SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

REXS
Specification

Mark Goudy
Rick Jeng
Eric Linstadt
Mukesh Patel
Adrian Sfarti
Bob Sherburne

Silicon Graphics, Inc.

Revision 1.0

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

1: Introduction

1.1:

1.2:
1.3:
1.4:
1.5:
1.6:

Part Name and Number .
General Description .
Features .
Newport Architecture.
REXS3 Architecture
Performance

2: Device Interface .

2.1:
2.2:
2.3:
2.4

Pin Diagram

Pin Descriptions .
VHDL Description.
Package Pin Assignment

3: Programmer Interface

3.1

3.2:
3.3
3.4:
3.5:

3.6:

Registers

3.1.1: Control Reglster Bit Definitions.
3.1.1.1: DRAWMODEDO Register .
3.1.1.2: DRAWMODEL1 Register .
3.1.1.3: LSMODE Register.
3.1.1.4: CLIPMODE Register .
3.1.1.5: STATUS Register/USER __ STATUS Reg|ster
3.1.1.6: CONFIG Register . e
3.1.1.7: DCBMODE Register .

Coordinate System

Clipping and Masking
Iterator Overview . .
Framebuffer Access Modes

3.5.1: Lines: Overview . .
3.5.1.1: Line Draw or Host Read Pomts
3.5.1.2: Line Draw: Segments Il .
3.5.1.3: Line Draw: Full Line .

3.5.2: Point Draw or Read

3.5.3: Spans: Overview . . e e
3.5.3.1: Span Draw or Host Read Segments |
3.5.3.2: Span Draw: Segmentsil
3.5.3.3: Span Draw or DMA Read: Full Span .

3.5.4: Blocks: Overview. e
3.5.4.1: Block Draw or Host Read Segments |
3.5.4.2: Block Draw: Segments Il
3.5.4.3: Block Draw or Stride DMA Read Spans
3.5.4.4: Block Draw or Linear DMA Read: Full Block

3.5.5: Fast Clear .
3.5.6: Screen-to-Screen Move .
Line Draw Instructions.

~N o oo o1 o 0o Ol

11
11
12
14
15

20
20

23
23
25
27
27
27
28
29

30
30
31
32

32
32
32
33

33

33
33
34
34

34
34
35
35
35

35
36
37

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.6.1: Bresenham Aliased Line Draw Instructions.

3.6.1.1: I_line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)
3.6.1.2: F_Line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST).

3.6.2: Bresenham Antialiased Line Draw Instructions

3.6.2.1: A_Line(x1,y1,x2,y2,el,aa_table, SKIPFIRST SKIPLAST).

3.6.2.2: A_Edge Top(x1,yl,x2,y2,el,aa_table,SKIP-
FIRST,SKIPLAST,ENDPTFILTER).

3.6.2.3: A_Edge_Bottom(x1,y1,x2,y2,el,aa_table, SKIP-
FIRST,SKIPLAST,ENDPTFILTER).

3.7: Double Buffering .

3.8: Framebuffer Data Values
3.8.1: Patterning and Stippling .
3.8.2: Dither

3.8.2.1: RGB D|ther|ng .
3.8.2.2: Color Index Dithering .

3.8.3: Color rounding.
3.8.4: Logic OP
3.8.5: Blend

3.9: Framebuffer Formats

3.10:
3.11:
3.12;
3.13:
3.14:

Framebuffer PIO and DMA
FIFO Management .

Context Switching

Display Control Bus.

Chip Reset and Initialization .

4. System Interface .
4.1: GlO64 Bus Interface .
4.2: Display Control Bus Interface .
4.3: VRAM Interface
4.4: Tester Interface

5: Architectural Description
5.1: GlO64 Bus Interface .
5.2: Display Control Bus Interface .
5.3: DDA Unit
5.3.1: DDA_TOP Port List
5.4: VRAM Controller Unit
5.4.1: Vram Interleave

5.4.1.1: Aux/Pixel plane Interleave
5.4.1.2: Writemask .

5.4.2: Vram address generation

5.4.2.1: Pixel planes column address
5.4.2.2: Aux planes column address.
5.4.2.3: Row address

5.3.2: Memory Controller
5.3.3: VRAMS .
5.4: Scan Refresh Latency

37
37
38

39
39

40

41
70
70
70

72
72
73

74
74
74
76
78
80
81
82
83

84
84
84
86

. 104
. 108
. 108
. 109
. 110
111
. 114

. 114
. 114
. 115

. 115
. 115
. 115
. 115

. 120
. 121
. 121

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

5.4.0.1: General decodes module
5.4.0.2: Control module.

5.4.0.3: Address Pipe .
5.4.0.4: RMW state machine .
5.4.0.5: Write state machine

5.4.0.6: Load registers state machine
5.4.0.7: Refresh . .

5.4.0.8: Out block module .

5.4.1: Gate Count.

5.4.3: Pixel Processing Pipe
5.4.3.1: Blender .
5.4.3.2: Dithering. Ce e
5.4.3.3: Gate count of pixel processing pipe

6: Revision History .

. 131
. 132
. 133
. 134
. 135
. 136
. 137
. 139

. 140

. 141
. 141
. 144
. 145

. 146

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

1 Introduction

This document describes the REX3, part of the Newport (“the least graphics you'll ever need”) graphics sub-
system.

1.1 Part Name and Number

Part Name: REX3

SGI Part Number: 099-9005-001

Vendor: LSI Logic Corporation

Vendor Part Number: L1A9040

Technology: LC300K (0.6 micron CMOS gate array)

Base Wafer: L300415P

Package: 304 MQUAD

Gate Count:149,000 equivalent gates, including 5.7K bits dual port RAM.

1.2 General Description

REX3 is the raster engine for Newport graphics. The basic operation of the raster engine is to draw
lines and spans. Various packed formats of host DMA are also supported. It is based on some of the con-
cepts of REX1, i.e there is no dedicated geometry engine for graphics. Instead, the hosts floating point unit
is used as the geometry engine. Like REX1, Z buffering is done by the host in system memory. REX3's reg-
ister interface has been optimized for minimum host writes to execute primitives. REX3 has various pixel
formats to accommodate a low cost 8 bits/pixel system as well as a 24 bits/pixel system. Besides the pixel
planes REX3 supports CID, PUP and Overlay planes. Also, in order to achieve high frame buffer writing
bandwidth, the frame buffer is architected as an 8 way interleave combined with a Y axis interleave. There
are two sets of RGBA iterators so 2 shaded pixels/clock are generated. For flat filled spans, four pixels/clock
are generated. In order to bound the package size to less than 304 pins, the frame buffer data is byte seri-
alized for each of the eight interleaves. This data is deserialized by RB2s’ before writing to the frame bulffer.
In order to limit the number of gates in REX3, the read/write formaters and the logicop functions have been
incorporated into RB2s.

1.3 Features

* 33 MHz GlO64 Bus Interface

e 66 MHz Isotropic 8 way interleaved frame Buffer Interface

» 33MHz Display Bus Interface with synchronous / asynchronous / burst mode slave support
* Bresenham line iterators

* RGB and Cl anti-aliased Bresenham lines

e Bi-endian support

* Software Z buffer

* Blend function

+ 1280 x 1024 resolution

Upto 76Hz screen refresh

» Upgradable from 8 pixel + 2PUP + 2CID planes to 24 pixel + 8 Overlay(or 4+4) + 2PUP + 2CID planes

e Optional Express Video ready

August 16, 1993 page5

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

* GenLock capability
1.4 Newport Architecture
Newport graphics is made of the following major components:

REX3

RB2

Frame buffer
RO1

XMAP9
CMAP

VC2
RAMDAC
Static Ram

©CoNOGO~WNE

The graphics pipeline begins with the host writing into the REX3 registers to execute primitives. REX3
transforms these primitives into screen coordinates and writes the data via RB2 into the frame buffer. The
frame buffer is made of Vrams (2MBit) in an 8 way interleave configuration. The serial ports of the frame
buffer are read into RO1 and passed into XMAP9 which manipulates the data for multi mode screen. XMAP9
passes the data onto the CMAP which consists of high speed static ram for Color Index modes. When in
RGB mode, the data goes through other static ram within CMAP that is normally linearly mapped, although
for image processing applications it does not have to be linearly mapped. The output of CMAP is fed into
the RAMDAC for display to the screen. The gamma correction tables reside in the RAMDAC. The output of
the CMAPs is also fed back to XMAP9 and output onto the Video port. Video data can also be accepted
from the video port and output to the CMAP to display on the graphics monitor. VC2 provides all the relevant
timing for the graphics sub system.

A block diagram of the Newport graphics sub-system is shown in Figure 1.

15 REX3 Architecture

Figure 2 shows the top level block diagram of REX3. REX3 could be viewed as three logical blocks. The
first block, which interface to the host bus (GIO64) is the GIO block. REX3 supports both GI0O64 and G032
protocol, the default being GIO64. The GIO64 bus may be either 64 or 32 bits wide. This block receives
commands for all the primitives that REX3 draws as well as provide host access to other devices in the dis-
play and video (optional) subsystems. REX3 is implemented as a GIO64 bus slave which decodes
addresses on the GIO64 bus to detect accesses to its own registers, or those within the Video subsystem.
Commands and data to and from the Display subsystem are sent over the Display Control Bus. The REX3
is the master of the Display Control Bus. The second block is the iterator block. This block generates the
frame buffer addresses, interpolates the colors and provides masking and various patterning capabilities.
The pixel address generation for lines is done by Bresenham iterators. This block also handles the coverage
values for anti - aliased lines and does the swizzle for the frame buffer interleaving. The third section is the
memory controller and pixel pipe. There are four instances of the memory controller and pixel pipe. This
block has the frame buffer controller as well as the CID checking, color compare, dither and Blend functions.
The GIO and Iterator sections operate at 33MHz and the memory controller and the pixel pipe operates at
66MHz. The GIO interface with the host is via a fifo which is 64 wide and 32 deep. The high water mark on
the GIO fifo is programmable. The Iterator section communicates to the memory controller and pixel pipe
via 4 bank fifos. Each bank fifo consists of one write and two read fifos. For screen to screen copy operations
the Iterator section generates a read into the read bank fifos and swizzles the data before writing it into the
write bank fifos. The memory controller operates each of the 4 banks independent of each other. The mem-
ory is cycled in 4 clocks (60nS) for page mode operations. Figure 3 shows the internal data path of REX3.

August 16, 1993 page6

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

1.6 Performance

Operation Performance
Shaded spans 50M pixels/sec
Flat-filled spans 100M pixels/sec
Fastclear 400M pixels/sec
DMA 50M pixels/sec
Screen to Screen copy 40M pixels/sec
Depthcued or constant color linedraw rage20M pixels/sec
10 pixel RGB Anti-aliased lines 200K lines/sec
Random points 6M points/sec

Table 1: REX3 Performance

August 16, 1993

page7

DCB BUS

8

S PEaZN

REX3

A S
R
vC2 16 A
M
FBCNTL 15(x4) N
Lad
CNTL 3(x4) , J[R| 48(x4) SP
DATA16(x4) ", | B
l Lad 2
FRAME
BUFFER
VRAM

_|
o
<
v
m
o]
0
T
|
o)
=2
y ‘)2 I v
M C
A | 27(x2) M
P > A >
9 P
2 X2

FIGURE 1. Newport Graphics Sub-system

<
N

0O>»0

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

GlO64 BUS
DISPLAY BUS :
GIO < > «» Display Bus
INTERFACE INTERFACE
ITERATORS
PIXEL PIPE PIXEL PIPE PIXEL PIPE PIXEL PIPE
BANK_A BANK_B BANK_C BANK_D
0 1 0 1 0 1 0 1

RB2s & FRAME BUFFER

FIGURE 2. REX3 top-level block diagram

August 16, 1993 page9

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

FIGURE 3. REX3 Internal Data Path

—_Glo6éa
A
64
y
2
Glo64 64 Q 8 DISPLAY
INTERFACE < J{DISPLAY BUS { c BUS
INTERFACE 5
FIFO 8
‘ ~
8 64 64
N A 4 64
ADDR DATA
REGISTER ;
LOAD FIFO
UNPACK
y
32 (GRAPHICS CONTEXT)
A A
DMA_RD
v L A 4
& PACKING
STIPPLE / RGBA ITERS/CLAMP | BACKGROUND
PATTERN / Z A
24
ANTI -
ALIASING
» 32 32
¥l TABLE
READ SWIZZLE
ADDRESS v y
MAPPING N
Ll
BANK_A
) SWIZZLE o) o
f : £ z
4— 64 64
D s & &
T dl
M |
1
)
19 32 32
ADDR COLORAO COLORAL
BANK_A FIFO (3 DEEP) 64
VLDO VLD1 ADDR COLORAO COLORAL
9
».| ADDRESS » ADDRESS T(
¥l pPiPE v
y BANK_A
CONTROL
32 8
| DESERIAL| BANK_AO
FB DATA
8 8 32 8
32 DESERlAL|<_74> BANK_A1
32
READ BANK /
FIFO 0 READ BANK
FIFO 1
A
32 CID READ)
CID READ 32 BANK_AL
BANK_AO \|
12
|) 12
A
| | CO‘LOR COMP| Yy v
CID COMP | |
l ¢ v Vv |COLOR COMP| CID COMP
o) v
w
4 BLEND A
% —
< o
8 &
E A4 A4 n
2 e r|
@
=) 8 8 2
2
3 g
© DITHER DITHER
24 12
s 8
8
A 4 8

August 16, 1993 pagel0

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

2 Device Interface

2.1 Pin Diagram

FIGURE 4. REX3 Pin Diagram

4)

P_AD[63:0] <t » VRAM_RAS_[A:D]
PASN—p| REX3 |——» VRAM_ADDR_[A:D][8:0]
PREAD— g » VRAM_DTOE_N_[A:D]
GRXDLY <¢—— | » VRAM_DSF1_[A:D]
MEMDLY — g » VRAM_WBWE_N_[AD]

FIFO INT N <4— » VRAM_CAS_[AD]O

W INT N <— | » VRAM_CAS_[A:D]_1
 » RB2 SEL_[A:D][2:0]
VIDEO_INT N — <« » RB2_DATA_[A:D]_0[7:0]
VERT INTN — <« » RB2 DATA_[A:D]_1[7:0]

<« VC TX REQ
<« VC_SET_TSC
L RO_Y_DISP[1:0]

<« » DCB_DATA[7:0]

SLOT_NUMBER[1:0] ——— ————p DCB_ADDR[3:0]
GIORESET_N ——p» I DCB_CRS|[2:0]

GIOBACLK — i~ L » DCB_RW_N
Il » DCB CS.N
< DCB_ACK_N
247 1/O pins la—L% g ATPG/PLL Pins

August 13, 1993 pagell

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

2.2 Pin Descriptions

The following tables list for each REX3 pin the assertion level, direction (I, O, I/0O), LSI 10 cell type, followed
by a brief functional description.

TABLE 2. GIO64 Bus Interface

Pin Name Level Type Function

P_AD[63:0] NA 1/O(BD8TRPU) 64-bit pipelined Address/data bus

P_AS_N L I(TLCHT) Asserted during an Address cycle on the GIO bus.

P_READ NA I(TLCHT) Indicates the direction of the data transfer during Address cycles.

After the Address cycle, P_READ is driven low to indicate that an
active bus cycle is faking place. The GIO64 bus master preempts
a transaction by asserting P_READ.

GRXDLY H O(BT8RP) When asserted, this signal indicates that for read data cycles, the
REX3 is not returning valid data on the P_AD bus.” For write
cycles, the REX3 asserts GRXDL Y when the next transfer on the
on the non-pipelined side of the GIO64 bus must be stalled (one
more word will be accepted by the REX3).

MEMDLY H I(TLCHT) When deasserted during write data cycles, this signal indicates
that the host is presenting valid data on the GIO64 bus. When
asserted during read data cycles, this signal indicates that the
host cannot accept data from'the REX3 during the next cycle.

FIFO_INT_N L O(BT40D) REX3 GFIFO/BFIFO above/below interrupt (Open Drain).

VV_INT_N L O(BT40D) VC2 Vertical retrace or Kaleidoscope V ideo Option interrupt
(Open Drain).

SLOT_NUMBER[1:0] NA I(TLCHT) Address bits(523:22]10f the Newport graphics board. Address bits
[31:24] =“0001_1 111"

GIORESET_N L I(TLCHT) Synchronous reset.

GIlO64CLK NA I(CMOS) Positive GIO64 bus clock. All GIO64 bus signals are clocked on

the rising edge of this signal.

TABLE 3. VRAM/RB2/REORG Interface

Pin Name Type Function

VRAM_RAS_[A:D] O(B4) VRAM RAS, for the four memory banks[A:D]
VRAM_ADDR_[A:D][8:0] O(BT4RP) VRAM Address bus

VRAM_DTOE_N_[A:D] O(BT4RP) VRAM Transfer Enable / Output Enable.

VRAM_DSF1_[A:D] O(BT4RP) VRAM special function control pin.

VRAM_WBWE_N_J[A:D] O(B4) VRAM bank write enable (active low).

VRAM_CAS_[A:D] 0 O(BT4RP) VRAM CAS for the even halves of the four memory banks
VRAM_CAS_[A:D]_1 O(BT4RP) VRAM CAS for the odd halves of the four memory banks
RB2_SEL_[A:D][2:0] O(B4) Operation selects for the four memory banks. Encoded as

follows: 000 NOOP o
001 Write ﬁ} components), lower pixel into OL Y planes
010 Write higher pixel into OL_ Y planes
011 Load write mask and partial DRA WMODE1 Regs
100 Read (4 components), lower pixel of OL Y planes
101 Read higher pixel of OL Y planes)
110 Read lower pixel CID bits gor CID checking)

111 Read higher CID bits (for CID checking)
RB2_DATA_[A:D]_0[7:0] I/O(BD8TRPU) RB2 data for the even halves of the four memory banks
RB2_DATA_[A:D]_1[7:0] 1/O(BD8TRPU) RB2 data for the odd halves of the four memory banks
VC_TX_REQ I(TLCHT) Transfer request
VC_SET_TSC I(TLCHT) Set top of scan.
RO_Y_DISP[1:0] O(BT4RP) Scanline (modulo-4) for staggering the frame buffer

August 13, 1993 pagel2

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

TABLE 4. Display Control Bus Interface

Pin Name Level Type Function

DCB_DATA[7:0] NA I/O(BD8TRPU) Data read from (DCB_R W_N = 1) or written (DCB_R W_N = 0) to the
Display Control Bus slave devices.

DCB_ADDR[3:0] NA O(BT4RP) Display Control Bus slave device Address.

DCB_CRS[2:0] NA O(BT8RP) Display Control Bus slave device command or register select field.

DCB_RW_N NA O(BT8RP) Read/Write direction signal.

DCB_CS_N NA O(BT4RP) Disglax Control Bus command strobe, indicating that valid
DCB_ADDR, DCB CRS, DCB_RW_N and, for write transfers,

DCB_DATA are on the bus.

DCB_ACK_N L I(IBUFN) Acknowledge sighnal for Disp{ﬁ% Control Bus slaves to handshake
transfers with the REXS. en asserted during write cycles,
DCB_ACK N indicates that the slave device has accepted the
DCB_DATA, and that the next Display Control Bus cycle may begin.
During read cycles, the Display ™ Control Bus "slave “asserts
DCB_ACK to indicate that it has placed valid data on the DCB_DA TA

lines:
TABLE 5. Miscellaneous Back-End Pins
Pin Name Level Type Function
VERT_INT_N L I(IBUFN) Vertical retrace/sync interrupt from VC2
VIDEO_INT_N L I(IBUFN) Interrupt from Express V ideo option

TABLE 6. ASIC Mandatory PLL and T est Pins

Pin Name Level Type Function

JTAG_TDI NA I(TLCHTU) Scan Test Data In

JTAG_TMS NA I(TLCHTU) Scan Test Mode Select. Selects the scan input of all flip-flops
when driven low . Driven high for normal operation.

JTAG_TCK NA I(TLCHTU) Scan Test Clock

JTAG_TDO NA 0O(B2) Scan Test Data/Parametric NAND tree/PLL T est Clock Out

TEI NA I(TLCHN) I/O pin tristate enable. When driven low , all bidirectional pins and

tri-state unidirectional pins are forced into high impedance state.
Driven high for normal operation.

TP[1:0] NA I(TLCHT) PLL/Scan Test Mode. Encoded as follows:
00 Normal Operation. VCO ripple counter output ->JT AG_TDO
01 PLL bypass mode. Scan chain output ->JT AG_TDO
10 PLL bypass mode. Parametric NAND tree -> JT "AG_TDO
11 Scan mode. JT AG_TCK drives all flops. Scan chain
output -> JT AG_TDO. VCO is disabled for IDD test

PLL_RESET_N L I(TLCHT) PLL Reset. The loop filter output is grounded when asserted
LP1 NA O(DDRVO) PLL Charge Pump Output / Loop Filter Input

LP2 NA I/O(RDDRVPD) PLL VCO input / Loop Filter Output

AVDD NA I(RDDRV) PLL Analog VDD

AVSS NA I(RDDRV) PLL Analog VSS

AGND NA O(RDDRVO) PLL Analog Ground

August 13, 1993 pagel3

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

2.3 VHDL Description

This section describes the device level interface to the REX3 as a VHDL entity.

entitiy REX3 is
port(

--GI064 Bus interface (74 pins)
P_AD : inout mvl7w_vector (63 downto 0);
P_AS N :in mvl7w;
P_READ : in mvl7w;
GRXDLY : out mvl7w;
MEMDLY : in mvil7w;
FIFO_INT_N : out mvi7w;
VV_INT_N : out mvl7w;
SLOT_NUMBER : in mvl7w_vector (1 downto 0);
GIORESET_N : in mvl7w;
GIO64CLK : in mvi7w;

--VRAM/RB2/REORG Interface (140 pins)
VRAM_RAS_A: out mvi7w;
VRAM_ADDR_A : out mvI7w _vector (8 downto 0);
VRAM_DTOE_N_A : out mvi7w;
VRAM_DSF1_A " out mvi7w;
VRAM_WBWE_N_A : out mvl7w;
VRAM_CAS_A_0: out mvi7w;
VRAM_CAS_A_1: out mvi7w;
RB2_SEL_A": out mvi7w_vector (2 downto 0);
RB2_DATA_A_0 : inout mvli7w_vector (7 downto 0);
RB2_DATA . A 1 inout mvi7w_vector (7 downto 0);
VRAM_RAS B': out mvi7w;
VRAM_ADDR _ B : out mvl7w vector (8 downto 0);
VRAM_DTOE_N_B : out mvi7w;
VRAM_DSF1_B : out mvi7w;
VRAM_WBWE_N_B : out mvl7w;
VRAM_CAS_B_0: out mvi7w;
VRAM_CAS B 1 : out mvi7w;
RB2_SEL_B: out mvi7w vector (2 downto 0);
RB2_DATA B_0 : inout mvi7w_vector (7 downto 0);
RB2_DATA B_1: inout mvl7w_vector (7 downto 0);
VRAM_RAS C : out mvi7w;
VRAM_ADDR_C : out va7W vector (8 downto 0);
VRAM_DTOE_N_C : out mvi7w;
VRAM_DSF1_C : out mvi7w;
VRAM_WBWE_N_C : out mvi7w;
VRAM_CAS_C_0: out mvi7w;
VRAM_CAS_C_1: out mvl7w;
RB2_SEL_C : out mvl7w_vector (2 downto 0);
RB2_DATA _C_0 : inout mvl7w_vector (7 downto 0);
RB2_DATA_C_1 : inout mvi7w_vector (7 downto 0);
VRAM_RAS D : out mvi7w;
VRAM_ADDR_D : out mvl7w_vector (8 downto 0);
VRAM_DTOE_N_D : out mvil7w;
VRAM_DSF1_D : out mvi7w;
VRAM_WBWE_N_D : out mvl7w
VRAM_CAS _D 0 : out mvi7w;
VRAM_CAS D_1 : out mvi7w;
RB2_SEL_D: out mvi7w_vector (2 downto 0);
RB2_DATA _D_0 : inout mvi7w_vector (7 downto 0);
RB2_DATA D 1 : inout mvl7w_vector (7 downto 0);
VC_TX_REQ :in mvi7w;
VC_SET TSC:in mvl7w

August 13, 1993

pagel4

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

RO_Y_DISP : out mvl7w_vector (1 downto 0);
--Display Control Bus Interface (18 pins)
DCB_ADDR : out mvl7w_vector (3 downto 0);
DCB_DATA : inout mvi7w_vector (7 downto 0);
DCB_CRS : out mvl7w_vector (2 downto 0);
DCB_CS_N : out mvil7w;
DCB_RW_N : out mvi7w;
DCB_ACK_ N :in mvi7w;
--Miscellaneous Back End pins (2 pins)
VERT_INT_N : in mvl7w;
VIDEO_INT_N: in mvil7w;
--ASIC Mandatory pins (13 pins)
TEI : in mvi7w; --External tri-state control
JTAG_TDI : in mvI7w;
JTAG_TMS : in mvi7w;
JTAG_TCK : in mvi7w;
JTAG_TDO : out mvl7w;
TP : in mvi7w_vector (1 downto 0);
PLL RESET_N:in mvi7w;
LP1 : out mvi7w;
LP2 : in mvi7w;
AGND : out mvi7w;
AVSS : in mvi7w;
AVDD : in mvI7w

)i
end REXS;
2.4 Package Pin Assignment

The following list of package pin assignments is from the LSI Logic LBOND program. The REX3 is mounted
in a 304 MQUAD cavity down package, and pins are numbered by LSI in a counter-clockwise manner when
viewing the die. When mounted (cavity down) on the PC board, pins are also numbered in a counter-clock-
wise fashion. Therefore, the printed circuit board pin number is equal to (305-LSI pin humber).

Pin Number Signal Name

1 vdd

2 _ad_10
3 ad_11
4 _ad_12
5 _ad_13
6 p_ad_14
7 VSsSs

8 p_ad_15
9 p_ad_16
10 p_ad_17
11 ad_18
12 ad_19
13 vdd

14 _ad_20
15 p_ad_21
16 p_ad_22
17 p_ad_23
18 p_ad_24
19 VSsS

20 gio64clkx
21 pll_reset_n
22 Ipl

23 Ip2

24 agnd

25 avdd

26 avss

27 p_ad_25
28 p_ad_26
29 _ad_27
30 _ad_28
31 _ad_29
32 vdd

33 p_ad_30
34 p_ad_31

August 13, 1993 pagel5

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

112
113
114
115
116

p_as_n
p_read
p_memdly
p_grxdly
p_ad_32
p_ad_33
vdd

VSS

VSS
p_ad_34
p_ad_35
p_ad_36
p_ad_37
p_ad_38
vdd
p_ad_39
p_ad_40
p_ad_41
p_ad_42
p_ad_43
VSS
p_ad_44
p_ad_45
p_ad_46
p_ad_47
p_ad_48
vdd
p_ad_49
p_ad_50
p_ad_51
p_ad_52
p_ad_53
VSS
p_ad_54
p_ad_55
p_ad_56
p_ad_57
p_ad_58
vdd
p_ad_59
p_ad_60
VSS

vdd
p_ad_61
p_ad_62
p_ad_63
slot_number_0
slot_number_1
tp_0

tp_1
video_int_n
vert_int_n
jtag_tms
jtag_tdi
jtag_tck
tei
jtag_tdo
ro_y disp_0
ro_y disp_1
VSS
vc_tx_req
vc_set_tsc
rb2_data_a_
rb2_data_a_|
rb2_data_a_

rb2_data_a
rb2_data_a

VSS
rb2_data_a_|
vram_wbwe_
vram_dtoe_n_a
vram_dsfl_a
rb2_sel_a 0
rb2_sel_a 1
vdd
rb2_sel_a_2
vram_addr_a 0
vram_addr_a_1
vram_addr_a_2

00
01
0 2
03
rb2_data_a_0_4
a 05
a_ 06
07
n_:

August 13, 1993

pagel6

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

117 vram_addr_a_3
118 Vss

119 vdd

120 vram_addr_a_4
121 vram_addr_a 5
122 vram_addr_a_6
123 vram_addr_a_7
124 vram_addr_a_8
125 VSsSs

126 vram_ras_a
127 vram_cas_a 0
128 vram_cas_a_1
129 rb2_data_a 1 0
130 rb2_data_a_1 1
131 vdd

132 rb2_data_a 1 2
133 rb2_data_a_1_3
134 rb2_data_a_1 4
135 rb2_data_a_1_5
136 rb2_data_a_1 6
137 VSS

138 rb2_data_a 1 7
139 rb2_data_b_0_0
140 vdd

141 rb2_data_b_0_1
142 rb2_data_b_0_2
143 rb2_data_b_0_3
144 rb2_data_b_0_4
145 rb2_data_b_0 5
146 VSS

147 rb2_data_b_0_6
148 rb2_data_b_0 7
149 vram_wbwe_n_b
150 vram_dtoe_n_b
151 vram_dsfl_b
152 vdd

153 Vss

154 rb2_sel_b_0
155 rb2_sel_b_1
156 rb2_sel b_2
157 vram_addr_b_0
158 vdd

159 vram_addr_b 1
160 vram_addr_b_2
161 vram_addr_b_3
162 vram_addr_b_4
163 vram_addr_b_5
164 VSsSs

165 vram_addr_b_6
166 vram_addr_b_7
167 vram_addr_b_8
168 vram_ras_b
169 vram_cas_b_0
170 vdd

171 vram_cas b 1
172 rb2_data b_1_0
173 rb2_data_b_1 1
174 rb2_data_b_1_2
175 rb2_data_b_1 3
176 VSS

177 rb2_data_b_1 4
178 rb2_data_b_1 5
179 rb2_data_b_1 6
180 rb2_data_b_1_7
181 rb2_data_c_0_0
182 vdd

183 rb2_data_c 0_1
184 rb2_data_c_0 2
185 rb2_data_c_0_3
186 rb2_data_c_0_4
187 rb2_data_c_0_5
188 VSS

189 rb2_data_c_0_6
190 rb2_ data_c_O_?
191 vram_wbwe_n_c
192 vram_dtoe_n_c
193 vram_dsfl_c
194 vdd

195 Vss

196 rb2_sel_c_0
197 rb2_sel_c_1

August 13, 1993 pagel7

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

198 rb2_sel_c_2
199 vram_addr_c_0
200 vram_addr_c_1
201 vdd

202 vram_addr_c_2
203 vram_addr_c_3
204 vram_addr_c_4
205 vram_addr_¢_5
206 vram_addr_c_6
207 A

208 vram_addr_c_7
209 vram_addr_c_8
210 vram_ras_c
211 vram_cas_c_0
212 vram_cas_c_1
213 vdd

214 rb2_data_ ¢ 1 0
215 rb2_data_c_1_1
216 rb2_data_c 1 2
217 rb2_data ¢ 1 3
218 rb2_data_c_1_4
219 VSS

220 rb2_data_ ¢ 1 5
221 rb2_data_c_1_6
222 rb2_data_c_1 7
223 rb2_data_d 0 0
224 rb2_data_d_0_1
225 vdd

226 rb2_data_d_0_2
227 rb2_data_d_0_3
228 A

229 vdd

230 rb2_data_d_0_4
231 rb2_data_d_0_5
232 rb2_data_d_0_6
233 rb2_data_d_0_7
234 vram_wbwe_n_d
235 VSS

236 vram_dtoe_n_d
237 vram_dsfl_d
238 rb2_sel_d_0
239 rb2_sel_d_1
240 rb2_sel_d_2
241 vdd

242 vram_addr_d_0
243 vram_addr_d_1
244 vram_addr_d_2
245 vram_addr_d_3
246 A

247 vram_addr_d_4
248 vram_addr_d_5
249 vram_addr_d_6
250 vram_addr_d_7
251 vram_addr_d_8
252 vdd

253 vram_ras_d
254 vram_cas_d_0
255 vram_cas_d_1
256 rb2_data_d_1 0
257 rb2_data_d_1_1
258 rb2_data_d_1_2
259 VSS

260 rb2_data_d_1_3
261 rb2_data_d_1_4
262 rb2_data_d_1 5
263 rb2_data_d_1 6
264 rb2_data_d_1_7
265 vdd”

266 VSS

267 dcb_data_0
268 dcb_data_1
269 dcb_data_2
270 dcb_data_3
271 dcb_data_4
272 vdd

273 dcb_data_5
274 dcb_data_6
275 dcb_data_7
276 dcb_crs_ 0

277 dcb_crs_1

278 VSS

August 13, 1993 pagel8

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

279 dcb_crs_2
280 dcb_rw_n
281 vdd

282 dcb_cs n
283 dcb_addr 0
284 dcb_addr_1
285 dcb_addr_2
286 dcb_addr_3
287 VSsSs

288 dcb_ack_n
289 vv_int_n
290 fifo_int_n
291 VSsS

292 gioreset_n
293 p_ad_O

294 p_ad_1

295 p_ad_2

296 p_ad_3

297 p_ad_4

298 vdd

299 p_ad_5

300 p_ad_6

301 p_ad_7

302 p_ad_8

303 p_ad_9

304 Vss

August 13, 1993 pagel9

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3 Programmer Interface

3.1 Registers

Table 7 lists the host accessible registers in REX3.

Addresses shown are an offset from the base GIO address of 0x1FnF0000, where n=(0,4,8,C), depending
upon the strapping of the GI064 SLOT_NUMBER(1:0) pins. Address offsets beginning with Ox1nnn are
intended to map corresponding registers into a separate “protected” page.

Access to address + 0x0800 issues primitive GO command.

Type “00” registers are not passed through either BFIFO or GFIFO, and force an immediate action when writ-
ten to.

Type “0” registers are associated with the Display Control Bus and go through BFIFO.

Registers other than type “[0” and “0" are associated with the graphics context and go through GFIFO.
Writes to type “o” registers will stall at the output of GFIFO until the graphics pipeline is idle.

Type “2c¢” indicates twos-complement value.

Type “sm” indicates signed magnitude value.

Write/Read format bit grouping is shown with location of binary point, (for COLOR registers, 24-bit mode
binary point shown). “s” refers to sign bit and “0” refers to overflow bit. Parenthesis are used to indicate a
place holder for unused bits.

Write format “#” denotes write-only command address.

Unused bits return 0 when read.

August 13, 1993 page20

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Address Name Type| Write Read Description
0x0000 | DRAWMODE1 . 32 32| Draw mode bits.
0x0004 |DRAWMODEO 24 24 | Draw instruction and mode bits.
0x0008 |LSMODE 28 28| Line stipple mode register.
0x000C |LSPATTERN 32 32| Line stipple pattern, (msb = first pixel).
0x0010 |LSPATSAVE 32 32| Copy of LSPATTERN for pattern restore (LSRESTORE).
0x0014 |ZPATTERN 32 32 | Pattern register, (msb = first pixel).
0x0018 |COLORBACK . 32 32| AGBR/CI opaque patterning color or blendfunction destination color.
0x001C |[COLORVRAM . 32 32| VRAM FASTCLEAR color, (set DRAWDEPTH and RGBMODE first).
0x0020 |ALPHAREF . 8 8 | AFUNCTION reference alpha value.
0x0024 |STALLO . # Forces stall at the output of GFIFO until graphics pipeline is idle.
0x0028 |SMASKOX 2c 16,16 16,16 | Screenmask 0: min, max boundaries, (window relative GL smask).
0x002C |SMASKOY 2c 16,16 16,16 | Screenmask 0: min, max boundaries, (window relative GL smask).
0x0030 |SETUP # Performs line/span setup without iteration (ignore DOSETUP).
0x0034 |STEPZ # Enables ZPATTERN (Z test fail) for one iteration, (current pixel).
0x0038 |LSRESTORE # Updates LSPATTERN/LSRCOUNT with LSPATSAVE/LSRCNTSAVE.
0x003C |LSSAVE # Updates LSPATSAVE/LSRCNTSAVE with LSPATTERN/LSRCOUNT.
0x0100 |XSTART 2c 16.4(7) 16.4(7) | Iterator X start-point (current), full state for context switch.
0x0104 |YSTART 2c 16.4(7) 16.4(7) | Iterator Y start-point (current), full state for context switch.
0x0108 | XEND 2c 16.4(7) 16.4(7) | Iterator X endpoint, full state for context switch.
0x010C |YEND 2c 16.4(7) 16.4(7) | Iterator Y endpoint, full state for context switch.
0x0110 |XSAVE 2c 16 16 | Copy of XSTART integer value for BLOCK addressing MODE.
0x0114 | XYMOVE 2Ce 16,16 16,16 | X,Y offset from XSTART,YSTART for relative operations (Scr2Scr).
0x0118 |BRESD 2c 19.8 19.8 | Bresenham “d” error term, for context switch.
0x011C |BRESS1 2c 2.15 2.15| Antialiased Bresenham “s1” coverage term, for context switch.
0x0120 BRESOCTINC1 3(4),17.3 | 3(4),17.3 | Bresenham octant & “incrl” error term increment value, for cntx switch.
0x0124 \BRESRNDINC2| 2c | 8(3),18.3| 8(3),18.3 | Bresenham 8-bit octant rounding mode (msb == octant 1, Isb == octant 8)
& Bresenham “incr2” error term increment value, for context switch.

0x0128 |BRESE1 1.15 1.15| Bresenham “el” constant (minor slope) for antialiased line draw.
0x012C |BRESS2 2c 18.8 18.8 | Antialiased Bresenham “s2” coverage term, for context switch.
0x0130 |AWEIGHTO 8x4 8 x 4| First half of 16x4-bit antialiased RGB/CI line weight table.
0x0134 |AWEIGHT1 8x4 8 x 4| Second half of 16x4-bit antialiased RGB/CI line weight table.
0x0138 |XSTARTF 12.4(7) GL version of XSTART, (zeros 4 msbs).
0x013C |YSTARTF 12.4(7) GL version of YSTART, (zeros 4 mshs).
0x0140 [XENDF 12.4(7) GL version of XEND, (zeros 4 msbs).
0x0144 |YENDF 12.4(7) GL version of YEND, (zeros 4 msbs).
0x0148 | XSTARTI 2c 16 Integer format for XSTART.
0x014C | XENDF1 12.4(7) Same as XENDF.
0x0150 |XYSTARTI 2c 16,16 Packed integer format for XSTART & YSTART.
0x0154 | XYENDI 2c 16,16 Packed integer format for XEND & YEND.
0x0158 | XSTARTENDI 2c 16,16 Packed integer format for XSTART & XEND.

Table 7: REX3 host visible registers.

August 13, 1993

page2l

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Address Name Type Write Read Description
0x0200 |COLORRED 0l12.11 012.11 | Red/Cl shade full state (Cl modes = 08.11, 04.11; RGB red = 08.15, etc.),
012.9 12-bit Cl mode shade. (Must first init DRAWMODE1 RGBMODE and
DRAWDEPTH fields to set this register write mode; not for ctxt restore.)
0x0204 |COLORALPHA 08.11 08.11 | Full state of alpha shade.
0x0208 |[COLORGRN 08.11 08.11 | Full state of green shade.
0x020C |COLORBLUE 08.11 08.11 | Full state of blue shade.
0x0210 |SLOPERED sm | s(7)12.11 Red/CI DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
2c 13.11 | case 12.11 result is computed; always “s” is placed into msb of 13.1 field.
0x0214 |SLOPEALPHA | sm | s(11)8.11 Alpha DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
2c 9.11 | case 8.11 result is computed; always “s” is placed into msb of 9.1 field.
0x0218 |SLOPEGRN sm | s(11)8.11 Green DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
2c 9.11 | case 8.11 result is computed; always “s” is placed into msb of 9.1 field.
0x021C |SLOPEBLUE sm | s(11)8.11 Blue DDA slope: “s” =1 on write denotes sm to 2¢ conversion, in which
2c 9.11 | case 8.11 result is computed; always “s” is placed into msb of 9.1 field.
0x0220 \WRMASK . 24 24 | Write mask for pixel, OLAY, or PUP/CID planes, (Isbs for 8-bit system).
0x0224 |COLORI 24 Packed BGR or CI color registers -- zeros fractions. (Must program
DRAWMODE1 RGBMODE hbit first to set color register write mode.)
0x0228 |COLORX 12.11 Color index shade, zeros overflow bit.
0x022C |SLOPERED1 sm | s(7)13.11 Same as SLOPERED.
0x0230 \HOSTRWO 32 32 | Host PIO/DMA data port, most significant word.
0x0234 |HOSTRW1 32 32| Host PIO/DMA data port, least significant word.
0x0238 | DCBMODE 0 29 29 | Display control bus mode register.
0x0240 |DCBDATAO 0 32 32 | Display control bus data port, most significant word.
0x0244 |DCBDATA1 0 32 32| Display control bus data port, least significant word.
0x1300 |SMASK1X 2Ce 16,16 16,16 | Screenmask 1: min, max boundary (screen absolute: X11 directionality).
0x1304 |SMASK1Y 2c e 16,16 16,16 | Screenmask 1: min, max boundary.
0x1308 |SMASK2X 2Ce 16,16 16,16 | Screenmask 2: min, max boundary (screen absolute: X11 directionality).
0x130C |SMASK2Y 2Ce 16,16 16,16 | Screenmask 2: min, max boundary.
0x1310 |SMASK3X 2c e 16,16 16,16 | Screenmask 3: min, max boundary (screen absolute: X11 directionality).
0x1314 |SMASK3Y 2Ce 16,16 16,16 | Screenmask 3: min, max boundary.
0x1318 |SMASK4X 2Ce 16,16 16,16 | Screenmask 4: min, max boundary (screen absolute: X11 directionality).
0x131C |SMASK4Y 2c e 16,16 16,16 | Screenmask 4: min, max boundary.
0x1320 |[TOPSCAN 10 10| Y address for top of screen scan line, (0,1023=top,bottom of framebuffer).
0x1324 | XYWIN 2c 16,16 16,16 | Screen X,Y offset for window relative addressing and coordinate biasing.
0x1328 |CLIPMODE . 13 13| CID, screenmask mode and enable bits.
0x132C |STALL1 . # Forces stall at the output of GFIFO until graphics pipeline is idle.
0x1330 |CONFIG d 21 21| Miscellaneous configuration bits.
0x1338 |STATUS O 20| Chip busy and FIFO status register. Reading clears interrupt status bits.
0x133C |USER_STATUS | [20| Chip busy and FIFO status register for User code. Non-destructive reads.
0x1340 | DCBRESET O # Resets the DCB bus state machine and flushes BFIFO.
Table 7: REX3 host visible registers.

August 13, 1993

page22

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.11

Control Register Bit Definitions

The following tables outline the definition of REX3 control register bits. Refer to related sections in Chapter
3 for discussion of the REX3 drawing, masking, and pixel I/O programming interface.

3.11.1 DRAWMODEDO Register
Bits Name Access| Init | Active Description
1:0 |OPCODE(1:0) R/W | 0x0 Primitive function command.
4:2 |ADRMODE(2:0) R/W | 0x0 Primitive function addressing mode.
5 |DOSETUP R/W | 0x0 H Enables SPAN/BLOCK/I_LINE/F_LINE/A_LINE iterator setup.
6 |COLORHOST R/W | 0x0 H RGB/CI draw source: 0=DDAs; 1=HOSTRW register.
7 |ALPHAHOST R/W | 0x0 H Alpha draw source: 0=DDA; 1=HOSTRW register.
8 |STOPONX R/W | 0x0 H Specifies execution tests for X coordinate endpoint reached.
9 |STOPONY R/W | 0x0 H Specifies execution tests for Y coordinate endpoint reached.
10 |SKIPFIRST R/W | 0x0 H Disable start-point draw (lines only).
11 |SKIPLAST R/W | 0x0 H Disable endpoint draw, freeze iterators at endpoint (lines only).
12 |ENZPATTERN R/W | 0x0 H Patterning enable.
13 |ENLSPATTERN R/W | 0x0 H Line stipple pattern enable.
14 |LSADVLAST R/W | 0x0 H Enables stipple advance at end of line.
15 |LENGTH32 R/W | 0x0 H Limits draw primitive to 32 pixels.
16 |ZPOPAQUE R/W | 0x0 H Enables opaque (vs. transparent) stipple mode for ZPATTERN.
17 |LSOPAQUE R/W | 0x0 H Enables opaque (vs. transparent) stipple mode for LSPATTERN.
18 |SHADE R/W | 0x0 H Enables linear shader R,G,B,A/CI DDAs.
19 |LRONLY R/W | 0x0 H Aborts primitive if initial XSTARTI > XENDI.
20 |XYOFFSET R/W | 0x0 H Add XYMOVE to XSTART,YSTART for draw relative operations.
21 |CICLAMP R/W | 0x0 H Enables Cl shader DDA over/underflow clamping for CI pixels.
22 |ENDPTFILTER R/W | 0x0 H Enables hardware endpoint filtering (A_LINE only).
23 |YSTRIDE R/W | 0x0 H Enables Y axis increment/decrement by 2
Table 8: DRAWMODEDQ register
Value Name Description
00 NOOP Do nothing.
01 READ Host read from framebuffer using ADRMODE.
10 DRAW Draw into framebuffer using ADRMODE.
11 SCR2SCR | Framebuffer to framebuffer copy, (valid with ADRMODE=SPAN/BLOCK).

Table 9: DRAWMODEO OPCODE(1:0) definition.

August 13, 1993

page23

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Value Name Description

000 SPAN Span (or point) addressing mode.

001 BLOCK Block addressing mode, advance Y and restore XSTART at end of span.
010 I_LINE Bresenham line addressing mode, integer endpoints.

011 F_LINE Bresenham line addressing mode, fractional endpoints.

100 A_LINE Antialiased Bresenham line addressing mode .

Table 10:. DRAWMODEO ADRMODE(2:0) definition.

August 13, 1993

page24

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.11.2 DRAWMODEL1 Register
Bits Name Access| Init | Active Description
2:0 |PLANES(2:0) R/W | 0x1 Specifies which framebuffer planes enabled for R/W access:
000 none
001 R/W RGB/CI planes
010 R/W RGBA planes
100 R/W OLAY planes
101 R/W PUP planes
110 R/W CID planes
4:3 |DRAWDEPTH(1:0)| R/W | 0x0 Drawn depth of framebuffer PLANES, not including alpha:
00 Depth = 4 bits
01 Depth = 8 bits
10 Depth = 12 bits
11 Depth = 24 bits
5 |DBLSRC R/W | 0x0 Double-buffer mode pixel read source buffer, (0= buffer0).
6 |YFLIP R/W | 0x0 H Enable GL Y coord mapping: O=origin at upper left; 1=origin at lower left.
7 |RWPACKED R/W | 0x0 H Enables pixel packing for HOSTRW access.
9:8 |HOSTDEPTH(1:0) | R/W | 0x0 HOSTRW pixel packing/unpacking:
00 Pixel depth = 4 bits (1-2-1 BGR or 4 ClI)
01 Pixel depth = 8 bits (3-3-2 BGR or 8 Cl)
10 Pixel depth = 12 bits (4-4-4 BGR or 12 ClI)
11 Pixel depth = 32 bits (8-8-8-8 ABGR)
10 |RWDOUBLE R/W | 0x0 H Enables double word (64-bit) host transfers (vs. 32-bit single word).
HOSTRW(0,1) format for host framebuffer DMA/PIO only.
11 |SWAPENDIAN R/W | 0x0 H OpenGL SWAP_ENDIAN pixel storage attribute. When true, HOSTRW
short and long packed pixel data have their byte ordering swapped.
14:12 |COMPARE(2:0) R/W | 0Ox7 Color compare and AFUNCTION condition specifier, (conditions OR’ed).
COMPARE(2) R/W H Enable compare condition: src > dest.
COMPARE(1) R/W H Enable compare condition: src = dest.
COMPARE(0) R/W H Enable compare condition: src < dest.
15 |RGBMODE R/W | 0x1 H Selects RGB (vs. Cl) shade, round, dither, compare, and clamp modes.
16 |DITHER R/W | 0Ox0 H Enables dithering.
17 |FASTCLEAR R/W | 0x1 H Enables fast-clear write mode when CID checking disabled (CLIPMODE
CIDMATCH = 0xF). Valid with DRAW SPAN/BLOCK only.
18 |BLEND R/W | 0x0 H Enable blendfunction.
21:19 |SFACTOR(2:0) R/W | 0x0 H Blendfunction source blending factor, (see Table 13).
24:22 | DFACTOR(2:0) R/W | 0Ox0 H Blendfunction destination blending factor, (see Table 14).
25 |BACKBLEND R/W | 0x0 H Enable COLORBACK to be used for blendfunction destination color.
26 |PREFETCH R/W | 0x0 H Enables host framebuffer pixel prefetch mechanism for PIO reads.
27 |BLENDALPHA R/W | 0x0 H Selects SFACTOR BF_SA source alpha: ‘1’ = source alpha, ‘0’ = 1.0.
31:28 |[LOGICOP(3:0) R/W | 0x3 Logical operation type, (see Table 12).

Table 11: DRAWMODEU1 register.

August 13, 1993

page25

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Value Symbol Operation
0000 | LO_ZERO 0
0001 | LO_AND src AND dst
0010 | LO_ANDR src AND (NOT dst)
0011 | LO_SRC src
0100 | LO_ANDI (NOT src) AND dst
0101 | LO_DST dst
0110 | LO_XOR src XOR dst
0111 | LO_OR src OR dst
1000 | LO_NOR NOT (src OR dst)
1001 | LO_XNOR NOT (src XOR dst)
1010 | LO_NDST NOT dst
1011 | LO_ORR src OR (NOT dst)
1100 | LO_NSRC NOT src
1101 | LO_ORI (NOT src) OR dst
1110 | LO_NAND NOT (src AND dst)
1111 | LO_ONE 1

Table 12: DRAWMODE1 LOGICOP(3:0) definition.

Value Symbol Source Blending Factor

000 | BF_ZERO 0

001 | BF_ONE 1

010 | BF_DC normalized[destination color (or COLORBACK)]
011 | BF_MDC 1 - normalized[destination color (or COLORBACK)]
100 | BF_SA normalized[source alpha]

101 | BF_MSA 1 - normalized[source alpha]

Table 13: DRAWMODE1 SFACTOR(2:0) definition.

Value Symbol Destination Blending Factor
000 | BF_ZERO 0

001 | BF_ONE 1

010 | BF_SC normalized[source color]
011 | BF_MSC 1 - normalized[source color]
100 | BF_SA normalized[source alpha]
101 | BF_MSA 1 - normalized[source alpha]

Table 14: DRAWMODE1 DFACTOR(2:0) definition.

August 13, 1993

page26

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.1.1.3 LSMODE Register
Bits Name Access| Init | Active Description
7:0 |LSRCOUNT(7:0) R/W Current value of LSREPEAT down counter, (advance LS pattern when 0),
15:8 |LSREPEAT(7:0) R/W Line stipple pattern (bit expansion) repeat factor, (1 < LSREPEAT < 255).
23:16 |LSRCNTSAVE(7:0)] R/W Copy of LSRCOUNT, (updated with write to LSSAVE register address).
27:24 |LSLENGTH(3:0) R/W Length of LSPATTERN, from 17 to 32, starting with msb, (0000=17).
Table 15: LSMODE register.
3.1.14 CLIPMODE Register
Bits Name Access| Init | Active Description
4:0 |ENSMASK(4:0) R/W | 0x0 H Individual enables for SMASK4:0.
8:5 |<reserved> R/W | 0x0
12:9 |CIDMATCH(3:0) R/W | 0x0 CID codes to compare, results OR’ed:
CIDMATCH(3) H selects CID code 11 for CID check
CIDMATCH(2) H selects CID code 10 for CID check
CIDMATCH(1) H selects CID code 01 for CID check
CIDMATCH(0) H selects CID code 00 for CID check
Table 16: CLIPMODE register.
3.1.1.5 STATUS Register/lUSER_STATUS Register
Bits Name Access| Init | Active Description
2:0 |VERSION(2:0) R Revision code, (001 = 1st revesion).

3 |GFXBUSY R 0x0 H Indicates graphics pipeline not idle or GFIFO not empty.

4 |BACKBUSY R 0x0 H Indicates backend pipeline not idle or BFIFO not empty.

5 |VRINT R H Video controller vertical retrace interrupt. VR_INT_N falling-edge
detected, generating VV_INT interrupt. Cleared by the read of STATUS,
not cleared by the read of USER_STATUS.

6 |VIDEOINT R H Video option interrupt VIDEO_INT_N status, generating VV_INT
interrupt.

12:7 |GFIFOLEVEL(5:0) R 0x00 Current GIO graphics FIFO level, (0 = empty FIFO).
17:13 |BFIFOLEVEL(4:0) R 0x00 Current display bus FIFO level, (0 = empty FIFO).

18 |BFIFO_INT R 0x0 H BFIFOLEVEL above BFIFODEPTH interrupt was generated. Cleared by
the read of STATUS, not cleared by the read of USER_STATUS.
Provides sticky status of BFIFO above FIFO_INT_N interrupts.

19 |GFIFO_INT R 0x0 H GFIFOLEVEL above GFIFODEPTH interrupt was generated. Cleared by

the read of STATUS, not cleared by the read of USER_STATUS.
Provides sticky status of GFIFO above FIFO_INT_N interrupts.

Table 17: STATUS register.

August 13, 1993

page27

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.1.16

CONFIG Register

Bits

Name

Access

Init

Active

Description

6:3

12:8

13

16:14

19:17
20

GIO32MODE

BUSWIDTH
EXTREGXCVR

BFIFODEPTH(3:0)

BFIFOABOVEINT

GFIFODEPTH(4:0)

GFIFOABOVEINT

TIMEOUT(2:0)

VREFRESH(2:0)
FB_TYPE

R/W

R/W
R/W

R/W

R/W

R/W

R/W

R/W

R/W
R/W

0x0

0x0
0ox1

0x8

Ox1

0x10

0ox1

0x0

Ox1

H

When set, the REX3 will assume that the information sent by the host
during the byte count cycle of a GIO bus transfer is in GIO32 bus format.
When cleared, GIO64 byte count cycles are assumed. When GIO32
mode is selected, EXTREGXCVR should also be set, and BUSWIDTH
should be cleared.

Denotes the physical width of the GIO64 bus. 1=64 bits, 0=32 bits

Denotes the presence of external registered transceivers separating the
pipelined from the non-pipelined GIO64 bus.

Display bus FIFO high/low trigger depth: stalls GIO bus and enables GIO
timeout counter when BFIFOLEVEL>=BFIFODEPTH and BFIFABOVEINT
is set. Host FIFO interrupt is generated when BFIFOLEVEL becomes
less than BIFODEPTH and BFIFOABOVEINT is cleared.

Display bus FIFO interrupt select. When set, GIO bus stalls and GIO
timeout counter is enabled when BFIFOLEVEL= BFIFODEPTH. When
cleared and BFIFOLEVEL becomes less than BIFODEPTH, a host FIFO
interrupt is generated.

GIO graphics FIFO high/low trigger depth: stalls GIO bus and enables
GIO timeout counter when GFIFOLEVEL>GFIFODEPTH and
GFIFOABOVEINT is set. Host FIFO interrupt is generated when
GFIFOLEVEL becomes less than GIFODEPTH and GFIFOABOVEINT is
cleared.

GFIFO interrupt select. When set, GIO bus stalls and GIO timeout
counter is enabled when GFIFOLEVEL= GFIFODEPTH. When cleared
and GFIFOLEVEL becomes less than GIFODEPTH, a host FIFO interrupt
is generated.

GIO bus timeout interval: 000=0.96usec, 001=1.44pusec... 111=4.32sec.
Timeout generates host FIFOFULL interrupt and unstalls GI1O bus.

Number of VRAM refresh cycles per transfer cycle, 000=refresh disabled.

Framebuffer fastclear column mask mode select:
0 Tl mode: replicate 4-bit comumn mask
1 non-TI mode: zero-fill comumn mask 4 msbs

Table 18: CONFIG register.

August 13, 1993

page28

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.1.1.7 DCBMODE Register
Bits Name Access| Init | Active Description
1:0 |DATAWIDTH(1:0) R/W | 0x0 Width of the data being transferred for each DCBDATAOQO or DCBDATA1
word. Needed to support the OpenGL SWAP_ENDIAN construct, and to
allow RGB triplets to be packed into words.
00 4 bytes
01 1 byte
10 2 bytes
11 3 bytes
2 |ENDATAPACK R/W | 0x0 H Determines the use of the DATAWIDTH field for packed/unpacked data.
When set, all bytes addressed by DCBDATA will be transferred. When
clear, only DATAWIDTH bytes in each addressed DCBDATA word will be
transferred
3 |ENCRSINC R/W | 0x0 H Enables DCB_CRS(2:0) auto-increment following each DCB transfer.
6:4 |DCBCRS(2:0) R/W | 0Ox0 Display bus control register select address.
10:7 |DCBADDR(3:0) R/W | OxF Display bus slave address.
11 |ENSYNCACK R/W | 0x0 H Enables display control bus protocol with synchronous acknowledge of
data transfer with DCB_ACK_N
12 |ENASYNCACK R/W | 0x0 H Enables display control bus protocol with asynchronous acknowledge of
data transfer (four-edge handshake protocol with DCB_CS_N and
DCB_ACK_N).
17:13 |CSWIDTH(4:0) R/W | 0x0 # GIO_CLK cycles width for DCB_CS_N.
22:18 |CSHOLD(4:0) R/W | 0x0 # GIO_CLK cycles hold time before DCB_CS_N de-asserted.
27:23 |CSSETUP(4:0) R/W | 0x0 # GIO_CLK cycles setup before DCB_CS_N asserted.
28 |SWAPENDIAN R/W | 0x0 H OpenGL SWAP_ENDIAN pixel storage attribute. When true, DCBDATA

short and long packed pixel data have their byte ordering swapped.

Table 19: DCBMODE reqgister.

August 13, 1993

page29

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.2 Coordinate System

There are several ways to describe the coordinate system in REX3. First, its framebuffer contains a region
of 1280 x 1K pixels which can be displayed on a monitor. To the right of this area is an “off-screen” or non-
displayed section of memory which is 64 pixels wide, adjacent to the right edge of displayable memory.

The physical coordinates for this displayable space are: 4K,4K for the upper left corner, and 4K+1279, 5K-
1 for the lower right corner. The lower right corner becomes 5K+63 including the off-screen memory space.

The X11 window system normally considers the upper left region of displayable memory as being at 0,0; in
order to achieve this with REX3, the window relative bias register XYWIN is loaded with a 4K,4K offset val-
ue. This allows the X11 coordinate system to be used directly with REX3, which supports the full 16b,16b
addressability (-32K through +32k-1 along each axis), without the need for host clipping.

The GL implementation running on REX3 relies on float-to-fixed point coordinate transformation shortcuts
which result in biased coordinates; this bias is hardwired within REX3 to a value of 4K,4K. Assuming that
the GL makes use of exactly this bias value, applicatons which rely on transformed coordinates do not need
to load XYWIN with the 4K,4K bias; instead, the XYWIN register is used for window-relative offset, from the
displayed screen origin to the origin of the GL window of interest: xrel, yrel. If the GL uses a bias differing
from 4K then XYWIN must be explicitly biased by the value (GL bias minus 4K) so as to yield values of:
(xrel + GL bias - 4K), (yrel + GL bias -4K).

The GL relies on a subset of the X11 address space, limited to 8K x 8K (0 thru 8K-1 along each axis, where
our origin is centered at or about 4K,4K, depending on the bias mentioned above) . When the Y axis is
increasing in downward direction (X11 system, which some GL code has been modified to conform to), the
DRAWMODEL1 bit YFLIP is set to zero, and all window and screen origins are referenced to the upper left
of respective area rectangles. When the Y axis increases upward (the usual GL convention) the DRAW-
MODEL1 bit YFLIP is set to one; now all window and screen origins are referenced to the lower left of re-
specitve area rectangles. In this case, XYWIN must be set to (O+xrel, 9K-1-yrel), where xrel,yrel are signed
distance from screen origin to window origin (all lower left here), assuming 4K,4K biasing of the X,YSTART
and X,YEND coordinate values. This becomes a little more complex if biasing differs: (xrel + GL bias - 4K),
(5K + GL bias -1 - yrel).

Subpixel positioning of XSTART, YSTART, XEND, YEND of 4 bits are supported for line drawing, including
antialiasing and endpoint filtering.

An arbitrary signed offset may be applied to XSTART, YSTART via setting DRAWMODEDO bit XYOFFSET.
The signed value in XYMOVE is then applied. (Note: XYOFFSET should never be set for screen-to-screen
copy mode, which uses XYMOVE for its own offset between source and destination.)

3.3 Clipping and Masking

Framebuffer values are conditionally written as a function of sector clipping, screen masking, CID masking,
afunction, and color compare. (Transparent patterning also conditions the writes, see 3.8.1, Patterning and
Stippling.) Bits within each write are masked by the 24b WRITEMASK register (in this case, ‘0’ means don't
write).

Sector clipping is performed internally by REX3 so as to cull any writes which are outside the legal drawing
area, defined by VRAM space. This space is described in Section 3.2, Coordinate System. Note that reads
are not culled, so as to maintain simplified read behavior for DMA and host reads.

Screen masking is performed via the 5 sets of rectangles described by the SMASK registers. These are

controlled by the CLIPMODE register, to define invocation of each mask. All screenmasks are selectively
invoked by the ENSMASK field, and determine whether a given pixel is outside its area. SMASKO is a GL
mask, which clips drawing outside its region; it is window-relative (affected by XYWIN YFLIP) and conforms
to GL coordinate behavior (ust be biased in the same way as X and Y coordinates: see previous chapter).
Locations outside are masked. SMASKS1-4 are X11 general-purpose masks, not window-relative; coordi-

August 13, 1993 page30

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

nates are absolute, and unaffected by XYWIN or YFLIP, requiring the host to prebias them with the 4K,4K
offset.

Overall, a screenmasked pixel may be written iff it is:

{(inside any of enabled screenmasks1-4) or (all screenmasks 1-4 disabled)} AND { inside screenmaskO or
screenmaskO disabled}.

Reads are never screenmasked.

CID masking is invoked on writes to framebuffer whenever CLIPMODE register bits CIDMATCH are not
‘1117’. In that case, CID location corresponding to each framebuffer address is read and compared with CI-
DMATCH field. If there is a match, the framebuffer write is permitted. CID checking is never performed on
framebuffer reads.

Afunction, or alpha function, is a GL feature which allows the user to inhibit framebuffer writes for specified
compare relationship between source alpha (either from DDA or host, for bit ALPHAHOST=0,1 respective-
ly) and a specified reference alpha stored in register ALPHAREF. The compare operator is given in the
DRAWMODE1 register COMPARE field.

Color compare is a peculiar feature of old GL releases for aiding in antialiased color index line drawing. For
RGBMODE=0, linedraw antialiased with DRAWMODE1 bits COMPARE not ‘111’ will conditionally write
based on source value, destination value comparison.

Writemasking is specified for 24b field and must match the bit positioning as described in Section 3.9,
Framebuffer Formats (exception: writes to AUX planes only use lower 12b of the WRITEMASK). The
WRITEMASK register is also used to specify double buffering, see Section 3.7, Double Buffering, for more
details.

3.4 lterator Overview

There are four types of hardware iterators in REX3: D,S1,S2; R,G,B,A/X; LSPATTERN,ZPATTERN; X.Y.
First, the D term Bresenham error stepping iterator for controlling advance of X,Y major axis for Bresenham
linedraw. Additional iterators are provided for antialiased linedraw, to control pixel coverage: S1 calculates
the coverage value, in conjunction with S2 which determines secondary pixel direction along the minor axis.
Second, DDA iterators for Cl and R,G,B,A values for all planes. Third, recirculating iterators for line stipple
pattern (LSPATTERN) and polygon or Z mask pattern (ZPATTERN). Fourth, integer increment/decrement
iterators for X,Y of lines, spans and blocks.

The Bresenham stepper calculates one pixel address and coverage per clock. The Y iterator calculates one
value per clock (+/-1). The shader DDA calculates one or two pixel values per clock (+1,+2 times slope).
The pattern iterators calculate one, two, or four values per clock. The X iterator calculates one, two, four, or
32 values per clock (+/-1, +2, +/-4, +32).

Values per pipeline clock are determined as follows: aliased linedrawing, one/clk; antialiasaed linedrawing,
two/3 clks; shaded DDA spans/blocks, two/clk; flat DDA spans/blocks, four/clk; screen-to-screen block
copy, per read or write: four/clk; fast clear spans/blocks, 32/clk; host/DMA reads, one to four/clk, and writes,
one or two/clk, depending on packed number of values per bus transfer specified in DRAWMODEL1. For
more information on these modes, see Section 3.5, Framebuffer Access Modes.

Each of these iterators can be loaded with new starting values at the start of each primitive; they compute
successive values within that primitive, for multiple-pixel primitives. Normally each iterator will retain, after
primitive completion, the state corresponding with the point after that last drawn. (H/W Note: for back-to-
back primitives, the completion of the first overlaps with the start of the next, so that the iterator is never
loaded with the final state of first primitive, should the following primitive load the same iterator.)

Special mode bits are provided so that connected lines, which cover vertex of intersection twice (once per
iterated line), don’t cause problems. For GL, stippled, connected lines would normally advance line stipple
twice at intersection; to prevent this, DRAWMODEQO bit LSADVLAST is set to zero, to inhibit LSPATTERN

August 13, 1993 page3l

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

advance at end of primitive. The pixel of intersection is, however, drawn twice. This is not desired for X11,
where lines could be drawn with LOGICOP=xor: then drawing same location twice gives different value than
drawing once! To handle this, bit SKIPLAST is set to inhibit drawing of endpoint of a line, and retain X,Y
state of the endpoint. This has the additional advantage of eliminating the need to reset the X,Y starting val-
ues for successive connected lines (e.g., for integer endpoint case). A SKIPFIRST bit is provided to skip
first pixel of antialiased line, should host prefer to do the endpoint filtering itself. When this bit is set, the X,Y
iterators again retain the state of the endpoint. Note: “first” pixel is the first pixel per “GO” event; “last” pixel
is (are) that corresponding to the major axis end value.

35 Framebuffer Access Modes

The framebuffer may be accessed as points, lines, spans, or blocks of data. Additionally, REX3 provides
autoincrementing address features so that a line may be accessed as successive points (or patterned seg-
ments, for writes); a span as successive points or segments; and a block as successive points, segments,
or spans. Here the term “segment” is loosely used to refer to a fixed length string of pixels, usually a subset
of the primitive (line, span, or block row) being iterated. In the following subsections, “Segments I” refers to
packed host data, using the HOSTRW registers with COLORHOST or ALPHAHOST set; “Segments II” re-
fers to remaining cases which have DRAWMODEDO bit LENGTH32 set.

3.5.1 Lines: Overview

Line mode is indicated by DRAWMODEDO register field ADRMODE=I_LINE, F_LINE, A_LINE. The Bresen-
ham setup is performed by REX3. This may include subpixel and antialiasing coverage calculations. For
information on integer versus subpixel positioned cases, see Section 3.6, Linedrawing.

Line drawing is specified by DRAWMODEOQ field OPCODE=draw; reading a line by OPCODE=read.

The endpoint of each line is not drawn if SKIPLAST=1; in this case the X,Y start state remains at the end-
point; the startpoint is not drawn if SKIPFIRST=1 (note: SKIPFIRST is used at start of each primitive, so it
should be cleared for second and later segments or points for case of primitive decomposed as such).

3.5.1.1 Line Draw or Host Read: Points

A line can be read or written as sequential points by setting STOPONX=STOPONY=0. The state of
XSTART, YSTART is post-iterated each access, in accordance with the Bresenham algorithm.

Prior to the first point, the host must write to address=SETUP to have REX calculate octant and Bresenham
terms.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 0 0 0 0
3.5.1.2 Line Draw: Segments Il

Here 32 pixels are drawn per primitive, until end condition reached. This is useful when patterning (LSPAT-
TERN, ZPATTERN) using the 32b pattern/stipple/z masking registers.

Prior to drawing the first segment, a write to address=SETUP is required, to perform octant and error term
initialization.

August 13, 1993 page32

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 1 1 0 1
3.5.13 Line Draw: Full Line
This primitive draws a line as one command.
XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 1 1 1 0
3.5.2 Point Draw or Read

A point is described by a XSTART, YSTART pair. This may be packed into a single word as a pair of integer
values (XYSTARTI), or as two words.

Whether reading or writing points, the DRAWMODEDO register is initialized with ADRMODE=block, DOSET-
UP=0.

A point is written using OPCODE=draw. A collection of points as X,Y pairs per transfer may be written as
a DMA to rapidly construct an arbitrary, monochrome shape, such as a circle. The DRAWMODEDQO bit XY-
OFFSET may be used to add XYMOVE to these X,Y values. A pointis read using OPCODE=read.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS -- YS -- 0 0 0 0
3.5.3 Spans: Overview

Unlike points, spans require an X endpoint; DRAWMODE field ADRMODE=span is set for spans, indicating
that X stepping direction is to be implied by sign of {XEND minus XSTART}. Currently there are not plans to
support Right-to-Left spans.

Spans may be culled by use of the DRAWMODEO LRONLY bit: it aborts span primitives where {XEND <
XSTART}, allowing Left-to-Right Only to draw.Spans are drawn using OPCODE=draw; they are read using
OPCODE-=read.

User beware: the graphics state at the end of span iteration is determined by granularity of X coordinate
stepping.
3531 Span Draw or Host Read: Segments |

This span drawing mode uses pixel values from host or DMA obtained through the HOSTRW registers. De-
pending on the packing format, this could be one to sixteen pixels per 64b word, or to eight per 32b word.
DRAWMODEDQ bit COLORHOST (ALPHAHOST) = 1 to indicate pixel source is not DDA.

This mode is also used for host reads of a span.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

August 13, 1993 page33

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS - 0 0 0 0
3.5.3.2 Span Draw: Segments Il

This span drawing mode unlike the above, uses the DDA to calculate pixel value. It stops after 32 pixels
have been iterated, or the X endpoint is reached, whichever comes first. This is useful when using the LS-
PATTERN or ZPATTERN features, for non-repeating pattern values, such as Z buffering or arbitrary X11 pat-
terning. For spans of less than 33 pixels in length, the Full Span mode may be used instead.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS -- 1 0 0 1
3.5.3.3 Span Draw or DMA Read: Full Span

This span mode draws a span as a single primitive.

A monochrome shape which is decomposed into a list of spans can be written using 64b writes as XYEN-
DI#XYSTARTI. Shape would be redrawn at various locations via use of DRAWMODEQO bit XYOFFSET and
XYMOVE.

This mode is used for DMA framebuffer reads of a span.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS -- 1 0 1 0
3.54 Blocks: Overview

Block mode is specified by DRAWMODEQO field OPCODE=Dblock. Drawing is performed on a span-by-span
basis. At the end of each span, the XY DDA steps the YSTART value and resets the XSTART value to that
from XSAVE; XSAVE is written whenever XSTART is updated by host. In addition to the coordinates needed
for a span, the block mode also requires the YEND value. Stepping in the Y direction is implied by sign of
{YEND minus YSTART}. As mentioned before, there is not support for Right-to-Left spans.

Block draw is performed with OPCODE=draw; reads via OPCODE=read.

Polygon filling may use block draw mode to automatically step Y per span; host then sets XSTART, XEND
per span. YEND is set initially to an extreme so as to simply imply the direction of Y axis stepping per row.
STOPONY=0 for this mode, which means the first three block draw cases below can support this.

3541 Block Draw or Host Read: Segments |

Block draw in segments from host/memory is done as a sequence of span segment writes; a segment which
exceeds the block width is truncated so that a segment is never covering two block rows (spans). Host must
set COLORHOST or ALPHAHOST =1 for this mode. See Span Draw, Segments | for more information.

August 13, 1993 page34

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

This mode is also used for host reads of framebuffer block.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 0 0 0 0
3.54.2 Block Draw: Segments I

Each primitive draws 32 pixels, maximum. Used in conjunction with LSPATTERN, ZPATTERN. The block
mode makes this useful for large character or other bit expansion drawing. Again, a primitive (segment) is
truncated at the end of each row, and never applied to two rows. See Span Draw, Segments Il for more
information.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 1 0 0 1
3.5.4.3 Block Draw or Stride DMA Read: Spans

The block is drawn as a span per primitive, with the XY DDA performing post-increment of Y and reset of

X. Useful for characters of < 33 pixels width, using bit expansion of LSPATTERN, ZPATTERN.

Stride DMA reads use this mode.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 1 0 0 0
3544 Block Draw or Linear DMA Read: Full Block
Draws an upright rectangular region as a single primitive.
Linear DMA read uses this mode for full block.
XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 1 1 1 0
355 Fast Clear

This drawing mode provides 4x rate, for fast area clear. No support for any per pixel operations, such as

shade, stipple, dither, blend. Flat fill only, via value previously written by host into the COLORVRAM register.
The loading of COLORVRAM must be performed after DRAWMODEL1 fields RGBMODE and DRAWDEPTH
have been set. In addition to the bits shown below, the DRAWMODE1 bit FASTCLEAR must be set. DRAW-

August 13, 1993 page35

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

MODEQO register OPCODE=draw, ADRMODE=Dblock or span must be used. CID checking is not allowed for
this drawing mode. Spans must be Left to Right.

XS XE YS YE StoponX | StoponY | Dosetup | Length32
XS XE YS YE 1 1 1 0
3.5.6 Screen-to-Screen Move

Screen-to-screen copy is specified by DRAWMODEDO field OPCODE=Scr2Scr and ADRMODE-=block or
span. The command setup is similar to the Full Block or Full Span draw, with the addition of a signed offset
to destination (**unlike REX1, which was offset to source**) specified by XYMOVE. This offset is with re-
spect to the window origin, and is therefore interpreted with respect to YFLIP. Block move supports Right-
to-Left spans. The host must order the X,Y start/end points (hence, quadrant) such that the copy does not
destroy itself in the process, for source area overlapping destination. Using this mode with XYMOVE=0 will
be slower than its obvious optimization. DRAWMODEDO bit XYOFFSET should be 0.

XS XE YS YE StoponX | StoponY | Dosetup | Length32

XS XE YS YE 1 1 1 0

August 13, 1993 page36

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.6 Line Draw Instructions

3.6.1 Bresenham Aliased Line Draw Instructions

Newport is the first system that uses exclusively Bresenham algorithms as opposed to DDA. The main rea-
son is that Bresenham is has infinite precision whereas DDA cannot guarantee predictability at any number
of bits of fraction.The second reason is that aliased lines have a much shorter setup since there is no divi-
sion for slope computation. The third reason is that by using Bresenham we can unify the hardware and
the algorithms for drawing both aliased and antialiased lines and polygons. The BRESROUND field of the
DRAWMODEDQO register decides how the comparison between d and 0 should be executed:

If BRESROUND=1 Then // BRESROUND has 8 bits-one for each octant//

If d<0 Then /I this branch is executed ford <0 //
Begin
End Else /I this branch is executed for d >=0 //

If BRESROUND=0 Then

If d=<0Then / this branch is executed for d =< 0 //
Begin
End Else / this branch is executed ford > 0 //

By appropriate programming of the BRESROUND bits we can produce hysteresis-free lines.

3.6.1.1 I_line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)
integer: x1,y1,x2,y2

This is an aliased line with integer endpoints The intent is to have maximum performance at the expense of
line quality. Bresenham algorithm allows for very short setup (no multiplication/division) and for reproduc-
ibility of results (always touches the same pixels). REX3 computes the octant.

The performance is limited by :

-the time for passing the arguments from the CPU to REX3 over GIO bus
-the time for generating the setup values by REX3 : d=2dy-dx, etc (5 clocks)
-time for iterating a new coordinate (1 clock)

Since the coordinates are integer there are no precision requirements - Bresenham algorithm with integer
endpoints is infinitely precise. If SKIPFIRST=TRUE the starting point (x1,y1) is not drawn by REX3.
If SKIPLAST=TRUE the endpoint (x2,y2) is not drawn by REX3.

Register-level description:
XYSTARTI=x1,y1 //only the listed registers must be saved at context switch because : //
XYENDI=x2,y2 //-all variables used by Bresenham are derived from the input variables//
DRAWMODE: OPCODE=I_line

Context-switched registers:

August 13, 1993 page37

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

XSTART=x_current
YSTART=y_current

XEND=x2 /I necessary for computing the pixel count //
YEND=y2 /I necessary for computing the pixel count //
BRESD=d Il current d value //
BRESEOCTINC1=octant,incrl // octant + incrl for d //
BRESINC2=incr2 /l'incr2 for d //

3.6.1.2 F_Line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)

fixed : x1,y1,x2,y2

This is an aliased line with fractional endpoints The intent is to have maximum performance at the expense
of line quality. Bresenham algorithm allows for very short setup (two multiplications and no division) and for
reproducibility of results (always touches the same pixels). REX3 or the CPU computes the octant . The

performance is limited by :

-the time for passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup values by REX3 : d=3dy-2dx+2(dx*y_fract-dy*x_fract) .All GL linedrawing
primitives must use 3dy-2dx due to the way GL views the coordinate system as opposed to X. (12 clocks)

-time for iterating a new coordinate (1 clock)

-time for drawing the fractional coverage endpoints

A serial multiplier is necessary for computing d..Since the multiplicand involved (x_frac,y_frac) has very few
bits a serial multiplier executes the required multiplication in few cycles. If SKIPFIRST=TRUE the starting

point (x1,y1) is not drawn by REX3. If SKIPLAST=TRUE the endpoint (x2,y2) is not drawn by REX3.

Register-level description:

XSTART=x1 /ffixed point number in 16.4 format//
YSTART=y1 //ffixed point number in 16.4 format//
XEND=x2 //fixed point number//
YEND=y2 //fixed point number//
DRAWMODE: OPCODE=F_line

Context-switched registers:
XSTART=x_current
YSTART=y_current
XEND=x2
YEND=y?2
BRESD=d
BRESOCTINC1=octant,incrl
BRESINC2=incr2

August 13, 1993

page38

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.6.2 Bresenham Antialiased Line Draw Instructions

3.6.2.1 A_Line(x1,yl,x2,y2,el,aa_table,SKIPFIRST,SKIPLAST)
fixed : x1,y1,x2,y2,el
array : aa_table // angle-compensated table of pixel coverages indexed by s //

THIS PRIMITIVE WILL ALSO BE USED FOR GENERATING ANTIALIASING EDGES BY MASKING OUT
THE TOP OR BOTTOM HALF WITH THE HELP OF THE ZPATTERN (BOTTOM HALF)), LSPATTERN
(TOP HALF) REGISTERS.

This is an anti-aliased line with fractional endpoints and with angle compensation but without any endpoint
filtering.It has INFINITE precision in terms of pixel positioning (exactly like I_LINE) since it doesn’t rely on a
DDA algorithm in terms of position determination. The intent is to generate high quality lines at 80-90% the
speed of aliased blended lines. The width of the line is restricted to 1 - for wider lines (and for polygons) the
Bresenham antialiasing edge (see 3.6.2.3) should be used. Two pixels (in the minor axis direction) are in-
terpolated at each major axis iteration . This approach allows for line intensity independent of line angle
(i.e. independent of pixel density). The performance is limited by :

-the time required for the CPU to compute the slope el and to find the aa_table (which is a function of el)
in memory

-the time for passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup : d=3dy-2dx+2(dx*y_fract-dy*x_fract) ,s=y_fract+el*(.5-x_fract)-.5
s*dx=s*2dx=dy-dx+2(dx*y_fract-dy*x_fract)

-REX3 time for iterating two new coordinates (closely related to each other) (3 clocks/pair)

A serial multiplier is necessary for computing d and s.If SKIPLAST=TRUE the endpoint (x2,y2) is not drawn
by REXS. If SKIPFIRST=TRUE the first point (x1,y1) is not drawn by REX3. The algorithm draws two pixels
(T and S) at each iteration.The coverages for these two pixels are derived by indexing into the AWEIGHT
table with a function of s as described below.The AWEIGHT table needs to be reloaded for every change in
the line slope el. Note that here s_frac represents the absolute value of the fractional part of s.

If 0=<s=<1 Then

Begin

coverage_ T=f(s)=f(s_frac) /I s_frac=Fraction(s)//
coverage_S=f(1-s)=f(1-s_frac)=f(~s_frac) //~s_frac=1.0-s_frac//
End

If -1=<s<0 Then

Begin

coverage T=f(1+s)=f(~s_frac)

coverage_S=f(-s)=f(s_frac)

End

The case for d>0 that includes the subcases 0<s<1 and 1<s<2 reduces to the above case if we manage to
arrange for -1<s<1.This is done by adding e2=e1-1 prior to rendering the pixels.As it can be seen the
AWEIGHT table is indexed with s_frac and ~s_frac (one’s complement of the fractional portion of s).

Register-level description:

August 13, 1993 page39

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

XSTART=x1 /ffixed point number//
YSTART=y1
XEND=x2
YEND=y?2
aa_table=AWEIGHTO,1=function(s,e1) // this table is calculated for each slope and is indexed by s //
DRAWMODE: OPCODE=A_line
BLEND=enabled
SFACTOR=BF_SA /I SFACTOR=alpha//
DFACTOR=BF_MSA // DFACTOR=1-alpha//
Context-switched registers:
XSTART=x_current
YSTART=y_current
XEND=x2
YEND=y?2
BRESE1l=el
BRESD=d
BRESS1=s
BRESS2=sdx //sdx=s*dx must be context switched//
BRESOCTINC1=octant,incrl
BRESINC2=incr2
AWEIGHTO,AWEIGHT1=aa_table

3.6.2.2 A_Edge_Top(x1,yl,x2,y2,el,aa_table,SKIPFIRST,SKIPLAST,ENDPTFILTER)
fixed : x1,y1,x2,y2,el
array : aa_table

THIS PRIMITIVE IS REMOVED FROM REX3 INSTRUCTION SET. THE REASON FOR NOT REMOVING
IT FROMTHE SPEC IS TO ALLOW GL CODERS TO UNDERSTAND WHAT IS THAT THEY NEED TO DO
IN ORDER TO COMPUTE THE MASKS (ZPATTERN, LSPATTERN) USED FOR 3D ANTIALIASED LINES.
This is an anti-aliasing polygon edge with fractional endpoints.It differs from the antialiased Bresenham
line because only one pixel is drawn at each iteration (the pixel external to the polygon).For clockwise poly-
gons A_Edge_Top is invoked by the CPU for edges located in octants 1,3,5,7(for even octants the CPU
must invoke A_Edge_Bottom).The reason for this is that in octants 1,3,5,7 it is the top pixel that lies outside
the polygon whereas in octants 2,4,6,8 it is the bottom pixel that lies on the outside.For counterclockwise
polygons the convention is reversed: CPU must invoke A_Edge_Top for edges in octants 2,4,6,8 and
A_edge_Bottom in octants 1,3,5,7.The overhead for computing the octant is nill since the CPU must do it
anyways in order to calculate the z-mask.It has INFINITE precision in terms of pixel positioning (exactly like
I_LINE) since it doesn’t rely on a DDA algorithm in terms of position determination.Since GL has a very pre-
cise notion of T-mesh edge it is possible to use this primitive to antialias only the contour of the mesh without
touching the inner edges.Only the pixels above the infinitely precise line are being rendered (“above” is
viewed as looking down the axis of maximum motion).The AWEIGHT table needs to be reloaded for every
change in the line slope el.Two types of antialiasing edges (top and bottom) have been invented in order

August 13, 1993 page40

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

to facilitate polygon antialiasing.If a top and bottom edges are drawn between the same pair of points (x1,y1)
and (x2,y2) an antialiased line will result. The performance is limited by :

-the time required for the CPU to compute the slope el

-the time for passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup : d=3dy-2dx+2(dx*y_fract-dy*x_fract) , s=y_fract+el*(.5-x_fract)-.5
s*dx=s*2dx=dy-dx+2(dx*y_fract-dy*x_fract)

-REX3 time for iterating one new coordinate

-REX3 time for drawing the fractional coverage endpoints

The endpoints may not be drawn in order to simplify the implementation and in order to generate the im-
pression of sharp vertices.

Register-level description:
XSTART=x1 //fixed point number//
YSTART=y1
XEND=x2
YEND=y?2
AWEIGHTO,AWEIGHT1=aa_table(s)
DRAWMODE: OPCODE=AA_Edge_Top

Context-switched registers:
XSTART=x_current
YSTART=y_current
XEND=x2
YEND=y?2
BRESE1l=el
BRESD=d
BRESS1=s
BRESS2=sdx
BRESOCTINC1=octant,incrl
BRESINC2=incr2
AWEIGHTO,AWEIGHT1=aa_table

3.6.2.3 A_Edge_Bottom(x1,y1l,x2,y2,el,aa_table,SKIPFIRST,SKIPLAST,ENDPTFILTER)
fixed : x1,y1,x2,y2,el
array : aa_table

THIS PRIMITIVE IS REMOVED FROM REX3 INSTRUCTION SET. THE REASON FOR NOT REMOVING
IT FROMTHE SPEC IS TO ALLOW GL CODERS TO UNDERSTAND WHAT IS THAT THEY NEED TO DO
IN ORDER TO COMPUTE THE MASKS (ZPATTERN, LSPATTERN) USED FOR 3D ANTIALIASED LINES.
This is an anti-aliasing polygon edge with fractional endpoints.It differs from the antialiased Bresenham

August 13, 1993 page4l

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

line because only one pixel is drawn at each iteration (the pixel external to the polygon).It has INFINITE pre-
cision in terms of pixel positioning (exactly like I_LINE) since it doesn’t rely on a DDA algorithm in terms of
position determination.Since GL has a very precise notion of T-mesh edge it is possible to use this primitive
to antialias only the contour of the mesh without touching the inner edges.Only the pixels below the infinitely
precise line are being rendered (“below” is viewed as looking down the axis of maximum maotion).

The performance is limited by :
-the time required for the CPU to compute the slope el
-the time for passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup : d=3dy-2dx+2(dx*y_fract-dy*x_fract) , s=y_fract+el*(.5-x_fract)-.5,
s*dx=s*2dx=dy-dx+2(dx*y_fract-dy*x_fract)

-REX3 time for iterating one new coordinate
-REX3 time for drawing the fractional coverage endpoints

The endpoints may not be drawn in order to simplify the implementation and in order to generate the im-
pression of sharp vertices.

Register-level description:
XSTART=x1 //fixed point number//
YSTART=y1
XEND=x2
YEND=y?2
AWEIGHTO,AWEIGHT1=aa_table(s)
DRAWMODE: OPCODE=AA_Edge_Bottom

Context-switched registers:
XSTART=x_current
YSTART=y_current
XEND=x2
YEND=y?2
BRESE1l=el
BRESD=d
BRESS1=s
BRESS2=sdx
BRESOCTINC1=octant,incrl
BRESINC2=incr2
AWEIGHTO,AWEIGHT1=aa_table

August 13, 1993 page42

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Code for X- line with integer endpoints

Procedure X_line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)
integer: x1,y1,x2,y2
Begin
/[Compute the octant-independent values//

x=x1, y=y1

dx=ABS(x1-x2), dy=ABS(y1-y2)

Coverage=1
If SKIPFIRST=FALSE Then Write_Pixel(x,y,Coverage)
Case Octant of (x2-x1,y2-y1,dx-dy) :

1: d=2dy-dx, incrl=2dy , incr2=2(dy-dx), Loop=dx //compute the octant-dependent values//

incrx1=1,incrx2=1,incry1=0,incry2=1

2: d=2dx-dy, incrl=2dx, incr2=2(dx-dy), Loop=dy //compute the octant-dependent values//

incrx1=0,incrx2=1,incryl=1,incry2=1

3: d=2dx-dy, incrl=2dx , incr2=2(dx-dy), Loop=dy //compute the octant-dependent values//

incrx1=0,incrx2=-1,incryl=1,incry2=1

4: d=2dy-dx, incrl=2dy , incr2=2(dy-dx), Loop=dx //compute the octant-dependent values//

incrx1=-1,incrx2=-1,incry1=0,incry2=1

5: d=2dy-dx , incrl=2dy , incr2=2(dy-dx), Loop=dx //compute the octant-dependent values//

incrx1=-1,incrx2=-1,incry1=0,incry2=-1

6: d=2dx-dy, incrl=2dx, incr2=2(dx-dy), Loop=dy //compute the octant-dependent values//

incrx1=0,incrx2=-1,incryl=-1,incry2=-1

7. d=2dx-dy, incrl=2dx , incr2=2(dx-dy), Loop=dy //compute the octant-dependent values//

incrx1=0,incrx2=1,incryl=-1,incry2=-1

8: d=2dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx //compute the octant-dependent values//

incrx1=1,incrx2=1,incry1=0,incry2=-1

For i=1 to Loop-1 Do

Begin
If d<O Then /I s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
d=d+incrl /lcompute new values for d and s//

End Else//s>t>0, execute a 45 degree step//

/[Starting pixel has coverage=1//

August 13, 1993

page43

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Begin//45 degree move//
X=X+incrx2
y=y+incry2
d=d+incr2
End
Write_Pixel(x,y,Coverage)
End
If SKIPLAST=FALSE Then Write_Pixel(x2,y2,Coverage)
End

August 13, 1993 page44

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Code for aliased line with fractional endpoints

Procedure GL_Bresenham(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)
fixed : x1,y1,x2,y2 [//x=x_int.x_fract where x_fract is 4 bits of precission//
fixed : dx,dy
integer: x10,y10,x20,y20,dx_i,dy i
/[Compute the octant-independent values//
x10=int(x1) , y10=int(y1)//REX3 computes the flixed->int and the d term//
x20=int(x2) , y20=int(y2)
x=x10, y=y10
dx=ABS(x1-x2), dy=ABS(y1-y2)
dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1
Case Octant of (x2-x1,y2-y1,dx-dy) :
1: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=1
2: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=1,incry2=1
temp=x1_fract /Iswap x and y//
x1_fract=yl_fract
y1l_fract=temp
temp=dx
dx=dy
dy=temp
3: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=1,incry2=1
temp=1-x1_fract //luse 1-x_fract left of y-axis.//
x1_fract=yl_fract
y1l_fract=temp
temp=dx
dx=dy
dy=temp
4: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incry1=0,incry2=1
x1_fract=1-x1_fract//use 1-x_fract left of y-axis//
5: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

incrx1=-1,incrx2=-1,incry1=0,incry2=-1

August 13, 1993

page45

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

x1 fract=1-x1_fract//use 1-x_fract left of y-axis//
yl fract=1-yl fract//use 1-y_ fract below of x-axis//
6: d=3dx-2dy, incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=-1,incry2=-1
temp=1-x1_fract
x1_fract=1-yl fract//use 1-y_fract below of x-axis//
y1l_fract=temp
temp=dx
dx=dy
dy=temp
7: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=-1,incry2=-1
temp=1-y1_fract//use 1-y_fract below of x-axis//
y1l fract=x1_fract
x1_fract=temp
temp=dx
dx=dy
dy=temp
8: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=-1

yl fract=1-yl fract//use 1-y_fract below of x-axis//

d=d+2(dx*yl_fract-dy*x1_fract) /ladjust d due to fractional endpoints//
E=d-2dx /Ivariable used for adjusting the start point up one pixel//
If E>0 Then
Begin

d=E

X=X+incrx2*~x_major

y=y+incry2*x_major
End
Coverage=1 /I or we can use the CPU-calculated coverage //
/[* This section has been removed on 11/5/92 as a result of a discussion with BobS
If SKIPFIRST=FALSE Then
Begin

Write_Pixel(x,y,Coverage) //Starting pixel has coverage=1, can be drawn conditionally//

End
For i=1 to Loop-1 Do

August 13, 1993

page46

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Begin
If d<O Then /I s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
d=d+incrl /lcompute new values for d and s//

End Else//s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
d=d+incr2
End
Write_Pixel(x,y,Coverage)
End
If SKIPLAST=FALSE Then //Draw the last pixel conditionally//

Begin
If d<O Then /I s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
d=d+incrl /lcompute new values for d and s//

End Else//s>t>0, execute a 45 degree step//

Begin//45 degree move//

X=X+incrx2
y=y+incry2
d=d+incr2
End
Write_Pixel(x,y,Coverage)
End
End

August 13, 1993 page47

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Code for antialiased line with fractional endpoints and angle compensation, no endpoint filtering

Procedure Write_Pixel(x,y,alpha) /I 0=< alpha<=1 due to looking it up in aa_table //
global variable : new_color /Inew_color is the current drawing color//
Begin

Read_Framebuffer(x,y,bckg_color) //read the background color at location (x,y)//

color=alpha*new_color + (1-alpha)*bckg_color// alpha represents pixel coverage//

Write_Framebuffer(x,y,color) /lwrite back the resultant of blending to location (x,y)//
End

Procedure GL_AA Bresenham(x1,yl,x2,y2,el,cl)

fixed :x1,yl1,x2,y2,el /[ICPU computes the octant//

aray : aa_tableO (s,el) ,aa_tablel(1-s,el) // This array is a function of slope and is indexed with s_frac //
integer : Octant,x10,y10,x20,y20

integer : x_major//x_major=1 in octants 1,4,5,8 //

/lel=dy/dx for x-major . el=dx/dy for y-major where dx=ABS(x1-x2) and dy=ABS(y1-y2)//
/[Compute the octant-independent values//

e2=el-1.0

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//

x20=int(x2) , y20=int(y2)

x=x10, y=y10

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy) :

1: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1

2: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=1,incry2=1 ,x_major=0
temp=x1_fract
x1_fract=yl_fract
y1l_fract=temp
temp=x2_fract

x2_fract=y2_fract

August 13, 1993 page48

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

y2_fract=temp
temp=dx
dx=dy
dy=temp
3: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=1,incry2=1 ,x_major=1
temp=1-x1_fract/use 1-x_fract left of y-axis//
x1 fract=yl fract
y1l_fract=temp
temp=1-x2_fract/use 1-x_fract left of y-axis//
x2_fract=y2_fract
y2_fract=temp
temp=dx
dx=dy
dy=temp
4: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incry1=0,incry2=1 ,x_major=0
x1_fract=1-x1_fract//use 1-x_fract left of y-axis//
x2_fract=1-x2_fract
5: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incryl=0,incry2=-1 ,x_major=1
x1_fract=1-x1_fract//use 1-x_fract left of y-axis//
yl fract=1-yl fract//use 1-y_fract below of x-axis//
x2_fract=1-x2_fract//use 1-x_fract left of y-axis//
y2_fract=1-y2_ fract//use 1-y_fract below of x-axis//
6: d=3dx-2dy, incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=-1,incry2=-1 ,x_major=0
temp=1-x1_fract
x1_fract=1-yl fract//use 1-y_fract below of x-axis//
y1l_fract=temp
temp=1-x2_fract
x2_fract=1-y2 fract//use 1-y_fract below of x-axis//
y2_fract=temp
temp=dx
dx=dy
dy=temp

August 13, 1993 page49

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

7: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=-1,incry2=-1 ,x_major=0
temp=1-y1_fract//use 1-y_fract below of x-axis//
y1l fract=x1_fract
x1_fract=temp
temp=1-y2_fract//use 1-y_fract below of x-axis//
y2_fract=x2_fract
x2_fract=temp
temp=dx
dx=dy
dy=temp
8: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1
yl fract=1-yl fract//use 1-y_ fract below of x-axis//

y2_ fract=1-y2_ fract

s=yl frac-0.5+e1(0.5-x1_frac) /Is for the first pixel//
sdx=2[(y1_frac-0.5)dx+(0.5-x1_frac)dy]=dy-dx+2(dx*y1_fract-dy*x1_fract)
I/l sdx=s*2dx is an infinitely precise number //
If s<O Then /I The correct, positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac) =s+1//
Begin
s=s+1
sdx=sdx+2*dx //when s=s+1 sdx=sdx+2*dx //
End
d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints,this is d for second pixel//
Il s=y1_fract+el1*(1.5-x1_fract)-0.5 this would have been s for second pixel , s=s+el //
E=d-2dx
If E>0 Then
Begin
d=E
End

If SKIPFIRST=TRUE Then
Begin
If sdx>0 Then //Compute the coverage for the starting pixel//
Begin /l THE BOLD CODE MAY BE EXECUTED ON THE HOST IF SKIPFIRST=TRUE//

August 13, 1993

page50

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

/I remember that for ymajor lines y1 and x1 have been swapped//

Coverage_T=(yl fr-1+c1/2)(1-0)+.5*¢1(1-0)**2 //consider x1_fr=0//
Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
Coverage_S=(1-0)*c1-Coverage_T /IS is below the line and has the larger coverage//

Write_Pixel(x,y,Coverage_S)

End Else //sdx<0//

Begin

End
End Else
Begin

Coverage_T=(yl fr+c1/2)(1-0)+.5*¢1(1-0)**2//T has the larger coverage//
Write_Pixel(x,y,Coverage_T)
Coverage_S=(1-0)*c1-Coverage_T //Sis below the line and has the larger coverage//

Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

If sdx>0 Then //Compute the coverage for the starting pixel//

Begin

/l THIS CODE EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//

Coverage_T=aa_table(s_frac) //T has the smaller coverage//

Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

Coverage_S=aa_table(~s_frac) //S is below the line and has the larger coverage//

Write_Pixel(x,y,Coverage_S)
End Else // sdx<0//

Begin

Coverage_T=aa_table(~s_frac) //T has the larger coverage//

Write_Pixel(x,y,Coverage_T)
Coverage_S=aa_table(s_frac) /IS is below the line and has the larger coverage//

Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

End // SKIPFIRST //
For i=1 to Loop-1 Do

Begin

If d<O Then

Begin

Il s<t , execute a horizontal step//

x=x+incrx1 /ladvance to next pixel//

y=y+incryl

d=d+incrl /lcompute new values for d and s/

s=s+el

August 13, 1993

page51

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

sdx=sdx+2dy=sdx+incrl /] s*dx=s*dx+el*dx i.e sdx=sdx+dy //
End Else// d>0 results into s>t>0, execute a 45 degree step//

Begin//45 degree move//

X=X+incrx2

y=y+incry2

d=d+incr2 /lcompute new values for d and s/

s=s+e2 /I this brings s back into the interval [-1,1] //

sdx=sdx+2(dy-dx)=sdx+incr2 //s*dx=s*dx+e2*dx=s*dx+(dy/dx-1)*dx=s*dx+dy-dx i.e. sdx=sdx+dy-dx //
End
If sdx>0 Then
Begin
Coverage_T=aa_table(s_frac) /I s_frac=Fraction(s) //
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
Coverage_S=aa_table(~s_frac) //~s_frac=0.f-s_frac //
Write_Pixel(x,y,Coverage_S)
End Else
Begin
Coverage_T=aa_table(~s_frac)
Write_Pixel(x,y,Coverage_T)
Coverage_S=aa_table(s_frac)
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End
If SKIPLAST=TRUE Then //THIS CODE MAY BE EXECUTED ON THE HOSTIF SKIPLAST=TRUE//
Begin

If sdx>0 Then //[Compute the coverage for the ending pixel//

Begin /[Correct the endpoint(s) if start point <> end point//
Coverage_S=(1+c1/2-y2_fr)*1+.5*el*1r**2//consider x2_fr=1//
Write_Pixel(x,y,Coverage_S)

Coverage_T=cl*1-Coverage_S//T is above the line and has the smaller coverage//
Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

End Else

Begin
Coverage_S=(cl1/2-y2fr)*1+.5*¢1*1**2 /IS is below and has the smaller coverage//
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

Coverage_T=cl*1-Coverage_S//T is above the line and has the larger coverage//

August 13, 1993 page52

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Write_Pixel(x,y,Coverage_T)
End
End Else
Begin //For SKIPLAST=FALSE REXa3 fills the last pixel //

If d<O Then Il s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
s=s+el

sdx=sdx+2dy=sdx+incrl
End Else// d>0 results into s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
s=s+e2 // this brings s back into the interval [-1,1] //
sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then
Begin
Coverage_T=aa_table(s_frac)
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
Coverage_S=aa_table(~s_frac)
Write_Pixel(x,y,Coverage_S)
End Else
Begin
Coverage_T=aa_table(~s_frac)
Write_Pixel(x,y,Coverage_T)
Coverage_S=aa_table(s_frac)
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End
End //SKIPLAST//
End

August 13, 1993 page53

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Code for antialiased line with fractional endpoints and angle compensation, with endpoint filtering

Procedure Write_Pixel(x,y,alpha) /I 0=< alpha<=1 due to looking it up in aa_table //
global variable : new_color /Inew_color is the current drawing color//
Begin

Read_Framebuffer(x,y,bckg_color) //read the background color at location (x,y)//

color=alpha*new_color + (1-alpha)*bckg_color// alpha represents pixel coverage//

Write_Framebuffer(x,y,color) /lwrite back the resultant of blending to location (x,y)//
End

Procedure GL_AAE_Bresenham(x1,y1,x2,y2,el,cl)
fixed :x1,y1,x2,y2,el /[ICPU computes the octant//

aray : aa_tableO (s,el) ,aa_tablel(1-s,el) // This array is a function of slope and is indexed with s //

integer : Octant,x10,y10,x20,y20

integer : x_major//x_major=1 in octants 1,4,5,8 //

/lel=dy/dx for x-major . el=dx/dy for y-major where dx=ABS(x1-x2) and dy=ABS(y1-y2)//
/[Compute the octant-independent values//

e2=el-1.0

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//
x20=int(x2) , y20=int(y2)

x=x10, y=y10

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy) :

1: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1
2: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=1,incry2=1 ,x_major=0
temp=x1_fract
x1_fract=yl_fract
y1l_fract=temp
temp=x2_fract
x2_fract=y2_fract
y2_fract=temp

temp=dx

August 13, 1993

page54

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

dx=dy
dy=temp
3: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=1,incry2=1 ,x_major=1
temp=1-x1_fract/use 1-x_fract left of y-axis//
x1 fract=yl fract
y1l_fract=temp
temp=1-x2_fract/use 1-x_fract left of y-axis//
x2_fract=y2_fract
y2_fract=temp
temp=dx
dx=dy
dy=temp
4: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incry1=0,incry2=1 ,x_major=0
x1_fract=1-x1_fract//use 1-x_fract left of y-axis//
x2_fract=1-x2_fract
5: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incryl=0,incry2=-1 ,x_major=1
x1_fract=1-x1_fract//use 1-x_fract left of y-axis//
yl fract=1-yl fract//use 1-y_fract below of x-axis//
x2_fract=1-x2_fract//use 1-x_fract left of y-axis//
y2_fract=1-y2_ fract//use 1-y_fract below of x-axis//
6: d=3dx-2dy, incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=-1,incry2=-1 ,x_major=0
temp=1-x1_fract
x1_fract=1-yl fract//use 1-y_fract below of x-axis//
y1l_fract=temp
temp=1-x2_fract
x2_fract=1-y2 fract//use 1-y_fract below of x-axis//
y2_fract=temp
temp=dx
dx=dy
dy=temp
7: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

incrx1=0,incrx2=1,incryl=-1,incry2=-1 ,x_major=0

August 13, 1993

pages55

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

temp=1-y1_fract//use 1-y_fract below of x-axis//
y1l fract=x1_fract
x1_fract=temp
temp=1-y2_fract//use 1-y_fract below of x-axis//
y2_fract=x2_fract
x2_fract=temp
temp=dx
dx=dy
dy=temp

8: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1
yl fract=1-yl fract//use 1-y_ fract below of x-axis//

y2_ fract=1-y2_ fract

s=yl frac-0.5+e1(0.5-x1_frac) /ls for the first pixel//
sdx=2[(y1_frac-0.5)dx+(0.5-x1_frac)dy]=dy-dx+2(dx*y1 fract-dy*x1_fract) // sdx=s*2dx is an
infinitely precise number //
If s<O Then /I The correct, positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac) =s+1//
Begin
s=s+1
sdx=sdx+2*dx //when s=s+1 sdx=sdx+2*dx //
End
d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints,this is d for second pixel//
Il s=y1_fract+el*(1.5-x1_fract)-0.5 this would have been s for second pixel , s=s+el //
E=d-2dx
If E>0 Then
Begin
d=E
End

If SKIPFIRST=TRUE Then
Begin
If sdx>0 Then //Compute the coverage for the starting pixel//
Begin /l THE BOLD CODE MAY BE EXECUTED ON THE HOST IF SKIPFIRST=TRUE//
Coverage_T=(yl fr-1+c1/2)(1-x1_fr)+.5*¢1(1-x1_fr)**2 /IT has the smaller coverage//

Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

August 13, 1993 page56

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Coverage_S=(1-x1_fr)*c1-Coverage_T //Sis below the line and has the larger coverage//
Write_Pixel(x,y,Coverage_S)
End Else //sdx<0//
Begin
Coverage_T=(yl fr+cl1/2)(1-x1_fr)+.5*e1(1-x1_fr)**2//T has the larger coverage//
Write_Pixel(x,y,Coverage_T)
Coverage_S=(1-x1_fr)*c1-Coverage T /IS is below the line and has the larger coverage//
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End Else
Begin
If sdx>0 Then //Compute the coverage for the starting pixel//
Begin // THIS CODE EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//
Coverage_T=aa_table(s_frac*(1-x1_fr)) //T he coverages are inversely proportional with x1_fr//
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
Coverage_S=aa_table(~s_frac*(1-x1_fr)) //S is below the line and has the larger coverage//
Write_Pixel(x,y,Coverage_S)
End Else // sdx<0//
Coverage_T=aa_table(~s_frac*(1-x1_fr)) //T has the larger coverage//
Write_Pixel(x,y,Coverage_T)
Coverage_S=aa_table(s_frac*(1-x1_fr)) /IS is below the line and has the larger coverage//
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End // SKIPFIRST //
For i=1 to Loop-1 Do
Begin
If d<O Then Il s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
d=d+incrl /lcompute new values for d and s/
s=s+el
sdx=sdx+2dy=sdx+incrl
End Else// d>0 results into s>t>0, execute a 45 degree step//
Begin//45 degree move//

X=X+incrx2

August 13, 1993 page57

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

y=y+incry2
d=d+incr2 /lcompute new values for d and s/
s=s+e2 /I this brings s back into the interval [-1,1] //

sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then
Begin
Coverage_T=aa_table(s_frac) /I s_frac=Fraction(s) //
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
Coverage_S=aa_table(~s_frac) //~s_frac=1-s_frac //
Write_Pixel(x,y,Coverage_S)
End Else
Begin
Coverage_T=aa_table(~s_frac)
Write_Pixel(x,y,Coverage_T)
Coverage_S=aa_table(s_frac)
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End
If SKIPLAST=TRUE Then //THIS CODE MAY BE EXECUTED ON THE HOSTIF SKIPLAST=TRUE//
Begin
If sdx>0 Then //Compute the coverage for the ending pixel//
Begin//Correct the endpoint(s) if start point <> end point//
Coverage_S=(1+cl/2-y2 fr)x2_fr+.5*el*x2_fr**2//s is below and has the larger coverage//
Write_Pixel(x,y,Coverage_S)
Coverage_T=cl*x2fr-Coverage_S//T is above the line and has the smaller coverage//
Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
End Else // sdx<0//
Begin
Coverage_S=(c1/2-y2fr)x2fr+.5*e1*x2fr**2 /IS is below and has the smaller coverage//
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
Coverage_T=cl1*x2_fr-Coverage_S//T is above the line and has the larger coverage//
Write_Pixel(x,y,Coverage_T)
End
End Else
Begin //For SKIPLAST=FALSE REXa3 fills the last pixel //

August 13, 1993 page58

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

If d<O Then Il s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
s=s+el

sdx=sdx+2dy=sdx+incrl
End Else// d>0 results into s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
s=s+e2 // this brings s back into the interval [-1,1] //
sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then //The coverages are directly proportional with x2_fr//
Begin
Coverage_T=aa_table(s_frac*x2_fr)
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
Coverage_S=aa_table(~s_frac*x2_fr)
Write_Pixel(x,y,Coverage_S)
End Else
Begin
Coverage_T=aa_table(~s_frac*x2_fr)
Write_Pixel(x,y,Coverage_T)
Coverage_S=aa_table(s_frac*x2_fr)
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End
End //SKIPLAST//
End

August 13, 1993 page59

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Code for polygon antialiasing top edge with fractional endpoints

Procedure Write_Pixel(x,y,alpha)// 0=< alpha<=1//

Begin

global variable : new_color /Inew_color is the current drawing color//
Read_Framebuffer(x,y,bckg_color) //read the background color at location (x,y)//
color=alpha*new_color + (1-alpha)*bckg_color // alpha represents pixel coverage//
Write_Framebuffer(x,y,color) /lwrite back the resultant of blending to location (x,y)//
End

Procedure GL_ AA Bresenham_Edge(x1,y1,x2,y2,el)

fixed : x1,y1,x2,y2,el [lel=dy/dx for x-major . el=dx/dy for y-mjor //
array : aa_table0(s) // for antialiasing edges we may not need angle compensation //
integer : x_major//x_major=1 in octants 1,4,5,8 //

/[Compute the octant-independent values//

e2=el-1

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//
x20=int(x2) , y20=int(y2)

x=x1, y=y1

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy:

1: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1
2: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=1,incry2=1 ,x_major=0
temp=x1_fract
x1_fract=yl_fract
y1l_fract=temp
temp=dx
dx=dy
dy=temp
3: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

incrx1=0,incrx2=-1,incryl=1,incry2=1 ,x_major=0

August 13, 1993

page60

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

temp=x1_fract//use 1-x_fract left of y-axis//
x1_fract=yl fract
y1l_fract=temp
temp=dx
dx=dy
dy=temp
4: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incryl=0,incry2=1 ,x_major=1
x1 fract=1-x1_fract//use 1-x_fract left of y-axis//
5: d=2dy-dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incry1=0,incry2=-1
x1 fract=1-x1_fract//use 1-x_fract left of y-axis//
yl fract=1-yl fract//use 1-y_fract below of x-axis//
6: d=3dx-2dy, incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=-1,incry2=-1 ,x_major=0
temp=1-x1_fract
x1 fract=1-yl fract//use 1-y_fract below of x-axis//
y1l_fract=temp
temp=dx
dx=dy
dy=temp
7: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=-1,incry2=-1 ,x_major=0
temp=1-y1_fract//use 1-y_fract below of x-axis//
y1 fract=x1_fract
x1_fract=temp
temp=dx
dx=dy
dy=temp
8: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1

yl fract=1-yl fract//use 1-y_fract below of x-axis//

d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints//
s=yl fract-0.5+el*(.5-x1_fract)
sdx=2[(y1_fract-0.5)dx+(.5-x1_fract)dy]=dy-dx+2(dx*y1l fract-dy*x1_fract)

August 13, 1993

page61l

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

If s<O Then /I The correct, positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac) =s+1//
Begin
s=s+1
sdx=sdx+2*dx //when s=s+1 sdx=sdx+2*dx //
End
E=d-2dx
If E>0 Then
Begin
d=E
End

If SKIPFIRST=TRUE Then
Begin

If sdx>0 Then //Compute the coverage for the starting pixel//

Begin /l THE BOLD CODE MAY BE EXECUTED ON THE HOST IF SKIPFIRST=TRUE//
Coverage_T=(yl fr-1+c1/2)(1-x1_fr)+.5*¢1(1-x1_fr)**2 /IT has the smaller coverage//
Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

End Else //sdx<0//
Begin
Coverage_T=(yl fr+cl1/2)(1-x1_fr)+.5*e1(1-x1_fr)**2//T has the larger coverage//
Write_Pixel(x,y,Coverage_T)
End
End Else
Begin
If sdx>0 Then //Compute the coverage for the starting pixel//
Begin // THIS CODE EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//
Coverage_T=aa_table(s_frac*(1-x1_fr)) //T he coverages are inversely proportional with x1_fr//
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
End Else // sdx<0//
Coverage_T=aa_table(~s_frac*(1-x1_fr)) //T has the larger coverage//
Write_Pixel(x,y,Coverage_T)
End
End // SKIPFIRST //
For i=1 to Loop-1 Do
Begin

If d<O Then Il s<t , execute a horizontal step//

August 13, 1993 page62

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
d=d+incrl /lcompute new values for d and s/
s=s+el

sdx=sdx+2dy=sdx+incrl
End Else//s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
d=d+incr2
s=s+e2
sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then
Begin
Coverage_T=aa_table(s_frac) // only the top pixel is antialiased //
Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
End Else
Begin
Coverage_T=aa_table(~s_frac) // only the top pixel is antialiased //
Write_Pixel(x,y,Coverage_T)
End
End // 1fl/
End // For //
If SKIPLAST=TRUE Then //THIS CODE MAY BE EXECUTED ON THE HOSTIF SKIPLAST=TRUE//
Begin
If sdx>0 Then //Compute the coverage for the ending pixel//
Begin//Correct the endpoint(s) if start point <> end point//
Coverage_T=cl*x2fr-Coverage_S//T is above the line and has the smaller coverage//
Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
End Else // sdx<0//
Begin
Coverage_T=cl1*x2_fr-Coverage_S//T is above the line and has the larger coverage//
Write_Pixel(x,y,Coverage _T)
End

August 13, 1993 page63

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

End Else
Begin //For SKIPLAST=FALSE REXa3 fills the last pixel //

If d<O Then Il s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
s=s+el

sdx=sdx+2dy=sdx+incrl
End Else// d>0 results into s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
s=s+e2 // this brings s back into the interval [-1,1] //
sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then //The coverages are directly proportional with x2_fr//
Begin
Coverage_T=aa_table(s_frac*x2_fr)
Write_ Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
End Else
Begin
Coverage_T=aa_table(~s_frac*x2_fr)
Write_Pixel(x,y,Coverage_T)
End
End
End //SKIPLAST//
End

August 13, 1993 page64

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Code for polygon antialiasing bottom edge with fractional endpoints

Procedure Write_Pixel(x,y,alpha)// 0=< alpha<=1//

Begin

global variable : new_color /Inew_color is the current drawing color//
Read_Framebuffer(x,y,bckg_color) //read the background color at location (x,y)//
color=alpha*new_color + (1-alpha)*bckg_color // alpha represents pixel coverage//
Write_Framebuffer(x,y,color) /lwrite back the resultant of blending to location (x,y)//
End

Procedure GL_ AA Bresenham_Edge(x1,y1,x2,y2,el)

fixed : x1,y1,x2,y2,el [lel=dy/dx for x-major . el=dx/dy for y-mjor //
array : aa_table0(s) // for antialiasing edges we may not need angle compensation //
integer : x_major//x_major=1 in octants 1,4,5,8 //

/[Compute the octant-independent values//

e2=el-1

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//
x20=int(x2) , y20=int(y2)

x=x1, y=y1

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy:

1: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1
2: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=1,incry2=1 ,x_major=0
temp=x1_fract
x1_fract=yl_fract
y1l_fract=temp
temp=dx
dx=dy
dy=temp
3: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

incrx1=0,incrx2=-1,incryl=1,incry2=1 ,x_major=0

August 13, 1993

page65

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

temp=x1_fract//use 1-x_fract left of y-axis//
x1_fract=yl fract
y1l_fract=temp
temp=dx
dx=dy
dy=temp
4: d=3dy-2dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incryl=0,incry2=1 ,x_major=1
x1 fract=1-x1_fract//use 1-x_fract left of y-axis//
5: d=2dy-dx , incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=-1,incrx2=-1,incry1=0,incry2=-1
x1 fract=1-x1_fract//use 1-x_fract left of y-axis//
yl fract=1-yl fract//use 1-y_fract below of x-axis//
6: d=3dx-2dy, incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=-1,incryl=-1,incry2=-1 ,x_major=0
temp=1-x1_fract
x1 fract=1-yl fract//use 1-y_fract below of x-axis//
y1l_fract=temp
temp=dx
dx=dy
dy=temp
7: d=3dx-2dy , incrl=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//
incrx1=0,incrx2=1,incryl=-1,incry2=-1 ,x_major=0
temp=1-y1_fract//use 1-y_fract below of x-axis//
y1 fract=x1_fract
x1_fract=temp
temp=dx
dx=dy
dy=temp
8: d=3dy-2dx, incrl=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//
incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1

yl fract=1-yl fract//use 1-y_fract below of x-axis//

d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints//
s=yl fract-0.5+el*(.5-x1_fract)
sdx=2[(y1_fract-0.5)dx+(.5-x1_fract)dy]=dy-dx+2(dx*y1l fract-dy*x1_fract)

August 13, 1993

page66

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

If s<O Then /I The correct, positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac) =s+1//
Begin
s=s+1
sdx=sdx+2*dx //when s=s+1 sdx=sdx+2*dx //
End
E=d-2dx
If E>0 Then
Begin
d=E
End

If SKIPFIRST=TRUE Then
Begin

If sdx>0 Then //Compute the coverage for the starting pixel//

Begin /l THE BOLD CODE MAY BE EXECUTED ON THE HOST IF SKIPFIRST=TRUE//
Coverage_S=(1-x1_fr)*c1-Coverage_T //Sis below the line and has the larger coverage//
Write_Pixel(x,y,Coverage_S)

End Else //sdx<0//

Begin

Coverage_S=(1-x1_fr)*c1-Coverage T /IS is below the line and has the larger coverage//

Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

End Else
Begin

If sdx>0 Then //Compute the coverage for the starting pixel//

Begin // THIS CODE EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//
Coverage_S=aa_table(~s_frac*(1-x1_fr)) //S is below the line and has the larger coverage//
Write_Pixel(x,y,Coverage_S)

End Else // sdx<0//

Coverage_S=aa_table(s_frac*(1-x1_fr)) /IS is below the line and has the larger coverage//
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End // SKIPFIRST //
For i=1 to Loop-1 Do
Begin

If d<O Then Il s<t , execute a horizontal step//

August 13, 1993 page67

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
d=d+incrl /lcompute new values for d and s/
s=s+el

sdx=sdx+2dy=sdx+incrl
End Else//s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
d=d+incr2
s=s+e2
sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then
Begin
Coverage_S=aa_table(~s_frac) // only the bottom pixel is antialiased //
Write_Pixel(x,y,Coverage_S)
End Else
Begin
Coverage_S=aa_table(~s_frac) // only the bottom pixel is antialiased //
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End // 1f//
End // For //
If SKIPLAST=TRUE Then //THIS CODE MAY BE EXECUTED ON THE HOSTIF SKIPLAST=TRUE//
Begin
If sdx>0 Then //Compute the coverage for the ending pixel//
Begin//Correct the endpoint(s) if start point <> end point//
Coverage_S=(1+cl/2-y2 fr)x2_fr+.5*el*x2_fr**2//s is below and has the larger coverage//
Write_Pixel(x,y,Coverage_S)
End Else // sdx<0//
Begin
Coverage_S=(c1/2-y2fr)x2fr+.5*e1*x2fr**2 /IS is below and has the smaller coverage//
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End

August 13, 1993 page68

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

End Else
Begin //For SKIPLAST=FALSE REXa3 fills the last pixel //

If d<O Then Il s<t , execute a horizontal step//
Begin
x=x+incrx1 /ladvance to next pixel//
y=y+incryl
s=s+el

sdx=sdx+2dy=sdx+incrl
End Else// d>0 results into s>t>0, execute a 45 degree step//
Begin//45 degree move//
X=X+incrx2
y=y+incry2
s=s+e2 // this brings s back into the interval [-1,1] //
sdx=sdx+2(dy-dx)=sdx+incr2
End
If sdx>0 Then //The coverages are directly proportional with x2_fr//
Begin
Coverage_S=aa_table(~s_frac*x2_fr)
Write_Pixel(x,y,Coverage_S)
End Else
Begin
Coverage_S=aa_table(s_frac*x2_fr)
Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)
End
End
End //SKIPLAST//
End

August 13, 1993 page69

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.7 Double Buffering

Double-buffered drawing is supported for pixels. Allowed formats are described in Section 3.9, Framebuffer
Formats.

Double-buffering for writes is specified by the pixel depth and formatin DRAWMODEL1, and implicitly via the
WRITEMASK, which must be set to match the Table in Section 3.9. Writes to both buffers use replicated
source data.

Double-buffered reads are explicitly specified by DRAWMODEL1 bit DBLSRC. BufferO (or BufferA) is the
lower significant pixel within the framebuffer data value: see Section 3.9 for details. Pixel format is again
specified as above, via DRAWMODEL1. This handles cases of R-M-W drawing, and host/DMA reads of dou-
ble-buffered framebuffer.

Double buffering brings about a peculiarity with LOGICOP function: while the LO_DST normally can be
viewed as a NOOP (write result is simply the original, destination value), the case of double buffer source
not equal to double buffer destination actually must perform a copy from one buffer to the other. Therefore
the REX3 hardware will treat LO_DST as a copy, not a NOOP.

3.8 Framebuffer Data Values

Framebuffer data includes pixel, overlay, and CID types; one is specified for each read or write operation,
using the PLANES field of DRAWMODE]1 register.

There are two main sources for drawn data: the DDA, and the host data register, RWHOST1,0. Data source
is specified by DRAWMODEDO register COLORHOST, ALPHAHOST. For host data, COLORHOST, AL-
PHAHOST=1 and the data is interpreted using DRAWMODEL1 as specified by fields RWPACKED, RWDOU-
BLE, HOSTDEPTH. The data is assumed within legal range, no clamping necessary. COLORHOST,
ALPHAHOST=0 directs the graphics pipeline to make use of the DDA values; in this case, SHADE=1 spec-
ifies linear shading is performed for successive, iterated values. The bit RGBMODE specifies whether color
index or RGB values are to be calculated. DDA values of R,G,B,A are clamped each iteration before send-
ing down the pipeline. As each of these components has an additional, overflow bit at the DDA, a normalized
range of [-.5to +1.5) is handled prior to clamping. Color index DDA values can be clamped to desired range
by setting the DRAWMODEO bit ENCICLAMP.

Normally either the DDA or the host value is used, but there is an exception for blend function where both
are taken: ALPHAHOST=1 with COLORHOST=0 specifies the HOSTRW1,0 alpha fields are to be used to
blend the DDA R,G,B components. For more information on the Blend Functions, see Section 3.8.4.

The framebuffer pixel depth to be drawn is specified by DRAWMODEL1 field DRAWDEPTH. In conjunction
with the rest of the modes mentioned, framebuffer format can be controlled as shown in Section 3.9.

Other options or modes which affect pixel value include dither, round, antialias, blend, pattern, and logicop.
These are covered in the following sections.

3.8.1 Patterning and Stippling

There are two 32b pattern registers in REX3: LSPATTERN and ZPATTERN. They are enabled via DRAW-
MODEQO bits ENLSPATTERN, ENZPATTERN. This determines whether each are used in the pixel path, and
whether the pattern iterates during drawing. Each of these patterns can be specified as transparent (mask
out pixels corresponding to pattern=0), or opaque (substitute a background color for pixels corresponding
to pattern=0), via bits LSOPAQUE, ZOPAQUE. Opaque patterning relies the background color stored in the
COLORBACK register.

The LSPATTERN is used mainly for lines by the GL, or more generally by X11. The LSMODE register con-
tains a length specifier LSLENGTH (17-32) for pattern recirculation, and a repeat per bit specifier (1-255)
LSREPEAT to describe iterations of each pattern bit. Context switching is aided by the LSRCOUNT field,
which contains the iteration state of LSREPEAT counter. The LSREPEAT function is for linedraw only, and

August 13, 1993 page70

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

must be set to ‘1’ by host otherwise. Similarly, the LSADVLAST function is cleared for connected vectors
case only, and must be set by host otherwise.

Wide lines require the line stipple pattern to be reset identically for each wide line segment; this is accom-
plished via the state in registers LSPATSAVE and LSMODE field LSRCNTSAVE. At the start of drawing a

wide line, these registers are initialized to the same values as LSPATTERN, LSRCOUNT respectively. For

all but the first line of a wide line segment, the saved versions are copied into the working registers, using

command with GO “LSRESTORE". Upon completion of the last line of a wide line segment, command with

GO “LSSAVE” is issued to copy iterated state into the saved registers.

The ZPATTERN is used for patterning and as a Z write enable mask (soft Z). It is always 32b long and re-
peats.

When both pattern are enabled, the background color is substituted into the pixel path iff not both pattern
bits are asserted (e.g., LSPATTERN & ZPATTERN bitwise false). The pixel location can be written iff {(LSO-
PAQUE+LSPATTERN) & (ZOPAQUE+ZPATTERN)} is bitwise true.

Z buffering of antialiased lines makes use of both patterns, with ZPATTERN used for the primary pixel mask,
and the LSPATTERN used for the secondary pixel mask.

August 13, 1993 page71

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.8.2 Dither

REX3 uses the 4 x 4 Bayer dither matrix. The seventeen intensities created by this dither matrix are illus-
trated below.

00 0| 8]2|10
01|12 4 |14 6
10(3|11 1,9

11/15| 7 [13| 5
Y4 00 01 10 11

4 x 4 Bayer Dither Matrix.

The least significant two bits of the window X and Y addresses are used to select a value from the dither
matrix. The matrix value is then compared against the 4 msbs of the target color fraction. The pixel at X,Y
is intensified if the desired value is greater than the matrix value, otherwise it is not intensified.

Because this operation would create an overall brightening of the image (and clamping at the high end), the
pre-dithered pixel values are scaled prior to matrix comparison.

Dithering is enabled by setting the DRAWMODEL1 register DITHER bit.
3.8.2.1 RGB Dithering

If enabled, REX3 dithers 1, 2, 3, and 4-bit stored RGB pixel components. No dithering is performed on 24-
bit RGB. The following illustrates REX3 scaled dithering for 1 through 4-bit RGB components, given an 8-
bit target pixel value, P[7:0]:

1-bit (1-2-1):
Scale P[7:0] by 128/,c5 (= 11,):

1. S = P[7:3] x Y/, = P[7:3] - P[7:4]
2. if (S[3:0] > DitherMatrix[x,y]) then D =S[4] + 1
else D = S[4]

2-bit (1-2-1 and 3-3-2):

Scale P[7:0] by 19%/,c¢ (= 31,):

1. S =P[7:2] - P[7:2)/4 = P[7:2] - P[7:4]

2. if (S[3:0] > DitherMatrix[x,y]) then D = S[5:4] + 1
else D = S[5:4]

August 13, 1993 page72

16

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3-bit (3-3-2):

Scale P[7:0] by 2%%/,55 (= /Ig):

1. S = P[7:1] - P[7:4]

2. if (S[3:0] > DitherMatrix[x,y]) then D = S[6:4] + 1
else D = S[6:4]

4-bit (4-4-4):

Scale P[7:0] by 249/ c¢ (= 1%/1¢):

1. S = P[7:0] - P[7:4]

2. if (S[3:0] > DitherMatrix[x,y]) then D =S[7:4] + 1
else D = S[7:4]

3.8.2.2 Color Index Dithering

No scaling is performed for Cl pixels. In REX3, the Cl fraction is clamped before the dither stage so that
no overflow will occur due to the dither increment operation.

For antialiased Cl, the integer 4 Isbs are replaced by a 4-bit AWEIGHT (intensity). REX3 then dithers by

incrementing Cl(4). The DDA-section muxes the original integer 4 Isbs to the CI fraction, so that dithering
logic always uses the same 4-bit field for matrix comparison. (Dithering has no effect on 4-bit antialiased

pixels).

The following illustrates CI dithering given a 12-bit integer and 4-bit fraction, 1[11:0]).F[3:0]:
Cl 4, 8 and 12-bit, non-antialiased:

if (F[3:0] > DitherMatrix[x,y]) then D =1[11:0] + 1

else D =I[3:0]
Cl 8 and 12-bit, antialias enabled:

if (F[3:0] > DitherMatrix[x,y]) then D =1[11:0] + 0x10

else D =I[7:0]

August 13, 1993 page73

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.8.3 Color rounding

GL requires the color be rounded to the nearest color. The dithering algorithm takes care of color rounding
when dithering is enabled. When dithering is turned off, the intensity P of the color is rounded to the nearest
color according to the algorithm described as follows.

Non-antialiased Color index: Increment the color if the MSB of the color fraction is 1.
Antialiased Color index : Increment the color by 16 if bit 3 of the iterated color integer is 1.
Antialiased 4 bit color index is not rounded.

RGB 1 bit : The final color D[0] = P[7] the MSB bit of the color .

RGB 2 bits : S[5:0] = P[7:2] - P[7:2]/4 = P[7:2] - P[7:4]
The final color D[1:0] = S[5:4] + S[3]

RGB 3 bits : S[6:0] = P[7:1] - P[7:1]/8 = P[7:1] - P[7:4]
The final color D[2:0] = S[6:4] + S[3]

RGB 4 bits : S[7:0] = P[7:0] - P[7:0]/16 = P[7:0] - P[7:4]
The final color D[3:0] = S[7:4] + S[3]

RGB 8 bits : The final color D[7:0] = P[7:0] no rounding is performed.

The rounding of color is performed in the dithering block, which is before the logicop block, therefore the
source color of the logicop is rounded but the destination color and the logicop result are not rounded.

3.84 Logic OP

The LOGICORP field of DRAWMODEL register defines the logicop operation used to combine the pixels
being iterated (source pixels) with the pixels already written (destination pixels). Logical operations can be
performed on any planes. Logical operations are disabled when LOGICOP=3. The logical operation is
implemented in RB2 chip.

3.85 Blend

In RGB mode, the system draws pixels using a function that blends the incoming (source) RGBA values
with the RGBA values that are already in the frame buffer (destination) or the background color register
COLORBACK (if BACKBLEND in DRAWMODEU1 register is set to 1). The SFACTOR and DFACTOR fields
of the DRAWMODETL1 register defines the source color multiplier (Fs) and destination color multiplier (Fd)
used for blending. The blending function is : Cb = Cs*Fs + Cd*Fd, where Cb is blended color , Cs is source
color and Cd is destination color. The normalization of the alpha and color components in source and des-

SFACTOR Source Multiplier (Fs)
0 zero
1 one
2 normalized destination color
3 one minus normalized destination color
4 normalized source alpha
5 one minus normalized source apha

Table 20: SACT OR Definition

August 13, 1993 page74

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

DFACTOR Destination Multiplier (Fd)
0 Z€Ero
1 one
2 normalized source color
3 one minus normalized source color
4 normalized source apha
5 one minus normalized source apha

Table 21: DFACT OR Definition

tination multipliers are converted from 8-bit integers to numbers between 0 and 1 by adding the MSB to the
number and dividing by 256. Thus FF becomes 1.0 and 0 remains 0.

When source multiplier is set to source alpha (SFACTOR=4), alpha component can be blended in two dif-
ferent ways depending on how BLENDALPHA bitin the DRAWMODEL1 register is set. When BLENDALPHA
is set to 0, the source multiplier for blending alpha is one instead of source alpha and destination multiplier
is defined by DFACTOR. When BLENDALPHA is set to 1, alpha is blended the way defined by the SFAC-
TOR and DFACTOR.

Blending is enabled by setting BLEND in the DRAWMODEL1 register to 1. Enable blender will slow down
pixel process, therefore blender should not be enabled if it is not used. Blending and logical operation are
mutually exclusive.

August 13, 1993 page75

SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

3.9 Framebuffer Formats
Table 22: Frame Buffer Pixel Formats
BIT D/D|/D|/D|D
PLANES PIXELTYPE |2 |2|2|2|1|1|2|1|2|1|1|2|1|2|9|8|7|6|5|4|3|2|1]|0
3|2(1|0|9|8|7|6|5(4|3|2|1]|0
RGB-SB BIRIGIB|R|G|B|R|G|B|[R|G|BIR|G|B|R|G|B|R[G|B|R[G
24 24BIT o|lofo|1|1|1|2|2|2|3|3|3|4|4|4|5|5|5|6|6|6|7|7]|7
RGB-DB B/R|G|B|R|G|B|R|G|B|R|G|B|R|G|B|R|G|B|R|G|B|R|G
24 444+444 4|14|4|5|5|5|6|6|6|7|7|7|4|4|4|5|5|5|6|6|6|7|7]|7
CI-SB Flefefefetefelefefelr
24 12BIT == - d-0-1-1-1-1-1-1-1-1212]19|8|7|6[