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(57) ABSTRACT 
A method and apparatus for simultaneously rendering 
multiple scanlines. Using a scanline approach to render 
ing, multiple scanlines may be rendered simultaneously 
through the use of parallel rendering means. The ren 
dering of multiple scanlines in parallel is enabled by 
creating scanline independence. Scanline independence 
is achieved by interpolation through direct evaluation 
of object information. During the rendering process 
each of the rendering means vertically interpolates to 
identify a span corresponding to the scanline being 
rendered. A span is identified by it's X, Y coordinates 
on a scanline. The scanline being rendered provides the 
Y-coordinate. Vertical interpolation generally involves 
the step of deriving the X-coordinates for the endpoints 
of the span and comprises the steps of identifying active 
edges of the object, calculating a relative interpolation 
weight for each active edge and solving a linear interpo 
lation function using the relative interpolation weight 
and the leftmost X-coordinate of the active edges and 
the rightmost X-coordinate of the active edges. 
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1. 

METHOD AND APPARATUS FOR 
SIMULTANEOUSLY RENDERING MULTIPLE 

SCANLNES 

BACKGROUND OF THE INVENTION 
1. Field of the Invention 
The present invention relates to the field of computer 

controlled display systems, in particular, devices for 
rendering pixels for displaying 3-dimensional graphical 
images. 

2. Description of the Related Art 
As the processing capability of computer systems has 

grown, so have the ways of displaying data generated 
by the computer systems. Many vocations now use 
computer systems as a fundamental tool. For example, 
in the area of architectural design, 3-Dimensional 
graphical images (or 3-D images) of buildings or other 
structures are dynamically created and manipulated by 
a user. A computer system is able to capture and process 
data in order to display the 3-D image, in a time that is 
much faster than could be done manually. As computer 
hardware technology has advanced, so has the develop 
ment of various methods, techniques and special pur 
pose devices for rapidly displaying and manipulating 
3-D images. 
A 3-D image is represented in a computer system as a 

collection of graphical objects. Generally, there are two 
known approaches to providing high performance gen 
eration of 3-D images. A first approach focuses on rap 
idly drawing the graphical objects that comprise the 
3-D graphics image. This approach is referred to herein 
after as the object approach. The object approach en 
bodies a hidden surface removal algorithm commonly 
known as the screen Z-buffer algorithm. A second ap 
proach looks to processing the graphical objects with 
respect to the scanlines on which they would appear on 
a display. The second approach is referred to hereinaf 
ter as the scanline approach. The two approaches in 
volve certain trade-offs. These trade-offs include cost, 
performance, function, quality of image, compatibility 
with existing computer systems and usability. 
As mentioned above, a 3-D image will be represented 

in a computer system as a collection (or database) of 
graphical objects. The database may have been created 
through the use of any of a number of commercially 
available application software packages. The database 
may be in any of a number of standard graphics formats 
(e.g. PHIGS or GKS). It is common that the 3-D graph 
ical objects are polygons (e.g. triangles) or some other 
high level object. The process of transforming a collec 
tion of graphical objects into a 3-D image is termed 
rendering. Literally, the rendering process takes object 
information and converts it to a pixel representation. It 
is in the rendering process where the object and scan 
line approaches differ. 

In the object approach, the majority of the function 
related to the rendering process is performed by spe 
cially designed graphics accelerators. These graphics 
accelerators perform the necessary operations to create 
the pixel representation of the objects. The pixel repre 
sentation may then be used by a display system to 
"draw" the graphical object on a display screen. A 
schematic of the object approach is illustrated in FIG. 1. 
In FIG. 1, a general purpose host computer 101 is used 
to maintain and create a 3-D Object Database 102. As 
described above, the 3-D Object Database contains the 
3-D Objects which comprise the 3-D image. Coupled to 
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2 
the host processor 101 is a system frame buffer 106. The 
system frame buffer 106 is further coupled to the display 
105. The system frame buffer 106 contains the data, e.g. 
RGB values, for each pixel in the display 105. 
The primary components of the object approach are 

embodied in the graphics accelerator processor 103 and 
the screen Z-Buffer 104. The graphics accelerator pro 
cessor 103 performs various graphical functions such as 
transformations and clipping. The screen Z-Buffer 104 
is used for hidden surface removal. During the render 
ing process for a graphical image, the rendered pixels 
are transferred to the system frame buffer 106. 

Using the object approach, each of the 3-D objects in 
the database 102 is rendered individually. Using a trian 
gle object as an example, the rendering process gener 
ally involves the following steps, and is illustrated in 
FIG. 2a-2C 
1. Derive a 2-D triangle from the graphical object defi 

nition. The transformation step, as illustrated in FIG. 
2a, results in a triangle 201 with vertices A 202, B203 
and C 204. 

2. Perform any necessary clipping of the object. Clip 
ping refers to removing portions of the object that are 
not within the bounds of a predetermined viewing 
22, 

3. Generate horizontal spans for the object. A horizon 
tal span refers to a portion of the object that intersects 
a scanline. A span is comprised of one or more pixels. 
For example, in FIG.2b, see span 209. Typically this 
occurs through a linear vertical interpolation of the 
object. 

4. Generate values for each of the pixels in the span. 
This process is commonly referred to as horizontal 
interpolation. FIG.2c illustrates horizontal interpola 
tion. This step will include such functions as shading 
of the pixels, hidden surface removal and storing the 
pixel values into a screen RGB frame buffer. 

5. Repeat steps 3 and 4 until the object has been ren 
dered. 

6. Repeat steps 1, 2, 3, 4, and 5 until all the objects have 
been rendered. 
The Step 1 derivation of a 2-D triangle is needed in 

order to map into the two-dimensional coordinate sys 
tems that are typically used by known display systems. 
The third coordinate of a 3-D graphical object is depth 
(e.g. "Z value'), and is used to determine whether or 
not the object is behind another object and thus out of 
view (i.e. hidden). 

Vertical interpolation, as described in Step 3 above, is 
illustrated in FIG. 2b. Vertical interpolation is typically 
performed in the following fashion. First, active edges 
are determined. An active edge is defined as an edge of 
the object that intersects a scanline that is being pro 
cessed. A span is defined as the pixels on the scanline 
that would connect the two intersection points of the 
active edges. The triangle 201 is comprised of edges 
205, 206 and 207. The edge 205 is defined by the seg 
ment connecting vertices A 202 and B203, the edge 206 
is defined by the segment connecting vertices. A 202 and 
C 204 and the edge 207 is defined by the segment con 
necting vertices B 203 and C 204. Generally, for any 
particular scanline, there will be 2 active edges. The 
exception being when an edge is horizontal. For exam 
ple, in FIG.2b, for scanline 208, the active edges are 205 
and 206. Thus, for scanline 208, there is a span 209 for 
object 201. 
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The next step is to determine the coordinates of the 
end-points 210 and 211 of span 209. First it must be 
understood that each active edge is simply a line. Thus, 
the difference between successive points in the line are 
linear. As the vertical ordinate is simply the current 
scanline, only the horizontal ("X") value need be calcu 
lated. Typically, this is done using a forward differenc 
ing calculation. In forward differencing a constant, say 
Ap is determined that is between each horizontal coor 
dinate (e.g. using the formula Ap=P1-PO/Y1-Y0, 
where P1 and P0 are pertinent pixel values, such as "R" 
of RGB, at Y1 and Y0 for the respective end-points of 
an edge). Thus, the horizontal coordinate value may be 
determined by simply adding Ap to the previous corre 
sponding coordinate value. It is known that using for 
ward differencing makes other techniques of improving 
rendering performance, e.g. parallel processing, more 
difficult. 
A non-desirable aspect of the forward differencing 

technique is that a high number of bits are required to be 
stored and propagated in order to retain the necessary 
numerical precision needed for graphics applications. 
This is a tradeoff to eliminating certain operations, 
namely division operations, that would otherwise be 
required in the vertical interpolation process. 

Referring to FIG.2c, shading the pixels in span 209 is 
then performed. Shading refers to establishing the val 
ues for the pixels comprising the span 209. The coordi 
nates of the successive pixels on the span may be deter 
mined through the means such as a counter. Horizontal 
interpolation to determine shading values for each of 
the pixels may occur using either linear interpolation or 
perspective corrected interpolation. In any event, as the 
values for a pixel 212 are determined, the values for 
subsequent pixels, e.g. pixel 213 can be estimated 
through horizontal interpolation. 
As noted above, the object approach generally uti 

lizes the screen Z-Buffer algorithm. The screen Z 
Buffer algorithm provides for hidden surface removal. 
Hidden surface removal is necessary for the display of 
3-D images, since the surfaces in view depend on the 
vantage point from the viewing direction and refers to 
the "hiding' of areas of an object that are "behind' 
another object. The hidden surface removal Z-Buffer 
algorithm is known in the art and requires a local frame 
buffer. The screen contains the pixel values of objects as 
they are rendered. As the location of any object may be 
anywhere on the screen, the local frame buffer must 
have enough storage to support the display of all pixels 
on the display. Once all the objects have been rendered, 
the local frame buffer is transferred to the system frame 
buffer for display. 
The Z-Buffer method utilizes the fact that each object 

has an attribute, typically called a Z-value, which is a 
3rd dimensional ordinate. A low Z-value indicates that 
the object (or portion of the object) is closer to the 
viewer than an object with a high Z-value. The Z 
Buffer stores a Z-value for each pixel on a display. 
During the rendering process, the Z-value of a pixel 
being processed is compared to Z-value in a corre 
sponding location in the Z-buffer. If the Z-value of the 
pixel being processed is smaller than the value in the 
corresponding location in the Z-buffer, then the Z 
value of the pixel being process is placed in the corre 
sponding location in the Z-buffer. Additionally, the 
pixel value of the pixel being processed will be placed in 
the screen frame buffer, since it is now the "closest' to 
the viewer. 
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4. 
Some of the tradeoffs of object/z-buffer rendering 

include: the requirement of Z-buffer memory, screen 
frame buffer memory (in addition to a system frame 
buffer), and the difficulty in building a modular type of 
system due to a constraint of the Z-Buffer memory 
needing to be close to the screen buffer. As a result of 
such hardware requirements, the object approach can 
be a costly approach. 

In the scanline approach the 3-D image is rendered a 
scanline at a time, rather than an object at a time. Thus, 
all objects intersecting a particular scanline are pro 
cessed before writing to the scanline location in the 
frame buffer. The scanline approach utilizes two passes. 
In the first pass, 3-D objects are transformed into 2-D 
objects and a scanline object activation list is built. In 
the second pass, each of the scanlines are rendered. The 
flow of the scanline approach is illustrated in FIG. 3a. 
As in hardware rendering, transformation of the 3-D 
objects into 2-D objects occurs, step 301. Concurrent 
with the step 301, an Object Activation Database is 
built, step 302. The steps 301 and 302 comprise the first 
pass. 
The Object Activation Database provides, for each 

scanline, a list of objects which first become active on 
that scanline. By becoming active, that object may be 
displayed on that scanline. This typically occurs by 
identification of the highest point of an object (i.e. its 
lowest Y-coordinate), and assigning it to the activation 
list of the corresponding scanline. The relationship of 
the Object Activation Database to the displayed objects 
is illustrated in FIG. 3b. In FIG. 3b a display screen 320 
is 9 scanlines high. The scanlines 0-8 are numbered 
from low to high down the left hand side of the display 
screen 320. Objects A321, B 322 and C 323 are to be 
displayed on the display screen 320. It is apparent that 
Object A 321 has a highest point 326 (which is on scan 
line 5), Object B 322 has a highest Point 324 (which is 
on scanline 1) and Object C 323 has a highest Point 325 
(also on scanline 1). 

Still referring to FIG. 3b, the resulting Object Acti 
vation List Database 329 is illustrated. As the points 324 
and 325 are on scanline 1, a scanline 1 entry 327 contains 
the corresponding objects, namely Object B 322 and 
Object C 323. Additionally, a scanline 5 entry 328 con 
tains the Object A321. 

Referring back to FIG. 3a, once the Object Activa 
tion Database 329 is generated and all the 3-D Objects 
have been transformed, an Active Object List is cre 
ated, step 303. The Active Object List provides a source 
of identifying for the scanline being processed, the ob 
jects which are active (i.e. portions of which are dis 
playable on that scanline). The Active Object List may 
contain either descriptive information of the 2-D object 
(e.g. coordinate information and shading parameter 
values) or may contain information defining the active 
edges of the 2-D object (also including shading parame 
ter values). FIG. 3c illustrates the contents of an Active 
Object List 340 with respect to the screen and Object 
Activation List 329 of FIG. 3b. In Active Object List 
340, a scanline 1 entry 341 contains the objects B and C. 
The objects B and C remain as an entry for scanlines 
2-5. In scanline 5 entry 342, object A is included (as this 
is where the object A is first displayed). As objects B 
and C are no longer displayed after scanline 5, they are 
not in a scanline 6 entry 343. The entries for scanlines 
6-8 are comprised solely of object A. Rendered Screen 
345 illustrates how the objects would be rendered. 
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Referring back to FIG. 3a, once the object Activa 
tion List is created, the rendering process begins, step 
304. As with hardware rendering, the next steps include 
1) vertical interpolation, to determine the coordinates 
(and shading parameters of the coordinates) of a hori 
zontal span that corresponds to a particular object on a 
particular scanline, and 2) horizontal interpolation, for 
determining the individual pixel values for the pixels 
within the span. Vertical interpolation occurs for every 
active object on a scanline. Once the coordinates for the 
horizontal span and corresponding shading parameters 
have been determined, vertical interpolation is com 
pleted and horizontal interpolation begins. When all the 
pixels in the span have been shaded, horizontal interpo 
lation for the span is completed. This shading process is 
embodied in step 304. Step 304 is repeated for all the 
objects on the active object list. Finally, a test is made to 
determine if the last scanline has been processed, step 
305. If the final scanline has not been processed, the 
active object list is updated to reflect the active objects 
for the next scanline, step 306. The step 306 is generally 
identical in function to step 303. If the last scanline has 
been processed, the processing for that graphical image 
is complete. The steps 303-306 comprise the second 
pass. 
An important distinction between the vertical inter 

polation process in the scanline approach and the object 
approach is that in the scanline approach portions of 
multiple objects are rendered at one time. Thus, appro 
priate storage is required to retain all the forward differ 
encing information that will be used as all the objects 
are being interpolated. For example, if 10 units of stor 
age are required for storing the forward differencing 
information for one object, 50 units of storage are re 
quired for storing the forward differencing information 
for 5 objects. Additionally, since forward differencing is 
being used, there is an inter-scanline dependence so that 
the scanlines must be processed in sequential order. 

Scanline rendering provides benefits over object ren 
dering that include eliminating the need for a frame 
Z-Buffer and a screen RGB Buffer, each of which usu 
ally are the size of the display. 
A known system that utilized scanline rendering in 

combination with a pipelined object approach is dis 
cussed in the publication "Computer Graphics Princi 
ples and Practice Second Edition' by Foley, VanDam, 
Feiner and Huges published by the Addison Wesley 
Publishing Corporation at Pages 885-886. The system 
described provides separate processing units for creat 
ing an Object Activation Database, Active Object List, 
Visible Span Generation (i.e. Vertical Interpolation) 
and Pixel Shading (i.e. Horizontal Interpolation). How 
ever, the system as described did not provide for paral 
lel pipelines. 
A parallel pipeline system was described in the afore 

mentioned "Computer Graphics Principles and Prac 
tice Second Edition" publication at Pages 899-900. The 
system described utilized a technique termed object 
parallel rasterization. In this system multiple objects are 
processed in parallel. 
The tradeoffs discussed above were often premised 

on an idea that it is desirable to minimize the number of 
computations that need to be performed. An example is 
the forward differencing technique for linear interpola 
tion. In order to minimize division operations, a larger 
amount of data must be moved and stored through the 
system. With the maturation of semiconductor technol 
ogy, the cost of circuitry to perform logic operations 
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6 
has decreased. Thus, it has become viable to design 
systems that utilize processing power and minimize 
memory. This is especially desirable when space is a 
consideration, since storage tends to take up a sizable 
amount of valuable space on an electrical circuit. 
As described above, known rendering systems typi 

cally perform a high number of linear interpolations. It 
would be desirable to provide a method and means 
where these linear interpolations may be performed in 
an efficient manner. 
Known high quality 3-D rendering systems are inher 

ently expensive and incapable of incorporating new 
functionality without significant re-design of the inher 
ent architecture of the rendering system. It would be 
desirable to provide a rendering system that is scalable 
to user needs. It is an object of the present invention to 
provide such a system. 

It is a further object of the present invention to pro 
vide an interpolation means that does not present the 
bandwidth and data storage requirements associated 
with forward differencing based techniques. 

It is a further object of the present invention to in 
crease rendering performance of graphical images 
through the rendering of multiple scanlines, without 
requiring a multiple increase in data bandwidth require 

entS. 

SUMMARY OF THE INVENTION 

A method and apparatus for providing for the simul 
taneous rendering of multiple scanlines for display on a 
computer controlled display system, is disclosed. Gen 
erally, the computer control display system utilizes a 
method for displaying a 3-D graphical image which 
includes the steps of: providing a database having a 
collection of objects representing a 3-D graphics image, 
generating an Object Activation Database for each scan 
line in a display that is coupled to the computer control 
display system, generating an active object list from the 
object activation lists for each of the scanlines, and 
providing a active object list to a rendering means, 
whereby the rendering means processes each of the 
objects in the active object list to render a particular 
scan line. 
The present invention describes a method for deter 

mining X coordinates (and associated pixel values, such 
as R, G, B, Z. etc.) of a first end point and a second end 
point in a span associated with an object primitive of the 
graphical image. The method of the present invention 
includes the steps of determining a first active edge and 
a second active edge of a first object on the scanline, 
generating a first interpolation value for the first active 
edge, determining the X coordinate of the first end 
point based on the scan line and the first interpolation 
value, generating a second interpolation value for said 
second active edge and determining the X coordinate of 
the second end point based on the scan line and the 
second interpolation value. 
BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic drawing of a prior art rendering 
system. 
FIG.2a illustrates the representation of an object as a 

triangle. 
FIG. 2b illustrates a triangle mapped to a display 

Screen. 

FIG. 2c illustrates pixels in a horizontal span of a 
triangle when mapped to a display screen. 
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FIG. 3a is a flowchart illustrating a prior art scanline 
method for rendering a 3-D image. 

FIG. 3b illustrates an Object Activation Database as 
utilized in a prior art scanline method for rendering a 
3-D image. 
FIG. 3c illustrates an Active Object List as utilized in 

a prior art scanline method for rendering a 3-D image. 
FIG. 4 illustrates a computer system as may be uti 

lized by the preferred embodiment of the present inven 
tion. 

FIG. 5 illustrates a graphics accelerator coupled to a 
computer system and a display device as may be utilized 
by the preferred embodiment of the present invention. 

FIG. 6a illustrates a first graphics accelerator archi 
tecture as may be utilized by the preferred embodiment 
of the present invention. 

FIG. 6b illustrates a second graphics accelerator ar 
chitecture as may be utilized by the preferred embodi 
ment of the present invention. 

FIG. 7 illustrates a graphics pipelines as may be uti 
lized by the preferred embodiment of the present inven 
tlOn. 
FIG. 8a is a flowchart of the flow of operation for a 

stage 1 (of FIG. 7) as may be utilized by the preferred 
embodiment of the present invention. 

FIG. 8b is a flowchart of the flow of operation for a 
stage 2 (of FIG. 7) as may be utilized by the preferred 
embodiment of the present invention. 
FIG. 8c is a flowchart of the flow of operation for a 

stage 3 (of FIG. 7) as may be utilized by the preferred 
embodiment of the present invention. 
FIG. 9 illustrates an example of Vertical Interpola 

tion in the preferred embodiment of the present inven 
tion. 

FIG, 10 illustrates an example of Horizontal Interpo 
lation in the preferred embodiment of the present inven 
tion. 

FIG. 11 illustrates the functional blocks of the Stage 
1 processing unit as may be utilized by the preferred 
embodiment of the present invention. 

FIG. 12 is a schematic functional diagram of a Stage 
2 and/or Stage 3 processing unit as may be utilized by 
the preferred embodiment of the present invention. 
FIG. 13 is a schematic representation of a circuit for 

determining the pixel interpolation weight as may be 
utilized by the preferred embodiment of the present 
invention. 
FIG. 14a is a schematic representation of a circuit for 

calculating a linear interpolation value as may be uti 
lized by the preferred embodiment of the present inven 
tion. 
FIG. 14b illustrates the bit positions of a weighting 

value as may be utilized by the preferred embodiment of 
the present invention. 

FIG. 15 is a flowchart illustrating the processing flow 
of multiple parallel rendering pipelines as may be uti 
lized in the preferred embodiment of the present inven 
tion. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

A method and apparatus for rendering multiple scan 
lines in a computer controlled display system is de 
scribed. In the following description, numerous specific 
details are set forth such as data structures, in order to 
provide a thorough understanding of the present inven 
tion. It will be apparent, however, to one skilled in the 
art that the present invention may be practiced without 
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8 
these specific details. In other instances, well-known 
circuits, control logic and coding techniques have not 
been shown in detail in order not to unnecessarily ob 
scure the present invention. 
Overview of the Computer System of the Preferred 

Embodiment 

The computer system of the preferred embodiment is 
described with reference to FIG. 4. The present inven 
tion may be implemented on a general purpose mi 
crocomputer, such as one of the members of the App 
le (R) Macintosh (R) family, one of the members of the 
IBM Personal Computer family, or one of several 
work-station or graphics computer devices which are 
presently commercially available. In any event, a com 
puter system as may be utilized by the preferred em 
bodiment generally comprises a bus or other communi 
cation means 401 for communicating information, a 
processing means 402 coupled with said bus 401 for 
processing information, a random access memory 
(RAM) or other storage device 403 (commonly referred 
to as a main memory) coupled with said bus 401 for 
storing information and instructions for said processor 
402, a read only memory (ROM) or other static storage 
device 404 coupled with said bus 401 for storing static 
information and instructions for said processor 402, a 
data storage device 405, such as a magnetic disk and 
disk drive, coupled with said bus 401 for storing infor 
mation and instructions, an alphanumeric input device 
406 including alphanumeric and other keys coupled to 
said bus 401 for communicating information and com 
mand selections to said processor 402, a cursor control 
device 407, such as a mouse, track-ball, cursor control 
keys, etc, coupled to said bus 401 for communicating 
information and command selections to said processor 
402 and for controlling cursor movement. Additionally, 
it is useful if the system includes a hardcopy device 408, 
such as a printer, for providing permanent copies of 
information. The hardcopy device 408 is coupled with 
the processor 402 through bus 401. 

Also coupled to the computer system of the preferred 
embodiment is a frame buffer 409 which is further cou 
pled to a display device 410, preferably a display device 
capable of displaying color graphics images. The frame 
buffer 409 contains the pixel data for driving the display 
device 410. The display device 410 would be further 
coupled to a rendering device 411, also known as a 
graphics accelerator. Typically, such a rendering de 
vice 411 is coupled to the bus 401 for communication 
with the processor 402 and frame buffer 409. The pre 
ferred embodiment is implemented for use on a Macin 
tosh computer available from Apple Computer, Inc. of 
Cupertino, Calif. 

FIG. 5 illustrates in more detail, a rendering device as 
coupled to a host computer system in the preferred 
embodiment. First, a host computer system 550 is cou 
pled to a frame buffer 551 and a rendering device 555. 
The host/frame buffer coupling 552 is an optional cou 
pling when the rendering device is installed. Such a 
coupling may be desirable in instances where the ren 
dering device 555 is not being utilized, e.g. when the 
application being executed does not require the display 
of 3-D graphical images. 
The host/rendering device coupling 553 is typically 

through a means such as the bus 401, described above 
with reference to FIG. 4. The rendering device/frame 
buffer coupling 554 is also typically over a DMA 
means. The information flowing over this coupling will 
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typically consist of pixel data of images or scanlines that 
have already been rendered. Finally, the frame buffer 
551 is coupled to the display device 556, wherein pixel 
data to drive the presentation of the graphical image is 
stored. 
The rendering device of the preferred embodiment 

operates with display systems with fast raster support. 
Fast raster support refers to raster scan display systems 
where the frame buffer 551 can accept incoming scan 
lines of display data at high speed. Besides graphics 
applications, fast raster support is typically used for 
applications such as display of video data. Thus, the 
system of the preferred embodiment is compatible with 
systems that have support for video applications. 
As will be described in more detail below, the pre 

ferred embodiment of the present invention utilizes a 
scanline approach to rendering. From a computer sys 
tem design standpoint, the principle advantages in uti 
lizing a scanline approach are the reduction of band 
width between the graphics accelerator and the host/- 
frame buffer, reduced requirements for low latency 
communication between the graphics accelerator and 
the host/frame buffer, and increased coherence of the 
data transferred from the graphics accelerator and the 
host/frame buffer. Moreover, for a given desired per 
formance of the combined computer system and graph 
ics accelerator, these advantages reduce both the cost of 
the computer system without the graphics accelerator, 
the cost of the graphics accelerator itself. 

Shading Algorithm of the Preferred Embodiment 
Before a pixel is shaded, it must be determined 

whether it is front most. As will be described in detail 
below, this occurs in the preferred embodiment through 
a scanline Z-Buffer algorithm. Once it is determined 
which pixels of an object are visible, a shading algo 
rithm is used to determine pixel values (i.e. their color). 
Typically, the shading algorithm will take into account 
material properties of the object surface and the sources 
of light in the scene to determine the color of the pixel. 
In the preferred embodiment, a Phong Shading is per 
formed at the endpoint vertices of a span while Gou 
raud shading is performed for the pixels across the span. 
Material properties in the preferred embodiment in 
clude a diffuse RGB color, specular power (shininess), 
specular RGB color and surface normal. Light sources 
in the preferred embodiment include an infinite light 
source and an ambient light source. Finally, in the pre 
ferred embodiment, shading is based on a diffuse reflec 
tion model with the option of adding a specular reflec 
tion model. 
The color of a particular pixel in an object can be 

most accurately calculated as the sum of the diffuse, 
specular, and ambient contributions for each of the 
color components. The specific diffuse color compo 
nent, in this case the color red, is calculated by the 
formula: 

Diffuse Color=LKa(LN) 

where Lois the red color component of the (point) light 
source, Kd is the diffuse red component of the surface, 
L is the light vector, and N is the normal to the surface. 
All vectors are normalized. The calculation is repeated 
for each color component. 

Specular reflection describes the light reflected from 
shiny surfaces. The specular color is determined by the 
product of the light and the specular color of the sur 
face attenuated by the angle between the direction of 
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10 
the viewpoint and the reflection of light. Highlights are 
described by specular reflection. The red component of 
a the color of a pixel due to specular reflection is calcu 
lated by the equation: 

Specular Color=LKs (R-Y)" 

where L is the intensity of the red component of the 
(point) light source, Ks is the red component of the 
specular color, R is the reflection of the light vector off 
of the surface, and V is the reversed eye vector (the 
vector from the surface to the eye), and n is the specular 
reflection coefficient (i.e. the specular power). All vec 
tors are normalized. 
The ambient color contribution is calculated by the 

equation: 

Ambient Color=Larkar 

where La is the intensity of the ambient light source 
and kar is the ambient color of the surface. 
For each of the above color contribution components 

RGB, the calculations are repeated. The method of the 
preferred embodiment calculates pixel values in this 
fashion. However, as objects only have such RGB val 
ues defined at vertex points, interpolation techniques 
are used to determine values at points within the object. 
It is such an interpolation technique for determining 
pixel values that is implicit in the rendering architecture 
of the preferred embodiment. 
Although the preferred embodiment utilizes a tech 

nique with Phong shading at the vertices coupled with 
Gouraud interpolations, it would be apparent that other 
shading techniques may be used. Such alternative shad 
ing techniques include, but are not limited to full Gou 
raud Shading or Torrence-Sparrow shading. 
Rendering Architecture of the Preferred Embodiment 
The rendering architecture of the preferred embodi 

ment is premised on a scanline algorithm. As described 
with reference to prior art systems, the scanline algo 
rithm renders an image by scanline. Briefly, the scanline 
algorithm is a two pass algorithm. The first pass is used 
to set up databases of information that are used to drive 
the actual scanline rendering process. In the first pass, a 
2-D object is derived from each 3-D object in a 3-D 
object database. During this process, the scanline upon 
which the object would first be displayed (first in the 
sense of the order of drawing scanlines to the display 
device), i.e. become "active', is determined. This infor 
mation is used to create an Object Activation Database, 
where the entries in the database define the objects that 
become "active' on a particular scanline. 

In the second pass, the Object Activation Database is 
used to create a dynamic list of objects which are "ac 
tive' on the scanline(s) currently being rendered. This 
list is called the Active Object List. The Active Object 
List is then provided to shading means which create the 
pixel values for the scanline(s) currently being ren 
dered. The Active Object List is updated as objects 
become "active' or "inactive' on the scanline(s) to be 
rendered next. 

It is known to those skilled in the art that an object 
may typically be represented by a data structure which 
contains coordinate information and shading parameter 
values. In the preferred embodiment, a triangle object is 
represented by 3 coordinate points, where each of the 



5,307,449 
11 

coordinate points has shading parameter values. The 
segments which interconnect the 3 coordinate points 
define the bounds of the triangle. Further in the pre 
ferred embodiment a quadrilateral object is definable. A 
quadrilateral will be similarly defined, except that it will 
define 4 coordinate points (each with corresponding 
shading parameter values). In the preferred embodi 
ment, a quadrilateral may be provided to the rendering 
pipeline, but it would be converted into a pair of trian 
gles for rendering (each utilizing 3 of the 4 coordinate 
points). 

Alternative systems hardware schematics as may be 
utilized by the preferred embodiment are illustrated in 
FIGS. 6a and 6b. Referring to FIG. 6a, a host computer 
601, e.g. a microprocessor, is coupled to a graphics 
accelerator 604 so that certain functions in the render 
ing process are carried out by the host and the accelera 
tor. The host computer 601 maintains a 3-D Object 
Database 603 and creates an Object Activation Data 
base 602. As described above, the 3-D Object Database 
603 contains a list of the 3-D objects which comprise 
the 3-D Graphical Image, while the Object Activation 
Database 602 contains a list for each scanline, of the 
objects which are first displayed on that scanline. 
The graphics accelerator 604 is comprised of front 

end processors 605 and rendering pipelines 607. The 
front-end processors 605 perform a plurality of func 
tions in the rendering process. First, with respect to the 
first pass of the scanline algorithm, the front-end pro 
cessors 605 perform clipping and transformation func 
tions and provide the Host computer 601 with informa 
tion for each object indicating the scanline on which the 
object first becomes active. With respect to the second 
pass, the front-end processors 605 receive 3D- object 
information from the Host computer 601 to create an 
Active Object List 606. The Active Object List 606 
identifies objects which are "active" or to be drawn, on 
the particular scanline being processed. The front end 
processor 605 also provide control instruction to the 
rendering pipelines 607. Such control instructions are in 
the form of control tokens, and are discussed in greater 
detail below. The front end processors 605, are prefera 
bly floating point processors or Reduced Instruction 
Set Computer (RISC) processors. 
Also illustrated in FIG. 6a is a transformation data 

base 608. The transformation database 608 is used as a 
matter of convenience to resolve object accessing prob 
lems that occur due to the data structures used in creat 
ing the transformation matrices when transforming 3-D 
Objects to 2-Dimensional Objects. 

Finally, the graphics accelerator includes one or 
more rendering pipelines 607. The rendering pipelines 
receive control information from the front-end proces 
sors 605 and the object information from the active 
object list 606 to perform the actual calculating of pixel 
values for each pixel in a scanline. The rendering pipe 
lines 607 are discussed in greater detail below. 
An alternative implementation is illustrated in FIG. 

6b. The primary difference between this alternative 
implementation and that illustrated in FIG. 6b is the 
elimination of front-end processors and separate storage 
means for the transform database and Active Object 
List. Referring to FIG. 6b, the host processor 620 per 
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contents of the Active Object List to one or more ren 
dering pipelines 625, for rendering. . 
The embodiment illustrated in FIG. 6b is desirable in 

implementations where performance is sacrificed in 
relation to cost. As the embodiment in FIG. 6b utilizes 
fewer components then that in FIG. 6a, its total cost 
would be lower. However, as the host processor is 
called on to do more work, rendering performance will 
be impacted. 

In whichever form, a graphics accelerator will typi 
cally be one or more printed circuit boards coupled to 
the computer systems. Coupling of the graphics accel 
erator was discussed above in reference to FIG. 5. In 
order to simplify the description of the the rendering 
pipelines of the preferred embodiment, the processor 
that provides the objects from the Active Object List to 
the rendering pipelines will be termed a control proces 
sor. In this context, the control processor would refer to 
the alternative configurations found in FIGS. 6a and 6b. 
As will be described below, the rendering pipelines in 

the preferred embodiment utilize a means for directly 
interpolating pixel values and determining the x-coordi 
nates of horizontal spans. As compared to prior art 
systems, the means of the preferred embodiment signifi 
cantly reduces the amount of data storage for an Active 
Object List and significantly reduces the data band 
width requirements. 
With regard to the Active Object List, when utilizing 

traditional forward differencing techniques the Active 
Object List will contain all the shading parameter data 
for each active object. It is estimated that the direct 
evaluation method of the preferred embodiment would 
provide a 50% storage savings. This is caused by the 
requirement that 2n bits of precision are required for a 
value, in order to retain n bits of precision after an arith 
metic function is performed. For example, forward 
differencing an n bit parameter requires storing a 2 n 
current parameter value (pi) and a 2 n parameter delta 
(pD), resulting in a parameter to be represented by 4 n 
bits. Direct interpolation only requires the end-points, 
i.e. 2 n bits of storage. As the number of parameters 
increases, the storage savings becomes more significant. 
In the preferred embodiment material properties param 
eters diffuse RGB, a (alpha or transparency), specular 
RGB, specular reflectivity (N), surface normal (N, N, 
N2) and Z are interpolated and propagated through the 
pipeline. As shading functionality increases, the number 
or parameters required to describe the object will in 
crease. Note that other parameters such as specular 
ambient and diffuse light parameters remain constant 
and thus need not be interpolated in the pipeline. 

Correspondingly, the data bandwidth (or aggregate 
data flow) required to move the objects is decreased. As 
data must be moved from the Active Object List to the 
rendering pipelines, a reduced quantity of data results in 
a reduced bandwidth. Further, forward differencing 
requires reading Pi- 1 and Ap for 4N bits, then writing 
back Pi to the Active Object List (another 2N bits) for 
a total of 6N bits. As described above, in direct evalua 
tion, only 2N bits will be transferred to/from the Active 
Object List. This results in a 3x savings in the required 
Active Object List bandwidth of a system that directly 
interpolates the end-points. Moreover, the unidirec 
tional data flow of direct evaluation also simplifies sys 
tem design. 

It should be noted that in the preferred embodiment 
the graphics acceleration may directly access the sys 
tem frame buffer. Thus, inherent in the preferred em 
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bodiment is a Direct Memory Access (DMA) means 
which will allow the graphics accelerator to scanout 
rendered scanlines directly to the system frame buffer. 

Using direct evaluation also reduces the computation 
necessary to set-up the active object list as slope divi 
sions and parameter delta calculation (i.e. the AP) are 
not necessary. These steps (performed by the front-end 
processors) are often expensive because of the care 
taken to avoid introducing error in the forward differ 
encing calculation. 
A desirable effect provided by direct evaluation is 

that it facilitates the rendering of multiple scanlines in 
parallel. Because the primitives in the active list contain 
no information dependent on vertical position, the same 
data can be fed into multiple pipelines, each configured 
to perform vertical interpolation for a different scanline. 
By contrast, the forward differencing algorithm 
changes the primitive description every scanline, so it is 
difficult to use the same data to drive the rendering of 
multiple scanlines. 

Description of the Rendering Pipeline 
The rendering pipeline of the preferred embodiment 

is designed to generate one shaded pixel per pipeline 
clock cycle. As described above, the rendering in the 
preferred embodiment utilizes the scanline approach. 
Using traditional forward differencing linear interpola 
tion techniques, the rendering of multiple scanlines 
simultaneously is made difficult because of the inter 
scanline dependencies. The rendering pipeline of the 
preferred embodiment avoids such difficulties through 
the use of multiple parallel pipelines and direct evalua 
tion of coordinate and parameter values. 
As described above, forward differencing requires 

high data bandwidth. During the shading of pixels, i.e. 
horizontal interpolation, a given pixel typically will 
require over 200 bits of data to be transferred for each 
shading function. A known technique for minimizing 
data bandwidth problems is to provide for fast intercon 
nection between components. However, this may cre 
ate other problems such as synchronization and control. 
In connection with direct evaluation, the preferred 
embodiment further minimizes the required bandwidth 
through direct and distributed evaluation of a pixel 
interpolation token. This negates the need to send all the 
shading data required for a pixel down the pipeline. 
Endpoint values for all parameters are first sent where 
upon an interpolation weight need only be provided for 
each pixel. Direct and distributed evaluation will be 
discussed in greater detail below with respect to hori 
zontal interpolation. 

Operation of the Rendering Pipelines 
Data and control information is transferred between 

various stages in the rendering pipeline area as "to 
kens'. "Tokens' as utilized in the preferred embodi 
ment, refer to a fixed structure for sending and receiv 
ing data and control information. In any event, prior to 
receiving objects, the rendering pipelines must be pro 
vided with setup information, to define the rendering 
functions that will be performed. In the preferred em 
bodiment, this occurs by propagation of a global mode 
setup token through the pipeline. The global mode 
setup token is described in greater detail in the section 
entitled Tokens. Briefly, the global mode setup token is 
generated by the control processor (i.e. FIG. 6a or the 
host processor per FIG.6b) and is used to enable diffuse 
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14 
or specular shading, shadowing and a transparency 
mode. 
Once the pipeline has been set-up, the rendering pipe 

lines may receive objects to be rendered. First, a Direct 
Input Stream Token is sent to the pipelines to designate 
which rendering pipelines will receive the forthcoming 
input stream. For objects, all the rendering pipelines 
may receive the input stream. However, if it is an in 
struction to cause a particular processing unit to per 
form a particular function, the rendering pipeline can be 
designated as appropriate by the Direct Input Stream 
Token. Next, the objects are sent down to the pipelines 
in corresponding DRAW instructions. A DRAW in 
struction merely indicates to the pipeline that an object 
or more precisely, a span, is to be rendered. The 
DRAW instruction is followed by data describing 2, 3, 
or 4 vertices. Loading 4 vertices causes an independent 
quadrilateral to be drawn. For a quadrilateral to be 
drawn; the vertices are loaded in the order VO. . . V3. 
A quadrilateral is drawn as two triangles. A triangula 
tion field in the DRAW command indicates along 
which axis to split the quadrilateral. Loading 3 vertices 
causes the triangulation field to be ignored. 

Loading 2 vertices indicates that a strip of connected 
quadrilaterals is being drawn. A quadrilateral strip is 
always begun with a detached quadrilateral loading all 
4 vertices. The immediately following DRAW com 
mand reloads V0/V1, and causes 2 more triangles to be 
drawn, triangulated as indicated by the triangulation 
field, and sharing previously loaded V2/V3. The subse 
quent DRAW reloads V2/V3, sharing the previous 
V0/V1, and so on, always swapping which 2 vertices 
are loaded. The triangulation field allows the triangula 
tion axis of each quadrilateral to be specified indepen 
dently; because the vertex order is swapped for every 
quadrilateral, leaving the triangulation bit constant will 
result in the crosshatch triangulation pattern. 
FIGS. 7 and 8a–8c describe operation of the render 

ing pipelines as an object is being rendered. Referring to 
FIG. 7, in the preferred embodiment the rendering 
pipeline, such as pipeline 607, is comprised of at least 3 
stages. Stage one derives interpolation values, spans and 
pixels for the objects. Stage two performs hidden sur 
face removal, shadow functions and performs ambient 
color calculations. In Stage three, a compositing func 
tion is performed as well as scanout of a rendered scan 
line. As each stage provides for standard passing of 
information and synchronization of operation within 
the pipeline, additional shading functions, such as tex 
turing, may be added between stages two and three. In 
the preferred embodiment, Gouraud shading is pre 
formed. If alternative shading methods are desired, such 
as Phong shading, additional stages between state two 
and three, may be included. Each of the stages is dis 
cussed in greater detail below. 

Stage One 
In Stage 1, object descriptions (hereinafter objects) 

701 from an active object list and control tokens 702 are 
input into a stage 1 processing means. The stage 1 pro 
cessing means acts as a pre-processor, for receiving and 
pre-processing the objects for rendering. A first func 
tion performed in stage one is vertical interpolation (via 
vertical interpolation module 703). A primary purpose 
of vertical interpolation is to identify the X-coordinates 
for horizontal spans corresponding to the active objects 
in the scanline being processed. The vertical interpola 
tion module also generates set-up tokens describing the 
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span and it's shading parameters. The set-up tokens are 
forwarded to succeeding stages in the pipeline. A sec 
ond function performed is setup for horizontal interpo 
lation (via horizontal interpolation module 704). Hori 
zontal interpolation is the process by which pixels in a 
span are shaded. The horizontal interpolation process is 
distributed in that separate stages perform separate 
shading functions. The horizontal interpolation module 
704 generates Pixel interpolation tokens for each pixel 
in the span. 

FIG. 8a describes stage 1 processing in more detail. 
First, the objects from the active object list, corre 
sponding to the identified scanline, are sent to the stage 
one input, step 801. It should be recalled that the data 
representing the objects include the coordinates of the 
vertices and shading parameters at the vertices. As the 
objects are sent down in a "burst' mode, a First In First 
Out (FIFO) queue is provided which stores the objects 
prior to their being processed. The stage one processing 
unit may suspend transfer of objects via provided con 
trol signals. Once the objects are input into the pipeline, 
they are serially processed within Stage One (but the 
processing of an individual object may occur in paral 
lel). The first step for pre-processing an object for the 
pipeline, is vertical interpolation to identify a horizontal 
span of the object, step 802. A horizontal span is identi 
fied by the end coordinates representing the portion of 
the object that is displayable on the scanline being pro 
cessed. As the scanline being processed represents a 
Y-coordinate, the X-coordinate is identified by deter 
mining the intersection point of a scanline and a corre 
sponding active edge. Following the calculation of the 
span coordinates, corresponding parameter values are 
then generated for the span end-points, step 803. This is 
accomplished by linearly interpolating the endpoints of 
the active edges with respect to the scanline being pro 
cessed. The details of vertical interpolation are de 
scribed in more detail below. 

Next, span parameter set-up tokens are generated and 
sent down the pipeline, step 804. Such span parameter 
set-up tokens contain the RGB values or Z-values for 
the end-points of the span that were generated in step 
803. It should be noted that certain tokens will only be 
used by certain successive stages. For example, stage 3 
does not use Z-value set-up tokens. If a particular stage 
does not require the information contained in a particu 
lar token, that token will be ignored. 

Next, setup for horizontal interpolation of the span is 
performed. Horizontal interpolation refers to the inter 
polation of the parameter values of the end-points of a 
span, across the pixels in the span. The set-up for hori 
zontal interpolation requires transfer of the coordinate 
points of the span, step 805, and the generation of a pixel 
interpolation token, step 806. A pixel interpolation 
token consists of the pixel coordinates and a pixel inter 
polation weight value. The pixel coordinates are deter 
mined by simply counting across the span starting at the 
left most endpoint on the span. Generation of the pixel 
interpolation token is described in greater detail below 
with respect to horizontal interpolation. Next, the cor 
responding Pixel Interpolation token is assembled and 
sent down the pipeline, step 807. A check will be made 
to determine whether it is the last pixel in the span, step 
808. If it is not the last pixel in the span, the next pixel 
coordinates are generated (typically by counting to the 
next horizontal pixel value), step 809, and the process 
repeats starting at step 806. 
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The steps 802-809 will be repeated for all the objects 

received in the FIFO. As there may be some overlap in 
processing, i.e. more than one object may be processed 
through the pipeline at one time, there is typically no 
check after the generation of a pixel interpolation token 
to see if there are any more objects in the object FIFO. 
Moreover, some of the steps may overlap. For example, 
the generation of span parameter values may occur 
during the horizontal interpolation set-up processing. 

Stage Two 
Referring back briefly to FIG. 7, a first function of 

Stage Two is hidden surface removal (via hidden sur 
face removal module 705). The hidden surface removal 
module 705 utilizes a Z-Buffer algorithm to eliminate 
pixels that will not be shaded, because they are "be 
hind" other objects (i.e. not front most). Shadow analy 
sis, to further eliminate pixels that will not be shaded, 
may also be performed in conjunction with Z-analysis. 
The shadow analysis is also performed by the hidden 
surface removal module 705. Stage 2 also performs an 
ambient color calculation on the visible pixels (via 
RGBA module 706), and places these values into the 
Pixel Interpolation Token. The output of stage two are 
the front most, non-shadowed spans, as well as tokens 
that are flowing unprocessed through the pipeline, e.g. 
null tokens. 

FIG. 8b illustrates the steps performed in Stage Two. 
First, prior to receiving any object data, the stage two 
processing unit receives the Global Mode set-up token, 
step 820. The Global mode set-up token is used to set 
appropriate processing criteria for the desired rendering 
functionality. Next, the span parameter set-up tokens 
generated in stage one are received, step 821, and the 
relevant data (i.e. Z and RGBa values) is loaded into 
registers embodied within the processing unit, step 822. 

Stage 2 processing begins when a Pixel Interpolation 
token is received, step 823. First a corresponding Z 
value for the pixel is calculated, step 824. The Z value 
for the pixel is calculated by directly evaluating a linear 
interpolation (LRP) function, using an interpolation 
weight value contained within the pixel interpolation 
token. When comparing Z-values, a lower Z-value 
means that the object is closer to the viewer. In this 
context, this means that a first object with a higher 
Z-value than a second object, will be behind and thus 
hidden by the second object. It should be noted that the 
Z-buffer will always be initialized to a maximum Z 
value so that it will have a valid value to compare in 
coming Z-values with. This horizontal interpolation of 
the Z-values of the various pixels in the span is de 
scribed in more detail below. Once the Z-value of the 
pixel has been determined, a comparison is then made of 
the Z value for the pixel with a Z value at the corre 
sponding pixel location in the Z buffer, step 825. If the 
Z value of the pixel is greater than the value in the 
corresponding location in the Z buffer, processing of 
the pixel is terminated, step 826. Termination of pro 
cessing of the pixel involves converting the correspond 
ing token into a null token, whereupon it will flow 
through the pipeline unprocessed. If the value is less 
than or equal to the value in the Z buffer, then the new 
lower Z-value is returned to the Z-buffer, step 827 and 
a check for the last object is made, step 828. If it is not 
the last object, the next pixel interpolation token is re 
ceived, step 823. If it is the last object then it must be 
determined if pixel elimination because of shadowing 
will be performed. A first check to see if Second pass 
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analysis will be performed, step 829. This second pass is 
performed if the shadow count flag in the global mode 
setup token is set. If yes, second pass analysis is per 
formed, step 830, otherwise it is determined if third pass 
shadow testing is to be performed, step 831. If yes, third 
pass analysis is performed, step 832. The aforemen 
tioned shadow analysis is described in greater detail 
below. In any event, the next step will be to determine 
the RGB ambient color contributions for the pixel, step 
833. This simply involves linear interpolation of the 
pixel based on the endpoint parameter values of the 
corresponding span. Once this is performed, the RGB 
values are placed back into the pixel interpolation token 
and the token is propagated to the next stage. 

Stage Three 
In Stage Three, a compositing function is performed 

(via RGB composition module 707). Compositing in 
volves the generation of pixel values due to transpar 
ency of objects. This will typically occur when multiple 
objects have identical Z-values. A transparency value 
that is associated with an object is termed a. The a value 
represents the percentage of the final color value that 
the corresponding object contributes. For example, an 
object with an a of 50, will contribute 50% of the final 
color pixel value. In the preferred embodiment two 
types of transparency calculations are performed, addi 
tive transparency and filtered transparency. In additive 
transparency, the existing values are simply added to 
the incoming color value after being scaled by a. 

In filtered transparency the new color value is lin 
early interpolated with the old color value to generate 
the filtered color value. In filtered transparency, the 
Relative Weight used for the interpolation function is 
the value provided with the incoming color data, i.e. a. 

Finally, in the stage 3 a scanline buffer in scanout 
module 708 is used to collect the final values of the 
pixels for the scanline being processed. Once all the 
objects in the scanline have been processed, the con 
tents of the scanline buffer is transferred to the system 
frame buffer 709. 

FIG. 8c further illustrates Stage Three processing in 
the rendering pipeline. As in Stage Two, the global 
mode setup token received, step 840, and the appropri 
ate processing parameters are set. In this case the pro 
cessing parameters will dictate which of additive or 
filtered transparency mode will be used. Next, Pixel 
Interpolation tokens are received, step 841. The first 
step is to determined if transparency processing will not 
be performed by checking if a = 1, step 842. If a = 1, 
then the pixel color values will be loaded into the scan 
line buffer, step 846 (since the incoming pixel shading 
values provide 100% of the blended color value). If 
transparency processing has been specified, additive 
transparency is performed, step 843. Next, it will be 
determined if filtered transparency will be performed, 
step 844. If yes, filtered transparency blending is per 
formed, step 845. Once the blending has occurred and a 
new color value has been generated or if now filtered 
transparency blending is performed, the new pixel color 
values is loaded into the corresponding location in the 
scanline buffer, step 846. 

It is then determined if the final pixel has been pro 
cessed, step 847. If the last pixel has not been processed, 
the next pixel interpolation token is received, step 841. 
If the last pixel in the last span has been processed, the 
contents of the scanline buffer is transferred to the sys 
tem frame buffer via a scanout, step 848. As described 
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above, it is the system frame buffer that is used to drive 
the display means. It should be noted that in the pre 
ferred embodiment, the scanline buffer is double buff 
ered. This will allow the contents of the scanline buffer 
to be transferred to the frame buffer while a new scan 
line is being processed. 

Vertical Interpolation 
As defined above, vertical interpolation is the process 

by which the X-coordinates of the end-points on a span 
are determined. A span is the portion of an object that 
is visible on the scanline being rendered. The vertical 
interpolation of the preferred embodiment is achieved 
by a direct solution method that uses object description 
information and the identify of the scanline. Vertical 
interpolation for an object on a scanline being rendered 
is illustrated with respect to FIG. 9. Referring to FIG. 
9, the coordinate points for the vertices of the object are 
A(Xa,Ya) 901, B(Xb, Yb) 902 and C(Xc,Yc) 903. The 
scanline being processed is Yes 904. 

In this example, the coordinate points for the object 
being processed are: Xa=60, Yas 20, Xb= 40, 
Yb = 150, and Xc = 80, Yose 180. The current scanline 
Ycs = 100. By the process of Vertex Sort (which is de 
scribed in greater detail below), the active edges of the 
object for Ycs are determined to be AB 910 and AC 
911. An active edge is merely one that intersects the 
current scanline. An edge is considered active if it satis 
fies the equation: 

Y-top <Y current scanline C = Y-bottom, 

where the Y coordinate increases from top to bottom. 
For the edge AB 910 Y-top =Ya=20, and Y-bottom 
=Yb = 150; so that 20<100<= 150 and the equation is 
satisfied. For the edge AC 911 Y-top=Ya=20, and 
Y-bottom=Yc = 180; so that 20< 100<= 180 and the 
equation is satisfied. With respect to edge BC 912 Y 
top = Yb = 150, and Y-bottom =Yc = 180; so that the 
equation 150 < 100<=180 is not satisfied and edge BC 
912 is not an active edge. 
The X-coordinate for the points where each scanline 

intersects an active edge is calculated by first determin 
ing a relative weight w for the edge on scanline Yes 
using the formula: 

where Yes is the current scanline, Yois the highest scan 
line ordinate value (lowest in numerical value) of the 
active edge and Yn is the lowest scanline ordinate value 
(highest in numerical value) of the active edge. 
The X-coordinate is then determined by directly 

evaluating the linear interpolation equation: 

where Xo is the leftmost horizontal coordinate of the 
active edge and X1 is the rightmost coordinate of the 
active edge. 
With respect to FIG. 9, the active edge AB 910 inter 

sects the current scanline 904 at point D (Xo, Y) 905. 
The active edge AC intersects the current scanline 904 
at point E (X, Y) 906. For the point D905, the rela 
tive weight is 
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W = (Ycs - Ya)/(Yb - Ya) 
= (100 - 20)/(150 - 20) 

80/130 
= 8/13. 

Inserting this into the linear interpolation equation, the 
X-coordinate is determined as 

Xo 
40(5/13) + 60(8/13) 
200/13 - 480/3 
680/13 
524/3 

which is rounded to 53. Thus, the coordinates for point 
D905 are (53, 100). 
For the point E906, the relative weight is 

W (Yes - Ya)/(Yc - a) 
(100 - 20)/(180 - 20) 
80/160 
1/2. 

e 

Inserting this into the linear interpolation equation, the 
X-coordinate is determined as 

X Xa(1 - W) -- Ye(W) 

60(1/2) -- 80(1/2) 
30 -- 40 
70 

Thus, the coordinates for point E 906 are (70, 100). 
When using such interpolation techniques, fractional 

components may arise due to the divisions required in 
achieving the Wvalue. This may result in the rendering 
of pixels on the boundaries between two triangles twice, 
or missing pixels to be rendered. To account for such 
fractional components, a rule is adopted that pixel cen 
ters in both the X and Y directions are at X.50 and Y.50, 
respectively. With respect to FIG. 9, the pixel center 
for the point A 901 (60, 20) would be (60.50, 20.50). 
Further, a pixel is covered if the equation 

min Kpixel co-ordinate <=max 

is satisfied. In order for a point to be included in a hori 
zontal span, the point coordinates are compared to the 
X-coordinate characteristics of the endpoints of the 
span and the Y-coordinate characteristics endpoints of 
the active edges for the object the span is associated 
with. Referring again to FIG. 9 for a point to be within 
the horizontal span defined by the points D905 and E 
906, the following criteria must be met: 

For the X-Coordinate: 

53.50<XC is 70.50; and 

for the Y-Coordinate: 

100.50 (Yn C = 100.50. 

By using < (less than) for comparison on one side and 
> = (greater than or equal to), the rendering of pixels 
on the boundaries between two triangles twice, or miss 
ing pixels, is avoided. Here the Y coordinate value will 
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typically be satisfied because it refers to the scanline 
being rendered. 
Generation of Shading Parameters for Span Set-up 

Tokens 

The shading parameter values, i.e. the RGB, Z and a 
values, at each of the span endpoints are calculated in 
the same manner as the X-coordinate. Since W has been 
previously calculated, it is simply a matter of inserting 
the provided shading parameter values at the endpoints 
of the active edges into the linear interpolation function. 
Referring back to FIG. 9, the endpoints D905 and E 
906, the provided parameter values at each of the end 
points of the active edges, i.e. points A 901, B902 and 
C 903, are provided as input to the linear interpolation 
function. For example, the shading parameters at end 
point D905 may be calculated using the linear interpo 
lation equation 3S 
PD=P(1-WD)+P(WD)=P(5/13).--P(8/13); 
where PA is the provided parameter value at point A 
901, PB is the provided parameter value at point B902 
and PD is the interpolated parameter value at point D 
905. Similarly, the shading parameters for the endpoint 
E906 may be calculated using the linear interpolation 
equation as PE=PA(l-WE)--PCCWE) = (P --PC)/2; 
where PA is the provided parameter value at point A 
901, Pc is the provided parameter value at point C903 
and PE is the interpolated parameter value at point E 
906. These shading parameter values at the endpoints of 
the span are calculated and propagated through the 
rendering pipeline through corresponding span set-up 
tokens. 

Generation of a Pixel Interpolation Token 
As described above with respect to Stage 1, pixel 

interpolation tokens are generated after span coordi 
nates have been defined. These end-points, say Xa and 
Xb, are received by the Horizontal interpolation mod 
ule, which immediately compares them to determine 
which is leftmost. It is assumed that Xa is leftmost. If Xb 
is leftmost, Xa and Xb are swapped. In this scheme, an 
interpolation weight value W = 0 reference refers to the 
left end of the span (i.e. Xa). AW = 1 reference refers to 
the right end of the span (i.e. Xb). As described above, 
the interpolation weight value W refers to the relative 
weight for a direct interpolation function which is used 
to determine the value of a pixel. 

Creating a Pixel Interpolation token requires the 
generation of two numbers: the target pixel address X 
and the interpolation weight W. The target pixel ad 
dress X generation is accomplished by counting from 
the leftmost X value generated from the vertical inter 
polation step. For generating W, the method of interpo 
lation must first be determined. In the preferred em 
bodiment, a linear interpolation method is used. It 
would be apparent to one skilled in the art to use other 
interpolation methods, e.g. perspective corrected inter 
polation. It should be noted that use of alternative inter 
polation methods would have an effect on W as well as 
an effect on the direct solution method of linear interpo 
lation utilized in each of the succeeding processing 
units. It is anticipated that a perspective corrected in 
plementation may be used to calculate W, while the 
linear interpolation methods retained within each of the 
processing units, thus enabling a perspective corrected 
implementation without requiring the replacement of 
all the processing units of a rendering pipeline. 
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In the preferred embodiment a function W(X) is cal 
culated for each span. The function W(X) is defined as: 

Since a linear interpolation of the pixels across the span 
is being performed, the slopem of the W(X) function is 
constant and can be computed once for the span via the 
equation: 

m = 1/(Xright-Xleft). 

Thus, by substitution the W(X) function can be reduced 
to the equation: 

This function is desirable since it minimizes the division 
operations that would need to be performed for the 
span. So for each pixel in the span, the x-coordinates of 
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the pixel being rendered and the left most endpoint of 20 
the span are inserted into the W(X) function in order to 
derive the interpolation weight W for that pixel. 
FIG. 10 illustrates several pixel locations in a span 

1001. The span 1001 was derived using the vertical 
interpolation of the preferred embodiment with respect 
to FIG. 9. In any event, counting sequentially as de 
scribed above, a pixel F 1002 has coordinates (56, 100). 
The corresponding pixel interpolation weight is calcu 
lated as WF=56-53/70-53=3/17. A pixel G 1003 has 
coordinates (61, 100) and a cooresponding pixel interpo 
lation weight that is calculated aS 
WG=61-53/70-53=8/17. Finally, a pixel H 1004 has 
coordinates (67, 100) and a corresponding pixel interpo 
lation weight that is calculated aS 
WH = 67-53/70-53=14/17. 

Horizontal Interpolation 
Horizontal interpolation generally refers to the shad 

ing of the consecutive pixels within a span. As described 
above, the first stage of the pipeline performs set-up for 
the horizontal interpolation process by calculating pixel 
weighting values, assembling pixel interpolation tokens 
and generating span set-up tokens. In the preferred 
embodiment the shading functions are distributed. Each 
stage or processing unit performs a separate and distinct 
function in the rendering of a pixel. In the rendering 
process, horizontal interpolation requires the greatest 
amount of processing resource. 
Advanced shading models require a great deal of data 

to render a pixel. For example, a Z buffered Phong 
shading calculation requires Z, diffuse color (RGBad), 
specular color (RGBs), specular power (Ns), and sur 
face normal vector (NxNyNz) as inputs. Depending on 
accuracy, this represents about 150 bits of data which 
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must be generated per pixel. To perform the shading of 55 
the preferred embodiment, approximately 224 bits 
would be required. The width of this data contributes to 
the high cost of known high quality rendering hard 
W262. 

To reduce the width of the data path, while still main 
taining 1 pixel per clock rendering speeds, the rendering 
pipeline of the preferred embodiment utilizes distrib 
uted parameter interpolation for determining the value 
of pixels in a span. As described above, each processing 
unit in the pipeline performs a certain part of the render 
ing functionality. Each processing unit requires specific 
parameter data (e.g. the Z buffer processing unit re 
quires the interpolated Z value for each pixel) in order 
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to calculate its predetermined function. So, set-up to 
kens generated in stage 1 with the parameter informa 
tion are first sent down the pipeline. Storage mediums, 
e.g. registers are embodied within each processing unit 
for storing the left and right parameter values of the 
current span (e.g. the Z buffer processing unit has Zo 
and Z1 registers). Rather than passing actual interpo 
lated parameter values down the pipe, the pixel render 
ing process is driven by the Pixel Interpolation token. 
As described above, this token includes W, representing 
an interpolation weight between 0 and 1. As each pro 
cessing unit receives the Pixel Interpolation token, it 
performs a linear interpolation of the left and right span 
values to calculate the interpolated parameter value for 
the pixel. So at a pixel location N, in a span with left 
endpoint A and right endpoint B, a shading parameter 
value PN may be calculated by using the linear interpo 
lation function 

Because a typical span is several pixels wide, distrib 
uted parameter interpolation reduces the amount of 
data that must flow down through the pipeline. For, 
example, to do the Z buffer calculation for a 7 pixel 
wide span, first a Span Setup token is sent, initializing 
the Zo and Z1 registers (32 bits each). This requires the 
same bandwidth as sending two actual interpolated Z 
values down the pipeline. However, after this stage, 
each pixel in the span only requires a W value to drive 
direct interpolation means embodied in each of the 
processing units. In a comparison of a relative band 
width, sending 7 interpolated Z-Values down the pipe 
line requires 224 bits, while rendering 7 pixels by send 
ing interpolated values requires 7'32-7*10=134 bits. 
This results in a 50% reduction in data bandwidth re 
quirements. In fact, because many parameters are dis 
tributed, and all are interpolated by the same 10 bit W 
value, the overall saving may be much higher. 

Effectively this technique increases silicon complex 
ity to reduce dependence on fast interconnections be 
tween processing units. Each processing unit requires 
multipliers for the interpolation function, whereas typi 
cal rendering hardware only needs an accumulator to 
implement a forward differencing algorithm. Although 
similar techniques could be used to distribute the for 
ward differencing algorithm (although savings are 
lower, because more setup accuracy is required), there 
are other factors which favor distributing the parameter 
interpolation function. Distributed Parameter Interpo 
lation allows the use of perspective corrected interpola 
tion-forward differencing is limited to linear interpola 
tion. Perspective corrected interpolation provides supe 
rior texture mapping quality by avoiding the distortions 
inherent in linear interpolation. 

Referring back to FIG. 10 an example of horizontal 
interpolation based on the vertically interpolated span 
from FIG. 9, is provided. As above, the span endpoint 
coordinates are D (53,100)905 and E (70,100) 906. Span 
set-up parameter values have been propagated down 
the pipeline token corresponding to the shading param 
eter values for the endpoints of the span. A pixel inter 
polation token provides the pixel coordinates and 
weight value. What is left is to calculate the shadings 
values for pixels across the span. Using the W values 
calculated above in the description of generating a pixel 
interpolation token, at point F (56, 100) 1002 the shad 
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ing parameter values may be calculated as 
PF= P4(1-WF)+P(WF)=P(14/17)+P(3/17). At 
point G (61, 100) 1003 the shading parameter values 
may be calculated as PG=P(1 - WG)+P(WG)- 
=PA(9/17)+PB(8/17). At point H (67, 100) 1004 the 
shading parameter values may be calculated as 
PH=PA(l-WH)--Pb(WH)=P(3/17)+P(14/17). 

Shadowing 
As described above, the preferred embodiment may 

perform shadow analysis to further eliminate pixels 
from processing. The shadowing algorithm utilized in 
the preferred embodiment provides for the determina 
tion of object shadow volumes (with respect to a partic 
ular light source). All objects inside of the volume 
would thus be in shadow. Sets of dummy polygons, 
bounding the shadow volume, are calculated by the 
host processor (or alternatively by control processors as 
illustrated in FIG. 6a). The face normals of the poly 
gons are oriented so that they face outward from the 
volume. Using these dummy polygons, the processing 
unit then determines whether each pixel on a visible 
object is inside one of the shadow volumes. 
The determination of whether an object is in shadow 

occurs in three passes of the objects. In a first pass, a 
z-buffer calculation is performed to identify the front 
most object at every pixel. The first pass is the default 
operation of the Z-buffer and occurs with or without 
shadow processing. In a second optional pass, the deter 
mination of which of the identified visible pixels are 
inside a shadow volume is done by examining the 
shadow volumes in front of each pixel. This is specified 
when the shadow count flag in the global mode setup 
token is set. During this second pass the closest Z-values 
are read from the buffer and compared with incoming 
shadow polygons for each light source. The shadow 
polygons can be either front or back facing. Their orien 
tation is specified by a flag, "front", specified in the Z 
setup token (described in more detail below). A shadow 
count is then determined in the following manner: If a 
shadow polygon in front of the pixel faces the front of 
the scene the shadow count is decremented by one. If a 
shadow polygon in front of the pixel faces the rear of 
the scene, the shadow count is incremented. A volume 
entirely in front of the pixel will generate one increment 
and one decrement at that pixel, leaving the shadow 
count unchanged. If, the shadow count is lower than it 
began after all the shadow polygons have been pro 
cessed; the pixel is in shadow with respect to that poly 
gon. In any event, the original "closest' Z value is 
written back into the buffer unchanged during this op 
eration. 

a third optional pass is implemented when the 
shadow test flag in the global mode token is set. In the 
third pass, the "closest' Z-values are read from the 
buffer and compared with the incoming Z-values. If 
they are equal then the shadow count is examined. If the 
shadow count is equal to zero then the object is not in 
shadow and it is output. If the shadow count is not equal 
to zero then the pixel interpolation token is modified to 
become a null token. 

Tokens in the Preferred Embodiment 

As described above, informational and control units 
that are transferred between the different stages are 
called tokens. Token is a term of art that refers to a data 
structure with accompanying information, that is passed 
between the stages in the pipeline. Upon receiving a 
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token, each of the processing units may then 1) process 
and interpret the token, 2) pass the token to a next pro 
cessing unit without processing or 3) terminate the pro 
cessing of the token. All processing units only process 
tokens that contain information needed by the particu 
lar processing unit. Otherwise, the token flows through 
the processing unit unused. 
Tokens in the preferred embodiment can be catego 

rized into three different types; General Tokens, Setup 
Tokens and Control Tokens. Three attributes are con 
mon to all tokens. First, each of the tokens has a width 
of 77 bits. 77 bits was chosen as a number that would 
accommodate all information needed as well as provid 
ing for the inclusion of new functionality. As some 
tokens will not require all 77 bits, some of the bits are 
unused within the pipeline. Although 77 bits are utilized 
in the preferred embodiment, it would be apparent to 
one skilled in the art to utilize a different number as the 
token width. 
A second common attribute of all the tokens is the use 

of the first bit in the token. The first bit of each token 
identifies the token as being a set-up token or a non 
setup token (i.e. a general or control token), and is 
called the PSetup bit. This is done to facilitate and sim 
plify the design of the individual processing units that 
comprise the pipeline. 
The third common attribute is the use of the succeed 

ing 4 bits after the first bit as a TokenID field. The 
TokenID field identifies the token and provides further 
information for the processing of the token. 
The bit positions of data on the token is important 

because the underlying circuitry which interprets the 
tokens has hard-wired logic to specific bit positions on 
them. For example, as a token enters a processing unit, 
it initially is saved in a latching means. Hard wired 
logic, e.g. an OR gate, inspects a predetermined bit to 
determine a logic path that the token will follow. Such 
circuit design techniques are known in the art. How 
ever, it would be apparent to one skilled in the art to 
modify the position of the information and to modify 
the underlying hardware to reflect the new positions. 
Alternatively, a means for interpreting tokens without 
hardwiring to specific bit positions may be employed, 
e.g. through a token parsing means. Such modifications 
would not depart from the spirit and scope of the pres 
ent invention. 

General Tokens 

General tokens are recognized by all chips in the 
pipeline. There are three general tokens; the null token, 
the pixel interpolation token and the pixel overlay to 
ken. The null token is a pixel interpolation token whose 
processing has been terminated. Processing may typi 
cally be terminated because Stage 2 processing has 
determined that the corresponding object is behind or in 
the shadow of another object. A null token has a false 
value in its PSetup bit and a zero (0) value in the Toke 
nD field. 

Pixel interpolation tokens are used to drive the hori 
zontal interpolation process and contain information 
about a pixel to be rendered. Generation of the values in 
the pixel interpolation token is described in detail below 
with respect to horizontal interpolation. The pixel inter 
polation token is illustrated in Chart A. 
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CHARTA 
Pixel Interpolation Token 

Field Width Value/Use 

1. PSetup False 
2. Token) 4. 
3. X 11 Pixel in current scanline 

segment 
4. W 12 Interpolation constant 
5. A 10 Diffuse/Shaded color 
6, R O Diffuse/Shaded color 
7. G 10 Diffuse/Shaded color 
8. B 0 Diffuse/Shaded color 
9. ForceAdditive - Force this 

interpolation to act in 
additive node 

0. Unused 8 Reserved; must be zero 

Line l indicates that bit 1 will have a false value 
(typically 0) to indicate that it is not a set-up token. Line 
2 identifies the pixel interpolation token as having a 
TokenID of 1. From Line 3, it is shown that the next 11 
bits will contain the X coordinate for the pixel. This 
may have come from either the vertical interpolation 
processing, which would indicate that the pixel is on 
one of the active edges, or from a counting means that 
is used to identify the X coordinates across the span. 
From line 4, the next 12 bits will contain the interpo 

lation weight. This interpolation weight will have been 
generated in stage 1 during the horizontal interpolation 
process. Lines 5-8, i.e. the next 40 bits contain the 
RGBa information describing the diffuse/shaded color 
for the pixel. Next, a force additive field is used to indi 
cate that additive transparency blending will be per 
formed in the compositing stage. Finally, the remaining 
8 bits of the pixel interpolation token are unused. 
W is used to interpolate between the boundary val 

ues, generating Z, R, G, B, and a. For R, G, and B the 
interpolation operation results in Gouraud shading. X is 
used as an address by the Z buffer to access a Z value. 
The Z values in the buffer are the "closest' current Zs 
to be processed. In operation, the "closest' Z is read 
from the buffer and compared with the interpolated Z. 
If the interpolated Z is closer (less that or equal to it), it 
is stored in the buffer, the token not modified, and R, G, 
B and o. are output. If the interpolated Z is not closer 
(greater than it), then it is not written into the buffer, the 
token is modified to be a null token and R, G, B and a 
are not output. 
The pixel overlay token is generated by the control 

processor and provides a means by which pixels can be 
directly assigned. This may occur for, for example, 
when tilting is desired on a particular image. The format 
of the pixel overlay token is illustrated in Chart B. 

CHARTB 
Pixel Overlav Token 

Field Width Value/Use 

1. PSetup 1. False 
2. TokenD 4. 2 
3. X l Pixel in current scanline 

segment 
4. W 12 Interpolation constant 
5. R 10 Diffuse/Shaded color 
6. G O Diffuse/Shaded color 
7. B O Diffuse/Shaded color 
8. A. 10 Diffuse/Shaded color 
9. ForceAdditive 1 1 = Force this overlay to 

act in additive mode 
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-continued 
CHART B 

Pixel Overlay Token 
Field Width Value/Use 

Unused 7 Reserved; must be zero 10. 

Set-Up Tokens 
As noted above, set-up tokens are generated during 

stage 1 pre-processing. Generation of set-up tokens is 
described in more detail in the description of vertical 
interpolation. The set-up tokens contain span parameter 
information for corresponding pixel rendering func 
tions. 

Set-up tokens provide the span endpoint parameter 
values that are utilized during the horizontal interpola 
tion process. The different types of set-up tokens in 
clude Z set-up, Diffuse RGB set-up, Specular RGB 
set-up, Map set-up and Normal set-up. 
CHART Cillustrates a Zsetup token. Like all tokens, 

the first 5 bits are comprised of a PSetup bit and a Toke 
nID. In this instance, since it is a setup token, the value 
of this PSetup bit is a true value (e.g. a binary 1 value). 
The Z setup token contains two horizontal Z boundary 
values, Z0 and Z1 (on lines 3 and 7 respectively), which 
are used for interpolating between to generate a Z value 
for each pixel of a span. The Z Setup token also contains 
a bit called front (on line 5). This bit is used during the 
shadow calculation to determine whether or not the 
pixel is obscured due to a shadow. Finally, a bit called 
diffuse is provided (line 4). The diffuse bit is used to 
enable lighting calculations that would be performed 
when determining if the pixel is in shadow. 
The Z set-up token is utilized in stage 2 of the pipeline 

for performing hidden surface removal and shadow 
calculations. 

CHART C 
- Z Set-up Token - 

Field Width Value/Use 

PSetup 1 True 
2. TokenD 4 1 
3. Zo 32 Zo 
4 Diffuse 1 Lighting calculations 

enabled 
5. Front Front facing shadow 

plane 
6. Unused 2 Reserved; must be zero 
7. Z1 32 Zl 
8. Unused 4. Reserved; must be zero 

The Diffuse RGB set-up token is used to provide 
RGB values based on a diffuse reflection model. The 
Diffuse RGB set-up token is illustrated in Chart D. The 
Lines 3-6 provides the diffuse color components for the 
left most pixel in the span. The lines 7-11 provide the 
diffuse color components for the right most pixel in the 
span. 

CHART D 
Diffuse RGB Set-up Token 

Field With Value/Use 

1. PSetup True 
2. TokenD 4. 0Xa. 
3. Ado 9 Diffuse colouro 
4. Rdo 9 Diffuse colouro"Kdo 
5. Gdo 9 Diffuse colouro"Kdo 
6. Bdo 9 Diffuse colouro"Kdo 
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-continued 
CHART D CHART G 

Diffuse RGB Set-up Token Load Scanline DMA Write Register Control Token 
Field Width Value/Use 5 Field Width Value/Use 

7 Ad 9 Diffuse colour"Kd 1 Fal 
8. Rd 9 Diffuse colour"Kd l. PSetup a Se 2. Tokend 4 0xF 
9. Gd 9 Diffuse colour"Kd 3 od 8 l 

10, Bd 9 Diffuse colour OpCode 4. RGB Target RGB chip 
10 5. Z 1 Target Z chip 

The Specular RGB set-up token is used to provide 6. Unused 22 Reserved, must be zero 
RGB values based on a specular reflection model. The 7. WriteValue 40 Value written by 
Diffuse RGB set-up token is illustrated in Chart E. The 
Lines 3-5 provides the specular color components for 
the left most coordinate in the span. Line 6 provides the is 
specular power component for the left most coordinate 
in the span. The lines 7-10 provide the specular color 
components for the right most coordinates in the span. 
Line 11 provides the specular power component for the 
right most coordinate in the span. 20 

CHARTE 
Specular RGB Set-up Token 

Field Width Value/Use 
PSetup True 25 

2 TokenID 4. 3 
3 Nso 9 Specular powero 
4 Rso 9 Specular colour"Kso 
5 Gso 9 Specular colouro"Kso 
6 Bso 9 Specular colouro"Kso 
7 Ns 9 Specular power 30 
8 Rs 9 Specular colour"Ks 
9 Gs 9 Specular colour1"Ks 
10. Bs 9 Specular colour"Ks 

The Normal set-up token is used to define normal 35 
values for each of the the coordinate endpoints. The 
Normal set-up token is illustrated in Chart F. The lines 
3-5 define the normal for the left most pixel in the span 
and the lines 6-8 define the normal for the right most 
pixel in the span. 40 

CHART F 
Normal Set-up Token 

Field Width Value/Use 45 

l. PSetup l True 
2. TokenD 4. 4. 
3. Nxo 2 Normalo 
4. Nyo 2 Normalo 
5. Nzo 12 Normalo 
6. Nx 2 Normall 50 
7. Ny1 2 Normal 
8. Nz 12 Normal 

Control Tokens 55 

Unlike general tokens and set-up tokens, control to 
kens are generated by the control processor (with one 
exception being a Scanout Data token, which is also 
generated by the Z chip 705 when scanning out its 
buffer). Control tokens are commands to target chips in 
the pipeline to perform a particular function, e.g. swap 
buffers, output scanline, etc. It is through the use of 
control tokens that operation and resources of the pipe 
line are managed. 
The Load Scanline DMA Write Register Control 

Token, illustrated in Chart G, is used to control the 
writing of a clear register in the Stage 2 and 3 process 
ing units. 

60 

65 

scanline DMA 

The Scanline DMA setup/start Control Token pro 
vides the start address, length, delay, write, scanout 
enable, and scanout mode data, and is illustrated in 
Chart H. The DMA reference is to a Direct Memory 
Access component in the computer system. In order to 
avoid going through the host processor to send data to 
the system display buffer, a DMA a component is typi 
cally utilized. The RGB/Z flag at lines 4-5 is used to 
indicate which of the stage 1 or stage 2 processing units 
the token is targeted for. The delay field on line 8 speci 
fies how may pixels to let flow through before begin 
ning to read from the scanout buffer. The flag is neces 
sary since the buffer may be cleared without outputting 
its contents. The scanout mode field on line l l specifies 
which 32 of the 40 bits in each pixel location should be 
read out. The different modes are: read 40 bits and 
round to 32 bits. The round to 32 bit mode is not used in 
the stage 2 processing unit. The scanout enable is used 
to permit scanout of the contents of the buffer. Finally, 
the token is used to initiate the writing of the buffer. 

CHARTH 
- Scanline DMA setup/start Control Token - 

Field Width Value/Use 

1. PSetup 1. False 
2. TokenID 4 0xF 
3. OpCode 8 2 
4. RGB Target RGB chip 
5. Z Target Z chip 
6. Start Starting address 
7. Length l Number of pixels to 

aCCESS 

8. Unused 14 Reserved, must be zero 
9. Scanoutenable 1 Read and scanout 

addressed locations 
10, Unused l Reserved, must be zero 
11. Scanoutmode is round mode, 0 = no 

round 
12. Writeenable 1 Write addressed 

locations from reg 
3. Unused 22 Reserved, must be zero 

The Wait for Scanline DMA Completion Token is 
used to determine if the back buffer is done scanning out 
or clearing the data, and is illustrated in Chart I. As the 
stage 2 and stage 3 processing units are double buffered, 
one buffer may be scanned out while the other is being 
written to. If the back buffer scanout is not completed, 
the stallout signal is asserted. This prevents the swap 
ping of buffers. Once the scanout is completed, the 
stallout signal is negated. This assures that the buffers 
will not be swapped until the scanout is completed. 
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CHART I 
Wait for Scanline DMA Completion Control Token 

Field Width Value/Use 

. PSetup l False 
2. Tokend 4 0xF 
3. OpCode 8 3 
4. RGB l Target RGB chip 
5. Z Target Z chip 
6. Unused 62 Reserved, must be zero 

When a complete Z-Buffer or compositing operation 
is completed for an entire scanline, the two buffers may 
be swapped. The Swap Buffers Control Token illus 
trated in Chart J. Once the buffers have been swapped, 
the back buffer can be cleared or scanned out using the 
DMA setup/start token described above. 

CHARTJ 
Swap Buffers Control Token 

Field Width Value/Use 

l. PSetup False 
2. Tokend 4. 0xF 
3. OpCode 8 4 
4. RGB Target RGB chip 
S. 2 Target Z chip 
6. Unused 62 Reserved, must be zero 

The Global mode setup token is used to initialize the 
pipeline to the type of rendering that will be performed, 
e.g. using a specular or diffuse rendering model, enable 
shadowing and the transparency mode. Each of the 
rendering type operations are discussed in detail above. 
The Global mode setup control token is illustrated in 
Chart K. 

CHARTK 
Global Mode Setup Control Token 

Fied Width Value/Use 

1. PSetup l False 
2. TokenD 4 0xF 
3. OpCode 8 5 
4. DiffuseShade l Enable diffuse shading 

contribution 
5. SpecularShade Enable specular shading 

contribution 
6. ShadowCount 1 Enable shadow count 
7. Shadowest Enable shadow test 
8. TransMode 1 = additive, 0 = blended 
9. Controlflags 2 Indicate control/data, 

and pipeline interlock 
0. InvertShadow 1 = in shadow in visible, 

0 = out of shadow is 
visible 

1. ForceZVisible l 1 = force Z test to return 
"visible' 

2. Disable2Write l as don't allow 
Z/shadow bits to be 
written 

13. Unused 54 Reserved, must be zero 

The Jam control token is used to used to permit the 
token to pass through the processing unit without any 
processing. It is typically used to send control informa 
tion out the bottom of the pipeline. The Jam Data Con 
trol Token is illustrated in Chart L. 
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CHART L 
Jan Data Control Token 

Field Width Value/Use 

1. PSetup False 
2. TokenD 4. 0xF 
3. OpCode 8 6 
4. Unused 24 Garbage 
5. Data 40 Data to scanout 

DESCRIPTION OF PROCESSING STAGE 
CIRCUITRY 

In the preferred embodiment, each of the successive 
stages in the pipeline are implemented as individual 
integrated circuits. Each of these chips embodies sev 
eral modules which carry out the functionality of the 
stage. It is of note that in the preferred embodiment, the 
stages 2 and 3 are implemented via the same integrated 
circuit. The choice of operation as a Stage 2 or 3 is 
determined by certain control inputs that are provided 
to the chip. However, it would be apparent to one 
skilled in the art to combine multiple discrete process 
ing units in order to eliminate transfer time that may 
occur because of any "off-chip" data transfers that may 
be required. It would also be apparent to one skilled in 
the art to configure the system of the preferred embodi 
ment utilizing more discrete processing units, e.g. creat 
ing two stage one processing units performing vertical 
and horizontal interpolation set-up tasks. Such different 
hardware implementations would not cause a departure 
of spirit and scope from the present invention. 

Clock Domains of the Rendering Architecture 
To simplify system integration, the pipeline has three 

asynchronous clock domains. The Data Clock is used 
by the input port of the stage one processing unit. The 
Data Clock is typically synchronous to the data source 
and defines the maximum speed at which data can be 
transferred to the rendering pipeline. 
The Pipe Clock drives the processing units within the 

pipeline (with the exception of the input port of the 
stage one processing unit) and effectively defines the 
shading speed of the pipeline. It is significant that the 
Pipe Clock is asynchronous to the rest of the rendering 
system, so that the Pipe Clock may be increased to 
match future generations of chip technology, without 
effecting the rest of the system. 
The Scanout Clock is used by the Scanout of the the 

last stage of the rendering pipeline and is synchronous 
to a receiving device, e.g. the system frame buffer. The 
Scanout Clock controls the maximum rate at which 
pixels are scanned out of the on-chip scanline buffer. 

Stage 1 Functional Schematic 
FIG. 11 illustrates the functional blocks of the Stage 

1 chip. An input block, 1101, provides an input FIFO 
and clock rate conversion. As data, e.g. object primi 
tives from the active object list, are input into the ren 
dering pipeline where they are first placed into an input 
FIFO. It should be noted that at this time that the ren 
dering pipeline has three asynchronous clock domains. 
The data clock is used by the input port of the first stage 
and is usually synchronous to the data source, i.e. the 
control processors. The data clock defines the maxi 
mum speed at which data can be transferred to the 
pipeline. The pipe clock drives the rendering process 
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and effectively defines the shading speed of the pipeline. 
Only the internal pipeline chips use this clock, so it can 
be increased to match chip technology without effect 
ing the rest of the system. Pipeline data bandwidth 
scales with the pipe clock. Also, most computation in 
the Stage 1 chip is driven by the pipe clock. The scan 
out clock is synchronous to the receiving device, e.g. 
the target frame buffer. It controls the maximum rate at 
which pixels are scanned out of the on chip scanline 
buffer. Thus, as a further function of the input block 
1101, clock rate conversion from the data clock to pipe 
line clock is performed. 
When the data exits the FIFO it enters a command 

decode module 1102. The command decode module 
1102 decodes the data into the appropriate command 
structure. Most of the commands are decoded by a 
programmable logic array (PLA). The exceptions are 
the draw command and the overlay pixels command. 
As described above, the draw command is the funda 
mental command for drawing an object. 
The remainder of the modules respond accordingly 

to a DRAW command. Briefly, two functional modules 
are then entered to initiate vertical and horizontal inter 
polations. These are vertex sort 1103 and vertical divide 
1104. The vertex sort 1103 is used to determine the 
active edges of an object that is to be drawn. The verti 
cal divide 1104 is used to determine the interpolation 
weight value that will be used for vertical interpolation. 
The vertical interpolation and horizontal interpolation 
functional modules then follow and are described 
above. Finally, the outputs of vertical interpolation 
module 1105 and horizontal interpolation module 1106 
feed into a token assembly module 1107 for creation of 
a token. Once the token is created it is sent down the 
pipeline synchronized to the pipeline clock. 

Input Block 
The STAGE 1 chip is designed with a 64 bit input 

path, which can be configured as one or two 32 bit 
ports, or a single 64 bit port. The STAGE 1 chip is 
capable of processing four independent input streams, 
SRCID pins are used to indicate the source of each 
transfer. What this means is that up to four control 
processors may send data to the rendering pipeline(s). 
Two synchronous FIFOs receive the data from the 

two 32 bit ports, permitting burst transfer rates of 64 
bits/clock. However, once past the FIFOs, the two data 
streams merge into one 32 bit path, for a maximum 
sustained bandwidth of one 32 bit word/clock; this is 
roughly balanced to the sustained throughput of the 
remainder of the chip. Two extra bits are added to each 
word to indicate the source ID. Finally, the merged 
data stream is synchronized to the Pipe clock domain by 
a one word/clock synchronizer. 
The preferred embodiment utilizes 16 word deep 

FIFOs, providing 64 bytes of buffering for each input 
port in Dual 32 and Single 64 input modes. However, in 
Single 32 mode, Port A ping-pong between the two 
FIFOs, effectively doubling depth. The FIFOs are 
compiled, so the depth may be increased in alternative 
embodiments. 
A further function provided in Stage 1 is flow con 

trol. Flow control is used to prevent overrun of input 
buffers of the stage 1 FIFO. Flow control is achieved 
with a STALL signal for signalling to the control pro 
cessor to stop sending data. Additionally, an EMPTY 
signal is provided and can be used to drive DMA bursts 
(i.e. for signalling to the control processors to com 
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32 
mence sending data). When the EMPTY signal is pro 
vided, the pipeline(s) will accept a predetermined num 
ber of data transfers prior to asserting the STALL sig 
nal. 

Because it is the first chip in the pipe, the STAGE 1 
chip must perform vertical interpolation on all the data 
types necessary for different rendering functions. Be 
cause it is difficult to predict what data types will be 
necessary in the future, the STAGE 1 chip is designed 
to process a generic data type called a parameter, which 
represents data in any of a variety of supported data 
types. 

Each parameter has two data types associated with it: 
the input format, which represents the format in which 
the data is input into STAGE 1, and the processing 
format, which is the internal format in which the 
STAGE 1 chip stores, interpolates and sends the data 
down the pipe. Input formats are chosen to be well 
aligned and easy to manipulate for the control proces 
sors. Processing formats represent the actual minimum 
precision necessary for the data. For example, the input 
format of a normal vector might be three 16 bit signed 
integers, while the processing format is three 12 bit 
signed integers. The STAGE 1 chip supports five input 
formats and four processing formats as illustrated in the 
following Charts M and N. 

CHARTM 
- Data Input Formats 

Num Input Data 
Input Format Type Fields Size Typical Use 

4x8U Unsigned 8 4 32 bits RGBA 
bit in 

3x OS Signed 3 32 bits Vector 
11 . . . .0 bit 

int 
3x16S Signed 16 bit 3 64 bits Vector 

int 
2x16U Unsigned ió 2 32 bits X, Y 

bit int 
x32U Unsigned 32 32 bits Z 

bit int 

CHARTN 
Processing Formats 

Processing Num 
Format Type Fields Storage Size Typical Use 
4x9U Unsigned 9 4. 36 bits RGBA 

bit int 
3x12S Signed 12 bit 3 36 bits Vector 

int 
2x16U Unsigned 16 2 36 bits X, Y 

bit int 
1x32U Unsigned 32 l 36 bits Z 

bit int 

Only the 3x 12S format used for vectors is signed. It 
would be apparent to provide a more flexible design 
that would permit any parameter to be specified as 
signed or unsigned. 
The format information for the different vertex types 

is stored in an Input Data Format RAM; this RAM is 
loaded by the host processor, so new parameters can be 
added as required. Each DRAW command sent to the 
stage 1 processing unit includes FormatAddress, the 
address of the appropriate vertex format description. 
The first word holds the number of words of data for 
each vertex; it's read and loaded into a 5 bit counter, 
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which counts the words as they are formatted and out 
put. The format information is re-read for each subse 
quent vertex until the Draw command is complete. 

In the preferred embodiment, only two parameter 
data types are fixed: the X and Y projected screen co- 5 
ordinates of each vertex are 16 bit unsigned ints, in a 
13.3 format. This format addresses a 213 = 8192X8192 
pixel screen space with of a pixel resolution and pixel 
centers at 0.50. 

O 
Command Decode 

When received in STAGE 1, the DRAW command 
is handled by circuit logic in the STAGE 1 processing 
unit. Most other commands are single 32 bit words, 
which are decoded by a PLA. The exception is the 
Overlay Pixels command, which requires two 12 bit 
counters, one to compute pixel address, the other to 
count pixels. 
The Command Decode Module generates one token o 

per clock; a token either writes a control register, writes 
a location in the vertex parameter RAM, or renders a 
span of a triangle. 

5 

Vertex Sort 
25 

As described above, the Draw command draws a 
triangle between vertices VA, VB and VC, each of 
which specifies one of the four vertices stored in the 
parameter RAM. The Vertex Sort module then fetches 
the Y coordinate of each of the three vertices, and de- 30 
termines which two edges of the triangle are active (i.e. 
intersect with the horizontal line specified by the con 
tents of the YCurrent register which defines the current 
scanline). If two active edges are found, the triangle is 
visible, and the top and bottom Y of both edges are 35 
passed to a Vertical Divide module. Although the verti 
ces are sorted vertically, the horizontal span start and 
end points have not yet been calculated, so the edges are 
arbitrarily designated A and B. Later, when the X co 
ordinates have been interpolated, the final left/right test 40 
is performed, and the edges are swapped if necessary. 
As described above, an edge is considered visible/ac 

tive if it satisfies this equation: 

Top <YcurrentScanline <= YBottom 45 

where the Y co-ordinate increases from top to bottom. 
Note that the test is not YTop <=YCurrent Scan 
line<=YBottom, which would occasionally cause 
boundary pixels between abutted polygons to be ren- 50 
dered twice (a serious problem when rendering trans 
parent objects). 

Vertical Divide 

The Vertical Divide module has two active dividers, 55 
which calculate the interpolation weight of the two 
edges A and B: 

A=(YBottomA-Yourrentscanline)/(YBot. 
tomA-YropA) 60 

B=(Bottomb-currentscanline)/(YBottom B. 
- YTopB) 

These calculations are performed to 12 bits of accu- 65 
racy, requiring six clocks of latency (radix2 subtract 
and-shift divide, two stages per clock). The interpola 
tion weights are passed directly to the Vertical Interpo 

34 
lation to determine span coordinates and parameter 
values. 

In the preferred embodiment all vertex parameters 
are stored in four 64x36 RAM. The address for a given 
parameter is a concatenation of the parameter number 
and the stream context (vertex number selects between 
RAMs). By using four RAMs, a parameter can be si 
multaneously read for all four vertices; combined with 
a 4x436 bit crosspoint switch, the tip and bottom pa 
rameter values for both active edges can be simulta 
neously read and transferred to linear interpolators 
(LIRPs) for generation of the parameter values. 

STAGE 2 and 3 Functional Description 
In the preferred embodiment, the processing units for 

stages 2 and 3 are identical. This is a desirable since it 
provides for economic efficiencies in the manufacture 
of the pipeline components. It is apparent that the same 
component may be used when the requirements of a 
stage one processing unit and a stage two processing 
unit are compared. When performing scanline Z-buffer 
ing or operating as a compositing engine, both require 
at least one complete scanline of memory. In the pre 
ferred embodiment two complete scanlines of memory 
have been provided in order to support double buffer 
ing and to allow scanouts of a previously rendered 
scanline while a new scanline is being rendered. Both 
require linear interpolation of RGB values. In stage two 
it is the generated ambient RGB values and in stage 
three it is the blended alpha values used for transpar 
ency. Finally, both require identical pipeline control 
signals (e.g. stall signals) and means for sending and 
receiving signals. 
However, some differences do exist. First, Z-buffer 

and shadowing logic is not needed by the compositing 
engine. Second, the scanout of the stage 3 compositing 
engine is synchronous with the receiving device and as 
in a different clock domain from the pipeline. However, 
these differences are minor so that the economies of 
manufacture would outweigh any potential advantages 
of having separate components. 
A Zchipin signal is used to configure the processing 

unit. When the Zchipin signal is high, the unit is config 
ured as a stage 2 Z-buffer. Conversely, when the Zchi 
pin signal is low, the unit is configured as a stage 3 
compositing engine. The functions performed when 
configured as a Z-buffer are Z-search; shadow calcula 
tion and ambient color calculation. The functions per 
formed when configured as a compositing engine are 
pixel blending and scanout. 

FIG. 12 is a functional block diagram of a stage 2/3 
processing unit. A RAM 1201 and a RAM 1202 com 
prise the dual buffers and consist of one scanline of 
memory each. In the preferred embodiment each of 
RAM 1201 and 1202 comprise 648 words (each word 
having 40 bits) of random access memory. RAM con 
trol 1203 receives the X data (i.e. the pixel location) 
from the pixel interpolation token and provides corre 
sponding Z-values to the Z interpolation and compare 
module 1204 and corresponding a RGB values to the 
aRGB interpolation module 1205. 
The Z-interpolation and compare module 1204 per 

forms the Z-buffering required to identify the front 
most pixels. The Z-interpolation and compare module 
1204 further receives the endpoint Z-values 1208 and 
1209 from the Z set-up token and the pixel weight W 
1210 from the pixel interpolation token. The Z-interpo 
lation and compare module 1204 is coupled to the RAM 
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control 1203 to receive the current Z-value at a pixel 
location and for inserting a new Z-value into the scan 
line Z-buffer when appropriate (i.e. the Z-value of the 
current pixel is less than the current value in the Z 
buffer). The Z-interpolation and compare module 1204 
is further coupled to output control 1206 for allowing 
the output of a front-most pixel via the pixel interpola 
tion token (typically by not converting it to a null to 
ken). 
The arGB interpolation module 1205 performs the 

initial ambient color calculation of stage 2 and the trans 
parency calculations of stage 3. The aRGB interpola 
tion module 1205 receives the pixel weight W 1210 from 
the pixel interpolation token. The aRGB interpolation 
module 1205 further receives the endpoint aRGB val 
ues 1212 and 1213 from the diffuse span setup token. 
With respect to stage 3, the arGB module 1205 is cou 
pled to RAM control 1203 in order to received pixel 
shading values at the current pixel location and for 
inserting shaded (blended) pixel values back into the 
scanline buffer. Both the Z-Interpolation and compare 
module 1204 and the aRGB interpolation module 1205 
contain linear interpolation circuits that are described in 
more detail below. 
Output control 1206 controls output 1214 from the 

processing unit. The output 1214 of the output control 
1206 will be a pixel interpolation token in stage 2 and 
the scanout in stage 3. In stage 2, the output control 
1206 will output the contents of the interpolation mod 
ule 1205 as part of the pixel interpolation token. In stage 
3, the output control 1206 will output the contents of 
the scanline buffer, i.e. RAM 1201 or RAM 1202. 

Circuit for calculating the W(X) function 
Recall that the function W(X) function is used in the 

Vertical Interpolation Module. As it is repetitively 
used, the preferred embodiment has provided an effi 
cient means for calculating the W(X) function. As any 
given X is a 16 bit value, the slope m covers a wide 
range, i.e. 1 to 1/65535. Representing this range to 10 
significant bits requires 16-- 10=26 bits. Thus, at first 
view the W(X) function would require a 26 bit by 16 bit 
multiplier. However, a technique and circuit for obtain 
ing the 10 bit result with a 12 bit by 12 bit multiplication 
operation has been derived and is described below. 

First, it is empirically observed that 14 leading zeros 
are being traded between the two multiplicands. This is 
further supported by the observation that (Xright-X- 
left) is the maximum value of (X-X left), thereby indi 
cating the minimum number of leading zeros in this 
multiplicand. This is established by comparing the two 
multiplicands as illustrated in Chart O. 

CHART O 
Value of 

Xright-Xleft Leading 0s Value of n Leading 0s 
2-3 14 A2-1/3 0-1 
4-7 13 1/4-1/7 1-2 
8-15 12 A8-1/15 2-3 

32768-65535 O A32768- 14-15 
A65536 

First, the 14 leading zeros are replaced with two 
variables m' and AX based on n leading 0s, so that: 
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Since both m' and AX" do not have leading zeros, both 
can be truncated to the 12 most significant bits (10 sig 
nificant bits plus 2 guard bits). 
A schematic diagram of such a circuit is illustrated in 

FIG. 13. The circuit will calculate m' and AX and 
output W. Referring to FIG. 13 circuitry within dashed 
box 1312 represents the calculation of m' while the 
circuitry within the dashed box 1313 represents the 
calculation of AX". A span length 1301, is provided as a 
first input to the circuit within dashed box 1312. The 
span length 1301 is simply the difference of Xght-Xief 
as described above. A counting circuit 1304, determines 
the number of leading zeros in span length 1301 and 
provides an output value n. The count of leading zeros 
n is input to a shift circuit 1307. The shift circuit 1307 
will be described in greater detail below. The span 
length 1301 is also provided to a shift circuit 1305. The 
shift circuit 1305 shifts the value of spanlength 1301 by 
the n bits determined in counting circuit 1304. The 
output of the of the shift circuit 1305 is the 12 left most 
bits after the shifting of the span length 1301. The out 
put of the shift circuit 1305 is then input into an invert 
ing circuit 1306, which inverts the input. The output of 
the inverting circuit is the variable m'. The output m' of 
the invert circuit is then provided as a first input to a 
multiplication circuit 1310. 
An Xo input 1302, i.e. the current X-coordinate of the 

pixel being interpolated, is combined with a binary 
input 1302a (which has a fixed value of 100 binary) to a 
create a 16 bit operand for a subtraction circuit 1309. 
The binary input 1302a are added as the leading bits in 
the created operand. The second input to the subtrac 
tion circuit 1309 is a Xief input 1303. The Xief, 1302 
input provides the X coordinate of the point that is the 
left most on the span being processed. Thirteen bits of 
the output of the subtraction circuit 1309 are provided 
to a 13 bit counter 1308. Three of the bits are stripped 
off and recombined at the output of the counter circuit 
1308. The output of the counter circuit 1308 is AX. The 
output of the counter 1308, along with the appended 3 
bits are then provided to the shift circuit 1307 where the 
result is shifted by the value provided by the counter 
1304, i.e. n. Further, the four least significant bits of the 
result are discarded, creating a 12 bit output. This out 
put value is AX". 
The output of circuit 1307 is then provided as a sec 

ond input to the multiplier 1310. The multiplier 1310 
then preforms a multiplication of the outputs of invert 
ing circuit 1306 (i.e. m') and shifting circuit 1307 (i.e. 
AX") and rounds to the ten most significant bits. The 
output of the multiplier 1310 is the pixel weighting 
value W 1311. 

Linear Interpolation Function 
As described throughout the description of the pre 

ferred embodiment, all interpolation is performed lin 
early. It would have been apparent to one skilled in the 
art to use other non-linear forms of interpolation in 
order to provide different shading functionality (e.g. 
perspective corrected shading). As has been discussed 
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above, a direct evaluation technique is utilized by the 
preferred embodiment in order to perform required 
linear interpolation (as opposed to the forward differ 
encing technique that prevails in the prior art). With 
reference to stage 1, linear interpolation is used to deter- 5 
mine the end points of the horizontal spans of an object 
(i.e. in vertical interpolation). With respect to stage 2 
and stage 3 of the pipeline, linear interpolation is per 
formed on the values in the pixel interpolation token to 
estinate Z-values (stage 2) or pixel shading values 10 
(stage 3). Thus, it has been found to be advantageous to 
provide a linear interpolation circuit. 
As described above, the equation for direct LIRP 

function is defined as: 
15 

(-w)A- w8. 

The LIRP function requires a weighting value w. The 
weighting value w is a value between 0 and 1 that speci 
fies a linear "blend' of the values A and B. Determina- 20 
tion of W in the creation of Pixel Interpolation Tokens 
was described above. W is also calculated for vertical 
interpolation the w is determined dynamically for each 
active edge of an object. For horizontal interpolation 
the where corresponds to the pixel weighting value 25 
determined in stage 1. The result of this expression is A 
if w is zero, B if w is one, and a value between A and B 
when w is a positive fraction less than one. 
The LIRP operation of the preferred embodiment 

operates in fixed precision arithmetic. Implementing the 30 
LIRP operation in fixed precision arithmetic can be 
wasteful. If w is defined as a binary fraction between 
zero and one inclusive almost an entire bit of resolution 
is wasted. In the case where w has 4 bits, 7 encodable 
values between 1.001 and 1.111 will always be unused. 35 

In the preferred embodiment, a more efficient ap 
proach to encoding w defines 0.1111 to be one and 
0.0000 to be zero. All 16 encodable values where w has 
4 bits are now useful. The LIRP equation now becomes: 

0.11 - wa- B 

If w=0.0000, the LIRP value will be 0.1111A. If 
w=0.1111, the LIRP value will be 0.111 B. However, 
in graphics applications it is known that in order to 45 
achieve high quality rendering, if w=0 or 0.0000, the 
LIRP value must be A and if w=1 or 0.1111, the LIRP 
value must be B. This is to achieve complete color 
saturation at the end points. A rounding factor is there 
fore added to the LIRP value to achieve saturation at 50 
both A and B. 0.0001A is added if w (0.1000. 0.0001B 
is added if we = 0.1000. These rounding factors force 
saturation at both ends of the range of w, while tolerat 
ing some discrepancies to true linearity at some mid 
points. 55 
With the addition of this rounding factor w no longer 

partitions the range between A and B quite uniformly. 
The partition between the LIRP values when 
w=0.01 li and when w = 0.1000 can be up to twice as 
large as the partition between any other two neighbor- 60 
ing values of w. The size of this partition is, however, 
no larger than the size of every partition when w is 
encoded in the standard way described above. 

In describing a circuit to perform the LIRP equation, 
the fixed point version of the LIRP equation above is 65 
re-written using two's complement math as follows: 

0.1111 -w)A -- w8 

38 

Replacing w with its two's complement equivalent 
(lw is the bit inverse of w): 

(0.1111-(w--0.0001))A+ wb 

and rearranging terms: 

(0.1111+0.0001)+(w)A+ w8 

The first term drops out in two's complement form, 
leaving only: 

Not incidentally, this approach leads to a very regu 
lar (and thus compact and efficient) custom silicon lay 
out. Converting to one bit multiplications by summing 
for i=0 to n, where n is the number of bits-1 in w (4 for 
this example) and win is the most significant bit of w 
gives: 

This equation can be efficiently computed by using a 
selector for each bit wi to select between adding A or B 
(shifted appropriately by 2i-n). 
Adding in the appropriate rounding factor to force 

saturation gives: 

Adding the rounding factors to the circuit described 
above is simply done by adding one new selector at the 
least significant bit position. 

Referring now to FIG. 14a, a circuit for linear inter 
polation is illustrated. The LIRP circuit is comprised 
essentially of 2 to 1 multiplexers, carry sum adders, and 
a 10 bit carry propagate adder. The LIRP circuit imple 
ments the logic described above where the bits of the 
Weighting Value W are used to select the output of the 
2 to 1 multiplexors. The outputs of the multiplexors are 
added and the bit patterns are shifted appropriately to 
reflect the magnitude of the operands. As the circuit is 
somewhat repetitive, a description of a portion of the 
circuit will suffice. 
A first input A 1401 is provided as a first input to the 

multiplexer 1403 and a second input B 1402 is a second 
input to the multiplexer 1403. The values of input A 
1401 and B 1402 would typically be one of the pairs of 
parameter values sent through the pipeline in a set-up 
token. A third input, i.e. a selector value, is the value 
which will determine whether the first input or the 
second input will be output from the multiplexer 1403. 
The selector value to be provided to the multiplexor is 
a bit from the weighting value. For the multiplexor 
1403, the selection value is provided by the most signifi 
cant bit of the Weighting Value W, in this case W9 
1431. This value is the additive saturation value needed 
in order to achieve full saturation at the extreme ends. 
In any event, it should be noted that if the selection 
value is a 1, the first input is output from the multi 
plexer, i.e. the bit pattern from A 1401. If the selection 
value is 0 the second input is output from the multi 
plexer, i.e. the bit pattern from B 1402. 
The bit layout of the weighting value W is illustrated 

in FIG. 14b. As is typical in computer representations, 
e.g., binary representations, of numeric values, the least 
significant digit values are in the right most storage 
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position. So for example, a digit WO 1432 will be the 
least significant digit and a digit W1 1433 is the second 
least significant digit. This continues from right to left 
storage locations unit W91450, which is the most signif. 
icant digit. Further illustrated in FIG. 14b are the digits 
of W coupled to corresponding multiplexors as de 
scribed with respect to FIG. 14a. 

Referring back to FIG. 14a, the output of the multi 
plexor 1403 is coupled to a carry-in input 1406 of carry 
sun adder 1405. It is also clear from FIG. 14a that the 
values A 1401 and B 1402 will be used as input to all the 
multiplexer devices. 
A second multiplexer 1404 also takes as input A 1401 

and B 1402. The multiplexer 1404 receives as input the 
least significant bit of the Weighting Value, in this case 
W0 1432. The output of the multiplexor 1404 is coupled 
to an operand input 1406a of the carry-sum adder 1405. 
The carry-sum adder 1405 provides for the addition 

of the saturation value and of the lowest order set of bits 
in the multiplication (i.e. linear interpolation operation) 
it is performing. A carry out output 1407 and a sum 
output 1408 of the carry-saver adder 1405 are coupled 
to an operand input A 1412 and an operand input B 
1413, respectively, of carry-sum adder 1414. 
The multiplexor 1409 takes as selector input the the 

second least significant bit of the Weighting Value, in 
this case W1 1433. The output of the multiplexor 1409 is 
also an input to the carry-save adder 1414. 
The additive values cascade down the combination of 

multiplexors and carry-sum adder devices until multi 
plexor 1417 is reached. In multiplexer 1417, the input is 
the most significant bit of the weighting value, in this 
case W9 1434. Again, input values A 1401 and B 1402 
are inputs to the multiplexor 1417. The output of the 
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multiplexor 1417 is coupled to a carry-in input 1419 of 35 
carry-sum adder 1418. In accordance with the descrip 
tion of the circuit above, operand inputs A 1420 and 
operand input B 1421 of carry-sum adder 1418 are cou 
pled to the carry-out output and sum output, respec 
tively, of a previous carry-sum adder (not illustrated). 
The carry-out output 1423 and sum 1424 of carry-sum 
adder 1418 are coupled to an operand input B1426 and 
operand input A 1425, respectively, of carry-propagate 
adder 1422. The sum output 1429 of the carry-propa 
gate adder 1422 will be the approximated linearly inter 
polated value. 

It should be noted that the above circuit may be used 
for determining a linearly interpolated value for data of 
varied bit sizes. In the preferred embodiment the 
weighting value and inputs A and B are 10 bits in 
length. 

Parallel Rendering Pipelines 
The ability to support multiple rendering pipelines in 

parallel is inherent in the architecture of the preferred 
embodiment of the present invention. First, as parame 
ter values are directly evaluated, there are no inter 
scanline dependencies. Thus, two or more scanlines can 
be rendered simultaneously. As described above this 
scanline independence also has residual effects in terms 
of reducing bandwidth requirements and storage re 
quirements. Second, specific features have been pro 
vided to facilitate parallelism. Some of these features 
have been described above with respect to a single 
pipeline. Here they are described in the context of paral 
lel rendering pipelines. 

It should first be noted that the Parallel Rendering 
Pipelines in the preferred embodiment will receive iden 
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tical Active Object Lists. Thus, the control processor 
must provide an Active Object List that would cover 
multiple scanlines. In the preferred embodiment, the 
Active Object List may be built by assigning a value to 
a variable, where the variable represents the number of 
scanlines upon which to build the Active Object List. 
Having such an Active Object List means that in some 
instances, objects will be visible on one scanline, but not 
visible on the scanline being simultaneously rendered. 
This would occur for example if an object is last visible 
on scanline N, where scanlines N and N-1 are being 
simultaneously rendered. This may also occur when an 
object is first visible on scanline N-1 and thus is not 
visible on scanline N. As will be described in more 
detail below, the filtering of objects that should not be 
rendered is handled in the Stage 1 processing element. 
The architecture of the Stage 1 processing element 

provides for parallel pipelines in the following manner. 
First, and perhaps most importantly, as the stage 1 pro 
cessing element directly evaluates object information to 
interpolate span coordinates, scanline independence is 
achieved during vertical interpolation. Scanline inde 
pendence facilitates the rendering of scanlines in paral 
lel by eliminating the need for objects to be rendered in 
scanline order (as required by forward differencing 
interpolation techniques). Second, the vertical interpo 
lation function filters objects. This is accomplished by 
determining if an object is active on the scanline being 
rendered. An object is not active on a scanline if there 
are no corresponding active edges. If an object is not 
active on a particular scanline, it will not be rendered. 

Third, to avoid saturating DMA bandwidth between 
the active object list and the pipeline, are designed to 
simultaneously receive objects. As a result, the required 
data bandwidth does not increase as parallel pipelines 
are added. Fourth, as the pipelines each receive the 
same object data, the Stage 1 processing unit of each 
pipeline must be able to distinguish which scanline 
should be rendered. Accordingly, each stage 1 process 
ing unit defines two input signals which define the par 
ticular pipeline ID. The ID can be used to load a differ 
ent Y value into each of the pipeline, the Y-value indi 
cating the scanline to be rendered. 

Finally, the horizontal interpolation of stage 1 sup 
ports the parallel pipelines in that it sets up the direct 
evaluation of shading parameter values in succeeding 
processing stage elements. The second and third stages 
of the pipeline perform the direct evaluation of shading 
parameters. As noted above, such direct evaluation of 
shading parameters is necessary for scanline indepen 
dence. 
With respect to the third/final stage processing ele 

ment, besides directly evaluating the shading parameter 
values, the output lines of the third stage scanline buff 
ers may be tristated. This allows the output lines of the 
scanline buffers of multiple pipelines to be connected 
together. External control logic provided by, for exam 
ple the control processor, would then control which of 
the scanline buffers would be in a tristate and which one 
would be enabled and thus providing rendered scanlines 
to the system display buffer. 
FIG. 15 is a flowchart illustrating the steps for ren 

dering a 3D image using multiple parallel pipelines. For 
this example there are two parallel pipelines. First, the 
control processor sends a direct input stream command 
to designate which of the pipelines, the input streams 
should be sent to, step 1501. In this case the direct input 
stream command will designate both pipelines will re 
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ceive the input stream (distinguish from step 1507 
where input is not sent to both pipelines). Next, the 
control processor will send global mode set-up tokens 
to designate the desired shading functions, step 1502. At 
this point the rendering pipeline is ready to receive the 
DRAW commands for drawing the individual objects. 
The contents of the active object list is now sent 

simultaneously to each of the rendering pipelines, step 
1503. As noted above this occurs by the issuance of a 
DRAW command for that object being sent down the 
pipeline. Next, rendering occurs, step 1504. This render 
ing step is identical to that which would occur for a 
single pipeline. This rendering step is identical to the 
rendering steps described with respect to FIGS. 8a–8c. 

10 

Once the rendering process is completed, the scanout of 5 
the rendered scanlines may occur. 
The initial step in the scanout process is for the con 

trol processor to determine that a previous scanout is 
complete. This is accomplished by the control proces 
sor propagating a scanout synchronization token, step 
1505. Once it is determined that the previous scanout is 
complete, a swap buffers token is propagated, step 1506. 
By doing this, the scanout process can be performed 
while the rendering of other scanlines can commence. 
The control processor then propagates a setup/start 
token to enable the scanout of the rendered scanlines, 
step 1507. The scanout of a scanline buffer from the first 
pipeline to the system frame buffer is performed, step 

20 

25 

1508. To perform this step the scanline buffer output of 30 
the second pipeline is first placed in a tristate. Once this 
is completed, the scanout of a scanline buffer from the 
second pipeline to the system frame buffer is performed, 
step 1509. To perform this step the output of the first 
pipeline is placed in a tristate. It should be noted that the 
pipeline scanout sequence may be switched, i.e. the 
second pipeline performs the scanout first. Such a 
switch in the scanout sequence may be performed with 
out departing form the spirit and scope of the present 
invention. As in the case of a single pipeline, the parallel 
rendering pipelines may be rendering subsequent scan 
lines while scanning out the previous scanlines. 

Thus, a scanline rendering device is disclosed. Utiliz 
ing a scanline approach to hardware rendering of 
graphical objects, required bandwidth to a system frame 
buffer is reduced thus enabling the rendering device to 
be extensible to existing computer system designs. Scan 
line independence is achieved through direct evaluation 
of coordinate parameter values, and enables multiple 
parallel rendering devices. Distributed parameter inter 
polation reduces bandwidth requirements between 
shading elements in the rendering device. Finally, a 
linear interpolation method provides for the exact cal 
culation at extreme endpoints and allows for efficient 
use of data. 
We claim: 
1. A rendering device for simultaneously generating a 

plurality of scanlines of pixel values, said rendering 
device coupled to a computer controlled display, said 
rendering device having a plurality of rendering pipe 
lines, each of said rendering pipelines comprised of: 

input means for receiving one or more graphical 
objects which are visible on a scanline being ren 
dered, said one or more graphical objects repre 
senting an image to be displayed, each of said one 
or more graphical objects defined by a set of loca 
tion points and parameter values; 
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42 
means for identifying a horizontal set of pixel loca 

tions for a graphical object coupled to said input 
means; 

pixel filtering means for determining which of said 
pixels in said horizontal set of pixel locations may 
be shaded, said pixel filtering means coupled to said 
means for identifying a horizontal set of pixel loca 
tions; and 

shading means coupled to said pixel filtering means, 
said shading means for shading pixels; 

said means for identifying a horizontal set of pixel 
locations for a graphical object further comprised 
of: 

a first processing means for determining a first edge 
of said graphical object intersecting a scanline 
being rendered and a second edge of said graphical 
object intersecting a scanline being rendered; 

a second processing means coupled to said first pro 
cessing means, said second processing means for 
determining an interpolation value for each of said 
first edge and said second edge, said interpolation 
value defining an X-coordinate constant between 
points on an edge of said graphical object; and 

a third processing means coupled to said second pro 
cessing means, said third processing means for 
identifying dimensional coordinates of endpoints of 
said horizontal set of pixel locations. 

2. The rendering device as recited in claim 1 wherein 
said means for determining which of said pixels in a 
horizontal set of pixel locations may be shaded is a 
scanline Z-buffer circuit. 

3. A method for processing a set of graphical objects 
for rendering on a computer controlled display system, 
each of said graphical objects defining a geometric 
shape and pixel shading values, said set of graphical 
objects comprising an image to be displayed on said 
computer controlled display system, said method com 
prising the steps of: 

a) identifying a set of graphical objects which inter 
sect a first or a second scanline; 

b) concurrently providing a set of graphical objects 
to a first rendering means and a second rendering 
means; 

c) said first rendering means rendering a first portion 
of said first scanline from said set of graphical ob 
jects by performing the steps of: 
c1) identifying a first horizontal span of pixels cor 

responding to said first scanline for a first graphi 
cal object in said set of graphical objects; 

c2) identifying pixels in said first horizontal span of 
pixels that may be shaded; 

c3) shading said pixels in said first horizontal span 
of pixels identified in step c2); 

c4) storing said shaded pixels corresponding to said 
first horizontal span into a first storage means; 
and 

c5) transferring shaded pixels from said first stor 
age means to a system frame buffer when all of 
said graphical objects in said set of graphical 
objects have been processed; and 

d) said second rendering means rendering said second 
scanline from said set of graphical objects concur 
rent with first rendering means. 

4. The method as recited in claim 3 wherein said step 
of said second rendering means rendering a second 
scanline from said set of graphical objects is further 
comprised of the steps of: 



5,307,449 
43 

a) identifying a second horizontal span of pixels cor 
responding to said second scanline for a second 
graphical object in said set of graphical objects; 

b) identifying pixels in said second horizontal span of 
pixels that many be shaded; 

c) shading said pixels in said second horizontal span 
of pixels identified in step b); 

d) storing said shaded pixels corresponding to said 
shaded horizontal span into a second storage 
means; and 

e) transferring shaded pixels from said second storage 
means to a system frame buffer when all of said 
graphical objects in said set of graphical object 
data have been processed. 

5. In a computer controlled display system, a method 
for rendering an image comprising the steps of: 

a) providing an image database, said image database 
having one or more graphical objects representing 
said image, each of said graphical objects defining 
a position, a geometric shape and pixel shading 
values; 

b) generating an active object list from said image 
database, said active object list identifying one or 
more graphical objects whose position intersects 
one or more scanlines which are to be simulta 
neously rendered; 

c) providing graphical objects identified in said active 
object list to a plurality of rendering means; 

d) each of said plurality of rendering means rendering 
a scanline based on pixel shading values of said 
graphical objects comprising the steps of: 
d1) identifying a horizontal span of pixels for a 

graphical object based on the scanline being 
rendered and position and geometric shape of 35 
said graphical object; 

d2) determining which of said pixels in said hori 
Zontal span may be shaded; 

d3) shading said pixels identified in step d2; and 
d4) storing said shaded pixels in a scanline buffer; 

44 
e) providing said rendered scanlines to a system frame 

buffer for display. w 
6. The method as recited in claim 5 wherein said step 

of identifying a horizontal span of pixels for a graphical 
5 object based on the scanline being rendered and posi 

tion and geometric shape of said graphical object is 
further comprised of the steps of: 

a) determining a first edge of a first graphical object 
and a second edge of said first graphical object that 
intersect said scanline; 

b) generating a first interpolation value for said first 
edge, said first interpolation value defining an X 
coordinate constant between points on said first 
edge; 

c) determining a first coordinate of a first endpoint 
based on said scanline, said first edge and said first 
interpolation value; 

d) generating a second interpolation value for said 
second edge, said second interpolation value defin 
ing an X-coordinate constant between points on 
said second edge; and 

e) determining a second coordinate of a second end 
point based on said scanline, said second edge and 
said second interpolation value. 

7. The method as recited in claim 6 wherein said step 
of determining which pixels in said horizontal span may 
be shaded is comprised of the steps: 

a) identifying a front most pixel depth position of a 
previously processed pixel at a pixel location being 
considered; 

b) comparing the pixel depth position of a current 
pixel with the front most pixel depth position iden 
tified in step a); 

c) if the pixel depth position is in front of said pixel 
depth position identified in step a), identifying said 
current pixel as being eligible for shading; and 

d) if said pixel depth position in not in front of said 
pixel depth position identified in step a), identifying 
said current pixel as not being eligible for shading. 
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