
United States Patent (19)
Kelley et al.

||||||||IIII
US005307449A

11 Patent Number: 5,307,449
(45) Date of Patent: Apr. 26, 1994

54 METHOD AND APPARATUS FOR
SIMULTANEOUSLY RENDERING
MULTIPLE SCANLINES

75) Inventors: Michael Kelley, San Mateo;
Stephanie Winner, Santa Clara, both
of Calif.

73) Assignee: Apple Computer, Inc., Cupertino,
Calif.

(21) Appl. No.: 811,570
22 Filed: Dec. 20, 1991
(51) Int. C.’.. G06F 15/62
52 U.S. C. 395/119; 395/126;

395/133; 395/143
58) Field of Search 395/119, 126, 127, 128,

395/129-132, 133-135, 139, 140-143, 122
(56) References Cited

U.S. PATENT DOCUMENTS
4,815,009 3/1989 Blatin 395/13 X
4,885,703 12/1989 Deering 395/134 X
4,945,500 7/1990 Deering 395/122
5,115,402 5/1992 Matsushiro et al. 395/141

Primary Examiner-Gary V. Harkcom
Assistant Examiner-Alnis Jankus

STAGE ONE 70
objects

WERTCA
iNTERPOLATON

MODULE

OKEN PAH

STAGE TWO

TOKEN PATH

STAGE THREE

707

OsCTATA PARSING

HDDEN SURFACE
REMOVA
(Z-BUFFER)

RGBA CACUAKONS
MOOULE

CONtrol
NFORMATION

RGB
COMPOSTNG

MODULE

SCANOut
OOUE

709

SYSTEM
FRAM suffer

Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

(57) ABSTRACT
A method and apparatus for simultaneously rendering
multiple scanlines. Using a scanline approach to render
ing, multiple scanlines may be rendered simultaneously
through the use of parallel rendering means. The ren
dering of multiple scanlines in parallel is enabled by
creating scanline independence. Scanline independence
is achieved by interpolation through direct evaluation
of object information. During the rendering process
each of the rendering means vertically interpolates to
identify a span corresponding to the scanline being
rendered. A span is identified by it's X, Y coordinates
on a scanline. The scanline being rendered provides the
Y-coordinate. Vertical interpolation generally involves
the step of deriving the X-coordinates for the endpoints
of the span and comprises the steps of identifying active
edges of the object, calculating a relative interpolation
weight for each active edge and solving a linear interpo
lation function using the relative interpolation weight
and the leftmost X-coordinate of the active edges and
the rightmost X-coordinate of the active edges.

7 Claims, 20 Drawing Sheets

702
1

CONTRO
TOKENS

HORIZONAL
INTERPOLATON

MODULE

CONTRO
INFORMATION

U.S. Patent Apr. 26, 1994 Sheet 1 of 20 5,307.449

105

DISPLAY
DEVICE

SYSTEM
FRAME
BUFFER

HOST
PROCESSOR

GRAPHICS
ACCELERATOR
PROCESSOR

3D OBJECT
DATABASE

SCREEN
Z-BUFFER

FIGURE 1
(Prior Art)

U.S. Patent Apr. 26, 1994 Sheet 2 of 20 5,307.449

292
A

B Q
2O3 204

FIGURE 2a
(Prior Art)

2O2

N
204 2O7

FIGURE 2b
(Prior Art)

292 212 A 213

211

N
2O3 204

FIGURE 2C
(Prior Art)

U.S. Patent Apr. 26, 1994 Sheet 3 of 20 5,307.449

TRANSFORM 3D
OBJECTS INTO
2D OBJECTS

BUILD OBJECT
ACTIVATION
DATABASE

BUILD ACTIVE OBJECT
FORSCANLINE TO
BERENDERED

RENDER
SCANNE

UPDATE ACTIVE
OBJECT LIST

FIGURE 3a
(Prior Art)

U.S. Patent Apr. 26, 1994 Sheet 4 of 20 5,307,449

329
N

RESULTING OBJECT
ACTIVATION LIST

O O NO OBJECTS

1 B, C -- 327
2 2 NO OBJECTS

3. 3 NO OBJECTS

4. 4. NO OBJECTS

5 5 A

6 6 NO OBJECTS

7 7 NO OBJECTS

8 8 NO OBJECTS

328
322 321 320

FIGURE 3b
(Prior Art)

329 340

\ / 341
OBJECT ACTIVE

ACTIVATION LIST OBJECT LIST RENDERED SCREEN
O NO OBJECTS NO OBJECTS

1 B, C B, C
2 NO OBJECTS B, C

3 NO OBJECTS B, C

4. NO OBJECTS B, C

5 A B, C, A

6 NO OBJECTS A

7 NO OBJECTS A

8 NO OBJECTS A

343 342

FIGURE 3C
(Prior Art)

U.S. Patent Apr. 26, 1994 Sheet 5 of 20 5,307.449

405
402

PROCESSOR
HARD DISK

KEYBOARD

408

HARD COPY
DEVICE 409 410

FRAME DISPLAY

4O7

CURSOR
CONTROL 41
DEVICE

RENDERING
DEVICE

FIGURE 4

U.S. Patent Apr. 26, 1994 Sheet 6 of 20 5,307.449

556

DISPLAY
DEVICE

555

FRAME
BUFFER

HOST
COMPUTER

RENDERING
DEVICE

FIGURE 5

U.S. Patent Apr. 26, 1994 Sheet 7 of 20 5,307,449

604

FRONT-END
PROCESSORS

HOST
COMPUTER

OBJECT
ACTIVATION

LIST

ACTIVE
OBJECT
LIST

3D OBJECT
DATABASE

TRANSFORM
DATABASE

RENDERING

607

PIPELINES

FIGURE 6a

U.S. Patent Apr. 26, 1994 Sheet 8 of 20 5,307,449

62O 625

HOST
- COMPUTER

RENDERING
PIPELINES

621 622 623 624

OBJECT 3D OBJEC TRANSFORM
ACTATION DATABASE DATABASE

Figure 6b

U.S. Patent Apr. 26, 1994 Sheet 9 of 20 5,307.449

STAGE ONE 70 292
OBJECTS C2S

703 704

OBJECTIDATA PARSING

VERTCA HORIZONTAL
INTERPOLATION INTERPOLATON

MODULE MODULE

TOKEN PATH

STAGE TWO

705

CONTROL
NFORMATION

HDDEN SURFACE
REMOVAL
(Z-BUFFER)

RGBA CALCULATIONS
MODULE

CONTROL
TOKEN PATH NFORMATION

STAGE THREE

RGB
COMPOSITING

MODULE

707

SCANOUT
MODULE

SYSTEM
FRAME BUFFER

FIGURE 7

U.S. Patent Apr. 26, 1994 sheet 10 of 20 5,307,449

RECEIVE OBJECTS INTO
STAGE 1 FIFO

802
VERTICAL INTERPOLATION

TO DENTIFY ACTIVE
OBJECTS AND DENTIFY
HORIZONTAL SPANS OF
OBJECTS ON CURRENT

SCANNE
803

INTERPOLATE SHADING
PARAMETER VALUES

ASSOCATED WITH OBJECT
TO DETERMINE

PARAMETER VALUES FOR
SPAN END PONTS

GENERATE AND
PROPOGATE SPAN
SET-UPTOKENS

805
TRANSFER SPAN
COORONATESTO

HORIZONTAL INTERPOLATON
MODULE FOR GENERATION
OF PIXELINTERPOLATION

TOKENS

GENERATE PIXEL
INTERPOLATION
TOKEN VALUES

807

ASSEMBLE PIXEL
INTERPOLATION
TOKEN VALUE

GET NEXT
PXEL COORONATE

LAS PXEL
N SCAN

FIGURE 8a

U.S. Patent Apr. 26, 1994 Sheet 11 of 20 5,307.449

START

820

RECEIVE GLOBAL MODE SE-UP
TOKEN AND SET APPROPRIATE
PROCESSING VALUES, SET

Z-BUFFER TO MAXIMUMZ-VALUE

821

53ES5
822

LOAD Z-REGISTER
AND RGBO, DATA

RECEIVE PXE
INTERPOLAION TOKEN

CALCULATEZ-VALUE FOR PXE
BY USNG LIRPEQUATION WITH

PXEL INTERPOATION VALUE AND
Z VALUES OF SPAN ENOPONTS

826

Z-VALUE TERMINATE
OF PIXE OF PZE PROCESSING OF
LESS THAN VALUE PXE BY CONVERTENG

NZ-BUFFER TO NULL TOKEN

NSERT NEW
Z-VALUE IN 2-BUFFER

AS OBJECT
TO BE PripCESS5)

YES

TO
FIGURE 8b.

(Cont.)

FIGURE 8b

U.S. Patent Apr. 26, 1994 Sheet 12 of 20

FROM
FIGURE 8b

2nd PASS

SHADOWTESTING

YES 83

PERFORM SHADOW
COUNT ANALYSS

3rd PASS

SHADowTESTING

PERFORMPASS3
SHAOOWANALYSS

83

PERFORM AMBENT COLOR
CONTRIBUTION ANAYSS

83

PROPOGATE FRONT MOST
SHADED PXES WA PXE
INTERPOLATION TOKEN

O

FIGURE 8b
(Cont.)

5,307.449

U.S. Patent Apr. 26, 1994 Sheet 13 of 20 5,307.449

START

RECEIVE GLOBAL MODE SET-UP
TOKEN AND SE APPROPRIATE

PROCESSING VALUES

841

RECEIVE PXEL INTERPOLATION
TOKEN FROM STAGE 2

842

O 1
(TRANSPARENCY
PROCESSING)

PERFORMADDITIVE
TRANSPARENCY BENDING

FILTEREO
TRANSPARENCY

SPECIFIED

PERFORM FILTERED
TRANSPARENCY BLENDING

LOAD PXE COLOR VALUES
NTO CORRESPONDING

LOCATION IN SCANNEBUFFER

NO

846

LAST
PXELTO

BE composiTED

YES 848

TRANSFER TO SCANOUT

FIGURE 8C

U.S. Patent Apr. 26, 1994 Sheet 14 of 20 5,307.449

901

902 1. C
BC

FIGURE 9

905 1991 996
D1 E

1002
1. 1. 1.

F G H

FIGURE 10

U.S. Patent Apr. 26, 1994 Sheet 15 of 20 5,307,449

101

INPUT FIFO AND
CLOCK RATE
CONVERSION

COMMAND
DECODE

VERTEX SORT

VERTICAL DIVIDE

VERICAL
INTERPOLATION

HORIZONAL
NTERPOLATION

TOKEN
ASSEMBLY

TO
PIPELINE

FIGURE 11

5,307.449 U.S. Patent

TOH1NOO WWE

U.S. Patent Apr. 26, 1994 Sheet 17 of 20 5,307.449

1301 1302 1303 1313
132 - - - -

m1 (*RIGHT LEFT) (o) (LEFT) Ax
----------- -----------------

1302a
/

(100)

COUNTING CIRCUIT
FOR COUNT LEADING 3
OS OUTPUT COUNTN

1309

16 BITSUBSTRACT
(START OFFSET)

SHIFT LEFT N BTS
2 XLENGTH

1306

INVERT TO 16-N 13 BIT COUNTER
SIGNIFICANT BITS A X 3

1307

SHFT LEFT N BITS
DISCARD4 EAST
SIGNIFICANT BITS

12 X 12 MULTIPLIER CRCUIT ROUND
TO 10 MOST SiGNIFICANT BITS

1311

FIGURE 13

U.S. Patent Apr. 26, 1994 Sheet 18 of 20 5,307,449

1401 1482 NAB

1431

MULTIPLEXOR

MULTIPLEXOR

14O6
N oPERAND 1.96a
CARRY-IN F

1405

casuade
CARRY-OUT SUM

1407 408 1409 1933
W1

1412 143
N a' la
OPERAND OPERAND CARRY-IN

141

INPUTA INPUT B
144

casuade
CARRY-OUT SUM

1. is 1417 1415 434
O 1.

O
420
\ 1921 1319 OPERAND

INPUT A oREAF CARRY-IN
1418

1423 CARRY-SUMADDER

earn OUT SUM
1426 - 1425
N 1424 1.
OPERAND OPERAND
NPUT B NPUTA

1422
CARRY.PROPOGATE ADDER

SUM
N
1429

FIGURE 14a

Sheet 19 of 20 5,307,449 Apr. 26, 1994 U.S. Patent

City || E. HT150||-||

U.S. Patent Apr. 26, 1994 Sheet 20 of 20 5,307.449

START

FRONT-END PROCESSORS
PROPAGATE SEND DIRECT INPUT

501

STREAM COMMAND DESIGNATING
TARGET PIPELINES OFFSET O AND 1

1502
FRONT-END PROCESSORS SENT
GLOBAL MODE SET-UPTOKENTO

DEFINE DESEREO SHADING FUNCTIONS

1503

ACTIVE OBJECT LIST CONTENTSSENT
TOBOTH PIPELINES SIMULTANEOUSLY

504

RENDERING OF EACH SCANLINE BY THE
RESPECTIVE RENDERNG PIPELINES
(THIS STEP NCLUDES THE VERTICAL
AND HORIZONTAL INTERPOLATION

STEPS DESCRIBED WITH RESPECT TO
STAGE 1, 2, AND 3 PROCESSING)

1505
FRONT-END PROCESSOR PROPAGATE
SCANOUT SYNCHRONIZATION TOKEN

1506
FRONT-END PROCESSOR PROPAGATE

SWAP-BUFFER TOKEN

1507

FRONT-END PROCESSOR PROPAGATE
DMA/SET-UPISTART TOKENTO BOTH
RENDERNG PIPELINES TO ENABLE

AND START SCANOUT

1508

PLACE SCANOUT OF SCANLNEBUFFER
OF SECOND PIPELINE ENTRISTATE,
SCANOUT OF SCANLINE BUFFER FOR

A FRST PIPELINE

1509

PLACE SCANOUT OF SCANLINE BUFFER
OF FIRST PIPELINE IN TRISTATE,

SCANOUT OF SCANLINE BUFFER FOR
A SECOND PIPELINE

FIGURE 15

5,307,449
1.

METHOD AND APPARATUS FOR
SIMULTANEOUSLY RENDERING MULTIPLE

SCANLNES

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of computer

controlled display systems, in particular, devices for
rendering pixels for displaying 3-dimensional graphical
images.

2. Description of the Related Art
As the processing capability of computer systems has

grown, so have the ways of displaying data generated
by the computer systems. Many vocations now use
computer systems as a fundamental tool. For example,
in the area of architectural design, 3-Dimensional
graphical images (or 3-D images) of buildings or other
structures are dynamically created and manipulated by
a user. A computer system is able to capture and process
data in order to display the 3-D image, in a time that is
much faster than could be done manually. As computer
hardware technology has advanced, so has the develop
ment of various methods, techniques and special pur
pose devices for rapidly displaying and manipulating
3-D images.
A 3-D image is represented in a computer system as a

collection of graphical objects. Generally, there are two
known approaches to providing high performance gen
eration of 3-D images. A first approach focuses on rap
idly drawing the graphical objects that comprise the
3-D graphics image. This approach is referred to herein
after as the object approach. The object approach en
bodies a hidden surface removal algorithm commonly
known as the screen Z-buffer algorithm. A second ap
proach looks to processing the graphical objects with
respect to the scanlines on which they would appear on
a display. The second approach is referred to hereinaf
ter as the scanline approach. The two approaches in
volve certain trade-offs. These trade-offs include cost,
performance, function, quality of image, compatibility
with existing computer systems and usability.
As mentioned above, a 3-D image will be represented

in a computer system as a collection (or database) of
graphical objects. The database may have been created
through the use of any of a number of commercially
available application software packages. The database
may be in any of a number of standard graphics formats
(e.g. PHIGS or GKS). It is common that the 3-D graph
ical objects are polygons (e.g. triangles) or some other
high level object. The process of transforming a collec
tion of graphical objects into a 3-D image is termed
rendering. Literally, the rendering process takes object
information and converts it to a pixel representation. It
is in the rendering process where the object and scan
line approaches differ.

In the object approach, the majority of the function
related to the rendering process is performed by spe
cially designed graphics accelerators. These graphics
accelerators perform the necessary operations to create
the pixel representation of the objects. The pixel repre
sentation may then be used by a display system to
"draw" the graphical object on a display screen. A
schematic of the object approach is illustrated in FIG. 1.
In FIG. 1, a general purpose host computer 101 is used
to maintain and create a 3-D Object Database 102. As
described above, the 3-D Object Database contains the
3-D Objects which comprise the 3-D image. Coupled to

O

15

25

30

35

45

50

55

65

2
the host processor 101 is a system frame buffer 106. The
system frame buffer 106 is further coupled to the display
105. The system frame buffer 106 contains the data, e.g.
RGB values, for each pixel in the display 105.
The primary components of the object approach are

embodied in the graphics accelerator processor 103 and
the screen Z-Buffer 104. The graphics accelerator pro
cessor 103 performs various graphical functions such as
transformations and clipping. The screen Z-Buffer 104
is used for hidden surface removal. During the render
ing process for a graphical image, the rendered pixels
are transferred to the system frame buffer 106.

Using the object approach, each of the 3-D objects in
the database 102 is rendered individually. Using a trian
gle object as an example, the rendering process gener
ally involves the following steps, and is illustrated in
FIG. 2a-2C
1. Derive a 2-D triangle from the graphical object defi

nition. The transformation step, as illustrated in FIG.
2a, results in a triangle 201 with vertices A 202, B203
and C 204.

2. Perform any necessary clipping of the object. Clip
ping refers to removing portions of the object that are
not within the bounds of a predetermined viewing
22,

3. Generate horizontal spans for the object. A horizon
tal span refers to a portion of the object that intersects
a scanline. A span is comprised of one or more pixels.
For example, in FIG.2b, see span 209. Typically this
occurs through a linear vertical interpolation of the
object.

4. Generate values for each of the pixels in the span.
This process is commonly referred to as horizontal
interpolation. FIG.2c illustrates horizontal interpola
tion. This step will include such functions as shading
of the pixels, hidden surface removal and storing the
pixel values into a screen RGB frame buffer.

5. Repeat steps 3 and 4 until the object has been ren
dered.

6. Repeat steps 1, 2, 3, 4, and 5 until all the objects have
been rendered.
The Step 1 derivation of a 2-D triangle is needed in

order to map into the two-dimensional coordinate sys
tems that are typically used by known display systems.
The third coordinate of a 3-D graphical object is depth
(e.g. "Z value'), and is used to determine whether or
not the object is behind another object and thus out of
view (i.e. hidden).

Vertical interpolation, as described in Step 3 above, is
illustrated in FIG. 2b. Vertical interpolation is typically
performed in the following fashion. First, active edges
are determined. An active edge is defined as an edge of
the object that intersects a scanline that is being pro
cessed. A span is defined as the pixels on the scanline
that would connect the two intersection points of the
active edges. The triangle 201 is comprised of edges
205, 206 and 207. The edge 205 is defined by the seg
ment connecting vertices A 202 and B203, the edge 206
is defined by the segment connecting vertices. A 202 and
C 204 and the edge 207 is defined by the segment con
necting vertices B 203 and C 204. Generally, for any
particular scanline, there will be 2 active edges. The
exception being when an edge is horizontal. For exam
ple, in FIG.2b, for scanline 208, the active edges are 205
and 206. Thus, for scanline 208, there is a span 209 for
object 201.

5,307.449
3

The next step is to determine the coordinates of the
end-points 210 and 211 of span 209. First it must be
understood that each active edge is simply a line. Thus,
the difference between successive points in the line are
linear. As the vertical ordinate is simply the current
scanline, only the horizontal ("X") value need be calcu
lated. Typically, this is done using a forward differenc
ing calculation. In forward differencing a constant, say
Ap is determined that is between each horizontal coor
dinate (e.g. using the formula Ap=P1-PO/Y1-Y0,
where P1 and P0 are pertinent pixel values, such as "R"
of RGB, at Y1 and Y0 for the respective end-points of
an edge). Thus, the horizontal coordinate value may be
determined by simply adding Ap to the previous corre
sponding coordinate value. It is known that using for
ward differencing makes other techniques of improving
rendering performance, e.g. parallel processing, more
difficult.
A non-desirable aspect of the forward differencing

technique is that a high number of bits are required to be
stored and propagated in order to retain the necessary
numerical precision needed for graphics applications.
This is a tradeoff to eliminating certain operations,
namely division operations, that would otherwise be
required in the vertical interpolation process.

Referring to FIG.2c, shading the pixels in span 209 is
then performed. Shading refers to establishing the val
ues for the pixels comprising the span 209. The coordi
nates of the successive pixels on the span may be deter
mined through the means such as a counter. Horizontal
interpolation to determine shading values for each of
the pixels may occur using either linear interpolation or
perspective corrected interpolation. In any event, as the
values for a pixel 212 are determined, the values for
subsequent pixels, e.g. pixel 213 can be estimated
through horizontal interpolation.
As noted above, the object approach generally uti

lizes the screen Z-Buffer algorithm. The screen Z
Buffer algorithm provides for hidden surface removal.
Hidden surface removal is necessary for the display of
3-D images, since the surfaces in view depend on the
vantage point from the viewing direction and refers to
the "hiding' of areas of an object that are "behind'
another object. The hidden surface removal Z-Buffer
algorithm is known in the art and requires a local frame
buffer. The screen contains the pixel values of objects as
they are rendered. As the location of any object may be
anywhere on the screen, the local frame buffer must
have enough storage to support the display of all pixels
on the display. Once all the objects have been rendered,
the local frame buffer is transferred to the system frame
buffer for display.
The Z-Buffer method utilizes the fact that each object

has an attribute, typically called a Z-value, which is a
3rd dimensional ordinate. A low Z-value indicates that
the object (or portion of the object) is closer to the
viewer than an object with a high Z-value. The Z
Buffer stores a Z-value for each pixel on a display.
During the rendering process, the Z-value of a pixel
being processed is compared to Z-value in a corre
sponding location in the Z-buffer. If the Z-value of the
pixel being processed is smaller than the value in the
corresponding location in the Z-buffer, then the Z
value of the pixel being process is placed in the corre
sponding location in the Z-buffer. Additionally, the
pixel value of the pixel being processed will be placed in
the screen frame buffer, since it is now the "closest' to
the viewer.

5

10

15

20

25

30

35

40

45

50

55

65

4.
Some of the tradeoffs of object/z-buffer rendering

include: the requirement of Z-buffer memory, screen
frame buffer memory (in addition to a system frame
buffer), and the difficulty in building a modular type of
system due to a constraint of the Z-Buffer memory
needing to be close to the screen buffer. As a result of
such hardware requirements, the object approach can
be a costly approach.

In the scanline approach the 3-D image is rendered a
scanline at a time, rather than an object at a time. Thus,
all objects intersecting a particular scanline are pro
cessed before writing to the scanline location in the
frame buffer. The scanline approach utilizes two passes.
In the first pass, 3-D objects are transformed into 2-D
objects and a scanline object activation list is built. In
the second pass, each of the scanlines are rendered. The
flow of the scanline approach is illustrated in FIG. 3a.
As in hardware rendering, transformation of the 3-D
objects into 2-D objects occurs, step 301. Concurrent
with the step 301, an Object Activation Database is
built, step 302. The steps 301 and 302 comprise the first
pass.
The Object Activation Database provides, for each

scanline, a list of objects which first become active on
that scanline. By becoming active, that object may be
displayed on that scanline. This typically occurs by
identification of the highest point of an object (i.e. its
lowest Y-coordinate), and assigning it to the activation
list of the corresponding scanline. The relationship of
the Object Activation Database to the displayed objects
is illustrated in FIG. 3b. In FIG. 3b a display screen 320
is 9 scanlines high. The scanlines 0-8 are numbered
from low to high down the left hand side of the display
screen 320. Objects A321, B 322 and C 323 are to be
displayed on the display screen 320. It is apparent that
Object A 321 has a highest point 326 (which is on scan
line 5), Object B 322 has a highest Point 324 (which is
on scanline 1) and Object C 323 has a highest Point 325
(also on scanline 1).

Still referring to FIG. 3b, the resulting Object Acti
vation List Database 329 is illustrated. As the points 324
and 325 are on scanline 1, a scanline 1 entry 327 contains
the corresponding objects, namely Object B 322 and
Object C 323. Additionally, a scanline 5 entry 328 con
tains the Object A321.

Referring back to FIG. 3a, once the Object Activa
tion Database 329 is generated and all the 3-D Objects
have been transformed, an Active Object List is cre
ated, step 303. The Active Object List provides a source
of identifying for the scanline being processed, the ob
jects which are active (i.e. portions of which are dis
playable on that scanline). The Active Object List may
contain either descriptive information of the 2-D object
(e.g. coordinate information and shading parameter
values) or may contain information defining the active
edges of the 2-D object (also including shading parame
ter values). FIG. 3c illustrates the contents of an Active
Object List 340 with respect to the screen and Object
Activation List 329 of FIG. 3b. In Active Object List
340, a scanline 1 entry 341 contains the objects B and C.
The objects B and C remain as an entry for scanlines
2-5. In scanline 5 entry 342, object A is included (as this
is where the object A is first displayed). As objects B
and C are no longer displayed after scanline 5, they are
not in a scanline 6 entry 343. The entries for scanlines
6-8 are comprised solely of object A. Rendered Screen
345 illustrates how the objects would be rendered.

5,307,449
5

Referring back to FIG. 3a, once the object Activa
tion List is created, the rendering process begins, step
304. As with hardware rendering, the next steps include
1) vertical interpolation, to determine the coordinates
(and shading parameters of the coordinates) of a hori
zontal span that corresponds to a particular object on a
particular scanline, and 2) horizontal interpolation, for
determining the individual pixel values for the pixels
within the span. Vertical interpolation occurs for every
active object on a scanline. Once the coordinates for the
horizontal span and corresponding shading parameters
have been determined, vertical interpolation is com
pleted and horizontal interpolation begins. When all the
pixels in the span have been shaded, horizontal interpo
lation for the span is completed. This shading process is
embodied in step 304. Step 304 is repeated for all the
objects on the active object list. Finally, a test is made to
determine if the last scanline has been processed, step
305. If the final scanline has not been processed, the
active object list is updated to reflect the active objects
for the next scanline, step 306. The step 306 is generally
identical in function to step 303. If the last scanline has
been processed, the processing for that graphical image
is complete. The steps 303-306 comprise the second
pass.
An important distinction between the vertical inter

polation process in the scanline approach and the object
approach is that in the scanline approach portions of
multiple objects are rendered at one time. Thus, appro
priate storage is required to retain all the forward differ
encing information that will be used as all the objects
are being interpolated. For example, if 10 units of stor
age are required for storing the forward differencing
information for one object, 50 units of storage are re
quired for storing the forward differencing information
for 5 objects. Additionally, since forward differencing is
being used, there is an inter-scanline dependence so that
the scanlines must be processed in sequential order.

Scanline rendering provides benefits over object ren
dering that include eliminating the need for a frame
Z-Buffer and a screen RGB Buffer, each of which usu
ally are the size of the display.
A known system that utilized scanline rendering in

combination with a pipelined object approach is dis
cussed in the publication "Computer Graphics Princi
ples and Practice Second Edition' by Foley, VanDam,
Feiner and Huges published by the Addison Wesley
Publishing Corporation at Pages 885-886. The system
described provides separate processing units for creat
ing an Object Activation Database, Active Object List,
Visible Span Generation (i.e. Vertical Interpolation)
and Pixel Shading (i.e. Horizontal Interpolation). How
ever, the system as described did not provide for paral
lel pipelines.
A parallel pipeline system was described in the afore

mentioned "Computer Graphics Principles and Prac
tice Second Edition" publication at Pages 899-900. The
system described utilized a technique termed object
parallel rasterization. In this system multiple objects are
processed in parallel.
The tradeoffs discussed above were often premised

on an idea that it is desirable to minimize the number of
computations that need to be performed. An example is
the forward differencing technique for linear interpola
tion. In order to minimize division operations, a larger
amount of data must be moved and stored through the
system. With the maturation of semiconductor technol
ogy, the cost of circuitry to perform logic operations

O

15

20

25

30

35

45

50

55

60

65

6
has decreased. Thus, it has become viable to design
systems that utilize processing power and minimize
memory. This is especially desirable when space is a
consideration, since storage tends to take up a sizable
amount of valuable space on an electrical circuit.
As described above, known rendering systems typi

cally perform a high number of linear interpolations. It
would be desirable to provide a method and means
where these linear interpolations may be performed in
an efficient manner.
Known high quality 3-D rendering systems are inher

ently expensive and incapable of incorporating new
functionality without significant re-design of the inher
ent architecture of the rendering system. It would be
desirable to provide a rendering system that is scalable
to user needs. It is an object of the present invention to
provide such a system.

It is a further object of the present invention to pro
vide an interpolation means that does not present the
bandwidth and data storage requirements associated
with forward differencing based techniques.

It is a further object of the present invention to in
crease rendering performance of graphical images
through the rendering of multiple scanlines, without
requiring a multiple increase in data bandwidth require

entS.

SUMMARY OF THE INVENTION

A method and apparatus for providing for the simul
taneous rendering of multiple scanlines for display on a
computer controlled display system, is disclosed. Gen
erally, the computer control display system utilizes a
method for displaying a 3-D graphical image which
includes the steps of: providing a database having a
collection of objects representing a 3-D graphics image,
generating an Object Activation Database for each scan
line in a display that is coupled to the computer control
display system, generating an active object list from the
object activation lists for each of the scanlines, and
providing a active object list to a rendering means,
whereby the rendering means processes each of the
objects in the active object list to render a particular
scan line.
The present invention describes a method for deter

mining X coordinates (and associated pixel values, such
as R, G, B, Z. etc.) of a first end point and a second end
point in a span associated with an object primitive of the
graphical image. The method of the present invention
includes the steps of determining a first active edge and
a second active edge of a first object on the scanline,
generating a first interpolation value for the first active
edge, determining the X coordinate of the first end
point based on the scan line and the first interpolation
value, generating a second interpolation value for said
second active edge and determining the X coordinate of
the second end point based on the scan line and the
second interpolation value.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic drawing of a prior art rendering
system.
FIG.2a illustrates the representation of an object as a

triangle.
FIG. 2b illustrates a triangle mapped to a display

Screen.

FIG. 2c illustrates pixels in a horizontal span of a
triangle when mapped to a display screen.

5,307,449
7

FIG. 3a is a flowchart illustrating a prior art scanline
method for rendering a 3-D image.

FIG. 3b illustrates an Object Activation Database as
utilized in a prior art scanline method for rendering a
3-D image.
FIG. 3c illustrates an Active Object List as utilized in

a prior art scanline method for rendering a 3-D image.
FIG. 4 illustrates a computer system as may be uti

lized by the preferred embodiment of the present inven
tion.

FIG. 5 illustrates a graphics accelerator coupled to a
computer system and a display device as may be utilized
by the preferred embodiment of the present invention.

FIG. 6a illustrates a first graphics accelerator archi
tecture as may be utilized by the preferred embodiment
of the present invention.

FIG. 6b illustrates a second graphics accelerator ar
chitecture as may be utilized by the preferred embodi
ment of the present invention.

FIG. 7 illustrates a graphics pipelines as may be uti
lized by the preferred embodiment of the present inven
tlOn.
FIG. 8a is a flowchart of the flow of operation for a

stage 1 (of FIG. 7) as may be utilized by the preferred
embodiment of the present invention.

FIG. 8b is a flowchart of the flow of operation for a
stage 2 (of FIG. 7) as may be utilized by the preferred
embodiment of the present invention.
FIG. 8c is a flowchart of the flow of operation for a

stage 3 (of FIG. 7) as may be utilized by the preferred
embodiment of the present invention.
FIG. 9 illustrates an example of Vertical Interpola

tion in the preferred embodiment of the present inven
tion.

FIG, 10 illustrates an example of Horizontal Interpo
lation in the preferred embodiment of the present inven
tion.

FIG. 11 illustrates the functional blocks of the Stage
1 processing unit as may be utilized by the preferred
embodiment of the present invention.

FIG. 12 is a schematic functional diagram of a Stage
2 and/or Stage 3 processing unit as may be utilized by
the preferred embodiment of the present invention.
FIG. 13 is a schematic representation of a circuit for

determining the pixel interpolation weight as may be
utilized by the preferred embodiment of the present
invention.
FIG. 14a is a schematic representation of a circuit for

calculating a linear interpolation value as may be uti
lized by the preferred embodiment of the present inven
tion.
FIG. 14b illustrates the bit positions of a weighting

value as may be utilized by the preferred embodiment of
the present invention.

FIG. 15 is a flowchart illustrating the processing flow
of multiple parallel rendering pipelines as may be uti
lized in the preferred embodiment of the present inven
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for rendering multiple scan
lines in a computer controlled display system is de
scribed. In the following description, numerous specific
details are set forth such as data structures, in order to
provide a thorough understanding of the present inven
tion. It will be apparent, however, to one skilled in the
art that the present invention may be practiced without

10

15

20

25

30

35

40

45

50

55

65

8
these specific details. In other instances, well-known
circuits, control logic and coding techniques have not
been shown in detail in order not to unnecessarily ob
scure the present invention.
Overview of the Computer System of the Preferred

Embodiment

The computer system of the preferred embodiment is
described with reference to FIG. 4. The present inven
tion may be implemented on a general purpose mi
crocomputer, such as one of the members of the App
le (R) Macintosh (R) family, one of the members of the
IBM Personal Computer family, or one of several
work-station or graphics computer devices which are
presently commercially available. In any event, a com
puter system as may be utilized by the preferred em
bodiment generally comprises a bus or other communi
cation means 401 for communicating information, a
processing means 402 coupled with said bus 401 for
processing information, a random access memory
(RAM) or other storage device 403 (commonly referred
to as a main memory) coupled with said bus 401 for
storing information and instructions for said processor
402, a read only memory (ROM) or other static storage
device 404 coupled with said bus 401 for storing static
information and instructions for said processor 402, a
data storage device 405, such as a magnetic disk and
disk drive, coupled with said bus 401 for storing infor
mation and instructions, an alphanumeric input device
406 including alphanumeric and other keys coupled to
said bus 401 for communicating information and com
mand selections to said processor 402, a cursor control
device 407, such as a mouse, track-ball, cursor control
keys, etc, coupled to said bus 401 for communicating
information and command selections to said processor
402 and for controlling cursor movement. Additionally,
it is useful if the system includes a hardcopy device 408,
such as a printer, for providing permanent copies of
information. The hardcopy device 408 is coupled with
the processor 402 through bus 401.

Also coupled to the computer system of the preferred
embodiment is a frame buffer 409 which is further cou
pled to a display device 410, preferably a display device
capable of displaying color graphics images. The frame
buffer 409 contains the pixel data for driving the display
device 410. The display device 410 would be further
coupled to a rendering device 411, also known as a
graphics accelerator. Typically, such a rendering de
vice 411 is coupled to the bus 401 for communication
with the processor 402 and frame buffer 409. The pre
ferred embodiment is implemented for use on a Macin
tosh computer available from Apple Computer, Inc. of
Cupertino, Calif.

FIG. 5 illustrates in more detail, a rendering device as
coupled to a host computer system in the preferred
embodiment. First, a host computer system 550 is cou
pled to a frame buffer 551 and a rendering device 555.
The host/frame buffer coupling 552 is an optional cou
pling when the rendering device is installed. Such a
coupling may be desirable in instances where the ren
dering device 555 is not being utilized, e.g. when the
application being executed does not require the display
of 3-D graphical images.
The host/rendering device coupling 553 is typically

through a means such as the bus 401, described above
with reference to FIG. 4. The rendering device/frame
buffer coupling 554 is also typically over a DMA
means. The information flowing over this coupling will

5,307,449
9

typically consist of pixel data of images or scanlines that
have already been rendered. Finally, the frame buffer
551 is coupled to the display device 556, wherein pixel
data to drive the presentation of the graphical image is
stored.
The rendering device of the preferred embodiment

operates with display systems with fast raster support.
Fast raster support refers to raster scan display systems
where the frame buffer 551 can accept incoming scan
lines of display data at high speed. Besides graphics
applications, fast raster support is typically used for
applications such as display of video data. Thus, the
system of the preferred embodiment is compatible with
systems that have support for video applications.
As will be described in more detail below, the pre

ferred embodiment of the present invention utilizes a
scanline approach to rendering. From a computer sys
tem design standpoint, the principle advantages in uti
lizing a scanline approach are the reduction of band
width between the graphics accelerator and the host/-
frame buffer, reduced requirements for low latency
communication between the graphics accelerator and
the host/frame buffer, and increased coherence of the
data transferred from the graphics accelerator and the
host/frame buffer. Moreover, for a given desired per
formance of the combined computer system and graph
ics accelerator, these advantages reduce both the cost of
the computer system without the graphics accelerator,
the cost of the graphics accelerator itself.

Shading Algorithm of the Preferred Embodiment
Before a pixel is shaded, it must be determined

whether it is front most. As will be described in detail
below, this occurs in the preferred embodiment through
a scanline Z-Buffer algorithm. Once it is determined
which pixels of an object are visible, a shading algo
rithm is used to determine pixel values (i.e. their color).
Typically, the shading algorithm will take into account
material properties of the object surface and the sources
of light in the scene to determine the color of the pixel.
In the preferred embodiment, a Phong Shading is per
formed at the endpoint vertices of a span while Gou
raud shading is performed for the pixels across the span.
Material properties in the preferred embodiment in
clude a diffuse RGB color, specular power (shininess),
specular RGB color and surface normal. Light sources
in the preferred embodiment include an infinite light
source and an ambient light source. Finally, in the pre
ferred embodiment, shading is based on a diffuse reflec
tion model with the option of adding a specular reflec
tion model.
The color of a particular pixel in an object can be

most accurately calculated as the sum of the diffuse,
specular, and ambient contributions for each of the
color components. The specific diffuse color compo
nent, in this case the color red, is calculated by the
formula:

Diffuse Color=LKa(LN)

where Lois the red color component of the (point) light
source, Kd is the diffuse red component of the surface,
L is the light vector, and N is the normal to the surface.
All vectors are normalized. The calculation is repeated
for each color component.

Specular reflection describes the light reflected from
shiny surfaces. The specular color is determined by the
product of the light and the specular color of the sur
face attenuated by the angle between the direction of

10

15

20

25

30

35

45

50

55

65

10
the viewpoint and the reflection of light. Highlights are
described by specular reflection. The red component of
a the color of a pixel due to specular reflection is calcu
lated by the equation:

Specular Color=LKs (R-Y)"

where L is the intensity of the red component of the
(point) light source, Ks is the red component of the
specular color, R is the reflection of the light vector off
of the surface, and V is the reversed eye vector (the
vector from the surface to the eye), and n is the specular
reflection coefficient (i.e. the specular power). All vec
tors are normalized.
The ambient color contribution is calculated by the

equation:

Ambient Color=Larkar

where La is the intensity of the ambient light source
and kar is the ambient color of the surface.
For each of the above color contribution components

RGB, the calculations are repeated. The method of the
preferred embodiment calculates pixel values in this
fashion. However, as objects only have such RGB val
ues defined at vertex points, interpolation techniques
are used to determine values at points within the object.
It is such an interpolation technique for determining
pixel values that is implicit in the rendering architecture
of the preferred embodiment.
Although the preferred embodiment utilizes a tech

nique with Phong shading at the vertices coupled with
Gouraud interpolations, it would be apparent that other
shading techniques may be used. Such alternative shad
ing techniques include, but are not limited to full Gou
raud Shading or Torrence-Sparrow shading.
Rendering Architecture of the Preferred Embodiment
The rendering architecture of the preferred embodi

ment is premised on a scanline algorithm. As described
with reference to prior art systems, the scanline algo
rithm renders an image by scanline. Briefly, the scanline
algorithm is a two pass algorithm. The first pass is used
to set up databases of information that are used to drive
the actual scanline rendering process. In the first pass, a
2-D object is derived from each 3-D object in a 3-D
object database. During this process, the scanline upon
which the object would first be displayed (first in the
sense of the order of drawing scanlines to the display
device), i.e. become "active', is determined. This infor
mation is used to create an Object Activation Database,
where the entries in the database define the objects that
become "active' on a particular scanline.

In the second pass, the Object Activation Database is
used to create a dynamic list of objects which are "ac
tive' on the scanline(s) currently being rendered. This
list is called the Active Object List. The Active Object
List is then provided to shading means which create the
pixel values for the scanline(s) currently being ren
dered. The Active Object List is updated as objects
become "active' or "inactive' on the scanline(s) to be
rendered next.

It is known to those skilled in the art that an object
may typically be represented by a data structure which
contains coordinate information and shading parameter
values. In the preferred embodiment, a triangle object is
represented by 3 coordinate points, where each of the

5,307,449
11

coordinate points has shading parameter values. The
segments which interconnect the 3 coordinate points
define the bounds of the triangle. Further in the pre
ferred embodiment a quadrilateral object is definable. A
quadrilateral will be similarly defined, except that it will
define 4 coordinate points (each with corresponding
shading parameter values). In the preferred embodi
ment, a quadrilateral may be provided to the rendering
pipeline, but it would be converted into a pair of trian
gles for rendering (each utilizing 3 of the 4 coordinate
points).

Alternative systems hardware schematics as may be
utilized by the preferred embodiment are illustrated in
FIGS. 6a and 6b. Referring to FIG. 6a, a host computer
601, e.g. a microprocessor, is coupled to a graphics
accelerator 604 so that certain functions in the render
ing process are carried out by the host and the accelera
tor. The host computer 601 maintains a 3-D Object
Database 603 and creates an Object Activation Data
base 602. As described above, the 3-D Object Database
603 contains a list of the 3-D objects which comprise
the 3-D Graphical Image, while the Object Activation
Database 602 contains a list for each scanline, of the
objects which are first displayed on that scanline.
The graphics accelerator 604 is comprised of front

end processors 605 and rendering pipelines 607. The
front-end processors 605 perform a plurality of func
tions in the rendering process. First, with respect to the
first pass of the scanline algorithm, the front-end pro
cessors 605 perform clipping and transformation func
tions and provide the Host computer 601 with informa
tion for each object indicating the scanline on which the
object first becomes active. With respect to the second
pass, the front-end processors 605 receive 3D- object
information from the Host computer 601 to create an
Active Object List 606. The Active Object List 606
identifies objects which are "active" or to be drawn, on
the particular scanline being processed. The front end
processor 605 also provide control instruction to the
rendering pipelines 607. Such control instructions are in
the form of control tokens, and are discussed in greater
detail below. The front end processors 605, are prefera
bly floating point processors or Reduced Instruction
Set Computer (RISC) processors.
Also illustrated in FIG. 6a is a transformation data

base 608. The transformation database 608 is used as a
matter of convenience to resolve object accessing prob
lems that occur due to the data structures used in creat
ing the transformation matrices when transforming 3-D
Objects to 2-Dimensional Objects.

Finally, the graphics accelerator includes one or
more rendering pipelines 607. The rendering pipelines
receive control information from the front-end proces
sors 605 and the object information from the active
object list 606 to perform the actual calculating of pixel
values for each pixel in a scanline. The rendering pipe
lines 607 are discussed in greater detail below.
An alternative implementation is illustrated in FIG.

6b. The primary difference between this alternative
implementation and that illustrated in FIG. 6b is the
elimination of front-end processors and separate storage
means for the transform database and Active Object
List. Referring to FIG. 6b, the host processor 620 per

10

15

20

25

30

35

45

50

55

forms the functions of the front-end processors 605 of 65
FIG. 6a. Likewise, transform database 623 and Active
Object List 624 are coupled to and maintained by host
processor 620. The host processor 620 then provides the

12
contents of the Active Object List to one or more ren
dering pipelines 625, for rendering. .
The embodiment illustrated in FIG. 6b is desirable in

implementations where performance is sacrificed in
relation to cost. As the embodiment in FIG. 6b utilizes
fewer components then that in FIG. 6a, its total cost
would be lower. However, as the host processor is
called on to do more work, rendering performance will
be impacted.

In whichever form, a graphics accelerator will typi
cally be one or more printed circuit boards coupled to
the computer systems. Coupling of the graphics accel
erator was discussed above in reference to FIG. 5. In
order to simplify the description of the the rendering
pipelines of the preferred embodiment, the processor
that provides the objects from the Active Object List to
the rendering pipelines will be termed a control proces
sor. In this context, the control processor would refer to
the alternative configurations found in FIGS. 6a and 6b.
As will be described below, the rendering pipelines in

the preferred embodiment utilize a means for directly
interpolating pixel values and determining the x-coordi
nates of horizontal spans. As compared to prior art
systems, the means of the preferred embodiment signifi
cantly reduces the amount of data storage for an Active
Object List and significantly reduces the data band
width requirements.
With regard to the Active Object List, when utilizing

traditional forward differencing techniques the Active
Object List will contain all the shading parameter data
for each active object. It is estimated that the direct
evaluation method of the preferred embodiment would
provide a 50% storage savings. This is caused by the
requirement that 2n bits of precision are required for a
value, in order to retain n bits of precision after an arith
metic function is performed. For example, forward
differencing an n bit parameter requires storing a 2 n
current parameter value (pi) and a 2 n parameter delta
(pD), resulting in a parameter to be represented by 4 n
bits. Direct interpolation only requires the end-points,
i.e. 2 n bits of storage. As the number of parameters
increases, the storage savings becomes more significant.
In the preferred embodiment material properties param
eters diffuse RGB, a (alpha or transparency), specular
RGB, specular reflectivity (N), surface normal (N, N,
N2) and Z are interpolated and propagated through the
pipeline. As shading functionality increases, the number
or parameters required to describe the object will in
crease. Note that other parameters such as specular
ambient and diffuse light parameters remain constant
and thus need not be interpolated in the pipeline.

Correspondingly, the data bandwidth (or aggregate
data flow) required to move the objects is decreased. As
data must be moved from the Active Object List to the
rendering pipelines, a reduced quantity of data results in
a reduced bandwidth. Further, forward differencing
requires reading Pi- 1 and Ap for 4N bits, then writing
back Pi to the Active Object List (another 2N bits) for
a total of 6N bits. As described above, in direct evalua
tion, only 2N bits will be transferred to/from the Active
Object List. This results in a 3x savings in the required
Active Object List bandwidth of a system that directly
interpolates the end-points. Moreover, the unidirec
tional data flow of direct evaluation also simplifies sys
tem design.

It should be noted that in the preferred embodiment
the graphics acceleration may directly access the sys
tem frame buffer. Thus, inherent in the preferred em

5,307,449
13

bodiment is a Direct Memory Access (DMA) means
which will allow the graphics accelerator to scanout
rendered scanlines directly to the system frame buffer.

Using direct evaluation also reduces the computation
necessary to set-up the active object list as slope divi
sions and parameter delta calculation (i.e. the AP) are
not necessary. These steps (performed by the front-end
processors) are often expensive because of the care
taken to avoid introducing error in the forward differ
encing calculation.
A desirable effect provided by direct evaluation is

that it facilitates the rendering of multiple scanlines in
parallel. Because the primitives in the active list contain
no information dependent on vertical position, the same
data can be fed into multiple pipelines, each configured
to perform vertical interpolation for a different scanline.
By contrast, the forward differencing algorithm
changes the primitive description every scanline, so it is
difficult to use the same data to drive the rendering of
multiple scanlines.

Description of the Rendering Pipeline
The rendering pipeline of the preferred embodiment

is designed to generate one shaded pixel per pipeline
clock cycle. As described above, the rendering in the
preferred embodiment utilizes the scanline approach.
Using traditional forward differencing linear interpola
tion techniques, the rendering of multiple scanlines
simultaneously is made difficult because of the inter
scanline dependencies. The rendering pipeline of the
preferred embodiment avoids such difficulties through
the use of multiple parallel pipelines and direct evalua
tion of coordinate and parameter values.
As described above, forward differencing requires

high data bandwidth. During the shading of pixels, i.e.
horizontal interpolation, a given pixel typically will
require over 200 bits of data to be transferred for each
shading function. A known technique for minimizing
data bandwidth problems is to provide for fast intercon
nection between components. However, this may cre
ate other problems such as synchronization and control.
In connection with direct evaluation, the preferred
embodiment further minimizes the required bandwidth
through direct and distributed evaluation of a pixel
interpolation token. This negates the need to send all the
shading data required for a pixel down the pipeline.
Endpoint values for all parameters are first sent where
upon an interpolation weight need only be provided for
each pixel. Direct and distributed evaluation will be
discussed in greater detail below with respect to hori
zontal interpolation.

Operation of the Rendering Pipelines
Data and control information is transferred between

various stages in the rendering pipeline area as "to
kens'. "Tokens' as utilized in the preferred embodi
ment, refer to a fixed structure for sending and receiv
ing data and control information. In any event, prior to
receiving objects, the rendering pipelines must be pro
vided with setup information, to define the rendering
functions that will be performed. In the preferred em
bodiment, this occurs by propagation of a global mode
setup token through the pipeline. The global mode
setup token is described in greater detail in the section
entitled Tokens. Briefly, the global mode setup token is
generated by the control processor (i.e. FIG. 6a or the
host processor per FIG.6b) and is used to enable diffuse

O

5

20

25

30

35

45

50

55

65

14
or specular shading, shadowing and a transparency
mode.
Once the pipeline has been set-up, the rendering pipe

lines may receive objects to be rendered. First, a Direct
Input Stream Token is sent to the pipelines to designate
which rendering pipelines will receive the forthcoming
input stream. For objects, all the rendering pipelines
may receive the input stream. However, if it is an in
struction to cause a particular processing unit to per
form a particular function, the rendering pipeline can be
designated as appropriate by the Direct Input Stream
Token. Next, the objects are sent down to the pipelines
in corresponding DRAW instructions. A DRAW in
struction merely indicates to the pipeline that an object
or more precisely, a span, is to be rendered. The
DRAW instruction is followed by data describing 2, 3,
or 4 vertices. Loading 4 vertices causes an independent
quadrilateral to be drawn. For a quadrilateral to be
drawn; the vertices are loaded in the order VO. . . V3.
A quadrilateral is drawn as two triangles. A triangula
tion field in the DRAW command indicates along
which axis to split the quadrilateral. Loading 3 vertices
causes the triangulation field to be ignored.

Loading 2 vertices indicates that a strip of connected
quadrilaterals is being drawn. A quadrilateral strip is
always begun with a detached quadrilateral loading all
4 vertices. The immediately following DRAW com
mand reloads V0/V1, and causes 2 more triangles to be
drawn, triangulated as indicated by the triangulation
field, and sharing previously loaded V2/V3. The subse
quent DRAW reloads V2/V3, sharing the previous
V0/V1, and so on, always swapping which 2 vertices
are loaded. The triangulation field allows the triangula
tion axis of each quadrilateral to be specified indepen
dently; because the vertex order is swapped for every
quadrilateral, leaving the triangulation bit constant will
result in the crosshatch triangulation pattern.
FIGS. 7 and 8a–8c describe operation of the render

ing pipelines as an object is being rendered. Referring to
FIG. 7, in the preferred embodiment the rendering
pipeline, such as pipeline 607, is comprised of at least 3
stages. Stage one derives interpolation values, spans and
pixels for the objects. Stage two performs hidden sur
face removal, shadow functions and performs ambient
color calculations. In Stage three, a compositing func
tion is performed as well as scanout of a rendered scan
line. As each stage provides for standard passing of
information and synchronization of operation within
the pipeline, additional shading functions, such as tex
turing, may be added between stages two and three. In
the preferred embodiment, Gouraud shading is pre
formed. If alternative shading methods are desired, such
as Phong shading, additional stages between state two
and three, may be included. Each of the stages is dis
cussed in greater detail below.

Stage One
In Stage 1, object descriptions (hereinafter objects)

701 from an active object list and control tokens 702 are
input into a stage 1 processing means. The stage 1 pro
cessing means acts as a pre-processor, for receiving and
pre-processing the objects for rendering. A first func
tion performed in stage one is vertical interpolation (via
vertical interpolation module 703). A primary purpose
of vertical interpolation is to identify the X-coordinates
for horizontal spans corresponding to the active objects
in the scanline being processed. The vertical interpola
tion module also generates set-up tokens describing the

5,307,449
15

span and it's shading parameters. The set-up tokens are
forwarded to succeeding stages in the pipeline. A sec
ond function performed is setup for horizontal interpo
lation (via horizontal interpolation module 704). Hori
zontal interpolation is the process by which pixels in a
span are shaded. The horizontal interpolation process is
distributed in that separate stages perform separate
shading functions. The horizontal interpolation module
704 generates Pixel interpolation tokens for each pixel
in the span.

FIG. 8a describes stage 1 processing in more detail.
First, the objects from the active object list, corre
sponding to the identified scanline, are sent to the stage
one input, step 801. It should be recalled that the data
representing the objects include the coordinates of the
vertices and shading parameters at the vertices. As the
objects are sent down in a "burst' mode, a First In First
Out (FIFO) queue is provided which stores the objects
prior to their being processed. The stage one processing
unit may suspend transfer of objects via provided con
trol signals. Once the objects are input into the pipeline,
they are serially processed within Stage One (but the
processing of an individual object may occur in paral
lel). The first step for pre-processing an object for the
pipeline, is vertical interpolation to identify a horizontal
span of the object, step 802. A horizontal span is identi
fied by the end coordinates representing the portion of
the object that is displayable on the scanline being pro
cessed. As the scanline being processed represents a
Y-coordinate, the X-coordinate is identified by deter
mining the intersection point of a scanline and a corre
sponding active edge. Following the calculation of the
span coordinates, corresponding parameter values are
then generated for the span end-points, step 803. This is
accomplished by linearly interpolating the endpoints of
the active edges with respect to the scanline being pro
cessed. The details of vertical interpolation are de
scribed in more detail below.

Next, span parameter set-up tokens are generated and
sent down the pipeline, step 804. Such span parameter
set-up tokens contain the RGB values or Z-values for
the end-points of the span that were generated in step
803. It should be noted that certain tokens will only be
used by certain successive stages. For example, stage 3
does not use Z-value set-up tokens. If a particular stage
does not require the information contained in a particu
lar token, that token will be ignored.

Next, setup for horizontal interpolation of the span is
performed. Horizontal interpolation refers to the inter
polation of the parameter values of the end-points of a
span, across the pixels in the span. The set-up for hori
zontal interpolation requires transfer of the coordinate
points of the span, step 805, and the generation of a pixel
interpolation token, step 806. A pixel interpolation
token consists of the pixel coordinates and a pixel inter
polation weight value. The pixel coordinates are deter
mined by simply counting across the span starting at the
left most endpoint on the span. Generation of the pixel
interpolation token is described in greater detail below
with respect to horizontal interpolation. Next, the cor
responding Pixel Interpolation token is assembled and
sent down the pipeline, step 807. A check will be made
to determine whether it is the last pixel in the span, step
808. If it is not the last pixel in the span, the next pixel
coordinates are generated (typically by counting to the
next horizontal pixel value), step 809, and the process
repeats starting at step 806.

5

10

15

20

25

30

35

45

50

55

65

16
The steps 802-809 will be repeated for all the objects

received in the FIFO. As there may be some overlap in
processing, i.e. more than one object may be processed
through the pipeline at one time, there is typically no
check after the generation of a pixel interpolation token
to see if there are any more objects in the object FIFO.
Moreover, some of the steps may overlap. For example,
the generation of span parameter values may occur
during the horizontal interpolation set-up processing.

Stage Two
Referring back briefly to FIG. 7, a first function of

Stage Two is hidden surface removal (via hidden sur
face removal module 705). The hidden surface removal
module 705 utilizes a Z-Buffer algorithm to eliminate
pixels that will not be shaded, because they are "be
hind" other objects (i.e. not front most). Shadow analy
sis, to further eliminate pixels that will not be shaded,
may also be performed in conjunction with Z-analysis.
The shadow analysis is also performed by the hidden
surface removal module 705. Stage 2 also performs an
ambient color calculation on the visible pixels (via
RGBA module 706), and places these values into the
Pixel Interpolation Token. The output of stage two are
the front most, non-shadowed spans, as well as tokens
that are flowing unprocessed through the pipeline, e.g.
null tokens.

FIG. 8b illustrates the steps performed in Stage Two.
First, prior to receiving any object data, the stage two
processing unit receives the Global Mode set-up token,
step 820. The Global mode set-up token is used to set
appropriate processing criteria for the desired rendering
functionality. Next, the span parameter set-up tokens
generated in stage one are received, step 821, and the
relevant data (i.e. Z and RGBa values) is loaded into
registers embodied within the processing unit, step 822.

Stage 2 processing begins when a Pixel Interpolation
token is received, step 823. First a corresponding Z
value for the pixel is calculated, step 824. The Z value
for the pixel is calculated by directly evaluating a linear
interpolation (LRP) function, using an interpolation
weight value contained within the pixel interpolation
token. When comparing Z-values, a lower Z-value
means that the object is closer to the viewer. In this
context, this means that a first object with a higher
Z-value than a second object, will be behind and thus
hidden by the second object. It should be noted that the
Z-buffer will always be initialized to a maximum Z
value so that it will have a valid value to compare in
coming Z-values with. This horizontal interpolation of
the Z-values of the various pixels in the span is de
scribed in more detail below. Once the Z-value of the
pixel has been determined, a comparison is then made of
the Z value for the pixel with a Z value at the corre
sponding pixel location in the Z buffer, step 825. If the
Z value of the pixel is greater than the value in the
corresponding location in the Z buffer, processing of
the pixel is terminated, step 826. Termination of pro
cessing of the pixel involves converting the correspond
ing token into a null token, whereupon it will flow
through the pipeline unprocessed. If the value is less
than or equal to the value in the Z buffer, then the new
lower Z-value is returned to the Z-buffer, step 827 and
a check for the last object is made, step 828. If it is not
the last object, the next pixel interpolation token is re
ceived, step 823. If it is the last object then it must be
determined if pixel elimination because of shadowing
will be performed. A first check to see if Second pass

5,307,449
17

analysis will be performed, step 829. This second pass is
performed if the shadow count flag in the global mode
setup token is set. If yes, second pass analysis is per
formed, step 830, otherwise it is determined if third pass
shadow testing is to be performed, step 831. If yes, third
pass analysis is performed, step 832. The aforemen
tioned shadow analysis is described in greater detail
below. In any event, the next step will be to determine
the RGB ambient color contributions for the pixel, step
833. This simply involves linear interpolation of the
pixel based on the endpoint parameter values of the
corresponding span. Once this is performed, the RGB
values are placed back into the pixel interpolation token
and the token is propagated to the next stage.

Stage Three
In Stage Three, a compositing function is performed

(via RGB composition module 707). Compositing in
volves the generation of pixel values due to transpar
ency of objects. This will typically occur when multiple
objects have identical Z-values. A transparency value
that is associated with an object is termed a. The a value
represents the percentage of the final color value that
the corresponding object contributes. For example, an
object with an a of 50, will contribute 50% of the final
color pixel value. In the preferred embodiment two
types of transparency calculations are performed, addi
tive transparency and filtered transparency. In additive
transparency, the existing values are simply added to
the incoming color value after being scaled by a.

In filtered transparency the new color value is lin
early interpolated with the old color value to generate
the filtered color value. In filtered transparency, the
Relative Weight used for the interpolation function is
the value provided with the incoming color data, i.e. a.

Finally, in the stage 3 a scanline buffer in scanout
module 708 is used to collect the final values of the
pixels for the scanline being processed. Once all the
objects in the scanline have been processed, the con
tents of the scanline buffer is transferred to the system
frame buffer 709.

FIG. 8c further illustrates Stage Three processing in
the rendering pipeline. As in Stage Two, the global
mode setup token received, step 840, and the appropri
ate processing parameters are set. In this case the pro
cessing parameters will dictate which of additive or
filtered transparency mode will be used. Next, Pixel
Interpolation tokens are received, step 841. The first
step is to determined if transparency processing will not
be performed by checking if a = 1, step 842. If a = 1,
then the pixel color values will be loaded into the scan
line buffer, step 846 (since the incoming pixel shading
values provide 100% of the blended color value). If
transparency processing has been specified, additive
transparency is performed, step 843. Next, it will be
determined if filtered transparency will be performed,
step 844. If yes, filtered transparency blending is per
formed, step 845. Once the blending has occurred and a
new color value has been generated or if now filtered
transparency blending is performed, the new pixel color
values is loaded into the corresponding location in the
scanline buffer, step 846.

It is then determined if the final pixel has been pro
cessed, step 847. If the last pixel has not been processed,
the next pixel interpolation token is received, step 841.
If the last pixel in the last span has been processed, the
contents of the scanline buffer is transferred to the sys
tem frame buffer via a scanout, step 848. As described

10

15

20

25

30

35

45

50

55

18
above, it is the system frame buffer that is used to drive
the display means. It should be noted that in the pre
ferred embodiment, the scanline buffer is double buff
ered. This will allow the contents of the scanline buffer
to be transferred to the frame buffer while a new scan
line is being processed.

Vertical Interpolation
As defined above, vertical interpolation is the process

by which the X-coordinates of the end-points on a span
are determined. A span is the portion of an object that
is visible on the scanline being rendered. The vertical
interpolation of the preferred embodiment is achieved
by a direct solution method that uses object description
information and the identify of the scanline. Vertical
interpolation for an object on a scanline being rendered
is illustrated with respect to FIG. 9. Referring to FIG.
9, the coordinate points for the vertices of the object are
A(Xa,Ya) 901, B(Xb, Yb) 902 and C(Xc,Yc) 903. The
scanline being processed is Yes 904.

In this example, the coordinate points for the object
being processed are: Xa=60, Yas 20, Xb= 40,
Yb = 150, and Xc = 80, Yose 180. The current scanline
Ycs = 100. By the process of Vertex Sort (which is de
scribed in greater detail below), the active edges of the
object for Ycs are determined to be AB 910 and AC
911. An active edge is merely one that intersects the
current scanline. An edge is considered active if it satis
fies the equation:

Y-top <Y current scanline C = Y-bottom,

where the Y coordinate increases from top to bottom.
For the edge AB 910 Y-top =Ya=20, and Y-bottom
=Yb = 150; so that 20<100<= 150 and the equation is
satisfied. For the edge AC 911 Y-top=Ya=20, and
Y-bottom=Yc = 180; so that 20< 100<= 180 and the
equation is satisfied. With respect to edge BC 912 Y
top = Yb = 150, and Y-bottom =Yc = 180; so that the
equation 150 < 100<=180 is not satisfied and edge BC
912 is not an active edge.
The X-coordinate for the points where each scanline

intersects an active edge is calculated by first determin
ing a relative weight w for the edge on scanline Yes
using the formula:

where Yes is the current scanline, Yois the highest scan
line ordinate value (lowest in numerical value) of the
active edge and Yn is the lowest scanline ordinate value
(highest in numerical value) of the active edge.
The X-coordinate is then determined by directly

evaluating the linear interpolation equation:

where Xo is the leftmost horizontal coordinate of the
active edge and X1 is the rightmost coordinate of the
active edge.
With respect to FIG. 9, the active edge AB 910 inter

sects the current scanline 904 at point D (Xo, Y) 905.
The active edge AC intersects the current scanline 904
at point E (X, Y) 906. For the point D905, the rela
tive weight is

5,307,449
19

W = (Ycs - Ya)/(Yb - Ya)
= (100 - 20)/(150 - 20)

80/130
= 8/13.

Inserting this into the linear interpolation equation, the
X-coordinate is determined as

Xo
40(5/13) + 60(8/13)
200/13 - 480/3
680/13
524/3

which is rounded to 53. Thus, the coordinates for point
D905 are (53, 100).
For the point E906, the relative weight is

W (Yes - Ya)/(Yc - a)
(100 - 20)/(180 - 20)
80/160
1/2.

e

Inserting this into the linear interpolation equation, the
X-coordinate is determined as

X Xa(1 - W) -- Ye(W)

60(1/2) -- 80(1/2)
30 -- 40
70

Thus, the coordinates for point E 906 are (70, 100).
When using such interpolation techniques, fractional

components may arise due to the divisions required in
achieving the Wvalue. This may result in the rendering
of pixels on the boundaries between two triangles twice,
or missing pixels to be rendered. To account for such
fractional components, a rule is adopted that pixel cen
ters in both the X and Y directions are at X.50 and Y.50,
respectively. With respect to FIG. 9, the pixel center
for the point A 901 (60, 20) would be (60.50, 20.50).
Further, a pixel is covered if the equation

min Kpixel co-ordinate <=max

is satisfied. In order for a point to be included in a hori
zontal span, the point coordinates are compared to the
X-coordinate characteristics of the endpoints of the
span and the Y-coordinate characteristics endpoints of
the active edges for the object the span is associated
with. Referring again to FIG. 9 for a point to be within
the horizontal span defined by the points D905 and E
906, the following criteria must be met:

For the X-Coordinate:

53.50<XC is 70.50; and

for the Y-Coordinate:

100.50 (Yn C = 100.50.

By using < (less than) for comparison on one side and
> = (greater than or equal to), the rendering of pixels
on the boundaries between two triangles twice, or miss
ing pixels, is avoided. Here the Y coordinate value will

10

15

20

25

30

35

40

45

50

55

65

20
typically be satisfied because it refers to the scanline
being rendered.
Generation of Shading Parameters for Span Set-up

Tokens

The shading parameter values, i.e. the RGB, Z and a
values, at each of the span endpoints are calculated in
the same manner as the X-coordinate. Since W has been
previously calculated, it is simply a matter of inserting
the provided shading parameter values at the endpoints
of the active edges into the linear interpolation function.
Referring back to FIG. 9, the endpoints D905 and E
906, the provided parameter values at each of the end
points of the active edges, i.e. points A 901, B902 and
C 903, are provided as input to the linear interpolation
function. For example, the shading parameters at end
point D905 may be calculated using the linear interpo
lation equation 3S
PD=P(1-WD)+P(WD)=P(5/13).--P(8/13);
where PA is the provided parameter value at point A
901, PB is the provided parameter value at point B902
and PD is the interpolated parameter value at point D
905. Similarly, the shading parameters for the endpoint
E906 may be calculated using the linear interpolation
equation as PE=PA(l-WE)--PCCWE) = (P --PC)/2;
where PA is the provided parameter value at point A
901, Pc is the provided parameter value at point C903
and PE is the interpolated parameter value at point E
906. These shading parameter values at the endpoints of
the span are calculated and propagated through the
rendering pipeline through corresponding span set-up
tokens.

Generation of a Pixel Interpolation Token
As described above with respect to Stage 1, pixel

interpolation tokens are generated after span coordi
nates have been defined. These end-points, say Xa and
Xb, are received by the Horizontal interpolation mod
ule, which immediately compares them to determine
which is leftmost. It is assumed that Xa is leftmost. If Xb
is leftmost, Xa and Xb are swapped. In this scheme, an
interpolation weight value W = 0 reference refers to the
left end of the span (i.e. Xa). AW = 1 reference refers to
the right end of the span (i.e. Xb). As described above,
the interpolation weight value W refers to the relative
weight for a direct interpolation function which is used
to determine the value of a pixel.

Creating a Pixel Interpolation token requires the
generation of two numbers: the target pixel address X
and the interpolation weight W. The target pixel ad
dress X generation is accomplished by counting from
the leftmost X value generated from the vertical inter
polation step. For generating W, the method of interpo
lation must first be determined. In the preferred em
bodiment, a linear interpolation method is used. It
would be apparent to one skilled in the art to use other
interpolation methods, e.g. perspective corrected inter
polation. It should be noted that use of alternative inter
polation methods would have an effect on W as well as
an effect on the direct solution method of linear interpo
lation utilized in each of the succeeding processing
units. It is anticipated that a perspective corrected in
plementation may be used to calculate W, while the
linear interpolation methods retained within each of the
processing units, thus enabling a perspective corrected
implementation without requiring the replacement of
all the processing units of a rendering pipeline.

5,307,449
21

In the preferred embodiment a function W(X) is cal
culated for each span. The function W(X) is defined as:

Since a linear interpolation of the pixels across the span
is being performed, the slopem of the W(X) function is
constant and can be computed once for the span via the
equation:

m = 1/(Xright-Xleft).

Thus, by substitution the W(X) function can be reduced
to the equation:

This function is desirable since it minimizes the division
operations that would need to be performed for the
span. So for each pixel in the span, the x-coordinates of

O

15

the pixel being rendered and the left most endpoint of 20
the span are inserted into the W(X) function in order to
derive the interpolation weight W for that pixel.
FIG. 10 illustrates several pixel locations in a span

1001. The span 1001 was derived using the vertical
interpolation of the preferred embodiment with respect
to FIG. 9. In any event, counting sequentially as de
scribed above, a pixel F 1002 has coordinates (56, 100).
The corresponding pixel interpolation weight is calcu
lated as WF=56-53/70-53=3/17. A pixel G 1003 has
coordinates (61, 100) and a cooresponding pixel interpo
lation weight that is calculated aS
WG=61-53/70-53=8/17. Finally, a pixel H 1004 has
coordinates (67, 100) and a corresponding pixel interpo
lation weight that is calculated aS
WH = 67-53/70-53=14/17.

Horizontal Interpolation
Horizontal interpolation generally refers to the shad

ing of the consecutive pixels within a span. As described
above, the first stage of the pipeline performs set-up for
the horizontal interpolation process by calculating pixel
weighting values, assembling pixel interpolation tokens
and generating span set-up tokens. In the preferred
embodiment the shading functions are distributed. Each
stage or processing unit performs a separate and distinct
function in the rendering of a pixel. In the rendering
process, horizontal interpolation requires the greatest
amount of processing resource.
Advanced shading models require a great deal of data

to render a pixel. For example, a Z buffered Phong
shading calculation requires Z, diffuse color (RGBad),
specular color (RGBs), specular power (Ns), and sur
face normal vector (NxNyNz) as inputs. Depending on
accuracy, this represents about 150 bits of data which

25

30

35

45

50

must be generated per pixel. To perform the shading of 55
the preferred embodiment, approximately 224 bits
would be required. The width of this data contributes to
the high cost of known high quality rendering hard
W262.

To reduce the width of the data path, while still main
taining 1 pixel per clock rendering speeds, the rendering
pipeline of the preferred embodiment utilizes distrib
uted parameter interpolation for determining the value
of pixels in a span. As described above, each processing
unit in the pipeline performs a certain part of the render
ing functionality. Each processing unit requires specific
parameter data (e.g. the Z buffer processing unit re
quires the interpolated Z value for each pixel) in order

65

22
to calculate its predetermined function. So, set-up to
kens generated in stage 1 with the parameter informa
tion are first sent down the pipeline. Storage mediums,
e.g. registers are embodied within each processing unit
for storing the left and right parameter values of the
current span (e.g. the Z buffer processing unit has Zo
and Z1 registers). Rather than passing actual interpo
lated parameter values down the pipe, the pixel render
ing process is driven by the Pixel Interpolation token.
As described above, this token includes W, representing
an interpolation weight between 0 and 1. As each pro
cessing unit receives the Pixel Interpolation token, it
performs a linear interpolation of the left and right span
values to calculate the interpolated parameter value for
the pixel. So at a pixel location N, in a span with left
endpoint A and right endpoint B, a shading parameter
value PN may be calculated by using the linear interpo
lation function

Because a typical span is several pixels wide, distrib
uted parameter interpolation reduces the amount of
data that must flow down through the pipeline. For,
example, to do the Z buffer calculation for a 7 pixel
wide span, first a Span Setup token is sent, initializing
the Zo and Z1 registers (32 bits each). This requires the
same bandwidth as sending two actual interpolated Z
values down the pipeline. However, after this stage,
each pixel in the span only requires a W value to drive
direct interpolation means embodied in each of the
processing units. In a comparison of a relative band
width, sending 7 interpolated Z-Values down the pipe
line requires 224 bits, while rendering 7 pixels by send
ing interpolated values requires 7'32-7*10=134 bits.
This results in a 50% reduction in data bandwidth re
quirements. In fact, because many parameters are dis
tributed, and all are interpolated by the same 10 bit W
value, the overall saving may be much higher.

Effectively this technique increases silicon complex
ity to reduce dependence on fast interconnections be
tween processing units. Each processing unit requires
multipliers for the interpolation function, whereas typi
cal rendering hardware only needs an accumulator to
implement a forward differencing algorithm. Although
similar techniques could be used to distribute the for
ward differencing algorithm (although savings are
lower, because more setup accuracy is required), there
are other factors which favor distributing the parameter
interpolation function. Distributed Parameter Interpo
lation allows the use of perspective corrected interpola
tion-forward differencing is limited to linear interpola
tion. Perspective corrected interpolation provides supe
rior texture mapping quality by avoiding the distortions
inherent in linear interpolation.

Referring back to FIG. 10 an example of horizontal
interpolation based on the vertically interpolated span
from FIG. 9, is provided. As above, the span endpoint
coordinates are D (53,100)905 and E (70,100) 906. Span
set-up parameter values have been propagated down
the pipeline token corresponding to the shading param
eter values for the endpoints of the span. A pixel inter
polation token provides the pixel coordinates and
weight value. What is left is to calculate the shadings
values for pixels across the span. Using the W values
calculated above in the description of generating a pixel
interpolation token, at point F (56, 100) 1002 the shad

5,307.449
23

ing parameter values may be calculated as
PF= P4(1-WF)+P(WF)=P(14/17)+P(3/17). At
point G (61, 100) 1003 the shading parameter values
may be calculated as PG=P(1 - WG)+P(WG)-
=PA(9/17)+PB(8/17). At point H (67, 100) 1004 the
shading parameter values may be calculated as
PH=PA(l-WH)--Pb(WH)=P(3/17)+P(14/17).

Shadowing
As described above, the preferred embodiment may

perform shadow analysis to further eliminate pixels
from processing. The shadowing algorithm utilized in
the preferred embodiment provides for the determina
tion of object shadow volumes (with respect to a partic
ular light source). All objects inside of the volume
would thus be in shadow. Sets of dummy polygons,
bounding the shadow volume, are calculated by the
host processor (or alternatively by control processors as
illustrated in FIG. 6a). The face normals of the poly
gons are oriented so that they face outward from the
volume. Using these dummy polygons, the processing
unit then determines whether each pixel on a visible
object is inside one of the shadow volumes.
The determination of whether an object is in shadow

occurs in three passes of the objects. In a first pass, a
z-buffer calculation is performed to identify the front
most object at every pixel. The first pass is the default
operation of the Z-buffer and occurs with or without
shadow processing. In a second optional pass, the deter
mination of which of the identified visible pixels are
inside a shadow volume is done by examining the
shadow volumes in front of each pixel. This is specified
when the shadow count flag in the global mode setup
token is set. During this second pass the closest Z-values
are read from the buffer and compared with incoming
shadow polygons for each light source. The shadow
polygons can be either front or back facing. Their orien
tation is specified by a flag, "front", specified in the Z
setup token (described in more detail below). A shadow
count is then determined in the following manner: If a
shadow polygon in front of the pixel faces the front of
the scene the shadow count is decremented by one. If a
shadow polygon in front of the pixel faces the rear of
the scene, the shadow count is incremented. A volume
entirely in front of the pixel will generate one increment
and one decrement at that pixel, leaving the shadow
count unchanged. If, the shadow count is lower than it
began after all the shadow polygons have been pro
cessed; the pixel is in shadow with respect to that poly
gon. In any event, the original "closest' Z value is
written back into the buffer unchanged during this op
eration.

a third optional pass is implemented when the
shadow test flag in the global mode token is set. In the
third pass, the "closest' Z-values are read from the
buffer and compared with the incoming Z-values. If
they are equal then the shadow count is examined. If the
shadow count is equal to zero then the object is not in
shadow and it is output. If the shadow count is not equal
to zero then the pixel interpolation token is modified to
become a null token.

Tokens in the Preferred Embodiment

As described above, informational and control units
that are transferred between the different stages are
called tokens. Token is a term of art that refers to a data
structure with accompanying information, that is passed
between the stages in the pipeline. Upon receiving a

5

10

15

20

25

30

35

40

45

50

55

65

24
token, each of the processing units may then 1) process
and interpret the token, 2) pass the token to a next pro
cessing unit without processing or 3) terminate the pro
cessing of the token. All processing units only process
tokens that contain information needed by the particu
lar processing unit. Otherwise, the token flows through
the processing unit unused.
Tokens in the preferred embodiment can be catego

rized into three different types; General Tokens, Setup
Tokens and Control Tokens. Three attributes are con
mon to all tokens. First, each of the tokens has a width
of 77 bits. 77 bits was chosen as a number that would
accommodate all information needed as well as provid
ing for the inclusion of new functionality. As some
tokens will not require all 77 bits, some of the bits are
unused within the pipeline. Although 77 bits are utilized
in the preferred embodiment, it would be apparent to
one skilled in the art to utilize a different number as the
token width.
A second common attribute of all the tokens is the use

of the first bit in the token. The first bit of each token
identifies the token as being a set-up token or a non
setup token (i.e. a general or control token), and is
called the PSetup bit. This is done to facilitate and sim
plify the design of the individual processing units that
comprise the pipeline.
The third common attribute is the use of the succeed

ing 4 bits after the first bit as a TokenID field. The
TokenID field identifies the token and provides further
information for the processing of the token.
The bit positions of data on the token is important

because the underlying circuitry which interprets the
tokens has hard-wired logic to specific bit positions on
them. For example, as a token enters a processing unit,
it initially is saved in a latching means. Hard wired
logic, e.g. an OR gate, inspects a predetermined bit to
determine a logic path that the token will follow. Such
circuit design techniques are known in the art. How
ever, it would be apparent to one skilled in the art to
modify the position of the information and to modify
the underlying hardware to reflect the new positions.
Alternatively, a means for interpreting tokens without
hardwiring to specific bit positions may be employed,
e.g. through a token parsing means. Such modifications
would not depart from the spirit and scope of the pres
ent invention.

General Tokens

General tokens are recognized by all chips in the
pipeline. There are three general tokens; the null token,
the pixel interpolation token and the pixel overlay to
ken. The null token is a pixel interpolation token whose
processing has been terminated. Processing may typi
cally be terminated because Stage 2 processing has
determined that the corresponding object is behind or in
the shadow of another object. A null token has a false
value in its PSetup bit and a zero (0) value in the Toke
nD field.

Pixel interpolation tokens are used to drive the hori
zontal interpolation process and contain information
about a pixel to be rendered. Generation of the values in
the pixel interpolation token is described in detail below
with respect to horizontal interpolation. The pixel inter
polation token is illustrated in Chart A.

5,307.449
25

CHARTA
Pixel Interpolation Token

Field Width Value/Use

1. PSetup False
2. Token) 4.
3. X 11 Pixel in current scanline

segment
4. W 12 Interpolation constant
5. A 10 Diffuse/Shaded color
6, R O Diffuse/Shaded color
7. G 10 Diffuse/Shaded color
8. B 0 Diffuse/Shaded color
9. ForceAdditive - Force this

interpolation to act in
additive node

0. Unused 8 Reserved; must be zero

Line l indicates that bit 1 will have a false value
(typically 0) to indicate that it is not a set-up token. Line
2 identifies the pixel interpolation token as having a
TokenID of 1. From Line 3, it is shown that the next 11
bits will contain the X coordinate for the pixel. This
may have come from either the vertical interpolation
processing, which would indicate that the pixel is on
one of the active edges, or from a counting means that
is used to identify the X coordinates across the span.
From line 4, the next 12 bits will contain the interpo

lation weight. This interpolation weight will have been
generated in stage 1 during the horizontal interpolation
process. Lines 5-8, i.e. the next 40 bits contain the
RGBa information describing the diffuse/shaded color
for the pixel. Next, a force additive field is used to indi
cate that additive transparency blending will be per
formed in the compositing stage. Finally, the remaining
8 bits of the pixel interpolation token are unused.
W is used to interpolate between the boundary val

ues, generating Z, R, G, B, and a. For R, G, and B the
interpolation operation results in Gouraud shading. X is
used as an address by the Z buffer to access a Z value.
The Z values in the buffer are the "closest' current Zs
to be processed. In operation, the "closest' Z is read
from the buffer and compared with the interpolated Z.
If the interpolated Z is closer (less that or equal to it), it
is stored in the buffer, the token not modified, and R, G,
B and o. are output. If the interpolated Z is not closer
(greater than it), then it is not written into the buffer, the
token is modified to be a null token and R, G, B and a
are not output.
The pixel overlay token is generated by the control

processor and provides a means by which pixels can be
directly assigned. This may occur for, for example,
when tilting is desired on a particular image. The format
of the pixel overlay token is illustrated in Chart B.

CHARTB
Pixel Overlav Token

Field Width Value/Use

1. PSetup 1. False
2. TokenD 4. 2
3. X l Pixel in current scanline

segment
4. W 12 Interpolation constant
5. R 10 Diffuse/Shaded color
6. G O Diffuse/Shaded color
7. B O Diffuse/Shaded color
8. A. 10 Diffuse/Shaded color
9. ForceAdditive 1 1 = Force this overlay to

act in additive mode

O

5

20

25

30

35

40

45

SO

55

26
-continued
CHART B

Pixel Overlay Token
Field Width Value/Use

Unused 7 Reserved; must be zero 10.

Set-Up Tokens
As noted above, set-up tokens are generated during

stage 1 pre-processing. Generation of set-up tokens is
described in more detail in the description of vertical
interpolation. The set-up tokens contain span parameter
information for corresponding pixel rendering func
tions.

Set-up tokens provide the span endpoint parameter
values that are utilized during the horizontal interpola
tion process. The different types of set-up tokens in
clude Z set-up, Diffuse RGB set-up, Specular RGB
set-up, Map set-up and Normal set-up.
CHART Cillustrates a Zsetup token. Like all tokens,

the first 5 bits are comprised of a PSetup bit and a Toke
nID. In this instance, since it is a setup token, the value
of this PSetup bit is a true value (e.g. a binary 1 value).
The Z setup token contains two horizontal Z boundary
values, Z0 and Z1 (on lines 3 and 7 respectively), which
are used for interpolating between to generate a Z value
for each pixel of a span. The Z Setup token also contains
a bit called front (on line 5). This bit is used during the
shadow calculation to determine whether or not the
pixel is obscured due to a shadow. Finally, a bit called
diffuse is provided (line 4). The diffuse bit is used to
enable lighting calculations that would be performed
when determining if the pixel is in shadow.
The Z set-up token is utilized in stage 2 of the pipeline

for performing hidden surface removal and shadow
calculations.

CHART C
- Z Set-up Token -

Field Width Value/Use

PSetup 1 True
2. TokenD 4 1
3. Zo 32 Zo
4 Diffuse 1 Lighting calculations

enabled
5. Front Front facing shadow

plane
6. Unused 2 Reserved; must be zero
7. Z1 32 Zl
8. Unused 4. Reserved; must be zero

The Diffuse RGB set-up token is used to provide
RGB values based on a diffuse reflection model. The
Diffuse RGB set-up token is illustrated in Chart D. The
Lines 3-6 provides the diffuse color components for the
left most pixel in the span. The lines 7-11 provide the
diffuse color components for the right most pixel in the
span.

CHART D
Diffuse RGB Set-up Token

Field With Value/Use

1. PSetup True
2. TokenD 4. 0Xa.
3. Ado 9 Diffuse colouro
4. Rdo 9 Diffuse colouro"Kdo
5. Gdo 9 Diffuse colouro"Kdo
6. Bdo 9 Diffuse colouro"Kdo

5,307,449
27 28

-continued
CHART D CHART G

Diffuse RGB Set-up Token Load Scanline DMA Write Register Control Token
Field Width Value/Use 5 Field Width Value/Use

7 Ad 9 Diffuse colour"Kd 1 Fal
8. Rd 9 Diffuse colour"Kd l. PSetup a Se 2. Tokend 4 0xF
9. Gd 9 Diffuse colour"Kd 3 od 8 l

10, Bd 9 Diffuse colour OpCode 4. RGB Target RGB chip
10 5. Z 1 Target Z chip

The Specular RGB set-up token is used to provide 6. Unused 22 Reserved, must be zero
RGB values based on a specular reflection model. The 7. WriteValue 40 Value written by
Diffuse RGB set-up token is illustrated in Chart E. The
Lines 3-5 provides the specular color components for
the left most coordinate in the span. Line 6 provides the is
specular power component for the left most coordinate
in the span. The lines 7-10 provide the specular color
components for the right most coordinates in the span.
Line 11 provides the specular power component for the
right most coordinate in the span. 20

CHARTE
Specular RGB Set-up Token

Field Width Value/Use
PSetup True 25

2 TokenID 4. 3
3 Nso 9 Specular powero
4 Rso 9 Specular colour"Kso
5 Gso 9 Specular colouro"Kso
6 Bso 9 Specular colouro"Kso
7 Ns 9 Specular power 30
8 Rs 9 Specular colour"Ks
9 Gs 9 Specular colour1"Ks
10. Bs 9 Specular colour"Ks

The Normal set-up token is used to define normal 35
values for each of the the coordinate endpoints. The
Normal set-up token is illustrated in Chart F. The lines
3-5 define the normal for the left most pixel in the span
and the lines 6-8 define the normal for the right most
pixel in the span. 40

CHART F
Normal Set-up Token

Field Width Value/Use 45

l. PSetup l True
2. TokenD 4. 4.
3. Nxo 2 Normalo
4. Nyo 2 Normalo
5. Nzo 12 Normalo
6. Nx 2 Normall 50
7. Ny1 2 Normal
8. Nz 12 Normal

Control Tokens 55

Unlike general tokens and set-up tokens, control to
kens are generated by the control processor (with one
exception being a Scanout Data token, which is also
generated by the Z chip 705 when scanning out its
buffer). Control tokens are commands to target chips in
the pipeline to perform a particular function, e.g. swap
buffers, output scanline, etc. It is through the use of
control tokens that operation and resources of the pipe
line are managed.
The Load Scanline DMA Write Register Control

Token, illustrated in Chart G, is used to control the
writing of a clear register in the Stage 2 and 3 process
ing units.

60

65

scanline DMA

The Scanline DMA setup/start Control Token pro
vides the start address, length, delay, write, scanout
enable, and scanout mode data, and is illustrated in
Chart H. The DMA reference is to a Direct Memory
Access component in the computer system. In order to
avoid going through the host processor to send data to
the system display buffer, a DMA a component is typi
cally utilized. The RGB/Z flag at lines 4-5 is used to
indicate which of the stage 1 or stage 2 processing units
the token is targeted for. The delay field on line 8 speci
fies how may pixels to let flow through before begin
ning to read from the scanout buffer. The flag is neces
sary since the buffer may be cleared without outputting
its contents. The scanout mode field on line l l specifies
which 32 of the 40 bits in each pixel location should be
read out. The different modes are: read 40 bits and
round to 32 bits. The round to 32 bit mode is not used in
the stage 2 processing unit. The scanout enable is used
to permit scanout of the contents of the buffer. Finally,
the token is used to initiate the writing of the buffer.

CHARTH
- Scanline DMA setup/start Control Token -

Field Width Value/Use

1. PSetup 1. False
2. TokenID 4 0xF
3. OpCode 8 2
4. RGB Target RGB chip
5. Z Target Z chip
6. Start Starting address
7. Length l Number of pixels to

aCCESS

8. Unused 14 Reserved, must be zero
9. Scanoutenable 1 Read and scanout

addressed locations
10, Unused l Reserved, must be zero
11. Scanoutmode is round mode, 0 = no

round
12. Writeenable 1 Write addressed

locations from reg
3. Unused 22 Reserved, must be zero

The Wait for Scanline DMA Completion Token is
used to determine if the back buffer is done scanning out
or clearing the data, and is illustrated in Chart I. As the
stage 2 and stage 3 processing units are double buffered,
one buffer may be scanned out while the other is being
written to. If the back buffer scanout is not completed,
the stallout signal is asserted. This prevents the swap
ping of buffers. Once the scanout is completed, the
stallout signal is negated. This assures that the buffers
will not be swapped until the scanout is completed.

5,307.449
29

CHART I
Wait for Scanline DMA Completion Control Token

Field Width Value/Use

. PSetup l False
2. Tokend 4 0xF
3. OpCode 8 3
4. RGB l Target RGB chip
5. Z Target Z chip
6. Unused 62 Reserved, must be zero

When a complete Z-Buffer or compositing operation
is completed for an entire scanline, the two buffers may
be swapped. The Swap Buffers Control Token illus
trated in Chart J. Once the buffers have been swapped,
the back buffer can be cleared or scanned out using the
DMA setup/start token described above.

CHARTJ
Swap Buffers Control Token

Field Width Value/Use

l. PSetup False
2. Tokend 4. 0xF
3. OpCode 8 4
4. RGB Target RGB chip
S. 2 Target Z chip
6. Unused 62 Reserved, must be zero

The Global mode setup token is used to initialize the
pipeline to the type of rendering that will be performed,
e.g. using a specular or diffuse rendering model, enable
shadowing and the transparency mode. Each of the
rendering type operations are discussed in detail above.
The Global mode setup control token is illustrated in
Chart K.

CHARTK
Global Mode Setup Control Token

Fied Width Value/Use

1. PSetup l False
2. TokenD 4 0xF
3. OpCode 8 5
4. DiffuseShade l Enable diffuse shading

contribution
5. SpecularShade Enable specular shading

contribution
6. ShadowCount 1 Enable shadow count
7. Shadowest Enable shadow test
8. TransMode 1 = additive, 0 = blended
9. Controlflags 2 Indicate control/data,

and pipeline interlock
0. InvertShadow 1 = in shadow in visible,

0 = out of shadow is
visible

1. ForceZVisible l 1 = force Z test to return
"visible'

2. Disable2Write l as don't allow
Z/shadow bits to be
written

13. Unused 54 Reserved, must be zero

The Jam control token is used to used to permit the
token to pass through the processing unit without any
processing. It is typically used to send control informa
tion out the bottom of the pipeline. The Jam Data Con
trol Token is illustrated in Chart L.

O

15

20

25

30

35

45

50

55

65

30

CHART L
Jan Data Control Token

Field Width Value/Use

1. PSetup False
2. TokenD 4. 0xF
3. OpCode 8 6
4. Unused 24 Garbage
5. Data 40 Data to scanout

DESCRIPTION OF PROCESSING STAGE
CIRCUITRY

In the preferred embodiment, each of the successive
stages in the pipeline are implemented as individual
integrated circuits. Each of these chips embodies sev
eral modules which carry out the functionality of the
stage. It is of note that in the preferred embodiment, the
stages 2 and 3 are implemented via the same integrated
circuit. The choice of operation as a Stage 2 or 3 is
determined by certain control inputs that are provided
to the chip. However, it would be apparent to one
skilled in the art to combine multiple discrete process
ing units in order to eliminate transfer time that may
occur because of any "off-chip" data transfers that may
be required. It would also be apparent to one skilled in
the art to configure the system of the preferred embodi
ment utilizing more discrete processing units, e.g. creat
ing two stage one processing units performing vertical
and horizontal interpolation set-up tasks. Such different
hardware implementations would not cause a departure
of spirit and scope from the present invention.

Clock Domains of the Rendering Architecture
To simplify system integration, the pipeline has three

asynchronous clock domains. The Data Clock is used
by the input port of the stage one processing unit. The
Data Clock is typically synchronous to the data source
and defines the maximum speed at which data can be
transferred to the rendering pipeline.
The Pipe Clock drives the processing units within the

pipeline (with the exception of the input port of the
stage one processing unit) and effectively defines the
shading speed of the pipeline. It is significant that the
Pipe Clock is asynchronous to the rest of the rendering
system, so that the Pipe Clock may be increased to
match future generations of chip technology, without
effecting the rest of the system.
The Scanout Clock is used by the Scanout of the the

last stage of the rendering pipeline and is synchronous
to a receiving device, e.g. the system frame buffer. The
Scanout Clock controls the maximum rate at which
pixels are scanned out of the on-chip scanline buffer.

Stage 1 Functional Schematic
FIG. 11 illustrates the functional blocks of the Stage

1 chip. An input block, 1101, provides an input FIFO
and clock rate conversion. As data, e.g. object primi
tives from the active object list, are input into the ren
dering pipeline where they are first placed into an input
FIFO. It should be noted that at this time that the ren
dering pipeline has three asynchronous clock domains.
The data clock is used by the input port of the first stage
and is usually synchronous to the data source, i.e. the
control processors. The data clock defines the maxi
mum speed at which data can be transferred to the
pipeline. The pipe clock drives the rendering process

5,307,449
31

and effectively defines the shading speed of the pipeline.
Only the internal pipeline chips use this clock, so it can
be increased to match chip technology without effect
ing the rest of the system. Pipeline data bandwidth
scales with the pipe clock. Also, most computation in
the Stage 1 chip is driven by the pipe clock. The scan
out clock is synchronous to the receiving device, e.g.
the target frame buffer. It controls the maximum rate at
which pixels are scanned out of the on chip scanline
buffer. Thus, as a further function of the input block
1101, clock rate conversion from the data clock to pipe
line clock is performed.
When the data exits the FIFO it enters a command

decode module 1102. The command decode module
1102 decodes the data into the appropriate command
structure. Most of the commands are decoded by a
programmable logic array (PLA). The exceptions are
the draw command and the overlay pixels command.
As described above, the draw command is the funda
mental command for drawing an object.
The remainder of the modules respond accordingly

to a DRAW command. Briefly, two functional modules
are then entered to initiate vertical and horizontal inter
polations. These are vertex sort 1103 and vertical divide
1104. The vertex sort 1103 is used to determine the
active edges of an object that is to be drawn. The verti
cal divide 1104 is used to determine the interpolation
weight value that will be used for vertical interpolation.
The vertical interpolation and horizontal interpolation
functional modules then follow and are described
above. Finally, the outputs of vertical interpolation
module 1105 and horizontal interpolation module 1106
feed into a token assembly module 1107 for creation of
a token. Once the token is created it is sent down the
pipeline synchronized to the pipeline clock.

Input Block
The STAGE 1 chip is designed with a 64 bit input

path, which can be configured as one or two 32 bit
ports, or a single 64 bit port. The STAGE 1 chip is
capable of processing four independent input streams,
SRCID pins are used to indicate the source of each
transfer. What this means is that up to four control
processors may send data to the rendering pipeline(s).
Two synchronous FIFOs receive the data from the

two 32 bit ports, permitting burst transfer rates of 64
bits/clock. However, once past the FIFOs, the two data
streams merge into one 32 bit path, for a maximum
sustained bandwidth of one 32 bit word/clock; this is
roughly balanced to the sustained throughput of the
remainder of the chip. Two extra bits are added to each
word to indicate the source ID. Finally, the merged
data stream is synchronized to the Pipe clock domain by
a one word/clock synchronizer.
The preferred embodiment utilizes 16 word deep

FIFOs, providing 64 bytes of buffering for each input
port in Dual 32 and Single 64 input modes. However, in
Single 32 mode, Port A ping-pong between the two
FIFOs, effectively doubling depth. The FIFOs are
compiled, so the depth may be increased in alternative
embodiments.
A further function provided in Stage 1 is flow con

trol. Flow control is used to prevent overrun of input
buffers of the stage 1 FIFO. Flow control is achieved
with a STALL signal for signalling to the control pro
cessor to stop sending data. Additionally, an EMPTY
signal is provided and can be used to drive DMA bursts
(i.e. for signalling to the control processors to com

5

O

15

20

25

30

35

40

45

50

55

60

32
mence sending data). When the EMPTY signal is pro
vided, the pipeline(s) will accept a predetermined num
ber of data transfers prior to asserting the STALL sig
nal.

Because it is the first chip in the pipe, the STAGE 1
chip must perform vertical interpolation on all the data
types necessary for different rendering functions. Be
cause it is difficult to predict what data types will be
necessary in the future, the STAGE 1 chip is designed
to process a generic data type called a parameter, which
represents data in any of a variety of supported data
types.

Each parameter has two data types associated with it:
the input format, which represents the format in which
the data is input into STAGE 1, and the processing
format, which is the internal format in which the
STAGE 1 chip stores, interpolates and sends the data
down the pipe. Input formats are chosen to be well
aligned and easy to manipulate for the control proces
sors. Processing formats represent the actual minimum
precision necessary for the data. For example, the input
format of a normal vector might be three 16 bit signed
integers, while the processing format is three 12 bit
signed integers. The STAGE 1 chip supports five input
formats and four processing formats as illustrated in the
following Charts M and N.

CHARTM
- Data Input Formats

Num Input Data
Input Format Type Fields Size Typical Use

4x8U Unsigned 8 4 32 bits RGBA
bit in

3x OS Signed 3 32 bits Vector
110 bit

int
3x16S Signed 16 bit 3 64 bits Vector

int
2x16U Unsigned ió 2 32 bits X, Y

bit int
x32U Unsigned 32 32 bits Z

bit int

CHARTN
Processing Formats

Processing Num
Format Type Fields Storage Size Typical Use
4x9U Unsigned 9 4. 36 bits RGBA

bit int
3x12S Signed 12 bit 3 36 bits Vector

int
2x16U Unsigned 16 2 36 bits X, Y

bit int
1x32U Unsigned 32 l 36 bits Z

bit int

Only the 3x 12S format used for vectors is signed. It
would be apparent to provide a more flexible design
that would permit any parameter to be specified as
signed or unsigned.
The format information for the different vertex types

is stored in an Input Data Format RAM; this RAM is
loaded by the host processor, so new parameters can be
added as required. Each DRAW command sent to the
stage 1 processing unit includes FormatAddress, the
address of the appropriate vertex format description.
The first word holds the number of words of data for
each vertex; it's read and loaded into a 5 bit counter,

5,307.449
33

which counts the words as they are formatted and out
put. The format information is re-read for each subse
quent vertex until the Draw command is complete.

In the preferred embodiment, only two parameter
data types are fixed: the X and Y projected screen co- 5
ordinates of each vertex are 16 bit unsigned ints, in a
13.3 format. This format addresses a 213 = 8192X8192
pixel screen space with of a pixel resolution and pixel
centers at 0.50.

O
Command Decode

When received in STAGE 1, the DRAW command
is handled by circuit logic in the STAGE 1 processing
unit. Most other commands are single 32 bit words,
which are decoded by a PLA. The exception is the
Overlay Pixels command, which requires two 12 bit
counters, one to compute pixel address, the other to
count pixels.
The Command Decode Module generates one token o

per clock; a token either writes a control register, writes
a location in the vertex parameter RAM, or renders a
span of a triangle.

5

Vertex Sort
25

As described above, the Draw command draws a
triangle between vertices VA, VB and VC, each of
which specifies one of the four vertices stored in the
parameter RAM. The Vertex Sort module then fetches
the Y coordinate of each of the three vertices, and de- 30
termines which two edges of the triangle are active (i.e.
intersect with the horizontal line specified by the con
tents of the YCurrent register which defines the current
scanline). If two active edges are found, the triangle is
visible, and the top and bottom Y of both edges are 35
passed to a Vertical Divide module. Although the verti
ces are sorted vertically, the horizontal span start and
end points have not yet been calculated, so the edges are
arbitrarily designated A and B. Later, when the X co
ordinates have been interpolated, the final left/right test 40
is performed, and the edges are swapped if necessary.
As described above, an edge is considered visible/ac

tive if it satisfies this equation:

Top <YcurrentScanline <= YBottom 45

where the Y co-ordinate increases from top to bottom.
Note that the test is not YTop <=YCurrent Scan
line<=YBottom, which would occasionally cause
boundary pixels between abutted polygons to be ren- 50
dered twice (a serious problem when rendering trans
parent objects).

Vertical Divide

The Vertical Divide module has two active dividers, 55
which calculate the interpolation weight of the two
edges A and B:

A=(YBottomA-Yourrentscanline)/(YBot.
tomA-YropA) 60

B=(Bottomb-currentscanline)/(YBottom B.
- YTopB)

These calculations are performed to 12 bits of accu- 65
racy, requiring six clocks of latency (radix2 subtract
and-shift divide, two stages per clock). The interpola
tion weights are passed directly to the Vertical Interpo

34
lation to determine span coordinates and parameter
values.

In the preferred embodiment all vertex parameters
are stored in four 64x36 RAM. The address for a given
parameter is a concatenation of the parameter number
and the stream context (vertex number selects between
RAMs). By using four RAMs, a parameter can be si
multaneously read for all four vertices; combined with
a 4x436 bit crosspoint switch, the tip and bottom pa
rameter values for both active edges can be simulta
neously read and transferred to linear interpolators
(LIRPs) for generation of the parameter values.

STAGE 2 and 3 Functional Description
In the preferred embodiment, the processing units for

stages 2 and 3 are identical. This is a desirable since it
provides for economic efficiencies in the manufacture
of the pipeline components. It is apparent that the same
component may be used when the requirements of a
stage one processing unit and a stage two processing
unit are compared. When performing scanline Z-buffer
ing or operating as a compositing engine, both require
at least one complete scanline of memory. In the pre
ferred embodiment two complete scanlines of memory
have been provided in order to support double buffer
ing and to allow scanouts of a previously rendered
scanline while a new scanline is being rendered. Both
require linear interpolation of RGB values. In stage two
it is the generated ambient RGB values and in stage
three it is the blended alpha values used for transpar
ency. Finally, both require identical pipeline control
signals (e.g. stall signals) and means for sending and
receiving signals.
However, some differences do exist. First, Z-buffer

and shadowing logic is not needed by the compositing
engine. Second, the scanout of the stage 3 compositing
engine is synchronous with the receiving device and as
in a different clock domain from the pipeline. However,
these differences are minor so that the economies of
manufacture would outweigh any potential advantages
of having separate components.
A Zchipin signal is used to configure the processing

unit. When the Zchipin signal is high, the unit is config
ured as a stage 2 Z-buffer. Conversely, when the Zchi
pin signal is low, the unit is configured as a stage 3
compositing engine. The functions performed when
configured as a Z-buffer are Z-search; shadow calcula
tion and ambient color calculation. The functions per
formed when configured as a compositing engine are
pixel blending and scanout.

FIG. 12 is a functional block diagram of a stage 2/3
processing unit. A RAM 1201 and a RAM 1202 com
prise the dual buffers and consist of one scanline of
memory each. In the preferred embodiment each of
RAM 1201 and 1202 comprise 648 words (each word
having 40 bits) of random access memory. RAM con
trol 1203 receives the X data (i.e. the pixel location)
from the pixel interpolation token and provides corre
sponding Z-values to the Z interpolation and compare
module 1204 and corresponding a RGB values to the
aRGB interpolation module 1205.
The Z-interpolation and compare module 1204 per

forms the Z-buffering required to identify the front
most pixels. The Z-interpolation and compare module
1204 further receives the endpoint Z-values 1208 and
1209 from the Z set-up token and the pixel weight W
1210 from the pixel interpolation token. The Z-interpo
lation and compare module 1204 is coupled to the RAM

5,307,449
35

control 1203 to receive the current Z-value at a pixel
location and for inserting a new Z-value into the scan
line Z-buffer when appropriate (i.e. the Z-value of the
current pixel is less than the current value in the Z
buffer). The Z-interpolation and compare module 1204
is further coupled to output control 1206 for allowing
the output of a front-most pixel via the pixel interpola
tion token (typically by not converting it to a null to
ken).
The arGB interpolation module 1205 performs the

initial ambient color calculation of stage 2 and the trans
parency calculations of stage 3. The aRGB interpola
tion module 1205 receives the pixel weight W 1210 from
the pixel interpolation token. The aRGB interpolation
module 1205 further receives the endpoint aRGB val
ues 1212 and 1213 from the diffuse span setup token.
With respect to stage 3, the arGB module 1205 is cou
pled to RAM control 1203 in order to received pixel
shading values at the current pixel location and for
inserting shaded (blended) pixel values back into the
scanline buffer. Both the Z-Interpolation and compare
module 1204 and the aRGB interpolation module 1205
contain linear interpolation circuits that are described in
more detail below.
Output control 1206 controls output 1214 from the

processing unit. The output 1214 of the output control
1206 will be a pixel interpolation token in stage 2 and
the scanout in stage 3. In stage 2, the output control
1206 will output the contents of the interpolation mod
ule 1205 as part of the pixel interpolation token. In stage
3, the output control 1206 will output the contents of
the scanline buffer, i.e. RAM 1201 or RAM 1202.

Circuit for calculating the W(X) function
Recall that the function W(X) function is used in the

Vertical Interpolation Module. As it is repetitively
used, the preferred embodiment has provided an effi
cient means for calculating the W(X) function. As any
given X is a 16 bit value, the slope m covers a wide
range, i.e. 1 to 1/65535. Representing this range to 10
significant bits requires 16-- 10=26 bits. Thus, at first
view the W(X) function would require a 26 bit by 16 bit
multiplier. However, a technique and circuit for obtain
ing the 10 bit result with a 12 bit by 12 bit multiplication
operation has been derived and is described below.

First, it is empirically observed that 14 leading zeros
are being traded between the two multiplicands. This is
further supported by the observation that (Xright-X-
left) is the maximum value of (X-X left), thereby indi
cating the minimum number of leading zeros in this
multiplicand. This is established by comparing the two
multiplicands as illustrated in Chart O.

CHART O
Value of

Xright-Xleft Leading 0s Value of n Leading 0s
2-3 14 A2-1/3 0-1
4-7 13 1/4-1/7 1-2
8-15 12 A8-1/15 2-3

32768-65535 O A32768- 14-15
A65536

First, the 14 leading zeros are replaced with two
variables m' and AX based on n leading 0s, so that:

5

O

15

20

25

30

35

40

45

50

55

36

Since both m' and AX" do not have leading zeros, both
can be truncated to the 12 most significant bits (10 sig
nificant bits plus 2 guard bits).
A schematic diagram of such a circuit is illustrated in

FIG. 13. The circuit will calculate m' and AX and
output W. Referring to FIG. 13 circuitry within dashed
box 1312 represents the calculation of m' while the
circuitry within the dashed box 1313 represents the
calculation of AX". A span length 1301, is provided as a
first input to the circuit within dashed box 1312. The
span length 1301 is simply the difference of Xght-Xief
as described above. A counting circuit 1304, determines
the number of leading zeros in span length 1301 and
provides an output value n. The count of leading zeros
n is input to a shift circuit 1307. The shift circuit 1307
will be described in greater detail below. The span
length 1301 is also provided to a shift circuit 1305. The
shift circuit 1305 shifts the value of spanlength 1301 by
the n bits determined in counting circuit 1304. The
output of the of the shift circuit 1305 is the 12 left most
bits after the shifting of the span length 1301. The out
put of the shift circuit 1305 is then input into an invert
ing circuit 1306, which inverts the input. The output of
the inverting circuit is the variable m'. The output m' of
the invert circuit is then provided as a first input to a
multiplication circuit 1310.
An Xo input 1302, i.e. the current X-coordinate of the

pixel being interpolated, is combined with a binary
input 1302a (which has a fixed value of 100 binary) to a
create a 16 bit operand for a subtraction circuit 1309.
The binary input 1302a are added as the leading bits in
the created operand. The second input to the subtrac
tion circuit 1309 is a Xief input 1303. The Xief, 1302
input provides the X coordinate of the point that is the
left most on the span being processed. Thirteen bits of
the output of the subtraction circuit 1309 are provided
to a 13 bit counter 1308. Three of the bits are stripped
off and recombined at the output of the counter circuit
1308. The output of the counter circuit 1308 is AX. The
output of the counter 1308, along with the appended 3
bits are then provided to the shift circuit 1307 where the
result is shifted by the value provided by the counter
1304, i.e. n. Further, the four least significant bits of the
result are discarded, creating a 12 bit output. This out
put value is AX".
The output of circuit 1307 is then provided as a sec

ond input to the multiplier 1310. The multiplier 1310
then preforms a multiplication of the outputs of invert
ing circuit 1306 (i.e. m') and shifting circuit 1307 (i.e.
AX") and rounds to the ten most significant bits. The
output of the multiplier 1310 is the pixel weighting
value W 1311.

Linear Interpolation Function
As described throughout the description of the pre

ferred embodiment, all interpolation is performed lin
early. It would have been apparent to one skilled in the
art to use other non-linear forms of interpolation in
order to provide different shading functionality (e.g.
perspective corrected shading). As has been discussed

5,307,449
37

above, a direct evaluation technique is utilized by the
preferred embodiment in order to perform required
linear interpolation (as opposed to the forward differ
encing technique that prevails in the prior art). With
reference to stage 1, linear interpolation is used to deter- 5
mine the end points of the horizontal spans of an object
(i.e. in vertical interpolation). With respect to stage 2
and stage 3 of the pipeline, linear interpolation is per
formed on the values in the pixel interpolation token to
estinate Z-values (stage 2) or pixel shading values 10
(stage 3). Thus, it has been found to be advantageous to
provide a linear interpolation circuit.
As described above, the equation for direct LIRP

function is defined as:
15

(-w)A- w8.

The LIRP function requires a weighting value w. The
weighting value w is a value between 0 and 1 that speci
fies a linear "blend' of the values A and B. Determina- 20
tion of W in the creation of Pixel Interpolation Tokens
was described above. W is also calculated for vertical
interpolation the w is determined dynamically for each
active edge of an object. For horizontal interpolation
the where corresponds to the pixel weighting value 25
determined in stage 1. The result of this expression is A
if w is zero, B if w is one, and a value between A and B
when w is a positive fraction less than one.
The LIRP operation of the preferred embodiment

operates in fixed precision arithmetic. Implementing the 30
LIRP operation in fixed precision arithmetic can be
wasteful. If w is defined as a binary fraction between
zero and one inclusive almost an entire bit of resolution
is wasted. In the case where w has 4 bits, 7 encodable
values between 1.001 and 1.111 will always be unused. 35

In the preferred embodiment, a more efficient ap
proach to encoding w defines 0.1111 to be one and
0.0000 to be zero. All 16 encodable values where w has
4 bits are now useful. The LIRP equation now becomes:

0.11 - wa- B

If w=0.0000, the LIRP value will be 0.1111A. If
w=0.1111, the LIRP value will be 0.111 B. However,
in graphics applications it is known that in order to 45
achieve high quality rendering, if w=0 or 0.0000, the
LIRP value must be A and if w=1 or 0.1111, the LIRP
value must be B. This is to achieve complete color
saturation at the end points. A rounding factor is there
fore added to the LIRP value to achieve saturation at 50
both A and B. 0.0001A is added if w (0.1000. 0.0001B
is added if we = 0.1000. These rounding factors force
saturation at both ends of the range of w, while tolerat
ing some discrepancies to true linearity at some mid
points. 55
With the addition of this rounding factor w no longer

partitions the range between A and B quite uniformly.
The partition between the LIRP values when
w=0.01 li and when w = 0.1000 can be up to twice as
large as the partition between any other two neighbor- 60
ing values of w. The size of this partition is, however,
no larger than the size of every partition when w is
encoded in the standard way described above.

In describing a circuit to perform the LIRP equation,
the fixed point version of the LIRP equation above is 65
re-written using two's complement math as follows:

0.1111 -w)A -- w8

38

Replacing w with its two's complement equivalent
(lw is the bit inverse of w):

(0.1111-(w--0.0001))A+ wb

and rearranging terms:

(0.1111+0.0001)+(w)A+ w8

The first term drops out in two's complement form,
leaving only:

Not incidentally, this approach leads to a very regu
lar (and thus compact and efficient) custom silicon lay
out. Converting to one bit multiplications by summing
for i=0 to n, where n is the number of bits-1 in w (4 for
this example) and win is the most significant bit of w
gives:

This equation can be efficiently computed by using a
selector for each bit wi to select between adding A or B
(shifted appropriately by 2i-n).
Adding in the appropriate rounding factor to force

saturation gives:

Adding the rounding factors to the circuit described
above is simply done by adding one new selector at the
least significant bit position.

Referring now to FIG. 14a, a circuit for linear inter
polation is illustrated. The LIRP circuit is comprised
essentially of 2 to 1 multiplexers, carry sum adders, and
a 10 bit carry propagate adder. The LIRP circuit imple
ments the logic described above where the bits of the
Weighting Value W are used to select the output of the
2 to 1 multiplexors. The outputs of the multiplexors are
added and the bit patterns are shifted appropriately to
reflect the magnitude of the operands. As the circuit is
somewhat repetitive, a description of a portion of the
circuit will suffice.
A first input A 1401 is provided as a first input to the

multiplexer 1403 and a second input B 1402 is a second
input to the multiplexer 1403. The values of input A
1401 and B 1402 would typically be one of the pairs of
parameter values sent through the pipeline in a set-up
token. A third input, i.e. a selector value, is the value
which will determine whether the first input or the
second input will be output from the multiplexer 1403.
The selector value to be provided to the multiplexor is
a bit from the weighting value. For the multiplexor
1403, the selection value is provided by the most signifi
cant bit of the Weighting Value W, in this case W9
1431. This value is the additive saturation value needed
in order to achieve full saturation at the extreme ends.
In any event, it should be noted that if the selection
value is a 1, the first input is output from the multi
plexer, i.e. the bit pattern from A 1401. If the selection
value is 0 the second input is output from the multi
plexer, i.e. the bit pattern from B 1402.
The bit layout of the weighting value W is illustrated

in FIG. 14b. As is typical in computer representations,
e.g., binary representations, of numeric values, the least
significant digit values are in the right most storage

5,307,449
39

position. So for example, a digit WO 1432 will be the
least significant digit and a digit W1 1433 is the second
least significant digit. This continues from right to left
storage locations unit W91450, which is the most signif.
icant digit. Further illustrated in FIG. 14b are the digits
of W coupled to corresponding multiplexors as de
scribed with respect to FIG. 14a.

Referring back to FIG. 14a, the output of the multi
plexor 1403 is coupled to a carry-in input 1406 of carry
sun adder 1405. It is also clear from FIG. 14a that the
values A 1401 and B 1402 will be used as input to all the
multiplexer devices.
A second multiplexer 1404 also takes as input A 1401

and B 1402. The multiplexer 1404 receives as input the
least significant bit of the Weighting Value, in this case
W0 1432. The output of the multiplexor 1404 is coupled
to an operand input 1406a of the carry-sum adder 1405.
The carry-sum adder 1405 provides for the addition

of the saturation value and of the lowest order set of bits
in the multiplication (i.e. linear interpolation operation)
it is performing. A carry out output 1407 and a sum
output 1408 of the carry-saver adder 1405 are coupled
to an operand input A 1412 and an operand input B
1413, respectively, of carry-sum adder 1414.
The multiplexor 1409 takes as selector input the the

second least significant bit of the Weighting Value, in
this case W1 1433. The output of the multiplexor 1409 is
also an input to the carry-save adder 1414.
The additive values cascade down the combination of

multiplexors and carry-sum adder devices until multi
plexor 1417 is reached. In multiplexer 1417, the input is
the most significant bit of the weighting value, in this
case W9 1434. Again, input values A 1401 and B 1402
are inputs to the multiplexor 1417. The output of the

5

10

15

20

25

30

multiplexor 1417 is coupled to a carry-in input 1419 of 35
carry-sum adder 1418. In accordance with the descrip
tion of the circuit above, operand inputs A 1420 and
operand input B 1421 of carry-sum adder 1418 are cou
pled to the carry-out output and sum output, respec
tively, of a previous carry-sum adder (not illustrated).
The carry-out output 1423 and sum 1424 of carry-sum
adder 1418 are coupled to an operand input B1426 and
operand input A 1425, respectively, of carry-propagate
adder 1422. The sum output 1429 of the carry-propa
gate adder 1422 will be the approximated linearly inter
polated value.

It should be noted that the above circuit may be used
for determining a linearly interpolated value for data of
varied bit sizes. In the preferred embodiment the
weighting value and inputs A and B are 10 bits in
length.

Parallel Rendering Pipelines
The ability to support multiple rendering pipelines in

parallel is inherent in the architecture of the preferred
embodiment of the present invention. First, as parame
ter values are directly evaluated, there are no inter
scanline dependencies. Thus, two or more scanlines can
be rendered simultaneously. As described above this
scanline independence also has residual effects in terms
of reducing bandwidth requirements and storage re
quirements. Second, specific features have been pro
vided to facilitate parallelism. Some of these features
have been described above with respect to a single
pipeline. Here they are described in the context of paral
lel rendering pipelines.

It should first be noted that the Parallel Rendering
Pipelines in the preferred embodiment will receive iden

40

45

50

55

60

40
tical Active Object Lists. Thus, the control processor
must provide an Active Object List that would cover
multiple scanlines. In the preferred embodiment, the
Active Object List may be built by assigning a value to
a variable, where the variable represents the number of
scanlines upon which to build the Active Object List.
Having such an Active Object List means that in some
instances, objects will be visible on one scanline, but not
visible on the scanline being simultaneously rendered.
This would occur for example if an object is last visible
on scanline N, where scanlines N and N-1 are being
simultaneously rendered. This may also occur when an
object is first visible on scanline N-1 and thus is not
visible on scanline N. As will be described in more
detail below, the filtering of objects that should not be
rendered is handled in the Stage 1 processing element.
The architecture of the Stage 1 processing element

provides for parallel pipelines in the following manner.
First, and perhaps most importantly, as the stage 1 pro
cessing element directly evaluates object information to
interpolate span coordinates, scanline independence is
achieved during vertical interpolation. Scanline inde
pendence facilitates the rendering of scanlines in paral
lel by eliminating the need for objects to be rendered in
scanline order (as required by forward differencing
interpolation techniques). Second, the vertical interpo
lation function filters objects. This is accomplished by
determining if an object is active on the scanline being
rendered. An object is not active on a scanline if there
are no corresponding active edges. If an object is not
active on a particular scanline, it will not be rendered.

Third, to avoid saturating DMA bandwidth between
the active object list and the pipeline, are designed to
simultaneously receive objects. As a result, the required
data bandwidth does not increase as parallel pipelines
are added. Fourth, as the pipelines each receive the
same object data, the Stage 1 processing unit of each
pipeline must be able to distinguish which scanline
should be rendered. Accordingly, each stage 1 process
ing unit defines two input signals which define the par
ticular pipeline ID. The ID can be used to load a differ
ent Y value into each of the pipeline, the Y-value indi
cating the scanline to be rendered.

Finally, the horizontal interpolation of stage 1 sup
ports the parallel pipelines in that it sets up the direct
evaluation of shading parameter values in succeeding
processing stage elements. The second and third stages
of the pipeline perform the direct evaluation of shading
parameters. As noted above, such direct evaluation of
shading parameters is necessary for scanline indepen
dence.
With respect to the third/final stage processing ele

ment, besides directly evaluating the shading parameter
values, the output lines of the third stage scanline buff
ers may be tristated. This allows the output lines of the
scanline buffers of multiple pipelines to be connected
together. External control logic provided by, for exam
ple the control processor, would then control which of
the scanline buffers would be in a tristate and which one
would be enabled and thus providing rendered scanlines
to the system display buffer.
FIG. 15 is a flowchart illustrating the steps for ren

dering a 3D image using multiple parallel pipelines. For
this example there are two parallel pipelines. First, the
control processor sends a direct input stream command
to designate which of the pipelines, the input streams
should be sent to, step 1501. In this case the direct input
stream command will designate both pipelines will re

5,307,449
41

ceive the input stream (distinguish from step 1507
where input is not sent to both pipelines). Next, the
control processor will send global mode set-up tokens
to designate the desired shading functions, step 1502. At
this point the rendering pipeline is ready to receive the
DRAW commands for drawing the individual objects.
The contents of the active object list is now sent

simultaneously to each of the rendering pipelines, step
1503. As noted above this occurs by the issuance of a
DRAW command for that object being sent down the
pipeline. Next, rendering occurs, step 1504. This render
ing step is identical to that which would occur for a
single pipeline. This rendering step is identical to the
rendering steps described with respect to FIGS. 8a–8c.

10

Once the rendering process is completed, the scanout of 5
the rendered scanlines may occur.
The initial step in the scanout process is for the con

trol processor to determine that a previous scanout is
complete. This is accomplished by the control proces
sor propagating a scanout synchronization token, step
1505. Once it is determined that the previous scanout is
complete, a swap buffers token is propagated, step 1506.
By doing this, the scanout process can be performed
while the rendering of other scanlines can commence.
The control processor then propagates a setup/start
token to enable the scanout of the rendered scanlines,
step 1507. The scanout of a scanline buffer from the first
pipeline to the system frame buffer is performed, step

20

25

1508. To perform this step the scanline buffer output of 30
the second pipeline is first placed in a tristate. Once this
is completed, the scanout of a scanline buffer from the
second pipeline to the system frame buffer is performed,
step 1509. To perform this step the output of the first
pipeline is placed in a tristate. It should be noted that the
pipeline scanout sequence may be switched, i.e. the
second pipeline performs the scanout first. Such a
switch in the scanout sequence may be performed with
out departing form the spirit and scope of the present
invention. As in the case of a single pipeline, the parallel
rendering pipelines may be rendering subsequent scan
lines while scanning out the previous scanlines.

Thus, a scanline rendering device is disclosed. Utiliz
ing a scanline approach to hardware rendering of
graphical objects, required bandwidth to a system frame
buffer is reduced thus enabling the rendering device to
be extensible to existing computer system designs. Scan
line independence is achieved through direct evaluation
of coordinate parameter values, and enables multiple
parallel rendering devices. Distributed parameter inter
polation reduces bandwidth requirements between
shading elements in the rendering device. Finally, a
linear interpolation method provides for the exact cal
culation at extreme endpoints and allows for efficient
use of data.
We claim:
1. A rendering device for simultaneously generating a

plurality of scanlines of pixel values, said rendering
device coupled to a computer controlled display, said
rendering device having a plurality of rendering pipe
lines, each of said rendering pipelines comprised of:

input means for receiving one or more graphical
objects which are visible on a scanline being ren
dered, said one or more graphical objects repre
senting an image to be displayed, each of said one
or more graphical objects defined by a set of loca
tion points and parameter values;

35

45

50

55

65

42
means for identifying a horizontal set of pixel loca

tions for a graphical object coupled to said input
means;

pixel filtering means for determining which of said
pixels in said horizontal set of pixel locations may
be shaded, said pixel filtering means coupled to said
means for identifying a horizontal set of pixel loca
tions; and

shading means coupled to said pixel filtering means,
said shading means for shading pixels;

said means for identifying a horizontal set of pixel
locations for a graphical object further comprised
of:

a first processing means for determining a first edge
of said graphical object intersecting a scanline
being rendered and a second edge of said graphical
object intersecting a scanline being rendered;

a second processing means coupled to said first pro
cessing means, said second processing means for
determining an interpolation value for each of said
first edge and said second edge, said interpolation
value defining an X-coordinate constant between
points on an edge of said graphical object; and

a third processing means coupled to said second pro
cessing means, said third processing means for
identifying dimensional coordinates of endpoints of
said horizontal set of pixel locations.

2. The rendering device as recited in claim 1 wherein
said means for determining which of said pixels in a
horizontal set of pixel locations may be shaded is a
scanline Z-buffer circuit.

3. A method for processing a set of graphical objects
for rendering on a computer controlled display system,
each of said graphical objects defining a geometric
shape and pixel shading values, said set of graphical
objects comprising an image to be displayed on said
computer controlled display system, said method com
prising the steps of:

a) identifying a set of graphical objects which inter
sect a first or a second scanline;

b) concurrently providing a set of graphical objects
to a first rendering means and a second rendering
means;

c) said first rendering means rendering a first portion
of said first scanline from said set of graphical ob
jects by performing the steps of:
c1) identifying a first horizontal span of pixels cor

responding to said first scanline for a first graphi
cal object in said set of graphical objects;

c2) identifying pixels in said first horizontal span of
pixels that may be shaded;

c3) shading said pixels in said first horizontal span
of pixels identified in step c2);

c4) storing said shaded pixels corresponding to said
first horizontal span into a first storage means;
and

c5) transferring shaded pixels from said first stor
age means to a system frame buffer when all of
said graphical objects in said set of graphical
objects have been processed; and

d) said second rendering means rendering said second
scanline from said set of graphical objects concur
rent with first rendering means.

4. The method as recited in claim 3 wherein said step
of said second rendering means rendering a second
scanline from said set of graphical objects is further
comprised of the steps of:

5,307,449
43

a) identifying a second horizontal span of pixels cor
responding to said second scanline for a second
graphical object in said set of graphical objects;

b) identifying pixels in said second horizontal span of
pixels that many be shaded;

c) shading said pixels in said second horizontal span
of pixels identified in step b);

d) storing said shaded pixels corresponding to said
shaded horizontal span into a second storage
means; and

e) transferring shaded pixels from said second storage
means to a system frame buffer when all of said
graphical objects in said set of graphical object
data have been processed.

5. In a computer controlled display system, a method
for rendering an image comprising the steps of:

a) providing an image database, said image database
having one or more graphical objects representing
said image, each of said graphical objects defining
a position, a geometric shape and pixel shading
values;

b) generating an active object list from said image
database, said active object list identifying one or
more graphical objects whose position intersects
one or more scanlines which are to be simulta
neously rendered;

c) providing graphical objects identified in said active
object list to a plurality of rendering means;

d) each of said plurality of rendering means rendering
a scanline based on pixel shading values of said
graphical objects comprising the steps of:
d1) identifying a horizontal span of pixels for a

graphical object based on the scanline being
rendered and position and geometric shape of 35
said graphical object;

d2) determining which of said pixels in said hori
Zontal span may be shaded;

d3) shading said pixels identified in step d2; and
d4) storing said shaded pixels in a scanline buffer;

44
e) providing said rendered scanlines to a system frame

buffer for display. w
6. The method as recited in claim 5 wherein said step

of identifying a horizontal span of pixels for a graphical
5 object based on the scanline being rendered and posi

tion and geometric shape of said graphical object is
further comprised of the steps of:

a) determining a first edge of a first graphical object
and a second edge of said first graphical object that
intersect said scanline;

b) generating a first interpolation value for said first
edge, said first interpolation value defining an X
coordinate constant between points on said first
edge;

c) determining a first coordinate of a first endpoint
based on said scanline, said first edge and said first
interpolation value;

d) generating a second interpolation value for said
second edge, said second interpolation value defin
ing an X-coordinate constant between points on
said second edge; and

e) determining a second coordinate of a second end
point based on said scanline, said second edge and
said second interpolation value.

7. The method as recited in claim 6 wherein said step
of determining which pixels in said horizontal span may
be shaded is comprised of the steps:

a) identifying a front most pixel depth position of a
previously processed pixel at a pixel location being
considered;

b) comparing the pixel depth position of a current
pixel with the front most pixel depth position iden
tified in step a);

c) if the pixel depth position is in front of said pixel
depth position identified in step a), identifying said
current pixel as being eligible for shading; and

d) if said pixel depth position in not in front of said
pixel depth position identified in step a), identifying
said current pixel as not being eligible for shading.

40 r k k

10

15

20

25

30

45

50

55

65

