Book 2—Cookbook

Part C:
Bootstrapping TriMedia

&
TI'.I'M ¢ djﬂ 9 Version 2.1

Book 2—Cookbook
Part C: Bootstrapping TriMedia

Table of Contents

Chapter 7 Bootstrapping TriMedia in Autonomous Mode

Introduction 6
Overview of Stand-Alone Boot 6
PCl Signals 6
Creating an EEPROM image 6
EEPROM Header 6

L1 Boot Program 7

Sample Programs 9
makefile.unix 10
makefile.win 12
ITmain.c 13
1Trom.c 16
I1start.trees 21

Chapter 8 Bootstrapping TriMedia in Host-Assisted Mode

TriMedia Initialization in Host-Assisted Mode 24
Overview 25
Plug-and-Play BIOS 26

BIU and Interrupt Initialization 28
Putting the Processor in Reset 29
Taking the Processor Out of Reset 30
tmmprun—Multiprocessor Download Program 30
tmmprun—Program Source Listing 31

Chapter 9 Bootstrapping TriMedia from Flash

Introduction 42
Setting Up Flash-Based Booting 42
Initializing Flash Contents 43
Creating an Empty Flash File System Using mkfs 44
Writing a Boot Image Onto Flash Using tmWRB 44
Transferring Files to Flash Using tmSEA 45

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part C

Table of Contents

Compressing TriMedia Boot Images 46
Using tmSEl for Compressing Boot Images 46
Cascading tmSEl and tmWRB 47

iv Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7
Bootstrapping TriMedia in Autonomous Mode

Topic Page
Introduction 6
Overview of Stand-Alone Boot 6
Sample Programs 9

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, PartC 5

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

Introduction

Bringing up TriMedia in stand-alone mode involves a number of steps. This chapter out-
lines the essential steps common to different stand-alone configurations. It also includes
sample programs that you can modify to suit your needs.

In order to fully understand this chapter, you must be familiar with the TriMedia archi-
tecture and you will need to have read Chapter 12 of the appropriate TriMedia data
book, which is the official document on both stand-alone and host-assisted boot proce-
dures.

Overview of Stand-Alone Boot

During power-on reset, TriMedia boot block reads some configuration information from
the EEPROM through 12C. The contents of the EEPROM determine, among other things,
whether TriMedia continues to boot from the EEPROM or expects another processor
(such as a PC or a Mac) to complete the TriMedia boot sequence. In a host-assisted boot,
the EEPROM contains just 10 bytes that set a few parameters such as TRI_CLKIN, PCl Sub-
system Id, Vendor Id, MM_CONFIGs, and PLL_RATIOs. The task of downloading an appli-
cation to SDRAM and taking TriMedia out of reset is left to a host-based program (such as
tmmon on the PC or Mac).

In a stand-alone boot, the EEPROM contains, in addition, the initial boot program
whose size is restricted to 2K bytes. This initial boot program, called L1 boot program, is
transferred by the TMs1000 boot block from EEPROM to SDRAM and then executed. It is
the responsibility of the L1 boot program to load other programs (we will call them L2
programs) from any attached device, such as on-board UVEPROMs (or flash) or networks
and to execute them.

PCI Signals

If TriMedia is to be used in a stand-alone system, certain PCI signals need to be properly
accounted for (Request, Grant, and IDSEL, for example). The request and grant signals
are always needed even if the application does not use PCI. Similarly IDSEL must be con-
nected to an address line for the function procGetCapabilities to work properly.

Creating an EEPROM image

The L1 boot EEPROM consists of a 47-byte header followed by the L1 boot program.

EEPROM Header

Contents of the EEPROM header are documented in Chapter 12 of the data book. The
memory system parameters are documented in Chapter 11.

6 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

This chapter includes a sample program [Irom.c, which creates an EEPROM image file
(binary) of the L1 boot program. The 11rom.c program adds a 47-byte header to the
given L1 boot program and swaps the bytes of the L1 boot program when creating the
EEPROM image. I1rom.c uses fixed values for TRI_CLKIN, PLL clock ratios, and so on.
Stand-alone system developers need to examine and change the first 8 bytes of the
EEPROM header in 11rom.c, if necessary, to suit their system.

L1 Boot Program

L1 boot code needs to do some initialization of TriMedia, such as setting the PCSW,
BIU_CTRL, setting up stack and frame pointers, initializing PCI devices (if any) and
copying the L2 code to SDRAM. It then jumps to the beginning of L2 code.

The sample L1 program consists of two files:
=]lstart.trees

This file defines a function __start which initializes PCSW and BIU_CTRL; sets up SP
(stack pointer), FP (frame pointer), and RP (return pointer); and calls L1main. On
return from L1main, it jumps to the L2 load address returned by L1main.

s llmain.c

The function L1main simply copies L2 code from a PCI-slave UVEPROM to SDRAM.
After copying L2 code to SDRAM, the data cache is flushed and then invalidated.
After that, the instruction cache is cleared. L1main() returns the L2 load address to
the caller, __start.

Note

If you are using TM-1000 chips earlier than revision 1s1.1,12C might be in
some stuck state after autoboot. The ITmain.c file contains a simple
workaround.

On the TM-1000 debug board, the UVEPROM is located at (PCI) address 0xFFC00000.
The sample L1 boot code loads the sample L2 code from (PCI) address 0xFFC0000 to
(SDRAM) address 0x840 (the first cache aligned address after 2 K, because L1 code can be
at most, 2K bytes).

Steps in creating an EEPROM image.

1. Compile 11start.trees and 11main.c as follows.

cp 1lstart.trees Tlstart.t

tmcc -x -v -c -eb -DL2_LOAD_ADDR=0x840 \
-DL2_CODE_SIZE=200000 \
-DL2_ROM_DEV_ADDR=0xFFC00000 \
Tlstart.t Tlmain.c

The L1 boot program needs to know the size of L2 code. The tmcc option
-DL2_CODE_SIZE=150000 defines L2_CODE_SIZE. The sample L2 code fits within
200000 bytes. L1 boot code sets up SP and FP starting at MEMORY_SIZE (defined to be
8 MB, because IREF boards have 8 MB memory). For stand-alone systems, MMIO_BASE

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 7

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

is defined to be OXEFE0000. This value must agree with that used in I1rom.c as part of
the 47-byte EEPROM header.

2. Link l1start.o and 11main.o and verify the executable size.

tmld -eb -0 11.out 1lstart.o Tlmain.o
tmsize 11.out

You cannot use the tmcc compiler driver to link the L1 boot code, because tmcc
adds a number of options and libraries by default to the linker command line. This
step just verifies that the sum of text, data, datal, and bss section sizes is less than 2K

bytes.

IMPORTANT
Itis important that I1start.o appears first in the link command before all
other files that are linked. A

3. Relocate the executable and produce a memory image.

The executable 11.out produced in Step 2 has text, data, datal, and bss sections. In
addition, it contains information about the executable itself. To generate a memory
image, you must specify the load start address and the memory size and pass the -mi
option to tmld. This concatenates the text, data, datal, and bss sections and pro-
duces a memory image. You must also define __clock_freq_init,__ MMIO_base_init,
and __begin_stack_init as download parameters (-bdownload __clock_freq_init etc.)
and then define their values (-tm_freq 100000000 defines the TriMedia clock fre-
quency as 100 MHz). If you use a TM1 IREF board with an 80 MHz TM1.1 chip,
change this option to -tm_freq 80000000. Ensure that l1start.o is the first file in the
list of files linked. This is because TriMedia starts execution at SDRAM BASE) and you
want the startup code __start to be located at that address.

tmld -eb -o "11.mi" -bdownload __clock_freq_init -mi \

-bdownload _ MMIO_base_init \

-bdownload __begin_stack_init \
-exec -start=__Llstart -tm_freq 100000000 \

-mmio_base OxEFE00000 \
-l10oad=0,0x800000 1lstart.o 1lmain.o

In the above example, memory starts at 0 and the size is 8 MB.

Note

__clock_freq_init is required because the TriMedia device libraries rely on
this definition of the clock frequency to determine things like the number
of ticks in a microsecond or the proper control value to set the video clock
to 27 MHz.

4. Add a 47-byte header to the memory image, swap the bytes in the L1 boot program,
and produce the L1 EEPROM image. Swapping bytes of the L1 boot program is always
needed because of the way the boot block transfers bytes from EEPROM to SDRAM.
The I1rom.c sample program has hard-coded values for the 47-byte header. You might
want to modify 11rom.c and change the first 8 bytes to suit your system. The com-
mand ITrom I1.mi produces the 11.eeprom EEPROM image file, which is a binary file

8 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

that you can use to program an EEPROM part such as ATML646 24c16, using an
EEPROM programmer such as BP 1200.

Sample Programs

This chapter includes the following sample programs:

Sample Programs

Description

makefile.unix

Makefile for SunOS and HP-UX. It is used to create L1 boot code, L2
code, EEPROM image, etc. The TCS and CC macros need to be custom-
ized for the particular compilation host platform.

makefile.win Makefile for MKS Make on Windows 95/NT. It is used to create L1 boot
code, L2 code, EEPROM image, etc. The TCS and CC macros need to be
customized for the particular compilation host platform.

[1start.trees, These 2 files form the L1 boot code.

[Tmain.c

[Trom.c This program is built as a host shell command. It is used to create the L1
EEPROM image.

vivot.c This file forms the L2 code (plus standard device libraries).

seeval.c If you are using the SEEVAL EEPROM programmer, you need this. If not,

ignore this file.

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, PartC 9

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

makefile.unix

L2 program must be compiled to have a load address of

L2_LOAD_ADDR,

=
=
I

TCS
TMCC
TMLD
TMSIZE

LIROM
MMIO_BASE
SDRAM_BASE
SDRAM_LIMI
TM_FREQ

L1 boot program
L2_LOAD_ADDR 1is

/t
$(
$(
$(

T

/bin/cp
/bin/mv
/bin/rm
/t/lang/acc

/qasoft/build/tcsl.1z/1054/Sun0S
TCS)/bin/tmcc

TCS)/bin/tmld

TCS)/bin/tmsize

11lrom
0xefe00000
0x0
0x800000
100000000

can be 2048 bytes long atmost.
the next cache aligned address, i.e 2112

since L2_LOAD_ADDR is used in 1lmain.c

7 S S
L2_LOAD_ADDR = 2112
L2_CODE_SIZE = 150000
L2_ROM_DEV_ADDR = 0xffc00000
ENDIAN = -el
L1_CFLAGS = -v $(ENDIAN) -host nohost \
-DL2_LOAD_ADDR=$(L2_LOAD_ADDR) \
-DL2_CODE_SIZE=$(L2_CODE_SIZE) \
-DL2_ROM_DEV_ADDR=$(L2_ROM_DEV_ADDR)
L1_LDFLAGS = $(ENDIAN) -btype boot \
-bdownload __clock_freg_init \
-bdownload __MMIO_base_init \
-bdownload _ begin_stack_init \
-exec -start=__start
LI_MIFLAGS = $(ENDIAN) \
-bdownload __clock_freq_init \
-bdownload _ MMIO_base_init \
-bdownload __begin_stack_init \
-mi -exec -start=__start \
-tm_freq $(TM_FREQ) \
-mmio_base $(MMIO_BASE) \
-1oad=$(SDRAM_BASE), $ (SDRAM_LIMIT)
L2_CFLAGS = -v $(ENDIAN) -I$(TCS)/include/Win95 \
-host nohost \
-DMMIO_BASE_ADDR=$(MMIO_BASE)
L2_MIFLAGS = $(ENDIAN) \
-bdownload __clock_freq_init \
-mi -exec -start=__start \
-tm_freq $(TM_FREQ) \
-mmio_base $(MMIO_BASE) \

-Toad=$(L2_LOAD_ADDR),$ (SDRAM_LIMIT)

10 Book 2—Cookbook, Part C

©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

11.out: Tlstart.trees Tlmain.c
@echo ""
@echo making $@
$(RM) -f Tlstart.t
$(CP) 1lstart.trees l1lstart.t
$(TMCC) -x $(L1_CFLAGS) -c 1lstart.t Tlmain.c
$(TMLD) $(L1_LDFLAGS) -0 $@ l11lstart.o I1lmain.o
$(TMSIZE) %@

11.mi: Tlstart.trees Tlmain.c
@echo ""
@echo making $@
$(RM) -f Tlstart.t
$(CP) 1lstart.trees Tlstart.t
$(TMCC) -x $(L1I_CFLAGS) -c Tlstart.t T1lmain.c
$(TMLD) -0 $@ $(L1_MIFLAGS) 1lstart.o 1lmain.o

11.eeprom: 11.mi $(LIROM)
@echo ""
@echo "Adding 47 bytes autoboot protocol header and swapping bytes"
$(L1IROM) 11.mi

$(LIROM): Tlrom.c

@echo ""

@echo making $@

$(CC) -0 $@ -DSDRAM_BASE=$(SDRAM_BASE) -
DSDRAM_LIMIT=$(SDRAM_LIMIT) 1lrom.c

vivot.out: vivot.c
$(TMCC) $(L2_CFLAGS) -o $@ vivot.c

vivot.mi: vivot.c
$(TMCC) $(L2_CFLAGS) -o $@ -tmld $(L2_MIFLAGS) -- vivot.c

$(RM) -f $(LIROM) *.o *.t *.i *.s *.eeprom *.out *.mi *.dump

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 11

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

makefile.win

L2 program must be compiled to have a load address of
L2_LOAD_ADDR, since L2_LOAD_ADDR is used in llmain.c

77
CP = cp

MV = mv

RM = rm

CC = cc

TCS = C:/TriMedia

TMCC = $(TCS)/bin/tmcc

TMLD = $(TCS)/bin/tmld

TMSIZE = $(TCS)/bin/tmsize

L1ROM = Tlrom.exe

MMIO_BASE = 0xefe00000

SDRAM_BASE = 0x0

SDRAM_LIMIT = 0x800000

TM_FREQ = 100000000
7S S S S S S S

L1 boot program can be 2048 bytes Tong atmost.
L2_LOAD_ADDR 1is the next cache aligned address, i.e 2112

B oo oD __________

L2_LOAD_ADDR = 2112

L2_CODE_SIZE = 150000

L2_ROM_DEV_ADDR = 0xffc00000

ENDIAN = -el

L1_CFLAGS = -v $(ENDIAN) -host nohost \
-DL2_LOAD_ADDR=$(L2_LOAD_ADDR) \
-DL2_CODE_SIZE=$(L2_CODE_SIZE) \

-DL2_ROM_DEV_ADDR=$(L2_ROM_DEV_ADDR)

L1_LDFLAGS = $(ENDIAN) -btype boot \
-bdownload __clock_freg_init \
-bdownload __MMIO_base_init \
-bdownload _ begin_stack_init \
-exec -start=__start

LI_MIFLAGS = $(ENDIAN)
-bdownload __clock_freq_init
-bdownload __ MMIO_base_init
-bdownload __begin_stack_init
-mi -exec -start=__start
-tm_freq $(TM_FREQ)
-mmio_base $(MMIO_BASE) \
-1oad=$(SDRAM_BASE), $ (SDRAM_LIMIT)

P

L2_CFLAGS = -v $(ENDIAN) -I$(TCS)/include/Win95 \
-host nohost \
-DMMIO_BASE_ADDR=$(MMIO_BASE)

L2_MIFLAGS = $(ENDIAN)
-bdownload __clock_freq_init
-mi -exec -start=__start
-tm_freq $(TM_FREQ)
-mmio_base $(MMIO_BASE) \
-load=$(L2_LOAD_ADDR),$(SDRAM_LIMIT)

- -

12 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

11.out: Tlstart.trees Tlmain.c
@echo ""
@echo making $@
$(RM) -f Tlstart.t
$(CP) 1lstart.trees l1lstart.t
$(TMCC) -x $(L1_CFLAGS) -c 1lstart.t Tlmain.c
$(TMLD) $(L1_LDFLAGS) -0 $@ l11lstart.o I1lmain.o
$(TMSIZE) %@

11.mi: Tlstart.trees Tlmain.c
@echo ""
@echo making $@
$(RM) -f Tlstart.t
$(CP) 1lstart.trees Tlstart.t
$(TMCC) -x $(L1I_CFLAGS) -c Tlstart.t T1lmain.c
$(TMLD) -0 $@ $(L1_MIFLAGS) 1lstart.o 1lmain.o

11.eeprom: 11.mi $(LIROM)
@echo ""
@echo "Adding 47 bytes autoboot protocol header and swapping bytes"
$(L1IROM) 11.mi

$(LIROM): Tlrom.c

@echo ""

@echo making $@

$(CC) -0 $@ -DSDRAM_BASE=$(SDRAM_BASE) -
DSDRAM_LIMIT=$(SDRAM_LIMIT) 1lrom.c

vivot.out: vivot.c
$(TMCC) $(L2_CFLAGS) -o $@ vivot.c

vivot.mi: vivot.c
$(TMCC) $(L2_CFLAGS) -o $@ -tmld $(L2_MIFLAGS) -- vivot.c

$(RM) -f $(LIROM) *.obj *.o *.t *.i *.s *.eeprom *.out *.mi *.dump

ITmain.c

/* Copyright (c) 1995,1996,1997 by Philips Semiconductors.
* L1 boot code. Copies L2 code from a PCI-slave UVEPROM */

#include <tml/mmio.h>

/* downloader symbols */
/* Patched when creating a memory image file using tmld */

extern Tong _clock_freq_init [1];
extern unsigned int _begin_stack_init [];
extern unsigned int _MMIO_base_init [1;

/* MACROS */

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, PartC 13

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

#define CACHE_BL_SIZE 64
#define VO_FREQUENCY 27000000.0 /* 27 MHz */

/* globals */
unsigned long _clock_freq
volatile UInt32 *_MMIO_base

(unsigned long) _clock_freqg_init;
(volatile UInt32 *) _MMIO_base_init;

custom_op void dcb (unsigned, int);
custom_op void dinvalid (unsigned, int);
custom_op void iclr (void);

/* local variables */
volatile static unsigned int dummy;

~

* copyback_dcache (unsigned addr, int nbytes)

* Addr must be cache aligned.

* This function flushes nbytes starting at addr to memory.
*

*

L1 boot code copies L2 code from some device. This needs to be flushed
* to memory before jumping to the L2 Toad address */
static void
copyback_dcache(unsigned addr, int n){

int i;

for(1 = 0; 1 <n; i =1 + CACHE_BL_SIZE) dcb(0, addr + (unsigned) i);
}

/* iclr is in a separate funct. to ensure that it is in a dtree by itself */
static void
clear_icache(void){

iclr();

}

/* Copies L2 code via JTAG to SDRAM */
unsigned int Llmain (){
int i;
unsigned char byte;
unsigned int *base_addr
unsigned char *1oad_addr

(unsigned int *) L2_ROM_DEV_ADDR;
(unsigned char *) L2_LOAD_ADDR;

#if 0
/* Not needed for TMls 1.1 chip. In previous versions, autoboot leaves IIC in
stuck state. Steps 1, 2, and 3 will reset IIC. */

/* Step 1: Set up VO clock */
MMIO(VO_CLOCK) = (unsigned int)
(0.5 + (1431655765.0 * VO_FREQUENCY/_clock_freq));
MMIO(VO_CTL) = 0x02700000;
/* and wait for vo clock to stabilize */
for (i = 0; i < 1000 * 1000; i++) dummy++;

/* Step 2. Toggle I2C control */
MMIO(IIC_CTL) = 0;
MMIO(CIIC_CTL) = 0x03c00001;

/* Step 3. Single I2C read and throw away */
MMIO(IIC_AR) = 0x71000100;
dummy = MMIO(IIC_DR);

#endif

/* Load L2 code from an attached PCI device */

/* start copying of L2 code to sdram. Assumes TM1 debug board schematics.

14 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

* Assumes L2 program is in a single UVEPROM plugged into byte 3 slot. The
* other 3 slots (which supply bytes 0, 1, and 2 of a word loaded from PCI)
* are empty. */
for(i=0; i < L2_CODE_SIZE; i++){
#ifdef __BIG_ENDIAN__
byte = base_addr[i] & OxFF;
#else
byte = (base_addr[i] >> 24) & OxFF;
#endif
load_addr[i]l = byte;
}

/* flush data cache */
copyback_dcache(L2_LOAD_ADDR, L2_CODE_SIZE);

/* clear any interrupts */
MMIO(CICLEAR) = Oxffffffff;

clear_icache();

/* Return from Llmain() causes L2 code to be executed. */
return L2_LOAD_ADDR;

}

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, PartC 15

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

ITrom.c
/* copyright (c) 1995,1996,1997 by Philips Semiconductors
* Generates an EEPROM image (binary file)
*
* Input:
* f.mi - generated using -mi option of tmld
*
* Qutput:
* f.eeprom
* f.eeprom contains 47 header bytes as required by TM1 autoboot protocol,
2 followed by the program bytes (bytes are swapped as required by boot)
*
* Assumption:
2 1. f.mi contains less than 2001 bytes, divisible by four (as required
w by the boot protocol).
*

2. short is 2 bytes.

274
#if defined(__sun)
#include <unistd.h>
#endif
#include <sys/stat.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>

#if !defined(SDRAM_BASE) || !defined(SDRAM_LIMIT)
#error "Macros SDRAM_BASE and SDRAM_LIMIT must be defined for this to build"
#endif

#define MAX_FILE_SIZE 2000
#define MAX_EPROM_SIZE (1024 * 2)
#define BUF_SIZE MAX_EPROM_SIZE

#define NUM_HEADER_BYTES 47

#define MSB_1ST(n) (unsigned char)(((n) >> 24) & Oxff)
#define MSB_2ND(n) (unsigned char)(((n) >> 16) & O0xff)
#define MSB_3RD(n) (unsigned char)(((n) >> 8) & Oxff)
#define MSB_4TH(n) (unsigned char)((n) & 0xff)

static void

basename(char *fname, char *bname){
char *ptr, *ptr2;
int i;

if((ptr=strrchr(fname,'."')) == NULL){
strcpy(bname, fname);

telse{
for(ptr2 = fname, i = 0; ptr2 != ptr; ptr2++, i++){
bname[i] = *ptr2;
}
bnameli] = '"\0';
}
}
int
read_file(unsigned char *buffer, char *filename){
FILE #L1TDg
int L1fd, n, nbytes;

struct stat file_stat;

16 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

if((L1fd = open(filename, O_RDONLY)) == -1){
fprintf(stderr, "Unable to open file: %s\n", filename);
fprintf(stderr, "File doesn't exist or not readable\n");
exit(l);

}

if(fstat(L1fd, &file_stat)){
fprintf(stderr, "Unable to fstat file: %s\n", filename);
exit(l);

}

nbytes = (unsigned long)file_stat.st_size;

close(L1fd);

if((L1fp = fopen(filename, "rb")) == NULL){
fprintf(stderr, "Unable to open file: %s\n", filename);
fprintf(stderr, "File doesn't exist or not readable\n");
exit(l);

}

if(nbytes > MAX_FILE_SIZE){
fprintf(stderr, "File has %5d bytes. must be less than %5d bytes\n",
nbytes, MAX_FILE_SIZE);
exit(l);
}
n = fread(buffer, 1, nbytes, L1fp);
if (n != nbytes) {
fprintf(stderr, "Unable to read %5d bytes, error no: %5d\n",
nbytes, errno);
exit(1l);
}
fprintf(stderr, " Program Size: %5d bytes\n", nbytes);
return nbytes;
}
/* Header bytes are hard-coded. Read the TM-1 boot block paper
* to see what needs to go in here for AUTO boot. */

int
output_eeprom_header(int nbytes, unsigned char obuffer[]){
int i = 0;

/* Output eeprom header bytes 0 thru 46, as per Chapter 12 of TM 1000 Data
* Book (April 1997 edition). These go into output array index 0 onwards. */

/* 0xc8 for 50 and 40 MHz TRI_CLKIN. Oxcc for 33 MHz */

obuffer[i++] = 0xc8; 7= Q@ =/
/* Sub-system Id */

obuffer[i++] = 0x00; = 1 =y

obuffer[i++] = 0x03; /* 2 */

/* Sub-system Vendor Id */
obuffer[i++] = 0x11; /% 31 %/
obuffer[i++] 0x31; /* 4 %/

/* Bytes 5 6 7: MM Config register */

/* Byte 6 and 4 bits of byte 7 determine refresh rate. The refresh rate is
* 4c4 for 80MHz sdram clock, 384 for 60 Mhz. Use Table 11-10 Refresh
Intervals of TM 1000 Preliminary Data for other SDRAM clock speeds and
* interpolate for speeds not mentioned in that table. */

*

obuffer[i++] = 0x00; /* 5 */
obuffer[i++] = 0x4c; 7% ® =Y
obuffer[i++] = 0x44; 7= 7 %)

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, PartC 17

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

/* Byte 8: PLL Ratios */
obuffer[i++] = 0x00; 7= @ =Y

/* Byte 9: Most significant bit is 1 for stand-alone boot Least 3 bits of
* pyte 9 and 8 bits of byte 10 determine L1 boot program code size.
* 11 bits == 2K bytes at most. */

obuffer[i++] = (0x80 | ((nbytes >> 8) & 0x7));

obuffer[i++] = (nbytes & 0xfc);

/* MMIO base register address, MSB first */

obuffer[i++] = Oxef; /* 11 */
obuffer[i++] = 0xf0; /* 12 */
obuffer[i++] = 0x04; 7= g =)
obuffer[i++] = 0x00; /* 14 */
/* MMIO base register value, MSB first */
obuffer[i++] = Oxef; 755 115 =/
obuffer[i++] = 0xe0; /= e =Y
obuffer[i++] = 0x00; /* 17 */
obuffer[i++] = 0x00; /= A8 =Y

/* DRAM base register address, MSB first */

obuffer[i++] = Oxef; /* 19 */
obuffer[i++] = 0xf0; /* 20 */
obuffer[i++] = 0x00; g 21 =)
obuffer[i++] = 0x00; Je 22 =)

/* DRAM base register value, MSB first */
obuffer[i++] MSB_1ST(SDRAM_BASE); /* 23 */
obuffer[i++] MSB_2ND(SDRAM_BASE) ; /e 24 =)
obuffer[i++] MSB_3RD(SDRAM_BASE); /= 25 =
obuffer[i++] MSB_4TH(SDRAM_BASE) ; /* 26 */

/* DRAM Timit register address, MSB first */

obuffer[i++] = Oxef; [27 %Y
obuffer[i++] = 0xf0; 7= 28 =
obuffer[i++] = 0x00; /* 29 */
obuffer[i++] = 0x04; /* 30 */

/* DRAM Timit register value, MSB first */
obuffer[i++] MSB_1ST(SDRAM_LIMIT); /* 31 */
obuffer[i++] MSB_2ND(SDRAM_LIMIT); /* 32 */
obuffer[i++] MSB_3RD(SDRAM_LIMIT); /* 33 */
obuffer[i++] MSB_4TH(SDRAM_LIMIT); /* 34 */

/* DRAM cacheable 1imit reg address, MSB first */

e
obuffer[i++] = Oxef; /* 35 */
obuffer[i++] = 0xf0; /* 36 */
obuffer[i++] = 0x00; 7 31 =Y
obuffer[i++] = 0x08; /* 38 */

/* DRAM cacheable Timit reg value, MSB first */

/* (39) assumes to be the same as SDRAM_LIMIT */
obuffer[i++] = MSB_1ST(SDRAM_LIMIT); /* 39 */
obuffer[i++] MSB_2ND(SDRAM_LIMIT); /* 40 */
obuffer[i++] MSB_3RD(SDRAM_LIMIT); /* 41 */
obuffer[i++] MSB_4TH(SDRAM_LIMIT); /* 42 */

/* DRAM base reg value, MSB first */
obuffer[i++] MSB_1ST(SDRAM_BASE); /* 43 */
obuffer[i++] MSB_2ND(SDRAM_BASE) ; /* 44 x/
obuffer[i++] MSB_3RD(SDRAM_BASE) ; /* 45 */
obuffer[i++] MSB_4TH(SDRAM_BASE) ; /* 46 */

if(i != NUM_HEADER_BYTES){
fprintf(stderr, "Error: header bytes count = %5d, shd be %5d\n",

18 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

}

int

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

i, NUM_HEADER_BYTES);
exit(l);
}
fprintf(stderr, "EEPROM Header Size: %5d bytes\n", NUM_HEADER_BYTES);
return i;

main(int argc, char **argv){

/*

/*

/'k

int i, j, file_size;

int header_bytes;

FILE =3

char *o_file_name, *cp;
unsigned char ibuffer[BUF_SIZE] = {0};
unsigned char obuffer[BUF_SIZE] = {0};

if (argc < 2) {
fprintf(stderr, "Usage: 1lprom file.mi \n");
exit(1);

}

find output file name */
i = strlen(argvll]);

.eeprom extension needs 7+1 chars */

o_file_name = (char *)malloc(i+8);

if(o_file_name == NULL){
fprintf(stderr, "unable to malloc\n");
exit(1l);

}

skip all directory names */

if((cp = strrchr(argv[1], '/')) == NULL){
cp = argv[1l]l;

}

basename(cp, o_file_name);

i = strlen(o_file_name);

o_file_name[i++] a3

o_file_name[i++]

o_file_name[i++]

o_file_name[i++]

o_file_name[i++]

o_file_name[i++]

o_file_name[i++]

o_file_name[i++]

~ 3 O 5T M M -

o

if((fp = fopen(o_file_name,"wb")) == NULL){
fprintf(stderr, "Could not open (binary) file %s for write\n",
o_file_name);
exit(l);
}

file_size = read_file(ibuffer, argv[1]);
header_bytes = output_eeprom_header(file_size, obuffer)

Output 4 bytes at a time. Swap the byte ordering since boot block expects

* words in eeprom to have MSB first and LSB last. */

for(i = header_bytes; i < file_size + header_bytes; i += 4){
obuffer[il = ibuffer[i+3-header_bytes];
obuffer[i+1] = ibuffer[i+2-header_bytes];
obuffer[i+2] ibuffer[i+l-header_bytes];
obuffer[i+3] ibuffer[i-header_bytes];

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, PartC 19

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

j = fwrite(obuffer, sizeof(char), file_size + header_bytes, fp);
if (j != file_size + header_bytes) {
fprintf(stderr, "Unable to write %5d bytes. Wrote %5d \n",
file_size + header_bytes);
exit(l);
}
close(fp);
return 0;

20 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

I1start.trees

(* Copyright (c) 1995,1996,1997 by Philips Semiconductors. *)

(* L1 startup code *)
(* Copy this file to 1lstart.t and then compile as tmcc -x llstart.t *)
(* Compile this file with tmcc -x
The -x flag tells tmcc to run cpp on this file before assembly.
The -el or -eb option causes tmcc to define cpp flag
_ LITTLE_ENDIAN__ or __ BIG_ENDIAN__
and the right INITIAL_PCSW_VALUE and INITIAL_BIU_CTL_VALUE get used.

* Ok ok ok ok ok ok ok

Running cpp on this file (via tmcc) also causes symbolic constants such as
BIU_CTL to be resolved. These are defined in TCS_INSTAL_DIR/tml/mmio.h.*)

#define __TMAS__
#include <tml/mmio.h>

#ifdef __BIG_ENDIAN__

#define INITIAL_PCSW_VALUE 0x0800 =S #)

#define INITIAL_BIU_CTL_VALUE 0x0200 (* Host Enable *)

#else

#define INITIAL_PCSW_VALUE 0x0A00 (* CS + Byte Sex *)

#define INITIAL_BIU_CTL_VALUE 0x0201 (* Host Enable + Byte Swap Enable *)
#endif

.text
.global __start
.global _LImain (* defined in 1lmain.c *)

__start:

__ start_DT_O:

entree(0)

.treeinfo regmask "0x00000000000000000fffffffffffffff";

(* diclr just to be sure *)
10 iclr;

20 uimm (INITIAL_PCSW_VALUE)
21 uimm (-1);
22 writepcsw 20 21;

(* set up stack: FP and SP *)
30 uimm (__begin_stack_init);
33 wrreg (3) 30;
34 wrreg (4) 30;

(* set up return pointer *)
40 uwimm(__start_DT_1);
41 wrreg (2) 40;

(* configure BIU CTL *)
50 uimm (BIU_CTL);
51 uimm (__MMIO_base_init);
52 jadd 50 51;
53 uimm (INITIAL_BIU_CTL_VALUE);
54 st32 52 53;

gotree {_Llmain}
endtree

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 21

Chapter 7: Bootstrapping TriMedia in Autonomous Mode

(* Control returns to ___start_DT_1 when Llmain() is done with loading
* L2 code into SDRAM. Jump to L2_LOAD_ADDR returned in register 5 *)

_ start_DT_1:

entree(0)

.treeinfo regmask "0x00000000000000000fffffffffffffff";
12 rdreg (5); (* L2 Load Address *)
cgoto 12

endtree

22 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8
Bootstrapping TriMedia in Host-Assisted Mode

Topic Page
TriMedia Initialization in Host-Assisted Mode 24
Overview 25

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 23

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

TriMedia Initialization in Host-Assisted Mode

The purpose of this document is to explain how the IREF board gets initialized in host
assisted mode. In this mode the program is downloaded using the PCI bus. Host proces-
sor control over the program is ensured by writing to the PCI bus using the MMIO regis-
ters. Host assisted mode corresponds to a tmcc command line with the -host Win95, -
host WinNT, or -host MacOS options.

The TriMedia processor begins in reset and is initialized as a result of actions by the host.
The initial state of the processor is defined by the first 10 bytes of the EEPROM.

The processor state is initialized as the result of actions in several places. These include:
the plug and play BIOS, the OS configuration manager, a kernel driver, and the user pro-
gram. On Windows 95, the kernel driver is vtmman.vxd and the user program is tmg-
mon.exe.

The information in this document is useful for anyone that needs to understand the Tri-

Media processor at a systems level.

For more information about the TriMedia implementation of PCI, refer to the appropri-
ate TriMedia data book. Figure 10-2 explains the PCI configuration registers. Chapter 12
describes the boot process. You may want to refer to the sections on the host assisted
boot and on the EEPROM format.

You may also want to refer to the document PCI design Issues for Windows 95, and Win-
dows NT, Microsoft Corporation, 1/25/95 (rev 1.0) for more information on PCI configu-
ration in a PC environment.

For more information about the PCI local bus, refer to the PCI Local Bus Specification,
version 2.1, available from the PCI consortium, tel: (503) 797 4207, fax (503) 234 6762.

For information about Microsoft Visual C++ (MSVC++) command line options, type:

cl /help

For information about Microsoft LINK command line options, type:

Tink /help

For information about the downloader library, see <tmlib/TMDownloader.h>.

For information about the TMMAN AP]I, see Chapter 14, TriMedia Manager API for Win-
dows, of Book 5, System Utilities, Part A. You can also refer to the <Win95/tmman32.h>
header file in the release.

For information about the object file format and section types, refer to tmld Options in
Chapter 11, Linking TriMedia Object Modules, of Book 4, Software Tools, Part B.

24 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

Overview
Extension Cards Motherboard IREF Card
Pentium MMU Target SDRAM
L1 Cache
A
A
Ethernet VGA DIMMs
L2 Cache Host
SDRAM 7111
A (Cache)
A TriMedia CPU
7125
PCI Chipset (BIU)
A A A A
| Y | |
PClI Bus
Figure 1 Overview of a Typical Host-Assisted System

Figure 1 gives an overview of a typical host-assisted system. The BIU (Bus Interface Unit)
and the PCI chipset on the IREF board are equivalents.

In a host assisted system, the TriMedia processor is initialized over the PCI bus. A Pen-
tium is being used in the example above.

Essentially, booting TriMedia in host assisted mode requires nothing more than loading
a boot image into memory and taking the processor out of reset. This can be done by
clearing BIU set reset and setting clear reset. However, several things do complicate mat-
ters.

First, the base address of the DRAM on the board and the MMIO registers is not fixed but
determined at system startup. This is because of the plug and play nature of the PCI bus
and it is done in the BIOS and the OS. Finding out the actual addresses assigned requires
querying the OS configuration manager. Under Windows this is done by tmman.

Second, the DRAM and the MMIO on the board needs to be mapped in virtual memory
for the Pentium processor to access it. Under Windows, this requires a kernel mode
driver.

Third, the TriMedia downloader library must be used to construct the boot image. There
are three reasons for this.

= The linker output is relocatable and needs to be made absolute.

= Symbols in the boot image needs to be patched for it to work. For example, for the
processor to access its own registers MMIO_base needs to be patched.

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 25

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

= Special treatment is needed for cache locked and uncacheable memory and for shared
sections for multiprocessors.

The downloader library depends on the object format library to read the executable. The
same downloader is used to load boot images, applications and TriMedia dynamic linked
libraries (dlls). For multiprocessors, processors are loaded individually and a shared sec-

tion table is used for global addresses.

TriMedia ANSI POSIX Microsoft C1/0
Clibrary Cruntime server
Application Model
TM1IF
RPC Client RPC Server
TM1IF tmman
tmman
< PCl bus >
Figure 2 How System Calls on the Host are Implemented

Fourth, more functionality is required for system services (files, I/O) shows how system
calls on the host are implemented.

1/0O calls in the ANSI C library are mapped to system calls. They are transmitted as
remote procedure calls (RPCs) using tmman to the host. On the host, the call is executed
using the C run time server. Microsoft I/O is used for access to console windows and for
files that can be redirected. Implementing RPC requires the ability to install an interrupt
handler on the host.

The IPENDING, IMASK, and ICLEAR MMIO registers can be programmed on the host to
generate a host to TriMedia interrupt dynamically. The interrupt vectors can be repro-
grammed also. Interrupt pin A is used for TriMedia to host interrupts. For more informa-
tion, see Chapters 3 and 10 of the data book.

The way downloading works means that a boot image that has been constructed in
memory can be written to disk and executed simply by restoring and clearing reset.

Plug-and-Play BIOS

The PC BIOS allocates base addresses and interrupts for all cards using a technique called

“plug and play.” The interrupt vector is allocated by the plug-and-play BIOS also.

The following elements of the PCI configuration are significant. For retrieving these
parameters, please refer to the PCI specification. The command DOSPCI in the bin direc-
tory of the Win95 release can be used to read the PCI registers. Here is an example.

[C:/Trimedia/bin] dospci

PCI Configuration Tool - Copyright (c) Philips Semiconductors 1996
PCI VendorID [1131] : DevicelID [5400] : Bus#[00] : Dev#[0e] : Func#[0]
PCI Reg#[00] : 0ffset[00] : Value [54001131]

PCI Reg#[01] : Offset[04] : Value [02000116]

26 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

PCI Reg#[02] : Offset[08] : Value [04800091]
PCI Reg#[03] :

[C:/Trimedia/bin]
PCI Register 0, bits O .. 16 : vendor ID
bits 16 .. 31 : Device ID

The PCI specification identifies peripherals using a device ID, vendor ID. The device ID
identifies the silicon. The device for TM-1000 is 5400 and the vendor ID is 1131 (Philips).

Register 2, bits 0 .. 7 : Revision ID register

The 8 lower bits identify the CPU version (TM1, TM1S). Bits 7-6 indicate the fab. ST
(Crolles) is 00, MOS4 is 01, TSMC, is 10, and 11 is unused. Bits 5-4 indicates the all layer
revision. CTC/TM1 is 00, TM1S is 01, TM1C is 10, and 11 is unused. The four last bits
indicates the metal layer revision. 0000 is revision 0.

Register 4, bits 0 .. 31 : SDRAM Base Physical Address
Register 5, bits 0 .. 31 : MMIO Base Physical Address

During startup, the card is accessed using the slot number of the PCI board in PCI config-
uration space. This is because the address is not allocated yet. PCI cards can have up to
six base addresses. The TM-1000 IREF card has two (MMIO_BASE) and DRAM_BASE, corre-
sponding to registers 4 and 5, above).

The necessary address range is determined as follows. The BIOS writes all 1's to these reg-
isters. The values that are read back tell the BIOS how much memory needs to be allo-
cated, and the alignment to use. For example, writing FFFFFFFF and reading back
FFO00000 means that 16 megabytes need to be allocated. Natural alignment is enforced
(e.g. 16 megabytes need to be allocated on a 16 megabyte boundary).

Winl6 and DOS apps can query the PCI configuration space registers using the call int
1A. For more information, refer to the PCI BIOS specification. Kernel mode applications
can query the Win95 configuration manager. tmman provides an API to query the
address ranges (tmDSPGetCaps).
Register B, bits 0 .. 15 SubSystem Vendor ID
bits 16 .. 31 Subsystem ID

These two fields identify the manufacturer and subsystem ID (board ID). They corre-
spond to bytes 1-4 of the EEPROM. They can be used by software to distinguish different
boards. Board manufacturers should request a SubSystem Vendor ID from Philips.

To find out how to obtain a board ID, contact TriMedia Customer Support. Once an ID
has been maintained, management of the subsystem space is the board manufacturers
responsibility.

Register f, bits O .. 7 : Interrupt line register.

This determines the value to use for host interrupts. Note that TMMAN does not support
sharing of interrupts.

The value in registers 4 and 5, and F are allocated by the PCI BIOS as part of the setup.
The values allocated by the BIOS are used by the Win95 configuration manager. The

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 27

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

exact way this is done is documented in PCI Design Issues for Windows 95 and Windows
NT (Microsoft Corporation, 1/25/95) (document is available from Microsoft).

Depending on the BIOS, and exact PC configuration, plug and play may not always
work. In this case, the configuration needs to be changed so that these are not allocated
automatically. This is done using the Windows 95 Device Manager (Start—> Settings—>
Control Panel-> System—> Device Manager). To disable automatic selection of the base
address, the Resources menu needs to be selected and changed. Both the base address
and the interrupt number may need to be allocated manually.

BIU and Interrupt Initialization

The TM-1 processor comes up in big endian mode. Depending on the endianness of the
host processor, the BIU control register needs to be reconfigured. After this write, all fur-
ther accesses should be done in big endian format.

On a little endian processor, this write has to be done in big endian format. The
BYTESWAP macro converts the ordering.
#define BYTESWAP(x)

((x) << 24 | ((x) &0xFF00) << 16 | ((x) & O0xFF0000) >> 8 | \
((x) & 0xFF000000) >> 24)

VOID halRegisterInit (PVOID pvObject, DWORD dwSDRAMPhys,
DWORD dwSDRAMCachelLimit, DWORD dwMMIOPhys){

MMIO.pVIC = dwMMIOBase + 0x100800;
MMIO.pTimers = dwMMIOBase + 0x100c00;
MMIO.pDebug = dwMMIOBase + 0x101000;
MMIO.pBIU = dwMMIOBase + 0x103004;
MMIO.pAudioIn = dwMMIOBase + 0x101c00;
MMIO.pAudioOut = dwMMIOBase + 0x102000;
MMIO.pCache = dwMMIOBase + 0x100000);

This initializes pointers to the MMIO registers of the different peripherals.
FirstTimeReset = !(MMIO.pBIU->dwBIUControl & (BIU_SE|BIU_HE));
The Windows 95 driver checks whether the BIU control register HE and SE bits are set. If

these bits are not set, it assumes that we are just doing a reboot and that none of the reg-
isters needs to be initialized.

if(FirstTimeReset)
MMIO.pBIU->dwBIUControl = BYTESWAP (BIU_SE | BIU_HE | BIU_SR);

This turns on the BIU byte swap enable bit, host enable, and set reset bits.

MMIO.pCache->dwDRAMCacheableLimit
MMIO.pCache->dwDRAMLimit

= dwSDRAMPhys + dwSDRAMSize;
= dwSDRAMPhys + dwSDRAMSize;

The DRAM Limit and DRAM Cacheable Limit registers are set to the end of memory.

MMIO.pVIC->dwIMask
MMIO.pVIC->dwIClear

03
OXFFFFFFFF;

Writing zeroes to the IMASK registers ensures that all interrupts are off. Note that if inter-
rupts need to be generated from the host to the TM processor, then the relevant bits in

28 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

IMASK need to be set. Writing all ones to the ICLEAR register ensures that all the pending
interrupts are cleared. For more information. see Figure 3-7 of the data book.

Putting the Processor in Reset

In what follows, figure references are to the databook.

The following code from <tmhal.c> puts the processor in a reset state.

VOID halDSPStop (PVOID pvObject) {
MMIO.pVIC->dwIMask = (0x0);
MMIO.pVIC->dwIClear Oxffffffff;
MMIO.pBIU->dwBIUControl &= (~BIU_CR);
MMIO.pBIU->dwBIUControl [= BIU_SR;

Interrupts are masked and pending interrupts are cleared (Figure 3-7 in the data book).
Turning off CR (clear reset) and turning on set reset clears the reset.

*((PDWORD) (MMIQ.pSpace + AQ_CTL))
*((PDWORD) (MMIO.pSpace + AO_FREQ))

0x80000000;
03

This resets audio out. PDWORD is a Windows type for a pointer to a double word (32
bits). See Figure 9-6 of the data book.
/* audio in AI_CTL */

*((PDWORD) (MMIO.pSpace + AI_CTL))
*((PDWORD) (MMIO.pSpace + AI_FREQ))

0x80000000;
03

This resets audio in. Generally speaking, the most significant bit in the control register
for a peripheral is reset. See Figure 8-5 of the data book.

*((PDWORD) (MMIO.pSpace + VI_CTL)) = 0x00080000;
*((PDWORD) (MMIO.pSpace + VI_CLOCK)) = 0;
*((PDWORD) (MMIO.pSpace + VO_CTL)) = 0x80000000;
*((PDWORD) (MMIO.pSpace + VO_CLOCK)) = 0;

This resets video in and video out. See Figures 6-11 and 7-26 of the data book.

*((PDWORD) (MMIO.pSpace + SSI_CTL))
*((PDWORD) (MMIO.pSpace + SSI_CTL))

0xc0000000;
(1 << 18);

The first instruction resets the Synchronous Serial Interface (SSI). The two upper most
bits correspond to Transmitter reset and receiver reset. The second leaves the phone on
hook after reset. See figure 16-1 in the data book.

The following code resets the ICP. The loop is executed 10 times, just to make sure.

for (Idx= 0 ; Idx < 10 ; Idx ++) {
if((*((PDWORD)(MMIO.pSpace + ICP_SR)) & 0x01)) break;
(*((PDWORD) (MMIO.pSpace + ICP_SR))) = 0x80;

}

The least significant bit (LSB) corresponds to ICP busy. If the ICP is busy executing
microcode there is no reset. The assignment resets the ICP internal registers on reset. See
Figure 13-17 in the data book.

*((PDWORD) (MMIO.pSpace + IIC_CTL)) = 0;

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 29

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

The IIC bus is disabled (figure 15-2 in the data book).
*((PDWORD) (MMIO.pSpace + VLD_COMMAND)) = 0x00000401;

The writes a reset command with a count of 1 to the VLD. See Chapter 14 in the data
book.

*((PDWORD) (MMIO.pSpace
*((PDWORD) (MMIO.pSpace
*((PDWORD) (MMIO.pSpace
*((PDWORD) (MMIO.pSpace

+ TIMERI_TCTL)) &= ~0x1;
+ TIMERZ2_TCTL)) &= ~0x1;
+ TIMER3_TCTL)) &= ~0xI1;
+ SYSTIMER_TCTL)) &= ~0x1;
The RUN bit is turned off in the four timer control registers.

*((PDWORD) (MMIO.pSpace + BICTL)) = 0;
*((PDWORD) (MMIO.pSpace + BDCTL)) = 0;

The instruction and data breakpoints are turned off. See Figures 3-10 and 3-13 in the
data book.

*((PDWORD) (MMIO.pSpace + JTAG_DATA_IN))= 0x0;
*((PDWORD) (MMIO.pSpace + JTAG_DATA_OUT))= 0x0;
*((PDWORD) (MMIO.pSpace + JTAG_CTL))= 0x04;

The JTAG data registers and full bits are cleared. The JTAG interface is put in sleepless
mode. See figure 17-3 in the data book.

Taking the Processor Out of Reset

Once the program has been loaded, the following code from tmhal.c will begin initial-
ization.

VOIDhalDSPStart (PVOID pvObject)
{

MMIO.pVIC->dwIMask = 0;
MMIO.pVIC->dwIClear = OXFFFFFFFF;

This disables interrupts and clear all pending interrupts See Figure 3-7 in the data book.

MMIO.pBIU->dwBIUControl &= ~BIU_SR;
MMIO.pBIU->dwBIUControl |= BIU_CR;

Turning off SR (set reset) and turning on CR (clear reset) in the Bus Interface Unit (BIU)
takes the processor out of reset See Figure 10.6.4 in the data book.
The following code determines whether the TriMedia processor is running or not.

BOOLhalIsTMRunning (void) {
return ((MMIO.pBIU->dwBIUControl & BIU_SR) == 0);
}

tmmprun—Multiprocessor Download Program

tmmprun is intended to run as an independent executable to be started from a PC com-
mand line. Its first argument is the name of a TM-1 executable to be downloaded,
started, and which is passed all additional command line arguments. Between starting

30 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

the executable and receiving its termination message, the module behaves as a server for
the HostCall interface.

tmmprun is the driver for the host part of the PC version of the Level 2 Remote Proce-
dure Call Server (RPCserv). An implementation of this is needed for each particular host
of a TM-1 board which uses TCS’s generic ANSI C library.

The tmmprun source consists of one C source file, tmmprun.c.

tmmprun—Program Source Listing

Following is the listing of the program tmmprun through which you can know how to
use the tmman, tmcrt and downloader library to download into a multiprocessor sys-
tem using shared memory.

/* COPYRIGHT (c) 1997 by Philips Semiconductors

This module is driver for the host part of the PC version of Level 2
Remote Procedure Call Server. An implementation of this is needed for
each particular host of a TM-1 board which uses TCS's generic ANSI C
library.

In its current form this module is intended to run as an independent
executable that must be started from a PC command line. Its first
argument must be the name of a TM-1 executable which is to be
downloaded, started, and passed all additional command Tine arguments.
Between starting the executable and receiving its termination message,
this module behaves as a server for the HostCall interface.

* % o o o F X X X %

*

&

#include "windows.h"

#include "stdio.h"

#include "winioctl.h"

#include "tmmanapi.h"

#include "tmcrt.h"

#include "tmif.h"

#include "TMDownloader.h"

DWORD GlobalExitCode = (~0x0);
BOOL Interactive = TRUE;

PCHAR TargetExecutableName = NULL;
DWORD TargetArgumentOffset;

BOOL WINAPT tmrunControlHandler(DWORD dwCtri1Type);

#define MAXIMUM_NODES 4
#define MAXIMUM_COMMAND_LINE_ARGS 100

DWORD DSPCount = 0;
HANDLE EventArray[MAXIMUM_NODES];
TCHAR szTemp[2048];

TMStatus tmDSPExecutableloadEx (

DWORD DSPHandle,
PCHAR pszImagePath,
DWORD NumberOfDSPs,
TMDwnlLdr_SharedSectionTab_Handle SharedSections,
PDWORD MMIOPhysicalAddressArray
Jg
void WarningBox (TCHAR* ErrorString);

HANDLE tmmanGetDriverHandle (VOID);

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 31

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

#define tmmanDownloaderStatusToTMManStatus(x) \
(((x)!=TMDwnlLdr_OK)?(x+0x70):statusSuccess)

/***/

// For details on TMDwnlLdr functions, refer to the chapter "TriMedia "
// Downloader API" in the book "Software Library APIs. For details on
// tmman & cruntime functions, refer to the chapter "TriMedia Manager
// API” in the book "Software Library APIs"
int
main(int argc, char *argv[]){

TMStatus Status;

tmmanVersion Version;

tmmanDSPInfo DSPCaps;

COORD ConsoleSize;

DWORD wldxArg;

DWORD CRTHand1e[MAXIMUM_NODEST;

DWORD DSPHand1e[MAXIMUM_NODEST;

DWORD ArgumentCountArray[MAXIMUM_NODEST;

PVOID ArgumentVectorArray[MAXIMUM_NODEST;

DWORD MMIOPhysicalAddressArray[MAXIMUM_NODES];
CHAR* ArgumentVector[MAXIMUM_COMMAND_LINE_ARGS];
DWORD IdxNode;

DWORD ArgumentCount;

TMDwnlLdr_SharedSectionTab_Handle SharedSections;

if(argc == 1){
goto mainUsage;

}

/* check for compatible driver version */
Version.Major = constTMManDefaultVersionMajor;
Version.Minor = constTMManDefaultVersionMinor;

tmmanNegotiateVersion(constTMManDefault, &Version);

if((Version.Major != constTMManDefaultVersionMajor) ||
(Version.Minor != constTMManDefaultVersionMinor))
{
fprintf(stderr, "TMMPRun : ERROR : tmmprun.exe Version[%d.%d] is \
INCOMPATIBLE With TMMan32.d11 Version[%d.%d]\n",
constTMManDefaultVersionMajor, constTMManDefaultVersionMinor,
Version.Major, Version.Minor);
goto mainExitl;

// install a control C handler so we can perform cleanup before exit.
if(SetConsoleCtrlHandler(tmrunControlHandler, TRUE) != TRUE){
fprintf(stderr,
"TMMPRun : ERROR : Win32 SetConsoleCtrlHandler failed [Ox%x1",
GetLastError());
goto mainExitl;

}

// count the number of DSPs into which we must download.
// this corresponds to the number of "-exec" in the command Tline
for(wldxArg = 1 ; wldxArg < argc; wIdxArg++){
// "-exec" indicates start of target executable name and arguments
if(_stricmp (argv[wIdxArgl, "-exec") == 0){
DSPCount++;

Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

}

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

// initialize the arrays
for (IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){

}

DSPHandle[IdxNode] = NULL;

for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){

}

CRTHandle[IdxNode] = NULL;

for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){

}

ArgumentVectorArray[IdxNode]l = NULL;

for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){

}

EventArray[IdxNode] = NULL;

// open all the DSPs
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){

}

Status = tmmanDSPOpen(IdxNode, &DSPHandlel[IdxNodel);
if(Status != statusSuccess){
fprintf(stderr,
"TMMPRun : ERROR : tmmanDSPOpen failed [O0x%xJ(%s)\n",
Status, tmmanGetErrorString(Status));
goto mainExit2;

}
Status = tmmanDSPGetInfo (DSPHandlel[IdxNode] , &DSPCaps);
if(Status != statusSuccess){
fprintf(stderr,
“TMMPRun : ERROR : tmmanDSPGetInfo failed [O0x%x](%s)\n",
Status, tmmanGetErrorString(Status));
goto mainExit3;
}

MMIOPhysicalAddressArray[IdxNode]l = DSPCaps.MMIO.PhysicalAddress;

// process the generic command line parameters here
for(wldxArg = 1; wIdxArg < argc; wlIdxArg++){

// "-exec" indicates start of target executable name and arguments
if(_stricmp(argviwldxArg],"-exec") == 0){
// the next argument should be the name of the executable.
wldxArg++; // Point to it.
break;
}
switch(toupper(argviwIdxArg][1])){
// interactive off option

case 'B': Interactive = FALSE;
break;
// no of Tines in console window
case 'W':

DWORD dwWindowlLines;
COORD ConsoleSize;
if(sscanf(&argviwldxArgll[2], "%d", &dwWindowLines) != 1){
goto mainUsage;
}
ConsoleSize.X = 80;
ConsoleSize.Y = (USHORT)dwWindowLines;
SetConsoleScreenBufferSize(
GetStdHand1e(STD_OUTPUT_HANDLE), ConsoleSize);
}
break;
// add other command line options here

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 33

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

case '?':
default:
goto mainUsage;

}

L1111 7 0707171777777 7077707777777 77 777777777777 777777777771771777717717
// create an empty shared section table for use in multiprocessing
// downloading

TMDwnlLdr_create_shared_section_table(&SharedSections);

// initialize the C Run Time server to serve multiple nodes.
cruntimelnit();

// initialize the C runtime for each DSP
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
CRunTimeParameterBlock CRTParam;
DWORD i;

// create an event for this node
EventArray[IdxNode]l = CreateEvent(

NULL, //default security descriptor in NT, not used in Win95
FALSE, //auto reset event
FALSE, //initial state is not signalled
NULL);
if(EventArray[IdxNode] == INVALID_HANDLE_VALUE){
fprintf(stderr,

"TMMPRun : ERROR : Win32 CreateEvent failed [0x%x]1\n",
GetLastError());
goto mainExit4;
}
CRTParam.OptionBitmap
CRTParam.StdInHandle
CRTParam.StdOutHandle
CRTParam.StdErrHandle

0

(DWORD) GetStdHandle(STD_INPUT_HANDLE);
(DWORD) GetStdHandle(STD_OUTPUT_HANDLE);
(DWORD) GetStdHandle(STD_ERROR_HANDLE);

// process target specific command Tine arguments here
// this parameter should be the executable filename
TargetExecutableName = argv[wldxArgl;
ArgumentCount = 0;
ArgumentVector[ArgumentCount++] = argv[wldxArg];
for(wldxArg++ ; wldxArg < argc; wldxArg++){
// "-exec" indicates start of target executable name and
// arguments
if(_stricmp(argv[wldxArg],"-exec") == 0){

wIdxArg++;
break;
}
ArgumentVector[ArgumentCount++] = argv[wldxArgl;

}
ArgumentVector[ArgumentCount] = NULL;

// we have to allocate persistent storage for these values
ArgumentCountArray[IdxNode] = ArgumentCount;
if((ArgumentVectorArray[IdxNode] =
malloc(sizeof(PVOID) * (ArgumentCount + 1))) == NULL)
{
fprintf(stderr,
"TMMPRun : ERROR : malloc(Argument Array) failed\n");
goto mainExith;
}
memcpy (ArgumentVectorArray[IdxNode],

34 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

ArgumentVector,
sizeof(PVOID) * (ArgumentCount + 1));

// PERFORM RELOCATION HERE ///////////1///1/1///////
Status = tmDSPExecutableloadEx (

DSPHandle[IdxNode],

TargetExecutableName,

DSPCount,

SharedSections,

MMIOPhysicalAddressArray);
[1111770777771771777777777777777777777777777177777777777

if(Status != statusSuccess){
fprintf(stderr,
"TMMPRun : ERROR : tmDSPExecutableloadEx(%s) failed \
[0x%x](%s)\n",
TargetExecutableName, Status, tmmanGetErrorString(Status));
goto mainExit6;
}
CRTParam.OptionBitmap [= constCRunTimeFlagsUseSynchObject;
CRTParam.SynchronizationObject = (DWORD) EventArray[IdxNodel;
CRTParam.VirtualNodeNumber = IdxNode;

if(!Interactive){
CRTParam.OptionBitmap |= constCRunTimeFlagsNonInteractive;
}

// allocate resources for this TriMedia processor.
if(cruntimeCreate(
IdxNode, /* the physical DSP Number */
ArgumentCountArray[IdxNode],
ArgumentVectorArray[IdxNodel],
&CRTParam,
&CRTHandle[IdxNode]) != True)

{
fprintf(stdout,
"TMMPRun : ERROR : Cannot Initialize C Run Time Server : CRT \
I1/0 calls will not work\n");
goto mainExité6;
}

}
// At this point, code has been copied to the memory of the TriMedia boards
// and C runtime has been created. Start executing the code on each DSP.
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
Status = tmmanDSPStart(DSPHandle[IdxNode]);
if(Status != statusSuccess){
fprintf(stderr,
"TMMPRun : ERROR : tmmanDSPStart failed [O0x%x](%s)\n",
Status, tmmanGetErrorString(Status));
goto mainExit7;

}

// wait until all objects in the EventArray array are signaled.
WaitForMultipleObjects (DSPCount, EventArray, TRUE, INFINITE);

/* mainExit7: */
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
if(DSPHandle[IdxNode]) tmmanDSPStop (DSPHandle[IdxNodel);
}
mainExit7:
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 35

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

if(CRTHandle[IdxNode])
cruntimeDestroy(CRTHandle[IdxNodel, &GlobalExitCode);
}
mainExit6:
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
if(ArgumentVectorArray[IdxNode])
free (ArgumentVectorArray[IdxNodel);
}
mainExits:
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
if(EventArray[IdxNode])
CloseHandle(EventArray[IdxNodel);
}

mainkxité:
cruntimeExit();
TMDwnlLdr_unload_shared_section_table(SharedSections);

mainExit3:
for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
if(DSPHandle[IdxNode])
tmmanDSPClose (DSPHandlel[IdxNode]);
}

mainExit2:
SetConsoleCtriHandler(tmrunControlHandler, FALSE);

mainExitl:
if(Interactive){
fprintf(stdout, "\nTMMPRun:Press [ENTER] to close server >>");
getchar();

}
return (GlobalExitCode);
mainUsage:
fprintf(stderr, "usage:TMMPRun [-wWindowSize]l [-b] -exec \
ExecutableImageName [Argl] [Arg2] ... -exec ExecutableImageName [Argl] \

[Arg2] ...\n");
goto mainExitl;
}

// control C handler
BOOL WINAPI
tmrunControlHandler(DWORD dwCtri1Type){
DWORD IdxNode;

fprintf(stderr,
"\nTMMPRun:Control C Detected : Performing Cleanup\n");

for(IdxNode = 0 ; IdxNode < DSPCount ; IdxNode++){
SetEvent (EventArray[IdxNodel);
}
return TRUE;
}

// function to download the image in DSP
TMStatus tmDSPExecutableloadEx (

DWORD DSPHandle,

PCHAR pszImagePath,

DWORD NumberOfDSPs,
TMDwnLdr_SharedSectionTab_Handle SharedSections,

PDWORD MMIOPhysicalAddressArray)

36 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

//

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

tmmanDSPInfo DSPInfo;

tmmanDSPInternallInfo DSPInternallnfo;

TMStatus Status = statusSuccess;

tmifDSPLoad TMIF;

TMDwnlLdr_Object_Handle ObjectHandle;

UInt32 ImageSize;

UInt32 Alignment;

DWORD AlignedDownloadAddress;

UInt32 DownlLoaderStatus;

Endian endian;

UInt32 HostType = tmWinNTHost;

UInt32 BytesReturned;

UInt32 TargetVersion;

UInt32 ClockSpeed = 100000000; // default
UInt32 CacheOption = TMDwnLdr_LeaveCachingToDownloader; // default
UInt32 INIEndianess = True; // 1ittle endian

HKEY RegistryHandle;

HKEY RegistryHandleDevice;

TCHAR szDeviceName[0x101;

map SDRAM into the Operating System and Process virtual address space

if((Status = tmmanDSPMapSDRAM(DSPHandle)) != statusSuccess){
OutputDebugString (TEXT("TMMPRun:tmmanDSPMapSDRAM:FAIL\n"));
goto tmDSPExecutableloadExitl;

}

tmmanDSPGetInfo (DSPHandle, &DSPInfo)

tmmanDSPGetInternalInfo(DSPHandle, &DSPInternallnfo);

if(ERROR_SUCCESS == RegOpenKeyEx(
HKEY_LOCAL_MACHINE,
constTMManRegistryPath,
0,
KEY_READ,
&RegistryHandle))

ULONG BytesXfered;

BytesXfered = sizeof (ULONG);

if(ERROR_SUCCESS != RegQueryValueEx(
RegistryHandle,
TEXT("DefaultEndianness"),
NULL,
NULL,
(BYTE*)&INIEndianess,
&BytesXfered))

{

INIEndianess = True;

}

wsprintf(szDeviceName, TEXT("Device%x"), DSPInfo.DSPNumber);

if(ERROR_SUCCESS == RegOpenKeyEx(
RegistryHandle,
szDeviceName,
0,
KEY_READ,
&RegistryHandleDevice))

BytesXfered = sizeof (ULONG);
if(ERROR_SUCCESS != RegQueryValueEx(
RegistryHandleDevice,

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 37

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

TEXT("ClockSpeed"),
NULL,
NULL,
(BYTE*)&ClockSpeed,
&BytesXfered))

{

ClockSpeed = 100000000;

}

BytesXfered = sizeof (ULONG);

if(ERROR_SUCCESS != RegQueryValueEx(
RegistryHandleDevice,
TEXT("CacheOption"),

NULL,
NULL,
(BYTE*)&CacheOption,
&BytesXfered))
{
CacheOption = TMDwnLdr_LeaveCachingToDownloader;
}
RegCloseKey (RegistryHandleDevice);

}
RegCloseKey (RegistryHandle);
}
// read the executable from file into memory,
// and use the handle returned for subsequent operations
if((DownlLoaderStatus = TMDwnlLdr_load_object_from_file (
pszImagePath,
SharedSections,
&0bjectHandle)) != TMDwnlLdr_OK)

Status = tmmanDownloaderStatusToTMManStatus(DownlLoaderStatus);
goto tmDSPExecutableloadExit2;
}

// BEGIN symbol patching
if((DownlLoaderStatus = TMDwnlLdr_resolve_symbol(
ObjectHandle,
"_TMManShared",
DSPInternallnfo.TMManSharedPhysicalAddress)) != TMDwnlLdr_OK)

OutputDebugString(TMDwnlLdr_get_last_error (DownlLoaderStatus));
HostType = tmNoHost;
Status = tmmanDownloaderStatusToTMManStatus(DownlLoaderStatus);
WarningBox(TEXT("Target Executable has not been Tinked with \
[-host \ WinNT] or [-host Windows]\n"));
}

// get the extracted image size, and its required alignment in SDRAM
if((DownlLoaderStatus = TMDwnlLdr_get_image_size(ObjectHandle,
&ImageSize, &Alignment)) != TMDwnlLdr_0OK)

{
Status = tmmanDownloaderStatusToTMManStatus(DownlLoaderStatus);
OutputDebugString (TMDwnlLdr_get_last_error (DownlLoaderStatus));
goto tmDSPExecutableloadExit3;

}

AlignedDownloadAddress =

((DSPInfo.SDRAM.PhysicalAddress + Alignment-1) & (~(Alignment-1)));

// relocate the Toaded executable into a specified TM1l address range,
// with specified values for MMIO_base and TM1_frequency.
if((DownlLoaderStatus = TMDwnlLdr_multiproc_relocate (

38 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

ObjectHandle,

HostType,
(Address*)MMIOPhysicalAddressArray,
DSPInfo.DSPNumber, // NodeNumber
NumberO0fDSPs,// NumberOfNodes
ClockSpeed,
(Address)AlignedDownloadAddress,
DSPInfo.SDRAM.Size,

CacheOption)) != TMDwnlLdr_OK)

OutputDebugString (TMDwnlLdr_get_last_error (DownlLoaderStatus));
Status = tmmanDownloaderStatusToTMManStatus(DownlLoaderStatus);
goto tmDSPExecutableloadExit3;

}

// Get the endianness of the specified loaded object

if((DownlLoaderStatus = TMDwnlLdr_get_endian(
ObjectHandle,
&endian)) != TMDwnLdr_OK)

OQutputDebugString(TMDwnlLdr_get_last_error (DownlLoaderStatus));
Status = tmmanDownloaderStatusToTMManStatus(DownlLoaderStatus);
goto tmDSPExecutableloadExit3;

if(INIEndianess != endian){
Status = statusExecutableFileWrongEndianness;
goto tmDSPExecutableloadExit3;
}
TMIF.DSPHandle = DSPHandle;
TMIF.Endianess =
(endian==LittleEndian) ?
constTMManEndianessLittle : constTMManEndianessBig;

if((TMDwnlLdr_get_contents(
ObjectHandle,
"__TMMan_Version",
&TargetVersion)) != TMDwnLdr_O0K)

TMIF.PeerMajorVersion = constTMManDefaultVersionMajor;
TMIF.PeerMinorVersion = constTMManDefaultVersionMinor;

} else {
// major version = __TMMan_Version[31:16]
// minor version = __TMMan_Version[15:0]

TMIF.PeerMajorVersion = ((TargetVersion & Oxffff0000) >> 16);
TMIF.PeerMinorVersion = TargetVersion & (0x0000ffff);
if((TMIF.PeerMajorVersion != constTMManDefaultVersionMajor) ||
(TMIF.PeerMinorVersion != constTMManDefaultVersionMinor))
{
wsprintf (szTemp, TEXT("Target Executable Version [%d.%d] is \

INCOMPATIBLE with TriMedia Driver Version [%d.%d1\n"),

TMIF.PeerMajorVersion, TMIF.PeerMinorVersion,
constTMManDefaultVersionMajor, constTMManDefaultVersionMinor);
switch(

(MessageBox (NULL,

szTemp,

TEXT("TriMedia Manager : TMMPRun.exe : Continue ? "),

MB_OKCANCEL |MB_ICONQUESTION|MB_DEFBUTTONL |MB_APPLMODAL)))

case IDOK:
break;

case IDCANCEL:

default:

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 39

Chapter 8: Bootstrapping TriMedia in Host-Assisted Mode

Status =

(TMIF.PeerMajorVersion != constTMManDefaultVersionMajor) ?
statusMajorVersionError : statusMinorVersionError;

goto tmDSPExecutableloadExit3;

}
}
// call to kernel mode driver

if(DeviceloControl (tmmanGetDriverHandle(),
constIOCTLtmmanDSPLoad,
(PVOID)&TMIF, sizeof(tmifDSPLoad),
(PVOID)&TMIF, sizeof(tmifDSPLoad),
&BytesReturned, NULL) != TRUE)

{
Status = TMIF.Status;
goto tmDSPExecutableloadExit3;
}
if((DownlLoaderStatus = TMDwnLdr_get_memory_image(
ObjectHandle,
(UInt8*)tmmanPhysicalToMapped(&DSPInfo. SDRAM,
AlignedDownloadAddress))) != TMDwnlLdr_OK)
{
OutputDebugString (TMDwnlLdr_get_last_error (DownlLoaderStatus));
Status = tmmanDownloaderStatusToTMManStatus(DownlLoaderStatus);
goto tmDSPExecutableloadExit3;
}

tmDSPExecutableloadExit3:
TMDwnlLdr_unload_object (ObjectHandle);

tmDSPExecutableloadExit2:
tmmanDSPUnmapSDRAM (DSPHandle);

tmDSPExecutableloadExitl:
return Status;

}

void WarningBox (TCHAR* ErrorString){
MessageBox(NULL,
ErrorString,
TEXT("TriMedia Manager : tmmprun.exe : WARNING"),
MB_OK[MB_ICONWARNING|MB_DEFBUTTON1|[MB_APPLMODAL);

40 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 9
Bootstrapping TriMedia from Flash

Topic Page
Introduction 42
Setting Up Flash-Based Booting 42
Compressing TriMedia Boot Images 46
Note

The Flash File System is not included with the basic TriMedia SDE, but is
available under a separate licensing agreement. Please contact your TriMedia
sales representative for more information.

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 41

Chapter 9: Bootstrapping TriMedia from Flash

Introduction

Using the TriMedia Flash File System Manager for storing boot images on flash memory,
a simple modification to the L1 boot procedure is sufficient to let TriMedia boot from
flash. (The standard L1 boot procedure is described in Chapter 7.)

This chapter describes this modified boot procedure, and how to set up the flash mem-
ory so that it can be used for autonomous booting. The TriMedia Flash File System Man-
ager is fully described in Chapter 10, TriMedia Flash File System API, of Book 5, System
Utilities, Part A.

Setting Up Flash-Based Booting

Setting up a board so that it boots from flash generally involves the following steps:

1. Choose the endian in which the board will run; the flash file system format is endian
dependent. For example:

ENDIAN=-el

2. Choose a flash driver that corresponds with the board. A flash driver defines some
basic flash characteristics, like flash block size, number of flash blocks, and how to
write to- and read from flash, and how to erase flash blocks. Directory $TCS/examples/
flash_file_system/sample_drivers contains a number of flash drivers for standard Philips
boards, and new drivers can best be based upon these sample drivers. The chosen
flash driver must, at a minimum, correspond to requirements given in Flash Driver
Boot Specification in Book 5, System Utilities, Part A. For example:

$TCS/examples/flash_file_system/sample_drivers/FlashSpecificGomad.c

3. Create the flash-based L1 boot image that is to be stored in the L1 boot EEPROM. This
is a simple modification of the standard L1 boot image that obtains its L2 boot image
from flash using function Flash_boot exported by the flash file system library. An L1
flash booter is demonstrated in $TCS/examples/flash_file_system/autoboot. In this
example directory, the flash-based L1 image can be built as follows:

make -f Makefile.Unix 11.mi \
CC=/t/lang/acc \

ENDIAN=el \

BOARD=Gomad \
MMIO_BASE=0xefe00000 \

SDRAM_BASE=0, SDRAM_LIMIT=0x800000 \
TCS=/1ocal/bin/tcs

The location at which the flash-based L1 stage loads the L2 boot image is yet unspec-
ified; this is to be defined for each L2 image individually.

Function Flash_boot assumes that the datacache is disabled; this means that the
cacheable limit address defined in 11rom.c of the autoboot sample directory should
be set to the SDRAM base.

42 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 9: Bootstrapping TriMedia from Flash

The Gomad driver has its bank size set to 6 megabytes to avoid a hardware problem
in accessing the higher 2 megabytes of each flash bank. This might cause the L1
image size to exceed its size limit of 2 kilobytes; a work around for this problem is
using a power of two as bank size.

4. Using the -mi option to the linker tmld, create the L2 boot image. In case this boot
image itself needs to access the flash file system, then also pass the option -u FlashFS
to tmld so that it fetches the Flash File System component from library libio.a.

tmcc -el my_app.c -tmld -mi -load 0x100000,0x800000 -u _FlashFS --
CAVEAT: Avoid loading at SDRAM_BASE, since the L1 loader itself is executing there.

5. Optionally compress this L2 load image into a self-extracting image; refer to
Chapter 11, General Purpose Compression API, of Book 5, System Utilities, Part A.

6. Put the standard L1 boot image into the boot EEPROM, as described in Chapter 7.

7. Create a file system on flash, and put the L2 boot image, and optionally other files,
on to flash. The next section details the strategies for transferring this data to flash.

8. Replace the standard L1 book image with the flash-based L1 boot image. The system
is now ready for booting.

Initializing Flash Contents

Flash memory has to be formatted into an empty file system before it can be used by the
TriMedia Flash File System Manager. After that, files and directory structures can be arbi-
trarily created and deleted, and boot images can be written and overwritten without
restriction.

In the examples provided in this chapter, it is assumed that the relevant BSP is linked by
default. You can do this by changing the BOARD_LIST_EL and BOARD_LIST_EB lines in
tmconfig. The compression tools use the BSP as the flash file system hardware interface
by default.

The following tools in the TCS example directory facilitate the process of setting up ini-
tial flash contents, and of later maintenance:

$TCS/examples/flash_file_system/mkfs
Format flash to an empty file system.

$TCS/examples/compression/zlib/utilities/tmWRB
Embed a boot image into an executable that writes this boot image to flash
memory. In case the flash contained an old boot image, this will be replaced.

$TCS/examples/compression/zlib/utilities/tmSEA
Embed a directory structure into an executable that writes this directory struc-
ture to flash memory. Unrelated files that existed on flash are left untouched,
while others are overwritten. Executing an application that has been created
using tmSEA is similar to running an untar command on Unix.

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 43

Chapter 9: Bootstrapping TriMedia from Flash

These utilities can be used in succession to create the final flash image. There are two
possible, subtly different ways of dealing with them:

1. The flash can be gradually filled by successively running the executables produced by
the above utilities on the board on which the flash itself resides. The utilities can be
downloaded via a JTAG connection until the flash is ready for standalone booting;
after this, the boot EEPROM can be changed to boot from flash. This method pro-
grams one particular board, and is useful in a development setup.

2. Itis also possible to create a flash image off-line, to be programmed later into one or
more flash chips without intervention of the board that contains (or will contain) the
programmed flash chips. This method is more useful in a production environment,
in which a large number of flash-based systems have to be created.

Flash image pre-creation is possible by using the previous method on a reference system,
after which the resulting flash image can be copied. A second solution does not even
require a TriMedia processor: using tmsim and the flash simulator driver in §TCS/exam-
ples/flash_file_system/sample_drivers/FlashSpecificSim.c, the constructed simulated flash
contents are maintained in a file FLASH image, and are directly available after running
the ‘flash’ filling executables. When using the flash simulator with the purpose of build-
ing flash images, then it is advisable to disable the simulation of flash errors to avoid
simulated bad sectors.

Simulating flash on tmsim, and successively running executables, thereby building up
flash state, is demonstrated in $TCS/examples/flash_file_system/all_together.

Creating an Empty Flash File System Using mkfs

The following shows how to generate an executable that formats the flash to an empty
file system:

cd $TCS/examples/flash_file_system/mkfs
make ENDIAN=el HOST=nohost BOARD= FLASH.SPECIFIC= mkfs.out

Executable mkfs.out can be downloaded and executed, and leaves an initialized flash.
Progress is written to standard output.

Writing a Boot Image Onto Flash Using tmWRB

The following shows how to generate an executable that writes a boot image onto flash.
It is performed by first generating the tool tmWRB for the chosen board, then generating
the (L2) executable, and finally compressing the boot image derived from this into a
boot image writer using tmWRB. Note that tmWRB implicitly converts a boot executable
into a boot image:

cd $TCS/examples/compression/zlib/utilities/tmWRB

make -f Makefile.Solaris

tmcc -host nohost boot.c -o boot.out
tmWRB -el boot.out -Toad 0x100000,0x800000 -flashbsp -o write_boot.out

44 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 9: Bootstrapping TriMedia from Flash

Executable write_boot.out can be downloaded and executed, and installs the image of
executable boot.out as the flash’s boot image, thereby overwriting the previous one
when this existed.

Transferring Files to Flash Using tmSEA

The following shows how to embed a directory structure into an executable that writes
this directory structure onto flash when it is run. First, generate the tool tmSEA for the

chosen board. Then embed the chosen directory structure into a self-extracting archive.
In this example, the TCS system dlls are transferred to directory /flash/dlls:

Input Commands

cd $TCS/examples/compression/zlib/utilities/tmSEA

make -f Makefile.Solaris

mkdir dl11s

cp $TCS/1ib/el/*.d11 dl1s

tmSEA -el dl11s -od /flash/d11s -flashbsp -o write_dl1s.out

Output to stdio by tmSEA executable
/flash

/flash/d11s
/flash/d11s/1ibPCI.d11
/flash/d11s/1ibam.d11
/flash/d11s/1ibc.d11
/flash/d11s/1ibdma.d11
/flash/d11s/Tibgeneric.dll
/flash/d11s/Tibintpins.dll
/flash/d11s/1ibm.d11
/flash/d11s/1ibreg.dl1
/flash/d11s/1ibsem.d11
/flash/d11s/1ibxio.d11

b B B e s M W i e i 5 W v B

Executable write_dlls.out can be downloaded and executed, and writes the listed files to
flash, thereby leaving all other flash files (and the boot image, when existent), unmodi-
fied.

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 45

Chapter 9: Bootstrapping TriMedia from Flash

Compressing TriMedia Boot Images

This chapter describes how boot images can be reduced in size, by first compressing
them and then embedding the result in a new boot image. When this new boot image is
started, it decompresses the original one, places it at a specified range in SDRAM, and
transfers control to it. After this decompressing stage, the unpacker image is discarded,
and the original image runs exactly as it would have run if it had been used for booting
directly (i.e. without the compression/decompression stages). Note that this procedure
reduces the required amount of space for storing the image; because it is decompressed
before it is started, it does not reduce the required amount of SDRAM for executing it.

Using the full public domain compression library that has been provided in the $TCS/
example directory, boot image size reductions of over 50% for large executables can be
achieved.

Using tmSEl for Compressing Boot Images

—— 0x800000 ——
stack
stack
heap
compressed compressed
boot.mi boot.mi
—— 0x400000 ——
heap
Decompress
boot.mi boot.mi
—— 0x000000 ——
Figure 3 A self-extracting load image

The following shows how to compress an executable into a self-extracting image. It is
performed by first generating the tool tmSEI for the chosen board, then generating the
boot executable, and finally compressing the boot executable into a self extracting image
using tmSEI. Note that tmSEI implicitly converts a boot executable into a boot image.
Note also that compressed_boot.mi, which places the load image of boot.mi at the start of

46 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

Chapter 9: Bootstrapping TriMedia from Flash

SDRAM, is itself loaded in the second half of SDRAM to avoid interference with boot.mi
during the decompression stage:

cd $TCS/examples/compression/zlib/utilities/tmSEI
make -f Makefile.Solaris
tmcc -host nohost boot.c -o boot.out
tmSEI -el boot.out \
-Toad 0,0x800000 \
-sei 0x400000,0x800000 \
-flashbsp \
-0 compressed_boot.mi

Cascading tmSEI and tmWRB

Cascading of tmSEI and tmWRB can be achieved by letting tmSEI generate an executable

object file instead of a memory image, and applying tmWRB on the result. Leaving the
output of tmSEI as an executable can be achieved by omitting the -sei option:

tmcc -host nohost boot.c -o boot.out
tmSEI -el boot.out \
-load 0,0x800000 \
-flashbsp \
-0 compressed_boot.out
tmWRB -el compressed_boot.out \
-load 0x400000,0x800000 \
-flashbsp \
-0 write_compressed_boot.out

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part C 47

Chapter 9: Bootstrapping TriMedia from Flash

48 Book 2—Cookbook, Part C ©1999 Philips Semiconductors 10/08/99

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 2—Cookbook
	Bootstrapping TriMedia
	7: Bootstrapping TriMedia in Autonomous Mode
	Introduction
	Overview of Stand-Alone Boot
	PCI Signals
	Creating an EEPROM image
	EEPROM Header
	L1 Boot Program

	Sample Programs
	makefile.unix
	makefile.win
	l1main.c
	l1rom.c
	l1start.trees

	8: Bootstrapping TriMedia in Host-Assisted Mode
	TriMedia Initialization in Host-Assisted Mode
	Overview
	Plug-and-Play BIOS
	BIU and Interrupt Initialization
	Putting the Processor in Reset
	Taking the Processor Out of Reset
	tmmprun—Multiprocessor Download Program
	tmmprun—Program Source Listing

	9: Bootstrapping TriMedia from Flash
	Introduction
	Setting Up Flash-Based Booting
	Initializing Flash Contents
	Creating an Empty Flash File System Using mkfs
	Writing a Boot Image Onto Flash Using tmWRB
	Transferring Files to Flash Using tmSEA

	Compressing TriMedia Boot Images
	Using tmSEI for Compressing Boot Images
	Cascading tmSEI and tmWRB

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

