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Fig. 1 
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Fig. 2 
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Fig. 6 
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COMPUTER GRAPHICS SYSTEM HAVING 
HIGH PERFORMANCE MULTIPLE LAYER 

Z. BUFFER 

This application is a continuation-in-part of patent appli 
cation Ser. No. 08/060,299 filed on May 10, 1993, aban 
doned in favor of a continuation Ser. No. 08/479,827, 
pending, for "Computer Graphics System Having High 
Performance Multiple Layer Z-Buffer,' by, Stephanie L. 
Winner and Michael W. Kelley. 

BACKGROUND OF THE INVENTION 

1. Field of Invention 
The present invention pertains to the field of computer 

graphics display systems. More particularly, the present 
invention relates to an apparatus and method for a high 
performance multiple layer Z-buffer in a computer graphics 
display system. 

2. Description of Related Art 
One area in which computer systems are finding increased 

application is in that of the graphical arts. Technological 
advances in the speed, processing power, and memory of 
computers coupled with lower costs have made them ideally 
suited for use in graphical display systems. Computer gen 
erated displays enable users to visualize two and three 
dimensional objects. Users can group the information con 
tent of a graphical display much more effectively than if the 
same information were to be presented in other formats. A 
picture is worth a thousand words. 

Furthermore, computer graphics also provide a natural 
and fluid interaction between the computer and a user. 
Changes to a display are input to the computer which then 
effectuates those desired changes by modifying the display 
accordingly. This process provides a convenient vehicle for 
modeling, predicting, and experimenting with various 
events. And with the development of high resolution display 
screens, increasingly complex geometric objects can be 
rendered with greater precision and clarity. Some examples 
of computer graphics applications include flight simulators 
for training pilots, computer aided design for aiding engi 
neers and architects, diagnostic medical scanners for doc 
tors, animated pictures in movies and video games, etc. 

Basically, a computer graphics system can be broken into 
three components: a frame buffer, a monitor, and a display 
controller. The frame buffer is a digital memory for storing 
the image to be displayed as a series of binary values. The 
monitor is comprised of a screen having an array of picture 
elements, known as pixels. Each pixel represents a dot on the 
screen and can be programmed to a particular color or 
intensity. Thousands of individual pixels so programmed are 
used to represent a displayed image. It is these individual 
pixel values which are stored in the frame buffer. A display 
controller is an interface used for passing the contents of the 
frame buffer to the monitor. The display controller reads the 
data from the display buffer and converts it into a video 
signal. The video signal is fed to the monitor which displays 
the image. 

Images are repeatedly rendered into the display over and 
over again, with each new frame representing a new position 
or shape of the image to be viewed. The image must be 
repeatedly sent to the monitor in order to maintain a steady 
picture on the screen. Due to the retentiveness of the human 
eye, the monitor needs to be refreshed at a minimum of 30 
times a second. Otherwise, the display will flicker in a very 
annoying and distracting manner. In today's computer 
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2 
graphics systems, the refresh frequency is typically around 
72 hertz (i.e., 72 times a second). A faster refresh rate 
produces less flicker. Hence, the duration for displaying an 
image is relatively small, approximately /12 of a second or 
14 milliseconds. Given these restraints, it is imperative to 
speed up the graphics drawing process to avoid sluggish 
response times and jerky movements of displayed images. 
Moreover, the faster an image can be drawn, the more 
information which can be provided to the display. This 
results in smoother, more dynamic, and crisper images. 

Typically, a three-dimensional graphics rendering device 
that renders images into the frame buffer also stores addi 
tional information per pixel (e.g., Alpha, Z. etc.), which is 
not required by the frame buffer itself. Alpha values repre 
sent a blending function. Z-values represent a pixel's dis 
tance from the viewer. Typically, small Z-values indicate 
that the object is close to the observer, whereas large 
Z-values indicate that the object is further away. This 
additional Z storage per pixel is typically referred to as a 
Z-buffer. 
By implementing a Z-buffer, usually in the form of 

DRAMs, Z-values can be stored. The Z-buffer contains 
distance information which is used in indicating whether one 
object is displayed in front of or behind another object. In 
most conventional Z-buffers, a Z-sort operation is performed 
by comparing the Z-value of incoming data with the Z-value 
of pre-existing data. If the incoming data is closer (i.e., it has 
a smaller Z-value), the incoming color data replaces the 
pre-existing data in the frame buffer, and the old Z-value is 
replaced by the new Z-value. Otherwise, the incoming dam 
is discarded. When there is no more incoming data, the 
Z-sort is complete, and the contents of each frame buffer? 
Z-buffer location represents the final color/intensity for that 
particular pixel. 
The Z-sort operation is rather straightforward if all of the 

objects represented by the data are opaque. However, if the 
object in the buffer is not opaque, it is necessary to retain 
information about the data which is discarded in order to 
determine the final color intensity of a pixel. To avoid the 
loss of the data, many Z-buffer systems require that all of the 
non-opaque data be rendered after all opaque data has been 
rendered and that the non-opaque data be rendered in Z 
sorted order (e.g., closest to furthest). Any non-opaque 
objects which are behind the opaque object in the buffer are 
discarded. The remaining non-opaque objects are compos 
ited with the data in the frame buffer and the result is stored 
in the frame buffer so that no requisite information is lost. 
The composite represents a combination of a data from 
non-opaque objects. For example, if a blue non-opaque 
object is composited with a red non-opaque object, the 
resulting composite object may appear mostly blue, mostly 
red, or purple. Since the compositing operation must be 
performed in a specific Zorder, the non-opaque objects must 
be arranged by Z-depth (i.e., either closest to furthest or 
furthest to closest) before being compared with the Z-value 
of the data in the buffer. 

Unfortunately, this method of rendering non-opaque 
objects has a number of shortcomings. Sorting the non 
opaque objects by Z-value is computationally expensive. 
Also, this method does not render interpenetrating non 
opaque objects correctly; these must be explicitly tested for, 
and specially processed, further increasing computation. 
Consequently, performing the Z sort process reduces the 
amount of time left to actually draw the images which 
detrimentally impacts the overall display process. 

Other systems have been proposed to solve the problem of 
rendering non-opaque objects which avoid these shortcom 
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ings. These systems usually store more than one Z and color 
value per pixel, allowing some number of the closest non 
opaque objects to be saved, and then composited later. 
However, these systems require a greatly increased number 
of Z-buffer RAM accesses necessary to maintain and sort the 
multiple Z-values per pixel. This increases the bandwidth 
requirements of the Z-buffer memory, reducing performance 
and/or increasing cost. However, an advantage of this 
method is that it defers compositing until after the per pixel 
Z sort is complete, which improves performance by avoid 
ing unnecessary compositing of objects which are later 
obscured by a closer object. 

Therefore, there is a need in prior art computer graphics 
systems for an apparatus or method which is capable of 
minimizing the time required to perform Z operations. It 
would be preferable if such an apparatus or method could 
defer compositing until after Z sort is completed without 
losing the data necessary for compositing non-opaque 
objects. It would also be highly preferable if such a mecha 
nism could minimize the number of DRAM accesses. 

SUMMARY OF THE INVENTION 

A method and apparatus for retaining objects, having 
equal Z-values, in a Z-buffer is described. The present 
invention can be applied to computer graphics systems. A 
multiple layer Z-buffer containing Z values for each of the 
pixels is controlled according to the values in two registers 
which are instanced for each pixel. One register, referred to 
as the ActiveLayers register, contains a value indicating how 
many of the layers are occupied with potentially visible 
object data. The other register, referred to as the Layer 
Pointer register, contains pointer values indicating the 
memory location to which the data for each layer is stored. 

After one frame has completely rendered, the ActiveLay 
ers register is initialized to 0. The first incoming object 
increments the ActiveLayers register. If a subsequent incom 
ing object falls behind an opaque object it is discarded, 
regardless of whether it is opaque or not. If the subsequent 
incoming object is opaque (and is not hidden), the Active 
Layers register is decremented once for each pre-existing 
object which becomes hidden behind the incoming opaque 
object. The ActiveLayers register is then incremented to 
reflect the incoming opaque object. Otherwise, if a subse 
quent incoming object is non-opaque (and is not hidden), the 
ActiveLayers register is incremented. 
The LayerPointer register contains a number of pointers 

equal to the number of layers being implemented. Each 
pointer specifies a unique address. If an incoming object is 
hidden behind a pre-existing opaque object, the incoming 
object is discarded, and the LayerPointer register remains 
unchanged. Otherwise, the layer wherein the incoming 
object should be inserted is determined. This determination 
is based on the incoming object's Z-value relative to those 
Z-values already existing in the buffer. The opacity of the 
incoming object affects the ActiveLayers register. The data 
of the incoming object is written to the address specified by 
a pointer. The pointers are then adjusted accordingly. 

In one embodiment, the incoming data is written to the 
address specified by the pointer corresponding to the last 
layer. The InsertLayer for the incoming data is determined. 
The pointer from the last layer is inserted in the InsertLayer. 
All the pointers of those layers following that of the Insert 
Layer is shifted one place to the right. The pointers to the left 
of the InsertLayer remains unchanged. Manipulating the 
values in the ActiveLayers and LayerPointer registers opti 
mizes the Z-buffering process. 
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4 
Another embodiment implements a method and apparatus 

for retaining objects having equal Z-values. In this embodi 
ment, objects are assigned a tag as they are received. The 
tags are assigned according to how many previous received 
objects have the same Z-value. An overflow in the Z-buffer 
causes the objects in the Z-buffer to be composited. The 
composite object is given the Z-value and tag of the object 
in the last layer of the Z-buffer. The overflow causes the 
objects to be resubmitted. The object, causing the overflow, 
can then be stored in the Z-buffer. 

Another embodiment of the present inventions imple 
ments a method and apparatus for retaining objects having 
equal Z-values where the objects are not necessarily resub 
mitted in the same order. When an overflow occurs, the 
objects stored in the Z-buffer having a Z-value equal to the 
object that caused the overflow, are discarded. The compos 
ite object is then made from the remaining objects in the 
Z-buffer. The objects are then resubmitted to the Z-sort 
circuit. 

Although a great deal of detail has been included in the 
description and figures, the invention is defined by the scope 
of the claims. Only limitations found in those claims apply 
to the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example, 
and not limitation, in the figures. Like references indicate 
similar elements. 

FIG. 1 illustrates a computer system upon which an 
embodiment of the present invention can be implemented. 

FIG. 2 is a block diagram showing a graphics system 
using scanline Z-buffering. 

FIG. 3 illustrates how various combinations of received 
objects are managed. 

FIG. 4 illustrates an example of how the ActiveLayers and 
LayerPointer registers operate for six consecutive incoming 
objects. 

FIG. 5 illustrates one apparatus for maintaining the Lay 
erPointer register. 

FIG. 6 is a flowchart illustrating one method for perform 
ing a Z-sort operation. 

FIG. 7a is a flowchart showing a Z-sort method employ 
ing an infinite curtain. 

FIG. 7b illustrates how objects having equal Z-values 
may be discarded. 

FIG. 8 is a flowchart of a method of managing objects 
having equal Z-values. 

FIG. 9 illustrates how some types of received objects are 
managed where the objects are resubmitted in the same 
order. 

FIG. 10 is a flowchart showing a second method for 
managing objects having equal Z-values. 

FIG. 11 illustrates how some types of received objects are 
managed where the objects are resubmitted not necessarily 
in the same order. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

Overview 

A high performance multiple layer Z-bufferin a computer 
graphics system is described. In the following description, 
for the purpose of explanation, numerous specific details 
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such as registers, bit lengths, number of layers, etc., are set 
forth in order to provide a thorough understanding of the 
present invention. It will be apparent, however, to one 
skilled in the art that the present invention may be practiced 
without these specific details. In other instances, well-known 
structures and devices are shown in block diagram form in 
order to avoid unnecessarily obscuring the present inven 
tion. 

Computer System 

Referring to FIG. 1, a computer system upon which an 
embodiment of the present invention can be implemented is 
shown as 100. Computer system 100 comprises a bus 101 
for the internal transmission of digital data. A central pro 
cessing unit 102 for processing digital data is coupled with 
bus 101 for processing information. Furthermore, a number 
of co-processors 103 can be coupled onto bus 101 for 
additional processing power and speed. 
Computer system 100 further comprises a random access 

memory (RAM) 104 (referred to as main memory) which is 
also coupled to bus 101. Main memory 104 is used in storing 
information and instructions which are executed by proces 
sor 102. Main memory 104 also may be used for storing 
temporary variables or other intermediate information dur 
ing execution of instructions by CPU 102. Computer system 
100 also comprises a read only memory (ROM) or some 
other type of static storage device 106. ROM 106 is coupled 
to bus 101 and is used to store static information and 
instructions for processor 102. A data storage device 107 
(e.g., a hard disk drive, floppy disk drive, etc.) drive can be 
coupled to bus 101 for storing information and instructions. 

Also coupled to bus 101 is hardware graphics accelerator 
108, frame/Z-buffers 109, and display controller 110. Hard 
ware graphics accelerator 108 is designed to accelerate 
interactive 3D graphics software extensions. It comprises an 
ASIC, a static RAM cache, and texture mapping RAM. 
Accelerator 108 outputs a high bandwidth pixel stream to 
frame/Z-buffer 109. Simultaneously, the host CPU 102 
generates the signal containing the primitives which are 
input to and rendered by accelerator 108. Display controller 
110 interfaces computer system 100 to a display device 121. 
One example of a display device 121 is a cathode ray tube 

(CRT) used for displaying information to a computer user. 
An alphanumeric input device 122, such as a keyboard, may 
also be coupled to bus 101, as well as a cursor control device 
123. A cursor control device 123 is used for controlling 
cursor movement on display device 121. This input device 
typically has two degrees of freedom in two axes, a first axis 
(e.g., x) and a second axis (e.g., y) which allows the device 
to specify any position in a plane. In one embodiment of the 
present invention, a three-dimensional cursor having a third 
degree of freedom in a Z-axis is used. Some examples of a 
cursor control device 123 include a mouse, joystick, track 
ball, touch pad, a pen etc. 
The present invention can be applied equally to conven 

tional screen Z-buffering as well as scanline Z-buffering 
techniques. In screen Z-buffering, the state information 
necessary for rendering a pixel is stored for every pixel on 
the screen. Each object to be rendered is transformed and 
rasterized independently. Conventional screen Z-buffering 
techniques often involve very high bandwidths plus large 
quantities of fast memory and are often coupled with sophis 
ticated caching and prefetching mechanisms. In comparison, 
scanline Z-buffering presorts the object database in screen 
space and renders each scanline individually. One scanline 
of pixel state information is kept. 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
Graphics System Using Scanline Z-Buffering 

FIG. 2 is a block diagram showing a graphics system 
using scanline Z-buffering. The host CPU 201 is used for 
transformation, shading, and active list maintenance. Scan 
line rasterizer 202 performs shading and hidden surface 
removal via a Z-buffer 203, shadow volumes, and alpha 
blending 204. The rasterizer 202 intersects polygons trans 
ferred from the active polygon list with the scanline and 
generates a series of horizontal spans. The resulting spans 
are rasterized. Furthermore, hidden surface removal, shadow 
plane tests, and alpha blending are performed. Rendering 
begins when the CPU 201 traverses the 3D database and 
generates transformed, projected, clipped, and shaded poly 
gons. The polygons are bucket sorted by the number of the 
first scanline on which they first become active. Once the 
main database traversal is complete, the host traverses the 
bucket sorted list in screen Y order, maintaining an active 
polygon list which is transferred into the rasterizer 202 for 
rendering into RGB frame buffer 205. 

Z-values are typically represented as a floating point 
number with a 23-bit fractional normalized mantissa and an 
8-bit exponent. There is also a one bit tag which is asserted 
if the object is frontfacing. If during the comparison the two 
Z-values are equal, it is necessary to determine if incoming 
object is frontfacing. There is a flag in the object data which 
is designed for this purpose. If the incoming object is 
frontfacing it is considered to be in front of the object which 
is in the buffer. In another implementation the inverse of the 
front-facing tag is appended as the first bit position of the 
Z-value, effectively increasing the Z-value resolution. When 
the Z-values of two objects are equal, except for the front 
facing tag, the object which has the tag asserted will be less 
than the object which does not have the tag asserted. In the 
present embodiment, the Z-buffer is comprised of multiple 
layers and multiple pixels for handling opaque as well as 
non-opaque objects. Although any number of layers and 
pixels can be implemented with the present invention, eight 
layers and eight pixels are used in an embodiment. In 
another embodiment, only four layers are used. 
The Z-value of incoming data for a particular pixel is 

compared with each layer in the buffer until it is determined 
where or whetherit should be placed in the buffer. There are 
two registers, an ActiveLayers register and a LayerPointer 
register associated with each pixel for optimizing the sorting 
process. The ActiveLayers register indicates how many of 
the layers are occupied with potentially visible object data. 
Because non-opaque objects are supported, it is not known 
whether an object is visible until after the compositing 
operation is completed. The LayerPointer register indicates 
in which memory location the data for each layer is to be 
stored. 
The operation of these two registers are now described in 

detail. The ActiveLayers register is first initialized to zero. 
When the first object is received it is written into the layer 
of the Z-buffer as indicated by the ActiveLayers register. 
Since the ActiveLayers register had been initialized to zero, 
the first object is thereby written to Layer 0, the ActiveLay 
ers register is incremented by one. When a successive 
incoming object is received its value is compared with the 
Z-value of the object in layer 0. The opacity of the incoming 
object only affects the ActiveLayers register and not the 
LayerPointer register nor the Z-buffer. Whether the incom 
ing object is written is determined by the opacity of objects 
in the buffer and overflow. Its write location is determined by 
the relative Z-values. 

Examples of Managing Received Objects 
FIG. 3 shows various different combinations of how 

incoming opaque and non-opaque objects are handled. 
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Examples of each possible combination are given illustrat 
ing how the objects are assigned to the different layers along 
with the corresponding changes made to the ActiveLayers 
register. In example 1, the ActiveLayers registeris initialized 

8 
By implementing an ActiveLayers register, only those 

layers which contain potentially visible objects are com 
pared during the sort operation. Note that without using an 
ActiveLayers register or its equivalent, incoming data would 
be required to be checked against all eight layers. Reading to a value of zero after completion of rendering. Whenever 5 

an incoming object 301 is received, it is written into the layer and writing the object data is costly in terms of speed since 
designated by the ActiveLayers register. In example 1, the it requires accessing the Z-buffer DRAM. Note that typical 
first object is opaque and is written into layer 0. The prior art Z-buffers only have one layer, two at the most, so 
ActiveLayer register is then incremented by one (i.e., incre- only one or two reads are required to complete the sort 
mented from 0 to 1). In example 2, a second incoming object 10 operation. Multiple layers complicate the Z-sort operation, 
302 is received. Object 302 is opaque and has a smaller but are necessary to defer the compositing operation and to 
Z-value than object 301 (i.e., object 302 is closer to the eliminate the need for ordering the non-opaque data. 
viewport than object301). The incoming data corresponding The ActiveLayers register also simplifies the removal of 
to object 302 is written to layer 0. The contents of the obstructed objects from the Z-buffer. If any object falls 
ActiveLayers register remains unchanged (i.e., it remains set 15 behind an opaque object, it must be removed from the buffer 
at 1). Note that the data corresponding to object301 has been which requires that the RAM be written. Instead of writing 
effectively overwritten. It still exists in the Z-buffer RAM; the RAM, the value in the ActiveLayers register is adjusted 
only the LayerPointer register changes. Hence, if the incom- to reflect the new condition. 
ing object falls behind a pre-existing opaque object, the Furthermore, an ActiveLayers register saves time by 
incoming object is "hidden' behind the opaque object and 20 eliminating the need to initialize each of the eight layers to 
can thereby be discarded. the maximum Z-value (i.e., infinity). Rather, after each 
Example 3 illustrates the events occurring if the second frame has been completely rendered, the ActiveLayers reg 

incoming object 302 has a greater Z-value than object 301 ister is reset to zero. In typical prior art Z-buffers, all of the 
which resides in layer 0. Since object302 is "hidden' behind Z-values would have to be written to the maximum value 
opaque object 301, its incoming value can be safely dis- 25 and to a transparent object data. 
carded. Everything else remains the same. In example 4, the In addition to the ActiveLayers register, a second, Lay 
incoming object 303 is non-opaque and has a smaller erPointer register, is implemented to minimize Z-buffer 
Z-value. Hence, the data corresponding to object 301 is DRAM accesses. The LayerPointer register contains a num 
moved so as to correspond to layer 1, and the incoming data ber of pointers equal to the number of layers being used. In 
is written to layer 0. The ActiveLayers register is incre- 30 one embodiment, eight 3-bit pointers are used. A pointer 
mented to 2. In example 5, the incoming non-opaque object specifies a unique address of an object's data corresponding 
has a larger Z-value. Consequently, its incoming data is to each of the eight layers. The rust pointer corresponds to 
discarded. layer 0. The second pointer corresponds to layer 1. Each 

Referring to examples 6-9, the pre-existing object 304 is successive pointer corresponds to each successive layer, up 
non-opaque. In example 6, an incoming object 305 is opaque 35 to layer 7. 
and has a smaller Z-value. Hence, the incoming data is By utilizing these pointers in the LayerPointer register, 
written to layer 0 and the data associated with object 304 is the movement of an object from one layer to another can 
discarded. If the incoming opaque object 305 has a larger essentially be simulated without actually reading from and 
Z-value, its data corresponds to layer 1; the ActiveLayers writing to the Z-buffer. The present invention does not 
register is incremented to 2; and the data corresponding to require reading the data of the pre-existing object, writing it 
object 304 remains stored in layer 1, depicted in example 7. into another layer, and then writing the incoming object's 

Example 8 illustrates the events which occur when the data into the lust layer. Instead, one embodiment of the 
incoming object is non-opaque and has a smaller Z-value. present invention accomplishes the same result by manipu 
Under such circumstances, the data corresponding to pre- 45 lating pointer values. In an embodiment, the lowest pointer 
existing object 304 is moved to layer 1; the incoming data (i.e., the one corresponding to layer 7) is used to specify the 
is written to layer 0, and the ActiveLayers register is address of an incoming object being written into the 
incremented by one to 2. In example 9, the incoming Z-buffer. In other words, the incoming data is written to the 
non-opaque object 306 has a larger Z-value. Consequently, address specified by the pointer corresponding to layer 7. 
the incoming data is changed to correspond to laver 1 and 
the AE register E. 2. 1 below 50 Register Operation Examples 
lists the eight different possible scenarios associated with an FIG. 4 shows an example of how the ActiveLayers and 
incoming object. LayerPointer registers of one embodiment of the present 

TABLE 1 

Pre-existing Z-value of 
Object in Layer Incoming Incoming ActiveLayers 
0 Object Object Layer 0 Layer 1 Register 

Opaque Opaque Smaller Object - 
Opaque Opaque Larger Object - 1. 
Opaque Non-opaque Smaller Object Object 2 
Opaque Non-opaque Larger Object - 1 
Non-opaque Opaque Smaller Object - 
Non-opaque Opaque Larger Object Object 2 
Non-opaque Non-opaque Smaller Object Object 2 
Non-opaque Non-opaque Larger Object Object 2 
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invention operate for six consecutive incoming objects. 
Once the rendering of a frame has been completed, the 
ActiveLayers register is initialized to 0 and the LayerPointer 
register is set so that each pointer specifies a unique address. 
Note that the pointers need not be specified in any sequential 
order, but each pointer must specify a unique address. In the 
example, the eight 3-bit pointers are initialized to the fol 
lowing addresses: 7, 6, 5, 4, 3, 1, and 0 corresponding to 
layers 0-7, respectively. 
The first incoming object 401 is opaque and has a Z-value 

of 15. The pointer corresponding to layer 7 specifies an 
address of 0. Since it is the first object, the data should be 
inserted in layer 0. The ActiveLayers register is incre 
mented. A barrel shift-right by one place is performed on 
layers 0-7 of the LayerPointer register. Hence, the Active 
Layers register becomes 1, and the contents of the Layer 
Pointer register becomes 0, 7, 6, 5, 4, 3, 2, and 1. Note that 
the incoming data stored in address 0 now appropriately 
resides in layer 0. 
A second incoming object 402 is opaque and has a 

Z-value of 10. Its data is written to the address specified by 
the pointer of layer 7. In this case, the data is written to 
address 1. The Z-values of object 402 is compared with that 
of object 401. Since object 402 is opaque and has a smaller 
Z-value than object 401, object 401 is hidden behind object 
402. Consequently, the incoming data should be inserted in 
layer 0. The ActiveLayers register remains unchanged. A 
barrel shift-right is performed on layers 0-7 of the Layer 
Pointer register, such that it becomes 1, 0, 7, 6, 5, 4, 3, and 
2. Note that the pointer of layer 0 correctly specifies the 
address containing the data of object 402. Note also that the 
data of object 401 still resides in address 0, but since the 
ActiveLayers register only specifies one layer, this data is 
rendered meaningless. 
The third incoming object 403 is non-opaque and has a 

Z-value of 8. The data of object 403 is written to address 2, 
as specified by the pointer of layer 7. Object 403 is in front 
of object 402 because its Z-value of 8 is less than the Z-value 
of 10 for object 402. Consequently, the incoming data 
should be inserted in layer 0. Since object 403 is non 
opaque, the data corresponding to object 402 must still be 
maintained. Thus, ActiveLayers register is incremented. A 
barrel shift-right operation is performed for layers 0-7 of the 
PointerLayer register. The LayerPointer register now reads 
2, 1, 0, 7, 6, 5, 4, and 3. The result is that the ActiveLayers 
register specifies two layers (i.e., layers 0 and 1 ). The 
pointer in layer 0 correctly specifies address 2, which 
contains the data for object 403, and the pointer in layer 1 
specifies an address of 1, which contains the data for object 
402. 

A fourth incoming object 404 is non-opaque and has a 
Z-value of 9. The pointer of layer 7 specifies an address of 
3. The incoming data is written to that address. Since the 
Z-value of object 403<Z-value of object 404<Z-value of 
object 402, the data of object 404 should be inserted in layer 
1, in-between objects 403 and 402. The data of object 402 
should be altered to correspond to layer 2 while that of 
object 403 should remain layer 0. This is effectuated by 
performing a barrel shift-right operation only for levels 1-7. 
The resulting contents of the LayerPointer register is 2, 3, 1, 
0, 7, 6, 5, and 4. The ActiveLayers register is incremented. 
Thus, the pointers of the first three layers specify addresses 
2, 3, and 1 which respectively correspond to that of objects 
403, 404, and 402. 
The fifth incoming object 405 is non-opaque and has a 

Z-value of 11. Since it falls behind the opaque object 402, 
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10 
the incoming data is discarded. No changes are made to 
either the ActiveLayers or LayerPointer register. 
The sixth incoming object 406 is opaque and has a 

Z-value of 5. Object 406 falls in front of and hides all the 
pre-existing objects 402-404. The incoming data is written 
to address 4 and is inserted to layer 0. A barrel shift-right is 
performed for layers 0-7 of the LayerPointer register, so that 
it reads 4, 2, 3, 1, 0, 7, 6, and 5. Furthermore, the Active 
Layers register is reset to 1. It should be pointed out that 
modifying the ActiveLayers and LayerPointer registers is 
much quicker than accessing the DRAM to write the maxi 
mum Z-value and the transparent alpha value as the registers 
occupy far fewer bits. 

In one embodiment, the incoming object is checked to 
determine whether it falls behind the backmost object of the 
Z-buffer. If it falls behind the backmost object and that 
object is opaque, the incoming data is discarded. If the 
backmost object is not opaque, the incoming data is placed 
behind it, and the ActiveLayers and LayerPointer registers 
are modified accordingly. In this embodiment, only one 
comparison is needed to determine whether the incoming 
data should be discarded. 

Apparatus for Maintaining the LayerPointer 
Register 

FIG. 5 is a circuit diagram illustrating one apparatus for 
maintaining the LayerPointer register 500. Once the layer 
wherein an incoming object's data is to be inserted (i.e., the 
InsertLayer) is determined, the Rotate and Insert signals are 
generated according to Table 2 below. 

TABLE 2 

Insert 
Layer Rotate Insert 

O 0x7F 0x80 
1. 0x3F 0 x 40 
2 0 x 1 F 0 x 20 
3 Ox OF 0 x 10 
4 0x07 0x08 
5 0x03 0x04 
6 OXO1 0x02 
7 0x00 OXO1 

The upper multiplexers 501-508 are used to rotate the 
pointers, especially for those situations wherein the incom 
ing object is placed in front of other pre-existing objects in 
the Z-buffer. The rotate operation is performed by a barrel 
shift-right. The barrel shift-right is executed according to the 
8-bit digital Rotate signal on line 521. Each of the eight bits 
controls each of the eight multiplexers 501-508. In other 
words, control bit 0 of the Rotate signal controls multiplexer 
501; bit 1 controls multiplexer 502; etc. The control bit 
selects which of the two inputs to a multiplexer is to be 
output. Note that LayerPointer register 500 has eight layers 
and three bits per layer, for a total of 24 bits. Each multi 
plexer has two 3-bit inputs supplied by the LayerPointer 
register. If the control bit is a 0, the three bits corresponding 
to a particular pointer is selected for output on line 523. 
Conversely, if the control bit is a 1, the three successive next 
significant bits are selected for output on line 524. For 
example, if control bit 0 is a 0, bits 0-2 of the LayerPointer 
register 500, is selected for output by multiplexer 501. If 
control bit 0 happens to be a 1, bits 3-5 are selected for 
output by multiplexer 501. 
The lower multiplexers 511-518 are used to move the 

pointer associated with layer 7 prior to receipt of incoming 
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data, to the layer which the incoming object data is to be 
inserted. The insert operation is performed according to the 
8-bit digital Insert signal on line 522. Each of the eight 
control bits of the Insert signal controls one of the eight 
multiplexers 511-518. A control bit selects for output one of 
the two input signals to a multiplexer. One input signal is a 
3-bit output from one of the upper multiplexers. The other 
input signal is the three least significant bits of the Layer 
Pointer register 500 (i.e., bits 0-2 which correspond to the 
pointer of layer 7). For example, if control bit 0 of the Insert 
signal is a 0, multiplexer 511 selects the 3-bit output from 
multiplexer 501 for output on line 524. If control bit 0 were 
a 1, multiplexer 511 selects bits 0-2 of the LayerPointer 
register 500 for output on line 524. 
The operation of this LayerPointer circuit is now 

described in reference to the incoming objects depicted in 
FIG. 4 and described above. A reset signal on line 525 
initializes the LayerPointer register 500 to a value of 7, 6, 5, 
4, 3, 2, 1, and 0=111110101100011010001000. When data 
corresponding to object 401 is received, its InsertLayer is 
determined to be 0. Consulting Table 2, an InsertLayer of 0 
translates into a Rotate signal of 0x7F-01111111, and the 
Insert signal is 0x80= 10000000. According to the Rotate 
signal, multiplexer 501 selects bits 3-5 for output; multi 
plexer 502 selects bits 6-8; multiplexer 503 selects bits 
9-11; multiplexer 504 selects bits 12-14; multiplexer 505 
selects bits 15-17; multiplexer 506 selects bits 18-20; 
multiplexer 507 selects bits 21-23; and multiplexer 508 
selects bits 21-23. And according to the Insert signal, 
multiplexers 511-517 select the outputs of multiplexers 
501-507 respectively; multiplexer 518 selects bits 0-2 for 
output. The result is that the pointers for layers 0-6 are 
shifted to the right. The pointer corresponding to layer 7 is 
inserted into layer 0. The resulting contents of the Layer 
Pointer register is 000111110101100011010001=0, 7, 6, 5, 
4, 3, 2, 1. 

General Z-Sort Algorithm 
FIG. 6 is a flowchart showing the operations performed 

during the Z-sort, wherein the contents for the ActiveLayers 
and LayerPointer registers are calculated. In the first opera 
tion, step 601, the LayerCounter is initialized to 0; the RAM 
read address (RAdd) is initialized to LayerPointer 0; and 
the RAM write address (WAdd) is initialized to Layer 
Pointer 7). A determination is then made as to whether the 
ActiveLayers register is 0, step 602. If so, the ActiveLayers 
register is incremented to 1; the InsertLayer is set to 0; and 
ZIn is written into the RAM at the write address. If the 
ActiveLayers register is not 0, the Z-values for each of the 
objects are compared, step 604. If the Z-value of the 
incoming object is closer than the Z-value presently asso 
ciated with layer 0, step 605 is performed. Remember that 
the front-facing tag is included in ZIn (and the RAM data). 
Otherwise, step 609 is executed. 

In step 605, a determination is made as to whether the 
incoming object is opaque. If the incoming object is opaque, 
the ActiveLayers register is set to the LayerCounter plus 1, 
step 606. The InsertLayer is set to the LayerCounter, and ZIn 
is written into the RAM at the write address, step 607. If it 
is determined that the incoming object is not opaque, the 
ActiveLayers register is incremented, step 608. Step 607 
wherein the InsertLayer is set to the LayerCounter and the 
ZIn is written. 

In step 609, the LayerCounter is incremented. A determi 
nation is made as to whether the LayerCounter is equal to the 
ActiveLayers, step 610. If they are equal, this signifies that 
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12 
there are no more Z-values in the RAM for comparison. In 
that case, a determination is made as to whether the object 
in the last layer is opaque, step 611. If the object in the last 
layer is not opaque, step 608 is executed. Otherwise, ZIn is 
not visible, and it is discarded, step 612. 

If the LayerCounter is not equal to the value in the 
ActiveLayers register, it becomes necessary to check the 
Z-buffer to determine whether it is full, step 613. If the 
ActiveLayers register value is equal to the maximum layer 
(e.g., 8), this indicates that the Z-buffer is full. A determi 
nation is then made as to whether the object in layer 8 is 
opaque, step 614. If so, then ZIn is discarded, step 612. 
Otherwise, an overflow condition is asserted, step 615. If, 
however, the value in the ActiveLayers register is not equal 
to the maximum layer, ZIn is compared with the other 
Z-values in the RAM. The read address for the next layer is 
determined by reading the LayerPointer register. ZIn is 
compared with the Z-value read from the RAM using the 
new read address, step 616. Step 604 is then repeated. 

Infinite Curtain 

In one embodiment of the present invention, the Z-buffer 
has only four layers. As the number of layers of a Z-buffer 
decrease, the likelihood that all the non-opaque objects can 
be sorted before a compositing operation is needed 
decreases. For example, if a Z-buffer includes eight layers, 
then eight non-opaque objects can be sorted in the Z-buffer 
before an overflow occurs. The overflow occurs when the 
Z-buffer cannot hold all the needed objects. Where a 
Z-buffer includes only four layers, an overflow is likely to 
occur much more often. Therefore some technique for 
managing an overflow is needed. 

In one embodiment of the present invention, objects in the 
Z-buffer are composited after an overflow occurs. By com 
positing all the non-opaque objects stored in the Z-buffer 
into a single object, the number of layers needed to store a 
representation of those objects is reduced. This frees up 
layers for other objects. In one embodiment, this composite 
object is called an infinite curtain. 

In the following description, a number of references have 
been made to in front, last layer, tag=0.0, etc. However, one 
of ordinary skill in the art would understand, given this 
description, that these references are merely illustrative of 
one embodiment of the present invention. For example, 
another embodiment sorts from back to front and composites 
are inserted in the last layer. In another embodiment, tags are 
represented as bits that are stored directly with the Z-value. 

FIG. 7 is a flowchart illustrating a Z-sort using the infinite 
curtain. In the following description a compare layer relates 
to one of the active layers. 
At step 790, all the active objects for the current pixel are 

submitted. The compare layer is set to 0. At step 792, a test 
is performed to determine whether all the active objects, for 
the present pixel, have been submitted to the sorting circuit. 
Assuming that additional objects need to be processed, step 
793 is executed. At step 793, new object is received. Next, 
at step 701, a test is made to determine whether the first layer 
in the Z-buffer is empty. If the first layer is empty, then step 
702 is executed, wherein the new object data is saved in the 
first layer. Once the data has been saved in the first layer, 
step 792 is executed again. 

However, if there is data, in the first layer, then step 710, 
from step 701, is executed. At step 710, a test is made to 
determine whether the first layer is an infinite curtain layer. 
If not, then step 715 is executed. In step 715, a test 
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determines whether the new object is in front of the object 
in the compare layer. 

If the new object is in front of the compare layer, then step 
730 is executed. Test is made, at 730, to determine the new 
object is opaque. If the new object is opaque, at step 732, the 5 
new object is saved in the compare layer and all the objects 
behind this new object are removed. Next, step 792 is 
executed again to determine whether more objects need to 
be sorted. 

However, at step 730 if the new object is not opaque, then 10 
all the objects behind the new object are moved back a layer, 
at step 735. At step 740, the new object is received in the 
compare layer. At step 745, a determination is made whether 
an overflow has occurred. An overflow occurs when more 
objects can be seen than the Z-buffer can hold. The Z-buffer is 
cannot hold the extra object (i.e. the Z-buffer is full), yet that 
object must be included in the final pixel data. See the 
discussion of FIG. 9 for an example. If no overflow has 
occurred, then step 792 is executed. However, if an overflow 
has occurred, then an overflow flag is asserted, at step 750. 20 

Returning to step 710, if the first layer is an infinite 
curtain, then steps 720-765 are executed. At step 720, the 
sorting circuit determines whether the new object is behind 
the infinite curtain. If the new object is not behind the infinite 
curtain, we know that the object has been composited into 
the infinite curtain and can be discarded. Thus, if the object 
is in front of the infinite curtain, step 792 is executed. 
However, if the new object is behind the infinite curtain, 
then the compare layer is incremented, at step 725. If this is 
the last object to compare in the Z-buffer, at step 727, then 
step 729 is executed. At step 729, it is determined whether 
the last object is opaque. If the last object is opaque, then 
step 792 is executed. Otherwise, step 760 is executed. At 
step 760, it is determined whether the compare layer points 
at the last object to compare. If no more objects can be 
compared, because all of the layers are occupied, then step 
750 is executed, where the overflow flag is asserted. Oth 
erwise, at step 765, the new object is saved in the Z-buffer 
in the first empty layer behind the occupied layers. Then step 
792 is executed again. 

Returning to step 727, if the compare layer is not pointing 
at the last object to compare, then step 715 is executed. At 
step 715, as above, the new object is tested to determine 
whether it is in front of the object in the present compare 
layer. If the new object is not in front of the object to 
compare layer, then the compare layer is incremented, at 
step 725. By repeating steps 725, 727, and 715, the new 
object is tested against each of the objects in the Z-buffer, 
until the new object can be inserted, steps 730-750, or the 
new object is inserted behind all of the objects in the 
Z-buffer, (in the first empty layer behind the occupied layers) 
steps 729-765. 

Returning to step 792, if all of the active objects for the 
present pixel have been submitted to the sorting circuit, then 
step 794 is executed. At step 794, the overflow flag is tested 55 
to determine if an overflow had occurred in the last sort. If 
an overflow has not occurred, then all the objects have been 
sorted for the present pixel. That is the sorting of objects 
affecting a given pixel will be complete. 

However, if an overflow has occurred in the last sort, then 60 
step 796 requires that all the objects in the Z-buffer be 
composited. This composite is called the infinite curtain. The 
infinite curtain is stored in the first layer of the Z-buffer, at 
step 797. Also the infinite curtain is assigned Z-value equal 
to the object in the last layer of the Z-buffer. Next, step 790 65 
is executed to cause all the objects be resubmitted to the 
sorting circuit and the compare layer is set to 0. 
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One benefit of the present embodiment is that an infinite 

curtain can be composited with other objects to form another 
infinite curtain. For example, a first overflow causes a first 
composite. A second overflow, will cause the objects in the 
Z-buffer to be composited. However, the objects in the 
Z-buffer include the first composite. Thus, the second com 
posite object includes the objects composited to form the 
first object. 

Thus, the infinite curtain can be used to sort a number of 
non-opaque objects in the Z-buffer. However, one problem 
occurs where a number of non-opaque objects, having equal 
Z-values, are attempted to be sorted. Given the above 
implementation of the infinite curtain, objects having equal 
Z-values may be discarded and therefore not shown on the 
display. 

FIG. 7b illustrates how objects having equal Z-values 
may be discarded. In the first column, objects received are 
represented. In the next four columns, the status of each 
corresponding layer in the Z-buffer is represented. This is 
the status of each layer after the object in the first column has 
been processed by the Z-buffer. 
At 7000, the Z-buffer is initialized. At 7010, an object 

with a Z-value of 1 is received. This object is inserted in 
layer 0 of the Z-buffer. At 7015, an object with a Z-value of 
0 is received. This object is inserted in layer 0, the previous 
layer 0 object is moved to layer 1. At 7020, an object with 
a Z-value of 2 is received. This object is placed in layer 2. 
At 7025, another object having a Z-value of 2 is received. 
This object is placed in layer 3. At 7030, another object 
having a Z-value of 3 is received. This object causes an 
overflow and cannot be inserted in the Z-buffer. At 7035, an 
infinite curtain is generated from the overflow at 7030. The 
Z-value of the infinite curtain object is equal to 2. At 7040, 
all the objects received in steps 7010 through 7025 are 
discarded because their Z-values are less than, or equal to, 
2. At 7045, the object received at step 7030 is rereceived. 
This object, having a Z-value of 2, is also discarded. This 
results in the composite pixel not being representative of all 
the received objects. That is, the 7030 object is never 
composited because it has a Z-value equal to the infinite 
curtain's Z-value. 

Managing Objects Having Equal Z-Values 
Two possible solutions have been discovered to solve the 

problem of losing objects having equal Z-values. The first 
solution employs a tag and requires that the objects be 
resubmitted in the same order. The tag size limits the number 
of objects having equal Z-values. The second solution does 
not employ a tag and does not require that the objects be 
resubmitted in the same order. However, the number of 
objects having equal Z-values that can be sorted is limited to 
the number of layers in the Z-buffer minus one. 

In one embodiment, the objects, being submitted in step 
790, are submitted in the same order each time an overflow 
occurs. For this situation, it has been discovered that adding 
a tag to the received objects allow for the retention of objects 
having equal Z-values. 

FIG. 8 illustrates one embodiment of the present inven 
tion. First, the object is received as before, step 793. Then 
access the object's Z-value, 820. Next, at 830, determine 
whether an object having an equal Z-value has been received 
previously. If an object has been received that has an equal 
Z-value, access its tag and increment the tag value to 
generate a new tag for the new object, 850. In one embodi 
ment of the present invention, the tag represents a fraction 
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of an object's Z-value. Thus, the tag indicates the order of 
the object as it has been received. If an object has the same 
Z-value as another object, then the newer object receives a 
higher tag number. Otherwise, the object receives a tag of 
0,840. At step 860, a Z-tag is created for the new object. This 
Z-tag substitutes for the Z-value in the remaining steps of the 
sorting algorithm. 
As before, once all the objects have been received, the 

overflow flag is tested. If an overflow occurred, the infinite 
curtain is generated. The infinite curtain is stored in the front 
layer and then assigned the Z-tag of the object in the last 
layer of the Z-buffer. 
The example shown in FIG. 9 illustrates the benefits of 

this solution. FIG. 9 illustrates the status of a Z-buffer having 
four layers. At 900, the Z-bufferis initialized and contains no 
objects. That is layer 0, layer 1, layer 2, and layer 3, are all 
empty. At 910, an object having a Z-value equal to 1 is 
received. As the Z-buffer contains no other objects having a 
Z-value equal to 1, a tag equal to point 0 is generated. This 
object is then stored in the layer 0 and assigned a Z-tag equal 
to 1.0. At 915, an object having a Z-value equal to 0 is 
received. As before, because there are no other objects 
having a Z-value equal to 0, this object is assigned a tag of 
0.0. The object is then stored in layer 0. The previous object, 
stored in layer 0, is moved to layer 1. 
At 920, an object having a Z-value equal to 2 is assigned 

a tag equal to 0.0 this object is then stored in layer 2 of the 
Z-buffer. At 925, a second object having a Z-value equal to 
2 is received. Because a previous object has been received 
having a Z-value of 2, this new object is assigned a tag of 
0.1. The new object of 2.1 is stored in layer 3. 
At 930, a third object having, a Z-value equal to 2, is 

received. As this object cannot fit in the Z-buffer, an over 
flow occurs. The third, Z-value equal to 2, object is assigned 
a tag of 0.2. This object cannot be inserted in the Z-buffer 
because the Z-buffer is full. Assume for the purposes of this 
example, that only the five objects present are to be sorted. 
At 935, a composite object, or infinite curtain, is generated 
in response to detecting the overflow. The composite is 
assigned a Z-tag associated with the object in the last layer, 
layer 3, of the Z-buffer. In this case, the infinite curtain is 
assigned a Z-tag equal to 2.1 and is stored in layer 0. At 940, 
all the objects have been resubmitted for sorting. As objects 
910, 915,920, and 925 are received, they will be discarded 
because their Z-tags will be less than the Z-tag equal to 2.1. 
That is, each of these objects are in front of, or coincident 
with, the infinite curtain. At 945, the object previously 
causing the overflow at 930 is received again. It is assigned 
Z-tag equal to 2.2. This object can now be stored in layer 1 
of Z-buffer. Thus, this embodiment solves the problem of 
retaining objects having equal Z-values for a Z-buffer hav 
ing two or more layers. 
Note that other objects could follow the 930 object, prior 

to the compositing 935. If, for example, an object having a 
value of 0 were received, it would be assigned a Z-tag of 0.1. 
This object would be inserted in layer 1. Objects Z-tag=1.0, 
and Z-tag=2.0 would be shifted down a level. Z-tag 2.1 
would fall off the end of the Z-buffer. Thus, the composite 
would have a Z-tag of 2.0, and would be a composite of 
Z-tag=0.0, Z-tag=0.1, Z-tag=1.0, and Z-tag=2.0. 
The above description demonstrates the use of tag that 

incremented when a previous object, having the same 
Z-value, has been received. However, the present invention 
is not limited to such tag generation. For example, another 
embodiment of the present invention increments a tag value 
every time an object is received. For example, the first object 
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will be given a first tag. The next object is given an 
incremented tag. The next object is given the next higher tag. 
The tags are incremented irrespective of their Z-value. Each 
tag is then stored with the object. The objects are stored in 
the Z-buffer first according to Z-value, and then according to 
their tag value. In this embodiment, no information need be 
retained as to whether objects having a given Z-value have 
been received. 

Managing Equal Z'S, Resubmitted in any Order 
In another embodiment of the present invention, objects 

being resubmitted for sorting are not necessarily resubmitted 
in the same order as they were submitted when the overflow 
occurred. A solution has been discovered that allows objects 
having equal Z-values to be sorted and does not require any 
additional tags. 

FIG. 10 illustrates one embodiment of the present inven 
tion. At step 792, if no additional objects are to be received 
for the present pixel, the overflow flag is tested, 794. As 
previously, if no overflow was asserted, then the objects for 
the present pixel have been sorted. If the overflow has been 
set, then step 1010 is executed. At step 1010, a Z-value of 
the object that caused the overflow is tested against the 
Z-value of other objects in the buffer. At step 1020, if there 
are other objects with an equal Z-value, they are discarded. 
Discarding an object can include a number of techniques 
including removing from the Z-buffer, or marking the layer 
as having an open space at that location. Then step 796 is 
executed. If there are no objects having an equal Z-value, 
then 796 is executed. 

This embodiment will properly retain objects having 
equal Z-values where the number of objects with equal 
Z-values is equal to, or less than, the maximum number of 
layers in the Z-buffer. That is, one layer is used for the 
composite, the remaining layers are used for objects having 
equal Z-values. However, if no overflow occurs, this solu 
tion can have as many objects with equal Zs as there are 
layers in the Z-buffer. That is, no layer is needed for a 
composite object, because no overflow occurred. Note that 
this embodiment will solve the problem of retaining objects 
having equal Z-values for a Z-buffer having three layers or 
more layers. 

In this embodiment, like in the general approach 
described for FIG. 7, the Z-value of the object in the last 
layer is used for the infinite curtain. That is, the Z-value of 
the object preceding the equal Z-values is used as the 
backmost Z-value during the infinite curtain Z composite. 

FIG. 11 illustrates an example of an object sort using the 
method of FIG. 10. At 1100, the Z-buffer is empty and the 
sort circuit is prepared to receive objects. At 1110, a first 
object having a Z-value of 1 is received and placed in layer 
0. At 1115, a second object, having a Z-value of 0, is 
received. This object, like the second object of FIG. 9, is 
placed in layer 0. The first object is moved to layer 1. At 
1120, a third object, having a Z-value equal to 2, is received 
and stored in layer 2. At 1125, a fourth object, having a 
Z-value equal to 2, is received and stored in layer3. At 1130, 
a fifth object, having a Z-value equal to 2, is received. This 
fifth object causes an overflow. 
Assume that only the above five objects are active for the 

present pixel. As the fifth object had a Z-value equal to 2, all 
the objects having an equal Z-value are discarded (third and 
fourth objects). Then a composite of objects one and two is 
made. The composite, infinite curtain, is assigned the 
Z-value of the last remaining object. In this case, the infinite 
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curtain is assigned the Z-value equal to 1. This is the Z-value 
of the object in layer 1. 
As no more objects are to be received, and an overflow 

has occurred, the five objects are resubmitted. The first and 
second objects are discarded as having Z-values less than, or 
equal to, the infinite curtain's Z-value. Next the object, 
received at 1125, is received after the first two objects. That 
is, this object is not received in the same order as it was 
received when submitted in the first attempted sort. This 
object has a Z-value greater than the infinite curtain's 
Z-value. This object is stored in layer 1. The next object, 
having a Z-value equal to 2, is stored in layer 2. The next 
object, having a Z-value equal to 2, is stored in layer3. Thus, 
objects having equal Z-values have been retained during the 
Z-sorting process. These objects have been retained even 
though they were not resubmitted in the same order. 
What is claimed is: 
1. A method of retaining objects, each object having a data 

value indicative of the visual representation of the object and 
a Z-value, said Z-buffer including a first object having a first 
data value and first Z-value, said method comprising the 
steps of: 

a) receiving a second object having a second data value 
and second Z-value; 

b) generating a second tag for said second object; 
c) storing said second object and said second tag in said 

Z-buffer; 
d) receiving a third object causing an overflow, said third 

object having a third data value and a third Z-value 
equal to said second Z-value; 

e) generating a fourth object, said fourth object having a 
fourth data value comprising a composite blend of said 
first and second data values, said fourth object being 
stored in said Z-buffer with a fourth tag; 

f) resubmitting said third object; 
g) receiving said third object; 
h) generating a third tag for said third object, and 
i) storing said third object and said third tag in said 

Z-buffer responsive to comparing said fourth tag and 
said third tag. 

2. The method of claim 1 wherein said first object is stored 
with a first tag. 

3. The method of claim 1 wherein said second object is 
received at a first time, and after step e) and prior to stepf), 
performing the following steps: 

resubmitting said second object; 
receiving said second object at a second time; 
generating said second tag for said second object; 
discarding said second object responsive to comparing 

said second tag and said fourth tag. 
4. The method of claim 3 wherein a value of said fourth 

tag is greater than a value of said second tag. 
5. The method of claim 1 wherein said first object is 

marked as a composite, and said first object is not resub 
mitted. 

6. The method of claim 1 wherein said Z-buffer includes 
a plurality of layers, wherein each layer of said plurality of 
layers is for storing an object, and wherein said fourth object 
is stored in a first layer. 

7. The method of claim 1 wherein said Z-buffer includes 
storage locations for four objects, said Z-buffer including a 
fifth object and a sixth object, and said fourth object includ 
ing a composite of said first, second, fifth, and sixth objects. 

8. The method of claim 7 wherein said fifth and sixth 
objects are resubmitted. 
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9. The method of claim 1 wherein said Z-buffer is a 

scanline Z-buffer. 
10. The method of claim 1 wherein said first object and 

said second object are not opaque. 
11. The method of claim 1 wherein said second tag 

includes a representation of 0 and said third tag includes a 
representation of 1. 

12. A method of retaining objects, having equal Z-values 
in a Z-buffer, said method comprising the steps of: 

detecting an overflow responsive to receiving a first object 
having a first data value, said Z-buffer storing a plu 
rality of objects, each object of the plurality of objects 
having a corresponding data value, and a corresponding 
Z-value, said first object having a Z-value equal to the 
corresponding Z-value of one object of said plurality of 
objects; 

compositing said stored plurality of objects to generate a 
composite object responsive to said overflow, said 
composite object having a composite data value equal 
to a composite blend of the corresponding data values 
of the stored plurality of objects, and a composite tag 
equal to a second tag, said second tag corresponding to 
a second object of said plurality of objects; 

resubmitting all objects to be sorted, responsive to said 
overflow; 

generating a first tag being not equal to said composite 
tag, responsive to re-receiving said first object, 

storing said first object and said first tag in said Z-buffer, 
responsive to comparing said first tag and said com 
posite tag. 

13. The method of claim 12 wherein each object of said 
plurality of objects is stored with a corresponding tag, and 
wherein said all objects to be sorted include said second 
object and said first object. 

14. The method of claim 13 wherein said second object's 
Z-value equals said first object's Z-value, generating a first 
tag includes the steps of: 

generating said first tag not equal to said composite tag 
responsive to determining said first object's Z-value is 
equal to said composite object's Z-value. 

15. The method of claim 14 wherein said first tag has a 
value greater than said composite tag. 

16. The method of claim 15 wherein after resubmitting all 
objects to be sorted, the following steps are performed: 

said second object is re-received; 
generating said second tag for said second object, and 
said second object is discarded responsive to determining 

said second tag is equal to said composite tag. 
17. The method of claim 16 wherein said Z-buffer 

includes a plurality of layers, and wherein detecting said 
overflow responsive to receiving said first object includes 
the following steps: 

determining said second object is in a last layer of said 
Z-buffer, and 

determining said second object has a Z-value equal to said 
first object. 

18. The method of claim 16 wherein said objects to be 
sorted are supplied through a pipeline by an object access 
control circuit, wherein said compositing is performed by a 
compositing circuit coupled to said object access control 
circuit, and wherein said resubmitting all objects to be sorted 
is performed by said object access control circuit by re 
assessing said all objects to be sorted and providing said all 
objects to be sorted to said pipeline. 

19. The method of claim 18 wherein said all objects are 
provided to said pipeline in a predetermined order. 
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20. An apparatus comprising: 
a memory for storing a plurality of objects each object 

having a corresponding data value; 
a Z-buffer, coupled to said memory, for storing objects 

received from said memory; 
an overflow detection circuit, coupled to said Z-buffer, for 

detecting an overflow condition and asserting an over 
flow; 

a compositing circuit, coupled to said Z-buffer, for gen 
erating a composite object responsive to said overflow, 
said composite object corresponding to all objects 
stored in said Z-buffer when said overflow occurs and 
having a composite data value equal to a composite 
blend of the corresponding data values of the objects 
stored in the Z-buffer, said compositing circuit further 
for causing said Z-buffer to store said composite object 
with a first tag corresponding to a Z-value of one of said 
objects stored in said buffer when said overflow occurs, 
and 

a tag generating circuit, coupled to said Z-buffer, for 
generating a different tag for each of said plurality of 
objects having a Z-value equal to another of said 
plurality of objects. 

21. The apparatus of claim 20 further comprising an 
pipeline control circuit coupled to said memory and said 
Z-buffer, said pipeline control circuit for providing said 
plurality of objects to said Z-buffer, and said pipeline control 
circuit for resubmitting said plurality of objects responsive 
to said overflow. 

22. The apparatus of claim 20 wherein said overflow 
detection circuit detects an overflow when said Z-buffer is 
full and a received object cannot be discarded. 

23. The apparatus of claim 20 further comprising a 
comparison circuit, coupled to said tag generating circuit, 
for comparing a Z-value of a received object with a Z-value 
of an object stored in said Z-buffer, said comparison circuit 
further for discarding a received object responsive to the 
result of a comparison. 

24. The apparatus of claim 23 where said comparison 
circuit causes a received object to be discarded if the Z-value 
of said received object is greater than the Z-value of the 
object stored in the last layer of the Z-buffer 

resubmitting said second object; 
receiving said second object a second time; 
generating said second tag for said second object; 
discarding said second object responsive to comparing 

said second tag and said fourth tag. 
25. The apparatus of claim 20 wherein said plurality of 

objects comprises objects to be sorted for rendering a 
scanline. 

26. A method comprising the steps of: 
a) receiving a first object having a first data value and a 

first Z-value; 
b) assigning a corresponding first tag to said first object; 
c) storing said first object with said first tag in a Z-buffer; 
d) receiving a second object having a second data value 

and a second Z-value; 
e) assigning a corresponding second tag to said second 

object; 
f) storing said second object with said second tag in said 

Z-buffer; 
g) receiving a third object having a third data value and a 

third Z-value where said third Z-value equals said first 
Z-value, said third object causing an overflow; 
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h) compositing objects stored in said Z-buffer to generate 

a fourth object having a fourth data value equal to a 
composite blend of data values of objects stored in the 
Z-buffer; 

i) generating a fourth tag corresponding to said fourth 
object, said fourth tag being equal to said first tag, and 

j) resubmitting said first, second and third objects to said 
Z-buffer, including the steps of 
receiving said third object, 
assigning a third tag to said third object, wherein said 

third tag is not equal to said fourth tag, and 
storing said third object with said third tag in said 

Z-buffer. 
27. The method of claim 26 further comprising the steps 

of wherein said resubmitting said first, second, and third 
objects to said Z-buffer includes: 

receiving said first object, 
assigning said first tag to said first object; 
comparing said first tag with said fourth tag, and as a 

result, discarding said first object; 
receiving said second object; 
assigning said second tag to said second object, and 
comparing said second tag with said fourth tag, and as a 

result, discarding said second object. 
28. The method of claim 27 wherein said Z-buffer 

includes locations to store four objects. 
29. The method of claim 27 wherein said fourth tag 

represents a 0 and said third tag represents a 1. 
30. A method of retaining objects having equal Z-values 

in a Z-buffer, said method comprising the steps of: 
storing a first object, a second object, and a third object in 

said Z-buffer, said first object having a first data value 
and a first Z-value, said second object having a second 
data value and and a second Z-value, said third object 
having a third data value and a third Z-value, none of 
said first, second and third Z-values being equal; 

receiving a fourth object causing an overflow, said fourth 
object having a fourth data value and a fourth Z-value, 
said fourth Z-value being equal to said third Z-value; 

compositing all objects in said Z-buffer not having a 
Z-value equal to said fourth Z-value to generate a fifth 
object having a fifth data value equal to a composite 
blend of data values of objects in the Z-buffer, said fifth 
object having a Z-value not equal to said third Z-value; 

resubmitting said third and fourth objects; 
receiving said third object; 
storing said third object in said Z-buffer; 
receiving said fourth object, and 
storing said fourth object in said Z-buffer. 
31. The method of claim 30 wherein said Z-buffer 

includes four storage locations, said method including the 
step of storing a sixth object in said Z-buffer, said sixth 
object having a sixth data value and a Z-value not equal to 
said first, second, third, or fourth Z-values, and wherein said 
step of compositing all objects includes compositing said 
sixth object. 

32. The method of claim 30 wherein said step of resub 
mitting said third and fourth objects includes resubmitting 
said first and second objects. 

33. The method of claim 30 wherein none of said first, 
second, third or fourth objects are opaque. 

34. The method of claim 30 wherein said second Z-value 
is greater than said first Z-value and said fifth Z-value equals 
said second Z-value. 
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35. The method of claim 34 wherein said third Z-value is 
greater than said second Z-value. 

36. The method of claim 30 wherein said fifth object is a 
composite. 

37. The method of claim 30 wherein after the step of 
resubmitting said third and fourth objects, said fourth object 
is received before said third object. 

38. The method of claim 30 wherein after the step of 
resubmitting said third and fourth objects, said third object 
is received before said fourth object. 

39. The method of claim 30 wherein said first, second, and 
third objects are required by a rendering circuit to render a 
scanline. 

40. An apparatus for retaining objects having equal Z-val 
ues in a Z-buffer, said apparatus comprising: 

a memory for storing a plurality of objects to be sorted, 
each object having a corresponding data value, 

a Z-buffer, being coupled to said memory, having a 
plurality of storage locations for storing a first subset of 
said plurality of objects; 

an overflow detect circuit, being coupled to said Z-buffer, 
for detecting an overflow responsive to a receiving a 
first object, said first object having a first data value and 
a first Z-value; 

a compositing circuit, being coupled to said Z-buffer, for 
compositing a first subset of objects of said first subset 
to generate a composite object responsive to detecting 
said overflow said composite object having a composite 
data value equal to a composite blend of corresponding 
data values of the first subset of objects, said compos 
iting circuit further for causing said Z-buffer to store 
said composite object, said composite object having a 
composite Z-value not equal to said first Z-value, said 
composite Z-value being equal to a Z-value of an object 
in said subset of objects; 

a comparison circuit, being coupled to said Z-buffer, for 
generating a compare result by comparing the Z-value 
of each received object to the Z-values of objects in 
said first subset, and for causing a received object to be 
discarded if said compare result includes a first value, 
and for causing a received object to be stored in said 
Z-buffer if said compare result includes a second value. 

41. The apparatus of claim 40 wherein said Z-buffer 
includes four storage locations. 

42. The apparatus of claim 40 wherein said overflow 
detect circuit detects an overflow if said first object cannot 
be discarded and said Z-buffer is full. 
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43. The apparatus of claim 40 wherein said first subsubset 

of objects includes all objects not having Z-values equal to 
said first Z-value. 

44. The apparatus of claim 40 wherein said composite 
object is stored in the first storage location of said Z-buffer 
and wherein said first subset is removed from said Z-buffer 
responsive to generating said composite object. 

45. The apparatus of claim 40 wherein said first value is 
generated when the Z-value of a received object is less than 
the Z-value of a composite object stored in said Z-buffer. 

46. The apparatus of claim 40 wherein said first subsubset 
includes objects having a Z-value not equal to said first 
Z-value. 

47. A method of retaining graphic objects in a Z-buffer, 
each object comprising a data value representative of a 
visual representation of the object and a Z-value, said 
Z-buffer including a plurality of objects, each having a 
Z-value and a data value, said method comprising the steps 
of: 

d) receiving a new object causing an overflow, said new 
object having a new data value and a Z-value equal to 
a Z-value of an object of the plurality of objects; 

d) generating a composite object, said composite object 
comprising a composite data value representative of a 
blending of the data values of the plurality of objects 
and a composite Z-value representative of the Z-values 
of the plurality of objects, said composite object being 
stored in said Z-buffer; 

e) removing said plurality of objects from the Z-buffer; 
f) resubmitting said new object; 
g) receiving said new object; and 
i) storing said new object in said Z-buffer. 
48. The method as set forth in claim 47, wherein the 

overflow occurs when the Z-buffer is full. 
49. The method as set forth in claim 47, wherein step (e) 

comprises the steps of: 
(i) resubmitting each of the plurality of objects; and 
(ii) for each object of the plurality of objects, 
generating a tag, and 
discarding said object responsive to comparing said gen 

erated tag and said composite tag. 
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