

Version 2.1

AB

Book 2—Cookbook

Part B:

Programming with Peripherals

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

iii

Book 2—Cookbook
Part B: Programming with Peripherals

Table of Contents

Chapter 4 Programming TriMedia Video Applications

Introduction... 8

TSSA Video Modules... 9

The Video Digitizer ...9

The Video Renderer ...9

The exolVrendVO Example Program ...9

Include Files... 10

Definitions.. 10

Specifying the Packet Format ... 11

Static Parameters and Function Prototypes .. 12

The Main Program... 12

TriMedia Video-In Operation .. 20

Full-Resolution Capture Mode .. 20

Full-Resolution Capture Mode .. 21

Half-Resolution Capture Mode ... 21

Raw Capture Mode ... 21

Message-Passing Mode ... 21

TriMedia Video-Out Operation... 23

Image Transfer Mode ... 23

Data Transfer Modes ... 24

Data-Streaming Mode ... 24

Message-Passing Mode... 24

Using the TriMedia Video-In/Video-Out Device Library .. 25

Guidelines for Use of the Video-In/Video-Out APIs .. 25

Vivot Demonstration Program Overview... 26

C Program Includes... 26

Main Program ... 27

Vivot Demonstration Program (Vivorun).. 27

Field Capture versus Frame Capture .. 30

Running in CIF Resolution (vivoRunCIF) ... 31

Running in Full Resolution (vivoRunFullRes)... 32

Initialization With Alpha Overlay (vivoRunOverlay).. 32

Table of Contents

iv

Book 2—Cookbook, Part B

©1999 Philips Semiconductors 10/08/99

Setup Input and Begin Capture (viYUVOpenAPI).. 33

Start Outputting an Image To Video Out (voYUVAPI) ... 34

Initialize Overlay Mode (voOverlayAPI) .. 36

Inputting an Image for Display on VO (readYUVfiles) .. 37

ICP Setup .. 38

Buffer Processing for Full Resolution and CIF ... 39

Buffer Processing for Overlay (mmOvlyBufUpdate) ... 39

VI Interrupt Service Routine (viTestISR) ... 40

Querying the Configuration .. 41

Chapter 5 Programming TriMedia Video Applications Using the ICP TSSA API

Introduction... 44

The exolVtransICP Example Program.. 45

Include Files ... 45

Definitions .. 46

Static Variables ... 46

Specifying the Packet Format ... 46

Specifying the Output Format .. 47

Packet Defines and Function Prototypes ... 48

Variables ... 49

Initialization ... 50

Get Capabilities .. 51

Make the Connection Between the Two Components ... 51

Create the Video Transformer Control Descriptor ... 52

Setup the Video Digitizer ... 52

Setup the Video Transformer .. 53

Starting the Component Instances ... 54

User Input ... 54

Stop and Shutdown .. 57

Application Progress Function ... 58

Application Completion Function ... 58

Chapter 6 Programming TriMedia Audio Applications

Introduction... 60

TSSA Audio Modules .. 61

The Audio Renderer .. 61

Check Capabilities ... 63

Open the Components:... 64

Make the Connection Between Each Pair of Components: 64

Table of Contents

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

v

Setup the File Reader ... 65

Setup the Audio Renderer.. 65

Start .. 66

Stop and Shutdown.. 67

Advanced Features ... 67

Audio Digitizer .. 67

CopyAudio Example ... 69

Create the Components:... 69

Getting Capabilities ... 69

Setting up iosetups... 70

Creating InOutDescriptors .. 70

Setting up audio digitizer .. 70

Setting up first output only .. 70

Setting up copy component .. 71

Opening and setting up audio renderer... 71

Initializing Audio Renderer ... 71

Waiting for the user to press RETURN to exit the program 71

Destroying InOutDescriptors .. 72

Exit the program ... 72

Running The CopyAudio program .. 72

Audio Mixer ... 72

Audio Decoders ... 73

Audio Device Library.. 73

Audio Hardware Overview ... 73

Capture/Transmission by DSPCPU .. 74

Using the TriMedia Audio-In/Audio-Out API ... 74

Guidelines for Use of the Audio-In/Audio-Out APIs.. 75

Restrictions .. 75

Demonstration Programs ... 75

Playing an Audio File.. 76

Interrupt Routine fplayISR.. 77

Recording an Audio File .. 78

sthru Demonstration Program ... 79

Setting Audio Parameters .. 80

Board Support Package ... 84

Table of Contents

vi

Book 2—Cookbook, Part B

©1999 Philips Semiconductors 10/08/99

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

7

4

Chapter 4

Programming TriMedia Video Applications

Topic Page

Introduction 8

TSSA Video Modules 9

TriMedia Video-In Operation 20

TriMedia Video-Out Operation 23

Using the TriMedia Video-In/Video-Out Device Library 25

Vivot Demonstration Program Overview 26

Chapter 4: Programming TriMedia Video Applications

8

Book 2—Cookbook, Part B

©1999 Philips Semiconductors 10/08/99

Introduction

This chapter describes how to write video applications using several programming inter-

faces available on TriMedia.

This chapter begins by describing the high level interface to the Video-In and Video-Out

peripherals. These interfaces are provided using the Video Digitizer and Video Renderer

components and enable an application to be written without requiring knowledge of the

underlying hardware peripherals. An overview of the operation of the TriMedia Video-In

and Video-Out units is then presented. This provides background material which is use-

ful when understanding the use of the low-level Video-In/Video-Out device libraries

which will then be described.

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

9

4

TSSA Video Modules

The high level interface is supported using modules which conform to the TriMedia

Streaming Software Architecture (TSSA). This software architecture is documented in

Book 3, Software Architecture

. There are several TSSA compliant modules which support

video data; examples of interest include the Video Digitizer, the Video Renderer, and the

Video Transformer. The Video Digitizer and Video Renderer will be discussed in this

chapter, while the Video Transformer is discussed in the next chapter.

The Video Digitizer

The video digitizer supports video capture using data streaming (

pull

 mode) operation; it

is described in more detail in Chapter 3,

Video Digitizer (VdigVI) API

, of Book 7,

Video Sup-

port Libraries

. In the

pull

 mode of operation, the component obtains an empty packet

using the datain callback function from an operating system message queue (the

empty

queue). It then captures a video frame, and using the same dataout callback function,

places the full packet onto another message queue (the

full

 queue). This streaming oper-

ation is supported in both the AL and OL layers; the AL API layer assumes no operating

system dependencies, while the OL API layer does.

The application can specify parameters which include the video standard (NTSC, PAL, or

SECAM), the adaptor type (CVBS or SVIDEO), and the size of the frame to capture.

The exolVrendVO example demonstrates how the Video Digitizer can be used to capture

video data. This example will be described in detail after the reader has been introduced

to the Video Renderer component.

The Video Renderer

The VrendVO Video Renderer component is used to display video images using the Tri-

Media Video-Out peripheral. The component supports non-streaming (

push

 mode) and

streaming (

pull

 mode) operation in the AL Layer. It also supports streaming operation in

the OL Layer. In

push

 mode, the application calls a Video Renderer function which will

display the frame, i.e. the application

pushes

 the frame to the renderer.

The Video Renderer supports several video standards and adaptor types. It is also capable

of combining the main video with an overlay image with alpha blending. The

exolVrendVO example shows the use of this component and will be described next.

The exolVrendVO Example Program

The exolVrendVO example demonstrates the use of the OL Layer Video Digitizer and

Video Renderer. As it uses OL versions of the APIs, data streaming is used to transfer data

packets between components. The example simply connects an instance of the Video

Digitizer to an instance of the Video Renderer. The digitizer captures live data using the

Chapter 4: Programming TriMedia Video Applications

10

Book 2—Cookbook, Part B

©1999 Philips Semiconductors 10/08/99

Video-In device while the renderer displays these images using the Video-Out device.

The example enables the user to specify parameters such as the video standard (NTSC or

PAL), the adaptor type (CVBS or SVIDEO), and whether to use full resolution or SIF reso-

lution images.

The source code for this example is contained within the examples/exolVrendVO direc-

tory of the application tree. This example will now be described in detail.

Include Files

The tmAvFormats.h file contains definitions for the packets which are used to store the

video data. The tmos.h file abstracts the underlying operating system; this enables the

code to be ported to different operating systems by simply changing this file. The type

definitions and function prototypes for the two video components are defined in the

tmolVrendVO.h and tmolVdigVI.h files respectively.

Definitions

The size of the captured and displayed video frame height is defined. Note that the

IMAGE_STRIDE

 is larger than the

IMAGE_WIDTH

. This is because the stride must be a mul-

tiple of 64 bytes; as the image width is 720 bytes, the nearest 64 byte multiple which is

greater than or equal to this is 768.

NUM_PACKETS

 defines the number of packets which will be used to transfer data

between the two components. The

NEW_PARAMETER

 is used in the user interface code to

determine if a new command should be processed.

#include <tm1/tmAvFormats.h>
#include "tmos.h"
#include "tmolVrendVO.h"
#include "tmolVdigVI.h"
#include <stdio.h>
#include <tmlib/dprintf.h> /* for debugging with DP(()) */
#include "sys_conf.h"

#define IMAGE_NTSC_HEIGHT 480
#define IMAGE_PAL_HEIGHT 576
#define IMAGE_WIDTH 720
#define IMAGE_STRIDE 768
#define NUM_PACKETS 4
#define NEW_PARAMETER 0

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

11

4

Specifying the Packet Format

This structure defines the format of the data contained in the packets. The

hash

 and

ref-

erenceCount

 fields must be set to zero, and should never be modified by the application.

They are used by the format manager which ensures that connected components are

compatible.

The

dataClass

 and

dataType

 must always be set to

avdcVideo

 and

vtfYUV

. These specify

that the class of data is video and is YUV. The

dataSubtype

 is set to

vdfYUV422Planar

 and

specifies the sub-type of YUV data. The Video Digitizer can capture either

vdfYUV422Planar

 or

vdfYUV422Interspersed

 video; both types store the Y, U, and V com-

ponents in separate buffers. The

vdfYUV422Planar

 sub-type has the chrominance sam-

ples co-sited with the luminance data, while

vdfYUV422Interspersed

 has the

chrominance located mid-way between luminance samples.

The

description

 field is set to vdfInterlaced to indicate that the Video Digitizer is captur-

ing interlaced video. The digitizer will store the two fields in a single buffer, with the top

field being on the even lines.

Finally, the size of the video frame is specified.

static tmVideoFormat_t digitizer_format = {
 sizeof(tmVideoFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV422Planar, /* dataSubtype */
 vdfInterlaced, /* description */
 IMAGE_WIDTH, /* imageWidth */
 IMAGE_NTSC_HEIGHT, /* imageHeight */
 IMAGE_STRIDE /* imageStride */
};

Chapter 4: Programming TriMedia Video Applications

12

Book 2—Cookbook, Part B

©1999 Philips Semiconductors 10/08/99

Static Parameters and Function Prototypes

The global variables used for the video configuration are declared and initialized. These

are used to enable the user to change the configuration by entering commands on the

console. The default settings for the video standard and adaptor are NTSC and CVBS.

The digitizer will capture full resolution images, and the renderer will perform no upscal-

ing on the output.

The function prototypes are for the user interface code. This will not be described.

The Main Program

The following code is contained within the

main

 function.

Variables

The

rval

 variable is used to store the value returned whenever a call is made to the Video

Digitizer, Video Renderer, or tsaDefaults API. The returned value is always of type

tmLibappErr_t

 and will have a value of

TMLIBAPP_OK

 if there is no error. It is important

to check the returned value whenever a call to a component API is made.

The

digitizerInstance

 and

vrendInstance

 variables are used to store the instance id’s when

the digitizer and renderer instances are opened. These id’s are unique and must be used

whenever the application calls a component API function.

static tmVideoAnalogStandard_t vidStd = vasNTSC;
static tmVideoAnalogAdapter_t vidAdapter = vaaCVBS;

extern int __argc;
extern char **__argv;

/* ------ function prototypes ------ */
static int DoCommand (char *command);
static int CheckArgcv(int argc, char **argv);
static void PrintUsage(void);

/* setup parameters */
int vResolution = viFULLRES;
int acquStartX = 0;
int acquStartY = 0;
int scaleUp = False;
int voStartX = 0;
int voStartY = 0;

tmLibappErr_t rval;
Int digitizerInstance;
Int vrendInstance;
char ins[80];
ptmolVdigVICapabilities_t digCap;
ptmolVrendVOCapabilities_t rendCap;
ptmolVrendVOInstanceSetup_t vrend_inst_setup;
ptmolVdigVIInstanceSetup_t digitizer_inst_setup;
ptsaInOutDescriptorSetup_t iodSetup;
ptsaInOutDescriptor_t iod;

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

13

4

The

ins[80]

 character array is used to store user command typed in at the keyboard.

Before two components are connected together to form a data flow, the application uses

the format manager to determine if they are compatible. Each component has a capabil-

ities structure which specifies what formats it can understand. The

digCap

 and

rendCap

variables are used to point to these capabilities structures.

Each component must also be setup before it is used. The

vrend_inst_setup

 and

digitizer_inst_setup

 are pointers to the instance setup structures.

The connection between two component instances is described using a

tsaInOutDescrip-

tor

. When a descriptor is created, it requires a setup structure which specifies information

about the two components being connected and the packets which will be used. The

iodSetup

 variable is used to point to this setup information.

DP Debug Information

The TriMedia SDE provides a mechanism where debug information can be written to

SDRAM by the application and component libraries. This can then be read either during

execution if the debugger is being used, or after the program has completed.

Check Capabilities

The capabilities of the two components to be connected together are obtained using the

respective GetCapabilities functions. This information will be used by the format man-

ager to ensure the two components are compatible. The versions of the two components

are printed on the console.

Read Command Line Parameters

The multitasking operating system is initialized and the command line arguments are

checked.

DPmode(DP_PERSIST);
DPsize(1024*1024);

rval = tmolVdigVIGetCapabilities(&digCap);
rval = tmolVrendVOGetCapabilities(&rendCap);

printf("TriMedia OS Video Renderer Demo. v1.0\n");
printf("\nThis program uses the video digitizer v%d.%d.%d\nand video renderer
v%d.%d.%d\n",
digCap->defaultCapabilities->version.majorVersion,
digCap->defaultCapabilities->version.minorVersion,
digCap->defaultCapabilities->version.buildVersion,
rendCap->defaultCapabilities->version.majorVersion,
rendCap->defaultCapabilities->version.minorVersion,
rendCap->defaultCapabilities->version.buildVersion);
printf("to pass video from video-in to video-out.\n");

tmosInit();
if(CheckArgcv(__argc, __argv) != 0) tmosExit(0);

Chapter 4: Programming TriMedia Video Applications

14

Book 2—Cookbook, Part B

©1999 Philips Semiconductors 10/08/99

Open the Components

Before a component can be used, it must first be opened using the respective open func-

tion. The relevant function will open an instance of the component, and store a unique

instance id in the pointer parameter. The application must use the instance id when call-

ing the components API. It is important to check the return value to ensure that an error

did not occur during the open operation. For example, the Video Digitizer and Video

Renderer only support a single instance to be open, if the application incorrectly tries to

open a second instance then the function will return an error.

Make the Connection Between the Two Components

The dataflow path connecting two components is specified using an InOutDescriptor.

Before this descriptor is created, a structure specifying the connection must be initialized

with information which describe the capabilities of the two components and informa-

tion about the packets which will be placed in the queue.

The first step is to create the setup structure using the standard malloc function. The

amount of the memory requested is equal to the size of the

tsaInOutDescriptorSetup_t

structure plus the number of buffers per packet minus one. As the packets store YUV

data, three buffers are required per packet, so the application needs to add two extra

UInt32

 fields to the allocated memory which will be used to store the U and V buffer

sizes. By default, the

tsaInOutDescriptorSetup_t

 has space for one buffer size.

The format of the packets which will be placed in the full queue are specified by passing

the address of the

digitizer_format

 structure. This information is used by the format

manager to check that the components can accept this type of packet. It will also be

rval = tmolVdigVIOpen(&digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);

rval = tmolVrendVOOpen(&vrendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);

iodSetup=(ptsaInOutDescriptorSetup_t)malloc(sizeof(tsaInOutDescriptorSetup_t)
 + 2*sizeof(UInt32));
iodSetupÐ>format = (ptmAvFormat_t)&digitizer_format;
iodSetupÐ>flags = tsaIODescSetupFlagCacheMalloc;
iodSetupÐ>fullQName = "full";
iodSetupÐ>emptyQName = "mpty";
iodSetupÐ>queueFlags = tmosQueueFlagsStandard;
iodSetupÐ>senderCap = digCapÐ>defaultCapabilities;
iodSetupÐ>receiverCap = rendCapÐ>defaultCapabilities;
iodSetupÐ>senderIndex = VDIGVI_MAIN_OUTPUT;
iodSetupÐ>receiverIndex = VRENDVO_MAIN_INPUT;
iodSetupÐ>packetBase = 0;
iodSetupÐ>numberOfPackets = NUMPACKETS;
iodSetupÐ>numberOfBuffers = 3;
iodSetupÐ>bufSize[0] = IMAGE_STRIDE * IMAGE_PAL_HEIGHT;
iodSetupÐ>bufSize[1] = IMAGE_STRIDE * IMAGE_PAL_HEIGHT / 2;
iodSetupÐ>bufSize[2] = IMAGE_STRIDE * IMAGE_PAL_HEIGHT / 2;

rval = tsaDefaultInOutDescriptorCreate(&iod, iodSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99

Book 2—Cookbook, Part B

15

4

placed automatically on packets when the sender instance (the Video Digitizer in this

case) places a packet onto the full queue.

The

flags

 parameter is set to

tsaIODescSetupFlagCacheMalloc

. This indicates to the

tsaDe-

faultInOutDescriptorCreate

 function that the packet buffers which it creates must be

cache aligned.

Information concerning the queues which will be automatically created are then initial-

ized. The full and empty queues are given names which can be used during debugging;

any four letter name can be used. The

queueFlags

 parameter provides information which

will be used when the full and empty queues are created. The

tmosQueueFlagsStandard

specifies that the queues will be local to the processor (i.e. they do not connect proces-

sors) and there is no limit to the number of messages which can be placed on them.

The capabilities of the two components which will be connected together will be

checked by the format manager to ensure that they are compatible. The

senderCap

 is set

to the address of the digitizer capabilities, while the

receiverCap

 is set to the renderer

capabilities. The component capabilities were obtained previously using the

tmolV-

digVIGetCapabilities

 and

tmolVrendVOGetCapabilities

 functions.

The senderIndex and receiverIndex fields specify the output and input pins which will be

used for the connection. Each component instance uses input and/or output pins for

communication to neighboring component instances; each pin represents the full/

empty message queue where packets are exchanged. The Video Digitizer has a single out-

put pin referenced by the index value VDIGVI_MAIN_OUTPUT. The Video Renderer has

two input pins, one for the main video input (VRENDVO_MAIN_INPUT) and one for the

overlay input (VRENDVO_OVERLAY_INPUT). The receiverIndex is set to

VRENDVO_MAIN_INPUT as this pin will receive the video packets for display.

The next set of fields will be used to provide information about the packets which will be

automatically created. The packetBase field is used to specify an identification number to

the packets that are placed in the queues. The application can use any number; the first

packet will contain this value, with subsequent packets containing id’s with ascending

values. In the example, the first packet will have an id of zero, the second packet will be

one, the third will be two, and the forth packet will have an id of three. This can be use-

ful for debugging to identify where the packets are being held. The numberOfPackets

specifies the number of packets which must be created and stored in the empty queue.

The numberOfBuffers specifies the number of data buffers per packet. As the components

are using YUV data, three buffers are required per packet to store the Y, U, and V data.

Each buffer has a corresponding buffSize value which specifies the size of the buffer. As

the packets are hold YUV data, the first bufferSize is set to the size of the luminance com-

ponent, with the subsequent bufferSize values set to the size of the Chrominance com-

ponents. As the data is YUV422, the chrominance is half the size of the luminance.

Finally, the InOutDescriptor is created using tsaDefaultInOutDescriptorCreate. This cre-

ates the descriptor, the message queues, and the associated packets.

Chapter 4: Programming TriMedia Video Applications

16 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Set Up the Video Digitizer and Renderer

Before an instance of a component is used it must first be setup. The first step is to obtain

a pointer to the instance setup structure; this is achieved by calling the tmolVdigVIGetIn-

stanceSetup and tmolVrendVOGetInstanceSetup respectively.

The Video Digitizer structure is setup first. The instances output descriptor is set to point

to the InOutDescriptor which was created in the last section of code. The input video-

Standard specifies either PAL or NTSC; by default, this is set to NTSC. The input video-

Adaptor indicates the adaptor type and can be CVBS or SVIDEO, with the CVBS being set

by default. The capSizeFlag indicates whether to perform full resolution or half resolu-

tion video capture; by default this will be full resolution. Finally, the startX and startY

fields are used to specify the location in the incoming field where video capture will

start. The two values are zero by default.

The Video Renderer parameters are then initialized. The instances main image input

descriptor is set to the InOutDescriptor which was created before. The output video stan-

dard and adaptor type are setup in similar fashion to the Video Digitizer. The scaleUp

flag is used to specify that the input image should be scaled up by the video-out hard-

ware. If full resolution images are captured, this value should be set to false. Half resolu-

tion images may be scaled up to full resolution by setting this value to true. Finally, the

imageHorzOffset and imageVertOffset specify the starting pixel and line in the active

output video area where the image will be displayed. These are set to zero by default.

rval = tmolVdigVIGetInstanceSetup(digitizerInstance,&digitizer_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);

rval = tmolVrendVOGetInstanceSetup(vrendInstance,&vrend_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);

digitizer_inst_setup->instSetup>outputDescriptors[VDIGVI_MAIN_OUTPUT] = iod;
digitizer_inst_setup->videoStandard = vidStd;
digitizer_inst_setup->videoAdapter = vidAdapter;
digitizer_inst_setup->capSizeFlag = vResolution;
digitizer_inst_setup->startX = acquStartX;
digitizer_inst_setup->startY = acquStartY;

vrend_inst_setup->instSetup->inputDescriptors[VRENDVO_MAIN_INPUT] = iod;
vrend_inst_setup->videoStandard = vidStd;
vrend_inst_setup->adapterType = vidAdapter;
vrend_inst_setup->scaleUp = scaleUp;
vrend_inst_setup->imageHorzOffset = voStartX;
vrend_inst_setup->imageVertOffset = voStartY;

rval = tmolVdigVIInstanceSetup(digitizerInstance, digitizer_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("digitizer initialized.\n");

rval = tmolVrendVOInstanceSetup(vrendInstance, vrend_inst_setup);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("renderer initialized.\n");

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 17

4

Once the setup structures have been initialized, the tmolVdigVIInstanceSetup and

tmolVrendVoInstanceSetup functions are called to pass the information to the two

instances.

Starting the Component Instances

Data streaming between the two component instances will begin once both have been

started. The tmolVdigVIStart and tmolVrendVOStart functions will initiated data stream-

ing for each instance. Both components execute in interrupt service routines.

DP(("\nStarting Video Renderer\n"));
rval = tmolVrendVOStart(vrendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("renderer started.\n");

DP(("\nStarting Video Digitizer\n"));
rval = tmolVdigVIStart(digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("digitizer started.\n");

Chapter 4: Programming TriMedia Video Applications

18 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

User Input

The example enables the user to enter commands via the console which alter the digi-

tizer and renderer parameters. while the two video instances are streaming data, the

default task will wait for the user to type a command. Once a valid command has been

entered, the two instances are stopped by calling tmolVdigVIStop and tmolVrendVOStop

respectively; this will terminate data streaming. The new instance values are then

assigned to the respective instance setup structures and each component instance is

setup. Finally, data streaming is restarted for both the digitizer and renderer.

If the user types ‘exit’ at the console, then the ‘while’ processing loop with be exited, and

the shutdown sequence of command will be executed.

printf(
"\nVideo Renderer demo started.\nVideo input echoed to video output.\n");
PrintUsage();
printf("Enter Command:\n");
while (1){
 printf(">");
 gets(ins);
 rval = DoCommand(ins);
 if(rval == NEW_PARAMETER) {
 if(rval = tmolVdigVIStop(digitizerInstance))
 printf("exolVrendVO: tmolVdigVIStop error %s\n",rval);
 if(rval = tmolVrendVOStop(vrendInstance))
 printf("exolVrendVO: tmolVrendVOStop error %s\n",rval);
 digitizer_inst_setupÐ>videoStandard = vidStd;
 digitizer_inst_setupÐ>videoAdapter = vidAdapter;
 digitizer_inst_setupÐ>capSizeFlag = vResolution;
 digitizer_inst_setupÐ>startX = acquStartX;
 digitizer_inst_setupÐ>startY = acquStartY;
 vrend_inst_setupÐ>videoStandard = vidStd;
 vrend_inst_setupÐ>adapterType = vidAdapter;
 vrend_inst_setupÐ>scaleUp = scaleUp;
 vrend_inst_setupÐ>imageHorzOffset = voStartX;
 vrend_inst_setupÐ>imageVertOffset = voStartY;
 tsaDefaultInstallFormat(iod,(ptmAvFormat_t)&digitizer_format);
 if(rval = tmolVdigVIInstanceSetup(digitizerInstance,
 digitizer_inst_setup))
 printf("exolVrendVO: tmolVdigVIInstanceSetup error %s\n", rval);
 if(rval = tmolVrendVOInstanceSetup(vrendInstance,
 vrend_inst_setup))
 printf("exolVrendVO: tmolVrendVOInstanceSetup error %s\n",rval);
 if(rval = tmolVrendVOStart(vrendInstance))
 printf("exolVrendVO: tmolVrendVOStart error %s\n",rval);
 if(rval = tmolVdigVIStart(digitizerInstance))
 printf("exolVrendVO: tmolVdigVIStart error %s\n",rval);
 }else if (rval == Ð1){
 break;
 }
}

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 19

4

Stop and Shutdown

Component instances should be stopped before they are closed. The tmolVdigVIStop and

tmolVrendVOStop functions will cause the two instances to stop data streaming and

return any packets that they may be holding. The low level video-in and video-out

devices will also be stopped within these functions.

After use, each component instance should be closed. For the Video Digitizer and Ren-

derer which only allow one instance to be opened, this will enable other applications or

tasks to use the components. The tmolVdigVOClose and tmolVrendVOClose will free any

memory that was being used by the instances.

The InOutDescriptor full and empty queues can be checked using the tsaDefaultCheck-

Queues function. This function should be used during debugging and checks the queues

to ensure that the correct number of packets have been returned to them.

Finally, the InOutDescriptor should be destroyed by calling tsaDefaultInOutDescrip-

torDestroy. This will remove the packets contained within the queues, free the memory

allocated to the packets, and free the memory allocated to the InOutDescriptor.

printf("\nStopping Everything:\n");
DP(("\nStopping Everything:\n"));
rval = tmolVdigVIStop(digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolVrendVOStop(vrendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolVdigVIClose(digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolVrendVOClose(vrendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);

rval = tsaDefaultCheckQueues(iod);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("tsaDefaultCheckQueues returned 0x%x\n", rval);

printf("Destroying InOutDescriptor\n");
rval = tsaDefaultInOutDescriptorDestroy(iod);
tmAssert((rval == TMLIBAPP_OK), rval);

DP(("Demo Complete.\n"));
printf("Demo Complete. \n");
tmosExit(0);

Chapter 4: Programming TriMedia Video Applications

20 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

TriMedia Video-In Operation

The TriMedia Video-In unit provides digital video input in YUV 4:2:2 with 8-bit resolu-

tion, multiplexed in CCIR656 format from a digital camera or CCIR656-capable video

decoder (such as a Philips SAA7111), across an 8-bit wide interface.

The Video-In unit can operate in any one of the following modes:

■ Full-resolution capture

■ Half-resolution capture

■ Raw capture (raw8, raw10s, and raw10u)

■ Message passing

An operation in each of these modes is given below. For more information, see the data

book of the appropriate TriMedia.

Full-Resolution Capture Mode

In Full-resolution Capture mode, the Video-In unit receives all three video components

(Y, U, and V), as well as synchronization information, on the 8-bit wide interface in

CCIR656 format. The Y, U, and V video components are separated into three different

streams. Each component is written in packed form into Y, U, and V buffers in the

SDRAM. This is commonly called a planar format.

The DSPCPU initiates capture by setting the CAPTURE_ENABLE flag to 1. The Video-In

unit captures video data and stores it in the SDRAM, at the locations defined by the stor-

age parameters defined in the MMIO registers. When capture is complete (that is, any

internal Video-In buffers have been flushed and the entire captured image is in local

SDRAM), Video-In sets the STATUS register flag to CAPTURE_COMPLETE. This causes a

DSPCPU interrupt to be requested. The Video-In unit resumes capture as soon as the

DSPCPU acknowledges the previously captured image by deactivating

CAPTURE_COMPLETE.

You can program the Y_THRESHOLD field to generate pre-completion (or post-comple-

tion) interrupts. Whenever CUR_Y reaches the Y_THRESHOLD, the THRESHOLD_FLAG in

the status register is set. If enabled in the Video-In control register, this event causes a

DSPCPU interrupt request.

If the Video-In internal buffers overflow because of insufficient internal data-highway

bandwidth allocation, the HIGHWAY_BANDWIDTH_ERROR condition is raised in the

Video-In status register (VI_STATUS). If enabled, this causes a DSPCPU interrupt request.

Capture continues at the correct memory address as soon as the internal buffers can be

written to memory, but one or more pixels may be lost, and the corresponding memory

locations are not written.

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 21

4

Full-Resolution Capture Mode

Full-Resolution Capture mode is illustrated in the vivot example that follows.

Half-Resolution Capture Mode

Half-Resolution Capture mode is identical in operation to full-resolution capture mode,

except that horizontal resolution is reduced by a factor of 2 on both luminance and

chrominance data.

Half-Resolution Capture mode is used for CIF format in the vivot example that follows.

Raw Capture Mode

All Raw Capture modes (raw8, raw10s, and raw10u) behave similarly. The video data is

captured at the rate of the sender’s clock, without interpretation or start/stop on the

basis of the data values.

The DSPCPU initiates capture by providing two empty buffers and putting their base

addresses and sizes in the BASEn and SIZEn registers. It does so by writing a base address

and size to MMIO control fields. After two buffers are assigned, capture is enabled by set-

ting CAPTURE_ENABLE to 1. The Video-In unit starts capturing video data in buffer1 (the

active buffer). It continues until capture is disabled or buffer1 fills up. If buffer1 fills up,

capture continues (without missing a sample) in buffer2. At the same time, BUF1FULL is

asserted, which causes an interrupt on the DSPCPU.

buffer2 then becomes the active buffer and the loop repeats. In normal operation, the

DSPCPU before buffer2 fills up, the DSPCPU must assign a new, empty buffer BASE1,

SIZE1 and perform an ACK1 operation. If the DSPCPU fails to assign a new buffer1 before

buffer2 fills up, the OVERRUN condition is raised, bringing a temporary halt to capture.

Capture resumes as soon as the DSPCPU makes one or more new buffers available

through an ACK1 or ACK2 operation.

If insufficient bandwidth is allocated from the internal data highway, the Video-In inter-

nal buffers might overflow. This leads to assertion of the HIGHWAY_BANDWIDTH_ERROR

condition. One of more data samples are lost. Capture resumes at the correct memory

address as soon as the internal buffer is written to memory.

Message-Passing Mode

In Message-Passing mode, the Video-In unit receives 8-bit message data across the 8-bit

wide interface. It writes the message data in packed form (four 8-bit message bytes per

32-bit word) to the SDRAM. Message data capture starts on receipt of a START event and

continues until either the receive buffer is full, or the EndOfMessage event is received.

OVERFLOW is raised if a receive buffer is full and no EndOfMessage event has been

received. If enabled, it generates a DSPCPU interrupt. Detection of overflow leads to total

Chapter 4: Programming TriMedia Video Applications

22 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

halt of capture of this message. Capture resumes in the next buffer on receipt of the next

START event.

The TriMedia Video-In APIs provide the necessary interface for video applications to

access the TriMedia Video-In unit hardware.

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 23

4

TriMedia Video-Out Operation

The TriMedia Video-Out unit connects to an off-chip video subsystem, such as a digital

video encoder chip (DENC), a digital video recorder, or the video input of another TriMe-

dia system through a CCIR656-compatible byte-parallel video interface.

The Video-Out unit outputs digital video in YUV 4:2:2 co-sited format with 8-bit resolu-

tion multiplexed in CCIR656 format. It can drive a CCIR656-compatible digital video

encoder across an 8-bit wide interface. It can also drive other CCIR656-compatible

devices, such as digital video cassette recorders (VCRs) and the Video-In unit of other Tri-

Media chips. For example, in Video-In Diagnostic Mode, the Video-Out unit of one Tri-

Media supplies video data to the Video-In unit of a second TriMedia system.

The Video-Out unit can operate in either image transfer or data transfer (data streaming or

message-passing) mode. The TriMedia DSPCPU programs the Video-Out unit by setting

the Mode field to the appropriate transfer mode, setting the appropriate addresses,

address deltas, image-timing registers, and associated control bits in the control register.

Setting VO_ENABLE in the VO_CNTRL register starts the Video-Out unit, which transfers

the image or messages as commanded.

In image-transfer and data-streaming modes, the Video-Out unit runs continuously. It

issues an interrupt to the DSPCPU at the end of each field. To maintain continuous video

output, the DSPCPU updates the Video-Out image data pointers with pointers to the

next field during the vertical blanking interval. In message-passing mode, the Video-Out

unit runs until the message has been transferred.

Image Transfer Mode

In Image Transfer mode, the Video-Out unit continuously transfers an image from the

SDRAM to the Video-Out port. The mode field in the VO_CTL register defines the image

input data format and whether or not the Video-Out unit is to perform horizontal

upscaling. The Video-Out unit accepts memory image data in YUV 4:2:2 co-sited, YUV

4:2:2 interspersed, and YUV 4:2:0 co-sited image output streams.

During image transfer, the YTR bits are set in the status register when the Image Line

Counter reaches the Y_THRESHOLD value. When an image field has been transferred, the

BFR1_EMPTY bit is set in the status register. The DSPCPU is interrupted when either the

YTR or the BFR1_EMPTY flag is set and its corresponding interrupt is enabled.

To maintain continuous transfer of image fields, the DSPCPU supplies new pointers for

the field following each BFR1_EMPTY interrupt. If the DSPCPU does not supply new

pointers before the next field, the URUN bit is set, and the Video-Out unit uses the same

pointer values until they are updated.

Image Transfer mode is illustrated in the vivot example that follows.

Chapter 4: Programming TriMedia Video Applications

24 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Data Transfer Modes

There are two modes for transferring data:

■ Data-Streaming mode

■ Message-Passing mode

Data-Streaming Mode

In the Data-Streaming mode, the Video-Out unit generates a continuous stream of byte

data using internal or external clocking. Dual buffers facilitate continuous data stream-

ing by allowing the DSPCPU to set up the next buffer while the first one is being emptied

by the Video-Out unit.

The data is stored in the DRAM in two buffer tables. When the Video-Out unit has trans-

ferred the contents of one table, it interrupts the DSPCPU and begins transferring the

contents of the second table. The DSPCPU supplies pointers to both tables. The Video-

Out unit supplies a continuous stream of data to the video device, provided the DSPCPU

updates the pointer to the next table before the Video-Out starts transferring data from

the next table.

When each buffer has been transferred, the corresponding buffer empty bit is set in the

status register. The DSPCPU is interrupted if the buffer empty interrupt is enabled. To

maintain continuous transfer of data, the DSPCPU supplies new pointers for the next

data buffer following each buffer empty interrupt. If the DSPCPU does not supply new

pointers before the next field, the Video-Out unit uses the same pointer values until they

are updated.

Message-Passing Mode

In the Message-Passing mode, messages can be sent to one or more TriMedia Video-In

units. Start and end-of-message signals are provided in this mode to synchronize mes-

sage passing to the other TriMedia message receivers. Video data is stored in the DRAM

in one buffer table.

Setting VO_ENABLE in the VO_CNTRL register starts the Video-Out in Message-Passing

mode. The Video-Out unit sends a Start condition on VO_IO1. When the Video-Out unit

has transferred the contents of the buffer table, it sends an End condition on VO_IO2,

sets the BFR1_EMPTY bit, and interrupts the DSPCPU. The Video-Out unit stops. No fur-

ther operation takes place until the DSPCPU sets VO_ENABLE for another message or

another Video-Out operation.

The TriMedia Video-Out APIs provide the necessary interface for video applications to

access the TriMedia Video-Out unit hardware.

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 25

4

Using the TriMedia Video-In/Video-Out Device Library

The APIs provided in the TriMedia Video-In/Video-Out Device Library enable you to

access both the Video-In and Video-Out hardware units of TriMedia. The Video-In/

Video-Out device library provides functions for controlling video encoders and decoders.

It can be linked with other programs, providing you with total control of the hardware

by enabling you to

■ Optimize ISRs to meet application requirements.

■ Create vendor-specific initialization and configuration routines for on-board chips

(such as a decoder that works with the TriMedia Video-In component and an encoder

that works with the TriMedia Video-Out component).

Guidelines for Use of the Video-In/Video-Out APIs

General guidelines for using the TriMedia Video-In/Video-Out APIs are as follows:

■ Use the archive version (libdev.a), rather than building the library yourself. (The

Video-In/Video-Out device library is archived in libdev.a).

■ The source for the Video-In/ Video-Out device library is included in the TCS. This

makes it easier to incorporate new versions of the library as they become available.

■ Pass the specific instance when making subsequent calls.

■ The Video-In/Video-Out Device Library operates as an exclusive device driver, and, as

such, can service only one task at a time. This is enforced through the instance iden-

tifier, which is returned by all the initialization functions.

■ Modify the functions, viOpen and voOpen using interfaces provided in the Board

Support API.

The viOpen and voOpen functions call the initialization routines for the analog I/O

hardware on the board. The board library provides support for default boards (For exam-

ple, the TriMedia debug board and IREF board).

It provides the initialization routine for the decoder on the debug board (SAA7111) and

IREF board (SAA7111A), and for the encoder on the debug board (SAA7185) and IREF

board (SAA7125).

For more information about the Board Support API, refer to Reference Manual II of the

Philips TriMedia SDE.

■ Check the error values returned by the initialization functions. Most of the Video

library functions return zero on success, or nonzero error codes.

■ Use the debug version of the libdev.a library during development. Many functions

check and report the use of sizes and alignments that the hardware cannot support.

Chapter 4: Programming TriMedia Video Applications

26 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Vivot Demonstration Program Overview

The vivot example is intended as an example to allow the user to gain familiarity with

the techniques necessary to program the video capabilities of the TriMedia architecture.

The program demonstrates how the video input and output modes can be repro-

grammed dynamically on TriMedia.

First, the image captured on VI is converted to CIF and a quarter sized image on the mid-

dle of the screen (vivoRunCIF).

Next, a full screen image is displayed and captured (vivoRunFullres). These two processes

are executed for 1000 frames each.

Finally, a quarter sized image is displayed on the middle of the screen on top of the Tri-

Media logo (vivoRunOverlay), thus illustrating the overlay feature.

It is useful to know a certain number of “video programming tricks” when using TriMe-

dia; for example, CIF conversion, as well as general device issues on TriMedia (such as

buffer alignment, or cache coherency). The data book provides the functionalities but it

does not go into detail. The purpose of this section is to explain these functionalities.

The programmer needs to be aware of a certain number of implementation choices while

studying the code. For example, the buffer scheme being used indexes buffers from a

table and references them circularly using modulo addressing. Using a linked list of buff-

ers can be preferable. Optimizing the code could reduce the buffer space requirements or

execution time. For example, a single buffer can be used for Video-In (VI) and Video-Out

(VO). This was not done for clarity reasons. (For example, the overlay buffer is used for

the captured frames and the VO buffer for the logo). Busy waiting is used for buffer and

ICP processing, instead of a semaphore.

C Program Includes

Most C programs include <stdio.h> and <stdlib.h>. TriMedia-specific C library functions

are in <tmlib/tmlibc.h>. The standard C header files such as <assert.h> and <ctype.h>

can be included also. MMIO registers are defined in <tm1/mmio.h>.

Custom ops are defined in <ops/custom_defs.h>. Multimedia formats (such as vaaNTSC,

vaaPAL, vaaCVBS, vaaSvideo) are defined in <tm1/tmAvFormats.h>.

A program that uses VO should include <tm1/tmVO.h> and <tm1/tmVOmmio.h>. To use

the Image Co-Processor (ICP), include <tm1/tmICP.h>. A program that uses VI should

include <tm1/tmVI.h> and <tm1/tmVImmio.h>.

To find out the clock speed or the processor type, include <tm1/tmProcessor.h> (procGet-

Capabilities) and/or <tm1/tmBoard.h>.

For definitions associated with interrupts, include <tm1/tmInterrupts.h>. To use the DP

debug printing facility of tmgmon, include <tmlib/dprintf.h>.

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 27

4

Main Program

The first line initializes the DP printing facility of tmgmon. The next two lines print a

start-up message, using DP and printf. The call to Reportsys is to find out the processor

clock frequency and the version of the processor (for work-arounds).

Video out bug 21727 was present in versions of the processor prior to TM1S1.1. Video

out bug 3056 is less important but the two exacerbate each other. The call to vivoDetect-

workarounds detects which of these bugs are present and positions the flag DummyCode.

We will assume in what follows that DummyCode is zero.

The call to vivoCheckArgcV sets the adapter type (S-video, composite) and the video stan-

dard (PAL or NTSC). The call to vivoRun contains the main program.

Vivot Demonstration Program (Vivorun)

■ Buffer allocation is ensured by vivoAlloc.

■ vivoOpenAPI calls viOpenAPI and voOpenAPI for API initialization.

■ vivoCloseAPI frees the buffers (the name is a misnomer).

The code for vivoRun is shown below.

Image Representation

The output format is defined by the width, the height, and the stride. The stride is differ-

ent from the width because lines need not be contiguous and because of alignment of

lines to cache boundaries.

int
main(int argc, char **argv){
 SetDP();
 DP((Header));
 printf(Header);
 reportSys();
 vivoDetectworkarounds();

#ifndef __TCS_nohost__
 vivoCheckArgcv(argc, argv);
#endif

 vivoRun();
 exit(0);
}

vivoRun(){
 vivoAlloc();
 vivoOpenAPI();

 vivoRunCIF();
 vivoRunFullRes();
 vivoRunOverlay();
 vivoCloseAPI();
}

Chapter 4: Programming TriMedia Video Applications

28 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The dimensions are 352 x 240 for CIF (cifWidth, cifHeight) and 720 x 480 (full Width, full

Height) for full resolution. The image buffer sizes are 384 x 240 for CIF and 768 x 576 for

full resolution.

The strides (cifStride, fullStride) differ from the widths because VI requires that image

lines begin on a cache line (modulo 64 bytes) boundary. The image is represented in pla-

nar format using separate Y, U, and V pointers in the vbuf structure.

Buffer Allocation (vivoAlloc)

VivoAlloc calls allocCif422, allocFullres, and allocBkBuf to allocate the CIF, full resolution,

and overlay buffers.

Table 1 summarizes the buffer allocation in the demonstration program.

■ The buffer allocation scheme is fixed and there is no sharing.

■ Buffers are addressed via an index modulo the total number (4).

■ The buffers are circulated between VI, VO and processing.

■ Pointer advancement corresponds to inputs and completion of processing.

■ The flag field of the vbuf structure identifies the state at any given point in time

(VID_RDY_VI, VID_RDY_VO, VID_RDY_MM).

■ 5 megabytes of memory are required for the buffers in total.

■ The dimensions in full resolution are large enough to contain either a PAL (704 ×576)

or NTSC (720×480) image.

Cache Management

Cache coherency between the DSPCPU and the peripheral units is managed in software

on the TriMedia processor. The program contains routines to allocate a buffer, to update

the cache to memory, and to remove stale data.

These routines deal with cache lines (blocks whose sizes are a multiple of 64 bytes begin-

ning at a modulo 64 boundary). allocSz calls the library routine _cache_malloc (Refer to

code insert below).

The second parameter indicates the set number from which to allocate (0-31 or -1 if any

is acceptable). Refer to Chapter 3 of the Cookbook for information about the incidence of

this on performance.

Table 1 Buffer Allocation in Demonstration Program

CIF 384 240 2 4 737280

full res 768 576 2 4 3538944

overlay 768 576 2 4 884736

Total 5160960

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 29

4

The pointer returned by _cache_malloc begins at a modulo 64 boundary. The size is

rounded up also.

viOpenAPI - level 1 initialization for VI

The code for viOpenAPI is shown in two sections below. The call to viOpen acquires the

peripheral; accesses to a peripheral have to be exclusive. This returns an “instance” in

viInst corresponding to the peripheral.

The call to viInstanceSetup programs the 7111 and associates the interrupt service rou-

tine viTestISR at interrupt priority level 3 with the device.

voOpenAPI - level 1 initialization for VO

The code for voOpenAPI follows the same general structure as viOpenAPI. An instance is

allocated and then setup.

UInt32
allocSz(int bufSz){
 UInt32 temp;
 int i;

 if((temp=(UInt32)_cache_malloc(bufSz,Ð1))==Null)
 my_abort("_cache_malloc", 0);
 memset(temp, 0, bufSz);
 _cache_copyback(temp, bufSz);
 return temp;
}

void viOpenAPI(){
 tmLibdevErr_t err;

 if(err = viOpen(&viInst)) my_abort("viOpen", err);

 memset((char *) (&viInstSup), 0, sizeof (viInstanceSetup_t));

 viInstSup.interruptPriority = intPRIO_3;
 viInstSup.isr = viTestISR;
 viInstSup.videoStandard = videoStandard;
 viInstSup.adapterType = adapterType;

 if(err = viInstanceSetup(viInst,&viInstSup))
 my_abort("viInstanceSetup", err);
}

void
voOpenAPI(){
 tmLibdevErr_t err;
 pprocCapabilities_t procCap;

 if (err = voOpen(&voInst)) my_abort("voOpen", err);
 memset((char *) (&voInstSup), 0, sizeof (voInstanceSetup_t));

 voInstSup.interruptPriority = intPRIO_6;
 voInstSup.isr = voTestISR;
 voInstSup.videoStandard = videoStandard;
 voInstSup.adapterType = adapterType;

 procGetCapabilities(&procCap);

Chapter 4: Programming TriMedia Video Applications

30 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The interrupt service routine is voTestISR and the interrupt is at level 6. The Highway

Bandwidth Error (HBE) interrupt is enabled. This corresponds to VO not getting data

from the highway in time to continue transfer. The Underrun interrupt is enabled. This

corresponds to the CPU not updating the buffer pointer in time (excessive interrupt

latency). For more information on these, refer to section 7.12.3 of the data book.

The initialization of the DDS frequency merits some explanation. Section 7.4 of the data

book defines the clock frequency at the output by the following equation:

The value for fdds is twice the video clock frequency of 13.5 Mhz. The input divider for

the clock frequency divides by two (see Table 7-7 of the data book, default values for the

PLL fields in VO_CTL). The frequency of 27 Mhz corresponds for PAL to an image format

of 864 pixels, 625 lines, at a 25 Hz frame rate (50 Hz interlaced). The image format

parameters for NTSC vary, but the clock frequency is identical. So the value for fdds

needs to be 27 Mhz.

The code in voOpen corresponds to a rearrangement of the terms to obtain the ddsfre-

quency of the equation above.

The number 1,431,655,765 (referenced in the code above) equals

Field Capture versus Frame Capture

The dimensions of image being captured depend on the output resolution. In full resolu-

tion, the two fields are assembled together to form a frame. Consecutive lines from dif-

ferent fields are assembled together to form an image by using a stride equal to twice the

line stride and setting buffer pointers.

In CIF resolution, the buffer consists of a single field and has half the height of the

image. The frame rate for output is the same as in full resolution since one of out two

/* see formula on VO, Figure 7.6 in the data book */
 voInstSup.ddsFrequency =
 (unsigned int)(0.5 + (1431655765.0*27000000/procCapÐ>cpuClockFrequency));

 voInstSup.hbeEnable = True;
 voInstSup.underrunEnable = True;

 if (err = voInstanceSetup(voInst, &voInstSup))
 my_abort("voInstanceSetup", err);
}

voInstSup.ddsFrequency = (unsigned int)
 (0.5+(1431655765.0* 27000000/(float)procCapÐ>cpuClockFrequency));

fDDS =
3 × FREQUENCY × fDSPCPUCLK

232

3
232

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 31

4

fields is discarded. For the horizontal resolution the HALFRES mode of the Video Out

unit is used.

Running in CIF Resolution (vivoRunCIF)

The code for vivoRunCIF begins by initializing the capture buffer pointers.

The resolution for U and V strides are half that of Y so the stride must be divided by two

also.

Setting capfield tells viTestISR not to assemble fields into frames. This has the effect of

dividing by two the vertical resolution.

The arguments to viYUVAPI indicate that the image is being captured starting at line 11,

pixel 4, with field capture. The HALFRES mode is used, dividing in effect by two the hor-

izontal resolution.

The arguments to voYUVAPI indicate that the image is offset to line 64, pixel 128. The

output format is in 4:2:2 format with cosited sampling for luminance and chrominance.

This corresponds to the format used by VI (CCIF 656 standard). The VO unit has the

capacity to upscale the image by two but this is not used.

1000 frames are copied from VI to VO. This corresponds to approximately 33 seconds at

60 Hz.

void
vivoRunCIF(){
 tmLibdevErr_t err;

 printf("\nStarting CIF resolution mode\n");

 cpGenBuf(cif422Buf, VID_NUMBUFS, VID_RDY_VI);
 viNum = mmNum = voNum = 0;

yFieldStride = cifStride;
uvFieldStride = (cifStride >> 1);
overlayFieldStride = 0;

capField = True;
firstField = False;

viYUVAPI(viHALFRES, cifWidth, cifHeight, cifStride, 1, 4, 11,
 (Pointer)(cif422Buf[0].Y),
 (Pointer)(cif422Buf[0].U),
 (Pointer)(cif422Buf[0].V));

voYUVAPI(vo422_COSITED_UNSCALED, cifWidth, cifHeight, cifStride, 64, 128,
 (Pointer)cif422Buf[0].Y,
 (Pointer)cif422Buf[0].U,
 (Pointer)cif422Buf[0].V);

for (voISRCount = 0; voISRCount < loopCount;) {
 mmBufUpdate();
}

Chapter 4: Programming TriMedia Video Applications

32 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

After 1000 frames, we shut down image display and capture.

Running in Full Resolution (vivoRunFullRes)

In full resolution, two fields are assembled to form a frame together. The global variables

ScanWidth and uvScanWidth. These values are used in the ISR to adjust the buffer point-

ers for the second field of capture. They correspond to the offset in bytes between fields

for the Y and U, V buffers.

This corresponds to forming the frame by reassembling consecutive lines from different

fields together. The arguments to viYUVAPI indicate that the image is being captured

starting at line 21, pixel 0, with a frame mode of capture, (as explained previously).

The arguments to voYUVAPI correspond to those used in CIF mode except that the image

is offset at (0, 0).

Initialization With Alpha Overlay (vivoRunOverlay)

In overlay mode the TM-1 logo is displayed on video out. The image from video in is

converted to overlay mode and output.

The image is captured starting at line 12 (hex C), pixel 12, with field capture.

if (err = viStop(viInst)) my_abort("viStop", err);
if (err = voStop(voInst)) my_abort("voStop", err);

yScanWidth = fullStride;
uvScanWidth = (fullStride >> 1);

viYUVAPI(viFULLRES, fullWidth, fullHeight, fullStride, 0, 0, 21,
 (Pointer)(fullResBuf[0].Y),
 (Pointer)(fullResBuf[0].U),
 (Pointer)(fullResBuf[0].V));

voYUVAPI(vo422_COSITED_UNSCALED, fullWidth, fullHeight, fullWidth, 0, 0,
 (Pointer)fullResBuf[0].Y,
 (Pointer)fullResBuf[0].U,
 (Pointer)fullResBuf[0].V);

void vivoRunOverlay(){
 tmLibdevErr_t err;

 printf("\nStarting overlay mode\n");

 cpGenBuf(cif422Buf, VID_NUMBUFS, VID_RDY_VI);
 runningOverlay = True;
 cpUsize = ((cifStride * cifHeight) >> 1);

viYUVAPI(viHALFRES, cifWidth, cifHeight, cifStride, 1,
 0xc, /* x offset */
 0xc, /* y offset */
 (Pointer)(cif422Buf[0].Y),
 (Pointer)(cif422Buf[0].U),
 (Pointer)(cif422Buf[0].V));

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 33

4

The output format is the same as in full resolution mode.

voOverlayAPI is then called. The buffer pointer corresponds to the first CIF buffer. In

overlay mode, the VO buffer points to the TriMedia logo. The overlaid zone is at offset

(64, 128) from the left hand corner of the active video area and has the width and height

a CIF image (350 x 240).

The stride value of a single alpha value of 64 (50 percent) is used over the entire display

image. The CIF buffer Y pointer points to the converted overlaid image. A single pointer

is used as the overlaid image is in YVYU format.

The stride of 1408 is four times the width of the image because in the buffer both the

even and odd fields and the luminance and chrominance data are interspersed.

1000 buffers are copied from VI to VO.

Image capture and display are stopped as previously.

Setup Input and Begin Capture (viYUVOpenAPI)

The beginning of the code for viYUVAPI is shown below. The VI unit has two interrupt

modes corresponding to when a scan line is reached (thresholdReached) and to capture

complete (end of an image, beginning of vertical sync interval). The capture mode is

used. Cosited sampling is used.

The threshold register is set to line 0. The startX, and startY values correspond to the line

and pixel number to begin image capture. The width parameter corresponds to the num-

ber of pixels after the starting pixel for line capture

 voYUVAPI(vo422_COSITED_UNSCALED, fullWidth, fullHeight, fullWidth, 0, 0,
(Pointer)fullResBuf[0].Y,
(Pointer)fullResBuf[0].U,
(Pointer)fullResBuf[0].V);

voOverlayAPI(64, 128, 352, 120, 64, 64, 1408, (Pointer) cif422Buf[0].Y);

for (voISRCount = 0; voISRCount < loopCount;) {
mmOvlyBufUpdate();
}

if (err = viStop(viInst)) my_abort("viStop", err);
if (err = voStop(voInst)) my_abort("voStop", err);

void
viYUVAPI(int mode, int width, int height, int stride, int fieldBuf,
 int startx, int starty, Pointer yBase, Pointer uBase, Pointer vBase){
 tmLibdevErr_t err;

 memset((char *) (&viYUVSup), 0, sizeof (viYUVSetup_t));

 viYUVSup.thresholdReachedEnable = False;
 viYUVSup.captureCompleteEnable = True;
 viYUVSup.cositedSampling = True;

viYUVSup.mode = viFULLRES;
viYUVSup.yThreshold = 0;

Chapter 4: Programming TriMedia Video Applications

34 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The next three instructions initialize the VI’s units buffers pointers.

Depending on whether the captured image is in full resolution, or in CIF mode, it must

be assembled from fields to frames by the VI ISR.

The first case corresponds to CIF mode. Interlacing is used in this mode to divide the ver-

tical resolution and the second field is eliminated. The delta values for U and V are

divided because they have half the resolution.

“Delta” corresponds to the difference between the last pixel of a line and the first pixel of

the following line. This corresponds to the difference between “stride” and “width” (the

space necessary so that the next line can begin on a mod 64 boundary).

The “+1” comes from the definition of Delta (the pointer stops incrementing at the last

pixel). The second case corresponds to full resolution mode. The value for height corre-

sponds to the number of lines in a field (half that of a full image). The extra space of

“stride” bytes corresponds to the corresponding line from the other field of the image.

The viYUVSetup routine initializes the video parameters.

The viStart routine initializes image capture.

Start Outputting an Image To Video Out (voYUVAPI)

The routine begins by initializing the video mode. The VO unit supports three output

modes: cosited 4:2:2, interspersed 4:2:2, and 4:2:0 (see section 7-8 of the data book).

In cosited 4:2:2, the chrominance values (U and V) correspond to the first of two lumi-

nance values. In interspersed 4:2:2, they correspond to the midpoint between the two

pixels. In 4:2:0 mode, there are four times fewer U and V than Y values (half as many as

viYUVSup.startX = startx;
viYUVSup.startY = starty;
viYUVSup.width = width;

viYUVSup.yBase = yBase;
viYUVSup.uBase = (DummyCode) ? (Pointer) MMIO(DRAM_BASE) : uBase;
viYUVSup.vBase = vBase;

if (fieldBuf) {
 viYUVSup.height = height;
 viYUVSup.yDelta = (stride - width) + 1;
 viYUVSup.uDelta = ((stride - width) >> 1) + 1;
 viYUVSup.vDelta = ((stride - width) >> 1) + 1;
}

else {
 viYUVSup.height = (height >> 1);
 viYUVSup.yDelta = (stride - width) + stride + 1;
 viYUVSup.uDelta = ((stride - width) >> 1) + (stride >> 1) + 1;
 viYUVSup.vDelta = ((stride - width) >> 1) + (stride >> 1) + 1;
}

if(err = viYUVSetup(viInst,&viYUVSup)) my_abort("viYUVSetup", err);

if (err = viStart(viInst))
 my_abort("viStart", err);
}

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 35

4

in 4:2:2). The chrominance values correspond to the point in the center of the square

formed by consecutive horizontal and vertical pictures.

The VO unit has two interrupt modes. An interrupt can be generated at the end of the

image area or when the scan line reaches a given value. The first is used.

The next three lines set the Y, U, and V image pointers.

The imageVertOffset and imageHorzOffset correspond to the offset of the image from the

top left hand corner of the active video area (see figure 7-12 of the data book).

The image height needs to be divided by two for interlaced scan. Lines of one field are

interspersed with lines of another, so the stride needs to be doubled. The stride for U and

V is half that for the Y pixels.

The mode supplied to voYUVSetup is a combination of the VO mode and the use of 2x

horizontal upscaling. The width of the image is halved in the presence of scaling.

The call to voYUVSetup programs the 7185 registers.

void
voYUVAPI(voYUVModes_t mode,
 int imageWidth, int imageHeight, int imageStride,
 int imageVertOffset, int imageHorzOffset,
 Pointer yBase, Pointer uBase, Pointer vBase){
 tmLibdevErr_t err;

 memset((char *) (&voYUVSup), 0, sizeof (voYUVSetup_t));
 voYUVSup.mode = mode;
 voYUVSup.buf1emptyEnable = True;
 voYUVSup.yThresholdEnable = False;
 voYUVSup.yThreshold = False;

voYUVSup.yBase = yBase;
voYUVSup.uBase = uBase;
voYUVSup.vBase = vBase;

voYUVSup.imageVertOffset = imageVertOffset;
voYUVSup.imageHorzOffset = imageHorzOffset;

voYUVSup.imageHeight = (imageHeight >> 1);
voYUVSup.yStride = (2 * imageStride);
voYUVSup.uStride = imageStride;
voYUVSup.vStride = imageStride;

switch(mode){
 case vo422_COSITED_UNSCALED:
 case vo422_INTERSPERSED_UNSCALED:
 case vo420_UNSCALED:
 voYUVSup.imageWidth = imageWidth;
 break;
 case vo422_COSITED_SCALED:
 case vo422_INTERSPERSED_SCALED:
 case vo420_SCALED:
 default:
 voYUVSup.imageWidth = imageWidth << 1;
 break;
}

 if(err = voYUVSetup(voInst,&voYUVSup)) my_abort("voYUVSetup", err);

Chapter 4: Programming TriMedia Video Applications

36 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The call to voStart begins image display.

Initialize Overlay Mode (voOverlayAPI)

voOverlayAPI copies the arguments into a structure and calls voOverlaySetup.

 The TriMedia VO unit allows the display buffer to be overlaid with a raster in memory

using alpha blending. Since the TriMedia processor uses a raster overlay the user has full

control over the contents. For example, the overlay can contain a graphic logo as well as

characters for teletext. The dimensions and position of the overlay with respect to the

active image area are programmable.

The degree of blending is determined by the top three bits of two eight bit registers

(GLOBAL ALPHA 0, GLOBAL ALPHA 1), as indicated in Table 7-4 of the data book. The

TriMedia display buffer has separate Y, U, and V planes but the overlay raster is inter-

spersed. Overlay images are stored in YVYU format. Figure 7-20 of the data book shows

the format. The U and V values are the same for the two Y pixels.

The low order bit of U determines the alpha value for (Y0, U, V) (ALPHA 1, ALPHA 0) The

low order bit of V determines the alpha value for (Y1, U, V) similarly.

The arguments to voOverlayAPI are the offset of the overlay from the left hand corner

(sLine, sPixel), the size of the overlay (width, height), the values for alpha blending

(alpha0, alpha1).

Because the overlaid image data is interspersed there is a single buffer pointer and stride

(base and offset).

if(err = voStart(voInst)) my_abort("voStart", err);

voOverlayAPI(int sLine, int sPixel, int width, int height,
 UInt alpha0, UInt alpha1, int offset, Pointer base){
 tmLibdevErr_t err;

 memset((char *) (&voOverlaySup), 0, sizeof (voOverlaySetup_t));
 voOverlaySup.overlayEnable = True;
 voOverlaySup.overlayStartY = sLine;
 voOverlaySup.overlayStartX = sPixel;
 voOverlaySup.overlayWidth = width;
 voOverlaySup.overlayHeight = height;
 voOverlaySup.alpha0 = alpha0;
 voOverlaySup.alpha1 = alpha1;
 voOverlaySup.overlayStride = offset;
 voOverlaySup.overlayBase = base;

 if err = voOverlaySetup(voInst,&voOverlaySup))
 my_abort("voOverlaySetup", err);
}

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 37

4

Inputting an Image for Display on VO (readYUVfiles)

There are no VO alignment constraints in image mode.

 vivoAlloc calls readYUVfiles to read a 720 x 480 image in “tmlogo” into bkbuf.

The size of the UV buffer is half that of the Y buffer after conversion.

The Y data is in “tmlogo.y” The file is opened in binary mode.

The data is read into the buffer. For VO lines do not need to be aligned on cache line

boundaries.

The data is flushed back to the cache.

The U data is read from “tmlogo.u” in a similar fashion.

There are half as many lines on the file as for the Y data. This is because the data is in

4:2:0 format.

There are half as many pixels per line as for the Y data also.

The data from the odd field is reproduced for the even field also. The pointer is incre-

mented to point to the next image. The data is flushed back for the cache.

err = readYUVFiles("tmlogo", 720, 480,
bkBuf[0].Y, bkBuf[0].U, bkBuf[0].V);

readYUVFiles(char *baseName, int hsize, int vsize,
 UInt32 ybuf, UInt32 ubuf, UInt32 vbuf){
 int count, ySize, uvSize, row;
 char fn[80];
 unsigned char *pb;
 FILE *fp;

ySize = hsize * vsize;
uvSize = (ySize >> 1);

sprintf(fn, "%s.y", baseName);
fp = fopen(fn, "rb");
if(!fp) return (4);

count = fread((char*)ybuf, 1, ySize, fp);
fclose(fp);

_cache_copyback(ybuf, ySize);

sprintf(fn, "%s.u", baseName);
fp = fopen(fn, "rb");
if(!fp) return (4);
pb = (unsigned char *) ubuf;
count = 0;

for(row = 0; row < (vsize >> 1); row++){

 count += fread(pb, 1, (hsize >> 1), fp);

 memcpy(pb + (hsize >> 1), pb, (hsize >> 1));
 pb += hsize;
}
_cache_copyback(ubuf, uvSize);
fclose(fp);

Chapter 4: Programming TriMedia Video Applications

38 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The code for reading the V data is the same as for the U data. The function returns zero

to indicate successful completion.

ICP Setup

A color conversion filter is used to convert the captured image to overlay format. The

input image is in CIF with the strides corresponding. The output stride is double the

input stride because of 2x upscaling.

ICP setup requires opening an ICP instance (icpOpen) and associating an interrupt with

it (icpInstanceSetup).

The stride for Y is twice that for U and V since the image is in 4:2:2 format. The output

stride is double that of the input since we are upscaling horizontally from 352 to 704.

The filterBypass field can be icpFILTER or icpBYPASS. Bypass mode corresponds to simply

picking the nearest pixel in the input for the output.

The output is interspersed and the input is planar. The byte ordering is little endian on a

Windows host, otherwise it is big endian. Output is to the SDRAM.

return (0);

static void
SetupICP(){
 tmLibdevErr_t err;

 if (err = icpOpen(&icpInst)) my_abort("icpOpen", err);
 memset((char *) &icpInstSup, 0, sizeof (icpInstanceSetup_t));
 icpInstSup.interruptPriority = intPRIO_4;
 icpInstSup.isr = NULL;
 if(err = icpInstanceSetup(icpInst,&icpInstSup))
 my_abort("icpInstanceSetup", err);

memset((char*)&icpImage, 0, sizeof(icpImageColorConversion_t));
icpImage.yInputStride = cifStride;
icpImage.uvInputStride = (cifStride >> 1);
icpImage.inputHeight = cifHeight;
icpImage.inputWidth = cifWidth;
icpImage.outputStride = cifWidth<<1;
icpImage.outputHeight = cifHeight;
icpImage.outputWidth = cifWidth;

icpImage.filterBypass = icpFILTER;

icpImage.outputPixelOffset = 0;
icpImage.inFormat = vdfYUV422Planar;
icpImage.outputDestination = icpSDRAM;
#ifdef __TCS_Win95__
 icpImage.littleEndian = True;
#else
 icpImage.littleEndian = False;
#endif
icpImage.outFormat = vdfYUV422Sequence;

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 39

4

Buffer Processing for Full Resolution and CIF

Buffer processing is performed at the main level. The mmBufUpdate routine is called to

process a captured image. the routine mmBufUpdate is used. It is called in the main level

busy wait loop. mmBufUpdate first checks for a buffer ready.

The output buffer is made available for VO and the pointer is advanced to the next

buffer. it is made available for VO.

Buffer Processing for Overlay (mmOvlyBufUpdate)

mmOvlyBufUpdate first checks for a buffer.

The arguments to the color conversion filter are the Y U and V pointers of the input

buffer.

The input image in buffer mmNum+1 is in planar format.

The output image in buffer mmNum is in interspersed format. A color conversion filter is

used to converts. A busy wait loop is used to check for termination.

The output buffer is made available for VO and the pointer is advanced to the next

buffer.

void
mmBufUpdate(){
 int mmtmpNum;

 mmtmpNum = (mmNum + 1) % VID_NUMBUFS;
// If the buffer is ready
 if(genBuf[mmtmpNum].flag == VID_RDY_MM){

genBuf[mmNum].flag = VID_RDY_VO;
mmNum = mmtmpNum;

void
mmOvlyBufUpdate(){
 int mmtmpNum;
 tmLibdevErr_t err;

mmtmpNum = (mmNum + 1) % VID_NUMBUFS;
if (genBuf[mmtmpNum].flag == VID_RDY_MM) {

icpImage.yBase = (Pointer)genBuf[mmtmpNum].Y;
icpImage.uBase = (Pointer)genBuf[mmtmpNum].U;
icpImage.vBase = (Pointer)genBuf[mmtmpNum].V;

icpImage.outputImage = (Pointer)genBuf[mmNum].Y;
if (err = icpColorConversion(icpInst, &icpImage))
my_abort("icpColorConversion", err);
while(icpCheckBUSY()){}

genBuf[mmNum].flag = VID_RDY_VO;
mmNum = mmtmpNum;

Chapter 4: Programming TriMedia Video Applications

40 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

VI Interrupt Service Routine (viTestISR)

The code has been edited to remove work-arounds for bugs for clarity. The function of

viTestISR is to position a captured frame in the circular queue as ready for processing

(VID_RDY_MM) as long as there is a buffer available for capture.

The VI interrupt service routine is a non interruptible handler.

We determine whether the field is an even or an odd field.

Potential interrupt sources include capture complete, under run, and highway band-

width error. If this is a highway bandwidth error, we return without doing anything.

capField corresponds to CIF capture and overlay. If capField is non zero the even field is

eliminated, effectively dividing by two the vertical resolution. The buffer pointer is

advanced on reception of the odd field as long as there is an available buffer.

The captured buffer is acknowledged terminating interrupt processing.

The rest of the routine corresponds to capField being zero. The code depends on whether

we are processing the first (odd) or second (even) field of a frame. The following code

corresponds to the case of an odd field.

The field flag is toggled.

void
viTestISR(){
 unsigned long vi_status = MMIO(VI_STATUS);
 int oddField;
 int vitmpNum;

#pragma TCS_handler

oddField = viExtractODD(vi_status);

if (viHBE(vi_status)) {
 viAckHBE_ACK();
 return;
}

if(capField){
 vitmpNum = (viNum + 1) % VID_NUMBUFS;
 if (oddField & (genBuf[vitmpNum].flag == VID_RDY_VI)) {
 genBuf[viNum].flag = VID_RDY_MM;
 viNum = vitmpNum;
 viYUVChangeBuffer(viInst,
 genBuf[viNum].Y,
 genBuf[viNum].U,
 genBuf[viNum].V);
 }

 viAckCAP_ACK();
 return;
}

if (firstField) {

firstField = False;

Chapter 4: Programming TriMedia Video Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 41

4

The if corresponds to a dropped field, which is an exception. This is the case if firstField

and oddField differ. If this is so, the field is dropped, synchronizing the VI unit and the

software.

The buffer pointers for the odd and even fields have a separation of one scan line.

The else case corresponds to the case of an even field. The buffer pointer is advanced if

there is an available buffer.

The buffer pointers are reset to the beginning of the buffer.

The field flag is toggled.

The capture is acknowledged ending interrupt processing.The video out interrupt source

routine is similar to the one explained in the ICP example.

The video out interrupt service routine is similar to the one explained in the ICP exam-

ple.

Querying the Configuration

Reportsys calls the HAL functionality procGetCapabilities to identify the processor type.

procGetCapabilities(&procCap); The following structure is returned.

The fields of the data structure identify the processor type (TM1000, TM1100, etc.), the

processor version, the revision ID, and the clock frequency in hertz.

if(!oddField){
 /* skip even field to get sync */
 firstField = True;
} else {

 /* always start with odd field */
 viYUVChangeBuffer(viInst,
 genBuf[viNum].Y + yScanWidth,
 genBuf[viNum].U + uvScanWidth,
 genBuf[viNum].V + uvScanWidth);
}

}else{
 vitmpNum = (viNum + 1) % VID_NUMBUFS;
 if (genBuf[vitmpNum].flag == VID_RDY_VI) {
 genBuf[viNum].flag = VID_RDY_MM;
 viNum = vitmpNum;
 }

viYUVChangeBuffer(viInst,
genBuf[viNum].Y,
genBuf[viNum].U,
genBuf[viNum].V);

firstField = 1;

viAckCAP_ACK();

Chapter 4: Programming TriMedia Video Applications

42 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

By TriMedia API convention, there are two types that are defined (for the structure and

for a pointer); the version number is the first word of each structure. The last three fields

identify the type of host and the processor configuration, for a multiprocessor.

This terminates the vivot example. Examples of how to use VI and VO in raw and mes-

sage-passing modes are available in the Power on Self Test (POST). The following chapter

contains more information on how to use the video units with the ICP and VGA cards.

typedef struct{
 tmVersion_t version; /* version of this sw module */

 procDevice_t deviceID; /* for implemented functionality */
 procRevision_t revisionID; /* for bugs, performance, etc. */
 UInt32 cpuClockFrequency; /* in Hz */
 UInt32 nodeNumber; /
* node number in case of multiple TMs */
 UInt32 numberOfNodes; /* number of TMs in system */
 tmHostType_t hostID; /* tmInvalidHost, tmNoHost, tmTmSimHost,
 * tmWin32Host, or tmMacOSHost */
} procCapabilities_t, *pprocCapabilities_t;

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 43

5

Chapter 5

Programming TriMedia Video Applications
Using the ICP TSSA API

Topic Page

Introduction 44

The exolVtransICP Example Program 45

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

44 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter describes how to write video applications using the ICP-based Video Trans-

former. For a detailed description of this API, see Chapter 5, Image Co-Processor (ICP) API,

of Book 7, Video Support Libraries.

The Video Transformer is designed to simplify the use of the Image Co-Processor (ICP)

peripheral. This component offers a number of advantages over the tmICP device library.

Several tasks may each open an instance of the Video Transformer and issue requests for

video filtering; the component library will queue up the requests and issue them one by

one to the ICP. The required vertical, horizontal, and color conversion filter operations

to perform a transformation are automatically calculated and issued to the ICP. All buff-

ers required to store scaled intermediate images are created and destroyed automatically.

The component also supports antiflicker filtering for DSPCPU generated graphics and

deinterlacing for interlaced to progressive scan conversion.

The AL layer supports non-data streaming (push mode), while the OL layer supports data

streaming (pull mode).

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 45

5

The exolVtransICP Example Program

The exolVtransICP example demonstrates the use of the OL layer of the Video Trans-

former. The example simply connects an instance of the Video Digitizer to an instance of

the Video Transformer. The digitizer captures live data using the video-in device while

the transformer scales the image, converts it from YUV to RGB, and then displays it on

the PC screen via the PCI interface. The user may specify parameters on the console to

enable antiflicker filtering and deinterlacing.

The source code for this example is contained within the examples/exolVtransICP direc-

tory of the application tree. The example will now be described, with emphasis placed

on the Video Transformer aspects. We recommend that you first read Chapter 4, Pro-

gramming TriMedia Video Applications as it describes the use of the Video Digitizer.

Chapter 19, TMBoard API of Book 5, System Utilities provides additional information on

this example and a separate AL layer example (examples/exalVtransICP).

Include Files

The tmAvFormats.h file contains the definitions for the packets which are used to store

video data. The type definitions and function prototypes for the Video Transformer are

defined in tmolVtransICP.h.

#include <tm1/tmAvFormats.h>
#include "tmos.h"
#include "tmolVtransICP.h"
#include "tmolVdigVI.h"

#include <stdio.h>
#include <tmlib/dprintf.h> /* for debugging with DP(()) */

#include "sys_conf.h"

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

46 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Definitions

The default address of the PCI video card, the stride of the video card, and the RGB for-

mat are defined. Note that these are simply the default parameters and the user must

specify the correct parameters via the command line.

The height, width, and stride of the captured image are defined using the INPUT_HEIGHT,

INPUT_WIDTH, and INPUT_STRIDE respectively.

The OUTPUT_WIDTH and OUTPUT_HEIGHT specify the size of the image which will be

displayed on the PC screen. The OUTPUT_STRIDE will be equal to the stride of the PCI

video card.

Static Variables

The __argc and __argv variables are used to pass command line arguments to the appli-

cation. These arguments will consist of the PCI video card address, the display stride,

and the display RGB format.

Specifying the Packet Format

#define VIDEO_ADDR 0xe0000000 /* Default Start address of the screen */
#define VIDEO_STRIDE 2048 /* For 24 bit video it is 3x screen width */
#define VIDEO_MODE 3 /* RGB15+Alpha */

/* video in image format */
#define INPUT_HEIGHT 480
#define INPUT_WIDTH 720
#define INPUT_STRIDE 768

/* * Video out image format */
#define OUTPUT_HEIGHT 360
#define OUTPUT_WIDTH 540
#define OUTPUT_STRIDE VIDEO_STRIDE

/* These command line args come from the modified sysinit.c which allows the
 * task to read the required parameters. */
 extern int __argc;
 extern char **__argv;

static tmVideoFormat_t digitizerFormat = {
 sizeof(tmVideoFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfYUV, /* dataType */
 vdfYUV422Planar, /* dataSubtype */
 vdfInterlaced, /* description */
 INPUT_WIDTH, /* imageWidth; */
 INPUT_HEIGHT, /* imageHeight; */
 INPUT_STRIDE, /* imageStride; */
};

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 47

5

This structure defines the format of the packets used to transfer data between the Video

Digitizer and Video Transformer. The hash and referenceCount fields are used exclusively

by the format manager, and must be set to zero.

The dataClass and dataSubtype must be set to avdcVideo and vtfYUV respectively. The

dataSubtype may be set to either vdfYUV422Planer or vdfYUV420Planer. For this exam-

ple, YUV422 video is used.

The description field specifies that the data stored in the packet buffers is interlaced. The

even and odd fields are stored in the same buffer using an interleaved format.

Finally, the captured frame height, width, and stride are defined.

Specifying the Output Format

The outputFormat structure specifies the format of the Video Transformer output. The

component is capable of writing its output to either SDRAM or PCI. For output to

SDRAM, the processed data will be placed in a packet. For output to PCI, the data will be

stored in the PCI video card memory and no packet will be used. In either case, the out-

put format must be specified using a tmVideoFormat_t structure.

The dataClass field must always be set to avdcVideo. The dataType field may be either

vtfYUV or vtfRGB when the output is to SDRAM. When writing to PCI, the output must

be vtfRGB.

The dataSubtype depends upon the dataType field. For YUV data it can be

vdfYUV422Planer, vdfYUV420Planer, vdfYUV422Sequence, or vdfYUV422SequenceAlpha.

For RGB, it can be vdfRGB8A_233, vdfRGB8R_332, vdfRGB15Alpha, vdfRGB16, vdfRGB24,

or vdfRGB24Alpha. As the Video Transformer will be writing to the PC screen, the output

must be RGB. The subtype will be specified by the user via the command arguments.

The description field is set to zero as the component does not use this value on its out-

put.

Finally, the output height, width, and stride are specified.

static tmVideoFormat_t outputFormat = {
 sizeof(tmVideoFormat_t), /* size */
 0, /* hash */
 0, /* referenceCount */
 avdcVideo, /* dataClass */
 vtfRGB, /* dataType */
 vdfRGB15Alpha, /* dataSubtype */
 0, /* description */
 OUTPUT_WIDTH, /* imageWidth; */
 OUTPUT_HEIGHT, /* imageHeight; */
 OUTPUT_STRIDE, /* imageStride; */
};

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

48 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Packet Defines and Function Prototypes

The example uses four packets (NUMPACKETS) to exchange video frames between the

digitizer and transformer. Each packet contains three buffers (NUMBUFFERS) which store

the Y, U, and V data.

The get_parameters() function is used to obtain the user-specified command line argu-

ments. This function will not be described.

The tmalVtransICPProgress() and tmalVtransICPCompletion() callback functions will be

used by the Video Transformer to report information to the application. These will be

described later.

#define NUMPACKETS 4
#define NUMBUFFERS 3 /* Y, U, V */

/* function prototypes */

extern void
get_parameters(Int argc, Char * argv[],
Int * disp_addr, Int * stride, Int * mode);

extern tmLibappErr_t
tmalVtransICPProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args);

extern tmLibappErr_t
tmalVtransICPCompletion(Int instId, UInt32 flags, ptsaCompletionArgs_t args);

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 49

5

Variables

The rval variable is used to store the values returned by calls to the Video Digitizer, Video

Transformer, and tsaDefaults library. Error values are defined in tmLibappErr.h, with a

return value of TMLIBAPP_OK indicating no error.

The digitizerInstance variable is used to store the instance id of the Video Digitizer, while

digitizerInstSetup is a pointer to the setup structure which will be used to configure the

digitizer.

The vtrans0Instance variable will be used to store the instance id of the Video Trans-

former. The component enables up to four instances to be open. The vtransInstSetup

variable points to the component’s setup structure and will be used to configure the

instance. The vtransCommand variable is a pointer to a control descriptor. The Video

Transformer allows the application to send configuration commands to it while it is

streaming data. The control descriptor is used to specify the message interface between

the application and the instance of the transformer. The csetup structure specifies

parameters that are used when the control descriptor is created.

The connection between the Video Digitizer and Video Transformer is specified using a

tsaInOutDescriptor. This describes the connection and the packets that will be used to

transfer data.

The capabilities of the two components will be pointed to using digitizerCap and vtran-

sCap. These will be used by the format manager to ensure that the two components can

communicate with each other.

The ins[80] char array is used to store character commands entered by the user.

void tmosMain(){
 tmLibappErr_t rval;
 Int digitizerInstance;

 ptmolVdigVIInstanceSetup_t digitizerInstSetup;
 Int vtrans0Instance;
 ptmolVtransICPInstanceSetup_t vtransInstSetup;
 ptsaControlDescriptor_t vtransCommand;
 tsaControlDescriptorSetup_t csetup;

 ptsaInOutDescriptor_t iodesc;
 ptsaInOutDescriptorSetup_t ioSetup;

 ptmolVdigVICapabilities_t digitizerCap;
 ptmolVtransICPCapabilities_t vtransCap;

 char ins[80];
 Int pciAddress;
 Int pciStride;
 Int videoMode;

 tsaControlArgs_t controlArgs;
 Bool quitDetected = False;
 Bool antiflickerEnable = False;
 Bool deinterlaceEnable = False;

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

50 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The pciAddress, pciStride, and videoMode are used to store information concerning the

PCI video card. These will be initialized via the command arguments.

The controlArgs structure is used to pass control information from the application to the

component instance. This will be described in more detail in the section “User Input”

beginning on page -54.

Finally, the quitDetected, antiflickerEnable, deinterlaceEnable are boolean flags. The quit-

Detected flag is used to indicate that the user has typed an exit command. The antiflick-

erEnable and deinterlaceEnable are flags that indicate whether the antiflicker filter and

deinterlace filter are enabled.

Initialization

The DPmode and DPsize functions are used to specify the debug print buffer. This buffer

facilitates debugging and stores information that is written to it by either the application

or the component instances.

The tmosInit function will initialize the multi-tasking operating system. In this example,

the application executes in the default task, while a separate task will be created auto-

matically for the Video Transformer instance. The Video Digitizer is an interrupt-based

component and, therefore, does not have a separate task.

The command line parameters are read from arguments passed down to the example

program. The user must specify the PCI video address, the PCI stride, and the PCI screen

mode. The user will enter the screen mode as a value from one to four and this is re-

mapped to the corresponding tmAvFormat_t type.

DPmode(DP_PERSIST);
DPsize(1024*1024);

tmosInit();

printf("TriMedia OS Video Transformer Demo. v1.0\n");
printf("\nThis program uses the video digitizer and video transformer\n");
printf("to pass video in to the PCI video.\n");
printf("The program is compiled to support NTSC and CVBS.\n");
printf("Recompile to change this.\n\n");

/* get parameters from the command line */

get_parameters(__argc, __argv, &pciAddress, &pciStride, &videoMode);

if (videoMode == 1)
 outputFormat.dataSubtype = vdfRGB24Alpha;
else if (videoMode == 2)
 outputFormat.dataSubtype = vdfRGB24;
else if (videoMode == 3)
 outputFormat.dataSubtype = vdfRGB15Alpha;
else if (videoMode == 4)
 outputFormat.dataSubtype = vdfRGB16;

outputFormat.imageStride = pciStride;

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 51

5

Get Capabilities

The capabilities of the two components must be obtained before the tsaInOutDescriptor

is created. This information will be used to ensure that they are compatible.

Make the Connection Between the Two Components

A tsaInOutDescriptor setup structure is created and initialized. This is similar to the con-

nection setup described in the section Make the Connection Between the Two Components

described in Chapter 4. The difference being that the Video Transformer capabilities are

passed as the receiverCap. Note that the packets that will be placed in the empty queue

will have an id beginning with 0x100; i.e. the four packets will have the following id’s:

0x100, 0x101, 0x102, and 0x103.

printf("Getting VdigVI Capabilities\n");
if(rval = tmolVdigVIGetCapabilities(&digitizerCap)) {
 printf("Error in tmolVdigVIGetCapabilities: 0x%x\n",rval);
 tmosExit(-1);
}
printf("Getting VtransICP Capabilities\n");
if(rval = tmolVtransICPGetCapabilities(&vtransCap)) {
 printf("Error in tmolVtransICPGetCapabilities: 0x%x\n",rval);
 tmosExit(-1);
}

ioSetup=(ptsaInOutDescriptorSetup_t)malloc(sizeof(tsaInOutDescriptorSetup_t)
 + (NUMBUFFERSÐ1)*sizeof(UInt32));
ioSetupÐ>format = (ptmAvFormat_t)(&digitizerFormat);
ioSetupÐ>flags = tsaIODescSetupFlagCacheMalloc;
ioSetupÐ>fullQName = "VDF0";
ioSetupÐ>emptyQName = "VDE0";
ioSetupÐ>queueFlags = tmosQueueFlagsStandard;
ioSetupÐ>senderCap = digitizerCapÐ>defaultCapabilities;
ioSetupÐ>receiverCap = vtransCapÐ>defaultCapabilities;
ioSetupÐ>senderIndex = VDIGVI_MAIN_OUTPUT;
ioSetupÐ>receiverIndex = VTRANSICP_MAIN_INPUT;
ioSetupÐ>packetBase = 0x100;
ioSetupÐ>numberOfPackets = NUMPACKETS;
ioSetupÐ>numberOfBuffers = NUMBUFFERS;
ioSetupÐ>bufSize[0] = INPUT_HEIGHT * INPUT_STRIDE; /* Y */
ioSetupÐ>bufSize[1] = INPUT_HEIGHT * INPUT_STRIDE / 2; /* U */
ioSetupÐ>bufSize[2] = INPUT_HEIGHT * INPUT_STRIDE / 2; /* V */

/* Create InOutDescriptor */
printf("Creating InOutDescriptor\n");
if(rval = tsaDefaultInOutDescriptorCreate(&iodesc, ioSetup)) {
 printf("Error in tsaDefaultInOutDescriptorCreate: 0x%x\n",rval);
 tmosExit(Ð1);
}

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

52 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Create the Video Transformer Control Descriptor

The application may send configuration commands to the Video Transformer using a

control descriptor. A setup structure must first be initialized before the descriptor is cre-

ated. The commandQName and responseQName fields specify a four letter name which

will be associated with the command and response queues; this may be used for debug-

ging purposes. The queueFlags specify information used for message queue creation. The

tmolQueueFlagsStandard flags specify that the queues will be local to the processor, and

there is no limit to the number of messages which can be placed on them. The flags field

is currently unused and should be set to tsaIODescSetupFlagNone.

The tsaDefaultControlDescriptorCreate function will allocate memory for the control

descriptor, initialize the relevant values, and create the message queues.

Setup the Video Digitizer

An instance of the Video Digitizer is first opened. It is important that the application

check the return value of this function. A typical error would be

TMLIBAPP_ERR_MODULE_IN_USE, which indicates that another task has already opened

an instance. The digitizer supports only a single instance.

The tmolVdigVIGetInstanceSetup function should be called to obtain a pointer to the

instance setup structure. This will be used to configure the instance. The output descrip-

tor is set to point to the InOutDescriptor created previously.

Finally, the tmolVdigVIInstanceSetup function is called to configure the instance.

csetup.commandQName = "vt0C";
csetup.responseQName = "vt0R";
csetup.queueFlags = tmosQueueFlagsStandard;
csetup.flags = tsaIODescSetupFlagNone;
if(rval = tsaDefaultControlDescriptorCreate(&vtransCommand, &csetup)) {
 tmAssert((rval == TMLIBAPP_OK), rval);
}

/* setup video input digitizer */
rval = tmolVdigVIOpen(&digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolVdigVIGetInstanceSetup(digitizerInstance,&digitizerInstSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

digitizerInstSetupÐ>instSetupÐ>outputDescriptors[VDIGVI_MAIN_OUTPUT]
 = iodesc;
rval = tmolVdigVIInstanceSetup(digitizerInstance, digitizerInstSetup);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("digitizer initialized.\n");

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 53

5

Setup the Video Transformer

An instance of the Video Transformer is opened. Up to four instances may be open at

any instant of time. The instance setup structure is obtained by calling tmolVtransICPGe-

tInstanceSetup and this structure will be used to specify the initial configuration. The

main image input descriptor is set to the InOutDescriptor that was created before. In the

example, the overlay input is not used and, therefore, no setup information is specified.

The controlDescriptor is initialized with the control descriptor.

The progressFunc and completionFunc callback functions are set to point to functions

contained within the example program. The Video Transformer will call the applica-

tion’s progress function when an image transformation request has been placed on the

ICP queue. The completion function will be called once the transformation request has

been processed. These callback functions are optional.

The output parameters specify the output format and the destination of the video trans-

formation. In this example, the output is to PCI, so it is necessary for the application to

specify the outputDestination as tmalVtransICPPCI, and the outputPCIAddr to the address

of the PCI video memory. It is also necessary to initialize the output format as this speci-

fies the image output parameters.

If the output was to SDRAM, then an InOutDescriptor must be created which connects

the output of the Video Transformer to the input of another component. The outputDes-

tination should be set to tmalVtransICPSDRAM, with the outputPCIAddr and outputFor-

mat set to Null. In this mode, the instance will obtain the output format from the output

descriptor.

rval = tmolVtransICPOpen(&vtrans0Instance);
tmAssert((rval == TMLIBAPP_OK), rval);

rval = tmolVtransICPGetInstanceSetup(vtrans0Instance,&vtransInstSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

/* Queues have to be initialized. We are using only the main input, but no
 * overlay inputs. As we are using the PCI for output we have no output queue/
 * pin. By default, unused pins will are set to Null. */
vtransInstSetup->defaultSetup->inputDescriptors[VTRANSICP_MAIN_INPUT]
 = iodesc;
vtransInstSetup->defaultSetup->controlDescriptor = vtransCommand;
vtransInstSetup->defaultSetup->progressFunc = tmalVtransICPProgress;
vtransInstSetup->defaultSetup->completionFunc = tmalVtransICPCompletion;

/* setup the PCI output image parameters */
vtransInstSetup->outputFormat = outputFormat;

vtransInstSetup->outputDest = tmalVtransICPPCI;
vtransInstSetup->outputPCIAddr = (UInt8 *) pciAddress;

vtransInstSetup->deinterlaceEnable = False;
vtransInstSetup->antiflickerEnable = False;

rval = tmolVtransICPInstanceSetup(vtrans0Instance, vtransInstSetup);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("transformer instance 0 initialized.\n");

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

54 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The deinterlaceEnable and antiflickerEnable flags are set to disabled for the initial config-

uration.

Finally, the tmolVtransICPInstanceSetup function is called to transfer the setup parame-

ters to the instance.

Starting the Component Instances

Data streaming is initiated by calling the start function for the two instances. These

functions are tmolVdigVIStart and tmolVtransICPStart respectively. The Video Digitizer

executes entirely in an interrupt service routine, while the Video Transformer instance

executes within its own task.

User Input

The user may enter commands via the console to control the operation of the Video

Transformer. The ‘A’ key will toggle the antiflicker filter, the ‘D’ key will toggle the dein-

terlace filter, and the ‘I’ key will disable the antiflicker and deinterlace filters if they are

enabled. The ‘Q’ key will cause the program to exit.

The input parsing uses a simple switch statement to interpret the commands.

DP(("\nStarting Video transformer\n"));
rval = tmolVtransICPStart(vtrans0Instance);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("transformer started.\n");

DP(("\nStarting Video Digitizer\n"));
rval = tmolVdigVIStart(digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
printf("digitizer started.\n");

printf("\nVideo transformer demo started.\n");
printf("Video input is being echoed to video output.\n");
printf("\nThe following commands are available:\n");
printf("\tA - toggle antiflicker filter\n");
printf("\tD - toggle deinterlace filter\n");
printf("\tI - disable both antiflicker and deinterlace filters\n");
printf("\tQ - quit\n");

printf("Press return after entering the required option \n");

while (!quitDetected) {
 gets(ins);
 switch(ins[0]){

 case ÕaÕ:
 case ÕAÕ:
/* disable the deinterlace if it is enabled */
 if (deinterlaceEnable) {
 deinterlaceEnable = False;
 controlArgs.command = VTRANS_CONFIG_DEINTERLACE_ENABLE;
 controlArgs.parameter = (Pointer) &deinterlaceEnable;
 controlArgs.timeout = 0;

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 55

5

When the antiflicker key is entered, a check is made to see if the deinterlace filter is

enabled. If it is, the application will disable it. Note that this is not a restriction of the

Video Transformer component, which is able to do both deinterlacing and antiflicker fil-

tering—it is simply made to be mutually exclusive in the application. Deinterlacing will

be disabled by setting up a controlArgs structure with the relevant command and com-

mand parameter. The command is VTRANS_CONFIG_DEINTERLACE_ENABLE in this case,

and the parameter will be the deinterlaceEnable flag, which was set to false. The timeout

field specifies the time the configuration function should wait before returning a time-

out error. In this case, the value of zero indicates that the function should wait until it

receives a response. It then calls the tmolVtransICPInstanceConfig function to perform

the configuration.

The antiflickerEnable flag is toggled, and the control arguments structure initialized. The

command field is set to VTRANS_CONFIG_ANTIFLICKER_ENABLE and a call is made to

tmolVtransICPInstanceConfig.

 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,
 &controlArgs);
 tmAssert(rval == TMLIBAPP_OK, rval);
 printf("Disabled Deinterlace filter\n");
 }

 antiflickerEnable ^= 1;
 controlArgs.command = VTRANS_CONFIG_ANTIFLICKER_ENABLE;
 controlArgs.parameter = (Pointer) &antiflickerEnable;
 controlArgs.timeout = 0;
 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,
 &controlArgs);
 tmAssert(rval == TMLIBAPP_OK, rval);

 if(antiflickerEnable) {
 printf("Enabled antiflicker filter\n");
 }else{
 printf("Disabled antiflicker filter\n");
 }
 break;

case ÕdÕ:
case ÕDÕ:
/* Disable antiflicker if it is enabled */
 if (antiflickerEnable) {
 antiflickerEnable = False;
 controlArgs.command = VTRANS_CONFIG_ANTIFLICKER_ENABLE;
 controlArgs.parameter = (Pointer) &antiflickerEnable;
 controlArgs.timeout = 0;
 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,
 &controlArgs);
 tmAssert(rval == TMLIBAPP_OK, rval);
 printf("Disabled antiflicker filter\n");
 }
 deinterlaceEnable ^= 1;
 controlArgs.command = VTRANS_CONFIG_DEINTERLACE_ENABLE;
 controlArgs.parameter = (Pointer) &deinterlaceEnable;
 controlArgs.timeout = 0;
 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,
 &controlArgs);
 tmAssert(rval == TMLIBAPP_OK, rval);

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

56 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

The deinterlace toggle operates in a similarly to the antiflicker toggle. If the antiflicker

filter is enabled, it is switched off using the tmolVtransICPInstanceConfig function.

The deinterlace enable flag is then toggled and the

VTRANS_CONFIG_DEINTERLACE_ENABLE command is sent to the transformer instance.

The ‘interlace’ command simply switches off both the antiflicker and deinterlace filters

using two calls to the tmolVtransICPInstanceConfig function. In this mode, the Video

Transformer instance will only perform scaling and color conversion on the captured

video frames.

Once the user enters the quit command from the console, the quitDetected flag will be

set, which causes the main while loop to be exited.

 if (deinterlaceEnable) {
 printf("Enabled Deinterlace filter\n");
 }else{
 printf("Disabled Deinterlace filter\n");
 }
 break;

case ÕiÕ:
case ÕIÕ:
/* Disable antiflicker and deinterlace (ie. display interlaced) */
 antiflickerEnable = False;
 controlArgs.command = VTRANS_CONFIG_ANTIFLICKER_ENABLE;
 controlArgs.parameter = (Pointer) &antiflickerEnable;
 controlArgs.timeout = 0;
 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,
 &controlArgs);
 tmAssert(rval == TMLIBAPP_OK, rval);
 printf("Disabled antiflicker filter\n");

 deinterlaceEnable = False;
 controlArgs.command = VTRANS_CONFIG_DEINTERLACE_ENABLE;
 controlArgs.parameter = (Pointer) &deinterlaceEnable;
 controlArgs.timeout = 0;
 rval = tmolVtransICPInstanceConfig(vtrans0Instance, tsaControlWait,
 &controlArgs);
 tmAssert(rval == TMLIBAPP_OK, rval);
 printf("Disabled Deinterlace filter\n");
 break;

 case ÕqÕ:
 case ÕQÕ:
 DP(("User requested to quit the example\n"));
 quitDetected = True;
 break;

 default:
 break;
 }
}

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 57

5

Stop and Shutdown

Data streaming is terminated by calling the stop functions of each component. When

tmolVtransICPStop is called, the Video Transformer instance will return any packets it

may have in its possession, it then calls the completion function, and suspends its task.

When tmolVdigVIStop is called, it will stop video capture and return the packet that it

had in its possession.

The two instances are then closed by calling tmolVdigVIClose and tmolVtransICPClose

respectively. Closing the Video Transformer will destroy the transformer instances task.

It is recommend that the application call the tsaDefaultCheckQueues function to ensure

that the correct number of packets have been left in the InOutDescriptor.

Calling tsaDefaultInOutDescriptorDestroy will remove all packets from the descriptor

queues, free up their data buffers, and free the space allocated for the descriptor.

Finally, the Video Transformer control descriptor should be destroyed by calling the tsa-

DefaultControlDescriptorDestory function.

printf("\nStopping video transformer instance 0\n");
DP(("\nStopping video transformer instance 0\n"));
rval = tmolVtransICPStop(vtrans0Instance);
tmAssert(rval == TMLIBAPP_OK, rval);

printf("\nStopping video digitiser\n");
DP(("\nStopping video digitiser\n"));
rval = tmolVdigVIStop(digitizerInstance);
tmAssert(rval == TMLIBAPP_OK, rval);

tmolVdigVIClose(digitizerInstance);
rval = tmolVtransICPClose(vtrans0Instance);
tmAssert(rval == TMLIBAPP_OK, rval);

/* Check we have the correct number of packets left in the queues */
rval = tsaDefaultCheckQueues(iodesc);
printf("tsadefaultCheckQueues() returned 0x%x\n", rval);

/* Destroy InOutDescriptors and command queues */
printf("Destroying InOutDescriptors\n");
if(rval = tsaDefaultInOutDescriptorDestroy(iodesc)) {
printf("Error in tsaDefaultInOutDescriptorDestroy: 0x%x\n",rval);
tmosExit(-1);
}

rval = tsaDefaultControlDescriptorDestroy(vtransCommand);
tmAssert(rval == 0, rval);

DP(("Demo Complete.\n"));
printf("Demo Complete. \n");
tmosExit(0);

Chapter 5: Programming TriMedia Video Applications Using the ICP TSSA API

58 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Application Progress Function

The application may supply a progress function to the Video Transformer instance. This

function will be called by the Video Transformer once a packet has been placed on the

ICP request queue. The example progress function simply prints a message to the DP

debug buffer.

Application Completion Function

The application may supply a completion function to the transformer instance. This

function will be called once a frame has been processed by the ICP. It will also be called

after the instance has been asked to stop. The example completion function prints a

message to the DP debug buffer.

tmLibappErr_t
tmalVtransICPProgress(Int instId, UInt32 flags, ptsaProgressArgs_t args){
 DP(("tmalVtransICPProgress[%x]: inside callback!\n", instId));
 return (TMLIBAPP_OK);
}

tmLibappErr_t
tmalVtransICPCompletion(Int instId, UInt32 flags, ptsaCompletionArgs_t args){
 DP(("tmalVtransICPCompletion[%x]: inside callback!\n", instId));
 return (TMLIBAPP_OK);
}

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 59

6

Chapter 6

Programming TriMedia Audio Applications

Topic Page

Introduction 60

TSSA Audio Modules 61

Audio Device Library 73

Board Support Package 84

Chapter 6: Programming TriMedia Audio Applications

60 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Introduction

This chapter describes how to write an audio application using the range of program-

ming interfaces available on TriMedia. For a detailed description of these APIs, refer to

Book 6, Audio Support Libraries, especially the sections on the audio renderer, audio digi-

tizer, and the audio device library.

This chapter begins by describing a high level interface to the audio system. The audio

renderer and the audio digitizer modules provide a high level interface to TriMedia audio

services. These are fully compatible with other useful libraries, such as the Dolby AC3

and ProLogic decoders, and the audio mixers.

Next the reader is introduced to the audio device libraries that underlie the renderer and

digitizer. Finally, the foundation provided by the board support library is briefly dis-

cussed.

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 61

6

TSSA Audio Modules

TriMedia software modules are constructed to a specification known as the TriMedia

Streaming Software Architecture (TSSA). This software architecture is documented in

Book 3, Software Architecture. While the present chapter is easily intelligible without a

background in TSSA, users will find it helpful to read about TSSA before starting serious

programming.

The audio system on TriMedia is built in layers. Since the highest layer has the most

functionality, this discussion will start at the top and work its way down.

A number of audio modules are available for use on TriMedia. These include the audio

renderer and audio digitizer, which are used for audio playback and capture, respectively.

A Dolby AC3 decoder and a Dolby ProLogic decoder are available. An example of a sim-

ple audio mixer is provided with source code. And the DTV demonstration application

includes an audio system that connects all of these together. In addition, MPEG audio

decoders and G.723 audio codecs are available as portions of the DVD player and the

Video Phone packages, respectively. The DTV demonstration is constructed using TSSA-

compatible libraries. The DVD and Video Phone libraries are not yet TSSA-compliant.

The Audio Renderer

This chapter is an overview of the audio renderer. A detailed reference to the API of the

audio renderer is provided in Chapter 5, “Audio Renderer (ArendAO) API,” of Software

Library APIs.

The audio renderer is designed to make it easy to play audio on TriMedia. The audio ren-

derer installs an interrupt service routine and uses it to play buffers of audio. The audio

renderer is a high level interface that is uniform across different hardware implementa-

tions.

The audio renderer can, in fact, be run in two different modes. These are sometimes

known as push mode and pull mode. In the push mode, no operating system dependen-

cies exist, and a simple function is used to copy audio to the output. This is the push,

from application to renderer. While this model is easy to understand, it does not lend

itself to expansion. In particular, many details of operation are left to the application. A

higher level interface standardizes many of the details of data exchange in order to elim-

inate the duplication of code. A demonstration of the push model is available in the

exalArendAO demonstration program.

When the pull model is used to render audio, the producer of audio places buffers full of

data into a queue. Empty packets are available in another queue. Since the application is

driven by the need for empty packets, we say that it “pulls” packets from the empty

queue. Several demonstration programs illustrate the use of the audio renderer in this

mode. We will first discuss the one known as exolArendAO.

Chapter 6: Programming TriMedia Audio Applications

62 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

It is easiest to demonstrate the audio renderer by connecting it to a file reader. This lets

you play audio files. An illustration of the code used for this task is shown in its entirety

below. Directly following, each part of code is examined and discussed.

void ARendFilePlay(char *fileName){
 tmLibappErr_t err;
 Int readerInstance, arendInstance;
 Char ins[80];
 ptmolArendAOInstanceSetup_t arSetup;
 ptmolFreadInstanceSetup_t frSetup;
 ptmAudioFormat_t paf;
 tmAudioFormat_t audioFormat;
 ptmolFreadCapabilities_t frCaps;
 ptmolArendAOCapabilities_t arCaps;
 tsaInOutDescriptorSetup_t iodSetup;
 ptsaInOutDescriptor_t iod;

 /* find out what formats are supported */
 tmolFreadGetCapabilities(&frCaps);
 tmolArendAOGetCapabilities(&arCaps);
 if (!(paf->dataSubtype & apfStereo16)) {
 printf("Stereo audio playback not supported on this board.\n");
 return;
 }

/* Open the components involved and get their setup structures */
 err = tmolFreadOpen(&readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadGetInstanceSetup(readerInstance, &frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 err = tmolArendAOOpen(&arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOGetInstanceSetup(arendInstance, &arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

/* describe the connection between the two components */
/* assemble audio format */
 audioFormat.size = sizeof(tmAudioFormat_t);
 audioFormat.hash = audioFormat.referenceCount = 0;
 audioFormat.dataClass = avdcAudio;
 audioFormat.dataType = atfLinearPCM;
 audioFormat.dataSubtype = apfStereo16;
 audioFormat.description = 16;
 audioFormat.sampleRate = sRate;
/* create an InOutDescriptor */
 iodSetup.format = (ptmAvFormat_t)&audioFormat;
 iodSetup.flags = tsaIODescSetupFlagCacheMalloc;
 iodSetup.fullQName = "full";
 iodSetup.emptyQName = "mpty";
 iodSetup.queueFlags = tmosQueueFlagsStandard;
 iodSetup.senderCap = frCaps->defaultCapabilities;
 iodSetup.receiverCap = arCaps->defaultCapabilities;
 iodSetup.senderIndex = 0;
 iodSetup.receiverIndex = 0;
 iodSetup.packetBase = 0;
 iodSetup.numberOfPackets = NUMBER_OF_PACKETS;
 iodSetup.numberOfBuffers = 1;
 iodSetup.bufSize[0] = 2 * sizeof(Int16) * BUFSIZE;
 err = tsaDefaultInOutDescriptorCreate(&iod, &iodSetup);
 tmAssert((err == TMLIBAPP_OK), err);

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 63

6Check Capabilities

The capabilities function allows you to find out what formats are supported by the sys-

tem. The capabilities of each component are required for setup. Hence these calls are

made at the start of the program. Ultimately, the board support package is responsible

for setting the capabilities of the audio system. The audio formats returned by the ren-

derer are retrieved through the board support package (see “Board Support Package”

starting on page -26).

 /* setup file reader */
 frSetup->defaultSetup->outputDescriptors[0] = iod;
 frSetup->defaultSetup->priority = READER_PRIORITY;
 frSetup->fileName = fileName;
 printf("Opening %s for playback\n", frSetup->fileName);
 err = tmolFreadInstanceSetup(readerInstance, frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 /* setup audio renderer */
 arSetup->defaultSetup->inputDescriptors[0] = iod;
 arSetup->defaultSetup->errorFunc = arend_error_func;
 arSetup->maxBufferSize = 2 * sizeof(Int16) * BUFSIZE;
 err = tmolArendAOInstanceSetup(arendInstance, arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

/* now everything is ready: Start the renderer */
 err = tmolArendAOStart(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadStart(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);

 printf("file %s playing as stereo audio. \n", frSetup->fileName);
 printf("Press return to stop\n");
 gets(ins);

/* Stop the File everything. */
 err = tmolFreadStop(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOStop(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 printf("All stopped.\n");
 err = tsaDefaultInOutDescriptorDestroy(iod);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadClose(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOClose(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);

 return;
}

/* find out what formats are supported */
 tmolFreadGetCapabilities(&frCaps);
 tmolArendAOGetCapabilities(&arCaps);
 if (!(paf->dataSubtype & apfStereo16)) {
 printf("Stereo audio playback not supported on this board.\n");
 return;
 }

Chapter 6: Programming TriMedia Audio Applications

64 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Open the Components:

Each component that will be used must be opened. This creates an instance of the com-

ponent for you to use. The GetCapabilities function is called to retrieve a setup structure

that has been initialized to default values. Notice the use of tmAssert. Like the ANSI

assert, tmAssert will halt the program and print the file name and line number on an

error condition. In addition, tmAssert() prints the error code, and it prints it all both to

STDOUT and to the DP buffer. This assert mechanism is used liberally throughout TM

audio code. It is invaluable in the identification of programming errors. And when the

program is running, it is easy to turn off the tmAssert checking. Compilation with the

flag “-DNO_DEBUG” removes all of the assertion checking. In this way, the assert check-

ing provides strong error checking when appropriate, and it has no run time impact

when the code is released.

Make the Connection Between Each Pair of Components:

Each pair of TSSA components are connected by a structure called an InOutDescriptor.

The function tsaDefaultInOutDescriptorCreate() is used to create one of these connec-

tions. The parameters that must be specified are illustrated here. In this example, a valid

 err = tmolFreadOpen(&readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadGetInstanceSetup(readerInstance, &frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 err = tmolArendAOOpen(&arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOGetInstanceSetup(arendInstance, &arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

/* assemble audio format */
 audioFormat.size = sizeof(tmAudioFormat_t);
 audioFormat.hash = audioFormat.referenceCount = 0;
 audioFormat.dataClass = avdcAudio;
 audioFormat.dataType = atfLinearPCM;
 audioFormat.dataSubtype = apfStereo16;
 audioFormat.description = 16;
 audioFormat.sampleRate = sRate;
/* create an InOutDescriptor */
 iodSetup.format = (ptmAvFormat_t)&audioFormat;
 iodSetup.flags = tsaIODescSetupFlagCacheMalloc;
 iodSetup.fullQName = "full";
 iodSetup.emptyQName = "mpty";
 iodSetup.queueFlags = tmosQueueFlagsStandard;
 iodSetup.senderCap = frCaps->defaultCapabilities;
 iodSetup.receiverCap = arCaps->defaultCapabilities;
 iodSetup.senderIndex = 0;
 iodSetup.receiverIndex = 0;
 iodSetup.packetBase = 0;
 iodSetup.numberOfPackets = NUMBER_OF_PACKETS;
 iodSetup.numberOfBuffers = 1;
 iodSetup.bufSize[0] = 2 * sizeof(Int16) * BUFSIZE;
 err = tsaDefaultInOutDescriptorCreate(&iod, &iodSetup);
 tmAssert((err == TMLIBAPP_OK), err);

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 65

6

format structure is passed in when the connection is created. It is also possible to pass in

Null. The format can be specified later using the tsaDefaultInstallFormat() command, or

it can even be determined after the receiving component has started. This might be more

convenient when using a decoder that finds the format in the data stream only after it

has decoded some data. In this case, the format is passed in the data packet that travels

through the queue inside of the InOutDescriptor.

The CreateInOutDescriptor function can also create the data packets that are used to

stream data between the file reader and the audio renderer. These are initially placed in

the empty queue. Setting the numberOfPackets field to zero will bypass this step, if you

have some special reason to create your own packets. This code illustrates a fairly typical

approach to the problem.

Setup the File Reader

The file reader is a TSSA component that provides a streaming interface to a file. It takes

packets from its empty queue, reads from the disk to fill them, and then places the pack-

ets in its full queue. As a default, the file reader loops back to the beginning when it

reaches the end of the file. More information about the file reader can be found in Chap-

ter 1, “File Reader (Fread) API,” of Software Library APIs.

Given the already initialized file reader setup structure that was retrieved after open, the

file reader is very simple to setup. A file name is clearly required. The InOutDescriptor is

required. And a priority is assigned for the pSOS task that will be created.

The amount of data read in each packet is determined by the bufSize field in the header

of each packet. This was initialized when the packets were created and the memory was

allocated by tsaDefaultInOutDescriptorCreate.

Setup the Audio Renderer

The audio renderer is implemented as an interrupt service routine. It is not a task. Like

the reader, a partially initialized setup structure was obtained after the component was

opened. The user must specify an InOutDescriptor, and a maximum buffer size. The

error reporting function is optional. The format of the audio data stream is specified as

part of the InOutDescriptor. After the call to tmolArendInstanceSetup, we are ready for

start.

 frSetup->defaultSetup->outputDescriptors[0] = iod;
 frSetup->defaultSetup->priority = READER_PRIORITY;
 frSetup->fileName = fileName;
 printf("Opening %s for playback\n", frSetup->fileName);
 err = tmolFreadInstanceSetup(readerInstance, frSetup);
 tmAssert((err == TMLIBAPP_OK), err);

 arSetup->defaultSetup->inputDescriptors[0] = iod;
 arSetup->defaultSetup->errorFunc = arend_error_func;
 arSetup->maxBufferSize = 2 * sizeof(Int16) * BUFSIZE;
 err = tmolArendAOInstanceSetup(arendInstance, arSetup);
 tmAssert((err == TMLIBAPP_OK), err);

Chapter 6: Programming TriMedia Audio Applications

66 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Start

The calls to the start functions (tmolArendAOStart, and tmolFreadStart) cause these two

independent components to begin exchanging data. The audio renderer runs in an inter-

rupt service routine. Under current pSOS rules, this uses the stack of the currently run-

ning task. The file reader is started as an autonomous task. Since buffers start in the

empty queue, the file reader will immediately begin to fill these buffers, and packets will

bunch up in the full queue. The audio renderer will be activated after each buffer has

played. If these buffers contain 256 samples of stereo audio (1024 bytes), and the sample

rate is 44100, the audio renderer will request a new packet every 5.8ms. The renderer

requests a new packet from the full queue. In steady state operation, it also places the

previous packet in the empty queue. Since the reader task is blocked waiting for a empty

buffer, the reader is now ready to run and the cycle can continue.

Figure 1 Sample Audio Application

The printf and gets provide a simple and convenient development interface. Since this

code is in a thread separate from the reader and the renderer, the fact that this thread is

blocked has no effect on the other threads.

err = tmolFreadStart(readerInstance);
err = tmolArendAOStart(arendInstance);

printf("file %s playing as stereo audio.\n", frSetup->fileName);
printf("Press return to stop\n");
gets(ins);

Full buffers

Empty buffers

Full buffers

Processor

Empty buffers

Digitizer Renderer

Sample Application

DATPULL7.MOV

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 67

6

Stop and Shutdown

When it is time to stop the process, the stop functions are called. The operation of each

stop function is synchronous; that is, the stop function will not return until the compo-

nent being stopped has actually completed its work. Under TSSA, stop means “return all

your memory and exit your processing loop.” Hence at the end of the stop procedure, all

of the packets should be returned to the queues.

Advanced Features

The audio renderer is a reasonably mature interface. It supports the basic features well,

and it also provides some advanced features. One of these is the progress callback func-

tion. The progress callback function can be called at every interrupt service routine. This

can be used to implement synchronization functions like that required to lock the out-

put to a digital audio input.

Another advanced feature of the audio renderer is its handling of time-stamped packets.

If the renderer is set up with a clock reference, and if its packets are time-stamped, the

renderer will attempt to present these packets at the correct time. If the packet arrives

too early, the renderer will hold onto it until its presentation time arrives. If it is too late,

the packet will be returned immediately so as to catch up. This mechanism can be used

to implement AV (“lip”) sync. It assumes that once sync is achieved, the audio and video

will remain in sync. If that is not the case, then the DDS should be used to vary the

audio clock so as to achieve long term sync.

Audio Digitizer

The audio digitizer is an interface to audio input. Like all TSSA components, a section of

the API reference manual is devoted to it. Some example programs such as exolAIO are

provided as well. The following code illustrates the basic operation of the audio digitizer:

 err = tmolFreadStop(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOStop(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 printf("All stopped.\n");
 err = tsaDefaultInOutDescriptorDestroy(iod);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolFreadClose(readerInstance);
 tmAssert((err == TMLIBAPP_OK), err);
 err = tmolArendAOClose(arendInstance);
 tmAssert((err == TMLIBAPP_OK), err);

/* Get Capabilities */
 rval = tmolAdigAIGetCapabilities(&AdigAICap);
 rval = tmolArendAOGetCapabilities(&ArendAOCap);

/* Open components */
 rval = tmolAdigAIOpen(&digitizerInstance);
 rval = tmolArendAOOpen(&arendInstance);

Chapter 6: Programming TriMedia Audio Applications

68 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

You can see the similarity to the setup of other TSSA components. The sequence of Open,

GetInstanceSetup, InOutDescriptorCreate, InstanceSetup, Start is very common. Like the

audio renderer, the audio digitizer runs in an interrupt service routine.

One interesting feature of the audio digitizer is its second output. The digitizer has two

outputs. This allows the output to be simultaneously routed to a file writer and to the

audio renderer as a monitor.

/* Get setup variables */
 rval = tmolAdigAIGetInstanceSetup(digitizerInstance, &digitizerSetup);
 rval = tmolArendAOGetInstanceSetup(arendInstance, &arendSetup);

/* create the I/O descriptor to connect components */
 descriptorSetup.format = (ptmAvFormat_t)&audioFormat;
 descriptorSetup.flags = tsaIODescSetupFlagCacheMalloc;
 descriptorSetup.fullQName = "AIOQ";
 descriptorSetup.emptyQName = "AOIQ";
 descriptorSetup.queueFlags = 0;
 descriptorSetup.senderCap = AdigAICapÐ>defaultCapabilities;
 descriptorSetup.receiverCap = ArendAOCapÐ>defaultCapabilities;
 descriptorSetup.senderIndex = 0;
 descriptorSetup.receiverIndex = 0;
 descriptorSetup.packetBase = 0x100;
 descriptorSetup.numberOfPackets = MAX_PACKETS;
 descriptorSetup.numberOfBuffers = 1;
 descriptorSetup.bufSize[0] = bytesPerPacket;
 rval = tsaDefaultInOutDescriptorCreate(&iod, &descriptorSetup))

/* setup components */
 digitizerSetupÐ>defaultSetupÐ>errorFunc = digitizer_error_func;
 digitizerSetupÐ>defaultSetupÐ>outputDescriptors[0] = iod;
 rval = tmolAdigAIInstanceSetup(digitizerInstance, digitizerSetup);
 arendSetupÐ>defaultSetupÐ>inputDescriptors[0] = iod;
 arendSetupÐ>defaultSetupÐ>errorFunc = renderer_error_func;
 arendSetupÐ>maxBufferSize = bytesPerPacket;
 rval = tmolArendAOInstanceSetup(arendInstance, arendSetup);

/* now everything is ready: Start */
 rval = tmolArendAOStart(arendInstance);
 rval = tmolAdigAIStart(digitizerInstance);
 printf("Press return to stop\n");
 gets(ins);

/* Stop everything. */
 rval = tmolAdigAIStop(digitizerInstance);
 rval = tmolArendAOStop(arendInstance);
 rval = tmolAdigAIClose(digitizerInstance);
 rval = tmolArendAOClose(arendInstance);
 rval = tsaDefaultInOutDescriptorDestroy(iod);

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 69

6

CopyAudio Example

The copyAudio example program connects the audio digitizer to a simple data copier

and through to the audio renderer. This is can easily serve as a starting point for the

development of new TriMedia audio modules.

Figure 2 Example of the flow of a simple audio copy

As you might guess from looking at the picture, this will consist of code to create the

modules, create the queues, and connect the modules.

Note
To get a good understanding of the following example program, it is
recommended that you familiarize yourself with Book 3, Software
Architecture, Part A.

Create the Components:

Of course the return values must be checked.

Getting Capabilities

tmolAdigAIOpen(&digitizerInstance);
tmolCopyIOOpen(©Instance);
tmolArendAOOpen(&arendInstance);

if(rval = tmolAdigAIGetCapabilities(&digitizerCap)) {
 printf("Error in tmolAdigAIGetCapabilities: 0x%x\n",rval);
 tmosExit(Ð1);
}
if(rval = tmolCopyIOGetCapabilities(©Cap)) {
 printf("Error in tmolCopyIOGetCapabilities: 0x%x\n",rval);
 tmosExit(Ð1);
}
if(rval = tmolArendAOGetCapabilities(&arendCap)) {
 printf("Error in tmolArendAOGetCapabilities: 0x%x\n",rval);
 tmosExit(Ð1);
}
bytesPerPacket = BUFSIZE * 2 * sizeof(Int16);

Full buffers

Empty buffers

Full buffers

Processor

Empty buffers

Digitizer Renderer

Chapter 6: Programming TriMedia Audio Applications

70 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Setting up iosetups

Creating InOutDescriptors

Setting up audio digitizer

Setting up first output only

iosetup1.format = (ptmAvFormat_t)&aFormat;
iosetup1.flags = tsaIODescSetupFlagCacheMalloc;
iosetup1.fullQName = "digF";
iosetup1.emptyQName = "digE";
iosetup1.queueFlags = 0;
iosetup1.senderCap = digitizerCapÐ>defaultCapabilities;
iosetup1.receiverCap = copyCapÐ>defaultCapabilities;
iosetup1.senderIndex = 0;
iosetup1.receiverIndex = 0;
iosetup1.packetBase = 0x100;
iosetup1.numberOfPackets = MAX_PACKETS;
iosetup1.numberOfBuffers = 1;
iosetup1.bufSize[0] = bytesPerPacket;

iosetup2.format = (ptmAvFormat_t)&aFormat;
iosetup2.flags = tsaIODescSetupFlagCacheMalloc;
iosetup2.fullQName = "renF";
iosetup2.emptyQName = "renE";
iosetup2.queueFlags = 0;
iosetup2.senderCap = copyCapÐ>defaultCapabilities;
iosetup2.receiverCap = arendCapÐ>defaultCapabilities;
iosetup2.senderIndex = 0;
iosetup2.receiverIndex = 0;
iosetup2.packetBase = 0x200;
iosetup2.numberOfPackets = MAX_PACKETS;
iosetup2.numberOfBuffers = 1;
iosetup2.bufSize[0] = bytesPerPacket;

if(rval = tsaDefaultInOutDescriptorCreate(&iodesc1, &iosetup1)) {
 printf("Error in tsaDefaultInOutDescriptorCreate: 0x%x\n",rval);
 tmosExit(Ð1);
}
if(rval = tsaDefaultInOutDescriptorCreate(&iodesc2, &iosetup2)) {
 printf("Error in tsaDefaultInOutDescriptorCreate: 0x%x\n",rval);
 tmosExit(Ð1);
}

rval = tmolAdigAIOpen(&digitizerInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolAdigAIGetInstanceSetup(digitizerInstance,&digitizerSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

digitizerSetupÐ>defaultSetupÐ>outputDescriptors[ADIGAI_MAIN_CHANNEL_OUTPUT]
 = iodesc1;
rval = tmolAdigAIInstanceSetup(digitizerInstance, digitizerSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 71

6

Setting up copy component

Opening and setting up audio renderer

Initializing Audio Renderer

Now that everything is ready, start them all:

Waiting for the user to press RETURN to exit the program

rval = tmolCopyIOOpen(©Instance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolCopyIOGetInstanceSetup(copyInstance, ©Setup);
tmAssert((rval == TMLIBAPP_OK), rval);
copySetupÐ>defaultSetupÐ>inputDescriptors [COPYIO_MAIN_INPUT] = iodesc1;
copySetupÐ>defaultSetupÐ>outputDescriptors [COPYIO_MAIN_OUTPUT] = iodesc2;
rval = tmolCopyIOInstanceSetup(copyInstance, copySetup);
tmAssert((rval == TMLIBAPP_OK), rval);

rval = tmolArendAOOpen(&arendInstance);
tmAssert((rval == TMLIBAPP_OK), rval);
rval = tmolArendAOGetInstanceSetup(arendInstance, &arendSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

arendSetupÐ>defaultSetupÐ>inputDescriptors[ARENDAO_MAIN_INPUT] = iodesc2;
arendSetupÐ>defaultSetupÐ>errorFunc = renderer_error_func;
arendSetupÐ>operationalMode = AR_MODE_CONSERVATIVE;
arendSetupÐ>maxBufferSize = bytesPerPacket;
rval = tmolArendAOInstanceSetup(arendInstance, arendSetup);
tmAssert((rval == TMLIBAPP_OK), rval);

DP(("\nStarting Audio Digitizer, Renderer, and file writer\n"));
rval = tmolArendAOStart(arendInstance);
 tmAssert((rval == TMLIBAPP_OK),rval);
rval = tmolCopyIOStart(copyInstance);
 tmAssert((rval == TMLIBAPP_OK),rval);
rval = tmolAdigAIStart(digitizerInstance);
 tmAssert((rval == TMLIBAPP_OK),rval);

printf("Audio Copy demo started. Press return to exit. \n");
gets(ins);
printf("Stopping all:\n");
rval= tmolAdigAIStop(digitizerInstance); tmAssert((rval==TMLIBAPP_OK),rval);
rval= tmolCopyIOStop(copyInstance); tmAssert((rval==TMLIBAPP_OK),rval);
rval= tmolArendAOStop(arendInstance); tmAssert((rval==TMLIBAPP_OK),rval);
rval= tmolAdigAIClose(digitizerInstance);tmAssert((rval==TMLIBAPP_OK),rval);
rval= tmolArendAOClose(arendInstance); tmAssert((rval==TMLIBAPP_OK),rval);
rval= tmolCopyIOClose(copyInstance); tmAssert((rval==TMLIBAPP_OK),rval);

Chapter 6: Programming TriMedia Audio Applications

72 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Destroying InOutDescriptors

Exit the program

This approach will get your component up and running quickly. But as your component

becomes more mature, you will want to adopt more of the TSA conventions that are

illustrated in the “Audio Mixer” section.

Running The CopyAudio program

1. Copy the CopyAudio program in your editor file.

Note
For more details about how to run a TriMedia application, refer to Chapter 1
of Getting Started with Philips TriMedia and Chapter 1, Compiling TriMedia
Applications, of the Cookbook .

2. You may have some difficulties in compiling the program. If this is the case, make

sure of the following:

— The \bsp\configs includes all the necessary extension: (will be copied).

— The include file includes all the necessary header files: (will be copied).

Audio Mixer

■ The example program known as exolAmixSimple demonstrates the use of a simple

audio mixer. The simple mixer is supplied complete with source. Out of the box, it

accepts three stereo inputs and mixes them into one stereo output. This simple audio

mixer demonstrates the concepts involved in the construction of a mixer. It is a sim-

plified version of the mixer used with the TriMedia Digital Television (DTV) system.

The source for the library illustrates several important concepts:

— The mixer supports a configuration function with a queued interface.

— The mixer demonstrates how to handle multiple input pins. The principles are
similar for multiple output pins.

if(rval = tsaDefaultInOutDescriptorDestroy(iodesc1)) {
 printf("Error in tsaDefaultInOutDescriptorDestroy: 0x%x\n",rval);
 tmosExit(Ð1);
}
if(rval = tsaDefaultInOutDescriptorDestroy(iodesc2)) {
 printf("Error in tsaDefaultInOutDescriptorDestroy: 0x%x\n",rval);
 tmosExit(Ð1);
}

DP(("Demo Complete.\n"));
printf("\nDemo Complete.\n");

 tmosExit(0);

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 73

6

— The mixer separates the tmal and tmol layers using a subdirectory. This is done to
make it easier to isolate the valuable intellectual property that exists in your code
at the AL layer. It is common practice to guard the AL layer source. By making the
OL layer source available, it is possible for a client to change the operating system
without accessing your private source.

Audio Decoders

A number of audio decoders are available for use with TriMedia. These include decoders

for Dolby AC3 and Dolby ProLogic. Each of these are delivered as TSSA-compatible mod-

ules. Since a separate licensing fee is required for these decoders, you are advised to con-

tact your TriMedia sales representative for more information. Code is also available to

decode MPEG 1 layer 2 audio, and G.723, although it is not packaged as a TSSA module.

Audio Device Library

If for some reason the TSSA audio interface is not appropriate, a lower level of access is

available. It is this “device library” interface that is used to construct the audio renderer

and the audio digitizer. The TSSA interface solves many problems that have deliberately

been left unaddressed at the device library level. But of course, there are other ways to

solve the same problems.

Audio Hardware Overview

The TriMedia Audio-In unit connects to an off-chip stereo analog-to-digital (A/D) con-

verter subsystem through a flexible bit-serial bus. It provides all signals needed to inter-

face to high-quality, low-cost oversampling (analog-to-digital) A/D converters, including

a precisely programmable oversampling A/D system clock.

The TriMedia Audio-Out unit connects to an off-chip stereo digital-to-analog (D/A) con-

verter subsystem through a flexible bit-serial interface. It provides an interface to high-

quality, low-cost oversampling D/A converters and a precisely programmable oversam-

pling D/A system clock.

The Audio-In /Audio-Out unit implements a double-buffering scheme, ensuring that no

samples are lost even if the DSPCPU is highly loaded and slow to respond to interrupts.

The Audio-In /Audio-Out unit is reset by writing a 0x80000000 to the AI_CONTROL/

AO_CONTROL) register. This disables capture/transmission by setting the CAP_ENABLE /

TRANS_ENABLE) flag to 0, and makes buffer1 the active buffer by setting BUF1_ACTIVE

flag to 1.

Chapter 6: Programming TriMedia Audio Applications

74 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Capture/Transmission by DSPCPU

1. The DSPCPU initiates capture/transmission by providing two empty/full buffers and

putting their base addresses and sizes in the BASEn and COUNTn/SIZEn registers. It

does so by writing a base address and size to MMIO control fields.

2. After two valid local memory buffers are assigned, capture/transmission is enabled by

setting CAP_ENABLE/TRANS_ENABLE to 1.

3. The Audio-In /Audio-Out unit hardware then fills/empties buffer1 by reading input/

transmitting output samples. After buffer1 fills/empties, BUF1_FULL/BUF1_EMPTY is

asserted and capture/transmission continues without interruption in buffer2.

4. Before buffer2 fills up, the DSPCPU must assign a new, empty/full buffer to BASE1,

COUNT1/SIZE1, and perform an ACK1. BUF2_FULL/BUF2_EMPTY is asserted when

buffer2 fills up/empties, and capture/transmission continues in/from the new

buffer1, and so forth.

5. Upon receipt of an ACK, the Audio-In /Audio-Out hardware removes the interrupt

line assertion at the next DSPCPU clock edge. Refer to the interrupt controller docu-

mentation for details about interrupt handler programming.

In normal operation, the DSPCPU and the Audio-In /Audio-Out hardware continuously

exchange buffers without losing a sample.

However, timing is important in the Audio-In unit. If, for example, the DSPCPU fails to

provide a new buffer in time, the OVERRUN error flag is raised, causing a temporary halt

to input sampling. Sampling resumes as soon as the DSPCPU makes one or more new

buffers available through an ACK1 or ACK2 operation.

Timing is important in the Audio-Out unit, as well. If, for example, the DSPCPU fails to

provide a new buffer in time, the UNDERRUN error flag is raised, and the last valid sample

or sample pair is repeated until a new buffer of data is assigned by ACK1 or ACK2.

The TriMedia Audio-In/Out APIs provide the necessary interface for audio applications

to access the TriMedia Audio-In/Out unit hardware.

Using the TriMedia Audio-In/Audio-Out API

The functions provided in the TriMedia Audio-In/Audio-Out API enable you to access

both the Audio-In and Audio-Out hardware units of TriMedia. The Audio-In/Audio-Out

device library provides functions to control audio coders-encoders (codecs) attached to

the TriMedia processor, as well as support for the audio mixer and other audio sub-

systems.

The interface provided by the Audio-In/Audio-Out device library is simple to use. To

access the Audio-In or Audio-Out unit, the application program first opens the unit and

sets a few parameters, and then initiates capturing or transmission by removing the

pause condition. The audio is then serviced by interrupts. After the audio is running, its

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 75

6

volume, sample rate, and input selection are controlled by the APIs provided in the

Audio-In/Audio-Out device library.

Guidelines for Use of the Audio-In/Audio-Out APIs

General guidelines for using the TriMedia Audio-In/Audio-Out APIs are as follows:

■ Include the <tm1/tmAI.h> and <tm1/tmAO.h> header files.

■ Use the archive version (libdev.a), rather than building the library yourself. (The

Audio-In/Audio-Out device library is archived in libdev.a.)

The source for the Audio-In/Audio-Out device library is included in the TriMedia

Compilation System (TCS). This makes it easier to incorporate new versions of the

library as they become available.

■ Pass the specific owner ID when making subsequent calls.

The Audio-In/Audio-Out device library operates as an exclusive device driver, and, as

such, can service only one task at a time. This is enforced through the owner field of

the control data structure, which is returned by all the initialization functions.

■ Check the error values returned by the initialization functions. Most of the Audio-In/

Audio-Out device library functions return zero on success, or nonzero error codes.

Many functions check and report the use of sizes and alignments that the hardware

cannot support.

Restrictions

Because of hardware or software limitations, the Audio-In/Audio-Out device library has

the following restrictions:

■ The buffers must be 64-byte aligned, and buffer sizes must be a multiple of 64 sam-

ples.

■ Calculation of the sample rate is based on the TriMedia cycle clock. The software gets

its definition of this clock from the tmman.ini file residing in the current directory.

You must ensure the value of tmman.ini matches your hardware.

■ When setting sample rates, consider that the value for the DDS control register is

computed in 32-bit math. This might lead to inaccuracies because of truncation. The

problem will be fixed in future releases.

Demonstration Programs

Included with the Audio-In/Audio-Out device library are six demonstration programs:

■ fplay

■ fplay6

■ sine

Chapter 6: Programming TriMedia Audio Applications

76 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

■ sthru

■ avio

■ patest

If you want to develop audio applications for TriMedia, you can use these demonstration

programs to gain an understanding of how to use Audio-In/Audio-Out device library

APIs within your applications.

IMPORTANT
You will achieve a greater level of compatibility with other TriMedia software
modules through the use of the TSSA audio interface.

Playing an Audio File

The following example demonstrates the role Audio-Out APIs play in an audio file by

using the Audio-Out unit. The code is taken from the fplay demonstration program that

is provided with the Audio-In/Audio-Out device library.

static void
fPlay(char *waveFile, float srate){
 aoInstanceSetup_t ao;
 FILE *fp;
 Int instance, i;
 char ins[80];

 samples = (int *) malloc(MAX_SAMPLE_SIZE * 4);
 if (!samples) {
 printf("FATAL ERROR: Error getting sample memory\n");
 exit(1);
 }

 printf("loading sound file %s...\n", waveFile);
 fp = fopen(waveFile, "rb");
 if (!fp) {
 printf("FATAL ERROR: Failed to open sound file.\n");
 exit(2);
 }
 sample_bytes = fread(samples, 1, MAX_SAMPLE_SIZE, fp);
 printf("sample size is %d bytes.\n", sample_bytes);
 fclose(fp);

 pbuf1 = (int *) (((unsigned long) buf1 + 63) & ~63U);
 pbuf2 = (int *) (((unsigned long) buf2 + 63) & ~63U);

 memset(pbuf1, 0, BUF_SIZE * 4);
 memset(pbuf2, 0, BUF_SIZE * 4);

 for (i = 0; i < BUF_SIZE; i += 16) {
 _cache_copyback(pbuf1, BUF_SIZE);
 _cache_copyback(pbuf2, BUF_SIZE);
 }

 ao.isr = fPlayISR;
 ao.interruptPriority = intPRIO_3;
 ao.audioTypeFormat = atfLinearPCM;
 ao.audioSubtypeFormat = apfStereo16;
 ao.srate = srate;

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 77

6

Before initializing the audio output hardware, the fplay demonstration program must do

the following:

■ Align the buffers on a 64-byte boundary.

■ Call the _cache_copyback function to ensure cache coherency. This is done because

the Audio hardware reads from SDRAM and not from Cache. The _cache_copyback

function uses an optimized algorithm to flush the cache.

■ Set the audio out parameters. The Interrupt Service Routine (ISR) pointer is set to

fPlayISR (see the following example).

■ The fplay demonstration program then initializes the Audio-Out hardware by calling

the aoOpen function, which assigns the audio control block to the owner for exclu-

sive use. LIBDEV checks the return value of the aoOpen function before proceeding.

The format and the interrupt parameters are initialized from the values in AO. The endi-

anness is set to little endian to conform to the file format.

The procedure halts until a console line is read. Wave file playback is interrupt driven.

After the input, the AO unit is stopped and closed.

Interrupt Routine fplayISR

The following is a description of the interrupt routine fplayISR, which is followed by

code excerpts that illustrate sequential operations.

The pragma tells the compiler to save and restore the interrupt state. The routine first

checks for data underrun and highway bandwidth error conditions and acknowledges

them.

There are two Audio Out buffers, with empty status bits for each. If the second is empty,

it is filled with the data in “sample” (a circular buffer). The data read is copied back to

 ao.size = BUF_SIZE;
 ao.base1 = pbuf1;
 ao.base2 = pbuf2;
 ao.underrunEnable = True;
 ao.hbeEnable = True;
 ao.buf1emptyEnable = True;
 ao.buf2emptyEnable = True;

 LIBDEV(aoOpen(&instance));
 LIBDEV(aoInstanceSetup(instance, &ao));

 aoEnableLITTLE_ENDIAN();

 LIBDEV(aoStart(instance));

 printf("wave file playing: Press return to stop.\n");
 gets(ins);

 LIBDEV(aoStop(instance));
 LIBDEV(aoClose(instance));

 exit(0);
}

Chapter 6: Programming TriMedia Audio Applications

78 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

memory and the interrupt is acknowledged. If buffer 1 is empty, it is handled in the

same manner as buffer 2.

The pragma at the end of the function forces a decision tree jump. This is to allow suffi-

cient time between the acknowledgment and the return from interrupt.

The code for the interrupt routine fplayISR is shown below.

1. Check for underrun and highway bandwidth errors.

2. Next, it copies data to AO buffer 2, if it is empty, and it resets the pointer if it is at the

end of the buffer.

3. Next, it forces the cache to write data to memory and it acknowledges the interrupt.

4. fplayISR uses the same code for AO buffer 1 that it used with buffer 2:

5. Next, it resets the pointer if it is at the end of the circular buffer.

Recording an Audio File

The following example demonstrates the use of Audio-In APIs to create an audio file by

reading audio data from the Audio-In unit. The code is taken from the sthru demonstra-

tion program, which is provided with the Audio-In/Audio-Out device library.

static void
fPlayISR(void){
#pragma TCS_handler

 int i;
 UInt stat = MMIO(AO_STATUS);

if(aoUNDERRUN(stat)) aoAckACK_UDR();
if(aoHBE (stat)) aoAckACK_HBE();

if(aoBUF2_EMPTY(stat)){
 for (i = 0; i < BUF_SIZE; i++) {
 pbuf2[i] = samples[sample_pos];
 if (sample_pos++ >= (sample_bytes >> 2))
 sample_pos = 0;
 }

for(i = 0; i < BUF_SIZE; i += 16)
 _cache_copyback(pbuf2, BUF_SIZE);
 aoAckACK2();
}

if(aoBUF1_EMPTY(stat)){
for(i = 0; i < BUF_SIZE; i++){
 pbuf1[i] = samples[sample_pos];

 if (sample_pos++ >= (sample_bytes >> 2)) sample_pos = 0;
}
for (i = 0; i < BUF_SIZE; i += 16)
 _cache_copyback(pbuf1, BUF_SIZE);
 aoAckACK1();
}
#pragma TCS_break_dtree
}

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 79

6

sthru Demonstration Program

The first part of the sthru demonstration program allocates and clears the capture buffer

and the data buffers. (This code is not shown).

On receiving the interrupt, the DSPCPU executes the interrupt service routine inISR (see

the following example). The interrupt routine first reads the newly captured data from

the inactive buffer pointer using aiGetBase and then writes a new pointer to the buffer

that is ready for capture data using aiChangeBuffer. Because the captured data is not

cache-coherent, stale data is removed from the buffer using invalidate. Finally, the ISR

acknowledges the interrupt by clearing the bit in the status register.

void sCapture(float srate){
 AUDIO_CB in_a;
 int i, j;
 FILE *fp;
 int retval;
 int *p1,*p2;

 ptr = rawPtr;
 capCount = 0;

/* setup control structure */
 in_a.format = AIO_FORMAT_STEREO_16;
 in_a.sRate_hz = srate;
 in_a.size_samples = BUFSIZE;
 in_a.flags = 0;
 in_a.isr = capISR;

 retval = aiOpen(&in_a, &in_owner);
 if(0 != retval){
 printf("aiOpen failed with %d. Aborting...\n", retval);
 return;
 }
 if(0 != aiSetBufferSize(in_owner, in_a.size_samples))
 printf("aiSetBufferSize failed (illegal size?)\n");

 p1 = (int *) (((int) ptr + 63) & 0xFFFFFFC0);
 p2 = &p1[BUFSIZE];
 ptr += BUFSIZE;
 if(0 != aiSetBuffer1Base(in_owner, p1))
 printf("aiSetBuffer1Base failed (illegal alignment? 0x%x)\n", p1);

 printf("aiSetBuffer2Base failed (illegal alignment? 0x%x)\n", p2);
 printf(
 "\nCapturing %d seconds of audio input..\n", (mallocSize>>2)/ (int)srate);

 aiUnpause(in_owner);

 while (capCount < ((mallocSize>>2)/BUFSIZE -2))
 if((capCount % 192) == 0) printf("..\n");
 printf("writing data to 'capture.bin'...\n");
 aiPause(in_owner);
 aiClose(in_owner);

 fp = fopen("capture.bin", "wb");
 if (!fp){
 printf("Failed to open capture file.\n");
 return;

Chapter 6: Programming TriMedia Audio Applications

80 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Setting Audio Parameters

After the audio is running (capture or transmission), you can change the volume (left

and right gain), sample rate, and input source by using the APIs provided in the Audio-

In/Audio-Out device library.

The following examples demonstrate the use of these APIs. All of the code is taken from

a demonstration program, which is provided with the Audio-In/Audio-Out device

library.

The following code uses the aiSetSampleRate and aoSetSampleRate APIs to set the

Audio-In and Audio-Out sample rates.

For analog input/output devices (such as the AD1847), both the audio input and audio

output are performed by the same chip. Therefore, both the input and output use the

same sample rate. In such cases, you can use either function.

Audio-In and Audio-Out each have an instance setup structure. These are initialized with

the interrupt parameters and formats.

1. The following code shows the call to the open routines (aoOpen, aiOpen) to acquire

an instance, and the instance setup routines (aoInstanceSetup, aiInstanceSetup) are

then called with the instance value and the appropriate parameters.

The initialization code, argument checking code, and buffer setup is not shown.

2. The following code sets up the audio formats.

3. Set up the interrupt service routine and the priority level.

 }
 printf("Wrote %d words into capture.bin. \n", fwrite(rawPtr,
 sizeof(int), mallocSize>>2, fp));
 fclose(fp);
 printf("capture Test completed\n");
}

aoSetSampleRate(out_owner, srate);
aiSetSampleRate(in_owner, srate);

int main(int argc, char **argv){
 aoInstanceSetup_t ao;
 aiInstanceSetup_t ai;
 char ins[80];
 int i;
 int *buf;
 FILE *fp;

/* setup control structure */
 ai.audioTypeFormat = ao.audioTypeFormat = atfLinearPCM;
 if (monoFlag)
 ai.audioSubtypeFormat = ao.audioSubtypeFormat = apfMono16;
 else
 ai.audioSubtypeFormat = ao.audioSubtypeFormat = apfStereo16;

ao.isr = outISR;
ai.isr = inISR;
ao.interruptPriority = ai.interruptPriority = intPRIO_3;

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 81

6

4. Set up the sampling rate, and the size and buffer pointers (for AO).

5. Set up the interrupt enable flags for AO.

6. Setup the buffer pointers and the interrupt enable flags for AI.

7. Open AO and AI and configure the device.

8. The input and output volumes (left and right channels) are set in hundredths of DB.

A negative value corresponds to attenuation and a positive value to gain. Note that

the input volume must be positive or zero and the output volume must be negative

or zero. The input is set to the line input of the microphone.

9. Set the input to the line or to the mike.

10. Pause until the user types the following:

11.Stop and close AI and AO.

ao.srate = ai.srate = sRate;
ao.size = ai.size = BUFSIZE;
ao.base1 = b[0];
ao.base2 = b[1];

ao.underrunEnable = True;
ao.hbeEnable = True;
ao.buf1emptyEnable = True;
ao.buf2emptyEnable = True;

ai.base1 = b[2];
ai.base2 = b[3];
ai.overrunEnable = True;
ai.hbeEnable = True;
ai.buf1fullEnable = True;
ai.buf2fullEnable = True;

ERROR_REPORT(aoOpen(&ao_instance));
ERROR_REPORT(aoInstanceSetup(ao_instance, &ao));
ERROR_REPORT(aiOpen(&ai_instance));
ERROR_REPORT(aiInstanceSetup(ai_instance, &ai));

aoSetVolume(ao_instance, outputVolume * 100, outputVolume * 100);
aiSetVolume(ai_instance, inputVolume * 100, inputVolume * 100);

if(mode == MODE_MIC){
 ERROR_REPORT(aiSetInput(ai_instance, aaaMicInput));
 else
 ERROR_REPORT(aiSetInput(ai_instance, aaaLineInput));
 ERROR_REPORT(aiStart(ai_instance));
 ERROR_REPORT(aoStart(ao_instance));

<CR>
 printf("Audio Pass Thru is running. Press return to exit :\n");

ERROR_REPORT(aoStop(ao_instance));
ERROR_REPORT(aiStop(ao_instance));
ERROR_REPORT(aoClose(ai_instance));
ERROR_REPORT(aiClose(ai_instance));

Chapter 6: Programming TriMedia Audio Applications

82 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

12.Write the data to capture.bin (binary mode).

13.After receiving the interrupt, the CPU executes the inISR ISR. (See the following exam-

ple).

The ISR first determines which buffer is inactive by using the aoBuf1Active macro

(defined in tmAO.h). It then fills the inactive buffer with new audio data, flushes the

cache, and finally acknowledges the interrupt by clearing the bit in the status register.

14.Increment the input buffer pointer modulo 4.

15.Read the AI status. Check for exceptional conditions.

16.If buffer 2 is full, set foo to the pointer. Switch to the next available buffer.

17.If buffer one is full, set foo to the pointer. Switch to the next available buffer. The two

buffers should never be full simultaneously.

18.Invalidate any stale data in the cache.

if(captureFlag){
 printf("Writing %d samples of captured data to "
 "capture.bin...\n", CAPSIZE);
 fp = fopen("capture.bin", "wb");
 if(!fp){
 printf("FATAL ERROR: capture.bin fopen failed\n");
 exit(2);
 }
 fwrite(capBuffer, 1, CAPSIZE * 4, fp);
 fclose(fp);
 printf("Done!\n");
 }
 exit(0);
}

static void
inISR(void){
#pragma TCS_handler

 int *foo;
 int i;
 UInt stat;

 inBuf++;
 inBuf &= 0x3;

 stat = MMIO(AI_STATUS);
 if(aiOVERRUN(stat)) aiAckACK_OVR();
 if(aiHBE (stat)) aiAckACK_HBE();

if(aiBUF2_FULL(stat)){
 foo = (int *) aiGetBASE2();
 aiChangeBuffer2(ai_instance, b[inBuf]);
 aiAckACK2();
}

if(aiBUF1_FULL(stat)){
 foo = (int *) aiGetBASE1();
 aiChangeBuffer1(ai_instance, b[inBuf]);
 aiAckACK1();

Chapter 6: Programming TriMedia Audio Applications

©1999 Philips Semiconductors 10/08/99 Book 2—Cookbook, Part B 83

6

19.Copy the data into the capture buffer.

There are decision tree breaks previously, so this one is actually unnecessary.

}
for(i = 0; i < BUFSIZE; i += 16)
 INVALIDATE((char *) &foo[i], 1);

for(i = 0; i < BUFSIZE; i++){
 if(capPtr >= CAPSIZE) break;
 capBuffer[capPtr++] = foo[i];
}

Chapter 6: Programming TriMedia Audio Applications

84 Book 2—Cookbook, Part B ©1999 Philips Semiconductors 10/08/99

Board Support Package

The board support package is an integral part of the TriMedia audio system. It is the low-

est functional level of the interface. It is at this level that the actual capabilities of the

system are determined.

The board support package delivered with the TriMedia developers kit includes support

for a number of boards. These include the standard “IREF” board, as well as Philips refer-

ence boards for DTV. The board support package detects which board is in use and selects

the appropriate function tables to drive that board. This mechanism is explained in

some depth in Chapter 19, TMBoard API, of Book 5, System Utilities.

Some examples of the types of capabilities that can be supported through the board sup-

port package are:

■ The IREF hardware cannot support simultaneous stereo input and six channel output.

This is coded into the board support package.

■ The DTV board supports 8 channels of 20-bit audio output. This is done using an

external FPGA with the audio clock running at double speed. All of the setup for this

configuration is in the board support package.

■ The AD1847 on the IREF board supports volume control. This is accessible because it

is supported in the board support package.

■ The DTV board supports digital audio input. The code to control this resides in the

board support package.

	MAINMENU.PDF
	Global Search...
	Trace Back
	==
	LOCAL Bookmarks (For This Document Only)
	==
	Book 2—Cookbook
	Programming with Peripherals
	4: Video Apps, Programming TriMedia
	Introduction
	TSSA Video Modules
	The Video Digitizer
	The Video Renderer
	The exolVrendVO Example Program
	Include Files
	Definitions
	Specifying the Packet Format
	Static Parameters and Function Prototypes
	The Main Program

	TriMedia Video-In Operation
	Full-Resolution Capture Mode
	Full-Resolution Capture Mode
	Half-Resolution Capture Mode
	Raw Capture Mode
	Message-Passing Mode

	TriMedia Video-Out Operation
	Image Transfer Mode
	Data Transfer Modes
	Data-Streaming Mode
	Message-Passing Mode

	Using the TriMedia Video-In/Video-Out Device Library
	Guidelines for Use of the Video-In/Video-Out APIs

	Vivot Demonstration Program Overview
	C Program Includes
	Main Program
	Vivot Demonstration Program (Vivorun)
	Field Capture versus Frame Capture
	Running in CIF Resolution (vivoRunCIF)
	Running in Full Resolution (vivoRunFullRes)
	Initialization With Alpha Overlay (vivoRunOverlay)
	Setup Input and Begin Capture (viYUVOpenAPI)
	Start Outputting an Image To Video Out (voYUVAPI)
	Initialize Overlay Mode (voOverlayAPI)
	Inputting an Image for Display on VO (readYUVfiles)
	ICP Setup
	Buffer Processing for Full Resolution and CIF
	Buffer Processing for Overlay (mmOvlyBufUpdate)
	VI Interrupt Service Routine (viTestISR)
	Querying the Configuration

	5: Video Apps Using ICP TSSA, Programming
	Introduction
	The exolVtransICP Example Program
	Include Files
	Definitions
	Static Variables
	Specifying the Packet Format
	Specifying the Output Format
	Packet Defines and Function Prototypes
	Variables
	Initialization
	Get Capabilities
	Make the Connection Between the Two Components
	Create the Video Transformer Control Descriptor
	Setup the Video Digitizer
	Setup the Video Transformer
	Starting the Component Instances
	User Input
	Stop and Shutdown
	Application Progress Function
	Application Completion Function

	6: Audio Apps, Programming
	Introduction
	TSSA Audio Modules
	The Audio Renderer
	Check Capabilities
	Open the Components:
	Make the Connection Between Each Pair of Components:
	Setup the File Reader
	Setup the Audio Renderer
	Start
	Stop and Shutdown
	Advanced Features

	Audio Digitizer
	CopyAudio Example
	Create the Components:
	Getting Capabilities
	Setting up iosetups
	Creating InOutDescriptors
	Setting up audio digitizer
	Setting up first output only
	Setting up copy component
	Opening and setting up audio renderer
	Initializing Audio Renderer
	Waiting for the user to press RETURN to exit the program
	Destroying InOutDescriptors
	Exit the program
	Running The CopyAudio program

	Audio Mixer
	Audio Decoders

	Audio Device Library
	Audio Hardware Overview
	Capture/Transmission by DSPCPU

	Using the TriMedia Audio-In/Audio-Out API
	Guidelines for Use of the Audio-In/Audio-Out APIs
	Restrictions

	Demonstration Programs
	Playing an Audio File
	Interrupt Routine fplayISR

	Recording an Audio File
	sthru Demonstration Program
	Setting Audio Parameters

	Board Support Package

	====================================
	GLOBAL Bookmarks (For All Documents)
	====================================
	Book 1 – Getting Started
	Book 2 – Cookbook
	Part A: Developing TriMedia Applications
	Part B: Programming with Peripherals
	Part C: Bootstrapping TriMedia
	Part D: Optimizing TriMedia Applications

	Book 3 – Software Architecture
	Part A: Foundation
	Part B: Streaming Architecture

	Book 4 – Software Tools
	Part A: C Language Users Guide
	Part B: Program Development Tools
	Part C: TriMedia Debugger

	Book 5 – System Utilities
	Part A: Support Libraries
	Part B: Examples of TSSA Components
	Part C: System Device Libraries
	Part D: MPEG System Components

	Book 6 – Audio Support Libraries
	Part A: I/O and Control
	Part B: Codecs

	Book 7 – Video Support Libraries
	Part A: Video I/O
	Part B: Video Processing and Coding

	Book 8 – Graphics Support Libraries
	Book 9 – Communications Support
	Book 10 – DTV Libraries
	Part A: DTV Application and Support
	Part B: Nx2x00 Peripherals & TSSA Components

	TriMedia Data Books
	TM-1000 Data Book
	TM-1100 Data Book
	TM-1300 Data Book
	PNX2700 (TM-2700) Data Book

	pSOS™ Documentation
	pSOSystem System Calls
	pSOSystem System Concepts
	pSOSystem Programmer's Reference
	PPP Driver User's Guide

	Glossary

