
Work station unites
real-time graphics

with Unix, Ethernet
Dedicated chips manipulate images;

hierarchical graphics structures
lighten the programmer's burden

by James H. Clark* and Tom Davis
Silicon Graphics Inc., Mountain View, Calif.

*On leave of absence from the Computer Systems

Laboratory, Stanford University, Palo Alto, Calif.

EProductivity in engineering design requires powerful
computing tools that reduce the time needed to do the
design. Because virtually all forms of engineering require
manipulation of geometrical and graphical constructs as
well as general-purpose computing, a work station with
real-time graphics decreases the time the engineer must
wait to see the results of design changes and hence
increases productivity.

Still, for general scientific and engineering use, com-
puter work stations require more than graphics. A work
station's computation should be supported by a general-
purpose operating system and by appropriate languages
and tools for developing application programs. Besides
allowing for the local development and execution of pro-
grams, the work station must also be able to serve other
computers as a graphics terminal.

Thus, as the engineer's principal connection to the
outside world, the work station needs to function within
a communications network, allowing separate work sta-
tions to share data and resources such as disk drives,

1. Molecular synthesis. Shaded solids and vectors with motion,

color, and 3-d perspective aid scientists in composing new molecules

and determining their properties. Since the IRIS work station can draw

such screens in real time, it raises productivity.

Electronics/ October 20, 1983 113

68000
PROCESSOR

TO
KEYBOARD
AND RS-232

TO NETWORK

ETHERNET
CONTROLLER

GEOMETRY
ENGINES

FRAME-BUFFER
CONTROL

PROGRAM AND
DISPLAY- LIST
MEMORY

68010
PROCESSOR
(OPTIONAL)

UPTO 4

UPDATE
CONTROLLER

DISK
CONTROLLER
(OPTIONAL)

FLOATING
POINT

(OPTIONAL)

DISPLAY
CONTROL

COLOR
MAP

BIT-PLANE
MEMORY

UP TO 6

RGB TO MONITOR

2. Architecture. In addition to the system's standard 68000 microprocessor, which runs a real-time kernel, an optional 68010 runs virtual-

memory Unix 4.2BSD. Proprietary geometry chips perform the matrix manipulations that are needed for real-time graphics.

hardcopy devices, and other computers. Simultaneously,
as the engineer's principal connection to the computer,
the work station must be capable of high-speed graphics
to simplify the manipulation and analysis of data but
must not expose the user to excessive delays.

Powerful real-time graphics is fundamental to an engi-
neering work station and is a fundamental part of the
IRIS work station from Silicon Graphics Inc. The IRIS
combines Bell Laboratories' Unix operating system and
the Ethernet communications network with a general-
purpose, real-time, three-dimensional color-raster graph-
ics system. Custom very large-scale integrated circuits in
the IRIS, such as Silicon Graphics' trademarked Geome-
try Engine (see p. 117), reduce its cost and power re-
quirements, increase its reliability, and provide real-time
speed and high graphics functionality suitable for a broad
spectrum of two- and three-dimensional applications.

In addition to general-purpose computing, the IRIS
supports real-time color display and manipulation of bit-

mapped or stroked characters, 2-d or 3-d vectors, para-
metric curves and surfaces, 2-d areas, and 3-d solids with
shading and hidden surfaces removed. These graphic ob-
jects are defined in the user's coordinate system, in either
32-bit floating-point or 24-bit integer values. All the geo-
metric transformations, rotations, translations, scaling,
clipping, multiple windows and viewports, perspective
projections, and so forth are done by the engine at rates
approaching 10 million floating-point operations a sec-
ond. In addition, the geometry chip is provided as a
general-purpose geometric computing subsystem suitable
for calculating the intersection of solids and for matrix
arithmetic at these floating-point rates.

Instantaneous drawing rates decrease engineering de-
sign time. Engineering work requires the manipulation of
complex 2-d and 3-d geometric models that frequently
are hard to visualize or contain large amounts of infor-
mation. If the display of information is instantaneous, the
engineer spends less time in analysis of the information

114 Electronics/October 20, 1983

and hence is more productive. The list of applications
needing this high level of performance spans engineering
disciplines from mechanical to electrical engineering
(Figs. 1, 3, 6, and 7). Even fields such as physical chem-
istry—where shaded models of molecules provide hints
of chemical properties (Fig. 1)—require high-perfor-
mance real-time graphics. Circuit designers need to be
able to view multiple windows of graphics and textual
data (Fig. 3 and cover). For architectural engineers, the
ability to view 3-d architectural layouts speeds the design
process (see cover). Similarly, viewing trajectories of ro-
bot manipulators and checking for collisions allows for
faster programming of movements (Fig. 6). Aircraft,
automobile, and ship designers continually need to model
exterior surfaces based on parametric curves (Fig. 7) and
even to simulate their motion (again, see the cover
illustration).
The IRIS is a real-time graphics computing node in an

Ethernet communications environment. Three main con-
figurations are possible: work stations, terminals, and file
servers. The IRIS terminal runs a small real-time operat-
ing system called the V Kernel—developed by David
Cheriton and co-workers at Stanford University—and
provides a multiwindow environment for access to one or
more computers on the network. The work station runs
Bell Laboratories' Unix operating system and, with a
disk, is capable of operating independently. A file server
supplies data files to other computing nodes over the
network. Both terminals and work stations provide the
graphics capability.

Graphics node

When the IRIS is used as a terminal, the graphics
application runs on a remote host connected to the termi-
nal by a network. (Serial and parallel connections to the
host are also possible.) Graphics commands issued on the
host are sent to the IRIS to be executed, where it either
draws them immediately or stores them in display lists
for local rapid drawing, depending upon the mode. Once
a display list is defined, the application program typically
sends only editing and redraw commands, so that instan-
taneous response is achieved over the network.
The terminal uses the Motorola 68000 and a geometry-

chip pipeline with output to a high-resolution color ras-
ter-scan display. All graphics pipeline data is transmitted
on a private data bus, and all the circuit boards use the
standard Institute of Electrical and Electronics Engineers
(or Intel) Multibus for general communications.
The work station may have either one or two proces-

sors. The dual-processor form just adds a second proces-
sor to the backplane, which serves as the host to the
terminal processor. The second processor runs a 68010
with Virtual Memory Unix 4.2BSD, while the terminal
processor continues to run the V Kernel. Here, the "ter-
minal" has a dedicated host, and communication is
through shared memory, rather than with the network.
The single-processor work station runs Unix 4.2BSD

on a 68010 processor and memory subsystem, which
serves as the real-time graphics processor as well. The
Unix kernel is slightly modified so as to provide real-time
graphics service. For most real-time applications, perfor-
mance can be improved by a factor of almost two with

3. VLSI design. Two-dimensional area-fill functions—along with pan,

zoom, rotation, and scale operations—help circuit design all the way

from VLSI layout to schematic entry. Engineers can use the system's

multiple windows to view sections of circuits.

the assistance of a dual-processor work station.
The electronics consists of one or more general-pur-

pose processors and a geometry pipeline made up of the
engine subsystem, the frame-buffer controller, the update
controller, and the display controller. Also, standard net-
work and disk controllers may be present (Fig. 2).
The 68010 processor and memory subsystem generates

24-bit virtual addresses that are applied to the memory
map, on-board read-only memory, and on-board input/
output interfaces. The page map uses a fast, 1.5-level
structure and 4-K-byte pages to provide up to 16-mega-
bytes of virtual address space for up to 256 process
contexts in a demand-paged Unix environment. Physical
addresses from the page map contend with accesses from
the Multibus and the hardware memory-refresh circuit
through a triple-ported arbiter. Space is provided for up
to 128-K bytes of erasable programmable ROM and four
RS-232-C serial lines. Using 64-K random-access memo-
ry, the 0.5 megabyte of memory on the processor board
can be extended in 1-megabyte increments. With 256-K
parts, these numbers increase to 2 and 4 megabytes,
respectively. Memory references from the Multibus are
mapped to provide scatter-gather direct memory access,
as well as control, when there is more than one central
processing unit on the Multibus.

In the terminal form, the 68000 acts as the display
processor, executing all graphics drawing instructions
and directing data into the graphics pipeline. It manages
display-list memory, input devices such as the keyboard,
and communications with the host processor. In the sin-
gle-processor work station, the 68010 does these func-
tions as well as running Unix 4.2BSD.

Graphics pipeline

Graphical output is initiated by the CPU when it sends
commands and data to the graphics pipeline. In normal
mode, the engines do matrix transformations, clip to
normalized coordinates, and finally scale the trans-
formed, clipped points to screen coordinates. The frame-

Electronics/October 20, 1983 115

IRIS
UNIX

WORK STATION

IRIS .
GRAPHICS
TERMINAL

DISK •

SUPER-
MINICOMPUTER

MAINFRAME

IRIS
DISK LESS
UNIX

WORK STATION

buffer controller (a 16-bit 2903 bit-slice processor) does
such things as interpret characters, control the font mem-
ory, and compute coefficients for rendering lines and
polygons. The update controller does scan conversion,
including filling polygons and lines, clipping characters,
and placing the results in the frame buffer. Finally, the
display controller fetches picture-element values from the
frame buffer and draws them on the face of the color
cathode-ray tube.
The Multibus is normally used only for vo communi-

cation with the disk or the Ethernet. The graphics pipe-
line is a separate data path, not on the Multibus. Like-
wise, th`e memory on the processor is dual-ported, and
accesses to it need not use the Multibus.
The geometry subsystem consists of a pipeline of up to

12 identical engine chips (see "Gearing up for real-time
graphics," p. 117). Each chip can be configured in soft-
ware to do dot products, clipping, scaling, or nothing (a
null device). A 12-chip pipeline is typically configured
with the first four as dot product chips (forming a 4-by-4
matrix multiplier), the next six as clippers (to clip against
the left, right, top, bottom, near, and far planes), and the
last two as scalers to convert the normalized coordinates
into physical screen coordinates.
The matrix multiplier transforms points from their

original coordinate system into a normalized eye-coordi-
nate system. The clippers clip those lines and polygons
that would have extended outside the viewing area (clip-
ping is different for lines and polygons). The clippers
may need to add or delete points in the process. Finally,
the scalers convert the transformed and clipped points
into physical screen coordinates.
The data that comes out of the geometry pipeline is

primarily a set of commands in absolute screen coordi-
nates. The raster subsystem's main jobs are to fill in the
pixels between the endpoints of the lines, fill the interiors
of polygons, and convert character codes into bit-mapped
characters. Each line that is drawn has certain attributes,
among them a width (of 1 or 2 pixels), a stipple pattern,
and a mode.
An IRIS system may have from 4 to 24 bit-planes in

increments of 4. Any graphical object that is drawn—
whether a line, a polygon, or text—is drawn in the

4. Multiple modes. Real-time graphics is not

enough by itself to enhance productivity. The

IRIS work station meets the challenge by

fitting into an Ethernet network as a stand-

alone work station, graphics terminal, and

server for other network nodes.

current color with the current write
mask. Both the write mask and the
color have 1 bit per bit-plane. Only if
the bit in the write mask is on is the
color bit written into the correspond-
ing bit-plane.
The IRIS system handles three dis-

play modes: single-buffer, double-
buffer, and red-green-blue. With 24
bit-planes, the system can be config-
ured in the RGB mode, where 8 bits
of the color specify the intensity for

red, for green, and for blue. Both the other modes work
through a color map that has 4,096 entries of 24 bits
each. The 24 bits contain the red, green, and blue intensi-
ties for each of the two entries. One access mode uses the
values in the bit-planes as the entry into the map. Anoth-
er method (especially useful with 8 or fewer bit-planes) is
to use the bit-planes for the 8 low-order bits in the map
and a software-controlled map register for the top 4 bits.
Thus the map may be configured either as one 12-bit
map or as 16 8-bit maps.

In single-buffer mode, all the bit-planes are visible, and
changes appear on the screen as soon as they are made in
the bit-planes. This is unsuitable for fast, animated
graphics, since the image must immediately be erased
before the next frame can begin to be drawn, and the
viewer will see, on the average, a half-drawn image.

Real-time graphics is therefore usually done in double-
buffer mode—one image is viewed while the next one is
being drawn. In double-buffer mode, the bit-planes are
divided into halves. One half is viewed while the other
half is modified. When the modified frame is complete,
the halves are exchanged and the new frame appears all
at once. There are routines to synchronize buffer swap-
ping with a real clock to get uniform motion. All the
color-mapping features described in the last section work
the same way in single- or double-buffer mode.
The raster subsystem has hardware support for the

cursor. The cursor is any 16-by-16 pattern that always
appears at the current cursor position drawn in the cur-
sor color with the cursor's write mask. Commands to set
the cursor's current position are set automatically by the
software, so that the application program need not do it.
The cursor color and write mask are independent of the
geometry color and write mask. In double-buffer mode,
the cursor is drawn on the front buffer, while the geome-
try is written on the back one.
The raster subsystem supports variable-pitch raster

fonts and stores them in a 64-R-byte font RAM. The
contents of the font RAM are controlled by software on
the 68000, which allocates the memory for fonts with
different numbers and sizes of characters. As characters
from the raster font are drawn, the current character
position is automatically updated by the width of the

116 Electronics/October 20, 1983

Gearing up for real-time graphics

The Geometry Engine, trademarked by Silicon Graphics,
is a very large-scale integrated circuit with about 75,000
transistors that can be configured to do one of three
basic operations: matrix transformation, geometric clip-
ping, and mapping to output device coordinates. Work-
ing ihternally with four-dimensional vectors of floating-

point numbers, the hardware directly supports all the
commands necessary to save the internal state of the

system, manipulate matrixes and viewports, draw lines,
curves, surfaces, polygons, and characters, and change
colors and other attributes of the system.

Besides four floating-point arithmetic and logic units,
the engine contains a control store for the microcode to
implement floating-point operations, line and polygon

clipping, perspective division, stack management, and
curve generation. For example, in the engine's curve
command, microcode generates points along any three-
dimensional rational cubic spline, employing user-sup-
plied coefficients and endpoints, which it treats as if they

had been sent with separate move and draw commands.

MATRIX
MULTIPLIERS

^

USER

COORDINATES

GEOMETRY
ENGINES

50

LINE
DRAWING I

01 50

501 \POLYGON

01 if)

NORMALIZED
EYE

In another mode of operation, called hit-testing, a pair

of commands causes the engine to indicate against
which planes an item is clipped, without actually drawing

the item. For example, a polygon surrounding the view-
port would record four clips, even though none of its lines
passes through a visible region. The figure shows how a
line drawing and polygon would appear at various stages
in the pipeline.

Besides the configuration illustrated, others are some-
times useful. For example, if special commands are

employed to make the clippers and scalers merely pass
data without operating on it, the pipeline can be used as

a hardware 4-by-4 matrix multiplier. Furthermore, the
pipeline can be configured to clip polygons against an

arbitrary plane—ideal for solid-modeling applications.
The first four geometry chips can transform the coordi-

nate system to make that plane a standard clipping
plane, the fifth is a clipper, and the next four invert the
transformation. All polygons passed through this pipe-
line will be clipped against the given plane.

CLIPPERS OPTIONAL CLIPPERS
(LEFT, RIGHT, TOP, BOTTOM) (NEAR, FARi

COORDINATES

Ir

-A>

CLIPPED,
NORMALIZED

EYE

COORDINATES

SCALERS

PHYSICAL
SCREEN

COORDINATES

p -300 r-

100
100

_J
600

characters drawn. Characters are clipped by a screen
window on bit boundaries, so a character does not sud-
denly disappear as soon as a part of it moves off the
screen. It is possible to read and write individual pixels
on the screen—a useful feature in such applications as
interactive "video painting" as used in the graphic arts.

System software

The IRIS work station is a 68010-based Unix 4.2BSD
machine with network support and real-time graphics
hardware supported by a graphics library. All standard
Unix utilities are available, so the system can be used as
a stand-alone work station. The IRIS system software is

written in C, but the graphics library is callable from
other languages (currently Pascal and Fortran).
The IRIS terminal is attached to its remote host or

hosts over a network or through a serial connection (Fig.
4). The graphics software is independent of the type of
connection used, but greater network bandwidth gives
better performance. IRIS systems use network protocols
that are compatible with both the Government-sponsored
IP/TCP and Xerox's XNS. A VAX machine running the
Unix 4.2BSD operating system uses IP/TCP, for example,
but a vms VAX communicates with IRIS terminals with
XNS software provided by Silicon Graphics Inc.
The IRIS graphics software provides a convenient,

Electronics/October 20, 1983 117

high-level interface with the hardware. It also provides
low-level access for applications demanding it. Its main
features are:
• Multiple windows and multiple viewports for mixed
text and graphics.
• Hierarchical display-list definition and maintenance.
mu User-space object transformations at the command
level.
• Immediate and compiled display-list modes.
II Display-list editing.
us Object-selection mechanism, including picking and
collision detection.
• Geometric computation.
• Queued 1/0.

Proposed graphics standards such as CORE and GKS
could be implemented using a subset of the IRIS graph-
ics library. Unfortunately, CORE treats transformations
as an adjunct to a graphics system, so that the CORE
system is not as suitable for real-time applications. GKS,
on the other hand, does not provide the 3-d applica-
tions, although it does allow transformations to be ap-
plied to all objects. The IRIS graphics library is basically
a combination of the two systems, but it is specifically
tailored to the IRIS, rather than designed to be the sum
of GKS and CORE.

Hierarchy and naming

Both the hardware and software support hierarchical
graphical objects. A hierarchical description of an auto-
mobile, for example, might include one list of commands
that draws the body and another that draws a wheel. To
draw the car, the software must draw only the body,
then draw the wheel four times, each with appropriate
translations and rotations. The wheel itself may contain
still simpler objects—perhaps five instances of a bolt.
The basic graphical data structure is called an object.

It is made up of primitive drawing commands together
with calls on other objects that are transformed (rotated,
translated, and scaled). In the example above, the bolt
object might consist only of move and draw commands.
The wheel has commands to draw the rim and tire, plus

(4e
6. Robot animation. Animated shaded-picture generation in real

time allows rapid determination of robot manipulator paths through

space. IRIS software can also check for collision detection to ensure

that the planned trajectory does not conflict with other objects.

OBJECT 1
(CAR BODY)
INSTANCE 1

OBJECT 2
(WHEEL)

INSTANCE 1

OBJECT 3
(BOLT)

INSTANCE 1

OBJECT 2
(WHEEL)

INSTANCE 2

OBJECT 3
(BOLT)

INSTANCE 2

5. Hierarchical nesting. Although the final drawing may be a corn

plex combination of several objects, IRIS software allows designers to
deal with multiple objects simply as separate instances of some

distinct object, like a car body, a wheel, or a bolt.

five calls on the bolt object. The car object consists of the
body-drawing commands plus four calls on the wheel
object. Only three object descriptions are needed, al-
though there will be 20 bolts in the final drawing
(Fig. 5). This hierarchical nesting can be arbitrarily deep,
and the transformations for intermediate values are saved
in the engine's matrix stack.
Naming is a problem with hierarchical objects. An

engineer editing the car drawing needs to know that the
bolt he has pointed to is, say, the third bolt on the left
front wheel of the car. To specify an object completely, a
path of names is required—instance "three" of object
"bolt" in instance "left front" of object "wheel" in in-
stance "one" of object "car." Deeper nesting requires a
longer path. The graphics library supports paths of in-
stance and object names for both selection and editing.

Since a transformation can be applied every time an
object is called within another object, each object can be
described in the most convenient coordinate system. This
is even true of the highest level of object, since arbitrary
viewing and windowing transformations are applied.
Any objects that are conveniently described in terms of

smaller objects are good candidates for a hierarchical
description. Mechanical parts, automobiles, VLSI and cir-
cuit designs, and documentation (chapters, sections, and
paragraphs) all fall into this category.

High-level access

Programmers usually deal with the system on a high
level. For example, the IRIS internally uses 4-by-4 matrix-
es to represent all the perspective, windowing, rotation,
translation, and scaling transformations, but the user
commands look like "rotate (angle, axis)" or "translate
(x-dist, y-dist, z-dist)" or "perspective (field-of-view, as-
pect-ratio, near-clipping-dist, far-clipping-dist)." Curves
and surfaces are specified in terms of control points
instead of different matrixes. Cursor drawing and un-
drawing is handled automatically, and the system is auto-
matically initialized in a reasonable way.

118 Electronics/October 20, 1983

The graphics software can be used in immediate or
compiled mode. In immediate mode, the effects of a
drawing command appear immediately on the screen.
Programming is easy in this mode, but there are two
disadvantages: there is no way to save object definitions
so they can be called by other objects, and the overhead
associated with a subroutine call makes the 68000 the
performancè bottleneck. Compiled display lists solve
these problems. Each graphical object is stored internally
as a display list that can be traversed rapidly enough by
the 68000 processor to keep up with the geometry pipe-
line. For example, the car object shown in Fig. 5 might
be compiled as:

makeobj(car);
[commands for drawing the body]
translate(0.0,7.0,0.0) /* position first wheel */
callobj(wheel); /* draw the first wheel */
[commands to draw the other wheels]
closeobj();

Then, all the commands between MAKEOBJ and CLO-
SEOBJ become part of the object called CAR.
Compiled mode runs fastest, but an existing applica-

tion can be converted to run on the IRIS very quickly
using immediate-mode commands. Later, critical sections
of the code can be converted to build display lists for
better performance.

Editing objects

Display-list objects can be edited—entries can be add-
ed, deleted, or replaced, and an entire object can be
rotated in real time by repeatedly editing the rotate com-
mand, changing the angle, and redrawing the object. If
the IRIS work station is acting as a network terminal,
only a few network transactions are necessary—open the
object, edit the rotate, close the object, and draw it.
Memory management for display-list code space is done
automatically.
The IRIS graphics software supports standard graphics

primitives—points, lines, polygons, rectangles, circles,
arcs, cubic splines, and so on. Most can be filled or

7. Aircraft design. Parametric curves and surfaces model exterior

surfaces, and vector drawings display results to industrial designers.

The ability to examine different portions of the object through rotation
and zoom further helps designers to visualize mechanical parts.

unfilled, in two or three dimensions, and in fixed- or
floating-point terms.
The graphics pipeline can be put into a feedback mode,

where it does not draw anything on the screen but in-
stead sends the data back to the 68000 for further pro-
cessing. This feature can be exploited in many ways. To
select an object, its name must be recovered from the
screen coordinates. To accomplish this, the system soft-
ware modifies the windowing transformation, so that the
view is a tiny window around the selection point, and
then draws the object again in hit-testing mode. In this
mode, an indication of what would have been drawn
(including its name path) is fed back to the 68000. Area
selection is the same, but with a larger window.

Selection is important for any application where the
user needs to point interactively to objects on the screen.
Drafting tools, circuit editors, simulators, and document-
production tools all fall into this category. In many ap-
plications (robot-arm simulation or games, for instance),
collision detection is needed. This is similar to selection
but uses a 3-d box as a window around the object being
tested for collisions.

Real-time support

Real-time graphics is usually performed in a double-
buffer mode. Here, while one image is being viewed,
another is being constructed in a separate memory area.
Special routines synchronize swapping between the two
buffers to give uniform motion.
Any object transformed by modeling and viewing

transformations may have a very small screen area or
may even be outside the viewing area. Rather than wast-
ing resources on drawing such objects, the system can
automatically prune the display list of them. A bounding
box for the object is passed through in feedback mode,
and the rest of the object is skipped if the bounding box
is either too small or out of range.

Delays associated with network communications make
dragging objects on the screen from a remote host diffi-
cult. To avoid this problem, the MODIFY command ties a
parameter of a drawing command to a linear function of
an input-device value. For example, binding a mouse's X
and Y positions to the X and Y parameters of a transla-
tion command will cause the translated object to be
dragged by the movements of the mouse. By confining
this type of interaction to the local work station, this
technique avoids any network-associated delays.
The software allows either polled or queued input. An

application reads the current state of a button (up or
down), the current mouse coordinates, or the current
setting of a dial. In addition, any combination of input
devices may be queued in an event queue. If the state of
a queued device changes (a button goes down or up, or
the mouse or dial position changes by more than a cer-
tain amount), an event is added to the queue. The appli-
cation then has a time-ordered list of events that can be
processed asynchronously.
The keyboard is unencoded, so if desired, the user

knows when a key goes down and when it comes up. The
usual mode is to have the unencoded keyboard interpret-
ed as if it were standard ASCII, and standard software
routines do this.

Electronics/October 20, 1983 119

