

Version 2.1

AB

Book 3—Software Architecture

Part A:

Foundation

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part A

iii

Book 3—Software Architecture
Part A: Foundation

Table of Contents

Chapter 1 TriMedia Software Architecture Overview

Introduction... 8

What is TSA? ...8

The Development Environment... 8

Universal Concepts ... 9

Layers ..9

Naming Conventions ... 10

Memory Management .. 11

Error Reporting ... 12

Error Decoding ... 12

Examples of Errors... 13

Device Drivers ... 13

The Libraries... 14

Standard C Library .. 14

Host Interface Libraries ... 14

Device Libraries .. 14

The pSOS Operating System ... 15

TriMedia Streaming Software Architecture (TSSA) ... 15

Chapter 2 Standard C Library

Standard C Library .. 18

Standard C Host Interface ... 18

File I/O Drivers ... 22

Chapter 3 Host Windows Interfaces

TriMedia Manager Architectural Overview.. 28

Windows TMMan Modules.. 30

Table of Contents

iv

Book 3—Software Architecture, Part A

©1999 Philips Semiconductors 10/08/99

Chapter 4 tmAvFormats.h: Multimedia Format Definitions

Audio Video Formats API Overview .. 32

Definitions .. 32

Type Definitions ... 32

Audio Video Formats API Data Structure Descriptions ... 34

tmAvFormat_t ... 35

tmAudioFormat_t .. 36

tmVideoFormat_t... 38

tmAvPacket_t... 40

tmAvBufferDescriptor_t... 41

tmAvHeader_t ... 42

tmComponentClass_t... 44

tmAvDataClass_t .. 44

tmAvDataType_t... 45

tmAvDataSubtype_t ... 45

tmSystemTypeFormat_t .. 46

tmVideoTypeFormat_t ... 47

tmAudioTypeFormat_t... 48

tmControlTypeFormat_t.. 49

tmOtherTypeFormat_t ... 49

tmVideoRGBYUVFormat_t .. 50

tmVideoFlags_t... 51

tmAudioPcmFormat_t.. 53

tmAudioMPEGFormat_t... 59

tmVideoMPEGFormat_t... 59

tmMPEG2TransportStreamFormat_t .. 60

tmVideoAnalogStandard_t .. 60

tmVideoAnalogAdapter_t... 61

tmAudioAnalogAdapter_t .. 61

tmSSIAnalogConnection_t ... 62

tmTimeStamp_t.. 62

Chapter 5 Device Libraries

Introduction... 64

Naming Conventions.. 65

The Standard Device Library API ... 65

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part A

v

Board Support ... 66

Registry ... 66

Component Manager .. 66

Board Bootup Sequence ... 67

Selecting Boards .. 67

Device Library Versions.. 68

Debug Version .. 68

Dynamic Linked Library Versions .. 68

Generic Function Prototypes.. 69

devGetCapabilities .. 69

devOpen ... 69

devClose ... 70

devInstanceSetup ... 70

devStart ... 70

devStop ... 70

Generic Data Structures... 71

devCapabilities_t ... 71

devInstanceSetup_t ... 71

Chapter 6 pSOS+™ Real-Time Operating System

Introduction... 74

pSOS Application Structure .. 74

root.c .. 75

drv_conf.c ... 75

pSOS Board Support Package .. 76

pSOS Kernel ... 77

sys_conf.h ... 77

Other pSOS Components ... 79

pSOS Example Makefile .. 79

The Complete pSOS Makefile ... 80

pSOS+m on TriMedia.. 84

Introduction to pSOS+m .. 84

Implementation of pSOS+m ... 84

Necessary Changes to Use pSOS+m .. 84

Node Numbering .. 85

TriMedia Support for Multiprocessors.. 85

Windows ... 85

Shared Memory Support in tmcc .. 85

Table of Contents

vi

Book 3—Software Architecture, Part A

©1999 Philips Semiconductors 10/08/99

pSOS Networking Components ... 86

What it Contains .. 86

PPP-TM Operations ... 86

Configurations .. 87

PPP Operation Parameters... 87

Configuration Table .. 87

NI Configuration Table... 89

Error Handling .. 90

Building Applications with the PPP-TM .. 91

Debugging pSOS Applications on TriMedia .. 92

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part A

7

1

Chapter 1

TriMedia Software Architecture Overview

Topic Page

Introduction 8

The Development Environment 8

Universal Concepts 9

The Libraries 14

Chapter 1: TriMedia Software Architecture Overview

8

Book 3—Software Architecture, Part A

©1999 Philips Semiconductors 10/08/99

Introduction

The goal of TriMedia Software Architecture (TSA) is to promote interoperability and reus-

ability of components, thereby enabling seamless collaboration between application

programmers and component developers.

There are many aspects to the architecture. Some portions that are of interest to one

developer may not be of interest to another. The overriding concern has been to keep

the code base flexible and lightweight so that all needs are met. We hope that the TSA

guidelines that have evolved from our experience will save you considerable time.

What is TSA?

The TriMedia C compiler and related tools, including the TriMedia debugger, form the

backbone of the software architecture. Other parts of TSA include the basic C library,

host interface libraries, device libraries, pSOS (the real-time operating system), and TSSA

(TriMedia Streaming Software Architecture). All libraries are provided as binaries (both

big- and little-endian), with header files, documentation, and sample programs.

Key components of the TSA are covered in the various chapters of this reference.

The Development Environment

At its core, the TriMedia development environment is modeled on a traditional com-

mand-based C development environment. Books 4 through 7 provide more information

about the TriMedia software development environment (SDE).

The

make

 utility is a very useful part of the command-line development environment.

You can customize the provided makefile examples to suit your particular needs. Further-

more, you can choose any particular editor to use with the TriMedia SDE. Because TriMe-

dia does not provide an integrated development environment (IDE), users in the past

have created their own development environments in UNIX or in Windows using an

editor such as Codewright™.

For those users who prefer the Metrowerks CodeWarrior IDE, this TriMedia release

includes TriMedia tools as plugins for CodeWarrior. The plugins are compatible with

Win95, Win98, WinNT and MacOS CodeWarrior Professional Release 4 or later.

Chapter 1: TriMedia Software Architecture Overview

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part A

9

1

Universal Concepts

A few basic ideas, presented here, serve as a foundation for TSA.

Layers

The TriMedia software architecture can be divided into a number of

layers

. A typical, and

somewhat elementary, use of layers, illustrated in Figure 1, is described in more detail

later in this book. A knowledge of these layers is essential for a complete understanding

of TSA.

Figure 1

How Layers Work With a Sample Application

TMOL Layer Seen by ApplicationTMAL Layer

Devic e Library

B o ard Su pp or t

TMOL Layer Seen by Appli cat ion

TMAL Layer
(calls fread from Std C Library)

Connected by TSSA Data Queues

Application
(exolArendAO)

File Reader

Audio Renderer

OL Layer of TSSA
Components Uses

pSOS Library

Host Interface
(TriMedia Part)

I/O Drivers

Std C Library
Includes fread, gets,

printf, malloc

Runs on PC Host

Host Interface (PC Part)

Remote Procedure Call (RPC)
Server on Host

Chapter 1: TriMedia Software Architecture Overview

10

Book 3—Software Architecture, Part A

©1999 Philips Semiconductors 10/08/99

Refer to Chapter 3 for an introduction to host interfaces for TriMedia.

Refer to Chapter 5 for an introduction to device libraries on TriMedia.

Refer to Chapter 6 for an introduction to using pSOS on TriMedia.

Refer to Chapter 7 (Part B) for an introduction to the streaming software architecture.

Naming Conventions

The root path of the TriMedia application library package is $(TAS).

The file $(TCS)/include/tmlib/tmtypes.h defines a number of fundamental types that are

used throughout TriMedia code. This file defines types such as

UInt32

 and

UInt16

. This

file serves as a cornerstone of future variants of the architecture.

A few naming conventions are used throughout the system:

■

The suffix

_t

 denotes a type definition.

■

The prefix

p

 often denotes a pointer.

■

Variable and function names in TriMedia libraries do not include underscores.

Instead, words in names are concatenated. The first letter is always lower case; every

subsequent word starts with a capital letter. Two examples are

tmalAdecAc3Stop

 or

tsaClockOpen

. The word

tmVersion_t

 is a data type; a variable of type

ptmVersion_t

 is

a pointer.

Table 1

TriMedia Application Hierarchy

Layer Notes

Application Controls the system.
Has a user interface.
Uses the functionality of libraries.

pSOS The real-time operating system, as a library.
Complete RTOS developed by Integrated Systems.
Provides task control, scheduling, and messaging.

TSSA
OL Layer

Operating-system-dependent streaming software layer.
Adheres to standard interface.

TSSA
AL Layer

Operating-system-independent streaming software layer.
Adheres to standard interface.
Defines protocols for the exchange of multimedia data.

Device Library Lowest level software interface to the hardware.
The board support package defines a way to control off chip peripherals
like A/D/A converters used by the audio and video systems.

Host Interface The various layers of the host interface, including the remote procedure
call server used to implement fread and printf are illustrated.

Chapter 1: TriMedia Software Architecture Overview

©1999 Philips Semiconductors 10/08/99

Book 3—Software Architecture, Part A

11

1

■

Prefixes such as

dw

 that are commonly used in Windows software are not used in Tri-

Media software.

■

Function names are prefixed with

tm

, or

tsa

 to show their link to TriMedia.

■

The prefix

tmol

 applies to function libraries (at the OL layer) that depend on a real-

time multitasking operating system such as pSOS. Chapter 7,

TSSA Essentials

, explains

in detail the meaning of “OL.”

■

The prefix

tmal

 applies to function libraries (at the AL layer) that do not depend on a

real-time multitasking operating system. Chapter 7,

TSSA Essentials

, explains in detail

the meaning of “AL.”

■

We have guarded against name space pollution. Library functions are explicitly

declared static or external. External functions are prototyped in the header file that

represents the module. Other functions that are not static are prefixed with an under-

score.

■

The prefix

dev

 is a generic device name, used in these manuals, for which a specific

device name can be substituted. Device libraries provide a software interface for the

on-chip TriMedia peripherals. Specific device names include

tmAO

,

tmAI

,

tmVO

,

tmVI

,

tmSSI

,

tmINT

,

tmTIM

, and others.

■

The term

COM

 is a generic component name, used in these manuals, for which spe-

cific component names can be substituted. Examples of specific component names in

functions are

tmolFread

 and

tmolArendAO

. This convention may also be written

Com

or

com

, as appropriate.

Memory Management

The TCS standard C library includes an implementation of

malloc

 and

free

. Blocks are

allocated in multiples of 4 bytes.

■

The pSOS memory manager allows the creation of “regions.” Regions can separate

the memory usage of two components. For example, the use of two regions would

ensure that a component requiring dynamic reallocation of small blocks of memory

would not fragment the larger blocks required by another program.

TSSA components address this issue by allowing you to install custom memory man-

agers on a per-module basis.

■

When pSOS is installed,

malloc

 and

free

 can be mapped to the pSOS functions that

allocate from region zero. Or, at your discretion, they can be mapped to the TCS

mal-

loc

 and

free

. (See the discussion of

TCS_MALLOC_USE

 on page 78 of Chapter 6,

pSOS+™ Real-Time Operating System

.)

■

The functions

cache_malloc

 and

cache_free

 are built on top of

malloc

 and

free

,

respectively. They will be affected by redirection by the user.

Chapter 1: TriMedia Software Architecture Overview

12

Book 3—Software Architecture, Part A

©1999 Philips Semiconductors 10/08/99

Error Reporting

TriMedia libraries report unique 32-bit error codes. The error values returned by TriMedia

libraries can be decoded according to the rules that follow.

Device library functions return errors typed as

tmLibdevErr_t

.

Application libraries return the type

tmLibappErr_t

.

Practically, these codes are unsigned 32-bit integers. The fundamental definitions are

contained in $(TCS)/tm1/tmLibdevErr.h for device libraries and $(TAS)/include/tmLibap-

pErr.h for application libraries.

In addition to the return of error codes, Philips uses an assertion mechanism liberally to

debug TriMedia libraries. Unless the library in question has been compiled with the flag

-DNO_DEBUG

, assertions are used to check many values. When an assertion is triggered,

the file name, the line number, and the error code are reported both to

STDERR

, and to

the

DP

 buffer. The assertion calls

Exit

, because triggered assertions are fatal errors. Philips

highly recommends

 that you build your programs with assertions enabled. Use the “

_g

”

version of the libraries.

Error Decoding

Figure 2 Error Register

■ Bits 28–31 identify the layer where the error originated, as defined in

$(TCS)/tm1/mLibdevErr.h:

■ Bits 24–27 describe the type of component that reported the error. Although it is pos-

sible to add other error types, it should not be necessary for most applications, as

these error types were designed to be generic. However, if absolutely necessary, the

procedure for adding other error types is described in tmLibdevErr.h. Examples of

existing error types include:

■ Bits 16–23 identify the component from which the error was returned.

0xxxxxxx: Device Library
1xxxxxxx: AL Layer
2xxxxxxx: OL Layer
3xxxxxxx: Application Layer

x0xxxxxx: Generic (unspecified)
x1xxxxxx: System
x2xxxxxx: Graphics
x3xxxxxx: Video
x4xxxxxx: Audio
x5xxxxxx: Communications
xFxxxxxx: Other (used by the Board Support Package)

31 2728 2324 1516 28

LAYER (4) TYPE (4) COMPONENT (8) ERROR (16)

Chapter 1: TriMedia Software Architecture Overview

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 13

1

■ Bits 0–15 identify the specific error code.

Error codes for the device libraries are defined in tmLibdevErr.h. Application library com-

ponents define specific error codes in their respective header files. However, a significant

number of commonly used error codes are defined in tmLibappErr.h.

Examples of Errors

■ 0x11000002 is a system error reported by the AL layer. The 2 is defined

TMLIBAPP_ERR_INVALID_SETUP in tmLibappErr.h. This might mean, for example,

that a setup structure passed to an instance setup function was NULL or contained

invalid values.

■ 0x21000076 is a system error returned from the OL layer. The 76 is defined

TMLIBAPP_ERR_FORMAT_NEGOTIATE_DATASUBTYPE. This error is returned by the for-

mat manager to indicate that two components do not share a common data subtype.

■ 0x11010002 is an AL layer system error reported by component 1. TmLibappErr.h tells

us that component 1 is the file reader. TmalFread.h informs us that error 2 is

FR_ERR_CLOSE_FAILED. This error code is returned when an attempt to close a file

fails.

Device Drivers

Device drivers are an important part of TSA. Although TriMedia does not explicitly use a

traditional device-driver architecture, each device driver in TriMedia does include ele-

ments of a traditional device driver. Note that pSOS device drivers are neither provided

nor used by TriMedia.

Even though a TriMedia device driver provides the same services as a traditional device

driver, it does so through a different interface. The difference is explained below.

A traditional device driver interface includes the following functions:

 open close read write setup

The problem with this interface is that the read and write functions imply layers of buff-

ering that can be problematic in a data-intensive multimedia system. Instead, TriMedia

splits the device driver into a number of levels. The lowest level (known as the device

library layer) provides open, close and setup functions, but it does not specify read and

write functions. The data transfer mechanism is left up to a higher layer of the software.

The on-chip TriMedia peripherals provide interrupt vectors. Interrupts are the most effi-

cient way to use the peripherals. The layer above the device driver is responsible for

installing interrupt service routines (ISRs). This layer is the “AL,” which will be explained

in Chapter 7, TSSA Essentials. The ISRs can be written in C, using the TCS_handler

pragma. Because the AL layer does not depend on an operating system, it can be used

with or without an OS. When it is used with an OS, a system of callback functions allows

operating system calls to be made at the appropriate times. In this way, an application

Chapter 1: TriMedia Software Architecture Overview

14 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

that uses the pSOS operating system will use an OL layer library as a device driver. The

standard OL layer interface includes equivalents of the traditional open, close, and setup

routines. The read and write functionality is implemented using the datain and dataout

callback functions that are specified by TSSA.

The Libraries

The remainder of this book explains each TriMedia library in detail. The TriMedia librar-

ies are presented in the following order.

Standard C Library

The TriMedia Software Architecture provides a version of the standard C library, com-

plete with read and write functions such as fread and gets. The I/O functions have been

implemented on top of an easy-to-replace, portable layer. Chapter 2 describes the stan-

dard C library.

Host Interface Libraries

Because TriMedia is often used in conjunction with Windows and Macintosh personal

computers, Philips has developed host interface libraries to support Windows 95, Win-

dows NT, and MacOS. As the programs and the interfaces have been ported and devel-

oped, a consistent and portable host architecture has evolved. The Windows NT version

of the host interface best illustrates this. Each of the host interface libraries implements

downloading, program startup, and runtime communication services. The host libraries

are described in Chapter 3, Host Windows Interfaces. Book 5, System Utilities, presents

detailed API references for the host interfaces.

Downloader and dynamic loader libraries are also available. These are described in

Chapter 11, Linking TriMedia Object Modules of Book 4, Software Tools, Part B.

Device Libraries

Because the TriMedia family of processors includes numerous on-chip peripherals, a set

of libraries (known collectively as libdev) is provided to facilitate the use of these periph-

erals. The device libraries are described in Chapter 5, Device Libraries. Detailed API refer-

ences of device libraries are located in Books 5–9. Note that the device libraries do not

dictate any data transfer mechanism, and do not depend on any operating system ser-

vices.

Chapter 1: TriMedia Software Architecture Overview

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 15

1

The pSOS Operating System

TSA draws a very clear line between components that depend or do not depend on an

operating system. Although pSOS is the operating system supported and used by TSA, it

is used through an operating system abstraction layer that allows porting to another

real-time operating system. Chapter 6, pSOS+™ Real-Time Operating System covers many

details of the TriMedia version of pSOS. For more general information, refer to the pSOS

Programmer’s Reference and pSOS System Concepts manuals, which are shipped with the

TriMedia SDE.

Services provided by pSOS include tasks, queues, and semaphore management. These

services form the basis of the TriMedia Software Streaming Architecture (TSSA). The pSOS

system also provides a number of other supporting libraries. At least one of these, the

pNA networking stack, is available on TriMedia.

TriMedia Streaming Software Architecture (TSSA)

TSSA is the highest level of the TriMedia Software Architecture. It provides a method of

constructing and connecting autonomous components that “stream” data between

them. The basic developer’s kit includes a core of TSSA components in the form of librar-

ies, some with accompanying source code, and with a number of examples of their use.

The TSSA framework was used to construct the HDTV decoder, which (along with several

other TSSA-compliant libraries) are available as the TriMedia DTV software developer’s

kit. Books 5-9 gives detailed API references.

An introduction to TSSA can be found in Chapter 7, TSSA Essentials.

Chapter 1: TriMedia Software Architecture Overview

16 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 17

2
Chapter 2

Standard C Library

Topic Page

Standard C Library 18

Standard C Host Interface 18

File I/O Drivers 22

Chapter 2: Standard C Library

18 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Standard C Library

A fundamental component of the TriMedia software architecture is the standard C

library. The standard C library, as described in stdlib.h, provides a number of ANSI stan-

dard services. The standard C library, libstd.a, is linked to hosted applications by default.

(Of course, it is not linked if it is not used.)

The standard C library includes the fread, fwrite, printf, and scanf functions. The avail-

ability of these functions can be a great aid in the development and testing of multime-

dia applications. These functions are implemented on top of a driver layer. This chapter

gives an overview of that driver layer. The driver layer can interface to a host processor or

it can be used in a stand-alone system that has access to I/O facilities.

This chapter is of particular importance to programmers who want to port the driver

interface to another host.

Standard C Host Interface

The Standard C library, the Remote Procedure Call (RPC) Client, and the RPC Server

form the TriMedia Standard C Host Interface. See Figure 3 below.

Figure 3 Standard C Host Interface

The Standard C Host Interface component of the TriMedia Software Architecture pro-

vides basic I/O capabilities to TriMedia applications. It isolates the host-specific I/O func-

tions that are necessary for the system library to work in a host-independent way. The

Standard C Host Interface is independent of your choice of host and operating system,

RPC Server

Host

DSP
PCI

RPC Server
Win95_Comm

I/O Drivers

Host Level 2 Calls

Embedded
Microprocessor
Flash Memory etc.

OSAL Operating System

Applications (User Code)

Host Interface Libraries

Standard I/O
Standard C
Library

Chapter 2: Standard C Library

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 19

2

making it possible to write basic tests and demonstration programs in a portable fashion.

In each case, the dependency is removed through an “abstraction layer” which is really

just a clearly declared set of functions that must be available to the Standard C library.

This approach to abstraction is easily extended to applications.

The Standard C Host Interface is modeled as an RPC interface that sends service requests

in a way that is synchronous with the task or application that uses it. From a task’s point

of view, the request has been serviced as soon as the corresponding function call termi-

nates. However, the Standard C Host Interface can silently yield the processor to other

tasks if the request requires waiting. The Standard C Host Interface achieves this by

obtaining the current scheduler functions through the Application Model interface.

For example, a task can read a large buffer from a file by issuing the following call:

Not only does the resulting read request take some time to reach the host, but letting

this host read a megabyte of data into the user-provided buffer causes additional delay.

Because TriMedia would otherwise spend idle cycles waiting for completion, the current

task is descheduled, causing other tasks (when available) to continue while the reading

task waits.

The following HostCall service requests are supported by the Standard C Host Interface:

All but the last five service requests correspond to the POSIX.1 functions that require

host communication.

read(datafile, buffer, 1000000);

HostCall_OPEN
HostCall_FSTAT
HostCall_ISATTY
HostCall_READ
HostCall_LSEEK
HostCall_WRITE
HostCall_CLOSE
HostCall_UNLINK
HostCall_MKTEMP
HostCall_GETENV
HostCall_LINK
HostCall_TIME
HostCall_SOCK_SEND
HostCall_SOCK_RECV
HostCall_SOCK_STATUS
HostCall_SOCK_DATA
HostCall_TMPNAM
HostCall_FCNTL

HostCall_SYSTEM
HostCall_OPENDLL
HostCall_ARGV_ARGC_INFO
HostCall_GET_ARGUMENT_STRING
HostCall_EXIT

Chapter 2: Standard C Library

20 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

The I/O drivers component of the Standard C Host Interface maintains a set of I/O driv-

ers. An I/O driver is a collection of file I/O functions including a filename recognition

function. The following is an example:

Such a driver can be installed and uninstalled at any time. Upon opening a file, the col-

lection of currently installed drivers is traversed in reverse order of installation, until the

corresponding filename recognition function returns TRUE. This driver is selected for the

file to be opened, and the corresponding functions (starting with the open function) are

the ones used for this file.

The RPC Client/Server component of the Standard C Host Interface can be as simple or

as complex as you want. In the case of a Windows 95 or Macintosh Operating System

(MacOS) host, the RPC module consists of a client running on TriMedia, as well as a

server running under the Windows 95 or Mac operating system. The two communicate

through the TriMedia manager’s host API. The interface uses the following four func-

tions:

The protocol by which a HostCall service should be requested from the host is as follows:

1. The application prepares a HostCall_command buffer, and fills it with the proper

function code (see Figure 4) and corresponding parameters. The HostCall_command

buffer is also used for returning the service results, so it should not be modified or

deallocated before the request is serviced.

2. The application then issues a call to the HostCall_send function, with a pointer to the

buffer as an argument.

3. After completion of this call, the service has either completed successfully or failed.

You can find information on this in the status field, which is set to either

HostCall_DONE or HostCall_ERROR. An error indicates a failure in the host communi-

cation, not an error in the execution of the requested service itself. For example, the

reason for a failure to open a file is stored in errno, as is conventional.

struct UID_Driver {
 IOD_RecogFunc recog;
 IOD_InitFunc init;
 IOD_TermFunc term;
 IOD_OpenFunc open;
 IOD_CloseFunc close;
 IOD_ReadFunc read;
 IOD_WriteFunc write;
 IOD_SeekFunc seek;
 IOD_IsattyFunc isatty;
 IOD_FstatFunc fstat;
 IOD_FcntlFunc fcntl;
 IOD_OpenDllFunc open_dll;
 UID_Driver next;
};
typedef struct UID_Driver *UID_Driver;

HostCall_send
HostCall_notify
HostCall_init
HostCall_term

Chapter 2: Standard C Library

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 21

2

Note
This sequence is implemented in the appropriate library calls and, therefore,
should not be user-visible. Describing it provides the necessary clarification
for porting the HostCall component to another host.

The _HostCall_send function, which is responsible for achieving the required synchroni-

zation using the AppModel interface, is host-independent and not subject to porting. Its

implementation, shown in Figure 4, is part of the TriMedia runtime system.

_HostCall_send makes use of the host-specific _HostCall_host_send function, which is

the function subject to porting. Note that _HostCall_send allows instantaneous serving,

in which case no need for waiting exists.

You can use this option when no real host interaction is needed for servicing the request.

A simple example is the shortcut of a file write of zero bytes. If waiting is required,

_HostCall_send uses the Application Model interface.

The _HostCall_host_send function eventually calls the _HostCall_notify function to

report termination of the service request. Results of the request are returned in the com-

mand buffer, and the notification function resumes the waiting requester.

Figure 4 Implementation of _HostCall_send and _HostCall_notify

Porting to a new host involves the following steps:

1. A function with the following prototype must be defined:

2. A call to this function must complete in a “very short” amount of time, having

assigned one of three HostCall_status values in the status field of the command

buffer:

void _HostCall_send(HostCall_command *command){
 commandÐ>requester = AppModel_current_thread;
 commandÐ>status = HostCall_BUSY;
 commandÐ>notification_status = HostCall_BUSY;
 commandÐ>termination_handler = NULL;
 commandÐ>returned_errno = 0;

 _HostCall_host_send(command);

 if(commandÐ>status == HostCall_BUSY){
 AppModel_suspend_self();
 if(commandÐ>termination_handler){
 commandÐ>termination_handler(command);
 }
 commandÐ>status = commandÐ>notification_status;
 }
 if(commandÐ>returned_errno){
 errno = commandÐ>returned_errno;
 }
}
void _HostCall_notify(HostCall_command *command){
 AppModel_resume(commandÐ>requester);
}

void _HostCall_host_send (HostCall_command *command);

Chapter 2: Standard C Library

22 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

— HostCall_ERROR: The service request has failed. Note that this only applies to the
host communication. The service itself probably was not tried because of (for
example) capacity problems of the host communication channel.

— HostCall_DONE: The service has already been provided. No waiting is needed. The
results of the request are returned in command buffer.

— HostCall_BUSY: The host has accepted the request and “promised” to eventually
try to service it, after which it will call the _HostCall_notify notification function,
with the command buffer as argument. In this case, depending on success or fail-
ure, the notification_status field is set to either HostCall_ERROR or HostCall_DONE.
Again, this status only provides information on success of host communication.
Errors in the requested services themselves are reported in the returned_errno
field.

3. _HostCall_host_send is responsible for endianness conversion, the mapping of non-

standard errno values, and cache coherency.

File I/O Drivers

Header file tmlib/IODrivers.h defines routines that allow a program to install file i/o driv-

ers. A file I/O driver provides access to file manipulation functions, either through the

usual system call functions (open/read/write/close and others) or through their standard

C library counterparts (fopen/fread/fwrite/fclose and others), which the standard library

implements using the underlying system calls.

For a program running in a hosted environment, either under the simulator tmsim or

on hosted TM hardware, program startup installs a file i/o driver that performs file i/o

using host routines. Thus, opening a file in a TriMedia program in a hosted environment

will call the open routine of the host. For a program running in a nohost environment,

no file i/o drivers are installed by default.

A program can install additional i/o drivers using IOD_install_driver, as defined in tmlib/

IODrivers.h:

The TriMedia Compilation System makes no assumptions about the format of the sup-

ported file system. In particular. it has no knowledge of the format of file names.

UID_Driver IOD_install_driver(
 IOD_RecogFunc recog,
 IOD_InitFunc init,
 IOD_TermFunc term,
 IOD_OpenFunc open,
 IOD_OpenDllFunc open_dll,
 IOD_CloseFunc close,
 IOD_ReadFunc read,
 IOD_WriteFunc write,
 IOD_SeekFunc seek,
 IOD_IsattyFunc isatty,
 IOD_FstatFunc fstat,
 IOD_FcntlFunc fcntl,
 IOD_StatFunc stat
);

Chapter 2: Standard C Library

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 23

2

Instead, it uses the recognition functions recog of the currently installed I/O drivers to

determine whether a file name is recognized by a i/o driver. When a program performs

an open call, the TCS run-time support calls the recognition functions of each installed

I/O driver, latest-installed first, until it finds a recognition function that recognizes the

file name (i.e. a recog function which returns TRUE). Then the run-time support uses the

corresponding driver functions to perform all subsequent operations on the file. The rec-

ognition function for the default host system file I/O driver always returns TRUE, so it

recognizes all host system file names. Of course, a subsequent open call will fail if the

host system open fails, for example because the file does not exist.

The init member defines an initialization function that is called when the driver is

installed, and the term member defines a function that is called if the driver is unin-

stalled using IOD_uninstall_driver. The open, close, read, write, seek, isatty, fstat, fcntl,

and stat functions provide the standard POSIX.1 system call functionality for the driver.

The C library documentation gives a brief synopsis of the usage of each of these calls,

and POSIX.1 describes them in detail. Finally, the open_dll function opens a dynamic

linked library (.dll).

The program can also use the slightly more general IOD_install_fsdriver() call:

This is similar to the IOD_install_driver() call, but it includes additional functions that

allow the program to perform file system-specific calls, mostly functions that manipulate

directories in addition to files. Again, the functions unlink, link, mkdir, rmdir, access,

opendir, closedir, rewinddir and readdir provide additional POSIX.1 system call function-

ality for the driver. The program can use these file system functions to create, remove,

UID_Driver IOD_install_fsdriver
 (
 IOD_RecogFunc recog,
 IOD_InitFunc init,
 IOD_TermFunc term,
 IOD_OpenFunc open,
 IOD_OpenDllFunc open_dll,
 IOD_CloseFunc close,
 IOD_ReadFunc read,
 IOD_WriteFunc write,
 IOD_SeekFunc seek,
 IOD_IsattyFunc isatty,
 IOD_FstatFunc fstat,
 IOD_FcntlFunc fcntl,
 IOD_StatFunc stat,
 IOD_SyncFunc sync,
 IOD_FSyncFunc fsync,
 IOD_UnlinkFunc unlink,
 IOD_LinkFunc link,
 IOD_MkdirFunc mkdir,
 IOD_RmdirFunc rmdir,
 IOD_AccessFunc access,
 IOD_OpendirFunc opendir,
 IOD_ClosedirFunc closedir,
 IOD_RewinddirFunc rewinddir,
 IOD_ReaddirFunc readdir
);

Chapter 2: Standard C Library

24 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

open, read and close directories. Note that TCS file system run-time support does not

include a notion of current working directory.

The examples directory in the TriMedia Compilation System distribution includes sev-

eral examples that demonstrate the use of file i/o functions. The examples/peripherals/

hdvotest example installs a simple driver that recognizes only the file name “console.”

Most of the functions in its IOD_install_driver() command are accordingly Null. exam-

ples/dynamic_loading/flash_demo gives a more interesting example demonstrating the

installation of a file i/o driver for a flash file system.

The simple example below gives an example of a driver directing the output of a file

using a circular memory buffer. The memory address and length of the buffer are

encoded in the filename, which is formatted so that the driver's recognition function

can recognize it.

#define BUFLEN 100

main(){
 char filename[100];
 char filebuffer[BUFLEN+1];
 FILE *f;
 int i;

 _MEM_Driver_init();

 printf("buffer= 0x%08x\n", filebuffer);

 sprintf(filename, "/dev/mem@0x%x#%d", &filebuffer, BUFLEN);

 filebuffer[BUFLEN]= 0;
 f= fopen(filename, "w");

 if(f==NULL){
 printf("File could not be opened\n");
 }else{
 for(i=0; i<10; i++){
 printf("%s\n",filebuffer);
 fprintf(f, "** this is line number %d **\n",i);
 }
 printf(filebuffer);

 fclose(f);
 }
}

Chapter 2: Standard C Library

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 25

2

#define NAME_MASK "/dev/mem@%i#%i"

typedef struct {
 Char *buffer;
 Integer length;
 Char *printpos;
} *MemFILE;

static Boolean RecogMEM (String path){
 Char *buffer;
 Integer length;
 Integer result;

 result= sscanf(path, NAME_MASK, &buffer, &length);
 return result == 2;
}
static Integer OpenMEM(
 String path,
 Integer oflag,
 Integer mode
){
 Integer i;
 MemFILE result= malloc(sizeof(*result));

 if (result == NULL) {
 return Ð1;
 }else{
 sscanf(path, NAME_MASK, &resultÐ>buffer, &resultÐ>length);
 resultÐ>printpos= resultÐ>buffer;
 for(i=0; i<resultÐ>length; i++){
 resultÐ>buffer[i]= '#';
 }
 return (Integer)result;
 }
}
static Integer WriteMEM(
 Integer file,
 Char *buf,
 Integer nbyte)
){
 MemFILE descr = (MemFILE)file;
 Char *bound = descrÐ>buffer + descrÐ>length;
 Char *printpos = descrÐ>printpos;
 Integer i;

 for (i=1; i<=nbyte; i++) {
 Char c= *(buf++);
 if (c == '\n') c= '@';
 *(printpos++) = c;
 if (printpos == bound) printpos= descrÐ>buffer;
 }

 descrÐ>printpos= printpos;
 return nbyte;
}
void_MEM_Driver_init(){
 IOD_install_driver(RecogMEM, NULL, NULL, OpenMEM, CloseMEM,
 NULL, WriteMEM, NULL, IsattyMEM, StatMEM);
}

Chapter 2: Standard C Library

26 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 27

3

Chapter 3

Host Windows Interfaces

Topic Page

TriMedia Manager Architectural Overview 28

Windows TMMan Modules 30

Chapter 3: Host Windows Interfaces

28 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

TriMedia Manager Architectural Overview

The TriMedia Manager provides inter-processor communication functionality. It facili-

tates applications running on the host processor (x86) to communicate with applica-

tions running on the target processor (TriMedia).

The TriMedia Manager provides the following functionality:

■ Downloading and executing TriMedia executables on the TriMedia processor.

■ Message passing from host to target and vice versa.

■ Event signaling from the host on the target and vice versa.

■ Page-locking buffers on the host and enabling the target to access them.

■ Allocation and freeing of shared memory (shared between host and target).

■ An Application Programming Interface (API) for accessing the above functionality.

The TriMedia host driver currently runs on the following platforms:

■ Windows 95

■ Windows 98

■ Windows NT 4.0

■ Windows 2000 (Beta 3)

■ Windows CE 2.1

The TriMedia manager consists of various components running on the host as well as

the target. These components interface with each other to implement the TriMedia Man-

ager functionality. Figure 5 shows the various components and the interactions between

them.

Chapter 3: Host Windows Interfaces

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 29

3

Figure 5 Host Interface Software Architecture

C Run-Time Server (TMCRT.dll)
RPC Server (host_comm.lib)

TMMan Target Driver (TMMan.a/TMMan.dll)

RPC Client
(host_comm.o)

C Run-Time
Client

TriMedia Application

Dynamic
Loader

App Model RTOS/pSOS

HOST

TARGET

PCI

TMMan Kernel Mode Driver (TMMan.vxd/TMMan.sys)

TMMan User Mode Driver (TMMan32.dll)
Relocator & Downloader Library (LibLoad.lib)

Authentication
(AuthHost.dll)

TriMedia Monitors
(TMMon.exe/TMGMon.exe)

TriMedia Application Loader
(TMRun.exe/TMMPRun.exe)

TriMedia User Applications

Chapter 3: Host Windows Interfaces

30 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Windows TMMan Modules

The following are the modules currently supported on the Windows version of TMMan:

Module Description

TMMan.sys This is the kernel mode driver that provides bulk of the TMMan functional-
ity. There are two versions of TMMan.sys: one for Windows 98/2000 and the
other for Windows NT 4.0.

TMMan.vxd This is a kernel mode driver that provides the bulk of TMMan functionality
under Windows 95/98.

TMMan32.dll User Mode Win32 DLL that provides the TMMan application programming
interface to Win32 applications. This DLL simply calls TMMan.sys for the
TMMan functionality.

TMRun.exe Command line utility (Win32 console application) for downloading and
running executables on the TriMedia processor. This program is also used
by TMMon as the TriMedia console.

TMmpRun.exe Multiprocessor version of TMRun, this enables multiprocessor cluster
downloading on multiple TriMedia boards plugged in the system.

TMMon.exe TriMedia Monitor - This is a interactive shell for downloading and running
programs on TriMedia. It is a Win32 console mode application that provides
a command based interface. TMMon reads its input and writes its output
via standard handles so the input to TMMon including command can be
redirected from an input file.

TMCRT.dll TriMedia C Run Time server. This module accepts requests from the target
and serves them. These requests are Unix level 2 I/O calls that are gener-
ated by the executable program running on TriMedia. It uses the TMMan
messaging mechanism to communicate with the target.

TMMan.a The target component of TMMan. This is a static library that boot applica-
tions on TriMedia are linked with. This module provides the TMMan func-
tionality on the target.

Driver.exe This is a helper utility that is provided in order to install the kernel mode
driver in the system. This utility is required only at the time of installing the
software and at the time of uninstalling.

TMManins.exe Helper utility that automatically removes the TriMedia device and associ-
ated drivers from the system. After running this utility, restart the system to
re-install the drivers.

TMGMon.exe Graphical TriMedia Monitor. It’s a Win32 GUI application for downloading
and executing TriMedia applications.

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 31

4

Chapter 4

tmAvFormats.h: Multimedia Format Definitions

Note
For a general overview of TriMedia device libraries, see Chapter 5, Device
Libraries.

Topic Page

Audio Video Formats API Overview 32

Audio Video Formats API Data Structure Descriptions 34

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

32 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Audio Video Formats API Overview

The TriMedia Audio Video Formats Application Programming Interface (API) provides

the common audio and video media formats used in the TriMedia Application Libraries

components. The file tmAvFormats.h defines a set of formats which are used throughout

the TriMedia system to identify multimedia data streams. The tmAvFormats.h provides

only definitions. It does not contains any function prototypes.

Definitions

The Library provides definitions of format types and data packets for certain types, as

well as a definition for the data packet header.

Type Definitions

There are four types that are defined here:

■ Enumerated types describing data.

■ Format structure types.

■ Packet structure types.

■ Data Packets.

Enumerated Types

Components and data streams are classified using a number of fields. The values used for

these fields are declared as enumerated types in tmAvFormats.h

Format Structures

The format of a data stream is given with a format structure. The generic format struc-

ture is the tmAvFormat_t. Audio and video data streams are each identified using their

own type, but the audio and video format types are “subclassed” from the

tmAvFormat_t. Effectively, this means that the start of the subclassed structures is identi-

cal to its parent structure, and the tmAudioFormat_t can be addressed like a

tmAvFormat_t.

Formats can be used in two ways: A capabilities format will specify the (possibly many)

formats acceptable to a component. A specification format requests a specific format.

Format Manager

The TSA default OL layer includes a format manager. This tool is used when connecting

two components. The format manager will check whether a specified format is accept-

able to the specification given in the capabilities structure. The format manager also

checks packets for consistency when they are passed between components.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 33

4

Data Packets

In the TSA architecture, data of a specific type travels from one component to another

component. The packet struct definitions make sure that the producer and the consumer

of a certain type of data can pass information between each other without any problems.

Each packet must contain as its first field a pointer to a standard packet header. Packets

may contain any number of data buffers, although it is common for a packet to contain

one data buffer.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

34 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Audio Video Formats API Data Structure Descriptions

This section describes the Audio Video Formats API data structures.

Name Page

tmAvFormat_t 35

tmAudioFormat_t 36

tmVideoFormat_t 38

tmAvPacket_t 40

tmAvBufferDescriptor_t 41

tmAvHeader_t 42

tmComponentClass_t 44

tmAvDataClass_t 44

tmAvDataType_t 45

tmAvDataSubtype_t 45

tmSystemTypeFormat_t 46

tmVideoTypeFormat_t 47

tmAudioTypeFormat_t 48

tmControlTypeFormat_t 49

tmOtherTypeFormat_t 49

tmVideoRGBYUVFormat_t 50

tmVideoFlags_t 51

tmAudioPcmFormat_t 53

tmAudioMPEGFormat_t 59

tmVideoMPEGFormat_t 59

tmMPEG2TransportStreamFormat_t 60

tmVideoAnalogStandard_t 60

tmVideoAnalogAdapter_t 61

tmAudioAnalogAdapter_t 61

tmSSIAnalogConnection_t 62

tmTimeStamp_t 62

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 35

4

tmAvFormat_t

typedef struct tmAvFormat_t {
 UInt16 size;
 UInt16 hash;
 UInt32 referenceCount;
 tmAvDataClass_t dataClass;
 UInt32 dataType;
 UInt32 dataSubtype;
 UInt32 description;
} tmAvFormat_t, *ptmAvFormat_t;

Fields

size Size of this structure, i.e., sizeof(tmAvFormat_t).

hash Reserved for system use. Initialize to zero.

referenceCount Reserved for system use. Initialize to zero.

dataClass One of the av format classes (Refer to
tmAvDataClass_t on page 44).

dataType One of the Audio/Video (av) types, dependent on
dataClass.

dataSubtype One of the av subtypes, dependent on dataType.

description Optional extension description of a format (for-
mat-specific).

Description

The tmAvFormat_t is a fundamental building block of the TriMedia Software Streaming

Architecture. It is used to describe a class, a type, a subtype and an optional description.

dataType and subType are used to describe the stream.

The exact contents depend on the dataClass. For instance, if dataClass is avdcAudio, then

dataType might be aftLinearPCM and dataSubtype might be apfStereo16.

The description field allows a particular module to implement more (unspecified) infor-

mation. Some data formats will be defined as subclasses of this basic format. For exam-

ple, the audio format (tmAudioFormat_t) also defines a field for the sample rate of the

data stream.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

36 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmAudioFormat_t

typedef struct tmAudioFormat_t{
 UInt16 size;
 UInt16 hash;
 UInt32 referenceCount;
 tmAvDataClass_t dataClass;
 UInt32 dataType;
 UInt32 dataSubtype;
 UInt32 description;
 float sampleRate;
} tmAudioFormat_t, *ptmAudioFormat_t;

Fields

size Size of this structure, i.e., sizeof(tmAudioFormat_t).

hash Reserved for system use. Initialize to zero.

referenceCount Reserved for system use. Initialize to zero.

dataClass One of the av format classes (see tmAvDataClass_t).

dataType One of the av types, dependent on dataClass.

dataSubtype One of the av subtypes, dependent on dataType.

description Optional extension description of a format (format-specific). This
field serves the following two purposes:

(1) Specifies whether the left and right channels carry Dolby Sur-
round encoded data. The bitmask AVFORMAT_PROLOGIC_ENCODED
can be used to access this information as in the following example:

(2) If dataSubtype represents a 32-bit type, specifies how many bits
are significant. This information is stored in the last 8 bits of the
description field and can be accessed with the bitmask
AVFORMAT_NUMBER_OF_BITS_MASK.

sampleRate The sample rate for this audio format, in Hertz.

Description

This struct is a subtype of tmAvFormat_t. The initial fields are identical. The audio-spe-

cific field, sampleRate is added.

tmAudioFormat_t stereo16;
if(stereo16.description & AVFORMAT_PROLOGIC_ENCODED)
 printf(" audio data is Surround encoded\n");

tmAudioFormat_t stereo32;
Int noOfBits;
noOfBits = stereo32.description &
 AVFORMAT_NUMBER_OF_BITS_MASK;

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 37

4

Implementation Notes

Example of a linear 16-bit stereo audio:

Example of an undecoded AC3 stream:

Example of a linear 20-bit stereo audio:

Data of this type is stored in 32-bit aligned words.

tmAudioFormat_t audio16stereo = {
 sizeof(tmAudioFormat_t), // size
 0, // hash
 0 // referenceCount
 avdcAudio, // dataClass
 atfLinearPCM, // dataType
 apfStereo16 // dataSubtype
 0, // description
 44100.0 // sampleRate
};

tmAudioFormat_t ac3audio = {
 sizeof(tmAudioFormat_t), // size
 0, // hash
 0 // referenceCount
 avdcAudio, // dataClass
 atfAC3, // dataType
 apfNone, // dataSubtype
 0, // description
 48000 // sampleRate
};

tmAudioFormat_t audio32stereo = {
 sizeof(tmAudioFormat_t), // size
 0, // hash
 0 // referenceCount
 avdcAudio, // dataClass
 atfLinearPCM, // dataType
 apfStereo32 // dataSubtype
 20, // description: number of bits
 44100.0 // sampleRate
};

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

38 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmVideoFormat_t

typedef struct tmVideoFormat_t {
 UInt16 size;
 UInt16 hash;
 UInt32 referenceCount;
 tmAvDataClass_t dataClass;
 UInt32 dataType;
 UInt32 dataSubtype;
 UInt32 description;
 UInt32 imageWidth;
 UInt32 imageHeight;
 UInt32 imageStride;
 UInt32 activeVideoStartX;
 UInt32 activeVideoStartY;
 UInt32 activeVideoEndX;
 UInt32 activeVideoEndY;
 tmVideoAnalogStandard_t videoStandard;
} tmVideoFormat_t, *ptmVideoFormat_t;

Fields

size Size of this structure, i.e.,
sizeof(tmVideoFormat_t).

hash Reserved for system use. Initialize to zero.

referenceCount Reserved for system use. Initialize to zero.

dataClass One of the av format classes (Refer to
tmAvDataClass_t on page 44).

dataType One of the av types, dependent on dataClass.

dataSubtype One of the av subtypes, dependent on dataType.

description Optional extension description of a format (for-
mat specific).

imageWidth Horizontal image size (in pixels).

imageHeight Vertical image size (in lines).

imageStride Distance in bytes from beginning of one line of
video to the next line of video.

activeVideoStartX Starting X position of active video. Active video
means the part of the video that is to be dis-
played. It could contain section of VBI.

activeVideoStartY Starting Y position of active video. Together with
activeVideoStartX, it defines the starting point in
image domain given by (X, Y).

activeVideoEndX End X position of active video.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 39

4

activeVideoEndY End Y position of active video. Together with
activeVideoStartX, it defines the ending point in

image domain given by (X, Y).

videoStandard Defines the analog video standard to be used. For
details of supported analog video standard please
see the description of tmVideoAnalogStandard_t.

Description

This struct is a subtype of tmAvFormat_t.

Implementation Notes

Example of MPEG-1 system stream:

Example of NTSC stream:

tmVideoFormat_t mpeg1system = {
 sizeof(tmVideoFormat_t), // size
 0, // hash
 0, // referenceCount
 avdcSystem, // dataClass
 stfMPEG1System, // dataType
 avdsNone, // dataSubtype
 0, // description
 320, // hsize
 240, // vsize
 0, // activeVideoStartX
 0, // activeVideoStartY
 320, // activeVideoEndX
 240, // activeVideoEndY
 vasNTSC, // videoStandard
};

tmVideoFormat_t ntscVideo = {
 sizeof(tmVideoFormat_t), // size
 0, // hash
 0, // referenceCount
 avdcVideo // dataClass
 vtfYUV // dataType
 vdfYUV422Planar // dataSubtype
 vdfInterlaced | vdfFrameRate_29_97, // description
 720, // hsize
 480, // vsize
 0, // activeVideoStartX
 0, // activeVideoStartY
 720, // activeVideoEndX
 480, // activeVideoEndY
 vasNTSC, // videoStandard
};

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

40 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmAvPacket_t

typedef struct tmAvPacket_t {
 ptmAvHeader_t header;
 UInt16 allocatedBuffers;
 UInt16 buffersInUse;
 tmAvBufferDescriptor_t buffers[1];
} tmAvPacket_t, *ptmAvPacket_t;

Fields

header Pointer to the packet header (see tmAvHeader_t on page
42). Since the TSSA default functions use it, all legal
packets must contain a valid header.

allocatedBuffers How many buffers are allocated for the packet. Must be
set by the application that creates and owns the packet.
Remains constant over the life of the packet.

buffersInUse This field, along with the dataSize fields of the attached
buffers (see tmAvBufferDescriptor_t on page 41), were
designed to accurately indicate the state of a packet.

If the packet is full, buffersInUse == allocatedBuffers and
dataSize == bufSize for each buffer.

If the packet is empty, buffersInUse == 0 and dataSize ==
0 for each buffer.

Partially full states in between these two extremes are
allowed, and their interpretation is up to the compo-
nents involved. This mechanism is implemented in the
TSA default functions.

buffersInUse must be set accurately by each component
before it sends the packet to dataout (putfull). Packets
with zero buffersInUse are treated as empty by the
default dataout function: They are shunted to the empty
queue. It is customary for a component to set buffersI-
nUse to zero before putting the packet to the empty
queue. The default datain function does not examine
this field.

buffers An array of buffer descriptors. See
tmAvBufferDescriptor_t on page 41.

Description

tmAvPacket_t structs define the fundamental unit of data passed around in the TriMedia

Software Architecture. The last three fields combine to provide two services: the enabling

of multiple data buffers, and the reporting of packet status as it moves from component

to component. For further information about packet infrastructure, see Chapter 7, TSSA

Essentials.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 41

4

tmAvBufferDescriptor_t

typedef struct tmAvBufferDescriptor_t {
 UInt32 bufSize;
 UInt32 dataSize;
 Pointer data;
} tmAvBufferDescriptor_t, ptmAvBufferDescriptor_t;

Fields

bufSize Indicates the amount of memory allocated for
that buffer. Must be set by the application that
creates and owns the packet.

dataSize In your component, you must set dataSize in
each tmAvBufferDescriptor_t when you fill the
buffer. The size of data in a given buffer can be
less than or equal to bufsize. The default func-
tions do not examine datasize, so the interpreta-
tion of a value of zero is up to the component.

Description

Works in conjunction with tmAvFormat_t (see page 35).

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

42 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmAvHeader_t

typedef struct tmAvHeader_t {
 UInt32 id;
 UInt32 flags;
 Pointer userSender;
 Pointer userReceiver;
 Pointer userPointer;
 tmTimeStamp_t time;
 Pointer format;
} tmAvHeader_t, *ptmAvHeader_t;

Fields

id Used to identify packets while debugging. For the
use of the application. Not used internally by
TSSA components.

flags A few specific values are recognized by TSSA com-
ponents. One such value is the timestampvalid
flag. Another value is avhField2. It specifies
whether the packet contains Field 1 or Field 2,
when the Video Renderer is used on a field basis.

userSender, userReceiver These two fields are not interpreted by the
defaults and they can be used as a programmer
sees fit. They are declared as pointers, but the data
structures to which they point are not preserved
by generic operations (such as the copying of
packets from one processor to another). Two
fields are provided so that a distinction can easily
be made between data written by the sender and
data written by the receiver.

userPointer This field gives users a way to attach more appli-
cation-specific data to the header of a packet.
Three basic rules govern the use of this field.
These rules allow user data to be preserved
through generic operations, such as the copying
of packets from one processor to another. (When
considering the use of this field, remember that
another option would be to attach more buffers
to the packet.)

The memory to which these fields point:
- must be a data structure.
- must have a 16-bit size as its first field.
- must not have any further pointers.

time Time stamp (can be used, for example, for presen-
tation time).

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 43

4

format Subclass of tmAvFormat_t. If Null, the component
is directed to reuse the previously specified for-
mat.

Description

Works in conjunction with tmAvFormat_t (see page 35).

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

44 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmComponentClass_t

typedef enum {
 ccClock,
 ccSystemDecoder,
 ccVideoDecoder,
 ccVideoEncoder,
 ccVideoRenderer,
 ccVideoDigitizer,
 ccVideoTransform,
 ccAudioDecoder,
 ccAudioEncoder,
 ccAudioRenderer,
 ccAudioDigitizer,
 ccAudioTransform,
 ccGraphics2D,
 ccGenericIn,
 ccGenericOut
} tmComponentClass_t;

Description

The tmComponentClass_t is used during the negotiation process as two components

attempt to connect. The component class defines what type of data processing a TriMe-

dia application library component does, for example, video renderer. The component

class is returned as one of the default values of the GetCapabilities call on a component.

Generic components do not interpret the data that they operate on, regardless of the

data type: for example, audio or video. The fields in this enum are mutually exclusive.

tmAvDataClass_t

typedef enum {
 avdcGeneric = 0xffffffff,
 avdcSystem = 0x00000001,
 avdcVideo = 0x00000002,
 avdcAudio = 0x00000004,
 avdcControl = 0x00000008,
} tmAvDataClass_t;

Description

The tmAvDataClass_t is used during the negotiation process as two components attempt

to connect. The data class enum type defines the data classes for TriMedia. One of these

enums will be used in dataClass field of tmAvFormat_t.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 45

4

tmAvDataType_t

typedef enum {
 avdtGeneric = 0xffffffff
 avdtNone = 0x80000000
} tmAvDataType_t;

Description

Used to describe or specify data types when no particular type is appropriate. Generic

means that any type is accepted by a capabilities format. None is used when no data type

is required. This is stated explicitly.

tmAvDataSubtype_t

typedef enum {
 avdsGeneric = 0xffffffff
 avdsNone = 0x80000000
} tmAvDataSubtype_t;

Description

Used to describe or specify data subtypes when no particular subtype is appropriate.

Generic means that any subtype is accepted by a capabilities format. None is used when

no data subtype is required. This is stated explicitly.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

46 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmSystemTypeFormat_t

typedef enum {
 stfGeneric = 0xffffffff,
 stfNone = 0x80000000,
 stfMPEG1System = 0x00000001,
 stfMPEG2Program = 0x00000002,
 stfMPEG2Transport = 0x00000004,
 stfQuicktimeMovie = 0x00000008,
 stfDVD = 0x00000010
} tmSystemTypeFormat_t;

Description

The tmSystemTypeFormat_t is used by components which support MPEG system streams

(avdcSystem). This enum defines the data type belonging to each data class. It can be

used in the dataType field of tmAvFormat_t. When the format is specified in a capabili-

ties structure, a number of types may be OR’d together. This would indicate that any of

the OR’d types are supported.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 47

4

tmVideoTypeFormat_t

typedef enum {
 vtfGeneric = 0xffffffff,
 vtfNone = 0x80000000,
 vtfReserved1 = 0x00000001,
 vtfReserved2 = 0x00000002,
 vtfQuicktimeVideo = 0x00000004,
 vtfYUV = 0x00000010,
 vtfRGB = 0x00000020,
 vtfJPEG = 0x00000040,
 vtfMPEG = 0x00000080,
 vtfDVC = 0x00000100,
 vtfH261 = 0x00000200,
 vtfH263 = 0x00000400,
} tmVideoTypeFormat_t;

Description

The tmVideoTypeFormat_t is used by components which support video streams (avd-

cVideo). This enum defines the data type belonging to each data class. It can be used in

the dataType field of tmAvFormat_t. When the format is specified in a capabilities struc-

ture, a number of types may be OR’d together. This would indicate that any of the OR’d

types are supported.

Implementation Notes

vtfMPEG1Video and vtfMPEG2Video are obsolete. Use vtfMPEG and subtype.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

48 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmAudioTypeFormat_t

typedef enum {
 atfGeneric = 0xffffffff,
 atfNone = 0x80000000,
 atfMuLaw = 0x00000001,
 atfALaw = 0x00000002,
 atfADPCM = 0x00000004,
 atfMPEG = 0x00000008,
 atfG723 = 0x00000010,
 atfG728 = 0x00000020,
 atfG729 = 0x00000040,
 atfQuicktimeAudio = 0x00000080,
 atfReserved1 = 0x00000100,
 atfReserved2 = 0x00000200,
 atfReserved3 = 0x00000400,
 atfSDDS = 0x00000800,
 atfAC3 = 0x00001000,
 atfDTS = 0x00002000,
 atfLinearPCM = 0x00004000,
 atf1937 = 0x00008000,
} tmAudioTypeFormat_t;

Description

The tmAudioTypeFormat is used by components which support audio streams (avdcAu-

dio). Audio subtypes may be further specified. This enum describes the formats of audio

streams. Some streams (commonly atfLinearPCM) are more completely described with an

additional subtype field. It can be used in the dataType field of tmAvFormat_t. When the

format is specified in a capabilities structure, a number of types may be OR’d together.

This would indicate that any of the OR’d types are supported.

Implementation Notes

atfMPEG1Audio, atfMPEG2Audio, and atfMPEG2AugmentedAudio are obsolete. Use

atfMPEG and subtype.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 49

4

tmControlTypeFormat_t

typedef enum {
 ctfGeneric = 0xffffffff,
 ctfNone = 0x80000000
} tmControlTypeFormat_t;

Description

This enum defines the data type belonging to each data class. It can be used in the

dataType field of tmAvFormat_t.

tmOtherTypeFormat_t

typedef enum {
 otfGeneric = 0xffffffff,
 otfNone = 0x80000000
} tmOtherTypeFormat_t;

Description

This enum defines the Audio, Video, etc. format subtypes. It can be used in the dataType

field of tmAvFormat_t.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

50 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmVideoRGBYUVFormat_t

typedef enum {
 vdfGeneric = 0xffffffff,
 vdfNone = 0x80000000,
 vdfRGB8A_233 = 0x00000001,
 vdfRGB8R_332 = 0x00000002,
 vdfRGB15Alpha = 0x00000004,
 vdfRGB16 = 0x00000008,
 vdfRGB24 = 0x00000010,
 vdfRGB24Alpha = 0x00000020,
 vdfYUV420Planar = 0x00000040,
 vdfYUV422Planar = 0x00000080,
 vdfYUV411Planar = 0x00000100,
 vdfYUV420Interspersed = 0x00000200,
 vdfYUV422Interspersed = 0x00000400,
 vdfYUV411Interspersed = 0x00000800,
 vdfYUV422Sequence = 0x00001000,
 vdfYUV422SequenceAlpha = 0x00002000,
 vdfMono = 0x00004000,
 vdfYUV444Planar = 0x00008000,
 vdfDTVCMPlanar = 0x00010000, /* for use in DTV */
 vdfDTVCMSequence = 0x00020000, /* for use in DTV */
 vdfYInterleavedUV420 = 0x00040000,
 vdfYUVPlanarAlpha4 = 0x00080000
} tmVideoRGBYUVFormat_t;

Description

RGB or YUV type data streams further identify their format using these subtypes. This

enum defines the data subtypes belonging to the vtfRGBYUV video type format (It lists

possible formats of video data). It can be used in the dataSubtype field of tmAvFormat_t.

When the format is specified in a capabilities structure, a number of types may be OR’d

together. This would indicate that any of the OR’d types are supported.

vdfDTVCMPlanar and vdfDTVCMSequence are for use in the DTV platform.

Note
DTVCM stands for Digital TV Color Multiplexer.

Implementation Notes

vdfYUV422Sequence: U0, Y0, V0, and Y1 are for VO overlay. vdfYUV422SequenceAlpha:

U0, Y0, V0, and Y1 are for VO overlay, with low bit for alpha blending. vdfMono: 8-bit

monochrome.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 51

4

tmVideoFlags_t

typedef enum {
 vdfInterlaced = 0x1,
 vdfBottomFieldFirst = 0x2,
 vdfFieldInFrame = 0x4,
 vdfFieldInField = 0x8,
 vdfProgressive = 0x10,
 vdfFrameRate_23_976 = 0x100,
 vdfFrameRate_24 = 0x200,
 vdfFrameRate_25 = 0x400,
 vdfFrameRate_29_97 = 0x800,
 vdfFrameRate_30 = 0x1000,
 vdfFrameRate_50 = 0x2000,
 vdfFrameRate_59_94 = 0x4000,
 vdfFrameRate_60 = 0x8000,
 vdfDTVCM_0Video = 0x10000, /* for use in DTV */
 vdfDTVCM_25Video = 0x20000, /* for use in DTV */
 vdfDTVCM_50Video = 0x40000, /* for use in DTV */
 vdfDTVCM_75Video = 0x80000, /* for use in DTV */
 vdfDTVCM_100Video = 0x100000, /* for use in DTV */
 vdfMPEGExtension = 0x20000,
 vdfAspectRatio_4x3 = 0x100000,
 vdfAspectRatio_16x9 = 0x200000,
} tmVideoFlags_t;

Description

The video flags are used in the description field of the tmVideoFormat_t. They are used to

give more information about the video stream.

vdfInterlaced This bit is set if the video stream is meant for an
NTSC or PAL type of interlaced display.

vdfBottomFieldFirst This bit is set if the field order is not the normally
expected “top field first.” MPEG2 allows this type
of stream.

vdfFieldInField Meant for interlaced displays.

vdfFieldInFrame Meant for interlaced displays.

vdfProgressive Meant for progressive displays.

vdfFrameRate The frame rate bits are used by MPEG encoders.

vdfDTVCM_0Video Blends 0% video and 100% of graphics.

vdfDTVCM_25Video Blends 25% video and 75% of graphics.

vdfDTVCM_50Video Blends 50% video and 50% of graphics.

vdfDTVCM_75Video Blends 75% video and 25% of graphics.

vdfDTVCM_100Video Blends 100% video and 0% of graphics.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

52 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

vdfAspectRatio_4x3 Use 4x3 aspect ratio.

vdfAspectRatio_16x9 Use 16x9 aspect ratio.

These fields are restricted to the low 16 bits of the description field. Use vdfFieldInField

and vdfFieldInFrame to indicate that video packets contain one field only. Use vdfInter-

laced and vdfProgressive to indicate that video packets contain one entire frame.

Figure 6 describes the contents of the buffer parts of the different video packets.

Figure 6 Contents of Video Packet Buffers

Field 2

.

.

.

vdfFieldInField vdfFieldInFrame vdfProgressive

Field 1
Field 2
Field 1
Field 2

Buffer of
Packet n

vdfInterlaced

Field 1

.

.

.

Field 1
Field 1
Field 1
Field 1

Buffer of
Packet n

Field 2

.

.

.

Field 2
Field 2
Field 2
Field 2

Buffer of
Packet n+1

empty

.

.

.

Field 1
empty
Field 1
empty

Buffer of
Packet n

Field 2

.

.

.

empty
Field 2
empty
Field 2

Buffer of
Packet n+1

Field 1

.

.

.

Field 1
Field 1
Field 1
Field 1

Buffer of
Packet n

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 53

4

tmAudioPcmFormat_t

typedef enum {
 apfGeneric = 0xffffffff,
 apfNone = 0x80000000,
 apfMono8 = 0x00000001,
 apfStereo8 = 0x00000002,
 apfMono16 = 0x00000004,
 apfStereo16 = 0x00000008,
 apfFourCh_3_1_0_16 = 0x00000010,
 apfFourCh_2_2_0_16 = 0x00000020,
 apfFourCh_2_1_1_16 = 0x00000040,
 apfFourCh_3_0_1_16 = 0x00000080,
 apfFiveDotOne16 = 0x00000100,
 apfSevenDotOne16 = 0x00000200,
 apfMulti16 = 0x00000400,
 apfMono32 = 0x00000800,
 apfStereo32 = 0x00001000,
 apfFourCh_3_1_0_32 = 0x00002000,
 apfFourCh_2_2_0_32 = 0x00004000,
 apfFourCh_2_1_1_32 = 0x00008000,
 apfFourCh_3_0_1_32 = 0x00010000,
 apfFiveDotOne32 = 0x00020000,
 apfSevenDotOne32 = 0x00040000,
 apfMulti32 = 0x00080000,
 apfMonoFloat = 0x00100000,
 apfStereoFloat = 0x00200000,
 apfFourCh_3_1_0_float = 0x00400000,
 apfFourCh_2_2_0_float = 0x00800000,
 apfFourCh_2_1_1_float = 0x01000000,
 apfFourCh_3_0_1_float = 0x02000000,
 apfFiveDotOneFloat = 0x04000000,
 apfSevenDotOneFloat = 0x08000000,
 apfMultiFloat = 0x10000000,
 apfReserved = 0x20000000,
 apfReserved2 = 0x40000000,
} tmAudioPcmFormat_t;

Description

Streams of linear PCM audio data with the type atfLinearPCM further identify their for-

mat using these subtypes. To identify the format of a stream, only one value can be used.

To identify the capabilities of a component, a number of types may be OR’d together.

This would indicate that any of the OR’d types are supported.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

54 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

The following table illustrates the order of samples in memory for the different PCM

audio subtypes. The channel abbreviations mean:

The audio data is in packed interleaved format. With 16-bit data, this is very efficient.

When 18 or 20-bit data is used, it is stored in 32-bit format.

When the 32-bit formats are used, the specific description field of the tmAudioFormat_t

which is used is filled in with the number of bits which are significant (for example, 18,

20, etc.). This lets components know how to clip or scale their final results.

Note
TM1xxx hardware does not support 32-bit data in a native fashion. Some
systems provide external hardware to support 32-bit data. The TM DTV
hardware uses the lower 20 bits of 32. It also inserts some sync bits into the
unused high bits of the first word.

apfMono8

apfStereo8

apfMono16

Abbreviation Channel

L Left

R Right

C Center

Ls Left Surround

Rs Right Surround

S Surround (but if only one Surround is present)

Lc Left Center

Rc Right Center

Lfe Low Frequency Effects

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

C,C,C,C C,C,C,C C,C,C,C C,C,C,C C,C,C,C C,C,C,C C,C,C,C C,C,C,C

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L,R,L,R L,R,L,R L,R,L,R L,R,L,R L,R,L,R L,R,L,R L,R,L,R L,R,L,R

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

C, C C, C C, C C, C C, C C, C C, C C, C

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 55

4

apfStereo16

apfFourCH_3_1_0_16 Three front (Left, Right, Center) one surround, and no subwoofer.

apfFourCH_2_2_0_16 Two front (Left, Right) two surround (Ls and Rs), and no sub-

woofer.

apfFourCH_2_1_1_16 Two front (Left, Right), one surround (S), and subwoofer (Lfe).

apfFourCH_3_0_1_16 Three front (Left, Right, Center) no surround, and subwoofer (Lfe).

apfFiveDotOne16 Three front (Left, Right, Center,) two surround (Ls, Rs), and subwoofer

(Lfe).

apfSevenDotOne16 Three front (Left, Right, Center) four surround (Ls, Rs, Lc, and Rc),

and subwoofer (Lfe).

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R L, R L, R L, R L, R L, R L, R L, R

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R C, S L, R C, S L, R C, S L, R C, S

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R Ls, Rs L, R Ls, Rs L, R Ls, Rs L, R Ls, Rs

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R S, Lfe L, R S, Lfe L, R S, Lfe L, R S, Lfe

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R C, Lfe L, R C, Lfe L, R C, Lfe L, R C, Lfe

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R C, Lfe Ls, Rs L, R C, Lfe Ls, Rs L, R C, Lfe

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L, R C, Lfe Ls, Rs Lc, Rc L, R C, Lfe Ls, Rs Lc, Rc

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

56 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

apfMulti16

apfMono32

apfStereo32

apfFourCH_3_1_0_32 Three front (Left, Right, Center) one surround, and no subwoofer.

apfFourCH_2_2_0_32 Two front (Left, Right), two surround (Ls and Rs), and no sub-

woofer.

apfFourCH_2_1_1_32 Two front (Left, Right), one surround (S), and subwoofer (Lfe).

apfFourCH_3_0_1_32 Three front (Left, Right, Center,) no surround, and subwoofer (Lfe).

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

C C C C C C C C

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R L R L R L R

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C S L R C S

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R Ls Rs L R Ls Rs

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R S Lfe L R S Lfe

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C Lfe L R C Lfe

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 57

4

apfFiveDotOne32 Three front (Left, Right, Center) two surround (Ls, Rs), and one sub

(Lfe).

apfSevenDotOne32 Three front (Left, Right, Center) four surround (Ls, Rs, Lc, and Rc),

and one sub (Lfe).

apfMulti32

apfMonoFloat

apfStereoFloat

apfFourCH_3_1_0_float Three front (Left, Right, Center) one surround, and no sub-

woofer.

apfFourCH_2_2_0_float Two front (Left, Right), two surround (Ls and Rs), and no sub-

woofer.

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C Lfe Ls Rs L R

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C Lfe Ls Rs Lc Rc

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

C C C C C C C C

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R L R L R L R

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C S L R C S

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R Ls Rs L R Ls Rs

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

58 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

apfFourCH_2_1_1_float Two front (Left, Right), one surround (S), and subwoofer (Lfe).

apfFourCH_3_0_1_float Three front (Left, Right, Center) no surround, and subwoofer

(Lfe).

apfFiveDotOneFloat Three front (Left, Right, Center) two surround (Ls, Rs), and sub-

woofer (Lfe).

apfSevenDotOneFloat Three front (Left, Right, Center,) four surround (Ls, Rs, Lc, and Rc),

and subwoofer (Lfe).

apfMultiFloat

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R S Lfe L R S Lfe

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C Lfe L R C Lfe

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C Lfe Ls Rs L R

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

L R C Lfe Ls Rs Lc Rc

32-bit
Word 1

32-bit
Word 2

32-bit
Word 3

32-bit
Word 4

32-bit
Word 5

32-bit
Word 6

32-bit
Word 7

32-bit
Word 8

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

not
specified

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 59

4

tmAudioMPEGFormat_t

typedef enum {
 amfGeneric = 0xffffffff,
 amfNone = 0x80000000,
 amfMPEG1_Layer1 = 0x00000001,
 amfMPEG1_Layer2 = 0x00000002,
 amfMPEG1_Layer3 = 0x00000004,
 amfMPEG2 = 0x00000008,
 amfMPEG1_Augmented = 0x00000010,
 amfMPEG_AAC = 0x00000020,
} tmAudioMPEGFormat_t;

Description

This enum defines subtypes to identify MPEG audio formats. When the format is speci-

fied in a capabilities structure, a number of types may be OR’d together. This would indi-

cate that any of the OR’d types are supported.

tmVideoMPEGFormat_t

typedef enum {
 vmfGeneric = 0xffffffff,
 vmfNone = 0x80000000,
 vmfMPEG1 = 0x00000001,
 vmfMPEG2 = 0x00000002,
 vmfMPEG4 = 0x00000004,
} tmVideoMPEGFormat_t;

Description

This enum defines subtypes to identify MPEG video formats. When the format is speci-

fied in a capabilities structure, a number of types may be OR’d together. This would indi-

cate that any of the OR’d types are supported.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

60 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmMPEG2TransportStreamFormat_t

typedef enum {
 tsfGeneric = 0xffffffff,
 tsfNone = 0x80000000,
 tsfStandard = 0x00000001,
 tsfTM2TimeStamped = 0x00000002
} tmMPEG2TransportStreamFormat_t;

Description

This enum defines subtypes to identify the MPEG2 transport stream System Type For-

mat.

tmVideoAnalogStandard_t

typedef enum {
 vasGeneric = 0xffffffff,
 vasNone = 0x80000000,
 vasNTSC = 0x00000001,
 vasPAL = 0x00000002,
 vasSECAM = 0x00000004
 vas720x480p = 0x00000010, /* for use in DTV */
 vas768x576p = 0x00000020, /* for use in DTV */
 vas960x540p = 0x00000080, /* for use in DTV */
 vas1920x1080 = 0x00000100
} tmVideoAnalogStandard_t;

Description

This enum defines possible standards for an analog video signal, for example, NTSC or

PAL. When the format is specified in a capabilities structure, a number of types may be

OR’d together. This would indicate that any of the OR’d types are supported.

vas720x480p Configures video output as 720×480 progressive
display.

vas768x576p Configures video output as 768×576 progressive
display.

vas960x540p Configures video output as 960×540 progressive
display.

vas1920x1080 Configure video output as 1920×1080 interlaced.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 61

4

tmVideoAnalogAdapter_t

typedef enum {
 vaaGeneric = 0xffffffff,
 vaaNone = 0x80000000,
 vaaCVBS = 0x00000001,
 vaaSvideo = 0x00000002,
 vaaExt1 = 0x00000004
} tmVideoAnalogAdapter_t;

Description

This enum defines possible adapters for an analog video signal, for example, S-Video or

composite. When the format is specified in a capabilities structure, a number of types

may be OR’d together. This would indicate that any of the OR’d types are supported.

tmAudioAnalogAdapter_t

typedef enum {
 aaaGeneric = 0xffffffff,
 aaaNone = 0x80000000,
 aaaMicInput = 0x00000001,
 aaaLineInput = 0x00000002,
 aaaAuxInput1 = 0x00000004,
 aaaAuxInput2 = 0x00000008,
 aaaDigitalInput = 0x00000010,
 aaaLineOutput1 = 0x00000100,
 aaaLineOutput2 = 0x00000200,
 aaaAuxOutput1 = 0x00000400,
 aaaAuxOutput2 = 0x00000800,
 aaaDigitalOutput = 0x00001000
} tmAudioAnalogAdapter_t;

Description

This enum defines possible adapters for an analog audio signal, for example, aux or line.

When the format is specified in a capabilities structure, a number of types may be OR’d

together. This would indicate that any of the OR’d types are supported.

Chapter 4: tmAvFormats.h: Multimedia Format Definitions

62 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

tmSSIAnalogConnection_t

typedef enum {
 sacNoConnection = 0x00,
 sacConnectToPOTS = 0x01,
 sacConnectToISDN = 0x02,
 sacConnectToOTHER = 0x80
} tmSSIAnalogConnection_t;

Description

Defines possible analog back ends for the TriMedia SSI peripheral, for example, ISDN or

POTS. When the format is specified in a capabilities structure, a number of types may be

OR’d together. This would indicate that any of the OR’d types are supported.

tmTimeStamp_t

typedef struct tmTimeStamp_t {
 UInt32 ticks;
 UInt32 hiTicks;
} tmTimeStamp_t, *ptmTimeStamp_t;

Fields

ticks Low 32-bit clock tick counter (value interpreted
based upon clockType).

hiTicks High 32-bit clock tick counter (value interpreted
based upon clockType).

Description

The time stamp field contains a 64-bit time value. Its interpretation is up to the clock

that is selected when a component is setup. Clocks can be of various types, such as the

90 kHz clock used by MPEG, or SMPTE clocks. The clock handle passed in to a module’s

setup structure contains callback functions to access the clock values.

Note
For information on clock support, see Chapter 4, Clock Support API, of Book 5,
System Utilities, Part A.

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 63

5

Chapter 5

Device Libraries

Topic Page

Introduction 64

Naming Conventions 65

Board Support 66

Device Library Versions 68

Generic Function Prototypes 69

Generic Data Structures 71

Chapter 5: Device Libraries

64 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The TriMedia software architecture includes a layer that provides a public interface to

hardware peripherals. This layer is generally known as the “device library” layer. A device

library exports two interfaces. At the top, a device library gives an interface that is

designed to be constant regardless of the current platform. At the bottom, a device

library exports an interface that allows individual platforms to provide code appropriate

to implement the public device library interface.

Device libraries are “operating system agnostic.” They are not device drivers. They do

not specify the method of data transfer. Device libraries allow applications to install this,

either as a callback function, or as the entire interrupt service routine. An individual

device library may contain more or less functionality. At the least, it provides a way to

claim the resource associated with the library. More complicated device libraries include

significant code to export a reasonable interface to a complicated device.

Figure 7 Device Library Architecture

Note
Refer to Books 5–9 for information specific to a given device library. Refer to
the appropriate TriMedia data book for details about TriMedia hardware.

Historically, device libraries were developed to support TriMedia’s on-chip peripherals.

But as the TriMedia software stack matured, the device library concept matured. Today,

the TriMedia Software Architecture provides services that let users support any sort of

hardware related device with an appropriate library.

The TriMedia toolset includes device library APIs supporting the peripherals that are

found on all existing TM variants. Examples of these are the audio and video I/O devices.

The SDK also offers what are effectively device library APIs to several components that

are commonly found on boards connected to TriMedia through some sort of generic bus

(PCI, IIC). The tsaUART API is an example of one of these.

Application
Device
Library

Board
Library

Library API

ISR

Board API
(specified in board.c)

Chapter 5: Device Libraries

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 65

5

Naming Conventions

Public functions in device libraries are generally prefixed by tsaDev, where "Dev" is an

abbreviation of the device name. Some older libraries may not follow this convention,

but all new libraries do. The tsa prefix identifies the library as participating in the TriMe-

dia Software Architecture.

Each device exports at least one #include file. A user should expect to include only one

such file per library. If a library is built of several pieces, the include file for the “com-

pound” library will incorporate the headers for its constituent parts.

Many device libraries also export a header file describing their MMIO (Memory Mapped

I/O) interface. They do so using macros that follow the naming conventions from the

appropriate TriMedia Data Book (for example, aiBUF2_FULL). There are macros for field

identification and masking, which usually are not needed in user code. The device librar-

ies and board support packages make use of this macro-based interface.

Note
In the following sections, the term “dev” stands for any device name. For
example, in the type devCapabilities_t, “dev” can be replaced by ai, ao, vi,
vo, vld, iic, mpeg, hdvo, evo, ssi, dma, int, pin, sem, exc, or tim. The exception
to this rule is the name of the error code type tmLibdevErr_t.

The Standard Device Library API

The standard device library API is effectively the same as the standard TriMedia Software

Architecture library API.

All functions return an error code of the type tmLibdevErr_t. TMLIBDEV_OK is defined as

zero; it is returned when no error is encountered. As with any TSA compliant library,

non-zero error codes are divided into module codes (high 16 bits), and specific errors.

The module codes are defined in the include file tm1/tmLibdevErr.h. To minimize the

Table 2 Basic TSA Standard Function API

Function Description

devGetCapabilities Request the device capabilities, including the number of supported
instances, the version number, and other device-specific information
such as supported data formats, and so on.

devOpen Requests an instance. That is, devOpen requests that the caller be
added to the users of the device.

devInstanceSetup Sets up the device (and board if necessary) for a certain instance.

devStart Starts running the setup of the current instance.

devStop Stops running the setup of the current instance.

devClose Releases the instance.

Chapter 5: Device Libraries

66 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

execution time and code size overhead of the default library, asserts are used in the

debug version of the library. The asserts primarily check alignment and size restrictions

imposed by the hardware, and whether the passed instance is an owner of the device at

that point. Philips recommends that you develop with the debug version of the library

and then switch to the smaller and faster default library after the development phase.

More information about these functions is contained in the following pages.

Device library functions execute by default in the endianness in which the processor is

executing.

Device library components do not:

■ Claim any memory, though a device may use some static data.

■ Depend on the presence or absence of a particular host.

■ Depend on a specific board implementation.

■ Take care of cache coherency.

■ Specify an interrupt service routine (ISR).

Board Support

The TriMedia Software Architecture includes two important libraries that achieve the

design goals of the device libraries. These libraries are the registry and the component

manager. Together, they allow system designers to build a board support package in such

a way as to provide support for the standard (and non-standard) device libraries.

Registry

The TriMedia registry (documented in Chapter 2, TriMedia Registry Manager API, of Book

5, System Utilities, Part A) provides a general way for a device library to find board-specific

information. This information might be as basic as the presence or absence of a compo-

nent. It might also be a set of function pointers that are used to implement the lower

device library interface, that is the interface to the board. The registry is conceptually

very simple. It is just a library that stores and retrieves information (in the form of 32-bit

numbers), given “keys,” in the form of text strings. The registry organizes these keys

hierarchically, so you can look up something like bsp/boardID to find the value of the

boardID variable.

Component Manager

The registry provides a way in which libraries and applications can store and retrieve all

sorts of information. The component manager provides a way for a system to install

what may be board- or platform-dependent information into the registry. There are, of

course, many ways that these variables could be added. You could call a function at the

Chapter 5: Device Libraries

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 67

5

start of main(). You could initialize each component on its first use. But these approaches

each have drawbacks. In order to meet the design goals of the device library, TriMedia

uses a component manager that can initialize components before the user’s program

starts.

The technology of the component manager is related to that used in a linker. Compo-

nents, as described here, are modules that can depend on other modules, and which are

capable of exporting information on which other modules might depend. Using this

information, the component manager can build a dependency tree and use it to initial-

ize an arbitrary collection of components in a reasonable order.

As an example, consider the ‘audio out’ device library. This library needs a pointer to a

function table from the registry. This registry entry must be made before audio out func-

tions are called. Through the mechanism of the component manager, it is made before

the call to the user’s main routine. Since the audio out component is part of what has tra-

ditionally been called the BSP (Board Support Package), this initialization happens as

part of the boardInit sequence. While more detail is provided in Chapter 19, TMBoard

API of Book 5, System Utilities, Part C, a brief outline of the procedure is provided here.

Board Bootup Sequence

When you build a program to run on one or more boards, you link in the appropriate

board support packages. If your developers have different boards or platforms, it may be

very helpful to build your program to run on several of them. When you build for a

release, you will probably link in support only for the actual supported boards.

A board support package must export at least one output, using a macro like this,

as documented in Chapter 19, TMBoard API of Book 5, System Utilities, Part C. This

exports the “activate” function, keyed to the board ID. Because bsp/boardID is an output

with no matching input, the component manager will call it at the start of the initializa-

tion sequence. Each component has an activate function, and this function is what is

called by the component manager. The job of the activate function is two-fold. First,

activate will return True if the hardware supporting this component is found to exist.

Second, the activate function will, on return, have performed any initialization required

for the higher level libraries supported by this component. This probably means that the

activate function put some information into the registry.

Selecting Boards

Using this mechanism, a user can add or delete supported boards when he links his pro-

gram. The tmconfig file used by tmcc includes variables which define a default list of

boards. Users may want to empty this list, and instead, explicitly list the boards that they

TSA_COMP_DEF_O_COMPONENT(Philips_dtv_ref2,
 TSA_COMP_BUILD_ARG_LIST_1("bsp/boardID"),
 dtv_ref2_board_activate);

Chapter 5: Device Libraries

68 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

wish to support in their makefile. More documentation about this is contained in

Chapter 3, TriMedia Component Manager API, of Book 5, System Utilities, Part A.

Device Library Versions

The SDK includes APIs to support the devices that are available on the TM-1000, TM-

1100, TM-1300, and TM-2700. The device library interface allows you to set up the

devices in commonly used modes and to initialize board peripherals as necessary. The

interface supports multiple instances for devices that permit multiple users.

Most device libraries are contained in the archive, libdev.a. Some of the basic supporting

libraries are contained in libam.a, as they are needed by lower levels of the run-time sys-

tem. Each of the device libraries is also provided as in a dynamically linked version

(DLL).

Debug Version

A precompiled version of the device library, with debug information included, contains

asserts to allow additional error checking on alignment restrictions, and so on. You can

use this version with the debugger, tmdbg, since it was compiled with the options -g

and -O2. (The default library, libdev.a, is compiled with the -O2 and -DNDEBUG options.)

The sources are included in the toolset. tmdbg requires only the path to these sources.

You can link a program to the debug version of the library by specifying the option

-ldev_g in the link line. This will ensure that libdev_g.a is linked in before the default lib-

dev.a. For example, the command line:

will create a version of the video in example program, vitest, linked with the debug

library. The debugger can then be used to single-step through the test program and

device libraries.

Dynamic Linked Library Versions

All device library components have a corresponding dynamically linked library (DLL). A

link option command file is automatically passed by the compiler driver tmcc to tmld. It

enumerates all the DLLs, so the user need only specify the link type app or dll.

For example, the command line:

will create a dynamically loadable version of the example program avio. The avio pro-

gram uses Audio In/Out and Video In/Out in a pass-through mode and will reference,

among others, the dynamic libraries libai.dll, libao.dll, libvi.dll, libvo.dll, and libiic.dll.

tmcc vitest.c -o vitest.out -g -ldev_g

tmcc -btype app avio.c -o avio.app

Chapter 5: Device Libraries

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 69

5

Generic Function Prototypes

Each device implements what can be thought of as the device library “base class.” This is

made up of the set of functions described in Table 2.

devGetCapabilities

Each device has its own capability structure. A common part of this structure is defined

as:

The definition for tmVersion_t is located in tmlib/tmtypes.h.

Some peripherals store additional information in the capability structure. In particular,

devices with coexisting devices on the board (such as the Audio In device and the

ad1847 board component) store the name of the codec, as well as information about

what data streaming formats they support. This will be explained further in the device-

specific sections of this manual.

You can inspect the current status of any device via a call to the appropriate devGetCapa-

bilities function:

The function devGetCapabilities sets the pointer pCap to the device capability structure.

This structure is read only for the user of the library. devGetCapabilities returns

TMLIBDEV_OK upon success.

devOpen

The function devOpen opens a device for initial use. It arbitrates and assigns an owner-

ship. Its prototype is:

The instance returned by devOpen is read only for the user of the device library and

must be passed to all subsequent device library calls. devOpen returns TMLIBDEV_OK

upon success, or TMLIBDEV_ERR_NO_MORE_INSTANCES if no instances are available.

Some devices reset the device in the devOpen call or perform other initializations such

reserving the interrupt vector. Sharable devices (IIC, ICP, and DMA) can handle multiple

instances.

typedef struct {
 tmVersion_t versionNum;
 Int numSupportedInstances;
 Int numCurrentInstances;
} devCapabilities_t, *pdevCapabilities_t;

tmLibdevErr_t devGetCapabilities(devCapabilities_t **pCap);

tmLibdevErr_t devOpen(Int *instance);

Chapter 5: Device Libraries

70 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

devClose

The devClose function releases the claim on the device and frees the interrupt allocation.

Its prototype is:

If the device is still running when devClose is called, it will be stopped.

The function devClose returns TMLIBDEV_OK upon success, or

TMLIBDEV_ERR_NOT_OWNER if passed an invalid instance.

devInstanceSetup

The devInstanceSetup function sets up the device as well as the board component

needed for operating the device and performs necessary error checking on incoming

parameters. It accepts an instance and a structure defining the necessary initializations:

The function devInstanceSetup returns TMLIBDEV_OK upon success, or

TMLIBDEV_ERR_NOT_OWNER if passed an invalid instance.

Once set up, the device can be started and stopped. Philips provides additional functions

to change some parameters (such as buffer pointers) during device operation, so there is

no need to call devInstanceSetup more than once.

devStart

The devStart function starts running the device after devInstanceSetup. Its prototype is:

The function devStart returns TMLIBDEV_OK upon success, or

TMLIBDEV_ERR_NOT_OWNER if passed an invalid instance.

devStop

The devStop function stops the device after devStart. Its prototype is:

The function devStop returns TMLIBDEV_OK upon success, or

TMLIBDEV_ERR_NOT_OWNER if passed an invalid instance.

tmLibdevErr_t devStop(Int instance);

tmLibdevErr_t devInstanceSetup(Int instance, devInstanceSetup *setup);

tmLibdevErr_t devStart(Int instance);

tmLibdevErr_t devStop(Int instance);

Chapter 5: Device Libraries

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 71

5

Generic Data Structures

devCapabilities_t

All devices have a struct named devCapabilities_t. This struct will contain at least the fol-

lowing fields:

version The version of the installed device library
module.

numSupportedInstances The number of instances of the device which can
be currently running. Some devices will allow
only one device to run at a time whereas others
will allow more.

numCurrentInstances The number of instances of the device which are
currently open. This number is incremented by
the successful completion of the devOpen func-
tion and decremented by the successful comple-
tion of the devClose function.

In addition to these fields, each device-specific struct will contain fields for device-spe-

cific information. For example, the ai struct (aiCapabilities_t) contains a field named

codecName, among others. The devCapabilities_t struct may be accessed through the

function devGetCapabilities.

devInstanceSetup_t

This struct is common to all devices. It contains device-specific fields which allow the

specific device to be initially set up (before the devStart function is called). It contains

such fields as callback function addresses, interrupt enable flags, buffer sizes and loca-

tions, etc. It is passed as a parameter to the function devInstanceSetup.

Chapter 5: Device Libraries

72 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 73

6

Chapter 6

pSOS+™ Real-Time Operating System

Topic Page

Introduction 74

pSOS Application Structure 74

pSOS+m on TriMedia 84

TriMedia Support for Multiprocessors 85

pSOS Networking Components 86

Debugging pSOS Applications on TriMedia 92

Chapter 6: pSOS+™ Real-Time Operating System

74 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Introduction

The pSOS™ operating system, from Integrated Systems, Inc. (ISI), is a modular, high-per-

formance, real-time operating system (RTOS) designed specifically for embedded micro-

processors. It provides a complete multitasking environment based on open system

standards. pSOS employs a modular architecture, built around a real-time multitasking

kernel and a collection of companion software components.

Although other operating systems can be ported to run on TriMedia, pSOS is the only

operating system that Philips, under license agreement with ISI, has ported and stan-

dardized for TriMedia. pSOS+/TriMedia Version 1.1. is derived from pSOS+/PPC V2.0.6.

For details concerning pSOS, not specific to TriMedia, refer to the documents pSOS Sys-

tem Concepts and pSOS System Calls, which are bundled on the CD.

This chapter describes the pSOS real-time operating system as it is used on TriMedia. It

includes sections on compiling, and debugging pSOS applications, as well as pSOS+m™

(the multiprocessing version of the pSOS kernel), TriMedia support for multiprocessing

on different platforms, and TriMedia networking components for pSOS. Note that, in

this document, pSOS will refer to both the pSOS+ and the pSOS+m kernels. Also, in this

document, when referring to directory path names, $ (TCS) refers to the TCS installation

directory and $ (PSOS_SYSTEM) refers to $ (TCS) /OS/pSOS/pSOSystem. pSOS, pSOS+,

and pSOS+m are registered trademarks of Integrated Systems, Inc.

Refer to the release notes for information about known bugs.

Note
TriMedia’s pSOS is distributed and installed with the TriMedia (SDE) Software
Development Environment. pSOS does not have to be installed separately.

pSOS Application Structure

The pSOS kernel consists of various system calls that can be used by a pSOS application.

The system calls provide functionality for task management, semaphores, message

queues, dynamic memory allocation, time management, I/O functions, event macros,

asynchronous signals (pSOS+m only), and fatal error handling. Refer to pSOS System Calls

for detailed information about each system call.

Most of the pSOS kernel is provided as a library that can be linked into a user’s applica-

tion. The kernel is configurable by means of an include file. This include file (sys_conf.h)

is compiled with a portion of the kernel, known as the pSOS board support package. By

this mechanism, the pSOS kernel is tailored to the needs of each application.

Starting a pSOS application from scratch can be most efficiently achieved by copying

and adapting one of the provided example directories, such as $ (TCS) /examples/psos/

psos_demo1.

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 75

6

This directory reflects the structure of a minimal pSOS application, the parts of which are

discussed in the following sections. In addition, many of the TriMedia application librar-

ies make use of pSOS.

root.c

This file contains the prescribed function named root for initializing and starting user

execution, after initialization of pSOS has finished. It is responsible for creating all other

pSOS objects that are required for the particular application, usually including message

queues, semaphores, and other tasks.

The root function is executed by one of the two tasks that are created by pSOS itself dur-

ing initialization. (The other one is the idle task). It has a high execution priority to min-

imize delay in application startup caused by other tasks being created.

Because the root task is a task like any other, the application can choose to let it partici-

pate with other created tasks in application execution after it completes its job as appli-

cation initializer. However, many applications just let it suspend or terminate itself.

The root function is the usual place for initializing the pSOS device drivers. Because Tri-

Media devices are accessed using the TriMedia device library, usually the only device

driver to initialize is that of the pSOS system timer, which is needed for the timed-event

library and for task timeslicing to work. Hence, a minimal root function is the following:

root.c can be adapted to create a new pSOS application.

drv_conf.c

drv_conf.c is the means by which pSOS drivers are customized. Because many TriMedia

and TSSA programs do not use pSOS drivers, a generic default copy of drv_conf.c is nor-

mally linked into the pSOS board support package.

This file contains the second function that applications should provide. It has the pre-

scribed name SetUpDrivers. As opposed to root, this function is called very early during

pSOS initialization, in a stage at which the total memory assigned to pSOS is being

divided between pSOS components (like pNA) and pSOS device drivers. No tasks are exe-

cuted yet, and none of the regular pSOS functions will work yet.

SetUpDrivers is the place where the application should install the pSOS drivers that it

wants to use, and to optionally reserve memory needed by these drivers. When no spe-

cific pSOS drivers are needed, this file can be left untouched. It contains conditionalized

void root(void){
 void *dummy;
 ULONG ioretval;

 de_init(DEV_TIMER, 0, &ioretval, &dummy);
 printf("Hello world\n");
 t_delete(0L);
}

Chapter 6: pSOS+™ Real-Time Operating System

76 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

installations of many standard device drivers provided by ISI. In some cases, it may even

be an empty function.

SetUpDrivers installs information for drivers in the pSOS I/O table. The function InstallD-

river is called to add each driver. InstallDriver takes the following arguments:

If you are adding a driver that must be initialized before pSOS drivers are initialized, or

before a driver's init function is called, you can create a local copy of drv_conf.c and

modify it to call a setup function for the driver. For example, refer to CnslSetup in SetUp-

Drivers for a serial device driver. If the initialization function must allocate memory, pass

FreeMem to it as an argument, the same as the other initialization functions in SetUp-

Drivers, which will return what is left of the memory for the next setup routine.

pSOS Board Support Package

The pSOS board support package (pSOS BSP) traditionally contains the implementations

of the hardware-specific software available to the application. This consists of the device

drivers (Note: drv_conf.c contained only the enabling of these drivers), pSOS boot code,

pSOS configuration code, and hardware-access libraries such as those needed for install-

ing interrupt handlers and system timers. It is a repository of hardware and configura-

tion functions that is shared by many applications, and, therefore, it is part of the pSOS

installation under the pSOSystem directory, rather than part of the application code.

IMPORTANT
The pSOS BSP is different from the TriMedia device library BSP.

In TriMedia pSOS, all relevant hardware-access functions are already available in the Tri-

Media device library, and no pSOS device drivers have been delivered. Also, pSOS starts

up as a normal main function, using the TCS boot code like any other TriMedia applica-

tion. For these reasons, the function of the pSOS BSP has been reduced to pSOS kernel

configuration only.

Argument Meaning

USHORT major_number Device major number

void (*dev_init)() Device init procedure

void (*dev_open)() Device open procedure

void (*dev_close)() Device close procedure

void (*dev_read)() Device read procedure

void (*dev_write)() Device write procedure

void (*dev_ioctl)() Device control procedure

ULONG rsvd1 Reserved

ULONG rsvd2 Reserved

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 77

6

Kernel configuration is performed by a number of functions that pass the pSOS configu-

ration parameters defined in sys_conf.h via tables to the pSOS kernel, and the pSOS main

function, which initializes and starts this kernel.

Because it compiles the application-specific configuration parameters into the pSOS ker-

nel, the configuration sources should be recompiled for each application; hence, it can-

not be devised as a precompiled library.

There usually is no need for users to interfere with the pSOS BSP/pSOS configuration

code.

pSOS Kernel

The pSOS Kernel comes in numerous configurations, depending on endianness, the use

of dynamic linking, and the use of multiprocessors. The objects that contain the various

versions of the pSOS kernel are psos_tm_eb.o, psos_tm_el.o, psos_tm_eb.dll, psos_tm_el.dll,

psosm_tm_eb.o, psosm_tm_el.o, psosm_tm_eb.dll, and psosm_tm_el.dll. They can also be

found in the pSOSystem directory.

sys_conf.h

sys_conf.h is a configuration file containing macros by which a pSOS application can be

configured. Macros are available for enabling/disabling pSOS components (when sup-

ported), for enabling/disabling the multiprocessor extension (pSOS+m), for resizing the

various preallocated resource sets (task descriptors, objects, message blocks), and for

installing user definable callback functions into, for example, the scheduler. Refer to

Figure 8 below.

Since basic programs do not often change sys_conf.h, a default version is often used.

This file is used to build the pSOS board support package. If you want to customize

sys_conf.h, create a local copy and customize it as necessary.

Set the macros KC_SYSSTK, KC_ROOTSSTK, and KC_ROOTUSTK to at least 8K to prevent

stack overflow. Usually, 8K is high enough, but, in specific cases, these need to be set

higher.

KC_NTASK, KC_NQUEUE, KC_NSEMA4, KC_NMSGBUF, and KC_NTIMER configure the num-

ber of “local objects” that exist in the system. If these are too low, the creation of a task

or a queue may fail. Hence, it is critical that the error codes are checked when creating

pSOS objects.

Definitions are given for a number of “callout” functions. Of particular interest here are

the task switch callout and the fatal error handler. The task switch callout can be used to

trace the execution of a pSOS application. This is an example of a task switch callout:

void task_switch (unsigned long entering_tid, void* entering_tcb,
 unsigned long leaving_tid, void* leaving_tcb){

Chapter 6: pSOS+™ Real-Time Operating System

78 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Also useful is the fatal error callout:

extern void fatal_handler(unsigned long err, unsigned long flag);

Stack overflow detection has been added to TriMedia’s port of pSOS. The macro,

SC_STACK_OVF_CHECK, in sys_conf.h, defines the number of bytes at the end of the

stack (of each task) that will be filled with a known pattern, and that will be checked for

being overwritten at each system call. The default number of bytes to be checked is 8.

When an overwrite is detected, pSOS execution will be aborted with fatal error

FAT_STKOVF (0xF30). Note that SC_STACK_OVF_CHECK will be truncated to an integral

number of words.

SC_RAM_SIZE is no longer used by the TriMedia port of pSOS. At the end of initiation,

pSOS claims the maximum available memory remaining on the board for dynamic allo-

cation in “Region 0.” No change is required by the user for this macro.

A macro, TCS_MALLOC_USE, has been added to sys_conf.h. When it is enabled, the TCS

memory manager will be used for malloc/free. When disabled, malloc/free will be

mapped to rn_getseg/rn_free from Region 0, as is standard in pSOS. The pSOS region

manager might be more predictable in its real-time behavior, but this is at the cost of

larger unit sizes. The Region 0 unit size can be adjusted by changing KC_RN0USIZE. Also,

the pSOS region manager cannot hold more than 32K units, which is 8MB with the cur-

rent KC_RN0USIZE, but proportionally less when the unit size is decreased.

When TCS_MALLOC_USE is enabled, you must define TCS_REGION0_SIZE such that

Region 0 does not occupy all free memory at the end of pSOS initialization. When not

defined, all free memory (limited to 32K units) is given to Region 0. Otherwise, Region 0

is created with the specified size, also limited to 32K units, and all other memory is avail-

able via the TCS memory manager. Use this macro in combination with

TCS_MALLOC_USE and KC_RN0USIZE, when KC_RN0USIZE result in a Region 0 does not

contain all available SDRAM.

In order to link new pSOS components ported by TriMedia, such as pSOS+m and pNA, to

your pSOS applications, move the macros, SC_PSOS, SC_PSOSM, and SC_PNA from

sys_conf.h to the pSOS application makefile. SC_PSOS and SC_PSOSM will be set accord-

ing to the value of the PSOS macro. Similarly, SC_PNA will be set according to the value

of the PNA macro (see pSOS Example Makefile below).

 DP((" Leaving task %x. ", leaving_tid));
 DP((" Entering: task %x. \n", entering_tid));
}

/*---*/
/* pSOS+ configuration parameters */
/*---*/
 #define KC_RN0USIZE 0x100 /* region 0 unit size */
 #define KC_NTASK 12 /* max number of tasks */
 #define KC_NQUEUE 10 /* max number of message queues */
 #define KC_NSEMA4 30 /* max number of semaphores */
 #define KC_NMSGBUF 100 /* max number of message buffers */
 #define KC_NTIMER 10 /* max number of timers */
 #define KC_NLOCOBJ 50 /* max number of local objects */
 #define KC_TICKS2SEC 100 /* clock tick interrupt frequency */

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 79

6

Figure 8 The sys_conf.h configuration file.

Other pSOS Components

ISI provides a relatively wide selection of pSOS components. A small number of these

have been ported to TriMedia.

■ pNA is the pSOS network stack. This has been ported, and it is included with the

release.

■ pROBE is the pSOS debugger. Most of the functionality of pROBE has been incorpo-

rated into the TriMedia debugger.

pSOS Example Makefile

pSOS applications can be compiled in a number of configurations, enabling or disabling

options such as multiprocessing, dynamic linking, and pSOS network components, and

compiling for different hosts and endianness.

Different sets of pSOS binaries must be linked, depending on the options enabled, and

different definitions must be provided. The makefiles hide users from the details, by pro-

 #define KC_TICKS2SLICE 10 /* time slice quantum, in ticks */
 #define KC_SYSSTK 0x1000 /* pSOS+ system stack size (bytes) */
 #define KC_ROOTSSTK 0x1000 /* ROOT supervisor stack size */
 #define KC_ROOTUSTK 0x1000 /* ROOT user stack size */
 #define KC_ROOTMODE 0x2000 /* ROOT initial mode */

 /*--*/
 /* The following are examples for modifying the following defines */
 /* */
 /* Using a pSOSystem routine as a fatal error handler */
 /* #define KC_FATAL ((void (*)()) SysInitFail) */
 /* */
 /* Using a user written routine as a fatal error handler */
 /* extern void MyHandler (void); */
 /* #define KC_FATAL ((void (*)()) MyHandler) */
 /* */
 /*--*/

 #define KC_STARTCO 0 /* callout at task activation */
 #define KC_DELETECO 0 /* callout at task deletion */
 #define KC_SWITCHCO 0 /* callout at task switch */
 #define KC_FATAL 0 /* fatal error handler address */
 #define KC_ROOTPRI 230 /* ROOT task priority */

/* NB: The following macros have been moved from sys_conf.h to the pSOS demo
 makefile which is discussed in the next section. Errors might result when
 using this demo makefile in combination with a sys_conf.h which still
 defines these macros, or when using a sysconf.h intended for the demo
 makefile in combination with another makefile:*/

 #define SC_PSOS YES /* pSOS+ real-time kernel */
 #define SC_PSOSM NO /* pSOS+ real-time multiprocessing kernel */
 #define SC_PNA NO /* pNA+ TCP/IP networking manager */

Chapter 6: pSOS+™ Real-Time Operating System

80 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

viding macros and allowing them to quickly switch between different application con-

figurations by redefining certain macros.

The complete pSOS makefile is large enough to prove daunting to the casual observer.

For the users who do not need the different configuration options, a simplified version

of the makefile is provided. Both makefiles can be found in $ (TCS) /examples/psos/

demo (Makefile and Makefile.simple). The simple makefile removed the options to

enable or disable multiprocessing, dynamic linking, and pSOS network components

(dynlink_demo uses dynamic linking).

However, a multiprocessing version of this makefile can be found in $ (TCS) /examples/

psos/psos_mp_demo1. When using Makefile.simple, a make clean is necessary after rede-

fining any of the macros. The simple makefile can be ported to be used with Microsoft’s

NMAKE, while the original makefile cannot because of the use of nested macros. See the

comments at the top of Makefile.simple for instructions on how to port it to NMAKE.

The simple Makefile is used in the examples that use pSOS in $ (TCS) /examples as Make-

file. The examples that use pSOS in peripherals include: patest, vrend, and vtrans. The mis-

cellaneous examples include: dynamic_loader_shell, psos_files, and tipc; in multiprocessor,

data_streamer.

After setting the macros to the desired configuration in the makefile you want to use,

run them in a Korn Shell from the MKS Toolkit by typing

to use Makefile, or by typing

to use Makefile.simple.

The simple makefile is small enough to be self-explanatory.

The Complete pSOS Makefile

For simple pSOS applications directly derived from

$ (TCS) /examples/psos/*demo*

(and for these demos themselves), the makefile can be made to work by simply defining

the macro TCS to the actual TCS installation. This defines the compiler version to be

used, as well as the location of the pSOSystem installation.

A default rule is provided for compiling any C file that is located in the current directory

in which the makefile is invoked. Relying on this rule, new application source files can

be provided for in the makefile by simply extending the OBJECTS macro with the corre-

sponding object file names. For instance, a new file called new.c in the current directory

can be provided for in the makefile by simply adding $ (OBJDIR) /new.o.

Compilation directories named OBJDIR_‹host›_‹endian› and

PSOS_CONFIG_‹host›_‹endian› will hold the generated object files for the

<host>/<endian> combination chosen. They can be removed using a “make clean.”

make

make -f Makefile.simple

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 81

6

The following describes the different parts of the demo makefile.

These macros define the location of the TCS compiler installation, including pSOS. Since

PSOS_SYSTEM is defined in terms of TCS, usually only the TCS macro must be adapted.

TCS probably is the only macro that you must change when you encounter this makefile

for the first time.

These macros can be changed to pass new include paths or compilation macros to source

files that are compiled using the default compilation rule (in the following paragraph),

or to use different linker options when linking the application.

The LDFLAGS as shown pass the full set of code compaction options to the linker. Apart

from reducing the application code size by sharing identical dtrees, such as common epi-

logues of “C” functions, and by reordering dtrees to minimize instruction padding, the -

bremoveunusedcode macro has the effect of removing unused parts of pSOS. For

instance, an application that only makes use of multitasking and message passing via

queues will not get a copy of, for example, the pSOS semaphore or timer libraries.

This defines the name of the application, that is, the result produced by executing this

makefile, and the object files from which it should be linked. This list of object files

should not include the pSOS kernel object as described in the earlier section pSOS Appli-

cation Structure, nor the files compiled from the pSOS configuration files.

As described earlier in this section, new C files to be compiled with the application can

be incorporated in the makefile by adding a corresponding entry in the OBJECTS list.

When these C files are placed in the current directory, then the default make rule

##
 # Location of compiler
##

 TCS = /t/qasoft/build/SunOS
 PSOS_SYSTEM = $(PSOS_SYSTEM)

##
 # CompilationÐ and link flags
##

 CINCS = ÐI. \
 ÐI$(PSOS_SYSTEM)/include
 CFLAGS =
 # code compaction optimizations by tmld:
 LDFLAGS = Ðbremoveunusedcode Ðbcompact Ðbfoldcode

##
 # Desired name of application, plus objects to link
##

 APPLICATION = data_streamer.out

 OBJECTS= \
 $(OBJDIR)/root.o \
 $(OBJDIR)/drv_conf.o

 target: $(APPLICATION)

Chapter 6: pSOS+™ Real-Time Operating System

82 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

described under discussion of the “Application Building” portion of the file later in this

section will automatically take care of compiling them into object files.

This is already illustrated by the treatment of the files root.c. These files occur in the same

directory as the makefile itself, and they are compiled into object files by the default

make rule.

Note that all objects are to be placed in a subdirectory that is referred to by the macro

OBJDIR. This prevents the source directory from being trashed with intermediate files.

This list of macros allow users to specify the application configuration: TriMedia execu-

tion host, whether the use of the dynamic linker should be allowed, required TriMedia

endianness, and the required list of pSOS extensions.

Note the following remarks:

■ ENDIAN=eb does not work in combination with HOST=Win95. The other HOST

options are compatible with either endianness.

■ Selection of DYNAMIC=dynamic causes the resulting APPLICATION to become a dyn-

boot application, containing pSOS as an embedded dynamic library. A dynboot con-

tains the dynamic loader, and hence is able to load task code at run time. When such

loaded task code has references to pSOS, then linking pSOS as an embedded dynamic

library will allow such task code to detect it during loading. An example of this is dis-

cussed in detail in the Chapter 13, Dynamic Linking API, of Book 5, System Utilities.

Unused pSOS code removal is far less effective in the case of the use of pSOS+m, or in

the case of dynamic loading. The reason for this is that external calls to pSOS can be

made in either of these combinations, from arbitrary dynamically loaded code or

from other pSOS nodes, so that it is impossible to predict whether a particular pSOS

function will be used.

■ Creating an embedded, standalone application is possible simply by using

HOST=nohost. ANSI file I/O is not possible in such a configuration, that is, calls to

printf will remain possible, but they will return a failure status unless a new I/O driver

##
 # Selected application configuration
##

 HOST = tmsim
 #HOST = MacOS
 #HOST = Win95
 #HOST = WinNT
 #HOST = nohost

 DYNAMIC = nodynamic
 #DYNAMIC = dynamic

 ENDIAN = el
 #ENDIAN = eb

 #PSOS = psosm
 #PNA = pna
 #PPP = ppp

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 83

6

has been installed, and the application will be stripped from the generic host commu-

nication library.

■ Despite the name, applications created with HOST=nohost will run on any of the sup-

ported TCS platforms except that ANSI I/O will not work. This means that stand-

alone applications that have their own means of doing I/O, possibly through the Tri-

Media devices, and can be tested on a MacOS or on a PC-hosted TriMedia board or

under tmsim.

■ pSOS+m based (multiprocessor) applications should be started using tmmprun,

which downloads executables to the requested TriMedia nodes, and which assigns

node identifications to each of the nodes. Because tmmprun assigns these numbers,

they need not be defined at application compile time, so that the same executable

can be used for more than one node or even for all of the nodes.

This include file isolates several technical definitions (which strongly depend on the

chosen configuration parameters) of the following:

■ PSOS_CONFIG defines the compilation directory for the pSOS BSP (see the earlier sec-

tion pSOS Application Structure).

■ OBJDIR defines the compilation directory for all sources compiled by the default

make rule described below.

■ The PSOS_LINK macro must be included in the link command line for linking APPLI-

CATION (see rule below). It contains the proper link macros and it contains the proper

versions of all enabled pSOS components.

■ The PSOS_OBJECT macro is only needed when creating a code segment that is to be

dynamically loaded by APPLICATION (note that DYNAMIC= dynamic in such cases).

The macro contains the names of all pSOS dynamic libraries, so that the references to

pSOS can be resolved by the linker. See the dynamic loader shell example described

later in this document.

■ For make technical reasons, the directories PSOS_CONFIG and OBJDIR have times-

tamp files PSOS_CONFIG and OBJDIR associated.

##
 # Include invariant part of this makefile
##

 include $(PSOS_SYSTEM)/include/Makefile.inc

##
 # Application building
##

 $(OBJDIR)/%o: %c
 @ echo "Compiling $(*)c"
 $(CC) $(CFLAGS) $(CINCS) -c $(*)c -o $@
 $(APPLICATION) : $(CHECK) .$(PSOS_CONFIG) $(OBJECTS) Makefile
 @ echo "Linking $(APPLICATION)"
 $(CC) \
 $(OBJECTS) $(PSOS_LINK) $(PSOS_CONFIG)/bsp.a \
 $(LDFLAGS) $(CFLAGS) -o $(APPLICATION)

Chapter 6: pSOS+™ Real-Time Operating System

84 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

■ PSOS_CONFIG and OBJDIR are dependent on the selected HOST/ENDIAN values. This

allows switching between different values of HOST or ENDIAN without having to do a

clean build.

The previous make rules define how to build the application, and how to create the

object file mentioned in the OBJECTS macro from a corresponding C file in the current

directory.

pSOS+m on TriMedia

Introduction to pSOS+m

pSOS+m, the multiprocessing version of the pSOS kernel, extends most of the pSOS+ sys-

tem calls to operate seamlessly across multiple processors and also adds some functional-

ity relevant only to multiprocessor systems. As pSOS+m is designed for functionally

divided multiprocessing systems, it is especially suitable for real-time applications using

TriMedia. For more details behind the concepts involved in pSOS+m, refer to Chapter 3,

pSOS+m Multiprocessing Kernel, in the pSOS System Concepts document.

Implementation of pSOS+m

TriMedia’s pSOS+m is implemented using shared memory across the PCI bus. As the

pSOS+m kernel itself is designed to be independent of the physical medium connecting

the various processors, it relies on the standard API in the Kernel Interface (KI) to provide

the actual shared memory connection.

Necessary Changes to Use pSOS+m

To use pSOS+m, you must make two changes for the compiling process. First, change the

PSOS macro in the application makefile to psosm.

Second, modify the definitions of SD_SM_NODE and SD_KISM in the sys_conf.h file, by

replacing them with the following:

##
 # Cleanup
##

 clean :; rm -rf *.o *.a *% $(APPLICATION) \
 .PSOS_CONFIG* PSOS_CONFIG* \
 .OBJDIR* OBJDIR*

extern int _node_number;
#define SD_SM_NODE (_node_number+1)

extern int _number_of_nodes;
#define SD_KISM _number_of_nodes

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 85

6

Node Numbering

Notice that SD_SM_NODE is _node_number plus 1. The reason for this is that the node

numbering for pSOS+m starts at 1, while the node numbering for TriMedia start at 0.

From now on, this document will use the TriMedia system for node numbering. The val-

ues of _node_number and _number_of_nodes will be filled in by the downloader and,

therefore, do not have to be hard-coded in sys_conf.h.

TriMedia Support for Multiprocessors

The following example assumes that you have at least three TM1s in the machine and

the names of your applications are a.out, b.out, and c.out. You can also load the same

application on more than one TM1.

Note that you must load your applications in the order you intended for node number-

ing. For example, a.out will be run the master node (node #0), and b.out and c.out will be

run on node #1 and node #2, respectively.

Windows

TriMedia provides support for multiprocessing on Windows with the tool tmmprun. To

run several applications on multiple TM1’s, type the following line:

Shared Memory Support in tmcc

Shared memory can be used in applications without using pSOS+m. The only drawback

in using shared memory instead of using pSOS+m system calls to communicate across

processors is that the user must provide synchronization for data access.

If you want to use shared memory, TriMedia provides options in tmcc to compile data

into shared memory. First, declare the uninitialized data you want in shared memory

into one file. You must use the actual structure or type declarations, as opposed to point-

ers to the structures or types. Remember that any data you include in another file in the

shared memory file will also be put into shared memory, so do not include a file that

declares data in the shared memory file unless you want its data to be put into shared

memory, also. This example, calls the shared memory file usershared.c, contains only the

following variable declaration:

The following makefile rule will create a usershared.o, which should be linked to each

application that will be run on different nodes.

> tmmprun -exec a.out -exec b.out -exec c.out

unsigned long shared_mem[1000];

Chapter 6: pSOS+™ Real-Time Operating System

86 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

$ (OBJDIR) /usershared.o should be added to the OBJECTS macro in the makefile as fol-

lows:

The following table explains the results:

For more information on the TriMedia linker, refer to Chapter 11, Linking TriMedia Object

Modules, of Book 4, Software Tools, Part B.

pSOS Networking Components

The PPP-TM Network Interface is an implementation of the Point-to-Point Protocol

(PPP), as defined in RFC1331 and RFC1332. This pSOS networking component supports

all Link Control Protocol (LCP) options except the Quality-Protocol. It also supports all

IPCP options and provides configurability to work with deprecated options.

What it Contains

The PPP-TM is implemented as a Network Interface (NI) to the pNA+ component to

allow TCP/IP operations over serial lines. It can be extended to support other network

layers, provided they observe the same NI used by pNA+. PPP-TM supports only asyn-

chronous links. The underlying serial hardware must be full-duplex.

PPP-TM Operations

The PPP protocol consists of the following four components:

■ A method of encapsulating datagrams over serial links

■ An LCP for establishing, configuring, and testing the data-link connection

$(OBJDIR)/usershared.o: usershared.c
 $(CC) Ðc $(CFLAGS) $(CINCS) Ðo $(OBJDIR)/usershared.o \
usershared.c
 $(LD) $(OBJDIR)/usershared.o Ðo $(OBJDIR)/usershared.o \
Ðmap_commons Ðsectionrename bss=shared \
Ðsectionproperty bss=shared Ðsectionproperty \
bss=uncached

Statement Result

bss Represents the uninitialized data section.

map_commons Maps common symbols to bss section.

sectionrename bss=shared Renames the section to shared.

sectionproperty bss=shared Sets shared property for the section.

sectionproperty bss=uncached Sets uncached property for the section.

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 87

6

■ A suite of authentication protocols that contains Challenge Handshake Authentica-

tion Protocol (CHAP) and Password Authentication Protocol (PAP), that are used to

authenticate the peer

■ A family of Network Control Protocols (NCPs) for establishing and configuring differ-

ent network layer protocols (for example, IP)

PPP TM supports one NCP, which is IPCP for the TCP/IP network layer.

Configurations

You must configure several site-dependent parameters. These are defined in the

ppp_conf.h files under the $(PSOS_REL)/include directory.

PPP Operation Parameters

The following parameters are local-defined in the file ppp_conf.h and are not negotiated

with the peer. They are site-dependent and should be tuned to get the best result accord-

ing to the application environment. The values in parentheses are the defaults.

■ NPPPBUF (32)—Number of PPP buffers. PPP maintains a pool of buffers for two pur-

poses: to send PPP negotiation packets and to receive data. Once the link is estab-

lished, all buffers in the pool can be used for receiving. Buffer size:

MAX(MYMRU, 1500).

■ DEBUG—(YES)—This determines if diagnostic information should be dumped to the

console.

■ DEFTIMEOUT (5 seconds)—If PPP does not receive an ACK to either CONFREQ or

TERMREQ during this time period, it retransmits the request.

■ DEFMAXCONFTRANSMITS(10)— How many times PPP retransmits the CONFREQs.

■ DEFMAXTERMTRANSMITS(10)—How many times PPP retransmits the TERMREQs.

■ DEFMAXNAKLOOPS (10)—Number of retries upon receipt of CONFNAK.

Configuration Table

Each PPP link requires a set of configurable parameters defined via the configuration

table. The configuration table has default values and can be updated by the application.

The table is a C structure containing the following entries:

struct ppp_cfg {
 unsigned long channel; /* serial Channel number for PPP */
 ChannelCfg ccfg; /* serial channel configuration */
 long pppmode; /* Mode for the PPP channel */
 long dialmode; /* Dial mode for the channel */
 char *setupscript; /* setup script for dialup */
 char *dialscript; /* dial script for dialup */
 char *hangupscript; /* hangup script for dialup */
 char *user; /* User */
 char *passwd; /* Password */

Chapter 6: pSOS+™ Real-Time Operating System

88 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

The following are parameters in this structure:

■ channel—Serial Channel for PPP link.

■ cfg—Serial Channel configuration

■ pppmode—The mode of operation for the PPP link. If pppmode is set to

PPPMODE_ACTIVE, then the link is in active mode, (that is, it initiates the PPP con-

nection). If the mode is set to PPPMODE_PASSIVE, then the link is set to PASSIVE

mode, (that is, it waits for connection initiation).

■ dialmode—Sets the dial mode of the link. If the dialmode is set to DIRECT, then the

link is a direct connection. If the dialmode is set to DIALUP, then the link is connected

via a modem and the call setup procedure is initiated by using the modem scripts. If

the dialmode is DEMANDDIAL, then the link is connected via a modem and it requires

to be dialed on demand. A call setup procedure is initiated via the modem scripts and

additionally the link is monitored for activity to bring it down upon a timeout.

■ setupscript—Contains the script to initialize the modem when the dialmode is set to

DIALUP or DEMANDDIAL.

■ dialscript—Contains script to dial out via the modem. The dialmode should be set to

DIALUP or DEMANDDIAL for this to be used.

■ hangupscript—Contains script to hang up the telephone connection. This is used

when the dialmode is set to DIALUP or DEMANDDIAL.

■ user—Contains the user name used in the script substitution.

■ passwd—Contains the password used in the script substitution.

■ tel_number—Contains a telephone number used in the script substitution.

■ dialtimeout—Timeout value used in demand dial. If the link is inactive for dialtime-

out seconds, then the PPP connection is brought down.

■ mru—MRU used for PPP link.

■ asyncmap—A 32-bit value indicating ASCII values from 0 - 31. Each 32-bit position

corresponds to one ASCII value. If a bit is set, its corresponding character must be

ESCAPED. For example, if your serial hardware must use XON/XOFF, you might want

to use an MYASYNCMAP with the 17th and 19th bit set.

 char *tel_number; /* telephone number for dialup */
 unsigned long dialtimeout; /* demand dial timeout in minutes */
 unsigned long mru; /* MRU of the channel */
 unsigned long asyncmap; /* Async control char Map */
 unsigned long lcp_options; /* Various LCP options */
 unsigned long auth_options; /* Various Auth Options */
 unsigned long local_ip; /* Local IP address of the channel */
 unsigned long peer_ip; /* Peer IP address */
 unsigned long ipcp_options; /* Various IPCP options */
 };

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 89

6

■ lcp_options: Contains various LCP options that are negotiated for PPP connection.

The options are set by setting various bits. The following bits are used for the options:

The following is true:

■ NEGMRU—Is used to tell the peer the maximum size of a packet it can receive. The

peer uses this information to calculate its maximum transmission unit (MTU). The

buffer size of the local node is the larger of this value and 1500, since all PPPs are

expected to receive packets up to 1500 bytes, if the negotiation fails.

■ NEGASYNCMAP—negotiates the Async map with the peer.

■ NEGMAGIC—negotiates the magic number. This is necessary to avoid loopback links.

■ NEGPROTOCOMP—negotiates the Protocol-Field-Compression.

■ NEGACCOMP—negotiates Address-and-Control-Field-Compression.

■ auth_options—The desired PAP/CHAP authorization options.

■ local_ip—The desired local ip address of the link.

■ peer_ip—The desired peer ip address of the link.

■ ipcp_options—Sets up various IPCP options. The options are set using various bits.

The following values are defined for IPCP options:

NI Configuration Table

The PPP-TM NI is configured through the add_ni() call. This is a sample NI configuration

table for PPP:

To work with the zero-copy pNA+ feature, the RAWMEM bit must be set.

#define NEGMRU 0x1 /* Negotiate MRU */
#define NEGASYNCMAP 0x2 /* Negotiate async map */
#define NEGMAGIC 0x4 /* Negotiate magic number */
#define NEGPROTOCOMP 0x8 /*Negotiate protocol compression */
#define NEGACCOMP 0x10 /* Negotiate addr & control comp */

#define REQUPAP 0x1 /* Negotiate PAP */
#define REQCHAP 0x2 /* Negotiate CHAP */
#define NOUPAP 0x4 /* Dont allow PAP authentication */
#define NOCHAP 0x8 /* Dont allow CHAP authentication */

#define NEGADDR 0x1 /* Negotiate IPCP addr compression */
#define NEGIPCOMP 0x2 /* Negotiate IPCP compression */

static struct ni_init ni_ppp[] = {
 (int (*)())NiPPP, /* ptr to interface code */
 htonl(PPP_LOCAL_IP), /* IP address */
 DEFMRU, /* maximum transmission unit */
 4, /* length of hardware address */
 IFF_NOARP|IFF_POINTTOPOINT|IFF_RAWMEM, /* flags */
 0, /* subnet mask */
 htonl(PPP_PEER_IP), /* peer IP address */
 0
};

Chapter 6: pSOS+™ Real-Time Operating System

90 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

The following code segment illustrates the actual use of the PPP NI with add_ni call:

Error Handling

PPP-TM exports a global variable named ppperrno to indicate the error status. Currently,

ppperrno reports two types of errors:

#include "ppp_conf.h"
extern long NiPPP();
extern unsigned long PPPNiNum;
#include <configs.h>
extern NODE_CT NodeCfg;
#define SEC2TICKS(sec) (NodeCfg.psosctÐ>kc_ticks2sec * sec)

client(){
 struct ppp_ioctl pi;
 struct ifreq ifr;
 struct sockaddr_in *sin;
 /* ... other local variables */

/* Add PPP Ni.*/
 if(add_ni(ni_ppp)) error("add_ni() error");

/* Clear out address structures.*/
 memset((char*)&myaddr_in , 0, sizeof(struct sockaddr_in));
 memset((char*)&peeraddr_in, 0, sizeof(struct sockaddr_in));

/* Create the socket.*/
 s = socket(AF_INET, SOCK_STREAM, 0);
 if(s == Ð1) error("SOCKET creation error");

/* Need to wait till the PPP driver comes up.*/
 do{
 pi.pi_ifno = PPPNiNum;
 if(ioctl(s, SIOCGPPPSTATUS, (char *)&pi) < 0)
 error("ioctl(SIOCGPPPSTATUS) error");
 if(pi.pi_status == PSDOWN) error("PPP down!");
 tm_wkafter(SEC2TICKS(5));
 }while (pi.pi_status != PSUP);

/* Get the Peer IP address result from the negotiation.*/
 ifr.ifr_ifno = PPPNiNum;
 if(ioctl(s, SIOCGIFDSTADDR, (char *) &ifr) < 0)
 error("ioctl (SIOCGIFDSTADDR)");
 else
 sin = (struct sockaddr_in *) (&ifr.ifr_dstaddr);

 peeraddr_in.sin_family = AF_INET;
 peeraddr_in.sin_addr.s_addr = sinÐ>sin_addr.s_addr;
 peeraddr_in.sin_port = SERVER_PORT;

/* Try to connect to the remote server at the address in peeraddr_in. */
 rc = connect(s, &peeraddr_in, sizeof(peeraddr_in));
 if(rc == Ð1){
 close(0);
 error("CONNECT error");
 }

 /* ... more code */
}

Chapter 6: pSOS+™ Real-Time Operating System

©1999 Philips Semiconductors 10/08/99 Book 3—Software Architecture, Part A 91

6

■ EMIB—This error results when an ifMIB operation is attempted to the PPP driver when

the ifAdminstatus is down and the operation is not to change the ifAdminstatus.

■ ETIMEOUT—This error occurs when the maximum number of PPP config-request

retransmissions is exceeded. When this happens, the ioctl(SIOCGPPSTATUS) should

return a PSDOWN status.

Building Applications with the PPP-TM

PPP makes use of a Device Independent Serial Interface (DISI) to communicate with the

physical layer which could be a universal asynchronous transmitter/receiver (UART) or a

modem. The physical layer, driver should provide the following functions:

The prototypes are defined in ~/PSOS_REL/include/bspfuncs.h. The PPP-TM can support

four serial channels simultaneously. It requires the transmit and receive interrupt han-

dlers to be installed by the driver. These handlers should call the two ISRs viz., Stisr and

Srisr, as demonstrated in ~/PSOS_REL/examples/ppp/driver.c file. If the interrupts are multi-

plexed, a channel identifier must be passed to the ISRs. Otherwise, separate interrupt

handlers should be installed using the SerialSlipInit call. You should keep the physical

layer driver out of the pSOS I/O system to reduce run-time lengths for all driver func-

tions.

In a local copy of the file drv_conf.c, add the following line to the end of the SetUpNI

routine, where the comment says “Add additional network drivers here”:

In the makefile, set the following switches as

Now the application defined in the makefile can be built by running it for the target and

endianness selected.

SerialSlipInit Installs the transmit and receive interrupt handlers for a given channel.

SerialIntRead Reads a character from a channel.

SerialIntWrite Writes a character to a channel.

SerialIntTxion Enables the transmit interrupt for a channel.

SerialIntTxioff Disables the transmit interrupt for a channel.

SerialIntRxioff Disables the Receive interrupt for a channel.

 #include "drv_conf.ppp"

 PNA=pna
 PPP=ppp

Chapter 6: pSOS+™ Real-Time Operating System

92 Book 3—Software Architecture, Part A ©1999 Philips Semiconductors 10/08/99

Debugging pSOS Applications on TriMedia

Most of the functionality of the pSOS pROBE debugger is available in the TriMedia

debugger. For information on debugging pSOS Applications on TriMedia, see Book 4,

Software Tools, Part C.

In most TriMedia code (at least, in code that complies with the TriMedia Software Archi-

tecture), pSOS function calls are not accessed directly. Instead, they are accessed through

a wrapper layer known as tmospSOS. These wrapper functions make it easy for the

underlying operating system to be replaced or emulated, if such a need should arise. The

tmospSOS wrappers are documented in Chapter 9, The Operating System Wrapper (tmos.h),

of Book 5, System Utilities, Part A. You will find them a straightforward mapping of a sub-

set of pSOS.

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 3—Software Architecture
	Foundation
	1: TSA Overview
	Introduction
	What is TSA?

	The Development Environment
	Universal Concepts
	Layers
	Naming Conventions
	Memory Management
	Error Reporting
	Error Decoding
	Examples of Errors

	Device Drivers

	The Libraries
	Standard C Library
	Host Interface Libraries
	Device Libraries
	The pSOS Operating System
	TriMedia Streaming Software Architecture (TSSA)

	2: Standard C Library
	Standard C Library
	Standard C Host Interface
	File I/O Drivers

	3: Host Windows Interfaces
	TriMedia Manager Architectural Overview
	Windows TMMan Modules

	4: tmAvFormat.h: Multimedia Format Definition
	Audio Video Formats API Overview
	Definitions
	Type Definitions

	Audio Video Formats API Data Structure Descriptions
	tmAvFormat_t
	tmAudioFormat_t
	tmVideoFormat_t
	tmAvPacket_t
	tmAvBufferDescriptor_t
	tmAvHeader_t
	tmComponentClass_t
	tmAvDataClass_t
	tmAvDataType_t
	tmAvDataSubtype_t
	tmSystemTypeFormat_t
	tmVideoTypeFormat_t
	tmAudioTypeFormat_t
	tmControlTypeFormat_t
	tmOtherTypeFormat_t
	tmVideoRGBYUVFormat_t
	tmVideoFlags_t
	tmAudioPcmFormat_t
	tmAudioMPEGFormat_t
	tmVideoMPEGFormat_t
	tmMPEG2TransportStreamFormat_t
	tmVideoAnalogStandard_t
	tmVideoAnalogAdapter_t
	tmAudioAnalogAdapter_t
	tmSSIAnalogConnection_t
	tmTimeStamp_t

	5: Device Libraries
	Introduction
	Naming Conventions
	The Standard Device Library API

	Board Support
	Registry
	Component Manager
	Board Bootup Sequence
	Selecting Boards

	Device Library Versions
	Debug Version
	Dynamic Linked Library Versions

	Generic Function Prototypes
	devGetCapabilities
	devOpen
	devClose
	devInstanceSetup
	devStart
	devStop

	Generic Data Structures
	devCapabilities_t
	devInstanceSetup_t

	6: pSOS+TM Real-Time OS
	Introduction
	pSOS Application Structure
	root.c
	drv_conf.c
	pSOS Board Support Package
	pSOS Kernel
	sys_conf.h
	Other pSOS Components
	pSOS Example Makefile
	The Complete pSOS Makefile

	pSOS+m on TriMedia
	Introduction to pSOS+m
	Implementation of pSOS+m
	Necessary Changes to Use pSOS+m
	Node Numbering

	TriMedia Support for Multiprocessors
	Windows
	Shared Memory Support in tmcc

	pSOS Networking Components
	What it Contains
	PPP-TM Operations
	Configurations
	PPP Operation Parameters
	Configuration Table
	NI Configuration Table

	Error Handling
	Building Applications with the PPP-TM

	Debugging pSOS Applications on TriMedia

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

