struct,

because TSA component-specific structures must have their corresponding default struc-

tures as the first field. For CopyIO, the tmalCopyIOInstanceSetup struct is exactly the

same as the tmolCopyIOInstanceSetup struct. However, the tmalComInstanceSetup struct

and the tmalComInstanceSetup struct can differ, depending on what information each

layer of the component needs from the application.

setup, which is passed to tsaDefaultInstanceSetup, contains much information essential

to the correct behavior of a component.

Note that this function should not be called from an ISR.

Default Instance Setup

tsaDefaultInstanceSetup checks the validity of the instance and setup, then sets up the

fields of the tsaDefaultInstanceSetup struct in the instance according to the values in

tmLibappErr_t tmolCopyIOInstanceSetup(
 Int instance, tmolCopyIOInstanceSetup_t *setup
}{
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmolCopyIOInstanceSetup(%x)\n", instance));
 tmAssert(setup, TMLIBAPP_ERR_INVALID_SETUP);
 tsaCheckOpen(ivpÐ>defInstVars, INST_OPEN_MASK, INST_OPEN_MAGIC);

 if(!setupÐ>TimSleep) setupÐ>TimSleep = tmosTimSleep;

 rval = tsaDefaultInstanceSetup(instance, (UInt32 *)setup);
 tmAssert(!rval, rval); /* catch in debug mode */
 if(rval) return rval; /* catch in release mode too! */

 ivpÐ>defInstVarsÐ>magic |= INST_SETUP_MAGIC;
 return rval;
}

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 UInt32 delay;
 tsaTimSleepFunc_t TimSleep;
} tmolCopyIOInstanceSetup_t, *ptmolCopyInstanceSetup_t;

extern tmLibappErr_t tsaDefaultInstanceSetup (
 Int instance,
 UInt32 *setup
);

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 73

10

setup. Included in the tsaDefaultInstanceSetup struct are callback functions, input and

output descriptors, and other variables used in the setting up of a component.

qualityLevel allows the application to set the quality level of the connection. This feature

is currently not yet implemented in the default layer.

The TSSA callback functions allow the application to set certain behaviors of this

instance of the component when the instance calls the callback functions. The callback

functions include errorFunc, progressFunc, completionFunc, DatainFunc, DataoutFunc,

memallocFunc, memfreeFunc, and controlFunc. These are discussed in Callback Functions

on page 74.

The inputDescriptors and outputDescriptors fields of tsaDefaultInstanceSetup are arrays

of pointers to InOutDescriptor structs. The memory for the array pointers are allocated in

tsaDefaultOpen according to the number of inputs and outputs specified in the capabili-

ties struct of the component, and then set to point to the correct InOutDescriptor structs

created by tsaDefaultInOutDescriptorCreate by the application before calling tmolComIn-

stanceSetup. The first input and output pins of the component are indexed 0 into the

array. When a component has more than one input or output pin, the subsequent pins

can be accessed by indexing into either inputDescriptors or outputDescriptors, respec-

tively. See InOutDescriptors on page 74.

clockHandle allows the instance of the component to be associated with an instance of

the tsaClock. (For more information, refer to Chapter 4, Clock Support API, of Book 5, Sys-

tem Utilities, Part A.) priority, taskName, stackSize, taskFlags, createNoTask, and taskStar-

tArgument are used to configure the task to be created. Refer to Start on page 79 for more

information.

typedef struct tsaDefaultInstanceSetup {
 Int qualityLevel;
 tsaErrorFunc_t errorFunc;
 UInt32 progressReportFlags;
 tsaProgressFunc_t progressFunc;
 tsaCompletionFunc_t completionFunc;
 tsaDatainFunc_t datainFunc;
 tsaDataoutFunc_t dataoutFunc;
 tsaMemallocFunc_t memallocFunc;
 tsaMemfreeFunc_t memfreeFunc;
 ptsaClockHandle_t clockHandle;
 ptsaInOutDescriptor_t *inputDescriptors;
 ptsaInOutDescriptor_t *outputDescriptors;
 UInt32 parentId;
 tsaControlFunc_t controlFunc;
 tsaControlDescriptor_t controlDescriptor;
 UInt32 priority;
 char taskName[16];
 UInt32 stackSize;
 UInt32 taskFlags;
 Bool createNoTask;
 UInt32 taskStartArgument;
} tsaDefaultInstanceSetup_t, *ptsaDefaultInstanceSetup_t;

Chapter 10: TSSA Component Basics

74 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Callback Functions

Because the AL layer of TSSA components is independent of the operating system, and

because the function of communication between components is likely to be imple-

mented using the facilities of an OS, the AL layer implements a set of callback functions.

The standard set of callback functions is defined in the tsaDefaultInstanceSetup struct.

Each of these functions uses the parentId to keep track of data structures used to commu-

nicate between the AL and the OL layers. The callback functions are defined in the

higher level OL layer (or in the application) but they are called from the AL layer.

A set of default callback functions is provided as part of the TSSA default OL layer. The

datain and dataout functions provided here allow all TSSA components to share the code

and the mechanisms of communication.

Other standard callback functions include the error and progress functions, and the

memory allocation functions. The error and progress functions would usually be defined

by the application, as they provide a way for applications to insert code to be called in

the context of the TSSA module. The memory management functions allow the applica-

tion to control the mechanism used to allocate memory.

TSSA components usually use malloc to allocate a small instance variable during the call

to the Open function. The amount of memory allocated here must be small, because it is

always taken from the system pool. The next function, you call is the instance setup

function, and here the memory allocation callback functions can be specified. If a TSSA

component needs to allocate buffers, it must do so after you have specified these callback

functions, and these callback functions must be used. In this way, you can control the

source of the memory for each component. This allows application programmers to keep

control over memory fragmentation. If no memory callback functions are specified, then

the memory is taken from the system pool using _cache_malloc.

You might wonder why, at the OL layer, the component always calls the default callback

functions rather than the one you installed. The default callback functions perform

essential message handling, and they do this before dispatching your function, if it is

installed. These messages are not passed on to your application. An example is tsaPro-

gressFlagChangeFormat.

InOutDescriptors

In addition to callback functions, the tsaDefaultInstanceSetup struct contains descriptors

for the input and output pins of the component. An InOutDescriptor structure describes

the connection between two components. The most important fields of this structure are

the full and empty queues, senderState and receiverState, and the format of the connec-

tion. The other fields further describe the connection and are used by the defaults. The

following is the definition of tsaInOutDescriptor_t.

typedef struct InOutDescriptor {
 Pointer format;
 tsaInOutDescSetupFlags_t flags;
 Bool receiverStopped;
 Bool cmdFullWakeupSent;

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 75

10

By calling tsaIODescriptorCreate to create an instance of the InOutDescriptor struct and

then passing it to the InstanceSetup of two components, an application effectively con-

nects the two components. (The fields modified by InOutDescriptorCreate are format,

flags, senderCap, receiverCap, senderIndex, receiverIndex, fullQueue, emptyQueue, pack-

etArray, headerArray, dataArray, packetBase, and numberOfPackets. These are discussed

in InOutDescriptorCreate and InOutDescriptorDestroy on page 75).

receiverStopped is checked by Datain(GetFull). When receiverStopped is true, Datain(Get-

Full) will return TMLIBAPP_NEW_FORMAT after setting it to false. cmdFullWakeupSent and

cmdEmptyWakeupSent prevent overflowing of queues with Wakeup packets. lastFormat

is again checked against in Datain(GetFull) to determine whether or not to return

TMLIBAPP_NEW_FORMAT. senderState and receiverState stores the state of the sender

and receiver components. They determine the behavior of the Datain and Dataout func-

tions, as well as the stop sequence. waitSemaphore is used by components that would

wait on multiple queues one at a time. In this case, the component creates the sema-

phore and stores it in all the appropriate InOutDescriptors in tmolComInstanceSetup. It

then waits on the semaphore instead of on a specific queue in Datain(GetFull). The

sender component releases the semaphore when it sends a packet to any one of the

queues. reserved is not used and is for future extension.

InOutDescriptorCreate and InOutDescriptorDestroy

At a minimum, the function tsaIODescriptorCreate allocates memory for a InOutDescrip-

tor, creates the full and empty queues, and initializes the sender and receiver states. It

takes as an argument a pointer to a InOutDescriptorSetup structure. It then creates an

 Bool cmdEmptyWakeupSent;
 ptsaDefaultCapabilities_t senderCap;
 ptsaDefaultCapabiltiies_t receiverCap;
 UInt32 senderIndex;
 UInt32 receiverIndex;
 UInt32 fullQueue;
 UInt32 emptyQueue;
 ptmAvPacket_t packetArray;
 ptmAvHeader_t headerArray;
 UInt8 *dataArray;
 UInt32 packetBase;
 UInt32 numberOfPackets;
 tsaIODescState_t senderState;
 tsaIODescState_t receiverState;
 ptmAvFormat_t lastFormat;
 UInt32 waitSemaphore;
 UInt32 reserved;
} tsaInOutDescriptor_t, *ptsaInOutDescriptor_t;

extern tmLibappErr_t tsaDefaultInOutDescriptorCreate (
 ptsaInOutDescriptor_t *piodesc,
 pInOutDescriptorSetup_t setup
);

Chapter 10: TSSA Component Basics

76 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

InOutDescriptor structure according to the setup structure. The following is the defini-

tion of a InOutDescriptorSetup.

If the application wants the connection to have a certain format of data, it will set the

format field in the InOutDescriptorSetup struct to the desired format. If the format is pro-

vided by the application, tsaDefaultInOutDescriptorCreate checks if the two components

are compatible using senderCap, receiverCap, senderIndex, and receiverIndex. senderCap

and receiverCap are the capabilities structures of the sender and receiver in the connec-

tion.

senderIndex is the index into the outputFormats array in senderCap, and receiverIndex is

the index into the inputFormats array in receiverCap. tsaDefaultInOutDescriptorCreate

calls tsaDefaultInstallFormat to install the format in the InOutDescriptor.

The flags field indicates one or more properties of the InOutDescriptor. When used in the

InOutDescriptorSetup structure, it can be tsaIODescSetupFlagsCacheMalloc and/or tsaIO-

DescSetupFlagsMultiProc. tsaIODescSetupFlagsCacheMalloc causes tsaDefaultInOutDe-

scriptorCreate to use _cache_malloc to create all memory. tsaIODescSetupFlagsMultiProc

causes the InOutDescriptor to be created for use in a multiple processor environment,

possibly between components on different processors. The flags from the setup are then

copied to the InOutDescriptor.

Once the flags are copied from the setup struct, two flags can be added to it if they are

found in the component capabilities structs. These flags are tsaCapFlagsCopybackDatain

and tsaCapFlagsInvalidateDataout. These translate to tsaIODescSetupFlagCopybackDatain

and tsaIODescSetupFlagInvalidateDataout, respectively, in the InOutDescriptor. The ini-

tial values of these flags are set for each InOutDescriptor when it is created by tsaDefault-

InOutDescriptorCreate. The component is then free to modify the values as needed for

each queue. This is done in the InstanceSetup.

Cache Coherency

The default functions tsaDefaultInOutDescriptorCreate, tsaDefaultDatain, and tsaDefault-

Dataout can act upon these flags to help components maintain cache coherency. If the

sender component has an invalidate flag, InOutDescriptorCreate will copyback the data

typedef struct InOutDescriptorSetup {
 ptmAvFormat_t format;
 tsaInOutDescSetupFlags_t flags;
 String fullQName;
 String emptyQName;
 UInt32 queueFlags;
 ptsaDefaultCapabilities_t senderCap;
 ptsaDefaultCapabilities_t receiverCap;
 UInt32 senderIndex;
 UInt32 receiverIndex;
 UInt32 packetBase;
 UInt32 numberOfPackets;
 UInt32 numberOfBuffers;
 UInt32 bufSize[1];
} InOutDescriptorSetup_t, *pInOutDescriptorSetup_t;

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 77

10

buffers after creating them. Then, if the receiver component does not have a copyback

flag, Dataout will invalidate the data buffers. If the sender does not have a invalidate flag

and the receiver has a copyback flag, then Datain will copyback the data buffers. In all

other cases, no invalidate or copyback operation is performed. Refer to the following

table for clarification.

The application can specify the queue names and queue flags, but “FULL” and “EMPTY”

will be used as queue names, and the default queue flags will be applied.

The senderState and receiverState are initialized to ACTIVE to avoid losing packets when

the components are started. When the sender is started and the receiverState is

STOPPED, the sender would put full packets directly into the empty queue, and therefore

full packets containing data would be lost.

InOutDescriptorCreate will create the numberOfPackets number of packets, number

them incrementally starting from packetBase, and put them onto the empty queue.

Each packet is created with numberOfBuffers buffers. Each buffer has a size according to

its index into the bufSize array. bufSize, by default, allows for one buffer per packet. See

Chapter 8, "Developing Applications Using a Streaming Model," for more details on packet

creation.

When numberOfPackets is 0, tsaDefaultInOutDescriptorCreate will create no packets and

the application is expected to create the packets accordingly. Furthermore, if numberOf-

Buffers is 0, while numberOfPackets is not 0, the packets will be created, and the buffers

are expected to be created later. packetArray, headerArray, and dataArray are used for

optimization of packet memory allocation.

Formats

The format of data used by each pin is described in the format field of the InOutDescrip-

tor struct. This format field can point to the tmAvFormat struct or any of its subclasses.

Currently existing subclasses of tmAvFormat are tmVideoFormat and tmAudioFormat

structs. tmVideoFormat and tmAudioFormat structs contain in addition to the fields of

tmAvFormat, information pertaining especially to video or audio.

The definitions of tmAvFormat and its subclasses can be found in tm1/tmAvFormats.h in

the include directory of the TriMedia Compilation System. This file is kept in TCS

because it is used by the devices libraries, which are also found in TCS.

Sender Invalidate Sender None

Receiver Copyback Copyback on create. Copyback in Datain.

Receiver None Copyback on create. Invalidate in Dataout if
cache aligned.

Do nothing.

typedef struct tmAvFormat_t {
 UInt16 size;
 UInt16 hash;
 UInt32 referenceCount;
 tmAvDataClass_t dataClass;

Chapter 10: TSSA Component Basics

78 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

In addition to its usage in the InOutDescriptor struct, the format is also used in TSA

packet headers (tmAvHeader) to describe the format of the data in the packet. Because of

its usage in the packet header, it must conform to two rules that are required of memory

pointed to from tmAvHeader.

First, it must be a structure, with size as its first field. It should be set to the size of the

format structure used. For example, when the format of the data is described by tmAvFor-

mat, the size field is set to sizeof(tmAvFormat_t).

Second, there must not be any more levels of indirection in these structures (i.e., it must

not contain any pointers). Currently existing data classes are system, video, audio, con-

trol, generic, and other. These can be found in the tmAvDataClass struct in tmAvFor-

mats.h.

AL InstanceSetup

The tmalComInstanceSetup functions uses the information passed in from the tmalCom-

InstanceSetup struct to fill in the correct values for its InstVars. Like the tmolCom-

InstanceSetup struct, tmalComInstanceSetup struct has tsaDefaultInstanceSetup struct as

its first field.

Using OS Functions in the AL Layer

Sometimes a component needs to use some OS functions in its processing. For example,

a component may need to use semaphores to lock data access or to receive hardware sig-

nals, or to use a timed sleep function, as in CopyIO. There are two ways to use OS func-

 UInt32 dataType;
 UInt32 dataSubtype;
 UInt32 description;
} tmAvFormat_t, *ptmAvFormat_t;

tmLibappErr_t
tmalCopyIOInstanceSetup(Int instance, tmalCopyIOInstanceSetup_t *setup){
 pInstVars_t ivp = (pInstVars_t) instance;

 DP(("tmalCopyIOInstanceSetup(i:%x (p:%x))\n", ivp, ivpÐ>parent));

/* common fields */
 ivpÐ>parent = setupÐ>defaultSetupÐ>parentId;

/* callback functions */
 ivpÐ>datainFunc = setupÐ>defaultSetupÐ>datainFunc;
 ivpÐ>dataoutFunc = setupÐ>defaultSetupÐ>dataoutFunc;
 ivpÐ>completionFunc = setupÐ>defaultSetupÐ>completionFunc;
 ivpÐ>controlFunc = setupÐ>defaultSetupÐ>controlFunc;

/* specific fields */
 ivpÐ>delay = setupÐ>delay;
 if(setupÐ>TimSleep)
 ivpÐ>TimSleep = setupÐ>TimSleep;

 return TMLIBAPP_OK;
}

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 79

10

tions in the component’s processing, depending on whether streaming should be

supported in the AL layer and on how many OS functions are needed.

One is to send the OS functions to the AL layer as callback functions. This is done in

CopyIO with TimSleep. The other is to move the entire processing loop to the OL layer,

in tmolComStart. This is done in VtransICP with the use of a semaphore while waiting for

the ICP device to be done. Streaming in the AL layer is not supported in VtransICP.

CopyIO uses TimSleep in tmalCopyIOStart to swap out for a set amount of time. It can be

set when the application uses either the OL or AL layer. When the application uses the

OL layer, it is given a chance to specify TimSleep, by setting TimSleep in the tmolCopy-

IOInstanceSetup struct to the desired function. If the application does not want to spec-

ify a TimSleep function, it is then set to tmosTimSleep in tmolCopyIOInstanceSetup.

tmalCopyIOInstanceSetup then saves it as an instance variable. When the application

uses the AL layer, it can similarly specify TimSleep, by setting TimSleep in the tmalCopy-

IOInstanceSetup to the desired function. If the application does not set it, then this func-

tion is not called in tmalCopyIOStart. Note that the AL function must check if your

callback function has been set before calling it.

The other way to use OS functions in the component’s processing is to move the entire

processing to the OL layer. This is not recommended unless absolutely necessary (for

example, if the processing needs many OS functions or if the component does not sup-

port streaming in the AL layer). The video transformer component VtransICP needs to

use a semaphore to wait for the ICP device to finish processing. It does not support

streaming in the AL layer and, therefore, does the main processing in the OL layer.

Start

OL Start

The tmolComStart function is called by the application when using the OL layer to start

the data processing of a component. It simply calls tsaDefaultStart, which will then com-

plete the rest of the start sequence. It is essential to call tsaDefaultStart from any tmol-

ComStart function, as it ensures the correct starting of the component, by completing

the start sequence.

tmLibappErr_t tmolCopyIOStart(Int instance){
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmolCopyIOStart(i:%x (t:%x))\n", ivp, ivpÐ>defInstVarsÐ>task));

 tsaCheckOpen(ivpÐ>defInstVars, INST_OPEN_MASK, INST_OPEN_MAGIC);
 tsaCheckSetup(ivpÐ>defInstVars, INST_SETUP_MASK, INST_SETUP_MAGIC);

 rval = tsaDefaultStart(ivpÐ>defInstVars);
 return rval;
}

Chapter 10: TSSA Component Basics

80 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Note that this function should not be called from an ISR.

Default Start

tsaDefaultStart takes the tsaDefaultInstVars struct as argument. It first sets the receiver-

State of all its input descriptors and senderState of all its output descriptors to active. If

createNoTask is set, tsaDefaultStart directly calls tmalComStart. Otherwise, it creates and

starts a task with tsa_default_task, if it does not already exist. taskStartArgument is given

as an argument to the tsa_default_task function. By default, it is set to tmalInstance, but

it can overwritten by the component in tmolComStart before calling tsaDefaultStart.

The task created will have the properties specified in the default instance setup. These

properties include the task name, stack size, and priority. If the task exists, it will be

resumed instead of a new task being created. This avoids the overhead of creating and

destroying a task for each start/stop sequence. The pSOS operating system runs the task

with the highest priority. If the task has higher priority than the task starting it, it will

run immediately. But if the task has a lower priority than the task starting it, it will wait

until it is able to run. Keeping this in mind helps the application programmer prevent

priority inversions.

Default Task

tsa_default_task is an internal function of the default implementation. When it is started

as a task by tsaDefaultStart, it sets the taskstatus in the tsaDefaultInstVars to running.

Then it calls tmalComStart in which is the main processing loop. (See AL Start on

page 81.)

tmalComStart does not exit until the application calls tmolComStop or it exits the loop

with an error. When it exits the loop with an error, the system is inconsistent until the

application actually calls tmolComStop. The rest of tsa_default_task is part of the stop

sequence and is described in Default Stop on page 87.

extern tmLibappErr_t tsaDefaultStart(ptsaDefaultInstVar_t divp);

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 81

10

AL Start

tmLibappErr_t tmalCopyIOStart(Int instance){
 pInstVars_t ivp = (pInstVars_t)instance;
 tsaDatainArgs_t di_args = { COPYIO_MAIN_INPUT, Null, 0 };
 tsaDataoutArgs_t do_args = { COPYIO_MAIN_OUTPUT, Null, 0 };
 tsaControlArgs_t cargs = { 0, 0, 0 };
 tsaCompletionArgs_t comp_args = { 0 };
 UInt32 cmd;
 tmLibappErr_t err = TMLIBAPP_OK;

 DP(("tmalCopyIOStart(i:%x (p:%x))\n", ivp, ivpÐ>parent));

 ivpÐ>componentState = tsaCompStateRunning;

 while(ivpÐ>componentState == tsaCompStateRunning){
 DP(("CopyIO %x: Waiting for full packet\n", ivp));
 err = ivpÐ>datainFunc(ivpÐ>parent, tsaDatainGetFull |
 tsaDatainWait | tsaDatainCheckControl, &di_args);
 ivpÐ>inPacket = (ptmAvPacket_t)di_args.packet;
 /* gets TMLIBAPP_NEW_FORMAT on first packet */
 if(err==TMLIBAPP_NEW_FORMAT) err = TMLIBAPP_OK;
 else if(err) break;
 if(!di_args.packet) continue;
 DP(("CopyIO %x: Received full packet %x\n", ivp,
 ivpÐ>inPacketÐ>headerÐ>id));
 ivpÐ>inPacketÐ>headerÐ>flags &= ~avhValidTimestamp;
 /* no valid timestamp */
 DP(("CopyIO %x: Waiting for empty packet\n", ivp));
 err = ivpÐ>dataoutFunc(ivpÐ>parent, tsaDataoutGetEmpty |
 tsaDataoutWait | tsaDataoutCheckControl, &do_args);
 ivpÐ>outPacket = (ptmAvPacket_t)do_args.packet;
 if(err) break;
 if(!do_args.packet) continue;
 DP(("CopyIO %x: Received empty packet %x\n", ivp,
 ivpÐ>outPacketÐ>headerÐ>id));
 ivpÐ>outPacketÐ>headerÐ>flags &= ~avhValidTimestamp;
 /* no valid timestamp */
 err = tmalCopyIOCopyPacket(instance, ivpÐ>inPacket,
 ivpÐ>outPacket);
 if(err) break; /* break out of while (componentState) */

 /* wait delay ticks before sending back */
 if(ivpÐ>TimSleep){
 err = ivpÐ>TimSleep(ivpÐ>delay);
 if(err) break; /* break out of while (componentState) */
 }

 DP(("CopyIO %x: About to send back in packet %x\n", ivp,
 ivpÐ>inPacketÐ>headerÐ>id));
 di_args.packet = ivpÐ>inPacket;
 ivpÐ>inPacketÐ>buffersInUse = 0;
 ivpÐ>datainFunc(ivpÐ>parent, tsaDatainPutEmpty |
 tsaDatainCheckControl, &di_args);
 ivpÐ>inPacket = Null;

 DP(("CopyIO %x: About to send out packet %x\n", ivp,
 ivpÐ>outPacketÐ>headerÐ>id));
 cmd = tsaCmdDataPacket;
 do_args.packet = ivpÐ>outPacket;
 ivpÐ>dataoutFunc(ivpÐ>parent, tsaDataoutPutFull |

Chapter 10: TSSA Component Basics

82 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

For a streaming component, tmalComStart is the main processing loop of the compo-

nent. It must loop on a componentState, which is set to tsaCompStateRunning before

entering the loop. It will be eventually set to tsaCompStateStopRequested by tmalCom-

Stop when the component is stopped. Its function is to retrieve packets from the input

full queue, process the data, and send the processed packets to the output full queue. For

each IN pin of a component, Datain(GetFull) is called to obtain full packets from the full

queue to process and Datain(PutEmpty) is called to put empty packets on the empty

queue. Note that Datain(PutEmpty) must be called after a Datain(GetFull) to correctly

“recycle” packets. Similarly, for each OUT pin of a component, Dataout(GetEmpty) is

called to obtain an empty packet from the empty queue to fill and Dataout(PutFull) is

called to put full packets on the full queue. Note that Dataout(GetEmpty) must be called

before a Dataout(PutFull) to correctly “recycle” packets.

In each traversal of its processing loop, CopyIO copies packets from its one input pin to

its one output pin. To do that, it first calls Datain(GetFull) to get a full packet to copy

from. Then it calls Dataout(GetEmpty) to get an empty packet to copy to. Then it calls

tmalCopyIOPacket to copy the packets. Other streaming components can replace this

function with their own process data function. After copying the packet, it returns the

 tsaDataoutCheckControl | tsaDataoutScheduleOnStop, &do_args);
 ivpÐ>outPacket = Null;
 } /* end while componentState running */

 DP(("CopyIO %x: Exited start loop with command %x, err %x\n", ivp,
 cmd, err));

/* stop sequence */
 if(ivpÐ>inPacket){
 /* put unprocessed packet back on datain empty queue */
 DP(("CopyIO %x: Expelling in packet %x into datain empty queue\n",
 ivp, ivpÐ>inPacketÐ>headerÐ>id));
 di_args.packet = ivpÐ>inPacket;
 ivpÐ>inPacketÐ>buffersInUse = 0;
 ivpÐ>datainFunc(ivpÐ>parent, tsaDatainPutEmpty |
 tsaDatainCheckControl, &di_args);
 }

 if(ivpÐ>outPacket){ /* put copied packets on full queue as empty */
 DP(("CopyIO %x: Expelling out packet %x into dataout full queue as \
 empty\n", ivp, ivpÐ>outPacketÐ>headerÐ>id));
 do_args.packet = ivpÐ>outPacket;
 ivpÐ>outPacketÐ>buffersInUse = 0;
 ivpÐ>dataoutFunc(ivpÐ>parent, tsaDataoutPutFull |
 tsaDataoutCheckControl, &do_args);
 }

/* signal completion */
 ivpÐ>componentState = tsaCompStateStopCompleted;
 if(ivpÐ>completionFunc){
 comp_args.completionCode = err;
 err = ivpÐ>completionFunc(ivpÐ>parent, 0, &comp_args);
 }
 DP(("CopyIO %x: Completed\n",ivp));
 return err;
}

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 83

10

first packet back to the empty queue with a call to Datain(PutEmpty) and sends out the

filled packet to the full queue will a call to Dataout(PutFull).

Datain and Dataout

The flags given to Datain/out are essential to the correct behavior of a streaming compo-

nent. For Datain, tsaDatainGetFull or tsaDatainPutEmpty indicates getting a packet from

the full queue or putting a packet on the empty queue. Similarly for Dataout, tsaDataout-

PutFull or tsaDatainGetEmpty indicates putting a packet on the full queue or getting a

packet from the empty queue.

tsaDatainWait and tsaDataoutWait accompany GetFull or GetEmpty calls to indicate wait-

ing on the queue until a packet arrives, on the input full queue or output empty queue,

respectively. A timeout for this waiting can be indicated in the timeout field of the tsa-

DatainArgs or tsaDataoutArgs. tsaDatainCheckControl and tsaDataoutCheckControl indi-

cates checking the control queue, after receiving a packet in a GetFull or GetEmpty call, if

the component supports control queues.

tsaDataoutScheduleOnStop defines the behavior when the receiver of this Dataout(Put-

Full) is stopped. When the receiver of a Dataout(PutFull) call is stopped, the packets are

put on the output empty queue instead of the full queue. If the component task calling

Dataout(PutFull) has higher priority than the receiving task, it will run forever by getting

packets from the empty queue and putting them back on the empty queue. To prevent

this, Dataout(PutFull) has an option to schedule itself out of a specific time, and get other

tasks a chance to run and the receiver component a chance to get out of the stopped

state. With the tsaDataoutScheduleOnStop, the task is scheduled out after putting the

full packet on the empty queue, according to the periodOfComponent field in the default

instance variables. This field can be specified by the application. If it is not, a value of 1 is

used.

After each Datain/out call, tmalComStart checks for error. The error returned can be real

queue errors or informative errors, such as TMLIBAPP_NEW_FORMAT and

TMLIBAPP_STOP_REQUESTED. Datain(GetFull) returns TMLIBAPP_NEW_FORMAT when a

packet with a new format has arrived. This includes the first packet received from the

input full queue. This is not a real error and therefore, the component should continue.

Exiting the Processing Loop

If there were any real errors or if the component has been requested to stop in the

Datain/out function, the component must exit its processing loop. When exiting in a

task-based component, the tmalComStart function must expel all internally held packets.

Packets from Datain(GetFull) should be put on the input empty queue as empty and

packets from Dataout(GetEmpty) should be put on the output full queue as empty.

Because the expelling of the packets is done outside the processing loop, the instance

variable that holds the packets must be set accordingly before checking the error from

Datain or Dataout. For example, inpacket must be set to di_args.packet before checking

Chapter 10: TSSA Component Basics

84 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

the error from Datain(GetFull). Similarly, outpacket must be set to do_args.packet before

checking the error from Dataout(GetEmpty). This must be done to prevent losing packets

when exiting the loop, because inpacket and outpacket are checked to determine if a

packet needs to be expelled. Likewise, inpacket must be set to Null before checking the

error from Datain(PutEmpty), and outpacket must be set to Null before checking the error

from Dataout(PutFull), to prevent putting the packet back on the queues more than once.

After expelling any internally held packets, the component can call the completion

function if desired. Note that at any point in the loop, the component can call the

progress or error function to report to the application any event via the progressCode or

errorCode, respectively.

InstanceConfig

InstanceConfig is called when the application wants to configure a component while it is

running. It takes an argument of the type tsaControlArgs_t and its purpose is to change

the instance variables of the AL layer to change the behavior of the running component.

TSA provides the component developer the option to use a functional interface or queue

interface for InstanceConfig, depending on how time-critical the configuration is and on

the synchronization with the tmalComStart function. If a configuration command is

very time-critical, it is recommended to use the functional interface, as the change in

configuration is immediate. However, if the tmalComStart cannot handle having its

instance variables changed without its knowledge (therefore requiring synchronization

with the application), then the queue interface is recommended. With the queue inter-

face, the tmalComStart function will receive the configuration command when ready.

OL InstanceConfig

Functional Interface

Using the functional interface, the tmolComInstanceConfig calls the tmalComInstance-

Config function directly to change the configuration of a component in the AL layer.

tmLibappErr_t
tmolCopyIOInstanceConfig(Int instance, UInt32 flags, ptsaControlArgs_t args){
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmolCopyIOInstanceConfig(i:%x (t:%x))\n",ivp,
 ivpÐ>defInstVarsÐ>task));

 tmAssert(ivp, TMLIBAPP_ERR_INVALID_INSTANCE);
 tsaCheckOpen(ivpÐ>defInstVars, INST_OPEN_MASK, INST_OPEN_MAGIC);
 tsaCheckSetup(ivpÐ>defInstVars, INST_SETUP_MASK, INST_SETUP_MAGIC);

 rval = tsaDefaultInstanceConfig(ivpÐ>defInstVars, flags, args);
 return rval;
}

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 85

10

Queue Interface

Since the functional interface for the control queue is straightforward, CopyIO has an

example of the queue interface, which is described below.

Using the queue interface, the tmolComInstanceConfig assembles a control command

packet and puts it on the component’s command queue. It then waits for an acknowl-

edgment from the response queue before exiting. To access the control and response

queue, the tmolComInstanceConfig function calls the default function tsaDefault-

InstanceConfig.

Default InstanceConfig

The tsaDefaultInstanceConfig puts a command in the control queue and waits for

acknowledgment from the response queue. A mutual exclusion semaphore prevents

more than one task from trying to configure a component at the same time. In attempt-

ing to access the control queue, the task will block if it must wait for the component’s

semaphore. A timeout can be requested by setting the tsaControlWait flag. If the function

times out, it returns with TMLIBAPP_ERR_SEMAPHORE_TIMEOUT. You can specify the

timeout period, in ticks, in the tsaControlArg struct.

Because the component could be blocked waiting for a data packet, this function also

sends “wakeup” packets to the data queues when it sends a command to the control

queue. These wakup packets contain no data and are sent to all input-full queues and

output-empty queues. In response, the component’s default Datain(GetFull) and

Dataout(GetEmpty) functions will check the control queue, as long you have specified

the appropriate tsaDatainCheckControl or tsaDataoutCheckControl flag.

If a component-specific command is received, tmalComInstanceConfig is called directly

to configure the component. The control command can be tsaCmdAcknowledge, tsaC-

mdStatus, or any component-specific command.

If the command is tsaCmdStatus, the component responds with a tsaCmdAcknowledge

packet on the response queue to notify the application that the component is still alive.

The command argument includes one pointer field that can be used as the component

designer sees fit. Since this pointer is weakly typed, it is a likely point of error for the

application programmer. Some components provide a set of strongly typed configura-

tion functions to avoid this problem. The command argument also contains a field

called retval. On completion of the command sequence, this structure member contains

the return value from the AL layer config function. The error returned by the OL layer

config function will either be from the AL layer config function, or possibly an error tell-

ing you that the AL layer config function could not be dispatched. An example of this is

encountered when you forget to install the control queues.

extern tmLibappErr_t tsaDefaultInstanceConfig(
 ptsaDefaultInstVar_t divp,
 UInt32 flags,
 ptsaControlArgs_t args
);

Chapter 10: TSSA Component Basics

86 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Since some applications do not need the configuration interface, the existence of the

control queues is only checked when the default config function is called.

Multiprocess Considerations for InstanceConfig

Because a function cannot be called from another processor, the queue interface must be

used to configure a component from another processor. In this case, the function of tsa-

DefaultInstanceConfig must be recreated in a function of the controlling processor to

access the control queues of a component on the other processor. This involves possibly

having to translate the address pointed to by the parameter field in the tsaControlArgs

struct. Cache issues must also be taken into account.

AL InstanceConfig

To prepare the component to accept configuration commands via the queue interface, a

capabilities flag tsaCapFlagsSupportControlQueue must be added to the flags field in the

tsaDefaultCapabilities struct, initialized in tmalCom.c. When this flag is set in the tsa-

DefaultCapabilities struct, the application must pass a tsaControlDescriptor to the compo-

nent during tmolComInstanceSetup, if it plans to configure the component by calling

tmolComInstanceConfig. When the application is using the AL layer, this function can be

called directly to configure the component.

Component-specific commands must be #defined or enumed as tmalComConfigTypes_t

in the file tmalCom.h.

If component-specific commands existed, a tmalComInstanceConfig function must be

provided. Then the tmalComInstanceConfig function must be logged in the tmalCom-

Funcs table of the type tsaDefaultFuncs, in tmolCom.c.

tmLibappErr_t tmalCopyIOInstanceConfig(Int instance,ptsaControlArgs_t args){
 pInstVars_t ivp = (pInstVars_t) instance;
 Pointer value = (Pointer)argsÐ>parameter;

 DP(("tmalCopyIOInstanceConfig(i:%x (p:%x))\n", ivp, ivpÐ>parent));

 if (args == Null) return TMLIBAPP_ERR_INVALID_COMMAND;
 switch((tmalCopyIOCommands_t)argsÐ>command){
 case COPYIO_CHANGE_DELAY:
 ivpÐ>delay = *(int*)value;
 DP((ÒCopyIO %x: change delay to %d\nÓ, ivp, ivpÐ>delay);
 break;
 default:
 DP((ÒCopyIO %x: Command Unknown\nÓ, ivp));
 return TMLIBAPP_ERR_INVALID_COMMAND;
 }
 return TMLIBAPP_OK;
}

typedef enum {
 COPYIO_CHANGE_DELAY = tsaCmdUserBase;
} tmalCopyIOCommands_t;

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 87

10

A component can check its control queue by calling Datain or Dataout with the flag tsa-

DatainCheckControlQueue or tsaDataoutCheckControlQueue, respectively. Datain and

Dataout check the control queue only if requested. This is the point of synchronization

with the application.

Stop

OL Stop

The tmolComStop function is called by the application when using the OL layer to stop

the data processing of a component. It simply calls tsaDefaultStop, which will then com-

plete the rest of the stop sequence. It is essential to call tsaDefaultStop from any tmol-

ComStop function, as it ensures the correct stopping of the component, by notifying its

neighbors. tsaDefaultStop is used to stabilize the system after a component has been

stopped.

Note
This function should not be called from an ISR.

Default Stop

tsaDefaultStop takes the tsaDefaultInstVars struct as argument. It first calls tmalComStop

to allow the component to first do internal cleanup on stop. It then sets the taskstatus of

the component to TS_STOP_REQUESTED. tsaDefaultStop sends Wakeup packets to all

input full queues and output empty queues, to break the component out of the blocking

on a data queue. Therefore, the Datain/out, after receiving the Wakeup packet, can check

the task status and notify the component task immediately. Having set the taskstatus to

TS_STOP_REQUESTED, it waits for the component task to complete its stop sequence on

the default instance variable stopSemaphore.

tmLibappErr_t tmolCopyIOStop(Int instance){
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmolCopyIOStop(i:%x (t:%x))\n", ivp, ivpÐ>defInstVarsÐ>task));

 tsaCheckOpen (ivpÐ>defInstVars, INST_OPEN_MASK, INST_OPEN_MAGIC);
 tsaCheckSetup(ivpÐ>defInstVars, INST_SETUP_MASK, INST_SETUP_MAGIC);

 rval = tsaDefaultStop(ivpÐ>defInstVars);
 return rval;
}

extern tmLibappErr_t tsaDefaultStop(ptsaDefaultInstVar divp);

Chapter 10: TSSA Component Basics

88 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Default Task

When the component task sees that it has been requested to stop, either by

TMLIBAPP_STOP_REQUESTED from a Datain/out call, or from having its component state

set to tsaCompStateStopRequested in tmalComStop, it cleans up by returning packets

outside the main loop, and exits to tsa_default_task. After returning from tmalComStart,

it sets the receiverState of all its input descriptors and senderState of all its output

descriptors to stopped. It also flushes the input full queues to the empty queues and

sends a tsaCmdEndOfStream packet down the output full queues.

Thus, the flushing of the full queues is always done by the receiver components. tsa-

DefaultStopPin can be used to flush output full queues. It then sets its taskstatus to

TS_NOTSTARTED, releases the stopSemaphore so that tsaDefaultStop can complete and

returns to the application. Lastly, it calls the completion function with the flag, tsa-

CompletionFlagStop, before suspending itself. The component task will be resumed on a

subsequent call to tmolComStart.

Calling tsaDefaultStop from within the task itself is asynchronous (i.e., tsaDefaultStop

returns before the component is actually started). In that case, the application can wait

for the completion function to be called with the flag tsaCompletionFlagStop.

AL Stop

In a task-based component, the tmalComStop function simply sets the component state

to tsaCompStateStopRequested. When the task function tmalComStart sees that the stop

has been requested, it falls out of its processing loop. In a ISR-base component, however,

tmalComStop must also expel internally held packets into the queues.

This function is called first in the tsaDefaultStop, before the application begins the stop

sequence. In both task-based and ISR-based components, the function must not wait for

the component task (because stop could have been called from the task itself). In that

case, the tmalComStop function must terminate before the task can exit its processing

loop and complete the stop sequence.

tmLibappErr_t tmalCopyIOStop(Int instance){
 pInstVars_t ivp = (pInstVars_t) instance;

 DP(("tmalCopyIOStop(%x)\n", instance));
 ivpÐ>componentState = tsaCompStateStopRequested;
 return TMLIBAPP_OK;
}

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 89

10

Close

OL Close

The tmolComClose function is used by the application when using the OL layer to release

an instance created by tmolComOpen. It calls tsaDefaultClose to free memory allocated

by tsaDefaultOpen and frees all other memory allocated during tmolComOpen.

Note that this function should not be called from an ISR.

Default Close

tsaDefaultClose takes the tsaDefaultInstVars struct as argument. It first calls tmalCom-

Close to allow the AL layer to free all the memory it allocated in tmalComOpen. It then

makes sure that the component’s stop sequence has completed, by checking if the

taskstatus is TS_NOTSTARTED. If not, it waits until it is. This is necessary because a com-

ponent instance must do the necessary cleanup, such as expelling packets and releasing

handles to hardware, before being closed. Finally, it destroys the semaphores and the

component task, and frees all the memory that was allocated in tsaDefaultOpen.

tmLibappErr_t tmolCopyIOClose(Int instance){
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmolCopyIOClose(i:%x, (t:%x))\n", ivp, ivpÐ>defInstVarsÐ>task));

 tsaCheckOpen(ivpÐ>defInstVars, INST_OPEN_MASK, INST_OPEN_MAGIC);

 rval = tsaDefaultClose(ivpÐ>defInstVars);
 free(ivpÐ>setup);
 free(ivp);

 return rval;
}

extern tmLibappErr_t tsaDefaultClose(ptsaDefaultInstVar divp);

Chapter 10: TSSA Component Basics

90 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

AL Close

In the tmalComClose function, it decrements the numCurrentInstances field in the tsa-

DefaultCapabilities struct. It then frees all memory allocated during tmalComOpen.

ProcessData

The ProcessData function performs OS-independent data processing. It only exists in the

AL layer and is directly called by the application when using the AL layer of a compo-

nent in non-streaming mode. Components can have more than one ProcessData func-

tion, which can be called something that more accurately describes its functionality. For

example, CopyIO’s ProcessData functions is called tmalCopyIOCopyPacket.

tmLibappErr_t tmalCopyIOClose(Int instance){
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t rval = TMLIBAPP_OK;

 DP(("tmalCopyIOClose(i:%x (p:%x))\n", ivp, ivpÐ>parent));
 def_cap.numCurrentInstancesÐÐ;
 free(ivpÐ>setupÐ>defaultSetup);
 free(ivpÐ>setup);
 free(ivp);
 return rval;
}

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 91

10

AL ProcessData

tmalComProcessData and its counterparts embody the AL non-streaming operations of a

streaming component. Unlike tmalComStart, it is not responsible for acquiring data to

process. Instead, it is given data to process by the application, and the processed result is

returned to the application through a parameter.

tmLibappErr_t tmalCopyIOCopyPacket(
 Int instance, tmAvPacket_t * inpacket, tmAvPacket_t *outpacket
){
 pInstVars_t ivp = (pInstVars_t) instance;
 tmLibappErr_t err = TMLIBAPP_OK;
 int i;

 DP(("tmalCopyIOCopyPacket(i:%x (p:%x))\n", ivp, ivpÐ>parent));

 ivpÐ>copyInProgress = True;

 if(outpacketÐ>allocatedBuffers < inpacketÐ>allocatedBuffers){
 ivpÐ>copyInProgress = False;
 return CP_ERR_ALLOCATED_BUFFERS;
 }
 for(i=0; i<outpacketÐ>allocatedBuffers; i++){
 if(outpacketÐ>buffers[i].bufSize < inpacketÐ>buffers[i].bufSize) {
 ivpÐ>copyInProgress = False;
 return CP_ERR_BUFSIZE;
 }
 }
 outpacketÐ>headerÐ>flags = inpacketÐ>headerÐ>flags;
 outpacketÐ>headerÐ>userSender = inpacketÐ>headerÐ>userSender;
 outpacketÐ>headerÐ>userReceiver = inpacketÐ>headerÐ>userReceiver;
 outpacketÐ>headerÐ>userPointer = inpacketÐ>headerÐ>userPointer;
 outpacketÐ>headerÐ>time.ticks = inpacketÐ>headerÐ>time.ticks;
 outpacketÐ>headerÐ>time.hiTicks = inpacketÐ>headerÐ>time.hiTicks;

 outpacketÐ>buffersInUse = inpacketÐ>buffersInUse;

 for(i=0; i<outpacketÐ>allocatedBuffers; i++){
 memcpy(outpacketÐ>buffers[i].data,
 inpacket Ð>buffers[i].data,
 inpacket Ð>buffers[i].dataSize);
 outpacketÐ>buffers[i].dataSize = inpacketÐ>buffers[i].dataSize;
 }

 ivpÐ>copyInProgress = False;
 return err;
}

Chapter 10: TSSA Component Basics

92 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Summary of Design Models

The following is a summary of the choices in designing a component.

Streaming vs. Non-Streaming

Components can be streaming or non-streaming. If a component streams data, as do

most digital signal processing (DSP) components, an OL layer must be part of the com-

ponent to use queues to stream data. This component would be a TSSA component.

Alternatively, components that do not stream data, as for most functional libraries, need

not have an OL layer. Applications would access components through function calls in

the AL layer only. This component would be a TSA component, not a TSSA component.

Data Processing

A TSSA component can implement its data processing with or without dependency on

an operating system. The core routines of signal processing components are particularly

well suited to implementation without explicit reliance on an OS. In these cases, the seri-

ous data processing is confined to the AL layer, and the operating system dependencies

are isolated to a higher level, through the standard set of TSSA callback functions.

But sometimes the signal processing is not so clearly separable from the operating sys-

tem. A component that parses and maintains a database is an example of this. Sema-

phores and other operating system features can be an integral part of the component’s

basic implementation. In this case, the line between the AL and the OL layer becomes

blurred. Because of the dependency on the OS, the component will present an OL layer

interface to the outside world. The author can dispense with the AL layer completely, or

if operating system independence is a goal of the author, component-specific callback

functions can be introduced allowing the OL layer to provide functionality to the AL

layer.

Pull vs. Push Model

Streaming components can support both pull and push models. The pull model implies

that an autonomous component pulls in data for processing from queues. The label

“push model” is applied to situations where an application pushes data into a compo-

nent to be processed.

When a streaming component pulls in data to process, it waits for data to be streamed in

from the queues. This happens when the application uses the OL layer of the compo-

nent with tmolComStart and tmolComStop.

However, when the application pushes data in to the component to be processed, it is

using the AL layer, specifically the component’s tmalComProcessData function. A com-

ponent can have more than one tmalComProcessData function.

Chapter 10: TSSA Component Basics

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 93

10

Task-Based vs. ISR

Components that process data should be task-based. Components that access hardware

(through device libraries) are likely to be implemented as an Interrupt Service Routine

(ISR). These components might or might not include a task. An ISR-based component

waits for a signal from the hardware before executing one “loop” of its processing. Digi-

tizers and renderers are examples of ISR-based components.

Component Packages

TSA-compliant components are composed of header files, library files, and example files.

■ Header files of the components are found in $(TAS)/include/ under the names tmol-

Com.h and tmalCom.h for streaming components, and tsaCom.h for non-streaming

components. For applications using the OL layer of a streaming component, tmal-

Com.h is already included in tmolCom.h.

■ The files that make up each component library are found in the $(TAS)/lib/Com/

directory.

Simple components have in that directory tmolCom.c and tmalCom.c. More com-

plex components have the files that compose of the AL layer in a tmal sub-directory.

These components have tmolCom.c in $(TAS)/lib/Com/, while the tmal sub-directory

contains tmalCom.c and other files.

■ Each component found in $(TAS)/lib/ has a corresponding example that shows how

to use it in a directory under $(TAS)/examples/. Examples for non-streaming compo-

nents are named exCom (e.g. ex2D) or extsaCom.

Examples for streaming components are prefixed with exal, for an example using the

AL layer, and exol, for an example using the OL layer. exal or exol are followed by a

component name, or a name describing the functionality of the example.

If exal or exol is followed by a component name, then it is mainly demonstrating the

use of the component, possibly with other components. For example, exolVrendVO

demonstrates the use of VrendVO with VdigVI.

If exal or exol is followed by something other than a component name, then it

describes the functionality of the example. For example, exolFileIO demonstrates the

use of Fread and Fwrite doing file I/O.

Chapter 10: TSSA Component Basics

94 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 95

11

Chapter 11

TSSA Design Details

Topic Page

Introduction 96

Component Design Details 96

Application Design Details 105

Chapter 11: TSSA Design Details

96 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter presents more advanced and detailed concepts of the TSSA architecture that

go beyond the basic ideas explained in the previous chapter. These concepts fall into two

parts, those pertaining to component design and those pertaining to application design.

The first part of this chapter demonstrates various choices in component design, using

code from applicable components. It addresses these concepts:

■ ISR components.

■ In-place components.

■ Changing formats from inside a component.

■ Components that wait on multiple queues.

The second part of this chapter presents several practical uses of TSSA at the application

level. It addresses these concepts:

■ Synchronized stop.

■ Changing formats from the application.

■ Reconnecting sender and receiver components.

The previous four chapters (beginning with Chapter 7, TSSA Essentials) are essential

background for this chapter.

Component Design Details

ISR Components

ArendAO is an ISR component because it accesses hardware by rendering audio, and is

therefore driven by interrupts from the Audio Out device. Using TSSA, there are two

steps required to create an ISR component: setting createNoTask and providing a Receiv-

erSetupFormat function.

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 97

11

createNoTask

tmolArendAOOpen is similar to tmolCopyIOOpen, except that ArendAO sets createNoTask

in the default instance setup struct to true. This variable affects the way the component

is started by tsaDefaultStart and therefore must be set before tmolComStart is called.

When it is set to true, tsaDefaultStart will directly call tmalComStart, instead of starting a

task, as in CopyIO. Besides this small part in tmolComOpen, the other OL functions of an

ISR component should not be much different from those of a task-based component.

tmalComReceiverFormatSetup

Components that need a specific format before startup must provide a tmalComReceiver-

FormatSetup function. tmalComReceiverFormatSetup sets up the format of a receiver

component and is part of the instance setup of the component, although separate from

its tmalComInstanceSetup. Often, but not always, this function exists for ISR receiver

components because most hardware devices need to know the format before startup.

Other receiver components that need the format before startup should also provide this

function. This function is needed for receiver components, because, unlike sender com-

ponents, they have no control over the format of their input streams. A sender compo-

nent can specify the format of its output streams according to the format of its input

tmLibappErr_t tmolArendAOOpen (Int *instance){
 tmLibappErr_t rval;

 DP(("tmolArendAOOpen(): "));
 InstVars.setup = (ptmolArendAOInstanceSetup_t) calloc(1,
 sizeof(tmolArendAOInstanceSetup_t));
 if(!InstVars.setup) return (TMLIBAPP_ERR_MEMALLOC_FAILED);
 rval = tsaDefaultOpen(&(InstVars.defInstVars), INST_OPEN_MAGIC,
 &arendTmalFunc);
 if (rval != TMLIBAPP_OK) {
 free (InstVars.setup);
 return rval;
 }
 strcpy(InstVars.defInstVarsÐ>instSetupÐ>taskName, "ArendAO");
 InstVars.defInstVarsÐ>instSetupÐ>createNoTask = True;
 InstVars.setupÐ>defaultSetup =
 InstVars.defInstVarsÐ>instSetup;
/* setup the ArendAO specific things */
 InstVars.format = apfStereo16;
 InstVars.srate = 44100.0;
 InstVars.started = False;
 InstVars.setupÐ>output = InstVars.output = aaaNone;
 InstVars.setupÐ>maxBufferSize = InstVars.maxBufferSize = 1024;
 InstVars.setupÐ>operationalMode = InstVars.operationalMode = AR_MODE_RAW;

 *instance = (UInt32) &InstVars;
 return TMLIBAPP_OK;
}

Chapter 11: TSSA Design Details

98 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

stream, or from the application through instance config. When tmalComReceiverFormat-

Setup exists, it must be entered into the default capabilities of the component.

tmalComReceiverFormatSetup is called whenever the format of an input InOutDescriptor

is known, by tsaDefaultInstallFormat. tsaDefaultInstallFormat can be called in one of two

places. When the application calls tsaDefaultInOutDescriptorCreate with a format speci-

fied, or when the sender component figures out or changes the format of its output

stream. The way that a sender component specifies the format will be described in

Changing Formats in Components starting on page 100.

Setting up the Format for the Component

static tsaDefaultCapabilities_t defaultCaps = {
 ccAudioRenderer, /* componentClass */
 {1, 1, 0}, /* version */
 tsaCapFlagsCopybackDatain, /* capabilityFlags */
 TEXT_MEMORY_REQUIREMENT, /* textmemoryRequirement */
 DATA_MEMORY_REQUIREMENT, /* datamemoryRequirement */
 PROCESSOR_REQUIREMENT, /* processorRequirement */
 1, /* numSupportedInstances */
 0, /* numCurrentInstances */
 ARENDAO_NUMBER_OF_INPUTS, /* numberOfInputs */
 parFormat, /* inputFormats */
 ARENDAO_NUMBER_OF_OUTPUTS, /* numberOfOutputs */
 Null, /* outputFormats */
 tmalArendAOReceiverFormatSetup /* receiverFormatSetup */
};

static tmLibappErr_t tmalArendAOReceiverFormatSetup(
 UInt32 inputIndex, Pointer format
){
 tmLibdevErr_t rval = TMLIBAPP_OK;
 ptmAudioFormat_t newFormat = (ptmAudioFormat_t)format;

 DP((ÒArendAOReceiverFormatSetup\nÓ));
 *InstVars.format = *newFormat;

 if(!InstVars.formatInstalled){
 switch(newFormatÐ>dataSubtype){
 case apfMono16:
 InstVars.bytesPerSample = sizeof(Int16);
 break;
 case apfStereo16:
 InstVars.bytesPerSample = 2 * sizeof(Int16);
 break;
 ... /* more data subtypes */
 default:
 DP(("aoStartFunc: got unsupported format %x\n",
 AudioFormat.dataSubtype));
 InstVars.bytesPerSample = 2 * sizeof(Int16);
 break;
 }
 }
 if(InstVars.setup) rval = aoStartFunc();
 InstVars.formatInstalled = True;
 return rval;
}

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 99

11

tmalComReceiverFormatSetup takes as arguments the index into the array of input

descriptors, and the format to be installed in the component. tmalArendAOReceiver-

FormatSetup sets up an AL instance variable, bytesPerSample, according to the format.

Finally, it calls devStartFunc, if tmalComInstanceSetup has already been called. Corre-

spondingly, tmalComInstanceSetup calls devStartFunc if tmalComReceiverFormatSetup

has already been called.

Setting up and Starting the Hardware Device

aoStartFunc sets up and starts the Audio Out device according to the format. Non-ISR

receiver components that need the format for setup should also have a tmalComReceiver-

FormatSetup function. However, these components need not have a devStartFunc func-

tion, because they do not need to set up any hardware device.

The aoStartFunc above fills an AO instance setup structure and passes it to aoInstance-

Setup. Then it calls aoStart to start the AO hardware device.

tmLibappErr_t
tmalArendAOInstanceSetup(Int instance, tmalArendAOInstanceSetup_t *setup){
 ... /* set up ArendAO */
 if(InstVars.formatInstalled) rval = aoStartFunc();
 InstaVars.setup = True;
 return rval;
}

static tmLibappErr_t aoStartFunc(void){
 aoInstanceSetup_t ao;
 tmLibappErr_t rval = TMLIBAPP_OK;
 L1_DP(("aoStartFunc\n"));

 ao.interruptPriority = intPRIO_3;
 ao.audioTypeFormat = InstVars.format->dataType;
 ao.audioSubtypeFormat = InstVars.format->dataSubtype;
 ao.underrunEnable = False;
 ao.hbeEnable = False;
 ao.buf1emptyEnable = True;
 ao.buf2emptyEnable = True;

 if (InstVars.datainFunc) ao.isr = arISR_Streaming;
 else ao.isr = arISR_nonStream;

 ao.base1 = pZbuf; /* setup for silence */
 ao.base2 = pZbuf;
 ao.size = InstVars.maxBufferSize / InstVars.bytesPerSample;
 ao.sRate = InstVars.sRate;
 ao.output = InstVars.output;

 if(rval = aoInstanceSetup(AO_instance, &ao)){
 DP(("AO returned %x\n", rval));
 return rval;
 }
 if(rval = aoStart(AO_instance)){
 DP(("aoStart returned %#x\n", rval));
 return rval;
 }
 return rval;
}

Chapter 11: TSSA Design Details

100 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

In-Place Components

Sometimes, a component does not want to circulate the data memory in a packet

between its input component and output component separately. In other words, instead

of processing the data from an input packet and putting the results into separate data

memory in an output packet, it passes the pointer to the data memory from its input to

output. In TSSA terminology, this is called processing data in place. In-place processing is

transparent to the application and default datain/out behave accordingly if the compo-

nent specifies tsaCapFlagsInPlace in its default capabilities structure. CopyInPlace is such

a component.

tsaCapFlagsInPlace

When tsaCapFlagsInPlace is specified, the component is expected to send data packets

from the input full queue directly to the output full queue. The input and output queues

must have corresponding IDs in the component’s list of inputs and outputs. An in-place

component also never accesses any empty queues. The corresponding input and output

components share one empty queue while the in-place component is running. Queues

are rearranged in the defaults during tsaDefaultStart and tsaDefaultStop so the output

empty queue is connected directly to the input component, thus bypassing the in-place

component. This scheme avoids the extra overhead involved if the in-place component

is needlessly accessing empty queues.

Changing Formats in Components

When two components are connected, only the sender or the application can change

the format of the connection. The receiver must respond to the format change accord-

ingly.

static tsaDefaultCapabilities_t def_cap = {
 ccGenericIn, /* component class */
 {1,1,0}, /* version */
 tsaCapFlagsSupportsControlQueue | /* capabilityFlags */
 tsaCapFlagsInPlace,
 TEXT_MEMORY_REQUIREMENT,
 DATA_MEMORY_REQUIREMENT,
 PROCESSOR_REQUIREMENT;
 NUM_SUPPORTED_INSTANCES,
 0, /* numCurrentInstances */
 COPYIO_NUMBER_OF_INPUTS,
 id_format, /* inputFormats */
 COPYIO_NUMBER_OF_OUTPUTS,
 od_format, /* outputFormats */
 Null /* receiverFormatSetup */
};

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 101

11

Sender: Initiating Format Change

To change the format of an output pin while processing data, a sender component must

call the progress function with the flag tsaProgressFlagChangeFormat. The progress code

should contain the index of the output descriptor to change, and the description should

contain the desired format. The default layer then responds by installing the new format

in the InOutDescriptor. During the installation, tmalComReceiverFormatSetup of the

receiver is called. If an error occurred during the installation of the new format, the

default layer will call the error function with an NonFatal flag, and the error as the error

code. If there was no error in the installation of the format, then the sender component

effectively changed the format of the output connection.

In the example above, the output index is 0 and the format is the pointer to a statically

allocated format.

Note: The sender component should not initiate a format change within an interrupt

service routine.

Receiver: Responding to Format Change

The receiver is notified of a change in format when getting a new packet through its

input pin in which the format has been changed by the sender. Datain(GetFull) will

return an error TMLIBAPP_NEW_FORMAT with the new packet. From this error, the

receiver can then process the packet accordingly. Note that the receiver also receives this

error from Datain(GetFull) on the first packet ever sent to this input pin. For receiver

components that do not need to do special processing when a new format is received, it

can just set the error value back to TMLIBAPP_OK and continue processing. An example

of this is in CopyIO from above. The following code ignores the

TMLIBAPP_NEW_FORMAT error, but breaks from the processing loop with another error.

Waiting on Multiple Input Queues with waitSemaphore

Receiver components can wait on multiple input pins by setting up the InOutDescriptors

of its input pins to do so. Datain(GetFull) will wait on a semaphore instead of individual

queues when the semaphore exists. Correspondingly, Dataout(PutFull) will release the

semaphore if it exists. This semaphore is stored in each InOutDescriptor as wait-

Semaphore. The following is an example of a component that waits on multiple input

queues.

 tsaProgressArgs_t prog_args;

 prog_args.progressCode = 0;
prog_args.description = (Pointer)&format;
rval = ivpÐ>progressFunc(ivpÐ>parentId, tsaProgressFlagChangeFormat,
&prog_args);

err = ivpÐ>datainFunc(ivpÐ>parent,tsaDatainGetFull|tsaDatainWait,&di_args);
ivpÐ>inPacket = (ptmAvPacket_t)di_args.packet;
if(err == TMLIBAPP_NEW_FORMAT) err = TMLIBAPP_OK;
else if(err) break;

Chapter 11: TSSA Design Details

102 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Setting Up Inputs with waitSemaphore

To set up the InOutDescriptors, the component creates the wait semaphore and stores it

in the InOutDescriptors of all of its input pins. This is done in tmolComInstanceSetup

after calling tsaDefaultInstanceSetup.

tmLibappErr_t tmolAmixSimpleInstanceSetup(
 Int Instance, ptmolAmixSimpleInstanceSetup_t setup
){
 ... /* set up AmixSimple */

 if(rval = tmosSemaphoreCreate ("AMIX",tmosSemaphoreFlagsStandard,
 0,&waitSemaphore)) return rval;

 for(i=0; i<AMIXSIMPLE_NUMBER_OF_INPUTS; i++) {
 if(ivpÐ>setupÐ>defaultSetupÐ>inputDescriptors[i])
 ivpÐ>setupÐ>defaultSetupÐ>inputDescriptors[i]Ð>waitSemaphore
 = waitSemaphore;
 }
 ...
}

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 103

11

Using Datain(GetFull) with waitSemaphore

In tmalComStart, if waiting on multiple queues, Datain(GetFull) can return an error,

TMLIBAPP_QUEUE_EMPTY, even if the flag specified tsaDatainWait. In this case,

TMLIBAPP_QUEUE_EMPTY does not indicate that the timeout occurred; instead it indi-

cates that the queue specified in the inputId is not the queue that received a packet. Fur-

ther calls to Datain(GetFull) with subsequent inputIds are necessary before finding the

queue that received the packet. The packet is retrieved when Datain(GetFull) return

TMLIBAPP_OK.

In the example above, the component waits on input queue 0 until a packet is received

on one of the COM_NUMBER_OF_INPUTS queues. If there is no error from Datain(Get-

Full), then the packet was received on input queue 0, and the packet can be processed

immediately. However, if the error from Datain(GetFull) is TMLIBAPP_QUEUE_EMPTY,

then the packet was received on one of the other queues. Starting with input queue 1,

tmLibappErr_t tmalComStart(Int Instance){
 tsaDatainArgs_t diArg;

 ... /* initialize other variables */

 ivpÐ>componentState = tsaCompStateRunning;

 while(ivpÐ>componentState == tsaCompStateRunning){
 diArg.inputId = 0;
 diArg.timeout = 0;
 err =
 ivpÐ>datainFunc(ivpÐ>parentId,tsaDatainGetFull|tsaDatainWait,&diArg);

 ivpÐ>inpacket = diArg.packet;

 switch(err) {
 case TMLIBAPP_OK: /* this queue contains packet */
 break;
 ...
 case TMLIBAPP_QUEUE_EMPTY: /* check other queues */
 for(i=1; i<COM_NUMBER_OF_INPUTS; i++){
 diArg.inputId = i;
 diArg.timeout = 0;
 err = ivpÐ>datainFunc(ivpÐ>parentId, tsaDatainGetFull,
 &diArg); /* default is NoWait */
 ivpÐ>inpacket = diArg.packet;
 if(err == TMLIBAPP_OK) break;
 }
 break;
 ...
 default: /* break out of while loop for any other errors */
 goto Cleanup;
 }
 ProcessPacket(diArg.packet);
 ...
 }
 Cleanup:
 ...
}

Chapter 11: TSSA Design Details

104 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

calls to Datain(GetFull) can be made with no wait, until the packet is found; i.e., when a

TMLIBAPP_OK is returned. Then, the input packet can be processed.

In the event of a stop request from the application, the Datain(GetFull) will return a

TMLIBAPP_STOP_REQUESTED. When the component receives this or other fatal errors, it

must break out of the while loop in which the component is running. The TSSA default

layer will take care of flushing the queues and reinitializing the waitSemaphore of this

component as part of the stop process.

Calculating Memory Requirements

You must define TEXT_MEMORY_REQUIREMENT, DATA_MEMORY_REQUIREMENT, and

PROCESSOR_REQUIREMENT and give them values before releasing components in both

tmolCom.c and tmalCom.c. The application can retrieve the memory and processor

requirements using the component’s GetCapabilities function. When GetCapabilities is

called in the OL layer, the AL layer requirements are automatically added.

■ To calculate TEXT_MEMORY_REQUIREMENT, use tmsize for all object files in the each

layer (OL and AL) and set TEXT_MEMORY_REQUIREMENT to the number reported for

text.

■ To calculate DATA_MEMORY_REQUIREMENT, use tmsize for all object files in the each

layer and set DATA_MEMORY_REQUIREMENT to the sum of the numbers reported for

data, data1, and bss, plus any memory allocated without the use of the memalloc call-

back function. These allocated memory are usually the instance variables structure

and its elements.

■ PROCESSOR_REQUIREMENT is not used currently, so set to 0.

Example

The following is the output of tmsize on tmolCopyIO.o, which is the only object file in

the OL layer for CopyIO, and the resulting definitions of the memory requirements in

tmolCopyIO.c.

text data data1 bss dec hex
1263 36 5 4 1308 0x51C

#define TEXT_MEMORY_REQUIREMENT 1263
#define DATA_MEMORY_REQUIREMENT 37 + \
 sizeof(InstVars_t) + \
 sizeof(tmolCopyIOInstanceSetup_t) + \
 sizeof(tsaDefaultInstVar_t) + \
 sizeof(tsaDefaultInstanceSetup_t)
#define PROCESSOR_REQUIREMENT 0

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 105

11

Likewise, the following is the output of tmsize on tmalCopyIO.o, which is the only

object file in the AL layer for CopyIO, and the resulting definitions of the memory

requirements in tmalCopyIO.c.

Application Design Details

Using non-TSSA components

The easiest way to use a non-TSSA component with other TSSA components is to wrap it

in a TSSA wrapper. Then you are connecting two TSSA components. If you were to con-

nect a TSSA component to a non-TSSA component, you would need to know much more

about the inner workings of a TSSA component. The bulk of these “inner workings” is

coded in the files tsaDefaults.c and tsaFormats.c. These two files are provided as source,

so you can study the details.

Two specific issues are likely to cause trouble unless you know about them.

1. Creation of the connections between components.

These connections are embodied in I/O descriptors. The set of default functions

includes a function to create such a descriptor, but this creation function requires the

capabilities structure for each component. When you use a non-TSSA component,

you must construct such a capabilities structure to complete the connection.

2. The way data is passed through the queues.

A useful set of interface functions are reproduced here:

text data data1 bss dec hex
3166 88 1 0 3255 0xCB7

#define TEXT_MEMORY_REQUIREMENT 3166
#define DATA_MEMORY_REQUIREMENT 89 + \
 sizeof(InstVars_t) + \
 sizeof(tmalCopyIOInstanceSetup_t) + \
 sizeof(tsaDefaultInstanceSetup_t)
#define PROCESSOR_REQUIREMENT 0

extern UInt32 qDataOutPutFull(UInt32 fullQ, ptmAvPacket_t packet){
 UInt32 msg_buf[4];

 packetÐ>buffersInUse = 1;
 msg_buf[0] = (UInt32) packet;
 msg_buf[1] = tsaCmdDataPacket;
 return q_send(fullQ, msg_buf);
}

Chapter 11: TSSA Design Details

106 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Notice how msg_buf[1] as passed through the queue contains a command identifying

this as a data packet.

Here, non-data packets are thrown away.

Synchronized Stop

In a streaming architecture, it is often desirable to synchronize stopping of connected

components. “Synchronized stop” means that given two connected components, the

receiver does not stop until it has processed all the packets the sender sent before it

extern UInt32 qDataOutGetEmpty(
 UInt32 emptyQ,
 UInt32 waitFlag,
 ptmAvPacket_t *packet
){
 UInt32 err, msg_buf[4];

 msg_buf[1] = tsaCmdAcknowledge; /* something not data */
 while (msg_buf[1] != tsaCmdDataPacket) {
 /* throw away pause and ack packets */
 if(err = q_receive(emptyQ,waitFlag,0,msg_buf)){
 *packet = (ptmAvPacket_t) msg_buf[0];
 return (err);
 }
 }
 *packet = (ptmAvPacket_t) msg_buf[0];
 return (0);
}

extern UInt32 qDataInPutEmpty(UInt32 emptyQ, ptmAvPacket_t packet){
 UInt32 msg_buf[4];

 if(packet->header->format)
 tsaFormatRelease(packet->header->format);
 msg_buf[0] = (UInt32) packet;
 msg_buf[1] = tsaCmdDataPacket;
 return q_send(emptyQ, msg_buf);
}

extern UInt32 qDataInGetFull(
 UInt32 fullQ,
 UInt32 waitFlag,
 ptmAvPacket_t * packet)
){
 UInt32 err, msg_buf[4];

 msg_buf[1] = tsaCmdAcknowledge; /* something not data */
 while(msg_buf[1] != tsaCmdDataPacket){
 /* throw away pause and ack packets */
 if(err = q_receive(fullQ,waitFlag,0,msg_buf)){
 *packet = (ptmAvPacket_t) msg_buf[0];
 return (err);
 }
 }
 *packet = (ptmAvPacket_t) msg_buf[0];
 return (0);
}

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 107

11

stopped. TSSA provides a mechanism for synchronizing stop that uses the progress call-

back function.

End of Stream

When the sender of a connection is being stopped, the default layer will send an end-of-

stream packet with the tsaCmdEndOfStream command. This part of the stop process

does not require any participation from the application. When the receiver receives this

tsaCmdEndOfStream packet, it calls the progress callback function with the flag tsaPro-

gressFlagEndOfStream. This is also done in tsaDefaultDatainFunction.

However, if you want your application to make use of this information, you must pro-

vide a progress callback function to catch the tsaProgressFlagEndOfStream flag. At that

point, the application may choose to stop the receiver.

The example following comes from exolCopyIO, where Fread is connected to CopyIO,

which is connected to Fwrite. In this example, we focus on the Fread-CopyIO connec-

tion (that is, Fread is the sender and CopyIO is the receiver). To synchronize the stop-

ping of Fread and CopyIO, the application must provide a progress function when

setting up CopyIO.

This progress function must catch the tsaProgressFlagEndOfStream flag:

Here, this progress function releases the semaphore, CopyIOSema, when it detects the

tsaProgressFlagEndOfStream flag. At that moment, the main function, having stopped

Fread, is waiting on CopyIOSema before stopping CopyIO. The same concept synchro-

nizes the stopping of CopyIO and Fwrite.

Changing Formats from the Application

When the application determines, from user input or other means, the need to change

the format of a connection, it should proceed according to whether the sender compo-

nent supports format changes with its instance configuration function.

CopyIOSetupÐ>defaultSetupÐ>progressFunc = lCopyIOProgFunc;

tmLibappErr_t
lCopyIOProgFunc(Int inst, UInt32 flags, ptsaProgressArgs_t args){
 printf(ÒCopyIO Progress: instance 0x%x flags 0x%x code 0x%x\nÓ, inst,
 flags, args->progressCode);
 switch(flags){
 case tsaProgresFlagEndOfStream:
 printf(ÒReleasing CopyIOSema\nÓ);
 tmosSemaphoreV(CopyIOSema);
 break;
 default:
 break;
 }
 return TMLIBAPP_OK;
}

Chapter 11: TSSA Design Details

108 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Using tsaDefaultInstallFormat

The application calls tsaDefaultInstanceFormat with the InOutDescriptor and the new

format as arguments. tsaDefaultInstanceFormat informs the receiver by calling its tmal-

ComReceiverFormatSetup callback function, which should store the new format for the

receiver. See tmalComReceiverFormatSetup on page 97. The receiver is notified, but the

sender is not yet notified of the format change. A separate call to tmolComInstanceSetup

or tmolComInstanceConfig is required before the sender starts producing packages with

the new format. After that call, the two components can be restarted. The following code

comes from exolVrendVO.

Note: An application must not call tsaDefaultInstallFormat from within an interrupt ser-

vice routine.

Using tmolComInstanceConfig

The most convenient way for an application change the format in a connection is for

the sender component to provide a COM_CHANGE_FORMAT command for instance con-

figuration. If the sender provides a COM_CHANGE_FORMAT configuration command, the

application need only call tmolComInstanceConfig with the COM_CHANGE_FORMAT

command and with the new format as the parameter. The preceding code will become

the following code:

/* set up new format */
 if(!plainBuffer & fieldBased)
 digitizer_format.desription = vdfFieldInFrame;
 else if(!plainBuffer & !fieldBased)
 digitizer_format.description = vdfInterlaced;
 else if(plainBuffer & fieldBased)
 digitizer_format.description = vdfFieldInField;

/* call tsaDefaultInstanceFormat */
 rval = tsaDefaultInstallFormat(
 digitizer_inst_setupÐ>defaultSetupÐ>outputDescriptors[VDIGVI_MAIN_OUTPUT],
 (ptmAvFormat_t)&digitizer_format);

/* notify sender */
 digitizer_inst_setupÐ>fieldBased = fieldBased;
 digitizer_inst_setupÐ>interlaced = !plainBuffer;
 rval = tmolVdigVIInstanceSetup(digitizerInstance, digitizer_inst_setup);

/* set up new format */
 if(!plainBuffer & fieldBased)
 digitizer_format.desription = vdfFieldInFrame;
 else if(!plainBuffer & !fieldBased)
 digitizer_format.description = vdfInterlaced;
 else if(plainBuffer & fieldBased)
 digitizer_format.description = vdfFieldInField;

/* call tmolVdigVIInstanceConfig */
 cargs.command = VDIGVI_CHANGE_FORMAT;
 cargs.parameter = (Pointer)&digitizer_format;
 rval = tmolVdigVIInstanceConfig(digitizerInstance,tsaControlWait,&cargs);

Chapter 11: TSSA Design Details

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 109

11

To provide a COM_CHANGE_FORMAT command for instance configuration, the tmalCom-

InstanceConfig function receiving this command should call the progress function with

tsaProgressFlagChangeFormat as mentioned above. See Sender: Initiating Format Change

on page 101. This is a shortcut for the application and allows it to avoid calling tsa-

DefaultInstanceFormat and reconfiguring the sender, and shortens this application-initi-

ated format change into one quick step.

Reconnecting Components

Because the only sender can affect the format of a connection, while the receiver can

only accept or refuse the format, the reconnecting of sender and receivers must be

treated differently.

Reconnecting Sender

To reconnect a sender, the application need only call tsaDefaultSenderReconnect. (The

sender must be stopped.) At that point, the application can specify a new format for the

connection, or it can use the existing format by passing Null for the format.

In the following example, iod originally connects Fread and Fwrite, using a generic for-

mat. The application wants to replace Fread with AdigAI as the sender, and install audio-

Format as the new format.

This works because Fwrite will accept the new audio format.

Reconnecting Receiver

To reconnect a receiver, the application need only call tsaDefaultReceiverReconnect. (The

receiver must be stopped.) The new receiver’s possible formats will be negotiated against

the existing format. In the following example, iod originally connects Fread and Fwrite

using a generic format. The application wants to replace Fwrite with ArendAO as the

receiver. Because ArendAO expects packets in an audio format, and does not accept the

existing generic format, the format of the connection must be changed to audioFormat

before the call to tsaDefaultReceiverReconnect.

To reconnect the receiver and install a new format, the old receiver must be able to han-

dle the new format. In this example, Fwrite can handle audioFormat and therefore, the

format can be changed before reconnecting the receiver to ArendAO.

rval = tsaDefaultSenderReconnect(iod, FWRITE_MAIN_INPUT,
 AdigAIInstÐ>defaultCapabilities,
 (ptmAvFormat_t)&audioFormat);

rval = tsaDefaultInstallFormat(iod, (ptmAvFormat_t)&audioFormat);
rval = tsaDefaultReceiverReconnect(iod, FREAD_MAIN_OUTPUT,
 ArendAOInstÐ>defaultCapabilities);

Chapter 11: TSSA Design Details

110 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 111

12

Chapter 12

TSSA Compliance

Topic Page

Introduction 112

Header Files 112

Library Code 115

Documentation 120

Example/Test Code 120

Chapter 12: TSSA Compliance

112 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter provides a TSSA compliance checklist for TSSA component designers. The

checklist addresses items to be examined in the header files, in the library code, and the

example and test code of the component. Examples of code are given where applicable,

with Com representing the component, italicized code allowing component-specific vari-

ations, and ellipses (···) allowing component-specific additions. This TSSA compliance

checklist is currently a guideline, but will develop into a TSSA compliance test suite in

the near future. Presently, some deviations from the checklist may be discussed. Note

that the checklist does not apply to non-streaming (TSA) components.

Header Files

Every TSSA component must export a tmolCom.h and a tmalCom.h (Com representing a

name for the component) to be included by applications that use the component. Each

tmolCom.h and tmalCom.h must at least adhere to the points following for the compo-

nent to be considered TSSA-compliant. Finally, the component error base must be

defined after consulting tmLibappErr.h to avoid having the same error codes as other

existing TriMedia components.

tmolCom.h

■ tmolCom.h must include tmalCom.h:

■ In the type definition of the structure tmolComCapabilities_t, the first member must

be a pointer to a structure of type tsaDefaultCapabilities_t:

■ In the type definition of the structure tmolComInstanceSetup_t, the first member

must be a pointer to a structure of type tsaDefaultInstanceSetup_t

■ Eight basic TSSA OL functions must be declared with appropriate arguments:

tmolComGetCapabilities

#include <tmalCom.h>

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
 ...
} tmolComCapabilities_t, ptmolComCapabilities_t;

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 ...
} tmolComInstanceSetup_t, ptmolComInstanceSetup_t;

extern tmLibappErr_t tmolComGetCapabilities(
ptmolComCapabilities_t *cap);

Chapter 12: TSSA Compliance

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 113

12

tmolComOpen

tmolComClose

tmolComGetInstanceSetup

tmolComInstanceSetup

tmolComInstanceConfig

tmolComStart

tmolComStop

■ A type definition of the OL instance variable structure must not present in tmol-

Com.h. It must be in a source file or private header file of the component.

tmalCom.h

■ All input and output IDs of the components must be defined as macros, where the

component name is the initial part of the macro name and is represented here by

“COM”:

■ All component-specific error codes are defined as macros based on the component

error base. The component name is the initial part of the macro name and is repre-

sented here by “COM.” The macro name for the component error base incorporates

the component name, represented here by “Com.” See tmLibappErr.h on page 115.

extern tmLibappErr_t tmolComOpen(Int *instance);

extern tmLibappErr_t tmolComClose(Int instance);

extern tmLibappErr_t tmolComGetInstanceSetup(
Int instance, ptmolComInstanceSetup_t *setup);

extern tmLibappErr_t tmolComInstanceSetup(
Int instance, ptmolComInstanceSetup_t setup);

extern tmLibappErr_t tmolComInstanceConfig(Int instance, UInt32 flags,
ptsaControlArgs_t args);

extern tmLibappErr_t tmolComStart(Int instance);

extern tmLibappErr_t tmolComStop(Int instance);

#define COM_main_input 0
#define COM_main_output 0
...

#define COM_ERR_err1 (Err_base_Com + 0x0001)
#define COM_ERR_err2 (Err_base_Com + 0x0002)
...

Chapter 12: TSSA Compliance

114 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

■ In the type definition of the structure tmalComCapabilities_t, the first member must

be a pointer to a structure of type tsaDefaultCapabilities_t:

■ In the type definition of the structure tmalComInstanceSetup_t, the first element

must be a pointer to a structure of type tsaDefaultInstanceSetup_t:

■ Component configuration commands must be enumerated. In the enumeration,

“COM” and “Com” represent the component name:

tsaCmdUserBase is defined in tsa.h and its value is currently 0x50. See also tsaDefault-

ControlMessage_t on page 190.

■ Eight basic TSSA AL functions are declared with appropriate arguments

tmalComGetCapabilities

tmalComOpen

tmalComClose

tmalComGetInstanceSetup

tmalComInstanceSetup

tmalComInstanceConfig

tmalComStart

typedef struct {
 ptsaDefaultCapabilities_t defaultCapabilities;
 ...
} tmalComCapabilities_t, ptmalComCapabilities_t;

typedef struct {
 ptsaDefaultInstanceSetup_t defaultSetup;
 ...
} tmalComInstanceSetup_t, ptmalComInstanceSetup_t;

typedef enum {
 COM_COMMAND1 = tsaCmdUserBase,
 COM_COMMAND2 = tsaCmdUserBase + 0x01,
 ...
} tmalComCommands_t;

extern tmLibappErr_t tmalComGetCapabilities(ptmalComCapabilities_t *cap);

extern tmLibappErr_t tmalComOpen(Int *instance);

extern tmLibappErr_t tmalComClose(Int instance);

extern tmLibappErr_t tmalComGetInstanceSetup(Int instance,
ptmalComInstanceSetup_t *setup);

extern tmLibappErr_t tmalComInstanceSetup(Int instance,
ptmalComInstanceSetup_t setup);

extern tmLibappErr_t tmalComInstanceConfig(Int instance, UInt32 flags,
ptsaControlArgs_t args);

extern tmLibappErr_t tmalComStart(Int instance);

Chapter 12: TSSA Compliance

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 115

12

tmalComStop

■ At least one AL data process function is declared with instance as first argument.

■ Type definition of the AL instance variable structure is not present. It must be in a

source file or private header file of the component.

tmLibappErr.h

■ Err_base_Com must be defined after consulting tmLibappErr.h to avoid having the

same error codes as other existing TriMedia components.

The component type must be one of the following:

GENERIC SYSTEM GRAPHICS VIDEO AUDIO COMM OTHER.

Again, “Com” represents the name of the component.

Library Code

Every TSSA component must have a tmolCom.c and a tmalCom.c as part of the compo-

nent library. Both tmolCom.c and tmalCom.c must at least adhere to the following rules

for the component to be considered TSSA-compliant. For more example code, see CopyIO

Example and Explanation in Chapter 10.

tmolCom.c

■ DEFAULT_STACK_SIZE must be defined for task-based components.

To calculate the appropriate stack size for a task-based component, use the pSOS func-

tion, t_taskinfo. For more details, see Stack Calculation in Chapter 8 of Book 4, Soft-

ware Tools, Part A.

■ You must define TEXT_MEMORY_REQUIREMENT, DATA_MEMORY_REQUIREMENT, and

PROCESSOR_REQUIREMENT and give them values after component development. To

calculate memory requirements, see Calculating Memory Requirements on page 104.

■ You must define INST_OPEN_MASK, INST_OPEN_MAGIC, INST_SETUP_MASK, and

INST_SETUP_MAGIC. INST_OPEN_MAGIC and INST_SETUP_MAGIC must be defined

with “reasonably random component code” to identify the component.

extern tmLibappErr_t tmalComStop(Int instance);

#define Err_base_Com (ERR_LAYER_TMAL | ERR_TYPE_type | 0x0100000)

#define DEFAULT_STACK_SIZE 10000

#define INST_OPEN_MASK 0x0000FFFF
#define INST_OPEN_MAGIC 0x00001234
#define INST_SETUP_MASK 0xFFFF0000
#define INST_SETUP_MAGIC 0x12340000

Chapter 12: TSSA Compliance

116 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

■ The type definition of the OL instance variable structure can be placed here or in an

internal component header file. Use a name that includes “olCom” to prevent confu-

sion between OL and AL instance variables.

Its first member must be a pointer to a structure of type tsaDefaultInstVar_t.

The structure includes a pointer to the OL instance setup structure of type

tmolComInstanceSetup_t to be returned by tmolComGetInstanceSetup.

■ The use of global variables is strongly discouraged.

— All internal variables for the OL layer should be in the instance variables structure.

— The instance variables structure should be malloc’d, making its value unique.

— To avoid name space pollution, any other global variables that cannot be included
in the instance variables structure must be prefixed with _tmolCom.

■ All functions for the OL layer must be declared as one of the following:

— extern for external API use.

— static for internal use within its own file.

— (To avoid name space pollution) all internal functions that cannot be declared
static because they are used in more than one file in the OL layer must be prefixed
with _tmolCom, where Com represents the component name.

■ The AL function table of type tsaDefaultFuncs_t must be statically declared and filled

with appropriate functions.

■ Eight basic TSSA OL functions exist.

— Each calls a corresponding default function with appropriate arguments.

— Using TSSA-provided macros, tsaCheckOpen and tsaCheckSetup, each checks
whether the instance is opened and/or setup.

■ tmolComOpen

— Allocates OL instance variable structure and all its elements and gives them
default values.

— Sets default instance setup pointer in setup in the instance variables structure to
that allocated in tsaDefaultOpen.

— Sets stackSize to DEFAULT_STACK_SIZE for task-based components.

— Returns a pointer to the OL allocated instance variable structure.

■ tmolComClose

— Deallocates all memory allocated in tmolComOpen.

typedef struct {
 ptsaDefaultInstVar_t defInstVars;
 ptmolComInstanceSetup_t setup;
 ...
} InstVars_t, *pInstVars_t;

Chapter 12: TSSA Compliance

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 117

12

■ tmolComGetInstanceSetup

— Returns setup pointer from instance variables structure.

— Must not allocate a new tmolInstanceSetup structure each time.

— Must work regardless of whether the component is running.

■ tmolComInstanceSetup

— masks default magic with INST_SETUP_MAGIC.

■ tmolComStart

— Launches a thread (a task or an ISR) as result of calling tsaDefaultStart.

■ tmolComStop

— Causes the thread to exit its processing loop.

■ Repeated calls to tmolComStart and tmolComStop works in arbitrary and repeated

order. See Example/Test Code below.

tmalCom.c

■ You must define TEXT_MEMORY_REQUIREMENT, DATA_MEMORY_REQUIREMENT, and

PROCESSOR_REQUIREMENT and give them values after component development. To

calculate memory requirements, see Calculating Memory Requirements on page 104.

■ NUM_SUPPORTED_INSTANCES must be defined (–1 indicates unlimited instances sup-

ported).

■ You must define COM_OPEN_MASK, COM_OPEN_MAGIC, COM_SETUP_MASK,

COM_SETUP_MAGIC. COM_OPEN_MAGIC and COM_SETUP_MAGIC must be defined

with “reasonably random component code” to identify component. “COM” repre-

sents the name of the component.

■ The type definition of the AL instance variable structure can be placed in tmalCom.c

or in an internal component header file. Use a name that includes “alCom” to prevent

confusion when looking at instance variables.

The structure must include the parent of the AL layer, to be used for callback func-

tions.

The structure must include a member of type tsaCompState_t.

The structure must include a pointer to the AL instance setup structure, of type

tmalComInstanceSetup_t, to be returned by tmalComGetInstanceSetup.

#define COM_OPEN_MASK 0x0000FFFF
#define COM_OPEN_MAGIC 0x00004321
#define COM_SETUP_MASK 0xFFFF0000
#define COM_SETUP_MAGIC 0x43210000

typedef struct {
 UInt32 parent;
 tsaCompState_t componentState;

Chapter 12: TSSA Compliance

118 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

■ All variables for the AL layer must conform to the following rules:

— All internal variables for the AL layer should be in the instance variables structure.

— The instance variables structure should be malloc’d, making its value unique.

— To avoid name space pollution, any global variables (that cannot be included in
the instance variables structure) must be prefixed with _tmalCom.

■ All functions for the AL layer must be declared as one of the following:

— extern for external API use.

— static for internal use within its own file.

— (To avoid name space pollution) all internal functions that cannot be declared
static because they are used in more than one file in the AL layer must be prefixed
with _tmalCom, where Com represents a component name.

■ COM_NUMBER_OF_INPUTS and COM_NUMBER_OF_OUTPUTS must be defined, where

“COM” represents the component name.

■ Arrays of input and output formats must be declared in the default capabilities struc-

ture. Individual formats for each input or output can have data types and sub-types

OR’d together to represent all the possible formats handled.

■ The default capabilities structure, of type tsaDefaultCapabilities_t, must be statically

declared and its members given appropriate values.

■ The component capabilities structure, of type tmalComCapabilities_t, must be stati-

cally declared and its members given default values from the default capabilities

structure.

■ Eight basic TSSA OL functions exist.

■ tmalComGetCapabilities

Returns the component’s capabilities structure.

■ tmalComOpen

— Allocates an AL instance variables structure and all its elements and gives them
default values.

— Masks default “magic” with COM_OPEN_MAGIC. You can use the component error
base as a magic number.

— Allocates an instance setup structure to be returned by tmalComGetInstanceSetup.

— Returns a pointer to the AL-allocated instance variables structure.

■ tmalComClose

— Deallocates all memory allocated by tmalComOpen.

 ptmalComInstanceSetup_t setup;
 ...
} InstVars_t, *pInstVars_t;

#define COM_NUMBER_OF_INPUTS 1
#define COM_NUMBER_OF_OUTPUTS 1

Chapter 12: TSSA Compliance

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 119

12

■ tmalComGetInstanceSetup

— Returns the setup pointer from instance variables structure.

— Must not allocate a new tmalInstanceSetup structure each time.

■ tmalComInstanceSetup

— Gives values to instance variables structure members obtained from the instance
setup structure.

— Masks default “magic” with COM_OPEN_MAGIC.

— Checks if any needed parameters are missing.

■ tmalComStart

— Uses default datain and dataout callback functions.

— Does not allocate or free memory if possible; all required memory should be allo-
cated before streaming starts.

— Uses macros for input and output IDs defined in tmalCom.h.

— Install formats on output queues: Most components derive from the incoming
packets the format of the outgoing packets. Hence components should install the
format on their outputs by calling the progress function with flags tsaProgress-
FlagChangeFormat and description equal to the new format.

— Do not check for incoming null packets. Check return value of datain function.
Packet cannot be Null without error. Handle format change error correctly.

— Do you handle format change messages? Task-based components should handle
the TMLIBAPP_NEW_FORMAT error value in response to the datain function. Alter-
natively, you might not handle this message, but instead fill in the receiverFor-
matSetup member of the default capabilities function. That receiverFormatSetup
alternative is provided so that ISR-based components can install a new format
(and do the associated setup) from a context other than the ISR. Handling the
TMLIBAPP_NEW_FORMAT error is the preferred implementation, when possible.
Do one or the other, but not both.

— Be sure that your AL layer start function notifies the rest of the application if it
exits the start loop with an error. The error callback function is a convenient way
to handle this.

■ tmalComStop

Returns all packets to queues.

■ All memory allocation done after tmalComOpen and tmalComInstanceSetup must use

the memory allocation callback function.

■ Board-specific aspects of components must go through the BSP/registry.

If a component uses board-specific hardware, it must query the BSP/registry to find

out whether a function is supported and not access the hardware device directly.

Chapter 12: TSSA Compliance

120 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Documentation

In addition to the API documentation that is expected, TSSA component documentation

should discuss the capabilities and uses of the various inputs and outputs. It should dis-

cuss the use of the progress and error functions. Documentation should state explictly

whether the progress and error functions are re-entrant.

Example/Test Code

■ Both OL and AL layer examples exist.

Filter components

— Must be connected to digitizer and renderer components.

— Examples should be named exolFilter and exalFilter.

Digitizer and renderer components

— Must be connected to corresponding digitizer or renderer components.

— Examples should be named exoltypeIO and exaltypeIO, where type is the type of
communication, e.g., exolFileIO.

System examples

— Examples that represent entire systems should be named extypeSys, where type is
the system demonstrated, e.g., exAudSys.

■ OL layer must pass TSSA stop test.

Filter components

— Can be tested with digitizer and renderer components.

— Can be tested with Fread and Fwrite with input files.

Digitizer and renderer components

— Can be tested with corresponding digitizer or renderer components.

— Renderer components can be tested with Fread with input files.

— Digitizer components can be tested with Fwrite.

■ Examples and test code use macros for input and output IDs defined in tmalCom.h.

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 121

13

Chapter 13

tsa.h: Software Architecture Definitions

Topic Page

Default Capabilities Structure 122

Default Instance Setup Structure 126

Clock Handle 129

InOutDescriptors 130

ControlDescriptors 135

Default Instance Variables 137

Default AL Function Table 139

Default Utility Functions 140

Default API Functions 151

Default Callback Functions 164

Chapter 13: tsa.h: Software Architecture Definitions

122 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Default Capabilities Structure

This section presents the default capabilities structure found in the file tsa.h.

Name Page

tsaDefaultCapabilities_t 123

tsaCapabilityFlags_t 125

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 123

13

tsaDefaultCapabilities_t

typedef struct tsaDefaultCapabilities {
 tmComponentClass_t componentClass;
 tmVersion_t version;
 UInt32 capabilityFlags;
 Int textmemoryRequirement;
 Int datamemoryRequirement;
 Int processorRequirement;
 UInt numSupportedInstances;
 UInt numCurrentInstances;
 UInt numberOfInputs;
 ptmAvFormat_t *inputFormats;
 UInt numberOfOutputs;
 ptmAvFormat_t *outputFormats;
 tsaReceiverFormatSetupFunc_t receiverFormatSetup;
} tsaDefaultCapabilities_t, *ptsaDefaultCapabilities_t;

Fields

componentClass Component class indication, see tmAvFormats.h.

version Component version number.

capabilityFlags Indicates the presence or absence of optional fea-
tures. See tsaCapabilityFlags_t on page 125.

textmemoryRequirement Indication of the instruction memory require-
ments when the component is loaded.

datamemoryRequirement Indication of the data memory requirements
when the component is loaded.

processorRequirement Indication of the processor load when the compo-
nent is running.

numSupportedInstances Maximum number of instances of this compo-
nent that can be created. –1 means the number is
limited only by system resources.

numCurrentInstances Number of instances of this component that pres-
ently exist.

numberOfInputs Number of inputs supported by this component.

inputFormats Array of format structures that describe the for-
mats accepted by each of the inputs supported by
the component.

numberOfOutputs Number of outputs supported by this component.

outputFormats Array of format structures that describe the for-
mats accepted by each of the outputs supported
by the component.

Chapter 13: tsa.h: Software Architecture Definitions

124 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Description

The default capabilities structure gives a description of a component that must be sup-

ported by every TSA component. Each component has a component capability structure

that must include a pointer to a default capabilities struct as its first element. The for-

mats in inputFormats and outputFormats in the capabilities structure are used to validate

connections between any pair of components.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 125

13

tsaCapabilityFlags_t

typedef enum {
 tsaCapFlagsNone = 0x00000000,
 tsaCapFlagsSupportsFormatReconfig = 0x00000001,
 tsaCapFlagsSupportsControlQueue = 0x00000002,
 tsaCapFlagsCopybackDatain = 0x00000004,
 tsaCapFlagsInvalidateDataout = 0x00000008,
 tsaCapFlagsInPlace = 0x00000010,
} tsaCapabilityFlags_t;

Fields

tsaCapFlagsNone Default (no flags).

tsaCapFlagsSupportsFormatReconfig
This flag is set if the component reads the format
field of every incoming packet and can dynami-
cally switch formats based on this information.

tsaCapFlagsSupportsControlQueue This flag is set if the component uses a queue-
based control interface. In order to use it, the
application must provide command and response
queues. See tsaDefaultControlDescriptorCreate on
page 143.

tsaCapFlagsCopybackDatain This flag is set if the component requires a copy-
back operation before another component can
access the packet data.

tsaCapFlagsInvalidateDataout This flag is set if the component requires an inval-
idate operation before another component can
access the packet data.

tsaCapFlagsInPlace This flag is set if the component sends data pack-
ets from the input full queue directly to the out-
put full queue and does access any empty queues.
The input and output components of the asyn-
chronous feedback component share one empty
queue while it is running. Queues are rearranged
in the defaults during start and stop and is trans-
parent to the user.

Chapter 13: tsa.h: Software Architecture Definitions

126 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Default Instance Setup Structure

This section presents the default instance setup structure found in the file tsa.h.

tsaDefaultInstanceSetup_t

typedef struct tsaDefaultInstanceSetup {
 Int qualityLevel;
 tsaErrorFunc_t errorFunc;
 UInt32 progressReportFlags;
 tsaProgressFunc_t progressFunc;
 tsaCompletionFunc_t completionFunc;
 tsaDatainFunc_t datainFunc;
 tsaDataoutFunc_t dataoutFunc;
 tsaMemallocFunc_t memallocFunc;
 tsaMemfreeFunc_t memfreeFunc;
 ptsaClockHandle_t clockHandle;
 ptsaInOutDescriptor_t *inputDescriptors;
 ptsaInOutDescriptor_t *outputDescriptors;
 UInt32 parentId;
 tsaControlFunc_t controlFunc;
 tsaControlDescriptor_t controlDescriptors;
 UInt32 priority;
 char taskName[16];
 UInt32 stackSize;
 UInt32 taskFlags;
 Bool createNoTask;
 UInt32 taskStartArgument;
 UInt32 reserved;
} tsaDefaultInstanceSetup_t, *ptsaDefaultInstanceSetup_t;

Fields

qualityLevel Allow users to specify the quality of service of the
component. Higher quality indicates a higher
processor load.

errorFunc Pointer to an error function. See tsaErrorFunc_t
on page 167.

progressReportFlags Set of flags that indicate when the component
instance is required to report its progress. The
interpretation of these flags will be component-
specific.

progressFunc Pointer to a progress function. See
tsaProgressFunc_t on page 170.

completionFunc Pointer to a completion function. See
tsaCompletionFunc_t on page 173.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 127

13

datainFunc Pointer to a data input function. See
tsaDatainFunc_t on page 177.

dataoutFunc Pointer to a data output function. See
tsaDataoutFunc_t on page 181.

memallocFunc Pointer to a memory allocation function. See
tsaMemallocFunc_t on page 184.

memfreeFunc Pointer to a memory free function. See
tsaMemfreeFunc_t on page 186.

clockHandle Pointer to the clock that this component instance
can use to interpret time stamps it receives in data
packets. See tsaClockHandle_t on page 129.

inputDescriptors Pointer to an array of input descriptor pointers.
See tsaInOutDescriptor_t on page 130.

outputDescriptors Pointer to an array of output descriptor pointers.
See tsaInOutDescriptor_t on page 130.

parentId Parent (creator) instance. Used as an parameter to
callbacks. In the setup of AL layer components,
this is the default instance variable ID.

controlFunc Pointer to a control function. See
tsaControlFunc_t on page 188.

controlDescriptors Contains command and response queues. See
tsaControlDescriptor_t on page 135.

priority Operating system priority level required for this
component.

taskName The name of the task is used in debugging. pSOS
uses the first four letters of this name. A default
name is assigned when a component is opened,
but it can be overridden by the user.

stackSize Amount of stack memory to be used. A default
stack size is assigned when a component is
opened.

taskFlags The operating system (pSOS) allows some specifi-
cation of a task’s properties (for example, whether
it is preemptible or is time sliced). A default value
is assigned when a component is opened, which
can be overridden by the user.

createNoTask Should be set in the OL layer of components that
do not use a task before calling tsaDefaultInstanc-
eSetup.

taskStartArgument Should be set in the OL layer of components that
want the task start argument of the component
task to be something other than the default,
before calling tsaDefaultStart. The default is the
AL instance id.

Chapter 13: tsa.h: Software Architecture Definitions

128 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

reserved Reserved.

Description

The instance setup structure contains information needed to set up and start a compo-

nent. Because much of this information is common to most components, a default

instance setup structure is defined. The component instance setup structure of each TSSA

component has a pointer to a default instance setup structure as the first element.

Note:
All task attributes (priority, name, stack size) are part of the default instance
setup (disp) save one. The taskStatus is part of the default instance variable
(divp). The default instance variable contains a pointer to the default
instance setup (divp->disp).

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 129

13

Clock Handle

tsaClockHandle_t

typedef struct tsaClockHandle_t {
 Int clock;
} tsaClockHandle_t, *ptsaClockHandle_t;

Fields

clock tsaClock instance ID.

Description

The clock handle gives a TSA component access to a time reference. Data packets

received or sent by the component may have a time stamp associated with them. The

clock handle can be used to interpret the time stamp.

Chapter 13: tsa.h: Software Architecture Definitions

130 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

InOutDescriptors

This section presents the InOutDescriptor structure found in the file tsa.h.

tsaInOutDescriptor_t

typedef struct tsaInOutDescriptor {
 ptmAvFormat_t format;
 tsaInOutDescSetupFlags_t flags;
 Bool receiverStopped;
 Bool cmdFullWakeupSent;
 Bool cmdEmptyWakeupSent;
 ptsaDefaultCapabilities_t senderCap;
 ptsaDefaultCapabilities_t receiverCap;
 UInt32 senderIndex;
 UInt32 receiverIndex;
 UInt32 fullQueue;
 UInt32 emptyQueue;
 ptmAvPacket_t packetArray;
 ptmAvHeader_t headerArray;
 UInt8 *dataArray;
 UInt32 packetBase;
 UInt32 numberOfPackets;
 tsaIODescState_t senderState;
 tsaIODescState_t receiverState;
 ptmAvFormat_t lastFormat;
 UInt32 waitSemaphore;
 UInt32 reserved;
} tsaInOutDescriptor_t, *ptsaInOutDescriptor_t;

Fields

format The formats supported by this input or output.
See tmAvFormats.h.

flags Flags for the creation of tsaInOutDescriptor. See
tsaDefaultInOutDescriptorCreate on page 141.

receiverStopped Used by the default functions. Reserved.

cmdFullWakeupSent Used by the default functions. Reserved.

cmdEmptyWakeupSent Used by the default functions. Reserved.

senderCap Pointer to sender’s default capability structure.
Used to check for compatibility.

receiverCap Pointer to receiver’s default capability structure.
Used to check for compatibility.

senderIndex The ID of the sender’s output port.

receiverIndex The ID of the receiver’s input port.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 131

13

fullQueue The queue ID used for full packets.

emptyQueue The queue ID used for empty packets.

packetArray Pointer to the memory allocated to packets in this
tsaInOutDescriptor_t. The allocation is done by
tsaDefaultInOutDescriptorCreate.

headerArray Pointer to the memory allocated to headers in
this tsaInOutDescriptor_t. The allocation is done
by tsaDefaultInOutDescriptorCreate.

dataArray Pointer to the memory allocated to data buffers in
this tsaInOutDescriptor_t. The allocation is done
by tsaDefaultInOutDescriptorCreate.

packetBase The base ID number given to this series of packets
at creation.

numberOfPackets The number of packets circulating in this
tsaInOutDescriptor_t.

senderState Used by the default functions. Reserved.

receiverState Used by the default functions. Reserved.

lastFormat Used by the default functions. Reserved.

waitSemaphore When a component is setup to block on multiple
inputs, the blocking semaphore is stored here.

reserved Reserved.

Description

An InOutDescriptor describes the connection between two components. It is created and

initialized by the tsaDefaultInOutDescriptorCreate function, using information from an

argument of the type tsaInOutDescriptorSetup_t.

Chapter 13: tsa.h: Software Architecture Definitions

132 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaInOutDescriptorSetup_t

typedef struct tsaInOutDescriptor {
 ptmAvFormat_t format;
 tsaInOutDescSetupFlags_t flags;
 String fullQName;
 String emptyQName;
 UInt32 queueFlags;
 ptsaDefaultCapabilities_t senderCap;
 ptsaDefaultCapabilities_t receiverCap;
 UInt32 senderIndex;
 UInt32 receiverIndex;
 UInt32 packetBase;
 UInt32 numberOfPackets;
 UInt32 numberOfBuffers;
 UInt32 bufSize[1];
} tsaInOutDescriptorSetup_t, *ptsaInOutDescriptorSetup_t;

Fields

format The formats supported by this input or output.
See tmAvFormats.h.

flags Flags for the creation of tsaInOutDescriptor. See
tsaInOutDescSetupFlags_t.

fullQName Name of the full queue to be created. Used for
debugging.

emptyQName Name of the empty queue to be created. Used for
debugging.

queueFlags Describes the properties of the queues to be cre-
ated. The usual value given is tmosQueueFlags-
Standard. See tmos.h.

senderCap Pointer to sender’s default capability structure.
Used to check for compatibility.

receiverCap Pointer to receiver’s default capability structure.
Used to check for compatibility.

senderIndex The ID of the sender’s output port.

receiverIndex The ID of the receiver’s input port.

packetBase The base ID number given to this series of packets
at creation.

numberOfPackets The number of packets circulating in this
tsaInOutDescriptor_t.

numberOfBuffers The number of data buffers in each packet to be
created.

bufSize An array of integers giving the number of bytes to
be allocated for each buffer. As a default, one

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 133

13

buffer is allocated. The allocation of packets with
more than one buffer is described in Chapter 7,
TSSA Essentials.

Description

The tsaInOutDescriptorSetup_t structure is filled in by the application and passed to the

tsaDefaultInOutDescriptorCreate function, for creating a tsaInOutDescriptor_t. See tsa-

DefaultInOutDescriptorCreate on page 141.

Chapter 13: tsa.h: Software Architecture Definitions

134 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaInOutDescSetupFlags_t

typedef enum {
 tsaIODescSetupFlagNone = 0x00000000,
 tsaIODescSetupFlagCacheMalloc = 0x00000001,
 tsaIODescSetupFlagMultiProc = 0x00000002,
 tsaIODescSetupFlagCopybackDatain = 0x00000004,
 tsaIODescSetupFlagInvalidateDataout = 0x00000008,
} tsaIODescSetupFlags_t;

Fields

tsaIODescSetupFlagNone Default flag.

tsaIODescSetupFlagCacheMalloc This flag is set if the user wants the packets in this
tsaInOutDescriptor_t to be created using
_cache_malloc and destroyed using _cache_free.

tsaIODescSetupFlagMultiProc This flag is set if this tsaInOutDescriptor_t is used
between components on two processors.

tsaIODescSetupFlagCopybackDatain
This flag is set if the user wants the packets in this
tsaInOutDescriptor_t to be copied back after cre-
ation.

tsaIODescSetupFlagInvalidateDataout
This flag is set if the user wants the packets in this
tsaInOutDescriptor_t to be invalidated after cre-
ation.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 135

13

ControlDescriptors

tsaControlDescriptor_t

typedef struct tsaControlDescriptor {
 UInt32 commandQueue;
 UInt32 responseQueue;
 tsaControlDescSetupFlags_t flags;
 UInt32 reserved;
} tsaControlDescriptor_t, *ptsaControlDescriptor_t;

Fields

commandQueue Used to send commands from the application to
the component.

responseQueue Used to send responses from the component to
the application.

flags Flags for the creation of tsaControlDescriptor_t.
See tsaControlDescSetupFlags_t.

reserved Reserved.

Description

A tsaControlDescriptor_t is used by the application to send commands to a component.

It is created and initialized by the tsaDefaultControlDescriptorCreate function, using

information from an argument of the type tsaControlDescriptorSetup_t. It is only used if

the tsaCapFlagsSupportsControlQueue is set in the component’s capability flags.

Chapter 13: tsa.h: Software Architecture Definitions

136 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaControlDescriptorSetup_t

typedef struct tsaControlDescriptor {
 UInt32 commandQName;
 UInt32 responseQName;
 UInt32 queueFlags;
 tsaControlDescSetupFlags_t flags;
} tsaControlDescriptor_t, *ptsaControlDescriptor_t;

Fields

commandQName Name of the command queue to be created. Used
for debugging.

responseQuame Name of the response queue to be created. Used
for debugging.

queueFlags Describes the properties of the queues to be cre-
ated. The usual value given is tmosQueueFlags-
Standard. See tmos.h.

flags Flags for the creation of tsaControlDescriptor_t.
See page 135.

Description

The tsaControlDescriptorSetup_t structure is filled in by the application and passed to

the tsaDefaultControlDescriptorCreate function, for creating a tsaControlDescriptor_t. See

tsaDefaultControlDescriptorCreate on page 143.

tsaControlDescSetupFlags_t

typedef enum {
 tsaControlDescSetupFlagNone = 0x00000000,
} tsaControlDescSetupFlags_t;

Fields

tsaControlDescSetupFlagNone Currently, there are no flags required for the cre-
ation of a tsaControlDescriptor_t.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 137

13

Default Instance Variables

This section presents the default instance variable structure found in the file tsa.h.

tsaDefaultInstVar_t

typedef struct tsaDefaultInstVar {
 UInt32 magic;
 ptsaDefaultInstanceSetup_t instSetup;
 Int tmalInstance;
 ptsaDefaultFuncs_t tmalFunc;
 volatile tsaTaskStatus_t taskstatus;
 UInt32 task;
 UInt32 numberOfInputs;
 UInt32 numberOfOutputs;
 UInt32 stopSemaphore;
 UInt32 configSemaphore;
 Int periodOfComponent;
 UInt32 *outputEmptyQueues;
 UInt32 reserved;
} tsaDefaultInstVar_t, *ptsaDefaultInstVar_t;

Fields

magic Magic number used to identify the validity of an
instance ID, by checking whether is it open and/
or setup. It is set by the OL layer of a component.

instSetup Pointer to default setup structure of the instance.

tmalInstance The associated tmal instance ID.

tmalFunc AL layer default API function pointers See
tsaDefaultFuncs_t on page 139.

taskstatus The current task status.

task The associated task ID, if it exists.

numberOfInputs The number of input connections
(tsaInOutDescriptor_t) this instance can have.

numberOfOutputs The number of output connections
(tsaInOutDescriptor_t) this instance can have.

stopSemaphore Used to ensure mutual exclusion in the access of
the component task. Also used to communicate
the completion of the stop sequence between the
component and the application calling the
default stop function. Its usage is transparent to
the application.

configSemaphore Used to ensure the completion of a sequence of
command and response by the application and

Chapter 13: tsa.h: Software Architecture Definitions

138 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

component, respectively. Its usage is transparent
to the application.

periodOfComponent This parameter should represent the average time
during one loop iteration in a task. It can be used
to tune the behavior of the scheduling algorithm
that comes into play when a task is connected to
an interrupt-based consumer of data.

outputEmptyQueues Used to store the output empty queues of an in-
place component, while it is running. See
tsaCapabilityFlags_t on page 125.

reserved Reserved.

Description

The default instance variable is used to identify common elements of all TSSA compo-

nents. It is used by the default functions.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 139

13

Default AL Function Table

tsaDefaultFuncs_t

typedef struct tsaDefaultFuncs {
 tsaGetCapabilitiesFunc_t getcapabilitiesFunc;
 tsaOpenFunc_t openFunc;
 tsaCloseFunc_t closeFunc;
 tsaInstanceSetupFunc_t instancesetupFunc;
 tsaStartFunc_t startFunc;
 tsaStopFunc_t stopFunc;
 tsaInstanceConfigFunc_t instanceconfigFunc;
 tsaGetCapabilitiesFuncM_t getcapabilitiesFuncM;
 tsaOpenFuncM_t openFuncM;
} tsaDefaultFuncs_t, *ptsaDefaultFuncs_t;

Fields

getcapabilitiesFunc The AL layer GetCapabilites function of the com-
ponent.

openFunc The AL layer Open function of the component.

closeFunc The AL layer Close function of the component.

instancesetupFunc The AL layer InstanceSetup function of the com-
ponent.

startFunc The AL layer Start function of the component.

stopFunc The AL layer Stop function of the component.

instanceconfigFunc The AL layer InstanceConfig function of the com-
ponent.

getcapabilitiesFuncM The AL layer GetCapabilitiesM function of the
component.

openFuncM The AL layer OpenM function of the component.

Description

The tsaDefaultFuncs_t table is a list of standard AL functions of a component. It is used

by the default functions to access the API of the associated AL layer of the component.

getcapabilitiesFuncM and openFuncM are used by components that can access multiple

units of a hardware device.

Chapter 13: tsa.h: Software Architecture Definitions

140 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Default Utility Functions

This section describes the utility functions that are defined in the default TSSA library.

These functions are meant to be used in TSSA applications..

Name Page

tsaDefaultInOutDescriptorCreate 141

tsaDefaultInOutDescriptorDestroy 142

tsaDefaultControlDescriptorCreate 143

tsaDefaultControlDescriptorDestroy 144

tsaDefaultSenderReconnect 145

tsaDefaultReceiverReconnect 146

tsaDefaultInstallFormat 147

tsaDefaultUnInstallFormat 148

tsaDefaultSleep 149

tsaDefaultCheckQueues 150

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 141

13

tsaDefaultInOutDescriptorCreate

extern tmLibappErr_t tsaDefaultInOutDescriptorCreate (
 ptsaInOutDescriptor_t *piodesc,
 ptsaInOutDescriptorSetup_t psetup
);

Parameters

piodesc Pointer to the tsaInOutDescriptor_t to be created.

psetup Pointer to the tsaInOutDescriptorSetup_t struc-
ture.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_IODESC Either piodesc or psetup is Null.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

TMLIBAPP_ERR_IN_PLACE Connection of two in-place components is not
yet supported.

TMLIBAPP_ERR_FORMAT_··· Errors from the negotiation or installing of the
format.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Allocates the memory for a tsaInOutDescriptor_t. If a format is specified, checks it against

the capabilities of sender and receiver and install it if compatible. Creates the full and

empty queues required for this connection. Allocates and initializes the packets for this

tsaInOutDescriptor_t, and puts them on the empty queue. If the application does not

want this function to create the packets, set psetup–>numberOfPackets to 0.

Chapter 13: tsa.h: Software Architecture Definitions

142 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultInOutDescriptorDestroy

extern tmLibappErr_t tsaDefaultInOutDescriptorDestroy (
 ptsaInOutDescriptor_t piodesc
);

Parameters

piodesc Pointer to the tsaInOutDescriptor_t to be
destroyed.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_IODESC piodesc is Null.

TMLIBAPP_ERR_NOT_STOPPED The sender or receiver component is not stopped.

TMLIBAPP_ERR_FORMAT_··· Errors from un-installing of the format.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Both sender and receiver components must be stopped. Releases the format. Destroys

the queues after removing all packets from the empty queue. All packets should be in the

empty queue when the components are stopped. Frees the memory associated with this

tsaInOutDescriptor_t.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 143

13

tsaDefaultControlDescriptorCreate

extern tmLibappErr_t tsaDefaultControlDescriptorCreate (
 ptsaControlDescriptor_t *pcdesc,
 ptsaControlDescriptorSetup_t csetup
);

Parameters

pcdesc Pointer to the tsaControlDescriptor_t to be cre-
ated.

csetup Pointer to the tsaControlDescriptorSetup_t struc-
ture.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_CTRLDESC Either pcdesc or csetup is Null.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Allocates the memory for a tsaControlDescriptor_t. Creates the command and response

queues required for communication.

Chapter 13: tsa.h: Software Architecture Definitions

144 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultControlDescriptorDestroy

extern tmLibappErr_t tsaDefaultControlDescriptorDestroy (
 ptsaControlDescriptor_t pcdesc
);

Parameters

pcdesc Pointer to tsaControlDescriptor_t to be destroyed.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_CTRLDESC pcdesc is Null.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Destroys the queues after removing all packets from the both queues. Frees the memory

associated with tsaControlDescriptor_t.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 145

13

tsaDefaultSenderReconnect

extern tmLibappErr_t tsaDefaultSenderReconnect (
 ptsaInOutDescriptor_t piodesc,
 UInt senderIndex,
 ptsaDefaultCapabilities_t senderCap,
 ptmAvFormat_t format
);

Parameters

piodesc Pointer to tsaInOutDescriptor_t to which the
sender is to be reconnected.

senderIndex Output channel ID on new sender.

senderCap Pointer to the new sender’s default capabilities
structure.

format Format of new connection if different from exist-
ing format.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_IODESC piodesc is Null.

TMLIBAPP_ERR_NOT_STOPPED The current sender component is not stopped.

TMLIBAPP_ERR_CAP_REQUIRED The new sender capability is required to recon-
nect the sender.

TMLIBAPP_ERR_INVALID_CHANNEL_ID Invalid sender output ID.

TMLIBAPP_ERR_FORMAT_··· Errors from the negotiation or installing of the
format.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Reconnects the tsaInOutDescriptor_t to another sender. If no format is specified, checks

existing format against the capabilities of the sender. Otherwise, checks the specified for-

mat against the capabilities of sender and receiver and installs it if compatible.

Chapter 13: tsa.h: Software Architecture Definitions

146 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultReceiverReconnect

extern tmLibappErr_t tsaDefaultReceiverReconnect (
 ptsaInOutDescriptor_t piodesc,
 UInt receiverIndex,
 ptsaDefaultCapabilities_t receiverCap
);

Parameters

piodesc Pointer to tsaInOutDescriptor_t in which the
receiver is to be reconnected.

receiverIndex Input channel ID on new receiver.

receiverCap Pointer to the new receiver’s default capabilities
structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_IODESC piodesc is Null.

TMLIBAPP_ERR_NOT_STOPPED The current receiver component is not stopped.

TMLIBAPP_ERR_CAP_REQUIRED The new receiver capability is required to recon-
nect the receiver.

TMLIBAPP_ERR_INVALID_CHANNEL_ID Invalid receiver input ID.

TMLIBAPP_ERR_FORMAT_··· Errors from the negotiation or installing of the
format.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Reconnects the tsaInOutDescriptor_t to another receiver. Since the receiver cannot spec-

ify the format of a connection, checks existing format against the capabilities of the new

receiver and installs it if compatible.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 147

13

tsaDefaultInstallFormat

extern tmLibappErr_t tsaDefaultInstallFormat (
 ptsaInOutDescriptor_t piodesc,
 ptmAvFormat_t format
);

Parameters

piodesc Pointer to tsaInOutDescriptor_t in which a new
format is to be installed.

format Pointer to the new format.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_IODESC piodesc is Null.

TMLIBAPP_ERR_FORMAT No new format specified.

TMLIBAPP_ERR_FORMAT_··· Errors from the negotiation or installing of the
format.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Releases current format. Checks the specified format against the capabilities of sender

and receiver. If compatible, creates a unique copy of the requested format, claims it, and

installs it in the tsaInOutDescriptor_t. If necessary, calls the receiverFormatSetup func-

tion. See tsaDefaultFuncs_t on page 139.

Note: this function should not be called from within an interrupt service routine.

Chapter 13: tsa.h: Software Architecture Definitions

148 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultUnInstallFormat

extern tmLibappErr_t tsaDefaultUnInstallFormat (
 ptsaInOutDescriptor_t piodesc
);

Parameters

piodesc Pointer to tsaInOutDescriptor_t in which the for-
mat is to be un-installed.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_NULL_IODESC piodesc is Null.

TMLIBAPP_ERR_NOT_STOPPED The sender or receiver component is not stopped.

TMLIBAPP_ERR_FORMAT_··· Errors from un-installing of the format.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Releases current format in the tsaInOutDescriptor_t.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 149

13

tsaDefaultSleep

extern tmLibappErr_t tsaDefaultSleep (
 Int ticks
);

Parameters

ticks Time to sleep is measured in operating system
(pSOS) ticks (usually 10ms).

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

The sleep utility in a real-time operating system causes the current task to be scheduled

out for the specified amount of time in ticks.

Chapter 13: tsa.h: Software Architecture Definitions

150 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultCheckQueues

extern tmLibappErr_t tsaDefaultCheckQueues (
 ptsaInOutDescriptor_t piodesc
);

Parameters

piodesc Pointer to tsaInOutDescriptor_t to be checked

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_CHECK_QUEUES The number of packets found in the full and
empty queues disagree with the original number
of packets installed.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

To be used when components are stopped. Takes all packets out of the empty queue.

Counts the number of data packets. Removes any non-data packets. DPs on each packet

found. Puts all data packets back in the queue. Then, does the same for the full queue.

Checks the number of packets found against the piodesc->numberOfPackets. DPs the

results. All DPs in this function are set at level 1 (L1_DP).

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 151

13

Default API Functions

This section presents the default API functions found in the file tsa.h.

Name Page

tsaDefaultGetCapabilities 152

tsaDefaultGetCapabilitiesM 153

tsaDefaultOpen 154

tsaDefaultOpenM 155

tsaDefaultClose 156

tsaDefaultInstanceSetup 158

tsaDefaultStart 159

tsaDefaultStop 160

tsaDefaultInstanceConfig 161

tsaDefaultStopPin 162

tsaDefaultUnStopPin 163

Chapter 13: tsa.h: Software Architecture Definitions

152 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultGetCapabilities

extern tmLibappErr_t tsaDefaultGetCapabilities (
 Bool *add_done,
 ptsaDefaultFuncs_t tsafunc,
 UInt32 *cap,
 UInt32 text,
 UInt32 data,
 UInt32 proc
);

Parameters

add_done The address of a variable that is false on the first
invocation of this function, and true thereafter.
When it is true, it means that the requirements of
the OL and AL have been added together.

tsaFunc Pointer to a default AL function table. This
pointer is used to provide the AL GetCapabilities
the functions to call.

cap Pointer to a component specific capabilities struc-
ture to be returned from this function.

text OL layer text memory requirement.

data OL layer data memory requirement.

proc OL layer processor requirement.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

Description

Designed to be called from tmolComGetCapabilities, the function calls the AL layer

capabilities function and returns a pointer to the component specific capabilities struc-

ture in parameter, cap. The first time that it is called, it adds the memory requirements of

the OL layer to those of the AL layer and sets add_done to true. The first call to the get-

Capabilities functions are likely to allocate memory that is never subsequently freed. For

this reason, you may want to collect all of these calls in one place at the start of your pro-

gram to minimize memory fragmentation.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 153

13

tsaDefaultGetCapabilitiesM

extern tmLibappErr_t tsaDefaultGetCapabilitiesM (
 Bool *add_done,
 ptsaDefaultFuncs_t tsafunc,
 UInt32 *cap,
 UInt32 text,
 UInt32 data,
 UInt32 proc,
 unitSelect_t unitNumber
);

Parameters

add_done The address of a variable that is false on the first
invocation of this function, and true thereafter.
When it is true, it means that the requirements of
the OL and AL have been added together.

tsaFunc Pointer to a default AL function table. This
pointer is used to provide the AL GetCapabilities
functions to call.

cap Pointer to a component specific capabilities struc-
ture to be returned from this function.

text OL layer text memory requirement.

data OL layer data memory requirement.

proc OL layer processor requirement.

unitNumber Unit number of a hardware device.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

Description

Designed to be called from tmolComGetCapabilitiesM(), the function calls the AL layer

capabilities function and returns a pointer to the component specific capabilities struc-

ture in parameter, cap. The first time that it is called, it adds the memory requirements of

the OL layer to those of the AL layer and sets add_done to true. unitNumber indicates the

unit of the hardware device used by this component.The first call to the getCapabilities

functions are likely to allocate memory that is never subsequently freed. For this reason,

you may want to collect all of these calls in one place at the start of your program to

minimize memory fragmentation.

Chapter 13: tsa.h: Software Architecture Definitions

154 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultOpen

extern tmLibappErr_t tsaDefaultOpen (
 ptsaDefaultInstVar_t *divp,
 UInt32 magic,
 ptsaDefaultFuncs_t tsafunc
);

Parameters

divp Pointer to a default instance variable structure to
be returned from this function.

magic Magic string to determine the validity of divp
during execution.

tsaFunc Pointer to a default AL function table. This is
installed into the divp for later use.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE divp is not a valid default instance variable struc-
ture.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComOpen(), the function allocates memory for the

default instance variables. Then, it creates the stopSemaphore for mutual exclusion of

task access. Finally, it calls the AL layer open function and returns a pointer to the

default instance variables in the divp parameter.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 155

13

tsaDefaultOpenM

extern tmLibappErr_t tsaDefaultOpenM (
 ptsaDefaultInstVar_t *divp,
 UInt32 magic,
 ptsaDefaultFuncs_t tsafunc,
 unitSelect_t unitNumber
);

Parameters

divp Pointer to a default instance variable structure to
be returned from this function.

magic Magic string to determine the validity of divp dur-
ing execution.

tsaFunc Pointer to a default AL function table. It is
installed into the divp for later use.

unitNumber Unit number of a hardware device.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE divp is not a valid default instance variable struc-
ture.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComOpenM(), the function allocates memory for the

default instance variables. Then, it creates the stopSemaphore (see tsaDefaultInstVar_t)

for mutual exclusion of task access. Finally, it calls the AL layer open function and

returns a pointer to the default instance variables in the divp parameter. unitNumber

indicates the unit of the hardware device used by this component.

Chapter 13: tsa.h: Software Architecture Definitions

156 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultClose

extern tmLibappErr_t tsaDefaultClose (
 ptsaDefaultInstVar_t divp
);

Parameters

divp Pointer to a default instance variable structure to
be destroyed.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE divp is not a valid default instance variable struc-
ture.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComClose(), the function first calls the AL layer close

function. Then it waits until the component is stopped before continuing. It then

destroys the stopSemaphore (see tsaDefaultInstVar_t). Finally, it frees all memory associ-

ated with this ptsaDefaultInstVar_t structure that was allocated by the defaults.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 157

13

tsaDefaultGetInstanceSetup

extern tmLibappErr_t tsaDefaultGetInstanceSetup (
 Int instance,
 UInt32 **setup
);

Parameters

instance ID of a default instance variable structure.

setup Pointer to a pointer to a default instance setup
structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not a valid default instance variable
structure. Cast to divp.

TMLIBAPP_ERR_INVALID_SETUP Setup is null or divp->instSetup is null.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Calls the AL layer GetInstanceSetup function through the tmalFunc table. The address of

the AL layer instance setup structure is returned. This function is designed to be used in

the implementation of the required OL layer GetInstanceSetup function. The memory

representing the instance setup structure should have been allocated during the preceed-

ing call to tmalComOpen(), and it should be filled in with currently correct values, or

defaults if the component has not yet been setup.

Chapter 13: tsa.h: Software Architecture Definitions

158 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultInstanceSetup

extern tmLibappErr_t tsaDefaultInstanceSetup (
 Int instance,
 UInt32 *setup
);

Parameters

instance ID of a default instance variable structure.

setup Pointer to a default instance setup structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE Instance is not a valid default instance variable
structure. Cast to divp.

TMLIBAPP_ERR_INVALID_SETUP Setup is null or divp->instSetup is null.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComInstanceSetup, this function passes down and saves

(in the default instance variable, divp) all default callback functions to the AL layer and

sets the AL parentID to instance. It then calls the AL instance setup function.

Note:
The passed instance value contains two pointers to the default instance setup
structure. An assertion checks that these two pointers point to the same
memory:

divp = *(ptsaDefaultInstVar_t *)instance;
dsp = *(ptsaDefaultInstanceSetup_t *)setup;
disp = divpÐ>instSetup;
tmAssert(disp == dsp,TMLIBAPP_ERR_INVALID_SETUP);

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 159

13

tsaDefaultStart

extern tmLibappErr_t tsaDefaultStart (
 ptsaDefaultInstVar_t divp
);

Parameters

divp Pointer to a default instance variable structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE divp is not a valid default instance variable struc-
ture.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is Null.

TMLIBAPP_ERR_ALREADY_STARTED Instance is already started.

TMLIBAPP_ERR_INVALID_SETUP In-place components must have the same num-
ber of inputs and outputs.

TMLIBAPP_ERR_MISMATCHED_DESC In-place components must have the descriptors of
a given channel attached.

TMLIBAPP_ERR_FORMAT In-place components must have the formats of
the input and output descriptors already
installed.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComStart, the function first acquires the lock (stopSema-

phore) to access the instance. Note that when there is an error, tsaDefaultStart releases

the lock and returns. Then, it sets the receiverState of all the inputDescriptor and the

senderState of all the outputDescriptors to ACTIVE. If the component is an in-place com-

ponent, it arranges the queues, by attaching the emptyQueue of the inputDescriptor

directly to emptyQueue of the outputDescriptor and storing the output empty queues,

thus bypassing this component. It sets the task status of the component to RUNNING. If

the component is not task-based, it directly calls the AL start function. If the component

is task-based, it creates and starts the default task, if it does not already exist. If it already

exists, it resumes the current default task. The default task will then call the AL start

function. Finally, tsaDefaultStart releases the lock and returns.

Chapter 13: tsa.h: Software Architecture Definitions

160 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultStop

extern tmLibappErr_t tsaDefaultStop (
 ptsaDefaultInstVar_t divp
);

Parameters

divp Pointer to a default instance variable structure.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE divp is not a valid default instance variable struc-
ture.

TMLIBAPP_ERR_BAD_TMALFUNC_TABLE tsaFunc is null.

TMLIBAPP_ERR_ALREADY_STOPPED Instance is already stopped.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system.

Description

Designed to be called from tmolComStop(), the function first acquires the lock

(stopSemaphore) to access the instance. Note that when there is an error, tsaDefaultStop

saves the first error and continues. Then, it calls the AL stop function, sets the task status

to STOP_REQUESTED, for notifying subsequent Datain or Dataout functions calls from

the instance.

If the component is task-based, it sends WAKEUP packets to queues that directed its task

to break it out of waiting for a packet. It then waits for the default task to finish its stop

sequence, on the stopSemaphore. At this point, the default task returns from the AL start

function, sets the receiverState of all the inputDescriptor and the senderState of all the

outputDescriptors to STOPPED, and flushes the input full and empty queues only. It now

sets its task status to NOT_STARTED, if it was requested to stop. If the AL start function

returned upon an error, the task status is left as RUNNING and the application must call

tsaDefaultStop to get the instance back into a consistent state. When the task is done,

tsaDefaultStop sets the task status to NOT_STARTED.

If the component is not task-based, tsaDefaultStop sets the receiverState of all the input

descriptors and the senderState of all the output descriptors to STOPPED. It then sets the

task status to NOT_STARTED.

If the component is an in-place component, it rearranges the queues back into its origi-

nal configuration. Finally, tsaDefaultStop releases the lock and returns.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 161

13

tsaDefaultInstanceConfig

extern tmLibappErr_t tsaDefaultInstanceConfig (
 ptsaDefaultInstVar_t divp,
 UInt32 flags,
 ptsaControlArgs_t args
)

Parameters

divp Pointer to a default instance variable structure.

flags Use tsaControlFlags_t (page 189) or a cast to
UInt32.

args See tsaControlArgs_t on page 189.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE divp is not a valid default instance variable struc-
ture.

TMLIBAPP_ERR_INVALID_ARGS args is Null.

TMLIBAPP_ERR_NULL_CONFIGFUNC AL instance config function is Null.

TMLIBAPP_ERR_NO_QUEUE Control Descriptor not passed in at instance
setup.

TMLIBAPP_ERR_NOT_STARTED Instance is not started and therefore cannot
respond to any commands.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system.

Description

Designed to be called from tmolComInstanceConfig, the function configures an instance

that uses control queue interface, while it is running. It uses the queues in the control

descriptor passed to the instance during setup. Only one command can be processed at

one time; i.e. the command/response sequence is atomic. tsaDefaultInstanceConfig first

acquires the lock (stopSemaphore) for the instance. After a series of checks, it sends the

command to the command queue. Then, it sends WAKEUP packets to data queues

attached to the task. This will wake the component up when it was in a blocking wait for

a packet. When the task wakes up it can check the command queue and the defaults will

call the installed configuration function. Finally, tsaDefaultInstanceConfig waits for a

response from the task on the response queue. It releases the lock on the instance and

returns.

Chapter 13: tsa.h: Software Architecture Definitions

162 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultStopPin

extern tmLibappErr_t tsaDefaultStopPin (
 Int instance,
 tsaInOutPin_t inOut,
 Int pinId
);

Parameters

instance A default instance variable structure.

inOut Determines whether input or output pins.

pinId Determines which pin.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instance is not a valid default instance variable
structure. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS inOut is not a valid tsaInOutPin_t.

TMLIBAPP_ERR_CHANNEL_ID pinId is not a valid pin number for this
tsaInOutDescriptor_t.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComStopPin, the function allows the application to stop

a specific pin of the component instance, while the instance continues to run. inOut

indicates whether to stop the input or output pin and pinId indicates which channel.

The pin state is set to STOPPED. When a pin is stopped, all packets on the full queue are

flushed to the empty queue. Packets held by the components are not necessarily

returned.

TIP
This function can be useful during development because it allows
incremental integration. Write your application first and then start all
components. Immediately after starting the component, call
tsaDefaultStopPin for all input pins. When the input pin is stopped, all full
packets are returned immediately to the empty queue. In this way, you can
observe your source code in operation without processing the data.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 163

13

tsaDefaultUnStopPin

extern tmLibappErr_t tsaDefaultUnStopPin (
 Int instance,
 tsaInOutPin_t inOut,
 Int pinId
);

Parameters

instance A default instance variable structure.

inOut Determines whether input or output pins.

pinId Determines which pin.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instance is not a valid default instance variable
structure. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS inOut is not a valid tsaInOutPin_t.

TMLIBAPP_ERR_CHANNEL_ID pinId is not a valid pin number for this
tsaInOutDescriptor_t.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system
(pSOS).

Description

Designed to be called from tmolComUnStopPin, the function allows the application to

unstop a previously stopped pin of the component. inOut indicates whether to unstop

the input or output pin and pinId indicates which channel. The pin state is set to ACTIVE.

Chapter 13: tsa.h: Software Architecture Definitions

164 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Default Callback Functions

This section presents the default callback functions, and associated the data structures

and enumerated types contained in the file tsa.h.

Name Page

tsaDefaultErrorFunction 166

tsaErrorFunc_t 167

tsaErrorFlags_t 168

tsaErrorArgs_t 168

tsaDefaultProgressFunction 169

tsaProgressFunc_t 170

tsaProgressFlags_t 171

tsaProgressArgs_t 171

tsaDefaultCompletionFunction 172

tsaCompletionFunc_t 173

tsaCompletionFlags_t 174

tsaCompletionArgs_t 174

tsaDefaultDatainFunction 175

tsaDatainFunc_t 177

tsaDatainFlags_t 178

tsaDatainArgs_t 178

tsaDefaultDataoutFunction 179

tsaDataoutFunc_t 181

tsaDataoutFlags_t 182

tsaDataoutArgs_t 182

tsaDefaultMemallocFunction 183

tsaMemallocFunc_t 184

tsaMemallocArgs_t 184

tsaDefaultMemfreeFunction 185

tsaMemfreeFunc_t 186

tsaMemfreeArgs_t 186

tsaDefaultControlioFunction 187

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 165

13

tsaControlFunc_t 188

tsaControlFlags_t 189

tsaControlArgs_t 189

tsaDefaultControlMessage_t 190

Name Page

Chapter 13: tsa.h: Software Architecture Definitions

166 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultErrorFunction

extern tmLibappErr_t tsaDefaultErrorFunction (
 Int instId,
 UInt32 flags,
 ptsaErrorArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Flags to be passed to application-specific error
function, if exists.

args Arguments to passed to application-specific error
function, if exists.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS divp->instSetup or args is null.

Description

If instId is null, the function DPs error code, Null instance, and flags. Otherwise, checks

validity of instId (cast to divp) and divp->setup. Calls application-specific error function

if exists and returns. All DPs in this function are set at level 1 (L1_DP).

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 167

13

tsaErrorFunc_t

typedef tmLibappErr_t (*tsaErrorFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaErrorArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Use error flags of type tsaErrorFlags_t or cast to
UInt32.

args Pointer to error function arguments of the type
tsaErrorArgs_t.

Description

The error callback function is called by a component to report an error to its parent. flags

is the error flag of type tsaErrorFlags_t or user-defined cast to UInt32. The type is UInt32

in the function definition to allow user-defined flags without casting.

args is a pointer to a tsaErrorArgs_t structure, which contains the error code specific to

the component. Component-specific error codes are described in the API documentation

of the component.

Chapter 13: tsa.h: Software Architecture Definitions

168 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaErrorFlags_t

typedef enum {
 tsaErrorFlagNone = 0x00000000,
 tsaErrorFlagNonFatal = 0x01000000,
 tsaErrorFlagFatal = 0x02000000,
} tsaErrorFlags_t;

Description

This type is used by tsaErrorFunc_t functions. Indicates whether the error reported is

fatal or non-fatal. See tsaErrorFunc_t on page 167.

tsaErrorArgs_t

typedef struct tsaErrorArgs {
 Int errorCode;
 Pointer description;
} tsaErrorArgs_t, *ptsaErrorArgs_t;

Description

This type is used by tsaErrorFunc_t functions. The errorCode identifies the error reported

by a component and is enumerated in the component’s header file. The description field

is specific to the individual component. See tsaErrorFunc_t on page 167.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 169

13

tsaDefaultProgressFunction

extern tmLibappErr_t tsaDefaultProgressFunction (
 Int instId,
 UInt32 flags,
 ptsaProgressArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Flags to be passed to application-specific error
function, if exists.

args Arguments to passed to application-specific error
function, if exists.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS divp->instSetup or args is null.

Description

If instId is Null, the function DPs progress code, Null instance, and flags. Otherwise, it

checks the validity of instId (cast to divp) and divp->setup. If flags contains tsaProgress-

FlagChangeFormat, automatically installs new format and call the error callback func-

tion if it failed. Otherwise, calls application-specific progress function if exists and

returns. Otherwise, DPs progress code, instId, instance name, and flags. All DPs (debug

prints) in this function are set at level 1 (L1_DP).

Note: This function should not be called from within an interrupt service routine when

the flags are set to tsaProgressFlagChangeFormat. That is, do not install a new format in

an interrupt service routine.

Chapter 13: tsa.h: Software Architecture Definitions

170 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaProgressFunc_t

typedef tmLibappErr_t (*tsaProgressFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaProgressArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Use progress flags of type tsaProgressFlags_t or
cast to UInt32.

args Pointer to error function arguments of the type
tsaProgressFlags_t.

Description

The progress callback function is called by a component to report any progress to its par-

ent. flags is the progress flag of type tsaProgressFlags_t or cast to UInt32. The type is

UInt32 in the function definition to allow user-defined flags without casting.

args is a pointer to a tsaProgressArgs_t structure, which contains the progress code spe-

cific to the component. Component-specific progress codes are described in the API doc-

umentation of the component.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 171

13

tsaProgressFlags_t

typedef enum {
 tsaProgressFlagNone = 0x00000000,
 tsaProgressFlagEndOfStream = 0x01000000,
 tsaProgressFlagChangeFormat = 0x02000000,
} tsaProgressFlags_t;

Description

This type is used by tsaProgressFunc_t functions. It indicates progress codes resulting

from the default layer. tsaProgressFlagEndOfStream synchronizes the stopping of a chain

of components without losing any valid data. tsaProgressFlagChangeFormat is used

when a sender component requests a format change in the tsaInOutDescriptor_t. See

tsaProgressFunc_t on page 170. tsaProgressFlagNone is used as default flag.

tsaProgressArgs_t

typedef struct tsaProgressArgs {
 Int progressCode;
 Pointer description;
} tsaProgressArgs_t, *ptsaProgressArgs_t;

Description

This type is used by tsaProgressFunc_t functions. The progressCode identifies the

progress reported by a component and is enumerated in the component’s header file.

The description field is specific to the individual component. See tsaProgressFunc_t on

page 170.

Chapter 13: tsa.h: Software Architecture Definitions

172 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultCompletionFunction

extern tmLibappErr_t tsaDefaultCompletionFunction (
 Int instId,
 UInt32 flags,
 ptsaCompletionArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Flags to be passed to application-specific comple-
tion function, if it exists.

args Arguments to passed to application-specific com-
pletion function, if it exists.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS Either divp->instSetup or args is null.

Description

If instId is null, the function prints (through DP) the completion code, Null instance,

and flags. Otherwise, it checks the validity of instId (cast to divp) and divp–>setup. It

then calls the application-specific completion function if that exists and returns. All DPs

in this function are set at level 1 (L1_DP).

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 173

13

tsaCompletionFunc_t

typedef tmLibappErr_t (*tsaCompletionFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaCompletionArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Use completion flags of type
tsaCompletionFlags_t or cast to UInt32.

args Pointer to completion function arguments of the
type tsaCompletionArgs_t.

Description

The completion callback function is called by a component to report any specific com-

pletion to its parent. flags is the completion flag of type tsaCompletionFlags_t or cast to

UInt32. The type is UInt32 in the function definition to allow user-defined flags without

casting.

args is a pointer to a tsaCompletionArgs_t structure, which contains the completion code

specific to the component. Component-specific completion codes are described in the

API documentation of the component.

Chapter 13: tsa.h: Software Architecture Definitions

174 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaCompletionFlags_t

typedef enum {
 tsaCompletionFlagNone = 0x00000000,
 tsaCompletionFlagStop = 0x01000000,
} tsaCompletionFlags_t;

Description

This type is used by tsaCompletionFunc_t functions. tsaCompletionFlagStop is used by

the default task when its stop sequence has been completed. See tsaCompletionFunc_t on

page 173. tsaCompletionFlagNone is the default flag.

tsaCompletionArgs_t

typedef struct tsaCompletionArgs {
 Int completionCode;
 Pointer description;
} tsaCompletionArgs_t, *ptsaCompletionArgs_t;

Description

This type is used by tsaCompletionFunc_t functions. The completionCode identifies the

completion reported by a component and is enumerated in the component’s header file.

The description field is specific to the individual component. See tsaCompletionFunc_t

on page 173.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 175

13

tsaDefaultDatainFunction

extern tmLibappErr_t tsaDefaultDatainFunction (
 Int instId,
 UInt32 flags,
 ptsaDatainArgs_t args
);

Parameters

instId An opaque integer that is the parent ID of the
component’s AL layer. In fact, this opaque integer
is a pointer to an instance variable structure
whose first entry is a pointer to a default instance
variable. See tsaDefaultInstVar_t on page 137.

flags Use flags of type tsaDatainFlags_t or cast to
UInt32.

args Arguments of type tsaDatainArgs_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS Either divp–>instSetup or args is null.

TMLIBAPP_ERR_NULL_DATAINFUNC Application installed a null datain callback func-
tion.

TMLIBAPP_ERR_NULL_IODESC The specific tsaInOutDescriptor_t needed is null.

TMLIBAPP_ERR_INVALID_CHANNEL_ID The channel ID specified in args is invalid for this
component.

TMLIBAPP_ERR_INVALID_COMMAND Command of packet received is invalid.

TMLIBAPP_ERR_INVALID_FLAGS flags is invalid.

TMLIBAPP_ERR_NOT_CACHE_ALIGNED Data buffers of packets created by the application
or component is not cache aligned. Applies only
to component that requests invalidation of pack-
ets. See tsaInOutDescSetupFlags_t on page 134.

TMLIBAPP_ERR_IN_PLACE In-place component should not call this function
with tsaDatainPutEmpty.

TMLIBAPP_ERR_NULL_PACKET Packet to put on empty queue is Null.

TMLIBAPP_NEW_FORMAT New format found in packet received.

TMLIBAPP_PIN_STOPPED To notify component that this pin is stopped.

TMLIBAPP_STOP_REQUESTED divp–>taskstatus is TS_STOP_REQUESTED.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system.

Chapter 13: tsa.h: Software Architecture Definitions

176 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

Description

Checks validity of instId (cast to divp) and divp->setup (cast to disp). Calls application-

specific datain function if exists and returns. In the simple case, this function does the

following. If flags contains tsaDatainGetFull, wait on full queue for a data packet, if flags

contains tsaDatainWait. If flags contains tsaDatainPutEmpty, put data packet given in

args on empty queue. However, in certain cases, other operations are performed. They

are described in the following paragraph.

When flags contains tsaDatainGetFull, loops until a data packet is received (when flags

contains tsaDatainWait) or returns during looping with a significant error code. If the

task status is STOP_REQUESTED, it returns TMLIBAPP_STOP_REQUESTED, so as to break

the component instance out of its running loop. If the component has a waitSemaphore,

it waits on the semaphore instead of on the full queue. Checks the control queue if flags

contains tsaDatainCheckControl. See tsaDefaultControlioFunction on page 187. If a data

packet is received, returns the packet to the component instance, after invalidating if

necessary and noting any format change. But, if the pin is stopped, puts the data packet

on the emptyQueue, and returns TMLIBAPP_PIN_STOPPED if necessary. If an end of

stream packet is received, calls the progress function to notify the application. Returns

TMLIBAPP_ERR_INVALID_COMMAND if the packet type is not tsaCmdDataPacket or tsa-

CmdWakeup. Packet types are enumerated in tsaDefaultControlMessage_t. See

tsaDefaultControlMessage_t on page 190.

When flags contains tsaDatainPutEmpty, tsaDefaultDatainFunction releases the format of

the packet and puts the packet to the empty queue.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 177

13

tsaDatainFunc_t

typedef tmLibappErr_t (*tsaDatainFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaDatainArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Use datain flags of type tsaDatainFlags_t or cast to
UInt32.

args Pointer to datain function arguments of the type
tsaDatainArgs_t.

Description

The datain callback function is called by a component to access the full and empty

queues of an input descriptor of the component. flags is the datain flag of type

tsaDatainFlags_t or cast to UInt32. The type is UInt32 in the function definition to allow

user-defined flags without casting

args is a pointer to a tsaDatainArgs_t structure. The application should not install its own

datain function, because tsaDefaultDatainFunction performs many operations depending

on the state of the component instance and the input descriptor that are essential to the

correct working of TSSA.

Chapter 13: tsa.h: Software Architecture Definitions

178 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDatainFlags_t

typedef enum {
 tsaDatainNone = 0x00000000,
 tsaDatainGetFull = 0x00000001,
 tsaDatainPutEmpty = 0x00000002,
 tsaDatainWait = 0x00000004,
 tsaDatainCheckControl = 0x00000008,
} tsaDatainFlags_t;

Description

This type is used by tsaDatainFunc_t functions, particularly tsaDefaultDatainFunction.

tsaDatainGetFull indicates the function to get a data packet from the full queue. tsa-

DatainPutEmpty indicates the function to put a data packet on the empty queue. tsa-

DatainWait can be combined with tsaDatainGetFull to wait until a data packet is

available. tsaDatainCheckControl indicates the function to check the control queue after

waiting on the full queue. See tsaDefaultDatainFunction on page 175.

tsaDatainGetFull and tsaDatainPutEmpty cannot be set together, however, one of them

must be set.

tsaDatainArgs_t

typedef struct tsaDatainArgs {
 UInt32 inputId;
 Pointer packet;
 UInt32 timeout;
} tsaDatainArgs_t, *ptsaDatainArgs_t;

Description

This type is used by tsaDatainFunc_t functions, particularly tsaDefaultDatainFunction. It

contains the ID of the input channel to access, a pointer to the data packet to send or

receive, and a timeout for queue access. See tsaDatainFunc_t on page 177.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 179

13

tsaDefaultDataoutFunction

extern tmLibappErr_t tsaDefaultDataoutFunction (
 Int instId,
 UInt32 flags,
 ptsaDataoutArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Use flags of type tsaDataoutFlags_t or cast to
UInt32.

args Arguments of type tsaDataoutArgs_t.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS divp->instSetup or args is Null.

TMLIBAPP_ERR_NULL_DATAOUTFUNC Application installed a Null dataout callback
function.

TMLIBAPP_ERR_NULL_IODESC The specific tsaInOutDescriptor_t needed is Null.

TMLIBAPP_ERR_INVALID_CHANNEL_ID The channel ID specified in args is invalid for this
component.

TMLIBAPP_ERR_INVALID_COMMAND Command of packet received is invalid.

TMLIBAPP_ERR_INVALID_FLAGS flags is invalid.

TMLIBAPP_ERR_IN_PLACE In-place component should not call this function
with tsaDatainGetEmpty.

TMLIBAPP_ERR_NULL_PACKET Packet received from empty queue or packet to
put on full queue is Null.

TMLIBAPP_STOP_REQUESED divp->taskstatus is TS_STOP_REQUESTED.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system.

Description

Checks the validity of instId (cast to divp) and divp->setup (cast to disp). Calls applica-

tion-specific dataout function if it exists in which case it returns. In the simple case, this

function does the following. If flags contains tsaDataoutGetEmpty, this function waits

on the empty queue for a data packet. If flags contains tsaDataoutWait it will be a block-

ing wait. If flags contains tsaDatainPutFull, this function puts the data packet given in

Chapter 13: tsa.h: Software Architecture Definitions

180 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

args to the full queue. However, in certain cases, other operations are performed, which

is described below.

When flags contains tsaDatainGetEmpty, this function loops until a data packet is

received (when flags contains tsaDataoutWait) or returns during looping with an error

code. If the task status is STOP_REQUESTED and flags does not contain tsaDatainIgnore-

StopRequested, this function returns TMLIBAPP_STOP_REQUESTED, in order to break the

component instance out of its running loop. This function checks the control queue if

flags contains tsaDatainCheckControl. See tsaDefaultControlioFunction on page 187. If a

data packet is received, this function returns the packet to the component instance. It

returns TMLIBAPP_ERR_INVALID_COMMAND if the packet type is not a tsaCmdDataPacket

or tsaCmdWakeup. For Packet types, see tsaDefaultControlMessage_t on page 190.

When flags contains tsaDatainPutFull, this function claims the current format for the

packet and puts it on the full queue. It increments waitSemaphore if it exists. If the pin is

stopped and flags contains tsaDataoutScheduleOnStop it will call the OS sleep function

to schedule out, and after the sleeping period of 1 OS tick, it puts the data packet on the

emptyQueue, and returns.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 181

13

tsaDataoutFunc_t

typedef tmLibappErr_t (*tsaDataoutFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaDataoutArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Use dataout flags of type tsaDataoutFlags_t or cast
to UInt32.

args Pointer to dataout function arguments of the type
tsaDataoutArgs_t.

Description

The dataout callback function is called by a component to access the full and empty

queues of an output descriptor of the component. flags is the dataout flag of type

tsaDataoutFlags_t or cast to UInt32. The type is UInt32 in the function definition to allow

user-defined flags without casting.

args is a pointer to a tsaDataoutArgs_t structure. The application should not install its

own dataout function, because tsaDefaultDataoutFunction performs many operations

depending on the state of the component instance and the output descriptor that are

essential to the correct working of TSSA.

Chapter 13: tsa.h: Software Architecture Definitions

182 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDataoutFlags_t

typedef enum {
 tsaDataoutNone = 0x00000000,
 tsaDataoutGetEmpty = 0x00000001,
 tsaDataoutPutFull = 0x00000002,
 tsaDataoutWait = 0x00000004,
 tsaDataoutCheckControl = 0x00000008,
 tsaDataoutScheduleOnStop = 0x00000010,
 tsaDataoutIgnoreStopRequested = 0x00000020,
 tsaDataoutIgnorePutEmpty = 0x00000040,
} tsaDataoutFlags_t;

Description

This type is used by tsaDataoutFunc_t functions, particularly tsaDefaultDataoutFunction.

tsaDataoutGetEmpty indicates the function to get a data packet from the empty queue.

tsaDataoutPutFull indicates the function to put a data packet on the full queue. tsa-

DatainWait can be combined with tsaDataoutGetEmpty to wait until a data packet is

available. tsaDatainCheckControl indicates the function to check the control queue after

waiting on the empty queue. tsaDataoutScheduleOnStop indicates the function to sleep

if the pin is stopped to prevent the component task from always running. tsa-

DataoutIgnoreStopRequested indicates the function to ignore the task status stop

request and continue without returning TMLIBAPP_STOP_REQUESTED. See

tsaDataoutFunc_t on page 181.

tsaDataOutPutEmpty iindicates that a packet must be put on the empty queue. This

allows components to get rid of packets during stop while there is no format installed on

the queue or when there is no data in the packet.

tsaDataoutGetEmpty and tsaDataoutPutFull cannot be set together, however, one of

them must be set.

tsaDataoutArgs_t

typedef struct tsaDataoutArgs {
 UInt32 outputId;
 Pointer packet;
 UInt32 timeout;
} tsaDataoutArgs_t, *ptsaDataoutArgs_t;

Description

This type is used by tsaDataoutFunc_t functions, particularly tsaDefaultDataoutFunction.

It contains the ID of the output channel to access, a pointer to the data packet to send or

receive, and a timeout for queue access. See tsaDataoutFunc_t on page 181.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 183

13

tsaDefaultMemallocFunction

extern tmLibappErr_t tsaDefaultMemallocFunction (
 Int instId,
 UInt32 flags,
 ptsaMemallocArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Flags to be passed to application-specific memal-
loc function, if exists.

args Arguments to passed to application-specific
memalloc function, if exists.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS divp->instSetup is null.

TMLIBAPP_ERR_MEMALLOC_FAILED Not enough memory.

Description

This function is installed as the default memory allocation function used by TSSA com-

ponents.

Checks validity of instId (cast to divp) and divp->setup. If the user has specified an appli-

cation-specific memalloc function, it is dispatched from here. Otherwise, calls

_cache_malloc to allocate the memory requested to assure 64-byte alignment and initial-

izes memory to 0 with memset. Then, returns memory allocated in args–>memHandle.

The alignment field of the args structure is passed to _cache_malloc as the second param-

eter, specifying cache set. Set the alignment field to -1 if you do not want to specify the

cache set.

Chapter 13: tsa.h: Software Architecture Definitions

184 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaMemallocFunc_t

typedef tmLibappErr_t (*tsaMemallocFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaMemallocArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Flags for memalloc function.

args Pointer to memalloc function arguments of the
type tsaMemallocArgs_t.

Description

The memalloc callback function is called by a component to allocate a certain size of

memory. The type for flags is UInt32 in the function definition to allow user-defined

flags without casting.

tsaMemallocArgs_t

typedef struct tsaMemallocArgs {
 Int sizeInBytes;
 Int alignment;
 Pointer memHandle;
} tsaMemallocArgs_t, *ptsaMemallocArgs_t;

Description

This type is used by tsaMemallocFunc_t functions. sizeInBytes indicates the size of the

memory to be allocated. alignment indicates the alignment required for memory alloca-

tion. memHandle is the pointer to the allocated memory to be returned. See

tsaMemallocFunc_t on page 184.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 185

13

tsaDefaultMemfreeFunction

extern tmLibappErr_t tsaDefaultMemfreeFunction (
 Int instId,
 UInt32 flags,
 ptsaMemfreeArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Flags to be passed to application-specific memfree
function, if it exists.

args Arguments to passed to application-specific mem-
free function, if it exists.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. Cast to divp.

TMLIBAPP_ERR_INVALID_ARGS divp->instSetup is null.

Description

Checks validity of instId (cast to divp) and divp->setup. Calls application-specific mem-

free function if exists and returns. Otherwise, calls _cache_free to free the memory in

args–>memHandle if exists.

Chapter 13: tsa.h: Software Architecture Definitions

186 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaMemfreeFunc_t

typedef tmLibappErr_t (*tsaMemfreeFunc_t)(
 Int instId,
 UInt32 flags,
 ptsaMemfreeArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Flags for memfree function.

args Pointer to memfree function arguments of the
type tsaMemfreeArgs_t.

Description

The memfree callback function is called by a component to free memory. The type for

flags is UInt32 in the function definition to allow user-defined flags without casting.

tsaMemfreeArgs_t

typedef struct tsaMemfreeArgs {
 Pointer memHandle;
} tsaMemfreeArgs_t, *ptsaMemfreeArgs_t;

Description

This type is used by tsaMemfreeFunc_t functions. memHandle is the pointer to the mem-

ory to be freed. See tsaMemfreeFunc_t on page 186.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 187

13

tsaDefaultControlioFunction

extern tmLibappErr_t tsaDefaultControlioFunction (
 Int instId,
 tsaControlFlags_t flags,
 ptsaControlArgs_t args
);

Parameters

instId Instance of a default instance variable structure.
See tsaDefaultInstVar_t on page 137.

flags Flags to be passed to application-specific controlio
function, if it exists.

args Arguments to be passed to an application-specific
controlio function, if it exists.

Return Codes

TMLIBAPP_OK Success.

TMLIBAPP_ERR_INVALID_INSTANCE instId is not a valid default instance variable struc-
ture. cast to divp.

TMLIBAPP_ERR_INVALID_ARGS args is Null.

TMLIBAPP_ERR_INVALID_FLAGS flags is invalid.

TMLIBAPP_ERR_OS_ERR Indicates an error from the operating system.

Description

This function is used internally by the TSA defaults to implement the queue based

instance config mechanism. The function checks the validity of instId (cast to divp) and

divp->setup. If flags contains tsaControlAppToComponent, it attempts to get a packet

from the command queue. If flags contains tsaControlWait, this is a blocking

queue_receive. If flags contains tsaControlComponentToApp, it sends a packet contain-

ing the return value from the command operation on the response queue. Packet types

are enumerated in tsaDefaultControlMessage_t. See page 190.

The controlio function is called by tsaDefaultDatainFunction and tsaDefaultDataoutFunc-

tion when it is requested to check the control queue. The sequence for checking and exe-

cuting the command is as follows. If no control descriptor was installed, the datain or

dataout function returns TMLIBAPP_OK. The validity of instId (cast to divp) and divp-

>setup (cast to disp) are checked. Then disp->controlFunc, which is tsaDefaultControlio-

Function by default, is called with flags containing tsaControlAppToComponent. If the

queue is empty or if a timeout occurred, it returns TMLIBAPP_OK. If a packet is received,

it checks the associated command in cargs.command. If the command is tsaCmdStatus,

it returns an acknowledgement by calling disp->controlFunc with flags containing tsa-

Chapter 13: tsa.h: Software Architecture Definitions

188 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

ControlComponentToApp. For all other commands, it calls the AL instance config func-

tion and the sends an acknowledgement with its return value. If the AL instance config

function is null, it returns TMLIBAPP_ERR_NULL_CONTROLFUNC.

tsaControlFunc_t

typedef tmLibappErr_t (*tsaControlFunc_t)(
 Int instId,
 tsaControlFlags_t flags,
 ptsaControlArgs_t args
);

Fields

instId Parent (creator) of the component layer calling
the function.

flags Controlio flags of type tsaControlFlags_t.

args Pointer to controlio function arguments of the
type tsaControlArgs_t.

Description

The controlio callback function is called by a component from tsaDefaultDatainFunction

or tsaDefaultDataoutFunction to check the command queue or reply in the response

queue.

Chapter 13: tsa.h: Software Architecture Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part B 189

13

tsaControlFlags_t

typedef enum {
 tsaControlNone = 0x00000000,
 tsaControlAppToComponent = 0x00000001,
 tsaControlComponentToApp = 0x00000002,
 tsaControlWait = 0x00000004,
} tsaControlFlags_t;

Description

This type is used by tsaControlFunc_t functions. tsaControlAppToComponent indicates

the function to get a command packet from the command queue. tsaControlComponent-

ToApp indicates the function to send a response packet to the response queue. tsaCon-

trolWait can be combined with tsaControlAppToComponent to wait until a command

packet is available. See tsaControlFunc_t on page 188.

tsaControlAppToComponent and tsaControlComponentToApp cannot be set together,

however, one of them must be set.

tsaControlArgs_t

typedef struct tsaControlArgs_t {
 UInt32 command;
 Pointer pamameter;
 tmLibappErr_t retval;
 UInt32 timeout;
} tsaControlArgs_t, *ptsaControlArgs_t;

Description

This type is used by tsaControlFunc_t functions. It contains the command to the compo-

nent instance, optional parameters, the return value from the command operation, and

a timeout for queue access. See tsaControlFunc_t on page 188.

Chapter 13: tsa.h: Software Architecture Definitions

190 Book 3—Software Architecture, Part B ©1999 Philips Semiconductors 10/08/99

tsaDefaultControlMessage_t

typedef enum {
 tsaCmdDataPacket = 0x00,
 tsaCmdWakeup = 0x10,
 tsaCmdEndOfStream = 0x11,
 tsaCmdStatus = 0x21,
 tsaCmdAcknowledge = 0x22,
 tsaCmdUserBase = 0x50,
} tsaDefaultControlMessage_t;

Description

This type is used by tsaDatainFunc_t, tsaDataoutFunc_t, and tsaControlFunc_t functions.

It indicates the packet type of a packet received from a queue. tsaCmdDataPacket indi-

cates a data packet sent and received by tsaDatainFunc_t and tsaDataoutFunc_t. tsaCmd-

Wakeup is used by the tsaDefaults to cause a component blocked on its data queues to

wake up and check for activity. tsaCmdEndOfStream can be used to initiate a system stop

when the data stream has ended. See tsaDefaultStop on page 160. tsaCmdStatus, and

tsaCmdAcknowledge are used by tsaControlFunc_t to specify the command and acknowl-

edgement of the associated packet. tsaCmdUserBase can be used as a base code by the

components or application to create customized packet types.

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 3—Software Architecture
	The Streaming Architecture
	7: TSSA Essentials
	Introduction
	What is TSSA?
	Standardized APIs
	Thoughts From the Architect

	Common Data Structures
	Data Packets
	The Packet Structure (tmAvPacket_t)
	The Header Structure (tmAvHeader_t)
	The Buffer Structure (tmAvBufferDescriptor_t)
	Allocating a Packet
	Format Structures (e.g. tmAvFormat_t)
	Time Structures (tmTimeStamp_t)

	Configuration Structures
	Capabilities Structures
	tsaInOutDescriptor_t
	tsaInOutDescriptorSetup_t
	Instance Setup Structures

	Types of TSSA Component Interfaces
	Asynchronous Components (TSSA)
	Synchronous Components
	The AL layer and the OL layer
	Audio Signal Processing (ASP) Components

	TSSA Overview
	Component Classes
	Component Connections: Queues and Data Packets
	Function API
	Callback Functions

	8: Developing Apps Using a Streaming Model
	Sample Application
	Getting Component Capabilities
	Opening Components
	Creating InOutDescriptors
	Getting Instance Setup Structures
	Sending in the InOutDescriptors to the Components
	Setting Up Components
	Callback Functions
	Task Control

	Start Processing
	Stop Components
	Closing Instances
	Destroying InOutDescriptors

	More Advanced Issues
	Delaying Setting of Format
	Connecting a TSSA Component to a Non-TSSA Component
	Creating Packets Without InOutDescriptorCreate
	In Place Processing
	Configuring Components
	Reconnecting TSSA Components

	Debugging TSSA Applications

	9: Apps Using a Non-Streaming Model
	Introduction
	Sample Application
	Open the AL Library Component
	Getting Instance Setup Struct
	Configuration of the Library Component
	Set Up of the Library Component
	Data Processing
	Closing the Component

	Further Aspects of Using AL Libraries
	More on Configuration
	Reconfiguration During Processing
	Using AL Libraries in Streaming Mode
	Sample Datain Callback Function
	Sample Dataout Callback Function

	10: TSSA Component Basics
	Introduction
	Attributes of Common Components
	Streaming (Pull) and Non-Streaming (Push)
	OS-Independent Data Processing
	Task-Based Context

	TSSA Layers
	OL Layer
	Default Layer
	AL Layer

	CopyIO Example and Explanation
	GetCapabilities
	OL GetCapabilities
	Default GetCapabilities
	AL GetCapabilities

	Open
	OL Open
	Default Open
	AL Open

	GetInstanceSetup
	OL GetInstanceSetup
	AL GetInstanceSetup

	InstanceSetup
	OL InstanceSetup
	Default Instance Setup
	AL InstanceSetup

	Start
	OL Start
	Default Start
	Default Task
	AL Start

	InstanceConfig
	OL InstanceConfig
	Default InstanceConfig
	AL InstanceConfig

	Stop
	OL Stop
	Default Stop
	Default Task
	AL Stop

	Close
	OL Close
	Default Close
	AL Close

	ProcessData
	AL ProcessData

	Summary of Design Models
	Streaming vs. Non-Streaming
	Data Processing
	Pull vs. Push Model
	Task-Based vs. ISR

	Component Packages

	11: TSSA Details
	Introduction
	Component Design Details
	ISR Components
	createNoTask
	tmalComReceiverFormatSetup

	In-Place Components
	tsaCapFlagsInPlace

	Changing Formats in Components
	Sender: Initiating Format Change
	Receiver: Responding to Format Change

	Waiting on Multiple Input Queues with waitSemaphore
	Setting Up Inputs with waitSemaphore
	Using Datain(GetFull) with waitSemaphore

	Calculating Memory Requirements
	Example

	Application Design Details
	Using non-TSSA components
	Synchronized Stop
	End of Stream

	Changing Formats from the Application
	Using tsaDefaultInstallFormat
	Using tmolComInstanceConfig

	Reconnecting Components
	Reconnecting Sender
	Reconnecting Receiver

	12: TSSA Compliance
	Introduction
	Header Files
	tmolCom.h
	tmalCom.h
	tmLibappErr.h

	Library Code
	tmolCom.c
	tmalCom.c

	Documentation
	Example/Test Code

	13: tsa.h: Software Architecture Definitions
	Default Capabilities Structure
	tsaDefaultCapabilities_t
	tsaCapabilityFlags_t

	Default Instance Setup Structure
	tsaDefaultInstanceSetup_t

	Clock Handle
	tsaClockHandle_t

	InOutDescriptors
	tsaInOutDescriptor_t
	tsaInOutDescriptorSetup_t
	tsaInOutDescSetupFlags_t

	ControlDescriptors
	tsaControlDescriptor_t
	tsaControlDescriptorSetup_t
	tsaControlDescSetupFlags_t

	Default Instance Variables
	tsaDefaultInstVar_t

	Default AL Function Table
	tsaDefaultFuncs_t

	Default Utility Functions
	tsaDefaultInOutDescriptorCreate
	tsaDefaultInOutDescriptorDestroy
	tsaDefaultControlDescriptorCreate
	tsaDefaultControlDescriptorDestroy
	tsaDefaultSenderReconnect
	tsaDefaultReceiverReconnect
	tsaDefaultInstallFormat
	tsaDefaultUnInstallFormat
	tsaDefaultSleep
	tsaDefaultCheckQueues

	Default API Functions
	tsaDefaultGetCapabilities
	tsaDefaultGetCapabilitiesM
	tsaDefaultOpen
	tsaDefaultOpenM
	tsaDefaultClose
	tsaDefaultGetInstanceSetup
	tsaDefaultInstanceSetup
	tsaDefaultStart
	tsaDefaultStop
	tsaDefaultInstanceConfig
	tsaDefaultStopPin
	tsaDefaultUnStopPin

	Default Callback Functions
	tsaDefaultErrorFunction
	tsaErrorFunc_t
	tsaErrorFlags_t
	tsaErrorArgs_t
	tsaDefaultProgressFunction
	tsaProgressFunc_t
	tsaProgressFlags_t
	tsaProgressArgs_t
	tsaDefaultCompletionFunction
	tsaCompletionFunc_t
	tsaCompletionFlags_t
	tsaCompletionArgs_t
	tsaDefaultDatainFunction
	tsaDatainFunc_t
	tsaDatainFlags_t
	tsaDatainArgs_t
	tsaDefaultDataoutFunction
	tsaDataoutFunc_t
	tsaDataoutFlags_t
	tsaDataoutArgs_t
	tsaDefaultMemallocFunction
	tsaMemallocFunc_t
	tsaMemallocArgs_t
	tsaDefaultMemfreeFunction
	tsaMemfreeFunc_t
	tsaMemfreeArgs_t
	tsaDefaultControlioFunction
	tsaControlFunc_t
	tsaControlFlags_t
	tsaControlArgs_t
	tsaDefaultControlMessage_t

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

