
IIIHIIII
US005583974A

United States Patent (19) 11 Patent Number: 5,583,974
Winner et al. (45) Date of Patent: Dec. 10, 1996

54) COMPUTER GRAPHICS SYSTEM HAVING 5,123,085 6/1992 Wells et al. 395/121
HIGH PERFORMANCE MULTIPLE LAYER 5,128,872 7/1992 Malachowsky et al. ... 395/162
Z-BUFFER 5,157,388 10/1992 Kohn 340/800

5,159,663 10/1992 Wake 395/122
75 Inventors: Stephanie L. Winner, Santa Clara; 35 E. S. et 3:25

Michael W. Kelley, San Mateo, both of salaas WallSOl
Calif. (List continued on next page.)

73) Assignee: Apple Computer, Inc., Cupertino, FOREIGN PATENT DOCUMENTS
Calif. 527587A 2/1993 European Pat. Off..

(21) Appl. No. 237,639 OTHER PUBLICATIONS
Horowitz and Sahni, Fundamentals of Data Structures in 22 Fed:

22) Filed: May 4, 1994 Pascal, 1994, p. 382-403, 433-467, 474-491.
Mammen et al., Rendering Transparency and Antialiasin Related U.S. Application Data y g parency 3.

Cae pplication Ua Algorithms Implemented with the Virtual Pixel Maps Tech
63 Continuation-in-part of ser, No. 060299, May 10, 1993, nique Computer Graphics & Applications, Jul 1989, Pp.

abandoned. 43-55.

(51 int. Cl. G06T 15/40 (List continued on next page.)
52 U.S. Cl. ... 395/122; 395/135
58) Field of Search 395/122, 124, Rifai MairAsian 395/135; 34.5/113-114; 377/51; 364/239. Ele 5/ 7/51; 364/239.6 Attorney, Agent, or Firm-Blakely, Sokoloff,Taylor & Zaf
56 References Cited 2

U.S. PATENT DOCUMENTS 57) ABSTRACT
4,475,104 10/1984 Shen 342. A method and apparatus for retaining objects having equal
4594,673 6/1986 Holly. 364,522 Z-values. 1. A method of retaining objects having equal
4,658,247 4/1987 Gharachorloo 340/747 Z-values in a Z-buffer. The Z-buffer includes a first object.
4,697,178 9/1987 Heckel 340/729 The method comprises the steps of: a) receiving a second
4,815,009 3/1989 Blatin 364/518 object having a second Z-value; b) generating a second tag
4,866,637 9/1989 Gonzalez-Lopez et al. 364/518 for the second object; c) storing the second object and the
4,885,703 12/1989 Deering 364/522 second tag in the Z-buffer; d) receiving a third object causing
8. SE et all E. an overflow (the third object has a Z-value equal to the
yaw eda second Z-value); e) generating a fourth object, the fourth 4,945,500 7/1990 Deering 364/522

4.9548 is 9/1990 Nakane et al... ... 340,721 object includes a composite of the first and second objects,
4970,499 11/1990 Ryherd et al. a . 340,729 the fourth object being stored in the Z-buffer with a fourth
4,970,636 11/1990 Snodgrass et al. 364/518 tag corresponds to the second tag, f) resubmitting the third
5,001,651 3/1991 Rehme et al. 364,518 object; g) receiving the third object; h) generating a third tag
5,027,292 6/1991 Rossignac et al.395/122 for the third object, and i) storing the third object and the
5,081,698 1/1992 Kohn. ... 395/122 third tag in the Z-buffer responsive to comparing the fourth
5,081,700 1/1992 Crozier 395/150 tag and the third tag.
5,101,365 3/1992 Westberg et al. 395/58
5,115,402 5/1992 Matsushiro et al. ... 395/141
5,121,493 6/1992 Ferguson 395/600 49 Claims, 12 Drawing Sheets

INCOMLSG
Oa.JCTION

A.BITFERSA's

tos t
ZVolures

PE likiy

us is -o-
2.Wve a

70% is X :

5,583,974
Page 2

U.S. PATENT DOCUMENTS

5,249,264 9/1993 Matsumoto 395/134
5,253,335 10/1993 Mochizuki et al. ... 395/122
5,261,041 11/1993 Susman 395/152
5,268,995 12/1993 Diefendorff et al. ... 395/122
5,278,949 1/1994 Thayer 395/126
5,301.263 4/1994 Dowdell 395/122
5,307,449 4/1994 Kelley et al. 395/119
5,363,475 11/1994 Baker et al. 395/122
5,381,518 1/1995 Drebin et al. 395/135 X
5,428,724 671995 Silverbrook 395/135
5,446,881 10/1995 Mammel, Jr. et al. 395/600

OTHER PUBLICATIONS

Potmesil et al., The Pixel Machine: A Parallel Image Com
puter, Computer Graphics, Jul. 1989, pp. 69-78.
Molnar et al., PixelFlow: High Speed Rendering Using
Image Composition, Computer Graphics, Jul. 1992, pp.
231-240.
J. D. Foley, A. V. Dam, S. K. Feiner, J. F. Hughes, "Second
Edition Computer Graphics Principles And Practice', 1990,
pp. 885, 886, 899 & 900.

L. Williams, “Pyramidal Parametrics', Computer Graphics
vol. 17, No. 3, Jul. 1993, pp. 1-11.
M. Oka, K.Tsutsui, A. Ohba, Y. Kurauchi, T. Tago, "Real
Time Manipulation Of Texture-Mapped Surfaces', Com
puter Graphics, vol. 21, No. 4, Jul. 1987, pp. 181-188
M. Deering, S. Winner, B. Schedivy, C. Duffy, N. Hunt,
"The Triangle Processor And Normal Vector Shader: A VLSI
System For High Performance Graphics', Computer Graph
ics, vol.22, No. 4, Aug. 1988, pp. 21-30.
D. Kirk, D. Voorhies, "The Rendering Architecture Of The
DN10000VS", Computer Graphics, vol. 24, No. 4, Aug.
1990, pp. 299-307.
H. Fuchs, J. Poulton, J. Eyles, T. Geer, J. Goldfeather, D.
Ellsworth, S. Molnar, G. Turk, Brice Tebbs, L. Israel,
"Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories", Computer
Graphics, vol. 23, No. 3, Jul. 1989, pp. 79-88.
K. Akeley, T. Jermoluk, "High-Performance Polygon Ren
dering', Computer Graphics, vol. 22, No. 4, Aug. 1988, pp.
239-246.

U.S. Patent Dec. 10, 1996 Sheet 1 of 12 5,583,974

Fig. 1

.
Display Hardware 108 104 106 107
Device Graphics Main Static Mass Storage

121 Accelerator Memory Memory Device

; ;) > . Keyboard
Bus

122 101

- - - - - - -
SE Displ 110 109 102 103 Contro isplay Frame/

123 Controller Z-buffers CPU Co-Processor

- - - - - - - - - - - - - - - -
Hard Copy

Device
124

Sound
Recording and

Playback
Device

125

U.S. Patent Dec. 10, 1996 Sheet 2 of 12 5,583,974

Fig. 2

205

Scanline
Rasterizer Frame Buffer

U.S. Patent

before

after

before

after

before

after

before

after

before

after

before

after

before

after

before

after

before

after

Dec. 10, 1996

Fig. 3
Example 1

ActiveLayers incoming object
O

Example 2
ActiveLayers incoming object

1.

1302
Example 3

ActiveLayers incoming object
1

1. -302
Example 4

ActiveLayers incoming object
1.

2 3-303
Example 5

ActiveLayers incoming object
1.

1 3-303
Example 6

ActiveLayers incoming object
1.

1. 1305
Example 7

ActiveLayers incoming object
1.

2 -305
Example 8

ActiveLayers incoming object
1

2 3-306
Example 9

ActiveLayers incoming object
1.

2 3-306

Sheet 3 of 12 5,583,974

Layer0 Layer10 o O Layer8

-301
LayerO Layer10 o O Layer8 so

302
LayerO Layer1 e o O Layer8

LayerOLayer10 o O Layer8
-301

3-303 -301
Layer0 Layer10 O O Layer8

Layero Layer1 o O O Layer8
3-304
3-304 305

LayerO Layer1 o O O Layer8
3-304
3-3063-305

Layer0 Layer1 o O O Layer8

3-304
3-304 3-306

U.S. Patent Dec. 10, 1996 Sheet 4 of 12 5,583,974

S.

5,583,974 U.S. Patent

U.S. Patent Dec. 10, 1996 Sheet 6 of 12

Fig. 6

layer = 0 601
RAdd = LayerPointerO.
WAdd = LayerPointer(7

eS 602
activeLayers = 02

O

603
ActiveLayers = 1
RAMIWAdd = ZIn

InsertLaver = 0 yes ZIn = (ZIn, Front
ZIn < RAMERAdd?

eS 605
In opaque2 609

O layer = layer 1

606
ActiveLayers
= laver + 1

4- 608
ActiveLayers =
ActiveLayers +

ActiveLayers =
axlayer2

yes

614

ZRAMRAdd)
Qpaque

607
O

ZIn InsertLaver O
laver y visible overflow = 1

RAdd = 616
no VLayerPointerlayer

5,583,974

U.S. Patent Dec. 10, 1996 Sheet 7 of 12 5,583,974

Fig. 7A
Submit All Objects to Sorting Circuit.

Compare Layer=0
790

Processed Last Object?
792

Receive New
Object

Asserted? 793
794 Save the

Composite New
All Objects N s the First Layer Empty? Objectin
in Z-Buffer 701 the First

P (NP)
Is the First Layer an

InfiniteCurtain? Store
Infinite

Curtain in
FirstLayer

797

710

Is the New Object
Behind the Infinite

Is the New Objectin
Front of the Object in
the CompareLayer?

715 Increment the
Compare layer

725

Last Object to
Compare?

727

Move All Object
Behind New Object

Save the New Back A Layer
Object in the 735

Last Object
Opaque?
729

Compare Layer
and Remove the
Existing Object

Behind It
732

Save the New Object
In the Compare Layer

740

Last Object in the
LastLayer?

760

Save Last Object in
the Compare Layer

765
Assert Overflow

750

U.S. Patent Dec. 10, 1996 Sheet 8 of 12 5,583,974

INCOMING Z-BUFFER STATUS
OBJECTION

LAYER 0 LAYER 1 LAYER2 LAYER3

Z-Value = 0 Z-Value = 1 Zvi = 2 Z-Value = 2

H
Z-Value = 0 Z-Value = 1

Re-receive
Objects 7010
7025. Discard
Objects with
Z-Value <= 2

Z-Value = 2

FIGURE 7B

U.S. Patent Dec. 10, 1996

Fig. 8

From Step
792

Receive New
Object
793

Access Object's
Z-Value
820

Z-value Equal to Previous
Z-Value?

830

Z-Tag =
Z-Value, Tag

860

Go To Step 701.
Substitute Z-Tag for Z-Value in

Subsequent Compares

Sheet 9 of 12 5,583,974

IncrementTag
850

U.S. Patent Dec. 10, 1996 Sheet 10 of 12 5,583,974

INCOMING Z-BUFFER STATUS
OBJECTION

LAYER I LAYER2 LAYER3

Initialize

Z-Value = 1

Re-receive
Objects 910
925. Discard
Objects with
Z-Tag <= 2.1

Z-Value = 2

&
8.

U.S. Patent Dec. 10, 1996

Overflow
Asserted?

794

Is the Object that Caused the
Overflow Equal to Another

Object?
1010

Composite All
Objects in
Z-Buffer

796

Store Inifinite
Curtain in First

Layer
797

From Step
792

Sheet 11 of 12

Fig. 10

Discard All
Objects with
EqualZ-Value

O20

Go to Step
793

5,583,974

U.S. Patent Dec. 10, 1996 Sheet 12 of 12 5,583,974

INCOMING Z-BUFFER STATUS
OBJECTION

LAYERO LAYER I LAYER2 LAYER 3

Initialize

I
Z-Value = 0

Z-Value = 0

2

Z-value = 2 Z-value = 2
Composite

C
Z-Value = 1

Re-receive
Objects 1110- -D
1125. Discard
objects with
Z-Value <= 1

5,583,974
1.

COMPUTER GRAPHICS SYSTEM HAVING
HIGH PERFORMANCE MULTIPLE LAYER

Z. BUFFER

This application is a continuation-in-part of patent appli
cation Ser. No. 08/060,299 filed on May 10, 1993, aban
doned in favor of a continuation Ser. No. 08/479,827,
pending, for "Computer Graphics System Having High
Performance Multiple Layer Z-Buffer,' by, Stephanie L.
Winner and Michael W. Kelley.

BACKGROUND OF THE INVENTION

1. Field of Invention
The present invention pertains to the field of computer

graphics display systems. More particularly, the present
invention relates to an apparatus and method for a high
performance multiple layer Z-buffer in a computer graphics
display system.

2. Description of Related Art
One area in which computer systems are finding increased

application is in that of the graphical arts. Technological
advances in the speed, processing power, and memory of
computers coupled with lower costs have made them ideally
suited for use in graphical display systems. Computer gen
erated displays enable users to visualize two and three
dimensional objects. Users can group the information con
tent of a graphical display much more effectively than if the
same information were to be presented in other formats. A
picture is worth a thousand words.

Furthermore, computer graphics also provide a natural
and fluid interaction between the computer and a user.
Changes to a display are input to the computer which then
effectuates those desired changes by modifying the display
accordingly. This process provides a convenient vehicle for
modeling, predicting, and experimenting with various
events. And with the development of high resolution display
screens, increasingly complex geometric objects can be
rendered with greater precision and clarity. Some examples
of computer graphics applications include flight simulators
for training pilots, computer aided design for aiding engi
neers and architects, diagnostic medical scanners for doc
tors, animated pictures in movies and video games, etc.

Basically, a computer graphics system can be broken into
three components: a frame buffer, a monitor, and a display
controller. The frame buffer is a digital memory for storing
the image to be displayed as a series of binary values. The
monitor is comprised of a screen having an array of picture
elements, known as pixels. Each pixel represents a dot on the
screen and can be programmed to a particular color or
intensity. Thousands of individual pixels so programmed are
used to represent a displayed image. It is these individual
pixel values which are stored in the frame buffer. A display
controller is an interface used for passing the contents of the
frame buffer to the monitor. The display controller reads the
data from the display buffer and converts it into a video
signal. The video signal is fed to the monitor which displays
the image.

Images are repeatedly rendered into the display over and
over again, with each new frame representing a new position
or shape of the image to be viewed. The image must be
repeatedly sent to the monitor in order to maintain a steady
picture on the screen. Due to the retentiveness of the human
eye, the monitor needs to be refreshed at a minimum of 30
times a second. Otherwise, the display will flicker in a very
annoying and distracting manner. In today's computer

10

15

20

25

30

35

45

50

55

60

65

2
graphics systems, the refresh frequency is typically around
72 hertz (i.e., 72 times a second). A faster refresh rate
produces less flicker. Hence, the duration for displaying an
image is relatively small, approximately /12 of a second or
14 milliseconds. Given these restraints, it is imperative to
speed up the graphics drawing process to avoid sluggish
response times and jerky movements of displayed images.
Moreover, the faster an image can be drawn, the more
information which can be provided to the display. This
results in smoother, more dynamic, and crisper images.

Typically, a three-dimensional graphics rendering device
that renders images into the frame buffer also stores addi
tional information per pixel (e.g., Alpha, Z. etc.), which is
not required by the frame buffer itself. Alpha values repre
sent a blending function. Z-values represent a pixel's dis
tance from the viewer. Typically, small Z-values indicate
that the object is close to the observer, whereas large
Z-values indicate that the object is further away. This
additional Z storage per pixel is typically referred to as a
Z-buffer.
By implementing a Z-buffer, usually in the form of

DRAMs, Z-values can be stored. The Z-buffer contains
distance information which is used in indicating whether one
object is displayed in front of or behind another object. In
most conventional Z-buffers, a Z-sort operation is performed
by comparing the Z-value of incoming data with the Z-value
of pre-existing data. If the incoming data is closer (i.e., it has
a smaller Z-value), the incoming color data replaces the
pre-existing data in the frame buffer, and the old Z-value is
replaced by the new Z-value. Otherwise, the incoming dam
is discarded. When there is no more incoming data, the
Z-sort is complete, and the contents of each frame buffer?
Z-buffer location represents the final color/intensity for that
particular pixel.
The Z-sort operation is rather straightforward if all of the

objects represented by the data are opaque. However, if the
object in the buffer is not opaque, it is necessary to retain
information about the data which is discarded in order to
determine the final color intensity of a pixel. To avoid the
loss of the data, many Z-buffer systems require that all of the
non-opaque data be rendered after all opaque data has been
rendered and that the non-opaque data be rendered in Z
sorted order (e.g., closest to furthest). Any non-opaque
objects which are behind the opaque object in the buffer are
discarded. The remaining non-opaque objects are compos
ited with the data in the frame buffer and the result is stored
in the frame buffer so that no requisite information is lost.
The composite represents a combination of a data from
non-opaque objects. For example, if a blue non-opaque
object is composited with a red non-opaque object, the
resulting composite object may appear mostly blue, mostly
red, or purple. Since the compositing operation must be
performed in a specific Zorder, the non-opaque objects must
be arranged by Z-depth (i.e., either closest to furthest or
furthest to closest) before being compared with the Z-value
of the data in the buffer.

Unfortunately, this method of rendering non-opaque
objects has a number of shortcomings. Sorting the non
opaque objects by Z-value is computationally expensive.
Also, this method does not render interpenetrating non
opaque objects correctly; these must be explicitly tested for,
and specially processed, further increasing computation.
Consequently, performing the Z sort process reduces the
amount of time left to actually draw the images which
detrimentally impacts the overall display process.

Other systems have been proposed to solve the problem of
rendering non-opaque objects which avoid these shortcom

5,583,974
3

ings. These systems usually store more than one Z and color
value per pixel, allowing some number of the closest non
opaque objects to be saved, and then composited later.
However, these systems require a greatly increased number
of Z-buffer RAM accesses necessary to maintain and sort the
multiple Z-values per pixel. This increases the bandwidth
requirements of the Z-buffer memory, reducing performance
and/or increasing cost. However, an advantage of this
method is that it defers compositing until after the per pixel
Z sort is complete, which improves performance by avoid
ing unnecessary compositing of objects which are later
obscured by a closer object.

Therefore, there is a need in prior art computer graphics
systems for an apparatus or method which is capable of
minimizing the time required to perform Z operations. It
would be preferable if such an apparatus or method could
defer compositing until after Z sort is completed without
losing the data necessary for compositing non-opaque
objects. It would also be highly preferable if such a mecha
nism could minimize the number of DRAM accesses.

SUMMARY OF THE INVENTION

A method and apparatus for retaining objects, having
equal Z-values, in a Z-buffer is described. The present
invention can be applied to computer graphics systems. A
multiple layer Z-buffer containing Z values for each of the
pixels is controlled according to the values in two registers
which are instanced for each pixel. One register, referred to
as the ActiveLayers register, contains a value indicating how
many of the layers are occupied with potentially visible
object data. The other register, referred to as the Layer
Pointer register, contains pointer values indicating the
memory location to which the data for each layer is stored.

After one frame has completely rendered, the ActiveLay
ers register is initialized to 0. The first incoming object
increments the ActiveLayers register. If a subsequent incom
ing object falls behind an opaque object it is discarded,
regardless of whether it is opaque or not. If the subsequent
incoming object is opaque (and is not hidden), the Active
Layers register is decremented once for each pre-existing
object which becomes hidden behind the incoming opaque
object. The ActiveLayers register is then incremented to
reflect the incoming opaque object. Otherwise, if a subse
quent incoming object is non-opaque (and is not hidden), the
ActiveLayers register is incremented.
The LayerPointer register contains a number of pointers

equal to the number of layers being implemented. Each
pointer specifies a unique address. If an incoming object is
hidden behind a pre-existing opaque object, the incoming
object is discarded, and the LayerPointer register remains
unchanged. Otherwise, the layer wherein the incoming
object should be inserted is determined. This determination
is based on the incoming object's Z-value relative to those
Z-values already existing in the buffer. The opacity of the
incoming object affects the ActiveLayers register. The data
of the incoming object is written to the address specified by
a pointer. The pointers are then adjusted accordingly.

In one embodiment, the incoming data is written to the
address specified by the pointer corresponding to the last
layer. The InsertLayer for the incoming data is determined.
The pointer from the last layer is inserted in the InsertLayer.
All the pointers of those layers following that of the Insert
Layer is shifted one place to the right. The pointers to the left
of the InsertLayer remains unchanged. Manipulating the
values in the ActiveLayers and LayerPointer registers opti
mizes the Z-buffering process.

10

15

20

25

30

35

45

50

55

60

65

4
Another embodiment implements a method and apparatus

for retaining objects having equal Z-values. In this embodi
ment, objects are assigned a tag as they are received. The
tags are assigned according to how many previous received
objects have the same Z-value. An overflow in the Z-buffer
causes the objects in the Z-buffer to be composited. The
composite object is given the Z-value and tag of the object
in the last layer of the Z-buffer. The overflow causes the
objects to be resubmitted. The object, causing the overflow,
can then be stored in the Z-buffer.

Another embodiment of the present inventions imple
ments a method and apparatus for retaining objects having
equal Z-values where the objects are not necessarily resub
mitted in the same order. When an overflow occurs, the
objects stored in the Z-buffer having a Z-value equal to the
object that caused the overflow, are discarded. The compos
ite object is then made from the remaining objects in the
Z-buffer. The objects are then resubmitted to the Z-sort
circuit.

Although a great deal of detail has been included in the
description and figures, the invention is defined by the scope
of the claims. Only limitations found in those claims apply
to the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not limitation, in the figures. Like references indicate
similar elements.

FIG. 1 illustrates a computer system upon which an
embodiment of the present invention can be implemented.

FIG. 2 is a block diagram showing a graphics system
using scanline Z-buffering.

FIG. 3 illustrates how various combinations of received
objects are managed.

FIG. 4 illustrates an example of how the ActiveLayers and
LayerPointer registers operate for six consecutive incoming
objects.

FIG. 5 illustrates one apparatus for maintaining the Lay
erPointer register.

FIG. 6 is a flowchart illustrating one method for perform
ing a Z-sort operation.

FIG. 7a is a flowchart showing a Z-sort method employ
ing an infinite curtain.

FIG. 7b illustrates how objects having equal Z-values
may be discarded.

FIG. 8 is a flowchart of a method of managing objects
having equal Z-values.

FIG. 9 illustrates how some types of received objects are
managed where the objects are resubmitted in the same
order.

FIG. 10 is a flowchart showing a second method for
managing objects having equal Z-values.

FIG. 11 illustrates how some types of received objects are
managed where the objects are resubmitted not necessarily
in the same order.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Overview

A high performance multiple layer Z-bufferin a computer
graphics system is described. In the following description,
for the purpose of explanation, numerous specific details

5,583,974
S

such as registers, bit lengths, number of layers, etc., are set
forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known
structures and devices are shown in block diagram form in
order to avoid unnecessarily obscuring the present inven
tion.

Computer System

Referring to FIG. 1, a computer system upon which an
embodiment of the present invention can be implemented is
shown as 100. Computer system 100 comprises a bus 101
for the internal transmission of digital data. A central pro
cessing unit 102 for processing digital data is coupled with
bus 101 for processing information. Furthermore, a number
of co-processors 103 can be coupled onto bus 101 for
additional processing power and speed.
Computer system 100 further comprises a random access

memory (RAM) 104 (referred to as main memory) which is
also coupled to bus 101. Main memory 104 is used in storing
information and instructions which are executed by proces
sor 102. Main memory 104 also may be used for storing
temporary variables or other intermediate information dur
ing execution of instructions by CPU 102. Computer system
100 also comprises a read only memory (ROM) or some
other type of static storage device 106. ROM 106 is coupled
to bus 101 and is used to store static information and
instructions for processor 102. A data storage device 107
(e.g., a hard disk drive, floppy disk drive, etc.) drive can be
coupled to bus 101 for storing information and instructions.

Also coupled to bus 101 is hardware graphics accelerator
108, frame/Z-buffers 109, and display controller 110. Hard
ware graphics accelerator 108 is designed to accelerate
interactive 3D graphics software extensions. It comprises an
ASIC, a static RAM cache, and texture mapping RAM.
Accelerator 108 outputs a high bandwidth pixel stream to
frame/Z-buffer 109. Simultaneously, the host CPU 102
generates the signal containing the primitives which are
input to and rendered by accelerator 108. Display controller
110 interfaces computer system 100 to a display device 121.
One example of a display device 121 is a cathode ray tube

(CRT) used for displaying information to a computer user.
An alphanumeric input device 122, such as a keyboard, may
also be coupled to bus 101, as well as a cursor control device
123. A cursor control device 123 is used for controlling
cursor movement on display device 121. This input device
typically has two degrees of freedom in two axes, a first axis
(e.g., x) and a second axis (e.g., y) which allows the device
to specify any position in a plane. In one embodiment of the
present invention, a three-dimensional cursor having a third
degree of freedom in a Z-axis is used. Some examples of a
cursor control device 123 include a mouse, joystick, track
ball, touch pad, a pen etc.
The present invention can be applied equally to conven

tional screen Z-buffering as well as scanline Z-buffering
techniques. In screen Z-buffering, the state information
necessary for rendering a pixel is stored for every pixel on
the screen. Each object to be rendered is transformed and
rasterized independently. Conventional screen Z-buffering
techniques often involve very high bandwidths plus large
quantities of fast memory and are often coupled with sophis
ticated caching and prefetching mechanisms. In comparison,
scanline Z-buffering presorts the object database in screen
space and renders each scanline individually. One scanline
of pixel state information is kept.

10

15

20

25

30

35

40

45

50

55

60

65

6
Graphics System Using Scanline Z-Buffering

FIG. 2 is a block diagram showing a graphics system
using scanline Z-buffering. The host CPU 201 is used for
transformation, shading, and active list maintenance. Scan
line rasterizer 202 performs shading and hidden surface
removal via a Z-buffer 203, shadow volumes, and alpha
blending 204. The rasterizer 202 intersects polygons trans
ferred from the active polygon list with the scanline and
generates a series of horizontal spans. The resulting spans
are rasterized. Furthermore, hidden surface removal, shadow
plane tests, and alpha blending are performed. Rendering
begins when the CPU 201 traverses the 3D database and
generates transformed, projected, clipped, and shaded poly
gons. The polygons are bucket sorted by the number of the
first scanline on which they first become active. Once the
main database traversal is complete, the host traverses the
bucket sorted list in screen Y order, maintaining an active
polygon list which is transferred into the rasterizer 202 for
rendering into RGB frame buffer 205.

Z-values are typically represented as a floating point
number with a 23-bit fractional normalized mantissa and an
8-bit exponent. There is also a one bit tag which is asserted
if the object is frontfacing. If during the comparison the two
Z-values are equal, it is necessary to determine if incoming
object is frontfacing. There is a flag in the object data which
is designed for this purpose. If the incoming object is
frontfacing it is considered to be in front of the object which
is in the buffer. In another implementation the inverse of the
front-facing tag is appended as the first bit position of the
Z-value, effectively increasing the Z-value resolution. When
the Z-values of two objects are equal, except for the front
facing tag, the object which has the tag asserted will be less
than the object which does not have the tag asserted. In the
present embodiment, the Z-buffer is comprised of multiple
layers and multiple pixels for handling opaque as well as
non-opaque objects. Although any number of layers and
pixels can be implemented with the present invention, eight
layers and eight pixels are used in an embodiment. In
another embodiment, only four layers are used.
The Z-value of incoming data for a particular pixel is

compared with each layer in the buffer until it is determined
where or whetherit should be placed in the buffer. There are
two registers, an ActiveLayers register and a LayerPointer
register associated with each pixel for optimizing the sorting
process. The ActiveLayers register indicates how many of
the layers are occupied with potentially visible object data.
Because non-opaque objects are supported, it is not known
whether an object is visible until after the compositing
operation is completed. The LayerPointer register indicates
in which memory location the data for each layer is to be
stored.
The operation of these two registers are now described in

detail. The ActiveLayers register is first initialized to zero.
When the first object is received it is written into the layer
of the Z-buffer as indicated by the ActiveLayers register.
Since the ActiveLayers register had been initialized to zero,
the first object is thereby written to Layer 0, the ActiveLay
ers register is incremented by one. When a successive
incoming object is received its value is compared with the
Z-value of the object in layer 0. The opacity of the incoming
object only affects the ActiveLayers register and not the
LayerPointer register nor the Z-buffer. Whether the incom
ing object is written is determined by the opacity of objects
in the buffer and overflow. Its write location is determined by
the relative Z-values.

Examples of Managing Received Objects
FIG. 3 shows various different combinations of how

incoming opaque and non-opaque objects are handled.

5,583,974
7

Examples of each possible combination are given illustrat
ing how the objects are assigned to the different layers along
with the corresponding changes made to the ActiveLayers
register. In example 1, the ActiveLayers registeris initialized

8
By implementing an ActiveLayers register, only those

layers which contain potentially visible objects are com
pared during the sort operation. Note that without using an
ActiveLayers register or its equivalent, incoming data would
be required to be checked against all eight layers. Reading to a value of zero after completion of rendering. Whenever 5

an incoming object 301 is received, it is written into the layer and writing the object data is costly in terms of speed since
designated by the ActiveLayers register. In example 1, the it requires accessing the Z-buffer DRAM. Note that typical
first object is opaque and is written into layer 0. The prior art Z-buffers only have one layer, two at the most, so
ActiveLayer register is then incremented by one (i.e., incre- only one or two reads are required to complete the sort
mented from 0 to 1). In example 2, a second incoming object 10 operation. Multiple layers complicate the Z-sort operation,
302 is received. Object 302 is opaque and has a smaller but are necessary to defer the compositing operation and to
Z-value than object 301 (i.e., object 302 is closer to the eliminate the need for ordering the non-opaque data.
viewport than object301). The incoming data corresponding The ActiveLayers register also simplifies the removal of
to object 302 is written to layer 0. The contents of the obstructed objects from the Z-buffer. If any object falls
ActiveLayers register remains unchanged (i.e., it remains set 15 behind an opaque object, it must be removed from the buffer
at 1). Note that the data corresponding to object301 has been which requires that the RAM be written. Instead of writing
effectively overwritten. It still exists in the Z-buffer RAM; the RAM, the value in the ActiveLayers register is adjusted
only the LayerPointer register changes. Hence, if the incom- to reflect the new condition.
ing object falls behind a pre-existing opaque object, the Furthermore, an ActiveLayers register saves time by
incoming object is "hidden' behind the opaque object and 20 eliminating the need to initialize each of the eight layers to
can thereby be discarded. the maximum Z-value (i.e., infinity). Rather, after each
Example 3 illustrates the events occurring if the second frame has been completely rendered, the ActiveLayers reg

incoming object 302 has a greater Z-value than object 301 ister is reset to zero. In typical prior art Z-buffers, all of the
which resides in layer 0. Since object302 is "hidden' behind Z-values would have to be written to the maximum value
opaque object 301, its incoming value can be safely dis- 25 and to a transparent object data.
carded. Everything else remains the same. In example 4, the In addition to the ActiveLayers register, a second, Lay
incoming object 303 is non-opaque and has a smaller erPointer register, is implemented to minimize Z-buffer
Z-value. Hence, the data corresponding to object 301 is DRAM accesses. The LayerPointer register contains a num
moved so as to correspond to layer 1, and the incoming data ber of pointers equal to the number of layers being used. In
is written to layer 0. The ActiveLayers register is incre- 30 one embodiment, eight 3-bit pointers are used. A pointer
mented to 2. In example 5, the incoming non-opaque object specifies a unique address of an object's data corresponding
has a larger Z-value. Consequently, its incoming data is to each of the eight layers. The rust pointer corresponds to
discarded. layer 0. The second pointer corresponds to layer 1. Each

Referring to examples 6-9, the pre-existing object 304 is successive pointer corresponds to each successive layer, up
non-opaque. In example 6, an incoming object 305 is opaque 35 to layer 7.
and has a smaller Z-value. Hence, the incoming data is By utilizing these pointers in the LayerPointer register,
written to layer 0 and the data associated with object 304 is the movement of an object from one layer to another can
discarded. If the incoming opaque object 305 has a larger essentially be simulated without actually reading from and
Z-value, its data corresponds to layer 1; the ActiveLayers writing to the Z-buffer. The present invention does not
register is incremented to 2; and the data corresponding to require reading the data of the pre-existing object, writing it
object 304 remains stored in layer 1, depicted in example 7. into another layer, and then writing the incoming object's

Example 8 illustrates the events which occur when the data into the lust layer. Instead, one embodiment of the
incoming object is non-opaque and has a smaller Z-value. present invention accomplishes the same result by manipu
Under such circumstances, the data corresponding to pre- 45 lating pointer values. In an embodiment, the lowest pointer
existing object 304 is moved to layer 1; the incoming data (i.e., the one corresponding to layer 7) is used to specify the
is written to layer 0, and the ActiveLayers register is address of an incoming object being written into the
incremented by one to 2. In example 9, the incoming Z-buffer. In other words, the incoming data is written to the
non-opaque object 306 has a larger Z-value. Consequently, address specified by the pointer corresponding to layer 7.
the incoming data is changed to correspond to laver 1 and
the AE register E. 2. 1 below 50 Register Operation Examples
lists the eight different possible scenarios associated with an FIG. 4 shows an example of how the ActiveLayers and
incoming object. LayerPointer registers of one embodiment of the present

TABLE 1

Pre-existing Z-value of
Object in Layer Incoming Incoming ActiveLayers
0 Object Object Layer 0 Layer 1 Register

Opaque Opaque Smaller Object -
Opaque Opaque Larger Object - 1.
Opaque Non-opaque Smaller Object Object 2
Opaque Non-opaque Larger Object - 1
Non-opaque Opaque Smaller Object -
Non-opaque Opaque Larger Object Object 2
Non-opaque Non-opaque Smaller Object Object 2
Non-opaque Non-opaque Larger Object Object 2

5,583,974

invention operate for six consecutive incoming objects.
Once the rendering of a frame has been completed, the
ActiveLayers register is initialized to 0 and the LayerPointer
register is set so that each pointer specifies a unique address.
Note that the pointers need not be specified in any sequential
order, but each pointer must specify a unique address. In the
example, the eight 3-bit pointers are initialized to the fol
lowing addresses: 7, 6, 5, 4, 3, 1, and 0 corresponding to
layers 0-7, respectively.
The first incoming object 401 is opaque and has a Z-value

of 15. The pointer corresponding to layer 7 specifies an
address of 0. Since it is the first object, the data should be
inserted in layer 0. The ActiveLayers register is incre
mented. A barrel shift-right by one place is performed on
layers 0-7 of the LayerPointer register. Hence, the Active
Layers register becomes 1, and the contents of the Layer
Pointer register becomes 0, 7, 6, 5, 4, 3, 2, and 1. Note that
the incoming data stored in address 0 now appropriately
resides in layer 0.
A second incoming object 402 is opaque and has a

Z-value of 10. Its data is written to the address specified by
the pointer of layer 7. In this case, the data is written to
address 1. The Z-values of object 402 is compared with that
of object 401. Since object 402 is opaque and has a smaller
Z-value than object 401, object 401 is hidden behind object
402. Consequently, the incoming data should be inserted in
layer 0. The ActiveLayers register remains unchanged. A
barrel shift-right is performed on layers 0-7 of the Layer
Pointer register, such that it becomes 1, 0, 7, 6, 5, 4, 3, and
2. Note that the pointer of layer 0 correctly specifies the
address containing the data of object 402. Note also that the
data of object 401 still resides in address 0, but since the
ActiveLayers register only specifies one layer, this data is
rendered meaningless.
The third incoming object 403 is non-opaque and has a

Z-value of 8. The data of object 403 is written to address 2,
as specified by the pointer of layer 7. Object 403 is in front
of object 402 because its Z-value of 8 is less than the Z-value
of 10 for object 402. Consequently, the incoming data
should be inserted in layer 0. Since object 403 is non
opaque, the data corresponding to object 402 must still be
maintained. Thus, ActiveLayers register is incremented. A
barrel shift-right operation is performed for layers 0-7 of the
PointerLayer register. The LayerPointer register now reads
2, 1, 0, 7, 6, 5, 4, and 3. The result is that the ActiveLayers
register specifies two layers (i.e., layers 0 and 1). The
pointer in layer 0 correctly specifies address 2, which
contains the data for object 403, and the pointer in layer 1
specifies an address of 1, which contains the data for object
402.

A fourth incoming object 404 is non-opaque and has a
Z-value of 9. The pointer of layer 7 specifies an address of
3. The incoming data is written to that address. Since the
Z-value of object 403<Z-value of object 404<Z-value of
object 402, the data of object 404 should be inserted in layer
1, in-between objects 403 and 402. The data of object 402
should be altered to correspond to layer 2 while that of
object 403 should remain layer 0. This is effectuated by
performing a barrel shift-right operation only for levels 1-7.
The resulting contents of the LayerPointer register is 2, 3, 1,
0, 7, 6, 5, and 4. The ActiveLayers register is incremented.
Thus, the pointers of the first three layers specify addresses
2, 3, and 1 which respectively correspond to that of objects
403, 404, and 402.
The fifth incoming object 405 is non-opaque and has a

Z-value of 11. Since it falls behind the opaque object 402,

10

15

20

25

30

35

45

50

55

65

10
the incoming data is discarded. No changes are made to
either the ActiveLayers or LayerPointer register.
The sixth incoming object 406 is opaque and has a

Z-value of 5. Object 406 falls in front of and hides all the
pre-existing objects 402-404. The incoming data is written
to address 4 and is inserted to layer 0. A barrel shift-right is
performed for layers 0-7 of the LayerPointer register, so that
it reads 4, 2, 3, 1, 0, 7, 6, and 5. Furthermore, the Active
Layers register is reset to 1. It should be pointed out that
modifying the ActiveLayers and LayerPointer registers is
much quicker than accessing the DRAM to write the maxi
mum Z-value and the transparent alpha value as the registers
occupy far fewer bits.

In one embodiment, the incoming object is checked to
determine whether it falls behind the backmost object of the
Z-buffer. If it falls behind the backmost object and that
object is opaque, the incoming data is discarded. If the
backmost object is not opaque, the incoming data is placed
behind it, and the ActiveLayers and LayerPointer registers
are modified accordingly. In this embodiment, only one
comparison is needed to determine whether the incoming
data should be discarded.

Apparatus for Maintaining the LayerPointer
Register

FIG. 5 is a circuit diagram illustrating one apparatus for
maintaining the LayerPointer register 500. Once the layer
wherein an incoming object's data is to be inserted (i.e., the
InsertLayer) is determined, the Rotate and Insert signals are
generated according to Table 2 below.

TABLE 2

Insert
Layer Rotate Insert

O 0x7F 0x80
1. 0x3F 0 x 40
2 0 x 1 F 0 x 20
3 Ox OF 0 x 10
4 0x07 0x08
5 0x03 0x04
6 OXO1 0x02
7 0x00 OXO1

The upper multiplexers 501-508 are used to rotate the
pointers, especially for those situations wherein the incom
ing object is placed in front of other pre-existing objects in
the Z-buffer. The rotate operation is performed by a barrel
shift-right. The barrel shift-right is executed according to the
8-bit digital Rotate signal on line 521. Each of the eight bits
controls each of the eight multiplexers 501-508. In other
words, control bit 0 of the Rotate signal controls multiplexer
501; bit 1 controls multiplexer 502; etc. The control bit
selects which of the two inputs to a multiplexer is to be
output. Note that LayerPointer register 500 has eight layers
and three bits per layer, for a total of 24 bits. Each multi
plexer has two 3-bit inputs supplied by the LayerPointer
register. If the control bit is a 0, the three bits corresponding
to a particular pointer is selected for output on line 523.
Conversely, if the control bit is a 1, the three successive next
significant bits are selected for output on line 524. For
example, if control bit 0 is a 0, bits 0-2 of the LayerPointer
register 500, is selected for output by multiplexer 501. If
control bit 0 happens to be a 1, bits 3-5 are selected for
output by multiplexer 501.
The lower multiplexers 511-518 are used to move the

pointer associated with layer 7 prior to receipt of incoming

5,583,974
11

data, to the layer which the incoming object data is to be
inserted. The insert operation is performed according to the
8-bit digital Insert signal on line 522. Each of the eight
control bits of the Insert signal controls one of the eight
multiplexers 511-518. A control bit selects for output one of
the two input signals to a multiplexer. One input signal is a
3-bit output from one of the upper multiplexers. The other
input signal is the three least significant bits of the Layer
Pointer register 500 (i.e., bits 0-2 which correspond to the
pointer of layer 7). For example, if control bit 0 of the Insert
signal is a 0, multiplexer 511 selects the 3-bit output from
multiplexer 501 for output on line 524. If control bit 0 were
a 1, multiplexer 511 selects bits 0-2 of the LayerPointer
register 500 for output on line 524.
The operation of this LayerPointer circuit is now

described in reference to the incoming objects depicted in
FIG. 4 and described above. A reset signal on line 525
initializes the LayerPointer register 500 to a value of 7, 6, 5,
4, 3, 2, 1, and 0=111110101100011010001000. When data
corresponding to object 401 is received, its InsertLayer is
determined to be 0. Consulting Table 2, an InsertLayer of 0
translates into a Rotate signal of 0x7F-01111111, and the
Insert signal is 0x80= 10000000. According to the Rotate
signal, multiplexer 501 selects bits 3-5 for output; multi
plexer 502 selects bits 6-8; multiplexer 503 selects bits
9-11; multiplexer 504 selects bits 12-14; multiplexer 505
selects bits 15-17; multiplexer 506 selects bits 18-20;
multiplexer 507 selects bits 21-23; and multiplexer 508
selects bits 21-23. And according to the Insert signal,
multiplexers 511-517 select the outputs of multiplexers
501-507 respectively; multiplexer 518 selects bits 0-2 for
output. The result is that the pointers for layers 0-6 are
shifted to the right. The pointer corresponding to layer 7 is
inserted into layer 0. The resulting contents of the Layer
Pointer register is 000111110101100011010001=0, 7, 6, 5,
4, 3, 2, 1.

General Z-Sort Algorithm
FIG. 6 is a flowchart showing the operations performed

during the Z-sort, wherein the contents for the ActiveLayers
and LayerPointer registers are calculated. In the first opera
tion, step 601, the LayerCounter is initialized to 0; the RAM
read address (RAdd) is initialized to LayerPointer 0; and
the RAM write address (WAdd) is initialized to Layer
Pointer 7). A determination is then made as to whether the
ActiveLayers register is 0, step 602. If so, the ActiveLayers
register is incremented to 1; the InsertLayer is set to 0; and
ZIn is written into the RAM at the write address. If the
ActiveLayers register is not 0, the Z-values for each of the
objects are compared, step 604. If the Z-value of the
incoming object is closer than the Z-value presently asso
ciated with layer 0, step 605 is performed. Remember that
the front-facing tag is included in ZIn (and the RAM data).
Otherwise, step 609 is executed.

In step 605, a determination is made as to whether the
incoming object is opaque. If the incoming object is opaque,
the ActiveLayers register is set to the LayerCounter plus 1,
step 606. The InsertLayer is set to the LayerCounter, and ZIn
is written into the RAM at the write address, step 607. If it
is determined that the incoming object is not opaque, the
ActiveLayers register is incremented, step 608. Step 607
wherein the InsertLayer is set to the LayerCounter and the
ZIn is written.

In step 609, the LayerCounter is incremented. A determi
nation is made as to whether the LayerCounter is equal to the
ActiveLayers, step 610. If they are equal, this signifies that

5

10

15

20

25

30

35

40

45

50

55

60

65

12
there are no more Z-values in the RAM for comparison. In
that case, a determination is made as to whether the object
in the last layer is opaque, step 611. If the object in the last
layer is not opaque, step 608 is executed. Otherwise, ZIn is
not visible, and it is discarded, step 612.

If the LayerCounter is not equal to the value in the
ActiveLayers register, it becomes necessary to check the
Z-buffer to determine whether it is full, step 613. If the
ActiveLayers register value is equal to the maximum layer
(e.g., 8), this indicates that the Z-buffer is full. A determi
nation is then made as to whether the object in layer 8 is
opaque, step 614. If so, then ZIn is discarded, step 612.
Otherwise, an overflow condition is asserted, step 615. If,
however, the value in the ActiveLayers register is not equal
to the maximum layer, ZIn is compared with the other
Z-values in the RAM. The read address for the next layer is
determined by reading the LayerPointer register. ZIn is
compared with the Z-value read from the RAM using the
new read address, step 616. Step 604 is then repeated.

Infinite Curtain

In one embodiment of the present invention, the Z-buffer
has only four layers. As the number of layers of a Z-buffer
decrease, the likelihood that all the non-opaque objects can
be sorted before a compositing operation is needed
decreases. For example, if a Z-buffer includes eight layers,
then eight non-opaque objects can be sorted in the Z-buffer
before an overflow occurs. The overflow occurs when the
Z-buffer cannot hold all the needed objects. Where a
Z-buffer includes only four layers, an overflow is likely to
occur much more often. Therefore some technique for
managing an overflow is needed.

In one embodiment of the present invention, objects in the
Z-buffer are composited after an overflow occurs. By com
positing all the non-opaque objects stored in the Z-buffer
into a single object, the number of layers needed to store a
representation of those objects is reduced. This frees up
layers for other objects. In one embodiment, this composite
object is called an infinite curtain.

In the following description, a number of references have
been made to in front, last layer, tag=0.0, etc. However, one
of ordinary skill in the art would understand, given this
description, that these references are merely illustrative of
one embodiment of the present invention. For example,
another embodiment sorts from back to front and composites
are inserted in the last layer. In another embodiment, tags are
represented as bits that are stored directly with the Z-value.

FIG. 7 is a flowchart illustrating a Z-sort using the infinite
curtain. In the following description a compare layer relates
to one of the active layers.
At step 790, all the active objects for the current pixel are

submitted. The compare layer is set to 0. At step 792, a test
is performed to determine whether all the active objects, for
the present pixel, have been submitted to the sorting circuit.
Assuming that additional objects need to be processed, step
793 is executed. At step 793, new object is received. Next,
at step 701, a test is made to determine whether the first layer
in the Z-buffer is empty. If the first layer is empty, then step
702 is executed, wherein the new object data is saved in the
first layer. Once the data has been saved in the first layer,
step 792 is executed again.

However, if there is data, in the first layer, then step 710,
from step 701, is executed. At step 710, a test is made to
determine whether the first layer is an infinite curtain layer.
If not, then step 715 is executed. In step 715, a test

5,583,974
13

determines whether the new object is in front of the object
in the compare layer.

If the new object is in front of the compare layer, then step
730 is executed. Test is made, at 730, to determine the new
object is opaque. If the new object is opaque, at step 732, the 5
new object is saved in the compare layer and all the objects
behind this new object are removed. Next, step 792 is
executed again to determine whether more objects need to
be sorted.

However, at step 730 if the new object is not opaque, then 10
all the objects behind the new object are moved back a layer,
at step 735. At step 740, the new object is received in the
compare layer. At step 745, a determination is made whether
an overflow has occurred. An overflow occurs when more
objects can be seen than the Z-buffer can hold. The Z-buffer is
cannot hold the extra object (i.e. the Z-buffer is full), yet that
object must be included in the final pixel data. See the
discussion of FIG. 9 for an example. If no overflow has
occurred, then step 792 is executed. However, if an overflow
has occurred, then an overflow flag is asserted, at step 750. 20

Returning to step 710, if the first layer is an infinite
curtain, then steps 720-765 are executed. At step 720, the
sorting circuit determines whether the new object is behind
the infinite curtain. If the new object is not behind the infinite
curtain, we know that the object has been composited into
the infinite curtain and can be discarded. Thus, if the object
is in front of the infinite curtain, step 792 is executed.
However, if the new object is behind the infinite curtain,
then the compare layer is incremented, at step 725. If this is
the last object to compare in the Z-buffer, at step 727, then
step 729 is executed. At step 729, it is determined whether
the last object is opaque. If the last object is opaque, then
step 792 is executed. Otherwise, step 760 is executed. At
step 760, it is determined whether the compare layer points
at the last object to compare. If no more objects can be
compared, because all of the layers are occupied, then step
750 is executed, where the overflow flag is asserted. Oth
erwise, at step 765, the new object is saved in the Z-buffer
in the first empty layer behind the occupied layers. Then step
792 is executed again.

Returning to step 727, if the compare layer is not pointing
at the last object to compare, then step 715 is executed. At
step 715, as above, the new object is tested to determine
whether it is in front of the object in the present compare
layer. If the new object is not in front of the object to
compare layer, then the compare layer is incremented, at
step 725. By repeating steps 725, 727, and 715, the new
object is tested against each of the objects in the Z-buffer,
until the new object can be inserted, steps 730-750, or the
new object is inserted behind all of the objects in the
Z-buffer, (in the first empty layer behind the occupied layers)
steps 729-765.

Returning to step 792, if all of the active objects for the
present pixel have been submitted to the sorting circuit, then
step 794 is executed. At step 794, the overflow flag is tested 55
to determine if an overflow had occurred in the last sort. If
an overflow has not occurred, then all the objects have been
sorted for the present pixel. That is the sorting of objects
affecting a given pixel will be complete.

However, if an overflow has occurred in the last sort, then 60
step 796 requires that all the objects in the Z-buffer be
composited. This composite is called the infinite curtain. The
infinite curtain is stored in the first layer of the Z-buffer, at
step 797. Also the infinite curtain is assigned Z-value equal
to the object in the last layer of the Z-buffer. Next, step 790 65
is executed to cause all the objects be resubmitted to the
sorting circuit and the compare layer is set to 0.

30

35

45

50

14
One benefit of the present embodiment is that an infinite

curtain can be composited with other objects to form another
infinite curtain. For example, a first overflow causes a first
composite. A second overflow, will cause the objects in the
Z-buffer to be composited. However, the objects in the
Z-buffer include the first composite. Thus, the second com
posite object includes the objects composited to form the
first object.

Thus, the infinite curtain can be used to sort a number of
non-opaque objects in the Z-buffer. However, one problem
occurs where a number of non-opaque objects, having equal
Z-values, are attempted to be sorted. Given the above
implementation of the infinite curtain, objects having equal
Z-values may be discarded and therefore not shown on the
display.

FIG. 7b illustrates how objects having equal Z-values
may be discarded. In the first column, objects received are
represented. In the next four columns, the status of each
corresponding layer in the Z-buffer is represented. This is
the status of each layer after the object in the first column has
been processed by the Z-buffer.
At 7000, the Z-buffer is initialized. At 7010, an object

with a Z-value of 1 is received. This object is inserted in
layer 0 of the Z-buffer. At 7015, an object with a Z-value of
0 is received. This object is inserted in layer 0, the previous
layer 0 object is moved to layer 1. At 7020, an object with
a Z-value of 2 is received. This object is placed in layer 2.
At 7025, another object having a Z-value of 2 is received.
This object is placed in layer 3. At 7030, another object
having a Z-value of 3 is received. This object causes an
overflow and cannot be inserted in the Z-buffer. At 7035, an
infinite curtain is generated from the overflow at 7030. The
Z-value of the infinite curtain object is equal to 2. At 7040,
all the objects received in steps 7010 through 7025 are
discarded because their Z-values are less than, or equal to,
2. At 7045, the object received at step 7030 is rereceived.
This object, having a Z-value of 2, is also discarded. This
results in the composite pixel not being representative of all
the received objects. That is, the 7030 object is never
composited because it has a Z-value equal to the infinite
curtain's Z-value.

Managing Objects Having Equal Z-Values
Two possible solutions have been discovered to solve the

problem of losing objects having equal Z-values. The first
solution employs a tag and requires that the objects be
resubmitted in the same order. The tag size limits the number
of objects having equal Z-values. The second solution does
not employ a tag and does not require that the objects be
resubmitted in the same order. However, the number of
objects having equal Z-values that can be sorted is limited to
the number of layers in the Z-buffer minus one.

In one embodiment, the objects, being submitted in step
790, are submitted in the same order each time an overflow
occurs. For this situation, it has been discovered that adding
a tag to the received objects allow for the retention of objects
having equal Z-values.

FIG. 8 illustrates one embodiment of the present inven
tion. First, the object is received as before, step 793. Then
access the object's Z-value, 820. Next, at 830, determine
whether an object having an equal Z-value has been received
previously. If an object has been received that has an equal
Z-value, access its tag and increment the tag value to
generate a new tag for the new object, 850. In one embodi
ment of the present invention, the tag represents a fraction

5,583,974
15

of an object's Z-value. Thus, the tag indicates the order of
the object as it has been received. If an object has the same
Z-value as another object, then the newer object receives a
higher tag number. Otherwise, the object receives a tag of
0,840. At step 860, a Z-tag is created for the new object. This
Z-tag substitutes for the Z-value in the remaining steps of the
sorting algorithm.
As before, once all the objects have been received, the

overflow flag is tested. If an overflow occurred, the infinite
curtain is generated. The infinite curtain is stored in the front
layer and then assigned the Z-tag of the object in the last
layer of the Z-buffer.
The example shown in FIG. 9 illustrates the benefits of

this solution. FIG. 9 illustrates the status of a Z-buffer having
four layers. At 900, the Z-bufferis initialized and contains no
objects. That is layer 0, layer 1, layer 2, and layer 3, are all
empty. At 910, an object having a Z-value equal to 1 is
received. As the Z-buffer contains no other objects having a
Z-value equal to 1, a tag equal to point 0 is generated. This
object is then stored in the layer 0 and assigned a Z-tag equal
to 1.0. At 915, an object having a Z-value equal to 0 is
received. As before, because there are no other objects
having a Z-value equal to 0, this object is assigned a tag of
0.0. The object is then stored in layer 0. The previous object,
stored in layer 0, is moved to layer 1.
At 920, an object having a Z-value equal to 2 is assigned

a tag equal to 0.0 this object is then stored in layer 2 of the
Z-buffer. At 925, a second object having a Z-value equal to
2 is received. Because a previous object has been received
having a Z-value of 2, this new object is assigned a tag of
0.1. The new object of 2.1 is stored in layer 3.
At 930, a third object having, a Z-value equal to 2, is

received. As this object cannot fit in the Z-buffer, an over
flow occurs. The third, Z-value equal to 2, object is assigned
a tag of 0.2. This object cannot be inserted in the Z-buffer
because the Z-buffer is full. Assume for the purposes of this
example, that only the five objects present are to be sorted.
At 935, a composite object, or infinite curtain, is generated
in response to detecting the overflow. The composite is
assigned a Z-tag associated with the object in the last layer,
layer 3, of the Z-buffer. In this case, the infinite curtain is
assigned a Z-tag equal to 2.1 and is stored in layer 0. At 940,
all the objects have been resubmitted for sorting. As objects
910, 915,920, and 925 are received, they will be discarded
because their Z-tags will be less than the Z-tag equal to 2.1.
That is, each of these objects are in front of, or coincident
with, the infinite curtain. At 945, the object previously
causing the overflow at 930 is received again. It is assigned
Z-tag equal to 2.2. This object can now be stored in layer 1
of Z-buffer. Thus, this embodiment solves the problem of
retaining objects having equal Z-values for a Z-buffer hav
ing two or more layers.
Note that other objects could follow the 930 object, prior

to the compositing 935. If, for example, an object having a
value of 0 were received, it would be assigned a Z-tag of 0.1.
This object would be inserted in layer 1. Objects Z-tag=1.0,
and Z-tag=2.0 would be shifted down a level. Z-tag 2.1
would fall off the end of the Z-buffer. Thus, the composite
would have a Z-tag of 2.0, and would be a composite of
Z-tag=0.0, Z-tag=0.1, Z-tag=1.0, and Z-tag=2.0.
The above description demonstrates the use of tag that

incremented when a previous object, having the same
Z-value, has been received. However, the present invention
is not limited to such tag generation. For example, another
embodiment of the present invention increments a tag value
every time an object is received. For example, the first object

5

10

15

20

25

30

35

40

45

50

55

60

65

16
will be given a first tag. The next object is given an
incremented tag. The next object is given the next higher tag.
The tags are incremented irrespective of their Z-value. Each
tag is then stored with the object. The objects are stored in
the Z-buffer first according to Z-value, and then according to
their tag value. In this embodiment, no information need be
retained as to whether objects having a given Z-value have
been received.

Managing Equal Z'S, Resubmitted in any Order
In another embodiment of the present invention, objects

being resubmitted for sorting are not necessarily resubmitted
in the same order as they were submitted when the overflow
occurred. A solution has been discovered that allows objects
having equal Z-values to be sorted and does not require any
additional tags.

FIG. 10 illustrates one embodiment of the present inven
tion. At step 792, if no additional objects are to be received
for the present pixel, the overflow flag is tested, 794. As
previously, if no overflow was asserted, then the objects for
the present pixel have been sorted. If the overflow has been
set, then step 1010 is executed. At step 1010, a Z-value of
the object that caused the overflow is tested against the
Z-value of other objects in the buffer. At step 1020, if there
are other objects with an equal Z-value, they are discarded.
Discarding an object can include a number of techniques
including removing from the Z-buffer, or marking the layer
as having an open space at that location. Then step 796 is
executed. If there are no objects having an equal Z-value,
then 796 is executed.

This embodiment will properly retain objects having
equal Z-values where the number of objects with equal
Z-values is equal to, or less than, the maximum number of
layers in the Z-buffer. That is, one layer is used for the
composite, the remaining layers are used for objects having
equal Z-values. However, if no overflow occurs, this solu
tion can have as many objects with equal Zs as there are
layers in the Z-buffer. That is, no layer is needed for a
composite object, because no overflow occurred. Note that
this embodiment will solve the problem of retaining objects
having equal Z-values for a Z-buffer having three layers or
more layers.

In this embodiment, like in the general approach
described for FIG. 7, the Z-value of the object in the last
layer is used for the infinite curtain. That is, the Z-value of
the object preceding the equal Z-values is used as the
backmost Z-value during the infinite curtain Z composite.

FIG. 11 illustrates an example of an object sort using the
method of FIG. 10. At 1100, the Z-buffer is empty and the
sort circuit is prepared to receive objects. At 1110, a first
object having a Z-value of 1 is received and placed in layer
0. At 1115, a second object, having a Z-value of 0, is
received. This object, like the second object of FIG. 9, is
placed in layer 0. The first object is moved to layer 1. At
1120, a third object, having a Z-value equal to 2, is received
and stored in layer 2. At 1125, a fourth object, having a
Z-value equal to 2, is received and stored in layer3. At 1130,
a fifth object, having a Z-value equal to 2, is received. This
fifth object causes an overflow.
Assume that only the above five objects are active for the

present pixel. As the fifth object had a Z-value equal to 2, all
the objects having an equal Z-value are discarded (third and
fourth objects). Then a composite of objects one and two is
made. The composite, infinite curtain, is assigned the
Z-value of the last remaining object. In this case, the infinite

5,583,974
17

curtain is assigned the Z-value equal to 1. This is the Z-value
of the object in layer 1.
As no more objects are to be received, and an overflow

has occurred, the five objects are resubmitted. The first and
second objects are discarded as having Z-values less than, or
equal to, the infinite curtain's Z-value. Next the object,
received at 1125, is received after the first two objects. That
is, this object is not received in the same order as it was
received when submitted in the first attempted sort. This
object has a Z-value greater than the infinite curtain's
Z-value. This object is stored in layer 1. The next object,
having a Z-value equal to 2, is stored in layer 2. The next
object, having a Z-value equal to 2, is stored in layer3. Thus,
objects having equal Z-values have been retained during the
Z-sorting process. These objects have been retained even
though they were not resubmitted in the same order.
What is claimed is:
1. A method of retaining objects, each object having a data

value indicative of the visual representation of the object and
a Z-value, said Z-buffer including a first object having a first
data value and first Z-value, said method comprising the
steps of:

a) receiving a second object having a second data value
and second Z-value;

b) generating a second tag for said second object;
c) storing said second object and said second tag in said

Z-buffer;
d) receiving a third object causing an overflow, said third

object having a third data value and a third Z-value
equal to said second Z-value;

e) generating a fourth object, said fourth object having a
fourth data value comprising a composite blend of said
first and second data values, said fourth object being
stored in said Z-buffer with a fourth tag;

f) resubmitting said third object;
g) receiving said third object;
h) generating a third tag for said third object, and
i) storing said third object and said third tag in said

Z-buffer responsive to comparing said fourth tag and
said third tag.

2. The method of claim 1 wherein said first object is stored
with a first tag.

3. The method of claim 1 wherein said second object is
received at a first time, and after step e) and prior to stepf),
performing the following steps:

resubmitting said second object;
receiving said second object at a second time;
generating said second tag for said second object;
discarding said second object responsive to comparing

said second tag and said fourth tag.
4. The method of claim 3 wherein a value of said fourth

tag is greater than a value of said second tag.
5. The method of claim 1 wherein said first object is

marked as a composite, and said first object is not resub
mitted.

6. The method of claim 1 wherein said Z-buffer includes
a plurality of layers, wherein each layer of said plurality of
layers is for storing an object, and wherein said fourth object
is stored in a first layer.

7. The method of claim 1 wherein said Z-buffer includes
storage locations for four objects, said Z-buffer including a
fifth object and a sixth object, and said fourth object includ
ing a composite of said first, second, fifth, and sixth objects.

8. The method of claim 7 wherein said fifth and sixth
objects are resubmitted.

10

15

20

30

35

40

45

50

55

60

65

18
9. The method of claim 1 wherein said Z-buffer is a

scanline Z-buffer.
10. The method of claim 1 wherein said first object and

said second object are not opaque.
11. The method of claim 1 wherein said second tag

includes a representation of 0 and said third tag includes a
representation of 1.

12. A method of retaining objects, having equal Z-values
in a Z-buffer, said method comprising the steps of:

detecting an overflow responsive to receiving a first object
having a first data value, said Z-buffer storing a plu
rality of objects, each object of the plurality of objects
having a corresponding data value, and a corresponding
Z-value, said first object having a Z-value equal to the
corresponding Z-value of one object of said plurality of
objects;

compositing said stored plurality of objects to generate a
composite object responsive to said overflow, said
composite object having a composite data value equal
to a composite blend of the corresponding data values
of the stored plurality of objects, and a composite tag
equal to a second tag, said second tag corresponding to
a second object of said plurality of objects;

resubmitting all objects to be sorted, responsive to said
overflow;

generating a first tag being not equal to said composite
tag, responsive to re-receiving said first object,

storing said first object and said first tag in said Z-buffer,
responsive to comparing said first tag and said com
posite tag.

13. The method of claim 12 wherein each object of said
plurality of objects is stored with a corresponding tag, and
wherein said all objects to be sorted include said second
object and said first object.

14. The method of claim 13 wherein said second object's
Z-value equals said first object's Z-value, generating a first
tag includes the steps of:

generating said first tag not equal to said composite tag
responsive to determining said first object's Z-value is
equal to said composite object's Z-value.

15. The method of claim 14 wherein said first tag has a
value greater than said composite tag.

16. The method of claim 15 wherein after resubmitting all
objects to be sorted, the following steps are performed:

said second object is re-received;
generating said second tag for said second object, and
said second object is discarded responsive to determining

said second tag is equal to said composite tag.
17. The method of claim 16 wherein said Z-buffer

includes a plurality of layers, and wherein detecting said
overflow responsive to receiving said first object includes
the following steps:

determining said second object is in a last layer of said
Z-buffer, and

determining said second object has a Z-value equal to said
first object.

18. The method of claim 16 wherein said objects to be
sorted are supplied through a pipeline by an object access
control circuit, wherein said compositing is performed by a
compositing circuit coupled to said object access control
circuit, and wherein said resubmitting all objects to be sorted
is performed by said object access control circuit by re
assessing said all objects to be sorted and providing said all
objects to be sorted to said pipeline.

19. The method of claim 18 wherein said all objects are
provided to said pipeline in a predetermined order.

5,583,974
19

20. An apparatus comprising:
a memory for storing a plurality of objects each object

having a corresponding data value;
a Z-buffer, coupled to said memory, for storing objects

received from said memory;
an overflow detection circuit, coupled to said Z-buffer, for

detecting an overflow condition and asserting an over
flow;

a compositing circuit, coupled to said Z-buffer, for gen
erating a composite object responsive to said overflow,
said composite object corresponding to all objects
stored in said Z-buffer when said overflow occurs and
having a composite data value equal to a composite
blend of the corresponding data values of the objects
stored in the Z-buffer, said compositing circuit further
for causing said Z-buffer to store said composite object
with a first tag corresponding to a Z-value of one of said
objects stored in said buffer when said overflow occurs,
and

a tag generating circuit, coupled to said Z-buffer, for
generating a different tag for each of said plurality of
objects having a Z-value equal to another of said
plurality of objects.

21. The apparatus of claim 20 further comprising an
pipeline control circuit coupled to said memory and said
Z-buffer, said pipeline control circuit for providing said
plurality of objects to said Z-buffer, and said pipeline control
circuit for resubmitting said plurality of objects responsive
to said overflow.

22. The apparatus of claim 20 wherein said overflow
detection circuit detects an overflow when said Z-buffer is
full and a received object cannot be discarded.

23. The apparatus of claim 20 further comprising a
comparison circuit, coupled to said tag generating circuit,
for comparing a Z-value of a received object with a Z-value
of an object stored in said Z-buffer, said comparison circuit
further for discarding a received object responsive to the
result of a comparison.

24. The apparatus of claim 23 where said comparison
circuit causes a received object to be discarded if the Z-value
of said received object is greater than the Z-value of the
object stored in the last layer of the Z-buffer

resubmitting said second object;
receiving said second object a second time;
generating said second tag for said second object;
discarding said second object responsive to comparing

said second tag and said fourth tag.
25. The apparatus of claim 20 wherein said plurality of

objects comprises objects to be sorted for rendering a
scanline.

26. A method comprising the steps of:
a) receiving a first object having a first data value and a

first Z-value;
b) assigning a corresponding first tag to said first object;
c) storing said first object with said first tag in a Z-buffer;
d) receiving a second object having a second data value

and a second Z-value;
e) assigning a corresponding second tag to said second

object;
f) storing said second object with said second tag in said

Z-buffer;
g) receiving a third object having a third data value and a

third Z-value where said third Z-value equals said first
Z-value, said third object causing an overflow;

5

10

15

20

25

30

35

40

45

50

55

60

65

20
h) compositing objects stored in said Z-buffer to generate

a fourth object having a fourth data value equal to a
composite blend of data values of objects stored in the
Z-buffer;

i) generating a fourth tag corresponding to said fourth
object, said fourth tag being equal to said first tag, and

j) resubmitting said first, second and third objects to said
Z-buffer, including the steps of
receiving said third object,
assigning a third tag to said third object, wherein said

third tag is not equal to said fourth tag, and
storing said third object with said third tag in said

Z-buffer.
27. The method of claim 26 further comprising the steps

of wherein said resubmitting said first, second, and third
objects to said Z-buffer includes:

receiving said first object,
assigning said first tag to said first object;
comparing said first tag with said fourth tag, and as a

result, discarding said first object;
receiving said second object;
assigning said second tag to said second object, and
comparing said second tag with said fourth tag, and as a

result, discarding said second object.
28. The method of claim 27 wherein said Z-buffer

includes locations to store four objects.
29. The method of claim 27 wherein said fourth tag

represents a 0 and said third tag represents a 1.
30. A method of retaining objects having equal Z-values

in a Z-buffer, said method comprising the steps of:
storing a first object, a second object, and a third object in

said Z-buffer, said first object having a first data value
and a first Z-value, said second object having a second
data value and and a second Z-value, said third object
having a third data value and a third Z-value, none of
said first, second and third Z-values being equal;

receiving a fourth object causing an overflow, said fourth
object having a fourth data value and a fourth Z-value,
said fourth Z-value being equal to said third Z-value;

compositing all objects in said Z-buffer not having a
Z-value equal to said fourth Z-value to generate a fifth
object having a fifth data value equal to a composite
blend of data values of objects in the Z-buffer, said fifth
object having a Z-value not equal to said third Z-value;

resubmitting said third and fourth objects;
receiving said third object;
storing said third object in said Z-buffer;
receiving said fourth object, and
storing said fourth object in said Z-buffer.
31. The method of claim 30 wherein said Z-buffer

includes four storage locations, said method including the
step of storing a sixth object in said Z-buffer, said sixth
object having a sixth data value and a Z-value not equal to
said first, second, third, or fourth Z-values, and wherein said
step of compositing all objects includes compositing said
sixth object.

32. The method of claim 30 wherein said step of resub
mitting said third and fourth objects includes resubmitting
said first and second objects.

33. The method of claim 30 wherein none of said first,
second, third or fourth objects are opaque.

34. The method of claim 30 wherein said second Z-value
is greater than said first Z-value and said fifth Z-value equals
said second Z-value.

5,583,974
21

35. The method of claim 34 wherein said third Z-value is
greater than said second Z-value.

36. The method of claim 30 wherein said fifth object is a
composite.

37. The method of claim 30 wherein after the step of
resubmitting said third and fourth objects, said fourth object
is received before said third object.

38. The method of claim 30 wherein after the step of
resubmitting said third and fourth objects, said third object
is received before said fourth object.

39. The method of claim 30 wherein said first, second, and
third objects are required by a rendering circuit to render a
scanline.

40. An apparatus for retaining objects having equal Z-val
ues in a Z-buffer, said apparatus comprising:

a memory for storing a plurality of objects to be sorted,
each object having a corresponding data value,

a Z-buffer, being coupled to said memory, having a
plurality of storage locations for storing a first subset of
said plurality of objects;

an overflow detect circuit, being coupled to said Z-buffer,
for detecting an overflow responsive to a receiving a
first object, said first object having a first data value and
a first Z-value;

a compositing circuit, being coupled to said Z-buffer, for
compositing a first subset of objects of said first subset
to generate a composite object responsive to detecting
said overflow said composite object having a composite
data value equal to a composite blend of corresponding
data values of the first subset of objects, said compos
iting circuit further for causing said Z-buffer to store
said composite object, said composite object having a
composite Z-value not equal to said first Z-value, said
composite Z-value being equal to a Z-value of an object
in said subset of objects;

a comparison circuit, being coupled to said Z-buffer, for
generating a compare result by comparing the Z-value
of each received object to the Z-values of objects in
said first subset, and for causing a received object to be
discarded if said compare result includes a first value,
and for causing a received object to be stored in said
Z-buffer if said compare result includes a second value.

41. The apparatus of claim 40 wherein said Z-buffer
includes four storage locations.

42. The apparatus of claim 40 wherein said overflow
detect circuit detects an overflow if said first object cannot
be discarded and said Z-buffer is full.

10

15

20

25

30

35

40

45

22
43. The apparatus of claim 40 wherein said first subsubset

of objects includes all objects not having Z-values equal to
said first Z-value.

44. The apparatus of claim 40 wherein said composite
object is stored in the first storage location of said Z-buffer
and wherein said first subset is removed from said Z-buffer
responsive to generating said composite object.

45. The apparatus of claim 40 wherein said first value is
generated when the Z-value of a received object is less than
the Z-value of a composite object stored in said Z-buffer.

46. The apparatus of claim 40 wherein said first subsubset
includes objects having a Z-value not equal to said first
Z-value.

47. A method of retaining graphic objects in a Z-buffer,
each object comprising a data value representative of a
visual representation of the object and a Z-value, said
Z-buffer including a plurality of objects, each having a
Z-value and a data value, said method comprising the steps
of:

d) receiving a new object causing an overflow, said new
object having a new data value and a Z-value equal to
a Z-value of an object of the plurality of objects;

d) generating a composite object, said composite object
comprising a composite data value representative of a
blending of the data values of the plurality of objects
and a composite Z-value representative of the Z-values
of the plurality of objects, said composite object being
stored in said Z-buffer;

e) removing said plurality of objects from the Z-buffer;
f) resubmitting said new object;
g) receiving said new object; and
i) storing said new object in said Z-buffer.
48. The method as set forth in claim 47, wherein the

overflow occurs when the Z-buffer is full.
49. The method as set forth in claim 47, wherein step (e)

comprises the steps of:
(i) resubmitting each of the plurality of objects; and
(ii) for each object of the plurality of objects,
generating a tag, and
discarding said object responsive to comparing said gen

erated tag and said composite tag.

ck k ck sk. k.

