
||||||||||||
US005606650A

United States Patent (19) 11 Patent Number: 5,606,650
Kelley et al. (45) Date of Patent: Feb. 25, 1997

(54) METHOD AND APPARATUS FOR STORAGE OTHER PUBLICATIONS
AND RETREVAL OF A TEXTURE MAP ENA "Computer Graphics Principles and Practice Second Edi
GRAPHCS DISPLAY SYSTEM tion', by Foley, Van Dam, Feiner and Huges, published by

(75) Inventors: Michael W. Kelley, San Mateo; the Addision Wesley Publishing Corp., pp. 885-886 and pp.
o 899-900.

Stephei Winner, Santa Clara, Fuchs, Henry, et al. “Pixel-Planes 5: A Heterogeneous
Oth O 1. Multiprocessor Graphics System Using Processor-En

hanced Memories,” Computer Graphics, vol. 23, No. 3, pp.
73) Assignee: Apple Computer, Inc., Cupertino, 79-88 (Jul. 1989).

Calif. Akeley, Kurt, et al., "High-Performance Polygon Render
ing," Computer Graphics, vol. 22, No. 4, pp. 239-246 (Aug.
1988).

(21) Appl. No.: 477,276 Deering, Michael, et al., "The Triangle Processor and Nor
mal Vector Shader: A VLSI System for High Performance

22 Filed: Jun. 7, 1995 Graphics,” Computer Graphics, vol. 22, No. 4, pp. 21-30
(Aug. 1988).
Kirk, David, et al., "The Rendering Architecture of the
DN10000VS,” Computer Graphics, vol. 24, No. 4, pp.
299-307 (Aug. 1990).
Williams, Lance, "Pyramidal Parametrics," Computer

Related U.S. Application Data

63 Continuation of Ser. No. 51,471, Apr. 22, 1993.
(51 Int. Cl. G06T 11140 Graphics, vol. 17, No. 3, pp. 1-11 (Jul. 1983).
52 U.S. Cl. 395/130, 395/128, 395/515 Oka, Masaaki, et al., "Real-Time Manipulation of Tex
58 Field of Search : 395f 30, 164 ture-Mapped Surfaces,' Computer Graphics, vol. 21, No. 4,

pp. 181-188 (Jul. 1987).
Stone "Microcomputer Interfacing", Addison-Wesley Pub
lishing company, 1982 pp. 6-11.

395/166, 128

56) References Cited
Primary Examiner-Mark K. Zimmerman

U.S. PATENT DOCUMENTS Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor & Zaf
4,594,673 6/1986 Holly 395/121 al
4,615,013 9/1986 Yan et al. 395/130 57) ABSTRACT

... 345/196

... 395/122 A method and apparatus for simultaneous retrieval of mul

... 395/400 tiple pixels from a texture map storage means. Multiple
395/129 texture maps are generated and stored in a modified MIP

... 395/126 (multum in pravo-many things in a small space) map form.
... 395/122 Even and odd numbered pixels are stored in different

395.56 memory banks so that adjacent odd and even pixels may be
... 395/147 retrieved simultaneously. The MIP maps are stored so that
... 395/122 the pages of the MIP maps having the same resolution are
E. stored contiguously. This arrangement has the effect of
395/14 reducing the number of unique address signals needed for

.335/121 accessing any two adjacent pixels in the texture map and
... 355,513 simplifying the generation of texture map pixel addresses.

4,658,247 4/1987 Gharachorloo
4,697,178 9/1987 Heckel
4,803,621 2/1989 Kelly ...
4,815,009 3/1989 Blatin
4.866,637 9/1989 Gonzalez-Lopez et al.
4,885,703 12/1989 Deering
4,897,803 1/1990 Calarco et al.
4,899,292 2/1990 Montagna et al. ...
4,945,500 7/1990 Deering
5,001,651 3/1991 Rehme et al. ...
5,097,427 3/1992. Lathrop et al.
5,115,402 5/1992 Matsushiro et al. .
5,123,085 6/1992 Wells et al.
5,128,872 7/1992 Malachowsky et al. ...

(List continued on next page.) 25 Claims, 8 Drawing Sheets

701
PXEL(x,y) ADDRESS A17:0

SFOR
discArding conSTAN

708
- - - - r - - - - - - - - - - - - - -1

24 UNIQUE
ADDRESS
ScNAS

713

5,606,650
Page 2

U.S. PATENT DOCUMENTS 5,249,264 9/1993 Matsumoto 395/134

5,157,388 10/1992 Kohn 345/136 3. 8. Most al.3.E. 5,214,753 5/1993 Lee et al. ... 395/125 5.255, 0/1993 Peaslee et al. 30 X
5,222,204 6/1993 Swanson 395/127 5,261,041 11/1993 Susman 395/119
5,222,205 6/1993 Larson et al. 395/130 5,268,995 12/1993 Diefendorff et al. ... 395/122
5,224.208 6/1993 Miller, Jr. et al................... 395/130 X 5,278,949 1/1994 Thayer 395/126

5,606,650 Sheet 1 of 8 Feb. 25, 1997 U.S. Patent

(LHV HOIHd) | ?Inôl

-90? EIÐVWI Z X Z

U.S. Patent Feb. 25, 1997 Sheet 2 of 8 5,606,650

PIXEL (x,y) ADDRESS. PIXEL (x,y+1) ADDRESS.
201 2O2

203

ADDRESS SWAPPING MEANS

204
205

DISCARD CONSTANT DISCARD CONSTANT
AO=0. AO=1. 206

1.
34 UNIQUE

- - - - ADDRESS
SIGNALS

EVEN PXEL ODD PXEL 208

MEMORY BANK A
131072 WORDS

MEMORY BANKB
131072 WORDS

DATA SWAPPING MEANS

PIXEL (x,y) DATA. PIXEL (x,y+1) DATA.
210 21

Figure 2
(PRIOR ART)

U.S. Patent Feb. 25, 1997 Sheet 3 of 8 5,606,650

PROCESSOR

DATA STORAGE
DEVICE 302

305

KEYBOARD

306

CURSOR
CONTROL
DEVICE
307

RENDERING
DEVICE

311

HARD COPY
DEVICE

308 FRAME DISPLAY
BUFFER DEVICE
309 310

Figure 3

U.S. Patent Feb. 25, 1997 Sheet 4 of 8 5,606,650

RENDERING
COMPONENT

ADDRESS
LINES
405

FIRST SECOND
MEMORY MEMORY
BANK BANK
403 404

U.S. Patent Feb. 25, 1997 Sheet S of 8 5,606,650

START

501

RECEIVE PXEL ADDRESS
PARAMETERS x, y, P AND

MAPD

502

SHIFT X-COORONATE BYn
BTS.

503

GENERATE OFFSET FROM P AND
MAPD

504
PERFORM BITWISE LOGICAL OR

OPERATION ON SHIFTED X
COORDNATE AND

Y-COORONATE TO OBTAN
NON-OFFSET ADDRESS

505
PERFORM LOGICAL

OR OPERATION BETWEEN
NON-OFFSET ADDRESS AND
OFFSET TO OBTAIN PXEL

ADDRESS

Figure 5a

U.S. Patent Feb. 25, 1997 Sheet 6 of 8 5,606,650

X X P MAPD
521 522 523 524

SHIFT VALUE
SHIFT REGISTER 525 OFFSET

532 GENERATION
MEANS

SHIFTEDX
529 526

OFFSET
528

LOGICAL OR GATES 527

NON-OFFSET
PXEL

ADDRESS
530

OGICAL OR GATES 53

PXE
ADDRESS

532

Figure 5b

U.S. Patent Feb. 25, 1997 Sheet 7 of 8 5,606,650

601

RECEIVE COMPUTED PXEL
ADDRESSA (17:0

602

SEPARATEx PARTA 17:8)
AND y PARTA 7:0

603

ROUTE X-PART DIRECTLY TO
X-ADDRESS LINES

604

REPLICATE y ADDRESS LINES
605

ADD 1 TO ONE SET OF y
608 ADDRESS LINES, CREATING THE

y1 ADDRESS LINES

SEND y TO EVEN
PIXEL MEMORY
BANK ADDRESS,

606

NO LINES AND y+1 to PXEL ADDRESS
ODD PIXEL ODDP

MEMORY BANK
ADDRESS LINES 607

SEND y TO ODD PIXEL MEMORY
BANK ADDRESS LINES AND y+1
TO EVEN PXE MEMORY BANK

ADDRESS LINES

609

RETRIEVE PIXELS FROM OOD
AND EVEN PXEL MEMORY

BANKS
612 611

60 1.
ROUTE OUTPUT OF
EVEN PXE MEMORY
BANK TO PIXEL (x, y)
AND OUTPUT OF

ODD MEMORY BANK
TO PIXEL (x, y+1)

ROUTE OUTPUT OF
YES ODD PXEL MEMORY

BANK TO PIXEL (x, y)
AND OUTPUT OF

EVEN MEMORY BANK
TO PIXEL (x, y-1)

Figure 6 G END)

ORIGINAL PIXEL
ADDRESS ODO

U.S. Patent Feb. 25, 1997 Sheet 8 of 8 5,606,650

70
PIXEL (x,y) ADDRESS A17:0
72 is

A17:8
10

MEANS FOR
DISCARDING CONSTANT

AO:0.

MEANS FOR
DISCARDING CONSTANT

AO-1. 708
u
24 UNICUE
ADDRESS
SIGNALS

EVEN PIXEL
MEMORY BANK

ODD PXEL
MEMORY BANK

DATA SWAPPING MEANS

PIXEL (x,y) DATA. PIXEL (x,y,-1) DATA.
72 713

Figure 7

5,606,650
1

METHOD AND APPARATUS FOR STORAGE
AND RETREVAL OF A TEXTURE MAPNA

GRAPHICS DISPLAY SYSTEM

This is a continuation of application Ser, No. 08/051,471,
filed Apr. 22, 1993.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the field of computer

generated graphics, in particular, to systems which utilize
texture mapping.

2. Prior Art
In computer graphics systems, a known technique for

generating pixel shading values is texture mapping. Basi
cally, texture mapping involves mapping predetermined
pixel shading values (the texture map) to a surface being
rendered. The texture map is typically stored in a random
access storage means (e.g. a Dynamic Random Access
Memory or DRAM) that is accused by the graphical system
during the rendering of a graphical image. This arrangement
allows for utilizing different texture maps.

Entries in a texture map are accessed by a (u,v) coordinate
system. Pixels on a screen are addressed by (x,y) coordi
nates. Pixels are associated with entries in the texture map
by a functional mapping of the pixels (x,y) coordinates to the
(u,v) coordinates of the texture map. Generally, there will be
a one to one relationship between the pixels on the display
and the entries on the texture maps.
A complication with the use of texture maps is encoun

tered when a graphical system provides for the Zooming of
images. A Zoom operation requires a filtering operation be
performed on the values from the texture map in order to
obtain an acceptable image. Here, filtering involves the
averaging of corresponding pixel values. For example, if the
graphical image is to be reduced in size by 4, one pixel in
the display would now correspond to 4 pixels in the texture
map. The value for the one pixel would be the average of the
4 corresponding pixels. Performing such averaging "on the
fly” can be detrimental to rendering speed.
One approach to this problem is to store the texture map

as a MIP (Multum In Pravo- many things in a small place)
map. MIP maps are described in a paper entitled "Pyramidal
Parametrics', by Lance Williams, Computer Graphics, Vol.
17, Number 3, July 1983. In a MIP map, the texture is stored
as a series of recursively filtered images, each image being
one-quarter of the previous image. Each of the various
resolution images are referred to as "pages' of the MIP map.
Such a MIP map is illustrated in FIG.1. A 32x32 image 101
provides the highest resolution in this example. Four texture
values (u, v) 107, (u, v) 108, (u, v) 109 and (u, v)
110 are in the 32x32 image 101. The values 107-109 are
averaged to create a value (u, u) 111 of 16x16 image 102.
This occurs for all the texture values in the 32X32 image 101
into the corresponding 16x16 image 102. Similarly, each
texture value in 8x8 image 103 is created from four texture
values in 16x16 image 102. This repeats for the 4x4 image
104, 2x2 image 105 and 1x1 image 106. It should be noted
that the use of MIP maps may not eliminate the need for
pixel averaging, but will cause a reduction in the number of
averaging operations performed.
The pixels for a given map page are stored contiguously,

so the address of pixel (x,y) is M+x* RowSizey, where M
is the offset for the map page, and RowSize is the number
of pixels per line in the map page. For a 256x256 MIP map,

5

10

15

20

25

30

35

40

45

50

55

60

65

2
M follows the sequence 0, 256, 256°-128’, ..., 256+
128-64+32°+16+8°+4+2. Frequently, more than one
texture map will be utilized to create the desired graphical
image. In this case a more generalized version of the address
equation becomes pixel (x,y) is T-M+x*RowSizey, where
T is the base address of the MIP map being used. Table 1
shows the resulting memory map when two 256x256 MIP
maps are stored contiguously. In Table 1, each MIP map is
stored in a contiguous region of memory starting at address
T(MapID)=MapID.87381.

TABLE 1

Memory map for two 256x256 MIP maps

T M RowSize Data

O --0 256 Map 0, page 0 (256x256)
O +65536 128 Map 0, page 1 (128x128)
O +81920 64 Map 0, page 2 (64x64)
O +8606 32 Map 0, page 3 (32x32)
O +87040 16 Map 0, page 4 (16x16)
O +87296 8 Map 0, page 5 (8x8)
O --87360 4. Map 0, page 6 (4x4)
O +8.7376 2 Map 0, page 7 (2x2)
0 +87380 1 Map 0, page 8 (1x1)
87381 --0 256 Map 1, page 0 (256x256)
87381 --65536 128 Map 1, page 1 (128x128)
87381 +81920 64 Map 1, page 2 (64x64)
8738 +86016 32 Map 1, page 3 (32x32)
87381 +87040 16 Map 1, page 4 (16x16)
87381 +87296 8 Map 1, page 5 (8x8)
87381 +87360 4. Map 1, page 6. (4x4)
87381 +8.7376 2 Map 1, page 7 (2x2)
87381 +87380 1 Map 1, page 8 (lxi)

During the actual rendering process, the MIP mapping
algorithm requires four pixels from each of two adjacent
map pages to compute a filtered texture value. In general, a
single MIP mapping filter operation requires fetching pixels
(n, m) (n, re--1), (n+1,n), and (n+1, m+1) from page p, and
pixels (n/2, m/2) (n/2, m/2+1), (n/2+1,m/2), and (n/2+1,
m/2+1) from page p--1. Thus, it is desirable to generate pixel
addresses and be able to access pixels from the texture map
as quickly as possible.
One technique for increasing the rate of retrieving pixel

values is to retrieve multiple pixels simultaneously. To
retrieve multiple pixels simultaneously from the RAM, it is
necessary to partition the data between multiple memory
banks such that different pixels are stored in different banks.
FIG. 2 shows an example where the RAM is split into two
banks, each with 262144/2=131072 pixels. Referring to
FIG. 2, bank A 207 stores even pixel addresses and bank B
208 stores odd pixel addresses. With this memory arrange
ment it is possible to fetch two MIP map pixels simulta
neously; for example, the 8 fetches required for performing
a filter operation can be grouped into four even/odd address
pairs in the pattern {(nm),(n,m--1)}, {(n+1,m),(n+1,m+1)},
{(n/2,m/2), (n/2,m/2+1)}, (n/2+1m/2), (n/2+1m/2+1)}.
This technique allows the 8 pixels to be fetched in four
operations, each operation fetching an adjacent pair of pixels
with even and odd addresses.

Referring back to FIG.2, each pixel address, namely pixel
(x,y) 201 and pixel (x, y-1) 202 are provided to an address
swapping means 203. The address swapping means insures
that a pixel address is directed towards the appropriate
memory bank. For both addresses, the constant is discarded
by a means for discarding low order constant bit, 204 and
205 respectively. Note that the dashed line 206 refers to a
physical interface between a rendering component and the
texture map storage. For example, the physical interface

5,606,650
3

would be pins on a rendering component and address pins of
the DRAMs or SRAMs of the texture map storage. Note that
in this case, 34 address signal pins are needed on the
rendering component.
The addresses are then provided to the respective memory

banks, 207 and 208. The retrieved data is then provided to
a data swapping means 209. The data swapping means
swaps the data output signals if there was a prior address
swap. This insures that the proper data is assigned to the
proper pixel address. Finally, the proper pixel (x,y) data 210
and pixel (x, y +1) data 211 is provided. Note that this latter
data swapping means may be embodied within the rendering
component.
A drawback of this technique is that it requires two

complete sets of address signals be generated and imple
mented. As a rendering component is typically separate from
the texture map storage, the rendering components must
include an increased number of address lines to connect to
the texture map storage. A rendering component may typi
cally be an integrated circuit. Because generating additional
address signals raises the cost of the integrated circuit by
increasing the number of address pins needed, it would be
desirable to use an addressing scheme where the multiple
memory banks share address signals.

SUMMARY

A method and apparatus for simultaneous retrieval of
multiple pixels from a texture map storage means is dis
closed. Texture maps are generated and stored in a modified
MIP (multum in pravo-many things in a small space) map
form. Even numbered pixels are stored in a first memory
bank and odd numbered pixels are stored in a second
memory bank. Through this arrangement, adjacent odd and
even pixels may be retrieved simultaneously.
The multiple texture maps are not stored contiguously.

Instead, the MIP maps are stored so that the pages of the MIP
maps having the same resolution are stored contiguously.
This arrangement has the effect of reducing the number of
unique address signals needed for accessing any two adja
cent pixels in the texture map. Significantly, this reduces the
number of address pins that would be required on a render
ing component accessing the texture map storage. Further,
this arrangement simplifies pixel address calculations by
eliminating the need to perform addition operations. Address
generation may be carried out by simple shift and bitwise
logical OR operations. This is because each texture map
page has a resolution that is an even power of two.
The method of operation of the present invention is

generally comprised of the following steps: grouping cor
responding pages of the same resolution for the texture maps
to be stored; storing odd pixels in a first memory bank and
even pixels in a second memory bank, providing a texture
map pixel address to a texture map address signal generation
means; splitting the pixel address into an X address signal
part and a Y address signal part; adding a one value to the
Y address signal part to create a Y--1 address signal part,
determining if the pixel address is an odd address or an even
address; providing the X address part to the first and second
memory banks; if the pixel address is an odd address,
providing the Yaddress signal part to the first memory bank
and the Y--1 address signal part to the second memory bank;
and if the pixel address is an even address, providing the
Y+1 address signal part to the first memory bank and the Y
address signal part to the second memory bank.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates the MIP map format of texture maps.
FIG. 2 is a block diagram of a prior art technique for

simultaneously accessing multiple pixels from a storage
C2S.

FIG. 3 illustrates a computer system in which the cur
rently preferred embodiment of the present invention may be
utilized.

FIG. 4 illustrates the rendering component and texture
map storage interface of the currently preferred embodiment
of the present invention.

FIG. 5a, is a flowchart outlining the steps for generating
a pixel address as may be performed in the currently
preferred embodiment of the present invention.

FIG.5b is a block diagram of a circuit for generating pixel
addresses as may be utilized by the currently preferred
embodiment of the present invention.

FIG. 6 is a flowchart outlining the steps for generating two
texture map address signals as may be performed on the
currently preferred embodiment of the present invention.

FIG. 7 is a block diagram describing the circuitry for
generating address signals as may be utilized in the currently
preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for simultaneously accessing
multiple pixels in a texture map is disclosed. In the follow
ing description, numerous specific details are set forth such
as the specific rendering implementation, in order to provide
a thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known circuits, control logic and cod
ing techniques have not been shown in detail in order not to
unnecessarily obscure the present invention.

Overview of the Computer System of the Preferred
Embodiment

The computer system of the preferred embodiment is
described with reference to FIG. 3. The present invention
may be implemented on a general purpose microcomputer,
such as one of the members of the Apple(8) Macintosh.08)
family, an IBM compatible Personal Computer, or one of
several work-station or graphics computer devices which are
presently commercially available. In any event, a computer
system as may be utilized by the preferred embodiment
generally comprises a bus or other communication means
301 for communicating information, a processing means
302 coupled with said bus 301 for processing information,
a random access memory (RAM) or other storage device
303 (commonly referred to as a main memory) coupled with
said bus 301 for storing information and instructions for said
processor 302, a read only memory (ROM) or other static
storage device 304 coupled with said bus 301 for storing
static information and instructions for said processor 302, a
data storage device 305, such as a magnetic disk and disk
drive, coupled with said bus 301 for storing information and
instructions, an alphanumeric input device 306 including
alphanumeric and other keys coupled to said bus 301 for
communicating information and command selections to said
processor 302, a cursor control device 307, such as amouse,
track-ball, cursor control keys, etc., coupled to said bus 301
for communicating information and command selections to

5,606,650
5

said processor 302 and for controlling cursor movement.
Additionally, it is useful if the system includes a hardcopy
device 308, such as a printer, for providing permanent copies
of information. The hardcopy device 308 is coupled with the
processor 302 through bus 301.

Also coupled to the computer system of the preferred
embodiment is a frame buffer 309 which is further coupled
to a display device 310, preferably a display device capable
of displaying color graphics images. The frame buffer 309
contains the pixel data for driving the display device 310.
The display device 310 would be further coupled to a
rendering device 311, also known as a graphics accelerator.
Typically, such a rendering device 311 is coupled to the bus
301 for communication with the processor 302 and frame
buffer 309. The preferred embodiment is implemented for
use on models of the Macintosh computer available from
Apple Computer, Inc. of Cupertino, Calif.
The rendering device interface to a texture map storage is

illustrated in FIG. 4. Referring to FIG. 4, a rendering
component 401 is coupled to a Texture Storage means 402.
In such an arrangement the texture map storage means 402
is typically referred to as being "off-chip'. The rendering
component 401 performs the actual calculations for gener
ating pixel shading values. The texture storage means 402
may be in some type of Random Access Storage Device, e.g.
a Dynamic Random Access Memory (DRAM) or Static
Random Access Memory (SRAM). In the currently pre
ferred embodiment an SRAM is utilized because of the high
speed in which data may be accessed. In any event, the
texture storage means 402 is comprised of a first memory
bank 403 and a second memory bank 404. The first memory
bank 403 is for storing even numbered pixels and the second
memory bank 404 is for storing odd numbered pixels. The
rendering component interfaces with the storage means and
address lines 405 and pixel data lines 406. In the currently
preferred embodiment only 24 address lines are used to
access two pixels simultaneously. As will be described in
more detail below, a portion of the address is constant
between the two pixel addresses.
The pixel data lines 406 is the route by which the pixel

values are sent from the texture storage means 402 to the
rendering component 401. In the currently preferred
embodiment, there are two pixel values being retrieved
simultaneously, thus requiring 36 pixel data signals.

Reducing the number of address pins on the rendering
component is highly desirable. As a finite number of pins are
available on areasonably sized integrated circuit, freeing use
from one function, allows it to be used by another.

Overview of the Rendering Technique of the
Currently Preferred Embodiment

In many systems for generating computer graphics, an
image to be rendered is comprised of a plurality of objects.
The rendering architecture of the preferred embodiment is
premised on a scanline algorithm. In the scanline algorithm
an image is rendered by scanline. Only the portion of an
object on the scanline is rendered. Other rendering tech
niques render the entire objects at one time. Briefly, one
embodiment of the scanline algorithm is a two pass algo
rithm. The first pass is used to set up databases of informa
tion that are used to drive the actual scanline rendering
process. In the first pass, a 2-D object is derived from each
3-D object in a 3-D object database. During this process, the
scanline upon which the object would first be displayed (first
in the sense of the order of drawing scanlines to the display

10

15

20

25

30

35

40

45

50

55

65

6
device), i.e. become "active', is determined. This informa
tion is used to create an Object Activation Database, where
the entries in the database define the objects that become
"active” on a particular scanline.

In the second pass, the Object Activation Database is used
to create a dynamic list of objects which are "active” on the
scanline(s) currently being rendered. This list is called the
Active Object List. The Active Object List is then provided
to shading means which create the pixel values for the
scanline(s) currently being rendered. It is within the shading
means that the texture mapping may occur. In any event, the
Active Object List is updated as objects become "active' or
"inactive' on the scanline(s) to be rendered next.
The scanline rendering technique of the currently pre

ferred embodiment is described in co-pending application
Ser. No. 07/811,570, which is commonly assigned to the
assignee of the present invention.

It should be noted that the rendering techniques utilized in
the currently preferred embodiment is but one example in
which the present invention may be utilized. It would be
apparent to one skilled in the art to utilize other rendering
techniques without departing from the spirit and scope of the
present invention.

Organization of the Texture Mapping Storage

To permit some address bits to be shared while reading
multiple pixels simultaneously, the texture map storage has
been organized so that each map page resolution is stored
contiguously, rather than storing each entire MIP map con
tiguously. This new memory mapping causes all map pages
to be aligned to an address that is an even multiple of their
RowSize squared.

Table 2 shows the memory map for two 256x256 MIP
maps with the address mapping; unlike the mapping shown
in Table 1, all map pages are aligned to an address divisible
by their page size.

TABLE 2

Memory map for two 256x256 MEP maps

T M RowSize Data

--0 256 Map 0, page 0 (256x256)
65536 --0 256 Map 1, page 0 (256x256)
0 +131072 128 Map 0, page 1 (128x128)
16384 +131072 128 Map 1, page 1 (128x128)
O +163840 64 Map 0, page 2 (64x64)
4096 +163840 64 Map 1, page 2 (64x64)
O +172032 32 Map 0, page 3 (32x32)
1024 +172032 32 Map 1, page 3 (32X32)
0 +174080 16 Map 0, page 4 (16x16)
256 +174080 16 Map 1, page 4 (16x16)
0 +174592 8 Map 0, page 5 (8x8)
64 +174592 8 Map 1, page 5 (8x8)
O --174720 4 Map 0, page 6 (4x4)
16 --174720 4 Map 1, page 6 (4x4)
0 +174752 2 Map 0, page 7 (2x2)
4 174752 2 Map 1, page 7 (2x2)
O +174760 1 Map 0, page 8 (lx1)
1 +174760 1 Map 1, page 8 (1x1)

Storing the MIP map in this manner causes all map pages
to be aligned to an even multiple of RowSize', and therefore
to an even multiple of RowSize. Here, the value T is the
value of the MapId (<2n (the binary value of MapId shifted
by 2n bits), where n=log RowSize. This alignment is
particularly useful when RowSize is an exact power of two,
as the multiplications by RowSize and RowSize' required
for address computation can be replaced by shift operations.

5,606,650
7

This has the advantage of simplifying the address compu
tation function for pixel (x,y) in map page p such that the
bottom n bits, where n=log RowSize, is exactly equal toy.
Similarly, the next n bits will be exactly equal to x. For
example, for map page 1 (128x128) of either map 0 or map
1 in Table 2 above, the A6:0}=y and A13:7=x. Texture
maps with resolutions that aren't an even power of two can
also be treated this way by expanding them to the appro
priate resolution, either by filtering operations or by insert
ing unreferenced pixels.

In addition to simplifying address computation, the
memory arrangement shown in Table 2 has advantages when
designing a circuit that fetches pixel (x,y) and (x,y--1)
simultaneously. As shown above, the addresses for pixel
(x,y) and (x,y--1) will vary in only the bottom n bits; for
example, a fetch from Mappage 1 (128x128 resolution) will
share all but the bottom 7 bits (128=2). As the largest
possible RowSize is 256=2, all address bits more significant
than A7:0) can be shared. This allows pixels (x,y) and
(x,y+1) to be addressed with only 1*A17:8+2*A7:1}=24
unique address signals, vs 17+17=34 unique address signals
using the conventional memory map illustrated by Table 1
(see also FIG. 2). Also, the +1 operation need only be
performed for a maximum of 8 bits, as opposed to the more
complex computation required for the Table 1 memory map.
The method and circuit for fetching pixel data is described
in more detail below. However, it should be noted these
figures change for maximum RowSizes other than 2; how
ever, similar principals apply to obtain the desired result.

Generation of Texture Map Pixel Addresses
As noted above, for performing texture mapping of a

single pixel, eight (8) pixel values on the texture map must
be retrieved. Four of the pixel values will come from a first
page of the texture map and four of the pixel values will
come from a second page of the texture map. So it is
important that pixel values be fetched in an efficient and
timely fashion. Generally, the generation of the pixel address
in the texture map is a two step process: generate a pixel
address from the given pixel parameters, and generate the
simultaneous texture map address signals from the given
pixel address.
The addressing of a pixel in the texture map storage may

be generally defined by the equation:

This calculation requires addition operations that can pro
long rendering time.
The present invention simplifies the calculation of pixel

addresses by organizing data to exist in logical powers of 2.
In the currently preferred embodiment of the present inven
tion, the organization of the texture maps has the following
addressing attributes:

For each A (x,0), the lower order n bits are zero.
For each A (0,y), the lower order n bits are equal to the

value of y.
For each A (x,y), the lower order n bits are equal to the

value of y and the next n bits are equal to the value of
X.

Accordingly, any particular address can be defined by the
equation

A=x<<nly offset

10

15

20

25

30

35

40

45

50

55

60

65

8
Here, the symbol"<” is a bit shift operation and the symbol
“” refers to a bitwise logical OR operation. This provides for
the calculation of addresses using simple shift and logical
OR operations, rather than arithmetic operations. The for
mula is now to shift the X parameter by n bits, perform a
logical OR operation with the y parameter followed by
another logical OR operation with the offset value. Note that
this calculation could also be performed by adding the offset
to the result of x<<nly. However it is preferable to perform
the bitwise logical OR operation because of inherent per
formance benefits.

In the currently preferred embodiment, texture mapping is
implemented using the parameters x, y, P, and MapID. The
parameters x and y are the dimensional coordinates in the
texture map. Note that texture map coordinates are some
times referred to as (u,v) coordinates. The parameter P
(Page) refers to the page of the map. The MapID identifies
the particular texture map being referenced. These param
eters are used to speedy pixel addresses for the texture maps
which are stored in the off-chip texture map storage
(SRAM). In the currently preferred embodiment, the param
eters x and y are n (e.g. eight) bit integers derived from the
parameters u and v (which have the format of a 20-bit
floating point signed values with 11 bits of fraction and an
implied leading 1). P is an unsigned 12-bit floating point
value with 4-bits of fraction. The MapID is 4-bits (so in the
currently preferred embodiment the maximum number of
different texture maps is 16). The implementation of these
particular parameters is not meant to be limiting as to the
scope of the invention. It would be apparent to one skilled
in the art to practice the present invention with different
implementations of these parameters.
The circuitry for generation of the texture map pixel

address is simplified because of the organization of the MIP
maps. This is because the address calculations may be
performed by the use of shift registers and logical “OR”
operations.

FIG. 5a is a flowchart which outlines the steps for
generating a pixel address. Referring to FIG. 5a, the pixel
address parameters x, y, P and MapId are received, step 501.
The x-coordinate is the shifted by n bits, step 502. The value
n refers to the power of 2 of the rowsize of the page being
accessed. In other words n=log RowSize. For example if
the page with resolution 128x128 is being accessed, the
value of n is 7 (2-128). P ranges from 0 to 7 for a map with
a maximum resolution of 128x128 and 0 to 8 for a map with
a maximum resolution of 256x256. Zero corresponds to the
highest resolution version of the source map and 7 or 8 is the
lowest resolution (1x1) version. As an example, if the
integer portion of P is equal to 3, the map versions corre
sponding to P equal to 3 and 4 are used.
An offset is then generated from P and the MapId, step

503. The offset corresponds to the location in the texture
map where the page is stored for that particular Mapid.
Calculation of offsets is discussed in more detail below.
Once the offset is generated, a bitwise logical OR operation
is performed between the shifted x parameter value and the
y parameter value to obtain a non-offset address, step 504.
Finally, a bitwise logical OR operation is performed between
the non-offset address and the offset to obtain the pixel
address, step 505.

It is now useful to consider an example of calculating a
pixel address. Recall that Table 2 illustrated a pair of texture
maps stored in texture map storage and having a "highest”
resolution of 256x256. The calculation of the offset is given
by the equation OFFSET-M+T; where T-MapIdk2(n-P"),
n=log (RowSize of the highest resolution page) and P' is the
integer portion of P.

5,606,650
9

M is also calculated based on the highest resolution page.
For the case of 256x256 highest resolution the formula for
M is

for P>0 and 0 for Ps0. In the currently preferred embodi
ment, since M is fixed, the values are predetermined and
stored in a look-up table for access during address genera
tion. The integer portion of P is used as an index into the
table.
The various offsets, in decimal and the corresponding

binary representation, for addressing texture maps stored as
illustrated by Table 2, are listed in Table 3:

TABLE 3

MaplPage Offsets

Map 0, Page 0: OD = 000000000000000000
Map 1, Page 0: 65536D = 010000000000000000
Map 0, Page 1:131072D = 100000000000000000
Map 1, Page 1:147456D = 100100000000000000
Map 0, Page 2:163840D = 101000000000000000
Map 1, Page 2:167936D = 101001000000000000
Map 0, Page 3:172032D = 101010000000000000
Map 1, Page 3:173056D = 101010010000000000
Map 0, Page 4:174080D = 101010100000000000
Map 1, Page 4:174336D = 101010100100000000
Map 0, Page 5:174592D = 101010101000000000
Map 1, Page 5:174656D = 101010101001000000
Map 0, Page 6:174720D = 101010101010000000
Map 1, Page 6:174736D = 101010101010010000
Map 0, Page 7:174752D = 101010101010100000
Map 1, Page 7:174756D = 101010101010100100
Map 0, Page 8:174760D = 101010101010101000
Map 1, Page 8:174761D = 101010101010101001

Assume a pixel at location (21, 3) on page 2 of texture
map 1 is to be fetched. The texture map address would be
calculated as follows:

x coordinate-21=00010101
y coordinate=3=00000011

n=the number of bits need to represent 64=6
offset=Map 1, Page 2:167936D=101001000000000000

Shifting x by n results in 00000010101000000. Performing
a bitwise logical OR with y results in 000010101000011.
The final pixel address is generated by performing a bitwise
logical OR operation with the offset associated with the
desired page and texture map. Performing the bitwise logical
OR operation with the offset results in
101001010101000011.

FIG. 5b illustrates in block diagram for a circuit for
generating a pixel address. A parameter x 521 is provided as
input and entered into a shift register 525. The parameter x
521 is left (up) shifted for a number of bits provided by shift
value in 532. The shift value in 532 is derived from the
formula n=8-integer portion of P. The result is a shifted X
529. The shifted x 529 is coupled to bitwise logical OR gates
527. The bitwise logical OR gates 527 would be an array of
two-input OR gates. Each bit of the shifted x 529 would be
coupled to one of the inputs of a two input OR gates of
bitwise logical OR gates 527. The other input would be
connected to corresponding bits of y parameter 599. The
result of performing this function would be non-offset pixel
address 530.

Parameters P523 and MapId 524 are coupled to an offset
generation means 526. The offset generation means 526 will
generate the necessary offset by adding M-T. M is obtained
through a table look-up and T-MapIdk2(n-P) (see dis
cussion on offset generation above). In any event, the output

10

15

20

25

30

35

40

45

50

55

60

65

10
of offset generation means 526 will be offset 528. Each bit
of the offset 528 will be coupled to one of the inputs of two
input OR gates embodied in bitwise logical OR gates 531.
The other input will come from corresponding bits of the
non-offset pixel address 530. The output of the bitwise
logical OR gates 531 is the desired pixel address 532.

Address Signals Generation
FIG. 6 is a flowchart illustrating the steps for generating

the address signals for simultaneous access of pixels. First,
the computed pixel address is received, step 601. In the
currently preferred embodiment, there are 18 address signals
which are referred to as A17:0. For the notation A17:0,
'A' refers to "address' and a bit range of the address is
within the square brackets. Once the address signal is
received, it is split into anx part A17:8) and ay part A7:0,
step 602. Thex part A17:8) is routed directly to pins of the
rendering component, so as to comprise X address lines, step
603. This is because the high order bits A17:8) do not
change for each of the texture map address to be accessed.

Next, they part is replicated to create a second set of low
order address bits, called y+1, step 604. A one is added to
y+1 to create the second adjacent pixel address that will be
accessed, step 605. Note that for the given maximum
resolution of 256x256, the low order bits will never exceed
the number represented by the maximum rowsize 28 (256).
It is then determined if the originally provided pixel address
is odd, step 606. This must be determined in order to send
the proper address to the respective even and odd pixel
memory banks of the texture map storage means. Determin
ing if a pixel address is even or odd is merely a determina
tion of whether the lowest order bit is a one or a Zero.

If the pixel address is odd, they address lines are sent to
the odd pixel bank and the y+1 address lines are sent to the
even pixel bank, step 607. Conversely, if the pixel address
is even, the y+1 address lines are sent to the odd pixel bank
and they address lines are sent to the even pixel bank, step
608.

The pixels are then retrieved from the odd and even pixel
memory banks, step 609. A checkis again made to determine
which of the original pixel address was odd, Step 610. This
step is to insure that the pixel values are being provided to
the right pixels. If the original pixel address was odd, the
output of the odd pixel memory bank is routed to the original
pixel address P(x,y) and the output of the even pixel memory
bank is routed to the adjacent pixel address P(x,y +1), step
611. Similarly, if the original pixel address was even, the
output of the even pixel memory bank is routed to the
original pixel address P(x,y) and the output of the odd pixel
memory bank is routed to the adjacent pixel address P(x,y-
1), Step 612.
The generation of the texture map address signals is

further described with reference to FIG. 7. Referring to FIG.
7, the pixel address lines 701 are split into A17:8) 702 and
A7:0) 703. Note that the dashed line 708 refers to a
boundary of a rendering component. Anything above the
line 708 would be within the rendering component.
The address signals A7:0703 are then routed to an

address swapping means 705 and an adder 704. In the adder
704, a one is added to the contents of the address signals
A7:0 to create the second adjacent address to be retrieved
from the texture map storage. The address swapping means
705 is used to determine if the original pixel address from
the lines A7:0 represent an odd pixel. If it was odd, the
address signals are swapped in order to send the proper low
order bits to the proper pixel memory bank. Once the signals
are directed towards the proper memory bank, the constant
low order bits are discarded by means 706 and 707, respec

5,606,650
11

tively. This has the further effect of dividing the address
value by 2. This is necessary since the pixel address storage
is comprised of two memory banks.
The texture map storage is comprised of even pixel

memory bank 709 and odd pixel memory bank 710. The 5
even address signals are then routed to even pixel memory
bank 709 while the odd address signals are routed to odd
pixel memory bank 710. As described above, the memory
banks 709 and 710 are preferably SRAM devices. Finally,
the retrieved data from the memory banks 709 and 710 then
provided to a data swapping means 711. The data swapping
means 711 will swap the data if an address swap was
previously performed. This will insure that the proper pixel
data is sent as pixel (x,y) data 712 and pixel (x, y +1) data
713. The data swapping means 711 would typically reside in
the rendering component.

Further with reference to FIG.7, note that only 24 pins are
needed on the rendering component for simultaneously
addressing two pixels on the texture map storage means,
even though each pixel address is 18 bits long (for a total of
36 bits). The high order ten pins are provided to each
memory bank 709 and 710. The low order bit for each
address is discarded for these purposes. This results in a
savings of 12 pins on the rendering component. Note that the
number of pins being saved is dependent on the largest
texture map resolution supported. It would be apparent to
one skilled in the art to provide a system with a higher or
lower resolution texture maps without departing from the
spirit and scope of the present invention.

Thus, a method and apparatus for simultaneous retrieval
of multiple pixels from a texture map storage means is
disclosed.
We claim:
1. In a computer controlled display system, a method for

storing and accessing a plurality of modified MIP mapped
texture maps, said method comprising the steps of:

a) storing corresponding pages of a first texture map and
a second texture map so that said corresponding pages
of said first and said second texture map are stored
contiguously;

b) storing even pixels of said first and second texture maps
in a first memory bank;

c) storing odd pixels of said first and second texture maps
in a second memory bank;

d) providing a pixel address, said pixel address including
an X part and a Y part;

e) adding a one value to said Y part to create a Y--1 part;
f) determining if said pixel address is an odd address or an

even address;
g) providing said X part to said first memory bank and

said second memory bank;
h) if said pixel address is an odd address, providing said
Y+1 pan to said first memory bank and said Y part to
said second memory bank; and

i) if said pixel address is an even address, providing said
Y part to said first memory bank and said Y+1 pan to
said second memory bank.

2. The method as recited in claim 7 wherein said first and
second texture maps have a resolution of NXN and said step
of providing said pixel address is further comprised of the
steps of:

a) receiving a first coordinate and a second coordinate for
a pixel in a texture map;

b) shifting said first coordinate by n bits to generate said
X part, wherein n is equal to log2N;

c. using said second coordinate as said Y part: and
d) combining said X part with said Y part to form said

pixel address.

10

15

20

25

30

35

45

50

55

60

65

12
3. The method as recited in claim 2 wherein said step of

combining said X part with said Y part is further comprised
of the step performing a logical OR operation between said
X part and said Y part to form said pixel address.

4. The method as recited in claim 3 further comprising the
steps of:

a) providing an offset value, said offset value correspond
ing to a predetermined texture map and a predeter
mined page;

b) performing a logical OR operation between said pixel
address and said offset value to form an offset pixel
address; and

c) providing said offset pixel address as said pixel address.
5. The method of claim 4 wherein said offset value is

formed by summing the product of a total number of said
corresponding pages and a page size for each of said
corresponding pages for each said texture map preceding
said predetermined page, and a number of said correspond
ing pages and said page size for each of said corresponding
pages for each said texture map preceding said predeter
mined texture map within said predetermined page.

6. The method of claim 4 wherein said offset value is
formed by summing an M value and a T value, said T value
being obtained from a map identifier for said predetermined
texture map and a highest resolution page, and said M value
being obtained from a page identifier of said predetermined
page and said highest resolution page.

7. The method of claim 6 wherein said T value is equal to
said map identifier shifted by a first value, said first value
being a product of two and a difference of n and said page
identifier.

8. The method of claim 6 wherein said M value is equal
to a sum of all of the products of a number of said texture
maps and the size of said corresponding pages of each of
said texture maps.

9. The method of claim 8 wherein said M value is
determined by performing a lookup in a lookup table using
said page identifier and said highest resolution page.

10. The method of claim 6 wherein said M value is
determined by performing a lookup in a lookup table using
said page identifier and said highest resolution page.

11. A rendering component in combination with a storage
means, said storage means for storing a plurality of texture
maps, said plurality of texture maps including a first texture
map and a second texture map, said rendering component
comprised of:

a first set of address conductors for providing the high
order bits of a first and a second pixel address in said
storage means;

a second set of address conductors for providing the low
order bits of said first pixel address in said storage
means;

a third set of address conductors for providing the low
order bits of said second pixel address in said storage
means; and

said storage means for storing said texture maps in
modified MIP map form so that corresponding pages of
said first and second texture maps are stored contigu
ously, said storage means further comprising:

a first memory bank for storing even pixels of said first
and second texture maps, said first memory bank
coupled to receive addresses from said first and second
sets of address conductors;

a second memory bank for storing odd pixels of said first
and second texture maps, said second memory bank
coupled to receive addresses from said first and third
sets of address conductors.

12. The combination as recited in claim 11 wherein said
rendering component is further comprised of means for
causing said first pixel address to be an even address.

5,606,650
13

13. The combination as recited in claim 12 wherein said
means for causing said first pixel address to be an even
address is further comprised of:

means for determining if said first pixel address is an odd
address; and

means for swapping said first pixel address with said
second pixel address if said first pixel address is an odd
address.

14. A computer system having a texture map circuit, said
texture map circuit comprising:

a memory operative to store a plurality of texture maps,
said memory having an N bit address input, each
texture map of said plurality of texture maps being in
modified MIP map form, said memory operative to
store corresponding pages between said plurality of
texture maps at contiguous memory addresses;

an address circuit having a pixel address input and an
address output, wherein said address output is coupled
to said address input, said address output operative to
output L addresses responsive to receiving a pixel
identifier for said address input and said pixel address
input.

15. The computer system of claim 14 wherein said pixel
identifier includes a texture map indicator, a page indicator,
an X value and a y value, said address circuit further
comprises:

a shift circuit coupled to receive said x value and an in
value, where said in value corresponds to a size of a row
of pixels in a texture map corresponding to said texture
map indicator, said shift circuit having a shifted x
output, said shifted X corresponding to said x value
being shifted by said n value;

a combining circuit coupled to receive said y value and
said shifted X, said combining circuit having a non
offset address output, said non-offset address corre
sponding to said y value being combined with said
shifted x;

an offset generation circuit coupled to receive said texture
map indicator and said page indicator, said offset gen
eration circuit having an offset output, said offset
corresponding to said texture map indicator and said
page indicator, and

a second combining circuit coupled to receive said non
offset address and said offset, said second combining
circuit having an address output, said address output for
outputting one address of said L addresses, said one
address corresponding to said non-offset address being
combined with said offset.

16. The computer system of claim 15 wherein said shift
circuit includes a shift register.

17. The computer system of claim 15 wherein said
combining circuit includes a first plurality of logical OR
circuits, and said second combining circuit includes a sec
ond plurality of logical OR circuits.

18.The computer system of claim 15 whereinn equals the
log base two of said size.

19. The computer system of claim 15 wherein said page
indicator includes a real number and wherein said page
indicator corresponds to a first page having a next greater
resolution than said page indicator and said page indicator
corresponds to a second page having a next less than or
equal to resolution than said page indicator.

20. A circuit having a texture map pixel output and a pixel
address input, said circuit comprising:

a memory, said memory operative to store a first texture
map and a second texture map, said first texture map
including a first NXN page and a first N/MXN/M page,
said second texture map including a second NXN page
and a second N/MXN/M page, said first NXN page and

10

15

20

25

30

35

45

50

55

65

14
said second NXN page being stored contiguously, said
first N/MXN/M page and said second N/MXN/M page
being stored contiguously, said memory having a pixel
output, and

a circuit having an address output, said address output
being coupled to said memory, said address output
operative to communicate a plurality of addresses to
said memory in response to receiving said pixel
address.

21. The circuit of claim 20 wherein N and M are integers
greater than 1 and wherein M is less than N.

22. A method in a computer-controlled display system
comprising the following steps:

a) receiving a plurality of texture maps, each of said
plurality of texture maps comprised of pages each
having different resolutions;

b) storing corresponding pages of each of said plurality of
said texture maps contiguously into groups of corre
sponding pages of each of said plurality of said texture
maps;

c) storing each of said groups of said corresponding pages
of each of said plurality of said texture maps contigu
ously to form a texture map store; and

d) using said texture map store to perform texture map
ping of images.

23. The method of claim 22 wherein said step of storing
each of said groups of said corresponding pages of each of
said plurality of said texture maps includes storing a first
group of said corresponding pages of said texture maps
which includes a highest resolution of said corresponding
pages of said plurality of said texture:maps and storing a last
group of said corresponding pages of each of said plurality
of said texture maps which includes a lowest resolution of
said corresponding pages of said texture maps.

24. The method of claim 22 wherein said step of using
said texture map store to perform texture mapping of images
includes the step of accessing a desired pixel of a desired
page of a desired texture map by:

a) receiving a pixel identifier, a page identifier, and a
texture map identifier;

b) determining a texture map location by shifting said
texture map identifier a first number of bits, wherein
said first number of bits includes the number of bits
which comprise said pixel identifier;

c) determining a page location by summing a size of each
of said groups of pages preceding a group of pages of
said texture maps which includes said desired page;

d) summing said page location with said texture map
location to generate an offset;

e) performing a bitwise logical or operation between said
offset and said pixel identifier to generate an address;
and

f) accessing said desired pixel of said desired page of said
desired texture map at said address in said texture map
Store.

25. The method of claim 24 wherein said step of receiving
said pixel identifier includes:

a) receiving an x coordinate and a y coordinate;
b) shifting said X coordinate by a second number of bits

to generate a shifted x coordinate, said second number
of bits being a number of bits which comprise said y
coordinate; and

c) performing a bitwise logical OR between said shifted
X coordinate and said y coordinate to generate said
pixel identifier.

UNITED STATES PATENT ANDTRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,606,650
DATED ; February 25, 1997
INVENTOR(S) : Kelley et al.

it is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

in the claims:

Claim 1, Column 11, line 52, "pan" should read --part
Claim 1, Column 11, line 55, "pan" should read -part
Claim 2, Column 11, line 57, "claim 7" should read-claim 1
Claim 2, Column 11, line 65, "c. using" should read-c) using
Claim 23, column 14, line 31, "texture :maps" should read-texture maps--

Signed and Sealed this
Third Day of August, 1999

2.76%
Q, TODD DICKINSON

Attesting Officer Acting Commissioner of Patents and Trademarks

