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METHOD AND APPARATUS FOR STORAGE 
AND RETREVAL OF A TEXTURE MAPNA 

GRAPHICS DISPLAY SYSTEM 

This is a continuation of application Ser, No. 08/051,471, 
filed Apr. 22, 1993. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to the field of computer 

generated graphics, in particular, to systems which utilize 
texture mapping. 

2. Prior Art 
In computer graphics systems, a known technique for 

generating pixel shading values is texture mapping. Basi 
cally, texture mapping involves mapping predetermined 
pixel shading values (the texture map) to a surface being 
rendered. The texture map is typically stored in a random 
access storage means (e.g. a Dynamic Random Access 
Memory or DRAM) that is accused by the graphical system 
during the rendering of a graphical image. This arrangement 
allows for utilizing different texture maps. 

Entries in a texture map are accessed by a (u,v) coordinate 
system. Pixels on a screen are addressed by (x,y) coordi 
nates. Pixels are associated with entries in the texture map 
by a functional mapping of the pixels (x,y) coordinates to the 
(u,v) coordinates of the texture map. Generally, there will be 
a one to one relationship between the pixels on the display 
and the entries on the texture maps. 
A complication with the use of texture maps is encoun 

tered when a graphical system provides for the Zooming of 
images. A Zoom operation requires a filtering operation be 
performed on the values from the texture map in order to 
obtain an acceptable image. Here, filtering involves the 
averaging of corresponding pixel values. For example, if the 
graphical image is to be reduced in size by 4, one pixel in 
the display would now correspond to 4 pixels in the texture 
map. The value for the one pixel would be the average of the 
4 corresponding pixels. Performing such averaging "on the 
fly” can be detrimental to rendering speed. 
One approach to this problem is to store the texture map 

as a MIP (Multum In Pravo- many things in a small place) 
map. MIP maps are described in a paper entitled "Pyramidal 
Parametrics', by Lance Williams, Computer Graphics, Vol. 
17, Number 3, July 1983. In a MIP map, the texture is stored 
as a series of recursively filtered images, each image being 
one-quarter of the previous image. Each of the various 
resolution images are referred to as "pages' of the MIP map. 
Such a MIP map is illustrated in FIG.1. A 32x32 image 101 
provides the highest resolution in this example. Four texture 
values (u, v) 107, (u, v) 108, (u, v) 109 and (u, v) 
110 are in the 32x32 image 101. The values 107-109 are 
averaged to create a value (u, u) 111 of 16x16 image 102. 
This occurs for all the texture values in the 32X32 image 101 
into the corresponding 16x16 image 102. Similarly, each 
texture value in 8x8 image 103 is created from four texture 
values in 16x16 image 102. This repeats for the 4x4 image 
104, 2x2 image 105 and 1x1 image 106. It should be noted 
that the use of MIP maps may not eliminate the need for 
pixel averaging, but will cause a reduction in the number of 
averaging operations performed. 
The pixels for a given map page are stored contiguously, 

so the address of pixel (x,y) is M+x* RowSizey, where M 
is the offset for the map page, and RowSize is the number 
of pixels per line in the map page. For a 256x256 MIP map, 
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2 
M follows the sequence 0, 256, 256°-128’, ..., 256+ 
128-64+32°+16+8°+4+2. Frequently, more than one 
texture map will be utilized to create the desired graphical 
image. In this case a more generalized version of the address 
equation becomes pixel (x,y) is T-M+x*RowSizey, where 
T is the base address of the MIP map being used. Table 1 
shows the resulting memory map when two 256x256 MIP 
maps are stored contiguously. In Table 1, each MIP map is 
stored in a contiguous region of memory starting at address 
T(MapID)=MapID.87381. 

TABLE 1 

Memory map for two 256x256 MIP maps 

T M RowSize Data 

O --0 256 Map 0, page 0 (256x256) 
O +65536 128 Map 0, page 1 (128x128) 
O +81920 64 Map 0, page 2 (64x64) 
O +8606 32 Map 0, page 3 (32x32) 
O +87040 16 Map 0, page 4 (16x16) 
O +87296 8 Map 0, page 5 (8x8) 
O --87360 4. Map 0, page 6 (4x4) 
O +8.7376 2 Map 0, page 7 (2x2) 
0 +87380 1 Map 0, page 8 (1x1) 
87381 --0 256 Map 1, page 0 (256x256) 
87381 --65536 128 Map 1, page 1 (128x128) 
87381 +81920 64 Map 1, page 2 (64x64) 
8738 +86016 32 Map 1, page 3 (32x32) 
87381 +87040 16 Map 1, page 4 (16x16) 
87381 +87296 8 Map 1, page 5 (8x8) 
87381 +87360 4. Map 1, page 6. (4x4) 
87381 +8.7376 2 Map 1, page 7 (2x2) 
87381 +87380 1 Map 1, page 8 (lxi) 

During the actual rendering process, the MIP mapping 
algorithm requires four pixels from each of two adjacent 
map pages to compute a filtered texture value. In general, a 
single MIP mapping filter operation requires fetching pixels 
(n, m) (n, re--1), (n+1,n), and (n+1, m+1) from page p, and 
pixels (n/2, m/2) (n/2, m/2+1), (n/2+1,m/2), and (n/2+1, 
m/2+1) from page p--1. Thus, it is desirable to generate pixel 
addresses and be able to access pixels from the texture map 
as quickly as possible. 
One technique for increasing the rate of retrieving pixel 

values is to retrieve multiple pixels simultaneously. To 
retrieve multiple pixels simultaneously from the RAM, it is 
necessary to partition the data between multiple memory 
banks such that different pixels are stored in different banks. 
FIG. 2 shows an example where the RAM is split into two 
banks, each with 262144/2=131072 pixels. Referring to 
FIG. 2, bank A 207 stores even pixel addresses and bank B 
208 stores odd pixel addresses. With this memory arrange 
ment it is possible to fetch two MIP map pixels simulta 
neously; for example, the 8 fetches required for performing 
a filter operation can be grouped into four even/odd address 
pairs in the pattern {(nm),(n,m--1)}, {(n+1,m),(n+1,m+1)}, 
{(n/2,m/2), (n/2,m/2+1)}, (n/2+1m/2), (n/2+1m/2+1)}. 
This technique allows the 8 pixels to be fetched in four 
operations, each operation fetching an adjacent pair of pixels 
with even and odd addresses. 

Referring back to FIG.2, each pixel address, namely pixel 
(x,y) 201 and pixel (x, y-1) 202 are provided to an address 
swapping means 203. The address swapping means insures 
that a pixel address is directed towards the appropriate 
memory bank. For both addresses, the constant is discarded 
by a means for discarding low order constant bit, 204 and 
205 respectively. Note that the dashed line 206 refers to a 
physical interface between a rendering component and the 
texture map storage. For example, the physical interface 
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would be pins on a rendering component and address pins of 
the DRAMs or SRAMs of the texture map storage. Note that 
in this case, 34 address signal pins are needed on the 
rendering component. 
The addresses are then provided to the respective memory 

banks, 207 and 208. The retrieved data is then provided to 
a data swapping means 209. The data swapping means 
swaps the data output signals if there was a prior address 
swap. This insures that the proper data is assigned to the 
proper pixel address. Finally, the proper pixel (x,y) data 210 
and pixel (x, y +1) data 211 is provided. Note that this latter 
data swapping means may be embodied within the rendering 
component. 
A drawback of this technique is that it requires two 

complete sets of address signals be generated and imple 
mented. As a rendering component is typically separate from 
the texture map storage, the rendering components must 
include an increased number of address lines to connect to 
the texture map storage. A rendering component may typi 
cally be an integrated circuit. Because generating additional 
address signals raises the cost of the integrated circuit by 
increasing the number of address pins needed, it would be 
desirable to use an addressing scheme where the multiple 
memory banks share address signals. 

SUMMARY 

A method and apparatus for simultaneous retrieval of 
multiple pixels from a texture map storage means is dis 
closed. Texture maps are generated and stored in a modified 
MIP (multum in pravo-many things in a small space) map 
form. Even numbered pixels are stored in a first memory 
bank and odd numbered pixels are stored in a second 
memory bank. Through this arrangement, adjacent odd and 
even pixels may be retrieved simultaneously. 
The multiple texture maps are not stored contiguously. 

Instead, the MIP maps are stored so that the pages of the MIP 
maps having the same resolution are stored contiguously. 
This arrangement has the effect of reducing the number of 
unique address signals needed for accessing any two adja 
cent pixels in the texture map. Significantly, this reduces the 
number of address pins that would be required on a render 
ing component accessing the texture map storage. Further, 
this arrangement simplifies pixel address calculations by 
eliminating the need to perform addition operations. Address 
generation may be carried out by simple shift and bitwise 
logical OR operations. This is because each texture map 
page has a resolution that is an even power of two. 
The method of operation of the present invention is 

generally comprised of the following steps: grouping cor 
responding pages of the same resolution for the texture maps 
to be stored; storing odd pixels in a first memory bank and 
even pixels in a second memory bank, providing a texture 
map pixel address to a texture map address signal generation 
means; splitting the pixel address into an X address signal 
part and a Y address signal part; adding a one value to the 
Y address signal part to create a Y--1 address signal part, 
determining if the pixel address is an odd address or an even 
address; providing the X address part to the first and second 
memory banks; if the pixel address is an odd address, 
providing the Yaddress signal part to the first memory bank 
and the Y--1 address signal part to the second memory bank; 
and if the pixel address is an even address, providing the 
Y+1 address signal part to the first memory bank and the Y 
address signal part to the second memory bank. 
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4 
BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 illustrates the MIP map format of texture maps. 
FIG. 2 is a block diagram of a prior art technique for 

simultaneously accessing multiple pixels from a storage 
C2S. 

FIG. 3 illustrates a computer system in which the cur 
rently preferred embodiment of the present invention may be 
utilized. 

FIG. 4 illustrates the rendering component and texture 
map storage interface of the currently preferred embodiment 
of the present invention. 

FIG. 5a, is a flowchart outlining the steps for generating 
a pixel address as may be performed in the currently 
preferred embodiment of the present invention. 

FIG.5b is a block diagram of a circuit for generating pixel 
addresses as may be utilized by the currently preferred 
embodiment of the present invention. 

FIG. 6 is a flowchart outlining the steps for generating two 
texture map address signals as may be performed on the 
currently preferred embodiment of the present invention. 

FIG. 7 is a block diagram describing the circuitry for 
generating address signals as may be utilized in the currently 
preferred embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

A method and apparatus for simultaneously accessing 
multiple pixels in a texture map is disclosed. In the follow 
ing description, numerous specific details are set forth such 
as the specific rendering implementation, in order to provide 
a thorough understanding of the present invention. It will be 
apparent, however, to one skilled in the art that the present 
invention may be practiced without these specific details. In 
other instances, well-known circuits, control logic and cod 
ing techniques have not been shown in detail in order not to 
unnecessarily obscure the present invention. 

Overview of the Computer System of the Preferred 
Embodiment 

The computer system of the preferred embodiment is 
described with reference to FIG. 3. The present invention 
may be implemented on a general purpose microcomputer, 
such as one of the members of the Apple(8) Macintosh.08) 
family, an IBM compatible Personal Computer, or one of 
several work-station or graphics computer devices which are 
presently commercially available. In any event, a computer 
system as may be utilized by the preferred embodiment 
generally comprises a bus or other communication means 
301 for communicating information, a processing means 
302 coupled with said bus 301 for processing information, 
a random access memory (RAM) or other storage device 
303 (commonly referred to as a main memory) coupled with 
said bus 301 for storing information and instructions for said 
processor 302, a read only memory (ROM) or other static 
storage device 304 coupled with said bus 301 for storing 
static information and instructions for said processor 302, a 
data storage device 305, such as a magnetic disk and disk 
drive, coupled with said bus 301 for storing information and 
instructions, an alphanumeric input device 306 including 
alphanumeric and other keys coupled to said bus 301 for 
communicating information and command selections to said 
processor 302, a cursor control device 307, such as amouse, 
track-ball, cursor control keys, etc., coupled to said bus 301 
for communicating information and command selections to 
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said processor 302 and for controlling cursor movement. 
Additionally, it is useful if the system includes a hardcopy 
device 308, such as a printer, for providing permanent copies 
of information. The hardcopy device 308 is coupled with the 
processor 302 through bus 301. 

Also coupled to the computer system of the preferred 
embodiment is a frame buffer 309 which is further coupled 
to a display device 310, preferably a display device capable 
of displaying color graphics images. The frame buffer 309 
contains the pixel data for driving the display device 310. 
The display device 310 would be further coupled to a 
rendering device 311, also known as a graphics accelerator. 
Typically, such a rendering device 311 is coupled to the bus 
301 for communication with the processor 302 and frame 
buffer 309. The preferred embodiment is implemented for 
use on models of the Macintosh computer available from 
Apple Computer, Inc. of Cupertino, Calif. 
The rendering device interface to a texture map storage is 

illustrated in FIG. 4. Referring to FIG. 4, a rendering 
component 401 is coupled to a Texture Storage means 402. 
In such an arrangement the texture map storage means 402 
is typically referred to as being "off-chip'. The rendering 
component 401 performs the actual calculations for gener 
ating pixel shading values. The texture storage means 402 
may be in some type of Random Access Storage Device, e.g. 
a Dynamic Random Access Memory (DRAM) or Static 
Random Access Memory (SRAM). In the currently pre 
ferred embodiment an SRAM is utilized because of the high 
speed in which data may be accessed. In any event, the 
texture storage means 402 is comprised of a first memory 
bank 403 and a second memory bank 404. The first memory 
bank 403 is for storing even numbered pixels and the second 
memory bank 404 is for storing odd numbered pixels. The 
rendering component interfaces with the storage means and 
address lines 405 and pixel data lines 406. In the currently 
preferred embodiment only 24 address lines are used to 
access two pixels simultaneously. As will be described in 
more detail below, a portion of the address is constant 
between the two pixel addresses. 
The pixel data lines 406 is the route by which the pixel 

values are sent from the texture storage means 402 to the 
rendering component 401. In the currently preferred 
embodiment, there are two pixel values being retrieved 
simultaneously, thus requiring 36 pixel data signals. 

Reducing the number of address pins on the rendering 
component is highly desirable. As a finite number of pins are 
available on areasonably sized integrated circuit, freeing use 
from one function, allows it to be used by another. 

Overview of the Rendering Technique of the 
Currently Preferred Embodiment 

In many systems for generating computer graphics, an 
image to be rendered is comprised of a plurality of objects. 
The rendering architecture of the preferred embodiment is 
premised on a scanline algorithm. In the scanline algorithm 
an image is rendered by scanline. Only the portion of an 
object on the scanline is rendered. Other rendering tech 
niques render the entire objects at one time. Briefly, one 
embodiment of the scanline algorithm is a two pass algo 
rithm. The first pass is used to set up databases of informa 
tion that are used to drive the actual scanline rendering 
process. In the first pass, a 2-D object is derived from each 
3-D object in a 3-D object database. During this process, the 
scanline upon which the object would first be displayed (first 
in the sense of the order of drawing scanlines to the display 
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6 
device), i.e. become "active', is determined. This informa 
tion is used to create an Object Activation Database, where 
the entries in the database define the objects that become 
"active” on a particular scanline. 

In the second pass, the Object Activation Database is used 
to create a dynamic list of objects which are "active” on the 
scanline(s) currently being rendered. This list is called the 
Active Object List. The Active Object List is then provided 
to shading means which create the pixel values for the 
scanline(s) currently being rendered. It is within the shading 
means that the texture mapping may occur. In any event, the 
Active Object List is updated as objects become "active' or 
"inactive' on the scanline(s) to be rendered next. 
The scanline rendering technique of the currently pre 

ferred embodiment is described in co-pending application 
Ser. No. 07/811,570, which is commonly assigned to the 
assignee of the present invention. 

It should be noted that the rendering techniques utilized in 
the currently preferred embodiment is but one example in 
which the present invention may be utilized. It would be 
apparent to one skilled in the art to utilize other rendering 
techniques without departing from the spirit and scope of the 
present invention. 

Organization of the Texture Mapping Storage 

To permit some address bits to be shared while reading 
multiple pixels simultaneously, the texture map storage has 
been organized so that each map page resolution is stored 
contiguously, rather than storing each entire MIP map con 
tiguously. This new memory mapping causes all map pages 
to be aligned to an address that is an even multiple of their 
RowSize squared. 

Table 2 shows the memory map for two 256x256 MIP 
maps with the address mapping; unlike the mapping shown 
in Table 1, all map pages are aligned to an address divisible 
by their page size. 

TABLE 2 

Memory map for two 256x256 MEP maps 

T M RowSize Data 

--0 256 Map 0, page 0 (256x256) 
65536 --0 256 Map 1, page 0 (256x256) 
0 +131072 128 Map 0, page 1 (128x128) 
16384 +131072 128 Map 1, page 1 (128x128) 
O +163840 64 Map 0, page 2 (64x64) 
4096 +163840 64 Map 1, page 2 (64x64) 
O +172032 32 Map 0, page 3 (32x32) 
1024 +172032 32 Map 1, page 3 (32X32) 
0 +174080 16 Map 0, page 4 (16x16) 
256 +174080 16 Map 1, page 4 (16x16) 
0 +174592 8 Map 0, page 5 (8x8) 
64 +174592 8 Map 1, page 5 (8x8) 
O --174720 4 Map 0, page 6 (4x4) 
16 --174720 4 Map 1, page 6 (4x4) 
0 +174752 2 Map 0, page 7 (2x2) 
4 174752 2 Map 1, page 7 (2x2) 
O +174760 1 Map 0, page 8 (lx1) 
1 +174760 1 Map 1, page 8 (1x1) 

Storing the MIP map in this manner causes all map pages 
to be aligned to an even multiple of RowSize', and therefore 
to an even multiple of RowSize. Here, the value T is the 
value of the MapId (<2n (the binary value of MapId shifted 
by 2n bits), where n=log RowSize. This alignment is 
particularly useful when RowSize is an exact power of two, 
as the multiplications by RowSize and RowSize' required 
for address computation can be replaced by shift operations. 
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This has the advantage of simplifying the address compu 
tation function for pixel (x,y) in map page p such that the 
bottom n bits, where n=log RowSize, is exactly equal toy. 
Similarly, the next n bits will be exactly equal to x. For 
example, for map page 1 (128x128) of either map 0 or map 
1 in Table 2 above, the A6:0}=y and A13:7=x. Texture 
maps with resolutions that aren't an even power of two can 
also be treated this way by expanding them to the appro 
priate resolution, either by filtering operations or by insert 
ing unreferenced pixels. 

In addition to simplifying address computation, the 
memory arrangement shown in Table 2 has advantages when 
designing a circuit that fetches pixel (x,y) and (x,y--1) 
simultaneously. As shown above, the addresses for pixel 
(x,y) and (x,y--1) will vary in only the bottom n bits; for 
example, a fetch from Mappage 1 (128x128 resolution) will 
share all but the bottom 7 bits (128=2). As the largest 
possible RowSize is 256=2, all address bits more significant 
than A7:0) can be shared. This allows pixels (x,y) and 
(x,y+1) to be addressed with only 1*A17:8+2*A7:1}=24 
unique address signals, vs 17+17=34 unique address signals 
using the conventional memory map illustrated by Table 1 
(see also FIG. 2). Also, the +1 operation need only be 
performed for a maximum of 8 bits, as opposed to the more 
complex computation required for the Table 1 memory map. 
The method and circuit for fetching pixel data is described 
in more detail below. However, it should be noted these 
figures change for maximum RowSizes other than 2; how 
ever, similar principals apply to obtain the desired result. 

Generation of Texture Map Pixel Addresses 
As noted above, for performing texture mapping of a 

single pixel, eight (8) pixel values on the texture map must 
be retrieved. Four of the pixel values will come from a first 
page of the texture map and four of the pixel values will 
come from a second page of the texture map. So it is 
important that pixel values be fetched in an efficient and 
timely fashion. Generally, the generation of the pixel address 
in the texture map is a two step process: generate a pixel 
address from the given pixel parameters, and generate the 
simultaneous texture map address signals from the given 
pixel address. 
The addressing of a pixel in the texture map storage may 

be generally defined by the equation: 

This calculation requires addition operations that can pro 
long rendering time. 
The present invention simplifies the calculation of pixel 

addresses by organizing data to exist in logical powers of 2. 
In the currently preferred embodiment of the present inven 
tion, the organization of the texture maps has the following 
addressing attributes: 

For each A (x,0), the lower order n bits are zero. 
For each A (0,y), the lower order n bits are equal to the 

value of y. 
For each A (x,y), the lower order n bits are equal to the 

value of y and the next n bits are equal to the value of 
X. 

Accordingly, any particular address can be defined by the 
equation 

A=x<<nly offset 
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8 
Here, the symbol"<” is a bit shift operation and the symbol 
“” refers to a bitwise logical OR operation. This provides for 
the calculation of addresses using simple shift and logical 
OR operations, rather than arithmetic operations. The for 
mula is now to shift the X parameter by n bits, perform a 
logical OR operation with the y parameter followed by 
another logical OR operation with the offset value. Note that 
this calculation could also be performed by adding the offset 
to the result of x<<nly. However it is preferable to perform 
the bitwise logical OR operation because of inherent per 
formance benefits. 

In the currently preferred embodiment, texture mapping is 
implemented using the parameters x, y, P, and MapID. The 
parameters x and y are the dimensional coordinates in the 
texture map. Note that texture map coordinates are some 
times referred to as (u,v) coordinates. The parameter P 
(Page) refers to the page of the map. The MapID identifies 
the particular texture map being referenced. These param 
eters are used to speedy pixel addresses for the texture maps 
which are stored in the off-chip texture map storage 
(SRAM). In the currently preferred embodiment, the param 
eters x and y are n (e.g. eight) bit integers derived from the 
parameters u and v (which have the format of a 20-bit 
floating point signed values with 11 bits of fraction and an 
implied leading 1). P is an unsigned 12-bit floating point 
value with 4-bits of fraction. The MapID is 4-bits (so in the 
currently preferred embodiment the maximum number of 
different texture maps is 16). The implementation of these 
particular parameters is not meant to be limiting as to the 
scope of the invention. It would be apparent to one skilled 
in the art to practice the present invention with different 
implementations of these parameters. 
The circuitry for generation of the texture map pixel 

address is simplified because of the organization of the MIP 
maps. This is because the address calculations may be 
performed by the use of shift registers and logical “OR” 
operations. 

FIG. 5a is a flowchart which outlines the steps for 
generating a pixel address. Referring to FIG. 5a, the pixel 
address parameters x, y, P and MapId are received, step 501. 
The x-coordinate is the shifted by n bits, step 502. The value 
n refers to the power of 2 of the rowsize of the page being 
accessed. In other words n=log RowSize. For example if 
the page with resolution 128x128 is being accessed, the 
value of n is 7 (2-128). P ranges from 0 to 7 for a map with 
a maximum resolution of 128x128 and 0 to 8 for a map with 
a maximum resolution of 256x256. Zero corresponds to the 
highest resolution version of the source map and 7 or 8 is the 
lowest resolution (1x1) version. As an example, if the 
integer portion of P is equal to 3, the map versions corre 
sponding to P equal to 3 and 4 are used. 
An offset is then generated from P and the MapId, step 

503. The offset corresponds to the location in the texture 
map where the page is stored for that particular Mapid. 
Calculation of offsets is discussed in more detail below. 
Once the offset is generated, a bitwise logical OR operation 
is performed between the shifted x parameter value and the 
y parameter value to obtain a non-offset address, step 504. 
Finally, a bitwise logical OR operation is performed between 
the non-offset address and the offset to obtain the pixel 
address, step 505. 

It is now useful to consider an example of calculating a 
pixel address. Recall that Table 2 illustrated a pair of texture 
maps stored in texture map storage and having a "highest” 
resolution of 256x256. The calculation of the offset is given 
by the equation OFFSET-M+T; where T-MapIdk2(n-P"), 
n=log (RowSize of the highest resolution page) and P' is the 
integer portion of P. 
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M is also calculated based on the highest resolution page. 
For the case of 256x256 highest resolution the formula for 
M is 

for P>0 and 0 for Ps0. In the currently preferred embodi 
ment, since M is fixed, the values are predetermined and 
stored in a look-up table for access during address genera 
tion. The integer portion of P is used as an index into the 
table. 
The various offsets, in decimal and the corresponding 

binary representation, for addressing texture maps stored as 
illustrated by Table 2, are listed in Table 3: 

TABLE 3 

MaplPage Offsets 

Map 0, Page 0: OD = 000000000000000000 
Map 1, Page 0: 65536D = 010000000000000000 
Map 0, Page 1:131072D = 100000000000000000 
Map 1, Page 1:147456D = 100100000000000000 
Map 0, Page 2:163840D = 101000000000000000 
Map 1, Page 2:167936D = 101001000000000000 
Map 0, Page 3:172032D = 101010000000000000 
Map 1, Page 3:173056D = 101010010000000000 
Map 0, Page 4:174080D = 101010100000000000 
Map 1, Page 4:174336D = 101010100100000000 
Map 0, Page 5:174592D = 101010101000000000 
Map 1, Page 5:174656D = 101010101001000000 
Map 0, Page 6:174720D = 101010101010000000 
Map 1, Page 6:174736D = 101010101010010000 
Map 0, Page 7:174752D = 101010101010100000 
Map 1, Page 7:174756D = 101010101010100100 
Map 0, Page 8:174760D = 101010101010101000 
Map 1, Page 8:174761D = 101010101010101001 

Assume a pixel at location (21, 3) on page 2 of texture 
map 1 is to be fetched. The texture map address would be 
calculated as follows: 

x coordinate-21=00010101 
y coordinate=3=00000011 

n=the number of bits need to represent 64=6 
offset=Map 1, Page 2:167936D=101001000000000000 

Shifting x by n results in 00000010101000000. Performing 
a bitwise logical OR with y results in 000010101000011. 
The final pixel address is generated by performing a bitwise 
logical OR operation with the offset associated with the 
desired page and texture map. Performing the bitwise logical 
OR operation with the offset results in 
101001010101000011. 

FIG. 5b illustrates in block diagram for a circuit for 
generating a pixel address. A parameter x 521 is provided as 
input and entered into a shift register 525. The parameter x 
521 is left (up) shifted for a number of bits provided by shift 
value in 532. The shift value in 532 is derived from the 
formula n=8-integer portion of P. The result is a shifted X 
529. The shifted x 529 is coupled to bitwise logical OR gates 
527. The bitwise logical OR gates 527 would be an array of 
two-input OR gates. Each bit of the shifted x 529 would be 
coupled to one of the inputs of a two input OR gates of 
bitwise logical OR gates 527. The other input would be 
connected to corresponding bits of y parameter 599. The 
result of performing this function would be non-offset pixel 
address 530. 

Parameters P523 and MapId 524 are coupled to an offset 
generation means 526. The offset generation means 526 will 
generate the necessary offset by adding M-T. M is obtained 
through a table look-up and T-MapIdk2(n-P) (see dis 
cussion on offset generation above). In any event, the output 
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10 
of offset generation means 526 will be offset 528. Each bit 
of the offset 528 will be coupled to one of the inputs of two 
input OR gates embodied in bitwise logical OR gates 531. 
The other input will come from corresponding bits of the 
non-offset pixel address 530. The output of the bitwise 
logical OR gates 531 is the desired pixel address 532. 

Address Signals Generation 
FIG. 6 is a flowchart illustrating the steps for generating 

the address signals for simultaneous access of pixels. First, 
the computed pixel address is received, step 601. In the 
currently preferred embodiment, there are 18 address signals 
which are referred to as A17:0. For the notation A17:0, 
'A' refers to "address' and a bit range of the address is 
within the square brackets. Once the address signal is 
received, it is split into anx part A17:8) and ay part A7:0, 
step 602. Thex part A17:8) is routed directly to pins of the 
rendering component, so as to comprise X address lines, step 
603. This is because the high order bits A17:8) do not 
change for each of the texture map address to be accessed. 

Next, they part is replicated to create a second set of low 
order address bits, called y+1, step 604. A one is added to 
y+1 to create the second adjacent pixel address that will be 
accessed, step 605. Note that for the given maximum 
resolution of 256x256, the low order bits will never exceed 
the number represented by the maximum rowsize 28 (256). 
It is then determined if the originally provided pixel address 
is odd, step 606. This must be determined in order to send 
the proper address to the respective even and odd pixel 
memory banks of the texture map storage means. Determin 
ing if a pixel address is even or odd is merely a determina 
tion of whether the lowest order bit is a one or a Zero. 

If the pixel address is odd, they address lines are sent to 
the odd pixel bank and the y+1 address lines are sent to the 
even pixel bank, step 607. Conversely, if the pixel address 
is even, the y+1 address lines are sent to the odd pixel bank 
and they address lines are sent to the even pixel bank, step 
608. 

The pixels are then retrieved from the odd and even pixel 
memory banks, step 609. A checkis again made to determine 
which of the original pixel address was odd, Step 610. This 
step is to insure that the pixel values are being provided to 
the right pixels. If the original pixel address was odd, the 
output of the odd pixel memory bank is routed to the original 
pixel address P(x,y) and the output of the even pixel memory 
bank is routed to the adjacent pixel address P(x,y +1), step 
611. Similarly, if the original pixel address was even, the 
output of the even pixel memory bank is routed to the 
original pixel address P(x,y) and the output of the odd pixel 
memory bank is routed to the adjacent pixel address P(x,y- 
1), Step 612. 
The generation of the texture map address signals is 

further described with reference to FIG. 7. Referring to FIG. 
7, the pixel address lines 701 are split into A17:8) 702 and 
A7:0) 703. Note that the dashed line 708 refers to a 
boundary of a rendering component. Anything above the 
line 708 would be within the rendering component. 
The address signals A7:0703 are then routed to an 

address swapping means 705 and an adder 704. In the adder 
704, a one is added to the contents of the address signals 
A7:0 to create the second adjacent address to be retrieved 
from the texture map storage. The address swapping means 
705 is used to determine if the original pixel address from 
the lines A7:0 represent an odd pixel. If it was odd, the 
address signals are swapped in order to send the proper low 
order bits to the proper pixel memory bank. Once the signals 
are directed towards the proper memory bank, the constant 
low order bits are discarded by means 706 and 707, respec 
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tively. This has the further effect of dividing the address 
value by 2. This is necessary since the pixel address storage 
is comprised of two memory banks. 
The texture map storage is comprised of even pixel 

memory bank 709 and odd pixel memory bank 710. The 5 
even address signals are then routed to even pixel memory 
bank 709 while the odd address signals are routed to odd 
pixel memory bank 710. As described above, the memory 
banks 709 and 710 are preferably SRAM devices. Finally, 
the retrieved data from the memory banks 709 and 710 then 
provided to a data swapping means 711. The data swapping 
means 711 will swap the data if an address swap was 
previously performed. This will insure that the proper pixel 
data is sent as pixel (x,y) data 712 and pixel (x, y +1) data 
713. The data swapping means 711 would typically reside in 
the rendering component. 

Further with reference to FIG.7, note that only 24 pins are 
needed on the rendering component for simultaneously 
addressing two pixels on the texture map storage means, 
even though each pixel address is 18 bits long (for a total of 
36 bits). The high order ten pins are provided to each 
memory bank 709 and 710. The low order bit for each 
address is discarded for these purposes. This results in a 
savings of 12 pins on the rendering component. Note that the 
number of pins being saved is dependent on the largest 
texture map resolution supported. It would be apparent to 
one skilled in the art to provide a system with a higher or 
lower resolution texture maps without departing from the 
spirit and scope of the present invention. 

Thus, a method and apparatus for simultaneous retrieval 
of multiple pixels from a texture map storage means is 
disclosed. 
We claim: 
1. In a computer controlled display system, a method for 

storing and accessing a plurality of modified MIP mapped 
texture maps, said method comprising the steps of: 

a) storing corresponding pages of a first texture map and 
a second texture map so that said corresponding pages 
of said first and said second texture map are stored 
contiguously; 

b) storing even pixels of said first and second texture maps 
in a first memory bank; 

c) storing odd pixels of said first and second texture maps 
in a second memory bank; 

d) providing a pixel address, said pixel address including 
an X part and a Y part; 

e) adding a one value to said Y part to create a Y--1 part; 
f) determining if said pixel address is an odd address or an 

even address; 
g) providing said X part to said first memory bank and 

said second memory bank; 
h) if said pixel address is an odd address, providing said 
Y+1 pan to said first memory bank and said Y part to 
said second memory bank; and 

i) if said pixel address is an even address, providing said 
Y part to said first memory bank and said Y+1 pan to 
said second memory bank. 

2. The method as recited in claim 7 wherein said first and 
second texture maps have a resolution of NXN and said step 
of providing said pixel address is further comprised of the 
steps of: 

a) receiving a first coordinate and a second coordinate for 
a pixel in a texture map; 

b) shifting said first coordinate by n bits to generate said 
X part, wherein n is equal to log2N; 

c. using said second coordinate as said Y part: and 
d) combining said X part with said Y part to form said 

pixel address. 

10 

15 

20 

25 

30 

35 

45 

50 

55 

60 

65 

12 
3. The method as recited in claim 2 wherein said step of 

combining said X part with said Y part is further comprised 
of the step performing a logical OR operation between said 
X part and said Y part to form said pixel address. 

4. The method as recited in claim 3 further comprising the 
steps of: 

a) providing an offset value, said offset value correspond 
ing to a predetermined texture map and a predeter 
mined page; 

b) performing a logical OR operation between said pixel 
address and said offset value to form an offset pixel 
address; and 

c) providing said offset pixel address as said pixel address. 
5. The method of claim 4 wherein said offset value is 

formed by summing the product of a total number of said 
corresponding pages and a page size for each of said 
corresponding pages for each said texture map preceding 
said predetermined page, and a number of said correspond 
ing pages and said page size for each of said corresponding 
pages for each said texture map preceding said predeter 
mined texture map within said predetermined page. 

6. The method of claim 4 wherein said offset value is 
formed by summing an M value and a T value, said T value 
being obtained from a map identifier for said predetermined 
texture map and a highest resolution page, and said M value 
being obtained from a page identifier of said predetermined 
page and said highest resolution page. 

7. The method of claim 6 wherein said T value is equal to 
said map identifier shifted by a first value, said first value 
being a product of two and a difference of n and said page 
identifier. 

8. The method of claim 6 wherein said M value is equal 
to a sum of all of the products of a number of said texture 
maps and the size of said corresponding pages of each of 
said texture maps. 

9. The method of claim 8 wherein said M value is 
determined by performing a lookup in a lookup table using 
said page identifier and said highest resolution page. 

10. The method of claim 6 wherein said M value is 
determined by performing a lookup in a lookup table using 
said page identifier and said highest resolution page. 

11. A rendering component in combination with a storage 
means, said storage means for storing a plurality of texture 
maps, said plurality of texture maps including a first texture 
map and a second texture map, said rendering component 
comprised of: 

a first set of address conductors for providing the high 
order bits of a first and a second pixel address in said 
storage means; 

a second set of address conductors for providing the low 
order bits of said first pixel address in said storage 
means; 

a third set of address conductors for providing the low 
order bits of said second pixel address in said storage 
means; and 

said storage means for storing said texture maps in 
modified MIP map form so that corresponding pages of 
said first and second texture maps are stored contigu 
ously, said storage means further comprising: 

a first memory bank for storing even pixels of said first 
and second texture maps, said first memory bank 
coupled to receive addresses from said first and second 
sets of address conductors; 

a second memory bank for storing odd pixels of said first 
and second texture maps, said second memory bank 
coupled to receive addresses from said first and third 
sets of address conductors. 

12. The combination as recited in claim 11 wherein said 
rendering component is further comprised of means for 
causing said first pixel address to be an even address. 
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13. The combination as recited in claim 12 wherein said 
means for causing said first pixel address to be an even 
address is further comprised of: 

means for determining if said first pixel address is an odd 
address; and 

means for swapping said first pixel address with said 
second pixel address if said first pixel address is an odd 
address. 

14. A computer system having a texture map circuit, said 
texture map circuit comprising: 

a memory operative to store a plurality of texture maps, 
said memory having an N bit address input, each 
texture map of said plurality of texture maps being in 
modified MIP map form, said memory operative to 
store corresponding pages between said plurality of 
texture maps at contiguous memory addresses; 

an address circuit having a pixel address input and an 
address output, wherein said address output is coupled 
to said address input, said address output operative to 
output L addresses responsive to receiving a pixel 
identifier for said address input and said pixel address 
input. 

15. The computer system of claim 14 wherein said pixel 
identifier includes a texture map indicator, a page indicator, 
an X value and a y value, said address circuit further 
comprises: 

a shift circuit coupled to receive said x value and an in 
value, where said in value corresponds to a size of a row 
of pixels in a texture map corresponding to said texture 
map indicator, said shift circuit having a shifted x 
output, said shifted X corresponding to said x value 
being shifted by said n value; 

a combining circuit coupled to receive said y value and 
said shifted X, said combining circuit having a non 
offset address output, said non-offset address corre 
sponding to said y value being combined with said 
shifted x; 

an offset generation circuit coupled to receive said texture 
map indicator and said page indicator, said offset gen 
eration circuit having an offset output, said offset 
corresponding to said texture map indicator and said 
page indicator, and 

a second combining circuit coupled to receive said non 
offset address and said offset, said second combining 
circuit having an address output, said address output for 
outputting one address of said L addresses, said one 
address corresponding to said non-offset address being 
combined with said offset. 

16. The computer system of claim 15 wherein said shift 
circuit includes a shift register. 

17. The computer system of claim 15 wherein said 
combining circuit includes a first plurality of logical OR 
circuits, and said second combining circuit includes a sec 
ond plurality of logical OR circuits. 

18.The computer system of claim 15 whereinn equals the 
log base two of said size. 

19. The computer system of claim 15 wherein said page 
indicator includes a real number and wherein said page 
indicator corresponds to a first page having a next greater 
resolution than said page indicator and said page indicator 
corresponds to a second page having a next less than or 
equal to resolution than said page indicator. 

20. A circuit having a texture map pixel output and a pixel 
address input, said circuit comprising: 

a memory, said memory operative to store a first texture 
map and a second texture map, said first texture map 
including a first NXN page and a first N/MXN/M page, 
said second texture map including a second NXN page 
and a second N/MXN/M page, said first NXN page and 
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14 
said second NXN page being stored contiguously, said 
first N/MXN/M page and said second N/MXN/M page 
being stored contiguously, said memory having a pixel 
output, and 

a circuit having an address output, said address output 
being coupled to said memory, said address output 
operative to communicate a plurality of addresses to 
said memory in response to receiving said pixel 
address. 

21. The circuit of claim 20 wherein N and M are integers 
greater than 1 and wherein M is less than N. 

22. A method in a computer-controlled display system 
comprising the following steps: 

a) receiving a plurality of texture maps, each of said 
plurality of texture maps comprised of pages each 
having different resolutions; 

b) storing corresponding pages of each of said plurality of 
said texture maps contiguously into groups of corre 
sponding pages of each of said plurality of said texture 
maps; 

c) storing each of said groups of said corresponding pages 
of each of said plurality of said texture maps contigu 
ously to form a texture map store; and 

d) using said texture map store to perform texture map 
ping of images. 

23. The method of claim 22 wherein said step of storing 
each of said groups of said corresponding pages of each of 
said plurality of said texture maps includes storing a first 
group of said corresponding pages of said texture maps 
which includes a highest resolution of said corresponding 
pages of said plurality of said texture:maps and storing a last 
group of said corresponding pages of each of said plurality 
of said texture maps which includes a lowest resolution of 
said corresponding pages of said texture maps. 

24. The method of claim 22 wherein said step of using 
said texture map store to perform texture mapping of images 
includes the step of accessing a desired pixel of a desired 
page of a desired texture map by: 

a) receiving a pixel identifier, a page identifier, and a 
texture map identifier; 

b) determining a texture map location by shifting said 
texture map identifier a first number of bits, wherein 
said first number of bits includes the number of bits 
which comprise said pixel identifier; 

c) determining a page location by summing a size of each 
of said groups of pages preceding a group of pages of 
said texture maps which includes said desired page; 

d) summing said page location with said texture map 
location to generate an offset; 

e) performing a bitwise logical or operation between said 
offset and said pixel identifier to generate an address; 
and 

f) accessing said desired pixel of said desired page of said 
desired texture map at said address in said texture map 
Store. 

25. The method of claim 24 wherein said step of receiving 
said pixel identifier includes: 

a) receiving an x coordinate and a y coordinate; 
b) shifting said X coordinate by a second number of bits 

to generate a shifted x coordinate, said second number 
of bits being a number of bits which comprise said y 
coordinate; and 

c) performing a bitwise logical OR between said shifted 
X coordinate and said y coordinate to generate said 
pixel identifier. 
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