Permediad

Programmer's Guide - Volume 11

DRAFT ONLY

PROPRIETARY AND CONFIDENTIAL
INFORMATION

3D/

SD/:)s

Permediad

Programmer's Guide - Volume 11

PROPRIETARY AND CONFIDENTIAL
INFORMATION

iIssue 4

Permedia4 Programmer’s Guide Volume | Front Matter

Proprietary Notice

The material in this document is the intellectual property of 3D/4s. It is provided solely for
information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3D/4s accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice. 3D/z4s may not
produce printed versions of each issue of this document. The latest version will be
available from the 3D/sbs web site.

3D/./s products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.

3D/./s is the worldwide trading name of 3D/x4s Inc. Ltd.
3D/.45, Permedia4 and PERMEDIA are registered trademarks of 3D/z4s Inc. Ltd.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of
Microsoft Corp. in the United States and/or other countries. OpenGL is a registered
trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and
recognized.

© Copyright 3D/zbs5 Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http:/ /www.3dlabs.com

3D/abs 1.td. 3D/.bs KK
Meadlake Place Shiroyama | T Mori Bldg 16F
Thorpe Lea Road, Egham 40301 Toranomon
Surrey, TW20 8HE Minato-ku, Tokyo, 105, Japan
United Kingdom Tel: +81-3-5403-4653
Tel: +44 (0) 1784 470555 Fax: +91-3-5403-4646
Fax: +44 (0) 1784 470699
3D/zbs5 Inc.

480 Potrero Avenue
Sunnyvale, CA 94086,
United States
Tel: (408) 530-4700
Fax: (408) 530-4701

3D/.b5 Proprietary and Confidential i

Rasterizer

Permedia4 Programmer’s Guide Volume ||

Change History

Document | Issue | Date Change

160.3.1 1 1 June 99 First DRAFT Issue.

160.3.1 2 6 August 99 Virtual units, editorial changes

160.3.1 3 15 September 99 Structural changes to balance content with volume I, new data
and corrections in most chapters.

160.3.1 4 18 June 2001 V1 OGL extensions to texture comp.; fixed Initialization

example values for stencil position and width, GID; removed
index entries and traces of FBReadMode, deleted
Windowbase references, corrected GID test control (no
longer in Window register), corrected Stencil source data field
example values.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume | Front Matter

Contents

Propr1etary INOTCE ..ot i
Change HISTOIYcuoviiiiiic e il
COMERIIES -ttt ettt ettt ettt et et et e st et e b e et et eseme et ea et e s eme st e s et e s e st e s et emt et es e et e b et esen et ebent et es et esent et eseneetens il
1 GRAPHICS PROGRAMMING.......uuuttttiuitiiitiiieeirieennenrenenrernneennennnennnnnnnnn s snasansesens 1-1
1.1 The Graphics HyperPIpelinecooviiiiiiiiiiiiic s 1-1
1.1.1 ROULOE ..o e 1-3
1.1.2 IDEEEAIIZARION .o aa e 1-3
1.1.3 Dominant and Subordinate Sides of @ Triangleoovveoveeeoereoereeeoreeeseeeeeeeeeeeseeesreesennn] 1-4
1.1.4 Register Set Up for Depth Testing..........ocuiiiimiiiaiiiiiiiiiieiest e 1-4
1.1.5 SUBPIXel COPFECHION ...v..covv.ooeveoeeeoeeeeeeeee oo 1-4
1.2 Pipeline OVEIVIEWS .covuiuiviiiiiiiicicie s 1-5
1.2.1 A day in the life of @ 3D HIangleoovv..ooeeeoeeeeoeeeeoeeeeeeeeeeeeeeeee e 1-5
1.2.2 A day in the Life of @ 2D PrMitive.....ov...ovvveoeeeeoeeeeoeeeeeeeeeeeee e 1-10

2 RASTERIZER AND 2D SETUP ...ttt ettt nneneennnee 2-1
2.1 IDESCIIPHION oottt 2-1
2.1.1 THAPOZOUES ... 2-2
2.1.2 AMBIIALLASING ..o 2-4
2.1.3 SEIBPLING Auring RASIrIZingov..oveeeveeoseeeeeeeoeeeeseeeeeee e ee e 2.6
2.1.4 POTHES oo 2-7
2.1.5 LLZRES oo e 2-10
2.1.6 POLYGONS ettt et 2-13
2.1.7 SPAR OPEFALIONS ..ot 215
2.1.8 POl SIZES it e e 2-19
2.1.9 Bitmaps, Spans and IMagesccccccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 2-19
2.2 RASEIIZEL IMOAE ettt ettt ettt et s e s ese e e sese st et aneenneesese e esens 2-29
2.2.2 Rasterizer Unit ReGIstersccciiiiiiiiiiiiiiiiiiiiiiiiii e 2-30
2.2.3 Render Command.................ccoviuiiesiiiiisssssiiiie sttt ettt 2-32
2.3 2D SEUUP ..ttt 2-38
2.3.1 X DY 2:38

3 SCISSOR, STIPPLE AND COLOR DDA UNITS ...t s 3-1
BT SCISSOT UMttt ettt ettt ettt ettt b et b bt s et et e b et et e et e s ene bt e e se e eeebe e eseneeesenes 3-1
3.1.1 USEr SCISS07 TSt oo e 3-1
3.1.2 NY AN Y Ay A TSP 3-1
3.1.3 SCISSOP REGISIOHS ... 3-2

3D/.b5 Proprietary and Confidential iii

Rasterizer Permedia4 Programmer’s Guide Volume I

3.1.4 Span Operations and the Scissor UMtc..ccueiiiiiiimiiiiniiiiiiiiiiiie et 3-3
30105 SCISSOF EXAMPLe .ccovvveeoooeeeeeee oottt 3-3
3.2 SHUPPLE UNIE oo 3-3
3.2.1 AP SEIPPIING o ovvvveoeveeeeoeeeeeo oottt ettt 3-3
3.2.2 L0 SEPPLING cvv.ovveoeeeoeeeeeeeeeeeeee e 34
3.2.3 Span Operations and SEPPIINGcoocciiieiiiis e 3-5
3.2.4 ROGISTOHS 1ottt 3-5
3.2.5 EXAMPLES ..ot 3.7
3.2.6 Line Stipple EXAMPLe.............ocooiiiiiiiiiiiiiiiiiiiii e 3-8
3.2.7 Avea Stipple Pattern EXAmPle...........c..cccccoiiimiiiiiiiiiiiiiiiisiii et 3-8
3.3 COlOT DIDA TUNIE ettt ettt ettt ettt b ettt ettt ettt eb et e se st et st e s e eseseneee 3-9
3.3.1 RGBA and Color-Index(CI) MOdes..........occuvuiiiiiiiiiisiiiiiisiiiiiies s 3-10
3.3.2 GOUPGHA SHATING ..ottt 3-10
3.3.3 Flat Shading EXamplec.cociiiiiiiiieiei et 3-12
3.3.4 Gourand Shaded Trapezoid Example...............cccccoiiviiviiiiniiniiiniiiiiiiiiiiiiiiiiiisiiieiaiiaie 3-12
3.3.5 Gourand Shaded Line EXample.....o........cco..sosssoosseseeeveeeeeeeesssssssssesseesseseseeossssssosssssesesseeeeee 3-13

4 LOCALBUFFER READ/WRITE ... 4-1
4.1.1 MO REGISIETS ...ovv...ovveooeeveooeeeoeeeoeeve e 4-2
4.2 WINAOW LEGISTET ...uvuiviiiiiiiicicieietecie ittt 4-5
4.3 Pixel Ownership (GID) Test UNIt ...oooviimiiiiiiieiicieciccce e 4-6
4.3.1 Pl QUnErship TESt ovovvvsississssissis ettt ettt ettt 4-6
A4 SEENCI TS vttt ettt b ettt e st b et e sttt e e bn et b et et et neneas 4-8
4.4.1 REGESIEVS . 4-9
4.4.2 SEENCLL EXAIIPLE. ... 4-11
4.5 DEPth TeSt .o 4-11
4.5.1 ROGISLEPS.vvveeoeeeeeeeee ettt ettt 4-13
4.5.2 DEPED EXAMPLE. ...t 4-15

5 TEXTURE MAPPING ...ttt e a e aaaaaaeens 5-1
5.1.1 Compatibility with Earlier CHIDSCESv...ovv..ovveooovveooeeeeoeeeeseeeeseeeeeeeeeeeeeeseeeeseee oo, 5-1
5.2 Texture Co-0rdiNate (GENEIAION ...coueuiririeeirieieiirieierieieitrt et sttt ettt sttt seae et eete e see s e seneeene 5-2
5.2.1 Calenlate texture COOPdINALEs.................c..cccociiiiiiiiiiiiiiiiii e 5-2
5.2.2 Level of Detctil Calctlaionove.oveeoeeeeeeeoeeeoeeeoeee oo 5-3
5.2.3 TEXEUYE ROA ... 5-5
5.2.4 FZter MOGES ... 5-8
5.2.5 N Y 5-11
5.2.6 Lookstp Table (LUT) ...c..ocoiiiieiiiieiee et 5-15

iv Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume | Front Matter

5.2.7 Texture Filtering and Alpha Mapping.................ovv.ovveoveeoreeoeeeioseeeeeeeeeseeseeseeseesreer 5-16
5.2.8 Text17C Color COMPOSIEING cvvv.oeeveereeeoeeeeeeeeeoeeeeeeeeee oo eeeee e 517
5.2.9 IIIPIEMENIATION ... 5-27

6 FOG, ANTIALIAS AND ALPHA TEST ..ottt 6-1
0.1 FOG UNIE oot 6-1
6.1.1 Fog Index Caltstlation...............cccocuiiiimiiiiisiiie et 6-1
6.1.2 FOG Table....c.oesiesee e 6-2
6.1.3 FOG APPLICAITON ... 6-3
6.1.4 FOGMOE F6GISLEN ... 6-4
6.1.5 FOG EXAMPLe......co..oveooeeeeeeeeeeeeoee et 6-5
0.2 ANHANASING....coviiiiiiii s 6-7
6.2.1 ABEias APPLICALIONvveoeeoeeeoeeoeeeeeeeeeeeeeeeeee et 6-7
6.2.2 POLYGOR ARLIGLIASING ... 6-7
6.2.3 ROGISIEVS .. 6-8
6.2.4 ARLLALIAS EXAMPLE........oooesiiie e 6-9
0.3 AlPha Test Uilu oo 6-9
6.3.1 N X SN 6-9
6.3.2 REGASIENS 1. vttt 6-10
L a 6-10

7 FRAMEBUFFER READ/WRITE ...ttt 7-1
7.1.1 Standard Framebuffer Read OPeration....................oov.ooveeooeveoeeeoseeoeeeossoeeeeeseesreeveesseensenon 7-1
7.1.2 Framebuffer Read Span OPerationsoovv.oveeoveoeoeeeseeeoeeeoseeosseeseeeseeeseeoseeesreenennn! 7-2
7.1.3 Merge-copy Span OPerarions...............cccciiviiiiiiiiiiiiiiiiiiiiiiiiiiiii i 7-2

S T AN I N = 1 8-1
ST N ' T oY LB T Lo 3o MU SrO OSSOSO 8-1
8.1.1 ALphat BIend FURCEONSo..oveoveooeeoeeoeeeeoeeeoeeo oo 8-1
8.1.2 ALPhat Blend Registers...............o..ovveoeeeoeeeoeeeoeeoeeeoeeeeeeeseeeeee e 8-2
8.2 Source Blending FUNCHONSc.ccviiiiiiiiiiiiiciic e 8-2
8.2.1 OPNGL Alpha BIERAING..........o..oveooveoeeoeeeeeoeeeeoeeoeeeeeoeeeee e, 8-2
8.3 Destination Blending Functions..........ccccvuiiiiiiiiiiiiiiiiiiccccccec s 8-3
8.3.1 0penG L Destination BInding..............o...oov.ovveovveoeeeoeeeoseeoeeeeeoseeseeoseeeeeeeeeeseeeseeeneneen 8-3
8.3.2 QuickD 1w 3D Apha BLERAINGc...ov.oveoeeeoeeeeoeeoeeoeeoeeeeeeeee e 8-4
8.3.3 Image FOrMAIingcccuueiiiiiiiiieie e 8-4
8.3.4 REGISIEIS 1.t 8-5
8.3.5 CHIOME TESEING...ov..oveoeeeeeeeeeoeeeeee e 8-9
8.3.6 Alpha Blend EXamplecc.ccoiiiiiiiiiiiisi it 8-11

3D/.b5 Proprietary and Confidential %

Rasterizer

9

10

11

12

vi

Permedia4 Programmer’s Guide Volume I

COLOR FORMAT AND LOGICAL OPS ... 9-1
9.1 Color and Alpha FOIMALScceiiiiiiiiiiiiicccc s 9-1
9.1.1 COLOP DIIBEFING.........oovoooeeooeeeoeeeeeeeeeeeeee et 9-4
9.1.2 REGISEETS cvvv.. v, 95
9.1.3 DZEHEF EXAMPLE........ooveeesieeis e 9-6
9.1.4 3:3:2 Color Format EXampleov.ovveoveooveeoeeeoeeeooseeseooseeoseeoeseeseeesseossoeseoeseesveosvosseesssees 9-6
9.1.5 8:8:8:8 Color Format EXGmpleoov.oveoveeoreeseeseeoeeeeeeeseoseoeeeseoseeeo e eeeveeveereeree. 9-6
9.1.6 Color Index Format EXample............c....cooiuiiiiimiiiiisiiiiiiis ittt 9-7
9.2 LogIcal Op UnNItu.c.ciiiiiiiiiiiicic s 9-7
9.2.1 High Speed Flat Shaded Rendering.................ovv..oovveeoeeeooeeeeoeeeeseeeeoseeeeeveeseveeoeoee e 9-7
9.2.2 0G0 OPErationsoo....vvveeeeveoeeeeeoeeeeeeeeeeeeeeoe oo, 9-8
9.2.3 ROGISIErS . ovveo ettt 9-8
9.2.4 XOR EXAPLE <....cov..oeveooeeeoeeeeeoeeeeeee et 9-9
9.2.5 Logical Op and Software Writemask EXample.................ov.oveoveoreoroseeoseossossoreeeeeseeesesresve. 9-10
FRAMEBUFFER WRITEMASKS ... s s n e nnnnnnan e 10-1
10.1.1 SOPHWATE W FIEOMIASES.......iis sttt 10-1
10.1.2 Hardiwmre Writemasksuuiissssssseesssiss ettt et a e e ettt aa e e e e e 10-1
10.1.3 ROGISIONS oo 10-1
10.1.4 Software Writemask EXample...................oov.ooveeoeeeoseeeeeeoseeoseeoseeoseeeeeeseeeseeseeeee e 10-1
10.1.5 Hardware Writemask EXAMPLe.............ccccoiiiiiiiiiiiiiiiisiiiiiiiisie sttt 10-2
HOST OUT ..ottt e s 111
TTT FIEEIINE .o 11-1
11.1.1 Filter Mode EXGMPL............ccociiiiiiiiiiiiiee e 11-1
11.1.2 SPatistic OPEFALIONS ...ooooiviiiiiiiiii i 11-2
11.1.3 SYNCHIOMIZATION ...ttt 11-3
11.1.4 ROGISIONS .. 11-3
1115 Picking BXAmPLeoo..cv..oevooeeoeeeoeeeeoeeoeeoeeeeeeeee e 11-5
11.1.6 SYNC IRLFUPE EXAMPIC.......ooiiiiiiisiiiis et 11-6
AN I 2 I N S 12-1
12.1 Initializing Permediad..... ..o 12-1
12.1.1 Reset and initicliSationuuueeis s sttt 12-1
12.2 System INItaAlZAtIONc.oviiiiiiiiiciiccic s 12-2
12.2.1 POIL DUS .o ettt 12-2
12.2.2 Memory ConfiQuration.............oo..ovv.oeeeoeeeoeeeeeeeoeeeeeeee oo 12-2
12.2.3 Internal Video Timing Registers............ooveooveovveoreeoeeeoeeooeeoeeeeeoeeeoeeeseeeee oo 12-3
12.2.4 Framebuffer DEPth...........ccuoeiuiiiiiieeee e 12-3

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume | Front Matter

12.2.5 SCHOEN W Edth. ... 12-4
1226 Screen CLIPPing REgion .ov....vvvveeooeeeeeoeeeeeeeeeeeeoeeeeee e eeeeee e eeeeeee oo 124
12.2.7 Localbuffer and Framebuffer Configurationcocuiveiviisaisaisissaississsassassssassasisssasssninnss 12-4
12.2.8 HOSE Q218 UZE . .oiiiiiiiiiis e et ettt ettt 12-5
12.2.9 Disabling SPecialized Modes............ov..ovveoovveossveosveesseeeseeseseeoesseosseeoesseeseesesseseseeoesseessees s 12-6
12.3 WINdOW INIHAIIZATION c.cuvevieiieieieie ettt ettt ettt et e e s enensen s esenenens 12-6
12.3.1 COLOF FOVMAL ...vuusiisss sttt ettt ettt e e e e e ettt aaaaeans 12-6
12.3.2 Setting the Window Address and Origin...............ooeveoovvveeoooreeeosseeeooseseeoseseeeoeeseseseoe s, 12-6
12.3.3 W HZECIIASIES. ..ot 12-7
T Y T N 12-7
12.4 Application INIHANZATIONooveviiiiiiicic e 12-8
13 PERFORMANCE TIPS ...ttt ettt e e e e e e e e et e e e e e e e e s s easnrannaeaeaeeeaaanes 13-1
13.T BLOCK WHIEES weuvveuiieiiieteieeiet ettt ettt sttt ettt et s et s e st se et be st sebenes 13-1
13.2 Fast double buffering 1n a WINAOWccoviiiriiiiiiiiiccccc e 13-2
13.3 Disable FB Reads per pixel if not required...........ccocoiiiiiiiiiiiiiiiiiinccscceecccces 13-2
13.4 Improving PCI bus bandwidth for Programmed I/O and DMA ..o 13-2
13.5 PCI burst transfers undetr Programmed I/ O.....c.ccuvvuiiiiiniciniiniiineccnccsce e 13-2
13.6 Using PCI Disconnect Undet Programmed I/Occoccouviciviininiininiiccnicseesceceeeeene 13-3
13.7 Using Bus Mastership (IDIMA)cooiiiiiieccc e 13-3
13.8 Disabling Units NOT 1 USEcuevivruriiiicieiicicietecie et 13-3
13.9 Clearing the localbuffer & framebuffer ... 13-3
13.10 Use of the Framebuffer (or Localbuffer) Bypass.........cccoovvoiiiiiicc 13-4
13.11 Loading Registers in Unit Order........ccoiuiiiiiiiiiiiiiiiiicccsiccsccssessscee e 13-4
13.12 Avoiding Unnecessary Register Updates.........ooiiiiiiiiiiiiiiiiiiiiiicccesccccceccceieans 13-4
13.13 Hardware and Software Context DUMmMPScccocoviiiiiiiiiiiiiiiiiiccicccesce e 13-4
13.14 Use the Memory Scratchpad RegIStersccoeuiiiiiiiiiiiiiccicec s 13-4
13.15 MiSCellaneous TIPS c..vvuruevirieiiicic e 13-5
14 APPENDICEScoiii ittt e e e e e e ettt e e e e e e e e s st bt et e eeeeeeees s nnbanneeeeaeenanans 14-1
14.1 Pseudocode DEfINITIONS ...c.eoirieuieirieiiieteiieieieiet ettt ettt b et s e aeeae s 14-1
14.2 Interpolation Calculation..........ccoooiiiiiiiiiiiii e 14-3
14.2.1 Color Gradient INTerPolationc..cccueiissiisssiissiississseetees ettt et e asa e ensa s 14-3
14.2.2 Register Set Up for Color INterpolation.............cccocuiviiimiiiiiiiiniiiiiiiiiiiiiiiaiesiiase s 14-3
14.2.3 Calculating Depth Gradient Valtescc.cccciiviiiiiiiiiiiiiiiiiiiiiiiieceiieeia e, 14-4
14.3 Accurate ReNderiNgccccoiiiiiiiiiiiiiiiiicici s 14-5
144 GLOSSALY e 18
15 INDEXES..... . eetieiiie e ettt e e e ettt et e e e e e e e e ettt e e e e e e e e e R e e et et ae e e e e e et nrrreeeaeeeeeeaann 21

3D/.b5 Proprietary and Confidential Vi

Rasterizer Permedia4 Programmer’s Guide Volume I

15.1 VOIUME T TACK cotttitiiteeeeeeeeeeeeeeeeeee ettt ettt s et e s et e s et e s eatesaseeseasesaseesseeenesssesneesneesns 21
15.2 VOIUME T TRAEK ittt ettt et et s et e s et e s eaeeseatesseesssesaseesseeanesseeseneesneeens 24

viii Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Graphics programming

1

Graphics Programming

1.1

3D/.bs

Permedia4 provides a rich variety of operations for 2D and 3D graphics supported by its
pipeline architecture. In this chapter, section 81.1 shows the basic units in the
HyperPipeline. The following chapters describe a typical rendering process for two typical
basic graphic primitives (the Gouraud shaded triangle and a 2D rectangle) and each of
the units in detail.

The Graphics HyperPipeline

This section describes each of the units in the graphics HyperPipeline. Figure 1-1 shows a
schematic of the pipeline. In this diagram, the localbuffer contains the pixel ownership
values (known as Graphic IDs), the Depth (Z) and Stencil buffer. The framebuffer contains
the Red, Green, Blue and Alpha bitplanes. The units in the HyperPipeline are:

Rasterizer scan converts the given primitive into a series of fragments for processing
by the rest of the pipeline.

Scissor Test clips out fragments that lie outside the bounds of a user defined scissor
rectangle and also performs screen clipping to stop illegal accesses outside the
screen memory.

Stipple Test masks out certain fragments according to a specified pattern. Line and
area stipples are available.

GID (Pixel Ownership) is concerned with ensuring that the location in the framebuffer
for the current fragment is owned by the current visual. Comparison occurs between
the given fragment and the Graphic ID value in the localbuffer, at the corresponding
location, to determine whether the fragment should be discarded.

Stencil Test conditionally discards a fragment based on the outcome of a test between
the given fragment and the value in the stencil buffer at the corresponding location.
The stencil buffer is updated dependent on the result of the stencil test and the depth
test.

Depth Test conditionally discards a fragment based on the outcome of a test between
the depth value for the given fragment and the value in the depth buffer at the
corresponding location. The result of the depth test can be used to control the
updating of the stencil buffer.

Color DDA is responsible for generating the color information (RGBA or Color
Index(Cl)) associated with a fragment.

Texture is concerned with mapping a portion of a specified image (texture) onto a
fragment. The process involves interpolating to determine the texel coordinates
including perspective division, reading the texels, filtering to calculate the texture
color, and application which applies the texture color to the fragment color.

Fog blends a fog color with a fragment's color according to a given fog factor.
Fogging is used for depth cueing images and to simulate atmospheric fogging.

Proprietary and Confidential 1-1

Rasterizer Permedia4 Programmer’s Guide Volume I

« Antialias Application combines the incoming fragment’s alpha value with its coverage
value when antialiasing is enabled.

I-. .!E:
-4 o
=
== s
=5 £
- 1 .
- ¥ i .
B] |
oy =
g L BE
— - — ol =T
; o
{]
5E A T
kT ==
=
= [
i e b == '
- L] =
- . 5
. .
E =
=
= -
= =
- 5=
2
. =
-t f
- E -
= i Ep
= mL]
- o - a5
e e
= = =]
b L
Ja- s
- bl — = -
= T ==
E =
= .- =
o o -
. -
[1
Y Y
=
=]
=
= ; =N] x
(=] -] = = a .
i EE= o =5 u = 7 o] . =E arview
- - = o [ECRL

Figure 1-1 HyperPipeline

1-2 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Graphics programming

111

1.1.2

3D/.bs

« Alpha Test conditionally discards a fragment based on the outcome of a comparison
between the fragments alpha value and a reference alpha value.

« Alpha Blending combines the incoming fragment’s color with the color in the
framebuffer at the corresponding location.

« Color Formatting converts the fragment’s color into the format in which the color
information is stored in the framebuffer. This may optionally involve dithering.

« Logical Op/Framebuffer Mask performs Logical Operations between the fragment and
destination, and optionally applies a writemask.

« Host Out optionally gathers statistics for picking and extent checking, and returns data
to the host for image uploads.

The HyperPipeline structure of Permedia4 is very efficient at processing fragments. For
example, texture mapping calculations are not actually performed on fragments that are
clipped off by scissor testing. This approach saves substantial computational effort. To
obtain the best results when programming for pipelined processing, however, you need to
be aware of what all the pipeline stages are doing at any time.

For example, many operations require both a read and/or write to the localbuffer and
framebuffer. Because these are at different points in the pipeline the programmer must
enable data read/write from/to the framebuffer — simply setting a logical operation to XOR
and enabling logical operations will not have the desired effect.

Router

As discussed in Volume I, the register address space can be seen conceptually as either a
message passing system or a flat address map. This allows some significant adaptive
performance enhancements. One important performance feature of the pipeline is the
Router. This is essentially a switch which allows the order of some of the units to be
swapped, by setting or clearing the Sequence bit of the RouterMode register.

Textured primitives are typically more processor-intensive than non-textured primitives.
When the Sequence bit is set, fragments are tested against the GID (Pixel Ownership),
Stencil and Depth(Z) before the texture value is calculated. If the fragment fails any of
these tests nothing is drawn so texture value calculations can be skipped - leading to
higher performance.

OpenGL defines the order of operations on a fragment as texture, alpha test, stencil then
depth(Z), which is the sequence used when the Sequence bit in the Router register is
cleared. However, if the alpha test is disabled (or cannot reject fragments) then OpenGL
compatible semantics are maintained even if the operation order is changed to the more
efficient stencil, depth(2), texture, and alpha test.

The order can be dynamically reconfigured at any time without any need to synchronize
simply by writing to the Order bit.

Initialization

Permedia4 requires many of its registers to be initialized in a particular way, regardless of
what is to be drawn, for instance, the screen size and appropriate clipping must be set up.
Normally this only needs to be done once and for clarity this example assumes that all
initialization has already been done. More details may be found later in this volume.

Other states (e.g. enabling Gouraud shading and depth buffering) change occasionally
though rarely on a per primitive basis.

Proprietary and Confidential 1-3

Rasterizer

1.1.3

Permedia4 Programmer’s Guide Volume I

Dominant and Subordinate Sides of a Triangle

The dominant side of a triangle is that with the greatest range of Y values. The choice of
dominant side is optional when the triangle is either flat bottomed or flat topped.

Permedia4 always draws triangles from the dominant edge towards the subordinate
edges. This simplifies the calculation of set up parameters as will be seen below.

Figure 1-2 Dominant and Subordinate Sides of a Triangle

1.14

1141

1.1.5

1-4

Register Set Up for Depth Testing

Internally Permedia4 uses fixed point arithmetic. The formats for each register are
described in the Reference Guide. Each depth value must be converted into a 2's
complement 16.32 bit fixed point number and then loaded into the appropriate pair of 32
bit registers (DZdxL, DZdxU, DZdyDomL, DZdyDomU). The ‘Upper’ or ‘U’ registers store
the integer portion, whilst the ‘Lower’ or ‘L’ registers store the 16 bit LSB, left justified and
zero filled.

For the example triangle, Permedia4 would need its registers set up as follows:

// Load the depth start and delta values
// to draw a triangle

ZstartU (Z1_MS)

Zstartl. (Z1_LS)
dZdyDomU (dZdy13_MS)
dZdyDoml. (dZdy13_LS)
dZdxU (dZdx_MYS)
dZdxL (dZdx_LS)

RasterizerMode

The Permedia4 rasterizer has a numebr of mode bits which take effect until cleared and
therefore tend to affect many primitives. These primarily involve bit mask operations
described below. For details refer to the Reference Guide, RasterizerMode register. In
the case of the Gouraud shaded triangle the default value for these modes is suitable.

Subpixel Correction

Permedia4 supports subpixel correction of interpolated values when rendering aliased
trapezoids (smooth shaded, textured, fogged or depth buffered). Subpixel correction
ensures that all interpolated parameters associated with a fragment (color, depth, fog,

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Graphics programming

texture) are correctly sampled at the fragment’s center. This correction is required to
ensure consistent shading of objects made from many primitives.

Subpixel correction is not applied to antialiased primitives.

Control of subpixel correction is in the Render command register described below, and
can be selected in bit settings for individual primitives (DrawLine, DrawTriangle,
DrawPoint). A full code example is given in the Appendices.

1.2 Pipeline Overviews

Before we review each unit in detail it is worth looking in general terms at how a graphic
primitive passes through the pipeline, what messages are generated and what happens in
each unit. Some simplifications have been made in the description to avoid detail which
would otherwise complicate what is in fact a very simple process.

The descriptions concentrate on what happens as a fragment flows down the message
stream. It is important to remember that at any instant in time there are many fragments
flowing down the message stream and the further they get the more processing has
occurred.

1.2.1 A day in the life of a 3D triangle

This section previews the render process for a typical 3D graphics primitive, the Gouraud
shaded, depth buffered, dithered triangle.

For this example assume that the triangle is to be drawn into a window which has its
colormap set for RGB as opposed to color index operation. This means that all three color
components; red, green and blue, must be handled. Also, assume the coordinate origin is
bottom left of the window and drawing will be from top to bottom. Permedia4 can draw
from top to bottom or bottom to top.

For clarity the equations are shown in full in the appendices, though in practice there are
many common terms and factors which need only be computed once and normally the
OGL driver performs all the necessary interpolations.

Consider a triangle with vertices, v1, v2 and v3 where each vertex comprises X, Y and Z
coordinates, shown below. Each vertex has a different color made up of red, green and
blue (R, G and B) components. The alpha component is omitted for this example.

(Xllel
R1GIB1)

vl

Top half XYZ

N’G’B’)
mmm_—————————— "'":Tf v2
Lower half

v3 (XaYsza
R.G,B.)
Figure 1-3 Example Triangle

3D/.b5 Proprietary and Confidential 1-5

Rasterizer

Permedia4 Programmer’s Guide Volume I

The diagram makes a distinction between top and bottom halves because Permedia4 is
designed to rasterize (a) screen aligned trapezoids, and (b) flat-topped or -bottomed
triangles; as shown below:

Figure 1-4 Screen aligned trapezoid and flat topped triangle

1.2.11

1.2.1.2

1.2.1.3

1-6

Delta Unit
The drawing process starts by generating and loading vertex data in the Delta Unit:

1. The application generates the triangle vertex information and makes the necessary
OpenGL calls to draw it.

2. The OpenGL server/library gets the vertex information, transforms, clips and lights it.
The vertex coordinates and color values are written into the vertex stores (in the Delta
Unit) and the DrawTriangle command is issued.

3. The Delta Unit calculates the initial values and derivatives for the values to interpolate
(Xleft: Xright, red, green, blue and depth) for unit change in dx and dxdyjeft. All these

values are in fixed point integer and have unique message tags. Some of the values
(the depth derivatives) have more than 32 bits to cope with the dynamic range and
resolution so are sent in two halves Finally, once the derivatives, start and end values
have been sent the 'render triangle’ message begins the rendering process.

4. The derivative, start and end parameter messages are received and filter down the
message stream to the appropriate units. The depth parameters and derivatives to
the Depth Unit; the RGB parameters and derivative to the Color DDA Unit; the edge
values and derivatives to the Rasteriser Unit.

Rasterizer

The 'render triangle’ message is received by the rasteriser unit and all subsequent
messages (from the host) are blocked until the triangle has been rasterised (but not
necessarily written to the framebuffer). A ’prepare to render’ command is passed on so
any other units can prepare themselves.

The Rasteriser Unit walks the left and right edges of the triangle and fills in the spans
between. As the walk progresses messages are send to indicate the direction of the next
step: StepX or StepYDomEdge.

Rasterizer 'Edge walking' - Calculating the Slope for each Side

Permedia4 draws filled shapes such as triangles as a series of spans with one span per
scanline. Therefore it needs to know the start and end X coordinate of each span. These
are determined by ‘edge walking’. This process involves adding one delta value to the

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Graphics programming

previous span’s start X coordinate and another delta value to the previous span’s end x
coordinate to determine the X coordinates of the new span. These delta values are in
effect the slopes of the triangle sides. To draw from left to right and top to bottom, the
slopes of the three sides are calculated as:

dX 23 Z—XS_ X2
Yz—=Y2

dXpp = 3K
Y3—Y1

dX 12 Z—XZ_ X1
Y2-Y1

This triangle will be drawn in two parts, top down to the ‘knee’ i.e. vertex 2 and then from
there to the bottom. The dominant side is the left side so for the top half:

dXDom = dX 13 dXSub = dX 12

The start X,Y, the number of scanlines, and the deltas (above) give Permedia4 enough
information to edge walk the top half of the triangle. However, to indicate that this is not a
flat topped triangle (Permedia4 is designed to rasterize screen aligned trapezoids and flat
topped triangles), the same start position in terms of X must be given twice as StartXDom
and StartXSub.

To edge walk the lower half of the triangle, selected additional information is required. The
slope of the dominant edge remains unchanged, but the subordinate edge slope needs to
be set to:

Also the number of scanlines to be covered from Y2 to Y3 needs to be given. Finally to
avoid any rounding errors accumulated in edge walking to X2 (which can lead to pixel
errors), StartXSub must be set to X2.

The data field holds the current (x, y) coordinate. One message is sent per pixel within the
triangle boundary. These messages, or fragments, are divided into two groups, active and
passive. Fragments always start off in the active group but may be changed to the
passive group if the pixel fails one of the tests (e.g. depth) on its path down the message
stream. The two groups are distinguished by a single bit in the message tag.

The fragments (in either form) are always passed throughout the length of the message
stream and are used by all the DDA units to keep their interpolation values in step. Any
other messages pertaining to fragments always precede the fragment in the message
stream.

The messages hold X, Y, color and coverage data for each fragment 1. The data field
expands between units to accommodate additional data when necessary.

1The coverage field is only used for antialiasing. For aliased primitives the coverage field holds a dEzr value used for subpixel
cotrection.

3D/.b5 Proprietary and Confidential 1-7

Rasterizer

1.2.1.4

1.2.1.5

1-8

Permedia4 Programmer’s Guide Volume I

Rasterizing the Triangle

We are almost ready to draw the triangle. Setting up the registers as described here and
sending the Render command draws the top half of the example triangle first.

To draw the example triangle, all the bit fields within the Render command should be set
to 0 except the PrimitiveType which should be set to trapezoid and the SubPixelCorrection
Enable bit which should be set to TRUE.

/I Draw triangle with knee

Il Set deltas

StartXDom (X1<<16) //Converted to 16.16 fixed point
dXDom (((X3—X1)<<16)/(Y3-Y1))

StartX Sub (X1<<16)

dXSub (X2 —X1)<<16)/(Y2-Y1))

Starty (Y 1<<16)

dY (-1<<16)

Count (Y1-Y?2)

/I Set the render command mode

render.PrimitiveType = PERMEDIA4_TRAPEZOID_PRIMITIVE

render.SubPixel CorrectionEnable = TRUE
// Draw the top half of the triangle

Render(render)

After the Render command has been issued the registers in Permedia4 can immediately
be altered to draw the lower half of the triangle. Only two registers need be loaded and
the ContinueNewSub command sent. Once Permedia4 has received ContinueNewSub it
starts drawing the sub-triangle.

I/ Set-up the delta and start for the new edge
StartX Sub (X2<<16)
dXSub (((X3 —X2)<<16)/(Y3-Y?2))

// Draw sub-triangle
ContinueNewSub (Y2 —-Y3) // Draw lower half

Scissor and Stipple

This unit does 4 tests on the fragment (as embodied by the active step message). The
screen scissor test takes the coordinates associated with the fragment, converts them to
be screen relative (if necessary) and compares them against the screen boundaries. (The

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Graphics programming

1.2.1.6

1.2.1.7

1.2.1.8

1.2.1.9

1.2.1.10

1.2.1.11

1.2.1.12

3D/.bs

other three tests - user scissor, line stipple and area stipple - are disabled in this example.)
If the enabled tests pass then the active fragment is forwarded to the next unit, otherwise it
is changed into a passive step and then forwarded.

Router

In this example the Router is set up so the Depth test occurs before the texture operations
(i.e. RouterMode Sequence bit = 1).

Local Buffer Read

In general terms the Local Buffer Read Unit reads the Graphic ID, Stencil and Depth
information from the Local Buffer and passes it to the next unit. This includes performing
the GID test on fragments, checking cache and local buffer for data, and data formatting.
See volume | - Localbuffer - for more information

Stencil and Depth

When an active fragment is received the internal stencil and depth values are compared
with the fragment’s as specified in the StencilMode and DepthMode registers. If the
enabled tests pass then the new local buffer data is written back to the fragment, which is
forwarded to the next unit.

If any of the enabled tests fail then equivalent passive step message is forwarded instead
(a local buffer write may still be done). The Depth DDA is stepped to update the local
depth value.

Local Buffer Write

The Local Buffer Write Unit calculates the address, formats the GID, Stencil and Depth
data and (if writes are enabled) passes the formatted data and address to the Memory
Controller.

The memory is much wider than the pixel data so any writes are first done into a write
combine buffer which is flushed to memory as required. See volume | - Localbuffer - for
more information.

The fragment is forwarded to the next unit.

Color DDA

The Color DDA unit responds to an active fragment by updating the fragment’s color field
and sending this to the next unit. The color field holds the current RGBA value from the
DDA. After the step message is sent the DDA is incremented in the correct direction,
ready for the next pixel.

Texturing, Fog and Alpha Tests

In this example, Texturing, Fog and Alpha Tests are disabled so the fragments are
forwarded unchanged.

Framebuffer Read

In general terms Framebuffer Read reads the color information from the framebuffer and
passes it onto the next unit. It is functionally similar to the Localbuffer but handles color
data rather than GID, depth and stencil data, write-combined operations and Patch2 and
Patch32_2 formats. See volume | - Framebuffer - for more information.

Proprietary and Confidential 1-9

Rasterizer

1.2.1.13

1.2.1.14

1.2.1.15

1.2.1.16

1.2.1.17

1.2.2

1.2.21

1-10

Permedia4 Programmer’s Guide Volume I

Alpha Blend

The formatting of the Framebuffer data is deferred until the Alpha Blend Unit as it is the
only unit which needs to match buffer formats with the internal formats.

In this example no alpha blending or logical ops are taking place so reads are disabled
and fragments pass through unaltered.

Dither

The Dither Unit uses the least significant bits of the (X, Y) coordinate information from the
step message to dither the color field. Part of the dithering process is to convert from the
internal color format into the format of the framebuffer. The new color is inserted back into
the color field and the fragment forwarded.

Logical Ops
In this example Logical Ops are disabled so the fragments pass through.

Framebuffer Write

The Framebuffer Write Unit calculates the address and (if writes are enabled) passes the
formatted data and address to the Memory Controller.

The memory is much wider than the pixel data so any writes are first done into a write
combine buffer and only when this needs to be flushed is the Memory Controller given the
write command - see volume | - Framebuffer - for more information.

Host Out

The Host Out Unit deals with host synchronisation and statistics. In this example it simply
consumes any fragments which reach this point in the message stream.

A day in the life of a 2D primitive

Permedia4 introduces an alternative method for rendering which is particularly suited to 2D
operations. These are pure 2D without any 3D functionality such as depth or stencil
testing or alpha blending.

2D drawing works on spans of pixels, where a span is always 64 pixels sequentially along
a scanline. The core now works on 64 pixels in parallel (in addition to processing multiple
spans along the length of the message stream) and a pixel can be 8, 16 or 32 bits in size.
Spans can be read, written, copied, uploaded or downloaded. A span can have a constant
color or a variable color per pixel in the span.

The primitive we are going to look at is a fill with a constant color through a bit mask held
in the texture memory. The zero bits in the bit mask do not cause the corresponding pixels
in the framebuffer to be written to. The fill shape is a rectangle for simplicity, but could be
any shape (with suitable decomposition into primitives Permedia4 understands). As usual,
we refer to "units" along the message stream but these are virtual rather than necessarily
physical entities.

Initialization

The application generates the rectangle information and makes the necessary Windows
API calls to draw it.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Graphics programming

1.2.2.2

1.2.2.3

1.2.2.4

1.2.2.5

1.2.2.6

1.2.2.7

3D/.bs

2D Set Up Unit

The NT device driver gets the rectangle information and uses the Render2D command to
set up and rasterise the rectangle (done in the new 2D Set Up Unit). Other state data and
information is also set up, as discussed below.

Rasterizer

The 'render trapezoid’ message is received by the rasteriser unit and all subsequent
messages (from the host) are blocked until the trapezoid has been rasterised (but not
necessarily written to the framebuffer). The Render message has the FastFill[Enable bit
set. A’prepare to render’ message is also passed on internally so any other units can
prepare themselves.

The Rasteriser Unit walks the left and right edges of the trapezoid (a rectangle in this
case) and fills in the spans between the left and right hand edges. As the walk progresses
messages are sent to indicate the direction of the next step. These internal SpanStep
commands control the subsequent processing of the span fragment.

Scissor and Stipple Unit

Scissor and Stipple Unit. This unit does 3 tests on the span (as embodied by the
SpanStep message). The screen scissor test takes the coordinates associated with the
SpanStep message, converts them to be screen relative (if necessary) and compares the
pixel mask against the screen boundaries and clears the bits for pixels which lie outside
the screen boundary. The pixel mask is potentially further reduced using the scissor tests
(applied in a similar way). The area stipple test is disabled for this example but, if it was
enabled would potentially remove further pixels after suitable alignment. The modified
SpanStep message is forwarded to the next unit.

Color DDA

The Color DDA unit does not respond to the SpanStep messages so they just pass
through.

Texture Coordinate and Index

The Texturing Coordinate Unit responds to the SpanStep message and appends the u, v
coordinates of the texel where the bit mask data for this span is held. The S and T DDAs
are set up to step through the bit mask pattern. The SpanStep is forwarded on to the next
unit.

The Texture Index Unit converts the uv coordinate in the SpanStep message into an ij
coordinate of the texel where the bit mask data for this span is held. The SpanStep is
forwarded on to the next unit.

Texturing, Fog and Alpha

The Texture Read Unit converts the ij coordinate into a physical address where the texel
data is held. The texel data is read (maybe sourced from the secondary cache) and zero
extended up to 64 bits if the bit mask was held as 8, 16, or 32 bits. After being optionally
inverted or mirrored it is ANDed with the pixel mask field in the SpanStep message and

forwarded to the next unit.

The remaining texture units, Fog and Alpha Tests Units do not respond to the SpanStep
messages so they just pass through.

Proprietary and Confidential 1-11

Rasterizer

1.2.2.8

1.2.2.9

1.2.2.10

1.2.2.11

1.2.2.12

1.2.2.13

1-12

Permedia4 Programmer’s Guide Volume I

Localbuffer Read, Stencil/Depth and Localbuffer Write

The LB Read, Stencil/Depth, LB Write Units do not respond to the SpanStep messages
(in this example) so they just pass through.

Framebuffer Read

In general terms the Framebuffer Read Unit reads the color information from the
framebuffer and forwards it to the next unit. More specifically for spans it calculates the
linear address in the framebuffer of the required data. This is done using the (X, Y)
position recorded internally and locally stored information on the 'screen width’ and window
base address. The span is decomposed into a series of memory aligned reads.

In this example no logical ops are taking place so reads are disabled and hence no read
address is sent to the Memory Controller. The span tags just pass through.

Alpha Blend and Dither

The Alpha Blend and Dither Units do not respond and the span data simply passes
through.

Logical Ops
The Logical Ops are disabled so the Span data passes through.

Framebuffer Write

The Framebuffer Write Unit calculates the address, aligns the pixel mask to the memory
block write boundaries and passes these to the Memory Controller. The pixel data
previously set up in the FBColor Register can be written, ideally using the block fill
capability of the SGRAM. The Span data is passed on to the next unit.

Host Out

The Host Out Unit is concerned with synchronisation with the host - for this example it
simply consumes any messages which reach this point in the message stream.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2

Rasterizer and 2D Setup

2.1

3D/.bs

The rasterizer decomposes a primitive into a series of fragments for processing by the rest
of the HyperPipeline.

Permedia4 can directly rasterize:

« aliased screen aligned trapezoids

- aliased single pixel wide lines

« aliased single pixel points

« antialiased screen aligned trapezoids
« antialiased circular points

All other primitives are treated as one or more of the above, for example an antialiased line
is drawn as a series of antialiased trapezoids.

2D Operations can be largely implemented using the Render2D and Render2Dglyph
registers. These, together with the GlyphData and GlyphPosition registers constitute a
functional subunit of the Rasterizer and are discussed below.

Description

The rasterizer unit scan converts the given primitive into a list of pixel coordinates which
meet the rasterisation rules of OpenGL, X and NT. In addition to generating the
coordinates, the order in which pixels are visited is also defined (by the Render command)
so the local DDA units in the Texture, Color, Fog and Depth units can incrementally keep
in step.

When a primitive is antialiased the percentage coverage of the primitive within the scan
converted pixels is calculated for later use in the alpha blend unit. The same method of
antialiasing is used for all primitives.

The primitive is scan converted to a higher resolution (e.g. 4x4 sub samples per Render
command) and the number of sub pixel sample points covered is counted. The ratio of
covered sample points to total number of sample points gives the coverage weighting by
which to adjust the color.

The rasterisation process steps through along the Y axis and calculates the two
intersection points for this scanline. For normal rasterisation the pixels between these two
intersection points are filled in. During antialiasing a step of Y/4 (for example) is used and
within each scan line four pairs of intersections are calculated per scanline. The coverage
for each of the four sub pixel scanline makes in a pixel (on this scanline) are calculated
and summed.

The coordinates passed to the rasterizer can be window relative or screen relative. The
rasterizer treats both the same. Conversion to memory addresses does not happen until
they reach the Local Buffer and Framebuffer Units.

The Rasterizer is not concerned whether the origin is the bottom left or top left and again it
is the Local Buffer and Framebuffer Units which take this into account when calculating the

Proprietary and Confidential 2-1

Rasterizer

211

2-2

Permedia4 Programmer’s Guide Volume I

memory address. Obviously if the direction of scan conversion is important then the
parameters must match up with the origin definition to give the desired effect.

Note: Long term mode information is held in the Rasterizer M ode command and
short term mode information (which only applies to the primitive being
rasterised) is passed with the Render command.

Trapezoids

Permediad’s basic area primitive is the screen aligned trapezoid, discussed in the previous
chapter. This is characterized by having top and bottom edges parallel to the X axis. The
side edges may be vertical (a rectangle), but in general will be diagonal. The top or bottom
edges can degenerate into points in which case we are left with either flat topped or flat
bottomed triangles. Any polygon can be decomposed into screen aligned trapezoids or
triangles. Usually, polygons are decomposed into triangles because the interpolation of
values over non-triangular polygons is ill defined. The rasterizer does handle flat topped
and flat bottomed ‘bow tie’ polygons which are a special case of screen aligned
trapezoids.

X's definition of a polygon is more complex than OpenGL’s. It can be concave and self
intersecting. In the non convex case the best thing is for X to do is to decompose the
polygon into a series of spans and render them as 1 pixel high rectangles. For any convex
polygons X can decompose them into screen aligned trapezoids as a further optimisation
over just using spans. X does not support antialiased polygons.

Adjacent triangles or polygons which share an edge or vertex must be drawn so that pixels
which make up the edge or vertex are drawn once only. This may be achieved by omitting
the pixels down the left or the right sides and the pixels along the top or lower sides.
Permedia4 follows the convention of omitting the pixels down the right hand edge. Control
of whether pixels along the top or lower sides are omitted depends on the start Y value
and the number of scanlines to be covered. With the example, if StartY = Y1 and the
number of scanlines is set to Y1toY2, the lower edge of the top half of the triangle will be
excluded. This excluded edge is drawn as the top of the lower half of the triangle.

To minimize delta calculations, triangles may be scan converted from left to right or from
right to left. The direction depends on the dominant edge, that is the edge which has the
maximum range of Y values. Rendering always proceeds from the dominant edge towards
the relevant subordinate edge. In the example above, the edge with the greatest Y range
(dominant) is on the right so rendering will be from right to left.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

Subordinate Edge 1-2 (X1,Y1)

Dominant Edge 1-3

Trapezoid dXDom

Bottom

Trapezoid
Subordinate Edge 2-3

dXSub 2-3
(X3,Y3)

Figure 2-1 Rasterizing a triangle
The sequence of actions required to render a triangle (with a ‘knee’) are:

« Load the edge parameters and derivatives for the dominant edge and the first
subordinate edges in the first triangle.

. Send the Render command. This starts the scan conversion of the first triangle,
working from the dominant edge. This means that for triangles where the knee is on
the left we are scanning right to left, and vice versa for triangles where the knee is on
the right.

« Load the edge parameters and derivatives for the remaining subordinate edge in the
second triangle.

« Send the ContinueNewSub command. This starts the scan conversion of the second

triangle.
Render Data Field

AreaStippleEnable 1 LineStippleEnable 0| PrimitiveType 1
FastFillEnable 0 FastFilllncrement X UsePointTable 0
AntialiaseEnable 0 AntialiasingQuality X ResetLineStipple X
SyncOnBitMask 0 SyncOnHostData 0| TextureEnable 1
FogEnable 1 CoverageEnable 0] SubPixelCorrectionEnable 1

StartXDom (X 1)

dXDom ((X3- X1)/(Y3- Y1)

StartXSub (X1)

3D/.b5 Proprietary and Confidential 2-3

Rasterizer

2.1.2

2-4

Permedia4 Programmer’s Guide Volume I

dXSub ((X2- X1)/(Y2- Y1)
StartY (Y1)

dY (-1.0)

Count (Y1-Y9)

Render

StartX Sub (X 9)

dXSub ((X3- X2)/(Y3-Y2))
ContinueNewSub (Y2 - Y3) // Bottom half

Note: If both edges need to be reloaded to continue on with the bottom half of the
polygon then issue ContinueNewSub (0) and then ContinueNewDom (count).
The ContinueNewSub (0) will just update the DDA with the new start value
but not draw any scanlines. Alternatively , if the accuracy of the DDA end
values is good enough and can be used as the start values for the next
trapezoid then the delta values can be updated and the Continue message
used.

The sub pixel correction is only needed if color, depth, fog or texture
interpolation is being used.

After the Render command has been sent the registers can be updated immediately to
draw the second half of the triangle. Only two registers need to be loaded to do this,
followed by the ContinueNewSub command. When the first triangle has been drawn and
the ContinueNewSub command issued, Permedia4 starts drawing the sub-triangle and
the ContinueNewSub command register is loaded with the remaining number of
scanlines to be rendered.

Antialiasing
Permedia4 uses a subpixel point sampling algorithm to antialias primitives. Permedia4 can

directly rasterize antialiased trapezoids and points. Other primitives are composed from
these base primitives.

The rasterizer associates a coverage value with each fragment produced when
antialiasing. This value represents the percentage coverage of the pixel by the fragment.
Permedia4 supports two levels of antialiasing quality:

« normal, which represents 4x4 pixel subsampling
« high, which represents 8x8 pixel subsampling

Selection between these two is made by the AntialiasingQuality bit in the Render
command register.

Use the FlushSpan command to terminate rendering an antialiased primitive. This is
necessary because of the way Permedia4 maintains antialiasing continuity. When
rendering a primitive which does not complete on a scanline boundary, Permedia4 retains
antialiasing information about the last sub-scanline(s) it has processed but does not
generate fragments for them unless a FlushSpan command is received. The commands
ContinueNewSub, ContinueNewDom or Continue can then be used to maintain
continuity between adjacent trapezoids, which allows complex antialiased primitives to be
built up from simple trapezoids or points.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Rasterizer

To illustrate this consider using screen aligned trapezoids to render an antialiased line.
The line will in general consist of three screen aligned trapezoids as shown in the diagram

below.

Figure 2-2 Antialiased Line

3D/.bs

The procedure to render the line is as follows:

// Set-up the blend and coverage application units
// as approptiate — not shown

// In this example only the edge deltas are shown
// loaded into registers for clarity. In reality

// start X and Y values atre required. This example

// uses 4x4 antialiasing.
// Render Trapezoid A

dY(1<<14)
dXDom(dXDom1<<14)
dXSub(dXSub1<<14)
Count(count1<<2)

render.Primitive Type = PERMEDIA4_TRAPEZOID

render.AntialiasEnable = PERMEDIA4_TRUE

render. AntialiasQuality = PERMEDIA4_MIN_ANTIALIAS

render.CoverageEnable = PERMEDIA4_TRUE
Render(render)

// Render Trapezoid B

Proprietary and Confidential

2-5

Rasterizer Permedia4 Programmer’s Guide Volume I

dX Sub(dX Sub2<<14)
ContinueNewSub(count2<<2)

// Render Trapezoid C

dXDom(dXDom2<<14)
ContinueNewDom(count3<<2)

/I Now we have finished the primitive flush out
/I the last scanline
FlushSpan()

Note: When rendering antialiased primitives, any count values should be given in
subscanlines. For example if the quality is 4x4 then the count will be 4 times
the number of scanlines completely covered by the primitive plus the number
of subscanlines contained in the remaining partially covered scanlines. Also,
if using 4x4 quality then any delta value must be divided by 4. If using 8x8
quality then the multiply/divide factor is 8.

When rendering, AntialiasEnable must be set in the AntialiasMode register to scale the
fragment'’s color by the coverage value. An appropriate blending function should also be
enabled. See the Antialias Application and Alpha Blend sections for more details.

Note: When rendering antialiased bow-ties the coverage value on the cross-over
scanline may be incorrect.

2.1.2.1 Antialiased Polygons

Antialiased polygons (or more precisely, screen aligned trapezoids) are scan converted by
walking the trapezoid’s edges to a higher resolution (x4, say). The coverage for a specific
pixel is calculated by summing the coverage each of the sub scanlines contributes. More

specific details are given in the implementation section.

Care needs to be taken when trapezoids (from the same polygon) meet part way through a
scan line. The span of pixels cannot be generated until the second trapezoid is available
as it will contribute to the coverage in this scanline. If, on the last trapezoid, the scan line
is only part covered then a ‘flush’ command is needed to generate the coverage for these
pixels as there is no follow-on trapezoid.

2.1.3 Stippling during Rasterizing

Normally, stipple processing is accommodated in the Stipple Unit. This covers all stipple
requirements for OpenGL (e.g. aliased lines, polygons) and most other platforms, e.g. X.
Details are given in the Stipple Unit section.

The Rasterizer does provide additional stipple functionality, for example stippling
requirements for X which cannot be met by the Stipple Unit:

« Arbitrary stipple on lines.
- Arbitrary stipple on polygons, especially rectangles.

2-6 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.3.1

2.14

2.1441

2.14.2

The bit mask unit in the rasterizer (normally used for characters) can give an arbitrary
stipple to any primitive. The stipple pattern required is loaded into the BitMaskPattern
register 32 bits at a time, in the order in which the pixels in the primitive are generated.
The state of each bit in the bit mask determines if an active pixel is generated or a passive
one. One bit in the stipple sequence is required for each pixel in the primitive.

This stippling method is independent of the Stipple Unit and can replace its function or be
used as a second level of stippling.

Stipple Lines (X)

The standard OpenGL method of stippling lines can be used in X for the more restricted
case where the mark/space ratio of the stipple is the same. X allows an arbitrary stipple
pattern to be defined using the Bitmap facility. Here the host provides a number of bit
mask words where each bit corresponds to one pixel in the line. The state of this bit
determines whether the associated pixel is generated or skipped.

Points

Points are the easiest of all primitives to scan convert but there are a number of special
cases. The main questions are whether the point is antialiased or not, and its size.

All the DDA related parameters are held constant over a point (a point may cover many
pixels), and between points in a Begin/End set. Before any point rasterisation is done the
host must have set up the Texture, Color, Fog and Depth units so they maintain a constant
value and don't increment between pixels in a point.

In OpenGL no stipple operations are defined for points so stippling must be disabled. This
can be done by changing the stipple mode (see Stipple Unit) or by setting the stipple
operation in the Render (or PrepareToRender) command to ‘none’. This later method is
much easier for the software to use.

Aliased Points (OpenGL)

Permedia4 supports a single pixel aliased point primitive. For points larger than one pixel,
trapezoids should be used. The fields in the Render command register are described in
detail later, however, in this case the PrimitiveType field in the Render command should
be set to equal PERMEDIA4_POINT_PRIMITIVE. The pseudocode portion to render an
aliased unity sized point is:

Worked example — one pixel points
A series of one pixel points P(X1, Y1), P(X2, Y2) ... P(Xp, Yn) are required. The Render
command is set up as shown:

Render Data Field

AreaStippleEnable

LineStippleEnable 0 PrimitiveType

FastFillEnable

FastFilllncrement UsePointTable

AntialiaseEnable

SyncOnBitMask

SyncOnHostData TextureEnable

FogEnable

S[=H [

X

AntialiasingQuality X |ResetLineStipple
X
0

CoverageEnable SubPixelCorrectionEnable

3D/.bs

StartXDom (X1)

Proprietary and Confidential 2-7

Rasterizer

2.1.4.3

2144

2-8

Permedia4 Programmer’s Guide Volume I

StartY (Y1)

Render
StartXDom (X2)

Starty (Y2)

Render

StartXDom (Xn)
StartY (Yn)
Render

Aliased Points (X)

X only has single pixel sized points so these are rendered by just sends any of the Active
walk commands with the (X, Y) position encoded in the data field for each point to render.

Antialiased Points (OpenGL)

Permedia4 can render small antialiased points. Antialiased points are treated as circles,
with the coverage of the boundary fragments ranging from 0% to 100%. Permedia4
supports:

« point diameter of 0.5 to 16.0 in steps of 0.25 for 4x4 antialiasing
« point diameter of 0.25 to 8.0 in steps of 0.125 for 8x8 antialiasing

To scan convert an antialiased point as a circle, Permedia4 traverses the boundary in sub
scanline steps to calculate the coverage value. For this, the sub scanline intersections are
calculated incrementally using a small table. The table holds the change in X for a step in

Y. Symmetry is used so the table only holds the delta values for one quadrant.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

Figure 2-3 Antialiased Point

The pattern of table accesses, additions and subtractions are shown in Figure 2-3 for an
odd diameter point. On the diagram the symbol +/-= Table[n] by an arrow indicates the
contents of the table at address n are added/subtracted to move along the arrow.

StartXDom, StartXSub and StartY are set to the top or bottom of the circle and dY set to
the subscanline step. In this example the point table will have three entries. Note in the
case of an even diameter, the last of the required entries in the table is set to zero. The

Figure 2-3 Antialiasing an odd-diameter point

The Permediad4 Reference Guide gives full details of how the point table is laid out.

Note that the table is configurable and point shapes other than circles can be rendered.
Also if the StartXDom and StartXSub values are not coincident then horizontal thick lines
with rounded ends, can be rendered.

3D/.b5 Proprietary and Confidential 2-9

Rasterizer

The point looks like this and we will render
from bottom to top. The origin is assumed to
be bottom left and we are using 4x4
antialiasing quality. The point’s diameter is 3
pixels, or 12 sub scanlines. The point table
is assumed to be set up already.

Permedia4 Programmer’s Guide Volume I

Render Data Field

AreaStippleEnable 0 |LineStippleEnable 0 |PrimitiveType 1
FastFillEnable 0 |FastFilllncrement X |UsePointTable 1
AntialiaseEnable 1 | AntialiasingQuality 0 |ResetLineStipple X
SyncOnBitMask 0 [SyncOnHostData X |TextureEnable 1
FogEnable 1 |CoverageEnable 1 |SubPixelCorrectionEnable 0

StartXDom (X)

StartX Sub (X)

StartY (Y)

dy (1.0/4.0)

Count (12)

Render

FlushSpan ()
2.1.5 Lines

There are two accepted way of drawing lines: using a DDA, or Bresenham’s algorithm.
Bresenham'’s algorithm has an advantage over DDA in that no divide is necessary. This
has some benefits, particularly for 2D. For OpenGL we use the DDA method because the
cost of the divide is acceptable and is needed to calculate the gradient of any color or

depth change.

Lines are specified by their end points (accurate to 4 bits of sub pixel position) and rate of
change in X and Y per step along the major axis of the line.

2.1.5.1 Aliased Lines (OpenGL and X)

Single pixel wide aliased lines are drawn using a DDA algorithm so all it needs by way of
input data is StartX, StartY, dX, dY and length. The algorithm just calculates:

while (length--)
{

X=X +dx
Y=Y +dy

plot ((inY)X, (int)Y)

2-10

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II

}

Rasterizer

The variables X, Y, dx and dy are all fixed point numbers. The conversion to memory
address using the X, Y coordinate is done in the memory read units.

2.1.5.2 Worked example - Aliased PolyLine (OpenGL or simple stipple X)
A two segment polyline from (X1, Y1) to
(X2, Y2) to (X3, Y3) is required. Both
segments are X major, so:
abs (Xp+1 - Xp) > abs (Yp+1- Yp)
Note: For individual line segments or the first line segment in a polyline the line
stippleisreset (as shown).
Render Data Field
AreaStipple Enable 0 |LineStippleEnable 1 Primitive Type 0
FastFillEnable 0 |FastFilllncrement X |UsePointTable 0
AntialiaseEnable 0 |AntialiasingQuality X |ResetLineStipple 1
SyncOnBitMask 0 |SyncOnHostData 0 |TextureEnable 1
FogEnable 1 |CoverageEnable 0 |SubPixelCorrectionEnable 0
StartXDom (X 1)
dXDom (x1.0)
StartY (Y1)
dy ((Y2- YD/(X2- X1)
Count (abs (X2 - X1))
Render
dXDom (£1.0)
dy ((Y3- Y2)/(X3- X2)
ContinueNewLine (abs (X3 - X2))
Note: The use of ContinueNewLine is not recommended for OpenGL because the
DDA units will start with a dight error as compared with the value they
would have been loaded with for the second and subsequent segments. The
fractional bits of the DDA can be forces to zero or half on the
ContinueNewLine action.
2.1.5.3 Aliased Wide Lines (OpenGL)
There is no direct support for wide lines. The OpenGL server has two options:
3D/.b5 Proprietary and Confidential 2-11

Rasterizer

Permedia4 Programmer’s Guide Volume I

1. Wide lines can be drawn by repeating a single pixel wide line, but offset by one pixel
in X for X major lines or one pixel in Y for Y major lines. Any values interpolated along
the line (e.g. color) will need to be re-initialised at the start of each individual line.

This is easily done with the Render command.

2. Wide lines can be converted to parallelograms (the ends of a wide line are parallel to
the edge of the screen in OpenGL) and then rendered as polygons.

As you might expect neither method is the best in all cases. For vertical or near vertical
lines method 2 will cause fewer page breaks in memory so should be faster. However if
there is any stippling then method 1 is likely to be much faster. Method 1 is the simpler

method and is the preferred implementation.

A single wide line from (X1, Y1) to (X2, Y2) is
required. The line is 3 pixels wide. The line is X
major so abs (X2 - X1) > abs (Y2- Y1).

Render Data Field
AreaStippleEnable 0 |LineStippleEnable 1 |PrimitiveType 0
FastFillEnable 0 |FastFilllncrement X |UsePointTable 0
AntialiaseEnable 0 |AntialiasingQuality X |ResetLineStipple 1
SyncOnBitMask 0 [SyncOnHostData X |TextureEnable 1
FogEnable 1 |CoverageEnable 0 [SubPixelCorrectionEnable 0

StartXDom (X1 - 1)
dXDom (£1.0)

StartY (Y1)

dy ((Y2- YD/(X2- X1))
Count (abs (X2 - X1))
Render

StartXDom (X1)

Render
StartXDom (X1 + 1)

Render

2.1.5.4 Aliased Wide Lines (X)

Individual wide lines in X have square ends and multiple connected wide lines have a
range of joint styles. X needs to convert the wide lines either to polygons, or to a series of

spans, to achieve the desired effect.

2-12 Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.5.5 Antialiased Lines (OpenGL)

Antialiased lines of any width are drawn as antialiased polygons (see below). If stipple is
enabled then the line is drawn as a series of polygons to match up with the stipple
parameters.

2.1.6 Polygons

The only polygons the rasteriser handles are screen aligned trapezoids. These are
characterised by having the top and bottom edges parallel to the X axis. The side edges
may be vertical, but in general will be diagonal. The top or bottom edges can degenerate
into points in which case we are left with flat topped or flat bottomed triangles. Any
polygon can be decomposed into this shape, however the sample OpenGL server always

decomposes polygons2 into triangles because the interpolation of values over non-
triangular polygons is ill defined.

The rasteriser does handle vertical 'bow tie’
polygons.

As part of the rasterisation process a humber of parameters (color, depth, fog and texture)
are calculated for each fragment generated. These are calculated in the DDA unit down
stream under the guidance of the rasteriser step messages. The ideal way to calculate
these values is to use the fragments XY coordinate and substitute this into the plane
equation for each parameter in turn. This technique gives the best result, however it is
computationally expensive so it is nhormal to use an incremental method such as a DDA to
approximate to it. The DDA method introduces some errors of its own:

« Anincremental error due to the finite precision of the delta values. To overcome this
source of errors enough fractional bits are used so that the error cannot propagate
into the actual bit range of the DDA where the parameter value is extracted from.

« The start value for a parameter, P, can be nearly dPdx (one step in the X direction)
out because the value calculated as a result of a Y step (shown as a circle in the
following diagram) corresponds to the value of the sample on the edge and not at the
center of the first fragment to be drawn.

It is necessary to correct for this error to eliminate bright edge artefacts and achieve high
quality rendering.

This correction is needed for every scanline. A similar correction is needed at the start of
the primitive because the parameter value at the start vertex is unlikely to lie on the
horizontal center of a pixel so needs adjustment in Y. This correction is handled by
software.

2Excluding the special case of screen aligned rectangles.

3D/.b5 Proprietary and Confidential 2-13

Rasterizer

2.1.6.1

2-14

Permedia4 Programmer’s Guide Volume I

If dErr is the distance the edge is away from the pixel's center (must be < 1) and dPdx is
the change in P for unit change in x then the correct value at the first sample point is:

The distance dErr is sent internally by the rasteriser in PrepareToRender and Step
messages. The multiplication is done in the DDA units whenever these messages are
received, but only update Px on the SubPixelCorrectionregister if the LS bit of the data
field is set. The correction dErr is sent as a 7 bit 2's complement 1.6 fixed point format.
The dErr value sent in the messages is the dErr needed for the next scanline (of the first
one in the case of a PrepareToRender).

Sub Pixel Correction not Supported for Antialiased Primitives

Sub pixel correction must be enabled by the SubPixelCorrectionEnable bit in the Render
command if it is required. See the Permedia4 Reference Guide for more information.

Antialiasing presents a much more complex problem to solve in that the sample point for
the parameters must be inside the boundary of the fragment, but this may not be the
center of the pixel anymore. Near horizontal edges can give rise to a dErr value which
approaches the width of the screen (or window). Two methods can be used to overcome
this:

« The sample point can be moved to be within the boundary by 'micro nudging’ the
DDAs in X and Y.

« The parameter being interpolated can be integrated over the interior sub pixel sample
points and then divided by the number of interior points (this is the method in the
OpenGL spec).

In both these cases the changes to the DDA units are too extensive given the other

problems antialiasing presents (the coverage calculation doesn’t take into account sub

pixel visibility and doesn’t work well with a depth buffer). No sub pixel corrections are done
for antialised primitives.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.6.2 Antialiased Triangle

The triangle looks like this and is
rendered from top to bottom. The origin
is assumed to be bottom left. Antialias

quality is 4x4:
Render Data Field

AreaStippleEnable 1 |LineStippleEnable 0 |PrimitiveType 1
FastFillEnable 0 |FastFilllncrement X |UsePointTable 0
AntialiaseEnable 1 | AntaliasingQuality 0 |ResetLineStipple X
SyncOnBitMask 0 |SyncOnHostData 0 |TextureEnable 1
FogEnable 1 |CoverageEnable 1 |SubPixelCorrectionEnable 1

StartXDom (X1)

dXDom ((X3- X)/(4* (Y3- Y1)

StartXSub (X1)

dXSub ((X2- X2)/(4* (Y2- Y1)

StartY (Y1)

dy (-1.0/ 4.0

Count ((Y1-Y2)* 4)

Render

StartXSub (X2)

dXSub ((X3- X2)/(4* (Y3-Y2))

ContinueNewSub ((Y2 - Y3) * 4) // Bottom half

FlushSpan ()

Note: Tthe DDA units need to have their sample point biased from the center of the

pixel to the lower edge of the pixel so the DDA units can be tracked properly
with the walk messages. This can be done by calculating the start values for
integer Y values rather than at Y+0.5 as would normally be done.

The sub pixel correction is only needed if color, depth, fog or texture
interpolation is being used.

2.1.7 Span Operations

Many 2D rendering operations can be implemented more efficiently using span operations,
enabled with the FastFillEnable bit in Render and Render2D. For both 2D textures and

3D/.b5 Proprietary and Confidential 2-15

Rasterizer

2-16

Permedia4 Programmer’s Guide Volume I

rasterizer bit mask operations the improvement can be from about 40 Mpixels/s to 400
Mpixels/s.

Permedia4’s span filling implementation can be used for image upload, image download,

filling with constant color, filling with a pattern, characters (i.e. bit masks), copies, and

copies with logical ops. Any trapezoid can be used and the scanning direction can be left-

to-right or right-to-left. Benefits of span fill for 2D operations include:

« Better utilization of SGRAM block fill (where memory devices permit) for solid, stippled
and patterned fills and character bitmaps.

« Span mechanism is independent of pixel size — makes maximum use of framebuffer
bandwidth for 8, 16 and 32 bit pixels.

« Multiple pixels processed in parallel

« No alignment restrictions — any span operation may be performed to any pixel
alignment for all pixel sizes.

« Page break overheads are spread over many more read/write operations during a
BitBIt operation — performance of BitBlts is much closer to peak memory bandwidth

« Both window- and screen-relative operations supported

« Scissor clipping can be used in conjunction with span operations

If any reads are enabled, span operations are converted into a series of normal memory
reads. The memory data returned is aligned and sent on in 64 bit words for further
processing.

Note: Tthis is different from earlier chips where the memory interface was
responsible for decoding the span mask and returning the appropriate aligned
data.

Span reads are only supported when the pixel data is laid out in the Linear or Patch64
formats. 32_2 and patch_2 formats do not support spans (but packed support is available
for non-span rasterization - see Packed8Pixels and Packed16Pixels in the Permedia4
Reference Guide.)

If source and destination reads are enabled then the source data is read first and stored in
the scratch pad ram. Then the destination data is read and packed into 64 bit words and
sent on. After each destination word is sent the corresponding source word from the
scratch pad ram is read and sent on. The destination buffers are read in increasing
numerical order.

Page breaks are kept to a minimum by reading all the data from a buffer for a span before
moving onto the next buffer (for the same span mask).

The span operation does have some restrictions:

« Stencil and Depth tests are not available. These units just ignore the commands
associated with fast span fills.

« Gouraud shading, alpha tests, alpha blend and dither operations are not available.

« If GIDs are being used for window clipping then spans cannot be used at full speed
as they normally ignore GID information and write to all pixels in the span. However
the result writes 4 pixels per cycle.

When span operation is enabled the rasterizer divides the pixels between the left- and
right-hand edges of the polygon or rectangle into a succession of spans, each 64 pixels
wide.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.71

2.1.7.2

3D/.bs

Each span is described by a 64 bit wide span mask and each pixel in the span has a
corresponding bit in the span mask. If a bit in the span mask is set, then the
corresponding pixel will be read and/or written. The least significant bit in the span mask
(bit 0) corresponds to the leftmost pixel on the screen for the span.

The span mask does not have any fixed alignment with the pixels stored in the
framebuffer, i.e. the first pixel in the span may correspond to any pixel in the framebuffer.
Any masking or shifting to align the span data being read or written to the 64 bit
framebuffer architecture is performed automatically.

Span filling may be performed left-to-right or right-to-left, but the pixels within an individual
span are always read and/or written left to right. Hence if bitmask or image download data
is provided, the data within individual spans must be ordered left to right. Normally if any
data is provided span filling should be left-to-right.

The use of spans for image handling is shown later (Bitmaps, Spans and Images).

Spans operate in both the LB and FB functional groups. In the Localbuffer the data written
is constant for the span and is held in the LBClearDataU and LBClearDatal registers
which together provide 40 bits of data. This is replicated automatically to the four pixels in
a memory word. For Packed16 mode where there are 8 pixels in a memory word software
must replicate the 16 bits of clear data into the 32 bit LBClearDatal register. The
LBClearData registers hold the depth, stencil and GID data in the format it is in the local
buffer - i.e. no formatting is done on the clear data before it is written.

The byte enables (in LBWriteMode) can be used to protect bytes from being updated. If,
however, the field to clear is not byte aligned and a multiple of bytes in width (i.e. a 3 bit
stencil field), then clearing this field while leaving the others intact can only be done via a
read-modify-write operation so will run at one quarter the speed.

Mode changes in Span Operations

Permedia4 supports major mode changes during native display list operations. This is
described in greater detail in the Framebuffer chapter. However to ensure that the effect
of mode changes during display lists can be software controlled, new registers
(FBDestReadEnables, FBSourceReadEnables) are set up to provide monitoring and
readback for software-specified modes e.g. AlphaBlend or LogicalOps.

The Boolean equation for a span read in buffer n is:
destRead = (mode.ReadEnable & mode.Enable[n] & ~mode.UseReadEnables) |
(mode.ReadEnable & mode.Enable[n] & mode.UseReadEnables &
(E4& R4|E5& R5|E6 & R6|E7 & R7))

where “mode” is shorthand for FBDestReadMode and E* and R* are taken from
FBDestReadEnables. The logical operations versions of the registers
(FBDestReadEnablesAnd and FBDestReadEnablesOr) can be used to change
individual bits.

Alpha Filtering

One use of the mode monitoring feature is an alpha filtering enhancement. In many cases
when doing alpha blending the blend mode is set such that if the fragment's alpha is a
specific value (typically 0 or 255) then the framebuffer color (from a destination read) is
effectively ignored as it doesn't contribute to the final alpha blended color. In this case
there is no point in reading the destination pixel value and we can save memory bandwidth
by avoiding it.

Proprietary and Confidential 2-17

Rasterizer

2.1.7.3

2.1.7.4

2-18

Permedia4 Programmer’s Guide Volume I

Alpha filtering is enabled by the AlphaFiltering bit in FBDestReadMode and the reference
alpha value to compare against can be found in FBDestReadEnables.

Span Mask Processing

Span fills are enabled by setting the FastFillEnable bit in the Render command. The
SpanOperation bit when clear indicates writes are to use the constant color found in the
previous FBBlockColor register. When this bit is set write data is variable and is either
provided by the host (i.e. SyncOnHostData is set) or is read from the framebuffer. All
other trapezoid parameters are the same.

The span mask can also be used to grow the extent region or perform picking as part of
HostOut statistics gathering.

The span mask undergoes several processing steps before it is used by the Framebuffer

Unit to determine which pixel to read and/or write:

« The Rasterizer generates the mask using the left and right hand edge information.
Note that the edges may be vertical or sloped.

+ If SyncOnBitMask is enabled in the Render command, then the span mask is ANDed
with the bit mask data provided by the host. If no bit mask data is present the
Rasterizer wait for it to arrive before proceeding.

« The bit mask data may be optionally inverted, byte swapped, word swapped or
mirrored (in any combination) before the ANDing is performed. The inversion can be
used to enable drawing of the background bits. The byte and word swapping allows
bit mask data from different endian hosts to be accommodated. The mirror operation
swaps bits 0 and 31, bits 1 and 30, etc. which changes the left most pixel in a span
from being controlled by the least significant bit to the most significant bit in the bit
mask.

« If Screen Scissor testing is enabled then pixels falling outside the left and right edges
of the screen scissor region have their corresponding bits in the span mask cleared.

« If the User Scissor test is enabled, then pixels falling outside the left and right edges
of the user scissor region have their corresponding bits in the span mask cleared.

« If Area Stippling is enabled, then the stipple mask is extracted from the area stipple
table for the appropriate scan line and expanded, if necessary, to 32 bits by
replication. The normal offset, select and mirror controls in X and in Y may be used
as for non-span rendering. The stipple mask is ANDed with the span mask.

- If Texture Mapping is enabled, then a texel is read from the texture logical or physical
address under the control of the HostTextureAddress, TextureOperation,
LogicalTexturePage, TextureReadMode and the S, T and Q DDA parameters. If
the texel is to be used as a bit mask, then any specified texel formatting is performed
and the final 64 bit texel value is optionally inverted, byte swapped and mirrored
before being ANDed with the span mask.

« The span mask is now used to read/write the framestore pixel data

Block Write

The FastFilllncrement and BlockWidth parameters in Render and FBWriteMode are no
longer required or supported. For more information on block write see Volume I, section
4.2.4, Pixels and Spans.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.8

2.1.8.1

2.1.9

3D/.bs

Pixel Sizes

The local buffer holds up to four fields of information: Depth, Stencil, GID and fast clear
planes (FCP). FCPs are not implemented in Permedia4 and the bitfields are reserved for
historical reasons.

Permedia4 takes note of pixel depth as Permedia2 did, but also allows pixel sizing on a
unit-by-unit basis, which can be desirable for texturing. When using span operations it is
important to maximize the number of pixels per 32 or 64 bits processed, The Rasterizer
unit PixelSize register can have the following values on either a global or unit-tailored
basis:

. Depth: 15, 16, 24 and 31.
. Stencil: 0,1, 2,3,4,5,6,7 and 8.
. GID: 0,1, 2,3 andA4.

The depth plane always starts at bit 0. The Stencil and GID fields can start on any bit
position from 16 to 39 inclusive. It is the user’s responsibility to ensure that they don’t
overlay or reference bits outside the pixel width.

Selecting a depth width of 15 bits forces the stencil and GID fields to be set from bit 15 of
the pixel and ignores the normal stencil and GID settings. If the specified width of a field is
less than its internal width then the field is zero extended at the Least Significant end to its
internal width.

Since PixelSize is a core register it can be modified at any time without affecting in-
progress rendering. Itis not necessary to synchronize with the chip before changing pixel
depth.

Pixel size is also definable in the DMARectangleRead and DMARectangleWrite
registers.

Sub Pixel Precision
The rasterizer has 16 bits of fraction precision and the screen width used is typically less
than 2'® wide, so a number of bits (called subpixel precision bits) are available.

Consider a screen width of 4096 pixels. This figure gives a subpixel precision of 4 bits

(4096=2"%). The extra bits are required for a number of reasons:

« antialiasing (where vertex start positions can be supplied to subpixel precision)

« when using an accumulation buffer (where scans are rendered multiple times with
jittered input vertices)

« for correct interpolation of parameters to give high quality shading as described below

Bitmaps, Spans and Images

The Permedia4 is not software-compatible with earlier Permedia2 or GLINT MX chips.
Specific changes affecting bitmaps, spans and images include separate control of source
and destination FB and LB reads using new registers, automatic span read alignment,
pattern RAM data held in localbuffer, and texture units now generate source offsets but not
addresses.

Proprietary and Confidential 2-19

Rasterizer Permedia4 Programmer’s Guide Volume I

2.1.9.1 Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros which controls which fragments
are generated by the rasterizer. The bitmap operates on any fragments produced by the
rasterizer, including spans and characters.

Bitmaps may be implemented as Rasterizer bitmasks or 2D Textures with or without span
fill enabled. Span Fills are described in the next section. Span fills are generally an order
of magnitude faster but do not normally support LB test functions (Depth, GID, Stencil) or
Alpha Test, Logical Ops, Texturing or Dither. (But see Volume I, Section 1.1.6 - GID Field
- for GID testing of LB spans.)

Bitmaps are controlled using the BitMaskPattern register and parameters enabled in the
RasterizerMode command: ByteSwapBitMask; MirrorBitMask; InvertBitMask;
BitMaskPacking and BitMaskOffset. In addition to its raw data, each bitmap is
characterised by its origin coordinates (bottom left or top left); width and height.

When SyncOnHost is enabled in the Render command only fragments where the
corresponding Bitmap bit is set are submitted for drawing. The normal use for this is in
drawing characters, although the mechanism is available for all primitives. Bitmap data
unless otherwise formatted is by default packed contiguously into 32 bit words so that rows
are packed adjacent to each other. Bits in the mask word are by default used from the
least significant end towards the most significant end and are applied to pixels in the order
they are generated in. The relationship between bits in the mask and the scanning order is
shown in Figure 2-4.

The rasterizer scans through the bits in each word of the Bitmap data and increments the
X,Y coordinates to trace out the rectangle of the given width and height. By default, any
set bits (1) in the Bitmap cause a fragment to be generated, any reset bits (0) cause the
fragment to be rejected.

BitMask value

FIE|D|C|B|lA]|9|8]7|6]|5]|4]3|2]1|0
o0l1]2]3 C|D|E|F F|E|D|C 312 1f0
4151617 819 A| B BlA]|9]| 8 71615 4
819 |A| B 415|617 71615 4 BIl|A]l9] 8
C|DIE]| F 0 1213 3121110 FIl]E]|D]C
— > — > 44— 44—

Figure 2-4 Relationship between Bitmask and Scanning Directions

The selection of bits from the BitMaskPattern register can be mirrored, that is, the pattern
is traversed from MSB to LSB rather than LSB to MSB. Permedia4 allows the pattern to be
byte swapped on download. This is useful for downloading Windows/NT bitmaps in their
native format. Also, the sense of the test can be reversed such that a set bit causes a

2-20 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

3D/.bs

fragment to be rejected and vice versa. This control is found in the RasterizerMode
register, described in section § 2.2.

When one Bitmap word has been exhausted but there are still pixels remaining in the
rectangle, rasterization is suspended until the next write to the BitMaskPattern register.
Any unused bits in the last Bitmap word are discarded.

For example a 5 pixel wide, 8 pixel high bitmap requires a register set up as follows:
Il Set the rasterizer mode to the default
RasterizerM ode(0)
Il Set-up the start values and the deltas.
// Note that the X and Y coordinates are converted
// to 16.16 format
StartXDom (X<<16)
dXDom (0)
StartXSub ((X + 5)<<16) // Right hand edge pixels
Il get missed off.
StartY (Y<<16)
dY (1<<16)
Count (8)
/I At least the following bits require setting for
/I the Render command.
Render.PrimitiveType = PERMEDIA4_TRAPEZOID_PRIMITIVE
render.SyncOnBitMask = PERMDIA3_TRUE
/I Issue render command. First fragment will be
Il generated on receipt of the BitMaskPattern
Render (render)
1/ 8x5 pixel bitmap requires 40 bits, and so 2
I/ 32 bit words.
BitMaskPattern (patternwWord0)
BitMaskPattern (patternwWordl)

Rendering starts as soon as the first patternWord is loaded into the BitMaskPattern
register.

Permedia4 provides the ability to start a scanline at an arbitrary offset into the first bitmask
that is downloaded for each scanline, and to discard unused bits at the end of a scanline.
This lets the host download data directly from a host bitmap without having to shift and
pack the bits. This functionality is controlled by the BitMaskPacking and the five
BitMaskOffset bits in the RasterizerMode register.

Proprietary and Confidential 2-21

Rasterizer Permedia4 Programmer’s Guide Volume I

2.1.9.2 Bitmaps with Spans

The fastest way to render downloaded bitmap data is to use a span operation (described
in 82.1.6, Span Operations, above). The rasterizer is set up as normal and the
FastFillEnable bit in the Render command is enabled. The SpanOperation bit determines
the if the span writes use constant color data or variable color data. All other trapezoid
parameters are the same.

A span is always 64 pixels long and any combination of pixels within the span can be read
and/or written. Pixels with a width of 8 or 16 bits are processed 8 or 4 pixels at a time
respectively and all read and write alignment is handled in hardware. The span
mechanism can be used for image upload, image download, filling with constant color,
filling with a pattern, characters (i.e. bit masks), copies and copies with logical ops. Any
trapezoid can be used and the scanning direction can be left-to-right or right-to-left3.

If the span is being written with a constant color value4 and the SGRAM supports block
fills (where a number of pixels can be written simultaneously) then span filling
automatically uses this mode of operation to give a very much faster filling rate.

The Memory Controller takes care of mapping this logical configuration on to the actual
SGRAM configuration where the SGRAM chips may have fewer pixels in a block, the
framebuffer may be interleaved and/or hold packed pixels.

When the bitmap data is downloaded it is ANDed with the span mask generated by the
rasterizer. The resulting mask is passed through the core to be used as the block fill mask.
Thus a single memory access can be used to process up to 32 pixels.

Since the downloaded bitmask data will be ANDed with masks generated by the Rasterizer
without any re-alignment being performed, the host software must ensure that the masks
match up. This can be achieved in either of two ways:

1. the host software can align the bits that it downloads to match the alignment of the
Rasterizer.
2. use the User Scissor (generally faster and recommended).

Note: this is a general algorithm. In the special case where the data to be
downloaded is already aligned to 32 bits on both the left and right edges the
scissor need not be used.

For example, suppose we want to download data to fill a rectangle with left edge at 10 and
right edge at 200. Assume that the host bitmap data is to be loaded from an offset of 35
within the bitmap. Our goal is to match the bit at offset 35 with the pixel at offset 10.

Since we want to avoiding shifting the data and incurring a host processing overhead, we
download the host bitmap data at the previous 32-bit boundary. This means that we must
set Permedia4 up to discard the first 3 bits of data.

3The pixels within a span are always read and/or written in a left to right order so if the host if providing any bitmask or image
download data then it needs to take this into account. The simplest thing is for the host to always scan left to right when
supplying data.

4This is not strictly true as the framebuffer may be in packed pixel format so adjacent pixels within a 32/64 bit word could have
different colots.

2-22 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

We achieve this by rasterizing a rectangle whose left edge is 3 pixels less than that

MALLLINN

Host bitmap

%
2%

o
w

o e e o o e o e e e == Dy

0\7\10

Lrepunoq nq g¢

Target Rectangle

A\

required, in this case we would rasterize the left edge to start at pixel 7. This aligns the
source bitmap data with the mask data produced by the rasterizer. But, in order to protect
the 3 pixels that we would otherwise overwrite, we use the scissor clip and set its bounds
to be those of the original rectangle.

When using a span operation like this the rasterizer waits for new bitmask data to be
downloaded at the start of each scanline. So we do not have to perform the alignment
operation on the right hand edge.

The following gives the outline for this algorithm:

leftalign = bitmapxleft & 31

width = Xright — Xleft + leftalign
StartXDom ((Xleft — leftalign)<<16)
dXDom (0)

StartX Sub (Xright<<16)

StartY (Y<<16)

3D/.b5 Proprietary and Confidential 2-23

Rasterizer

2-24

Permedia4 Programmer’s Guide Volume I

dY (1<<16)
Count (height)

/I protect the edge pixels with the scissor

minXY.X = Xleft

minXY.Y =Y

maxXY.X = Xright

maxXY.Y =Y + height

ScissorMinXY (minXY) /I Load the registers
ScissorMaxXY (maxXY)

/[Enable the unit
scissorMode.UserScissorEnable = PERMEDIA4_ENABLE
scissorM ode. ScreenScissorEnable = PERMEDIA4 ENABLE

/I At least the following bits require setting for
// the Render command.

Render.PrimitiveType = PERMEDIA4_TRAPEZOID_PRIMITIVE
render.SyncOnBitMask = PERMEDIA4_TRUE
render.FastFillEnable = PERMEDIA4_TRUE

/I I'ssue render command. First fragment will be
/I generated on receipt of the BitM askPattern.

Render (render)

/I download the bits from the source bitmap 32 bits
/I at atime aligning the bitmap pointer at the
/[start of each scanline

BitmapBase += bitmapyorg * bitmapwidth
bitmapxleft &= ~31
for (h=0; h < height; ++h) {
pul Bitmap = BitmapBase + bitmapx|eft/8;
for (c = 0; c < width; ¢c += 32) {
BitM askPattern(pul Bitmap)

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.9.3

2.1.9.4

2.1.9.5

2.1.9.6

3D/.bs

pul Bitmap += sizeof(ULONG)

}
BitmapBase += bitmapwidth

Glyphs

A byte stream of glyph data (packed four to a word) can be downloaded and automatically
chopped up and padded to the necessary width for the texture units to use as a bitmap.
For example a gyph with a width between 17 and 24 pixels will be sent down as a stream
of bytes and each triplet of bytes will be padded with zero and sent to be written into
memory. If the input words have their bytes labelled:

First word: DCBA (A is the least significant byte)
Second word: HGFE
Then the output words send on to the rasterizer are:
First word: 0CBA
Second word: OFED

Image Copy/Upload/Download
Permedia4 supports three “pixel rectangle” operations — Copy, Upload and Download.

Image operations involve rectangular regions with pixel coordinates rather than the usual
3D coordinates. The image regions can be moved among host memory and any
Permedia buffer(s).

Copy
Image Copy moves raw blocks of data around buffers. To zoom or re-format data external
software must upload the data, process and return it.

To copy a rectangular area the rasterizer would be configured to render the destination
rectangle, thus generating fragments for the area to be copied.

Note: Care must be taken when the source and destination overlap to choose the
source scanning direction so that the overlapping area is not overwritten
before it has been moved. This may be done by swapping the values written to
the StartXDom and StartXSub, or by changing the sign of dY and setting
SartY to be the opposite side of the rectangle.

If the source and destination rectangles overlap then the direction of the scan conversion
is important and must be set up correctly by the host. Localbuffer copy operations are
tested for pixel ownership (GID). Note that this implies two reads of the localbuffer, one to
collect the source data, and one to get the destination GID for the pixel ownership test.

Upload/Download

The host places a pixel image in a windows-relative rectangle, in any buffer (depth, stencil
or color) using the Rasterizer.

The host could control the process directly, but the rasterizer also manages clipping,
fragment processing and window coordinate tracking.

Proprietary and Confidential 2-25

Rasterizer

Permedia4 Programmer’s Guide Volume I

During download, for example, the rasterizer scans the image so the host does not need to
provide X,Y coordinates, waits for a depth, stencil or color command from the host, then
processes the next pixel. In other words, the process is synchronous with host
processing. To maintain synchronization enable the SyncOnHost bit in the Render
command.

The image download rectangle looks like
this and the origin is assumed to be
bottom left. The host provides the data in
top to bottom, left to right order. Color
data will be provided. There are n pixels
in the rectangle.

Render Data Field
AreaStippleEnable 0 |LineStippleEnable 0 |PrmitiveType 1
FastFillEnable 0 |FastFilllncrement X |UsePointTable 0
AntialiaseEnable 0 |AntialiasingQuality X |ResetLineStipple X
SyncOnBitMask 0 SyncOnHostData 1 TextureEnable 0
FogEnable 0 |CoverageEnable 0 |SubPixelCorrectionEnable 0

2-26

In OpenGL the AreaStippleEnable would always be 0, but in X may be enabled or
disabled.

StartXDom (X1)
dXDom (0)

StartX Sub (X2)

dXSub (0)

StartY (Y2)

dy (-1.0)
Count(Y2-Y1+1) // Width of image
Render

Color (PO) // Pixel O
Color (P1)

Color (P2)

Color (Pn)

Note: the rasteriser overscans the rectangle because the right hand edge is not
plotted and the downloaded image doesn’t include these pixels

Any functions which can generate fragment values, the color DDA for example, should
generally be disabled for any copy, upload or download operations.

Warning: During image upload, all the returned fragments must be read from the Host
Out FIFO, otherwise the Permediad pipeline will stall. In addition it is
strongly recommended that any units which can discard fragments (for

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.1.9.7

instance the following tests: bitmask, alpha, user scissor, screen scissor,
stipple, pixel ownership, depth, stencil), are disabled otherwise a shortfall in
pixels returned may occur, also leading to deadlock.

Bit mask processing can be used in conjunction with image operations to allow arbitrary
stipples, for example. Use the BitMaskPattern command to load the bit mask.

Unlike conventional bit mask functionality, during image loading the Bitmaskpattern
command must be interleaved accurately with the image data to ensure that the new mask
is available immediately the old mask is consumed. Pixels arriving without mask bits are
considered passive until the new mask arrives.

If the host fails to supply a required color, depth or stencil tag the chip waits until one
arrives, or (to avoid unnecessary hangs) terminates the image operation when any tag
other than color, depth, stencil, FBData or BitMaskPattern are received.

During image uploads the host can read back a window-relative rectangle from any buffer.
The buffer read must be set up using the FBSourceReadAddress, Offset and Operations
registers.

Image Copy/Upload/Download with Spans

2D image operations to and from the framebuffer can be optimized by using a span
operation. The benefits are greatest at lower pixel depths since packed pixel data is
transferred through the core.

Copy

Using span operations when copying pixel data within the framebuffer is straightforward.
Simply set the FastFillEnable and SpanOperation bits in the Render command.

Note: This works both with and without logical op processing.
Download

Download facilities ("Write Pixels") allow the host to transfer image data to local memory.
The rasteriser supports this function by scan converting the rectangle (so the host doesn't
need to generate X, Y coordinates). The rasteriser is constrained by the SyncOnHostData
bit in the Render command to wait for Depth, Stencil or Color data from the host (in the
Depth, Stencil or Color registers) before moving on to the next pixel. In other words it
runs synchronously to the host for the duration of this primitive.

The bit mask mode can also be enabled during this function so arbitrary stippling can be
done on the image being downloaded (useful in X). The bit mask register is loaded
whenever the BitMaskPattern register is received. This is slightly different® to the way it
works when the rasteriser is not in Image download mode. The BitMaskPattern data
must be interleaved correctly with the image data to ensure the new mask is available
immediately after the last bit in the current mask has been used. It this sequence is not
correct then all subsequent fragments until the new mask is received will be passive.

There is the potential for the host to send too few Color (Depth, Stencil or FBData)
messages for the size of primitive it has defined. Rather than have Permedia4 hang

SThis change is necessary to prevent a deadlock situation arising if too many Color messages (for example) are sent before the

next BitMask message is due.

3D/.bs

Proprietary and Confidential 2-27

Rasterizer

2-28

Permedia4 Programmer’s Guide Volume I

because it is waiting for messages which will never arrive, any message other than Color,
Depth, Stencil, FBData or BitMaskPattern stop primitive generation.

The SyncOnHost functionality is in fact available for any primitive, although usually used in
conjunction with downloads.

Image downloads are also supported by DMA - see DMARectangleRead in the
Permedia4 Reference Manual

Upload

Image upload ("ReadPixels"). This function provides the host with a method of reading
back a windows-relative rectangular region of any of the buffers (depth, stencil, color).

The rasteriser supports this function by scan converting the rectangle and sending the
active walk messages. The Local Buffer Read Unit or the Framebuffer Read Unit will have
already been set up to do the read and generate the appropriate LBDepth, LBStencil or
FBColor message, which will collected by the Host Out Unit and passed back to the host.

Upload can also be run via DMA using the DMARectangleWrite command. The image
data may be a sub image of a larger image and have any natural alignment or pixel size.
Information regarding the rectangle transfer is held in registers loaded from the input FIFO
or a DMA buffer.

Note: failure to supply an EOF may have unpredictable results.

The pixel data written to host memory is always packed, however when read from the Host
Out FIFO it can be in packed or unpacked format (packed when Reset). It can also,
optionally, be aligned on 64 byte boundaries. The minimum number of PCI writes are
used to align and pack the image data.

PERMEDIA4 is set up to rasterize the source area for the pixel data (depth, stencil, color,
etc.) enabled in the Render command. This is done before the Rectangular DMA is
started.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Rasterizer

2.2

3D/.bs

Rasterizer Mode
The RasterizerMode register sets long-term modes, particularly these:

MirrorBitMask: This is a single bit flag which specifies the direction that bits are
checked in the BitMaskPattern register. If the bit is reset, the direction is from least
significant to most significant (bit O to bit 31), if the bit is set, it is from most significant
to least significant (from bit 31 to bit 0). Using a value of 3 is very useful in conjunction
with the MirrorBitMask bit for handling Microsoft Windows bitmaps since this causes a
complete byte swap of the downloaded data.
InvertBitMask: This is a single bit which controls the sense of the accept/reject test
when using a Bitmask. If the bit is reset then when the BitMask bit is set the fragment
is accepted and when it is reset the fragment is rejected. When the bit is set the
sense of the test is reversed.
BitMaskPacking: This is a single bit which controls the packing of bits which are
downloaded as part of a SyncOnBitMask operation. If this bit is reset then any spare
bits at the end of a scanline are used to start the next scanline. If this bit is set then
extra bits at the end of a scanline are discarded. This is not available for use with
span fills.
BitMaskOffset: This is a 5 bit field which specifies the first bit to be used in the first
bitmask word of every scanline downloaded as part of a SyncOnBitMask operation.
This is not available for use with span fills.
Fraction Adjust: These 2 bits control the action taken by the rasterizer on receiving a
ContinueNewLine command. As Permedia4 uses a DDA algorithm to render lines,
an error accumulates in the DDA value. Permedia4 provides for greater control of the
error by:
1. leaving the DDA running, which means errors will be propagated along a line, or
2. setting the fraction bits to either zero, a half or almost a half (OX7FFF).
Bias Coordinates is a 2-bit field with the following actions:
0 — Add 0 to the coordinates (Effectively do nothing)
1 — Add exactly one half to the coordinates
2 — Add nearly one half (Ox7FFF) to the coordinates
Host Data Byte Swap Mode: The data downloaded by the host when using
SyncOnHostData can have its bytes re-ordered. If the downloaded data has a byte
ordering of ABCD then, this 2 bit field specifies re-ordering as follows:

0: ABCD (no swap)

1: BADC (swap within halfwords)

2: CDAB (halfword swap)

3: DCBA (full byte swap)
Y Limits Clipping: When set, this bit enables Y Limits clipping. When reset Y Limits
clipping is disabled. This is described in the next section.
Multi Rasterizer: If set this bit causes the rasterizer to work in multi-Rasterizer mode. If
reset the rasterizer works in single Rasterizer mode.

Proprietary and Confidential 2-29

Rasterizer

2211

Permedia4 Programmer’s Guide Volume I

Y Limits Clipping

The rasterizer normally rasterizes all pixels on every scanline, generating a fragment per
pixel. If large numbers of scanlines are subsequently clipped out by, for example, one of
the scissor units, then a lot of time can be wasted. The Ylimits register has been added to
provide a way of quickly eliminating whole scanlines for a given primitive. This is effectively
a Y scissor clip in the Rasterizer.

If Y limits testing has been enabled in the RaserizerMode register, and if a scanline being
rasterized falls outside the Y limits bounds, then the rasterizer will move directly onto the
next scanline without rasterizing in X.

« Y Limits clipping is automatically disabled when SyncOnHostData or SyncOnBitMask

is used.
2.2.2 Rasterizer Unit Registers

Real coordinates with fractional parts are provided to the rasterizer in 2’'s complement 16

bit integer, 16 bit fraction format, as illustrated below for a typical register in this unit:
Name Type Offset Format
ContinueNewDom Rasterizer 0x8048 Integer

Command

Bits Name Read | Write Reset | Description
0...15 Scanlines v v X 16 bit unsigned integer
16...31 Reserved 0 0 X Reserved for future use, mask to 0

Table 1.1 Typical register description — ContinueNewDom

2221

Command registers

The following table lists the command registers which control the rasterizer unit. The
control registers are shown separately below.

Register Name Data Field [Description

Render

Bitfield Starts the rasterization process

ContinueNewDom |16 bit integer Allows the rasterization to continue with a new dominant edge. The

dominant edge DDA in the rasterizer is reloaded with the new
parameters. The subordinate edge is carried on from the previous
trapezoid. This allows any convex polygon to be broken down into a
collection of trapezoids, with continuity maintained across boundaries.
Note: other DD As are not reloaded with new start values until the next
Render command. Thus it is not possible to use this command, for
example, to Gouraud shade a triangle from left to right which has a knee
on the left hand side. To avoid this, 3D rendering should always start
from the side without the knee.

The data field holds the number of scanlines (or sub scanlines) to fill.
This count is not loaded into the Count register.

2-30

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Rasterizer

Register Name

Data Field

Description

ContinueNewSub

16 bit integer

Allows the rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant
edge is carried on from the previous trapezoid. This is useful when scan
converting triangles with a 'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines (or sub scanlines) to fill.
This count is not loaded into the Count register.

Continue

16 bit integer

Allows the rasterization to continue after new delta value(s) have been
loaded, but does not cause either of the trapezoid's edge DDAs to be

reloaded.

The data field holds the number of scanlines (or sub scanlines) to fill.

This count is not loaded into the Count register.

ContinueNewLine

16 bit integer

Allows rasterization to continue for the next segment in a polyline. The
XY position is carried on from the previous line, but the fraction bits in
the DDAs can be: kept, set to zero, half, or neatly one half, under control
of the RasterizerMode.

The data field holds the number of pixels or subpixels in a line. This
count is not loaded into the Count register.

The use of ContinueNewLine is not recommended in OpenGL as for the
second and subsequent segments the DDA units will start with a slight
error compared with the value they would have been loaded with.

FlushSpan

Not used

Used when antialiasing to force the last span out when not all sub spans
may be defined.

PixelSize

0 = 32 bits
1 =16 bits
2 = 8 bits

Contfigures the Rasterizer (and other core units) with the size of pixel to
process when spans are used. It also informs the framebuffer interface
Unit, but in this case all reads and writes are affected and not just spans.
This replaces the pixel size field in the PCI FBModeSel register and
works the same way for single pixel reads and writes (i.e. the framebuffer
can be set to 32 bit pixels even though it is displaying 8 bit pixels to
process 4 pixels at a time).

WaitFor Completion

Not used

This is used to suspend the core until all outstanding reads and writes in
both the localbuffer and framebuffer memory units have completed. This
is intended to prevent a new primitive from starting to be rasterized
before the previous primitive is completely finished. It would be used, for
example, to separate texture downloads from the surrounding primitives.
The same functionality can be achieved using the Sync register and
waiting for it in the Host Out FIFO; however, this method doesn’t
involve the host and can be inserted into a DMA buffer.

3D/.bs

Proprietary and Confidential 2-31

Rasterizer

Permedia4 Programmer’s Guide Volume I

Table 2.1 Command Register Descriptions

Register Name Data Field Description
RasterizerMode See below Defines the long term mode of operation of the rasterizer.
StartXDom Fixed point 16.16 Initial X value for the dominant edge in trapezoid filling, or initial X
format value in line drawing.
dXDom Fixed point 16.16 Value added when moving from one scanline (or sub scanline) to the
format next for the dominant edge in trapezoid filling.
Also holds the change in X when plotting lines so for Y major lines
this will be some fraction (dx/dy), otherwise it is normally + 1.0,
depending on the required scanning direction.
StartXSub Fixed point 16.16 Initial X value for the subordinate edge.
format
dXSub Fixed point 16.16 Value added when moving from one scanline (or sub scanline) to the
format next for the subordinate edge in trapezoid filling.
StartY Fixed point 16.16 Initial scanline (or sub scanline) in trapezoid filling, or initial Y position
format for line drawing.
dy Fixed point 16.16 Value added to Y to move from one scanline to the next. For X major
format lines this will be some fraction (dy/dx), otherwise it is normally & 1.0,
depending on the required scanning direction.
Count 16 bit integer Number of pixels in a line.
Number of scanlines in a trapezoid.
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.
BitMaskPattern 32 bits defined eatlier |Value used to control the BitMask stipple operation (if enabled).
PointTable0 Packed dx point data. |Antialias point data table. There are 4 words in the table and the
PointTablel register tag is decoded to select a word.
PointTable2
PointTable3
ScanLine Ownership See Multi-Rasterizer |Defines which scanlines are owned when in multi-rasterizer mode.
chapter
Ylimits Ymax: 2°s Defines the Y extents the rasterizer should fill between. A scanline is

complement 16 bit
value in the upper
word.

Ymin: 2’s complement
16 bit value in the
lower word.

filled if its Y value satisfies Y min<Y<Ymax

Table 2.2 Rasterizer Registers

2.2.3

Render Command

For efficiency, the Render command register has a number of bit fields that can be set or
cleared per render operation and which qualify other state information. These bits are:

« AreaStippleEnable
« LineStippleEnable
« ResetLineStipple

2-32

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II

TextureEnable

FogEnable

CoverageEnable
SubpixelCorrection.

Rasterizer

This feature enables units to be set or cleared in one step as part of a specific render
operation. For example, to clear a window to a background color when stippling and fog
have already been enabled for 3D operations it is not necessary to clear the enable bits in
FogMode, AreaStippleMode and LineStippleMode individually. They can be left
enabled but overriden for the window clear operation simply by adjusting the Render

command bitfield settings, shown below:

Render

Name
Render

Type
Global

Command

Offset
0x8038

Format
Bitfield

Bits

Name

Read

Write

Reset

Description

AreaStipple
Enable

O

]

This bit, when set, enables area stippling of the
fragments produced during rasterisation in the Stipple
Unit. Note that area stipple in the Stipple Unit must
be enabled as well for stippling to occur.

When this bit is reset no area stippling occurs
irrespective of the setting of the area stipple enable bit
in the Stipple Unit.

This bit is useful to temporarily force no area stippling
for this primitive.

LineStipple
Enable

This bit, when set, enables line stippling of the
fragments produced during rasterisation in the Stipple
Unit. Note that line stipple in the Stipple Unit must
be enabled as well for stippling to occur.

When this bit is reset no line stippling occurs
irrespective of the setting of the line stipple enable bit
in the Stipple Unit.

This bit is useful to temporarily force no line stippling
for this primitive.

Resetline

Stipple

This bit, when set, causes the line stipple counters in
the Stipple Unit to be reset to zero, and would
typically be used for the first segment in a polyline.
This action is also qualified by the LineStippleEnable
bit and also the stipple enable bits in the Stipple Unit.
When this bit is reset the stipple counters carry on
from where they left off (if line stippling is enabled)

FastFillEnable

This bit, when set, causes the span fill mechanisms to
be used for the rasterisation process. The type of span
filling is specified in the SpanOperation field. When

this bit is reset the normal rasterisation process occurs.

4,5

Unused

3D/.bs

Proprietary and Confidential

2-33

Rasterizer

Permedia4 Programmer’s Guide Volume I

6,7

Primitive Type

This two bit field selects the primitive type to rasterise.
The primitives are:

0 = Line

1 = Trapezoid

2 = Point

Antialiase
Enable

This bit, when set, causes the generation of sub
scanline data and the coverage value to be calculated
for each fragment. The number of sub pixel samples
to use is controlled by the AntialiasingQuality bit.
When this bit is reset normal rasterisation occurs.

Antialiasing
Quality

This bit, when set, sets the sub pixel resolution to be
8x8
When this bit is reset the sub pixel resolution is 4x4.

10

UsePoint Table

When this bit and the AntialiasingEnable are set, the
dx values used to move from one scanline to the next
are derived from the Point Table.

11

SyncOnBit
Mask

This bit, when set, causes a number of actions:

The least significant bit or most significant bit
(depending on the MirrorBitMask bit) in the Bit Mask
register is extracted and optionally inverted
(controlled by the InvertBitMask bit). If this bitis 0
then any fragments are skipped.

After every fragment the BitMask register is rotated by
one bit.

If all the bits in the BitMask register have been used
then rasterisation is suspended until a new
BitMaskPattern tag is received. If any other tag is
received while the rasterisation is suspended then the
rasterisation is aborted. The message which caused
the abort is then processed as normal.

Note the behaviour is slightly different when the
SyncOnHostData bit is set to prevent a deadlock from
occurring. In this case the rasterisation doesn't
suspend when all the bits have been used and if new
BitMaskPattern tags are not received in a timely
manner then the subsequent fragments will just reuse
the bit mask.

12

SyncOnHost
Data

When this bit is set a fragment is produced only when
one of the following tags have been received from the
host: Depth, Stencil, Color or FBData, FBSourceData.
If SyncOnBitMask is reset then any tag other than one
of these three is received then the rasterisation is
aborted. If SyncOnBitMask is set then any tag other
than one of these five or BitMaskPattern is received
then the rasterisation is aborted. The tag which
caused the abort is then processed as normal for that
register type. The BitMaskPattern register doesn't
cause any fragments to be generated, but just updates
the BitMask register.

2-34

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Rasterizer

13

TextureEnable

This bit, when set, enables texturing of the fragments
produced during rasterisation. Note that the Texture
Units must be suitably enabled as well for any
texturing to occut.

When this bit is reset no texturing occurs irrespective
of the setting of the Texture Unit controls.

This bit is useful to temporarily force no texturing for
this primitive.

14

FogEnable

This bit, when set, enables fogging of the fragments
produced during rasterisation. Note that the Fog Unit
must be suitably enabled as well for any fogging to
occur.

When this bit is reset no fogging occurs irrespective of
the setting of the Fog Unit controls.

This bit is useful to temporarily force no fogging for
this primitive.

15

Coverage
Enable

This bit, when set, enables the coverage value
produced as part of the antialiasing to weight the alpha
value in the alpha test unit. Note that this unit must
be suitably enabled as well. When this bit is reset no
coverage application occurs irrespective of the setting
of the AntialiasMode.

16

SubPixel
Correction

Enable

This bit, when set enables the sub pixel correction of
the color, depth, fog and texture values at the start of a
scanline. When this bit is reset no correction is done
at the start of a scanline. Sub pixel corrections are
only applied to aliased trapezoids.

17

Reserved

e}

18

SpanOperation

This bit, when clear, indicates the writes are to use the
constant color found in the previous FBBlockColor
register. When this bit is set write data is variable and
is either provided by the host (i.e. SyncOnHostData is
set) ot is read from the framebuffer.

19

Unused

o

20...26

Reserved

|

[

27

FBSourceRead
Enable

This bit, when set enables source buffer reads to be
done in the Framebuffer Read Unit. Note that the
Framebuffer Read Unit must be suitably enabled as
well for the source read to occut.

When this bit is reset no source reads occur
irrespective of the setting of the Framebuffer Read
Unit controls.

28...31

Unused

3D/.bs

Proprietary and Confidential 2-35

Rasterizer

RasterizerMode

Name

RaasterizerMode
RaasterizerModeAnd
RaasterizerModeOr

Type

Rasterizer
Rasterizer
Rasterizer

Offset
0x80A0
0xABAO
0xABAS

Control register

Permedia4 Programmer’s Guide Volume I

Format
Bitfield
Bitfield
Bitfield

Bits

Name

Read®

Write | Reset

Description

MirrorBit Mask

g

. When set the bit mask bits are consumed from
the most significant end towards the least
significant end.

. When reset the bit mask bits are consumed from
the least significant end towards the most
significant end.

InvertBit Mask

When this bit is set the bit mask is inverted first before
being tested.

23

>

Fraction Adjust

These bits control the action of a ContinueNewLine
command and specify how the fraction bits in the Y
and XDom DDAs are adjusted.

0: No adjustment is done,

1: Set the fraction bits to zero,

2: Set the fraction bits to half.

3: Set the fraction to nearly half; i.e. OXTtft

4,5

Bias

Coordinates

These bits control how much is added onto the
SartXDom, StartXSub and StartY values when they
are loaded into the DDA units. The original registers
are not affected.

0: Zero is added,

1: Half is added,

2: Nearly half, i.e. Ox7£ff is added

Reserved

BitMask
ByteSwap
Mode

These bit controls the byte swapping of the BitMask
data before it is used. If the bytes are labelled ABCD
on input then they are swapped as follows:

0: ABCD (i.e. no swap)

1: BADC

2: CDAB

3: DCBA

BitMask
Packing

This bit controls whether the bitMask data is packed
or if a new BitMask data is required on every scanline.
0: BitMask data is packed,
1: BitMask data is provided for each
scanline.

6 Logic Op register readback is via the main register only

2-36

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II

Rasterizer

10-14

BitMaskOffset

These bits hold the bit position in the BitMask data
where the first bit is taken from for the bit mask test
for the first BitMask data on a new scanline.
Subsequent BitMask data starts from bit 0 until the
next scanline. Successive bits are taken from
increasing bit positions until the bit mask is consumed
(ie. bit 31 is reached). The least significant bit is bit
zero.

15,16

HostDataByteS
wapMode

These bits controls the byte swapping of the BitMask
data before it is used. If the bytes are labelled ABCD
on input then they are swapped as follows:

0: ABCD (i.e. no swap)

1: BADC

2: CDAB

3: DCBA

17

MultiRasterizer

This bit selects whether the rasterizer is to work in
single rasterizer mode or in multi-Rasterizer mode. In
multi-rasterizer mode it only processes the scanlines
allocated to it.

0: Single Rasterizer mode

1: Multi-Rasterizer mode

18

YLimitsEnable

This bit, when set, enables the Y limits testing to be
done between the minimum and maximum Y values
given by the YLimits register.

19

Reserved

20...22

StripeHeight

This field specifies the number of scanlines in a stripe.
The options are:

0=1 3=8

1=2 4=16

2=4

23

WordPacking

This bit controls how the two host words sent during ,
a span operation are packed into the 64 bit internal
span data.
0 = first word in bits 0...31, second word
in 32...63
1 = first word in bits 32...63, second word
in 0...31

24

OpaqueSpans

This bit, when set allows the color of each pixel in the
span to be either foreground or background as set by
the supplied bit masks. If this bitis O then any
supplied bit masks are anded with the pixel mask to
delete pixels from the span. This bit should be set to
0 for performance reasons when
foreground/background processing is not required.

25

Reserved

e

26

D3DRules

This bit, if set, uses D3D rules for subpixel correction
calculations, otherwise OpenGL rules are used.

27...31

Reserved

Reserved for future use, mask to 0

3D/.bs

Proprietary and Confidential 2-37

Rasterizer

Permedia4 Programmer’s Guide Volume I

Notes: Defines the long term mode of operation of the rasterizer.
The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

2.3 2D Setup
This unit performs a nuber of fuctions to improve the throughput of 2D rendering. There
are two new registers - Render2D and Render2DGlyph - which allow:
+ Rectangle setup using only two messages
« Glyph rendering from texture memory in two messages
« Glyph data can be handled (downloaded, chopped and padded) scanline by scanline

compatibly with bitmap textures

« Packed pixel downloads are converted from 4- to 8-bit format
« Run Length Encoded (RLE) data downloads are automatically expanded
The Render2D command incidentally flushes the write combine buffers to ensure memory
is updated (and therefore visible to bypass or video reads) after the rectangle is rendered.

2.3.1 Glyph rendering
Once the position is established (GlyphPosition) subsequent glyphs can be rendered by
writing the address of the texture bitmap containing the glyph to the TextureBaseAddr(0)
register folllwed by the Render2DGlyph Command. The glyph position is updated
automatically from the Width bitfield.Because glyphs are rendered as a span, the direction
is always increasing X and Y.

2-38 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Scissor, Stipple

3

Scissor, Stipple and Color DDA Units

3.1

311

31.2

3D/.bs

Scissor Unit

Two scissor tests are provided in Permedia4, the User Scissor test and the Screen Scissor
test.

The user scissor checks each fragment or span against a user supplied scissor region; the
screen scissor converts the fragment to screen-relative coordinates and checks that the
fragment or span lies within the screen.

The scissor unit operates both on active fragments and spans. In span processing the
pixel mask bits corresponding to a failed fragment are reset.

User Scissor Test

The user scissor test checks each fragment as follows:
XMin <= X < XMax

YMin<=Y <YMax

Where X and Y are the coordinates for the fragments, and XMin, XMax, YMin and YMax
define the user supplied scissor region. If a fragment fails the test it is discarded. The test
may be screen- or window- relative.

Screen Scissor Tests

This test ensures that a fragment lies within the screen boundaries. For each fragment the
XY origin stored in the WindowOrigin register is added to the fragment coordinates and
this is tested against the screen boundaries stored in the ScreenSize register. Since the
X and Y coordinates are held as 2's complement numbers, the window origin can be
moved off the edges of the screen.

Note that the WindowOrigin register only affects the origin for clipping, it does not affect
the base address for rendering. The Windows Initialization chapter gives further details on
how to set the base address of a window for rendering.

The Screen Scissor test is:
0 X +WX) <SW
0< (Y +WY) <SH

Where:

X = Fragment X coordinate WX = Window origin X coordinate
Y = Fragment Y coordinate WY = Window origin Y coordinate
SW = Screen Width SH = Screen Height

The diagram below shows a simple case of a screen with a single window which has a
user defined scissor region. The shaded area shows the region where fragments pass the

Proprietary and Confidential 3-1

Scissor, Stipple Permedia4 Programmer’s Guide Volume I

user and screen scissor tests and so can progress in the pipeline. Fragments outside this
region are culled from the pipeline.

User X,Y) RN
Scissor User
Min \ S;\:/'lﬂ’r
Screen \. N
Height
(SH) L N
\ Writeable Region
Window Origin Scissor Region
(WX, WY) \
Screen

<«—— Screen Width (SW) ———»

Figure 3-1 Screen Scissor and User Scissor Tests

This test may reject fragments if some part of a window has been moved off the screen. It
will not reject fragments if part of a window is simply overlapped by another window (GID
testing can be used to detect this).

3.1.3 Scissor Registers
The unit is controlled by the ScissorMode register:

Name Type Offset Format

ScissorMode Scissor 0x8180 Bitfield

ScissorModeAnd Scissor 0xABBO Bitfield Logic Mask

ScissorModeOr Scissor 0xABBS8 Bitfield Logic Mask

Control registers

Bits Name Read? | Write | Reset | Description

0 UsetScissor O] X enables the user scissor clipping
Enable

1 ScreenScissor O] X enables the screen scissor clipping
Enable

2...31 Unused 0 0 be

Figure 3-2 ScissorMode Register

7 Logic Op register readback is via the main register only

3-2 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Scissor, Stipple

314

3.1.5

3.2

3.21

3D/.bs

The screen scissor test would normally be left enabled by default. The most common
exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and ScissorMaxXY
the X values are stored in the least significant 16 bits of the register, the Y values in the
most significant 16 bits of the register.

The WindowOrigin register has the X coordinate of the origin stored in the least
significant 16 bits of the register, and the Y coordinate in the most significant 16 bits of the
register. As each fragment is generated by the rasterization unit this origin is added to the
coordinates of the fragment to generate its screen coordinates.

The ScreenSize register specifies the screen width and height, with the width in the least
significant 16 bits and the height in the most significant 16 bits.

Span Operations and the Scissor Unit

If a span mask is presented to the scissor unit, the pixel mask (and potentially the color
mask) is modified to zero out bits corresponding to pixels which lie outside the scissor
region. This is true for both the user scissor and the screen scissor. The screen scissor
first converts the span’s coordinates to screen-relative.

Scissor Example

To enable screen scissor for a region: 10 <= X < 500, 100 <=Y < 200 with a screen size of
1280x1024 and the window origin at (100,100).

Il Set the screen size
screenSize Width = 1280
screenSize.Height = 1024
ScreenSize(screenSize)

/I Set the window origin
ScissorM ode(scissorM ode)
WindowOrigin(windowOrigin)
// Render primitives

Stipple Unit

Stippling is a process which checks each fragment against a bit in a defined pattern. The
fragment can either be rejected or accepted depending on the result of the stipple test. If it
is rejected, then it undergoes no further processing, otherwise it proceeds down the
pipeline. Permedia4 supports line and area stippling.

Area Stippling

Both the AreaStippleEnable in the PrepareToRender message and enable in the
AreaStippleMode message must be set to enable the area stipple test. If the stipple test
is disabled then the area span mask is set to Oxffffffffffffffff, otherwise it is calculated as
follows.

Proprietary and Confidential 3-3

Scissor, Stipple Permedia4 Programmer’s Guide Volume I

3.2.2

3-4

The address of the stipple pattern row to use in the test is calculated as follows:

« Add the Y offset to the bottom five bits of Y coordinates of the span coordinate. If the
corresponding mirror bits are set then invert the Y address.

« Extract the bottom m bits of the resulting Y value where m is determined by the Y Sel
fields. The extracted Y address is zero extended to 5 bits where necessary and is
now called Y.

« Addthe YTableOffset to Y’ to move the test to the required sub stipple pattern row.

The Y’ value selects the row in the stipple RAM (row zero is at AreaStipplePattern[0]) and

this is the first value of the AreaStippleMask which is processed by each of the following

stages and passed on to the next:

« The mask is rotated right by the XTableOffset amount to select the sub stipple pattern
to replicate, mirror, etc.

. The least significant 2, 4, 8, 16 or 32 bits are extracted from the AreaStippleMask and
replicated to fill all 32 bits of the mask. The Xsel field determines the number of bits
to replicate (0 = 2 bit to replicate, etc.).

« Next the AreaStippleMask is mirrored if the MirrorX bit is set. The mirroring is done by
swapping bits (0, 63), (1, 62), (2, 61), etc..

« The area span mask is inverted under control of the InvertStipplePattern bit.

« The area span mask is rotated right by (Xoffset + X) bits.

The area stipple pattern is always 32x32 and is window relative. However the XtableOffset
and YtableOffset fields in AreaStippleMode allow the 32x32 bit table to hold several
smaller area stipple patterns. The least significant 5 bits of the fragment’s (X,Y)
coordinates, index into the controlling bit of the 2D stipple pattern. If the selected bit in the
pattern is set, then the fragment passes the test, otherwise it is rejected as described
above.

The mask is defined in the AreaStipplePattern registers. Area stippling is enabled and
controlled using the AreaStippleMode register and must be qualified by the AreaStipple
Enable bit in the Render command register. This allows temporary disable stippling when
Bitmaps or OGL pixel rectangles are being rendered.

The address selection can be controlled independently in the X and Y directions. In
addition the bitpattern can be inverted or mirrored using InvertStipplePattern or MirrorX.
Inverting the bit pattern has the effect of changing the sense of the accept/reject test. If the
mirror bit is set the most significant bit of the pattern is towards the left of the window, the
default is the converse.

In some situations window relative stippling is required but coordinates are only available
screen relative. To allow windows relative stippling, an offset can be added to the
coordinates before indexing the stipple table. X and Y offsets can be controlled
independently.

Line Stippling
Line stippling applies normally to aliased lines. Antialisaed lines can be stippled by
applying the stipple pattern to the rectangles which constitute the antialiased line.

In this test, fragments are conditionally rejected on the outcome of testing a linear stipple
mask. If the bit is zero then the test fails, otherwise it passes. The line stipple pattern is 16
bits in length and is scaled by a repeat factor, r, (in the range 1 to 512). The stipple mask
bit, b, which controls the acceptance or rejection of a fragment is determined using:

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Scissor, Stipple

b = (floor (s/r)) mod 16

where s is the stipple counter which is incremented for every fragment (normally along the
line). This counter may be reset at the start of a polyline, but between segments it
continues as if there were no break.

The stipple pattern can be optionally mirrored, that is the bit pattern is traversed from most
significant to least significant bits, rather than the default, from least significant to most
significant.

The UpdateLineStippleCounters register controls initialization of the line stipple
counters, which can be reset or loaded from a previously saved value. The
UpdateLineStippleCounters register can be reset by writing O to bit O (earlier chips
required resetting all 32 bits in the register).

The SaveLineStippleCounters register is used to save the current line stipple counters.
The combination of UpdateLineStippleCounters and SavelLineStippleCounters is
useful to implement stippling of wide polylines.

Line stippling is enabled using the LineStippleMode register and must be qualified by the
LineStippleEnable bit in the Render command register.

3.2.3 Span Operations and Stippling
If the Area Stipple unit is enabled it modifies span masks generated by the rasterizer.
(Line stipple has no effect on the span mask.) The mask can be rotated or inverted
before being ANDed with the pixel mask for transparent spans, or the color mask for spans
using the OpaqueSpan bit in the AreaStippleMode register.

3.2.4 Registers
The LineStippleMode register controls line stipple:

Name Type Offset Format

LineStippleMode Stipple 0x81A8 Bitfield

LineStippleModeAnd Stipple 0xABCO Bitfield Logic Mask

LineStippleModeOrx Stipple 0xABCS8 Bitfield Logic Mask

Control register
Bits Name Read | Write | Reset | Description
StippleEnable 0 N - This field, when set, enables the stippling of lines. The

0 LineStippleEnable bit in the Render command must
also be set.

1...9 RepeatFactor 0 u X This field holds the positive repeat factor for stippled
lines. The repeat factor stored here is one less than
the desired repeat factor.

10...25 StippleMask 0 N x This field holds the stipple pattern.

26 Mirror 0 N - This field, when set, will mirror the StippleMask
before it is used.

27...31 Unused 0 0 %

Figure 3-3 LineStippleMode Register

3D/.bs

Proprietary and Confidential 3-5

Scissor, Stipple Permedia4 Programmer’s Guide Volume I

The least significant bit of the UpdateLineStippleCounters register controls loading the
line stipple counters. If set the line stipple counters are loaded with the previously saved
values. If reset, the counters are cleared to zero. The counters can also be reset by means
of the ResetLineStipple bit in the Render command.

The AreaStippleMode register controls area stipple operation:

Name Type Offset Format
AreaStippleMode Stipple 0x81A0 Bitfield
AreaStippleModeAnd Stipple 0xABDO Bitfield Logic Mask
AreaStippleModeOr Stipple 0xABD8 Bitfield Logic Mask
Control registers
Bits Name Readd |Write |Reset |Description
0 Enable N N X This field, when set, enables area stippling. The

AreaStippleEnable bit in Render must also be set for this
to have an effect.

1.3 X address select: |[] l X 0 =1 bit 1 =2 bit
2 = 3 bit 3 = 4 bit
4 =5 bit
4.6 Y address select: |[] [X 0 =1 bit 1 = 2 bit
2 = 3 bit 3 = 4 bit
4 =5 bit
7.11 X Offset N [X This field holds the offset to add to the X value before

it is used to index into the stipple bit. This allows a
window relative stipple pattern to be selected when the
coordinates are given in screen relative format.

12..16 Y Offset N [X This field holds the offset to add to the Y value before
it is used to index into the area stipple pattern table.
This allows a window relative stipple pattern to be
selected when the coordinates are given in screen
relative format.

17 Invert Stipple N il X 0 = No Invert 1 = Invert
Pattern

18 Mirror X 0 [X 0 = No Mirror 1 = Mirror

19 Mirror Y 0 [X 0 = No Mirror 1 = Mirror

20 OpaqueSpan N [X This bit, when set, allows the area stipple pattern to
modify the color mask, otherwise the pixel mask is
modified.

21...25 XTableOffset | m X This field allows a sub area stipple pattern to be

extracted from the area stipple table, i.e. the area stipple
table is treated as a cache of smaller stipple patterns.

26...30 YTableOffset N [X This field allows a sub area stipple pattern to be
extracted from the area stipple table, i.e. the area stipple
table is treated as a cache of smaller stipple patterns.

31 Unused 0 0 X

Figure 3-4 AreaStippleMode Register

8 Logic Op register readback is via the main register only

3-6 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Name

Scissor, Stipple

The EnableUnit bit in the LineStippleMode and AreaStippleMode registers are qualified
by the LineStippleEnable and AreaStippleEnable bits in the Render command register.

The SaveLineStippleCounters register (which has no data field) saves the line stipple
counters internally.

The area stipple is set up in the AreaStipplePattern register, where n represents an
integer between 0 and 31.

The LoadLineStippleCounters register is shown in the Permedia4 Reference Guide

LoadLineStippleCounters

Type
Global

Command

Offset Format
0x81B0 Bitfield

Bits

Name

Read

Write

Reset

Description

LiveBit

Counter

O

]

4...12

LiveRepeat

Counter

O

]

13...16

SegmentBit

Counter

O

]

17...25

SegmentRepeat

Counter

O

]

26...31

Unused

0

0

X

Figure 3-5

3.2.5

3D/.bs

Examples

A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:
/I Use only thefirst two table entries

AreaStipplePattern0(0x1)
AreaStipplePattern1(0x2)

I/ Set-up mode register
areaStippleMode.UnitEnable = PERMEDIA4 ENABLE
areaStippleMode. XSel = 0 // Address index based on
areaStippleMode.Y Sel = 0// LSB of address, repeats

Il every 2nd pixel in X & Y
areaStippleMode. X Offset = 0
areaStippleMode.Y Offset = 0
areaStippleMode.lnvert =0
areaStippleMode.MirrorY =0
areaStippleMode.MirrorX =0

// Load mode register

LoadLineStippleCounters register

Proprietary and Confidential

3-7

Scissor, Stipple

Permedia4 Programmer’s Guide Volume I

AreaStippleM ode(areaStippleM ode)

/I When the Render command is sent the
/I AreaStippleEnable

/1 bit should be set in addition to the area stipple
/I test being enabled:
Il render.AreaStippleEnable = PERMEDIA4_TRUE

3.2.6 Line Stipple Example

A line stipple which rejects alternate fragments:

/[Set countersto zero

UpdateL ineStippleCounters(0x0)

I Set the stipple mode

lineStippleMode.UnitEnable = PERMEDIA4_ENABLE
lineStippleM ode.RepeatFactor = 0 // Repeat factor 1
lineStippleM ode. StippleMask = OXAAAA

LineStippleM ode(lineStippleM ode)

// When issuing a Render command the
/I LineStippleEnable bit should be set in addition
I/ to the line stipple test being enabled:

/I render.LineStippleEnable = PERMEDIA4_TRUE

3.2.7 Area Stipple Pattern Example

Another repeating area stipple pattern of 2x2 pixels producing a 50% grey area.:

3-8

AreaStiPPlePattern0 (OXAAAAAAAA)
AreaStipplePatternl (0x55555555)
AreaStipplePattern2 (OXAAAAAAAA)
AreaStipplePattern3 (Ox55555555)
AreaStipplePatternd (OXAAAAAAAA)
AreaStipplePatfern5 (0x55555555)
RTeaStipplePattern6 (OXAAAAAAAA)
AreaStipplePattern7 (Ox55555555)
AreaStipplePattern31 (0x55555555)

/I Set-up mode register
areaStippleM ode.UnitEnable = PERMEDIA4 ENABLE
areaStippleMode. X select =0
areaStippleMode.Yselect =0
areaStippleMode. X offset = 0
areaStippleMode.Y offset =0

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II

3.3

ColorDDAMode
ColorDDAModeAnd
ColorDDAModeOr

areaStippleMode.Invert =0
areaStippleMode.MirrorY =0
areaStippleMode.MirrorX =0
// Load mode register
AreaStippleM odeareaStippleM ode)

/I When issuing a Render command, the

/I AreaStippleEnable bit should be set to enabled:
/I Arender. AreaStippleEnable = PERMEDIA4 TRUE

Color DDA Unit

The color DDA unit is used to associate a color with a fragment produced by the rasterizer.
This unit should be enabled for rendering operations and disabled for pixel rectangle
operations (i.e. copies, uploads and downloads). Color DDA functionality is controlled by
the ColorDDA register:

Scissor, Stipple

Name Type Offset Format
ColorDDAMode Color 0x87E0 Bitfield
ColorDDAModeAnd Color 0xABEO Bitfield Logic Mask
ColorDDAModeOr Color 0xABES8 Bitfield Logic Mask
Control registers
Bits Name Read? | Write | Reset | Description
1 Enable N X This bit, when set, causes the current color to be
generated.
2 Shading N X Selects the shading mode. The two options are:
0 = Flat — the color is taken from the Constant Color
register.
1 = Gouraud — the color is taken from the DDAs.
3...31 Unused 0 X
Notes: The ColorDDAMode register controls the operation of the Color DDA unit using the Enable and

Shading bits. The logic operator equivalents behave the same way but the new mode is AND’d or
OR’d with the former mode before replacing it.

? Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential

3-9

Scissor, Stipple Permedia4 Programmer’s Guide Volume I

3.3.1

RGBA and Color-Index(CI) Modes

Two color modes are supported by Permedia4, RGBA and color index (Cl). Permediad’s
internal color representation is RGBA with 8 bits per component: A typical register layout
is ConstantColor:

Constant Color

Name Type Offset Format
ConstantColor Delta 0x87E8 Bitfield
Control register
Bits Name Read | Write | Reset Description

0...7 Red O] X

8...15 Green |] X

16...23 Blue |] X

24..31 | Alpha 0O [x

Notes: This register holds the constant color in packed format. This is a legacy register maintained for

backwards compatibility which has been superceded by the ConstantColorDDA register.

The ConstantColorDD.A register, as well as loading up the constant color register, also loads the DDA
start register from the corresponding color byte and sets the dx and dyDom gradients to zero. This
allows a constant color to be set up irrespective of the shading mode.

3.3.2

3-10

This format is the same for all the different framebuffer configurations supported. If the
number of bits in the framebuffer for a color component is less than 8 then the color value
is left shifted into the most significant bits of that components field. The unused least
significant bits should be set to zero.

In Cl mode the color index is placed in the lower byte of the 32 bit register (i.e., the red
component). If less than 8 bits are used the index is left justified to be in the most
significant end of the red component. The unused least significant bits should be set to
zero.

For further information on Color modes see chapter 9 - Color Format and Logical Ops.

Gouraud Shading

Shading may be flat or Gouraud. For flat shading, the color value is taken from the
ConstantColor register, not from the DDA. When in Gouraud shading mode, the color
DDA unit performs linear interpolation given a set of start and increment values.
Interpolated values are clamped to avoid overflow or underflow. For details of color
interpolation calculation see Apendix 13-2 - Calculating Depth Gradient Values.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Scissor, Stipple

Figure 3-6 Color Interpolation

Color interpolates from the dominant edge of the trapezoid to the subordinate edges. This
means that two increment values are required per color component, one to move along the
dominant edge and one to move across the span to the subordinate edge. This is
illustrated in Figure 3-6, where C represents a color component (red, green, blue, alpha or
color index). The control registers are shown in table 3.3, below.

For Gouraud shaded lines, each line is treated as the dominant edge of a trapezoid so no
dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a 24bit fixed point
format. The format is 2’'s complement with 9 bits of integer and 15 bits of fraction. A typical
register layout is shown below:

Name Type Offset Format
dAdyDom Color DDA 0x87D8 Fixed point
Control register
Bits Name Read | Write | Reset Description
0...14 Fraction 0 0 X 2’s complement 9.15 fixed point fraction
15...23 Integer 0 0 X 2’s complement 9.15 fixed point integer
24...31 Unused 0 0

Figure 3-7 Fixed Point Color Format

3D/.bs

Note that if you are rendering to multiple buffers and have initialized the start and
increment values in the color DDA unit, then any subsequent Render command will reload
the start values.

If subpixel correction has been enabled for a primitive, then any correction required will be
applied to the color components.

The registers to set up Gouraud shading in the color DDA unit are:

Register Data Field Description

RStart Fixed point 9.15 format Red start value

Proprietary and Confidential 3-11

Scissor, Stipple

Permedia4 Programmer’s Guide Volume I

dRdx Fixed point 9.15 format Red derivative per unit X

dRdyDom Fixed point 9.15 format Red derivative per unit Y, dominant edge

GStart Fixed point 9.15 format Green start value

dGdx Fixed point 9.15 format Green derivative per unit X

dGdyDom Fixed point 9.15 format Green derivative per unit Y, dominant edge

BStart Fixed point 9.15 format Blue start value

dBdx Fixed point 9.15 format Blue detivative per unit X

dBdyDom Fixed point 9.15 format Blue derivative per unit Y, dominant edge

AStart Fixed point 9.15 format Alpha start value

dAdx Fixed point 9.15 format Alpha derivative per unit X

dAdyDom Fixed point 9.15 format Alpha derivative per unit Y, dominant edge
Table 3.3 Color Interpolation Registers

3.3.3 Flat Shading Example
A flat shaded primitive:

3.34

3-12

/I Set DDA to flat shade mode
colorDDAMode.UnitEnable = Permediad ENABLE
colorDDAMode.Shade = Permediad FLAT_SHADE _MODE
ColorDDAMode(colorDDAMode)

/I Load the flat color

ConstantCol or(OXFFFFFFFF)

Gouraud Shaded Trapezoid Example
// Enable unit in Gouraud shading mode

colorDDAMaode.UnitEnable = Permediad_ENABLE

colorDDAM ode.Shade = Permediad GOURAUD_ SHADE _MODE

ColorDDAM ode(colorDDAMode)

/! Load the color start values and deltas for dominant
// edge and the body of the trapezoid

RStart() // Set-up the red component start value
dRdx() // Set-up the red component increments
dRdyDom()

GStart() // Set-up the green component start value
dGdx() // Set-up the green component increments
dGdyDom()

BStart() // Set-up the blue component start value
dBdx () // Set-up the blue component increments

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II

3.3.5

3D/.bs

dBdyDom ()

Gouraud Shaded Line Example
// Set DDA for Gouraud shaded mode

colorDDAMode.UnitEnable = Permediad ENABLE
colorDDAM ode.Shade = Permediad_ GOURAUD_SHADE_MODE
ColorDDAM ode(colorDDAM ode)

// For lines we need only start values and
// dominant edge deltas

RStart() // Set-up the red component start value
dRdyDom() // Set-up the red component increment
GStart() // Set-up the green component start value
dGdyDom() // Set-up the green component increment
BStart() // Set-up the blue component start value
dBdyDom() // Set-up the blue component increment

Proprietary and Confidential

Scissor, Stipple

3-13

Permedia4 Programmer’s Guide Volume II Localbuffer Read/Write

4

Localbuffer Read/Write

The localbuffer holds the Graphic ID, Stencil and Depth data associated with a fragment.
The localbuffer address calculation uses the LocalBuffer mode, address and offset
registers registers to set base addresses and screen-relative offsets, as well as positioning
the Depth, Stencil and GID planes. For details see “Localbuffer and
Framebufferonfiguration” in Initialization section 12.2.7 below.

The origin can be set in the relevant BufferMode register(s) to top left or bottom right using
the Origin field.

Note: Enabling Patch addressing in the Layout field of the buffer mode registers
introduces additional complexity into the address calculation which is beyond
the scope of this manual. Localbuffer bypass accesses are not recommended
when Patch mode addressing is enabled.

The localbuffer read format is controlled by the LBDestReadFormat register’s definition of
the positions of the Depth, Stencil and GID planes.

Selecting a depth width of 15 bits forces the stencil and GID fields to be set from bit 15 of
the pixel and ignores the normal stencil and GID settings.

The natural internal width of the fields are depth (31), stencil (8), GID (4). If the specified
width of a field is less than its internal width then the field is zero extended to its internal
width.

Field Width Position

Depth 16, 24, 31, 15 Bit O to bit 3

Stencil 0-8 Starts at 16 to 39 (entered as 0 — 23)

GID 0-4 Starts at 16 to 39 (entered as 0 — 23) following Stencil

Table 4.4 Localbuffer Configurations

The enables for these are in the GIDMode, StencilMode and DepthMode registers.
These tell Permediad which areas of the localbuffer are required for various operations.
The operations are specified by the LBWriteMode Operation field in bits 29-31:

29...31 Operation N B X This field defines where the data is to be taken from to
do the write and what is to happen to it afterwards.
This is only of interest during an upload or download
operation. The options are:
0 = No operation 1 = Download depth
2 = Download stencil 3 = Upload depth
4 = Upload stencil
3D/.b5 Proprietary and Confidential 4-1

Localbuffer Read/Write

Table 4.5

Localbuffer Read/Write Modes.

Permedia4 Programmer’s Guide Volume I

Note that the LBReadFormat and LBWriteFormat registers should not be written to while
there are pending reads to the localbuffer. To avoid this a write to these registers should
normally be preceded by a WaitForCompletion command.

4.1.1 Mode Registers
The LBDestReadMode register is as shown below:
LBDestReadMode
LBDestReadModeAnd
LBDestReadModeOr
Name Type Offset Format
LBDestReadMode Localbuffer 0xB500 Bitfield
LBDestReadModeAnd Localbuffer 0xB580 Bitfield Logic Mask
LBDestReadModeOr Localbuffer 0xB588 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
10
0 Enable 0 i < This bit, when set, causes fragments or spans to read
from the destination buffer
Reserved 0 0 <
2.4 StripePitch 0 i x This field specifies the number of scanlines between
the first scanline in a stripe and the first scanline in the
next stripe. (It would normally be set to a number of
RXs * StripeHeight). The options are:
0=1 1=2 2=4 3=38 4=16
5=32 6=64 7=128
This field will normally be set to zero for
PERMEDIA4.
5.7 StripeHeight 0 i x This field specifies the number of scanlines in a stripe.
The options are:
0=1 1=2 2=4 3=8 4=16
This field will normally be set to zero for Permedia4.
8 Layout 0 i x This field selects the layout of the pixel data in
memory for the destination buffer. The options are:
0 = Linear 1 = Patch64
9 Origin 0 i < This field selects where the window origin is for the
destination buffer. The options are:
0 = Top Left. 1 = Bottom Left
10 UseRead 0 i x When this bits is set the enables in the
Enables LBDestReadEnables register are used to determine if a
destination read is required. The Enable bit must also
be set as well for a read to occur.

10 Logic Op register readback is via the main register only

4-2

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Localbuffer Read/Write

11 Packed16

0 N - When this bit is set the pixel size is 16 bits so a single

memory word can hold 8 depth values.

12...23 Width

0 N x This field holds the width of the destination buffer.
Its range is 0...4095.

Notes: Defines the localbuffer destination read operation. The destination address calculations are controlled
by the L.BDestReadMode register and the address is a function of X, Y, L.BDestReadBufferAddr,
LBDestReadBufferOffser, width and Packed16 parameters.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

Figure 4-1 LBDestReadMode Register

LBWriteMode
LBWriteModeAnd
LBWriteModeOr

Name Type Offset Format
LBWriteMode Localbuffer 0x88C0 Bitfield
LBWriteModeAnd Localbuffer 0xAC80 Bitfield
LBWriteModeOr Localbuffer 0xAC88 Bitfield
Control register
Bits Name Read | Write | Reset | Description
11
0 WriteEnable 0 B x This bit, when set, causes fragments or spans to
written to the destination buffer. Note each byte must
also be enabled in the ByteEnables field.
1...2 Reserved 0 0 X
3...5 StripePitch N x This field specifies the number of scanlines between
the first scanline in a stripe and the first scanline in the
next stripe. It would normally be set to number of
RXs * StripeHeight. The options are:
0=1 4=16
1=2 5=132
2=4 6 =064
3=8 7 =128
This field will normally be set to zero for Permedia4.
6...8 StripeHeight 0 N - This field specifies the number of scanlines in a stripe.
The options are:
0=1 3=8
1=2 4 =16
2=4
This field will normally be set to zero for Permedia4.

1 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential

4-3

Localbuffer Read/Write Permedia4 Programmer’s Guide Volume I

Layout 0 i % This field selects the layout of the pixel data in
memory for the destination buffer. The options are:
0 = Linear
1 = Patch64

10

Origin 0 i x This field selects where the window origin is for the
destination buffer. The options are:

0 = Top Left.

1 = Bottom Left

11

Packed16 0 i x When this bit is set the pixel size is 16 bits so a single
memory word can hold 8 depth values.

12...23

Width 0 i x This field holds the width of the destination buffer.
Its range is 0...4095.

24...28

ByteEnables 0 u X This field holds the byte enables for each byte in the
pixel. A byte enable bit must be set for the
corresponding byte to be written. Ideally the depth,
stencil, etc. fields are byte aligned and integral bytes in
length so these can be used to disable modifying a
field, otherwise read-modify-write operations will need
to be done.

29...31

Operation 0 i < This field defines where the data is to be taken from to
do the write and what is to happen to it afterwards.
This is only of interest during an upload or download
operation. The options are:

0 = No operation

1 = Download depth

2 = Download stencil

3 = Upload depth

4 = Upload stencil

Notes:

The write requests have two forms:

. Single pixel. This is the normal mode for 3D operation but is only used for exotic 2D operations.
The calculated address is always a pixel address and this is shifted to take into account the width
of a pixel (16 or 32 bits) in calculating the memory address and byte enables. The pixel data (Z,
stencil and GID) are formatted and shifted into the correct byte lanes for the memory.

* Pixel spans. Spans are useful for clearing down the local buffer but do not use any block fill
capabilities of the memory (these are only available through the FB Write Unit), although 4 or 8
pixels will be cleared down per cycle.

. N.B Write operation is not compatible with GLINT MX for programming purposes.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the

former mode before replacing it.

Figure 4-2 LBWriteMode Register

4-4

In LBWriteMode the LSB enables writes to the destination buffer. Other bits control byte
enables and upload/download characteristics.

The localbuffer format must be specified for both reads and writes using the
LBReadFormat and LBWriteFormat registers. Normally these registers are set to
identical values. It may be useful to set them to different values when, say, copying
between two windows using different depth widths. In all cases care should be taken to
ensure that the field widths and positions are such that the fields do not overlap.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

LBWriteFormat

Localbuffer Read/Write

Name Type Offset Format
LBWriteFormat Localbuffer 0x88C8 Bitfield
Control register

Bits Name Read | Write | Reset | Description

0...1 DepthWidth 0 u x This field specifies the width of the depth field. The
depth field always starts at bit position 0. The width
options are:

0 = 16 bits

1 = 24 bits

2 = 31 bits

3 =15 bits
When the depth width is 15 the GID and Stencil fields
are ignored and a one bit GID and Stencil are taken
from bit 15. Oanly one of the GID or Stencil
operation are enabled to select the desired field type.

2...5 StencilWidth 0 B x This field specifies the width of the stencil field. The
legal range of values are 0...8. The stencil field always
starts at bit position given in the next field.

6...10 StencilPosition |] N < This field holds position of the least significant bit of
the stencil field. The legal range of values are 0...23,
representing bit positions 16...39 respectively.

11...19 Reserved 0 0 x

20...22 GIDWidth N x This field specifies the width of the Graphics ID field.
The legal range of values are 0...4. The GID field
always starts at the bit position given in the
GIDPosition field.

23...27 GIDPosition 0 N x This field holds position of the least significant bit of
the Graphics ID field. The legal range of values are
0...23, representing bit positions 16...39 respectively.

28...31 Reserved 0 0 x

Notes: This register defines the position and width of the depth, stencil, GID (Graphics ID) in the data read

back from the local buffer.

Figure 4-3 LBWriteFormat Register Layout
4.2 Window register

A number of Localbuffer operations, particularly Stencil, are conditioned by the Window

register.

« The ForceLBUpdate bit is used to allow all the fields in the localbuffer to be updated
simultaneously. ForceLBUpdate overrides all stencil and Depth testing. This is useful
during initialization and copy operations.

When the LBUpdateSource bit is set the source of the stencil and depth data is
determined by the StencilMode and DepthMode registers respectively.

3D/.b5 Proprietary and Confidential 4-5

Localbuffer Read/Write Permedia4 Programmer’s Guide Volume I

4.3

4.3.1

4-6

* The OverrideWriteFiltering control bit, when set causes the testing of LBData =
LBWriteData to always fail. This is mainly used when the GID field needs to be
changed. It also allows the LBReadFormat to be different to the LBWriteFormat so
the write data as seen by the memory is really different to the data that was read.

« LBUpdateSource is used in conjunction with the ForceLBUpdate bit to select whether
the source data comes from: the localbuffer, or values held in local registers (Depth,
Window, Stencil).

« The combination of LBUpdateSource being set to LBSourceData, and the
ForceLBUpdate bit being enabled is particularly useful when copying a window from
one location on the screen to another.

» The combination of LBUpdateSource being set to Registers and the force LBUpdate
bit being enabled is particularly useful for initializing the contents of the various
localbuffer fields in a window.

« Normally Permedia4 detects the case where the data to be written to the localbuffer is
the same as the data read from the localbuffer, and avoids performing the write.
Setting the OverrideWriteFiltering bit prevents these writes from being filtered out.
This is of value when the localbuffer read format is different from the localbuffer write
format since the comparison is done on the internal data format.

Pixel Ownership (GID) Test Unit

Any fragment generated by the rasterizer may undergo a pixel ownership test. This test
establishes the current fragment’s write permission to the localbuffer and framebuffer.

Pixel Ownership Test

The ownership of a pixel is established by testing the GID of the current window against
the GID of a fragment’s destination in the GID buffer. If the test passes, then a write can
take place, otherwise the write is discarded.

The sense of the test can be set to one of: always pass, always fail, pass if equal, or pass
if not equal. Pass if equal is the normal mode. In Permedia4 the GID planes, if present, are
4 bits deep allowing 16 possible Graphic ID’s. If GIDMode is disabled fragments pass
through undisturbed.

Pixel ownership is controlled by the relevant LB Format and GIDMode registers:

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

GIDMode
GIDModeAnd
GIDModeOr

Localbuffer Read/Write

Name Type Offset Format
GIDMode Localbuffer 0xB538 Bitfield
GIDMode And Localbuffer 0x B5B0 Bitfield Logic Mask
GIDMode Or Localbuffer Ox B5B8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
12
0 Fragment 0 il X This bit, when set, causes GID testing to occur on
Enable fragments. If the test fails then the fragment is
discarded
1 Span Enable 0 B X This bit, when set, allows the span pixel mask to be
modified by GID testing each pixel. The mask is
modified to disable those pixels which fail the test.
2...5 Compare Value |] il X This field holds the 4 bit GID value to compare
against. Unused bits (where the GID width in the
local buffer format is less than 4 bits) should be set to
zeto.
6...7 Compare Mode |] B X This field holds the comparison modes available for
use during GID testing. The options are:
0 = Always pass
1 = Never pass (i.e. always fail)
2 = Pass when local buffer gid == CompareValue
3 = Pass when local buffer gid |= CompareValue
8...9 Replace Mode | [il X This field specifies the replacement mode. This is
independent of the FragmentEnable bit (except when
the replacement depends on the outcome of the GID
test). The options are:
0 = Always replace
1 = Never replace
2 = Replace on GID test pass.
3 = Replace on GID test fails
10...13 Replace Value N B X This field holds the 4 bit GID value to replace the
value read from the local buffer, if the replace mode is
satisfied.
13...31 Reserved 0 0 X Reserved
Figure 4-4 GIDMode Register

The CompareMode field will generally be set to 'Pass if Equal’ for GID testing, with the
current GID in the appropriate field.

12 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential

4-7

Localbuffer Read/Write Permedia4 Programmer’s Guide Volume I

4.4 Stencil Test

The stencil test conditionally rejects fragments based on the outcome of a comparison
between the value in the stencil buffer and a reference value. The stencil buffer is updated
according to the current stencil update mode which depends on the result of the stencil
test and the depth test.

This test only occurs if all the preceding tests (bitmask, scissor, stipple, alpha, pixel
ownership) have passed. The stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test between the reference stencil value
and the value held in the stencil buffer. If the test is LESS and the result is true then the
fragment value is less than the source value. The stencil operation controls the updating of
the stencil buffer, and is dependent on the result of the stencil and depth tests.

The table below shows the stencil functions available:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equal 6 Greater or Equal
3 Less or Equal 7 Always

Table 4.6 Stencil Functions

If the stencil test is enabled then the stencil buffer will be updated depending on the
outcome of both the stencil and the depth tests (if the depth test is disabled the depth
result is set to pass). Refer to the tables below and the definition of the StencilMode
register in section 84.4.1 to fully understand their relationship.

Stencil Test
Pass Fail
Depth Test Pass dppass sfail
Fail dpfatl sfail

Table 4.7 Possible Update Operations for Stencil Planes

The entries dppass, dpfail and sfail are set to one of the update operations below. Source
stencil is the value in the stencil buffer:

Update Method Mode Stencil Value

Keep 0 Source stencil

Zero 1 0

Replace 2 Reference stencil

Increment 3 Clamp (Source stencil + 1) to pstencil width _ ¢
Decrement 4 Clamp (Source stencil -1) to 0

Invert 5 ~Source stencil

Table 4.8 Stencil Operations

In addition a comparison bit mask is supplied in the StencilData register. This is used to
establish which bits of the source and reference value are used in the stencil function test.

4-8 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Localbuffer Read/Write

It should normally be set to exclude the top four bits when the stencil width has been set to
4 bits in the StencilMode register.

The source stencil value can be from a number of places as controlled by bits 13-14
(StencilSource) in the StencilMode register:

Stencil Source Mode |Use
Test logic 0 This is the normal mode.
Stencil register 1 This is used, for instance, in the OpenGL draw pixels function where

the host supplies the stencil values in the Stencil register. This is used
when a constant stencil value is needed, for example, when clearing the
stencil buffer when fast clear planes are not available.

Source stencil value read 2 This is used, for instance, in the OpenGL copy pixels function when

from the localbuffer the stencil planes in the destination are not to be updated. The stencil
data comes from the localbuffer.

LBSourceData: 3 This is used, for instance, in the OpenGL copy pixels function when

(stencil value read from the the stencil planes are to be copied to the destination. .

localbuffer)

Table 4.9 Stencil Sources

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details of stencil operations and examples of its use.

4.4.1 Registers

Stencil test is controlled by the StencilMode register:

3D/.b5 Proprietary and Confidential 4-9

Localbuffer Read/Write

StencilMode
StencilModeAnd
StencilModeOr

Permedia4 Programmer’s Guide Volume I

Name Type Offset Format
StencilMode Stencil 0x8988 Bitfield
StencilModeAnd Stencil 0xAC60 Bitfield Logic Mask
StencilModeOr Stencil 0xAC68 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0 Unit enable O] X 0 = Disable
1 = Enable
1...3 Update method | [J i x if Depth test passes and Stencil test passes (see table 1)
4.6 Update method | [J u x if Depth test fails and Stencil test passes (see table 1)
7.9 Update method | [i x if Stencil test fails (see table 1)
10...12 Mode 0-7 0 i - Unsigned comparison function (see table 2)
13...14 Stencil source O 1 X 0 = Test Logic
1 = Stencil Register
2 = LBData
3 = LBSourceData
15...16 Stencil widths O] X 0 = 4 bits
1 = 8 bits
2 =1 bit
17...31 Unused 0 0 X
Figure 4-5 StencilMode Register

The StencilData register holds the other data associated with the test.

StencilData
StencilDataAnd
StencilDataOr

Name Type Offset Format
StencilData Stencil 0x8990 Bitfield
StencilDataAnd Stencil 0xB3EO Bitfield Logic Mask
StencilDataOr Stencil 0xB3ES8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0...7 Stencil value O] X 8 bit stencil test value
8...15 Compare mask | [J il X Determines which bits are significant in the test
16...23 Writemask O il X Determines which bits in localbuffer are updated
24...31 Reserved 0 0 X
Figure 4-6 StencilData Register
4-10 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Localbuffer Read/Write

4.4.2

4.5

3D/.bs

The stencil writemask is used to control which stencil planes are updated as a result of the
test.

The Stencil register holds an externally sourced stencil value. It is a 32 bit register of
which only the least significant 8 bits are used. The unused most significant bits should be
set to zero.

The Stencil register must be enabled to update the stencil buffer. If it is disabled then the
stencil buffer will only be updated if ForceLBUpdate is set in the Window register.

Stencil Example

This example sets the stencil unit to use a supplied reference value (0x80) and to test
fragments to be LESS than this value. It also sets the stencil planes update function to be
Increment if the test passes and the depth test passes (or is not enabled), otherwise it sets
the update function to Keep.

/I Set the localbuffer read and write modes
/I Set the stencil modes

stencilMode.UnitEnable = PERMEDIA4_ENABLE

stencilMode.DPPass = PERMEDIA4_STENCIL_METHOD_INCREMENT
stencilMode.DPFail = PERMEDIA4 STENCIL_METHOD_ KEEP
stencilMode.SFail = PERMEDIA4 STENCIL_METHOD_KEEP

stencilM ode.CompareFunction = PERMEDIA4 _STENCIL_COMPARE_LESS
stencilMode.Stencil Source = PERMEDIA4_SOURCE_TEST_LOGIC
stencilMode.Width = as appropriate

StencilM ode(stencilM ode)

I Set the reference stencil value and set the

/I compare and writemasks to OxFF

stencilData.ReferenceStencil = 0x80

stencilData.CompareM ask = OxFF

stencil Data. Stencil WriteMask = as appropriate for width of Stencil buffer
stencilData.FCStencil = don’t care

Stencil Data(stencil Data)

/I Enable the depth test hereif required, if not enabled the result of the depth test is set to pass.

Depth Test

The depth (2) test, if enabled, compares a fragment’s depth against the corresponding
depth in the depth buffer. The result of the depth test can affect the stencil buffer update if
stencil testing is enabled.

Proprietary and Confidential 4-11

Localbuffer Read/Write Permedia4 Programmer’s Guide Volume I

This test is only performed if all the preceding tests (bitmask, scissor, stipple, alpha, pixel
ownership, stencil) have passed. The comparison tests available are:

Mode Comparison Function Mode Comparison Function
0 Never 4 Greater
1 Less 5 Not Equal
2 Equal 6 Greater Than or Equal
3 Less Than or Equal 7 Always

Table 4.10 Depth Comparison Modes.

The test compares the fragment’s depth against a source depth value. If the compare
function is LESS and the result is true then the fragment value is less than the source
value. The source value can be obtained from a number of places as controlled by a field
in the DepthMode register.

Source Use

DDA (see below) |This is used for normal Depth (Z) buffered 3D rendering.

Depth register This is used, for instance, in the OpenGL draw pixels function where the host supplies the
depth values through the Depth register.
Alternatively this is used when a constant depth value is needed, for example, when clearing
the depth buffer or 2D rendering where the depth is held constant.

LBSourcData: Source depth value from the localbuffer:

This is used, for instance, in the OpenGL copy pixels function when the depth planes are to
be copied to the destination.

Source Depth

This is used by X during the a window copy operation where all the fields in the pixel are
moved.

This is used in the OpenGL CopyPixels function when the depth planes in the destination are
not updated. The depth data will come either from the LBData message of the FCDepth
register depending the state of the Fast Clear modes in operation.

Table 4.11 Depth Sources

When using the depth DDA for normal depth buffered rendering operations the depth
values required are similar to those required for the color values in the color DDA unit:

Zstart = Start Z Vaue
dzdyDom = Increment along dominant edge.
dzdX = Increment along the scan line.

The dzdX valueis not required for Z-buffered lines.

4-12

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Localbuffer Read/Write

Figure 4-7 Depth Interpolation

The number format for the increment values is 2's complement fixed point integer: 32 bits
integer and 16 bits fraction. All the start, derivative and internal data is in this format. This
is mapped into the Upper and Lower registers (U and L) as shown below:

Figure 4-8 Depth Derivative Format.

The depth unit must be enabled to update the depth buffer. If it is disabled then the depth
buffer will only be updated if ForceLBUpdate is set in the Window register.

4.51 Registers
Operation of the Depth unit is controlled by the DepthMode register:

3D/.b5 Proprietary and Confidential 4-13

Localbuffer Read/Write

DepthMode
DepthModeAnd
DepthModeOr
Name

DepthMode

DepthModeAnd
DepthModeOr

Type

Depth
Depth
Depth

Control registers

Offset

0x89A0
0xAC70
0xAC78

Permedia4 Programmer’s Guide Volume I

Format

Bitfield

Bitfield Logic Mask
Bitfield Logic Mask

Bits Name

Read
13

Write

Reset

Description

0 Enable

g

This bit, when set, enables the depth test and the
replacement depth value to depend on the outcome of
the test. Otherwise the test always passes and the
depth data in the local buffer is not changed.

1 WriteMask

This bit, when set enables the depth value in the local
buffer to be updated when doing a read-modify-write
operation. The byte enables (LB Write) can also be
used when the Z value is 16 or 24 bits in size.

NewDepth

Source

The depth value to write to the local buffer can come

from several places. The options are:

0 = DDA.

1 = Source depth (i.e. read from Local Buffer)

2 = Depth register

3 = LBSourceData register. Only generated when
source and destination reads are enabled.

Compare
Function

This field selects the compare function to use. The
options are:
0 = Never
2 = Equals

1 = Less

3 = Less Equals
4 = Greater 5 = Not Equal
6 = Greater Equal 7 = Always

Width

This field holds the width in bits of the depth field in
local buffer. The options are:

0 = 16 bits wide 1 = 24 bits wide

2 = 31 bits wide 3 =15 bits wide

9 Normalise

This bit, when set, will use all 50 bits of the DDA for
Z interpolation, even for 24 or less bits of depth. The
Width field must be set up to restrict the number of
bits used in the comparison operation. When this bit
is clear the depth test is compatible with GLINT MX.
This bit should be 0 if NonLinearZ. is set.

10 NonlLinearZ.

This bit, when set, enables the 32 bit DDA Z value to
be encoded in 15, 16 or 24 bits using a non linear
pseudo floating point representation. The non linear
format is controlled by the following two fields.

13 Logic Op register readback is via the main register only

4-14

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II Localbuffer Read/Write

11...12 Exponent Scale | [J B X This field defines how much the exponent should be
scaled by. The options are:

0 = scale by 1 1 = scale by 2

2 = scale by 4 3 = scale by 8
13...14 Exponent 0 il X This field defines the number of bits in the depth

Width word to use as exponent bits. The options are:

0 =1 bit wide exponent field

1 = 2 bits wide 2 = 3 bits wide

3 = 4 bits wide
15...31 Unused 0 0 X

Notes: The register defines Depth operation. It controls the comparison of a fragment's depth value and
updating of the depth buffer. (If the compare function is LESS and result = TRUE then the fragment
value is less than the source value.)

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

Figure 4-9 DepthMode Register.

The single bit writemask is used to control updating all the bits in the depth buffer. Depth
values can come from the Depth register or Source or Destination Framebuffer reads, or
the DDA.

The Depth register holds an externally sourced 32 bit depth value. If the depth buffer holds
less than 32bits then the user supplied depth value is right justified to the least significant
end of the register. The unused most significant bits should be set to zero.

The DDA and other registers are shown below (note the increment values are split into two

registers):

Register Description

ZStartU Depth start value

ZStartl,

dZdxU Depth derivative per unit X

dZdxL

dZdyDomU Depth derivative per unit Y, dominant edge, or along a line.
dZdyDomL

Table 4.12 Depth Interpolation Registers.

4.5.2 Depth Example
Rendering a Gouraud shaded depth buffered trapezoid.

/] Set the localbuffer read and write modes
/I Set the depth mode

depthMode.UnitEnable = PERMEDIA4_ENABLE
depthMode WriteMask = 1

3D/.b5 Proprietary and Confidential 4-15

Localbuffer Read/Write Permedia4 Programmer’s Guide Volume I

depthM ode.NewDepthSource = PERMEDIA4_NEW_DEPTH_SOURCE_DDA
depthM ode.CompareM ode = PERMEDIA4 DEPTH_COMPARE_MODE_LESS
DepthM ode(depthM ode)

Il Load the depth start values and deltas for

/I dominant edge and the body of the trapezoid

ZStartU() // Load upper and lower start values
ZStartL()

dzdxU() // Load upper and lower dZdX deltas
dzdxL()

dzdyDomU() // Load upper and lower dominant edge deltas
dzdyDomL ()

// Enable unit in Gouraud shading mode
colorDDAMode.UnitEnable = PERMEDIA4 ENABLE
colorDDAMode.Shade = PERMEDIA4_GOURAUD_SHADE_MODE
ColorDDAM ode(colorDDAM ode)

/I Load the color start values and deltas for

// dominant edge and the body of the trapezoid

Rstart() // Set-up the red component start value
dRdX() // Set-up the red component increments
dRdYDom()

Gstart() // Set-up the green component start value
dGdX () // Set-up the green component increments
dGdY Dom()

Bstart() // Set-up the blue component start value
dBdX() // Set-up the blue component increments

dBY Dom()

// Render primitive

4-16 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

5

Texture Mapping

5.1.1

3D/.bs

Texture Mapping memory management was introduced in Volume I, section 4.5 - Texture
Mapping. The following pages describe the process from the graphics programming point
of view. For a discussion of the theory and practice of texture mapping.see the OpenGL
Specification and the OpenGL Programming Guide.

For each fragment within a primitive, texture mapping involves the following steps:

o gk whNpE

© N

calculate the perspecively correct texture coordinates for each fragment
calculate the level of detail for mipmapping

convert texture coordinates into memory indices

load texels into primary cache

format cache data into texels for filtering

check color values and optionally replace a range with apha values to indicate
transparency

filter texels from cache based on color components

composite the color and texel values with constant color values to produce a final
texture value.

These fall into several different phases of operation:

IS

Coordinate interpolation and perspective correction

Memory indexing

Cache loading

Alpha and texture filtering and border color

Texel compositing

Color value calculation and application including lighting effects and application
modes

Compatibility with Earlier Chipsets

Color interpolation is largely unchanged although TextureAddressMode is now
named TextureCoordMode and TextureLODBiasS and -T need to be set to 0 to be
compatible with the GLINT MX.

Level of Detail calculations now use TextureFilterMode instead of
TextureReadMode. Supported texels must be 4, 8 or 16 bpp - 1, 2 and 4 bpp texels
are not supported.

TextureReadMode is not backward compatible with the MX chipset.

LUT control registers have been consistently renamed (LUT[0...15], LUTAddress,
LUTIndex, LUTData, LUTTransfer, LUTMode

The TextureColorMode register has been renamed TextureApplicationMode and
the Color and Alpha data are managed separately during compositing and application.

Proprietary and Confidential 5-1

Texture Mapping Permedia4 Programmer’s Guide Volume I

« TextureFilterMode enable must be set (=1) when texture mapping is enabled. The
enable bit works in conjunction with the TextureEnable bit in the Render Command.
« GID is no longer controlled by the

5.2 Texture Co-ordinate Generation

To generate the texture addresses, DDAs are used to interpolate the texture coordinates
over a trapezoid or line primitive.

There are two general modes of operation: 2D and 3D. In 3D mode, the task divides into
the following steps:

« interpolate the texture coordinates (S, T, Q) using the DDA units

« perspective correction of the coordinates by calculating S/Q and T/Q

« level of detail calculation

« wrap the corrected coordinates (s, t) using mirror, repeat or clamp operations to map
the coordinates into the range 0.0 to 1.0 (u, v)

« pass the resulting coordinates (u, v) to the texture read unit.

For the 2D mode, the perspective correction stage is omitted, the wrap operation is always
a repeat operation and no level of detail is performed.

5.2.1 Calculate texture coordinates
Coordinate interpolation can be either 2D or 3D (set in the TexturelndexMode register):

For 2D operations the step or span messages trigger interpolation of the S and T
coordinates (Q, S1, T1 and Q1 are not used). This is used for tiled fills, characters and
icons, arbitrary large stipple patterns, color index dithering etc.

For 3D operations, TextureCoordMode interpolates two sets of texture coordinates (S,T
and Q and S1, T1, Q1) and corrects them for perspective and range before they are used
for Cache loading.

The coordinates can be used for (a) determining the Level of Detail for MIP mapping, or
(b) calculating a 3D texture coordinate.

When used for LOD, the S, T and Q values are applied as a set of linked coordinates to
the current fragment, while S1, T1 and Q1 are automatically offset in dY to track the
coordinates in the adjacent fragment.

When used for 3D texturing, the Delta unit allocates S, T, Q and R as a set of linked
coordinatesto S, T, Q and S1. T1is ignored and Q1 is a copy of Q.

The S, T and Q parameters are interpolated in DDA units in the same way as other
interpolants: the 9 control registers: SStart, dSdx, dSdyDom, TStart, dTdx, dTdyDom,
QStart, dQdx and dQdyDom hold the start, dX and dYDom parameters for S, T and Q.
The values of S, T and Q at each vertex are used to calculate the gradient values in much
the same way as the color gradients when Gouraud shading.

The fixed point format of these registers can be defined as you wish but must be internally
consistent - the divide operation yields consistent internal results. One method of ensuring
that the full range of accuracy available in the DDAs is used but not exceeded (the DDAs
clamp if the range is exceeded) is to normalize the S, T, Q values before calculating the
gradient values. For example, for a triangle primitive this involves finding the maximum
absolute value of the 9 register values defined at the vertices, and scaling the other 8
values appropriately.

5-2 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

5.2.1.1

5.2.2

5.2.2.1

3D/.bs

Perspective Correction
At each pixel there is a division operation to achieve perspective correction of the texture

coordinates and derive the s, t coordinates used to index the texture map through the
equations:

After the division, the s, t coordinates are wrapped to lie in the range 0.0 to 1.0 inclusive
(and therefore within the range of the defined texture map). The wrapped coordinates are
denoted as u, v. These are used to index the raw texel data in memory.

Note: In the unusual case where perspective correction must be disabled, refer to
the DeltaControlMode register’s ForceQtol bit enable.

Level of Detail calculation

The Level Of Detail (LOD) calculates the approximate area a fragment projects onto the
texture map. The LOD value is then used:

« To select between the mininfication and magnification filter modes provided in the
TextureReadMode register.

« The one or two texture maps to use when mipmapping.

« The between-maps interpolation factor if the mipmapping requires two maps.

The LOD calculation requires the dSdy, dTdy and dQdy values to proceed. These are not
supplied by the onboard Delta unit or Gamma accellerator so must be provided by the
Texture unit. The EnableDY bit in the TextureCoordMode register selects the data
source for the calculation. If the EnableDY bit is not set the dSdy, dTdy and dQdy values
can be provided externally by writing into the corresponding registers.

The LOD calculation itself is enabled by the EnableLOD bit in the TextureCoordMode
register. When this bit is clear a constant LOD from the LOD register is used (when it is
required by TextureReadMode). The format is unsigned 4.8 fixed point and can be
interpreted as follows: the integer part selects the higher resolution map of the pair to use
with O using the map at the address given by TextureBaseAddr[0] register; the fraction
gives the between map interpolation coefficient measured from the higher resolution map
selected.

LodO is the LOD value calculated as described above. This always relates to texture O.
Lod1 is a user-supplied value relating to texture 1. Both LOD values can be clamped
using LODRange0 and LODRangel respectively. LOD values can be further clamped or
constrained by setting the width and height values in TextureCoordMode, biased in
TextureCoordinateMode and biased and clamped in TextureRead. These constraints
allow large textures to be loaded at a low resolution and gradually, by continuous
clamping, raised to its final resolution without "popping" artefacts.

Texture Coordinate Wrapping Modes

Three wrapping modes are available - Clamp, Repeat and Mirror - and s and t can be
wrapped individually. The selected mode is held in the WrapS and WrapT fields in the
TextureCoordMode register, and in the WrapU and WrapV fields in the

Proprietary and Confidential 5-3

Texture Mapping Permedia4 Programmer’s Guide Volume I

TexturelndexMode register. The wrapping modes are listed in the register descriptions in
the Reference Guide.

Note: These wrap modes differ from the cylindrical Direct3D texture wrap

described in volume I, which is implemented as part of the DeltaFormat unit
(section 3.2.4).

Wrapping |Description
Mode

Clamp This tests the coordinate against 1.0 and if the coordinate is larger sets the coordinate

to 1.0. Similarly if the coordinate is less that 0.0 it is set to 0.0.

This causes texels outside of the texture map to be set to the edge values.

Repeat The integer part of the coordinate is discarded just to leave the fractional part. The

Repeat mode creates a saw-tooth transfer function, which as the name suggests,
causes the texture pattern to be repeated (i.e. tiled) over the polygon. Abutting edges

are from opposite sides of the texture map so unless care is taken a discontinuity may
be seen.

Mirror This is similar to Repeat, but when the integer part is odd the value (1.0 - fraction) is

used instead of just the fraction. This creates a triangle transfer function, which has
the advantage that butting edges always match.

Table 4-1 Texture Wrapping - Repeat and Clamp modes are as defined by OpenGL.

5.2.2.2 Texture Address Registers
The following registers set up the texture interpolation deltas :
5-4

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Register Description

Sstart S start value

DSdx S derivative per unit X

DSdyDom S derivative per unit Y, dominant edge
Tstart T start value

DTdx T derivative per unit X

dTdyDom T derivative per unit Y, dominant edge
Qstart Q start value

DQdx Q derivative per unit X

DQdyDom Q derivative per unit Y, dominant edge
DSdy S derivative per unit Y

DTdy T derivative per unit Y

DQdy Q derivative per unit Y

Table 5.2 Texture Interpolation Registers

5.2.2.3 Mipmapping

A mipmap is an ordered set of arrays representing the same image. Each array has half
the linear resolution of the preceding one. This technique allows minification filtering to
occur with a constant time overhead irrespective of the size of the projected area.

5.2.3

3D/.bs

Texture Mapping

The first filter name for mipmapping in the MinFilter field specifies the filtering to be done
on a level, and the second filter name specifies the filtering to be done between levels.

Mipmap is enabled by setting the MipMapEnable bit (bit 20) in the TexturelIndexMode
register. Other Mipmap parameters are also controlled by TexturelndexMode, including
Magnification and Minification filter types.

Texture Read

The texture read phase fetches and formats texel data. This involves taking the u, v
coordinates generated by the texture address unit and possibly the LOD value and
calculating the physical address in the localbuffer where the texture is stored. The texture
information (texels) is read and forwarded for Texture Filtering. The interpolation
coefficients (if any are needed) are derived from the u, v coordinates (and possibly the
LOD value) and passed on as well. The texture cache management process is described
in Volume 1, Section 4-6 - Primary Cache.

The Texture Read operation is controlled by TextureReadModeO and

TextureReadModel which are the same. However most modes cannot be eabled in both
caches at the same time. The supported combinations are:

« One nearest or linear filtered texture using both halves of the cache to achieve higher
cache hit rates on larger texture maps or polygons.
« Any two independent nearest or linear filtered textures, one per half of the cache.
« One automatically (or per pixel) mip mapped texture (always texture 0) using both
halves of the cache to store alternate levels of the mip map.
« One 3D texture map using both halves of the cache to store alternate slices of the 3D

volume.

« Two independent mip mapped textures where the minification filters only use texels
from one level at a time (i.e. the filter are NearestMipNearest or LinearMipNearest).
Each texture uses half the cache.

Proprietary and Confidential

5-5

Texture Mapping Permedia4 Programmer’s Guide Volume I

There are no interlocks to prevent the user selecting a non-supported combination and in
this case the mode settings in TextureReadModeO take priority.

TextureReadModeO

TextureReadModeOANd
TextureReadModeOOr

Name

TextureReadMode0
TextureReadModeOAnd
TextureReadMode0Or

Type

Texture
Texture
Texture
Control registers

Offset
0xB400
0xAC30
0xAC38

Format

Bitfield

Bitfield Logic Mask
Bitfield Logic Mask

Bits

Name

Read | Write
14

Reset

Description

Enable

U]

When set causes any texels needed by the fragment to
be read. This is also qualified by the TextureEnable
bit in the Render command.

Width

This field holds the width of the map as a power of
two. The legal range of values for this field is 0 (map
width = 1) to 11 (map width = 2048). This is only
used when Texture3D is enabled and then is only used
for cache management purposes and #of for address
calculations.

Height

This field holds the height of the map as a power of
two. The legal range of values for this field is O (map
height = 1) to 11 (map height = 2048). This is only
used when Texture3D is enabled and then is only used
for cache management purposes and #ot for address
calculations.

TexelSize

This field holds the size of the texels in the textutre
map. The options are:

0 = 8 bits 1 =16 bits

2 = 32 bits 3 = 64 bits (Only valid for spans)

11

Textue3D

This bit, when set, enables 3D texture index
generation.

The CombinedCache mode bit should not be set
when 3D textures are being used.

12

Combine
Caches

This bit, when set, causes the two banks of the
Primary Cache to be joined together, thereby
increasing the size of a single texture map which can

be efficiently handled.

13...16

MapBaseLevel

This field defines which TextureBaseAddr register
should be used to hold the address for map level 0
when mip mapping or the texture map when not mip
mapping. Successive map levels are at increasing
TextureBaseAddr registers upto (and including) the
MapMaxLevel (next field).

3D textures always use TextureBaseAddr0.

14 Logic Op register readback is via the main register only

5-6

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

17...20 MapMaxLevel |] N x This field defines the maximum TextureBaseAddr
register this texture should use when mip mapping.
Any attempt to use beyond this level will clamp to this
level.

21 LogicalTexture |] B x This bit, when set, defines this texture or all mip map
levels, if mip mapping, to be logically mapped so
undergo logical to physical translation of the texture
addresses.

22 Origin 0 B x This field selects where the origin is for a texture map
with a Linear or Patch64 layout. The options are:

0 = Top Left. 1 = Bottom Left
A Patch32_2 or Patch2 texture map is always bottom
left origin.

23...24 TextureType 0 B x This field defines any special processing needed on the
texel data before it can be used. The options are:

0 = Normal. 1 = Eight bit indexed texture.
2 = Sixteen bit YVYU texture in 422 format.
3 = Sixteen bit VYUY texture in 422 format..

25...27 ByteSwap 0 B x This field defines the byte swapping, if any, to be done
on texel data when it is used as a bitmap. This is
automatically done when spans are used. Bit 27, when
set, causes adjacent bytes to be swapped, bit 26
adjacent 16 bit words to be swapped and bit 27
adjacent 32 bit words to be swapped. In combination
this byte swap the input (ABCDEFGH) as follows:

0 ABCDEFGH
1 BADCFEHG
2 CDABGHEF
3 ABCDEFGH
4 EFGHABCD
5 FEHGBADC
6 GHEFCDAB
7 HGFEDCBA

28 Mirror 0 B x This bit, when set will mirror any bitmap data. This
only works for spans.

29 Invert 0 B x This bit, when set will invert any bitmap data. This
only works for spans.

30 OpaqueSpan 0 u X This bit, when set, uses the span color mask instead of
the pixel mask to define foreground and background
colors using the FBBlockColor and
FBBlockColorBack registers.

31 Reserved 0 0 X

Notes: The unit is controlled by the TextureReadModeO and TextureReadModel registers for texture 0 and texture

1 respectively. Not all combinations of modes across both registers are supported and where there is a
clash the modes in TextureReadModeO take priority. For per pixel mip mapping the TexzureRead) and
TexctureReadModel register should be set up the same as should the TextureMapWidth0 and
TexctureMapWidthl registers.
N.B. The layout and use of the TextureReadMode register is not compatible with GLINT MX: 1, 2, and
4 bit textures are no longer supported.
The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

3D/.b5 Proprietary and Confidential 5-7

Texture Mapping Permedia4 Programmer’s Guide Volume I

Figure 5-1 TextureReadMode Register

5.2.4 Filter Modes
All the filter modes of OpenGL are supported, that is:

Minification Magnification

Nearest Nearest

Linear Linear

NearestMipMapNearest

NearestMipMapLinear

LinearMipMapNearest

LinearMipMapLinear

“Minification” is the name given to the filtering situation where multiple texels map to a
single fragment, while magnification is the name given to the filtering situation where only
a portion of a single texel maps to a single fragment.

“Nearest” is the simplest form of filtering where the nearest texel to the texture coordinate
location is selected.

“Linear” is a more sophisticated filtering algorithm which is dependent on the type of
primitive. For lines (which are 1D), it involves linear interpolation between the two nearest
texels. For polygons and points which are considered to have finite area, linear is in fact bi-
linear interpolation which interpolates between the nearest 4 texels.

5.2.4.1 Texture Patching

In Permedia4 the data part of the primary cache is managed by the TextureFilterMode
register, while the tag part is managed by the TextureReadMode register. The Filter
functionality includes data formatting and alpha mapping.

5.2.4.2 Primary Cache

The primary cache holds the texel data in 8, 16 or 32 bits per texel format. The cache is
divided up into 8 banks and there is a fixed relationship between a texel's position in the
texture map and which bank of cache it must be stored in. The 8 banks are assigned
depending on the type of texture mapping being done:

Single bilinear The texture map is stored in both banks of the cache. This is achieved
by connecting the output of the second bank's register files to the
corresponding register files in bank 0. This is controlled by the
CombineCaches bit in T extureFilterMode. This allows the full size of
the cache to be used on a single texture, so a larger texture map can be
handled before scanline coherency starts to break down, with the
consequential loss of performance.

Dual bilinear Texels from texture map 0 are stored in banks 0...3 and texels from
texture map 1 are stored in banks 4...7.

5-8 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

Mip mapping Even mip maps are stored in banks 0...3, odd mip maps are stored in
banks 4...7.
3D texture maps Texels with an even k coordinate (i.e. the third coordinate) are in banks

0...3 and maps with an odd k coordinate are in banks 4...7.

The texels within a map have a fixed allocation to the cache banks as shown by the
following diagram:

where TO...T3 represents the cache banks and the numbers in brackets are the coordinate
of the texel in the map.

Storing the texture map in memory with one row following the next can gives poor access
times when scanning along a column due to the page breaks. This does not apply If the
texture map is smaller than the page size.

When the texture map is significantly larger than the page size, make access time less
dependent on scanning direction by patching the texture map. This ensures that a 2D
region of the map is stored in one page.

All the texels within a word are always sequential along a row and a patch is 16x16 words,
hence the patch size in texels varies from 16x16 (for 32 bit texels) to 512x16 (for 1 bit
texels). If packed texture maps are required then the packing can be done automatically
during texture download1®, or must be done by the host if the localbuffer bypass is used.

Note that some wastage of the memory space will occur if the texture map dimensions are
not an integer multiple of the patch size.

15 See Volume I, Section 4.5.1.2 - Patch Layout Rules

3D/.b5 Proprietary and Confidential 5-9

Texture Mapping

Permedia4 Programmer’s Guide Volume I

2D texture with 32bit
texels ordered in patches
m
4 255 511 n
16
16, i, 31272 287
i1l 012 14 15/256 . 271
< T > width
1D memory layout
n m
012 .. 2551256vvueee. 511
width/16 * 256
Figure 5-2 Texture Patch Example
« Map Width: The patch mode is only useful when the width of the map exceeds 16
words.
« Map Height: The patch mode works best when the height of the map is greater than
16 texels. For maps which are less than this in height a portion of the patch will not
be used so the texel data will be spread out in memory. Consider a 1K word x 4
texture map. This will occupy a quarter of the patch memory so 16K words need to be
set aside for 4K of texels. Moving between rows will occur without page breaks,
where as in the non patch case it would incur a page break. It is possible to interleave
4 such maps so getting the benefit of less page breaks without the cost of the
additional memory.
5-10 Proprietary and Confidential 3D/.2bs

v

Permedia4 Programmer’s Guide Volume II Texture Mapping

« Filter and MapType: The filter (Nearest or Linear) and map type (1D or 2D) determine
how many addresses are generated.

A texel on the map has the integer coordinates i, j and these are calculated from u, v and
the width and height values. These integer coordinates are guaranteed to lie on the
texture map (excluding the border texels, if present), so for the nearest filter mode the texel
is just read and used.

For the linear filter mode and 2D MapType the four texels (i, j), (i+1, j), (i, j+1) and (i+1, j+1)
are read, with obvious reductions for the 1D MapType. The coordinates (i+1) and/or (j+1)
may not lie on the texture map. If the texture map has a border (specified in the Border
field) then the appropriate texel from the texture map is read, otherwise texel is taken from
the BorderColor register. The texel color stored in this register is in 8:8:8:8 format.

Texture maps are preferably stored in memory as a 2x2 patch such that the texels in the
patch are in the same memory word. When texture maps are not in this format (i.e. the
memory layout is Linear or Patch64) the Texture Read Unit passes the texel data on in the
patched format.

The following diagram shows the layout of texels assumed by this unit when loading up the
cache. This exactly matches the layout in memory when one of the 2x2 patch modes are
used.

32 bits per texel

120' 112' 104' 96 88' 80' 72' 64 56' 48' 4Q 32 24' 16' 8' 0
(1,1) 01 (1,0 0,0)
T30...31 T20...31 TlO...31 TOO...31
1 1 1 1 1 1 1 1 1 1 1 1
16 bits per texel
120' 112 104' 96 88' 80 72' 64 56' 48 40, 32 24' 16 8' 0
@1 21 3.0 (2,0) (11 0,1 (1,0 (0,0
T3116...31 T21(?...31 Tllle...Sl Tol(?...fil T30115 T20115 TlO[...lS To[l)15
8 bits per texel
120 112 104 80 72 40 32 24 8
(7 1 (6 1) (7 0) (6 0) (5 1) (4 |65, 0) 4, 0) @, 1) (2 1) 3.0((20((1,1)
24 3 24 3 24 3 24 3 16 2 16 .2 T116...2 T016...2 T3 T28..415 TlS...l ToS...lS T30..47 T20...7 TlO..J TOO..J
5.2.5 Texel Formatting
Texel formatting is controlled by the TextureFilterMode register:
3D/.b5 Proprietary and Confidential 5-11

Texture Mapping

TextureFilterMode
TextureFilterModeAnd
TextureFilterModeOr

Permedia4 Programmer’s Guide Volume I

Name Type Offset Format
TextureFilterMode Alpha Blend 0x84E0 Bitfield
TextureFilterModeAnd Alpha Blend 0xAD50 Bitfield Logic Mask
ChromaTestModeOr Alpha Blend 0xAD58 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
16
0 Enable 0 i X When set causes the output to be calculated as defined
by the fields in this register, otherwise the texel0 and
texell values are set to zero. The TextureEnable bit in
the Render command must also be set to enable this
unit.
1...4 Format0 0 i < This field selects the format of the texel data TO...T3.
The options are
0=A414
1=18
2=18
3=A8
4 =332
5= A8I8
6 = 5551
7 =565
8 = 4444
9 =888
10 = 8888 or YUV
5 ColorOrder0 0 N < This bit selects the color component order of the texel
data TO...T3. The two options are:
0 = AGBR
1 =ARGB
6 AlphaMapEnab | N < This bit, when set, enables the alpha value of texels
le0 TO... T3 to be forced to zero based on testing the
color values.
7 AlphaMapSense |] N < This bit selects if the alpha value for texels T0...T3
0 should be set to zero when the colors are in range or
out of range. The options are:
0 = Out of range
1 = In range
8 Combine 0 N < This bit, when set, combines both banks of the cache
Caches so they are used for texture 0. This is an optimisation
and allows larger textures to be handled before
scanline coherency starts to break down.

16 Logic Op register readback is via the main register only

5-12

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Texture Mapping

.12

Formatl

This field selects the format of the texel data T4...T7.
The options are

0=A414

1=18

2=18

3=A8

4 =332

5= A8I8

6 = 5551

7 =565

8 = 4444

9 =888

10 = 8888 or YUV

13

ColorOrder1

This bit selects the color component order of the texel
data T4...'T7. The two options are:

0 = AGBR

1 = ARGB

14

AlphaMapEnab
lel

This bit, when set, enables the alpha value of texels
T4...'T7 to be forced to zero based on testing the
color values.

15

AlphaMapSense
1

This bit selects if the alpha value for texels T4...T7
should be set to zero when the colors are in range or
out of range. The options are:

0 = Out of range

1 = In range

16

AlphaMapFilter
ing

This bit, when set, will allow the alpha mapped texels
(AlphaMapEnable must be set) to cause the fragment
to be discarded depending on the compatison of the
number of texels to be alpha mapped with the
following three limit fields.

17..

.19

AlphaMapFilter
Limit0

This field holds the number of alpha mapped texels in
the group TO...T3 which must be exceeded for the
fragment to be discarded.

20..

.22

AlphaMapFilter
Limit1

This field holds the number of alpha mapped texels in
the group T4...T7 which must be exceeded for the
fragment to be discarded.

23..

.26

AlphaMapFilter
Limit01

This field holds the number of alpha mapped texels in
the group TO...T7 which must be exceeded for the
fragment to be discarded.

27

MultiTexture

This bit, when set, prevents the Alpha Map Filtering
logic from testing the 14 interpolant and maybe
disregarding the alpha map result of TO...T3 or
T4...T7 . This bit should be set for multi texture
operation when alpha map filtering is required. It
should be clear otherwise.

28

ForceAlphaTo
One0

This bit, when set, will force the alpha channel of
TO... T3 to be set to 1.0 (255) regardless of the color
format or the presence of a real alpha channel.

29

ForceAlphaTo
Onel

This bit, when set, will force the alpha channel of
T4...T7 to be set to 1.0 (255) regardless of the color
format or the presence of a real alpha channel.

3D/.bs

Proprietary and Confidential 5-13

Texture Mapping Permedia4 Programmer’s Guide Volume I

30 ShiftO This bit, when set, causes the conversion of T0...T3
for color components less than 8 bits wide to be done
by a shift operation, otherwise a scale operation is
needed. The shift operation is useful where the exact
color (after dithering) is to be preserved for flat
shaded areas, such as in a stretch blit.

31 Shiftl This bit, when set, causes the conversion of T4...T7
for color components less than 8 bits wide to be done
by a shift operation, otherwise a scale operation is
needed. The shift operation is useful where the exact
color (after dithering) is to be preserved for flat
shaded areas, such as in a stretch blit.

Notes: The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the

former mode before replacing it.
For most texel formats the data in the cache is held in the raw memory format. The two
exceptions to this are 8 bit indexed textures and YUV422 format textures. In both these
cases the original texel data is converted into 32 bit AGBR format before being loaded into
the cache.
The first task is to extract the byte or short - this is given by the bottom two bits of the
address for this cache channel. The second task it to isolate the individual color
components from the texel data. The following table shows the different color modes
supported. Inthe R, G, B and A columns the nomenclature n@m means this component
is n bits wide and starts at bit position m in the data. The least significant bit position is 0.
The number 255 indicates this component is hardwired to this value.
Two color ordering formats are supported, namely ABGR and ARGB, with the right most
letter representing the color in the least significant part of the word. This is controlled by
the Color Order bit in the TextureFilterMode message, and is easily implemented by just
swapping the R and B components after conversion into the internal format. The only
exception to this are the 3:3:2 format where the actual bit fields extracted need to be
modified as well because the R and B components are differing widths.

Format | Color Name Wwidth | R G B A

Order

0 A4L4 8 4@0 4@0 4@0 4@4

1 L8 8 8@0 8@0 8@0 255

2 I8 8 8@0 8@0 8@0 8@0

3 A8 8 255 255 255 8@0

4 332 8 3@0 3@3 2@06 255

5 ABGR | A8I8 16 8@0 8@0 8@0 8@8

6 5551 16 5@0 5@5 5@10 1@15

7 565 16 5@0 6@5 5@i1 255

8 4444 16 4@0 4@4 4@8 4@12

9 888 32 8@0 8@s 8@16 255

10 8888 or YUV | 32 8@0 8@3s 8@16 824

0 A4L4 8 4@0 4@0 4@0 4@4

5-14 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

O 001 QN Ul BRI~

—_
[as)

Texture Mapping

L8 8 8@0 8@0 8@0 255
18 8 8@0 8@0 8@0 8@0
A8 8 255 255 255 8@0
332 8 3@5 3@2 2@0 255
ARGB AS8I8 16 8@0 8@0 8@0 8@8
5551 16 5@10 5@5 5@0 1@15
565 16 5@11 6@5 5@0 255
4444 16 4@8 A@4 4@0 A@12
888 32 83@16 8@8 8@0 255
8888 or YUV |32 8@16 8@8 8@0 8@24

Table 4.2.5 - Texture Color Modes

5.2.6

5.2.6.1

3D/.bs

The alpha channel can be forced to 1.0 to override the alpha value, when the alpha
channel in the texel data is to be ignored (this is independent of the color conversion mode
- see next paragraph).

When an extracted component is less than 8 bits wide it is made up to 8 bits by scaling or
shifting. Scaling is preferred for normal 3D usage, however when the texture maps are
being used for 2D operations (such as stretch blits) the shift method is preferred as it will
maintain the same color during bilinear filtering over regions of constant color.

Scaling is done by replicating the extracted component from the most significant end
towards the least significant end of the byte. For example if a three bit component has bits
B2, B1 and BO then the 8 bit value would be made up as follows:

Bit 7 Bit 0 of
output
byte

Bs By Bo B> By Bo B> By

Lookup Table (LUT)
The LUT functionality includes:

« Translating color data on a color-by-color basis (for, e.g., un-Gamma correcting)

« Mapping Cl data to 32-bit RGBA

« Conversion of span pixel data from 8bpp to 8, 16 or 32 bpp, or RGB conversion from
32bpp to 32bpp.

« Sourcing pattern fill data

« Applying motion compensation to video streams

« Map 8 bit Cl texel data to 32bpp RGBA texel data needed for Texture Filter functiona..

Loading the Texel LUT

The LUT is 256 entries deep by 32 bits wide. The bottom 16 locations are directly
accessed by the LUTJO0...15] registers, and can be read back directly. The remaining
entries are accessed in another way.

Proprietary and Confidential 5-15

Texture Mapping Permedia4 Programmer’s Guide Volume I

5.2.6.2

5.2.6.3

5.2.6.4

5.2.7

The LUT can be loaded via the auto incrementing register writes or from the local buffer.
The ability to load the entire LUT from the local buffer by writing to two registers greatly
reduces the burden on the host of managing the LUT. The LUT data can be written into
the local buffer initially either via the bypass or (better) using the normal texture download
mechanism.

Loading the LUT via auto incrementing registers

The start index in the LUT is written to the LUTTransfer register. The bottom 8 bits of the
data give the index. Every subsequent write to the LUTData register loads the LUT with
the data and increments the index. Reading back the LUTIndex register will return the
incremented index value.

Loading the LUT from the local buffer.

The local buffer address where the LUT is held is in the LUTAddress register. The start
index and number of words to fill in the LUT are given in the LUTTransfer register with the
index in the bits 0...7 and the count in bits 8...16. The write to the LUTTransfer register
starts the transfer. A count of zero loads zero words into the LUT so this effectively
disables the loading operation. The transfer wraps around in the LUT if necessary.

The LUTAddress and LUTTransfer registers are not changed by the transfer and both
can be read back. The restoration of these registers after a context switch automatically
restores the LUT to it's previous contents. This assumes that the LUT hasn't been loaded
piecemeal or via one of the other mechanisms and that the LUT data in the local buffer is
still valid. If these conditions do not hold then the LUT will have to be restored manually.

The LUT data is only held in the bottom 32 bits of the local buffer memory and the red
component is in the least significant byte.

Reading the LUT.

To read the LUT first read the LUTIndex register. As well as returning the current LUT
index (as noted above) it also has the side effect of setting an Index counter to zero. The
Index counter is only used during readback. Each subsequent read from the LUTData
register returns the LUT data at the Index and increments the Index counter. The Index
counter wraps from 255 to 0.

Texture Filtering and Alpha Mapping

The required texture filter mode is set up in the TextureReadMode register as already
outlined. Texture filtering must be enabled separately via the TextureFilterMode register.
This register has the following fields:

Name Width Function
Enable 1 Enables texture filtering to occur when set.
AlphaMapEnable 1 Enables Alpha map processing to occur when set
AlphaMapSense 1 When clear the alpha map sense is Include, otherwise it is exclude.

Table 5.13 Texture Filtering

5-16

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

Alpha Map processing provides a mechanism where the color of the input texels are tested
against a range of colors and the alpha value of the texel is set based on the outcome of
the test. This subsequently allows an Alpha Test to be done, however it doesn’t rely on
the presence of an alpha channel in the texture map.. Direct3D and Quick Draw 3D both
have the notion of a transparent color in the texture map for doing cut-outs so the alpha
map operation allows the Alpha Test to be used.

The alpha map test is given by:

where Cl is the lower chroma value held in the TextureChromalLower register, Cu is the
upper chroma value held in the TextureChromaUpper register and T is the input texel
value. Each component is tested separately and obviously a component can be excluded
from the test by setting the lower and upper values to 0 and 255 respectively.

The TextureChromaLower and TextureChromaUpper registers hold the color bytes with
the red component in the lower byte, then the green byte and finally the blue byte.

The alpha map test is only enabled when TextureFilterMode enable bit is set and the
AlphaMapEnable bit in TextureFilterMode is set. The sense of the alpha map test (when
enabled) is controlled by the AlphaMapSense bit and the effect of this is tabulated below:

AlphaMap Test Enabled Test Result |AlphaMapSense [Action

N X X Alpha value unchanged.
Y False Include Alpha set to 0x00.

Y True Include Alpha set to OxFF.

Y False Exclude Alpha set to OxFF.

Y True Exclude Alpha set to 0x00.

Table 5.14 AlphaMapTest Enabled

5.2.8

3D/.bs

Texture Color Compositing

During compositing, the Color, Texel0 and Texell values are combined with constant color
value(s) held in registers to produce a combined Texture value for the texel, which is
passed on to the Application phase.

The whole unit operation is enabled and disabled by the TextureCompositeMode
register. It has the following format:

Bit No. Name Description

0 Enable When set causes the compositing operation to be calculated and to repla
the textureO value sent to the next unit, otherwise the texture value rema
unchanged. This enable is also qualified by the TextureEnable bit in the
PrepareToRender message.

The compositing is controlled by five registers:

Register Channels Stage
TextureCompositeColorModeO RGB 0
TextureCompositeColorModel RGB 1
TextureCompositeAlphaModeO A 0
TextureCompositeAlphaModel A 1

Proprietary and Confidential 5-17

Texture Mapping

Permedia4 Programmer’s Guide Volume I

These registers all have the same format:

Bit No. Name

Description

0 Enable

1.4 Argl

When set causes the output to be calculated as defined by the fields in this
register, otherwise the texelO data is passed through for stage0 and Output
data is passed through for stage 1.
This field selects the source value for Argl. The options are:

0 = Output.C of the previous stage or height if the first stage

1 = Output.A of the previous stage or height if the first stage

2 = Color.C

3 = Color.A

4 = TextureCompositeFactorn.C

5 = TextureCompositeFactorn. A

6 = Texel0.C

7 = Texel0.A

8 = Texell.C

9 = Texell A

10 = Sum of the color components of the previous stage or 0 if
the first stage.
where n is the same as the message suffix and C is the RGB or A
depending on the channel.
height is defined as clamp (Texel0.A - Texell.A + 128)

5 InvertArgl

This bit, if set, will invert the selected Argl value before it is used.

6.9 Arg2

10 InvertArg2

5-18

This field selects the source value for Arg2. The options are:
0 = Output.C of the previous stage or height if the first stage
1 = Output.A of the previous stage or height if the first stage
2 = Color.C
3 = Color.A
4 = TextureCompositeFactorn.C
5 = TextureCompositeFactorn.A
6 = Texel0.C
7 = Texel0.A
8 = Texell.C
9 = Texell A
10 = Sum of the color components of the previous stage or 0 if
the first stage.
where n is the same as the message suffix and C is the RGB or A
depending on the channel.
height is defined as clamp (Texel0.A - Texell.A + 128)
This bit, if set, will invert the selected Arg2 value before it is used.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

11...13 |1 This field selects what is used as the interpolation factor when the
Operation field is set to Letp, for example. The options are:
0 = Output.A of the previous stage or O if the first stage
1 = Color.A
2 = TextureCompositeFactorn. A
3 = Texel0.A
4 = Texell.A
5 = Texel0.C
6 = Texell.C
where n is the same as the message suffix and C is the RGB or A
depending on the channel.
14 Invert] This bit, if set, will invert the selected I value before it is used.
15 A This bit selects which Arg (after any inversion) is to be used as A in the
Operation. The options are:
0= Argl
1= Arg2
16 B This bit selects which Arg (after any inversion) is to be used as B
the Operation. The options are:
0= Argl
1= Arg2
17...20 | Operation This field defines how the three inputs (A, B and I) are combined. Note
the inputs can be optionally inverted before being combined. The 8 bit
inputs are unsigned 0.8 fixed point format, but 255 is treated as if it were
1.0 for the calculations. The possible operations are:
0 = Pass (A)
1=Add (A + B)
2 = AddSigned (A + B - 128)
3 = Subtract (A - B)
4 = Modulate (A * B)
5=Letp(A*(1.0-I)+B*I)
6 = ModulateColorAddAlpha (A * B + I)
7 = ModulateAlphaAddColor (A * I + B)
8 = AddSmoothSaturate (A + B - A * B)
9 = ModulateSigned (A * B, but A and B are biased 8 bit
numbers)
21...22 | Scale This field selects the scale factor to apply to the final result before it is
clamped. The options are:
0=0.5
1=1
2=2
3=4
5.2.8.1 Texture Application
The Application phase applies the texel values calculated in the previous phases of
texturing to the incoming pixel color (generated in the color DDA unit). The function used
to combine these two colors is defined in the TextureApplicationMode register and
includes various types of blend, decal, replacement and modulation for the different APIs.
The available options are split into three types - OpenGL, QuickDraw 3D and Direct3D.
The OpenGL options are one of:
+ Decal
3D/ubs Proprietary and Confidential 5-19

Texture Mapping

5.2.8.2

5-20

. Blend

. Modulate

. Replace.

The QuickDraw 3D options are any combination of:
. Decal

. Modulate

« Highlight.

The D3D options are:
+ Copy

« Add

. Modulate

. Blend

OpenGL Application Modes

Permedia4 Programmer’s Guide Volume I

The fragment’s color is calculated based on the following equations:

Type Equation

Modulate

Decal

Blend

Replace Base Format
Alpha
Luminance
LuminanceAlpha
Intensity
RGB
RGBA

...where R is the final color after texture has been applied, C is the fragment color (in a
Color field), T is the texel value (in the texel field) and K is a constant color stored in a
register locally (loaded by the TextureEnvColor register). The equations are executed on
the four color components in parallel and the suffixes show how the different component

values are combined.

The setting of the TextureApplicationMode register fields to implement these OpenGL

equations is as follows.

Enable is 1, KsEnable, KdEnable are both 0 for all entries and some obvious abbreviations

have been used to keep the table width down.

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II

Texture Mapping

Color fields Alphafields

Type A B I Invl Operation A B I Invl Operatio
n

Modulate C.C |TC Modulate C.A TA Modulate
Decal Cc.C |T.C T A |N Lerp C.A N PassA
Blend C.C |[KC |T.C |N Lerp C.A TA Modulate
Replace C.C PassA TA PassB
(Alpha)
Replace T.C PassB C.A PassA
(Luminance)
Replace T.C PassB TA PassB
(LuminanceAlpha)
Replace T.C PassB TA PassB
(Intensity)
Replace T.C PassB C.A PassA
(RGB)
Replace (RGBA) T.C PassB TA PassB

So for example, the TextureApplicationMode fields for OGL Decal would be set as
follows (see the Value column):

Bits Name Read | Write | Value | Description
17
0 Enable 0 N 1 When set causes the output to be calculated as defined
by the fields in this register, otherwise the fragment's
data 1s passed through.
1...2 ColorA 0 B 0 This field selects the source value for A. The options
are:
0 = Color.C
1 = Colotr.A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
3...4 ColorB 0 N 0 This field selects the soutrce value for B. The options
are:
0 = Texel.C
1 = Texel A
2 = K.C (TextureEnvColor)
3 = K.A (TextureEnvColor)
5...6 ColotI 0 N 3 This field selects the source value for I. The options
are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C
3 = Texel A

17 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential 5-21

Texture Mapping

Permedia4 Programmer’s Guide Volume I

7 Colorlnvertl This bit, if set, will invert the selected I value before it
is used.
8...10 Color The possible operations are:
Operation 0 = PassA (A)
1 = PassB (B)
2=Add (A +B)

3 = Modulate (A * B)

4=Lerp (A*(1.0-1)+B*I)

5 = ModulateColorAddAlpha (A * B + I)
6 = ModulateAlphaAddColor (A * I + B)
7 = ModulateBIAddA (B * I + A)

11..12 | AlphaA

This field selects the source value for A. The options
are:

0 = Color.C (effectively Color.A)

1 = Color. A
2 = K.C (TextureEnvColor) (effectively
K.A)

3 = K.A (TextureEnvColor)

13...14 | AlphaB

This field selects the source value for B. The options
are:

0 = Texel.C (effectively T.A)

1 = Texel. A

2 = K.C (TextureEnvColor) (effectively
K.A)

3 = KA (TextureEnvColor)

15...16 | Alphal

This field selects the source value for I. The options
are:

0 = Color.A

1 = K.A (TextureEnvColor)

2 = Texel.C (effectively T.A)

3 = Texel. A

17 Alpha Invertl

This bit, if set, will invert the selected I value before it
is used.

18...20 Alpha
Operation

This field defines how the three inputs (A, B and I) are
combined. The possible operations are:

0 = PassA (A)

1 = PassB (B)

2=Add (A +B)

3 = Modulate (A * B)

4=Terp (A*(10-T) +B*1)

5 = ModulateABAddI (A * B + I)

6 = ModulateAIAddB (A * I + B)

7 = ModulateBIAddA (B * I + A)

21 KdEnable

When set this bit causes the RGB results of the texture
application to be multiplied by the Kd DDA values. It
also enables the Kd DDA sto be updated.

22 KsEnable

When set this bit causes the RGB results of the texture
application (or Kd processing) to be added with the
Ks DDA values. It also enables the Ks DDAs to be
updated.

23 Motion Comp
Enable

5-22

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

5.2.8.3 Apple Texture Application
The fragment’s color is calculated based on the following equations (any combination of

these operations are allowed and they are done in the order given):

Texture Mapping

Type Equation
Decal If enabled
Rrgb = TaTrgb + (1_ Ta)Crgb
R, =C,
else
Rrgb = Trgb
Ra = TaCa
Modulate
Highlight

...where T is the texel color, C is the fragment color (in a Color message), Kd is the diffuse
RGB components from the Kd DDA unit, and Ks is the specular RGB components from the
Ks DDA unit. The equations are executed on the four color components in parallel and the

suffixes show how the different component values are combined.

The final value R is forwarded in the Color field of the active step to the next unit.

The setting of the TextureApplicationMode fields to implement these Apple equations is
as follows. Enable is 1, KsEnable is set if Modulate is required, KdEnable is set if highlight
is required. Some obvious abbreviations have been used to keep the table width down.

Color fields Alpha fields
Type A B I Invl Operatio A B Invl Operation
n
Decal enabled cCc |TC 'TA N Lerp C.A PassA
Modulate disabled T.C PassB C.A T.A Modulate
So for example, the TextureApplicationMode fields for Apple Quickdraw Decal with
highlighting but no modulation would be as follows (see the Value column):
Bits Name Read | Write | Value | Description
18

18 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential

5-23

Texture Mapping

Permedia4 Programmer’s Guide Volume I

0 Enable When set causes the output to be calculated as defined
by the fields in this register, otherwise the fragment's
data is passed through.

1...2 ColorA This field selects the source value for A. The options
are:

0 = Color.C
1 = Color. A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
3.4 ColorB This field selects the source value for B. The options
are:
0 = Texel.C
1 = Texel A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
5...6 Colorl This field selects the source value for I. The options
are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C
3 = Texel.A

7 Colorlnvertl This bit, if set, will invert the selected I value before it
is used.

8...10 Color The possible operations are:

Operation 0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=Terp (A*(10-T) +B*1)
5 = ModulateColorAddAlpha (A * B + I)
6 = ModulateAlphaAddColor (A * I + B)
7 = ModulateBIAddA (B * I + A)
11...12 AlphaA This field selects the source value for A. The options
are:
0 = Colot.C (effectively Color.A)
1 = Color. A
2 = K.C (TextureEnvColor) (effectively
K.A)
3 = KA (TextureEnvColor)

13...14 AlphaB This field selects the source value for B. The options

are:

0 = Texel.C (effectively T.A)

1 = Texel A

2 = K.C (TextureEnvColor) (effectively
K.A)

3 = KA (TextureEnvColor)

15...16 Alphal This field selects the source value for I. The options

are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C (effectively T.A)
3 = Texel.A
5-24 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Texture Mapping

17 Alpha Invertl 0 N X This bit, if set, will invert the selected I value before it
is used.

18...20 Alpha 0 N 0 This field defines how the three inputs (A, B and I) are

Operation combined. The possible operations are:
0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=TLetp A*(1.0-I)+B*I)
5 = ModulateABAddI (A * B + I)
6 = ModulateATAddB (A * I + B)
7 = ModulateBIAddA (B * I + A)

21 KdEnable 0 B 1 When set this bit causes the RGB results of the texture
application to be multiplied by the Kd DDA values. It
also enables the Kd DDA sto be updated.

22 KsEnable 0 N 0 When set this bit causes the RGB results of the texture
application (or Kd processing) to be added with the
Ks DDA values. It also enables the Ks DDASs to be
updated.

23 Motion Comp |] B X

Enable
5.2.8.4 Direct 3D Texture Application (TBlend)
The D3D texture color ops are as follows: Enable is 1, KsEnable is 0, KdEnable is set if
specular highlight is required.
Color fields
Type A B I Invl | Operation
Disable C.C PassA
Copy T.C PassB
CopyAlpha TA PassB
Add C.C TcC Add
AddAlpha C.C 'TA Add
Modulate C.C TcC Modulate
ModulateAlpha C.C 'TA Modulate
BlendFactorAlpha CC TC KA |? Lerp
BlendTextureAlpha cc TC |TA °? Lerp
BlendDiffuseAlpha CC TC CA | ? Lerp
ModulateColorAddAlpha C.C TC |TA ? Modulate ABAddI
The D3D texture alpha ops are as follows. Enable is 1:
Color fields
Type A B I Invl | Operation
Disable C.A PassA
Copy TA PassB
Add CA | TA Add
Modulate CA | TA Modulate
3D/.b5 Proprietary and Confidential 5-25

Texture Mapping

Permedia4 Programmer’s Guide Volume I

So for example, the TextureApplicationMode fields for D3D Modulate with Specular
highlights would be set as follows (see the Value column):

Bits Name Read | Write | Value | Description
19
0 Enable 0 i 1 When set causes the output to be calculated as defined
by the fields in this register, otherwise the fragment's
data is passed through.
1...2 ColorA 0 i 0 This field selects the source value for A. The options
are:
0 = Color.C
1 = Colotr.A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
3.4 ColorB 0 i 0 This field selects the source value for B. The options
are:
0 = Texel.C
1 = Texel A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
5...6 Colorl 0 i X This field selects the source value for I. The options
are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C
3 = Texel A
7 Colorlnvertl 0 i X This bit, if set, will invert the selected I value before it
is used.
8...10 Color 0 u 3 The possible operations are:
Operation 0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=Letp(A*(1.0-H+B*I]
5 = ModulateColorAddAlpha (A * B + I)
6 = ModulateAlphaAddColor (A * I + B)
7 = ModulateBIAddA (B * I + A)
11...12 AlphaA 0 i 1 This field selects the source value for A. The options
are:
0 = Colot.C (effectively Color.A)
1 = Color.A
2 = K.C (TextureEnvColor) (effectively
K.A)
3 = K.A (TextureEnvColor)

19 Logic Op register readback is via the main register only

5-26

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Texture Mapping

13...14 AlphaB 0 N 1 This field selects the source value for B. The options
are:

0 = Texel.C (effectively T.A)

1 = Texel A

2 = K.C (TextureEnvColor) (effectively

K.A)
3 = K.A (TextureEnvColor)
15...16 Alphal 0 B X This field selects the source value for I. The options
are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C (effectively T.A)
3 = Texel.A
17 Alpha Invertl 0 N X This bit, if set, will invert the selected I value before it
is used.
18...20 Alpha 0 N 3 This field defines how the three inputs (A, B and I) are
Operation combined. The possible operations are:
0 = PassA (A)
1 = PassB (B)
2= Add (A + B)

3 = Modulate (A * B)

4=TLetp A*(1.0-I)+B*I)

5 = ModulateABAddI (A * B + I)
6 = ModulateAIAddB (A * I + B)
7 = ModulateBIAddA (B * I + A)

21 KdEnable 0 B 1 When set this bit causes the RGB results of the texture
application to be multiplied by the Kd DDA values. It
also enables the Kd DDA sto be updated.

22 KsEnable 0 N 0 When set this bit causes the RGB results of the texture
application (or Kd processing) to be added with the
Ks DDA values. It also enables the Ks DDASs to be
updated.

23 Motion Comp | [J B X
Enable

5.2.9 Implementation
Texture processing has two enables which must both be set to enable modification of the
Color register. The first enable is loaded via the TextureApplicationMode register and is
effective until changed by a new TextureApplicationMode message. The second enable
is the TextureEnable bit in the Render register and this is only effective until the next
Render message is received. This second enable is used to temporarily disable texturing
when a primitive must not be textured.

5.2.9.1 The Ks and Kd DDAs

The Ks and Kd DDA units interpolate the specular and diffuse RGB values. Sub pixel
corrections can be applied to correct for an initial start error on a span.

The output of the DDA units is applied to the texture calculations outlined earlier when the
corresponding Apple texure modes are enabled.

3D/.b5 Proprietary and Confidential 5-27

Texture Mapping

Permedia4 Programmer’s Guide Volume I

« The original Ks and Kd registers (e.g. KsRStart) when written to load the
corresponding R, G and B registers. This gives some backward compatibility.

+ The new KsRStart, dKsRdx and dKsRdyDom registers load up the start, dx and dyDom
registers for the Ks Red DDA unit. Similarly for the Ks GB components and also the
Kd RGB components. This allows for future set up chips to program these registers

directly.

The format is 2's complement 2.22 fixed point format with an effective range clamped to
+1.999. There is a small underflow/overflow guard band - if it is exceeded the value wraps
around and produces an abrupt color change artefact. (This should not happen if the
setup is correct and sub-pixel correction is applied at the start of each span.)

The values of Ks and Kd at each vertex are used to calculate the gradient values in much
the same way as the color gradients when Gouraud shading.

The parameters to control the two DDA units are loaded into the red, green and blue
values (there is no alpha value) and are held as 1.8 unsigned fixed point numbers so
values greater than 1.0 can be represented.

5.2.9.2 Texture Color Registers

The application of texture is qualified by the TextureEnable bit in the Render command
register. The following registers (together with the TextureApplicationMode register)
control the application of textures.

Register Data Field Description
TextureEnvColor 32 bit RGBA format, R
in least significant byte

KsStart 24 bit 2's comp fix pt | Ks start value, loads up the R, G and B DDA start
registers.

DKsdx 24 bit 2's comp fix pt | Ks derivative unit X, loads up the R, G and B DDA dx
registers.

DKsdyDom 24 bit 2's comp fix pt | Ks derivative unit Y, dominant edge, loads up the R, G
and B DDA dyDom registers.

KdStart 24 bit 2's comp fix pt |Kd start value, loads up the R, G and B DDA start
registers.

DKddx 24 bit 2's comp fix pt |Kd detivative unit X, loads up the R, G and B DDA dx
registers.

DKddyDom 24 bit 2's comp fix pt |Kd derivative unit Y, dominant edge, loads up the R, G
and B DDA dyDom registers.

KsRStart 24 bit 2's comp fix pt |Ks Red start value

DKsRdx 24 bit 2's comp fix pt |Ks Red derivative unit X

DKsRdyDom 24 bit 2's comp fix pt |Ks Red derivative unit Y, dominant edge

KsGStart 24 bit 2's comp fix pt | Ks Green start value

dKsGdx 24 bit 2's comp fix pt |Ks Green derivative unit X

dKsGdyDom 24 bit 2's comp fix pt |Ks Green derivative unit Y, dominant edge

KsBStart 24 bit 2's comp fix pt | Ks Blue start value

dKsBdx 24 bit 2's comp fix pt | Ks Blue derivative unit X

dKsBdyDom 24 bit 2's comp fix pt | Ks Blue derivative unit Y, dominant edge

KdRStart 24 bit 2's comp fix pt |Kd Red start value

5-28 Proprietary and Confidential 3D/4bs

Permedia4 Programmer’s Guide Volume II

Texture Mapping

DKdRdx 24 bit 2's comp fix pt |Kd Red derivative unit X

DKdRdyDom 24 bit 2's comp fix pt |Kd Red derivative unit Y, dominant edge

KdGStart 24 bit 2's comp fix pt |Kd Green start value

DKdGdx 24 bit 2's comp fix pt |Kd Green derivative unit X

DKdGdyDom 24 bit 2's comp fix pt |Kd Green derivative unit Y, dominant edge

KdBStart 24 bit 2's comp fix pt |Kd Blue start value

DKdBdx 24 bit 2's comp fix pt |Kd Blue derivative unit X

DKdBdyDom 24 bit 2's comp fix pt |Kd Blue derivative unit Y, dominant edge

Table 5.15 Texture Color Registers

3D/.b5 Proprietary and Confidential 5-29

Permedia4 Programmer’s Guide Volume II Fog, Antialias and Alpha Test

Fog, Antialias and Alpha Test

6.1

6.1.1

Fog Unit
The fog unit is used to blend the incoming fragment'’s color or Z (generated by the color

DDA unit, and potentially modified by the texture unit) with a predefined fog color. Fogging
can be used to simulate atmospheric fogging, and also to depth cue images.

Fog application has two stages:

1. derive the fog index for a fragment;
2. apply the fogging effect.

The fog index is a value which is interpolated over the primitive using a DDA in the same
way color and depth are interpolated. The fogging effect is applied to each fragment using
one of the equations described below.

Note: Although fog values are linearly interpolated over a primitive they can be
calculated on the host using either a linear fog function (typically for simple
fog effects and depth cueing) or a more complex function e.g. an exponential
function to model atmospheric attenuation..

Fog Index Calculation

The fog index can be derived from specified fog values in FStart, dFdX and dFdYDom, or
from the Depth DDA values. This option is selected with the UseZ bit in the FogMode
register.

The fog DDA is used to interpolate the fog index (f) across a primitive. The mechanics are
similar to those of the other DDA units, as the diagram below illustrates:

3D/.bs

Proprietary and Confidential 6-1

Fog, Antialias and Alpha Test Permedia4 Programmer’s Guide Volume I

Figure 6-1 Fog Interpolation Over A Triangle

6.1.11

6.1.2

6-2

where:

+ dFdX = Fog gradient in the X direction.
« dFdyDom = Fog gradient along the dominant edge of a primitive.

Note: For fogged linesthe dFdx delta is not required.

The fog interpolation values (e.g. Fstart) are specified as 32bit fixed point numbers - the
format is 2's complement with 10 bits integer and 22 bits fraction. However the derived fog
index is an 8-bit fixed point number (0 bits integer, 8 bit fraction).

The DDA only exports a relatively narrow range (+511 to -512) compared to the range of

depths so the software needs to be careful when setting up the DDA. There are four

cases:

. If all the vertices are in the near range then the DDA should be set up to output 1.0
with a delta of O.

- If all the vertices are in the far range then the DDA should be set up to output 0.0 with

a delta of 0.

. If all the vertices are within the DDA’s range then the DDA’s parameters are set up as
normal.

. One or more of the vertices are out of the DDA’s range and must be clamped before

the DDA’s parameters are set up. (This will only occur on very large polygons which
extend from near the eye point into the far distance.)

The result of clamping the input values to the DDA will be to change the effective position
and width of the fog band (i.e. middle range), but this is unlikely to be noticeable. Ifitis
noticeable then tessellating the polygon will solve the problem.

Z-controlled Fog

The fog value (direct or mapped via the table) can be derived from the interpolated Z
value. If the UseZ bit is set in FogMode then the fog DDA is loaded by the Z DDA
parameters and tracks the Z value over the primitive. The 2’'s complement 32 bit Z value
from the DDA output is mapped to the 8 bit fog index as follows:

« Clamp Z from the DDA so it is greater than or equal to 0.

« Add in the ZFogBias and clamp again to be greater than or equal to O.

« Shift right by ZShift amount.

« Clamp against 255 so the result is less than or equal to 255. This is the fog index.

The bias sets a Z value below which no blending occurs. The scale value selects the
range (as a power of 2) beyond which the fog color is used (because the fog index is set to
255).

Fog Table

Initially, the fog values populate a span register and an increment register tracks progress
along the Dominant edge. Both f-controlled and Z-controlled fog produce the 8-bit index
values which can be directly applied to interpolation or stored as a table for use in

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Fog, Antialias and Alpha Test

6.1.3

6.1.3.1

3D/.bs

producing more complex (non-linear) fogs with host intervention. The Fog Table is
selected using theTable bit in the FogMode register.

The fog table is organised as 256 x 8 so the 8 bit input fog index is mapped to an 8 bit
output fog index. The fog table is held in the FogTable(0) to FogTable(63) registers and
each register loads 4 entries at a time. FogTableO, byte 0 loads the mapping for fog index
0, byte 1 for fog index 1, etc..

Fog Application
Once the fog indices are calculated they are applied to interpolate the fog color and the

current color, the controlling equations depending on whether the colors are represented
in RGBA ro Cl mode. The mode selection is made with the ColorMode bit in FogMode.

RGBA Fogging Equation

Fogging is applied differently depending on the color mode. For RGBA mode the fogging
equation is:

where:

« V= outgoing color

« FC =fog color

« C =incoming fragment color

« Fl=fog index

The equation is applied to the color components red, green and blue; alpha is not
modified.

The diagram below shows how the fogging would typically affect fragments. Initially no

fogging occurs, f = 1.0, then a region of linear combination of the fragment color and fog
color occurs 0.0 < f< 1.0, followed by a region of constant fog color, f < 0.0.

Proprietary and Confidential 6-3

Fog, Antialias and Alpha Test Permedia4 Programmer’s Guide Volume I

DDA output
/
Max Fl
DDA adder output ,
/,//
/,,
/,/,
/,/
- FI after clamping
1.0 =
DDA steps
0 . S
//,
///
//,,
/,/,
/’/
Min FI
6.1.3.2 CI Fogging Equation
In CI mode the equation is:
Note: The CI value is held only in the red channel for later use, but doing the same

equation on all color channels keeps the control simpler. Clamping is needed
as the result can overflow the 8 hit color component range.

6.1.4 FogMode register

The FogMode register is used to enable and disable fogging (qualified by the fog
application bit in the Render command register).

6-4 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Fog, Antialias and Alpha Test

FogMode
FogModeAnd
FogModeOr

Name Type Offset Format

FogMode Fog 0x8690 Bitfield

FogModeAnd Fog 0xAC10 Bitfield Logic Mask

FogModeOr Fog 0xAC18 Bitfield Logic Mask

Control registers

Bits Name Read | Write | Reset | Description

0 Enable 0 B x This bit, when set, and qualified by the FogEnable bit
in the Render command causes the current fragment
color to be modified by the fog coefficient and
background color.

1 ColorMode 0 B x This bit selects the color mode. The two options are:
0 = RGB. The RGB fog equation is used.

1 = CI. The Color Index fog equation is used.

2 Table 0 N X This bit, when set, causes the Fog Index to be mapped
via the FogTable before it controls the blending
between the fragment's color and the fog colot,
otherwise the DDA value is used directly.

3 UseZ 0 B x This bit, when set, causes the DDA to be loaded with
the Z DDA values instead of the Fog DDA values. It
also adjusts the clamping of the DDA output.

4...8 ZShift 0 N X This field specifies the amount the (z from DDA +
zBias) is right shifted by before it is clamped against
255 and the bottom 8 bits used as the fog index. This
should also take into account the number of depth bits
there are.

9 InvertFI 0 N < This bit, when set, inverts the fog index before it is
used to interpolates between the fragment's color and
the fog color. This is usually 0 when fog values are
used and 1 for Z values. Fog values are set up so they
decrease with increasing depth and obviously Z values
increase with increasing depth.

10...31 Unused 0 0 X

Figure 6-2 FogMode Register

6.1.5

3D/.bs

In addition to the ColorMode, Table and UseZ bits, FogMode allows inversion of the fog

index before interpolation using InvertFI.

Fog Example

A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white:

Proprietary and Confidential 6-5

Fog, Antialias and Alpha Test

6-6

// Enable the color DDA unit in Gouraud shading
// mode

colorDDAMoaode.UnitEnable = Permediad_ ENABLE

Permedia4 Programmer’s Guide Volume I

colorDDAM ode.Shade = Permediad GOURAUD_SHADE _MODE

ColorDDAM ode(colorDDAM ode)

// Enable the Fog unit

fogM ode.FogEnable = Permediad_TRUE
fogMode.ColorMode = Permediad_RGBA_MODE
FogM ode(fogM ode)

Il Set the fog color to white

FogCol or(OxFFFFFFFF)

/I Load the color start values and deltas for

/I dominant edge and the body of the trapezoid

Rstart() // Set-up the red component start value
dRdX() // Set-up the red component increments
dRdY Dom()

Gstart() // Set-up the green component start value
dGdX() // Set-up the green component increments
dGdY Dom()

Bstart() // Set-up the blue component start value
dBdX() // Set-up the blue component increments
dBYDom()

Il Load the start value and delta for dominant edge
// and the body of the trapezoid

/I Note that the fog deltas are calculated in the

I/l same way as the color deltas

FStart() // Set-up the fog component start value
dFdX() // Set-up the fog component increments
dFdYDom()

/Il When issuing a Render command the FogEnable bit
/ should be set in addition to the fog unit being

/1 enabled:

I/ render.FogEnable = PERMEDIA4 TRUE

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II Fog, Antialias and Alpha Test

6.2

6.2.1

6.2.2

3D/.bs

Antialiasing

Antialias application controls the way the coverage value generated by the rasterizer
combines with the color generated in the color DDA units. The application depends on the
color mode - RGBA or Color Index (CI).

Antialias Application

When antialiasing is enabled by setting the AntialiasMode Enable bit and the Render
register’'s CoverageEnable bit, the fragment’s color and alpha is weighted by the
percentage area of the pixel covered by the fragment. The coverage weighting is
determined by the Rasteriser and varies from 0 to 100% "saturation”.

If antialiasing is not enabled the fragment is forwarded for alpha testing.

The mode (RGBA or Cl) is set using the ColorMode bit in the AntialiasMode register. In
RGBA mode the color value is multiplied by the coverage value calculated in the rasterizer
(its range is 0% to 100%). The RGB values remain unchanged unless the ScaleColor bit is
also set. Color scaling is not required by OGL and may reduce performance.

In CI mode the coverage value is placed in the lower 4 bits of the color field. The Color
Look Up Table is assumed to be set up such that each color has 16 intensities associated
with it, one per coverage entry.

Polygon Antialiasing

A number of issues should be considered when using Permedia4 to render antialiased
polygons. Depth buffering cannot be used with Permedia4 antialiasing. This is because
the order the fragments are combined in is critical in producing the correct final color.
Polygons must therefore be depth sorted, and rendered front to back, using the alpha
blend modes: SourceAlphaSaturate for the source blend function and One for the
destination blend function. In this way the alpha component of a fragment represents the
percentage pixel coverage, and the blend function accumulates coverage until the value in
the alpha buffer equals one, at which point no further contributions can be made to a pixel.

Although this technigue works well in many cases, it is an approximation. Consider the
case below which shows three polygons of equal depth which intersect a single pixel. In
this case there would ideally be a contribution from each of the polygons. However, if the
rendering order is polygon A followed by polygon B, each of which contributes
approximately 50% pixel coverage, then polygon C will make no contribution to the pixel as
the alpha value is saturated (50%+50%=100%).

Proprietary and Confidential 6-7

Fog, Antialias and Alpha Test Permedia4 Programmer’s Guide Volume I

Figure 6-3 Polygon Antialiasing

When antialiasing general scenes with no restrictions on rendering order, the
accumulation buffer is the preferred choice. This is indirectly supported on Permedia4 via
image uploading and downloading, with the accumulation buffer residing on the host.

When antialiasing, interpolated parameters which are sampled within a fragment (color,
fog and texture), sometimes are not representative of a continuous sampling of a surface
so care should be taken when rendering smooth shaded antialiased primitives. This
problem does not occur in aliased rendering, as the sample point is consistently at the
center of a pixel.

See The OpenGL Programming Guide for more details of antialiasing.

6.2.3 Registers
The AntialiasMode register provides the enables described earlier.
Type Offset Format
AntialiasMode Alpha Test 0x 8808 Bitfield
AntialiasModeAnd Alpha Test 0x ABFO Bitfield Logic Mask
AntialiasModeOr Alpha Test 0Ox ABF8 Bitfield Logic Mask
Control registers
Bits Name Read |Write |Reset |Description
0 Enable 0 0 X When set causes the fragment's alpha value to be
scaled under control of the remaining bits in this
register and the coverage value. When this bit is clear
the fragment's alpha value is not changed.
0 = Disable
1 = Enable
1 Color Mode 0 m X This bit defines the color format the fragment's color
is in:
0 = RGBA
1=CI
6-8 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Fog, Antialias and Alpha Test

Scale Color 0 m X This bit, when set allows the coverage value to scale
the RGB components as well as the alpha component.
When this bit is reset only the alpha component is
scaled. This allows antialiasing of pre multiplied
images used in compositing.

Unused 0 0 X

Figure 6-4 AntialiasMode Register

6.2.4

6.3

6.3.1

For the coverage application to take place the enable in the AntialiasMode register must
be qualified by the CoverageEnable bit in the Render command register.

Antialias Example
Enable antialiasing for a RGBA primitive:

/I Set AA application for RGBA primitive
antialiasMode.AntialiasEnable = PERMEDIA4 TRUE
antialiasM ode.ColorMode = PERMEDIA4 TRUE
AntialiasM ode(antialiasM ode)

// Set the blend mode to an appropriate value if

// blending isrequired. Not shown.

/I When issuing a Render command the CoverageEnable
/1 bit should be set in addition to the antialias

/I unit being enabled:

// render.CoverageEnable = PERMEDIA4 TRU

Alpha Test Unit

The alpha test compares a fragment'’s alpha value with a reference value. Alpha testing is
not available in color index (CI) mode.

Alpha Test

The alpha test conditionally rejects a fragment based on the comparison between a
reference alpha value and one associated with the fragment, the available tests are:

Mode Comparison Function Mode Comparison Function

0

Never 4 Greater

1

Less Not Equal

2

3

5
Equal 6 Greater Than or Equal
7

Less Than or Equal Always

Table 6.16 Alpha Test Comparison Tests

3D/.bs

The sense of the test is such that if the comparison mode is set to Less and the reference
value is set to 0x80, then fragments with alpha values between 0x0 and Ox7F will pass the
test and fragments with alpha values between 0x80 and OxFF will fail the test and be
rejected.

Proprietary and Confidential 6-9

Fog, Antialias and Alpha Test Permedia4 Programmer’s Guide Volume I

6.3.2 Registers
The AlphaTestMode register controls the alpha test:

Name Type Offset Format
AlphaTestMode AlphaBlend 0x 8800 Bitfield
AlphaTestModeAnd AlphaBlend 0x ABFO Bitfield Logic Mask
AlphaTestModeOr AlphaBlend 0x ABF8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0 Enable N u| X When set causes the fragment's alpha value to be

tested under control of the remaining bits in this
register. If the alpha test fails then the fragment is
discarded. When this bit is clear the fragment alway
passes the alpha test.

0 = Disable 1 = Enable
1...3 Compare 0] X This field defines the unsigned comparison function to
use. The options are:
0 = Never 1 = Less
2 = Equal 3 = Less Equal
4 = Greater 5 = Not Equal

6 = Greater Equal 7 = Always
The comparison order is as follows:
Result = fragment, Alpha Compare Function,
reference, Alpha.

4...11 Reference 0] X This field holds the 8 bit reference alpha value used in

the comparison.

12...31 Unused 0 0 X

Figure 6-5 AlphaTestMode Register

6.3.3 Alpha Test Example
Set the alpha test mode to be LESS and the reference value to be 0x80:
// Enable unit and set modes
alphaMode.UnitEnable = Permediad ENABLE
alphaMode.Compare = Permediad_ ALPHA_COMPARE_MODE_LESS
aphaM ode.Reference = 0x80
AlphaMode(al phaMode) // Load register
/I Render primitives

6-10 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Framebuffer Read/Write

7

Framebuffer Read/Write

Before rendering can take place Permediad must be configured to perform the correct
framebuffer read and write operations. Framebuffer read and write modes affect the
operation of alpha blending, logic ops, writemasks, image upload/download operations
and the updating of pixels in the framebuffer.

The framebuffer read and write units are set up in different ways depending on whether
Span Operations are being used. Normally, span operations are used for 2D rendering in
order to maximize memory bandwidth. Span operations allow multiple pixels to be read
and processed in parallel. The following sections discuss the use of the framebuffer read
and write units for both standard operation and span operations.

7.1.1 Standard Framebuffer Read Operation

The FBSourceReadMode and FBDestReadMode registers allows Permedia4 to be

configured to make 0, 1 or 2 reads of the framebuffer. The following are the most common

modes of access to the framebuffer:

» Rendering operations with no logical operations, software writemasking or alpha
blending. In this case no read of the framebuffer is required and framebuffer writes
should be enabled.

« Rendering operations which use logical ops, software writemasks or alpha blending. In
these cases the destination pixel must be read from the framebuffer and framebuffer
writes must be enabled. (Here set-up varies depending what functionality is required. If
alpha blending, logic ops or software writemasks are used the framebuffer is read twice
i.e. both the source and the destination. When alpha blending and logic ops are not
needed, and hardware writemasks are used (or when the software writemask allows
updating of all bits in a pixel) only one read is required.)

* Image upload. This requires reading of the destination framebuffer pixels to be enabled
and framebuffer writes to be disabled.

* Image download. This case requires no framebuffer reads (as long as software
writemasking, alpha blending and logic ops are disabled) but writes must be enabled.

The data read from the framebuffer may be tagged either FBDefault (data which may be

written back into the framebuffer or used in some manner to modify the fragment color) or

FBColor (data which will be uploaded to the host). Table 7.17 Framebuffer Read/Write

Modes summarizes the framebuffer read/write control for common rendering operations:

ReadSource |Read Writes Read Data |Rendering Operation

Destination Type

Disabled Disabled Enabled - Rendering with no logical operations, software
writemasks or blending.

Disabled Disabled Enabled - Image download.

Disabled FEnabled Disabled FBColor Image upload.

Enabled Disabled Enabled FBDefault |Image copy with hardware writemasks and no
alpha blending or logical operations

3D/.b5 Proprietary and Confidential 7-1

Framebuffer Read/Write Permedia4 Programmer’s Guide Volume I

Disabled Enabled Enabled FBDefault |Rendering using logical operations, software
writemasks or blending.

Enabled Enabled Enabled FBDefault |Image copy with software writemasks, alpha
blending or logic ops.

Table 7.17 Framebuffer Read/Write Modes

7.1.2

7.1.3

7-2

Framebuffer Read Span Operations

As well as performing standard, single pixel at a time, read operations the framebuffer
read unit can be used to process span operations. The simplest type of operation is where
a span mask is presented to the read unit and the ReadSource bit is enabled. This will
cause the unit to read a complete span of pixels from the framebuffer in a 64-bit packed
format. The data is always read as a set of 64 bit words. This allows maximum use of both
memory and core bandwidth since multiple pixels are being processed.

Since a span mask may not necessarily have all its bits set to 1 (i.e. only a subset of pixels
in the span need to be processed), it would be wasteful of memory bandwidth to always
read the complete span. For example, at the right hand edge of a rectangle which is being
copied, we want the read unit to only read up to the rightmost pixel but not beyond.
Whether a 64 bit word is read depends on the corresponding bit values in the span mask.
Since each bit in the mask represents a pixel, either 1, 2 or 4 bits will represent a 32 bit
word for the depths 32, 16 and 8 bits respectively. If the group of bits representing a 32 bit
word is non-zero then the corresponding 32 bits will be read from the framebuffer. Thus:

« at 32 bits per pixel, a single bit in the span mask corresponds to 32 bits in the
framebuffer and 32 bit words will be read only at those locations where the
corresponding bit in the span mask is a 1.

« at 16 bits per pixel, 2 bits in the span mask represent 32 bits in the framebuffer. A 32
bit word will be read only at those locations where the corresponding 2 span bits form
a non-zero value.

« at 8 bits per pixel, a 32 bit word will be read only at those locations where the
corresponding 4 span bits form a non-zero value.

The number of 32bit words read from the framebuffer is thus a function of the span mask

and the number of bits per pixel, though this is not normally of interest to the programmer.

However, the number of 32bit words becomes important for span operations where the

data is downloaded from the host. For example, an image download operation using a

span operation only requires those 32 bit words which contain required pixel data to be
downloaded. Some examples of this are given later.

Merge-copy Span Operations

To understand the way in which the read units works we will examine the way in which a
span operation with a logic op works. In particular we consider the case where both
ReadSource and ReadDestination bits are set in the FBDestReadMode and
FBSourceReadMode registers. For example, this would be the case when copying data
within the framebuffer with an xor logic op.

To perform this operation, the framebuffer read unit must read both a source span of data
and a destination span of data. These spans must then be merged so that the data
presented to the logic op unit consists of source and destination pairs. Since the logic op
unit can combine up to 32 bits at a time, the data can be presented in the form of packed
32 bit words (at 8 bits per pixel this means that the logic op unit can work on 4 pixels at a
time).

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

3D/.bs

Framebuffer Read/Write

It would be wasteful of memory bandwidth to read 32 bits from the source followed by 32
bits from the destination. This would result in too many memory page breaks. So the read
unit reads a complete source span and stores it internally as Pattern RAM in the local
buffer. Then the destination span is read. As the destination span is read, it is merged with
the saved source span data so that the data which the logical op unit sees comprises
corresponding sections of source and destination data. The logic op unit can then combine
this data and present a series of 32 bit results to the framebuffer write unit.

The Pattern RAM is so named because it can be used for pattern filling operations and
was a distinct area of memory in previous Permedia chipsets.

Proprietary and Confidential 7-3

Permedia4 Programmer’s Guide Volume II Alpha Blending

Alpha Blending

8.1

8.1.1

3D/.bs

In this chapter we discuss alpha blending. The alpha blend unit performs opacity
calculations on the color and alpha components of pixel fragments according to functions
defined in the color mode and alpha mode alpha blend registers:

« Source Blending Functions

« Destination Blending Functions

« Color Component Alpha Blending

« Alpha Component Alpha Blending

« Context Switching

« Registers

+ Readback

Introduction

The alpha value is an opacity gradient, with the value of O representing complete
transparency and a value of 1 representing complete opacity.

Both source and destination pixels have associated blending functions that perform
calculations to set opacity values before blending the two pixel values occurs.

Alpha Blend Functions
Alpha blending functions are performed on both color components and alpha components.
The alpha blend unit performs the following functions:

« Calculates opacity on incoming (source) pixel information
- Calculates opacity on existing framebuffer (destination) pixel information
« Blends the source and destination pixel information into a new pixel value

There are 3 source inputs for both RGB and Alpha: Arg0, Argl and Arg2. Arg2 is always
the interpolator. The opmodes behave as follows:

GL_REPLACE Arg0
GL_MODULATE Arg0 * Argl
GL_ADD Arg0 + Argl

GL_ADD_SIGNED_EXT Arg0 + Argl - 128
GL_INTERPOLATE_EXT Arg0 * Arg2 + Argl * (1 - Arg2)

Each source can come from one of:
GL_PRIMARY_COLOR_EXT color of incoming fragment
GL_TEXTURE texel of corresponding stage

Proprietary and Confidential 8-1

Alpha Blending

8.1.2

8.2

8.2.1

Permedia4 Programmer’s Guide Volume I

GL_CONSTANT_EXT
GL_PREVIOUS_EXT

texture enviroment blend color

result of combine from previous unit (always incoming
fragment if stage 0)

In addition the RGB channels can specify the alpha component (i.e replicate the alpha into
rgb).
The Blend unit also has an effect on compositing and border textures.

Alpha Blend Registers
The alpha blend registers comprise the following segments:

« Alpha Blend Color Operations

« Alpha Blend Alpha Operations

« Alpha Source Color Assignments

« Alpha Destination Color Assignments
« Chroma Test Operations

« 2D Configuration Operations

« Context Operations

Blending occurs in color mode and alpha mode alpha blend registers, called
AlphaBlendColorMode and AlphaBlendAlphaMode, respectively.

The AlphaBlendColorMode register assigns blend functions to color components R, G
and B, and the AlphaBlendAlphaMode register assigns a blend function to the alpha
component, A.

Source Blending Functions

Source blending function components are defined in the source blend bits of the
AlphaBlendColorMode and AlphaBlendAlphaMode registers. The functions correspond
to OpenGL source blending parameters.

OpenGL Alpha Blending

The alpha blend unit combines the fragment’s color value to be stored in the framebuffer,
using the blend equation:

Co = CgS + CgD

where: Co is the output color, Cs is the source color (calculated internally) and Cd is the
destination color read from the framebuffer.

The source blending function, S, and the destination blending function, D, are defined in
the following tables:

Mode

Value

Zeto

One

SEE
EER
CIEEE
=[=[=[>

Destination Color Ry

d d

W] N

One Minus Destination Color 1-Rqg 1-Bg 1-Aq

8-2

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Alpha Blending

4 Source Alpha Ag Ag Ag Ag
5 One Minus Source Alpha* 1-Ag 1-Ag 1-Ag 1-Ag
6 Destination Alpha Aq Ad Ad Aq
7 One Minus Destination Alpha 1-Aq 1-Aq 1-Aq 1-Aq
8 Source Alpha Saturate Min of min of min of 1

A 1-Ad) A5 1-Ag) (A5 1-Ag)

Table 8.18 Source Blending Functions

The terms in the equations are in the form Cxy, where x denotes source component (s) or
destination component (d), and y denotes color componentr, g, b, or a, for Red, Green,
Blue, or Alpha, respectively.

Note: Values are defined as floating point numbers. All source color component
values are in the range 0 to 1.0 inclusive as defined in, eg. OGL texture
environment color parameters (GL_TEXTURE _ENV_COLOR).

<
Q
(=
(¢}

Value

Zero

One

Source Color

=~

One Minus Source Color

i

Source Alpha

One Minus Source Alpha - Ag
Destination Alpha Aq Ad Ad Aq

One Minus Destination Alpha 1-Aq 1-Aq 1-Aq 1-Aq

~N| | |]| W] N—]O

Table 8.19 Destination Blending Functions

8.3 Destination Blending Functions

Destination blending function components are defined in the DestBlend bits of the
AlphaBlendColorMode register and the AlphaBlendAlphaMode registers. If the blend
operations require any destination color components then the framebuffer read mode must
be set appropriately.

8.3.1 OpenGL Destination Blending
The destination blending corresponds to OpenGL source blending parameters.

In some situations blending is desired when no retained alpha buffer is present. In this
case the alpha value which is considered to be read from the framebuffer is set to 1.0. The
NoAlphaBuffer bit in the AlphaBlendAlphaMode register controls this.

The terms in the blend equations are in the form Cxy, where x denotes source component
(s) or destination component (d), and y denotes color componentr, g, b, or a, for Red,
Green, Blue, or Alpha, respectively.

One Minus Value is sometimes referred to as Inverse Value.

3D/.b5 Proprietary and Confidential 8-3

Alpha Blending Permedia4 Programmer’s Guide Volume I

8.3.11

Blend values are defined as floating point numbers. All source color component values
should be clamped in the range 0 to 1.0 inclusive.

In addition to glBlendFunc, Permedia4 supports OGL texture functions described in
GL_TEXTURE_ENV_MODE during texture compositing and application. Support for
GL_texture_env_combine_EXT is enabled by calling TexEnv with GL_ TEXTURE _
ENV_MODE set to GL_COMBINE_EXT. This allows user to explicitly set up the fragment
operations for the RGB and Alpha channels - in particular, GL_ALPHA, GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB and GL_RGBA. This allows full texture function
implementation in both TextureO and Texturel. The equations for each case are as
described in The OpenGL Reference Manual and The OpenGL Programming Guide from
Addison-Wesley.

Embossed bump-mapping

Special ENV_MODE support is available in the Permediad4 when this extension is used for
embossed bump-mapping. Normally GL_PREVIOUS EXT maps onto GL_PRIMARY _
COLOR_EXT for stage0. However when the EnableBumpHeightAsSource flag is true,
GL_PREVIOUS_ EXT uses the difference between texture stagel and stageO alpha
channels for the source input for stage0:

clamp(tex0.alpha- texl.apha+ 128

This difference when replicated into the rgb channels can be used to modulate the other
input to make it lighter or darker. The alpha channel is the same in each stage, but is read
offset in the second stage relative to the first stage.

8.3.2 QuickDraw 3D Alpha Blending

When the AlphaType bit in the AlphaBlendAlphaMode register is set then QuickDraw 3D
style alpha blend equations are followed. The OpenGL equations above are used for the
RGB components, but the alpha channel is treated differently and has a single source and
destination blend functions as follows:
Ca=1-(1-Csa) *(1-Cda)
The source and destination blend functions should be set as follows:

Name Source Blend Destination Blend

Pre-multiplied ONE ONE_MINUS_SRC_ALPHA

Interpolated SRC_ALPHA ONE_MINUS_SRC_ALPHA

Table 8.20 Source Blending Functions

8.3.3

8-4

The alpha calculation is the same for both modes.

Image Formatting

The alpha blend and color formatting units can be used to format image data into any of
the supported Permedia4 framebuffer formats, though conversion between Cl and RGB
modes or vice versa are not supported.

Consider the case where the framebuffer is in RGBA 4:4:4:4 mode, and an area of the
screen is to be uploaded and stored in an 8 bit RGB 3:3:2 format. The sequence of
operations is:

« Set the rasterizer as appropriate (described in section §2.1.9.4)
- Enable framebuffer reads

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Alpha Blending

- Disable framebuffer writes and set the UpLoadData bit in the FBWriteMode register

« Enable the alpha blend unit with a blend function which passes the destination value
and ignores the source value (source blend Zero, destination blend One) and set the
color mode to RGBA 4:4:4:4

« Set the color formatting unit to format the color of incoming fragments to an 8 bit RGB
3:3:2 framebuffer format.

The upload now proceeds as normal.

The same technique can be used to download data which is in any supported framebuffer

format, in this case the rasterizer is set to sync with FBData, rather than Color. In this case
framebuffer writes are enabled, and the UpLoadData bit cleared.

8.3.4 Registers

The unit is controlled by the AlphaBlendAlphaMode and AlphaBlendColorMode
registers:

3D/.b5 Proprietary and Confidential 8-5

Alpha Blending

AlphaBlendAlphaMode
AlphaBlendAlphaModeAnd
AlphaBlendAlphaModeOr

Permedia4 Programmer’s Guide Volume I

Name Type Offset Format
AlphaBlendAlphaMode Alpha Blend 0x AFAS8 Bitfield
AlphaBlendAlphaModeAnd Alpha Blend 0x AD30 Bitfield Logic Mask
AlphaBlend AlphaModeOr Alpha Blend 0x AD38 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
20
0 Enable N N X When set causes the fragment's alpha to be alpha
blended under control of the remaining bits in this
register. When clear the fragment alpha remains
unchanged (but may later to affected by the chroma
test).
1...4 SourceBlend N N X This field defines the source blend function to use.
See the table below for the possible options.
5...7 DestBlend N N X This field defines the destination blend function to
use. See the earlier table for the possible options.
8 Source N N X This bit, when set causes the source blend result to be
TimesTwo multiplied by two before it is combined with the dest
blend result. When this bit is clear no multiply occurs.
9 DestTimes N N X This bit, when set causes the dest blend result to be
Two multiplied by two before it is combined with the
source blend result. When this bit is clear no multiply
occurs.
10 Invert Source 0 0 X This bit, when set, causes the incomming source data
to be inverted before any blend operation takes place.
11 Invert Dest 0 0 X This bit, when set, causes the incomming dest data to
be inverted before any blend operation takes place.
12 NoAlpha 0 0 X When this bit is set the source alpha value is always set
Buffer to 1.0. This is typically used when no retained alpha
buffer is present but alsos overrides any retained alpha
value if one is present. Color formats with no alpha
field defined automatically have their alpha value set to
1.0 regardless of the state of this bit.
13 Alpha Type 0 0 X This bit selects which set of equations are to be used
for the alpha channel.
0 = OpenGL
1= Apple

20 Logic Op register readback is via the main register.

8-6

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II Alpha Blending

14 Alpha 0 0 X This bit selects how alpha component less than 8 bits
Conversion wide are converted to 8 bit wide values prior to the
alpha blend calculations. The options are
0 = Scale
1 = Shift
15 Constant N O X This bit, when set, forces the Source color to come
Source from the AlphaSourceColor register (in 8888 format)

instead of the framebuffer.
0 = Use framebuffer alpha
1 = Use AlphaSourceColor register alpha value.

16 Constant Dest | [] O X This bit, when set, forces the destination color to
come from the AlphaDestColor register (in 8888
format) instead of the fragment's color.

0 = Use fragment's alpha.

1 = Use AlphaDestColor register alpha value

17...19 Operation 0 0 X This field selects how the source and destination blend
results are to be combined. The options are:

0= Add 1 = Subtract (i.e. S - D)

2 = Subtract reversed (i.e. D - S)

3 = Minimum 4 = Maximum

3D/.b5 Proprietary and Confidential 8-7

Alpha Blending Permedia4 Programmer’s Guide Volume I

Notes

The Alpha Conversion bit selects the conversion method for alpha values read from the framebuffer.

. The Scale method lineatly scales the alpha values to fill the full range of an 8 bit value. This
method is preferable when, for example, downloading an image with fewer bits per pixel into a
deeper (i.e. more bits per pixel) framebuffer.

. The Shift method just left shifts by the appropriate amount to make the component 8 bits wide.
This method is preferable when blending into a dithered framebuffer as it preserves the
framebuffer alpha when fragment alpha does not contribute to it.

Alpha is controlled separately from color to allow, for example, the situation in antialiasing where it

represents coverage - this must be linearly scaled to preserve the 100% covered state.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

The table below shows the different color modes supported. In the R, G, B and A columns the
nomenclature n(@m means this component is n bits wide and starts at bit position m in the
framebuffer. The least significant bit position is 0 and a dash in a column indicates that this
component does not exist for this mode.

In the case of the RGB formats where no Alpha is shown then the alpha field is set to 255. In this case
the NoAphaBuffer bit in the AlphaBlendAlphaMode register should be set which causes the alpha
component to be set to 255.

Two color ordering formats are supported, namely ABGR and ARGB, with the right most letter
representing the color in the least significant part of the word. This is controlled by the Color Otder
bit in the AjphaBlendColorMode register, and is easily implemented by just swapping the R and B
components after conversion into the internal format. The only exception to this are the 3:3:2 formats
where the actual bit fields extracted from the framebuffer data need to be modified as well because the
R and B components are differing widths. CI processing is not effected by this swap and the result is
always on internal R channel.

The format to use is held in the A/phaBlendColorMode register. Note that in OpenGL the alpha blending
is not defined for CI mode..

When converting a Color Index value to the internal format any unused bits are set to zero

Figure 8-1 AlphaBlendAlphaMode Register

8-8

The ColorConversion bit selects the conversion method for RGB values read from the
framebuffer.

The Scale method linearly scales the color values to fill the full range of an 8 bit value.
This method is preferable when, for example, downloading an image with fewer bits per
pixel into a deeper (i.e. more bits per pixel) framebuffer.

The Shift method just left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it preserves
the framebuffer color when fragment color does not contribute to it. The scale method
would otherwise cause the ‘fraction’ bits to be non zero, which may result in a different
color when re-dithered again. This shows up as a faint outline of the underlying polygon,
when, for example, an alpha blended texture is used with zero value to provide cut-outs.

The AlphaConversion bit selects the conversion method for the Alpha values in a similar
way. Itis controlled separately to allow, for example, the situation in antialiasing where it
represents coverage - this must be linearly scaled to preserve the 100% covered state.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Alpha Blending

8.3.5

The alpha blend can be augmented by a chroma test, discussed next.

Chroma Testing

Chroma test involves testing a fragment’s color against a range of colors. The fragment
can then be rejected based on the outcome. The framebuffer source color, framebuffer
destination color and the fragment’s color before or after alpha blending can all be used for
the test.

The source and destination keying are needed by DirectX for its chroma key blts.

Rejecting a fragment based on its color can be used to prevent writes where the
destination color does not change. For example a fogged fragment which has the same
color as the background fog color does not need to be written if the screen was cleared to
the fog color.

The chroma test is given by:

where Cl is the lower chroma value held in the ChromalLower register, Cu is the upper
chroma value held in the ChromaUpper register and T is the selected color to test
against. Each component is tested separately and obviously a component can be
excluded from the test by setting the lower and upper values to 0 and 255 respectively.

The format of the ChromaLower and ChromaUpper registers is the red byte is in the
least significant byte, then the green byte and finally the blue byte. If the framebuffer

format for a color component is less than 8 bits then the unused bits in the upper and

lower register for this component are set to zero.

The chroma test is enabled when the Enable bit in the ChromaMode register is set. The
source color to test is given by the Source field. The sense of the chroma test is controlled
by the Sense bit - the effect shown in the table below:

Chroma Test Test Result ChromaSense |Action
Enabled

X X [The framebuffer is updated as normal

False Include The framebuffer is not updated
True Include The framebuffer is updated as normal
False Exclude The framebuffer is updated as normal

<z

True Exclude The framebuffer is not updated

The format of the ChromaTestMode register is:

ChromaTestMode
ChromaTestModeAnd
ChromaTestModeOr

Name

Type Offset Format

ChromaTestMode Alpha Blend 0x8F18 Bitfield
ChromaTestModeAnd Alpha Blend 0xACCO Bitfield Logic Mask
ChromaTestModeOr Alpha Blend 0xACC8 Bitfield Logic Mask

3D/.bs

Control registers

Proprietary and Confidential 8-9

Alpha Blending Permedia4 Programmer’s Guide Volume I

Bits Name Read | Write | Reset | Description
21
0 Enable O O X When set enables chroma testing under control

of the remaining bits in this register. When clear
no chroma test 1s done.

1...2 Source 0 N X This field selects which color (after any suitable
conversion) is to be used for the chroma test. The
values are:

0 = FBSourceData

1 = FBData

2 = Input Color (from fragment)

3 = Output Color (after any alpha

blending)
3.4 PassAction 0 N X This field defines what action is to be taken if the
chroma test passes (and is enabled). The options are:
0 = Pass
1 = Reject

2 = Substitute ChromaPassColor
3 = Substitute ChromaFailColor

5...6 FailAction 0 0 X This field defines what action is to be taken if the
chroma test fails (and is enabled). The options ate:
0 = Pass
1 = Reject
2 = Substitute ChromaPassColor
3 = Substitute ChromaFailColor

7...31 Unused 0 0 X

Notes: Used to test the fragment’s color against a range of colors after alphablending. The chroma test is
enabled by the enable bit (0) in the register. Note: incompatible with MX programming.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

The color format and order is needed as the destination color is read from the framebuffer
and needs to be converted into the internal Permedia4 representation, it should therefore
be set as appropriate for the framebuffer.

21 Logic Op register readback is via the main register only

8-10 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Alpha Blending

Internal Color Channel
Format Name R G B A
0 8:8:8:8 3@0 3@8 8@16 8@24
1 5:5:5:5 5@0 5@5 5@10 5@15
2 4:4:4:4 4@0 4@4 4@8 4@12
Color 3 4:4:4:4Front 4@0 4@8 4@16 4@?24
Otrder: 4 4:4:4:4Back 4@4 4@12 4@?20 4@?28
BGR 5 3:3:2Front 3@0 3@3 2@6 255
6 3:3:2Back 3@8 3@11 2@14 255
7 1:2:1Front 1@0 2@1 1@3 255
8 1:2:1Back 1@4 2(@5 1@7 255
13 5:5:5Back 5@16 5@?21 5@26 255
0 8:8:8:8 8@16 3@8 8@0 8@24
1 5:5:5:5 5@10 5@5 5@0 5@15
2 4:4:4:4 4@8 4@4 4@0 4@12
Color 3 4:4:4:4Front 4@16 4@8 4@0 4@?24
Otrder: 4 4:4:4:4Back 4@?20 4@12 4@4 4@?28
RGB 5 3:3:2Front 3@5 3@2 2@0 255
6 3:3:2Back 3@13 3@10 2@8 255
8 1:2:1Back 1@7 2@5 1@4 255
7 1:2:1Front 1@3 2@1 1@0 255
13 5:5:5Back 5@?26 5@?21 5@16 255
CI 14 CI8 3@0 0 0 0
15 CI4 4@0 0 0 0

Table 8.21 Permedia4 Color Modes

The framebuffer may be configured to be RGBA or Color Index (Cl). The R, G, B and A
columns show the width of each color component. n@m means that n bits starting at bit
position m are read and scaled to fit the 8bit internal color channel format. The least
significant bit position is zero. A numerical value (0 or 255) indicates the value substituted
when the corresponding channel does not exist in the framebuffer.

For the Front and Back Modes the value to be blended is read only from the low bits or
high bits respectively. This is to assist with color space double buffering.

8.3.6 Alpha Blend Example

This example sets the blend mode to allow antialiasing of polygons, i.e. source blend
function = Source Alpha Saturate, destination blend function = One. These blend functions
are suitable for polygon antialiasing when polygons are drawn in front to back order, and
the depth test is disabled.

// Enable framebuffer reads allow blend operation
// - Not Shown -

I/ Set the a pha mode.

3D/.b5 Proprietary and Confidential 8-11

Alpha Blending

8-12

Permedia4 Programmer’s Guide Volume I

aphaBlendColorMode.Enable = PERMEDIA4 ENABLE
alphaBlendColorMode.SourceBlend = PERMEDIA4_BLEND_SRC_ALPHA_SATURATE

alphaBlendColorMode.DestinationBlend = PERMEDIA4_BLEND_ONE
alphaBlendColorM ode.ColorFormat = as appropriate

AlphaBlendCol orM ode(al phaBlendCol orM ode) // Load register
I/l Enable antialias application and disable

/ depth testing

I/l - Not Shown -

// Render polygons sorted front to back with

I/l Coverage Enable hit set in the Render command
I/l - Not Shown —

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Color Format

Color Format and Logical Ops

9.1

The color format unit converts from Permedia4’s internal color representation to a format
suitable to be written into the framebuffer. This process may optionally include dithering of
the color values for framebuffers with less than 8 bits width per color component. If the unit
is disabled then the color is not modified in any way.

Color and Alpha Formats

Permedia4 separates the Alpha and Color format information into two new registers
(AlphaBlendColorMode and AlphaBlendAlphaMode). The AlphaBlendMode register is
not supported.

The color format is held in the AlphaBlendColorMode register. Note that in OpenGL
alpha blending is not defined for Cl mode. Raw framebuffer formats from local memory are
only converted to 8-bit formats in the AlphaBlend registers.

Alpha is controlled separately from color to allow, for example, the situation in antialiasing
where it represents coverage - this must be linearly scaled to preserve the 100% covered
state.

The table below shows the different color modes supported. Inthe R, G, B and A columns
the nomenclature n@m means the component is n bits wide and starts at bit position m in
the framebuffer. The least significant bit position is 0 and a dash in a column indicates
that this component does not exist for this mode.

In the case of RGB formats where no Alpha is shown, the alpha field should be set to 255.
Use the NoAlphaBuffer bit in the AlphaBlendAlphaMode register to do this.

Permedia4 supports two color-ordering formats: ABGR and ARGB. The rightmost letter
represents the color in the least significant part of the word. This is controlled by the
ColorOrder bit in the AlphaBlendColorMode register (and elsewhere), and is easily
implemented by just swapping the R and B components after conversion into the internal
format. The only exception to this are the 3:3:2 formats where the actual bit fields
extracted from the framebuffer data need to be modified as well because the R and B
components are differing widths. CI processing is not affected by this swap and the result
is always on the internal R channel.

When converting a Color Index value to the internal format any unused bits are set to zero

Internal Color Channels

Format

Color
Order

Name

G

B

lisiele)

3D/.bs

BGR

8:8:8:8

8@0

3@8

8@16

8@24

BGR

4:4:4:4

4@0

4@4

4@8

4@12

BGR

5:5:5:1

5@0

5@5

5@10

BGR

5:6:5

5@0

6@5

5@11

1@15

BGR

3:3:2

3@0

3@3

2@6

O PN~ O

RGB

8:8:8:8

8@16

3@s8

8@0

8@24

Proprietary and Confidential

9-1

Color Format

Permedia4 Programmer’s Guide Volume I

RGB 44:44 4@8 A@4 4@0 A@12

RGB 5551 5@10 5@5 5@0 1@15
RGB 5:6:5 5@11 6@5 5@0 -

AN -

RGB 3:3:2 3@5 3@2 2@0 -

CI

15 X CI8 8@0 0 0 0

Name

The AlphaConversion bit in the AlphaBlendAlphaMode register selects the conversion
method for alpha values read from the framebuffer. When the conversion bit is set the
corresponding component(s) is left shifted by (8 - n) bits and zero filling.

Note For some formats the components have different widths, hence different
values of n.

« The Scale method linearly scales the alpha values to fill the full range of an 8 bit
value. This method is preferable when, for example, downloading an image with
fewer bits per pixel into a deeper (i.e. more bits per pixel) framebuffer.

« The Shift method left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it
preserves the framebuffer alpha when fragment alpha does not contribute to it. For
example if a three bit component has bits B2, B1 and BO then the 8 bit value would be
made up as follows:

Bit 7 Bit O of output byte

v v

B2 Bl BO B2 By Bp B2 Bj

If the alpha component doesn'’t exist in the format, or NoAlphaBuffer is set then the alpha
value is not affected by the setting of the AlphaConversion bit and is always set to 255 (in
the 8 bit domain) or 256 (in the 9 bit domain).

The AlphaBlendColorMode register controls color channel blending. It has the following
format:

Type Offset Format

AlphaBlendColorMode Alpha Blend 0x AFAO Bitfield
AlphaBlendColotModeAnd Alpha Blend 0x ACBO Bitfield Logic Mask
AlphaBlendColorModeOr Alpha Blend 0x ACB8 Bitfield Logic Mask

Control registers

Bits

Name Read?2 |Write |Reset |Description

0

Enable N [X When set causes the fragment's color to be alpha
blended under control of the remaining bits in this
register. When clear the fragment color remains
unchanged (but may later to effected by the chroma
test).

22 Logic Op register readback is via the main register

9-2

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Color Format

SourceBlend

This field defines the source blend function to use. See
the table in the AphaBlendColorMode register for the
possible options

DestBlend

This field defines the destination blend function to use.
See the table in the A/phaBlendColorMode register for the
possible options

Source
TimesTwo

This bit, when set causes the source blend result to be
multiplied by two before it is combined with the dest
blend result. When this bit is clear no multiply occurs

DestTimes Two

This bit, when set causes the dest blend result to be
multiplied by two before it is combined with the source
blend result. When this bit is clear no multiply occurs

10

InvertSource

This bit, when set, causes the incomming source data to
be inverted before any blend operation takes place

11

InvertDest

This bit, when set, causes the incomming dest data to
be inverted before any blend operation takes place

12...

15

Color Format

This field defines framebuffer color formats. See the
table in the .A/phaBlendColorMode register for the
possible options

16

ColorOrder

This bit selects the color order in the framebuffer:
0 = BGR
1 =RGB

17

Color

Conversion

This bit selects how color components less than 8 bits
wide are converted to 8 bit wide values prior to the
alpha blend calculations. The options are

0 = Scale

1 = Shift

18

Constant Source

This bit, when set, forces the Source color to come
trom the AphaSourceColor register (in 8888 format)
instead of the framebuffer.

0 = Use framebuffer

1 = Use AlphaSourceColor register

19

ConstantDest

This bit, when set, forces the destination colotr to come
from the A/phaDestColor register (in 8888 format)
instead of the fragment's color.

0 = Use fragment's color.

1 = Use AphaDestColor register.

20..

.23

Operation

This field selects how the source and destination blend
results are to be combined. The options are:

Add

Subtract (ie. S - D)

Subtract reversed (i.e. D - S)

Minimum

Maximum

S W= O

24

SwapSD

This bit, when set causes the source and destination
pixel values to be swapped. The main use for this is to
allow a downloaded color value to be in a format other
than 8888 and use this unit to do color conversion.

3D/.bs

The ColorConversion bit selects the conversion method for RGB values read from the
framebuffer, similarly to the AlphaConversion bit for alpha values:

Proprietary and Confidential 9-3

Color Format Permedia4 Programmer’s Guide Volume I

9.1.1

« The Scale method linearly scales the color values to fill the full range of an 8 bit value.
This method is preferable when, for example, downloading an image with fewer bits
per pixel into a deeper (i.e. more bits per pixel) framebuffer.

« The Shift method left shifts by the appropriate amount to make the component 8 bits
wide. This method is preferable when blending into a dithered framebuffer as it
preserves the framebuffer color when fragment color does not contribute to it23

Color Dithering

Permedia4 uses an ordered dither algorithm to implement color dithering. The following
table shows the exact type of dithering used when dither is enabled. The type of dithering
depends on the width of individual color components:

Component Width Type of Dithering
8 No Dithering
5 2x2 Otrdered Dither
4 4x4 Otrdered Dither
3 4x4 Ordered Dither
2 4x4 Otrdered Dither
1 4x4 Ordered Dither

Table 9.22 Dither Methods

Permedia4’s ordered dither matrices are shown below:

0 8 2 10
12 4 14 6 0 2
3 11 1 9 3 1
15 7 13 5

Table 9.23 Ordered Dither Matrices, 4x4 and 2x2.

If the color formatting unit is disabled, the RGBA color components are not modified.
Instead, they are truncated or rounded under the control of the RoundingMode bit in the
DitherMode register when they are placed in the framebuffer. This assumes that the
framebuffer width is less than 8 bits per component. In ClI mode the value is rounded to
the nearest integer. In both cases the result is clamped to a maximum value to prevent
overflow.

In some situations only screen coordinates are available, but windows-relative dithering is
required. This can be implemented by adding an optional offset to the coordinates before
indexing the dither tables. The offset is a two bit number which is supplied for each
coordinate, X and Y. The XOffset, YOffset fields in the DitherMode register control this
operation, if window relative coordinates are used they should be set to zero. For more
information on offset calculation see section 4.2.10.1 - Address Calculation, in Volume |

23The scale method would otherwise cause the 'fraction' bits to be non zero, which could result in a different color when re-
dithered again. This shows up as a faint outline of the undetlying polygon, when, for example, an alpha blended texture is used
with zero value to provide cut-outs.

9-4

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Color Format

Alpha channel dithering is qualified by the AlphaDither control bit. When cleared the alpha
channel is processed in the same way as the color channels, as dictated by the
DitherEnable bit. When the AlphaDither bit is set however, the alpha channel is not
dithered, but is processed according to the state of the RoundingMode bit. The ability to
disable dithering on the alpha channel is useful when using the alpha buffer to hold
coverage information during antialiasing. In this situation dithering adds noise to the
coverage value, which would create artifacts where a pixel which should be fully covered is
reported as not fully covered.

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details on dithering.

9.1.2 Registers

Dither operations are controlled by the DitherMode register:

DitherMode
DitherModeAnd
DitherModeOr

Name Type Offset Format
DitherMode Global 0x8818 Bitfield
DitherModeAnd Global 0xACDO Bitfield Logic Mask
DitherModeOr Global 0xACDS8 Bitfield Logic Mask

Control Register

Bits Name Read | Write | Reset | Description

0 Enable 0 B X When set causes the fragment's color values to be
dithered or rounded under control of the remaining
bits in this register. If this bit is clear then the
fragment's color is passed unchanged.

1 Dither Enable | [] B X When this bit is set any RGB format color is dithered,
otherwise it is rounded to the destination size under
control of the RoundingMode field. See the table
below for the dither matrix and how it is combined
with the color components. Color Index formats are
always rounded.

2...5 Color Format 0 B X The color format which in turn is coded from the size
and position of the red, green, blue and (if present) the
alpha components.

6...7 Xoffset N B X This offset is added to the fragment's x coordinate to
derive the x address in the dither table. This allows
window-relative dithering using screen coordinates.

8...9 Yoffset 0 B X This offset is added to the fragment's y coordinate to
derive the y address in the dither table. This allows
window-relative dithering using screen coordinates.

10 Color Order 0 B be Holds the color order. The options are:
0 =BGR
1 =RGB

3D/.b5 Proprietary and Confidential 9-5

Color Format Permedia4 Programmer’s Guide Volume I

11...13 Reserved 0 0 X
14 Alpha Dither 0 il X This bit allows the alpha channel to be rounded even
when the color channels are dithered. This helps
when antialiasing.
0 = Alpha value is dithered (if
DitherEnable is set)
1 = Alpha value is always rounded.
15...16 Rounding 0 il X 0 = Truncate
Mode 1 = Round Up
2 = Round Down
17...31 Unused 0 0 X

Figure 9-1 DitherMode Register

9.1.3

9.1.4

9.1.5

9-6

Dither Example
To set the framebuffer format to RGB 3:3:2 and enable dithering:

/1 332 Dithering

ditherMode.UnitEnable = PERMEDIA4_TRUE
ditherMode.DitherEnable = PERMEDIA4_TRUE

ditherM ode.ColorMode = PERMEDIA4_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

3:3:2 Color Format Example
To set the framebuffer format to RGB 3:3:2 and disable dithering:

/1 332 No Dither

ditherMode.UnitEnable = PERMEDIA4 TRUE

ditherM ode.DitherEnable = PERMEDIA4 FALSE

ditherM ode.ColorMode = PERMEDIA4_COLOR_FORMAT_RGB_332
DitherMode(ditherMode) // Load register

8:8:8:8 Color Format Example
To set the framebuffer to RGBA 8:8:8:8 and not dithered:

// 8888 Dithered (No effect as 8 bit components are
I/ not dithered)

ditherM ode.UnitEnable = PERMEDIA4 TRUE
ditherM ode.DitherEnable = PERMEDIA4_FALSE
ditherM ode.ColorMode = PERMEDIA4_COLOR_FORMAT RGBA_8888

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Color Format

9.1.6

9.2

9.2.1

3D/.bs

DitherMode(ditherMode) // Load register

The same can be achieved by disabling the color formatting unit as 8 bit components are
not dithered:

/1 8888 No dither
ditherMode.UnitEnable = PERMEDIA4 FALSE

DitherMode(ditherMode) // Load register

Color Index Format Example
To set the framebuffer to 4 bit Color Index and enable dithering:

/I 4 bit Cl with dithering

ditherMode.UnitEnable = PERMEDIA4 TRUE

ditherM ode.DitherEnable = PERMEDIA4 TRUE
ditherMode.ColorMode = PERMEDIA4_COLOR_FORMAT _CI_4
DitherMode(ditherMode) // Load register

Logical Op Unit
The logical op unit performs two functions; logic ops between the fragment color (source

color) and a value from the framebuffer (destination color), and, optionally control of a
special Permedia4 mode which allows high performance flat shaded rendering.

High Speed Flat Shaded Rendering

This mode is still supported on the Permedia4 and is detailed below for completeness but
offers no advantage over span processing. The technique uses a color value from the
FBWriteData register instead of fragment color. It is retained for backwards compatibility
only. To use the mode the following constraints must be satisfied:

« Flat shaded aliased primitive

« No dithering required or logical ops

« No stencil, depth or GID testing required

+ No alpha blending

If all the conditions are met then load the FBWriteData register with the required
framebuffer color data and set the UseConstantFBWriteData bit in the LogicalOpMode
register. All unused units should be disabled.

This mode is most useful for 2D applications or for clearing the framebuffer when the
memory does not support block writes. Note that the FBWriteData register should be
considered volatile when context switching.

Proprietary and Confidential 9-7

Color Format

9.2.2 Logical Operations

The logical operations supported by Permedia4 are:

Permedia4 Programmer’s Guide Volume I

Mode Name Operation Mode Name Operation
0 Clear 0 8 Nor ~S | D)
1 And S&D 9 Equivalent ~S "~ D)
2 And Reverse S& ~D 10 Invert ~D
3 Copy S 11 Or Reverse S| ~D
4 And Inverted ~S& D 12 Copy Invert ~S
5 Noop D 13 Or Invert ~S | D
6 Xor S*D 14 Nand ~S & D)
7 Or S| D 15 Set 1
Where: S = Source (fragment) color, D = Destination (framebuffer) color
Table 9.24 Logical Operations
For correct operation of this unit in a mode which takes the destination color, Permedia4
must be configured to allow reads from the framebuffer using the FBDestReadMode
register. See section 87 for more details.
Permedia4 makes no distinction between RGBA and Cl modes when performing logical
operations.
9.2.3 Registers

The operation of the unit is controlled by the LogicalOpMode register:

LogicalOpMode
LogicalOpModeAnd

LogicalOpModeOr

Name Type Offset Format

LogicalOpMode Logic Ops 0x8828 Bitfield

LogicalOpModeAnd Logic Ops 0xAECO Bitfield Logic Mask

LogicalOpModeOr Logic Ops 0xAECS Bitfield Logic Mask

Control registers

Bits Name Read | Write | Reset | Description

0 Enable 0 i < When set causes the fragment's color to be logial op'ed
under control of the remaining bits in this register.
When clear the fragment color remains unchanged
(but may later to effected by write masking).

9-8 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Color Format

1..4 LogicOp 0 N x This field defines the logical op function to use. The
options are:
0 = Clear (0) 1=AndS & D)
2 = AndReverse (§ & ~D) 3 = Copy (S)
4 = AndInvert (~S & D) 5 = Noop (D)
6 =Xor (S™ D) 7=0: (S | D)
8 = Nor (~(S | D); 9 = Equiv (~(S ~ D);
10 = Invert (~D)
11 = OtReverse (S | ~D)
12 = Copylavert (~S)
13 = Orlavert (~S | D) 14 = Nand (~(S & D);
15 = Set (1)
where: S is Color or FBSourceData
D is FBData
5 UseConstantEFB |] B x There is no longer any performance advantage to
WriteData using this bit but it is retained for backwards
compatability.
6 BackgroundEn | N - This bit, when set, enables a different logical operation
able to be done for background pixels. If this bit is clear
then the same logical operation is applied to
foreground and background pixels. Setting this bit
when the Enable field is zero has no effect.
A background pixel is a pixel whose corresponding bit
in the color mask is zero.
7...10 BackgroundLog |] B x This field specifies the logical operation to apply to
icalOp background pixels, if this has been enabled by the
BackgroundEnable field. The options and field values
are the same as the LogicalOp field.
11 UseConstantSo | [] B x This field, when set, causes the source data to be taken
urce from the ForegroundColor register, otherwise it is
taken from the fragment, if needed. The color format
is in the raw framebuffer format and 8 or 16 bit pixels
should have their color replicated to fill the full 32
bits.
12...31 Unused 0 0 x
9.2.4 XOR Example
To set the logical operation to XOR.
/I Set framebuffer to allow reads
/I Not shown
logica OpMode.UnitEnable = PERMEDIA4 ENABLE
logical OpMode.LogicalOp = PERMEDIA4 L OGICOP_XOR
Logical OpMode(logical OpMode) /l Load register
3D/.b5 Proprietary and Confidential 9-9

Color Format Permedia4 Programmer’s Guide Volume I

9.2.5

9-10

Logical Op and Software Writemask Example

To set the logical operation to COPY, enable the software writemask, and write to the
green component in an 8 bit framebuffer configured in 3:3:2 RGB mode:

/1 Set framebuffer to allow reads
/ Not shown

ditherM ode.UnitEnable = PERMEDIA4_ENABLE

ditherM ode.DitherEnable = PERMEDIA4_ENABLE

ditherM ode.ColorMode = PERMEDIA4_COLOR_FORMAT_RGB_332
DitherMode(ditherM ode) /I Load register

logicalOpMode.UnitEnable = PERMEDIA4 ENABLE
logical OpMode.LogicalOp = PERMEDIA4_LOGICOP_COPY

L ogical OpM ode(logical OpM ode) Il Load register

FBSoftwareWriteM ask(OxFFFFFFE3)

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Framebuffer Writemasks

10

Framebuffer Writemasks

10.1.1

10.1.2

10.1.3

10.1.4

3D/.bs

Two types of framebuffer writemasking are supported by Permedia4; Software and
Hardware. Software writemasking requires a read from the framebuffer to combine the
fragment color with the framebuffer color before checking the bits in the mask to see which
planes are writeable. Hardware writemasking is implemented using SDRAM/SGRAM
writemasks and no framebuffer read is required. Refer to section 12.3, Windows
Initialisation, for further information on Writemasks and Write initialisation.

Software Writemasks

Software writemasking is controlled by the FBSoftwareWriteMask register. The data field
has one bit per framebuffer bit which when set, allows the corresponding framebuffer bit to
be updated. When reset it disables writing to that bit. Software writemasking is applied to
all fragments and is not controlled by an enable/disable bit. However it may effectively be
disabled by setting the mask to all 1's. Note that the ReadDestination bit must be enabled
in the FBDestReadMode register when using software writemasks, in which some of the
bits are zero.

See the Framebuffer Read/Write section for details of how to enable/disable framebuffer
reads.

Hardware Writemasks

Hardware writemasks, if present, are controlled using the FBHardwareWriteMask register.
If the framebuffer supports hardware writemasks, and they are to be used, then software
writemasking should be disabled (by setting all the bits in the FBSoftwareWriteMask
register). This results in fewer framebuffer reads when no logical operations or alpha
blending is needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware writemask must be
replicated to all 4 bytes of the FBHardwareWriteMask register. If the framebuffer is in 16
bit packed mode then the 16 bit hardware writemask must be replicated to both halves of
the FBHardwareWriteMask register.

See the Permedia4 Reference Guide for more details of framebuffer hardware writemasks.

Registers

Both FBHardwareWriteMask and FBSoftwareWriteMask are 32 bit registers in which
each bit represents a bit in the framebuffer.

Software Writemask Example
Using software writemasks:

/I Enable framebuffer reads (not shown)
I Set the writemask

Proprietary and Confidential 10-1

Framebuffer Writemasks Permedia4 Programmer’s Guide Volume I

FB SoftwareWriteM ask(0xOFOFOFOF)
See §9.2.5 for another example

10.1.5 Hardware Writemask Example

Using hardware writemasks when neither logic ops, nor alpha blending are enabled:

// Disable framebuffer reads (not shown)

I Set the writemasks

FB SoftwareWriteM ask(OXFFFFFFFF) // 'Disable
FBHardwareWriteM ask(0xFOFOFOFQ) // Actual writemask

10-2 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Host Out

11

Host Out

The Host Out Unit controls which data is available at the output FIFO, and gathers
statistics about the rendering operations (picking and extent testing) and the
synchronization of Permedia4 via the Sync register.

11.1 Filtering

Filtering controls the data available at the output FIFO. There are a number of categories:

« depth, stencil and color: these are data values associated with a fragment which has
been read from the localbuffer or framebuffer, or generated using the UpLoadData
flag in the Framebuffer Write Unit.

« Asingle register, Sync, which is used to synchronize Permedia4 and flush the
graphics pipeline.

- Statistics: The registers associated with extent and picking.

The filtering is controlled by the FilterMode register which is split into 2 bit fields for each
category. The 2 bit field selects whether the register tag and/or register data, are passed to
the output FIFO. The format of the FilterMode register is shown in the table below.

Register Category Tag Data Description
Control |Control
Bit Bit
Diagnostic Use Only 0 1
Diagnostic Use Only 2 3
Depth 4 5 This is the data from image upload of the Depth (Z) buffer.
Stencil 6 7 This is the data from image upload of the Stencil buffer.
Color 8 9 This is the data from image upload of the Framebuffer
(FBColor).
Synchronization 10 11
Statistics 13 This is the data generated following a command to read
back the results of the statistic measurements: PickResult,
MaxHitRegion, MinHitRegion.
Diagnostic Use Only 14 15

Table 11.25 Filter Modes

11.1.1 Filter Mode Example
/I Set up Filter mode to only permit read back of

3D/.bs

Proprietary and Confidential 11-1

Host Out

11.1.2

11.1.21

11.1.2.2

11-2

Permedia4 Programmer’s Guide Volume I

Il synchronization tag and data
FilterM ode(0x0C00) /Il Set bits 10 & 11

Statistic Operations

There are two statistic collection modes of operation; picking and extent checking. Picking
is normally used to select drawn objects or regions of the screen. Typically, extent
checking is used to determine the bounds within which drawing has occurred so that a
smaller area of the framebuffer can subsequently be cleared. Spans are handled by
Permedia4 in a fully consistent way for picking and extent checking.

Statistic collection is controlled using the StatisticMode register.

Picking

In picking mode, the active and/or passive fragments and spans have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegion registers. If the result is true, then the PickResult flag is set, otherwise it holds
its previous state. The compare function can be either Inside or Outside. Before picking
picking can start, the ResetPickResult register must be loaded to clear the PickResult
flag.

The MinRegion and MaxRegion registers are loaded to select the region of interest for
picking picking. A coordinate is inside the region if:

Xmin < X < Xmax

YminsY <Ymax

where X and Y are from the fragment and the min/max values are from MinRegion and
MaxRegion registers. This comparison is identical to the one used in the scissor tests.
The following stages are required for picking picking:

1) load ResetPickResult, MinRegion and MaxRegion registers

2) Set up the FilterMode to allow statistic commands out of Permediad MX

3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO while waiting for the PickResult to have passed through the
pipeline.

Extent Checking

In extent mode, active and/or passive fragments have their associated XY coordinates
compared to the MinRegion and MaxRegion registers and if found to be outside the
defined rectangular region, then the appropriate register is updated with the new
coordinate(s) to extend the region. The Inside/Outside bit has no effect in this mode. Block
fills are included in the extent checking if the StatisticMode register is set to include spans.

The MinRegion and MaxRegion registers are loaded to select the maximum value
(MinRegion) and minimum value (MaxRegion) for extent checking. A coordinate is inside
the region if:

XminSX <Xmax

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Host Out

11.1.3

11.1.4

YminsY <Ymax

where X and Y are from the fragment and the min/max values are from MinRegion and
MaxRegion registers. This comparison is identical to the one used in the scissor tests.

Once all the necessary primitives have been rendered the results can be found using the
MinHitRegion and MaxHitRegion commands, which cause the contents of the
MinRegion and MaxRegion registers respectively to be written into the output FIFO
(under control of the FilterMode register).

Synchronization

The Sync register is filtered and written to the output FIFO in a similar fashion to the other
registers. If an interrupt is required then the most significant bit of the Sync command
register must be set, and the filtering must be set up to write something into the FIFO. If
nothing is written to the FIFO (because of the FilterMode) then no interrupt is generated.

The actual interrupt is not generated until the Sync data or tag has passed through. Itis
on the output of the FIFO, which allows low level resynchronization between the core and
PCI clock domains. The FIFO has an extra bit in width to accommodate the interrupt
signal. When both the data and tag are written into the FIFO only the first entry in the FIFO
will cause the interrupt (assuming an interrupt was requested).

The remaining bits in the data field are free and can be used by the host to identify the
reason for the Sync.

Registers
Filtering is controlled by the FilterMode register:

FilterMode
FilterModeAnd
FilterModeOr

Name Type Offset Format
FilterMode Output 0x8C00 Bitfield
FilterModeAnd Output 0xADO00 Bitfield Logic Mask
FilterModeOr Output 0xADO08 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
24
0...3 Reserved 0 N - Reserved for diagnostic use — set to 0
4 LBDepthTag 0 N - When set allows the L.BDepth tag to be written into the
output FIFO.
5 LBDepthData | N <x When set allows the data upload from the Depth
buffer to be written into the output FIFO.
6 StencilTag 0 N X When set allows the LBStencil tag to be written into
the output FIFO.

24 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential 11-3

Host Out Permedia4 Programmer’s Guide Volume I

7 StencilData 0 i When set allows the data upload from the Stencil
buffer to be written into the output FIFO.

8 FBColorTag 0 i When set allows the FBColor tag to be written into the
output FIFO.

9 FBColorData 0 i When set allows the data upload from the framebuffer
to be written into the output FIFO.

10 SyncTag 0 i When set allows Sync tag to be written into the output
FIFO.

11 SyncData 0 i When set allows the Sync data to be written into the
output FIFO.

12 StatisticsTag 0 B When set allows the PickResult, MaxHitRegion and
MinHitRegion tags to be written into the output FIFO.

13 StatisticsData 0 i When set allows the PickResult, MaxHitRegion and
MinHitRegion data to be written into the output FIFO.

14 RemainderTag | i When set allows any tags not covered by the categories
in this table to be written into the output FIFO.

15 RemainderData | i When set allows any data not covered by the
categories in this table to be written into the output
FIFO.

16...17 ByteSwap 0 i This field controls the byte swapping of the data field
when it is written into the output FIFO. The options
are:

0 = ABCD (i.e. no swap)
1 =BADC
2 = CDAB
3 = DCBA

18 ContextTag 0 i When set allows the ContextData and EndOfFeedback
tags to be written into the output FIFO.

19 ContextData 0 i When set allows the ContextData and EndOfFeedback
data to be written into the output FIFO.

20 RunlLength 0 i This bit, when set, will write run length encoded data

Encode Data into the host out FIFO.

21...31 Unused 0 0

Notes: This register can only be updated if the Security register is set to 0.

Figure 11-1 FilterMode Register

StatisticMode
StatisticModeAnd
StatisticModeOr

Name
StatisticMode

StatisticModeAnd
StatisticModeOr

11-4

Type
Output
Output
Output
Command

Statistic collection is controlled by the StatisticMode register:

Offset Format
0x8C08 Bitfield
0xAD10 Bitfield Logic Mask
0xAD18 Bitfield Logic Mask

Proprietary and Confidential

3D/.bs

Permedia4 Programmer’s Guide Volume II Host Out

Bits Name Read | Write | Reset | Description
0 Enable 0 N < When set allows the collection of statistics
information.
1 StatsType 0 B x Selects the type of staticstics to gather. The options
are:
0 = Picking
1 = Extent
2 ActiveSteps 0 N - When set includes active fragments in the statistics
gathering, otherwise they are excluded.
3 PassiveSteps 0 N - When set includes culled fragments in the statistics
gathering, otherwise they are excluded.
4 Compare 0 B < Selects the type of compare function to use. The
Function options are:
0 = Inside region
1 = Outside region
5 Spans 0 N % When set includes spans in the statistics gathering,
otherwise they are excluded.
6..31 Unused 0 0 x

Figure 11-2 StatisticMode Register

11.1.5

3D/.bs

MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The format is 16
bit 2's complement numbers, X in the least significant end of the word.

PickResult is used to read the results of picking, the pick flag is placed in the least
significant bit of the 32 bit register. ResetPickResult is used to clear the picking flag, the
data field is not used.

The Sync register is 32 bits with the most significant bit set to indicate an interrupt is to be
generated, bits 0-30 are available for the user.

Picking Example
Set the statistic mode to picking and detect any active fragments in the region 0x0 <= x <
0x100, 0x0 <=y < 0x100. Render some primitives then read back the results.

/I Set filter mode as above
FilterM ode(0x0CQ0) /I Set bits10 & 11

Il Set statistic mode
MinRegion(0)
MaxRegion(0x100 | 0x100 << 16)

/I Clear the picking flag
ResetPickResult(0x0) // Datanot used

Proprietary and Confidential 11-5

Host Out Permedia4 Programmer’s Guide Volume I

/Il Now render primitives.... ...
Render (render) // All units set as appropriate

/I All rendering finished.

Il Set the filter mode to alow read back of Syncs
Il and statistic information (tag and data)

FilterM ode(0x3C00) // Set bits 10 to 13

/I Write to the PickResult register
PickResult(0x0) // Data not used

/l Now read the PickResult from the output FIFO (not shown)

11.1.6 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data (0x34) in the
lower 31 bits of the Sync register.

Il Set up Filter mode to only permit read back of
Il synchronization tag and data
FilterM ode(0x0CO00) /Il Set bits 10 & 11

I/ Write to the Sync register with the top bit
I/ (bit 31) set and user data encoded into the
Il lower bits (0-30)

sync = (Ox1 << 31) | (0x34 & Ox7FFFFFFF)
Sync (sync)

/ Now wait for the sync interrupt. (Not shown.)

11-6 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Initialization

12

Initialization

12.1

12.1.1

3D/.bs

Initializing Permedia4

This section illustrates how to initialize Permedia4 following reset, prior to carrying out
rendering operations.

Initialization falls broadly into three areas, though in different systems precise

responsibilities can vary:

. System initialization covers the PCI bus, memory set-up and video output. This
information typically is only initialized once following reset.

« Window initialization covers the base address of the current rendering window and its
color format. This must be initialized at reset and needs to be updated each time
Permedia4 starts drawing to a new window.

« Application initialization covers state that is typically dynamic, enabling and disabling
depth testing for example. Again this state must be set at reset, but is likely to be
updated relatively frequently.

To make use of the full functionality of Permedia4 consult the relevant sections of Chapter
1 - Graphics Programming. Examples are given which make use of the pseudocode
conventions given in Appendix B.

Note: In general the graphics registers are not hardware initialized to specific
values at reset. In the examples below it is assumed that the data structures
used to load these registers are initialized to zero. Thus bit fields which are
not set explicitly default to zero.

Reset and initialisation

The units and FIFOs can be reset under software control or by a hardware reset signal,
usually as a result of power-on.

During reset all the inter-unit FIFOs, the FIFOs between the core and the memory
controller, and the host interface are emptied. Some of the units (Local Buffer Read and
Framebuffer Read) also have internal FIFOs and these are cleared as well.

All the state machines in each unit are forced into their idle state so this together with the
FIFOs being empty guarantees a safe start when the first message is received.

Note: A reset does not, in general, change the contents of any state information
which can be read back. After a power-on reset all these registers must be
initialized by software to place them in a well defined state before any
rendering isdone. Units are not automatically disabled on a reset.

Proprietary and Confidential 12-1

Initialization

12.2

12.2.1

12.2.2

12-2

Permedia4 Programmer’s Guide Volume Il

System Initialization

PCI bus

There are a set of PCI related registers which can be interrogated for information about the
chip, for example its revision and device ID. Some of these PCI related registers need to
be set up at reset, for instance to configure the base addresses of the different memory
regions of the chip. However, the subject of PCI bus initialization is beyond the scope of
this document. For more details refer to the Reset chapter of the Permedia4 Reference
Guide, and the PCI Local Bus Specification Rev2.1.

Memory Configuration

There are no memory hardware configuration pins. Memory parameters are set through a
group of registers in Region 0. These parameters are described in detail in the Permediad
Reference Guide, chapter 9 (Memory Systems) including register bitfields and sample
configurations. The primary registers are LocalMemCaps and LocalMemControl.
LocalMemCaps is show below.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Initialization

LocalMemCaps

Name Type Offset Format
LocalMemCaps Memory Control ~ 0x1018 Bitfield
Command register
Bits Name Read | Write | Reset Description
0.3 Column N] 0 Address bits to use for column address.
Address
4.7 RowAddress 0 M 0 Address bits to use for row address.
8.11 BankAddress 0 n 0 Address bits to use for bank address.
12..15 ChipSelect 0 n 0 Address bits to use for chip select.
16..19 PageSize 0 n 0 Page size (units = full width of memory)
0 = 32 units 1 = 64 units, etc
20..23 RegionSize 0] OxF Region size (units = full width of memory)
0 = 32 units 1 = 64 units, etc
24 NoPrecharge 0 N 0 0 = off 1=on
Opt
25 SpecialMode 0 N 0 0 = off 1=on
Opt
26 TwoColor N] 0 0 = off 1=o0n
BlockFill
27 Combine Banks | []] 0 0 = off 1=on
28 NoWriteMask | []] 0x1 0 = off 1=on
29 NoBlockFill N] 0x1 0 = off 1=on
30 HalfWidth N] 0x1 0 = off 1=on
31 NoLookAhead | []] 0x1 0 = off =on
Notes: 1. The ColumnAddress, RowAddress, BankAddress, and ChipSelect fields select the bits of the
absolute physical address that are to be used to define corresponding parameters. Each value
follows on from the previous one, so the ChipSelect value starts at ColumnAddress +
RowAddress + BankAddress and continues for ChipSelect bits.

2. The PageSize field defines the size of the page, and the RegionSize field defines the size of the
region of memory that each of the four page detectors should be assigned to (so that it is set to
one quarter of the memory size).

12.2.3 Internal Video Timing Registers
Video Timing initialization is described in Volume I, chapter 5 (Video System).
12.2.4 Framebuffer Depth

The size of each pixel to be written into the framebuffer is set up using the PixelSize

register. The two bit pixel size encoding field sets the pixel size to be used for merging the

pixel data into the memory. It is normally set to the same value for all functions, but for
generating texture maps it may be advantageous to use a different write pixel size.
3D/.b5 Proprietary and Confidential 12-3

Initialization Permedia4 Programmer’s Guide Volume Il

The pixel size is taken from bits 0...1 when bit 31 is O or taken from subsequent bites for
local functionality when bit 31 is 1. The two bit pixel size is encoded as follows:

« 0=32bpp
e« 1=16bpp
e« 2=8bpp

During readback bits 0...17 and 31 return values as loaded and bits 18...30 return zero.

12.2.5 Screen Width

The visible screen width depends on the framebuffer configuration, screen clipping
dimensions and RAMDAC setup. Framebuffer configuration is described in Volume |,
section 3.5.1 (Framebuffer Dimensions and Depth).

12.2.6 Screen Clipping Region

Permedia4 supports a screen scissor clip which should be set at system initialization, and
a user scissor clip which should initially be disabled. Assuming that the relevant

framebuffer registers2® are set appropriately (see the P4 Programmer’s Guide Volume I,
chapter 4, “Buffer and Cache Management”) then setting the screen clip prevents writing
outside framebuffer memory. The following example would be appropriate for a resolution
of 1024 by 768 pixels:

screenSize. X = 1024
screenSize.Y = 768
ScreenSize(ScreenSize)

scissorM ode. ScreenScissorEnable = Permediad ENABLE
scissorMode.UserScissorEnable = Permediad DISABLE
ScissorM ode(ScissorM ode)

12.2.7 Localbuffer and Framebuffer Configuration

Permedia4 supports a range of localbuffer configurations. During initialization, fields in the
LBWriteFormat, LBWriteBufferwWidth and LBReadFormat registers should be set to
appropriate values which reflect the depth of memory on the board design, and the initial
manner in which it is to be used.

N.B. The width of the Local and Frame buffers is needed toconvert x.y coordinates
into a physical address (= Y * FBWriteBufferWidth[buffer] + X). The frame
buffer height is not needed for this calculation.

For example if the hardware is designed to support a 32 bit localbuffer, and initially this is
to be divided into a 24 bit Depth buffer, 4 bit stencil and 4 GID planes then the registers
must be set as follows (where “[mode]” = either destination or source):

I b[mode] ReadFormat.DepthWidth =1 /I 24 bit depth buffer
Ib[mode] ReadFormat. Stencil Position =8 Il Stencil @ 24

25 Framebuffer and Localbuffer memory is defined using source and destination read and write base addresses, offsets and
widths for vatious formats and layouts. ScreenSize will then be a subset of the memory allocated to the buffers..

12-4 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Initialization

12.2.8

3D/.bs

Ib[mode] ReadFormat. Stencil Width =4 I 4 bit stencil
Ib[mode] ReadFormat.GIDWidth =4
Ib[mode] ReadFormat.GI DPosition =12 /IGID @ 29

L B[M ODE]ReadFormat(Ib[mode] ReadFormat)

IbWriteFormat. DepthWidth =1 /I 24 bit depth buffer
IbWriteFormat.Stencil Position =8 /I Stencil @ 24
IbWriteFormat. StencilWidth =4 I/l 4 bit stencil
IbWriteFormat.GIDWidth =4

|bWriteFormat.Gl DPosition =12 /IGID @ 29

L BWriteM ode(IbWriteFormat)

Note that within the limits of the memory depth that is physically available, it is possible to
dynamically change the allocation of the bits, for instance on a per window basis.

Set the framebuffer and localbuffer source and/or destination read units to their default
data sources:

fbSourceReadMode.DataType = Permediad_FBSourceDATA
FB SourceReadM ode(fbSouceReadM ode)

IbSourceReadMode.DataType = Permediad LBSourceDEFAULT
L BSourceReadM ode(IbSourceReadM ode)

Host Out Unit

Under some circumstances it is necessary for the host to synchronize with Permedia4.
This is controlled using the Sync command which causes data to be written to the host out
FIFO once all processing has completed. The host out FIFO should normally be initialized
to pass these pieces of data (they can be filtered out).

The host out unit should normally be set to filter out all other output data, otherwise the
host software must regularly poll the output FIFO to keep it drained and prevent it freezing
the pipeline. For example:

filterMde. Depth = Pernedi a4_NULL

filterMode. Stencil = Pernedi a4 _NULL

filterMode. Col or = Pernedi a4 _NULL

Fi |t er Mode

Synchroni zati on = Pernedi a4_FI LTER_TAG_AND_DATA
// Al | ow syncs through

filterMode. Statistics = Pernedi a4_NULL
FilterMde(filterMde)

Proprietary and Confidential 12-5

Initialization Permedia4 Programmer’s Guide Volume Il

12.2.9 Disabling Specialized Modes

12.3

12.3.1

12.3.2

12-6

The Graphic ID should normally be initially disabled using the GIDMode FragmentEnable
bit. Refer to chapter 1 - Graphics Programming - for more details.

Window Initialization

Permedia4 supports the concept of a window origin and makes it relatively simple to
implement systems which allow different color formats to coexist in different windows.

Color Format

The Color formatting unit and the Alpha blend unit should be initialized to an appropriate
color format at reset. The units support a variety of different formats - see the Permedia4
Reference Guide, AlphaBlendColor register ColorFormat bitfield and related tables.

For example to render in 3:3:2, 8 bit color format, the following would be needed:
ditherM ode.ColorFormat = Permediad_COLOR_FORMAT_RGB_332 FRONT
DitherM ode(ditherM ode)

aphaBlendColorM ode.Col orFormat =
Permediad_ COLOR_FORMAT_RGB_332_ FRONT

AlphaBlendCol orM ode(al phaBlendCol orM ode)

To enable dithering use the following:

di t her Mbde. Xof f set

di t her Mode. Yof f set

di t her Mode. Di t her Enabl e
di t her Mode. Uni t Enabl e

Di t her Mode(di t her Mode)

0
0
Per nedi a4_ENABLE
Per nedi a4_ENABLE

Note: The color formatting unit is normally always enabled even if dithering itself is
not. This is because the unit handles color formatting as well as the dithering
operation.

Setting the Window Address and Origin

Permedia4 supports the concept of a current window origin. The origin of the window can
be specified either as being in the Top Left or Bottom Left corner and (for Framebuffer
functions) one of four destination buffers. This allows the user to pick the most
appropriate coordinate system to use; for OpenGL it would typically be bottom left,
whereas for an X windows implementation it would be Top Left. Thus for OpenGL set:

fbDestReadMode.Origin[1]] = Permedia4 BOTTOM_LEFT_WINDOW_ORIGIN
FBDestReadM ode(fbDestReadM ode)

IbDestReadMode.Origin[1]] = Permediad BOTTOM_LEFT_WINDOW_ORIGIN
L BDestReadM ode(IbDestReadM ode)

The window dimensions for clipping are set in the scissor unit. The ScissorMinXY register
holds the minimum XY scissor coordinate - i.e. the rectangle corner closest to the screen

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Initialization

12.3.3

12.3.4

3D/.bs

origin. This information usually is provided by the window system. It needs updating if the
window moves. As an example if the position of the window is (200, 600 to 480,960)
(using a bottom left coordinate system), the clipping coordinate is specified as follows:

ScissorMinXY =200, 600
ScissorMaxXY = 480,960

To set the buffer origin using the BufferAddress and BufferOffset registers see P10
Programmer’s Guide Volume 1, “Buffer and Cache Management”. Unpatched addresses
can be held using only the BufferAddress register(s). Patched address offsets must be
held in the BufferOffset registers to convert the absolute memory address into a scree-
relative address which can be used for patching.

Writemasks

Normally both the hardware (if present) and the software writemasks are initially set to
make all bitplanes writeable:

FBSoftwareWriteM ask(Permediad ALL_WRITEMASKS SET)
FBHardwareWriteMask(Permediad ALL_WRITEMASKS SET)
See Chapter 10, Framebuffer Writemasks, for more information.

Enabling Writing

Which buffers are enabled at any given time is window specific and should be considered
for performance reasons. Performance will be improved if unnecessary reads from, and
writes to, buffers are disabled. For example if the current rendering does not use depth,
stencil, or pixel ownership testing, then reading and writing to the localbuffer may be
disabled. The following example initializes the buffers to allow Z buffering and alpha
blending:

fbWriteM ode.WriteEnable = Permediad ENABLE
FBWriteM ode(fbWriteM ode)
IbWriteM ode.WriteEnable = Permediad ENABLE

LBWriteM ode(IbWriteM ode)

IbSourceReadM ode.Enable Permediad DISABLE
IbDestReadM ode.Enable Permediad ENABLE
L BSourceReadM ode(IbSourceReadM ode)

L BDestReadM ode(lbDestReadM ode)

fbSourceReadM ode.ReadEnable
fbDestReadM ode.ReadEnable
FBDestReadM ode(fbDestReadM ode)

Note: to use software writemasking, the FBDestReadMode register’'s ReadEnable
field needs to be set if the writemask is set to other than all 1's.

Permediad_DISABLE
Permediad_ ENABLE

Proprietary and Confidential 12-7

Initialization Permedia4 Programmer’s Guide Volume Il

12.4 Application Initialization

While an application is running it may dynamically use features of Permedia4 such as
depth buffering, alpha blending, logical operations, etc. Initially, however, it is
recommended that the respective units be disabled to ensure they are in a known state:

areaStippleMode.Enable = Permediad DISABLE
AreaStippleM ode(areaStippleM ode)

lineStippleM ode.StippleEnable = Permediad_DISABLE
LineStippleM ode(lineStippleM ode);

routerM ode.Sequence = Permediad SET
RouterM ode(routerM ode) //Set to skip texture since stencil and depth disabled//
stencilMode.UnitEnable = Permediad DISABLE
StencilM ode(stencilM ode)

depthMode.Enable = Permediad DISABLE
DepthM ode(depthM ode)

colorDDAMode.Enable = Permediad_DISABLE
ColorDDAM ode(colorDDAM ode)

textureCoordM ode.Enable = Permediad_DISABLE
TextureCoordM ode(textureCoordM ode)

texturel ndexM ode.Enable = Permediad_DISABLE
Texturel ndexM ode(texturel ndexM ode)

textureReadM ode.Enable = Permediad_DISABLE
textureReadM ode(textureReadM ode)
TextureCompositeColorMode.Enable = Permediad_DISABLE
TextureCompositeCol orM ode(TextureColorM ode)

fogMode.Enable = Permediad_DISABLE
FogM ode(fogM ode)

antialiasMode.Enable
AntialiasM ode(antiaiasM ode)

Permediad_DISABLE

alphaTestMode.Enable = Permediad_DISABLE
AlphaTestM ode(a phaTestM ode)

aphaBlendAlphaM ode.Enable = Permediad DISABLE
AlphaBlendAlphaM ode(a phaBlendAlphaMode)
aphaBlendColorMode.Enable = Permediad DISABLE
AlphaBlendCol orM ode(alphaBlendColorM ode)
logicalOpMode.Enable = Permediad DISABLE
L ogical OpM ode(logical OpM ode)

12-8 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Performance Tips

13

Performance Tips

13.1

3D/.bs

The following is a list of software programming tips and techniques which can be applied
to maximize Permedia4 performance. Many of these are debug aids and the importance
of effective debug techniques cannot be overemphasised:

As soon as we started programming, we found to our surprise that it wasn't as easy to get
programs right as we had thought. Debugging had to be discovered. | can remember the
exact instant when | realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.

- Maurice Wilkes discovers debugging, 1949

The list is intended to be suggestive only and refers back to the Permedia4 Reference
Guide and earlier chapters of the Programmers Guide.

« Using Block Writes - e.g. for clears

« Fast double buffering in a window

« Disable FB reads-per-pixel if they are not required

« Incrementing addresses when writing to the FIFO to enable PCI burst transfers
« Using PCI Disconnect under PIO

« Using bus mastership (i.e. DMA)

« Improving DMA bus bandwidth utilization using the indexed FIFO modes

« Disabling units that are not in use (e.g. Framebuffer reads)

« Use of the extent register to minimize the area in the localbuffer and framebuffer that
needs to be cleared

« Use of the Permedia4 graphics pipeline in preference to the framebuffer (and/or
localbuffer) bypass when possible

« Loading registers in unit order (i.e. Rasterizer first - Host Out last)
« Avoiding unnecessary register updates
« Miscellaneous debug and generic graphics tips

Block Writes

Permedia4 boards are equipped with either SGRAM that supports block writes or SDRAM

which does not. This allows up to 32 pixels at a time to be filled with a constant color by a
single framebuffer write access. This can lead to roughly a 32fold increase in the speed of,
for instance, clearing a large area of the framebuffer.

While this technique is most useful when clearing the framebuffer, it can be used to fill any
trapezoid. See volume |, section 4.3.3 - Block Writes.

Proprietary and Confidential 13-1

Performance Tips Permedia4 Programmer’s Guide Volume Il

13.2

13.3

13.4

13.5

13-2

Fast double buffering in a window

Double buffering is a technique used to achieve visually smooth animation, by rendering a
scene to an offscreen buffer, before quickly displaying it.

Permedia4 board designs can readily support a variety of double buffering mechanisms
depending on the memaory configuration and LUT-DAC used, including:

. BLT
. Full Screen

Note: The best results can often be achieved by combining double buffering
techniques.

Disable FB Reads per pixel if not required

The AlphaFiltering bit in FBDestReadMode can reduce unnecessary FB reads. When
set, it compares the fragment’s alpha value and if it is equal to the AlphaReference value
(held in FBReadEnables) then no read is done. This saves memory bandwidth when the
destination color doesn't contribute to the fragment's color during blending.

Improving PCI bus bandwidth for Programmed 1/O and DMA

Writing data values into the memory mapped registers is appropriate for primitives which
require few set-up parameters such as 2D lines.

For more complex primitives such as Gouraud shaded triangles where a significant
number of registers must be loaded for each primitive, it may be more efficient to write
directly to the FIFO input.

The advantage of this mechanism is that it is then possible to use DMA burst transfers.

The disadvantage is that both the address of the register and the data value to be loaded
must be written, apparently doubling the amount of data to be loaded.

However, to improve DMA bus bandwidth utilization, the registers have been grouped into
blocks which frequently all need to be updated together, and an indexed addressing mode
is supported which allows a single "address" to be loaded, followed by the data for a whole
set of registers.

An additional mode is supported which allows a large number of data values to be loaded
to the same register. This is useful for image downloads.

It may also be possible to reduce DMA overhead by re-using DMA buffers and vertex
buffers. The HostInID register can be used to mark any point in the command stream so
that the use of index and vertex buffers can be monitored. This register is loaded with an
ID field; like the DMA address register, which can be read at any time to check the
progress of the command stream.

PCI burst transfers under Programmed 1/O

PCI bus burst transfers typically allow up to four times the bandwidth of individual
transfers.

However burst transfers are only initiated on the PCI bus when successive addresses are
being written to (i.e. the byte address is incremented by 4). To facilitate the use of burst
transfers when using programmed /O to load the Permedia4 FIFOs, Permedia4 multiply
maps the FIFO input register throughout the range:

0x00002000 to 0xO0002FFF in region O

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Performance Tips

13.6

13.7

13.8

13.9

3D/.bs

Thus when data is being loaded into the FIFO a software loop should be written which
starts by writing the first data item at the lower extreme of this address range, and works
towards the upper.

Using PCI Disconnect Under Programmed 1/O

The PCI bus protocol incorporates a feature known as PCI Disconnect which is supported
by Permedia4. Once Permedia4 is in this mode, if the host processor attempts to write to
the full FIFO then instead of the write being lost, Permedia4 asserts PCI Disconnect which
forces the host processor to retry the write cycle until it succeeds.

This feature allows faster download of data to Permedia4 since the host need not poll the
INFIFOSpace register. However it should be used carefully because the bus is then
effectively hogged by the host processor until Permedia4 frees up an entry in its FIFO.

Using Bus Mastership (DMA)

Most Permedia4 boards support PCI bus mastership, allowing the on-board DMA of
Permedia4 to be used to copy data from host memory into Permedia4 FIFO.

Bus mastership mode is asserted in the CFGCommand register using bit 2,
BusMasterEnable.

The use of PCI bus mastership has a number of benefits:

« PCI bus bandwidth utilization is generally much improved. Permedia4 has been
measured achieving transfer rates of up to 30-40MBytes/sec with a fast host slave
(P90 Neptune chipset).

« PCI bus bandwidth is further improved because the driver software no longer needs to
poll the FIFO flags to find how many entries are empty, before loading it.

« Overall system performance may benefit through increased parallelism between
Permedia4 and the host, as the host can often perform useful work preparing the next
DMA buffer once it has initiated one DMA transfer.

Disabling units not in use

As a general rule any units within Permedia4 which are not actively in use for the current
rendering should be disabled. Each unit has a bit in a control register for this purpose. This
will maximize pixel throughput in the graphics core.

In particular it is important to check that unnecessary reads of the localbuffer are not
taking place. For instance it is perfectly possible to set up the localbuffer read unit such
that Permedia4 reads per pixel information (such as Z, stencil and GID data) which is then
discarded. The effect will be the same visually, but the cost in performance of making the
memory accesses will be very high.

Similar comments apply for the framebuffer read unit which again should only be enabled
to read pixel data when it is essential.

Note Permediad boards typically support hardware writemasks and these should
be used in preference to the software writemasks.

Clearing the localbuffer & framebuffer

Permedia4 can be instructed in the StatisticsMode StatsType register field to maintain a
record of the minimum bounding box (MinRegion and MaxRegion registers) that has

Proprietary and Confidential 13-3

Performance Tips Permedia4 Programmer’s Guide Volume Il

13.10

13.11

13.12

13.13

13.14

13-4

been rendered to, in a given period. This can be used to limit the area that must be
cleared down using span fill.

For further details see chapter 11, Host Out, on Extent Checking

Use of the Framebuffer (or Localbuffer) Bypass

Whenever possible rendering should be done through the Permedia4 graphics pipeline.
This is because reading and writing the framebuffer (or localbuffer) using the bypass is
relatively slow. In some cases performance may even be improved if a small area of the
framebuffer (and/or localbuffer) is uploaded through the graphics pipeline into a bitmap,
rendered to, and then downloaded again through the graphics pipeline.

Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive should be loaded into
the Permedia4 FIFO in unit order. Thus the registers associated with the Rasterizer unit
should be loaded first, then Scissor unit, Stipple unit, Color DDA, and so on until the last
unit to be loaded is the Host Out unit (if necessary). Then finally the relevant command
register should be loaded.

For the order of the units refer to chapter 1, Figure 1-1.

Avoiding Unnecessary Register Updates

Permedia4 control registers retain their value between one primitive and the next. Thus it
is not necessary to reload registers that are unchanged between primitives. e.g. the dY
register usually is set to either +1 or -1 (except when antialiasing).

In addition calculations of register values can often be shared across primitives, for
instance between edges in adjacent polygons in meshes.

Hardware and Software Context Dumps

Permedia4 supports ContextDump and ContextRestore commands and a
StatisticsMode register, with enables for extent checking and picking set in the
FilterMode register. These allow the selection of active and passive fragments by screen
area and other parameters at specific points in the render process, and state switching to
halt and resume graphic processing while examining the collected data.

The decision to use hardware context management may depend on the software regime
being supported. In the D3D environment it may be more effective to save all the context
state in software copies. When a context is switched to, simply set up the chip again. This
avoids the need to wait for a Context Dump before switching away from a context and
takes advantage of D3D’s capabilities. However the hardware-assisted route is generally
preferred by OGL developers.

Use the Memory Scratchpad Registers

By keeping track of which primitives have finished rendering it is often possible to avoid
waiting for chip syncs. When applications do procedural tetxuring they need to change the
texture every frame. Normally host access to a texture that has been rendered with
requires a chip-sync. Using scratchpad memory to keep track of primitives which have
finished rendering allows the driver to confirm that the last primitive to use that texture has
indeed completed and the application can now access the texture immediately with no
sync. As long as applications only want to change the texture some time after they

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Performance Tips

rendered with it (the best time is just before rendering the new version) then chip-syncs
can be almost entirely avoided.

The same approach can be used when the application is changing render target and doing
a render-to-texture or blit-to-texture. Similarly, when the driver is texture swapping, it can
tell which textures it can and can’t touch using this tracking information.

13.15 Miscellaneous Tips

The following is a set of miscellaneous tips that are not Permedia4 specific but well worth
using.

3D/.bs

Avoid polling for Vblank whenever possible but if you have to poll, consider whether
your application is taking just longer than an integer number of Vblank intervals to
draw a frame - slightly simplifying the frame to make it just under an integer multiple
can dramatically improve performance.

Another way of looking at the same problem is, if you remove your SwapBuffers()
calls, does your application render many more frames per second? If so, you might
be spending a lot of time waiting for buffer swaps, and you should tune your app so
that it draws just enough to fit in one less frame time.

When using DMA it may be best to flush the DMA buffer to the chip after entering a
large primitive in the buffer (e.g. screen clear), so that the chip is doing useful work
while further primitives are being prepared on the host.

Minimize the use of the Sync command.

Does making your window smaller cause things to speed up? If so, you're probably
fill-limited (bottlenecked by filling the pixels in the window). Speed things up by
reducing the depth complexity of your scene or by using simpler drawing operations
wherever possible (e.g., avoiding depth-buffering for the background or ground plane).
Does making your window smaller have no effect on the time it takes to draw a frame?
If so, you're probably geometry-limited (bottlenecked by transformations, clipping, or
lighting) or host-limited.

Measure the time it takes your application to draw a frame. Now comment out all the
drawing calls, and measure again. If most of the elapsed time per frame is spent
doing things other that drawing, your application is probably host-limited rather than
geometry-limited.

If you're geometry-limited, you can speed things up by using simpler models with
fewer vertices, by reducing the amount of clipped geometry, by using fewer light
sources, etc. If you're host-limited you should use profiling tools to figure out where
your application is spending its time and then tune those areas.

Proprietary and Confidential 13-5

Permedia4 Programmer’s Guide Volume II Appendices

14

Appendices

14.1 Pseudocode Definitions

In many areas of the document we use fragments of pseudocode to describe register
loading. These are based on a C interface to Permedia4 in which each 32 bit register is
represented as a C structure, potentially split into a series of bit fields.

Where in an example only a subset of the bit fields in a register are set, it is assumed
either that a software copy of the register is being modified, or that the current contents of
the register have first been read back. This style has been chosen for clarity; there are
often more efficient strategies.

The constant definitions and register bit field definitions are based upon those used in the
3Dlabs driver software. Sources including header files are available under source license
agreement.

Loading of a Permedia4 register is expressed as:
register-name(vaue)

When writing directly to the register file (i.e. to a FIFO) this would be implemented by
writing “value” to the mapped-in address of the register called “register-name”.

Fragmentary examples are not in strict C syntax, a typical example is:
/I Sample code to rasterize a 10x10 rectangle at the
/I framebuffer origin.

StartXDom(0) /I Start dominant edge
StartX Sub(1<<16) /I Start of subordinate
dXDom(0x0)

dX Sub(0x0)

Count(0xA)

Y Start(0)

dY (1<<16)

// Set-up to render an aiased trapezoid.
render.AreaStippleEnable = Permediad DISABLE
render.LineStippleEnable = Permediad_DISABLE
render.PrimitiveType = Permediad TRAPEZOID
render.FastFillEnable = Permediad DISABLE
render.FastFillIncrement = don’t care

3D/.b5 Proprietary and Confidential 14-1

Appendices

14-2

Permedia4 Programmer’s Guide Volume Il

render.UsePointTable = Permediad FALSE
render.AntialiasEnable = Permediad_DISABLE
render.AntialiasingQuality = don't care
render.ResetLineStipple = Permediad FALSE
render.SyncOnBitMask = Permediad_FALSE
render.SyncOnHostData = Permediad FALSE

Render(render) // Render the rectangle

Code is shown in roman face and comments are C++ style ’//" indicating that the rest of the
line is a comment. Any statement which ends in parenthesis is a register update, other
statements will generally be variable assignments.

A variable, say render, is of a type associated with the register being modified. This will
usually be clear by the context and will not usually be declared as such. All the type
definitions are in the header files. The values assigned to a register will be either a
variable as described above, a macro i.e. Permedia4_TRUE , as found in the headers, or
an immediate constant in C style format (e.g. 0x45). In registers with several fields some
of which are not relevant to a particular example, the field can be ignored completely or set
to don't care. In some registers values for fields which need to be set are not readily
available. These are typically set as appropriate.

For some fragments we simply give a list of register updates e.qg.:
/I Sample code to rasterize arectangle

StartXDom() /[Start dominant edge
StartX Sub() /Il Start of subordinate
dXDom()

dX Sub()

Count()

Y Start()

dy()

/I Set-up to render an aliased trapezoid.

Render() // Render the rectangle

This technique is used to give a feel for the registers involved in a particular operation and
where a detailed treatment is not warranted.

To take the address of a register, the name is used, thus this example stores the address
of the StartXDom register in the buffer pointed to by the variable buf and increments the
pointer:

*puf++ = StartXDom

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

14.2

14.2.1

14.2.2

3D/.bs

To test the value of a register the register name is dereferenced using the C '*" operator as
for instance in this example which tests for the completion of a DMA operation:

while(*DMACount !1=0) ;

Interpolation Calculation

Color Gradient Interpolation
To draw from left to right, top to bottom, the color gradients (or deltas) required are:

And from the plane equation:

where, to be independent of the order the vertices are provided:

These values allow the color of each fragment in the triangle to be determined by linear
interpolation. For example, to calculate the red component color value of a fragment at
Xn,Ym:

. add dRdy, for each scanline between Y1 and Yn, to R1, then
* add dRdx for each fragment along scanline Yn from the left edge to Xn.

The example chosen has the ‘knee’ i.e. vertex 2, on the right hand side, and drawing is
from left to right. If the knee were on the left side (or drawing was from right to left), then
the Y deltas for both the subordinate sides would be needed to interpolate the start values
for each color component (and the depth value) on each scanline. For this reason
Permedia4 always draws triangles starting from the dominant edge and towards the
subordinate edges. For the example triangle, this means left to right.

Register Set Up for Color Interpolation

For the example triangle, Permedia4 registers must be set as follows for color
interpolation. Note color values are in 24 bit, fixed point 2’s complement 9.15 format.

/I Load the color start and delta values to draw

Proprietary and Confidential 14-3

Appendices Permedia4 Programmer’s Guide Volume Il

/[atriangle

Rstart (R1)

Gstart (G1)

Bstart (B1)

dRdyDom (dRdy13) I/l To walk up the dominant edge
dGdyDom (dGdy13)

dBdyDom (dBdy13)

dRdx (dRdx) /l To walk aong the scanline
dGdx (dGdx)
dBdx (dBdx)

14.2.3 Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or deltas) required for
interpolation are:

And from the plane equation:

where, as before:

The divisor, shown here as c, is the same as for color gradient values. The two deltas,
dZdy13 and dZdx allow the Z value of each fragment in the triangle to be determined by
linear interpolation as was described for the color interpolation above.

returned by the CFGDeviceld register in the is 0006h in bits 31-16.

14-4 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

14.3 Accurate Rendering

This appendix describes how to calculate the various parameters needed to define a
Gouraud shaded triangle. This topic is covered in section 1.1.2, however in the interest of
simplicity some of the finer details were glossed over. The quality of the rasterization and
shading suffers where these fine details are not included and will give rise to 'stitch marks’
and ’'bright edge’ artifacts. The main area where simplifications were made earlier relates
to the fact that vertices are not, in general, coincident with pixel centers so sub pixel
corrections are necessary. The initial values being interpolated (RGB for example) need to
be adjusted to account for this. Permedia4 does the necessary X corrections when moving
from scan line to scan line when the SubPixelCorrection bit is set, but the initial Y
correction must be done in software.

Consider a sample triangle, highly magnified to emphasize the sub pixel corrections
needed:

The vertices are sorted into Y order and the dominant edge is AC. Scan conversion will
start at vertex A and proceed upwards. The origin is bottom left.

The usual parameters to interpolate (denoted P in the diagram) across the triangle would
include color (R, G, B and alpha), depth (Z), fog (F), and texture (S, T, Q, Ks and Kd). The
source code to set up Permedia4 to achieve the best quality rendering will only calculate
the parameters for RGBA and Z to keep the size of the code down.

3D/.b5 Proprietary and Confidential 14-5

Appendices Permedia4 Programmer’s Guide Volume Il

#include <stdio.h>
#include <float.h>

/I A simple macro which just prints out the register name and value.
Il Replace this with some code to write to Per media4.

#define LD_Permediad REG(name, value) \
printf (*%s = %08x\n", #name, value)

/] This software is part of the application note which describes

I/ how Permediad is set up to get the best quality rendering. Particular

I careistaken to avoid cracks, stitch marks and bright edge artifacts

I/ from occurring. The OpenGL rasterization rules are used.

/I The software has not been written with maximum performance in mind,
I/ but as aclear, well documented example covering the nuances

I/ which are easily overlooked.

/] Simple vertex structure used to interface parameters to the RenderTriangle
I/ function.

typedef struct { float x,Y, z I/ in device coords
float r,g,b,a //intherange0.0to0 1.0
} Vertex;

I/ Prototypes.

long IntToFixedPoint16 (long i);

long FloatToColor (float f);

long FloatToCoordinate (float f);

void FloatToDepth (float f, long *zi, long * zf);

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2);

I/ Defines some simple function to convert from floating point numbers

14-6 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

3D/.bs

/I to various fixed point formats. These can be inlined if necessary.

long IntToFixedPoint16 (long i)
{

returni << 16;

I/l These functions perform the conversion from floating point numbers

// to the various fixed point format numbers required in Permediad. They
/[are implemented as simple operations on the binary representation

/I of |EEE single precision floating point number so the floating

/I point rounding mode doesn’t need to be set up first and in many

/I cases they are faster than using the built in conversion functions,

/I especialy when the range checking and clamping is taken into account.

/I Format of IEEE single-precision (32-bit) real number.

#defineF_BIAS 127
#defineF_SIGN_BIT 31
#define F_EXPONENT_BITS 23
#define F_FRACTION_BITSO

/I Convert 32-bit floating-point value to 9.15 fixed-point value used
Il for the color parameters. Theinput rangeis assumed to be 0.0
//'t0 1.0. Thealgorithmis:

Il 1f exponent < -15 then return (0x00000000), otherwise

I/l if exponent < 8 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
/I return ((s== 1) ? Oxff800000 : Ox007fffff).

long FloatToColor (float fi)

{
long f=*((long *) &fi);
long sign;
unsigned char exponent;

sign=(f >>F_SIGN_BIT);

Proprietary and Confidential 14-7

Appendices

14-8

Permedia4 Programmer’s Guide Volume Il

exponent = (unsigned char)(f >> F_EXPONENT_BITS);
if (exponent < (F_BIAS-15))

return (0);
if (exponent < (F_BIAS+8))
{

f = ((unsigned long)((f | 0x00800000) << 8)

>> ((F_BIAS+16) - exponent));
if (sign<0)
f =-f;
return (f);

}
return (Ox007fffff A sign);

I/ Convert 32-bit floating-point value to 16.16 fixed-point value used
Il for the rasterizer parameters.

II'1f exponent < 0 then return (0x00000000), otherwise

Il'if exponent < 31 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
/1 return ((s == 1) ? 0x80000000 : Ox7fffffff).

long FloatToCoordinate (float fi)

{

long f=*((long *) &fi);
long sign;

unsigned char exponent;
long res;

sign=f>>F SIGN_BIT;
exponent = (unsigned char) (f >> F_EXPONENT_BITS);
if (exponent < (F_BIAS-16))

return (0);
if (exponent < (F_BIAS+15))
{

res = ((unsigned long)((f | 0x00800000) << 8)

>> ((F_BIAS+15) - exponent));

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

3D/.bs

if (sign<0)
res = -res,
return (res);

}

return (Ox7fffffff ~ sign);

I/l Convert 32-hit floating-point value to 24.16 fixed-point vaue as

/l used by the Z values. Note that this assumes a 24 bit Z buffer.

/' If exponent < -16 then return (0x0000000000000000), otherwise

I/l if CLAMP_24 16 isdefined and is hon-zero:

Il if exponent < 23 then return (-1**(s) * 1.f * 2**(e - 127)), otherwise
/I return ((s == 1) ? 0xff80000000000000 : Ox007fffffffffO000).

/I otherwise:

/[return (-1**(s) * 1.f * 2**(e - 127)).

void FloatToDepth (float fi, long *zi, long * zf)

{

long f=*((long *) &fi);
long sign;

unsigned char exponent;

long resh;

unsigned long red;

sign=(f >>F_SIGN_BIT);
exponent = (unsigned char)(f >> F_EXPONENT_BITYS);
if (exponent < (F_BIAS-16))
{
*z7i =0;
*zf = 0;
return;
}
if (exponent < (F_BIAS+23))
{
f = ((f | 0x00800000) << 8);
if (exponent < (F_BIAS+0))

Proprietary and Confidential

Appendices

14-9

Appendices Permedia4 Programmer’s Guide Volume Il

resh=0;
red = ((unsigned long) f >> ((F_BIAS-1) - exponent));
}

ese

{
unsigned char shift;

shift = (F_BIAS+31) - exponent); // 8 <= shift <32
resh = ((unsigned long) f >> shift);
red = (f << (31 - shift)); /1 shifts >= 32 undefined
red <<=1, // so we must shift twice

}

if (sign<0)

{
unsigned long old_redl;

res = ~red;
resh = ~resh;
old red =red;

res += 0x00010000;
if (resl <old_redl) I overflow
++resh;

}

else

{
resh = (OxO07fffff ~ sign);
red = (OxffffO000 " sign);

}

red &= OxffffO0Q0;

*Zi = resh;

*zf =red;

14-10 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

3D/.bs

#define SAME 0
#define REVERSED ~SAME
#define ORDER(VO, v1, v2, order) {a=VvO0; b = v1; ¢ = v2; windingOrder = order;}

void RenderTriangle (Vertex *v0, Vertex *v1, Vertex *v2)

{

float dxAB, dyAB, dxBC, dyBC, dxAC, dyAC; // Diff in x,y for each edge.
float drAC, dgAC, dbAC, daAC, dzAC; /I Diff in rgbz for dominant edge
float drBC, dgBC, dbBC, daBC, dzBC; // Diff in rgbz for the BC edge.
float dxdyAC, dxdyAB, dxdyBC; /I Edge gradients for unit
Il setiny
float drdxdy, dgdxdy, dodxdy;
float dadxdy, dzdxdy;
float drdx, dgdx, dbdx, dadx, dzdx; // Gradientsfor unit step in x.
float r0, g0, b0, a0, z0; /l Start values
float area, oneOverArea, t1, t2;
float oneOverdyAC;
Vertex *a, *b, *c; /1 Sorted vertices.
long xDomFixed, xSubFixed,;
float dyErr, yBottom, yTop;
long iyBottom, iyTop;
int windingOrder; // Not used.
long zi, zf;
long temp;

I/ Sort verticesinto ascending Y order. *a points to the vertex with the

I/ lowest y value. Compare winding order of the pre and post sorted vertices
// and set winding order flag as appropriate (thisis only needed if culling

// based on the winding order isto be done).

if (vO->y <v1->y)
{
if (v1->y <v2->y)
ORDER (v0, v1, v2, SAME)
else
if (VO->y <v2->y)
ORDER (v0, v2, v1, REVERSED)

Proprietary and Confidential 14-11

Appendices Permedia4 Programmer’s Guide Volume Il

else
ORDER (v2, v0, v1, SAME)
}

else
{
if (v1->y <v2->y)
{
if (VvO->y < v2->Y)
ORDER (v1, vO, v2, REVERSED)
else
ORDER (v1, v2, vO, SAME)
}
ese
ORDER (v2, v1, vO, REVERSED)

// Compute signed area of the triangle.

Il Form vectors for two edges of the triangle.
dxAC = a>X - c->X;

dxBC = b->x - ¢->X;

dyAC =a>y - c->y;

dyBC = b->y - c->y;

I/l Form the cross product of the two edges.
area= dxAC * dyBC - dxBC * dyAC;

if (area==10.0)
return; /I Regject zero areatriangles.

I/l A negative areajust means the order of the vertices, after sorting, was
/I clockwise. Note this may be different from origina input order.
if (area< 0.0)

area= -areg; /I Make positive.

/I The dx/dy value (change in x for unit change in y) are needed for
I/ each edge so the rasterizer can compute the new left and right hand
I/ x coordinates as it steps from one scan line to the next. Horizontal

14-12 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

3D/.bs

/I or near horizontal edges will have very large gradients but these will
// be handled later. Vauesfor AC and BC have aready been calculated so
/I just do the remaining edge.

dxAB = a>x - b->x;
dyAB = a>y - b->y;

// The dominant edgeis adways AC (i.e. the edge with the maximum Y extent).
/I Compute the change in rgbaz along this edge for unit changeinyy.
oneOverdyAC = 1.0/ dyAC;

/I Differences along edge AC
drAC = a>r - c->r;

dgAC = a>g - ¢->(;

dbAC = a>b - ¢c->b;

daAC =a>a- c->g;

dzAC = a>z- c->z;

/I Gradient along edge AC for each parameter.
drdxdy = drAC * oneOverdyAC;

dgdxdy = dgAC * oneOverdyAC;

dbdxdy = dbAC * oneOverdyAC;

dadxdy = daAC * oneOverdyAC;

dzdxdy = dzAC * oneOverdyAC;

dxdyAC = dxAC * oneOverdyAC;

/I Difference along edge BC
drBC =b->r - c->r;

dgBC = b->g - ¢->q;

dbBC = b->b - c->b;

daBC = b->a- c->g;

dzBC = b->z - ¢->z;

/I Compute the change in rgbaz when taking unit stepsin x.
oneOverArea= 1.0/ areg;

t1 = dyAC * oneOverAreg;

Proprietary and Confidential 14-13

Appendices

14-14

Permedia4 Programmer’s Guide Volume Il

t2 = dyBC * oneOverArea;

drdx = drAC * t2 - drBC * t1;

dgdx =dgAC* t2 - dgBC * t1;
dbdx = dbAC * t2 - dbBC * t1;
dadx = daAC * t2 - daBC * t1,
dzdx = dzAC * t2 - dzBC * t1;

/I A general triangle will need to be split into two trapezoids for
I/ rendering. Either of these trapezoids may have azero height in
Il which case the triangle has aflat top or bottom. The rasterizer
// and DDAs are still set up, however the count may be zero.

/' Fill lower trapezoid.
yBottom = a->y;
yTop = b->y;

I/l They coordinates are converted to integer values, taking into
Il account the openGL rules which determine which pixels fall within
/I the boundary.

temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
temp += 0x00007fff; /Il add in nearly a half

iyBottom = temp >> 16; /I extract integer part

temp = (int) FloatToCoordinate (yTop); // float to 16.16 fixed point
temp += 0x00007fff; // add in nearly a half

iyTop = temp >> 16; /I extract integer part

dyErr = iyBottom + 0.5 - yBottom;

Il Check for the case when AB is atrue horizontal edge to prevent adivide

Il by zero.
if (dyAB ==0.0)
dyAB = FLT_MIN; /I set to avery small number.

dxdyAB = dxAB / dyAB,;

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

/I Move the rgbaz values at vertex aalong the edge AC in proportion
// to how far the vertex ais from the pixel center in they direction

// to do the sub pixel adjustment in Y. Permedia4 does the sub pixel
{/l adjustment in X automatically, if enabled.

rO = a>r + dyErr * drdxdy;

g0 = a>g + dyErr * dgdxdy;
b0 = a>b + dyErr * dbdxdy;
a0 = a>a+ dyErr * dadxdy;
z0 = &>z + dyErr * dzdxdy;

{/l Similarly for the start values for the left and right hand edges.
xDomFixed = FloatToCoordinate (a->x + dyErr * dxdyAC);
xSubFixed = FloatToCoordinate (a->x + dyErr * dxdyAB);

// Load up Permediad with the parameters.

// Rasterizer. Note that the RasterizerMode is set to add
/I _Permediad_START_BIAS ALMOST_HALF to the XDom, X Sub and
/'Y Start values to conform to the OpenGL rasterization rules.

LD_Permediad REG(StartX Dom, xDomFixed);

LD _Permediad REG(dXDom. FloatToCoordinate (dxdyAC));
LD_Permediad REG(StartX Sub, xSubFixed);

LD_Permediad REG(dXSub, FloatToCoordinate (dxdyAB));
LD_Permediad REG(StartY, IntToFixedPoint16 (iyBottom));
LD_Permediad REG(dy, IntToFixedPoint16 (1));

LD Permediad REG(Count, (iyTop - iyBottom));

{// Color DDA.

LD Permediad REG(Rstart, FloatToColor (r0));
LD_Permediad REG(dRdx, FloatToColor (drdx));
LD_Permediad REG(dRdyDom, FloatToColor (drdxdy));
LD_Permediad REG(Gstart, FloatToColor (g0));
LD_Permediad REG(dGdx, FloatToColor (dgdx));

LD Permediad REG(dGdyDom, FloatToColor (dgdxdy));

3D/.b5 Proprietary and Confidential 14-15

Appendices Permedia4 Programmer’s Guide Volume Il

LD Permediad REG(Bstart, FloatToColor (b0));
LD_Permediad REG(dBdx, FloatToColor (dbdx));

LD Permediad REG(dBdyDom, FloatToColor (dbdxdy));
LD _Permediad REG(AStart, FloatToColor (a0));

LD Permediad REG(dAdx, FloatToColor (dadx));

LD _Permediad REG(dAdyDom, FloatToColor (dadxdy));

// Depth DDA.

FloatToDepth (20, &zi, &zf);

LD _Permediad REG(ZStartU, zi);
LD Permediad REG(ZStartL, zf);

FloatToDepth (dzdx, &z, & zf);
LD _Permediad REG(dzZdxU, zi);
LD_Permediad REG(dZdxL, zf);

FloatToDepth (dzdxdy, &zi, & zf);
LD Permediad REG(dZdyDomU, zi);
LD_Permediad_REG(dZdyDomL, zf);

/I Render the trapezoid ...
LD _Permediad REG(Render, 0x00014041);

I/ Fill upper trapezoid.
yBottom = b->y;
yTop = c->y;

I/l They coordinates are converted to integer values, taking into
/I account the openGL rules which determine which pixels fall within
/I the boundary.

temp = FloatToCoordinate (yBottom); // float to 16.16 fixed point
temp += 0x00007fff; // add in nearly a half
iyBottom = temp >> 16; Il extract integer part

temp = FloatToCoordinate (yTop); I/ float to 16.16 fixed point
temp += 0x00007fff; // add in nearly a half

14-16 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Appendices

3D/.bs

iyTop = temp >> 16; /I extract integer part
// Find the dyErr value for vertex B so that the start value for x can be
/[corrected.

dyErr = iyBottom + 0.5 - yBottom;

/I Check for the case when BC is atrue horizontal edge to prevent adivide

I by zero.
if (dyBC ==0.0)
dyBC =FLT_MIN; /I set to avery small number.

dxdyBC = (dxBC / dyBC);

I/ Set up the rasterizer for the upper trapezoid. All other DDA units
// can carry on with their parameters as they are walking up the same
// edge.

xSubFixed = FloatToCoordinate (b->x + dyErr * dxdyBC);
LD_Permediad REG(StartX Sub, xSubFixed);

LD _Permediad REG(dxSub, FloatToCoordinate (dxdyBC));
LD_Permediad_REG(ContinueNewSub, (iyTop - iyBottom));

Proprietary and Confidential 14-17

Glossary

14.4 Glossary

accumulation buffer

active fragment

aliasing

alpha buffer

alpha test

antialiasing

bitblt

block write

command register

context

control register

culling

18

Permedia4 Programmer’s Guide Volume Il

A color buffer of higher resolution than the displayed buffer
(typically 16bits per component for an 8bit per component
display). Typically used to sum the result of rendering several
frames from slightly different viewpoints to achieve motion blur
effects or eliminate aliasing effects.

A fragment which passes all the various culling tests, such as
scissor, depth(Z), alpha, etc., is written to/combined with the
corresponding pixel in the framebuffer. See also "fragment" and
"passive fragment".

A phenomena resulting from a rendering style which ignores the
fact that a pixel may not be wholly covered by a primitive, leading
to jagged edges on primitives.

A memory buffer containing the fourth component of a pixel's
color in addition to Red, Green and Blue. This component is not
displayed, but may be used for instance to control color blending
and antialiasing.

A test used to cull selected fragments from being drawn, based
on a comparison of a fixed value with the alpha value of the
fragment.

A rendering style which weights the color of a pixel by the fraction
of its area that is covered by primitives, leading to reduction or
elimination of jagged edges.

Bit aligned block transfer. Copy of a rectangular array of pixels in
a bitmap from one location to another.

A feature provided in some SGRAM devices which allows multiple pixels
to be set to a given value by a single write. See also fast fill which is an
alternative name for the same feature.

A register which when loaded triggers activity in Permedia4. For
instance the Render command register when loaded will cause
Permedia4 to start rendering the specified primitive with the parameters
currently set up in the control registers.

The state information associated with a particular task. Typically in a
system more than one task will be using Permedia4 to render primitives.
Software on the host must save away the current contents of the
Permedia4 control registers when suspending one task to allow another
to run, and must restore the state when that task is next scheduled to
run.

A register which contains state that dictates how Permedia4 will
execute a command.

The process of eliminating a fragment, object face, or primitive, so
that it is not drawn.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Glossary

DDA

depth (Z) buffer

depth-cueing

dithering

double-buffering

fast fill

fogging

Fast Clear Planes

fragment

framebuffer

Graphic ID (GID)

host
localbuffer

passive fragment

3D/.bs

Digital Differential Analyzer. An algorithm for determining the
pixels to draw along a line or polygon edge. Also used to
interpolate linearly varying values such as color and depth.

A memory buffer containing the depth component of a pixel. Used
to, for example, eliminate hidden surfaces.

A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. See also fogging.

A rendering style which increases the perceived range of
displayed colors at the cost of spatial resolution. The technique is
similar to the use of stippled patterns of black and white pixels, to
achieve shades of grey on a black and white display.

A technique for achieving smooth animation, by rendering only to
an undisplayed back buffer, and then swapping the back buffer to
the front once drawing is complete.

A feature provided in SGRAM devices which allows multiple pixels
to be set to a given value by a single write. See also block write
which is an alternative name for the same feature.

A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. See also depth-cueing.

Used to allow higher animation rates by enabling localbuffer pixel
data, such as depth (2), to be cleared down - not required or
supported in Permedia4

A fragment is an object generated as a result of the rasterization
of a primitive. It corresponds to and contains all the components
of a single pixel. If a fragment passes all the various culling tests,
such as scissor, depth(Z), alpha, etc., it will be written
to/combined with the corresponding pixel in the framebuffer.

An area of memory containing the displayable color buffers (front,
back, left, right, overlay, underlay), their (optional) associated
alpha components, and any associated (optional) window control
information. This memory is typically separate from the
localbuffer.

A component of a pixel containing information used for per pixel
clipping.
The processor which controls Permedia4.

An area of memory which may be used to store the following non-
displayable pixel information: depth(Z), stencil, Graphic ID.

A fragment which fails one or more of the various culling tests,
such as scissor, depth(Z), alpha, etc., is nor written to/combined

Proprietary and Confidential 19

Glossary

pixel

primitive

rasterization

rendering

scissor test

stencil buffer

stipple

task

texel

texture

texture mapping

window control buffer

writemask

20

Permedia4 Programmer’s Guide Volume Il

with the corresponding pixel in the framebuffer. See also
"fragment” and "active fragment".

Picture element. A pixel comprises the bits in all the buffers
(whether stored in the localbuffer or framebuffer), corresponding
to a particular location in the framebuffer.

A geometric object to be rendered. The Permedia4 primitives are
points, lines, trapezoids (including triangles as a subset), and
bitmaps.

The act of converting a point, line, polygon, or bitmap, in device
coordinates, into fragments.

Conversion of primitives in object coordinates into an image.

A means of culling fragments which lie outside the defined scissor
rectangle. The scissor rectangle is defined in device coordinates.

A buffer used to store information about a pixel which controls
how subsequent stenciled fragments at the same location may be
combined with its current value. Typically used to mask complex
two-dimensional shapes.

A one or two dimensional binary pattern which is used to cull
fragments from being drawn.

A process, or thread on the host which uses the Permedia4
coprocessor. Typically tasks assume that they have sole use of
Permedia4 and rely on a device driver to save and restore their
Permedia4 context, when they are swapped out.

Texture element. An element of an image stored in texture
memory which represents the color of the texture to be applied
(fully or in part) to a corresponding fragment.

An image used to modify the color of fragments during
processing. Often used for instance to achieve high realism in a
scene, with relatively few primitives.

The process of applying a two dimensional image to a primitive.
For instance to apply a wood grain effect to a table.

A buffer containing control bits used by display hardware to select
between multiple hardware LUTs or display buffers (such as
overlay and underlay) on a per pixel basis. Usually a given value
in the buffer corresponds to a single window on the screen.

A bit pattern used to enable or inhibit the writing of the
corresponding bits of a fragment’s color into the framebuffer.

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

Glossary

15

Indexes

15.1 Volume |l Index

AlphaBlend, 1-3, 6-7, 8-2, 8-4
AlphaBlend Example, 8-11
AlphaBlend Unit, 8-1
AlphaBlending, 1-3, 8-2, 8-4
aphabuffer, 6-7, 8-3, 9-5, 18
Alphatest, 6-9

AlphaTest, 1-3, 6-9
AlphaTest, 6-9

AlphaBlendM ode, 8-3, 8-4, 8-5, 8-8
AlphaTestM ode, 6-10
Antialias Application, 1-2, 6-7
Antiaias Example, 6-9
antialiasing, 18

Antidiasing, 2-4, 6-7, 6-8
AntialiasM ode, 2-6, 6-8, 6-9
Application Initialization, 12-8
area gtippling, 3-5

Area Stippling, 2-18, 3-3
AreaStippleM ode, 3-4, 3-6, 3-7
AreaStipplePattern, 3-7
AStart, 3-12

Bitmaps, 2-20

BitMaskPattern, 2-20, 2-21, 2-29, 2-32
block write, 18

BorderColor, 5-11

BStart, 3-12, 3-13, 5-5, 5-28, 5-29
chroma, 8-9

Chromal ower, 5-17, 8-9
ChromaTestM ode, 8-9
ChromaUpper, 5-17, 8-9

Cl Fogging Equation, 6-4

Color DDA, 1-1, 3-9

Color Format, 12-6

Color Format Example

3D/.bs

3:3:2,9-6

8:8:8:8, 9-6
Color Format Unit, 9-1
Color Formatting, 1-3
Color Index Format Example, 9-7
Color Interpolation, 14-3
ColorDDAMode, 3-12, 3-13
command register, 18
ConstantColor, 3-12
context, 18
Continue, 2-30, 2-31
ContinueNewDom, 2-4, 2-30
ContinueNewLine, 2-31
ContinueNewSub, 1-8, 2-4, 2-31
control register, 18
Count, 2-32
dAdx, 3-12
dAdyDom, 3-12
dBdx, 3-12
dBdyDom, 3-12, 3-13
DDA, 3-12, 3-13
ddlta, 2-2, 2-31, 14-3, 14-4
Depth, 1-4, 4-6, 4-15
depth (Z) buffer, 19
Depth Example, 4-15
Depth Gradient, 3-10, 14-4
Depth Test, 1-1
Depth Test, 4-11
depth-cueing, 19
DepthMode, 4-12, 4-13, 4-15
dFdx, 6-2
dFdyDom, 6-2
dGdx, 3-12, 5-5, 5-29
dGdyDom, 3-12, 3-13, 5-5, 5-29

Proprietary and Confidential 21

Glossary

Disabling Speciaized Modes, 12-6
Disabling units not in use, 13-3
Dither Example, 9-6
dithering, 19
Dithering, 9-4
DitherMode, 9-4, 9-5, 9-6
dK dBdx, 5-29
dK dBdyDom, 5-29
dKddx, 5-28
dK ddyDom, 5-28
dKdGdx, 5-29
dK dGdyDom, 5-29
dKdRdx, 5-29
dK dRdyDom, 5-29
dK sBdx, 5-28
dK sBdyDom, 5-28
dK sdx, 5-28
dKsdyDom, 5-28
dK sGdx, 5-28
dK sGdyDom, 5-28
dKsRdx, 5-28
dKsRdyDom, 5-28
DMA

Using the Bus Mastership, 13-3
Dominant, 1-4
dQdx, 5-2, 5-5
dQdy, 5-2, 5-3, 5-5
dQdyDom, 5-5
dRdx, 3-12, 14-3
dRdyDom, 3-12, 3-13
dSdx, 5-2, 5-5
dSdy, 5-2, 5-3, 5-5
dSdyDom, 5-5
dTdx, 5-2, 5-5
dTdy, 5-2, 5-3, 5-5
dXDom, 2-32
dXSub, 2-32
dy, 2-9, 2-25, 2-32, 13-4
dzdxL, 4-15
dzdxU, 4-15
dzdyDomL, 4-15
dzdyDomU, 4-15
Enabling Writing, 12-7
Examples, 3-7

22

Permedia4 Programmer’s Guide Volume Il

extent checking, 11-2
Extent Checking, 11-2
Fast double buffering in awindow, 13-2
fast fill, 19
FBColor, 7-1, 11-1
FBData, 8-5
FBDestReadM ode, 7-2, 9-8, 12-7
FBHardwareWriteMask, 10-1
FBSoftwareWriteM ask, 10-1
FBSour ceReadM ode, 7-1
FBWriteData, 9-7
FBWriteM ode, 8-5
Filter Mode Example, 11-1
Filtering, 11-1
FilterMode, 11-1, 11-2, 11-3, 11-4
flat shaded, 3-12
Flat Shading example, 3-12
FlushSpan, 2-4, 2-31
Fog, 1-1, 6-1
Fog Example, 6-5
Fog Index Calculation - The Fog DDA, 6-1
fogging, 19
FogM ode, 6-4, 6-5
framebuffer, 19
Framebuffer, 12-4

Bypass, 13-4
Framebuffer, 7-1
Framebuffer Depth, 12-3
Framebuffer Read Span Operations, 7-2
Gouraud shading, 3-13
Gouraud Shading, 3-10
Gouraud Shading examples, 3-12
GraphicID, 19
Graphics HyperPipeline, 1-1
Graphics Programming, 1-1
GStart, 3-12, 3-13, 5-5, 5-28, 5-29
Hardware Writemask Example, 10-2
Hardware Writemasks, 10-1
High Speed Flat Shaded Rendering, 9-7
Host, 11-1, 12-5
Host Out, 1-3
HyperPipeline, 1-1
Image Copy/Upload/Download, 2-25
Image Formatting, 8-4

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II Glossary

Improving PCI bus bandwidth for Programmed patch, 5-9
I/0 and DMA, 13-2 Patch, 4-1
Initialization, 1-3, 12-1 PCI burst transfers under Programmed 1/0O, 13-2
Initializing GLINT, 12-1 PCI bus, 12-2
Interpolation PCI Disconnect Under Programmed 1/0O, 13-3
Calculating Colorvalues, 14-3 Performance Tips, 13-1
KdBStart, 5-29 Perspective Correction, 5-3
KdGStart, 5-29 picking, 11-2
KdRStart, 5-28 Picking Example, 11-5
KdStart, 5-28 PickResult, 11-1, 11-2, 11-5
KsBStart, 5-28 Pixel Ownership, 1-1
KsGStart, 5-28 Pixel Ownership Test, 4-6
KsRStart, 5-28 Pixel Sizes, 2-19
KsStart, 5-28 PixelSize, 2-19, 2-31, 12-3
L BDestReadM ode, 4-2 PointTable, 2-32
LBReadFormat, 4-2, 4-4, 12-4 PointTable0, 2-32
LBWriteFormat, 4-2, 4-4, 4-5, 12-4 primitive, 20
LBWriteMode, 4-4 pseudocode, 14-1
Level of Detall calculation, 5-3 QStart, 5-2, 5-5
Line Stippling, 3-4 Rapid clear of the loca buffer & framebuffer, 13-3
LineStippleM ode, 3-5, 3-7 Rasterization, 1-8
Loading registersin unit order, 13-4 Rasterizer, 1-1, 2-1
LoadL ineStippleCounters, 3-7 Rasterizer Mode, 1-4, 2-29
localbuffer, 19 Rasterizer Unit Registers, 2-30
Locabuffer, 12-4 Rasterizer M ode, 2-21, 2-29, 2-31, 2-32
Bypass, 13-4 Register Updates
LOD, 5-3,5-5 Avoiding Unnecessary, 13-4
Logical Op, 9-7 Render, 1-5, 2-28, 2-30
Logical Op and Software Writemask Example, 9- ResetPickResult, 11-2, 11-5
10 RGBA and Color-Index(Cl) Modes, 3-10
Logical Operations, 9-8 RGBA Fogging Equation, 6-3
L ogicalOpM ode, 9-7, 9-8 Router, 1-3
MaxHitRegion, 11-1, 11-3, 11-5 RouterM ode, 1-3
MaxRegion, 11-2, 11-3, 11-5 RStart, 3-11, 3-12, 3-13, 5-5, 5-28
Memory Configuration, 12-2 Savel ineStippleCounters, 3-5, 3-7
Merge-copy Span Operations, 7-2 SaveStippleLineCounters, 3-5
MinHitRegion, 11-1, 11-3, 11-5 ScanLineOwnership, 2-32
MinRegion, 11-2, 11-3, 11-5 Scissor, 3-1
Miscellaneous Generic Graphics Tips, 13-5 Scissor Example, 3-3
OpenGL Application Modes, 5-20 scissor test, 11-2, 11-3
origin Scissor Test, 1-1
window, 12-6 ScissorM axXY, 3-3
Origin ScissorMinXY, 3-3
Setting, 12-6 Scissor M ode, 3-2

3D/.b5 Proprietary and Confidential 23

Glossary

Screen Clipping Region, 12-4
Screen Scissor Tests, 3-1
Screen Width, 12-4
ScreenSize, 3-1, 3-3
SGRAM Block Writes, 13-1
Sides

Calculating the Slope, 1-6
Software Writemask Example, 10-1
Software Writemasks, 10-1
Span Mask Processing, 2-18
Span Operations, 2-15
Span Operations and Bitmaps, 2-22
Span Operations and Image

Copy/Upload/Download, 2-27
Span Operations and Stippling, 3-5
Span Operations and the Scissor Unit, 3-3
SStart, 5-2, 5-5
Standard Framebuffer Read Operation, 7-1
StartXDom, 1-7, 2-9, 2-25, 2-32, 14-2
StartX Sub, 1-7, 2-9, 2-25, 2-32
StartY, 2-2, 2-9, 2-25, 2-32
Statistic Operations, 11-2
StatisticM ode, 11-2, 11-4, 11-5
Stencil, 4-6, 4-11
stencil buffer, 20
Stencil Example, 4-11
Stencil Test, 1-1
Stencil Test, 4-8
StencilData, 4-8, 4-10
StencilM ode, 4-8, 4-9, 4-10
stipple, 20
Stipple, 3-3
Stipple Test, 1-1
Sub Pixel Precision and Correction, 2-19
Subordinate, 1-4
Subpixel Correction, 1-4
Sync, 11-3, 11-6, 12-5
Sync Interrupt Example, 11-6
Synchronization, 11-3

15.2 Volume Il Index

AlphaBlend, 1-3, 6-7, 8-2, 8-4

24

Permedia4 Programmer’s Guide Volume Il

System Initiaization, 12-2
TexelLUT, 5-15, 5-16
Texel LUTAddress, 5-16
TexelLUTData, 5-16
TexeLUTIndex, 5-16
TexelLUT Transfer, 5-16
texture, 20
Texture, 1-1, 5-1, 5-2
Texture Filtering, 5-16
texture mapping, 1-3, 5-1, 20
TextureAddressMode, 2-18, 5-3
TextureBaseAddr, 5-3
TextureChromal ower, 5-17
TextureChromaUpper, 5-17
TextureColor Generation, 5-19
TextureEnvColor, 5-28
TextureFilterMode, 5-2, 5-16, 5-17
TextureReadM ode, 2-18, 5-3, 5-4, 5-5, 5-8, 5-16
Trapezoids, 2-2
TStart, 5-2, 5-5
Updatel ineStippleCounters, 3-5, 3-6
UseConstantFBWriteData, 9-7
User Scissor Test, 3-1
Video Timing, 12-3
WaitForCompletion, 2-31, 4-2
Window, 4-6, 4-11, 4-13
Window Address

Setting, 12-6
window control, 20
Window Initidization, 12-6
WindowOrigin, 3-1, 3-3
Write Masks, 10-1
writemask, 20
Writemasks, 12-7
XOR Example, 9-9
Y Limits Clipping, 2-30
ZStartL, 4-15
ZStartU, 4-15

AlphaBlend Example, 8-11

Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

AlphaBlend Unit, 8-1
AlphaBlending, 1-3, 8-2, 8-4
aphabuffer, 6-7, 8-3, 9-5, 18
Alphatest, 6-9
AlphaTest, 1-3, 6-9
AlphaTest, 6-9
AlphaBlendM ode, 8-3, 8-4, 8-5, 8-8
AlphaTestM ode, 6-10
Antialias Application, 1-2, 6-7
Antiaias Example, 6-9
antialiasing, 18
Antidiasing, 2-4, 6-7, 6-8
AntialiasM ode, 2-6, 6-8, 6-9
Application Initialization, 12-8
area gtippling, 3-5
Area Stippling, 2-18, 3-3
AreaStippleM ode, 3-4, 3-6, 3-7
AreaStipplePattern, 3-7
AStart, 3-12
Bitmaps, 2-20
BitMaskPattern, 2-20, 2-21, 2-29, 2-32
block write, 18
BorderColor, 5-11
BStart, 3-12, 3-13, 5-5, 5-28, 5-29
chroma, 8-9
Chromal ower, 5-17, 8-9
ChromaTestM ode, 8-9
ChromaUpper, 5-17, 8-9
Cl Fogging Equation, 6-4
Color DDA, 1-1, 3-9
Color Format, 12-6
Color Format Example

3:3:2,9-6

8:8:8:8, 9-6
Color Format Unit, 9-1
Color Formatting, 1-3
Color Index Format Example, 9-7
Color Interpolation, 14-3
ColorDDAMode, 3-12, 3-13
command register, 18
CongtantColor, 3-12
context, 18
Continue, 2-30, 2-31
ContinueNewDom, 2-4, 2-30

3D/.bs

Glossary

ContinueNewLine, 2-31
ContinueNewSub, 1-8, 2-4, 2-31
control register, 18

Count, 2-32

dAdx, 3-12

dAdyDom, 3-12

dBdx, 3-12

dBdyDom, 3-12, 3-13

DDA, 3-12, 3-13

delta, 2-2, 2-31, 14-3, 14-4
Depth, 1-4, 4-6, 4-15

depth (Z) buffer, 19

Depth Example, 4-15

Depth Gradient, 3-10, 14-4
Depth Test, 1-1

Depth Test, 4-11
depth-cueing, 19
DepthMode, 4-12, 4-13, 4-15
dFdx, 6-2

dFdyDom, 6-2

dGdx, 3-12, 5-5, 5-29
dGdyDom, 3-12, 3-13, 5-5, 5-29
Disabling Speciaized Modes, 12-6
Disabling units not in use, 13-3
Dither Example, 9-6
dithering, 19

Dithering, 9-4

DitherM ode, 9-4, 9-5, 9-6
dKdBdx, 5-29
dKdBdyDom, 5-29

dKddx, 5-28

dKddyDom, 5-28

dKdGdx, 5-29
dKdGdyDom, 5-29
dKdRdx, 5-29
dKdRdyDom, 5-29
dKsBdx, 5-28

dKsBdyDom, 5-28

dK sdx, 5-28

dK sdyDom, 5-28

dK sGdx, 5-28

dK sGdyDom, 5-28

dKsRdx, 5-28

dKsRdyDom, 5-28

Proprietary and Confidential 25

Glossary Permedia4 Programmer’s Guide Volume Il

DMA FogM ode, 6-4, 6-5
Using the Bus Mastership, 13-3 framebuffer, 19
Dominant, 1-4 Framebuffer, 12-4
dQdx, 5-2, 5-5 Bypass, 13-4
dQdy, 5-2, 5-3,5-5 Framebuffer, 7-1
dQdyDom, 5-5 Framebuffer Depth, 12-3
dRdx, 3-12, 14-3 Framebuffer Read Span Operations, 7-2
dRdyDom, 3-12, 3-13 Gouraud shading, 3-13
dsdx, 5-2, 5-5 Gouraud Shading, 3-10
dSdy, 5-2, 5-3, 5-5 Gouraud Shading examples, 3-12
dSdyDom, 5-5 GraphicID, 19
dTdx, 5-2, 5-5 Graphics HyperPipeline, 1-1
dTdy, 5-2, 5-3, 5-5 Graphics Programming, 1-1
dXDom, 2-32 GStart, 3-12, 3-13, 5-5, 5-28, 5-29
dXSub, 2-32 Hardware Writemask Example, 10-2
dy, 2-9, 2-25, 2-32, 13-4 Hardware Writemasks, 10-1
dzdxL, 4-15 High Speed Flat Shaded Rendering, 9-7
dzdxu, 4-15 Hogt, 11-1, 12-5
dzdyDomL, 4-15 Host Out, 1-3
dzZdyDomuU, 4-15 HyperPipeline, 1-1
Enabling Writing, 12-7 Image Copy/Upload/Download, 2-25
Examples, 3-7 Image Formatting, 8-4
extent checking, 11-2 Improving PCI bus bandwidth for Programmed
Extent Checking, 11-2 [/0 and DMA, 13-2
Fast double buffering in awindow, 13-2 Initialization, 1-3, 12-1
fast fill, 19 Initializing GLINT, 12-1
FBColor, 7-1, 11-1 Interpolation
FBData, 8-5 Cdlculating Colorvalues, 14-3
FBDestReadM ode, 7-2, 9-8, 12-7 KdBStart, 5-29
FBHardwareWriteMask, 10-1 KdGStart, 5-29
FBSoftwareWriteM ask, 10-1 KdRStart, 5-28
FBSourceReadM ode, 7-1 KdStart, 5-28
FBWriteData, 9-7 KsBStart, 5-28
FBWriteM ode, 8-5 KsGStart, 5-28
Filter Mode Example, 11-1 KsRStart, 5-28
Filtering, 11-1 KsStart, 5-28
FilterMode, 11-1, 11-2, 11-3, 11-4 L BDestReadM ode, 4-2
flat shaded, 3-12 LBReadFormat, 4-2, 4-4, 12-4
Flat Shading example, 3-12 LBWriteFormat, 4-2, 4-4, 4-5, 12-4
FlushSpan, 2-4, 2-31 LBWriteMode, 4-4
Fog, 1-1, 6-1 Level of Detail calculation, 5-3
Fog Example, 6-5 Line Stippling, 3-4
Fog Index Calculation - The Fog DDA, 6-1 LineStippleM ode, 3-5, 3-7
fogging, 19 Loading registersin unit order, 13-4

26 Proprietary and Confidential 3D/.2bs

Permedia4 Programmer’s Guide Volume II

LoadL ineStippleCounters, 3-7
localbuffer, 19
Locabuffer, 12-4
Bypass, 13-4
LOD, 5-3,5-5
Logica Op, 9-7
Logical Op and Software Writemask Example, 9-
10
Logical Operations, 9-8
L ogicalOpM ode, 9-7, 9-8
MaxHitRegion, 11-1, 11-3, 11-5
MaxRegion, 11-2, 11-3, 11-5
Memory Configuration, 12-2
Merge-copy Span Operations, 7-2
MinHitRegion, 11-1, 11-3, 11-5
MinRegion, 11-2, 11-3, 11-5
Miscellaneous Generic Graphics Tips, 13-5
OpenGL Application Modes, 5-20
origin
window, 12-6
Origin
Setting, 12-6
patch, 5-9
Patch, 4-1
PCI burst transfers under Programmed 1/0, 13-2
PCI bus, 12-2
PCI Disconnect Under Programmed 1/0O, 13-3
Performance Tips, 13-1
Perspective Correction, 5-3
picking, 11-2
Picking Example, 11-5
PickResult, 11-1, 11-2, 11-5
Pixel Ownership, 1-1
Pixel Ownership Test, 4-6
Pixel Sizes, 2-19
PixelSize, 2-19, 2-31, 12-3
PointT able, 2-32
PointTable0, 2-32
primitive, 20
pseudocode, 14-1
QStart, 5-2, 5-5
Rapid clear of the locabuffer & framebuffer, 13-3
Rasterization, 1-8
Rasterizer, 1-1, 2-1

Glossary

Rasterizer Mode, 1-4, 2-29
Rasterizer Unit Registers, 2-30
Rasterizer M ode, 2-21, 2-29, 2-31, 2-32
Register Updates
Avoiding Unnecessary, 13-4
Render, 1-5, 2-28, 2-30
ResetPickResult, 11-2, 11-5
RGBA and Color-Index(Cl) Modes, 3-10
RGBA Fogging Equation, 6-3
Router, 1-3
Router M ode, 1-3
RStart, 3-11, 3-12, 3-13, 5-5, 5-28
Savel ineStippleCounters, 3-5, 3-7
SaveStippleLineCounters, 3-5
ScanLineOwnership, 2-32
Scissor, 3-1
Scissor Example, 3-3
scissor test, 11-2, 11-3
Scissor Test, 1-1
ScissorMaxXY, 3-3
ScissorMinXY, 3-3
Scissor M ode, 3-2
Screen Clipping Region, 12-4
Screen Scissor Tests, 3-1
Screen Width, 12-4
ScreenSize, 3-1, 3-3
SGRAM Block Writes, 13-1
Sides
Cdlculating the Slope, 1-6
Software Writemask Example, 10-1
Software Writemasks, 10-1
Span Mask Processing, 2-18
Span Operations, 2-15
Span Operations and Bitmaps, 2-22
Span Operations and Image
Copy/Upload/Download, 2-27
Span Operations and Stippling, 3-5
Span Operations and the Scissor Unit, 3-3
SStart, 5-2, 5-5
Standard Framebuffer Read Operation, 7-1
StartXDom, 1-7, 2-9, 2-25, 2-32, 14-2
StartXSub, 1-7, 2-9, 2-25, 2-32
StartY, 2-2, 2-9, 2-25, 2-32
Statistic Operations, 11-2

3D/.b5 Proprietary and Confidential 27

Glossary Permedia4 Programmer’s Guide Volume Il

StatisticM ode, 11-2, 11-4, 11-5 TextureBaseAddr, 5-3

Stencil, 4-6, 4-11 TextureChromalL ower, 5-17
stencil buffer, 20 TextureChromaUpper, 5-17
Stencil Example, 4-11 TextureColor Generation, 5-19
Stencil Test, 1-1 TextureEnvColor, 5-28

Stencil Test, 4-8 TextureFilterMode, 5-2, 5-16, 5-17
StencilData, 4-8, 4-10 TextureReadM ode, 2-18, 5-3, 5-4, 5-5, 5-8, 5-16
StencilM ode, 4-8, 4-9, 4-10 Trapezoids, 2-2

stipple, 20 TStart, 5-2, 5-5

Stipple, 3-3 Updatel ineStippleCounters, 3-5, 3-6
Stipple Test, 1-1 UseConstantFBWriteData, 9-7
Sub Pixel Precision and Correction, 2-19 User Scissor Test, 3-1
Subordinate, 1-4 Video Timing, 12-3

Subpixel Correction, 1-4 WaitForCompletion, 2-31, 4-2
Sync, 11-3, 11-6, 12-5 Window, 4-6, 4-11, 4-13

Sync Interrupt Example, 11-6 Window Address

Synchronization, 11-3 Setting, 12-6

System Initiaization, 12-2 window control, 20

TexelLUT, 5-15, 5-16 Window Initidization, 12-6
TexelLUTAddress, 5-16 WindowOrigin, 3-1, 3-3
TexelLUTData, 5-16 Write Masks, 10-1
TexelLUTIndex, 5-16 writemask, 20

TexelLUT Transfer, 5-16 Writemasks, 12-7

texture, 20 XOR Example, 9-9

Texture, 1-1, 5-1, 5-2 Y Limits Clipping, 2-30

Texture Filtering, 5-16 ZStartL, 4-15

texture mapping, 1-3, 5-1, 20 ZStartU, 4-15

TextureAddressMode, 2-18, 5-3

28 Proprietary and Confidential 3D/.2bs

