

3Dlabs®

PERMEDIA 3

Errata and Alerts

PROPRIETARY AND CONFIDENTIAL
INFORMATION

Issue 5

®

PERMEDIA3 Errata

3Dlabs Proprietary and Confidential i

Proprietary Notice

The material in this document is the intellectual property of 3Dlabs. It is provided solely for
information. You may not reproduce this document in whole or in part by any means. While every
care has been taken in the preparation of this document, 3Dlabs accepts no liability for any
consequences of its use. Our products are under continual improvement and we reserve the right to
change their specification without notice. 3Dlabs may not produce printed versions of each issue of
this document. The latest version will be available from the 3Dlabs web site.

3Dlabs products and technology are protected by a number of worldwide patents. Unlicensed use of
any information contained herein may infringe one or more of these patents and may violate the
appropriate patent laws and conventions.

3Dlabs is the worldwide trading name of 3Dlabs Inc. Ltd.

3Dlabs, GLINT and PERMEDIA are registered trademarks of 3Dlabs Inc. Ltd.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of Microsoft
Corp. in the United States and/or other countries. OpenGL is a registered trademark of Silicon
Graphics, Inc. All other trademarks are acknowledged and recognized.

© Copyright 3Dlabs Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http://www.3dlabs.com

3Dlabs Ltd.
Meadlake Place

Thorpe Lea Road, Egham
Surrey, TW20 8HE
United Kingdom

Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3Dlabs K.K
Shiroyama JT Mori Bldg 16F

40301 Toranomon
Minato-ku, Tokyo, 105,

Japan
Tel: +81-3-5403-4653
Fax: +91-3-5403-4646

3Dlabs Inc.

480 Potrero Avenue
Sunnyvale, CA 94086,

United States
Tel: (408) 530-4700
Fax: (408) 530-4701

 PERMEDIA3 Errata

ii Proprietary and Confidential 3Dlabs

Change History

Document Issue Date Change

157.3.0 1 29 Feb 99 First Issue.
157.3.0 2 19 Mar 99 Layout and typos corrected.
157.3.0 3 23 Apr 99 Programming alert - DMA
157.3.0 4 29 June 99 Programming alert - CombineCaches
157.3.0 5 30 Jan 2000 PEREN0017 - Horizontal display resolution

PERMEDIA3 Errata

3Dlabs Proprietary and Confidential iii

Contents
Proprietary Notice... i
Change History.. ii
Contents .. iii

1 INTRODUCTION ... 5
1.1 PERMEDIA 3 Associated Documentation ..5
1.2 PERMEDIA 3 Identification ..5
1.3 Timing Values..5
1.4 Software Drivers and Reference Designs ..5

2 ERRATA SUMMARY... 6

3 ERRATA DETAILS ... 7
3.1 PEREN001 - Video Streams ...7
3.2 PEREN002 - YUV planar to packed through bypass..7
3.3 PEREN003 - Memory frequency dependency ..8
3.4 PEREN004 - Host-in DMA ...8
3.5 PEREN005 - Video Overlay line length restriction ...8
3.6 PEREN006 - Video Overlay de-interlacing ...17
3.7 PEREN007 - Constant color 8 and 32 bpp span rendering ...17
3.8 PEREN008 - Write DMA frequency dependency..18
3.9 PEREN009 - GPOut write DMA ..18
3.10 PEREN0010 - PCIAbortStatus register ...18
3.11 PEREN0011 - GPInFifo space ...19
3.12 PEREN0012 - Video unit line patched doubling..19
3.13 PEREN0013 - RAMDAC pan...20
3.14 PEREN0014 - RAMDAC cursor ...20
3.15 PEREN0015 - Render2D Register...21
3.16 PEREN0016 - Invalidate Texture Cache...22
3.17 PEREN0017 - Horizontal Display Resolution ...22

4 ALERT DETAILS ...23
4.1 ALERT001 - Control DMA/ Programmed IO Interaction Caution23
4.2 ALERT002 - Texture Lockup when Cache Combining above 100MHz..........................23
4.3 ALERT003 - Unable to see more than 32MB of memory in Extended Addressing when
Interleave is enabled...24
4.4 ALERT004 - In striped mode, secondary chip does not swap correctly between front left
and front right buffers...24

PERMEDIA3 Errata Introduction

3Dlabs Proprietary and Confidential 5

1
1 Introduction

The following stepping information is for the PERMEDIA 3 Graphics Accelerator Chip.
There is an erratum for each known problem containing a detailed description and suggested
workarounds.

1.1 PERMEDIA 3 Associated Documentation
This document should be read in conjunction with:

• PERMEDIA3 Architecture Overview, Issue 5

• PERMEDIA3 Reference Guide, Issue 2

1.2 PERMEDIA 3 Identification
A PERMEDIA 3 may be identified by two means. The first is the physical markings on the
part itself, the second is by reading the Vendor ID, Device ID and Revision ID Registers in
PCI Configuration Region. Please refer to the PERMEDIA 3 Reference Guide for further
details.

Part Marking Vendor ID Device ID Revision ID
PERMEDIA 3 3D3Dh 000Ah 0001h

1.3 Timing Values
All timing values referred to in this document apply across the full range of operating
conditions as specified in the PERMEDIA 3 Reference Guide.

1.4 Software Drivers and Reference Designs
Please note that all 3Dlabs supplied software drivers and reference designs include the
appropriate bug fixes and workarounds as described in this document.

Summary PERMEDIA3 Errata

6 Proprietary and Confidential 3Dlabs

2
2 Errata Summary

Errata No. Type Reference Revision
ID

PEREN001 Device
Errata

Video Streams 0001h

PEREN002 Device
Errata

YUV planar to packed through bypass 0001h

PEREN003 Device
Errata

Memory frequency dependency 0001h

PEREN004 Device
Errata

Host-in DMA 0001h

PEREN005 Device
Errata

Video Overlay line length restriction 0001h

PEREN006 Device
Errata

Video Overlay de-interlacing 0001h

PEREN007 Device
Errata

Constant color spans 0001h

PEREN008 Device
Errata

Write DMA frequency dependency 0001h

PEREN009 Device
Errata

GPOut write DMA 0001h

PEREN0010 Device
Errata

PCIAbortStatus register 0001h

PEREN0011 Device
Errata

GPInFifo space 0001h

PEREN0012 Device
Errata

Video unit line patched doubling 0001h

PEREN0013 Device
Errata

RAMDAC pan 0001h

PEREN0014 Device
Errata

RAMDAC cursor 0001h

PEREN0015 Device
Errata

Render2D register 0001h

PEREN0016 Device
Errata

Invalidate texture cache 0001h

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential 7

3
3 Errata Details

3Dlabs have extensive experience and a proven track record in delivering high performance,
high quality, ready-to-ship WHQL certified software drivers that extract the maximum
performance from both the PERMEDIA 3 processor and the entire system.

3.1 PEREN001 - Video Streams

3.1.1 Problem
Operation of input and output video streams is incorrect. Modes 1, 2, 3 and 4 of the
VSConfiguration register mode field do not function correctly and should not be used.
Access to the ROM (mode 0) and the flat panel display (mode 6) do function correctly and
can be used.

3.1.2 Software Workaround
None

3.2 PEREN002 - YUV planar to packed through bypass

3.2.1 Problem
Data in the YUV planar format (the internal format of MPEG2 data) cannot be converted
to packed YUV (the format used for processing) while being written to the framebuffer
through the bypass.

3.2.2 Software Workaround
Planar data should be converted to packed before being written to the framebuffer. DirectX
normally does the conversion so this errata should have no effect for DirectX systems.

Details PERMEDIA3 Errata

8 Proprietary and Confidential 3Dlabs

3.3 PEREN003 - Memory frequency dependency

3.3.1 Problem
The memory clock should not be set to run faster than the graphics processor clock. The
graphics core may not function correctly if the frequency of the memory clock is greater than
the frequency of the graphics processor clock. The memory clock is controlled by the
MClkControl register, and the graphics processor clock by KClkControl and associated
PLL registers.

3.3.2 Software Workaround
Under normal conditions, the memory clock should be tied to the graphics processor clock.
If slow speed memories are used, the memory clock may be run from, for example, an
external clock with a frequency lower than the graphics processor clock. Care should be
taken when using the power saving mode of the graphics processor clock as it may result in
it having a lower frequency than the memory clock.

3.4 PEREN004 - Host-in DMA

3.4.1 Problem
The host-in lightweight DMA mechanism may function incorrectly. There are three
problems with the DMAContinue command:

1. The DMAError interrupt may be raised incorrectly and should be ignored.

2. If a DMACount command of zero is sent before a DMAContinue command, the
DMAContinue will be applied to the previous DMACount.

3. There is a double buffering mechanism which allows new DMAAddress and
DMACount values to be loaded before the current pair have completed without taking
any room in the input FIFO. DMAContinue commands following this should not take
any room in the input FIFO but do, and may fill the FIFO in consequence.

3.4.2 Software Workaround
Check the FIFO space before sending lightweight DMA commands. A DMACount should
never be sent with a value of zero.

3.5 PEREN005 - Video Overlay line length restriction

3.5.1 Problem
The VideoOverlay Unit generates incorrect output when either:

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential 9

a) The width of the image into the zoom-filter (i.e. after any x-shrink has been applied) is
not an exact multiple of 4 pixels.

b) The X Shrink and Zoom deltas yield a final X coordinate which is part-way through the
final source pixel (i.e. adding the value of zoom-delta one more time does not step to
the next source pixel).

3.5.2 Software Workaround
The VideoOverlay X delta values must be carefully chosen to avoid the above conditions.
This can be achieved by the C function ‘compute_ovr_params’ listed below:

#define valid_width(w) ((w & 3) == 0)
#define make_valid_width(w) ((w) & ~0x3)
#define width_step 4

/* Forward declarations */
static int compute_best_fit_delta(unsigned long *src_dimension,
 unsigned long dest_dimension,
 unsigned long filter_adj,
 unsigned long int_bits,
 unsigned long *best_delta);
static int find_zoom(unsigned long src_width,
 unsigned long* shrink_width,
 unsigned long dest_width,
 unsigned long* zoom_delta);

/* Function to compute overlay X deltas suitable for scaling from */
/* src_width to dest_width. May adjust the source width slightly in */
/* order to meet required destination width. Final adjusted width is */
/* returned in ovr_w */

static void compute_ovr_params(
 unsigned long src_width, unsigned long dest_width,
 unsigned long *ovr_shrinkxd, unsigned long *ovr_zoomxd,
 unsigned long *ovr_w)
{
 unsigned long sx_adj = 0;
 const unsigned long fixed_one = 0x00001000;
 int zoom_ok;
 unsigned long adj_src_width;
 unsigned long exact_shrink_xd;
 unsigned long exact_zoom_xd;

Details PERMEDIA3 Errata

10 Proprietary and Confidential 3Dlabs

 adj_src_width = src_width + 1; /* +1 accounts for – below */

 /* */
 /* Use the source and destination rectangle dimensions to compute */
 /* delta values. */
 /* */

 unsigned long shrink_width;

 /* Step to next source width */
 adj_src_width--;

 /* Make a stab at the deltas for the current source width */

 /* Initially, the deltas are assumed to be 1, and the width due to */
 /* shrinking is therefore equal to src width */
 shrink_width = adj_src_width;
 exact_shrink_xd = fixed_one;
 exact_zoom_xd = fixed_one;

 /* Compute the shrink width and delta required */
 if (dest_width < adj_src_width) {
 /* Shrink */
 exact_shrink_xd =
 (unsigned long)((((float)(adj_src_width - sx_adj) /
 (float)(dest_width)) * (1<<12)) + 0.999f);

 shrink_width =
 (unsigned long)((adj_src_width - sx_adj) /
 ((float)(exact_shrink_xd) / (1<<12)));

 }

 /* Truncate shrink to valid width */
 if (!valid_width(shrink_width) && (shrink_width > 4)) {
 shrink_width = make_valid_width(shrink_width);

 exact_shrink_xd =
 (unsigned long)((((float)(adj_src_width - sx_adj) /
 (float)(shrink_width)) * (1<<12)) + 0.999f);
 }

 /* Compute any zoom delta required */
 zoom_ok = 1;
 if (shrink_width < dest_width) {
 /* Make an attempt at a zoom-delta & shrink-width for this src width */
 zoom_ok = find_zoom(adj_src_width, &shrink_width, dest_width,
 &exact_zoom_xd);

 /* Compute final shrink delta from returned shrink width */
 exact_shrink_xd =
 (unsigned long)((((float)(adj_src_width - sx_adj) /
 (float)(shrink_width)) * (1<<12)) + 0.999f);
 }

 *ovr_zoomxd = exact_zoom_xd;
 *ovr_shrinkxd = exact_shrink_xd;

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 11

 *ovr_w = adj_src_width;
}

Details PERMEDIA3 Errata

12 Proprietary and Confidential 3Dlabs

/* Function to calculate a 12.12 delta value to provide scaling from */
/* a src_dimension to the target dest_dimension. */
/* The dest_dimension is not adjustable, but the src_dimension may be */
/* adjusted slightly, so that the delta yields a more accurate value for */
/* dest. */
/* filter_adj should be set to 1 if linear filtering is going to be */
/* enabled */
/* during scaling, and 0 otherwise. */
/* int_bits indicates the number of bits in the scaled delta format */
static int compute_best_fit_delta(unsigned long *src_dimension,
 unsigned long dest_dimension,
 unsigned long filter_adj,
 unsigned long int_bits,
 unsigned long *best_delta) {

 int result = 0;
 float fp_delta;
 float delta;
 unsigned long delta_mid;
 unsigned long delta_down;
 unsigned long delta_up;
 float mid_src_dim;
 float down_src_dim;
 float up_src_dim;
 float mid_err;
 float mid_frac;
 int mid_ok;
 float down_err;
 float down_frac;
 int down_ok;
 float up_err;
 float up_frac;
 int up_ok;
 int itemp;

 /* The value at which a scaled delta value is deemed too large */
 const unsigned int max_scaled_int = (1 << (12+int_bits));

 /* Calculate an exact floating point delta */
 fp_delta = (float)(*src_dimension - filter_adj) / dest_dimension;

 /* Calculate the scaled representation of the delta */
 delta = (fp_delta * (1<<12));

 /* Truncate to max_int */
 if (delta >= max_scaled_int) {
 delta = (float)(max_scaled_int - 1); /* Just below overflow value */
 }

 /* Calculate the scaled approximation to the delta */
 delta_mid = (unsigned long)delta;

 /* Calculate the scaled approximation to the delta, less a 'bit' */
 /* But don't let it go out of range */
 delta_down = (unsigned long)delta;
 if (delta_down != 0) {

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 13

 delta_down --;
 }

 /* Calculate the scaled approximation to the delta, plus a 'bit' */
 /* But don't let it go out of range */
 delta_up = (unsigned long)delta;
 if ((delta_up + 1) < max_scaled_int) {
 delta_up ++;
 }

Details PERMEDIA3 Errata

14 Proprietary and Confidential 3Dlabs

 /* Recompute the source dimensions, based on the dest and deltas */
 mid_src_dim =
 (((float)(dest_dimension - 1) * delta_mid) / (1<<12)) + filter_adj;

 down_src_dim =
 (((float)(dest_dimension - 1) * delta_down) / (1<<12)) + filter_adj;

 up_src_dim =
 (((float)(dest_dimension - 1) * delta_up) / (1<<12)) + filter_adj;

 /* Choose the delta which gives final source coordinate closest to */
 /* target, while giving a fraction 'f' such that (1.0 - f) <= delta */

 mid_err = fabs(mid_src_dim - *src_dimension);
 itemp = (unsigned long)mid_src_dim;
 mid_frac = mid_src_dim - itemp;
 mid_ok = ((1.0 - mid_frac) <= ((float)(delta_mid) / (1<<12)));

 down_err = fabs(down_src_dim - *src_dimension);
 itemp = (unsigned long)down_src_dim;
 down_frac = down_src_dim - itemp;
 down_ok = ((1.0 - down_frac) <= ((float)(delta_down) / (1<<12)));

 up_err = fabs(up_src_dim - *src_dimension);
 itemp = (unsigned long)up_src_dim;
 up_frac = (up_src_dim - itemp);
 up_ok = ((1.0 - up_frac) <= ((float)(delta_up) / (1<<12)));

 if (mid_ok && (!down_ok || (mid_err <= down_err)) &&
 (!up_ok || (mid_err <= up_err))) {
 *best_delta = delta_mid;
 itemp = (unsigned long)((mid_src_dim + ((float)(delta_mid) / (1<<12))));
 *src_dimension = (unsigned long)(itemp - filter_adj);

 result = 1;
 }
 else if (down_ok && (!mid_ok || (down_err <= mid_err)) &&
 (!up_ok || (down_err <= up_err))) {
 *best_delta = delta_down;
 itemp = (unsigned long)((down_src_dim + ((float)(delta_down) / (1<<12))));
 *src_dimension = (unsigned long)(itemp - filter_adj);

 result = 1;
 }
 else if (up_ok && (!mid_ok || (up_err <= mid_err)) &&
 (!down_ok || (up_err <= down_err))) {
 *best_delta = delta_up;
 itemp = (unsigned long)((up_src_dim + ((float)(delta_up) / (1<<12))));
 *src_dimension = (unsigned long)(itemp - filter_adj);
 result = 1;
 }
 else {
 result = 0;
 *best_delta = delta_mid;
 itemp = (unsigned long)((mid_src_dim + ((float)(delta_mid) / (1<<12))));

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 15

 itemp = (unsigned long)((itemp - filter_adj) + 0.9999f);
 *src_dimension = (unsigned long)itemp;
 }

 return result;
}

Details PERMEDIA3 Errata

16 Proprietary and Confidential 3Dlabs

/* Find a suitable zoom delta for the given source */
/* the source image may be adjusted in width by as much as 8 pixels to */
/* acheive a match */

static int find_zoom(unsigned long src_width,
 unsigned long* shrink_width,
 unsigned long dest_width,
 unsigned long* zoom_delta) {
 int zoom_ok;
 int zx_adj = 0;

 /* Find zoom for requested width */
 unsigned long trunc_width = make_valid_width(*shrink_width);
 zoom_ok = compute_best_fit_delta(&trunc_width, dest_width, zx_adj, 1,
 zoom_delta);

 /* If no zoom was matched for requested width, start searching up/down */
 if (!zoom_ok || (!valid_width(trunc_width))) {
 unsigned long up_width = make_valid_width(trunc_width) + width_step;
 unsigned long down_width = make_valid_width(trunc_width) - width_step;

 int done_up = 0;
 int done_down = 0;
 do {
 /* Check upwards */
 zoom_ok = 0;
 if (up_width < dest_width) {
 unsigned long new_width = up_width;
 zoom_ok =
 compute_best_fit_delta(&new_width, dest_width, zx_adj, 1,
 zoom_delta);

 /* If the above call somehow adjusts width to invalid, */
 /* mark the delta invalid */
 if (!valid_width(new_width)) {
 zoom_ok = 0;
 }

 if (zoom_ok) {
 *shrink_width = new_width;
 }
 else {
 up_width += width_step;
 }
 }
 else
 done_up = 1;

 /* Check downwards */
 if (!zoom_ok && (down_width >= 4) && (down_width < src_width)) {
 unsigned long new_width = down_width;
 zoom_ok =
 compute_best_fit_delta(&new_width, dest_width, zx_adj, 1,
 zoom_delta);

 /* If the above call somehow adjusts width to invalid, */

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 17

 /* mark the delta invalid */
 if (!valid_width(new_width)) {
 zoom_ok = 0;
 }

 if (zoom_ok) {
 *shrink_width = new_width;
 }
 else {
 down_width -= width_step;
 }
 }
 else
 done_down = 1;
 } while (!zoom_ok && (!done_up || !done_down));
 }

 return zoom_ok;
}

3.6 PEREN006 - Video Overlay de-interlacing

3.6.1 Problem
The VideoOverlay does not generate the correct number of scanlines for odd video fields
when bob-deinterlace is enabled. This causes image skewing on the display.

3.6.2 Software Workaround
None. Do not use bob-deinterlacing with the VideoOverlay unit.

3.7 PEREN007 - Constant color 8 and 32 bpp span rendering

3.7.1 Problem
Constant color span operations on 8bpp or 32bpp framebuffers do not work correctly and
omit some pixels.

3.7.2 Software Workaround
A simple software workaround for 8bpp rendering is to avoid using spans and render pixels
normally. A more optimal solution is to treat the framebuffer as 16bpp and render the
interior pixels like this. The edge pixels where scanlines start on an odd byte boundary or
end on an odd byte boundary will need to be filled in using normal i.e. non-span rendering.

The recommended software workaround for 32bpp rendering is to switch to 16 bit
rendering and adjust the start and end pixels to cover the same number of memory words.

Details PERMEDIA3 Errata

18 Proprietary and Confidential 3Dlabs

For example if the span for 32bpp starts at coordinate 100 and ends at 250, then in 16bpp
rendering set the start to coordinate 200 and end to 500. The block color should be set up
as for 32bpp. Other than the few cycle cost of changing the pixel depth, there is no loss of
fill rate.

3.8 PEREN008 - Write DMA frequency dependency

3.8.1 Problem
The bypass write DMA controller is used to transfer data from the framebuffer to system
memory. If the memory clock is operating at a higher frequency than the PCI clock, the
DMA may not operate correctly. As the highest PCI clock is 66MHz, it is normal for the
memory clock to be faster, so this DMA controller should not be used.

3.8.2 Software Workaround
Bypass write DMA should not be used. Instead, use the CPU to read from the framebuffer,
or use the graphics processor to DMA data.

3.9 PEREN009 - GPOut write DMA

3.9.1 Problem
The GPOutDMA address register in region zero does not return the next DMA Address to
be issued to the DMA arbiter when read. The PCIFeedbackCount register does not return
the number of DWORDs transferred in the current DMA. This means that operations such
as rectangular write DMA do not work correctly.

3.9.2 Software Workaround
Legacy output DMA, as used by PERMEDIA 2 drivers, should be used instead.

3.10 PEREN0010 - PCIAbortStatus register

3.10.1 Problem
After a PCI master Abort, the aborting address and DMA source can be read from the
PCIAbortAddress register and PCIAbortStatus register in region zero. Once set, the
PCIAbortStatus register cannot be cleared by writing to the register.

3.10.2 Software Workaround
None. A PCI Master abort is a potentially fatal occurrence. However, this will only occur
due to a serious bug in the driver software.

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 19

3.11 PEREN0011 - GPInFifo space

3.11.1 Problem
The InFIFOSpace register can report erroneous space values when the space in the input
FIFO is greater than 120 items.

3.11.2 Software Workaround
When the InFIFOspace register is read, the value must be clamped to a maximum of 120,
before it is used.

3.12 PEREN0012 - Video unit line patched doubling

3.12.1 Problem
The video unit does not support line doubling with a patched framebuffer. The video unit
supports line doubling for situations where the resolution of the display is so low that a
monitor has trouble locking to it. The video unit also supports a patched framebuffer which
can give better drawing performance on high resolution displays. These modes are not
independent and should not be used at the same time.

3.12.2 Software Workaround
None. Do not attempt line doubling with a patched framebuffer. This is not serious as line
doubling is typically only used with screen resolutions of width <= 512 pixels.

Details PERMEDIA3 Errata

20 Proprietary and Confidential 3Dlabs

3.13 PEREN0013 - RAMDAC pan

3.13.1 Problem
The RAMDAC can pan to 64 bit resolution, but not to 32 bits. A RAMDAC is normally
required to pan to an accuracy of four pixels. The RAMDAC can pan to the nearest 64 bits
which is suitable for 32 and 16 bit displays, but not 8 bit displays. Attempting to pan to 32
bits may cause the horizontal sync to change position within the blank, which may result in
the display shifting position.

3.13.2 Software Workaround
If the byte double mode (video unit, misc control register) is used, each 8 bit pixel is issued
twice so to pan to 4 pixels only requires 64 bit accuracy.

3.14 PEREN0014 - RAMDAC cursor

3.14.1 Problem
Once enabled, the hardware cursor cannot be disabled by switching it off in the
RDCursorMode register.

3.14.2 Software Workaround
Hide the cursor by moving it off-screen when it is not needed.

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 21

3.15 PEREN0015 - Render2D Register

3.15.1 Problem
The Render2D command does not always render the last pixel(s). This occurs under the
following conditions:

• the Render2D command has the Operation field set to PatchOrderRendering,
• the rectangle width is less than the patch width in pixels (i.e. < 64 for 32 bpp, <

128 for 16 bpp or < 256 for 8 bpp)
• and the rectangle does not cross a patch boundary in X

The effect is that the last pixel(s) are not flushed out to memory. They will be by any
subsequent rendering, but if no more rendering is done (for example while waiting for user
input) then one or more pixels will not be visible on the screen.

3.15.2 Software Workaround
The simplest solution is to follow any Render2D command which might fall into this
category with a ContinueNewSub (0) command which will do nothing, but as a side effect
cause any pending pixels to be flushed out from the internal registers. If this proves to be
too much of a performance burden then it is possible to do the flush only on an interrupt
driven basis such as on a frame blank interrupt. This will flush the residual pixels 60 or more
times per second, which is frequent enough to make the missing pixels invisible.

Details PERMEDIA3 Errata

22 Proprietary and Confidential 3Dlabs

3.16 PEREN0016 - Invalidate Texture Cache

3.16.1 Problem
After sending an Invalidate Cache command, the texturing mapping hardware must wait for
this to be fully processed before continuing with command processing. Failing to do so can
result in the graphics processor locking up.

3.16.2 Software Workaround
One workaround is to send the Invalidate Cache command and then load a data value of 0
into the FogModeOr and TextureReadMode0Or registers. An alternative is to send
WaitForCompletion (0) after the Invalidate Cache command.

3.17 PEREN0017 - Horizontal Display Resolution

3.17.1 Problem
The video unit imposes a 2048 pixel width constraint. Beyond this resolution the display is
wrapped.

3.17.2 Software Workaround
None.

PERMEDIA3 Errata Details

3Dlabs Proprietary and Confidential

 23

4
4 Alert Details

Alerts are part of 3Dlabs committment to providing comprehensive and useful information
about chipset products. Alerts describe issues arising when the chip is used outside normal
operating parameters and may be of interest to driver programmers.

4.1 ALERT001 - Control DMA/ Programmed IO Interaction Caution

4.1.1 Problem
The input fifo is not designed to cope with fast switching between Control DMA and writes
to the input fifo. Normally, either one mechanism or the other (but not both) should be
used. This advisory does not apply to mixing fifo/register space acesses and Hostin DMA.

4.1.2 Software Workaround
Where it is necessary to combine both write methods, ensure that the input fifo is completely
empty after writing to the fifo/register space and before starting a new DMA transfer . The
input FIFO must report 128 spaces available. Clamping to fewer than 128 spaces will
produce unpredictable results.

4.2 ALERT002 - Texture Lockup when Cache Combining above
100MHz

4.2.1 Problem
When CombineCaches is enabled for texturing at frequencies above 100MHz, lockups may
occur. When this happens check to see if the CombineCaches bit is set by reading back the
TextureFilterMode register (refer to the Permedia3 Reference Guide).

4.2.2 Software Workaround
Since the Primary Cache Manager is the only texture read function which uses the
CombineCaches bit, the workaround is to ensure that drivers do not set the CombineCaches bit
in the TextureReadMode0/1 and TextureFilterMode registers if clock speeds in excess
of 100MHz are anticipated.

Details PERMEDIA3 Errata

24 Proprietary and Confidential 3Dlabs

4.3 ALERT003 - Unable to see more than 32MB of memory in
Extended Addressing when Interleave is enabled

4.3.1 Problem
When the Interleave and AddressExtension bits are set in LocalMemControl, only 32MB
of memory are visible. Effectively, Bank 1 becomes a clone of Bank 0.

4.3.2 Software Workaround
Correct the bank addressing by incrementing the BankAddress bits by 1. For example,
64MB of memory can usually be used with the following settings:
LocalMemCaps: 0x30F413B8
LocalMemControl: 0x0800001A

4.4 ALERT004 - In striped mode, secondary chip does not swap
correctly between front left and front right buffers

4.4.1 Problem
When the ScreenBaseRight register on the secondary chip in a two-chip configuration
(Striped Mode) is loaded it fails to take effect unless followed by by a write to ScreenBase.

4.4.2 Software Workaround
Re-load the ScreenBase after the ScreenBaseRight register update.

