
Hardware Accelerated Rendering of CSG and Transparency

Michael Kelley, Kirk Gould, Brent Pease, Stephanie Winner, Alex Yen
Apple Computer, Inc.

ABSTRACT

This paper describes algorithms for implementing accurate
rendering of CSG and transparency in a hardware 3D
accelerator. The algorithms are based on a hardware architecture
which performs front-to-back Z-sorted shading; a multiple-pass
algorithm which allows an unlimited number of Z-sorted object
layers is also described. The multiple-pass algorithm has been
combined with an image partitioning algorithm to improve
efficiency, and to improve performance of the resulting
hardware implementation.

CR Categories and Subject Descriptors: I .3 .1
[Computer Graphics]: Hardware Architecture - raster display
devices; I.3.3 [Computer Graphics]: Picture/Image Generation
- display algorithms; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - visible surface algorithms

General Terms: algorithms, architecture

Additional Key Words and Phrases: scanline, CSG,
transparency, deferred shading, image partitioning

INTRODUCTION AND BACKGROUND

This paper describes a general purpose hardware accelerator for
rendering 3D graphics. In addition to basic operations such as
Gouraud and texture-mapped triangles, the system includes
support for high-performance rendering of Constructive Solid
Geometry (CSG) and transparency. These algorithms, and the
system architecture that supports them, are the main topics of
the paper.

A variety of hardware algorithms have been proposed and
implemented for rendering transparency or CSG, but few have
been simple enough to be added to a general purpose
accelerator. Ray-casting systems for CSG are slow and too
complex to be implemented in hardware as low cost
accelerators [13][18]. Enhanced Z-buffer algorithms for CSG
often require many rendering passes, reducing performance
unless extremely fast (and expensive) rasterizing systems are
used [10][17]. Z-buffer transparency algorithms based on sub-
pixel screen door algorithms aren't accurate for multiple layers
of transparency [2]. Binary space partitioning algorithms
allow ordered drawing of transparent objects, but construction
overhead makes them slow for dynamic scenes, and
intersecting objects aren't rendered correctly [8].

SYSTEM OVERVIEW

The system described here is a low cost, single-ASIC
accelerator designed to be added to a Power Macintosh

computer. The rasterizer is based on a scanline rendering
algorithm. Several scanline based rasterizers have been
proposed or built [6][14][16]; the key features of this design
are:

• In addition to vertical bucket sorting (which all scanline
algorithms perform), each scanline is horizontally
partitioned into 16 pixel segments. The small size of this
partition allows all sixteen pixels (at 480 bits/pixel) to be
stored on-chip, improving performance and substantially
reducing cost.

• Rasterization speed is 20M pixels/second, providing
throughput of 120K texture-mapped triangles/second1.
Images of up to 8Kx8K can be rendered in a single pass.

• An unlimited number of visible layers can be sorted by Z
prior to compositing. Sorting is performed per pixel, so
intersecting objects are rendered correctly.

• Transparency and CSG are performed by the compositing
hardware.

• Texture map look-up is deferred until after visible surface
determination, improving performance for scenes with
layered texture-mapped objects.

These features will be described in more detail throughout the
paper.

Z-ORDERED SHADING

Once it was decided to support rendering of CSG and
transparency, it soon became apparent that algorithms based
on shading in Z-sorted order (in this system, from front to
back) provided the most efficient and accurate solution. The
CSG and transparency algorithms themselves are described in
the following sections; however, as Z-ordered shading is
unusual in hardware accelerators, some background on this is
provided first (a detailed discussion is in IMPLEMENTING
Z-ORDERED SHADING, later in the paper).

Although Z-ordered shading is a common choice for high-
quality software renderers [4][20], there are several reasons why
it isn't usually implemented in hardware. The first is historical
— most hardware acceleration architectures were developed for
rendering opaque objects with a single layer Z buffer, a task for
which Z-ordered shading offers no advantage. Later
implementations of features such as transparency, which would
benefit from Z-ordered shading, have been achieved by other
algorithms which are a better fit in existing acceleration
architectures. An example of this is the Silicon Graphics

RealityEngine, which uses sub-pixel screen door coverage
masks to implement transparency [2].

In addition to the historical factors, implementing Z-ordered
shading in hardware tends to require either large amounts of
memory, multiple-pass rendering, or both. The simplest
solution is to store multiple Z-ARGB layers per pixel, which
allows accurate support of a finite number of layers. However,
this requires large amounts of memory, and shows very
unpleasant degradation when the number of layers is exceeded.
A more elegant solution is a multiple pass algorithm [15]. This
provides support of an unlimited number of layers, but it still

1 100 pixel triangles, with tri-linearly interpolated mip-mapped textures.

requires increased pixel memory, and becomes inefficient for
scenes where large numbers of rendering passes are required.

The Z-ordered shading implementation described in the paper
uses both multiple Z-ARGB layers and a multiple-pass
rendering algorithm. As described later, this hybrid algorithm,
combined with the image partitioning algorithm, provides
solutions for both of the problems described above.

Because Z-ordered shading was used, the transparency and CSG
rendering algorithms described in the next two sections are
similar to those used with ray-casting algorithms. In practice,
the most challenging part of the design was implementing Z-
ordered shading; once that was in place, a wide range of
algorithms for CSG and transparency, and potentially for other
effects that require multiple visible layers, became applicable.

FRONT-TO-BACK TRANSPARENCY

The ASIC implements an interpolated transparency model,
which includes the simplifying assumption that all component
colours are filtered by the same coefficient [7]. This model was
chosen because it is accurate, simple, and provides high visual
quality. The blending function is expressed as:

Ir = IrFront + ktFront IrBack

Ig = IgFront + ktFront IgBack

Ib = IbFront + ktFront IbBack

kt = ktFront ktBack

Where IrBack is the red intensity of the back object, IrFront is
the red intensity of the front object with diffuse and ambient
contributions pre-multiplied by (1-ktFront), and ktFront is the
transmission coefficient of the front object. Note that pre-
multiplication of IrgbFront is necessary so that the specular
component of the front object doesn't diminish as transparency
increases [12]. Premultiplication creates the potential for the
computed rgb values to exceed 1.0; this implementation avoids
overflow of rgb by saturating each component at 255 (the
internal equivalent of 1.0).

Clearly, the transparency blending function itself is quite
simple — the challenge is that it requires processing the
contributing objects from front to back, instead of in object
submission order as is more common in hardware accelerators.

CONSTRUCTIVE SOLID GEOMETRY

Constructive Solid Geometry (CSG) is a modeling method
which constructs new geometry from the union, intersection or
difference of other geometry. For example, Figure 2a (end of
paper) shows a complex shape created by subtracting a torus
from a cube. Referring to the cube as A, the torus as B, and the
result as Resulta, it can be expressed:

Resulta = A – B

Figure 2b shows the intersection of A and B:

Resultb = A ∩ B

In actual use, many CSG modeling operations are performed on
a collection of operand geometries to construct a final object.
This resulting object can be represented as an ordered sequence
of Boolean set operations on geometry operands, or
equivalently as an expression tree with geometry as the leaf
nodes [7]. For this paper we've chosen to represent CSG
expressions algebraically, like those above, referring to the

Boolean set operations as operators, and to the leaf node
geometries as operand geometries.

In practice, the CSG expressions of objects are usually more
complex than the examples above, as the expression often
represents the entire construction history of the object.

Ray Casting CSG

The most natural method for rendering CSG objects is based on
ray casting [9][18]. Briefly, a ray is cast through the operand
geometries; each intersection corresponds to the entry or exit
of a solid operand geometry's space. These intersections allow
the projection of the range of each operand's space as a span on
the 1D ray. These spans are then combined using the CSG
operators. In Goldstein's original paper the operators are
applied in the order of the expression tree [9].

Because the ray casting algorithm uses boundary
representations of the geometries, the boundary of the
resulting CSG object is actually a composite of patches of the
boundaries of the operand geometries. When generating
images, the natural result of this is illustrated in Figure 2a and
2b — the portions of the constructed geometry that came from
the different operand geometries (in this example, a cube and a
torus) retain their original appearances.

The extension of this algorithm to a scanline algorithm by
Atherton improved performance [3], and was the starting point
for the algorithm implemented in the hardware.

Z-Ordered CSG Evaluation

The algorithm implemented in the hardware evaluates the
operand intersections in Z order, rather than in expression
order (as is more common in ray-casting implementations).
This has two advantages: It reuses the hardware which performs
Z-sorting for the transparency implementation, and it
dramatically reduces the amount of state that must be stored to
evaluate the CSG expression (this is discussed later).

A B

A'␣

B'␣

A ∪ B

A ∩ B

A – B

B – A

Figure 3

Figure 3, above, shows a single ray cast through two circular
objects A and B. The line A' represents a 1 bit state variable
that indicates whether the ray is currently inside object A (and
similarly for B'). These state variables are updated whenever an
object is intersected — four times in the above example. At any

point on the ray, the Boolean CSG function can be applied to
these state variables to determine if the point is inside the
constructed object. At the bottom of Figure 3 are the results of
applying four different Boolean operations.

In practice, because the system renders only the boundary of
objects, the Boolean function (which we will call Fcsg) is only
evaluated at the intersection points. For example, consider the
B – A operation, which can be represented as:

 Fcsg (A',B') = B' • ¬ A'

As the hardware composites the layers from front-to-back, it
maintains the A' and B' state variables. At each intersection, it
evaluates Fcsg . When Fcsg changes state, it represents a
boundary on the constructed geometry, and the current layer is
rendered. If Fcsg doesn't change, the layer doesn't represent a
boundary and is discarded.

In Figure 4, Fcsg is 0 at the ray origin. The first two
intersections I1 and I2 don't change the state of Fcsg so these
boundary layers are discarded — in other words, they don't
represent a boundary of the resulting constructed object. I3,
however, causes Fcsg to change from 0 to 1, indicating that the
ray has crossed a "real" boundary, so the layer at I3 is rendered.
Similarly, I4 causes Fcsg to change from 1 to 0, so it is also
rendered.

A B

A'␣

B'␣

I1 I2 I3 I4

0 1 1 0 0

0 0 1 1 0

0 0 0 1 0
B'␣• ¬ A'

Figure 4: Fcsg for B – A

Limitations of Evaluating F csg in Hardware

Because Fcsg can be arbitrarily complex, we simplified the
implementation by limiting the complexity of the function to
a maximum of 5 operands. This allows Fcsg to be implemented
as a 32 entry look-up table, using the concatenation of A',
B',C',D',E' as the 5 bit index (25=32). This table is stored in a
32 bit register which the driver software loads before starting
the hardware rasterization of the frame.

It is possible, of course, to build hardware that evaluates far
more complex expressions than this. We've chosen not to do
so for two reasons. This first is cost — this simple evaluator
required only ~500 gates, so it was inexpensive and easy to
add.

The other reason is that our goal is to accelerate interactive
modeling with CSG, not provide a general renderer for
arbitrarily complex CSG objects. Even with hardware
acceleration, solving the entire CSG expression tree for a
complex object can become too slow for interactive use. For
real tasks, a hybrid system which uses hardware CSG rendering

for the operands which are being manipulated, while
converting the stable portion of the expression tree to a
boundary representation, appears to be the most versatile
solution [7].

State Requirements for Implementing CSG

The principal advantage of Z-ordered evaluation of CSG is that
very little state (aka memory) is required. In the ASIC, 5 bits
are used to store the operand state variables A' to E', and an
additional bit stores the last state of Fcsg so that its changes
can be detected — this is even less than is used to store the
composited RGB value during transparency blending.
(Actually, the multiple pass algorithm requires that these 6 bits
be stored for each of the 16 pixels on-chip, so a total of 96 bits
are used.)

By comparison, expression ordered evaluation of the CSG
expression requires substantially more state storage. Because
the Boolean set evaluation at each operand node can produce a
virtually unlimited number of separate segments, hardware
implementation is much more difficult than for an algorithm
with fixed state requirements.

Z-Ordered CSG vs. Sum of Products

Another popular algorithm for rendering CSG is to decompose
the CSG expression into sum-of-products, and then perform
multiple-pass rendering of each two-operand expression until
the entire CSG expression has been performed. This method is
particularly popular with hardware accelerators, because it
requires a fixed (and small) amount of per-pixel storage
[10][17].

In general, Z-ordered evaluation has an advantage over this
method because the entire CSG expression is evaluated in a
single rendering pass2. Implementations of sum-of-products
rendering have varied, but in general they require 2-3 passes for
a difference of two objects, with exponential growth as the
number of operands increases past two.

An advantage of sum-of-products solutions is that they can
render an arbitrarily complex scene (although complex
expressions may take a long time).

IMPLEMENTING Z-ORDERED
SHADING

Although Z-ordered shading isn't usually performed in hardware
accelerators, many high-quality software rendering algorithms
operate in this fashion — in particular, ray-tracing and A-buffer
algorithms are very popular [4][20].

Ray-tracing intrinsically operates in front-to-back order, and
experimental hardware implementations have been built [13].
However, ray-tracing is still too computationally complex for
use in a low cost accelerator.

The A-buffer algorithm generates a front-to-back sorted list of
all the pixel fragments that affect each pixel, allowing both
transparency and anti-aliasing computations to be performed as
the list is composited. Front-to-back ordering is performed by
a list sorting operation, which is more suitable for hardware
implementation. However, because the layer list can

2 This isn't strictly true when the multiple pass algorithm is added;

however, the number of passes is still a fraction of the number of layers,

rather than an exponential function of expression complexity.

potentially be quite large, it isn't possible to store it in on-
chip RAM, so off-chip memory must be used. Achieving a
40MHz clock speed with the increased latency of off-chip
memory proved to be too expensive (and difficult!) to be
practical.

Instead, we chose to use a somewhat simpler and less efficient
Z-ordered shading algorithm, and then improve the efficiency
by combining it with an image space partitioning algorithm.
By using a simpler Z sorting algorithm, all the Z and ARGB
RAM could be kept on-chip, making a 40MHz clock
reasonable. Also, the image space partitioning algorithm
reduced system cost substantially by eliminating the system Z-
buffer, and by reducing system bandwidth [14][16].

UNLIMITED VISIBLE LAYERS

The algorithm used is a hybrid of a simple list sorting
algorithm, and a multiple pass rendering algorithm similar to
that described by Mammen [15]. Very briefly, Mammen's
algorithm operated by first rendering the opaque objects in the
scene. Then the transparent objects were rendered, retaining
only the furthest layer of transparency per pixel. Once all
transparent objects were rendered, the transparency layer was
composited with the opaque layer, Z values updated, and, if
necessary, the transparent objects were re-submitted, rendering
another layer of transparency. The process was repeated until
all transparent layers were composited, requiring one iteration
for each layer of transparency at the deepest point in the image.

This algorithm has the advantage of using a fixed (and small)
amount of memory per pixel. However, in the original form it
is efficient only for scenes without deeply layered
transparency, or where only a small percentage of the objects
are transparent. In this system Z sorting is used for both
transparency and CSG, so it's not unusual for all objects in the
scene to require Z sorting — if the original form of the
algorithm was used, this would cause many rendering passes
and correspondingly low performance.

Start with the Four Closest Layers

The implementation process began by determining how many
layers of sorted Z could be inexpensively supported in
hardware, while still providing enough layers to render typical
images efficiently. A normal Z-buffer system has a single
layer; we simulated designs with 2, 4 and 8 layers on a variety
of tests. The goal was to find a depth which could render the
common test cases without overflow, or at least with overflow
on only a small percentage of the image. Figure 5, at the end of
the paper, shows a sample test image containing 17 tori, half
of which are transparent. Figure 6a (below) is a gray scale
rendering of the number of visible layers at each pixel, ranging
from zero (black) to six (white).

As the tests were performed, the effect on ASIC cost and
performance was evaluated. In the end, a 4 layer deep Z-ARGB
buffer provided the best result. For the test image in Figure 5,
only the region shown in Figure 6b requires more than four
layers to render (Figure 6b will be discussed again later). With
double-buffering and miscellaneous control bits added, this
implementation worked out to (24+32+4)*(4*2) = 480
bits/pixel. For the 16 pixels stored on chip, a total of 7.7
KBits of on-chip RAM were used, well within the cost
constraints of the system.

Figure 6a Figure 6b
Number of Visible Layers Region Requiring Two Passes

Sort from Front to Back

During rendering, the four layer deep Z-ARGB buffer is used to
retain the four closest visible layers per pixel. For simple
scenes without transparency or CSG, only the first Z layer is
used, and behaviour is identical to a normal Z buffer. However,
when transparent or CSG objects are rendered, they are
recognized as non-opaque and are inserted into their correct
position in each pixel's list. If more than four visible layers are
required for any pixel, an overflow flag is set indicating that
more than four Z layers will be necessary to complete
rendering, and the four closest layers are retained.

If Necessary, Composite and ReRender

When overflow occurs, the system composites the four closest
layers into a single layer, and stores the result, with the
backmost Z, into the first layer of the Z buffer. The objects are
then resubmitted, and, similarly to [15], the remaining three Z
layers are used to capture the next-closest three layers of each
pixel. This process continues until overflow does not occur,
effectively compositing an unlimited number of layers from
front to back.

Both the CSG and transparency operations are performed as
part of the compositing operation. Note that the CSG operand
state bits (A', B'...) must be stored per pixel when overflow
occurs so processing can be resumed for the next three layers.

Don't Overflow for Hidden Layers

As is usual in software implementations, the system includes
an optimization which stops the compositing process once an
opaque layer is reached. This avoids unnecessary overflow to
process objects hidden behind an opaque object, and improves
compositing performance.

This optimization requires that Z-sorting be performed from
front to back.

Z Sort Performance

When four or fewer visible layers are necessary to render the
image, front-to-back sorting speed is governed by the Z list
sort-insert time. For random data, the average number of clocks
required to insert a pixel into a list of 0, 1, 2 or 3 layers is:

layers clocks

0 1
1 1
2 1 + 1/2(1) = 1.5
3 1 + 2/3(1 + 1/2(1)) = 2

Assuming that all pixels have 4 visible layers, an average of
1+1+1.5+2 = 5.5 clocks/pixel are required for Z sorting. Note

that this is roughly balanced with compositing speed (1
clock/layer, or 4 clocks/pixel), so Z sort and composite
performance stay roughly balanced for up to four visible layers.
Also, object processing speed is not too degraded from the
opaque object case, with average clocks/pixel layer = 5.5/4 =
1.4.

Increasing the number of layers to 7 both increases the
rendering time of the first pass, as the additional 3 layers take
an average of 2 clocks/pixel-layer to insert, and requires one
additional rendering pass to sort and composite the 3 overflow
layers. During the first pass, the average clocks per pixel rises
from 5.5 to 11.5 (5.5 + 3*2). During the second pass, the four
previously composited layers are discarded in 1 clock/layer,
and the three overflow layers are inserted in:

layers clocks

4 1
5 1 + 1/2(1) = 1.5
6 1 + 2/3(1+1/2(1)) = 2

Total processing per pixel therefore averages 11.5+4+1+1.5+2
= 20 clocks/pixel. Because seven layers are being processed,
this raises the average clocks/pixel layer to 20/7 = 2.8.
Although this represents a substantial performance drop, it's
much less than the 7X penalty a single layer multiple-pass
algorithm would impose.

Of course, real images do not have the homogenous
distribution of layers that these calculations have assumed. The
next section discusses system performance at the image level.

IMAGE PARTITIONING

Image partitioning is a well established method used with many
software algorithms and hardware architectures [6][14][16]. In
general, image partitioning algorithms divide the entire image
to be rendered into a number of smaller regions, each of which
is rendered separately.

Image partitioning algorithms can have a number of
advantages. If the algorithm is designed to render each region
independently, it becomes possible to render multiple regions
simultaneously, enabling the use of parallel rendering
hardware. Alternatively, the algorithm can be designed to share
rendering state between the partitions, in which case the main
advantage is a reduction of working memory (usually because
fewer pixels are stored at once); Watkin's scanline algorithm is
a classic example of this [19]. Some systems have exploited
both of these advantages [14].

There were two reasons for using an image partitioning
algorithm in this system. The first was to reduce working
memory to an amount that could be stored in on-chip RAM.
Keeping the multiple Z and ARGB layers stored on-chip made it
possible to design a Z-sort module that operates at 40M pixel-
layer/s, using 400 MB/s of on-chip RAM bandwidth. Although
it would have been possible to achieve this performance with
off-chip RAM, the system cost would have been substantially
higher .

The second reason to use image partitioning was to improve
the efficiency of the multiple-pass Z sorting algorithm
described earlier. By applying the overflow and re-render tests
at a finer level than for the entire image, the efficiency of the
algorithm was greatly improved.

In addition to these two performance improvements, image
partitioning allowed us to virtually eliminate the limit on

image size usually imposed by hardware accelerators. The
system can render an image of up to 8Kx8K resolution in a
single pass.

Two Dimensional Bucket Sorting

The image space partitioning algorithm is a variation of the
classic scanline algorithm. It begins by bucket sorting all
triangles in the image by their first active scanline, a step
which has been included in several other hardware accelerators
[6][14][16]. Rendering traversal then begins by creating a Y
active object list, which is maintained as rendering advances,
scanline by scanline, down the image.

At the beginning of each scanline, the Y active list is bucket
sorted horizontally (i.e. by X), with each bucket representing a
16 pixel segment of the scanline. (This is variation from the
classic scanline algorithm, which performs the X sort by
pixel.) Once the X bucket sort is complete, rendering proceeds
from left to right across the scanline, maintaining an X active
list. Rendering of each 16 pixel segment is completed before
advancing to the next segment.

In pseudo-code, and with the multiple-pass algorithm added, the
partitioning algorithm can be written as:

YBuckets [NScanlines];
XBuckets [ScanlineWidth/16];

ForEachTriangle {
bucket = FindFirstScanline (tri);
AddToYBucket (bucket, tri);

}

ForEachScanline {
AddToYActiveList (YBuckets [scanline]);

ForEachYActiveTri {
bucket = FindFirstXSegment (tri);
AddToXBucket (bucket, tri);

}

ForEachSegment{
AddToXActiveList (XBuckets [segment]);
do {
ForEachXActiveTri {
Render (tri);

}
} while (Overflow);
ScanoutBucket;

}
}

Figure 7

Although the code above shows all operations occurring
sequentially, whenever possible the hardware overlaps the
different phases of the algorithm to avoid idle rasterization
time. In particular, for high performance it is necessary to
double buffer the Z-ARGB memory so Z sorting can advance to
the next segment while the previous segment's compositing is
performed.

Improving Efficiency of the Multiple Pass
A l g o r i t h m

An advantage of partitioning the image is that the multiple
pass algorithm can be applied with much finer granularity than
re-rendering the entire image. In many cases only a small
percentage of the image will require more than four composited
layers; by testing each individual region for overflow and
resubmitting only the active objects for that region, overall
system efficiency is greatly improved.

Figure 8a and 8b are derived from the test image shown in
Figure 5. 8a shows the number of layers per pixel without

considering opacity; 8b shows the number of visible layers per
pixel. In both cases, the maximum depth is 6 layers, so if the
image was rendered using the multiple pass algorithm, two
passes would be required (assuming a four layer Z-ARGB buffer).
For this test image of 13056 triangles, NTriRend , the number
of objects * the number of times each object is rendered, can be
computed:

NTriRend = 2 passes * 13056 tris/pass = 26112 tris

Figure 8a Figure 8b

NTriRend can be used to measure the efficiency improvements
that result from partitioning the image.

Figure 9a Figure 9b
NTriRend = 21934 NTriRend = 14231

Figure 9a, above, shows the number of rendering passes
required for each 16 pixel segment of the scene, assuming the
additional optimization of testing for opacity before re-
rendering is not performed. Even for this simplified algorithm,
image partitioning provides an improvement — the simulation
measures NTriRend at 21934, a 16% reduction over re-rendering
the entire image.

However, the real savings are indicated by Figure 9b, which
includes the additional optimization of testing opacity before
asserting overflow. In a scene like this test image, where
opaque and transparent objects are intermingled, this yields
substantial performance improvements — in this case,
NTriRend reduces to 14231, a 45% reduction over performing
two rendering passes on the entire image.

Other Image Partitioning Solutions

The efficiency improvements described in the previous section
could be further improved by switching to an image
partitioning system with better 2D image locality — for
example, a 16 pixel partition which was 4x4 pixels instead of
1x16. However, we found that the other advantages of
rendering in scanline order (mainly simplicity) outweighed any
potential gains.

SYSTEM ARCHITECTURE

The system splits the rendering task between software and
hardware. Transformation, clipping and shading are performed
by the PowerMac CPU. Rasterization is performed by the
ASIC described in this paper. The algorithms used for
transformation, clipping and lighting are typical of hardware
accelerated workstations; [1][5][11] describe these algorithms
in detail. The CPU also performs the initial Y bucket sort of the
triangles.

The ASIC rasterizer performs several different tasks, as shown
by the pseudo-code in Figure 7 (earlier in the paper). In
hardware, these tasks are implemented by multiple modules
(shown in Figure 10) which are linked by high speed datapaths.
The Z and ARGB RAM are on-chip, as they require very high
bandwidth and low latency; system memory is used for triangle
storage.

PowerPC CPU

Transformation,
clipping, shading

Object Fetch
Active List

and
Scanline Render

Sequencer

Object-Scanline
Intersection

(Y Interpolation)

ARGB-Z RAM
Dual Port

16 pixels x 4 layers
x 2 banks

Z Sort Span Interpolation
(X)

Composite
Sequencer

and
CSG Evaluation

Texture Map

Lookup

Front-to-Back

compositing

Horizontal Bucket Pointer
Array

and Object Cache

System Memory

Y Bucketed List
of Triangles

Overflow

POWER MACINTOSH

RENDERING ASIC

SSRAM

Texture Memory

SSRAM

40 MLayers/s 20 MPixels/s

10 MPixels/s 20 MPixels/s40 MLayers/s

2.5 MSpans/s

Pixels to
Framebuffer

Figure 10

OBJECT FETCH

This module provides the interface to the system bus.

ACTIVE LIST AND SCANLINE
RENDER SEQUENCER

The Scanline Render Sequencer controls the rendering of
the current scanline, and performs horizontal bucket sorting of
the active objects before starting the scanline render. Vertical
and horizontal active list maintenance is also performed in this
module. The array of object pointers used for the horizontal
bucket sort is stored in off-chip SSRAM.

OBJECT-SCANLINE INTERSECTION

This module intersects triangles with the current scanline, and
computes the span endpoint values for the interpolated
parameters (such as ARGB and Z). In addition, the X intersect
values are fed back to the Active List module to allow
horizontal bucket sorting of the triangles.

SPAN INTERPOLATION

This module clips the horizontal span endpoints generated by
triangle-scanline intersection to the current X segment, and the
parameter values are interpolated for each pixel within the
span. As pixels are interpolated, they are output to the Z Sort
module. Performance is 20 MPixels/s.

Z SORT

This module inserts the interpolated pixel data into the
appropriate layer of the four layer ARGB-Z RAM. If overflow
occurs, an Overflow signal is send to the Scanline Render
Sequencer indicating that an additional rendering pass will be
necessary for the segment. Note that the RAM is double
buffered, so that compositing of the previous segment can be
performed while the next segment is being sorted.

The Z Sort module runs faster than Span Interpolation
(40 MLayers/s vs. 20 MPixels/s) to compensate for the non-
linear increase in sorting operations required for scenes with
multiple visible layers per pixel.

COMPOSITE SEQUENCER AND CSG

The Composite Sequencer reads the pixel layers in front-
to-back order from the double-buffered ARGB-Z RAM, and
performs CSG visibility evaluation at 40 MLayers/s. Non-
visible layers are discarded.

TEXTURE MAP LOOKUP

If the incoming pixel layer should be texture mapped, eight
texture map values are read from the off-chip RAM and tri-
linearly interpolated to generate the diffuse color, after which
diffuse and specular lighting are applied. Texture mapping is
limited by RAM bandwidth to 10 MPixels/s; however, because
texture is applied after hidden surface removal and CSG
evaluation, rendering throughput is typically not degraded.

FRONT-TO-BACK COMPOSITING

The final pixel processing is performed by compositing the
incoming pixel layers in front-to-back order, after which the
resulting ARGB values are output to the frame buffer.

CONCLUSIONS

These are the main design goals met by the system:

CSG and Transparency

An unlimited number of transparent layers can be composited
in correct Z order. Z-ordering is performed per-pixel, so
intersecting objects are rendered correctly. Arbitrary CSG
operations of up to five operands are supported; more complex
operations could be implemented if desired.

Single ASIC Implementation

The entire rasterization engine has been implemented as a
single ASIC, with all low latency datapaths on-chip. This
resulted in a low-cost implementation, and potential for
substantial performance growth as ASIC technology advances.
Off-chip Z buffer memory isn't required.

High Performance

The ASIC can rasterize 120K texture-mapped triangles/s. (This
would only qualify as midrange performance by today's
workstation standards, but is respectable for a single ASIC
rasterizer.) Interestingly, even this basic benchmark (i.e. no
CSG or transparency) benefited from Z-ordered shading because
the hidden surfaces were discarded before texture mapping was
performed.

FUTURE WORK

Although the implementation described here provides good
performance for a single ASIC rasterizer, scaling performance
up to higher levels will require additional parallelism. Some
form of parallelism at the image partition level would be ideal.

ACKNOWLEDGEMENTS

The authors wish to thank Kai-Fu Lee and Rick LeFaivre for
supporting this research in Apple's Interactive Media Lab.

Thanks to Jill Huchital and Dan Venolia for their reviews.

REFERENCES

 1. Akeley, Kurt and T. Jermoluk, "High-Performance
Polygon Rendering", Computer Graphics, Vol. 22, No. 4,
August 1988, 239-246

 2. Akeley, Kurt, "RealityEngine Graphics", ACM Computer
Graphics Conference Proceedings, August 1993, 109-116

 3. Atherton, Peter, "A Scan-Line Hidden Surface Removal
Procedure for Constructive Solid Geometry", Computer
Graphics, July 1983, 73-82

 4. Carpenter, Loren, "The A-buffer, an Antialiased Hidden
Surface Method", Computer Graphics, Vol. 18, No. 3, July
1984, 103-108

 5. Deering, Michael, and S. Nelson, "Leo: A System for Cost
Effective 3D Shaded Graphics", ACM Computer Graphics
Conference Proceedings, August 1993, 101-108

 6. Deering, Michael, S. Winner, B. Schediwy, C. Duffy and
N. Hunt, "The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance Graphics",
Computer Graphics, Vol. 22, No. 4, August 1988, 21-30

 7. Foley, James, A. van Dam, S. Feiner and J. Hughes,
"Computer Graphics Principles and Practice, 2nd Edition",
Addison-Wesley, 1990, transparency 754-755, CSG tree
557-558, CSG b-rep 546-547

 8. Fuchs, Henry, G. Abram, and J. Poulton, "Near Real-Time
Shaded Display of Rigid Objects", Computer Graphics,
Vol. 17, No. 3, July 1983, 65-72

 9. Goldstein, R. and R. Nagel, "3-D Visual Simulation",
Simulation 16(1), January 1971, 25-31

10. Goldfeather, Jack and J. Hultquist, "Fast Constructive
Solid Geometry Display in the Pixel-Powers Graphics
System", Computer Graphics, Vol. 20, No. 4, August
1986, 107-116

11. Harrell, Chandlee, and F. Fouladi, "Graphics Rendering
Architecture for a High Performance Desktop
Workstation", ACM Computer Graphics Conference
Proceedings, August 1993, 93-100

12. Kay, D., "Transparency, Refraction and Ray Tracing for
Computer Synthesized Images", Thesis, Cornell
University, January 1979

13. Kedem, G. and J. Ellis, "The Raycasting Machine",
Proceedings of ICCD, October 1984, 533-538

14. Kelley, Michael, S. Winner, and K. Gould, "A Scalable
Hardware Render Accelerator using a Modified Scanline
Algorithm", Computer Graphics, Vol. 26, No. 2, July
1992, 241-248

15. Mammen, A., "Transparency and Antialiasing Algorithms
Implemented with the Virtual Pixel Maps Technique",
Computer Graphics and Applications, 9(4), July 1989, 43-
55

16. Niimi, Haruo, Y. Imai, M. Murakami, S. Tomita and H.
Hagiwara, "A Parallel Processor System for Three-
Dimensional Color Graphics", Computer Graphics, Vol.
18, No. 3, July 1984, 67-76

17. Rossignac, Jaroslaw, and A. Requicha, "Depth-Buffering
Display Techniques for Constructive Solid Geometry",
IEEE Computer Graphics and Applications, September
1986, 29-39

18. Roth, Scott, "Ray Casting for Modeling Solids",
Computer Graphics and Image Processing, 18, 1982, 109-
67

19. Watkins, G. "A Real-Time Visible Surface Algorithm",
Computer Science Department, University of Utah,
UTECH-CSC-70-101, June 1970

20. Whitted, T. "An Improved Illumination Model for Shaded
Display", CACM 23(6), June 1980, 343-349

Figure 1: Difference of Two Tori

Figure 2a Figure 2b
Cube – Torus Cube ∩ Torus

Figure 5: Test Image

