SD/./)s

PERMEDIA 2

Programmer’s Reference
Maniual

Issue 5

PERMEDIA 2 Programmers Reference Mannal

The material in this document is the intellectual property of 3Dlabs. It is provided solely for
information. You may not reproduce this document in whole or in part by any means. While
every care has been taken in the preparation of this document, 3Dlabs accepts no liability for
any consequences of its use. Our products are under continual improvement and we reserve
the right to change their specification without notice.

3Dlabs products and technology are protected by a number of worldwide patents. Unlicensed
use of any information contained herein may infringe one or more of these patents and may
violate the appropriate patent laws and conventions.

3Dlabs is the worldwide trading name of 3Dlabs Inc. Ltd.
3Dlabs, GLINT and PERMEDIA are registered trademarks of 3Dlabs Inc. Ltd.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of Microsoft
Corp. in the United States and/or other countries. OpenGL is a registered trademark of
Silicon Graphics, Inc. Macintosh and Power Macintosh are registered trademarks and
QuickDraw is a trademark of Apple Computer Inc.

All other trademarks are acknowledged and recognized.

© Copyright 3Dlabs Inc. Ltd. 1997. All rights reserved worldwide.

Email: info@3Dlabs.com
WWW: http://www.3Dlabs.com

3D/ubs Inc.

181 Metro Drive, Suite 520,
San Jose, CA 95110
United States
Tel: (408) 436 3455
Fax: (408) 436 3458

3D/ubs5 Lid,
Meadlake Place
Thorpe Lea Road. Egham
Surrey, TW20 8HE
United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3D/ubs Proprietary and Confidential i

PERMEDIA 2 Programmers Reference Manual

Change History

Document | Issue Date Change

147.2.0 1 18 March 97 | First Issue

147.2.0 2 30 April 97 | Minor textual changes.

147.2.0 3 31 May 97 | Added missing registers RectangleOrigin and RectangleSize.
Minor typographical fixes.

147.2.0 4 30 July 97 | Added TexelLutlndex register to appendix A. Corrected section
1.1.

147.2.0 5 30 Nov 97 | Correct text on perspective correction in 5.7.1. Change V0, V1
and V2Float[0..15] to be [0..14] and fog range to be 1.0 to +1.0
in Appendix A. Change V0, V1 and V2Float[14] to be [15] in
Appendix E. Correct diagrsm and text for TexelLUTAddress in
Appendix A. Minor typographical changes.

ii Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Contents

Contents
L. INErodUCtion covueeieeiiseeieisssnesnsssssnsiossssnnssssssssssssssssssosssssssssssssssssssssnsssssssnsasssssassssosssssaness 1
1.1 How to use this Manualc.cciicuiiieiiiiiiiieiiciese ettt sta e ste b e s taesbeessessaesbeesbeesaesseessesssessens 1
1.2 Further Reading.....c.voveueuiririeieiiiiiiciciicieec ettt ettt 2
2, DVEIVIEW.ururerererersssrssnese 3
2.1 PERMEDIA 2 Key Featurescccoviiiiiiiiiiiniiiiiiiiiiii s 3
2.2 FUNCHONAL OVEIVIEW....eviiitiiie it ettt ettt et ettt et e ete et e e te e teeaaeeaeeteetseeteeeteeaseeteenteesseeasesseeasestseseenseenis 4
3. Programming Model........coueviinienniiniiniinniininnieniinninieniienneninenensenenesssese 7
3.1 PERMEDIA as a Register file.........cccoiiiiiiiiiiiiiiiiiiiii s 8
3.2 PERMEDIA I/O TNTEIEACE. .. ecoviiuiiitietieeeeete ettt ettt ettt e et ettt e eteeete et e eteeeae st e eteete e seveeasesaneseens 10
3.3 INEEITUPES cuvevviiiiiietieet et ens 20
3.4 SyNChroNIZaATION ..ottt s 20
3.5 Host Memory Bypass.......cccoiiiiiiiiiiiiiiiiiiiiiiii e 21
3.0 DIMA CONEIOLLEr. ..uviiiiiieeiecti ettt ettt ettt et e et e e vt e eteeateeteeteeteeeteeabeeteeeateeteeteeasesanenreens 22
3.7 Register Read back........cccciviiiiiiiiiiiiiiiii 22
3.8 Byte SWaPPING...viviiiiiiiiiitiiitiietcc ettt 23
3.9 Red and Blue SWapping.......ccccciviiiiiiiiiiiiiiiiiiiiiie 23
4. Memory I/O and Organization.......eieeieinieniineinenninenisinesesmesmesessens 24
4.1 Patched Data...ccuiicuiiicceiccie ettt ettt ettt e et e e te et e ete e teetteeteeteeteetaenreens 24
4.2 LL0CAIDUITET c.viiiiiieie ettt bbb et b e ae e st e e tt e b e esbeett e b tebeesbeeraesbeesaestaenreans 24
4.3 Frameb Ui er......oouiiiii i ettt et e ettt e e te et e eteeete et e eaaereens 26
4.4 Double BUuffering.........ccccoiiiiiiiiiiiiiiiii i 31
4.5 TextUIE BUFTET .oovviiiiiicti ettt ettt ettt ettt et e e e et e et e etaeebe et e e taeete et e etaeteeareereenreens 35
5. Graphics Programming........c.cieeieninenennneniineniennineneiinesisssesessmesessssens 37
5.1 The Graphics HyperPIpeline........cooveiriiiriiiiiiiiniiinicircineinieteee ettt ettt et et 37
5.2 DIElta UNI uiiiiiiiiitieie ettt ettt ettt et ettt e eeteeeae et e eteeateeaeeeteeateeaeeebe et e eteeeareeabeeteenreetseereeareeas 39
5.3 RASTEIIZET UNIC.uttiitiiiiiiiiieiieeiieeiee st et e et e et e s aeetteeattessbeestaeesseeenseessseensaeanseesaseesssesensseanseesnseessseessneanes 44
5.4 Scissor/Stpple UIIT ..o 60
5.5 Localbuffer Read and Write UNIts........ccviicueriieriiiieriieiesiesieeiesieesiesstesteessesssesssesesssesseessesssesssesssessesssenees 65
5.6 Stencil/Depth Test URIT .c.c.eoiiieueuiiriieiiiieieieiieeteest ettt sttt st bbb 68
5.7 TeXture Address UNIT.....coiicueiiieriieieiiesieeiesteesteetesteesseestesteesseessesseassessaesseassesssesseassesssesssessenssesssessenssesses 76
5.8 TexXture Read UNit....c.ciiiiiiiiiiiiciiicieeie ettt ettt ettt et et ettt te et e ete et e etteetseateeteeeaseeteenseeasesseenseees 79
5.9 YUV UNCutttitiitiitiiteitiete ettt ettt ettt et ettt et et e b s e b e s esbesbessesbesbessessessessessessessessessebesbesbesbesbesbessessessas 86
5.10 Framebuffer Read and Write UNIEScc.coiiiiiiiiiiieiiiieecteeeeete ettt ettt et ete et eae e eteeeasesaeeane e 89
5.11 Color DDA Ut .iiuiiiieieiieiieiesieeieetesteeteetesteessesseesssessesssesseessesseesseassasssessesssesseessesssessseessesssessenssesses 96
5.12 Texture/Fog/BLendcccoiiiiiiiiiiiiicicice et 99
5.13 Color FOrMat UNIE .eeiuiiiiiuieiiiiieiiieitistesteestestesteesbestaesseessesseessesssesseessesssesseessesssassesssesseesssessesssessenssenss 108
5.14 Logical Op UnIt..cciiiiiiiiiiiiiiiiiiiii 111
5.15 HOSE OUE UNICutitiitieiieitieieeiesieetestteteeetesteesesttesteessesstesseessesseessesssasseassesssesseessesssessesssesssessesssessenssenss 113
6. INQtialiZation coccvecvseseeiieiesisssssnnessiesessssssnnssssssssssssssnsassssssssssssssssssssssssssssssnssssssssssssssennas 119
6.1 Initializing PERMEDIAc.ccooiiiiiiiiiiiiitc ettt e 119
6.2 System InitialiZationo.eoveirieiiiieiniiinciee ettt ettt 119

3D/ubs Proprietary and Confidential iii

Contents PERMEDIA 2 Programmers Reference Manual

6.3 Window InitialiZationc.cveveueiriiieieiiinieieicieeet ettt ettt 123
6.4 Application INIHalIZationcc.cvviiiiiiiiiicicic ettt ettt e 125
6.5 Bypass INIHaliZationc.ccivirieueiiiiniiieiiiieci ettt 126
7. Programming Tips.....ccuceiiiinniiniininiiniininiiiieseniesnessesssessnsssssssnes 127
7.1 PCIBUS ISSUES. c..viviiiiiiiiicciciici e s 127
7.2 Graphics Hyperpipeline ..o 129
7.3 Area Filling TechniqUes........c.ccooiviiiiiiiiiiiiiiiiiiciiicc e s 130
7.4 Copies and Downloads.........c.ceiriiiiiiiiiiiiiiiceiee ettt et 131
7.5 Multh BUFering........cceiviiiiiiiiiiiiiiiiiiic e 133
7.6 OVEIIAYS ...ttt ettt sttt 133
7.7 Memory Organizationccciiiiuiiiiiiiiiiiiiitiiee ittt 134
7.8 CRIOMIA TESTu ittt ettt sttt skttt 134
7.9 Configuration for 2Dc.cuiuiiiiiiiiiiiiiiiii e 135
8. Delta Programming EXamplescooeivruennensiensnnnnneniennninnnennniienniiniemsemiese. 136
Appendix A. Graphics Register Referencecoouuveinueniinieniiniinenninnennienininennnennennenns 146
Appendix B. Pseudocode Definitions......coceivuerieineiiueniunnensueniensneniienennnennnnesnennenens 257
Appendix C. Screen Widths Tablecoueviinenniiniininiininiiniinienieninennneeneneen, 259
Appendix D. A Gouraud Shaded Triangle without using the Delta Unit.................... 260
Appendix E. Register Tablescccovevvueniiiieniiiniinieniiininnneniinienienieennennneenennenen, 266
Appendix F. PERMEDIA 1 and PERMEDIA 2 Differences.....cc.ccesuesuessucsrensrenseessecnens 276
GLOSSATY weeiureiniiiiriienieniniennene e e s b s a s s e e s sa e s nesa e 282
INdeXuuiiiiiniiniiiieniiieiienieenne e e s a s b e s e sae s e e sa e s sae s b e saa s b s 287

iv Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Contents

Table of Figures

Figure 2.1 External INerfacesc.ccouviiueiiiniiiciiiiiicciinccictse ettt ettt 4
Figure 3.1 DMA Tag Description FOImMatccocuviiiiiiiiiiiiiiiiiiiiiii s 14
Figure 3.2 Indexed FOIMAtccociiiiiiiiiiiiii s 15
Figure 5.1 Hyperpipeline.....cocoiiiiiiiiiiiiiiiiiiiiiici e 38
Figure 5.2 Triangle MEsh. ...c.couciieiiiiiiiiiieiiiiiccin ettt et et 40
Figure 5.3 Triangle Fan.c.ccocooiiiiiiiiiii e 40
Figure 5.4 Rasterizing a triangle.c.ccuoveueuiiniiiiiiiiiiieiiicect ettt e 45
Figure 5.5 POLYLINE ...c.oiiiiiiiiiiiiiiiii e 47
Figure 5.6 Relationship between Bitmask and Scanning Directions.........cccccoevviiiinninniiccce, 50
Figure 5.7 Copy OPeration.........ccccivuiiiuiiiiiiiiiiiiiiiiii ittt 53
Figure 5.8 Real Coordinate Representationeeuiiriiieiiinininieiiinnieieeninieeeees ettt s 55
Figure 5.9 Screen Scissor and User Scissor Tests........cciiviiiiiiiiiiiiiiiiiiiicee s 61
Figure 5.10 Scissor Mode RegISTEreveviiriiiiiiiiiieicieinicictctteeete ettt ettt et 62
Figure 5.11 AreaStippleMode Registercccoiiiiiiiiiiiiiiiiiiiiiiciiic s 62
Figure 5.12 LBReadMode REGISTErvcveuiiriiiiiiiiiiictiitniieicttet ettt 67
Figure 5.13 LBWriteMode ReGIStErc.cuiiiiiiiiiiiiiiiiiiiiiiicicc e 67
Figure 5.14 LBReadFormat / LBWriteFormat Registercoveuiininieiiininiiieiiiricieiiinneece e 67
Figure 5.15 Depth Interpolation...........cccccciiiiiiiiiiiiiiiiiiiiiiii e 72
Figure 5.16 Depth Derivative FOImat......ccovviiiiiiiriiiiieiiiiiciciinetcte ettt 72
Figure 5.17 StencilMode RegISter........coiviiiiiiiiiiiiiiiiiiiiiiiiicc s 72
Figure 5.18 StencilData REGISTEr.....c.cvviiueuiiriiieieiiiiicieiiirecictctt ettt bt 73
Figure 5.19 DepthMode RegISter.........couiiiiiiiiiiiiiiiiiiiiiii s 73
Figure 5.20 Window RegISterc.cciriiiiiiuiiiriiieiiiiieicei ettt et 74
Figure 5.21 Texture Address Interpolationccccciciiiiiiiiiiiiiiiniiiii s 76
Figure 5.22 Fixed Point S and T FOIMat.....c.ccciviiiiiiiiiiiiiiiiiiniiicineect sttt 77
Figure 5.23 Fixed Point Q FOImat.......ccoouviiiiiiiiiiiiiiiiiiiiiiiici s 77
Figure 5.24 TextureAddressModec.ccuviiieiiininiiiiiiiiiieiieet et 78
Figure 5.25 TextureReadMode Register..........ccociiiiiiiiiiiiiiiiiiiiiiiic s 81
Figure 5.26 TextureMapFormat Registerccoouiiiiiiiiiiiiiiiiiiiiicccc e 82
Figure 5.27 TextureDataFormat Register.........ccccoovviiiiiiiiiiiiiiiiii e, 82
Figure 5.28 TexelLUTMOde REZISTELooviueviviiiiieiiiiiiieiiiririeictt sttt s 83
Figure 5.29 Texel LUTAAAress TegISter.......ccueviuiiiiiiiiiiiiiiiiiiiiiiciie e 83
Figure 5.30 YUVMOdeE REISEr......cuiueuiiiiiiiiiiiiiiiietit sttt 87
Figure 5.31 ChromaUpperBound and ChromaLowerBound Registers RGB Format.........ccccccoeviiiniiiiininnnne 88
Figure 5.32 ChromaUpperBound and ChromalowerBound Registers YUV Format........ccccoeuvueveininiecineninnnee 88
Figure 5.33 FBReadMode RegIStrc.cuiiiiiiiiiiiiiiiiiiiciici s 94
Figure 5.34 FBWriteMode REZISTErvcuiiiiiiiiiiriiiciiiiieictt ettt 94
Figure 5.35 FBReadPixel Register........ccciviiiiiiiiiiiiiiiiiiiiiiiiiicce s 94
Figure 5.36 PackedDatalimits REGISTEr....c.cvvviueuiuiririiieiiiiiiciiiircctct ettt 95
Figure 5.37Color Representationcccciviiiiiiiiiiiiiiiiiiiiiiiic e 96
Figure 5.38 Color INterpolationc.uoueuiiriiieiiiiiiiiiciit ettt 97
Figure 5.39 Fixed Point Color FOrmat.......cccciviviiiiiiiiiiiiiiiiiiiiii s 97
Figure 5.40 ColorDDAMOdE REGISTETc.vvveviiiiieieiiiiiicicitieicet ettt 98
Figure 5.41 Fog Interpolation Over A Triangle.........cccociiiiiiiiiiiiiiiiiiiiii e 102
Figure 5.42 Fog Interpolant Fixed Point FOrmat.......coceeiriiiiieiiiniiiciiiicciicccecceseese e 102
Figure 5.43 FOZ@ING ...oviviviiiiiiiiiiiiii e 103
Figure 5.44 TextureColorMode ReGIStErc.couiviueuiiriiiiiiiiiieieiiinieett ettt 105
Figure 5.45 Texel0 Register - RGB and YUV formatsccoeiiviiiiiiiiiiiiniiiiccccccces 105
Figure 5.46 FOgMode RegISTer......ccuiuiuiuiiiiiiiiiiiiiieiiiitncettt ettt e 106

3D/ubs Proprietary and Confidential iii

Contents PERMEDIA 2 Programmers Reference Manual

Figure 5.47 AlphaBlendMode RegISter......c.ccvviiieuiiniiiiiiiiiiiiciciicctctecct ettt 106
Figure 5.48 Dither Mode Register........ccuiiiiiiiiiiiiiiiiiiiiiicic e 109
Figure 5.49 Logical OpMode ReGIStEr.c.cuiriiiiiiuiiiiiieiiiiiiieiciiieect ettt 113
Figure 5.50 FilterMode RegISter........ccouiiiiiiiiiiiiiiiiiiiiiiii e 116

Figure 5.51 StatisticMode Register
Figure 5.52 PickResult Register
Figure 8.1 Geometry of the Mesh and Clip regions.ccccciuiiiiiiiiiiiiiiiiiiccceeeeeeeeeas 136

List of Tables

Table 2.1 Standard VGA MoOdesceiuieiiiieiiieiiiiesie et steste et et teettestaesaesssesseessasssesseessesssesseesseesseessesssessenssesses 5
Table 2.2 VESA SV GA MOAES......ocuiiuiiiiiieitieie ettt ettt ettt ettt et ete e te et e eteeete st e eteeteeeaeeaseeaseereeaseenis 6
Table 3.1 Memory RegIonscciiiiiiiiiiiiiiiiiiiic s 7
Table 3.2 Region 0 Address Mapc.coceiriniiieiininiciciineieci ettt st 7
Table 4.1 Supported Color FOIMAtsccveirieiriiiiiiiieiiiiceeeee ettt e 29
Table 5.1 Vertex ParamieterS.......ccueiveiueeeeiueecteeteiteeeteeeeeteeteeteeeteeseeeteeseeaseesseseesseessesseesseessesseenseesseseessessnanreans 39
Table 5.2 Draw Command Bit Field Assignments Affecting Delta.........cccooeiiviiiiinniiiiiiin, 41
Table 5.3 DeltaMode Register Bit Field Assignments.cccovueueiriniiieiiininicieiineiecieieceesneneveesnene e 43
Table 5.4 Rasterizer Command RegIsters..........coouvuiuiiiiiiiiiiiiiiiiiiiic s 56
Table 5.5 Rasterizer Control ReIStErS.......ooveueuiiriiieiiiiriieiciiiieiceie ettt 57
Table 5.6 Render Command Register Fields.........cccoooiniiiiiiiiiiiiiiiiiiiicce 58
Table 5.7 Rasterizer Mode ReGIStErc.cvriiieuiiniiieieiiinieiecicteetee ettt sttt st 59
Table 5.8 Localbuffer Read/Write MOdes.....ccuiicviiiieriiiieriiiiiiieii e steeie st ste et e e e steesbestaesbeessesseesseesseessessaessenes 66
Table 5.9 Stencil Comparison Modes.........ceuiiriiiiiiininiiieiiiiect ettt 69
Table 5.10 Possible Update Operations for Stencil Planes.........cccoeceveiriiininieinieiinieincicieceeeeeeceees 69
Table 5.11 Stencil OPerations........o.ecuiciriiieuiiriiieieiinieeit ettt ettt 70
Table 5.12 StENCIl SOUICES ...vveiviiieiiieiieieiteteete st et e et et e et e st e b e etaesteesbessbesseessesssesseassesssesseesseassessaesseessessanssenes 70
Table 5.13 Depth Comparison MOdeseueuiiriiieuiiniiieiiiiieieeie ettt e 71
Table 5.14 DepPth SOULCES. c..e.veuiieiiieiirieiieetete ettt ettt sttt et se et ese st ne 71
Table 5.15 Depth Interpolation Registers.......c.couviiieuiiriiiiiiininiiieiiiincete ettt 74
Table 5.16 Texture Interpolation Registers..........cccviviiiiiiiiiiiiiiiiiiiiiii s 77
Table 5.17 Chroma Test MOdes.couiiiiiiiiiieiiitiete ettt ettt ettt et ete et e et ete et e eteeteetaeeresetaesseeasesanenreens 87
Table 5.18 Framebuffer Read/Write MOdesccviivieriiiieriieiiiiesiiete ettt steeie et e steebessaesbeesaessaesessseessessaessenns 91
Table 5.19 Color Interpolation REGISTErs.c.civiiieuiuiririiieiiiiiiieictretcetreeet ettt s 98
Table 5.20 Logical Operationscccceciviiiiiiiiiiiiiiiiiiiiii s 111
Table 5.21 FIlter MOdes.cueiuiiiiieiecieeie ettt ettt ettt et ettt ettt ettt ete et e ete e teeabeeteeeasesteeaseeraeereenseeeis 114
Table 7.1 Memory Organizationccoccviiiiuiiiiiiiiiiiiiiciice s 134

iv Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Introduction

11

Introduction

PERMEDIA 2 is a high performance PCI/AGP graphics processor that balances high
quality 3D polygon and textured graphics acceleration, windows acceleration and
state-of-the-art MPEG1/MPEG?2 playback with a fast integrated SVGA core,
integrated RAMDAC and video ports. This document provides a high level
overview of the architecture of the PERMEDIA 2 graphics processor and is intended
as an introduction for design engineers and project managers planning the
implementation of PERMEDIA 2 based systems.

PERMEDIA 2 sets the standard for 3D and multimedia acceleration, making it the
ideal solution to meet the increasingly pervasive need for balanced 3D and
multimedia acceleration - and all in a single, low cost PCI device.

This document has been written as the primary reference for programmers and
system designers who wish to develop software to drive PERMEDIA 2. Information
on programming the I/O registers can be found in the PERMEDIA 2 Hardware
Reference Manual.

PERMEDIA 2 is the second generation PERMEDIA device. Compared with PERMEDIA
1, it provides greater flexibility, additional features and enhanced performance.
Throughout this manual the terms PERMEDIA 2 and PERMEDIA are used
interchangeably.

An understanding of the principles of 2D and 3D graphics programming will be
useful in reading this document.

How to use this manual

Chapter 2 gives an overview of PERMEDIA.
Chapter 3 details the programming model for the chip.

Chapter 4 describes the data formats that PERMEDIA supports in the framebuffer,
localbuffer and texture buffer.

Chapter 5 describes how to use PERMEDIA for graphics rendering.
Chapter 6 describes the initialization of PERMEDIA.

Chapter 7 provides tips for programming PERMEDIA.

Chapter 8 provides examples of Delta programming.

Appendix A details the PERMEDIA registers.

Appendix B gives the format used in the pseudocode examples throughout the
document.

3D/.bs

Proprietary and Confidential 1

Introduction PERMEDIA 2 Programmers Reference Manual

Appendix C gives a table used to set-up common screen widths.

Appendix D describes how a Gouraud shaded triangle can be rendered without
using the Delta Unit. This is helpful in understanding how the chip works and
also when dealing with PERMEDIA 1 legacy.

Appendix E tabulates the PERMEDIA 2 registers.
Appendix F describes the differences between PERMEDIA 1 and 2
A Glossary of technical terms follows the Appendices.

An extensive index is included.

1.2 Further Reading

* PERMEDIA 2 Hardware Reference Manual, 3Dlabs

e PERMEDIA 2 Architecture Overview, 3D labs

* OpenGL Programming Guide, Jackie Neider et al, Reading MA: Addison-Wesley
o Microsoft WIN32 Software Development Kit 3.1, Microsoft

* Windows NT 3.1 Graphics Programming, Emeryville CA, Ziff-Davis Press

o Computer Graphics: Principles and Practice, James D. Foley et al, Reading MA:
Addison-Wesley

* Programmer’s Guide to the EGA, VGA and Super VGA Cards, Richard F. Ferraro,
Reading MA: Addison-Wesley, ISBN 0-201-62490-7

2 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Overview

2.

21

Overview

PERMEDIA 2 Key Features

* Full support for Intel’s Accelerated Graphics Port (AGP) and PCI
* 66 MHz operation
* DMA and Execute mode support
* Sideband addressing
* Enhanced 3D graphics features and performance (at 83MHz)
* 83M perspective correct, bilinear filtered, texture mapped pixels/sec
* 42M perspective correct, bilinear filtered, texture mapped, depth buffered
pixels/sec
* 800K texture mapped polygons/sec
* True-color 3D graphics
* Polygon based with Z buffer
* Texture decompression
* Full scene anti-aliasing
* Enhanced GUI acceleration
 Ultra-fast BLT engine and 2D rasterizer
* Stretch BLTs, monochrome/color expansion and logic ops
* 8,16, 24 and 32-bit packed framestore
* MPEG2 compatible Video playback acceleration
e YUV 4:4:4, YUV 4:2:2 and YUV 4:2:0 (native MPEG2 format)
* Unlimited multiple playback windows (occluded)
* Independent XY scaling and mirroring
* Integrated geometry pipeline set-up processor
* Integrated true-color 230 MHz RAMDAC
* 320x200 to 1600x1200 screen resolution
* DPMS, DDC1 and DDC2AB+
* Clock synthesizer and Hardware cursor
* Multi-mode video streams
 Simultaneous input and output video
* Optional scaling and filtering
* Optional color space conversion and gamma correction
* Fast on-chip SVGA
¢ Flexible multi-function SDRAM or SGRAM memory (2, 4, 6 or 8 Mbytes)
* Microsoft PC97 and Intel GPC97 compliance
* Comprehensive suite of optimized software drivers
* Reference board designs and manufacturing kits

3D/.bs

Proprietary and Confidential 3

Overview PERMEDIA 2 Programmers Reference Manual

2.2 Functional Overview

2.2.1 Memory Subsystem

PERMEDIA provides flexible support for the memory subsystem (Fig. 2.1). This
allows the system designer a wide choice of price/performance tradeoffs.

The same physical memory holds all data used by PERMEDIA. Internally the data
types are divided into texture, localbuffer and framebuffer. The localbuffer holds
depth and stencil data; the framebuffer holds color data for display.

VGA
Host Bus . L SGRAM
Bus Graphics Hyperpipeline Memory
Interface Interface
Bypass
Figure 2.1 External Interfaces

2.2.2 Host Interface

Conceptually PERMEDIA can be viewed as a register file. Control registers are
primed with the information required for a primitive, and then to start the chip
drawing, a write is made to a Command register

PERMEDIA registers can be accessed directly through the memory map. Registers
can be accessed either individually or in groups.

The chip also supports a bypass route to the memory to allow direct read/write of
pixels, and implementation of algorithms not directly supported by PERMEDIA.

4 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal

Overview

2.2.3 Task Switching
Where multiple applications wish to make simultaneous access to PERMEDIA, it is
the responsibility of the software driving the chip to handle the loading of correct
state. PERMEDIA has been designed to support a number of different software
architectures.
* Synchronous operation means that a new task can load its context without
waiting for current rendering to complete
* All loadable state can be read back
* A Sync command is provided to flush all rendering. This can be polled or it can
return an interrupt
2.2.4 SVGA
PERMEDIA contains a fast VGA core. The PERMEDIA SVGA is used for DOS VGA
applications and during boot time before switching to use the Graphics
Hyperpipeline. This document does not cover VGA programming. Specific
information on PERMEDIA’s VGA can be found in the PERMEDIA 2 Hardware
Reference Manual. VGA information, such as standard registers, is described in the
“Programmer’s Guide to the EGA, VGA and Super VGA Cards” by Richards F.
Ferraro.
The following standard VGA modes are supported:
Mode Alpha Char Size Colors Max Type Resolution
(hex) Format Page Format
00 0 | 40by25 8 by 8 16/256K bw 8 Alpha | 320 by 200
0* | 40 by 25 8 by 14 16/256K bw 8 Alpha 320 by 350
0+ | 40by25 9 by 16 16/256K bw 8 Alpha 360 by 400
01 1 | 40by25 8 by 8 16/256K 8 Alpha | 320 by 200
1* | 40 by 25 8 by 14 16/256K 8 Alpha | 320 by 350
1+ 40 by 25 9 by 16 16/256K 8 Alpha 360 by 400
02 2 80 by 25 8 by 8 16/256K bw 8 Alpha 640 by 200
2% 80 by 25 8 by 14 16/256K bw 8 Alpha 640 by 350
2+ | 80by25 9 by 16 16/256K bw 8 Alpha 720 by 400
033 | 80by2s 8 by 8 16/256K 8 Alpha | 720 by 200
3* | 80by25 8 by 14 16/256K 8 Alpha | 640 by 350
3+ 80 by 25 9 by 16 16/256K 8 Alpha 720 by 400
04 4 40 by 25 8 by 8 4/256K 1 Graph 320 by 200
05 5 40 by 25 8 by 8 4/256K bw 1 Graph 320 by 200
06 6 80 by 25 8 by 8 2/256K bw 1 Graph 640 by 200
07 7 80 by 25 9 by 14 bw 8 Alpha 720 by 350
7+ | 80by25 9 by 16 bw 8 Alpha 720 by 400
0D D | 40 by 25 8bys 16/256K 8 Graph | 320 by 200
OE E_ | 80by25 8 by 8 16/256K 4 Graph | 640 by 200
OF F 80 by 25 8 by 14 bw 2 Graph 640 by 350
10 10 | 80by25 8 by 14 16/256K 2 Graph 640 by 350
11 11 | 80 by 30 8 by 16 2/256K 1 Graph | 640 by 480
12 12| 80 by 30 8 by 16 16/256K 1 Graph | 640 by 480
13 13 | 40by 25 8bys 256/256K 1 Graph | 320 by 200
Table 2.1 Standard VGA Modes
3D/ubs Proprietary and Confidential 5

Overview PERMEDIA 2 Programmers Reference Manual

The following VESA SVGA modes are supported:

Mode (hex) Pixels Colors
100 640 by 400 | 256
101 640 by 480 | 256
Table 2.2 VESA SVGA Modes
ModeX is also supported.

6 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Programming Model

3. Programming Model

This chapter describes the programming model for PERMEDIA. It describes the
interface conceptually rather than detailing specific registers and their exact usage.
In-depth descriptions of how to program PERMEDIA for specific drawing operations

can be found in later chapters.

PERMEDIA is divided into the following memory regions:

Region | Address Space Bytes | Description Comments
Config | Configuration 256 PCI Configuration PCI special

Zero Memory 128K | Control Registers relocatable

One Memory 8sM Memory Region One relocatable

Two Memory 8M Memory Region Two relocatable

ROM Memory 64K | Expansion ROM relocatable

SVGA |Memory & I/O |- SVGA Addresses optional & fixed

Table 3.1 Memory Regions
Address Range Description Byte Swap
0000.0000 -> 0000.0FFF Control & Status No
0000.1000 -> 0000.1FFF Memory Control No
0000.2000 -> 0000.2FFF GP FIFO access No
0000.3000 -> 0000.3FFF Video Control No
0000.4000 -> 0000.4FFF RAMDAC No
0000.5000 -> 0000.57FF | Video Streams General Purpose Bus No
0000.5800 -> 0000.5FFF Video Streams Control No
0000.6000 -> 0000.6FFF SVGA Control No
0000.7000 -> 0000.7FFF Reserved No
0000.8000 -> 0000.FFFF GP Registers No
0001.0000 -> 0001.0FFF Control & Status Yes
0001.1000 -> 0001.1FFF Memory Control Yes
0001.2000 -> 0001.2FFF GP FIFO access Yes
0001.3000 -> 0001.3FFF Video Control Yes
0001.4000 -> 0001.4FFF RAMDAC Yes
0001.5000 -> 0001.57FF | Video Streams General Purpose Bus No
0001.5800 -> 0001.5FFF Video Streams Control No
0001.6000 -> 0001.6FFF SVGA Control Yes
0001.7000 -> 0001.7FFF Reserved Yes
0001.8000 -> 0001.FFFF GP Registers Yes
Table 3.2 Region 0 Address Map
3D/ubs Proprietary and Confidential 7

Programming Model PERMEDIA 2 Programmers Reference Manual

3.1

Pervepia as a Register file

The simplest way to view the interface to the PERMEDIA Graphic Processor is as a
flat block of memory-mapped registers (Ze. a register file). This register file appears
as part of the address map for PERMEDIA.

When a PERMEDIA host software driver is initialized it can map the register file into
its address space. Each register has an associated address tag, giving its offset from
the base of the register file (since all registers reside on a 64-bit boundary, the tag
offset is measured in multiples of 8 bytes). The most straightforward way to load a
value into a register is to write the data to its mapped address. In reality the chip
interface comprises a 256 entry deep FIFO, and each write to a register causes the
written value and the register’s address tag to be written as a new entry in the

FIFO.

Programming PERMEDIA to draw a primitive consists of writing values to the
appropriate registers followed by a write to a command register. This last write
triggers the start of drawing.

PERMEDIA has approximately 200 registers. All registers are 32 bits wide and should
be 32-bit addressed. Many registers are split into bit fields, and it should be noted
that bit 0 is the least significant bit.

In future chip revisions the register file may be extended and currently unused
bits in certain registers may be assigned new meanings. Software developers
should ensure that only defined registers are written to and that undefined
bits in registers are always written as zeros. The only exception to this rule is
that in certain registers it is convenient to allow unmasked values to be written to
registers which hold numeric data. These fields are marked as "not used" in

Appendix A and elsewhere.
Register Types

PERMEDIA has three main types of register:
* Control Registers
* Command Registers

* Internal Registers

Control Registers are updated only by the host - the chip effectively uses them as
read-only registers. Examples of control registers are the scissor clip min and max
registers. Once initialized by the host, the chip only reads these registers to
determine the scissor clip extents. Most registers are control registers.

Command Registers are those which, when written to, cause some action to
occur. Typically, the host will initialize the appropriate control registers and then
write to a command register to initiate drawing. Some command registers such as
ResetPickResult or Sync do not initiate rendering. Apart from these, there are two
types of command registers: begin-draw and continue-draw. Begin-draw

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

commands cause rendering to start with those values specified by the control
registers. Continue-draw commands cause drawing to continue with internal
register values as they were when the previous drawing operation completed.
Making use of continue-draw commands can significantly reduce the amount of
data that has to be loaded into PERMEDIA when drawing multiple connected objects
such as polylines. Examples of command registers include the Render and
ContinueNewLine registers.

For convenience in this document we often refer to "sending a Render command
to PERMEDIA" rather than saying "the Render Command register is written to,
which initiates drawing".

Internal Registers are not accessible to host software. They are used internally by
the chip to keep track of changing values. Some control registers have
corresponding internal registers. When a begin-draw command is sent and before
rendering starts, the internal registers are updated with the values in the
corresponding control registers. If a continue-draw command is sent then this
update does not happen and drawing continues with the current values in the
internal registers. For example, if a line is being drawn then the StartXDom and
StartY control registers specify the (x, y) coordinates of the first point in the line.
When a begin-draw command is sent these values are copied into internal registers.
As the line drawing progresses these internal registers are updated to contain the (x,
y) coordinates of the pixel being drawn. When drawing has completed the internal
registers contain the (x, y) coordinates of the next point that would have been
drawn. If a continue-draw command is now given, these final (x, y) internal values
are not modified and further drawing uses these values. If a begin-draw command
had been used the internal registers would have been re-loaded from the

StartXDom and StartY registers.

For the most part internal registers can be ignored. It is helpful to appreciate that
they exist in order to understand the continue-draw commands.

Efficiency Issues and Register Types

Software developers wishing to write device drivers for PERMEDIA should become
familiar with the different types of registers. Some control registers such as the
StartXDom and StartY registers have to be updated for almost every primitive
whereas other control registers such as those for scissor clip or logical ops can be
updated much less frequently. Pre-loading of the appropriate control registers can
reduce the amount of data that has to be loaded into the chip for a given primitive
thus improving efficiency. In addition, as described above, the final values in
internal registers can sometimes be used for subsequent drawing operations.

The tables in Appendix D lists the graphics registers according to their type, name

and address.

3D/ubs Proprietary and Confidential 9

Programming Model PERMEDIA 2 Programmers Reference Manual

3.2

3.2.1

3.2.2

Permenia 1/0 Interface

There are four ways of loading PERMEDIA registers:
e The host writes a value to the mapped address of the register
* The host writes address-tag/data pairs to the FIFO.
e The host writes address-tag/data pairs to the FIFO via DMA.

¢ The host writes to raw memory mapped GP FIFO addresses.

In cases where the host writes data values directly to the chip via the register file,
consideration has to be given to FIFO overflow (unless PCI Disconnect is
enabled). The InFIFOSpace register indicates how many free entries remain in the
FIFO. Before writing to any register, the host must ensure that there is enough
space left in the FIFO. The values in this register can be read at any time. When
using DMA, the DMA controller will automatically ensure that there is room in
the FIFO before it performs further transfers. Thus a buffer of any size up to 64K,
32 bit words, can be passed to the DMA controller. The FIFO and DMA

controller are described in more detail below.

PCI Disconnect

The PCI bus protocol incorporates a feature known as PCI Disconnect, which is
supported by PERMEDIA. PCI Disconnect is enabled by writing a one to bit zero of
the DisconnectControl register which is at offset 0x68 in PCI Region 0. Once the
PERMEDIA is in this mode, if the host processor attempts to write to the full FIFO
then instead of the write being lost, the PERMEDIA chip will assert PCI Disconnect
which will cause the host processor to keep retrying the write cycle until it
succeeds.

This feature allows faster download of data to PERMEDIA, since the host need not
poll the InFIFOSpace register but should be used with care since whenever the PCI
Disconnect is asserted the bus is effectively hogged by the host processor until such
time as the PERMEDIA frees up an entry in its FIFO. In general this mode should
only be used either for operations where it is known that the PERMEDIA can
consume data faster than the host can generate it, or where there are no time

critical peripherals sharing the PCI bus.
Idle bit

In some systems, PCI Disconnect may cause interrupts to be lost if it used too
often or for too long. It is normal to only rely on this feature when it is known that
the data to be sent to PERMEDIA will be absorbed quickly enough that the
disconnect will seldom be used. It also advisable to check that the Graphics
Processor is not processing a large primitive before transferring data of this sort,
and this may be done by checking the Graphics Processor Active bit in the PCI

Disconnect register. Disconnect should not normally be enabled if this bit is set.

10

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

3.2.3

FIFO ControlFIFO Control

The description in section §3.1 above considered the PERMEDIA interface to be a
register file. More precisely, when a data value is written to a register, this value and
the address tag for that register are combined and put into the FIFO as a new
entry. The actual register is not updated until PERMEDIA processes this entry. In the
case where PERMEDIA is busy performing a time consuming operation (e.g. drawing
a large texture mapped polygon), and not draining the FIFO very quickly, it is
possible for the FIFO to become full. If a write to a register is performed when the
FIFO is full no entry is put into the FIFO and that write is effectively lost.

The input FIFO is 256 entries deep and each entry consists of a tag/data pair; an
address word which addresses the register to be updated, followed by the data to be
sent to the register. The InNFIFOSpace register can be read to determine how many
entries are free. The value returned by this register will never be greater than 256.

An example of loading PERMEDIA registers using the FIFO is given below. The
pseudocode fills a series of rectangles. Details of the conventions used in the

pseudocode examples may be found in Appendix B.

Assume that the data to draw a single rectangle consists of 5 words (including the

Render command).

dXDom(0x0); // common set-up
dXSub(0x0) ;
dy(1);
for (i 0; i < nrects; ++i) {
le (*I nFl FOSpace < 5)

; /] wait for room

whi

St art XDom (rect->x1);

Start XSub (rect->x2);

Count (rect->y2 - rect->yl);

YStart(rect->yl);

Render (PERVEDI A TRAPEZO D PRI M Tl VE) ;
}

The InFIFOSpace FIFO control register contains a count of the number of entries
currently free in the FIFO. The chip increments this register for each entry it
removes from the FIFO and decrements it every time the host puts an entry in the
FIFO. Before writing to the input FIFO, the user must check that there is
sufficient space by reading the INFIFOSpace register.

The Graphics Core FIFO interface provides a port through which both GC
register addresses and data can be sent to the input FIFO. A range of 4 Kbytes of
host space is provided although all data may be sent through one address in the
range. ALL accesses go directly to the FIFO; the range is provided to allow for data
transfer schemes which force the use of incrementing addresses.

3D/.bs

Proprietary and Confidential 11

Programming Model PERMEDIA 2 Programmers Reference Manual

3.2.4

Note that the GC registers cannot be read through this interface. Command
buffers generated to be sent to the input FIFO interface, may be read directly by
PERMEDIA by using the DMA controller.

A data formatting scheme is provided to allow for multiple data words to be sent
with one address word where adjacent or grouped registers are being written, or
where one register is to be written many times.

Note. The FIFO interface can be accessed at 32 bit boundaries. This is to allow a
direct copy from a DMA format buffer.

The DMA Interface

Loading registers directly via the FIFO is often an inefficient way to download data
to PERMEDIA. Given that the FIFO can accommodate only a small number of
entries, PERMEDIA has to be frequently interrogated to determine how much space
is left. Also, consider the situation where a given API function requires a large
amount of data to be sent to PERMEDIA . If the FIFO is written directly then a
return from this function is not possible until almost all the data has been
consumed by PERMEDIA. This may take some time depending on the types of
primitives being drawn.

To avoid these problems PERMEDIA provides an on-chip DMA controller which
can be used to load data from arbitrary sized (< 64K 32-bit words) host buffers
into the FIFO. In its simplest form the host software has to prepare a host buffer
containing register address tag descriptions and data values. It then writes the base
address of this buffer to the DMAAddress register and the count of the number of
words to transfer to the DMACount register. Writing to the DMACount register
starts the DMA transfer and the host can now perform other work. In general, if
the complete set of rendering commands required by a given call to a driver
function can be loaded into a single DMA buffer then the driver function can
return. Meanwhile, in parallel, PERMEDIA is reading data from the host buffer and
loading it into its FIFO. FIFO overflow never occurs since the DMA controller
automatically waits until there is room in the FIFO before doing any transfers.

The only restriction on the use of DMA control registers is that before attempting
to reload the DMACount register the host software must wait until previous DMA
has completed. It is valid to load the DMAAddress register while the previous
DMA is in progress since the address is latched internally at the start of the DMA
transfer. Many display driver functions can be implemented using the following
skeleton structure:

12

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

do any pre-work
DMAAddr ess(address of dma_buffer);
while (TRUE) {
count = *DMACount; // note this is volatile
if (count) {
while (--count)
; /1 wait for count to expire

}

el se
br eak; /1 DNMA conpl et ed

}
copy render data into DVA buffer

DMACount (nunber of words in DVA buffer)
return

Using DMA leaves the host free to return to the application, while in parallel,
PERMEDIA is performing the DMA and drawing. This can increase performance
significantly over loading a FIFO directly. In addition, some algorithms require
that data be loaded multiple times (e.g. drawing the same object across multiple
clipping rectangles). Since the PERMEDIA DMA only reads the buffer data, it can be
downloaded many times simply by restarting the DMA. This can be very beneficial
if composing the buffer data is a time consuming task.

A further optimization is to use a double buffered mechanism with two DMA
buffers. This allows the second buffer to be filled before waiting for the previous
DMA to complete thus further improving the parallelism between host and
PERMEDIA processing.

do any pre-work
get free DVA buffer and mark as in use
put render data into this new buffer
DMAAddr ess(address of new buffer)
while (TRUE) {
count = *DMACount; // note this is volatile
if (count) {
while (--count)
; /1 wait for count to expire
}
el se
br eak; /1 DNA conpl et ed
}
DMACount (nunmber of words in new buffer)
mark the old buffer as free
return

In general the DMA buffer format consists of a 32-bit address tag description word
followed by one or more data words. The DMA buffer consists of one or more sets
of these formats. The following paragraphs describe the different types of tag

description words that can be used.

3D/.bs

Proprietary and Confidential 13

Programming Model PERMEDIA 2 Programmers Reference Manual

DMA Tag Description Format
When DMA is performed each 32-bit tag description in the DMA buffer conforms

to the following format.

24 16 8 0

T T T L] T T T T T T T T T T T T L} T T T T T T T
Count or Mask reserved Address Tag
Lo Y T A

1

Mode

0 = Hold tag

1 = Increment tag
2 = Indexed tag

3 = Reserved

Figure 3.1 DMA Tag Description Format

There are 3 different tag addressing modes for DMA: hold, increment and
indexed. The different DMA modes are provided to reduce the amount of data
which needs to be transferred, hence making better use of the available DMA
bandwidth. Each of these is described in the following sections. Each row in the
following diagrams represents a 32-bit value in the DMA buffer. The address tag
for each register is given in the Graphics Register Reference Appendix D.

Hold Format

address-tag with Count=n-1, Mde=0
value 1

val ue n

This is commonly used for image download by setting the SyncOnHostData bit in
the Render command.. In this format the 32-bit tag description contains a tag
value and a count specifying the number of data words following in the buffer. The
DMA controller writes each of the data words to the same address tag. For
example, this is useful for image download where pixel data is continuously written
to the Color register. The bottom 9 bits specify the register to which the data
should be written; the high-order 16 bits specify the number of data words (minus
1) which follow in the buffer and which should be written to the address tag (note
that the 2-bit mode field for this format is zero so a given tag value can simply be
loaded into the low order 16 bits).

A special case of this format is where the top 16 bits are zero indicating that a
single data value follows the tag (i.e. the 32-bit tag description is simply the address
tag value itself). This allows simple DMA buffers to be constructed which consist
of tag/data pairs. For example to render a horizontal span 10 pixels long starting

from (2,5) the DMA buffer could look like this:

14

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

St art XDom

2 << 16

StartyY

5 << 16

Start XSubl2 << 16

Count

1

Render

(trapezoi d render conmand)
Increment Format

address-tag with Count=n-1, NMbde=1
value 1

val ue n

This format is similar to the hold format except that as each data value is loaded
the address tag is incremented (the value in the DMA buffer is not changed;
PERMEDIA updates an internal copy). Thus, this mode allows contiguous PERMEDIA
registers to be loaded by specifying a single 32-bit tag value followed by a data
word for each register. The low-order 9 bits specify the address tag of the first
register to be loaded. The 2 bit mode field is set to 1 and the high-order 16 bits are
set to the count (minus 1) of the number of registers to update. To enable use of
this format, the PERMEDIA register file has been organized so that registers which
are frequently loaded together have adjacent address tags. For example, the 8
AreaStipplePattern registers can be loaded as follows:

AreaSti ppl ePattern0, Count=7, Mdde=1
row O bits
row 1 bits

row 7 bits

Indexed Format

PERMEDIA address tags are 9 bit values. For the purposes of the Indexed DMA
Format they are organized into major groups and within each group there are up to
16 tags. The low-order 4 bits of a tag give its offset within the group. The high-

order 5 bits give the major group number. Appendix D Register Table, lists the
individual registers with their Major Group and Offset.

Major Group Offset

Figure 3.2 Indexed Format

3D/ubs Proprietary and Confidential 15

Programming Model PERMEDIA 2 Programmers Reference Manual

This format allows up to 16 registers within a group to be loaded while still only
specifying a single address tag description word.

address tag with Mask, Mdde=2
value 1

val ue n

If the Mode of the address tag description word is set to indexed mode then the

high-order 16 bits are used as a mask to indicate which registers within the group
are to be used. The bottom 4 bits of the address tag description word are unused.
The group is specified by bits 4 to 8. Each bit in the mask is used to represent a

unique tag within the group. If a bit is set then the corresponding register will be
loaded. The number of bits set in the mask determines the number of data words
that should be following the tag description word in the DMA buffer. The data is

stored in order of increasing corresponding address tag. For example,

0x003280F0
val ue 1
val ue 2
val ue 3

The Mode bits are set to 2 so this is indexed mode. The Mask field (0x0032) has 3
bits set so there are three data words following the tag description word. Bits 1, 4
and 5 are set so the tag offsets are 1, 4 and 5. The major group is given by the bits
4-8 which are 0xOF (in indexed mode bits 0-3 are ignored). Thus the actual
registers to update have address tags 0x0F1, 0x0F4 and 0x0F5. These are updated
with value 1, value 2 and value 3 respectively.

DMA Example

The following pseudo-code shows the previous example of drawing a series of
rectangles but this time using the DMA controller. This example uses a single

DMA buffer and the simplest Hold Mode for the tag description words in the
buffer.

16 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

UINT32 *pbuf;

DMAAddr ess (physi cal address of dma_buffer)
whi | e (*DMACount != 0)

; /1 wait for DVA to conplete
pbuf = dma_buffer;

*pbuf ++ = PERMEDIATagdXDom
*pbuf ++ = 0;

*pbuf ++ = PERMEDIATagdXSub;
*pbuf ++ = 0;

*pbuf ++ = PERMEDIATagdY;

*pbuf ++ = 1 << 16;

for (i =0; i < nrects; ++i) {

*pbuf ++ = PERMEDIATagSt art XDom

*pbuf ++ = rect->x1 << 16; // Start dom nant edge

*pbuf ++ = PERMEDIATagSt ar t XSub

*pbuf ++ = rect->x2 << 16; // Start of subordinate edge
*pbuf ++ = PERMEDIATagCount ;

*pbuf ++ = rect->y2 - rect->yl;

*pbuf ++ = PERMEDIATagYStart ;

*pbuf ++ = rect->yl << 16;

*pbuf ++ = PERMEDIATagRender ;

*pbuf ++ = PERVEDI A TRAPEZO D_PRI M TI VE;

}
/1 initiate DVA
DMACount ((i nt) (pbuf - dma_buffer))

The example assumes that a host buffer has been previously allocated and is
pointed at by “dma_buffer”. It is worth noting that significantly less data would be
required if indexed tags were used in this example.

DMA Buffer Addresses

Host software must generate the correct DMA buffer address for the PERMEDIA
DMA controller. Normally, this means that the address passed to PERMEDIA must
be the physical address of the DMA buffer in host memory. The buffer must also
reside at contiguous physical addresses as accessed by PERMEDIA . On a system
which uses virtual memory for the address space of a task, some method of
allocating contiguous physical memory, and mapping this into the address space of
a task, must be used.

If the virtual memory buffer maps to non-contiguous physical memory then the

buffer must be divided into sets of contiguous physical memory pages and each of
these sets transferred separately. In such a situation the whole DMA buffer cannot
be transferred in one go; the host software must wait for each set to be transferred.
Often the best way to handle these fragmented transfers is via an interrupt handler.

DMA Interrupts

PERMEDIA provides interrupt support, as an alternative means of determining when
a DMA transfer is complete. This can provide considerable speed advantage. If

3D/ubs Proprietary and Confidential 17

Programming Model PERMEDIA 2 Programmers Reference Manual

3.2.5

enabled, the interrupt is generated whenever the DMACount register changes
from having a non-zero to having a zero value. Since the DMACount register is
decremented every time a data item is transferred from the DMA buffer this
happens when the last data item is transferred from the DMA buffer.

To enable the DMA interrupt, the DMAlInterruptEnable bit must be set in the
IntEnable register. The interrupt handler should check the DMAFlag bit in the
IntFlags register to determine that a DMA interrupt has actually occurred. To

clear the interrupt a word should be written to the IntFlags register with the
DMAFlag bit set to one.

A typical use of DMA interrupts might be as follows:

prepare DMA buffer
DVACount (n) ; I/ start a DMA transfer
prepare next DMA buffer
while (*DMACount !'= 0) {
mask interrupts
set DMA Interrupt Enable bit in |IntEnable register
sl eep on interrupt handl er wake up
unmask interrupts

}
DVACount (n) /1 start the next DMA sequence

The interrupt handler could then be

if (*IntFlags & DMA Flag bit) {
reset DMA Flag bit in IntFlags
send wake up to main task

}

Interrupts are complicated and depend on the facilities provided by the host
operating system. The above pseudocode only hints at the system details.

This scheme frees the processor for other work while DMA is being completed.
Since the overhead of handling an interrupt is often quite high for the host
processor, the scheme should be tuned to allow a period of polling before sleeping
on the interrupt.

Output FIFO and Graphics Processor FIFO Interface

To read data back from PERMEDIA an output FIFO is provided. Each entry in this
FIFO is 32-bits wide and it can hold tag or data values. Thus its format is unlike
the input FIFO whose entries are always tag/data pairs (we can think of each entry
in the input FIFO as being 41 bits wide — 9 bits for the tag and 32 bits for the
data). The type of data written by PERMEDIA to the output FIFO is controlled by
the FilterMode register. This register allows filtering of output data in various
categories including the following:

e Depth: output in this category results from an image upload of the Depth buffer.

* Stencil: output in this category results from an image upload of the Stencil

buffer.

18

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

* Color: output in this category results from an image upload of the framebuffer.

* Synchronization: synchronization data is sent in response to a Sync command.

The data for the FilterMode register consists of 2 bits per category. If the least
significant of these two bits is set (0x1) then output of the register tag for that
category is enabled; if the most significant bit is set (0x2) then output of the data
for that category is enabled. Both tag and data output can be enabled at the same
time. In this case the tag is written first to the FIFO followed by the data. The
FilterMode register is described in more detail in section §5.15.

For example, to perform an image upload from the framebuffer, the FilterMode
register should have data output enabled for the Color category. Then, the
rectangular area to be uploaded should be described to the Rasterizer. Each pixel
that is read from the framebuffer will then be placed into the output FIFO. If the
output FIFO becomes full, then PERMEDIA will block internally until space
becomes available. It is the programmer’s responsibility to read all data from the
output FIFO. For example, it is important to know how many pixels should result
from an image upload and to read exactly this many from the FIFO.

To read data from the output FIFO the OutputFIFOWords register should first
be read to determine the number of entries in the FIFO (reading from the FIFO
when it is empty returns undefined data). Then this many 32-bit data items are
read from the FIFO. This procedure is repeated until all the expected data or tag
items have been read. The address of the output FIFO is described below.

NB all expected data must be read back. PERMEDIA will block if the output FIFO
becomes full. Programmers must be careful to avoid the deadlock condition that
will result if the host is waiting for space to become free in the input FIFO while
PERMEDIA is waiting for the host to read data from the output FIFO.

Graphics Processor FIFO Interface

PERMEDIA has a sequence of 1K x 32 bit addresses in the PCI Region 0 address
map called the Graphics Processor FIFO Interface. To read from the output FIFO
any address in this range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All 32-bit addresses in
this region perform the same function — the range of addresses is provided for data
transfer schemes which force the use of incrementing addresses.

Writing to a location in this address range provides raw access to the input FIFO.
Again, the first address is normally chosen. Thus the same address can be used for
both input and output FIFOs. Reading gives access to the output FIFO; writing
gives access to the input FIFO.

Writing to the input FIFO by this method is different from writing to the memory
mapped register file. Since the register file has a unique address for each register,
writing to this unique address allows PERMEDIA to determine the register for which
the write is intended. This allows a tag/data pair to be constructed and inserted

3D/.bs

Proprietary and Confidential 19

Programming Model PERMEDIA 2 Programmers Reference Manual

3.3

3.4

into the input FIFO. When writing to the raw FIFO address an address tag
description must first be written followed by the associated data. In fact, the format
of the tag descriptions and the data that follows is identical to that described above
for DMA bulffers. Instead of using the PERMEDIA DMA it is possible to transfer
data to PERMEDIA by constructing a DMA-style buffer of data and then copying
each item in this buffer to the raw input FIFO address. Based on the tag
descriptions and data written PERMEDIA constructs tag/data pairs to enter as real
FIFO entries. The DMA mechanism can be thought of as an automatic way of
writing to the raw input FIFO address.

Note, that when writing to the raw FIFO address the FIFO full condition must
still be checked by reading the InFIFOSpace register. However, writing tag
descriptions does not cause any entries to be entered into the FIFO — such a write
simply establishes a set of tags to be paired with the subsequent data. Thus, free
space need be ensured only for actual data items that are written (not the tag
values). For example, in the simplest case where each tag is followed by a single
data item, assuming that the FIFO is empty, then 32 writes are possible before
checking again for free space.

See the PERMEDIA 2 Hardware Reference Manual for more details of the Graphics
Processor FIFO Interface address range.

Interrupts

All interrupts can be individually enabled and disabled. Refer to the PERMEDIA 2
Hardware Reference Manual for more details.

Synchronization

There are two main cases where the host must synchronize with PERMEDIA:
e before reading back from PERMEDIA registers

* before directly accessing the memory via the bypass mechanism

Also the host must synchronize with PERMEDIA for framebuffer management tasks
such as double buffering, though this may be better handled using the
SuspendUntilFrameBlank command. Synchronizing with PERMEDIA implies
waiting for any pending DMA to complete and waiting for the chip to complete
any processing currently being performed. The following pseudo-code shows the
general scheme:

20

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

3.5

PERMEDI ADat a dat a;

// wait for DVA to conplete
while (*DMACount != 0) {
poll or wait for interrupt

}

while (*1nFl FOSpace < 2) {
; // wait for free space in the FIFO

}

/1l enabl e sync output and send the Sync comrand
data. Wrd = 0;

data. Fi | t er Mbde. Synchroni zati on = 0x1;

Fi |t er Mode(dat a. Word) ;

Sync(0x0) ;

/* wait for the sync output data */
do {
whil e (*CQut Fl FOWrds == 0)
; /1 poll waiting for data in output FIFO
} while (*QutputFI FO != Sync_tag);

Initially, we wait for DMA to complete as normal. We then have to wait for space
to become free in the FIFO (since the DMA controller actually loads the FIFO).
We need space for 2 registers: one to enable generation of an output sync value,
and the Sync command itself. The enable flag can be set at initialization time. The
output value will be generated only when a Sync command has actually been sent,
and PERMEDIA has then completed all processing.

Rather than polling, it is possible to use a Sync interrupt as mentioned in the
previous section. As well as enabling the interrupt and setting the filter mode, the
data sent in the Sync command must have the most significant bit set in order to
generate the interrupt. The interrupt is generated when the tag or data reaches the
output end of the Host Out FIFO. Use of the Sync interrupt has to be considered
carefully as PERMEDIA will generally empty the FIFO more quickly than it takes to
set-up and handle the interrupt.

Host Memory Bypass

Normally, the host will access memory indirectly via commands sent to the
PERMEDIA FIFO interface. However, PERMEDIA does provide the whole memory as
part of its address space so that it can be memory mapped by an application. Access
to the memory via this route is independent of the PERMEDIA FIFO.

Drivers may choose to use direct access to memory for algorithms which are not
supported by PERMEDIA or for better performance in some specific cases. This may
be so, for example, when multiple pixels can be written simultaneously and there is
minimal host software overhead.

3D/.bs

Proprietary and Confidential 21

Programming Model PERMEDIA 2 Programmers Reference Manual

3.6

3.7

A driver making use of the bypass mechanism should synchronize memory accesses
made through the FIFO with those made directly through the memory map. If
data is written to the FIFO and then an access is made to the memory, it is possible
that the memory access will occur before the commands in the FIFO have been
fully processed. This lack of temporal ordering is generally undesirable.

There are two windows through which the memory can be accessed. Each window
can have its own data formatting control that allows for different forms of byte
swapping and data packing. If the framebuffer is set to use the 5:5:5:1Front and
5:5:5:1Back color modes, two pixels are packed into each 32 bit word, but each
pixel belongs to a different buffer. Adjacent pixels in the same buffer are separated
by 16 bits. As some software has difficulty with pixels that are not packed together,
the memory windows can be configured to remap the data so that only the front or

back buffer is visible, and it appears packed.

DMA Controller

A DMA controller is provided to allow transfer of data from the PCI bus to
PERMEDIA memory. This controller is independent of the DMA controller which
feeds the Graphics Processor FIFO, and has support for rectangular data structures
and data formatting.

Register Read back

Under some operating environments, multiple tasks will want access to the
PERMEDIA chip. Sometimes a server task or driver will want to arbitrate access to
PERMEDIA on behalf of multiple applications. In these circumstances, the state of
the PERMEDIA chip may need to be saved and restored on each context switch. To
facilitate this, the PERMEDIA registers can be read back. For details of which
registers are readable, see Appendix D Register Tables. Internal and command
registers cannot be read back.

To perform a context switch the host must first synchronize with PERMEDIA. This
means sending a Sync command and waiting for the sync output data to appear in

the output FIFO. After this the registers can be read back.

To read a PERMEDIA register the host reads the same address which would be used
for a write, Ze. the base address of the register file plus the offset value for the
register.

Note that since internal registers cannot be read back care must be taken when
context switching a task which is making use of continue-draw commands.
Continue-draw commands rely on the internal registers maintaining previous state.
This state will be destroyed by any rendering work done by a new task. To prevent
this, continue-draw commands should be performed via DMA since the context

22

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Model

3.8

3.9

switch code has to wait for outstanding DMA to complete. Alternatively, continue-
draw commands can be performed in a non-preemptable code segment.

Normally, reading back individual registers should be avoided. The need to
synchronize with the chip can adversely affect performance. It is usually more
appropriate to keep a software copy of the register which is updated whenever the
actual register is changed.

Byte Swapping

Internally PERMEDIA operates in little-endian mode. However, PERMEDIA is
designed to work with both big - and little-endian host processors. Since the PCI
Bus specification defines that byte ordering is preserved regardless of the size of the
transfer operation, PERMEDIA provides facilities to handle byte swapping. See the
PERMEDIA 2 Hardware Reference Manual for more details of byte-swapping via the
PCI bus.

Additional support is provided within the graphics core of the chip to byte swap
images and bitmasks as they are transferred to and from the host. These are
documented in the relevant sections of chapter §5.

Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will usually force a given
interpretation for true color pixel values. For example, 32-bit pixels will be
interpreted as either RGB (red at byte 2, green at byte 1 and blue at byte 0) or
BGR (blue at byte 2 and red at byte 0). The byte position for red and blue may be
important for software which has been written to expect one byte order or the
other, in particular when handling image data stored in a file.

PERMEDIA provides three registers to specify the byte positions of blue and red
internally. In the Texture/Fog/Blend unit the AlphaBlendMode register contains a
1-bit field called ColorOrder. If this bit is set to zero then the byte ordering is
BGR; if the bit is set to one then the ordering is RGB. As well as setting this bit in
the Alpha Blend unit, it must also be set in the Color Format unit and the Texture
Read unit via the DitherMode and TextureDataFormat registers.

3D/.bs

Proprietary and Confidential 23

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

4.1

4.2

Memory I/0 and Organization

This section describes the arrangement of data stored in memory. Although
PERMEDIA has a single unified memory space for ease of reference, this is divided
into three buffers: the localbuffer, framebuffer and texture buffer. Any of these
buffers can be any size at any position in the memory.

For 3D operation, associated with the framebuffer there would normally be a
localbuffer to hold depth and/or stencil information. A texture buffer may be
present if needed. For 2D operation the localbuffer would not generally be used,
but the texture buffer may be used to store pixmaps.

Patched Data

PERMEDIA supports an optional scheme for organizing memory, known as
“patching”. Data is normally stored linearly in memory such that incrementing
addresses move from left to right along a scanline of the appropriate buffer. The
type of memory supported by PERMEDIA uses a page structure which allows fast
accesses within a 2 Kbyte region, but imposes a penalty for moving to a new 2
Kbyte region. This page structure favors access patterns that move along a scanline
but is inefficient for moving vertically as the large change in address may cause a

page break.

Patched data is organized so that there is less penalty for moving vertically in a
buffer at the expense of a decrease in performance for moving horizontally. This is
done by organizing memory such that a two dimensional region or patch in the
buffer corresponds to a linear sequence in memory. A buffer will comprise lots of
patches.

Two patch modes are supported which differ in the detail of how the data is
organized within the patch. Normal patch mode is used for localbuffer and
framebuffer data. Subpatch mode is used for texture and framebuffer data. Patched
data cannot be displayed, so patching of framebuffer data is normally only done for
off-screen bitmaps or when processing localbuffer or texture data through the
framebuffer units.

Localbuffer

The localbuffer holds the Depth and Stencil information corresponding to each
displayed pixel. The Depth field can be either 15 or 16 bits wide and the Stencil
field either 1 or 0 bits wide. The total width of the localbuffer data cannot be
greater than 16 bits. If a Stencil field is defined then it occupies bit 15; the depth
field always starts at bit 0.

24

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Memory I/O and Organization

4.2.1

The format of the localbuffer is specified in two places: the LBReadFormat
register and the LBWriteFormat register.

Localbuffer Coordinates

The translation from the internal coordinate system to the external address map
involves setting the base address of the window (or screen if coordinates are screen
relative) and positioning the origin in either the top left or bottom left corner. The

origin is specified in the LBReadMode register.
The actual equations used to calculate the localbuffer address to read and write are:

Bottom left origin

Destination address = LBWindowBase - Y * W + X

Source address = LBWindowBase - Y * W + X + LBSourceOffset
Top left origin

Destination address = LBWindowBase + Y * W + X

Source address = LBWindowBase + Y * W + X + LBSourceOffset

where:
X is the pixel's X coordinate.

Y is the pixel's Y coordinate.

LBWindowBase holds the base address in the localbuffer of the current
window.

LBSourceOffset is normally zero except during a copy operation where
data is read from one address and written to another
address. The offset between source and destination is

held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PPO, PP1

and PP2 fields in the LBReadModeregister. See the
table in Appendix C for more details.

This produces the localbuffer address in pixels. For PERMEDIA, the localbuffer data
is always 16 bits so the physical byte address is two times the pixel address. The
destination address is the address that data will be written to; data may also be read
from this address if read-modify-write operations are needed such as depth testing.
The source address is mainly used for copy operations and is only used for reading
data.

3D/.bs

Proprietary and Confidential 25

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

4.3

4.3.1

Framebuffer

The framebuffer holds color data produced by PERMEDIA. The framebuffer may
hold both displayed and non-displayed data. Color buffers can be placed anywhere

in memory, there is no restriction on areas that can be displayed from.

There may be several buffers, such as the front and back buffers of a double
buffered system, or the left and right buffers of a stereo system. No restrictions are
placed on the number or organization of the buffers other than the total amount of
memory fitted.

To access alternative buffers either the FBPixelOffset register can be loaded, or the
base address of the window held in the FBWindowBase register can be redefined.

Framebuffer Coordinates

Coordinate generation for the framebuffer is similar to that for the localbuffer
except for the addition of FBPixelOffset. The WindowOrigin bit in the
FBReadMaode register selects top left or bottom left as the origin for the
framebuffer.

The actual equations used to calculate the framebuffer address to read and write
are:
Bottom left origin
Destination address = FBWindowBase - Y * W + X + FBPixelOffset
Source address = FBWindowBase - Y * W + X + FBPixelOffset + FBSourceOffset
Top left origin
Destination address = FBWindowBase + Y * W + X + FBPixelOffset
Source address = FBWindowBase + Y * W + X + FBPixelOffset + FBSourceOffset

where:
X is the pixel's X coordinate,

Y is the pixel's Y coordinate,

FBWindowBase holds the base address in the framebuffer of the current

window.

FBPixelOffset is normally zero except when multi-buffer writes are
needed when it gives a way to access pixels in
alternative buffers without changing the
FBWindowBase register. This is useful as the window
system may be asynchronously changing the window's
position on the screen. It is held in the FBPixelOffset
register.

26

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Memory I/O and Organization

4.3.2

FBSourceOffset is normally zero except during a copy operation where
data is read from one address and written to another
address. The FBSourceOffset is held in the
FBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PPO, PP1
and PP2 fields in the FBReadMode register. See the
table in Appendix C for more details.

These address calculations translate a 2D address into a linear address so non power
of two framebuffer widths (e.g. 640) are economical in memory. The address is in
pixels; this is translated to a physical byte address by multiplying by the number of
bytes in the pixel.

The width is specified as the sum of selected partial products which are selected by
the fields PP0, PP1 and PP2 in the FBReadMode register. This is the same
mechanism as is used to set the width of the localbuffer, however the widths may
be set independently. The range of widths supported are tabulated in Appendix C,
together with the values for each of the PP fields. This table holds all the common

screen widths.

For arbitrary screen sizes, for instance when rendering to 'off screen' memory such
as bitmaps the next largest width from the table must be chosen. The difference
between the table width and the bitmap width will be an unused strip of pixels
down the right hand side of the bitmap.

Note that such bitmaps can be copied to the screen only as a series of scanlines
rather than as a rectangular block, unless the Texture Read unit is used. In this case
the stride for the read can be set differently to the write by means of the partial
products However, windowing systems often store offscreen bitmaps in rectangular
regions which use the same stride as the screen. In this case normal bitblts can be
used

Framebuffer Color Formats

The contents of the framebuffer can be regarded in two ways:

* Asa collection of fields of up to 32 bits with no meaning or assumed format as
far as PERMEDIA is concerned. Bit planes may be allocated to control cursor,
color look up tables (LUTs), multi-buffer visibility or priority functions. In this
case PERMEDIA will be used to set and clear bit planes quickly but not perform
any color processing such as interpolation or dithering. All the color processing
can be disabled so that raw reads and writes are done and the only operations
are writemasking and logical ops. This allows the control planes to be updated
and modified as necessary.

3D/.bs

Proprietary and Confidential 27

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

As a collection of one or more color components. All the processing of color
components, except for the final writemask and logical ops are done using the
internal color format . The final stage before writemask and logical ops
processing converts the internal color format to that required by the physical
configuration of the framebuffer and video logic. The range of supported
formats are given in table 4.1. The nomenclature 7@m means this component
is n bits wide and starts at bit position m in the framebuffer. The least
significant bit position is 0 and a dash in a column indicates that this
component does not exist for this mode.

Some important points to note:

The alpha channel, when present, is always associated with the RGB color
channels rather than being a separate buffer. This allows it to be moved in
parallel and to work correctly in multi-buffer updates and double buffering.

For the Front and Back modes the data value is duplicated in both buffers. In
general, if the data format does not take 32 bits the data is repeated in the
empty bit planes. If the data format requires 8 bits, the same value is repeated
in all four bytes of the word. The pixel size then determines how many of the
bytes are written to memory. If a 16 bit format is chosen (e.g. 5:5:5:1) then the
data is repeated in the upper and lower halves of the word. If the pixel size is set
to 16 bits then only half the word is written to memory; if the pixel size is set to
32 bits then both halves are written, with the same data in each. A writemask
can be used to select which bits are written. This is used for certain types of
double buffering. The front and back modes are used in the alpha blend unit to
extract the appropriate buffer.

The offset modes (10 and 11) format the colors into a 7 bit value and then add
64 to the result. This avoids reserved entries in window system color tables.

YUV formats are only available as textures. PERMEDIA can convert YUV textures
to RGB and apply them to polygons; it cannot convert RGB to YUV for
storage. If a YUV texture is being loaded into the chip it should be done as raw
data or converted to RGB as it is loaded.

The CI4 format is only available as a texture.

When reading the framebuffer, RGBA components are scaled to their internal

width if needed for alpha blending.

The color format of the framebuffer is independent of the color format of the
texture buffer; the texture buffer supports the same formats as the framebuffer
plus some for YUV color formats

Color information is stored as values of red, green and blue (RGB) with or without

alpha values. Alternatively, it can be stored as a color index value (CI) where each

value references an entry in a color look up table that contains RGB values.

28

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Memory 1/O and Organization

The color format information needs to be stored in three places: the DitherMode

register!, the AlphaBlendMode register? and the TextureDataFormat register.

I Note: the DitherMode register does not support the YUV444, YUV422 or Cl4 formats.

2 Note: the AlphaBlendMode register does not support the YUV444, YUV422 or Cl4 formats.

Internal Color Channels
Format | Color | Name R/IY G/U B/V A
Order
BGR |0 BGR 8:8:8:8 8@0 8@8 8@16 8@24
1 BGR 5:5:5:1Front 5@0 5@5 5@10 1@15
2 BGR 4:4:4:4 4@0 4@4 4@8 4@12
5 BGR 3:3:2Front 3@0 3@3 2@6 0
6 BGR 3:3:2Back 3@8 3@11 2@14 0
BGR 2:3:2:1Front 2@0 3@2 2@5 l@7
10 BGR 2:3:2:1Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2FrontOff | 2@0 3@2 2@5 0
12 BGR 2:3:2BackOff 2@8 3@10 2@13 0
13 BGR 5:5:5:1Back 5@16 5@21 5@26 1@31
16 BGR 5:6:5Front 5@0 6@5 5@11 0
17 BGR 5:6:5Back 5@16 6@21 5@27 0
YUV |18 BGR YUV444 8@0 8@8 8@16 8@24
19 BGR YUV422 8@0 8@8 8@8 0
RGB |0 RGB 8:8:8:8 8@16 8@8 8@0 8@24
1 RGB 5:5:5:1Front 5@10 5@5 5@0 1@15
2 RGB 4:4:4:4 4@8 4@4 4@0 4@12
5 RGB 3:3:2Front 3@5 3@2 2@0 0
6 RGB 3:3:2Back 3@13 3@10 2@8 0
RGB 2:3:2:1Front 2@5 3@2 2@0 l@7
10 RGB 2:3:2:1Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2FrontOff | 2@5 3@2 2@0 0
12 RGB 2:3:2BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1Back 5@26 5@21 5@16 1@31
16 RGB 5:6:5Front 5@11 6@5 5@0 0
17 RGB 5:6:5Back 5@27 6@21 5@16 0
YUV |18 RGB YUV444 8@16 8@8 8@0 8@24
19 RGB YUV422 8@8 8@8 8@0 0
CI 14 - CI8 8@0 0 0 0
15 - Cl4 4@0 0 0 0
Table 4.1 Supported Color Formats

3D/.bs

Proprietary and Confidential

29

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

4.3.3

Special Memory Modes

PERMEDIA uses SGRAM rto store data. SGRAM devices usually have special features
that are particularly useful for graphics.

Hardware Writemasks.

These allow writemasking in the framebuffer without incurring a performance
penalty. If hardware writemasks are not available, PERMEDIA must be programmed
to read the memory, merge the value with the new value using the writemask, and
write it back.

To use hardware writemasking, the required writemask is written to the
FBHardwareWriteMask register, the FBSoftwareWriteMask register should be
set to all 1's, and the number of framebuffer reads is set to 0 (for normal
rendering). This is achieved by clearing the ReadSource and ReadDestination
enables in the FBReadMode register.

To use software writemasking (if hardware masks are not available), the required
writemask is written to the FBSoftwareWriteMask register and the number of
framebuffer reads is set to 1 (for normal rendering). This is achieved by setting the
ReadDestination enable in the FBReadMode register.

Block Writes

Block writes cause consecutive pixels in the framebuffer to be written
simultaneously. This is useful when filling large areas but does have some
restrictions:

* No depth or stencil testing can be done

o All the pixels must be written with the same value so no color interpolation,

alpha blending, dithering or logical ops can be done

Block writes are not restricted to rectangular areas and can be used for any
trapezoid. Hardware writemasking is available during block writes, but not
software writemasking. The scissor tests and extent checking operate correctly with
block writes, and bitmask patterns can be applied.

The FBBlockColor register holds the value to write to each pixel. Note that this
register should not be updated immediately after a Render command which
performs a block write.

Sending a Render command with the PrimitiveType field set to "trapezoid" and
the FastFillEnable field set will then cause block filling of the area. Note that
during a block fill any inappropriate state is ignored so even if stippling, color
interpolation, depth testing and/or logical ops, for example, are enabled they have
no effect. However, scissor clipping does function correctly with block writes.

PERMEDIA always writes 32 pixels per block fill. It takes care of any partial blocks at
the beginning or end of spans.

30

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Memory I/O and Organization

44

4.4.1

4.4.2

Double Buffering

Double buffering is a technique used to achieve visually smooth animation, by
rendering a scene to an offscreen buffer, known as the back buffer, before quickly
displaying it.

For further details see section §5.12.6, §5.12.7 and §5.13 of this manual, and refer
to the PERMEDIA 2 Hardware Reference Manual.

BitBlt Double Buffering

BLT double buffering in its simplest form requires a complete duplicate buffer of
non-displayed display RAM to be maintained. To swap buffers, a BLT is
performed to the displayable area. The features are:

* takes significant time to swap buffers
* the offscreen buffer requires as much RAM as the displayed buffer
* any number of windows can be independently double buffered

e pixel depth is limited only by the amount of available RAM.

The BLT can be performed using the texture units to allow arbitrary scaling and
filtering of data.

Full Screen Double Buffering

This section describes how to implement full-screen double buffering with
PERMEDIA when using the video timing generator. To perform full-screen double
buffering, the available display RAM must be partitioned into two parts — buffer 0
and buffer 1 — each of which contains enough memory to display a full screen of
pixel information. The partitioning consists of deciding the offset into RAM at
which a given buffer starts. This offset is used to program various PERMEDIA
registers. For a given resolution and pixel depth there must be enough RAM
configured on the display adapter for this to be possible. For example, with 32 bit
deep pixels and 4MB of RAM it is possible to implement full-screen double
buffering at 800x600 resolution, but not at 1024x768.

There are two factors to consider for full-screen double buffering. Firstly, the video
outpur hardware must be configured to display the pixels from the correct buffer.
Secondly, the PERMEDIA chip must be programmed to render into the correct
buffer. To achieve smooth animations, the buffer being rendered into is usually

different from the buffer being displayed.
Video Output

To display a given buffer, the video output hardware must be programmed with
the offset of that buffer in RAM. In the PERMEDIA internal timing generator this is

3D/.bs

Proprietary and Confidential 31

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

controlled by the ScreenBase register located in the PERMEDIA control space at
offset 0x3000.

PERMEDIA Rendering

When determining the memory location of a pixel being rendered, PERMEDIA
operates in screen coordinates.

To simplify the calculation of pixel coordinates that are loaded into PERMEDIA, this
value may be loaded into the FBPixelOffset register. The last thing PERMEDIA does
before passing a pixel address to the framebuffer interface is to add the value in the
FBPixelOffset register to its address. Thus it is possible to move the rendering
origin to any pixel location in memory. When swapping buffers it is normal to
move this position to be the pixel at which a given buffer starts.

These values can be pre-calculated at system start-up ready to be loaded as
required.

Synchronization

Double buffering allows the displaying of one buffer (the front buffer) whilst
rendering into the other (the back buffer). When the rendering has been
completed to the back buffer, the buffers are swapped and rendering continues into
the new back buffer. As a general rule, buffers should not be swapped until all
rendering to the back buffer has completed so that the buffer swap does not result
in visible tearing, or screen break-up.

PERMEDIA reads the ScreenBase register at the end of each vertical blanking period
to determine the starting pixel for the next frame to be displayed. Thus, in
principle, this register can be written at any time to swap buffers and will only take
effect on the next frame. The same is not true of loading the FBPixelOffset
register. This register gets updated as soon as the command to load it works its way
through the input FIFO. Hence, any rendering that takes place after the
FBPixelOffset has been loaded will occur in the new buffer. If care is not taken,
this can result in rendering being seen before the buffers have been swapped. The
following scheme would probably produce picture break-up:

ScreenBase = Buf 0_Addr /1 display buffer 0

FBPi xel OF f set = Buf1_Of f set /1l draw to buffer 1 now
Render Commands /1 draw next frane

ScreenBase = Buf 1_Addr /1 display buffer 1
FBPi xel Offset = 0 // draw to buffer 0 now
Render Conmmands /1 draw next franme

There are two problems here. Firstly, even though the write to the ScreenBase
register happens immediately, PERMEDIA does not actually swap the buffers till the
end of the next vertical blanking period. Thus the start of rendering of the next
frame may be seen in the front buffer prior to the buffer swap. Secondly, once a
command has been loaded into the input FIFO the host is free to continue with
other work, while PERMEDIA executes the command. Accesses to the ScreenBase

32

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Memory I/O and Organization

register bypass the FIFO so it is possible for the host to update it, and for the
buffer swap to happen, before PERMEDIA has completed rendering the last frame.

The PERMEDIA includes the SuspendUntilFrameBlank command to solve these
problems without the need for the host synchronizing with PERMEDIA. Here is the
preferred version of the above example:

SuspendUnti | FraneBl ank(paraneters) // display buffer 0

FBPi xel O f set = Buf1_Off set /] draw to buffer 1 now
Render Commands /1 draw next frane

SuspendUnti | FrameBl ank(parameters) // display buffer 1
FBPi xel Offset = 0 /] draw to buffer 0 now
Render Commands /1l draw next frame

The SuspendUntilFrameBlank command will flush all outstanding reads and
writes to the framebuffer, and will prevent any further framebuffer memory
accesses until after the buffers have been swapped.

The data that is loaded into the SuspendUntilFrameBlank command enables
PERMEDIA to swap the buffers automatically when the VBLANK occurs by loading
a new buffer offset into the ScreenBase register as discussed above. For full details,
see the detailed description in the register reference, Appendix A.

Thus a single command register access ensures that:
* all rendering has completed to the back buffer
* the chip will wait for VBLANK before carrying out the swap

* the host can continue sending rendering commands to PERMEDIA without risk
of them affecting the displayed buffer.

As a general performance note, it is best to send non-framebuffer related
commands to PERMEDIA following the SuspendUntilFrameBlank command. This
allows better overlap between the host and PERMEDIA. In general any commands
that will not cause rendering to the framebuffer to occur can be queued in the

PERMEDIA FIFO before waiting on VBLANK.

Eventually more framebuffer rendering commands will be sent by the host, and the
PERMEDIA will then stall its hyperpipeline until the buffer swap completes. Ideally
the host should use this time to perform non-rendering operations e.g. prepare

additional DMA buffers

Using this scheme the host will not normally ever need to wait for VBLANK,
unless it is making framebuffer memory accesses through the bypass.

To wait for VBLANK, the LineCount register can be polled. There is also a
VBLANK interrupt available (see PERMEDIA 2 Hardware Reference Manual for
details). The LineCount register is reset at the start of the VBLANK period and is
incremented by one for each scanline as the video scanner moves down the screen.

Thus polling for this register to have a value of less than the value held in the
VbEnd register indicates that PERMEDIA is in the VBLANK period.

3D/.bs

Proprietary and Confidential 33

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

4.4.3

4.4.4

Bitplane Double Buffering

Bitplane double buffering is of use at 32 bits per pixel framebuffer depth using
32768 colors in 5:5:5:1 true color mode. It relies on the RAMDAC selecting
between the high and low 16 bits of its input stream based on whether bit 31 is set
or clear. Effectively the front and back buffer for each pixel, become interleaved
within the same 32 bit word in the framebuffer, i.e. buffer 0 becomes the lower 16
bits and buffer 1 becomes the upper 16 bits.

The buffer swap is thus implemented as a block fill of bit 31 of the interior of a
window with either one or zero. While this is not as quick as full screen double
buffering which just requires a single register ScreenBase to be updated, it is many
times quicker than BitBlt double buffering, and like the BitBlt case allows any
number of windows to be hardware double buffered simultaneously..

Note that when rendering GUI data (such as window borders, titles etc.) bit 31
must always be set to the same value so that these pixels are always displayed from
the same buffer. The hardware writemask can then be used to write to only the
high, or only the low, 16 bits when rendering the animating contents of a
window.

The features are:
e "almost instantaneous” buffer swap

* no offscreen buffer required (e.g. 1152x900 would be the maximum resolution

on a 4MB framebuffer at 32bpp depth)

* Multiple windows can be double buffered. GUI can write with no performance
penalty.

* Oanly useful at 5:5:5:1 RGB color depth.

e No triple buffering or other advanced buffer operations

In order to allow the Microsoft Windows 95 DIB engine to render direct to the
framebuffer in the 5:5:5:1 format, a special framebuffer bypass option is supported
which presents the front and back buffers uninterleaved, i.e. as a 5:5:5:1 16bpp
packed framebuffer. This allows rarely used complex primitives to be rendered by
software.

Panning

Display panning can be achieved by setting the ScreenBase and ScreenStride
registers appropriately. The ScreenBase register defines where in the framebuffer
the image is to start. For panning to work, the image in the framebuffer must be
larger than that to be displayed. The ScreenStride holds this difference in terms of
64 bit units per scanline. For example, with a screen width of 640 pixels and a
framebuffer image width of 660, 32 bit pixels, the ScreenStride needs to be set to
10.

34

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Memory I/O and Organization

45 Texture Buffer

The texture buffer is very similar to the framebuffer. Textures are stored in the
formats the framebuffer supports, and loaded into memory through the
Framebuffer Write unit. If the texture format is different to the framebuffer
format, the DitherMode register should be temporarily set to the texture format
during texture loads. Textures are read through the Texture Read unit.

If the texture is already in the correct format then a fast texture load can be used.
This is done by writing raw texture data to the TextureData register. Raw data is
32 bits wide, with the correct bit pattern to be stored in memory. No data
formatting or packing is done, so the texture must be pre-processed if this is
required. The texture is stored linearly in memory from the address specified in
TextureDownLoadOffset which is automatically incremented; no patching is
done, so if the texture is to be patched it must be done by the host. This method
avoids setting up the Rasterizer and changing the state of the pipeline.

4.5.1 Texture Load Through Bypass

Alternatively, a texture map may be loaded through the bypass, either directly by
the CPU or by the DMA controller. This mechanism supports patching of data,
but not general data formatting. The only data formatting supported is conversion

of YUV420 to YUV422. Refer to the PERMEDIA 2 Hardware Reference Manual for

more details.

4.5.2 Texture Buffer Co-ordinates

Texture co-ordinates are formed by the Texture Address unit and passed to the
Texture Read unit. In place of the Rasterize X and Y coordinate system, the
Texture Address unit generates S and T values.

The actual equations used to calculate the texture buffer address are:
Bottom left origin

Texture address = TextureBaseAddress - T * W + S
Top left origin

Texture address = TextureBaseAddress + T * W + S

3D/ubs Proprietary and Confidential 35

Memory 1/O and Organization PERMEDIA 2 Programmers Reference Manual

4.5.3

where:
S is the texel's S coordinate,
T is the texel's T coordinate,

TextureBaseAddress holds the base address in the framebuffer of the current
window.

A\ is the texture map width. Only a subset of widths are
supported and these are encoded into the PP0, PP1 and
PP2 fields in the TextureReadMode register. See the table
in Appendix C for more details.

These address calculations translate a 2D address into a linear address so non power
of two texture widths (e.g. 640) are economical in memory. Note that the width
of the texture map used for these calculations is independent of the width and
height used for texture effects such as repeat or clamp. The address is in texels; the
physical byte address is calculated by multiplying the texel address by the number
of bytes in the texel.

Texture Color Formats

Texture maps have the same choice of formats as the framebuffer plus YUV and 4
bit Color Index formats (see section §4.3.2 for details). The formats of the texture
map and framebuffer do not have to be the same.

36

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5. Graphics Programming

PERMEDIA provides a rich variety of operations for 2D and 3D graphics supported
by its Hyperpipelined architecture. Section §5.1 shows the units in the
HyperPipeline. Sections §5.2 to §5.15 describe each unit.

51 The Graphics HyperPipeline

The Graphics Hyperpipeline, or Graphics Processor, supports:
* Point, Line, Triangle Rectangle and Bitmap primitives.
* Flat and Gouraud shading
* Texture Mapping, Fog and Alpha blending
» Scissor and Stipple
» Stencil test, Depth (Z) buffer test
* Dithering
* Logical Operations

The units in the HyperPipeline are:
* Delta Unit calculates parameters.
* Rasterizer scan converts the primitive into a series of fragments.
* Scissor/Stipple tests fragments against a scissor rectangle and a stipple pattern.
* Localbuffer Read loads localbuffer data for use in the Stencil/Depth unit.
* Stencil/Depth performs stencil and depth tests.
* Texture Address generates addresses of texels for use in the Texture Read unit.
* Texture Read accesses texture values for use in the texture application unit.
* YUV converts YUV to RGB and applies chroma test.
* Localbuffer Write stores localbuffer data to memory.
* Framebuffer Read loads data from the framebuffer.
* Color DDA generates color information.
* Texture/Fog/Blend modifies color.
* Color Format converts the color to the external format.
* Logic Ops performs logical operations.
* Framebuffer Write stores the color to memory.

¢ Host Out returns data to the host.

3D/ubs Proprietary and Confidential 37

Graphics Programming PERMEDIA 2 Programmers Reference Manual

R . Scissor/ Localbuffer Stencil/ Texture

asterizer Stipple Read Depth Address

Col A Framebuffer Localbuffer YUV Texture

olor DD Read Write U Read
T

exture/ . Framebuffer

Fog/ Color Format Logic Ops Wi Host Out

rite
Blend

Figure 5.1 Hyperpipeline

The order of the Hyperpipeline shows the order in which operations are
performed. The Scissor/Stipple unit is before the texture address generator, so any
fragments that fail a stipple test will not cause a texture access. This makes best use
of the processing capacity of the pipeline. An awareness of the pipeline is
important when programming PERMEDIA; all units in the pipeline can be thought
of as independent. For example, enabling the XOR logic op will not automatically
enable reading from the framebuffer; this must be done explicitly.

38

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

52 Delta Unit

For best performance, the Delta unit in PERMEDIA should be used to calculate the
edge deltas used by the Graphics Processor.

The Delta Unit accepts the following vertex parameters:

Offset Category Parameter Fixed Point Format IEEE Single Precision
Floating Point Range
0 s 2.30 g footnote 1 -1.0...1.0footnote 2
1 t 2.30s -1.0...1.0
2 g 2.30s -1.0...1.0
3 Texture Ks 2.22 us 0.0...2.0
4 Kd 2.22 us 0.0...1.0
5 red 1.30 us 0.0...1.0
6 green 1.30 us 0.0...1.0
7 Color blue 1.30 us 0.0...1.0
8 alpha 1.30 us 0.0...1.0
9 Fog f 10.22 s -512.0...512.0
10 X 16.16 s -32K...+32K footnotes 3,4
11 Coordinate y 16.16 s -32K...+32K
12 Z 1.30us 0.0...1.0
14 PackedColor PackedColor 8888 8888
Table 5.1 Vertex Parameters

While values may be written to the vertex store in either floating or fixed point
formats, any values returned via the readback mechanism will be the clamped
floating point (IEEE single precision) version of the value written. The returned
value of a parameter may be different from the value written if any of the
following conditions has occurred:

* Any clamping has occurred;

e The input number was a NaN or Denormalized IEEE number;

¢ The input value has exceeded the internal range (approximately +22).

No parameters are corrupted by the calculations so parameter sharing between
primitives is simply achieved by not re-loading those parameters. For example if

I'This is the range when Normalise is not used. When Normalise is enabled the fixed point format can be
anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they had
2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different from what
the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary point

positions) prior to conversion.

.. 32
2This is the range when Normalise is not used. When Normalise is enabled the range is extended to 2F

approximately. This also applies to the t and q values as well.
3The normal range here is limited by the size of the screen.
4K = 1024.

3D/ubs Proprietary and Confidential 39

Graphics Programming PERMEDIA 2 Programmers Reference Manual

the first triangle in a triangle strip is loaded into V0, V1 and V2, then the next
triangle will load VO, the next V1, etc.. This is shown below.
1 0 2

T2 T4
T1 T3

below:

Figure 5.2 Triangle Mesh.

The vertices are automatically sorted so any vertex can be associated with any
vertex store.

Similarly a triangle fan may be implemented initially loading VO, V1 and V2 and
then cycling through loading V1 and V2 as shown below (note that T1 and T5
share a vertex which is loaded first in V1 and then in V2):

Figure 5.3 Triangle Fan.

Individual triangles, strips, or fans may be backface culled such that triangles that
face away from the viewer are not drawn. Detection of backfacing triangles is done
by the sign of the area of the triangle, but whether positive or negative areas should
be rejected depends on the definition of the triangle format (whether the vertices
are considered to go clockwise or counter-clockwise). It may also vary when
meshed primitives are drawn, such a strip where the sign of the area alternates
triangle by triangle. When backface culling is enabled in the Delta Unit, the sign to

reject may be set for each triangle as it is drawn.

Lines are handled slightly differently in that only VO and V1 are used. The
direction of the line is defined as part of the command. Hence a line may run
either from VO to V1 or from V1 to V0. A polyline may be drawn by loading the
first vertex into VO, the second vertex into V1, the third vertex into VO, the fourth
vertex into V1 etc..

The texture parameters (S, T and Q) are handled differently to the other
parameters as their range must be constrained to get the best results from the finite
precision DDA and perspective division hardware available in the Graphics
Processor. Any operation on the texture parameters before they are used is

40

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.2.1

Bit

No.

13

14

16

20

controlled by the TextureParameterMode in the DeltaMode register. The options
are NoClamp, Clamp or Normalize. The NoClamp and Clamp options work the
same as for the other parameters. The Normalize option finds the maximum
absolute value of the texture S, T and Q values for the primitive and normalizes all
the value to lie in the range -1.0 ... 1.0 inclusive prior to being used in the set-up
calculations. Note that the texture values in the vertex store are not changed by the
Normalize option to allow normalization to work on a triangle by triangle basis
across a triangle mesh.

Drawing Commands

The Delta Unit responds to five drawing commands: DrawTriangle,
RepeatTriangle, DrawLine01, DrawLinel0 and RepeatLine. When using Delta,
these drawing commands replace the Render command, and have the same data

field.

The Draw and Repeat commands cause Delta to calculate the required data for the
rendering devices and update the Start, dX and dyDom registers in the Rasterizer,
Color, Depth, Texture and Fog Units of the Graphics Processor. Any additional
registers in the Rasterizer Unit are also loaded (N.B. the RasterizerMode register is
not updated). Finally the Render and ContinueNewSub commands are sent to the
rendering devices.

The data field accompany the DrawTriangle or DrawLine command is used to
control some aspects of the Delta's operation in conjunction with the DeltaMode
register. The relevant bits in the Draw command, and their effect in the Delta
Unit are described in Table 5.2. Note that the values in the remaining bits must be
compatible with the desired operation.

Name Description

TextureEnable When set (and qualified by the TextureEnable bit in the
DeltaMode register) causes the texture values (S, T and Q) to
be calculated.

FogEnable When set (and qualified by the FogEnable bit in the
DeltaMode register) causes the fog values to be calculated.

SubPixel CorrectionEnable When set (and qualified by the SubPixel CorrectionEnable bit
in the DeltaM ode register) enables the sub pixel correction of
any value interpolated in the Y direction. The rendering
devices will perform the sub pixel correctionsin the X
direction.

Rej ectNegativeFace Qualified by the BackFaceCull field in the DeltaM ode
register. If set rejects triangles with a negative area. If clear,
rejects triangles with a positive area.

Table 5.2 Draw Command Bit Field Assignments Affecting Delta

3D/.bs

Proprietary and Confidential 41

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.2.2

5.2.3

5.2.4

Bit
No.

DrawLine Commands

The command DrawLine01 causes Delta to draw a line from vertex 0 - VO to
vertex 1 - V1. Conversely DrawLinel0 causes Delta to draw a line from V1 to VO.
These two commands allow polylines to be drawn by updating VO and V1
alternately. The alternate use of DrawLine01 and DrawLinel0 allows the line
stipple pattern to continue correctly across segments in a polyline.

Note, that due to the DDA algorithm, drawing direction may affect the rendered
pixels. Hence, with the same data in V0 and V1, the two DrawLine commands
may render different pixels. This may be important for operations such as XOR
lines or patterned lines.

Repeat Commands

The RepeatTriangle and RepeatLine commands allow the previously set-up triangle
or line to be repeated again. This is useful when some rendering state has changed
and the primitive must be redrawn. An example of this is when the scissor region
is updated and the primitive redrawn to implement window clipping.

A RepeatTriangle command should only follow a DrawTriangle command and not
a DrawLine command. Mixing the incorrect Repeat and Draw commands will
cause undefined visual effects.

DeltaMode Register

The DeltaMode register is used to hold 'long term' state information. The per
primitive control information is taken from the Draw command as already
outlined. The following table lists the DeltaMode register bit field assignments
and describes their function.

Name Description

01
2,3

2O 00~NO®

Reserved
DepthFormat The following options apply:
0 15 bit depth
1 16 bit depth
2 Reserved
3 Reserved
FogEnable When set enables the fog calculations. Thisfieldis
qualified by the FogEnable bit in the Draw command.
TextureEnable When set enables the texture calculations. Thisfieldis
qualified by the TextureEnable bit in the Draw command.
SmoothShadingEnable When set enables the color calculations.
DepthEnable When set enables the depth calculations.
Specular TextureEnable When set enables the specular texture calculations.
DiffuseTextureEnable When set enables the diffuse texture calculations.
SubPixelCorrectionEnable When set provides the subpixel correctioninY. Thisis
qualified by the SubPixel CorrectionEnable in the Draw
command.

42

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

11 DiamondExit

12 NoDraw

13 ClampEnable

14,15 TextureParameterMode

16 Reserved

17 BackFaceCull

18 ColorOrder

Table 5.3

When set enables the application of the OpenGL
‘Diamond-exit’ rule to modify the start and end coordinates
of lines.

When set prevents a Render command from being sent to
the rendering devices. Thisfield only affects the Draw
commands.

Thisfield allows the host to alter the set-up parameters
before sending a Render command.

When set causes the input values to be clamped to a
parameter specific range. Note that the texture parameters
are not affected by thisfield.

These field causes the texture parameters to be:

0: Used as given
1 Clamped to liein therange-1.0to 1.0
2: Normalizeto liein therange-1.0to 1.0

When set enables backface culling of triangles. Rejection

is based on the sign of the area of the triangle, whether

+ve or -ve is controlled by the draw command.

Specifies order of colorsin V* PackedColor messages.
Bit 31 Bit 0

0 = Alpha, Blue, Green, Red

1= Alpha, Red, Green, Blue

Each color component is 8 hits.

DeltaMode Register Bit Field Assignments.

Any unused bits in the DeltaMode register should be set to zero.

Note that any Repeat commands will use the DeltaMode values which were in

effect when the corresponding Draw command was issued.

5.2.5 Rasterizer Modes

The only Delta specific requirement for the rendering modes in the Rasterizer Unit
is that the BiasCoordinates bits in the RasterizerMode register (bits 4 and 5) are set
to zero to select a zero bias for addition to the start X and Y values.

3D/ubs Proprietary and Confidential 43

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.3

5.3.1

Rasterizer Unit

The Rasterizer decomposes a given primitive into a series of fragments for
processing by the rest of the HyperPipeline.

PERMEDIA can directly rasterize:
* aliased screen aligned trapezoids
e aliased single pixel wide lines
* aliased single pixel points
e rectangles

All other primitives are treated as one or more of the above.

Trapezoids

PERMEDIA's basic area primitive is the screen aligned trapezoid. This is
characterized by having top and bottom edges parallel to the X axis. The side edges
may be vertical (a rectangle), but in general will be diagonal. The top or bottom
edges can degenerate into points in which case we are left with either flat topped or
flat bottomed triangles. Any polygon can be decomposed into screen aligned
trapezoids or triangles. Usually, polygons are decomposed into triangles because the
interpolation of values over non-triangular polygons is ill defined. The Rasterizer
does handle flat topped and flat bottomed 'bow tie' polygons which are a special
case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine which fragments are to be
drawn is known as 'edge walking'. Suppose the aliased triangle shown in Fig. 5.5
was to be rendered from top to bottom and the origin was bottom left of the
window. Starting at (X1, Y1) then decrementing Y and using the slope equations
for edges 1-2 and 1-3, the intersection of each edge on each scanline can be
calculated. This results in a span of fragments per scanline for the top trapezoid.
The same method can be used for the bottom trapezoid using slopes 2-3 and 1-3.

It is usually required that adjacent triangles or polygons which share an edge or
vertex are drawn such that pixels which make up the edge or vertex get drawn
exactly once. This may be achieved by omitting the pixels down the left or the
right sides and the pixels along the top or lower sides. PERMEDIA has adopted the
convention of omitting the pixels down the right hand edge. Control over whether
the pixels along the top or lower sides are omitted depends on the start Y value and
the number of scanlines to be covered. With the example, if StartY = Y1 and the
number of scanlines is set to Y1-Y2, the lower edge of the top half of the triangle
will be excluded. This excluded edge will get drawn as part of the lower half of the

triangle.

44

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

To minimize delta calculations, triangles may be scan converted from left to right
or from right to left. The direction depends on the dominant edge that is the edge
which has the maximum range of Y values. Rendering always proceeds from the
dominant edge towards the relevant subordinate edge. In the example above, the
dominant edge is 1-3 so rendering will be from right to left.

Subordinate Edge 1-2 (X1,Y1)

dXSub 1-2
Knee

Dominant Edge 1-3

Trapezoid dXDom

Bottom
Trapezoid

Subordinate Edge 2-3

dXSub 2-3
(X3,Y3)

Figure 5.4 Rasterizing a triangle.

The sequence of actions required to render a triangle (with a 'knee') are:

* Load the edge parameters and derivatives for the dominant edge and the first
subordinate edges in the first triangle.

* Send the Render command. This starts the scan conversion of the first triangle,
working from the dominant edge. This means that for triangles where the knee is
on the left we are scanning right to left, and vice versa for triangles where the
knee is on the right.

* Load the edge parameters and derivatives for the remaining subordinate edge in
the second triangle.

¢ Send the ContinueNewSub command. This starts the scan conversion of the
second triangle.

3D/ubs Proprietary and Confidential 45

Graphics Programming PERMEDIA 2 Programmers Reference Manual

Pseudocode for the above example is:

/!l Set the Rasterizer node to the default, see
/1 85.3.11

RasterizerMode (0)

/I Set-up the start values and the deltas.
/I Note that the X and Y coordinates are converted to
/1 16.16 format

StartXDom (X1<<16)

dXDom (((X3- X1)<<16)/(Y3 - Y1))

StartXSub (X1<<16)

dXSub (((X2- X1)<<16)/(Y2 - Y1))

StartY (Y1<<16)

dY (-1<<16) /I Down the screen
Count (Y1 -Y2)

/I Set the render mode to aliased primitive with
/I subpixel correction. See 85.3.7

render.PrimitiveType = PERMEDIA_TRAPEZOID_PRIMITIVE
render.SubpixelCorrectionEnable = PERMEDIA_TRUE

/I Draw top half of the triangle
Render (render)

/I Set the start and delta for the second half of the
/I triangle.

StartXSub (X2<<16)
dXSub (((X3- X2)<<16)/(Y3 - Y2))

/I Draw lower half of triangle

ContinueNewSub (abs(Y2 - Y3))

After the Render command has been sent, the registers in PERMEDIA can
immediately be altered to draw the second half of the triangle. For this, note that
only two registers need be loaded and the command ContinueNewSub be sent.
Once drawing of the first triangle is complete and PERMEDIA has received the
ContinueNewSub command, drawing of this sub-triangle will start. The
ContinueNewSub command register is loaded with the remaining number of
scanlines to be rendered.

A Continue command can be used instead of the ContinueNewSub command in
certain situations where it is beneficial to avoid reloading the Rasterizer’s edge
DDAs. However, accumulation of rasterization errors can occur which may result
in imprecise rendering.

The ContinueNewDom command can be used to draw complex 2D shapes as a
series of trapezoids. Since this command only affects the Rasterizer DDA and not
that of any other units, it is not suitable for 3D operations.

46

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.3.2 Lines

Single pixel wide aliased lines are drawn using a DDA algorithm, so all PERMEDIA
needs by way of input data is StartX, StartY, dX, dY and length. The algorithm

calculates:

while (length--)

{

X = X + dx

Y =Y + dy

plot ((int)X, (int)Y)
}

Consider rendering a two segment

polyline from (X;, Y1) to (X3, Y5) to (X3,

Y5) /‘sz
Both segments are X major so: (X1, Y1) (X3, Y3)
abs (Xn+l - Xn) > abs (Yn+l' Yn) Figure 5.5 Polyline

The pseudocode to render this line is
shown below.

/1 Set the Rasterizer node to the default, see
/1 85.3.11

RasterizerMode (0)
/I Load the delta values for the first segment.

StartXDom (X 1<<16)

dXDom (1.0<<16)
StartY (Y 1<<16)

dy (Y 2-Y 1)<<16)/(X 2 -X 1))
Count(abs (X 2 -X 1))

/I Set the render mode
render.PrimitiveType = PERMEDIA_LINE_PRIMITIVE

/I Start rendering
Render (render)

/I The first segment is complete, load delta
/I for the second

dXDom (1.0<<16)
dy (Y 3-Y 2)<<16)/(X 3 -X 2))

/I Continue with the second segment

ContinueNewLine (abs (X 3 -X2)

3D/ubs Proprietary and Confidential 47

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.3.3

5.3.4

Note that the mechanism to render the second segment with the
ContinueNewLine command is analogous to the ContinueNewSub command
used at the knee of a triangle. Care must be taken when a continue command is
being used for lines. Incorrect rendering can occur with operations such as alpha
blending and logical ops if a segment draws back over the previous line segment
thus attempting to reuse pixels that have just been updated. The solution is to send
a Sync prior to the ContinueNewLine. This will ensure pending writes are flushed
before the framebuffer reads for the new line segment. Note that there is no need
to poll for the Sync here; the act of loading this command register is sufficient.

When a Continue command is used rather than a ContinueNewLine, some error
will be propagated along the line so this is rarely used for lines. To minimize these
errors, a choice of actions are available as to how the DDA units are restarted on
the receipt of a ContinueNewLine command, see section §5.3.11.

It is reccommended that for OpenGL rendering, the ContinueNewLine command
is not used and individual segments are rendered.

Points

PERMEDIA supports a single pixel aliased point primitive. For points larger than one
pixel, trapezoids should be used. The fields in the Render command register are
described in detail later, however, in this case the PrimitiveType field in the
Render command should be set to equal PERMEDIA_ POINT_PRIMITIVE. The

pseudocode portion to render an aliased unity sized point is:

/!l Set the Rasterizer node to the default, see
/1 85.3.11

RasterizerMode (0)
/I Set-up the start values and the deltas.
/I Note that the X and Y coordinates are converted to

/1 16.16 format

StartXDom (X<<16)
StartY (Y<<16)

/I Set-up the render command.
render.PrimitiveType = PERMEDIA_POINT_PRIMITIVE

/I Render the point
Render (render)
Rectangles

The rectangle primitive is restricted to integer pixel positions only; rectangles

requiring sub-pixel positioning should use the trapezoid primitive. The rectangle is
defined with two registers, RectangleOrigin which defines the X and Y start point,
and RectangleSize which defines the width and height. The direction in which the

48

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.3.5

5.3.6

5.3.7

5.3.8

rectangle is filled can be controlled by the Render command, with separate control
of fill direction in X and Y making the primitive suitable for copy operations.

Spans

Shapes more complex than points, lines or trapezoids may be drawn as a series of
spans. Each span may be drawn as a horizontal line or as a single pixel high
trapezoid. Both are special cases of 5.3.2 and 5.3.3 in that the loading of certain
registers may be omitted e.g. dXDom, dXSub and dY. However, trapezoids can
optionally use block writes for constant color spans and so may be preferable.

Block Write Operation

PERMEDIA supports SGRAM block writes with block sizes of 32 pixels. Any screen
aligned trapezoid can be filled using block writes, not just rectangles. The SGRAM

hardware writemasks can be used in conjunction with block writes.

The use of block writes is enabled by setting the FastFillEnable field in the Render

command register.

Note only the Rasterizer and Framebuffer Write units are involved in block filling.
The other units will ignore block write fragments, so it is not necessary to disable
them.

Sub Pixel Precision and Correction

As the Rasterizer has fractional precision of 15 bits in X and Y, and the maximum
screen width is 2048 pixels wide a number of bits, called subpixel precision bits, are
available. The extra bits are required for a number of reasons:

* when using an accumulation buffer (where scans are rendered multiple times
with jittered input vertices)

* for correct interpolation of parameters to give high quality shading as described
below

PERMEDIA supports subpixel correction of interpolated values when rendering
trapezoids. Subpixel correction ensures that all interpolated parameters associated
with a fragment (color, depth, fog, texture) are correctly sampled at the fragment's
center. This correction is required to ensure consistent shading of objects made
from many primitives. It should generally be enabled for all rendering which uses
interpolated parameters.

Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros which control which
fragments are generated by the Rasterizer. Only fragments where the
corresponding Bitmap bit is set are submitted for drawing. The normal use for this
is in drawing characters, although the mechanism is available for all primitives. The
Bitmap data is packed contiguously into 32 bit words so that rows are packed

3D/.bs

Proprietary and Confidential 49

Graphics Programming PERMEDIA 2 Programmers Reference Manual

adjacent to each other. Bits in the mask word are by default used from the least
significant end towards the most significant end and are applied to pixels in the
order they are generated in. The relationship between bits in the mask and the
scanning order is shown in Fig. Figure 5.6.

Instead of rejecting fragments which fail the bitmask, they may be set to the
background color. This is controlled by the RasterizerMode register. The
background color comes from the Texel0 register, which may be static or
dynamically loaded through the Texture Read unit.

The Rasterizer scans through the bits in each word of the Bitmap data and
increments the X,Y coordinates to trace out the rectangle of the given width and
height. By default, any set bits (1) in the Bitmap cause a fragment to be generated,
any reset bits (0) cause the fragment to be rejected.

BitMask value

| O

o o

[oe)

\I\\QO
\I\\DO

o || [

DIy |w |

» I ||
No\:bm

ol ||

Mmoo

oI How N NI S

|l | |

>l E<l BN B

oo |w
0

Figure 5.6 Relationship between Bitmask and Scanning Directions

The selection of bits from the BitMaskPattern register can be mirrored, that is,
the pattern is traversed from MSB to LSB rather than LSB to MSB. Also, the sense
of the test can be reversed such that a set bit causes a fragment to be rejected and
vice versa. This control is found in the RasterizerMode register, described in
section §5.3.11.

When one Bitmap word has been exhausted and pixels in the rectangle still remain
then rasterization is suspended until the next write to the BitMaskPattern register,
or the bitmask can be reused. If the bitmask is still valid when a new line is started
it can continue to the next line or be discarded and a new one started; the start
position of the mask can be specified to allow the first bits to be ignored. It is also
possible to index into the mask using the X position of the Rasterizer. This allows
32 bit wide window aligned bit pattern; used with a new mask for every scanline a
32x32 stipple pattern can be supported.

For example a 5 pixel wide, 8 pixel high bitmap requires a register set-up as
follows:

50

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.3.9

/!l Set the Rasterizer node to the default, see
/1 85.3.11

RasterizerMode (0)

/I Set-up the start values and the deltas.
/I Note that the X and Y coordinates are converted to
/1 16.16 format

StartXDom (X<<16)

dXDom (0)

StartXSub ((X + 5)<<16) /I Right hand edge pixels get
/I missed off.

StartY (Y<<16)
dY (1<<16)
Count (8)

/I At least the following bits require setting for the
/l Render command.

render.PrimitiveType = PERMEDIA_TRAPEZOID_PRIMITIVE
render.SyncOnBitMask = PERMEDIA_TRUE
render.ReuseBitMask = PERMEDIA_FALSE

/I Issue render command. First fragment will be
/I generated on receipt of the BitMaskPattern

Render (render)

/I 8x5 pixel bitmap requires 40 bits, and so 2
/I 32 bit words.

BitMaskPattern (patternWord0)
BitMaskPattern (patternWord1)

Rendering will start as soon as the first patternWord is loaded into the
BitMaskPattern register.

Block Writes and Bitmaps

The fastest way to render downloaded bitmap data, not requiring logical op
processing, is to use block fills. The Rasterizer is set-up as normal setting the
FastFillEnable bit. If it is necessary to also plot the background color then, the
operation should be repeated for the background color but with the InvertBitMask
bit set in the RasterizerMode register.

Since the downloaded bitmask data will be ANDed with masks generated by the
Rasterizer without any re-alignment being performed, it is up to the host software
to ensure that the masks match up. This can be achieved in two ways. First, the
host software can align the bits that it downloads to match the alignment of the
Rasterizer. A faster way is to use the User Scissor. This is the recommended
method. Note that this is a general algorithm. In the special case where the data to

3D/.bs

Proprietary and Confidential 51

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.3.10

be downloaded is already aligned to 32 bits on both the left and right edges then

the scissor need not be used.

For example, suppose that we want to download data to fill a rectangle with left
edge at 10 and right edge at 200. And further, assume that the host bitmap data is
to be loaded from an offset of 35 within the bitmap. Our goal is to match the bit at
offset 35 with the pixel at offset 10.

Since we want to do the least amount of work on the host by avoiding shifting the
data, we will actually download the host bitmap data at the previous 32-bit
boundary. This means that we must set PERMEDIA up to discard the first 3 bits of
data. We achieve this by rasterizing a rectangle whose left edge is 3 pixels less than
that required, in this case we would rasterize the left edge to start at pixel 7. This
causes the source bitmap data to be correctly aligned with the mask data produced
by the Rasterizer. But, in order to protect the 3 pixels that we would otherwise
overwrite, we use the scissor clip and set its bounds to be those of the original
rectangle.

When using a block write operation like this, the Rasterizer will wait for new
bitmask data to be downloaded at the start of each scanline. So we do not have to
perform the alignment operation on the right hand edge.

A similar algorithm can be used to implement fast text rendering. For example, for
fonts where each line fits into 32 bits, each line of a glyph can be downloaded as a
mask.

Block writes can be used in combination with bitmasks with InvertBitMask and/or

MirrorBitMask options but not BitMaskOffset or BitMaskPacking.

Copy/Upload/Download

PERMEDIA supports three "pixel rectangle” operations: copy, upload and download.
These can apply to all buffer types.

Typically, a PERMEDIA copy moves raw blocks of data around buffers. To zoom or
re-format data, either external software must upload the data, process it and then
download it again, or the texture part of the Texture/Fog/Blend unit should be
used.

To copy a rectangular area, the Rasterizer would be configured to render the
destination rectangle, thus generating fragments for the area to be copied.
PERMEDIA copy works by adding a linear offset to the destination fragment's
address to find the source fragment's address. The calculation of the offset value is
as shown in the diagram below:

Note that the offset is independent of the origin of the buffer or window, as it is
added to the destination address. Care must be taken when the source and
destination overlap to choose the source scanning direction so that the overlapping
area is not overwritten before it has been moved. This may be done by swapping

52

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

the values written to the StartXDom and StartXSub, or by changing the sign of
dY and setting StartY to be the opposite side of the rectangle.

- Screen Width >

Source
Rectangle

X Offset

Increasing
l Physical
Address

Y Offset

Destination
Rectangle

Offset =- Y Offset* Screen Width + X Offset

Figure 5.7 Copy Operation

PERMEDIA buffer upload/downloads are very similar to copies in that the region of
interest is generated in the Rasterizer. However, the localbuffer and framebuffer are
generally configured to read or to write only, rather than both read and write. The
host out unit should be set to output data to the FIFO for image uploads. For
downloads, the Rasterizer should be set to sync on the appropriate data type. This
means that the Rasterizer will not generate the next fragment address until data is
supplied from the host processor.

Units which can generate fragment values, the Color DDA unit for example,

should generally be disabled for any copy/upload/download operations.

Warning: During image upload, all the returned fragments must be read from the
Host Out FIFO, otherwise the PERMEDIA pipeline will stall. In addition it is
strongly recommended that any units which can discard fragments (for instance the
following tests: bitmask, user scissor, screen scissor, stipple, depth, stencil), are
disabled otherwise a shortfall in pixels recurned may occur, also leading to

deadlock.

Note that because the area of interest in copy/upload/download operations is
defined by the Rasterizer, it is not limited to rectangular regions.

Color formatting can be used when performing image copies, uploads and
downloads. This allows data to be formatted from, or to, any of the supported
PERMEDIA color formats, section §5.12.6 fully describes this operation.

3D/.bs

Proprietary and Confidential 53

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.3.11

5.3.12

Rasterizer Mode

A number of long-term modes can be set using the RasterizerMode register, these
are:

* Mirror BitMask: This is a single bit flag which specifies the direction that bits are checked in the
BitMaskPattern register. If the bit is reset, the direction is from least significant to most
significant (bit 0 to bit 31), if the bit is set, it is from most significant to least significant (from bit
31 to bit 0).

* Invert BitMask: This is a single bit which controls the sense of the accept/reject test when using a
Bitmask. If the bit is reset then when the BitMask bit is set the fragment is accepted and when it
is reset the fragment is rejected. When the bit is set the sense of the test is reversed.

¢ Fraction Adjust: These 2 bits control the action taken by the Rasterizer on receiving a
ContinueNewLine command. As PERMEDIA uses a DDA algorithm to render lines, an error
accumulates in the DDA value. PERMEDIA provides for greater control of the error by doing one
of the following:

e leaving the DDA running, which means errors will be propagated along a line.

* or setting the fraction bits to either zero, a half or almost a half (0x7FFF).

* Bias Coordinates: Only the integer portion of the values in the DDAs are used to generate
fragment addresses. Often the actual action required is a rounding of values. This can be achieved
by setting the bias coordinate bit to true which will automatically add almost a half (0x7FFF) to
all input coordinates.

. ForceBackgroundColor: When set, if a fragment fails the bitmask test it is not discarded, but it is
made to use the contents of the TexelO register in place of the normal color. This is used to
provide foreground/background color selection.

* BitMaskByteSwapMode. This controls how or whether the bitmask is byte swapped a it is loaded.
Four different byte orders are supported.

* BitMaskPacking. Controls whether a bitmask is discarded at the end of a scanline or continued
onto the next. Not supported for block writes.

* BitMaskOffset. Sets the position of the first bit in the bitmask to test. Not supported for block
writes.

* HostDataByteSwapMode. Controls byte swapping of host data being sent to the chip. This applies
to any operation using the SyncOnHostData in the Render register. Four different byte orders are
supported.

e LimitsEnable. When enabled, this allows quick rejection of fragments outside the defined area.

* BitMaskRelative. If enabled, this specifies that the bitmask should be accessed by an index made
up of the lower 5 bits of the X coordinate of the current fragment.

Synchronization

For most circumstances PERMEDIA will automatically synchronize between
primitives so that data for the first primitive is written before data for the second
primitive is read. This is handled by data type, so localbuffer reads and writes are
synchronized as are framebuffer reads and writes, but localbuffer reads are not
synchronized with framebuffer writes.

If a unit is used to modify data that is not its normal type, then it may be necessary
to explicitly synchronize the pipeline. If the Framebuffer Write unit is used to clear
the localbuffer with block fills then the pipeline must be synchronized before

localbuffer data is read. If the Framebuffer Write unit is used to download a texture

54

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.3.13

5.3.14

map, the pipeline must be synchronized before the Texture Read unit accesses the
texture.

Explicit synchronization of the pipeline is done by the WaitForCompletion
command. This has no data field, and may be inserted into a stream of commands;
there is no need to wait for PERMEDIA to report that synchronization has taken
place.

Alternatively, synchronization must be done with the Sync command, but this
does require the host processor to poll the chip until it reports that the pipeline is
idle (see the section on the Host Out unit).

X and Y limits clipping

The Rasterizer will normally rasterize all pixels on every scanline, generating a
fragment per pixel. If large numbers of scanlines are subsequently clipped out by,
for example, the scissor unit, then a lot of time can be wasted. The Ylimits register
has been added to provide a way of quickly eliminating whole scanlines for a given
primitive. This register effectively provides a Y scissor clip in the Rasterizer.

If limits testing has been enabled in the RasterizerMode register, and if a scanline
being rasterized falls outside the Y limits bounds, then the Rasterizer will move
directly onto the next scanline without rasterizing in X.

The Xlimits register has been added to avoid unnecessary rasterization, but does
not act as a true X scissor clip. This is to ensure correct interpolation of color, fog
etc. The limits registers are provided for efficiency reasons.

Both X and Y Limits clipping are automatically disabled when SyncOnHostData
or SyncOnBitMask is used.

Registers

Real coordinates with fractional parts are provided to the Rasterizer in 2's
complement fixed point. The point is kept consistent with a 16.16 format even
though some of the integer and fractional bits may not be significant. The integer
portion should be sign extended to fill unused bits; unused bits in the fraction
should be set to zero.

Integer Portion Fractional Portion

Figure 5.8 Real Coordinate Representation

3D/.bs

Proprietary and Confidential 55

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

When reference is made to “Signed Fixed Point Format”, the sign bit is included in

the integer section. For example, a signed fixed point format of 12.15 implies 1
sign bit followed by 11 integer bits and 15 fraction bits.

Register Name

Data
Field

Description

Render

See
below

Starts the rasterization process

ContinueNewDom

12 bit
integer

Allows the rasterization to continue with a new dominant edge The dominant
edge DDA is reloaded with the new parameters. The subordinate edgeis
carried on from the previous trapezoid. This allows any convex polygon to be
broken down into a collection of trapezoids, with continuity maintained
across boundaries. Since this command only affects the Rasterizer DDA and
not that of any other units, it is not suitable for 3D operations.

The data field holds the number of scanlinesto fill. Note this count does not
get loaded into the Count register.

ContinueNewSub

12 bit
integer

Allows the rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant edgeis
carried on from the previous trapezoid. Thisis useful when scan converting
triangles with a’kneg’ (i.e. two subordinate edges).

The data field holds the number of scanlinesto fill. Note this count does not
get loaded into the Count register.

Continue

12 bit
integer

Allows the rasterization to continue after new delta value(s) have been
loaded, but does not cause either of the primitive's edge DDAsto be
reloaded. This can result in the accumulation of rasterization errors causing
imprecise rendering.

The data field holds the number of scanlines to fill. Note this count does not
get loaded into the Count register.

ContinueNewLine

12 bit
integer

Allows the rasterization to continue for the next segment in apolyline. The
XY position is carried on from the previous line, however the fraction bitsin
the DDAs can be: kept, set to zero, half, or nearly one half, under control of
the RasterizerM ode.

The data field holds the number of pixelsin aline. Note this count does not
get loaded into the Count register.

The use of ContinueNewLineis not recommended for OpenGL because the
DDA unitswill start with aslight error as compared with the value they
would have been loaded with for the second and subsequent segments.

WaitForCompletion

Not used

Thisis used to suspend the PERMEDIA core until al outstanding reads and
writes in framebuffer memory units have completed. Thisisintended to
prevent a new primitive from starting to be rasterized before the previous
primitive is completely finished. It would be used, for example, to separate
texture downloads from the surrounding primitives. The same functionality
can be achieved using the Sync command and waiting for it in the Host Out
FIFO. However, using WaitForCompletion doesn’t involve the host and ca
be inserted into a DMA buffer.

Table 5.4 Rasterizer Command Registers

56

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Programming

RasterizerMode | See below Defines the long term mode of operation of the Rasterizer.
StartXDom Signed fixed point 12.15 Initial X value for the dominant edge in trapezoid filling, or
format initial X valuein line drawing.
dXDom Signed fixed point 12.15 Value added when moving from one scanline to the next for
format the dominant edge in trapezoid filling.
Also holds the change in X when plotting lines so for Y
major lines thiswill be some fraction (dx/dy), otherwiseit is
normally + 1.0, depending on the required scanning
direction.
StartXSub Signed fixed point 12.15 | Initial X value for the subordinate edge.
format
dXSub Signed fixed point 12.15 | Value added when moving from one scanline to the next for
format the subordinate edge in trapezoid filling.
StartY Signed fixed point 12.15 | Initial scanline in trapezoid filling, or initial Y position for
format line drawing.
dy Signed fixed point 12.15 Value added to Y to move from one scanline to the next
format For X major lines this will be some fraction (dy/dx),
otherwise it is normally + 1.0, depending on the required
scanning direction.
Count 12 bit integer Number of pixels in a line. Number of scanlines in a
trapezoid.
Xlimits Xmax: 2's complement 12 | Defines the X extents that the Rasterizer should fill
bit value in the upper word.| between. A span is rasterized if its X value satisfies:
Xmin: 2’s complement 12 | Xmin £ X < Xmax
bit value in the lower word.
Ylimits Ymax: 2's complement 12 | Defines the Y extents that the Rasterizer should fill
bit value in the upper word.| between. A scanline is filled if its Y value satisfies:
Ymin: 2’s complement 12 | Ymin £ Y < Ymax
bit value in the lower word.
RectangleOrigin| Y: 2's complement 12 bit | Defines the origin of a rectangle primitive. The corner of|the

value in the upper word.
X: 2’s complement 12 bit
value in the lower word.

rectangle this refers to is controlled by the rectangle fill
direction fields in the Render command.

RectangleSize

Height: 2's complement 1
bit value in the upper word.
Width: 2’s complement 12
bit value in the lower word.

LA

Table 5.5

Rasterizer Control Registers

For efficiency, the Render command register has a number of bit fields that can be

set or cleared per render operation, and which qualify other state information
within PERMEDIA. These bits are AreaStippleEnable, TextureEnable, FogEnable,
ReuseBitMask and SubpixelCorrection.

3D/.bs

Proprietary and Confidential

57

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

One use of this feature can occur when a window is cleared to a background color.

For normal 3D primitives, stippling and fog operations may have been enabled,

but these are to be ignored for window clears. Say that initially the FogMode and
AreaStippleMode registers are enabled through the unit Enable bits. Now bits
need only be set or cleared within the Render command to achieve the required
result, removing the need to load the FogMode and AreaStippleMode registers for

every Render operation.

The bit fields of the Render command register are detailed as follows:

Bit No. Name Description
0 AreaStippleEnable Enable area stippling.
1,2 Reserved
3 FastFillEnable Enable fast fill using VRAM block mode.
4,5 Reserved
6,7 PrimitiveType Set type of primitive:
O=line
1 = trapezoid
2 =point
3 =rectangle
8,9,10 | Reserved
11 SyncOnBitMask Enable bitmask test. Wait for new bitmask
when current one expires unless
SyncOnHostData or ReuseBitmask enabled.
12 SyncOnHostData Wait for host data before sending step message.
13 TextureEnable Enable texturing.
14 FogEnable Enable fog.
15 Reserved
16 SubPixel CorrectionEnable Enable sub-pixel correction.
17 ReuseBitMask Reuse bitmask when last bit used.
18,19 | Reserved
20 Rej ectNegativeFace Used by Delta unit.
21 IncreaseX Direction of fill for rectangle
22 IncreaseY Direction of fill for rectangle
Table 5.6 Render Command Register Fields

58

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual

Graphics Programming

Several long-term Rasterizer modes are stored in the RasterizerMode register as

shown below:

Bit No

Name

Description

MirrorBitMask

When this bit is set the bitmask bits are consumed from the most
significant end towards the least significant end.

When this bit is reset the bitmask bits are consumed from the least
significant end towards the most significant end.

InvertBitMask

When this bit is set the bitmask isinverted first before being tested.

FractionAdjust

These bits are for the ContinueNewLine command and specify how the
fraction bitsin the Y and XDom DDAs are adjusted:

0: No adjustment is done

1: Set the fraction bits to zero

2: Set the fraction bits to half

3: Set the fraction to nearly half, i.e. Ox7fff

4,5

BiasCoordinates

These bits control how much is added onto the StartXDom, StartX Sub
and StartY values when they are loaded into the DDA units. The
original registers are not affected:

0: Zero is added

1: Half is added

2: Nearly half, i.e. Ox7fff is added

ForceBackgroundCol or

This bit, when set, causes the color to be taken from the TexelO register
instead of the normal color if the bitmask test fails.

7,8

BitMaskByteSwapM ode

Controls byte swapping of the bitmask. If input is ABCD,
0: ABCD
1: BADC
2: CDAB
3: DCBA

BitMaskPacking

If enabled, the current bitmask is discarded at the end of every scanline
even if it has not been finished.

0: Enabled

1: Disabled

10.14

BitMaskOffset

Position of first bit to test in bitmask.

15,16

HostdataByteSwapMode

Controls byte swapping of host data. If input is ABCD,
0: ABCD
1: BADC
2: CDAB
3: DCBA

17

Reserved

18

LimitsEnable

If enabled, quickly reject areas of primitive outside defined area.
0: Disabled
1: Enabled

19

BitMaskRelative

Controls whether bitmask is indexed by counter or by lower 5 bits of X
value.

0: Disabled

1: Enabled

Table 5.7

Rasterizer Mode Register

The register BitMaskPattern simply holds the 32-bit mask for bit mask stippling.

3D/.bs

Proprietary and Confidential 59

Graphics Programming PERMEDIA 2 Programmers Reference Manual

54

5.4.1

5.4.2

Scissor/Stipple Unit

Two scissor tests are provided in PERMEDIA, the User Scissor test and the Screen
Scissor test. The user scissor checks each fragment against a user supplied scissor
region; the screen scissor checks that the fragment lies within the screen. The
stipple test checks each fragment against an 8x8 pattern.

User Scissor Test

The user scissor test, tests each fragment as follows:

XMin <= X < XMax

YMin <= Y < YMax
Where X and Y are the coordinates for the fragments, and XMin, XMax, YMin
and YMax define the user supplied scissor region. If a fragment fails the test it is

discarded. The test may be screen or window relative. This test applies to normal
pixels and block fill operations.

Screen Scissor Tests

This test ensures that a pixel lies within the screen boundaries. For each fragment
the XY origin stored in the WindowOrigin register is added to the fragment
coordinates and this is tested against the screen boundaries stored in the
ScreenSize register. Since the X and Y coordinates are held as 2's complement
numbers, the window origin can be moved off the edges of the screen.
The following test is made:

0<= X+WX) <SW

0<= (Y+WY) <SH

Where:

X = Fragment X coordinate WX = Window origin X coordinate
Y = Fragment Y coordinate WY = Window origin Y coordinate
SW = Screen Width

SH = Screen Height

The diagram below shows a simple scenario of a screen with a single window which
has a user defined scissor region. The shaded area shows the region where
fragments pass the user and screen scissor tests and so can progress in the pipeline.
Fragments outside this region are culled from the pipeline. This test applies to
normal pixels and block fill operations.

60

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.4.3

Screen
Height
(SH)

User (X, V) RN

Scissor ——® User
Min
Writeable Region
Window Origin Scissor Region

(WX, WY) v\
Screen

«—— Screen Width (SW) ———»

Figure 5.9 Screen Scissor and User Scissor Tests

This test may reject fragments if some part of a window has been moved off the
screen. It will not reject fragments if part of a window is simply overlapped by
another window.

The screen scissor would normally be enabled. The most common exception is
during image upload.

Area Stippling

An 8 x 8 bit area stipple pattern can be applied to fragments. The least significant 3
bits of the fragment's (X,Y) coordinates, index into a 2D stipple pattern. If the
selected bit in the pattern is set, then the fragment passes the test, otherwise it is
rejected. In addition the bit pattern can be inverted or mirrored. Inverting the bit
pattern has the effect of changing the sense of the accept/reject test. If the mirror
bit is set the most significant bit of the pattern is towards the left of the window,
the default is the converse.

In some situations window relative stippling is required but coordinates are only
available screen relative. To allow window relative stippling, an offset is available
which is added to the coordinates before indexing the stipple table. X and Y offsets

can be controlled independently.

If the ForceBackgroundColor bit is set in the AreaStippleMode register,
fragments which fail the area stipple test are not discarded. Instead, the contents of
the TexelO register are used in place of the normal color for that pixel.

Area stippling is enabled using the AreaStippleMode register and must be
qualified by the AreaStippleEnable bit in the Render command register. Area
stippling may be used with block fills, but in this case the background color is not
available.

3D/.bs

Proprietary and Confidential 61

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.4.4 Registers

The scissor operation is controlled by the ScissorMode register:

Screen scissor enable
User scissor enable

Figure 5.10 Scissor Mode Register

The screen scissor test would normally always be enabled. The most common
exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and
ScissorMaxXY the X values are stored in the least significant 16 bits of the register,
the Y values in the most significant 16 bits of the register.

The WindowOrigin register has the X coordinate of the origin stored in the least
significant 16 bits of the register, and the Y coordinate in the most significant 16
bits of the register. As each fragment is generated by the Rasterizer uni, this origin
is added to the coordinates of the fragment to generate its screen coordinates.

The ScreenSize register specifies the screen width and height, with the width in
the least significant 16 bits and the height in the most significant 16 bits.

The area stipple operation is controlled by the AreaStippleMode register:

31 24 16 8 0
Reserved YOffset XOffset Reserved
ForceBackgroundColor Not used Not used Enable Unit
MirrorY
MirrorX

Invert Stipple Pattern
Figure 5.11 AreaStippleMode Register

The EnableUnit bit is qualified by the AreaStippleEnable bits in the Render
command register. The area stipple is set-up in the AreaStipplePattern 7 register,
where 7 represents an integer between 0 and 7.

62 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.4.5 Scissor Example

To enable screen scissor for a region: 10 <= X < 500, 100 <= Y < 200 with a screen
size of 1280x1024 and the window origin at (100,100).

/1l Set the screen size
screenSi ze. Wdth = 1280
screenSi ze. Hei ght = 1024

ScreenSi ze(screenSi ze)

/1 Set the wi ndow origin
wi ndowCri gi n. X = 100

wi ndowOrigin.Y = 100

/1 Set-up the user scissor val ues

m nXY. X = 10

m nXY.Y = 100

maxXY. X = 500

maxXY.Y = 200

Sci ssor M nXY(m nXY) /1 Load the registers

Sci ssor Max XY(max XY)

/1 Enable the unit

sci ssor Mode. User Sci ssor Enabl e = PERVEDI A ENABLE
sci ssor Mode. ScreenSci ssor Enabl e = PERMEDI A_ENABLE

Sci ssor Mode(sci ssor Mbde)

/1 Render primtives

3D/ubs Proprietary and Confidential 63

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.4.6

Area Stipple Example

A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:

AreaSti ppl ePatt er nO(OxAA)
AreaSti ppl ePatternl(0x55)
AreaSti ppl ePatt ern2(0xAA)
AreaSti ppl ePatt er n3(0x55)
AreaSti ppl ePatt er n4(OxAA)
AreaSti ppl ePatt er n5(0x55)
AreaSti ppl ePatt er n6(0xAA)
AreaSti ppl ePatt ern7(0x55)

/1 Set-up npde register
areaSti ppl evbde. Uni t Enabl e = PERVEDI A_ENABLE
areaSti ppl eMbde. XOf f set 0

areaSti ppl eMbde. YO f set 0

areaSti ppl eMbde. I nvert = 0

areaSti ppl eMbde. MrrorY
areaSti ppl eMbde. M rror X

0
0

/1 Load node register
AreaSti ppl eMbde(areaSti ppl eMbde)

/1 When issuing a Render command, the AreaStippl eEnable bit
/1 should be set in addition to the area stipple test being
/] enabl ed:

/'l render. AreaSti ppl eEnabl e = PERMVEDI A TRUE

64

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.5

Localbuffer Read and Write Units

The localbuffer holds the Stencil and Depth data associated with a fragment.
Although separate units in the Hyperpipeline, the localbuffer read and write units
are best considered as a pair.

5.5.1 Localbuffer Read
The LBReadMode register can be configured to make 0, 1 or 2 reads of the
localbuffer. The following are the most common modes of access to the
localbuffer:

* Normal rendering without depth or stencil testing. This requires no localbuffer
reads or writes.

* Normal rendering with depth and/or stencil testing required which conditionally
requires the localbuffer to be updated. This requires localbuffer reads and writes
to be enabled.

* Copy operations. Operations which copy all or part of the localbuffer. This
requires reads and writes enabled.

* Upload/download operations. Operations which download depth or stencil
information to the localbuffer, or read back depth or stencil values from the
localbuffer to the host.

The address calculation implements the following equations:
Bottom left origin -
Destination address = LBWindowBase - Y * W + X
Source address = LBWindowBase - Y * W + X + LBSourceOffset
Top left origin -
Destination address = LBWindowBase + Y * W + X
Source address = LBWindowBase + Y * W + X + LBSourceOffset
where:
Destination is the address any write will be made to and any destination
address read will be made from.
Source address is the address a source read will be made from.
X is the pixel's X coordinate.
Y is the pixel's Y coordinate.
LBWindowBase holds the base address in the localbuffer of the current
window.
3D/.5 Proprietary and Confidential 65

Graphics Programming PERMEDIA 2 Programmers Reference Manual

LBSourceOffset is normally zero except during a copy operation where data
is read from one address and written to another address.
The offset from destination to source is held in the
LBSourceOffset register.

\4 is the screen width. Only a subset of widths are supported
and these are encoded into the PPO, PP1 and PP2 fields in
the LBReadMode register. See the table in Appendix C for

more details.

The localbuffer can be read in three formats: LBDefault, LBStencil or LBDepth.
These tell PERMEDIA which areas of the localbuffer is required. LBDefault is used
for all copy and rendering operations, LBStencil and LBDepth are used for image
upload of the Stencil and Depth planes. The table below summarizes the common
rendering operations and the read modes required for them:

ReadSource | ReadDestination | Writes | Data Type Rendering Operation
Disabled Disabled Disabled - Rendering with no Depth or Stencil
enabled.
Disabled Disabled Enabled LBStencil | Download to localbuffer from host
LBDepth
Disabled Enabled Disabled LBStencil | Upload from localbuffer to host
LBDepth
Disabled Enabled Enabled LBDefault | Rendering with depth and/or stencil
updates enabled.
Enabled Disabled Enabled LBDefault | Locabuffer copy operations.
Table 5.8 Localbuffer Read/Write Modes
5.5.2 Localbuffer Write

5.5.3

Writes to the localbuffer must be enabled to allow any update of the localbuffer to
take place. The LBWriteMode register is a single bit flag which controls updating
of the buffer.

Localbuffer Data Formats

The Depth field can be either 15 or 16 bits wide and the Stencil field either 1 or 0
bits wide. The total width of the localbuffer data should not be greater than 16
bits. If a Stencil field is defined it occupies bit 15; the depth field always starts at
bit 0.

The LBReadFormat and LBWriteFormat registers must be configured to the
appropriate values, see Fig. 5.15. The format can be different for different
windows.

66

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.5.4 Registers
The LBReadMode register is as shown below:

31 24 16 8 0
Reserved Reserved PP2 | PPL | PPO
Patch Enable Data Type Partial product selection
Window origin ReadSource enable

ReadDestination enable

Figure 5.12 LBReadMode Register

PatchEnable, when set, enables normal patch addressing of the localbuffer. This

typically results in more efficient memory bandwidth utilization.

The Partial Product fields PPO, PP1, and PP2 define the width of the localbuffer.
They are described in Appendix C.

ReadSourceEnable and ReadDestinationEnable control localbuffer reads of the
destination address and source address respectively. DataType controls the format
of localbuffer data, and WindowOrigin specifies if the window origin is Top Left
or Bottom Left.

Write Enable

Figure 5.13 LBWriteMode Register

The localbuffer format must be specified for both reads and writes using the
LBReadFormat and LBWriteFormat registers. Normally these registers are set to
identical values. It may be useful to set them to different values when, say, copying
between two windows using different depth widths.

Stencil Width

Depth Width

Figure 5.14 LBReadFormat / LBWriteFormat Register

3D/ubs Proprietary and Confidential 67

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.5.5

LBWriteMode is a single bit register. When the least significant bit is set, writes to
the localbuffer are enabled.

LBSourceOffset holds a 24 bit 2's complement value used in copy operations.

LBWindowBase updates the base address of the localbuffer.

The relative positions of the depth and stencil fields within the localbuffer are
fixed. If a Stencil field is defined then it occupies bit 15. The depth field always

commences at bit 0.

Localbuffer Example

The following is an example of a rendering operation with localbuffer read and
write. PERMEDIA is configured with a 16 bit localbuffer such that 15 bits are used
for depth and 1 bit for stencil with a screen size of 800x600.

| bReadFor mat . Dept hW dt h

=3 /] 15 bit
| bReadFormat . Stenci | Wdth =

3 /1 1 bit

LBReadFor nat (| bReadFor mat) /1 Load read format
LBW it eFor mat (| bReadFor mat) /Il Wite is sane as read

I/ Set the local buffer wite node
LBW i t eMbde(PERVEDI A_ENABLE)

/1 Set the local buffer read node
// Partial products for 800 : 512 + 256 + 32
| bReadMbde. PPO

| bReadMbde. PP1
| bReadMbde. PP2

5 /1 512 (<< 9)
4 /1 256 (<< 8)
1 /1 32 (<< 5)

| bReadMbde. ReadSour ce = PERMEDI A_DI SABLE

| bReadMbde. ReadDest i nati on = PERMEDI A_ENABLE
| bReadMbde. Dat aType = PERMEDI A LBDEFAULT

| bReadMbde. WndowOrigin = as appropri ate

| bReadMbde. Pat chMbde = PERMEDI A DI SABLE
LBReadMbde(| bReadMbde)

// Now ready to render with | ocal buffer read and wite
/1 suitable for stencil and depth buffering operations.

Stencil/Depth Test Unit

The stencil test conditionally rejects fragments based on the outcome of a
comparison between the value in the stencil buffer and a reference value. The

68

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.6.1

stencil buffer is updated according to the current stencil update mode which
depends on the result of the stencil test and the depth test. Stencil testing can be
used in many different ways, e.g. hidden line removal, decals, masking areas of the
screen, stippling.

The depth (Z) test, if enabled, compares a fragment's depth against the
corresponding depth in the depth buffer. If the test fails, the fragment will be

rejected.

Stencil Test

This test only occurs if all the preceding tests (bitmask, scissor, stipple) have passed.
The stencil test is controlled by the stencil function and the stencil operation. The
stencil function controls the test between the reference stencil value and the value
held in the stencil buffer. If the test is LESS and the result is true then the fragment
value is less than the source value. The stencil operation controls the updating of
the stencil buffer, and is dependent on the result of the stencil and depth tests.

The table below shows the stencil functions available:

Mode Comparison Function
0 Never
Less
Equa
Less or Equa
Greater
Not Equal
Greater or Equal
Always

| W|IN(F

~

Table 5.9 Stencil Comparison Modes

Some of these comparison modes are effectively redundant as PERMEDIA only uses
1 bit stencil values. They have been included to ease software compatibility with

GLINT and possible future devices.

If the stencil test is enabled then the stencil buffer will be updated depending on
the outcome of both the stencil and the depth tests (if the depth test is disabled the
depth result is set to pass). Refer to the tables below and the definition of the
StencilMode register in section §5.6.4 to fully understand their relationship.

Stencil Test
Pass Fail
Depth Test Pass dppass sfail
Fail dpfail sfail

Table 5.10 Possible Update Operations for Stencil Planes

3D/.bs

Proprietary and Confidential 69

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

The entries dppass, dpfail and sfail are set to one of the update operations below,

source stencil is the value in the stencil buffer:

Update Method Mode | Stencil Value
Keep 0 Source stencil
Zero 1 0
Replace 2 Reference stencil
Increment 3 Clamp (Source stencil + 1) to 2stencil width _ 3
Decrement 4 Clamp (Source stencil -1) to 0
5 ~Source stencil
Table 5.11 Stencil Operations

In addition a comparison bit mask is supplied in the StencilData register. This is

used to establish which bits of the source and reference value are used in the stencil
function test.

The source stencil value can be from a number of places as controlled by a field in

the StencilMode register:

LBWriteData Use
Stencil
Test logic Thisisthe norma mode.

Stencil register

Thisisused, for instance, in the OpenGL draw pixels function where the
host supplies the stencil values in the Stencil register.

It is used when a constant stencil value is needed, for example when
clearing the stencil buffer .

LBSourceData: (stencil

Thisisused, for instance, in the OpenGL copy pixels function when the

value read from the stencil planes are to be copied to the destination. The sourceis offset from
localbuffer) the destination by the value in LBSourceOffset register.

Source stencil value Thisisused, for instance, in the OpenGL copy pixels function when the
read from the stencil planesin the destination are not to be updated. The stencil data will
localbuffer come from the localbuffer data.

Table 5.12 Stencil Sources

See The OpenGL Reference Manual and The OpenGL Programming Guide from

Addison-Wesley for more details of the stencil operations and examples of its use.

5.6.2 Depth Test

This test is only performed if all the preceding tests (bitmask, scissor, stipple) have

passed. The comparison tests available are:

70

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

Mode Comparison Function

0 Never
1 Less
2 Equal
3 Less Than or Equal
4 Grester
5 Not Equal
6 Greater Than or Equal
7 Always

Table 5.13 Depth Comparison Modes

The test compares the fragment's depth against a source depth value. If the
compare function is LESS and the result is true then the fragment value is less than
the source value. The source value can be obtained from a number of places as

controlled by a field in the DepthMode register.

Source Use
DDA (see below) Thisis used for normal Depth buffered 3D rendering.
Depth register Thisis used, for instance, in the OpenGL draw pixels function where the

host supplies the depth values through the Depth register.

Alternatively thisis used when a constant depth value is needed, for
example, when clearing the depth buffer or 2D rendering where the depth
is held constant.

LBSourceData: Source | Thisisused, for instance, in the OpenGL copy pixels function when the
depth value from the depth planes are to be copied to the destination.
localbuffer

Source Depth Thisisused, for instance, in the OpenGL copy pixels function when the

depth planes in the destination are not updated. The depth data will come
from the localbuffer.

Table 5.14 Depth Sources.

For a depth buffered trapezoid, PERMEDIA interpolates from the dominant edge of
a trapezoid to the subordinate edges. This means that two increment values are
required, one to move along the dominant edge and one to move across the span to
the subordinate edge. This is illustrated in the diagram below. The rendering
direction chosen here is bottom to top.

ZStart = Start Z value
dZdyDom = Increment along dominant edge
dZdx = Increment along the scan line.

The dZdx value is not required for Z-buffered lines.

3D/.bs

Proprietary and Confidential 71

Graphics Programming PERMEDIA 2 Programmers Reference Manual

dZdyDom \
. Subordinate Edges

Dominant Edge

T
ZStart

Figure 5.15 Depth Interpolation

The number format for the increment values is 2's complement fixed point integer:
16 bits integer and 11 bits fraction. All the start, derivative and internal data is in
this format. This is mapped into the Upper and Lower registers (U and L) as

shown below:

l_ sign bit

not used M 16 bits integer | 11 bits fraction | remaining bits
T T T

U L

Figure 5.16 Depth Derivative Format

This data format is compatible with GLINT 300SX and GLINT 500TX graphics

processors. In many instances, the fractional part can be left containing zero,

avoiding the need to continually update ZStartL, dZdxL and dZdyDomL.

The Depth unit must be enabled to update the depth buffer. If it is disabled then
the depth buffer will only be updated if ForceLBUpdate is set in the Window
register. If no updates of the localbuffer are required, setting DisableLBUpdate in
the Window register may improve performance.

5.6.3 Registers

Stencil test is controlled by the StencilMode register:

31‘ 1 1 24- - l16. | . : 8. _ . 0
Reserved sc | func sfail | dpfail | dppass
. ey . . ‘ X — — —
Aned compare function Unit enable
Stencil source Update Method

Figure 5.17 StencilMode Register

72 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Programming

The StencilData register holds the other data associated with the test.

31 24 16 8 0
Reserved Reserved Reserved
Write Mask Compare Mask Reference Stencil
Figure 5.18 StencilData Register

The stencil writemask is used to control which stencil planes are updated as a result
of the test. The Stencil register holds an externally sourced stencil value. It is a

32bit register of which only the least significant bit is used. The unused bits should
be set to zero.

The Stencil unit must be enabled to update the stencil buffer. If it is disabled then
the stencil buffer will only be updated if ForceLBUpdate is set in the Window

register.

Operation of the Depth unit is controlled by the DepthMode register:

L 1 L 1 1 Il 'l 1 1 1

_—— \
Compare Mode New Depth Source

Write Mask

Unit enable

Figure 5.19 DepthMode Register

The single bit writemask is used to control updating all the bits in the depth buffer.

The Depth register holds an externally sourced 16 bit depth value. If the depth
buffer holds 15bits then the user supplied depth value is right justified to the least

significant end of the register. The unused most significant bit should be set to
zero.

The DDA and other registers are shown below (note the increment values are split
into two registers):

3D/ubs Proprietary and Confidential 73

Graphics Programming PERMEDIA 2 Programmers Reference Manual

Register Description
ZStartU Depth start value
ZStartL
dZdxU Depth derivative per unit X
dZdxL
dZdyDomU Depth derivative per unit Y, dominant edge or along aline.
dZdyDomL
Table 5.15 Depth Interpolation Registers

The Window register is used to control the update of the localbuffer.

31 24 16 8 0
Reserved Reserved
\
LB UpdateSource
Disable LB Update Force LB Update
Reserved

Figure 5.20 Window Register

5.6.4 Stencil Example

This example sets the Stencil unit to use a supplied reference value (0x1) and to
test fragments to be LESS than this value. It also sets the stencil planes update
function to be Decrement if the test passes and the depth test passes (or is not
enabled), otherwise it sets the update function to Keep. Because Decrement is the
selected mode, this example does not require that the Stencil register be loaded.

74 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

/!l Set the localbuffer read and wite nodes
/| See section 85.5

/I Set the stencil modes

stencilMode.UnitEnable = PERMEDIA_ENABLE

stencilMode.DPPass = PERMEDIA_STENCIL_METHOD_DECREMENT
stencilMode.DPFail = PERMEDIA_STENCIL_METHOD_KEEP
stencilMode.SFail = PERMEDIA_STENCIL_METHOD_KEEP
stencilMode.CompareFunction = PERMEDIA_STENCIL_COMPARE_LESS
stencilMode.StencilSource = PERMEDIA_SOURCE_TEST_LOGIC
StencilMode(stencilMode)

/I Set the reference stencil value and set the
/I compare and writemasks to Ox1

stencilData.ReferenceStencil = 0x1
stencilData.CompareMask = Ox1
stencilData.StencilWriteMask = Ox1

StencilData(stencilData)

/l Enable the depth test here if required, if not enabled
/I the result of the depth test is set to pass.

5.6.5 Depth Example

This example does the required set-up for drawing a depth buffered primitive.

/I Set the localbuffer read and write modes
/] See section 85.5

depthMode.UnitEnable = PERMEDIA_ENABLE

depthMode.WriteMask = 1

depthMode.NewDepthSource = PERMEDIA_NEW_DEPTH_SOURCE_DDA
depthMode.CompareMode = PERMEDIA_DEPTH_COMPARE_MODE_LESS

DepthMode(depthMode)

/I Load the depth start values and deltas for the dominant edge
/I and the body of the trapezoid

ZStartU() // Load upper and lower start values

ZStartL()

dzdxU() // Load upper and lower dZdx deltas

dZdxL()

dZdyDomU() // Load upper and lower dominant edge deltas
dzdyDomL()

/I Render primitive

3D/ubs Proprietary and Confidential 75

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.7 Texture Address Unit

The Texture Address unit calculates the address of the texel that maps to the
current fragment XY position. Perspective correction can be applied as part of the
operation.

The texture coordinates are referred to as S and T where § is analogous to X and T
to Y. The S and T values are generated by interpolation; a third component, Q,
may also be interpolated and is used in perspective correction.

5.7.1 Texture Interpolation

The DDA units perform linear interpolation given a set of start and increment
values.

PERMEDIA interpolates from the dominant edge of a trapezoid to the subordinate
edges. This means that two increment values are required per texture component,
one to move along the dominant edge and one to move across the span to the
subordinate edge. This is illustrated, for the S component, in the diagram below:

dSdyDom \
A/ Subordinate Edges

Dominant Edge

T

SStart = Initial S value
dSdyDom = S gradient in the Y direction along the dominant edge
dSdx = S gradient in the X direction

Figure 5.21 Texture Address Interpolation

The calculation for the delta values is the same as other parameters such as depth

values see Appendix D6.

If perspective correction is not enabled then the S and T values are the texture
coordinates of the appropriate vertex. If perspective correction is enabled the
texture coordinates are divided by the homogenous coordinate W, and Q is formed

from 1/W. S, T and Q are then normalized. A Q value of zero will be handled in a

reasonable manner.

76 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

If perspective correction is enabled each interpolated S and T value is divided by
the interpolated Q value. The result is passed to the Texture Read unit which reads
the texel from memory.

If subpixel correction has been enabled for a primitive, then any correction
required will be applied to the texture coordinates.

5.7.2 Registers

The S and T values are in 30 bit 2's complement format:

Integer Fraction

1 1 1 1 1 'l 1 1 1 1 1 1 Al L 1 L 1 1 Il 'l Il 1 1 1 1 1

Reserved

Figure 5.22 Fixed Point S and T Format

The Q values are in 29 bit 2's complement format:

31 24 16 8 0

Fraction Reserved

1 1 1 1 1 1 a 1 1 1 1 1 1 1 n_l L 1 L 1 I i 5

Integer

Figure 5.23 Fixed Point Q Format

The registers to set-up Texture interpolation are:

Register DataField Description

Sstart 30 hit 2's comp fix pt S start value

dSdx 30 hit 2's comp fix pt S derivative per unit X

dSdyDom 30 hit 2's comp fix pt S derivative per unit Y, dominant edge

Tstart 30 bit 2's comp fix pt T start value

dTdx 30 hit 2's comp fix pt T derivative per unit X

dTdyDom 30 hit 2's comp fix pt T derivative per unit Y, dominant edge

Qstart 29 hit 2's comp fix pt Q start value

dQdx 29 bit 2's comp fix pt Q derivative per unit X

dQdyDom 29 hit 2's comp fix pt Q derivative per unit Y, dominant edge
Table 5.16 Texture Interpolation Registers

3D/ubs Proprietary and Confidential 77

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

31 24 16 8 0
Reserved
Perspective Correction
Enable uni
Figure 5.24 TextureAddressMode
5.7.3 Texture Interpolation Example
This example sets up the parameters for 2D texture mapping. 1D texture mapping
can be achieved by setting TStart, dTdx and dTdyDom to zero.
/1 Load the start values and deltas for the dom nant edge
/1 and the body of the trapezoid
SStart () /1 Load S start value
TStart () /1 Load T start value
QStart () /1 Load Q start val ue
dsdx () // Load S delta for X
dTdx() /1 Load T delta for X
dQdx () /1 Load Qdelta for X
dSdyDont) // Load S domi nant edge delta
dTdyDom() /1 Load T dom nant edge delta
dQdyDon() // Load Q domi nant edge delta
/'l Render primtive
78 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

58

5.8.1

Texture Read Unit

The texture buffer holds texture data. The buffer shares the same memory as the
localbuffer and framebuffer; texture maps are normally written to memory through
the framebuffer write unit in a similar manner to image download.

The Texture Read unit receives texture addresses from the Texture Address unit
and reads data from memory. If bilinear filtering is enabled, several accesses may
be done to collect the correct number of texels.

Read Unit

The address calculation implements the following equations:

Bottom left origin -

Address = TextureBaseAddress - T* W + S
Top left origin -
Address = TextureBaseAddress + T * W + S
where:
Address is the address any read will be made from.
S is the texel's S coordinate.
T is the texel's T coordinate.

TextureBaseAddr holds the base address of the current texture.
ess

W is the texture width. Only a subset of widths are supported
and these are encoded into the PP0, PP1 and PP2 fields in the
TextureReadMode register. See the table in Appendix C for

more details.

The TextureMapFormat register specifies how the texture map is held in
memory. This includes the width of the texture map using partial product codes
and the size of the texel. The TextureReadMode register specifies how the texture
map should be handled internally. This sets the width (maximum S) and height
(maximum T) that should be used when accessing the texture. There are three
ways that the address can be modified if it exceeds either the width or height (or
goes negative):

Clamp clamp the coordinate to 0 or the maximum value.

Repeat access the map modulo the width or height. This results in
the texture map being repeated.

3D/.bs

Proprietary and Confidential 79

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.8.2

5.8.3

5.8.4

Mirror access the map modulo the width or height and mirror
alternate texture maps.

The width used to repeat or clamp can be different to the width used to set the
stride of the texture in memory. This allows a texture to be selected from part of a
larger image.

Texture Base Address

The base address of the texture map is set in the TextureBaseAddress register. The
lower 24 bits of this field specify the address of the map in texels. Bit 30 is used to
specify that the texture is held in system memory instead of local memory and the
texture should be ‘executed’ directly across the PCI bus without first copying the
texture to local memory. Refer to the PERMEDIA 2 Hardware Reference Manual for
more details.

The base address of the texture may be loaded indirectly from memory using the
TexturelD register. The value loaded into this register should be the address in
memory of the base address of the texture (specified in 32 bit units). Loading the
TexturelD register causes the real base address to be loaded from memory. If bit
31 of the value loaded is set, the value is interpreted as invalid, the graphics
processor halted, and an interrupt issued to the CPU. This mechanism is normally
used to indicate that the required texture is not resident in local memory and
should be copied in. Once the copy has been completed and the texture base
address in memory is updated with its invalid bit clear, the graphics processor re-
reads this value and restarts. Refer to the PERMEDIA 2 Hardware Reference Manual
for details on loading textures while the Graphics Processor has stalled.

Texture Filtering

A bilinear filter is available which combines the values of the 4 texels surrounding
the index into the texture map to produce a single value. This filter will reduce
pixelation effects when textures are enlarged, and reduce aliasing effects when
textures are shrunk.

Texture Formatting

The texture map can be held in memory in a variety of formats that correspond to
the formats supported by the framebuffer. Two additional formats are provided to
allow texture maps to be stored in YUV color format. When a texel is read into
PERMEDIA it is converted to the internal color format. External color formats are
shown in table 4.1. Note: the color format value is made up of the 4 bits of the
TextureFormat field and the 1 bit TextureFormatExtension field in the
TextureDataFormat register.

If the selected format has no alpha buffer, a default value of 0xFF, which is the
maximum is used. If the NoAlphaBuffer bit is set in the TextureDataFormat
register then OxFF is used even if the format has an alpha buffer.

80

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.8.5

If the texture is in Color Index mode (either 4 or 8 bits) the single value is repeated
for all color components. If the framebuffer format is also Color Index, the single
value is used as the pixel color; if the framebuffer is RGBA, then the texture value
becomes grey scale.

The texture values may be indexed through a 256 entry look-up table. Each entry
of the table holds a 32 bit RGBA value. If the CI8 texture is used, then the whole
LUT is used for each texture; if the CI4 texture format is used each texture uses 16
entries, so 16 separate LUTs may be loaded and the appropriate one indexed (the
upper 4 bits of the index are supplied by the upper 4 bits of TexelLUTIndex).

If an RGB or RGBA texture format is used (as opposed to CI8 or CI4) the
individual R, G, B, and A components are indexed separately which allows
remapping functions such as gamma correction.

Registers

The TextureReadMode register controls the way that textures are read from
memory.

The S and T wrap modes can be set to clamp, repeat or mirror as described earlier.

With Filter Mode disabled, nearest-neighbor texture mapping will be performed.
With this bit set, bilinear filtering is enabled.

The Packed Data bit is used to define how texels are read from memory. If this bit
is cleared, each texel is read one at a time; if set several texels can be read
simultaneously improving efficiency. The actual number of texels read in this case
is dependent on the texel size. See section §5.10.4 for how this can be used for

packed copies.

The TextureReadMode register controls the way that textures are read from
memory. With Filter Mode disabled, nearest-neighbor texture mapping will be
performed. With it set, bilinear filtering is enabled.

24 16 8 0

Reserved Reserved Height Width Reserved

T T T T T T T L] T T T T L] T T T T

|
TWrapMode

Packed Data Filter Mode SWrapMode

Enable

Figure 5.25 TextureReadMode Register

3D/.bs

Proprietary and Confidential 81

Graphics Programming PERMEDIA 2 Programmers Reference Manual

The TextureMapFormat register specifies the way that the texture map is held in
memory. The partial product codes are detailed in Appendix C. The window
origin specifies the origin as being top left or bottom left. SubPatchMode when
enabled, improves the performance of typical texture mapping,.

31 24 16 8 0

T T

Reserved Reserved PP2 PP1 PPO

Partial product selection
Texel Size

Reserved Window origin

SubPatch mode

Figure 5.26 TextureMapFormat Register

The TextureDataFormat register specifies the color format of the texture. The
TextureFormat combined with the TextureFormat Extension contain one of the
modes described in table 4.1. The color order specifies whether the texture is in

RGB or BGR color format.

Reserved

Span Format / /
Alpha Map

Texture Format Extension
Color Order
No Alpha Buffer

Texture Format

Figure 5.27 TextureDataFormat Register

5.8.6 Using the Texel LUT

The TexelLUTO to 15 registers contain the texture color look-up table. Each
register contains 8 bit fields for red, green, blue and alpha color components. The
TexelLUTMode register allows use of the TexelLUTO to 15 registers. When

enabled, the texel value becomes an index into this look-up table.

82

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

31

T T 1T T T 0§ 1T T T T 1T 1T 1T T T T 1 T T 1T T T T 1
Reserved LUTOffset

| | I N I [N N N I N O N N A | | | N I I I |
PixelsPerEntry Directlndex
0=1 pixe Enable
1=2pixels
2 =4 pixels
3 =reserved

Figure 5.28 TexelLUTMode Register

The LUT must be enabled before a look-up will be done. The other fields of this
register are used to control use of the LUT for 2D operations. Enabling
Directlndex causes the LUT to be indexed by the address of the fragment, not by
data read from memory. If block fills are used the LUT is indexed at the start of
every scanline based on the lower 3 bits of the Y value (X is ignored), the
LUTOffset which is added to the index, and the PixelsPerEntry field; two
consecutive entries in the LUT are used to fill the upper and lower halves of the 64
bit block color register.

If block fills are not used the lower 3 bits of the X and Y values of each fragment
are used to index the LUT; the PixelsPerEntry field scales the X and Y values so
that an 8 pixel by 8 pixel pattern is supported, and the LUT Offset field is added to
the index before it is used.

If the LUT is used for 2D operations, the texture application unit should be
enabled and set to copy mode so that the texture color generated by the look-up
table is converted to a color that can be plotted on the screen.

24 16 8 0

Reserved 24 bit unsigned integer

System Memory

Reserved

Figure 5.29 Texel LUTAddress register

If all 256 entries in the LUT need to be filled, the Texel LUTData and

Texel LUTOffset registers should be used. The offset into the LUT for the first
entry to be loaded should be written to the TexeLUTOffset register, then a
succession of LUT entries written to the TexelLUTData register. The offset into
the LUT will be automatically incremented after each entry is written.

3D/.bs

Proprietary and Confidential 83

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.8.7

5.8.8

It is also possible to load the LUT directly from memory. This is initiated by
loading the TexelLUTAddress register with the address of the LUT in memory (in
32 bit units) and the TexelLUTTransfer register:

The Index field specifies the first entry in the LUT to load, while the Count field
specifies the number of entries to load. Bit 30 of the TexelLUTAddress register

specifies that the LUT is resident in system memory and should be read across the
PCI bus.

The TextureLUTAddress register may be loaded indirectly by the TexeLUTID
register. This operates in an identical manner to the TexellD register. There may
be some latency between the register value being written to PERMEDIA and the
interrupt being asserted, and it is possible that both registers will have been loaded
before the interrupt is received. To determine which register caused the interrupt,
they may be read back and will hold the value read from memory.

To read back the LUT entries, first read from the Texel LUTOffset register which
resets the read back index to zero, then from the TexelLUTData register as many
times as necessary.

Block Fill Textures

If texture mapping is enabled (and DirectIndex disabled) when a block fill is done
the mask for the block fill is read from memory as a texture map. The texture
address unit must be set appropriately so that the S value increments or decrements
by one for each block of 32 pixels while T stays at zero. The texture address
calculated is used to index a texture map and data returned is used as a mask to
control which pixels are plotted during a block fill. This feature might be used to
draw text for which the font has been previously loaded into a font cache in
memory.

The layout of the data in memory should be byte aligned, so if the character is up
to 8 pixels wide specify a texel size of 8 bits, up to 16 use 16, up to 24 use 24, and
up to 32 use 32. If the character is wider than 32 pixels change to a word aligned
bitmask and keep the pixel size to 32 bits. To match the normal data format for
fonts, set the SpanFormat field in the TextureDataFormat register which allows
the data to be stored with the bits in each byte mirrored.

Alpha Mapping

Alpha mapping performs a color key test before bilinear filtering, and prevents any
of the red, green, or blue, components of a rejected pixel taking part in the
filtering. The alpha channel is treated differently, and if a pixel fails the color test
its alpha value is set to zero, but if it passes it is left at the original value. The alpha
channel of all pixels, whether rejected or accepted, are filtered. This results in an
alpha value of zero where all contributing pixels are rejected, an alpha value of one
where all contributing pixels are accepted, and a varying alpha value where some
are rejected and some accepted. As the magnification factor of the bilinear zoom is

84

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

increased the variable alpha is spread across more destination pixels. The range of
alpha values rejected by the chroma key test in the YUV unit can be adjusted to
allow fine control over the exact size of the cut-out. If blending is enabled then the
varying alpha values smooth the transition of the edge of the sprite to the
background.

The registers AlphaMapUpperBound and AlphaMapLowerBound are used to
control the range over which the test is done. The test is enabled by the
TextureDataFormat register.

5.8.9 Texture Download Example
f bReadMbde. Pat chMbde = PERMEDI A TRUE
f bReadMbde. SubPat chMbde = PERMEDI A_SUBPATCH
FBReadMbde(f bReadMode) ;
f bWit eMbde. Enabl e = PERVEDI A TRUE
FBW it eMode(f bW it eMde)
/1 Set format to 8 bits
di t her Mode. Uni t Enabl e = PERMEDI A_TRUE
di t her Mode. Enabl e = PERMEDI A_FALSE
di t her Mbde. Col or Mode = PERMVEDI A_COLOR_FORMAT RGB_332
Di t her Mode(di t her Mode)
/1 Do inmage downl oad
5.8.10 Texture Mapping Example
Texture map a trapezoid:
3D/ubs Proprietary and Confidential 85

Graphics Programming PERMEDIA 2 Programmers Reference Manual

t ext ur eAddr esshMbde. Enabl e = PERMVEDI A TRUE
t ext ur eAddr essMbde. Per specti veCorrecti on = PERVEDI A_TRUE
Text ur eAddr essMode(t ext ur eAddr essMode)

/] Load texture address paraneters

SStart ()
dsdx()
dsdyDon()
TStart ()
dTdx()
dTdyDon()
QStart ()
dQdx()
dQdy Dont()

/1 Configure texture read

t ext ur eReadMvbde. Enabl e = PERVEDI A TRUE

t ext ur eReadMbde. SW apMbde = PERMEDI A_TEXTURE_WRAP_REPEAT
t ext ur eReadMode. TW apMode = PERMEDI A TEXTURE_V\RAP_REPEAT
t ext ureReadMbde. Wdth = wi dth

t ext ur eReadMode. Hei ght = hei ght

t ext ur eReadMbde. Fi | t er Mode = PERVEDI A_FALSE

Text ur eReadMbde(t ext ur eReadMode)

t ext ur eMapFor mat . PPO
t ext ur eMapFor mat . PP1 partial Product 1

t ext ur eMapFor mat . PP2 partial Product 2

t ext ur eMapFor mat . SubPat chMbde = PERVEDI A TRUE

t ext ur eMapFor mat . Texel Si ze = PERVEDI A_8_BI TS_PER _TEXEL
Text ur eMapFor mat (t ext ur eMapFor mat)

partial ProductO

t ext ur eDat aFor mat . Text ur eFor mat = PERMEDI A_ COLOR_FORVAT_RGB_332
Text ur eDat aFor mat (t ext ur eDat aFor mat)

/1 Enable texture/fog/blend unit, |oad other paranmeters and
/1 render

YUV Unit

The YUV unit converts from YUV color format, also known as YCbCr, to RGB. It
also does chroma key testing. This test may be done either before or after the
conversion.

The YUV conversion is done on data that is being loaded into the TexelQ register.
The data for this may come from the TextureRead unit or from the host, so YUV
conversion can be done either during texture download or on a texture as it is
applied to a primitive. The YUV data can be in either 444 format or 422 format.
The chroma test may be done with either YUV or RGB data.

86

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.9.1

Chroma Test

The chroma test specifies upper and lower bounds against which the Texel0 value
is tested. The test may be set to pass if the components of Texel0 are either all
inside or all outside the bounds. This is controlled by the accept/reject TestMode
options of the YUVMode register. If the test passes, the Texel0 data may be used
in the Texture/Fog/Blend unit as normal. If the test fails, then the fragment to
which the texture data maps, may be rejected (not plotted). This is useful for cut-
outs and sprites. Alternatively, on test failure, the Texel0 value may be rejected and
the texture operation on the fragment suppressed. This is achieved by setting the
RejectTexel bit in the YUVMode register. In this case the underlying color
provided by PERMEDIA is used without being modified by the texture color. This is
useful for applying a logo to a shaded polygon where the underlying color is
provided by the Color DDA unit.

The test modes available are:

Mode Test Mode
0 No test
1 Accept
2 Reject

Table 5.17 Chroma Test Modes

Chroma key testing can be done without texture mapping by setting the
TexelDisableUpdate field in the YUVMode register. This allows fragment rejection
during a copy operation. If chroma testing is required against the destination color
of a copy (i.e. only overwrite pixels of the specified color), then the destination
region of the screen is used as the texture map and the framebuffer units are set-up
to do a normal copy. The texels are read in and tested. Fragments are rejected if the
colors do not match. The copy operation for that pixel will not take place if the
fragment has been rejected. Setting the TexelDisableUpdate bit discards the texel
as soon as the test has been done which improves performance.

*
TexelDisableUpdate
RejectTexel
TestData
TestMode

Enable

Figure 5.30 YUVMode Register

3D/.bs

Proprietary and Confidential 87

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

The TestData bit controls when the chroma test occurs in relation to the color
conversion. Setting this bit causes the chroma test to occur on the output of the
unit; clearing it causes the chroma test to occur on the input i.e. after or before
color conversion respectively, assuming the Enable bit is set.

The TestMode can be set to:
Accept, i.e. pass test if (upper bound <= color >= lower bound

Reject, i.e. fail test if (upper bound <= color >= lower bound

31 24 16 8 0

T T

1

Alpha

1

1

Blue Green Red

1

1

Figure 5.31 ChromaUpperBound and ChromaLowerBound Registers RGB Format
31 24 16 0
Alpha \Y U Y
Figure 5.32 ChromaUpperBound and ChromaLowerBound Registers YUV Format
88 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

510

5.10.1

Framebuffer Read and Write Units

Before drawing can take place, PERMEDIA must be configured to perform the
correct framebuffer read and write operations. Framebuffer read modes affect the
operation of alpha blending, logic ops, software writemasks, image upload and
image copy operations. Framebuffer write modes are relevant to all drawing in the
framebuffer.

Framebuffer Read

The FBReadMode register allows PERMEDIA to be configured to make 0, 1 or 2
reads of the framebuffer. The following are the most common modes of access to

the framebuffer:

* Rendering operations with no logical operations, software writemasking or alpha
blending. In this case no read of the framebuffer is required and framebuffer
writes should be enabled. Framebuffer reads should be disabled for maximum
efficiency.

* Rendering operations which use logical ops, software writemasks or alpha
blending. In these cases the destination pixel must be read from the framebuffer
and framebuffer writes must be enabled.

* Image copy operations. Here set-up depends on whether logical ops, software
writemasks and/or alpha blending are occurring with the copy. If any of these
are, the framebuffer needs two reads, one for the source and one for the
destination. Otherwise, only one read is required.

* Image upload. This requires reading of the destination framebuffer pixels to be
enabled and framebuffer writes to be disabled.

* Image download. This case requires no framebuffer reads (as long as software
writemasking, alpha blending and logic ops are disabled) but writes must be

enabled.

Note: Avoiding unnecessary additional veads will enbance performance.

For both the read and the write operations, an offset is added to the calculated
address. The source offset (FBSourceOffset) is used for copy operations. The pixel
offset (FBPixelOffset) can be used to allow multi-buffer updates!. The offsets

! The OpenGL specification, for example, allows any combination of the Front, Back, Left and Right color

buffers to be updated 'simultaneously’. In this case a scene would be rendered multiple times changing the

FBPixelOffset as appropriate. When using this mode it is important to ensure that the buffers which affect the
rendering are updated only once. For example, when rendering with depth buffering enabled, localbuffer writes

should only be enabled for the last buffer updated.

3D/.bs

Proprietary and Confidential 89

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

should be set to zero for normal rendering. The address calculation implements the

following equations:

Bottom left origin

Destination address = FBWindowBase - Y * W + X + FBPixelOffset
Source address = FBWindowBase - Y * W + X + FBPixelOffset + FBSourceOffset

Top left origin

Destination address = FBWindowBase + Y * W + X + FBPixelOffset
Source address = FBWindowBase + Y * W + X + FBPixelOffset + FBSourceOffset

where:

Destination Address

Source Address

X
Y
FBWindowBase

FBPixelOffset

FBSourceOffset

is the address in the framebuffer which is written to if
writes are enabled, and is also the address read when
ReadDestination is enabled.

is the address in the framebuffer which is read from
when ReadSource is enabled.

is the pixel's X coordinate,
is the pixel's Y coordinate,

holds the base address in the framebuffer of the current
window.

is normally zero except when multi-buffer writes are
needed when it gives a way to access pixels in
alternative buffers without changing the
FBWindowBase register. This is useful as the window
system may be asynchronously changing the window's
position on the screen. It is held in the FBPixelOffset
register.

is normally zero except during a copy operation where
data is read from one address and written to another
address. The FBSourceOffset is held in the
FBSourceOffset register and is the offset from
destination to source.

is the screen width. Only a subset of widths are
supported and these are encoded into the PP0, PP1
and PP2 fields in the FBReadMode register. See the
table in Appendix C for more details.

The calculation of FBSourceOffset can be avoided by using the FBSourceDelta

and FBSourceBase registers. For screen to screen copies FBSourceBase should be

90 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

set to the same value as FBWindowBase (this is done automatically whenever
FBWindowBase is loaded) and FBSourceDelta should hold the distance from the
destination area to the source area in X and Y. If the copy is from an offscreen
bitmap, FBSourceBase should hold the base address of the bitmap, and
FBSourceDelta should hold the offset in X and Y into the bitmap to where the

source area begins.

The data read from the framebuffer may be either FBDefault (data which may be
written back into the framebuffer or used in some manner to modify the fragment
color) or FBColor (data which will be uploaded to the host). The table below

summarizes the framebuffer read/write control for common rendering operations:

ReadSource | ReadDestination | Writes | Read Data Rendering Operation

Type

Disabled

Disabled Enabled - Rendering with no logical operations,
software writemasks or apha blending.

Disabled Disabled Enabled - Image download.

Disabled Enabled Disabled FBColor Image upload.

Enabled Disabled Enabled FBDefault | Image copy with hardware writemasks.

Disabled Enabled Enabled FBDefault | Rendering using destination-only
logical operations, software
writemasks or apha blending.

Enabled Enabled Enabled FBDefault | Image copy with logical operations,
software writemasks or apha blending.

Table 5.18 Framebuffer Read/Write Modes

5.10.2

Incorrect data can be read if reads are enabled but the same data had just been
written with reads disabled. To avoid this problem, a WaitForCompletion
command should be sent after enabling reads, but prior to the next primitive.

Framebuffer Write

Framebuffer writes must be enabled to allow the framebuffer to be updated. A
single 1 bit flag controls this operation.

The Framebuffer Write unit is also used to control the operation of fast block fills,
if supported by the framebuffer. Fast fill rendering is enabled via the FastFillEnable
bit in the Render command register. The block color is 64 bits wide; normally the
same values are used in the upper and lower halves of the register so they are both
set with one register, FBBlockColor. If different data is required in both halves of
the register, use the FBBlockColorUpper and FBBlockColorLower registers. The
data put in the color registers should be of the raw framebuffer format. When
using the framebuffer in 8 bit packed mode, the data should be repeated in each
byte. When using the framebuffer in packed 16 bit mode, the data should be
repeated in the top 16 bits.

3D/.bs

Proprietary and Confidential 91

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.10.3

5.10.4

5.10.5

5.10.6

Note that due to restrictions in the way that the memory devices implement block
fills, a packed 24 bit RGB framestore may only use block fills for colors that have

all bytes in the pixel set to the same value.

When uploading images the UpLoadData bit can be set to allow color formatting.
See sections §5.12.6 for more details.

Patching

Data in the framebuffer can use patched addressing to improve performance under
certain circumstances. However, only non-visible data is normally patched. Patch
mode organizes data for efficient drawing of scanline primitives; it also helps line
drawing. This form is typically used in the localbuffer, see §5.5.4, for patching the
depth buffer. The SubPatch mode re-organizes data for efficient texture operations;
see section §5.8.5. SubPatchPack mode is used when 4 bit textures are loaded as 8
bits i.e. the subpatch packing takes into account the 2 texels per byte.

Packed Copies

Packed copies move 32 bits at a time even though the real pixel size may be 8, 16,
or 24 bits. The PackedDataLimits register holds the left and right X coordinates
for the destination area of the screen in the native pixel format. Any pixels outside
this area are not plotted. The relative offset field in the FBReadMode register
specifies the number of pixels that the source data has to be adjusted to align with
the destination data. The relative offset field is also available in the
PackedDataLimits register, the value from the last register loaded takes effect.

Image Downloads

An image download can be performed in one of four ways. It can be achieved by
loading the data in standard color format into the Color register and using the
Color Format unit to organize it into the framestore format. Or it can be achieved
by loading the data in raw framebuffer format either into the Color register or the
FBData register. The former requires that the Color Format unit is disabled whilst
the latter ignores this unit. Alternatively, the data can be loaded as some other raw
format into the FBSourceData register and have the Texture/Fog/Blend unit
convert it into the internal color format. The Color Format unit can then convert
it into the arrangement to be stored in the framebuffer. Both techniques require
setting up the Rasterizer appropriately.

Fast Texture Download

Normal texture download is done as an image download. This involves setting up
the Rasterizer to draw a rectangle and changing the state of a number of units. This
is a good way to load the texture if any processing needs to be done on it, such as
color format conversion, color space conversion or patching.

92

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.10.7

5.10.8

If the texture is held on the host in the raw framebuffer format, the fast texture
download approach can be used. The TextureDownloadOffset register holds the
base address of the framebuffer using 32 bit pixel addressing. The TextureData
register holds the texture data in raw framebuffer format 32 bits at a time. The load
of this register is ignored by all other units in the pipeline so no state needs to be
saved and restored. Following the receipt of each TextureData value, the
TextureDownloadOffset value is incremented. If this register is read, it returns
the current count, not the original value.

If fast download is used, the texture map on the host must be in exactly the format
it will be stored in memory, including any color formatting, byte swapping, or
address patching. If a texture will be loaded several times, it can be downloaded as
an image the first time using all formatting controls, and then uploaded again as a
raw image for later use.

Using this technique, framebuffer writes do not need to be enabled.

Hardware Writemasks

Hardware writemasks, if available, are controlled using the
FBHardwareWriteMask register. If the framebuffer memory devices support
hardware writemasks, and they are to be used, then software writemasking should
be disabled (by setting all the bits in the FBSoftwareWriteMask register). This will
result in fewer framebuffer reads when no logical operations or alpha blending is

needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware writemask
must be repeated in all 4 bytes of the FBHardwareWriteMask register. If the
framebuffer is in 16 bit packed mode then the 16 bit hardware writemask must be
repeated in both halves of the FBHardwareWriteMask register.

As there is no overall enable for this feature, the hardware writemask MUST be set
to all 1’s, except when hardware writemasking is explicitly required.

Frame Blank Synchronization

The SuspendUntilFrameBlank command register may be used to stall the
PERMEDIA pipeline until the next frameblank. For double buffering, it is beneficial
to synchronize to the monitor blanking. By using this register, full screen double
buffering can be controlled through the pipeline and the host does not need to wait
for vertical frame blank itself. Instead, once the SuspendUntilFrameBlank
command register has been loaded, the host can continue to load PERMEDIA
registers and issue commands. PERMEDIA will continue processing these as long as
they do not involve writing to the framebuffer. The data field of this register is the
base address of the buffer to be displayed and is passed to the Internal Video

Timing generator.

3D/.bs

Proprietary and Confidential 93

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.10.9 Registers

The FBReadMode register layout is as follows:

31 24 16 8 0
Reserved Reserved PP2 PP1 PPO
Patch Mode / Data type Partial product selection

Reserved Packed data
Relative offset Patch Enable\ Window origin ReadSource enable
Reserved ReadDestination enable

Figure 5.33 FBReadMode Register

See Appendix C for more information on setting partial product codes.

FBWindowBase holds the base address of the window in the framebuffer in 24 bit
unsigned format. The FBPixelOffset and FBSourceOffset registers hold 24 bit 2's
complement offsets used in copy operations and multi-buffer updates, as described
above.

The FBWriteMode controls the framebuffer write operations:
31 24 16 8 0

T T T T T T 1 T

Reserved

UpLoadData
Reserved

Write enable
Figure 5.34 FBWriteMode Register

The FBReadPixel sets the pixel size.
31 24 16 8 0

T T T T T T T T T T T T T T T L] T T T T T T T L] T T T T T T

Reserved

Pixel Size

Figure 5.35 FBReadPixel Register

The PackedDataLimits register is used to control packed copies.

94 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

31 24 16 8 0

T T T T T T T T T T T T T T T T T T T L] T T T T T T T

12 bit integer X Star Not used 12 bit integer XEnd

1 L 1 L 1 1 1 1 L 1 1 1 i 1 1 1 I

Reserved

RelativeOffset

Figure 5.36 PackedDataLimits Register

FBHardwareWriteMask is a 32bit register where each bit acts as a mask. FBColor
is a read-only register which returns the data to the host during image upload
operations.

5.10.10 Image Copy Example

This example copies a rectangular region of the framebuffer, without moving any
data in the localbuffer. The region extends from the origin (0,0) to (100,100) and
will be shifted right by 200 pixels. The destination rectangle is scan converted.

/1l First set-up the franebuffer read node

f bReadMbde. ReadSour ce = PERMEDI A_ENABLE

f bReadMbde. ReadDest i nati on = PERMEDI A_DI SABLE
f bReadMbde. Dat aType = PERMEDI A FBDEFAULT

FBReadMode(f bReadMbde) /1 Update register

/1 Now enable framebuffer witefbWiteMde. WiteEnable =
PERMEDI A_ENABLE

FBW it eMbde(fbWit eMde) /1 Update register

/1 Offsets. No Pixel offset, source offset of 200
FBPi xel O f set (0x0)
FBSour ceOf f set (-200)

/1 Al the tests which could renmpove the fragnent nust be
/1 disabled (Stipple, Stencil, Depth) except

/1 the Scissor test which is still needed for screen

/1 and possi bly wi ndow cli ppi ng.

/1 If software witenmasks are to be used then they are
/] set appropriately, and the framebuffer set-up to do
/1 extra read operation

/1 Disable the Color DDA unit, we do not want to
// associate a color with this fragnent.

col or DDAMbde. Uni t Enabl e = PERMEDI A_FALSE

Col or DDAMbde(col or DDAMbde)

/'l Define the region we wish to copy from
St ar t XDom (200<<16)

St art XSub (300<<16)

dXSub (0)

dXDom (0)

3D/ubs Proprietary and Confidential 95

Graphics Programming

PERMEDIA 2 Programmers Reference Manual

StartY (0)
dY (1<<16)
Count (100)

render. PrimtiveType = PERMEDI A TRAPEZO D

Render (render) /1 Start the rasterization

5.11 Color DDA Unit
The Color DDA unit is used to associate a color with a fragment produced by the
Rasterizer. This unit should be enabled for rendering operations and disabled for
pixel rectangle operations (i.e. copies, uploads and downloads).

5.11.1 RGBA and Color-Index(CI) Modes
Two color modes are supported by PERMEDIA, true color RGBA and color index
(CI).
PERMEDIA's internal color representation is RGBA with 8 bits per component:

31 24 16 8 0

Alpha Blue Green Red
Figure 5.37 Color Representation

5.11.2

This format is the same for all the different framebuffer configurations supported.
If the number of bits in the framebuffer for a color component is less than 8 then
the color value is left shifted into the most significant bits of that components field.
The unused least significant bits should be set to zero.

In CI mode, the color index is placed in the lower byte of the 32 bit register (i.e.,
the red component).

Gouraud Shading

When in Gouraud shading mode, the Color DDA unit performs linear
interpolation given a set of start and increment values. Clamping is used to ensure
that the interpolated value does not underflow or overflow the permitted color
range.

For a Gouraud shaded trapezoid, PERMEDIA interpolates from the dominant edge
of a trapezoid to the subordinate edges. This means that two increment values are
required per color component, one to move along the dominant edge and one to
move across the span to the subordinate edge. This is illustrated in the diagram
below, where C represents a color component (red, green, blue or color index).
Alpha is not interpolated and stays at its initial value.

96

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

dCdyDom —
. Subordinate Edges

Dominant Edge

T

CStart = the initial color value
dCdyDom = color gradient in the Y direction along the dominant edge
dCdx = color gradient in the X direction

Figure 5.38 Color Interpolation

See Appendix D4 Delta values for a Gouraud Shaded Triangle.

For Gouraud shaded lines, each line is treated as the dominant edge of a trapezoid,
and so no dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a 17bit fixed
point format. The format is 2's complement with 1 bit sign, 5 bits integer and 11
bits fraction:

31 0
I I I I I I I I I I I 1 I I 1 I I I I I I | B I I 1 I I
Ignored 9 bit integer 11 bit fraction Ignored
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.39 Fixed Point Color Format

Note that if you are rendering to multiple buffers and have initialized the start and
increment values in the Color DDA unit, then any subsequent Render command
will cause the start values to be reloaded.

If subpixel correction has been enabled for a primitive, then any correction
required will be applied to the color components.

5.11.3 Flat Shading

In flat shading mode, a constant color is associated with each fragment. This color
is loaded into the ConstantColor register which has the format shown in Fig. 5.36
above.

3D/ubs Proprietary and Confidential 97

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.11.4 Registers
The main control register for the Color DDA unit is the ColorDDAMode

register:

—

Shading Mode Unit Enable

Figure 5.40 ColorDDAMode Register

The registers to set-up Gouraud shading in the Color DDA unit are:

Register Data Field Description
RStart 17 bit 2's comp fix pt Red start value
dRdx 17 bit 2's comp fix pt Red derivative per unit X
dRdyDom 17 bit 2's comp fix pt Red derivative per unit Y, dominant edge
GStart 17 bit 2's comp fix pt Green start value
dGdx 17 bit 2's comp fix pt Green derivative per unit X
dGdyDom 17 bit 2's comp fix pt Green derivative per unit Y, dominant
edge
BStart 17 bit 2's comp fix pt Blue start value
dBdx 17 bit 2's comp fix pt Blue derivative per unit X
dBdyDom 17 bit 2's comp fix pt Blue derivative per unit Y, dominant edge
AStart 17 bit 2's comp fix pt Alpha start value
Table 5.19 Color Interpolation Registers

5.11.5 Flat Shading Example
A flat shaded primitive:

/] Set DDA to flat shade nobde

col or DDAMbde. Uni t Enabl e = PERVEDI A_ENABLE

col or DDAMbde. Shade = PERVEDI A FLAT SHADE MODE
Col or DDAMbde(col or DDAMbde)

Const ant Col or (OxFFFFFFFF) /1 Load the flat color

5.11.6 Gouraud Shaded Trapezoid Example

See Appendix D for details of how to calculate delta values.

98 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

/1 Enable unit in Gouraud shadi ng node
col or DDAMbde. Uni t Enabl e = PERVEDI A ENABLE
col or DDAMbde. Shade = PERMEDI A_ GOURAUD_SHADE_MCODE

Col or DDAMbde(col or DDAMbde)

/1 Load the color start values and deltas for dom nant edge
/1 and the body of the trapezoid

RStart () [/ Set-up the red conponent start val ue
dRdx() /1 Set-up the red conponent increnments
dRdyDon()
GStart () /1 Set-up the green conponent start val ue
dGdx() // Set-up the green conponent increnents
dGdyDon()
BStart () /1 Set-up the blue conponent start value
dBdx () /1 Set-up the blue conponent increnents
dBdyDom ()
5.11.7 Gouraud Shaded Line Example
See Appendix D for details of how to calculate delta values.
/1 Set DDA for Gouraud shaded node
col or DDAMbde. Uni t Enabl e = PERVEDI A ENABLE
col or DDAMbde. Shade = PERMEDI A_ GOURAUD SHADE_ MODE
Col or DDAMbde(col or DDAMbde)
/1 For lines we need only start val ues and dom nant edge
/1 deltas
RStart () /1 Set-up the red conponent start val ue
dRdyDom() /1 Set-up the red conponent increment
GStart () /1 Set-up the green conponent start val ue
dCGdyDom() /] Set-up the green conponent increnent
BStart () /1 Set-up the blue component start val ue
dBdyDom () /1 Set-up the blue conponent increnent
512 Texture/Fog/Blend
The Texture/Fog/Blend unit applies effects to the interpolated color. The effects
are applied in the order: texture then fog then blend.
5.12.1 Texture Application
There are two major types of texture application, one suitable for RGB applications
and one suitable for Ramp applications; Ramp applications use RGB textures and
framebuffer format but are limited to a white light source. The enable bit in the
TextureColorMode register and the TextureEnable bit in the Render register
must both be enabled before texture will be applied.
3D/ubs Proprietary and Confidential 99

Graphics Programming PERMEDIA 2 Programmers Reference Manual

RGB Texture Application

This is referred to elsewhere as the OpenGL type of texture application. It can be
done in one of three ways.

In copy mode, the texture color replaces the current fragment color.

In decal mode the texture color is blended with the fragment color using the
texture alpha value:

Cr= CA+ Ca(1-Ay)
Af=Af

where: Csis the fragment color, C, is the texture color , Af fragment alpha and A,
is the texture alpha. If the texture alpha value is one, decal becomes the same as

copy.
In modulate mode the color components are multiplied together:
Cg=CCr
Af=AAf
where: Cris the fragment color, C, is the texture color , Af fragment alpha and A,
is the texture alpha.

Ramp Texture Application

This is referred to elsewhere as the Apple type of texture application because of the
approach adopted by QuickDraw3D. This type of texture application is done three
stages, where each stage can be independently enabled or disabled. The first stage is
decal, which does the operation:

Cr= CAgs Ce(1-Ay)
Af=Af
If decal is not enabled then the following operation is done:
Cr=C;
Af=AAf
The next operation is modulate, which does:
Cr=K4Cp
Af=K4ADp
where: Cgis the fragment color, Ky is an interpolated parameter which represents

the diffuse light intensity, A, is the texture alpha, Cp is the color after the decal
operation and Ap is the alpha value after the decal operation.

The next operation is highlight:
Cr= Cpm+K

100

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.12.2

5.12.3

Ar= Apm+K

where: Csis the fragment color, K is an interpolated parameter which represents
the specular or highlight intensity, A, is the texture alpha, Cy; is the color after the
modulate operation and Ay is the alpha value after the modulate operation.

Fog Application

The fog unit is used to combine the incoming fragment's color (generated by the
Color DDA unit, and potentially modified by the texture unit) with a pre-defined
fog color. Fogging can be used to simulate atmospheric fogging, and also to depth-
cue images.

Fog application has two stages; derivation of the fog index for a fragment, and
application of the fogging effect. The fog index is a value which is interpolated over
the primitive using a DDA in the same way color and depth are interpolated. The
fogging effect is applied to each fragment using the equation described below.

Note that although the fog values are linearly interpolated over a primitive the fog
values at each vertex can be calculated on the host using a linear fog function
(typically for simple fog effects and depth-cueing) or a more complex function to
model atmospheric attenuation. This might be an exponential function.

A fog test is supported that will reject a fragment if its fog value is negative. This
may be used if the background of the scene has been cleared to the fog color; any
pixels that are far enough from the eye to be completely fogged need not be
plotted.

The enable bit in the FogMode register and the FogEnable bit in the Render
register must both be enabled before fog will be applied.

Fog Index Calculation - The Fog DDA

The fog DDA is used to interpolate the fog index (F) across a primitive. For a
fogged trapezoid, PERMEDIA interpolates from the dominant edge of a trapezoid to
the subordinate edges. This means that two increment values are required, one to
move along the dominant edge and one to move across the span to the subordinate
edge. This is illustrated in the diagram below. The rendering direction chosen here
is bottom to top.

FStart = Start fog value
dFdyDom = Increment along dominant edge.

dFdx = Increment along the scan line.
The dFdx value is not required for fogged lines.

The mechanics are similar to those of the other DDA units, as the diagram below
illustrates:

3D/.bs

Proprietary and Confidential 101

Graphics Programming PERMEDIA 2 Programmers Reference Manual

dFdyDom

. Subordinate Edges

Dominant Edge
T

Figure 5.41 Fog Interpolation Over A Triangle

where:

FStart = initial fog value.
dFdx = Fog gradient in the X direction.
dFdyDom = Fog gradient along the dominant edge of a primitive.

Note that for fogged lines the dFdx delta is not required.

The fog index is specified as an 18bit fixed point value. The format is 2's
complement with 2 bits integer and 16 bits fraction.

Not used Fraction Not used
1 1 1

1 1 1 L 1 L 1 1 1] 1 1 1 1 1 1 1

u—lnteger

Sign bit

1

Figure 5.42 Fog Interpolant Fixed Point Format

The fog DDA calculates a fog index value which is clamped to lie in the range 0.0
to 1.0 before it is used in the fogging equations described below.

5.12.4 Fogging Equation

The fogging equation is:
C=fC;+ (1-)Cr

where:
C = outgoing fragment color
Cf = fog color
C; = incoming fragment color
f = fog index
The equation is applied to the color components, red, green and blue; alpha is not

modified. The diagram below shows how the fogging would typically affect a
scene. Initially no fogging occurs, f >=1.0, then a region of linear combination of

102 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

the fragment color and fog color occurs 1.0 < £> 0.0, followed by a region of
constant fog color, f <= 0.0.

C=Cj
' BN / |
C=£C; + (1-F)Cf
’ N /
1.0 |

C=Cf
|
Fog Index (f) |
| I F Increasing Screen Depth
-
0 I I N
AN
¥ | |
— -
Fragment Col or Linear Fogging Fogged Col or
Range

Figure 5.43 Fogging

5.12.5 Alpha Blending

The Alpha Blend Unit suppotts alpha blending or color formatting. Two types of
alpha blending are supported, one that is common for RGB! and Ramp?
applications, and one that is specific to Ramp applications. Alpha blending
combines the fragment's color, potentially after texture and fog have been applied,
with that stored in the framebuffer.

Data from the framebuffer is in the raw format so must be converted to the
internal format before the blend can be done. This is achieved by setting the
ColorFormat and ColorFormat Extension fields in the AlphaBlendMode register.

In some situations blending is desired when no retained alpha buffer is present. In
this case the alpha value which is considered to be read from the framebuffer will
be set to 1.0. The NoAlphaBuffer bit in the AlphaBlendMode register controls
this.

Common Blend Mode
The common blend operation is defined as:

Co = CAg+ Cy(1-Ay)

where: C, is the output color, C; is the source color , Ay is the source alpha and Cy

is the destination color read from the framebuffer. Setting the Operation field to
“Blend” in the AlphaBlendMode register will achieve this.

I RGB is also referred to as OpenGL mode.
2 Ramp is also referred to as Apple mode.

3D/ubs Proprietary and Confidential 103

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.12.6

5.12.7

See The OpenGL Reference Manual and The OpenGL Programming Guide from
Addison-Wesley for more details of this style of alpha blending.

Ramp Blend Mode

The alternative blend mode is called PreMult and does the operation:
Co = Cg+ Cy(1-Ay)

For correct operation of Apple PreMult blending, the BlendType needs to be set to
Ramp.

Image Formatting

The Alpha Blend and Color Format units can be used to format image data into
any of the supported PERMEDIA framebuffer formats.

Consider the case where the framebuffer is in RGBA 5.5.5.1 mode, and an area of
the screen is to be uploaded and stored in an 8 bit RGB 3:3:2 format. The

sequence of operations is:
e Set the Rasterizer as appropriate see section §5.3.10
¢ Enable framebuffer reads

e Disable framebuffer writes and set the UpLoadData bit in the FBWriteMode
register

¢ Enable the Alpha Blend unit, set the operation to “Format” (assuming no alpha
blending is needed) and set the color mode to RGBA 5.5.5.1. This can all be
achieved by setting the appropriate fields in the AlphaBlendMode register.

e Set the Color Format unit to format the color of incoming fragments to an 8 bit
RGB 3:3:2 framebuffer format.

The upload now proceeds as normal. This technique can be used to upload data in
any supported format.

The same technique can be used to download data which is in any supported
framebuffer format. In this case the Rasterizer is set to synchronize with FBData
(rather than Color), framebuffer writes are enabled and the UpLoadData bit

cleared.

Normally internal color and alpha values require scaling if they are less than 8 bits.
However there are situations where the least significant bits should be zeroed. This
is needed for multi-pass rendering to prevent dithering occurring multiple times.
This option can be independently applied to color and alpha values by setting the
ColorConversion and/or AlphaConversion bits in the AlphaBlendMode register to
Shift rather than Scale.

Registers

The TextureColorMode register is used to enable and disable texturing (qualified
by the texture application bit in the Render command register). The KsDDA and

104

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

KdDDA bits enable the internal DDAs and should be set for modulate or highlight
Ramp texture application modes. The Texture Type field differentiates between
Ramp and RGB application modes. Combinations of decal, modulate and
highlight are supported with Ramp Application Mode.

KsDDA // ‘
KdDDA Texture Type
Application Mode

Enable Texture

Figure 5.44 TextureColorMode Register

The TexelO register holds the texture value. This may be loaded automatically by
the Texture Read unit, or supplied from the host for a procedural texture. Fig 5.44
and 5.45 show texture values in RGB and YUV formats respectively. This register
is also used to hold the background color for the bitmask and stipple tests. If the
tests fail then this color can be used in place of that from the Color DDA unit.

Alpha Blue Green Red

Figure 5.45 Texel0 Register - RGB and YUV formats

The six registers: KsStart, dKsdx, dKsdyDom, KdStart, dKddx and dKddyDom
hold the start, dx and dyDom parameters for Ks and Kd. The format is 2's
complement 2.16 fixed point format (1 bit sign, 1 bit integer, 16 bits fraction)
with an effective range of +1.999. The values of Ks and Kd at each vertex are used
to calculate the gradient values in much the same way as the Z gradients, when

interpolating depth see Appendix D.

The FogMode register is used to enable and disable fogging (qualified by the fog
application bit in the Render command register). Setting Fog Test causes
fragments with negative fog values to be rejected see section §5.12.2.

3D/ubs Proprietary and Confidential 105

Graphics Programming PERMEDIA 2 Programmers Reference Manual

31 24 16 8 0
Reserved
\
FogTest
Reserved
Fog Enable
Figure 5.46 FogMode Register
Additional fog registers are, FogColor, which holds the fog color in the standard
color format. FStart, dFdx & dFdyDom which control the fog DDA and are
formatted in 2's complement 2.16 fixed point format as described above.
Blending is controlled by the AlphaBlendMode register:
31 24 16 8 0
Reserved ColorFormat Operation
AlphaConversion /
ColorC i
OO ORVEISIon) AlphaBlendEnable
ColorFormatExtension o NoAlphaBuffer
Reserved PEIPE NColorOrder
Figure 5.47 AlphaBlendMode Register
The color format and order is needed as the destination color is read from the
framebuffer and needs to be converted into the internal PERMEDIA representation,
it should therefore be set as appropriate for the framebuffer. The operation can be
either format or blend or PreMult.
5.12.8 Texture Application Example
Example of texture mapped trapezoid:
/'l Set-up Texture/Fog/Blend unit
t ext ur eCol or Mode. Enabl e = PERVEDI A TRUE
t ext ur eCol or Mode. Appl i cati onMbde = PERVMEDI A TEXTURE_MODULATE
Text ur eCol or Mode(t ext ur eCol or Mbde)
/'l Render with texture enabled in render command
/1 render. TextureEnabl e = PERVEDI A_TRUE
5.12.9 Fog Example
A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to white. See
Appendix D for details of how to calculate depth delta values - fog values are
calculated in a similar way.
106 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Programming

/1 Enable the Color DDA unit in Gouraud shadi ng node
col or DDAMbde. Uni t Enabl e = PERVEDI A ENABLE

col or DDAMbde. Shade = PERMEDI A_ GOURAUD_SHADE_MCODE

Col or DDAMbde(col or DDAMbde)

/1 Enable the Fog unit
f ogMbde. FogEnabl e = PERMEDI A_TRUE

FogMode(f oghbde)

/] Set the fog color to white
FogCol or ((OxFFFFFFFF)

/1 Load the color start values and deltas for dom nant edge

/1 and the body of the trapezoid

RStart () [/ Set-up the red conponent start val ue
dRdx() /1 Set-up the red conponent increnments
dRdy Do)

GStart () /1 Set-up the green conponent start val ue
dGdx () /1 Set-up the green conponent increnents
dGdyDom()

BStart () // Set-up the blue conponent start value
dBdx () /1 Set-up the blue conponent increnents
dBYDom()

/1 Load the start value and delta for domi nant edge

/1 and the body of the trapezoid

/1 Note that the fog deltas are calculated in the same
/1l way as the color deltas

FStart () /1 Set-up the fog conponent start val ue
dFdx() /1 Set-up the fog conponent increments
dFdyDont()

/1 \When issuing a Render command the FogEnabl e bit
/1 should be set in addition to the fog unit being
/'l enabl ed:

/'l render. FogEnabl e = PERMEDI A_TRUE

3D/.bs

Proprietary and Confidential

107

Graphics Programming PERMEDIA 2 Programmers Reference Manual

513

5.13.1

5.13.2

5.13.3

Color Format Unit

The Color Format unit converts from PERMEDIA's internal color representation to a
format suitable to be written into the framebuffer. This process may optionally
include dithering of the color values. If the unit is disabled then the color is not
modified in any way.

Color Formats

The framebuffer may be configured to be RGBA or Color Index (CI). Table 4.1
shows the full list of color modes supported by PERMEDIA. The R, G, B and A
columns show the width of each color component. The least significant bit
position is 0. For the Front and Back Modes the value is repeated in both buffers,
and writemasks may be used to update only one buffer. In CI mode, the index is
repeated in all streams.

Color Dithering

PERMEDIA uses an ordered dither algorithm to implement color dithering. It also
has a line dither mode which uses a different algorithm which will generally give
better results for lines because it is independent of orientation. This mode is not
available for trapezoids.

If the Color Format unit is disabled, the color components RGBA are not modified
and will be truncated when placed in the framebuffer. In CI mode, the value is
truncated to the nearest integer. In both cases the result is clamped to a maximum
value to prevent overflow.

PERMEDIA supports 8888 RGBA format for 2d operations only. If this mode is
selected and dithering is enabled, it will result in 5551RGBA quality for each 32
bit pixel. This can be used when the window manager needs to be set-up for true
color at the same time as 3D windows are required.

In some situations only screen coordinates are available, but window relative
dithering is required. This can be resolved by setting up the optional X and Y
offsets which get added to the coordinates before the dither tables are indexed.
Each offset is a two bit number which is supplied for each coordinate. The
XOffset and YOffset fields in the DitherMode register control this operation and

should be set to zero if window relative coordinates are used.

ForceAlpha

The Color Format unit can force the alpha value to be either 0x0 or the maximum
0xFF, or leave it unchanged. This can be used to implement overlays. See section

§7.6 for a detailed description.

108

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Programming

5.13.4

31

Registers

One register controls the operation of this unit, DitherMode, and its layout is:

24 16 8 0

1 1 1 1 - 1 1 1 1 L 1 1 1 1 1 1 1

5.13.5

5.13.6

5.13.7

—

ForceAlpha X offset / Dither enable

Color format extension

DitherMethod | Y offset Unit enable

Reserved

Color order Color format

Figure 5.48 Dither Mode Register

The X and Y offset fields are for window relative dithering. Color order species
RGB or BGR color order. The Color format and Color format extension fields

control color depth and options are given in table 4.1.
Dither Example
To set the framebuffer format to RGB 3:3:2 and enable dithering:

/1 332 Dithering

di t her Mode. Uni t Enabl e = PERVEDI A TRUE

di t her Mode. Di t her Enabl e = PERMEDI A_TRUE

di t her Mode. Col or Mode = PERVEDI A COLOR_FORMAT RGB_332

Di t her Mode (ditherMode)// Load register

Color Format Example
To set the framebuffer format to RGB 3:3:2 and disable dithering:

/1 332 No Dither

di t her Mode. Uni t Enabl e = PERVEDI A TRUE

di t her Mode. Di t her Enabl e = PERVEDI A_FALSE

di t her Mode. Col or Mode = PERMEDI A COLOR_FORMAT_RGB 332
Di t her Mode(di t her Mode) // Load register

Color Format Example

To set the framebuffer to RGBA 8:8:8:8 and not dithered:

3D/.bs

Proprietary and Confidential 109

Graphics Programming PERMEDIA 2 Programmers Reference Manual

/1 8888 Dithered (No effect as 8 bit conponents are
/1 not dithered)

di t her Mbde. Uni t Enabl e = PERVEDI A_ TRUE
di t her Mode. Di t her Enabl e = PERVEDI A_FALSE
di t her Mode. Col or Mode = PERMEDI A COLOR_FORVAT RGBA 8888

Di t her Mbde(di t herMode) // Load register

110 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

5.14 Logical Op Unit
The Logical Op unit performs three functions:
* logic operations between the fragment color (source color) and a value from the
framebuffer (destination color)
* software writemasking
* optional control of a special PERMEDIA mode which allows flat shading
rendering.
5.14.1 Logical Operations
The logical operations supported by PERMEDIA are:
Mode Name Operation
0 Clear 0
1 And S&D
2 And Reverse S& -D
3 Copy S
4 And Inverted ~S&D
5 No-op D
6 Xor sS~"D
7 Or S[D
8 Nor ~(S|D)
9 Equivaent ~(S"D)
10 Invert ~D
11 Or Reverse S|~D
12 Copy Invert ~S
13 Or Invert ~S|D
14 Nand ~(S& D)
15 Set 1
Where: S = Source (fragment) Color, D = Destination (framebuffer) Color
Table 5.20 Logical Operations
For correct operation of this unit in a mode which takes the destination color,
PERMEDIA must be configured to allow reads from the framebuffer using the
FBReadMode register. See section §5.10 for more details.
PERMEDIA makes no distinction between RGBA and CI modes when performing
logical operations. However, logical operations are generally only used in CI mode.
5.14.2 Software Writemasks
Software writemasking is normally only implemented when Hardware
writemasking is unavailable. It is controlled by the FBSoftwareWriteMask
3D/ubs Proprietary and Confidential 111

Graphics Programming PERMEDIA 2 Programmers Reference Manual

register. The data field has one bit per framebuffer bit which when set, allows the
corresponding framebuffer bit to be updated. When reset, it protects the bit from
being written. Software writemasking is applied to all fragments and is not
controlled by an enable/disable bit. However it may effectively be disabled by
setting the mask to all 1's. If the mask is not all 1’s, the ReadDestination bit must
be enabled in the FBReadMode register to correctly use software writemasks. See
the Framebuffer Read/Write section for details of how to enable/disable
framebuffer reads.

The software writemask MUST be set to all 1’s, except when software
writemasking is explicitly required.

5.14.3 Flat Shaded Rendering

A special PERMEDIA rendering mode is available which allows rendering of

unshaded images.

Note: This method is no longer recommended on PERMEDIA 2. Other methods of flat
shading are as least as fast and ave simpler 1o set-up corvectly. It has been included
here for the benefit of understanding legacy PERMEDIA 1 software.

* Flat shaded primitive

* No dithering required

* No logical ops

* No stencil or depth testing required

* No alpha blending

The following are available:

* Bit masking in the Rasterizer

* Area and line stippling

* User and Screen Scissor test

If all the conditions are met then rendering can be achieved by setting the

FBWriteData register to hold the framebuffer data (in raw framebuffer formart)

and setting the UseConstantFBWriteData bit in the LogicalOpMode register. All

unused units should be disabled.

This mode is most useful for 2D applications or for clearing the framebuffer when

the memory does not support block writes. Note that FBWriteData register

should be considered volatile when context switching.
5.14.4 Registers

The operation of the unit is controlled by the LogicalOpMode register:

112 Proprietary and Confidential 3D/abs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

31 24 16 8 0
Reserved LogicOp
UseConstantFBWriteData
Logical Op enable
Figure 5.49 LogicalOpMode Register
5.14.5 XOR Example
To set the logical operation to XOR.
/1 Set framebuffer to allow reads
/1 Not shown
| ogi cal OpMbde. Uni t Enabl e = PERVEDI A_ENABLE
| ogi cal OpMode. Logi cal Op = PERMEDI A_LOG COP_XOR
Logi cal OpMode(| ogi cal OpMode) /1 Load register
5.14.6 Software Writemask Example
To set the logical operation to COPY, enable the software writemask, and write to
the green component in an 8 bit framebuffer configured in 3:3:2 RGB mode:
/1 Set framebuffer to allow reads
/1 Not shown
di t her Mode. Uni t Enabl e = PERMVEDI A ENABLE
di t her Mode. Di t her Enabl e = PERVEDI A_ENABLE
di t her Mode. Col or Mode = PERMEDI A COLOR _FORMAT _RGB 332
Di t her Mode(di t her Mbde) /1 Load register
| ogi cal OpMbde. Uni t Enabl e = PERVEDI A_ENABLE
| ogi cal OpMbde. Logi cal Op = PERMEDI A_LOG COP_COPY
Logi cal OpMode(| ogi cal OpMode) /1 Load register
FBSof t war eW i t eMask(Ox FFFFFFE3)
515 Host Out Unit
The Host Out Unit controls which registers are available at the output FIFO,
gathers statistics about rendering operations (picking and extent testing) and
controls synchronization of PERMEDIA with the host.
5.15.1 Filtering
Filtering controls the data made available at the output FIFO. There are the
following categories:
3D/ubs Proprietary and Confidential 113

Graphics Programming PERMEDIA 2 Programmers Reference Manual

e Depth, Stencil, Color: These are data values associated with a fragment which
has been read from the localbuffer or framebuffer, or generated using the
UpLoadData flag in the Framebuffer Write Unit. This category is normally
associated with uploading data to the host.

* Synchronization: A single register, Sync which is used to synchronize
PERMEDIA and flush the graphics pipeline.

e Statistics: The registers associated with extent checking and picking.
The filtering is controlled by the FilterMode register which has 2 bit fields for each
category. These fields select whether the register tag and/or register data, are passed

to the output FIFO. The format of the FilterMode register is shown in the table
below.

Register Category Tag Data .
Control Control Description
Bit Bit
Reserved 0 1
Reserved 2 3
Depth 4 5 This is the data from image upload of the Depth
(Z) buffer.
Stendil 6 ! This is the data from image upload of the Stencil
buffer.
Color 8 9 This is the data from image upload of the
Framebuffer (FBColor).
Synchronization 10 11
Statistics 12 13 This is the data generated following a command
to read back the results of the statistic
measurements: PickResult, MaxHitRegion,
MinHitRegion
Reserved 14 15
Table 5.21 Filter Modes
Note, the filter unit must be set appropriately before any synchronization can take
place.
5.15.2 Statistic Operations
There are two statistic collection modes of operation; picking and extent checking.
Picking is normally used to select drawn objects or regions of the screen. Typically,
extent checking is used to determine the bounds within which drawing has
occurred so that a smaller area of the framebuffer can subsequently be cleared.
114 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

Statistic collection is controlled using the StatisticMode register.

Picking

In picking mode, the active and/or passive fragments have their associated XY
coordinates compared against the coordinates specified in the MinRegion and
MaxRegion registers. If the result is true, then the PickResult flag is set, otherwise
it holds its previous state. The compare function can be either Inside or Outside.

Before picking can start, the ResetPickResult register must be loaded to clear the
PickResult flag.

The MinRegion and MaxRegion registers are loaded to select the region of
interest for picking. A coordinate is inside the region if:

Xmin = X <Xpmax

Ymin €Y < Ymax
where X and Y are from the fragment and the min/max values are from

MinRegion and MaxRegion registers. This comparison is identical to the one used
in the scissor tests.

The following stages are required for picking:
1) load ResetPickResult, MinRegion and MaxRegion registers
2) Set-up the FilterMode to allow statistic commands out of PERMEDIA

)
3) Draw the primitives.
4) Send a PickResult command.

5) Poll the output FIFO waiting for the PickResult to have passed through
PERMEDIA.

Block fills are ignored by the picking operation.
Extent Checking

In extent mode, active and/or passive fragments have their associated XY
coordinates compared to the MinRegion and MaxRegion registers and if found to
be outside the defined rectangular region, then the appropriate register is updated
with the new coordinate(s) to extend the region. The Inside/Outside bit has no
effect in this mode. Block fills are included in the extent checking if the
StatisticMode register is set to include spans.

The MinRegion and MaxRegion registers are loaded to select the maximum value
(MinRegion) and minimum value (MaxRegion) for extent checking. A coordinate
is inside the region if:

Xmin € X < Xpax

Yimin €Y < Yimax

3D/ubs Proprietary and Confidential 115

Graphics Programming PERMEDIA 2 Programmers Reference Manual

5.15.3

5.15.4

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the one used
in the scissor tests.

Once all the necessary primitives have been rendered the results can be found using
the MinHitRegion and MaxHitRegion commands, which cause the contents of
the MinRegion and MaxRegion registers respectively to be written into the
output FIFO (under control of the FilterMode register).

Synchronization

The Sync command register provides a means of ensuring that PERMEDIA has
completed all outstanding actions such as localbuffer and framebuffer accesses.
Sync is filtered and written to the output FIFO in a similar fashion to the other
registers. The host can either poll for Syncs by reading the output FIFO or await a
Sync interrupt

If generation of an interrupt is required, then the most significant bit of the Sync
command register must be set, and the filtering must be set-up to at least allow the
Sync to be written into the FIFO. If the FilterMode is set-up so the Sync is not
written to the FIFO, then Sync interrupts will not be generated. The actual
interrupt will not occur until the Sync data or tag has passed through PERMEDIA
and is on the output of the FIFO. This to allow low level resynchronization
between the graphics core and PCI clock domains. The FIFO has an extra bit in
width to accommodate the interrupt signal. When both the data and tag are
written into the FIFO, only the first entry in the FIFO will cause the interrupt
(assuming an interrupt was requested).

The remaining bits in the Sync data field are free and can be used by the host to
identify the reason for the Sync.

Registers

Filtering is controlled by the FilterMode register:

24 16 8 0

T T T T T T T T T T T T T T T T T T L] T T T T T T T

Reserved Individual bits defined above

1 1 1 1 L 1 L 1 1 1 1 L 1 L 1 1 Il 'l Il 1 1 1 1 1 1

Figure 5.50 FilterMode Register

116

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Programming

Statistic collection is controlled by the StatisticMode register:

1 1 L 1 1 L 1 1 1 L 1 L 1 L 1 1 L L 1 L 1 1 Il

Include Spans ///

Compare Function

Monitor Culled Fragments Statistics Type

Monitor Pixels Written o
Enable Statistics

Figure 5.51 StatisticMode Register

The Include Spans bit allows control over whether or not block fills are included in
the returned information.

Pick Flag

Figure 5.52 PickResult Register

ResetPickResult is used to clear the pick flag. The data field for this register is

unused.

MinRegion, MaxRegion registers are used to load picking/extent regions, and
MaxHitRegion and MinHitRegion are used to read the registers back. The
format is 16 bit 2's complement numbers with Y in the most significant part and X
in the least significant part of the word.

Setting the most significant bit of the Sync register will request a Sync interrupt.
Bits 0-30 are available for the user.

5.15.5 Filter Mode Example

[/l Set-up Filter node to only pernit read back of
/1 synchroni zation tag and data

Fi | t er Mbde(0x0C00) /Il Set bits 10 & 11

5.15.6 Picking Example

Set the statistic mode to picking and detect any active fragments in the region 0x0
<=x< 0x100, 0x0 <=y < 0x100. Render some primitives then read back the
results.

3D/ubs Proprietary and Confidential 117

Graphics Programming PERMEDIA 2 Programmers Reference Manual

/1 Set filter npde as above
Fi | t er Mode(0x0C00) // Set bits 10 & 11

/] Set statistic node
M nRegi on(0)
MaxRegi on(0x100 | 0x100 << 16)

/1 Clear the picking flag
Reset Pi ckResul t (0x0) // Data not used

/1 Now render primtives....

Render (render) /1 Al units set as appropriate
/1 Al rendering finished.

/1 Set the filter node to allow read back of Syncs and

/1 statistic information (tag and data)

Fi |t er Mode(0x3C00) /1 Set bits 10 to 13

/1l Wite to the PickResult register

Pi ckResul t (0x0) /] Data not used

/1 Now read the PickResult fromthe output FIFO (not shown)

5.15.7 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined data (0x34) in
the lower 31 bits of the Sync register.

I/ Set-up Filter npde to only permit read back of
/'l synchroni zation tag and data
Fi | t er Mode(0x0C00) /1 Set bits 10 & 11

// Wite to the Sync register with the top bit (bit 31) set and
/1 user data encoded into the |ower bits (0-30)

sync = (0x1 << 31) | (0x34 & Ox7FFFFFFF)
Sync (sync)

/1 Now wait for the sync interrupt. Not shown.

118 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Initialization

6.1

6.2

6.2.1

Initializing PERMEDIA

This section illustrates how to initialize PERMEDIA following reset, prior to carrying
out rendering operations.

Initialization falls broadly into three areas, though in different systems precise
responsibilities can vary:

* System initialization covers the setting up of the PCI bus, memory and video
output. This information typically is only initialized once following reset.

* Window initialization, also referred to as context initialization, covers the setting
of the base address of the current rendering window and its color format. This
must occur at reset, but will need updating each time PERMEDIA starts drawing
to a new window.

* Application initialization covers state that is typically dynamic; enabling and
disabling depth testing for example. Again this state must be set at reset, but is
likely to be updated relatively frequently.

To make use of the full functionality of PERMEDIA, consult the relevant sections of
the Graphics Programming chapter (chapter §5). Examples are given which make
use of the pseudocode conventions given in Appendix B.

Note: In general the graphics registers (those listed in Appendix A, as opposed to those
documented in the PERMEDIA 2 Hardware Reference Manual) are not hardware
initialized to specific values at veset. In the examples below it is assumed that the
data structuves used to load these vegisters are initialized to zero. Thus bit fields
which are not set explicitly, will default to zero.

System Initialization

PCI

There are a set of PCI related registers which can be interrogated for information
about the chip, for example its revision and device ID. Some of these PCI related
registers will need to be set-up at reset, for instance to configure the base addresses
of the different memory regions of the chip. For more details refer to the PeraeDIA
2 Hardware Reference Manual and the PCI Local Bus Specification Rev2.1.

3D/.bs

Proprietary and Confidential 119

Initialization PERMEDIA 2 Programmers Reference Manual

6.2.2 Memory Configuration

The memory interface control registers should be programmed to reflect the type
and amount of memory fitted. The registers are specified in the PErMEDIA 2
Hardware Reference Manual.

6.2.3 SVGA and Internal Video Timing Registers

Details for programming the SVGA registers can be found in the PerMEDIA 2
Hardware Reference Manual.

The core video timing generator should be programmed to reflect the timings of
the monitor being used and the screen resolution and color depth. Note that there
is also a SVGA VTG and care must be taken to ensure the correct one is enabled at
the right time. To change from SVGA to core display mode, two stages are
required. Firstly the core VTG must be set-up and then VGAControlReg must be
loaded (the EnableVGADisplay bit set to 0).

Details of programming the registers for both VI'Gs can be found in the PeryEDIA
2 Hardware Reference Manual.

6.2.4 Screen Width

The width of the screen is initialized by setting the three partial products fields in
the FBReadMode, LBReadMode and TextureMapFormat registers. Note that
the width is in pixels, not in bytes, so the same values apply regardless of
framebuffer depth, for a given screen resolution. A full list is given in Appendix C.

To initialize the screen to be 1024 pixels wide the registers would be set as follows.

f bReadMode. PPO = 5
f bReadMode. PP1 = 5
f bReadMode. PP2 = 0

FBReadMode(f bReadMode)

| bReadMbde. PPO = 5
| bReadMbde. PP1 = 5
| bReadMbde. PP2 = 0

LBReadMode(| bReadMode)

t ext ur eMapFor mat . PPO
t ext ur eMapFor mat . PP1
t ext ur eMapFor mat . PP2
Text ur eMapFor mat (t ext ur eMapFor mat)

I
[@Xé N6

Note that the PERMEDIA Graphics Core supports a maximum screen resolution of
2048 x 2048!.

! The actual screen resolution obtainable will be limited by the RAMDAC. In the case of the integrated
RAMDAC this is 1600 x 1280 at a screen refresh rate of 85 Hz.

120 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Initialization

6.2.5

6.2.6

Screen Clipping Region

PERMEDIA supports a screen scissor clip which should be set at system
initialization, and a user scissor clip which should initially be disabled. Assuming
that the FBWindowBase and LBWindowBase registers are set appropriately, then
setting the screen clip prevents writing outside the framebuffer memory (and
localbuffer), which could have undesirable results. The following example would be
appropriate for a resolution of 1024 by 768 pixels:

screenSi ze. X = 1024
screenSi ze.Y = 768
ScreenSi ze(ScreenSi ze)

sci ssor Mode. ScreenSci ssor Enabl e = PERVEDI A_ENABLE
sci ssor Mode. User Sci ssor Enabl e = PERVEDI A DI SABLE
Sci ssor Mode(Sci ssor Mode)

Localbuffer and Framebuffer Configuration

Since PERMEDIA supports a unified memory architecture, it must be decided how
the memory is to be partitioned between framebuffer, localbuffer and texture
memory. A typical configuration might be to allocate 2 screen sized buffers: one for
the visible screen, the other for the 3D back buffer. Then allocate a localbuffer: this
is always 16 bits per pixel; and allow the remainder to be used for texture memory.
The localbuffer and texture memory can be considered to have different shapes to
the front and back buffers. For example, suppose that a screen resolution of
800x600 at 8 bits per pixel is required, then the following offsets could be used.
Each offset is a count in pixels from the start of memory.

Front buffer: pixel offset 0

Back buffer: pixel offset 480000 (= 600*800 bytes)
Local buffer: pixel offset 480000 (offset in 16 bit pixels)
Texture memory: byte offset 1920000 (= 2*600*800 +
600*800*sizeof(USHORT))

The size of the pixel depends on the buffer being considered. Hence the offset to
the back buffer and the localbuffer appear to be the same but one is measured in
bytes, the other in shorts.

These offsets should be saved as software copies to used as required. For example,
to select the front buffer for rendering, the FBPixelOffset register would be set to
0; to select the back buffer it would be set to the Back buffer pixel offset. The
localbuffer offset should be added to the window base offset whenever the
LBWindowBase register is updated. The value loaded into the
TextureBaseAddress is a count of the number of texels from the start of memory.
Thus the byte offset should be modified to be a texel count when used. In practice,
some sort of texture allocation scheme will be needed where textures are allocated
starting at the texture memory offset. The final value loaded into the
TextureBaseAddress register will be the texture memory offset + offset to the

3D/.bs

Proprietary and Confidential 121

Initialization PERMEDIA 2 Programmers Reference Manual

required texture with the final value converted to a texel count from the start of
memory.

PERMEDIA supports a range of localbuffer configurations. During initialization,
fields in the LBWriteFormat and LBReadFormat registers should be set to
appropriate values. For example:

| bReadFor mat . Dept hWdth = 3 // 15 bit depth buffer

| bReadFormat . Stenci I Wdth = 3 /1 1 bit stencil

LBReadFor mat (| bReadFor mat)

| bWit eFor mat . Dept hW dt h 3 // 15 bit depth buffer
/1 1 bit stencil

IbWiteFornat.StenciIWdtH =3
LBW it eMode(l bWiteFornat)

Note it is possible to dynamically change the number of bits allocated to the depth
and stencil buffers, for instance on a per window basis.

Set the framebuffer and localbuffer read units to their default data sources:

f bReadMode. Dat aType = PERVEDI A FBDATA
FBReadMode(f bReadMode)

| bReadMbde. Dat aType = PERVEDI A LBDEFAULT
LBReadMode(| bReadMode)

The following registers are typically only needed for certain specialized operations.

Normally their offsets will be zero.

FBSour ceO f set (0)
FBPi xel Of f set (0)
LBSour ceOr f set (0)

6.2.7 Host Out Unit
Under some circumstances it is necessary to synchronize with PERMEDIA. This is
controlled through the Sync command. The host out FIFO should normally be
initialized so as to output the Sync tag and data (they can be filtered out).
In addition the host out unit should normally be set to filter out all other output
data, otherwise the host software must regularly poll the output FIFO to keep it
drained and prevent it freezing the pipeline. For example:
filterMbde. Depth = PERVEDI A NULL
filterMode. Stencil = PERMEDI A_NULL
filterMode. Color = PERMEDI A_NULL
Fil terMode. Synchroni zati on = PERVEDI A FI LTER TAG AND_DATA
/1 Alow Syncs through
filterMode. Statistics = PERMEDI A_NULL
filterMde. Remai nder = PERVMEDI A_NULL
FilterMode(filterMbde)
6.2.8 Disabling Specialized Modes
Some operations should be disabled until they are need. Refer to the Graphics
Programming chapter (chapter §5) for more details on their use.
122 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Initialization

wi ndow. LBUpdat eSour ce = PERVEDI A TRUE
wi ndow. For ceLBUpdate = PERMEDI A FALSE
wi ndow. Di sabl eLBUpdat e = PERVEDI A TRUE
W ndow(wi ndow)

6.3 Window Initialization

PERMEDIA supports the concept of a window origin, and makes it relatively simple
to implement systems which allow different color formats to coexist in different
windows.

6.3.1 Color Format

The Color Format unit and the alpha blend unit should be initialized to an

appropriate color format at reset. The units support a variety of different formats,
listed in table 4.1.

For example to render in 3:3:2, 8 bit color format, the following would be needed:

di t her Mode. Col or For mat = PERVEDI A_ COLOR_FORVAT_RGB_332_FRONT
Di t her Mode(di t her Mode)

al phaBl endvbde. Col or Format =

PERVEDI A COLOR_FORMAT_RGB_332_FRONT
Al phaBl endMbde(al phaBl endMode)

To enable dithering use the following:

di t her Mode. XO fset = 0
di t her Mode. YO fset = 0
di t her Mbde. Di t her Enabl e = PERVEDI A ENABLE
di t her Mode. Uni t Enabl e = PERVEDI A_ENABLE

Di t her Mode(di t her Mbde)

Note that the Color Format unit is normally always enabled even if dithering itself
is not. This is because the unit handles color formatting as well as the dithering
operation.

6.3.2 Setting the Window Address and Origin.

PERMEDIA supports the concept of a current window origin. The origin of the
window can be specified either as being in the Top Left or Bottom Left corner.
This allows the user to pick the most appropriate coordinate system to use; for 3D
graphics it would typically be bottom left, whereas for window systems it would be

top left. Thus for OpenGL set:

f bReadMode. W ndowOri gin = PERMEDI A BOTTOM LEFT_W NDOW ORI G N
FBReadMbde(f bReadMode)

| bReadMbde. W ndowQri gin = PERVEDI A BOTTOM LEFT W NDOW ORI G N
LBReadMode(| bReadMode)

t ext ur eMapFor mat . WndowOri gi n =
PERMVEDI A BOTTOM LEFT_W NDOW ORI G N
Text ur eMapFor mat (t ext ur eMapFor mat)

3D/ubs Proprietary and Confidential 123

Initialization PERMEDIA 2 Programmers Reference Manual

6.3.3

6.3.4

The window origin is set in the Scissor unit. This information usually is provided
by the window system. It will need updating if the window moves. As an example
if the position of the window is (200, 600) (using a bottom left coordinate system),

the origin is specified as follows:

wi ndowOri gi n. X = 200
wi ndowOrigin.Y = 600
W ndowOr i gi n(wi ndowOr i gi n)

The base address of the window must also be established in the localbuffer read
and framebuffer read units. The base address is the physical address that represents
the base address of the window. Assuming the base address of the framebuffer
represents the pixel in the top left corner of the screen, then for the example above
the actual physical address of the bottom left pixel of the window will be set as

follows:

f bW ndowBase = fbBaseAddress +
(fbWdth * (fbHei ght-1-600) + 200)
FBW ndowBase(f bW ndowBase)

| bW ndowBase = | bBaseAddress +
(I'bWdth * (I bHei ght-1-600) + 200)
LBW ndowBase(| bW ndowBase)

Where fbBaseAddress, fbWidth and fbHeight are the physical base address, width
and height of the framebuffer (in pixels). fbBaseAddress and IbBaseAddress will
have been precomputed as described in Section §6.2.6. As with the
WindowOrigin data, if the window moves, these registers must be updated.

Writemasks

Normally both the hardware (if present) and the software writemasks will initially

be set to make all bitplanes writeable:

FBSof t war eW i t eMask(PERVEDI A_ALL_W\RI TEMASKS_SET)
FBHar dwar eW i t eMask(PERVEDI A_ALL_\WRI TEMASKS_SET)

Enabling Writing

Which buffers are enabled at any given time is window specific and should be
considered for performance reasons. Performance will be improved if unnecessary
reads from, and writes to, buffers are disabled. For example if the current rendering
does not use depth or stencil testing then reading and writing to the localbuffer
may be disabled. The following example initializes the buffers to allow depth
buffering and alpha blending:

fbWiteMde. Uni t Enabl e = PERVEDI A ENABLE
FBW it eMode(fbWiteMde)

| bWiteMde. Unit Enabl e = PERVEDI A_ENABLE
LBW it eMbde(l bwit eMode)

| bReadMbde. ReadSour ceEnabl e = PERVEDI A DI SABLE
| bReadMbde. ReadDest i nati onEnabl e = PERVEDI A _ENABLE

124

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Initialization

LBReadMode(| bReadMode)

f bReadMbde. ReadSour ceEnabl e = PERVEDI A DI SABLE
f bReadMode. ReadDest i nati onEnabl e = PERMEDI A ENABLE
FBReadMbde(f bReadMode)

Note that to use software writemasking, the FBReadMode register's
ReadDestinationEnable field will need to be set if the writemask is set to other than
all 1's.

6.3.5 Setting Pixel Size

The size of the pixels must be set so that the memory can be accessed correctly.

To do this, use the FBReadPixel register e.g.:

f bReadPi xel . Pi xel Si ze = PERVEDI A_16_BI T_PI XEL
FBReadPi xel (f bReadPi xel)

Three framebuffer pixel sizes are possible: 8, 16, 24 and 32 bits. The localbuffer
pixel size is fixed at 16 bits.

6.4 Application Initialization

While an application is running, it may dynamically use features of PERMEDIA such
as depth buffering, alpha blending, logical operations, etc.. Initially, however, it is
recommended that the respective units are disabled, to ensure that they are in a
known state:

areaSti ppl eMode. Uni t Enabl e = PERVEDI A DI SABLE
AreaSti ppl eMbde(areaSti ppl eMode)

dept hMbde. Uni t Enabl e = PERVMEDI A_DI SABLE
Dept hMode(dept hMbde)

st enci | Mode. Uni t Enabl e = PERMEDI A DI SABLE

St enci | Mode(st enci | Mode)

t ext ur eAddr essMbde. Uni t Enabl e = PERMEDI A DI SABLE
Text ur eAddr essMode(t ext ur eAddr essMode)

t ext ur eReadMbde. Uni t Enabl e = PERVEDI A DI SABLE
Text ur eReadMode(t ext ur eReadMbde)

t exel LUTMbde. Uni t Enabl e = PERMEDI A DI SABLE
Texel LUTMbde(t exel LUTMode)

yuvhMbode. Uni t Enabl e = PERMEDI A DI SABLE
YUVMode(yuvMode)

col or DDAMbde. Uni t Enabl e = PERVMEDI A_DI SABLE
Col or DDAMbde(col or DDAMbde)

t ext ur eCol or Mode. Uni t Enabl e = PERVEDI A_DI SABLE
Text ur eCol or Mode(t ext ur eCol or Mode)

f oghbde. Uni t Enabl e = PERVMEDI A_DI SABLE
FogMbde(f oghvbde)

3D/ubs Proprietary and Confidential 125

Initialization PERMEDIA 2 Programmers Reference Manual

al phaBl endMbde. Uni t Enabl e = PERVEDI A_DI SABLE
Al phaBl endMode(al phaBl endMode)

| ogi cal OpMbde. Uni t Enabl e = PERMEDI A_DI SABLE
Logi cal OpMode(| ogi cal OQpMvbde)

statisticMde. Enabl eStats = PERVEDI A_DI SABLE
StatistichMde(statistichMde)

6.5 Bypass Initialization
The PERMEDIA bypass mechanism gives direct access to memory that PERMEDIA
uses to hold the framebulffer, localbuffer and textures. In some situations it is useful
for an application to have direct access to this memory without going through the
graphics processor. Initialization of PCI registers, in particular the Bypass
Writemask register, covers initialization of the bypass mechanism.
The writemask register BypassWriteMask is undefined at boot time and should be
set to -1.
Refer to the PERMEDIA 2 Hardware Reference Manual for further details.

126 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Tips

74

7.1.1

7.1.2

Programming Tips

This chapter covers a variety of programming tips that make best use of PERMEDIA.
The topics covered here are not exhaustive.

PCI Bus Issues

Improving PCI bus bandwidth for Programmed I/O and DMA

The simplest way to program PERMEDIA is by writing data values into the memory
mapped registers. i.e. programmed 1/O. This is appropriate for primitives which
require few set-up parameters such as 2D lines.

For more complex primitives such as Gouraud shaded triangles, where a significant
number of registers must be loaded for each primitive, it may be more optimal to
write directly to the PERMEDIA FIFO input.

The advantage of this mechanism is that it is then possible to use DMA burst
transfers. The disadvantage of this method is that both the address of the register
and the data value to be loaded must be written, apparently doubling the amount

of data to be loaded.

However, to improve bus bandwidth utilization, the registers have been grouped,
into blocks which frequently all need to be updated together, and an indexed
addressing mode is supported which allows a single "address” to be loaded,
followed by the data for a whole set of registers.

An additional mode is supported which allows a large number of data values to be
loaded to the same register. This is useful for image downloads.

For more detail, refer to section §3.2.

PCI burst transfers under Programmed 1/0

PCI bus burst transfers typically allow up to four times the bandwidth of
individual transfers. However burst transfers are only initiated on the PCI bus
when successive addresses are being written to (i.e. the byte address is incremented
by 4). When using burst transfers to perform programmed 1/O to load the
PErRMEDIA FIFOs, PERMEDIA multiply maps the FIFO input register throughout
the range:

0x00002000 to 0xO00002FFF in region O

Thus when data is being loaded into the FIFO a software loop should be written
which starts by writing the first data item at the lower extreme of this address
range, and works towards the upper. For further information see section §3.2.

3D/.bs

Proprietary and Confidential 127

Programming Tips PERMEDIA 2 Programmers Reference Manual

7.1.3

7.1.4

7.1.5

7.1.6

7.1.7

Using PCI Disconnect under Programmed I/0

The PCI bus protocol incorporates a feature known as PCI Disconnect, which is
supported by PERMEDIA. Once PERMEDIA is in this mode, if the host processor
attempts to write to the full FIFO then instead of the write being lost, the
PERMEDIA chip will assert PCI Disconnect. This in turn will cause the host
processor to keep retrying the write cycle until it succeeds.

This feature allows faster download of data to PERMEDIA since the host need not
poll the InFIFOSpace register. But it should be used with care since whenever the
PCI Disconnect is asserted, the bus is effectively hogged by the host processor until
such time as the PERMEDIA frees up an entry in its FIFO.

Using bus mastership (DMA)

It is expected that most PERMEDIA boards will support PCI bus mastership. This
allows the on-board DMA of PERMEDIA to be used to copy data from host memory
into the PERMEDIA FIFO.

The use of PCI bus mastership has a number of benefits:

* PCI bus bandwidth utilization is generally much improved.

* PCI bus bandwidth is further improved because the driver software no longer needs to poll the
FIFO ﬂags to find how many entries are empty, before loading it.

* Overall system performance may benefit through increased parallelism between PERMEDIA and
the host, as the host can often perform useful work preparing the next DMA buffer once it has
initiated a DMA transfer.

See section §3.2.4 for more details on using DMA.

Improving performance with DMA

The use of DMA interrupts can significantly improve performance as these allow
useful work to be done in time which would be otherwise be used by polling.

Having multiple DMA buffers is usually advantageous. The size and number of
buffers is dependent on OS dependent issues such as context switch time.

Improving Texture Mapping performance

The use of interrupts can significantly improve the performance of texture
mapping operations. It achieves this by downloading textures 'on demand'. That is
during a texture mapping operation, if the required texture map does not exist in
local memory, an interrupt is generated so that it can be downloaded. See section

§5.8.2 to §5.8.6 for further details.
AGP Support

The Advanced Graphics Port extensions to the PCI protocol are supported by
PERMEDIA 2. When in an AGP slot, PERMEDIA 2 will function as a 66MHz PCI

128

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Tips

7.2

7.2.1

7.2.2

7.2.3

device, and also perform single edge AGP read master transfers, optionally with

sideband addressing.

Graphics Hyperpipeline

Disable Unused Units

Any unit which is not being used should be disabled. This will maximize pixel
throughput in the graphics core.

It is important to make sure that data is not being read from the texture buffer,
localbuffer or framebuffer unless it is needed. For instance it is perfectly possible to
set-up the localbuffer read unit such that PERMEDIA reads per pixel information,
such as Z or stencil buffer data, which is then discarded. The effect will be the
same visually, but the cost in performance of making the memory accesses will be
very high. It is also important to set the LBDisableUpdate bit in the Window

register if localbuffer writes are not needed.

For optimal performance, hardware writemasks should be used in preference to
software masks.

Avoid Unnecessary Register Updates

PERMEDIA control registers maintain their state between primitives so they do not
need to be updated unless the data needs to change. For example, the dY register
might be set to +1 for a trapezoid and does not need to be reloaded until a line
primitive is drawn.

All delta values and start values are maintained across primitives, so if two triangles
share a dominant edge, the start and dominant edge values do not need to be
calculated or loaded twice.

Similarly, window clipping need not reload all the registers for each clip rectangle.
For example: Load the registers ready for a primitive to be drawn, then enter a loop
which repeatedly loads the coordinates for a clip rectangle into the Scissor unit and
then sends the Render command. Any number of clip rectangles can be processed
in this way but PERMEDIA requires only one set-up for each primitive.

Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive should be
loaded into the PERMEDIA FIFO in unit order. Thus the registers associated with
the Rasterizer unit should be loaded first, then Scissor, Stipple, Localbuffer Read,
and so on until the last unit to be loaded is the Host Out unit (if necessary). Then
finally the relevant command register should be loaded.

For the order of the units in the hyperpipeline, refer to Fig. 5.1.

3D/.bs

Proprietary and Confidential 129

Programming Tips PERMEDIA 2 Programmers Reference Manual

7.2.4

7.3

7.3.1

Use of Continue Commands

The continue commands provide an efficient method for drawing complex
primitives without decomposing them into trapezoids or single lines.

As far as context switching is concerned, each primitive should be treated as
atomic. For example, if PERMEDIA context switched after the Render command for
a triangle, but before it’s associated ContinueNewDom command, the second part
of the primitive may be drawn incorrectly. This is because PERMEDIA relies on
internal state set-up by the Render command which would have been corrupted by
any intervening context.

A second requirement of the continue commands is that data written to the
framebuffer or localbuffer before the continue, should not be read after it. This is
not a common occurrence, but a possible situation is where two lines are drawn,
the second joining the end of the first and being started by ContinueNewLine. If
these lines are XOR'd they will read the pixel they are about to write to. If the
second line is at a sharp angle so that it folds back and overwrites some or all of the
first line, the XOR operation is not guaranteed to be correct because the pixels
from the first line may not have been written to memory before the second line
reads them.

If this situation is likely to occur, a Sync command should be sent before the
ContinueNewLine. This will ensure that all necessary writes complete before the
corresponding reads. The software does not have to wait for the Sync to be read
from the output FIFO, simply sending Sync is enough to guarantee correct
operation.

Area Filling Techniques

Clearing Buffers Quickly

Block writes are a feature of SGRAMs. Data written once to a single address can be
applied to several addresses at the same time. This is a very fast way of filling areas
of the screen, but there are restrictions on when they can be used which are
covered elsewhere in this manual.

Block writes are most obviously useful for clearing the screen, but because
PERMEDIA has a unified memory buffer it is possible to clear the localbuffer with
block writes also.

The extent checking in the host out unit can be used to indicate the area of the
screen that has been written, so the screen clear can be limited to the minimum
area necessary.

130

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Tips

7.3.2

7.3.3

7.4

7.4.1

Avoid Clearing Buffers

Although block writes can be used for fast clearing of buffers, it is best not to clear
them at all. If all pixels on the screen are drawn at least once per frame then the
framebuffer does not need to be cleared. There is no need to clear the localbuffer
either if the following procedure is followed.

For even frames, put the viewer at a depth position of zero and draw objects in the
lower half of the depth range with the depth test set to 'less than'. For odd frames,
put the viewer at the maximum depth value and draw objects into the upper half of
the depth range with the depth test set to 'greater than'.

This loses half of the depth range, but avoids the need to clear the depth buffer if

every pixel is touched at least once.
Trapezoid Fills

Block writes are most useful when clearing the framebuffer, but can be used to fill
any trapezoid.

Block fills, however, are limited to the area defined by the Rasterizer and cannot be
changed by the stipple test. A quick filling technique that permits these tests can be
achieved by setting the UseConstantFBWriteData bit in the Logic Op unit. When
this bit is set, the required color should be loaded into the FBWriteData register in
the format needed by the memory. All unrequired units should be disabled and the
Rasterizer started. The fill can be done up to twice as quickly using this method as
opposed to the ConstantColor register method.

Also remember that even though the display may be 8 bits per pixel, the chip can
be told to draw at 32 bits per pixel. When this is done four pixels are plotted at one
time, but the width of the region the Rasterizer covers should be reduced by a
factor of four. Use the technique described in the tip about packed copies to get
the Framebuffer Write Unit to calculate addresses correctly for 32 bit pixels. The
PackedDataLimits register can also be used to mask out unwanted pixels on the left

and right edge.

Copies and Downloads

Copies

If the pixel size is 8 or 16 bits per pixel, the copy speed can be improved by moving
more than one pixel at a time. This is achieved by setting the PackedCopy bit in
the Framebuffer Read unit. This bit tells PERMEDIA that it should pretend that the
pixel size is 32 bits and calculate the addresses accordingly. The screen width does
not need to be changed, nor does the base address or source offset value. The
Rasterizer should be programmed to rasterize a rectangle that is a factor of four

3D/.bs

Proprietary and Confidential 131

Programming Tips PERMEDIA 2 Programmers Reference Manual

7.4.2

7.4.3

narrower (for 8 bit pixels) or a factor of 2 narrower (for 16 bit pixels) than the
normal size.

The groups of four or two pixels that are copied are all aligned to a 32 bit
boundary, but if some of the edge pixels are not needed, the PackedDataLimits
register can be used to mask them out. If the source and destination pixels have a
different alignment then the RelativeOffset field in the FBReadMode register can
be used to specify how the source needs to be shifted to line up with the
destination.

Downloads

The same registers described in the previous tip can also be used to pack data
during a download to the framebuffer or localbuffer. If the Rasterizer is set to sync
on FBData, the data sent to PERMEDIA must be in the raw memory format. Four 8
bit pixels can be written at one time to the chip, and the PackedDataLimits
register set to mask any unwanted pixels at the left and right edges; the
RelativeOfffset field is used to shift the alignment of the data as it is being stored.

Downloads to the localbuffer can use LBData, but the Rasterizer does not support
sync on LBData, so the data must be explicitly synchronized using the Sync
command. Alternatively, downloads of stencil and/or depth data can be performed
through the framebuffer write unit, allowing WaitForCompletion or sync on
FBData to be used.

Loading Textures

PERMEDIA handles internal synchronization so that all necessary writes complete
before reads for a given buffer. If the same data is treated as two different types
then the chip must be explicitly synchronized. When a texture is downloaded it is
written to memory through the framebuffer write unit, but it is read through the
Texture Read unit. This means that the chip must be synchronized between
loading the texture and reading it otherwise it is not guaranteed that the writes will
have completed before the reads have begun. A Sync command can be used to do
this, or a WaitForCompletion command which does not require the polling of the
output FIFO.

Similarly, if the Framebuffer Write unit is used to clear the localbuffer, or the
Texture Read unit is used in a copy operation, the chip must be synchronized.
The chip will synchronize between localbuffer read and localbuffer write, and
between framebuffer read and framebuffer write. Any operations that mix buffers
need synchronization.

If a texture is downloaded as a normal image, it can make use of the formatting in
the chip to change color format and reorganize the data into rectangular patches. If
texture is already in the required format, a fast texture download can be used. To
use this, set the TextureDownloadOffset register to point to the start address of the
texture (in 32 bit words). Write 32 bit texture data to the TextureData register and

132

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Tips

7.5

7.5.1

7.5.2

7.6

this will be written to memory without changing format. The
TextureDownloadOffset will automatically increment following each write. If the
texture is 8 bits per texel, then 4 texels must be supplied at a time. This method of
texture download avoids the need to set-up the Rasterizer for image download and
allows the state of the chip to be left unchanged. Even the framebuffer writes do
not have to be enabled.

Multi Buffering

Fast Double Buffering

PERMEDIA board designs can readily support a variety of double buffering
mechanisms depending on the memory configuration and LUT-DAC used,
including:

e BLT

e Full Screen

* Bitplane

For further details see section §4.4, §5.12.6, §5.12.7 and §5.13 of this manual.

Note that optimal functionality may be achieved by mixing two or more of the
above double buffering techniques.

As a general performance note, it is best to send non-framebuffer related
commands to PERMEDIA following a SuspendUntilFrameBlank command. This
allows better overlap between the host and PERMEDIA. In general any commands
that will not cause rendering to the framebuffer to occur can be queued in the

PERMEDIA FIFO before waiting on VBLANK.

Triple Buffering

Most 3D systems support double buffering where one frame is displayed while the
next frame is being drawn. To avoid display artifacts, the change between old and
new buffers must happen during a vertical frame blank, but this imposes a
granularity on the frame rate. If a scene takes slightly longer than one frame period
to draw, it has to wait for another frame before it can display so the frame rate
halves.

If three buffers are used, the quantization is removed and the system can continue
to draw at maximum rate.

Overlays

Overlays are only available with the 5551 color format in a 32 bit pixel. The
PERMEDIA 5551 color formats copy the data into both 16 bit halves of the 32 bit
pixel. The writemask is used to write either the upper or lower half to memory.

3D/.bs

Proprietary and Confidential 133

Programming Tips PERMEDIA 2 Programmers Reference Manual

1.7

7.8

The RAMDAC can be programmed to display a 16 bit pixel from either the upper
or lower half of the 32 bit word; which one is displayed is set by bit 31. Bit 31
corresponds to the alpha bit of the 16 bit pixel, and this can be forced to either 1
or 0 by the Color Format unit.

When drawing to the underlay (or main image) set the Color Format unit to force
the alpha to zero, set the writemask to allow writes to the lower half of the word.
When drawing to the overlay set the Color Format unit to force the alpha value to
1 and writemask to allow writes to the upper half of the word.

If the RAMDAC is set into the appropriate mode, pixels in the overlay half of the
word will be drawn where alpha is 1 in the overlay and from the main image where
it is zero in the overlay.

Memory Organization

The amount of memory available to PERMEDIA depends on the board it is fitted to.
The most efficient way to allocate memory will depend on the needs of the system,
but in general the display should be allocated at one end of the SGRAM and the
localbuffer at the other end. This leaves a region between the two buffers in which
textures can be stored. For optimal performance, each buffer (front color, back
color, texture and depth) should reside in separate memory banks. Memory is
organized as follows:

memory size | banks size per

bank
2Mb 2 1Mb
4Mb 4 1Mb
6Mb 4 1 or 2Mb
8Mb 4 2Mb

Table 7.1 Memory Organization

With 6Mb of memory, the first two banks will contain 1Mb and the subsequent
two, 2Mb.

Chroma Test

Chroma key testing can be done without involving texture mapping. This is
achieved by setting the TexelDisableUpdate field in the YUVMode register. This
will allow fragments to be rejected by chroma testing as part of a copy operation.
The texels are read in and tested, and fragments rejected if the colors do not match.

134

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Programming Tips

Setting the TexelDisableUpdate bit discards the data as soon as the test has been
done which improves performance.

This is described in more detail in section §5.9.1.

7.9 Configuration for 2D

Particular fields of several registers can be set by writing to a single register, Config.
This groups together fields of registers commonly used in 2D operations together
so that PERMEDIA may be configured by fewer accesses. Reading from this register
returns invalid data.

3D/ubs Proprietary and Confidential 135

Delta Programming Examples PERMEDIA 2 Programmers Reference Manual

8. Delta Programming Examples

The following examples demonstrate how to render a depth buffered, Gouraud
shaded triangle mesh using the Delta Unit. The window into which the rendering
takes place is partially obscured and hence is clipped by two clip rectangles.

400, 350

10, 300 110,300 210,300 310, 300
110, 150
160, 100
Figure 8.1 Geometry of the Mesh and Clip regions.

The three examples cover drawing the mesh as a set of points at the vertices, as
connected line segments and finally as filled triangles. For simplicity, the triangles
in these examples are either flat topped or flat bottomed. In practice, triangles are
not restricted to these shapes and can have any orientation, size or shape.

136 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Delta Programming Examples

/1 This is the header file for the Delta Unit PRM exanpl e code.
/1 1t only contains the necessary itens to support the exanples.

#i f def Bl G_ENDI AN
/1 The Del taMode register fields.

typedef struct {

unsi gned int pad: 14;
unsi gned int Col or Order: 1;
unsi gned i nt BackfaceCal | Enabl e: 1;
unsi gned int TextureParanet er Mbde: 2;
unsi gned int C anpEnabl e: 1,
unsi gned int NoDraw 1;
unsi gned int Di anondExit: 1;
unsi gned int SubPi xel CorrectionEnabl e: 1;
unsi gned int DiffuseTextureEnable: 1;
unsi gned int Specul ar Text ur eEnabl e: 1;
unsi gned i nt Dept hEnabl e: 1;
unsi gned int Snoot hShadi ngEnabl e: 1;
unsi gned i nt TextureEnabl e: 1;
unsi gned int FogEnabl e: 1,
unsi gned i nt Reserved: 4;
unsi gned int Target Chip: 2;

} __ Del taMbdeFnat ;
/1 The DrawTri angl e and DrawLi ne command fi el ds.

typedef struct {

unsi gned int pad: 14;
unsi gned i nt ReuseBit Mask: 1;
unsi gned int SubPi xel CorrectionEnabl e: 1;
unsi gned i nt Reserved: 1;
unsi gned int FogEnabl e: 1,
unsi gned i nt TextureEnabl e: 1;
unsi gned int SyncOnHost Dat a: 1;
unsi gned int SyncOnBit Mask: 1,
unsi gned int Reserved: 3;
unsigned int PrimtiveType: 2;
unsi gned int Reserved: 2;
unsi gned int FastFill Enable: 1,
unsi gned int Reserved: 2;
unsi gned int LineStippleEnable: 1,

} __Del t aRender Frat ;

#el se

/1 The Del taMode register fields.

typedef struct {
unsi gned i nt Reserved: 4;
unsi gned int FogEnabl e: 1,
unsi gned int TextureEnabl e: 1;
unsi gned int Snoot hShadi ngEnabl e: 1;
unsi gned i nt Dept hEnabl e: 1,
unsi gned int Specul ar Text ur eEnabl e: 1;
unsi gned int DiffuseTextureEnable: 1;
unsi gned int SubPi xel CorrectionEnabl e: 1;
unsi gned int Di anondExit: 1;

3D/ubs Proprietary and Confidential 137

Delta Programming Examples PERMEDIA 2 Programmers Reference Manual

unsi gned int NoDraw 1;
unsi gned int C anpEnabl e: 1;
unsi gned int TextureParaneter Mbde: 2;
unsi gned i nt BackfaceCal | Enabl e: 1;
unsi gned int Col or Order: 1;
unsi gned int pad: 14;

} __Del taModeFnat ;
/1 The DrawTriangl e and DrawLi ne command fi el ds.

typedef struct {

unsi gned int AreaStippl eEnabl e: 1;
unsi gned int ReservedC: 2;
unsi gned int FastFill Enable: 1;
unsi gned int reserved: 2;
unsigned int PrimtiveType: 2;
unsi gned int ReservedB: 1;
unsi gned int SyncOnBit Mask: 1;
unsi gned int SyncOnHost Dat a: 1;
unsi gned i nt TextureEnabl e: 1;
unsi gned int FogEnabl e: 1;
unsi gned int ReservedA: 1;
unsi gned int SubPi xel Correcti onEnabl e: 1;
unsi gned int pad: 14;
unsi gned int ReuseBit Mask: 1;
} __Del taRender Fnat ;
#endi f
/1l The tag values for the registers.
#define __Del ta_VOFI oat Tag 0x230
#define __ Delta_V1Fl oat Tag 0x240
#define __Del ta_V2Fl oat Tag 0x250
#define __ Del taTagDel t aMbde 0x260
#define __Del taTagDrawTri angl e 0x261
#define _ DeltaTagRepeat Tri angl e 0x262
#define __Del taTagDr awLi ne01 0x263
#define __ Del taTagDrawli nel0 0x264
#define __Del taTagRepeat Li ne 0x265
/1 Some tenp defines to keep things conpiling easily.
#def i ne DrawTri angl eTag __Del taTagDr awTri angl e
#defi ne DrawLi ne01Tag __Del taTagDr awLi neO1
#defi ne DrawlLi nel0OTag __Del taTagDr awii nel0
#defi ne Repeat Tri angl eTag __Del taTagRepeat Tri angl e
#def i ne Repeat Li neTag __Del taTagRepeat Li ne

138 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Delta Programming Examples

#i ncl ude "delta. h"

#i ncl ude <stdio. h>

extern unsigned | ong *dmaPtr;
extern DVA *dnm;

/1 Change these nmacros to what is needed to wite the values to Delta
/1 Unit, or add themto a dma buffer.

#define LD REGreg, value) dmaPtr = dma->Space(2); *dnaPtr++ = reg;\
*dmaPt r ++ = val ue;

#define LD PARAM reg, value) dmaPtr = dma->Space(2); *dmaPtr++ = reg;\
*dmaPtr++ = *((unsigned long *) &val ue);

/'l Prototypes

voi d Poi nt Mesh (gal &cx);
voi d Li neMesh (gal &cx);

voi d Triangl eMesh (gal &cx);

[/ Sinmple structure to use in the exanple code

typedef struct { float x, y, z, r, g, b, a; } Vertex;
typedef struct { short x, y; } XY;

typedef struct { XY scissorMn, scissorMx; } Cl i pRect angl e;

/1 Define sone test data.

#define verticeslnMesh 7
Vertex mesh[verticeslnMesh] = {

I X y z r g b a
{ 10, 300, 0.1, 1.0, 1.0, 1.0, 1.0 },
{ 60, 100, 0. 2, 1.0, 1.0, 0.0, 1.0 },
{ 110, 300, 0.3, 1.0, 0.0, 1.0, 1.0 1},
{ 160, 100, 0.4, 1.0, 0.0, 0.0, 1.0 },
{ 210, 300, 0.5, 0.0, 1.0, 1.0, 1.0 },
{ 260, 100, 0.6, 0.0, 1.0, 0.0, 1.0 1},
{ 310, 300, 0.7, 0.0, 0.0, 1.0, 1.0 }};

#defi ne nunber Cl i pRectangl es 2

Cli pRectangl e cli pRect angl es[nunber C i pRect angl es] = {
{ {110, 0}, {400, 150} },
{ {0, 150}, {400, 350} }};

enum { paran, paranl, paranQ paranKs, paranKd, paranR, paranG paranB,
paramA, paranf, paranX, parany, paran?};

3D/ubs Proprietary and Confidential 139

Delta Programming Examples PERMEDIA 2 Programmers Reference Manual

/1 This function draws the vertices in the mesh as points. There is
/1 no direct support for points in Delta Unit as they do not need
/1 any set-up calculations. Delta Unit can be used to plot points
/'l (maybe because you want to always work in floating point) by
/1 having Delta Unit do the set-up calculations for a line, but tell
/'l the rendering device to render points.
voi d Poi nt Mesh (gal &cx)
{

__Del t aMbdeFmat del t aMbde;

__Del t aRender Fmat dr awCnd;

i nt rect, v;

/1 Assune the rendering device is already initialized.

/] Note we expect the BiasCoords node in the RasterizerMde
/'l register to be set to add a bias of zero.

/'l Set-up the DeltaMbde register.

del t aMbde. pad = 0;

del t annde Col or Or der = 0;

del t anbde Backf aceCal | Enabl e = 0;

del t aMbde. Text ur ePar anet er Mode = 1; /1 C anp.

del t aMbde. Cl anpEnabl e = 1; /1 danp enabl ed.

del t aMbde. NoDr aw = 0; /1 Do draw ng.

del t aMbde. Di anbndExi t = 0; /1 Not needed for this
/1 exanpl e.

del t aMbde. SubPi xel Correcti onEnabl e = 0; /1 No sub pixel
/'l correction.

del t aMbde. Di f f useText ur eEnabl e = 0; /1 Disable.

del t aMbde. Specul ar Text ur eEnabl e = 0; /1 Disable.

del t aMbde. Dept hEnabl e = 1; /1 Enabl e.

del t aMbde. Snoot hShadi ngEnabl e = 1; /1 Enabl e.

del t aMbde. Text ur eEnabl e = 0; /1 Disabl ed.

del t aMbde. FogEnabl e = 1, /1 Enabl ed, but
/] controlled fromthe
/1 draw comand.

del t aMbde. Reser ved = 0;

LD REG (__Del taTagDel t aMbde, *((long *) &deltalbde));

/1 Set-up the draw command dat a.

drawCnd. Prim tiveType /1 ** Point **

dr awCnd. r eser ved

dr awCnd. pad = 0;
drawCnd ReuseBi t Mask = 0;
dr awCnd. SubPi xel Correcti onEnabl e = 0; /'l Enabl e.
dr awCnd. Reser vedA = 0;
dr awCnd. FogEnabl e = 0; /| Disable.
dr awCnd. Text ur eEnabl e = 0; /1 Disable.
dr awCnd. SyncOnHost Dat a = 0; /| Disable.
dr awCnd. SyncOnBi t Mask = 0; /1 Disable.
dr awCnd. Reser vedB = 0;
drawCnd. Anti al i asEnabl e = 0; /1 Disable.
= 2
= 0:
dr awCnd. Fast Fi | | Enabl e = 0 /1 Disable.
dr awCnd. Reser vedC = 0;

drawCnd. AreaSti ppl eEnabl e = 0; /1 Disable.

140 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Delta Programming Examples

/1 W need to ensure that the end vertex of the line (in V1)
[/ can never be the same as the point vertices. Any X (or Y)

/1 coordinate which is out of the normal range (0.0 to screen
/1 width) will do so in this case an X of -1.0 has been used.
fl oat t enpEndCoord = -1.0;

LD PARAM ((__Del ta_V1Fl oat Tag + paranX), tenpEndCoord);

for (v = 0; v < verticeslnMesh; v++)

{
LD _PARAM (__Del t a_VOFl oat Tag + paranR), nmesh[v].r);
LD _PARAM (__Del t a_VOFl oat Tag + paranG), nesh[v].Q);
LD PARAM (__Del ta_VOFl oat Tag + paranB), nesh[v].b);
LD _PARAM (__Del t a_VOFl oat Tag + paramd), nesh[v].a);
LD _PARAM (__Del t a_VOFl oat Tag + paranX), mesh[v].Xx);
LD _PARAM (__Del t a_VOFI oat Tag + parany), nesh[v].y);
LD _PARAM (__Del t a_VOFl oat Tag + paran¥Z), mesh[v].z);
for (rect = 0; rect < nunberd i pRectangles; rect++)
{
// Load in the scissor rectangle.
LD REQ Sci ssor M nXYTag, (clipRectangles[rect].scissorMn.y
<< 16 | clipRectangles[rect].scissorMn.x));
LD REQ Sci ssor MaxXYTag, (clipRectangles[rect].scissorMax.y
<< 16 | clipRectangl es[rect].scissorMx.X));
if (rect == 0)
{
LD REG DrawLi ne01Tag, *((long *) &drawCrd));
}
el se
{
LD_REQ Repeat Li neTag, 0); // data field not used.
}
}
}

/1 This array holds the order we are going to visit the
/1 vertices in to draw each |ine segnent.

Lint lineGrder[12] = {1, O, 2, 4, 6, 5 4, 3, 2, 1, 3, 5};

3D/.bs

Proprietary and Confidential 141

Delta Programming Examples PERMEDIA 2 Programmers Reference Manual

/'l This function draws the nesh as a series of lines. The order the
/1 lines are drawn in is hardcoded (this is only an exanplel).

void LineMesh (gal &cx)

{
__Del t aMbdeFmat del t avbde;
__Del t aRender Fmat dr anCnd;
i nt vertexStore, rect, i, v;

/1 Assume the rendering device is already initialized. Note we
/'l expect the BiasCoords node in the RasterizerMde register to

/] be set to add a bias of zero.

[/ Set-up the DeltaMde register.

del t aMbde. pad = 0;

del t annde. Col or Or der = 0;

del t annde. Backf aceCal | Enabl e = 0;

del t aMbde. Text ur ePar anet er Mode = 2; /1 Auto nornalize.

del t aMbde. Cl anpEnabl e = 1; /1 O anp enabl ed.

del t aMbde. NoDr aw = 0; /1 Do draw ng.

del t aMbde. Di anondExi t = 1; /1 Not needed for this
/'l exanpl e.

del t aMbde. SubPi xel Correcti onEnabl e = 1; /1 Enabl e sub pi xel
/] correction.

del t aMbde. Di f f useText ur eEnabl e = 0; /1 Disable.

del t aMbde. Specul ar Text ur eEnabl e = 0; /] Disabl e.

del t aMbde. Dept hEnabl e = 1 /1 Enabl e.

del t aMbde. Snpot hShadi ngEnabl e = 1 /] Enabl e.

del t aMbde. Text ur eEnabl e = 0; /1 Disabl ed.

del t aMbde. FogEnabl e = 1; /1 Enabl ed, but
// controlled fromthe
/] draw conmmand.

del t aMbde. Reserved = 0

LD REG (__Del taTagDel t aMbde, *((long *) &deltaMbde));

/1 Set-up the draw comrand dat a.

dr awCnd. pad = 0;

Dr anCnd. ReuseBi t Mask = 0;

dr awCnd. SubPi xel Correcti onEnabl e = 1; /1 Enabl e.
dr awCnd. Reser vedA = 0;

dr awCnd. FogEnabl e = 0; // Disable.
dr awCnd. Text ur eEnabl e = 0; /1 Disable.
dr awCnd. SyncOnHost Dat a = 0; /1 Disable.
dr awCnd. SyncOnBi t Mask = 0; /1 Disable.
dr awCnd. Reser vedB = 0;

drawCnd. Anti al i asi ngQual ity = 0; /1 Not used.
drawCnd. Anti al i asEnabl e = 0; /1 Disable.
drawCnd. Prim tiveType = 0; /1 Line.

dr awCnd. r eser ved = 0;

dr awCnd. Fast Fi | | Enabl e = 0; /1 Disable.
dr awCnd. ReservedC = 0;

drawCnd. AreaSti ppl eEnabl e = 0; /1 Disable.

142 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Delta Programming Examples

for (i

{

=0; i <12; i++)
v = lineOder[i];
vertexStore = __Delta_VOFloatTag + 16 * (i % 2);

LD_PARAM (vertexStore
LD _PARAM (vertexStore
LD _PARAM (vertexStore
LD _PARAM (vertexStore
LD _PARAM (vertexStore
LD _PARAM (vertexStore
LD _PARAM (vertexStore

if (i >= 1)
{

+
+
+
+
+
+
+

paranR), nesh[v].
paranmG), mesh[v].
paranB), nesh[v].
paramd), nesh[v].
paramX), nesh[v].
paranY), nmesh[v].
parani), nesh[v].

/1 W now have enough vertices to draw a |ine.

for (rect = 0; rect

< nunber C i pRect angl es; rect ++)

/1 Load in the scissor rectangle.

LD REG Sci ssor M nXYTag,
(clipRectangles[rect].scissorMn.y << 16 |
clipRectangl es[rect].scissorMn.x));

LD REG Sci ssor MaxXYTag,
(clipRectangl es[rect].scissorMax.y << 16 |
clipRectangl es[rect].sci ssorMax. X)) ;

if (rect == 0)

LD _REQ Dr awlLi ne01Tag,

LD _REQ Dr awlLi nel0Tag,

*((long *) &drawCnd));

*((long *) &drawCnd));

LD REQ Repeat Li neTag, 0); // data field unused

{
if (i &1)
{
}
el se
{
}

}

el se

{

}

3D/.bs

Proprietary and Confidential

143

Delta Programming Examples PERMEDIA 2 Programmers Reference Manual

/1 This function draws the nesh as a series of shaded triangles.

voi d Triangl eMesh (gal &cx)

{
__Del t aMbdeFnat del t aMbde;
__Del t aRender Fnat dr awCnd;
int vertexStore;
int rect, v;

/'l Assume the rendering device is already initialized. Note we
/1 expect the BiasCoords node in the RasterizerMde register to be
/1l set to add a bias of zero.

/1 Set-up the DeltaMbde register.

del t aMbde. pad = 0;

del t annde. Col or Or der = 0;

del t anpde. Backf aceCal | Enabl e = 0;

del t aMbde. Text ur ePar anet er Mode = 2; /1 Auto nornalize.

del t aMbde. Cl anpEnabl e =1; [/ Cdanp enabled.

del t aMbde. NoDr aw = 0; /1 Do draw ng.

del t aMbde. Di anondExi t = 1; /1 Not needed for this
/'l exanpl e.

del t aMbde. SubPi xel Correcti onEnabl e =1, // Enable sub pixel
/'l correction.

del t aMbde. Di f f useText ur eEnabl e = 0; /1 Disable.

del t aMbde. Specul ar Text ur eEnabl e = 0; /1 Disable.

del t aMbde. Dept hEnabl e =1; // Enable.

del t aMbde. Snoot hShadi ngEnabl e = 1; /1 Enabl e.

del t aMbde. Text ur eEnabl e = 0; /1 Disabl ed.

del t aMbde. FogEnabl e = 1, /1 Enabl ed, but
/1 controlled from
/'l the draw comand.

del t aMbde. Reser ved = 0;

LD REG (__Del taTagDel t aMode, *((long *) &deltalbde));

// Set-up the draw command dat a.

dr awCnd. pad = 0;

dr awCnd. ReuseBi t Mask = 0;

dr awCnd. SubPi xel Correcti onEnabl e = 1; /1 Enabl e.
dr awCnd. Raser vedA = 0;

dr awCnd. SyncOnBi t Mask = 0; /1 Disable.
dr awCnd. FogEnabl e = 0; // Disable.
dr awCnd. Text ur eEnabl e = 0; /1 Disable.
dr awCnd. SyncOnHost Dat a = 0; // Disable.
dr awCnd. Reser vedB = 0;

drawCnd. Anti al i asEnabl e = 0; /1 Disable.
drawCnd. Prim tiveType = 1, /1 Trapezoid.
dr awCnd. r eser ved = 0;

drawCnd. Fast Fi | | Enabl e = 0; /1 Disable.
dr awCnd. Reser vedC = 0;

drawCnd. AreaSti ppl eEnabl e = 0; /1 Disable.

144 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Delta Programming Examples

for (v = 0; v < verticeslnMesh; v++)
{
vertexStore = _ Delta_VOFloatTag + 16 * (v % 3);
LD PARAM (vertexStore + paranR), nesh[v].r);
LD PARAM (vertexStore + paranG), nesh[v].Q);
LD PARAM (vertexStore + paranB), nesh[v].b);
LD PARAM (vertexStore + paramd), nesh[v].a);
LD PARAM (vertexStore + paranX), nesh[v].Xx);
LD PARAM (vertexStore + paran¥), nesh[v].y);
LD _PARAM (vertexStore + paran¥), nesh[v].z);

if (v >= 2)

{

/1 W& now have enough vertices to draw a triangle.
for (rect = 0; rect < nunberCipRectangles; rect++)

{

/1 Load in the scissor rectangle.
LD REQE Sci ssor M nXYTag,

(clipRectangles[rect].scissorMn.y << 16 |
clipRectangl es[rect].scissorMn.x));

LD REQ Sci ssor MaxXYTag,
(cli pRectangl es[rect].scissorMax.y << 16
cli pRectangl es[rect]. sci ssorMax. X)) ;

if (rect == 0)

{ LD REQ DrawTri angl eTag, *((long *) &drawCnd));
LI se
{
LD REQ Repeat Tri angl eTag, 0); // data field not
/] used.
}

3D/.bs

Proprietary and Confidential 145

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

Appendix A. Graphics Register Reference

This chapter gives details of the format of each of the Graphics registers for PERMEDIA. The registers
are listed alphabetically by name within their function, with the functions themselves listed
alphabetically.

Tag specifies the offset for this register from the base address of the region.
Read/write indicates that the register can be both read and written.

Write indicates that the register can only be written. The value of any read from this address is

undefined.

Reset Value specifies the value of the register following hardware reset. In general this is
undefined for Graphics registers.

In the diagrams:

Reserved indicates bits that may be used in future members of the PERMEDIA family. To
ensure upwards compatibility, any software should not assume a value for these bits when read,
and should always write them as zeros.

Not used indicates bits that are adjacent to numeric fields. These may be used in future
members of the PERMEDIA family, but only to extend the dynamic range of these fields. The
data returned from a read of these bits is undefined. When a “Not used” field resides in the
most significant position, a good convention to follow is to sign extend the numeric value,
rather than masking the field to zero before writing the register. This will ensure compatibility if
the dynamic range is increased in future members of the PERMEDIA family.

For enumeration fields which do not specify the full range of possible values, only the speciﬁed
values should be used. An example of an enumeration field is the comparison field in the
DepthMode register. Future members of the PERMEDIA family may define a meaning for the
unused values.

146

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

AlphaBlendMode

Name: Alpha Blend Mode

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.8810
Tag; 0x0102

Reset Value: Undefined

Read/write
31 24 16 8 0
Reserved ColorFormat] Operation
AlphaConversion /
ColorC i
olor-onvetsion) AlphaBlendEnable
ColorFormatExtension . NoAlphaBuffer
Reserved enalype ColorOrder
Controls Alpha Blending.
Bit0 Enable:
0 = Disable
1 = Enable alpha blending or color formatting
Bitl-7 Operation:
Bitl7 Color Conversion:
0 = Scale
1 = Shift
Bitl8 Alpha Conversion:
0 = Scale
1 = Shift
Mode | Operation | R G B A
16 | Format Rd Gd Bd Ad
84 Blend Rs* As+ Rd*(l- Gs* As+ Gd*(l- Bs* As+ Bd* (1- As* A5+Ad*(l-
A9 A9 A9 A9
81 | PreMult Rs+ Rg* (1-Ag) Gs+ Ggd * (1-Ag) Bs+ Bg* (1-Ag) As+Ag* (1-Ag)

For correct operation of Apple PreMult blending, the BlendType needs to be set to Ramp.

Result of different operations. Cg = source color component, C{ = destination color component.

(See overleaf for description of the remaining bits).

3D/ubs Proprietary and Confidential 147

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

Bit8-11 Color Format:
Internal Color Channel

Format Color Order Name R G B A
0 BGR 8:8:8:8 8@0 8@8 8@16 8@24
1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15
2 BGR 4:4:4:4 4@0 4@4 4@8 4@12
5 BGR 3:3:2 Front 3@0 3@3 2@6 0
6 BGR 3:3:2 Back 3@8 3@11 2@14 0
9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7
10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0
12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0
13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31
14 BGR Cl8 8@0 0 0 0
16 BGR 5:6:5 Front 5@0 6@5 5@11 0
17 BGR 5:6:5 Back 5@16 6@21 5@27 0
0 RGB 8:8:8:8 8@16 8@8 8@0 8@24
1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15
2 RGB 4:4:4:.4 4@8 4@4 4@0 4@12
5 RGB 3:3:2 Front 3@5 3@2 2@0 0
6 RGB 3:3:2 Back 3@13 3@10 2@8 0
9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7
10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0
12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31
14 RGB Cl8 8@0 0 0 0
16 RGB 5:6:5 Front 5@11 6@5 5@0 0
17 RGB 5:6:5 Back 5@27 6@21 5@16 0

Notes: The format column is also dependent on bit16. n@m means n bits starting at bit m. Front and
Back modes replicate the color value to assist with double buffering. CI values are replicated into each
byte to assist with double buffering. Offset modes have 64 added to the 7 bit formatted value. If the
format has no alpha bits, the alpha field defaules to 0xF8

Bitl2

Bitl3

Bitl4

Bit16

NoAlphaBuffer

0 = Alpha buffer present
1 = No alpha buffer present

ColorOrder:
0 =BGR
1 =RGB

BlendType:
0=RGB
1 = Ramp

Color Format Extension. Most significant bit extension to Color Format held in
bits8-11.

148

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

AlphaMapLowerBound

Name: Alpha Map Color Test Lower and Upper Bounds
Unit: Texture Read
Region: 0 Offset: 0x0000.8F20
Tag: 0x01E4
Reset Value: Undefined
Read/write
31 24 16 8
Alpha Blue Green Red
Specifies the lower and upper bounds for the alpha map test.
AlphaMapUpperBound
Name: Alpha Map Color Test Lower and Upper Bounds
Unit: Texture Read
Region: 0 Offset: 0x000.8F18
Tag: 0x01E3
Reset Value: Undefined
Read/write
31 24 16 8
Alpha Blue Green Red

Specifies the lower and upper bounds for the al pha map test.

3D/.bs

Proprietary and Confidential

149

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

AreaStippleMode

Name: Area Stipple Mode

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.81A0

Tag: 0x0034

Reset Value: Undefined

Read/write
31 24 16 8 0

T IRelser\l/ed. o . YlOff;et ' XlOff;et ' }iese'rveld ‘
ForceBackgroundColor Not used Not used Enable Unit
MirrorY
MirrorX

Invert Stipple Pattern

Controls Area Stippling. Both the AreaStippleEnable bit in the Render command and the enable in
the AreaStippleMode register must be set to enable the area stipple test.

Bit0 Unit Enable
0 = Disable
1 = Enable
Bit7-9 XOffset
Bit12-14 YOffset
Bitl7 Invert Stipple Pattern
0 = No Invert
1 = Invert
Bit18 Mirror X

0 = No Mirror in X
1 = Mirror stipple pattern in X direction

Bit19 Mirror Y
0 = No Mirrorin Y
1 = Mirror stipple pattern in Y direction

Bit20 ForceBackgroundColor. Controls operation of the stipple test. If disabled any
fragment failing the test is discarded. If enabled any fragment failing the test is drawn
(other tests allowing) but the color is taken from the Texel0 register. Used to support
foreground and background colors.
0 = Disable
1 = Enable

150 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

AreaStipplePattern[0...7]

Name: Area Stipple Pattern
Unit: Scissor/Stipple
Region: 0 Offset: 0x0000.8200, ...,0x0000.8238
Tag: 0x0040, ...,0x0047
Reset Value: Undefined
Read/write
31111 24.111:11116||||||||811111110
Reserved 8 bit mask

These 8 registers provide the bitmask which enables and disables corresponding fragments for drawing
when rasterizing a primitive with area stippling.

Both the AreaStippleEnable in the Render command and enable in the AreaStippleMode register

must be set, to enable the area stipple test.

3D/ubs Proprietary and Confidential 151

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

AStart

Name: Initial Alpha Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87C8
Tag: 0x00F9

Reset Value: Undefined

Read/write

31 24 16 8 0

T T T T T T T T T T T T T L] T T T T T T L] T T T T T T

Not used Integer Fraction Not used
.

1 1 1 1 1 1 1 1 1 1 1 1 1 'l 1 1 1 1 1 1 i 1 1

|— Sign

1 1

This register is used to set the initial value for the Alpha for a vertex when in Gouraud shading mode.
The value is 2's complement 9.11 fixed point format.

BitMaskPattern

Name: Bit Mask Pattern

Unit: Rasterizer

Region: 0 Offset: 0x0000.8068
Tag; 0x000D

Reset Value: Undefined

Write only

31 24 16 8 0

T T T T T T T L] T T T T T T T L] T T T T T T T L] T T T T T T T
32 bit mask
1

A 1 L L L 1 1 I L 3 : 1 1 1 1 i

1 1 1 1 1 1 1 1 L 1 1 1 1

Value used to control the bit mask stipple operation (if enabled). Fragments are accepted or rejected
based on the current BitMask test modes defined by the RasterizerMode register. Note that the
SyncOnBitmask bit in the Render command must also be enabled.

152 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

BStart
Name: Initial Blue Color
Unit: Color DDA
Region: 0 Offset: 0x0000. 87B0
Tag: 0x00F6
Reset Value: Undefined
Read/write
31 24 16 0
Not used Integer Fraction Not used
|- Sign
This register is used to set the initial value for the Blue for a vertex when in Gouraud shading mode.
The value is 2's complement 9.11 fixed point format.
ChromalowerBound,ChromaUpperBound
Name: Chroma Lower Bound, Chroma Upper Bound
Unit: YUV
Region: 0 Offset: 0x00008F10., 0x0000.8F08
Tag: 0x01E2, 0x01E1
Reset Value: Undefined
Read/write
31 24 16 0
Alpha Blue Green Red
31 24 16 0
Alpha \Y% U Y
Specifies the lower and upper bounds for the chroma test. The test is done against the contents of the
TexelO register which holds data in the internal RGB format or the YUV format (before conversion) of
8 bits per component. The test is done on all 8 bits of each component. All components must be inside
the bounds for the test to pass, if TestMode is set to 1 in the YUVMode register, or fail if TestMode is
set to 2 in the YUVMaode register.
3D/ubs Proprietary and Confidential 153

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

Color

Name:
Unit:

Region: 0

Reset Value:

Write

Color

Color DDA
Offset:

Tag:
Undefined

0x0000.87F0
0x00FE

16 8 0

Alpha

1

Used for downloading image data to the framebuffer. The format is either the standard color format, or
the raw framebuffer format if the Color Format unit is disabled.

In CI mode the color index is placed in bits 0-7. If there are less than 8 bits in a component it should
be left justified and the unused bits set to zero.

This register cannot be saved and restored as part of a task context switch.

When used this register should always be reloaded at start of every command, and the Color DDA unit

must be disabled prior to loading it.

154

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

ColorDDAMode

Name: Color DDA Mode
Unit: Color DDA
Region: 0 Offset: 0x0000.87E0
Tag: 0x00FC
Reset Value: Undefined
Read/write
31111 24.111.11116-1.111118.11111 0
Reserved

—

Shading Mode Unit Enable

The bit fields control the mode of operation of the Color DDA unit:

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bitl Shading mode control:
0 = Flat
1 = Gouraud

3D/ubs Proprietary and Confidential 155

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

Config

Name: Configuration

Unit:

Region: 0 Offset: 0x0000.8D90
Tag: 0x01B2

Reset Value: Undefined

Read/write
31 24 16 8 0
T T 1 T 1 1] L] T T T T T T T L} T T T T T T L} T
Reserved

LogicOpMode: LogilcOp |
LogicOpMode: Enable
CoorDDAMode: Enable
FBWriteMode: Enable
FBReadMode: PackedData
FBReadMode: ReadDestination
FBReadMode: ReadSource

Sets the specified fields in various registers.

156 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

ConstantColor
Name: Constant Color
Unit: Color DDA
Region: 0 Offset: 0x0000.87E8
Tag: 0x00FD
Reset Value: Undefined
Read/write
31 24 16 8 0
Alpha Blue Green Red
31 24 16 8 0
32 bit value

Holds the constant color in either RGBA or raw framebuffer format. This value is used when the
ColorDDAMode register is set to flat shading mode.

The internal color format will interpret the 8 bit fields as either 5.3 fixed point for 3D operations or 8
bit integer for 2D operations. In CI mode the color index is placed in bits 0-7. If a component has
less than 8 bits, it should be left justiﬁed and the unused bits set to zero.

Continue
Name: Continue
Unit: Rasterizer
Region: 0 Offset: 0x0000.8058
Tag: 0x000B
Reset Value: Undefined
Write
31 24 16 8 0
Reserved 12 bit unsigned integer

This command causes rasterization to continue after new delta value(s) have been loaded, but does not

cause either of the trapezoid’s edge DDAs to be reloaded.

The data field holds the number of scanlines to fill. Note this count does not get loaded into the Count
register.

3D/ubs Proprietary and Confidential 157

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

ContinueNewDom
Name: Continue - New Dominant Edge
Unit: Rasterizer
Region: 0 Offset: 0x0000.8048
Tag: 0x0009
Reset Value: Undefined
Write
31 24 16 8 0
Reserved 12 bit unsigned integer

This command causes rasterization to continue with a new dominant edge. The dominant edge DDA is
reloaded with the new parameters. The subordinate edge is carried on from the previous trapezoid. This
allows any convex polygon to be broken down into a collection of trapezoids and continuity
maintained across boundaries.

Since this command only affects the Rasterizer DDA (and not of any other units), it is not suitable for
3D operations.

The data field holds the number of scanlines to fill. Note this count does not get loaded into the
Count register.

ContinueNewLine
Name: Continue - New Line Segment
Unit: Rasterizer
Region: 0 Offset: 0x0000.8040
Tag; 0x0008
Reset Value: Undefined Write
31 24 16 8 0
Reserved 12 bit unsigned integer

This command causes rasterization to continue for the next segment in a polyline. The XY position is
carried on from the previous line, however the fraction bits in the DDAs can be kept, set to zero, one
half, or nearly one half, under control of the RasterizertMode register.

The data field holds the number of pixels in a line. Note this count does not get loaded into the Count
register.

The use of ContinueNewLine is not recommended for OpenGL because the DDA units will start
with a slight error as compared with the value they would have been loaded with for the second and
subsequent segments.

158 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

ContinueNewSub

Name: Continue - New SubordinateEdge
Unit: Rasterizer
Region: 0 Offset: 0x0000.8050

Tag: 0x000A
Reset Value: Undefined
Write

31 24 16 8 0
Reserved 12 bit unsigned integer

This command causes rasterization to continue with a new subordinate edge. The subordinate DDA is
reloaded with the new parameters. The dominant edge is carried on from the previous trapezoid. This is
very useful when scan converting triangles with a 'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines to fill. Note this count does not get loaded into the Count

register.
Count
Name: Count
Unit: Rasterizer
Region: 0 Offset: 0x0000.8030
Tag: 0x0006
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved 12 hit unsigned integer

Interpretation of contents is dependent on the mode set in the Render command i.e. it specifies the
number of pixels in a line, or the number of scanlines in a trapezoid.

3D/ubs Proprietary and Confidential 159

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

dBdx

Name: X Derivative - Blue
Unit: Color DDA
Region: 0 Offset: 0x0000.87B8
Tag: 0x00F7
Reset Value: Undefined
Read/write
31111111124:1:11116||:|11:8|1111110
Not used Integer Fraction Not used
|—Sign

This register is used to set the X derivative for the Blue value for the interior of atrapezoid when Gouraud
shading. The valueis 2's complement 9.11 fixed point format.

dBdyDom

Name: Y Derivative Dominant - Blue
Unit: Color DDA
Region: 0 Offset: 0x0000.87C0
Tag: 0x00F8
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used Integer Fraction Not used
|— Sign

This register is used to set the Y derivative dominant for the Blue value along a line, or the dominant edge of a
trapezoid when Gouraud shading. The value is 2's complement 9.11 fixed point format.

160

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

DeltaMode

Name: Delta Mode
Unit: Delta
Region: 0 Offset: 0x0000.9300

Tag: 0x00260
Reset Value: Undefined
Read/write

31 24 16 0
Reserved Reserved
|
Fog Enable
Texture Enable
Smooth Shading Enable
Depth Enable
Specular Enable
Diffuse Enable
Subpixel Correction Enable
Diamond Exit Enable
No Draw Enable
Clamp Enable
Texture Parameter Mode
Reserved
Backface Cull Enable
Color Order

Bit4 FogEnable: This field is qualified by the FogEnable bit in the Draw command.

0 = Disable

1 = Enable
Bit5 TextureEnable: This field is qualified by the TextureEnable bit in the Draw

command.

0 = Disable

1 = Enable
Bit 6 SmoothShadingEnable

0 = Disable

1 = Enable
Bit 7 DepthEnable

0 = Disable

1 = Enable

3D/ubs Proprietary and Confidential 161

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14, 15

Bic 17

Bit 18

SpecularTextureEnable

0 = Disable
1 = Enable
DiffuseTextureEnable
0 = Disable
1 = Enable

SubPixelCorrectionEnable: This is qualified by the SubPixelCorrectionEnable in the

Draw command.

0 = Disable
1 = Enable
DiamondExit
0 = Disable
1 = Enable

NoDraw: When set prevents a Render command from being sent to the rendering
devices. This field only affects the Draw commands. This field allows the host to
alter the set-up parameters before sending a Render command.

0 = Disable
1 = Enable

ClampEnable: When set causes the input values to be clamped to a parameter
specific range. Note that the texture parameters are not affected by this field.

0 = Disable
1 = Enable

TextureParameterMode:
0: Used as given
1: Clamped to lie in the range -1.0 to 1.0

2: Normalize to lie in the range -1.0 to 1.0

BackFaceCull
0 = Disable
1 = Enable

ColorOrder: Specifies order of colors in V*PackedColor messages.
Bit 31 Bit 0

0 = Alpha, Blue, Green, Red

1 = Alpha, Red, Green, Blue

Each color component is 8 bits.

162

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Depth

Name: Depth

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89A8
Tag; 0x0135

Reset Value: Undefined

Read/write

31 24 16 8 0
Not used Depth value
31 24 16 8 0
Not used Depth value
Holds an externally sourced 16 or 15 bit depth value. The unused most significant bits should be set to
zero.
This is used in the draw pixels function where the host supplies the depth values through the Depth
register.
Alternatively this is used when a constant depth value is needed, for example, when clearing the depth
buffer, or for 2D rendering where the depth is held constant.
3D/ubs Proprietary and Confidential 163

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

DepthMode

Name: Depth Mode
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.89A0
Tag: 0x0134
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved
_ |
Compare Mode New Depth Source
Write Mask
Unit enable

Controls the comparison of a fragment's depth value and updating of the depth buffer. If the compare
function is LESS and the result is true then the fragment value is less than the source value.
Bit0 Unit Enable:

0 = Disable

1 = Enable
Bitl Writemask:

0 = Disable write to depth buffer

1 = Enable write to depth buffer
Bit2-3 Source of depth value for comparison:

0 = Fragment's depth value

1 = LBData -

for copy pixels when destination depth planes are not updated.
2 = Depth register
3 = LBSourceData -
for copy pixels when destination depth planes are updated.

Bit4-6 Comparison function:

0 = NEVER

1 = LESS

2 - EQUAL

3 = LESS OR EQUAL

4 = GREATER

5=NOT EQUAL

6 = GREATER OR EQUAL

7 = ALWAYS

164 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

dFdx

Name: X Derivative - Fog

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86A8

Tag: 0x00D5
Reset Value: Undefined
Read/write
31 28 24 20 16 12 8 4 0
Not Used Fractions
Sign _Integer Not UsedJ

Fog coefficient derivative per unit X for use in rendering trapezoids. The value is in 2's complement
2.19 fixed point format.

dFdyDom

Name: Y Derivative Dominant - Fog

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86B0
Tag: 0x00D6

Reset Value: Undefined

Read/write
31 28 24 20 16 12 8 4 0
Not Used Fractions

Sign _Integer Not UsedJ

Fog coefficient derivative per unit Y along a line, or the dominant edge of a trapezoid. The value is in
2's complement 2.19 fixed point format.

3D/ubs Proprietary and Confidential 165

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

dGdx

Name: X Derivative - Green
Unit: Color DDA
Region: 0 Offset: 0x0000.87A0
Tag: 0x00F4
Reset Value: Undefined
Read/write
31 24 16 8 0
Not use Integer Fraction Not used
|— Sign

This register is used to set the X derivative for the Green value for the interior of a trapezoid when
Gouraud shading. The value is 2's complement 9.11 fixed point format.

Name: Y Derivative Dominant - Green
Unit: Color DDA
dGdyDom
Region: 0 Offset: 0x0000.87A8
Tag; 0x00F5
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used Integer Fraction Not used
|— Sign
This register is used to set the Y derivative dominant for the Green value along a line, or the dominant
edge of a trapezoid when Gouraud shading. The value is 2's complement 9.11 fixed point format.
166 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

DitherMode

Name: Dither Mode
Unit: Color Format
Region: 0 Offset: 0x0000.8818
Tag: 0x0103
Reset Value: Undefined
Read/write
31;1;;;1124-111.111611 18.111 0
Reserved
——
Color format extension ForceAlpha X offset / Dither enable
Reserved DitherMethod | Y offset Unit enable

Color order Color format

Controls the Color Format unit.

Bit0 Unit Enable:
0 = Disable
1 = Enable
Bitl Dither Enable:
0 = Disable
1 = Enable

(see overleaf for description of the remaining bits)

3D/ubs Proprietary and Confidential 167

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

Bit2-5 Color Format:
Internal Color Channel

Format Color Order Name R G B A
0 BGR 8:8:8:8 8@0 8@8 8@16 8@24
1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15
2 BGR 4:4:4:4 4@0 4@4 4@8 4@12
5 BGR 3:3:2 Front 3@0 3@3 2@6 0
6 BGR 3:3:2 Back 3@8 3@11 2@14 0
9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7
10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0
12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0
13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31
14 BGR Cl8 8@0 0 0 0
16 BGR 5:6:5 Front 5@0 6@5 5@11 0
17 BGR 5:6:5 Back 5@16 6@21 5@27 0
0 RGB 8:8:8:8 8@16 8@8 8@0 8@24
1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15
2 RGB 4:4:4:.4 4@8 4@4 4@0 4@12
5 RGB 3:3:2 Front 3@5 3@2 2@0 0
6 RGB 3:3:2 Back 3@13 3@10 2@8 0
9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7
10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0
12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31
14 RGB Cl8 8@0 0 0 0
16 RGB 5:6:5 Front 5@11 6@5 5@0 0
17 RGB 5:6:5 Back 5@27 6@21 5@16 0

Notes: The format column is also dependent on bit16. n@m means n bits starting at bit m. Front and
Back modes replicate the color value to assist with double buffering. CI values are replicated into each
byte to assist with double buffering. Offset modes have 64 added to the 7 bit formatted value. If the
format has no alpha bits, the alpha field defaules to 0xF8

Bit6-7
Bit8-9
Bitl10

Bitl1

Bit12-13

Bitl6

XOffset to enable window relative dithering.
YOffset to enable window relative dithering.

Color Order:
0 = BGR
1 = RGB

Dither Method:
0 = Ordered
1 = Line

ForceAlpha:
0 = Disable
1 = Force to 0
2 = Force to 0xF8

Color Format Extension. Most significant bit extension to Color Format held in bits
2-5

168

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

dKddx

Name: X Derivative - Kd

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86E8

Tag: 0x00DD
Reset Value: Undefined
Read/write
31 28 24 20 16 12 8 4 0
Not Used Fractions
Sign _Integer Not UsedJ

Diffuse light coefficient derivative per unit X for use in rendering texture mapped trapezoids using
ramp application mode. The value is in 2's complement 2.19 fixed point format.

dKddyDom

Name: Y Derivative Dominant - Kd

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86F0

Tag: 0x00DE

Reset Value: Undefined

Read/write
31 28 24 20 16 12 8 4 0
" NotUsd © 7 Fradions

Sign _ Integer

Diffuse light coefficient derivative per unit Y along a line, or for the dominant edge of a trapezoid, for
use with ramp texture application mode. The value is in 2's complement 2.19 fixed point format.

Not UsedJ

3D/ubs Proprietary and Confidential 169

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

dKsdx

Name: X Derivative - Ks

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86D0

Tag: 0x00DA
Reset Value: Undefined
Read/write
31 28 24 20 16 12 4 0
Not Used Fractions
Sign _Integer Not UsedJ

Specular light coefficient derivative per unit X for use in rendering texture mapped trapezoids using
ramp application mode. The value is in 2's complement 2.19 fixed point format.

dKsdyDom

Name: Y Derivative Dominant - Ks

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86D8

Tag: 0x00DB
Reset Value: Undefined
Read/write
31 28 24 20 16 12 4 0
Not Used Fractions
Sign _Integer Not UsedJ

Specular light coefficient derivative per unit Y along a line, or for the dominant edge of a trapezoid, for
use with ramp texture application mode. The value is in 2's complement 2.19 fixed point format.

170

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

dQdx

Name: X Derivative - Homogeneous texture coordinate
Unit: Texture Address
Region: 0 Offset: 0x0000.83C0
Tag: 0x0078
Reset Value: Undefined
Read/write
31 24 16 8 0
Fraction Reserved
Integer
Sign
Used to set the X derivative for the Q coordinate when texture mapping. Format is 2's complement
2.27 fixed point.
dQdyDom
Name: Y Derivative Dominant - Homogeneous texture coordinate
Unit: Texture Address
Region: 0 Offset: 0x0000.83C8
Tag: 0x0079
Reset Value: Undefined
Read/write
31 24 16 8 0
Fraction Reserved
Integer
Sign

Used to set the Y dominant derivative for the Q coordinate when texture mapping. Format is 2's
complement 2.27 fixed point.

3D/ubs Proprietary and Confidential 171

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

DrawLine0O1

Name: Draw line
Unit: Delta
Region: 0 Offset: 0x0000.9318
Tag: 0x0263
Reset Value: Undefined
Write
31 24 16 8 0
Reserved Reserved Reserved
Reserved Primitive type
Fog enable
SubPixelCorrectionEnable Texture enable
Bit6-7 PrimitiveType These bits indicate the type of PERMEDIA primitive to be drawn.
The primitives supported and the corresponding codes are:
0 = lines,
1 = trapezoids,
2 = points,
3 = rectangles.
Bitl3 TextureEnable. Note that the Texture Units must be suitably enabled as well for any
texturing to occur.
0 = Disable
1 = Enable
Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for any fogging
to occur.
0 = Disable
1 = Enable
Bitl6 SubPixelCorrectionEnable. Enables the sub pixel correction of color, depth, fog and
texture values at the start of a scanline span.
0 = Disable
1 = Enable
172 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

DrawLinel0Q

Name: Draw line
Unit: Delta
Region: 0 Offset: 0x0000.9320
Tag: 0x0264
Reset Value: Undefined
Write
31 16 8 0
Reserved Reserved Reserved
Reserved Primitive type
Fog enable
SubPixelCorrectionEnable Texture enable
Bit6-7 PrimitiveType These bits indicate the type of PERMEDIA primitive to be drawn.
The primitives supported and the corresponding codes are:
0 = lines,
1= trapezoids,
2 = points,
3 = rectangles.
Bitl3 TextureEnable. Note that the Texture Units must be suitably enabled as well for any
texturing to occur.
0 = Disable
1 = Enable
Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for any fogging
to occur.
0 = Disable
1 = Enable
Bitl6 SubPixelCorrectionEnable. Enables the sub pixel correction of color, depth, fog and
texture values at the start of a scanline span.
0 = Disable
1 = Enable
3D/ubs Proprietary and Confidential 173

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

DrawTriangle
Name: Draw Triangle
Unit: Delta
Region: 0 Offset: 0x0000.9308
Tag: 0x0261
Reset Value: Undefined
Write
31 24 16 8 0
Reserved Reserved Reserved
Reserved Primitive type
Fog enable

SubPixelCorrectionEnable

Bit6-7

Bitl3

Bit14

Bitl6

Texture enable

PrimitiveType These bits indicate the type of PERMEDIA primitive to be drawn.
The primitives supported and the corresponding codes are:

0 = lines,

1 = trapezoids,

2 = points,

3 = rectangles.

TextureEnable. Note that the Texture Units must be suitably enabled as well for any
texturing to occur.

0 = Disable

1 = Enable

FogEnable. Note that the Fog Unit must be suitably enabled as well for any fogging
to occur.

0 = Disable

1 = Enable

SubPixelCorrectionEnable. Enables the sub pixel correction of color, depth, fog and
texture values at the start of a scanline span.

0 = Disable

1 = Enable

174

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

dRdx

Name: X Derivative - Red
Unit: Color DDA
Region: 0 Offset: 0x0000.8788
Tag: 0x00F1
Reset Value: Undefined
Read/write
31‘ ' 2411.1116-|||1|:8-1111110
Not use Integer Fraction Not used
L Sign

This register is used to set the X derivative for the Red value for the interior of a trapezoid when
Gouraud shading. The value is 2's complement 9.11 fixed point format.

dRdyDom

Name: Y Derivative Dominant - Red
Unit: Color DDA
Region: 0 Offset: 0x0000.8790
Tag: 0x00F2
Reset Value: Undefined
Read/write
31 24 16 8 0
Not use Integer Fraction Not used
L Sign
This register is used to set the Y derivative dominant for the Red value along a line, or the dominant
edge of a trapezoid when Gouraud shading. The value is 2's complement 9.11 fixed point format.
3D/ubs Proprietary and Confidential 175

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

dSdx

Name: X Derivative - Texture S coordinate
Unit: Texture Address
Region: 0 Offset: 0x0000.8390
Tag: 0x0072
Reset Value: Undefined
Read/write
31ll 24![[]11116llllllll8llllllIO
Integer Fraction

Reserved

Used to set the X derivative for the S coordinate when texture mapping. Format is 2's complement
12.18 fixed point.

dSdyDom

Name: Y Derivative Dominant - Texture S coordinate
Unit: Texture Address
Region: 0 Offset: 0x0000.8398
Tag: 0x0073
Reset Value: Undefined
Read/write
31ll 24![[]IIIIGIIIIIIIISIIIIIIIO
Integer Fraction

Reserved

Used to set the Y dominant derivative for the S coordinate when texture mapping. Formatis 2's
complement 12.18 fixed point.

176 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

dTdx

Name: X Derivative - Texture T coordinate
Unit: Texture Address
Region: 0 Offset: 0x0000.83A8
Tag: 0x0075
Reset Value: Undefined
Read/write
31ll 24.;1111116-|||||1:8-1111110
Integer Fraction

Sign Reserved
Used to set the X derivative for the T coordinate when texture mapping. Format is 2's complement
12.18 fixed point.
dTdyDom
Name: Y Derivative Dominant - Texture T coordinate
Unit: Texture Address
Region: 0 Offset: 0x0000.83B0
Tag: 0x0076
Reset Value: Undefined
Read/write
31 24 16 8 0
Integer Fraction
| |
Sign Reserved

Used to set the Y dominant derivative for the T coordinate when texture mapping. Format is 2's
complement 12.18 fixed point.

3D/ubs Proprietary and Confidential 177

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

dXDom

Name: Delta X Dominant

Unit: Rasterizer

Region: 0 Offset: 0x0000.8008

Tag: 0x0001

Reset Value: Undefined

Read/write
31 24 16 8 0

Not used 11 bit integer 15 hit fraction
Sign Not used

Value added when moving from one scanline to the next for the dominant edge in trapezoid filling.
The value is in 2's complement 12.15 fixed point format.

Also holds the change in X when plotting lines. For Y major lines this will be some fraction (dx/dy),

otherwise it is normally = 1.0, depending on the required scanning direction.

dXSub

Name: Delta X Subordinate

Unit: Rasterizer

Region: 0 Offset: 0x0000.8018

Tag: 0x0003

Reset Value: Undefined

Read/write
31 24 16 8 0

Not used 11 bit integer 15 hit fraction
Sign Not used

Value added when moving from one scanline to the next for the subordinate edge in trapezoid filling.

The value is in 2's complement 12.15 fixed point format.

178

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

dY

Name: Delta Y

Unit: Rasterizer

Region: 0 Offset: 0x0000.8028

Tag: 0x0005

Reset Value: Undefined

Read/write
31.111 124.111.111161.1.1118.11111:0
Not used 10 bit integer 14 bit fraction

Sign Not used

Value added to Y to move from one scanline to the next.

For X major lines this will be some fraction (dy/dx), otherwise it is normally + 1.0, depending on the
required scanning direction. The value is in 2's complement 11.14 fixed point format.

dZdxL

For trapezoids the value will be +1.0 depending on the scanning direction.

Name: Depth Derivative X - Lower
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.89C8
Tag: 0x0139
Reset Value: Undefined
Read/write
31:11 24.;;.11116-|||||||8-:|||:|:0
| 11 bi; frélcti;)n Not used

This register holds part of the depth derivative per unit in X used in rendering trapezoids. dZdxU holds
the most significant bits, and dZdxL the least significant bits. The combined value is in 2's
complement 17.11 fixed point format.

3D/.bs

Proprietary and Confidential 179

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

dZdxU

Name: Depth Derivative X - Upper
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.89C0
Tag: 0x0138
Reset Value: Undefined
Read/write
31111111124-::||||161.:.11:8-11111110
Not U 16 bit integer
Sign

This register holds part of the depth derivative per unit in X used in rendering trapezoids. dZdxU holds
the most signiﬁcant bits, and dZdxL the least signiﬁcant bits. The value is in 2's complement 17.11
fixed point format.

dZdyDomL

Name: Depth Derivative Y Dominant - Lower

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89D8

Tag: 0x013B

Reset Value: Undefined

Read/write
31111111124|||111116|||||1||8|11111110

11 bit fraction Not used

This register holds part of the depth derivative per unit in Y used for the dominant edge of a trapezoid,
or along a line. dZdyDomU holds the most signiﬁcant bits, and dZdyDomL the least signiﬁcant bits.
The value is in 2's complement 17.11 fixed point format.

180 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

dZdyDomU

Name: Depth Derivative Y Dominant - Upper
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.89D0
Tag: 0x013A
Reset Value: Undefined
Read/write
3111] 24-1:1:1116::1:11:8111111110
| | lNolt Used 16 bit integer
Sign

This register holds part of the depth derivative per unit in Y used for the dominant edge of a trapezoid,
or along a line. dZdyDomU holds the most significant bits, and dZdyDomL the least significant bits.
The value is in 2's complement 17.11 fixed point format.

FBBlockColor

Name: Framebuffer Block Fill Color
Unit: FramebufferWrite
Region: 0 Offset: 0x0000.8AC8
Tag: 0x0159
Reset Value: Undefined
Read/write
31:11111124-111111116|1:1:11:8-11111110
..11111..11.,1321bit.vajlue.l.1....11....

Note that this register should not be updated immediately after a Render command which performs a
block write.

Contains the color (and optionally alpha value) to be written to the framebuffer during block writes.
Note the format is the raw data format of the framebuffer.

If the framebuffer is used in 8 bit packed mode, then data should be repeated in all 4 bytes of the

register.

If the framebuffer is in 16 bit packed mode then the data must be repeated in both halves of the
register.

3D/ubs Proprietary and Confidential 181

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

FBBlockColorL

Name: Framebuffer Block Fill Lower color
Unit: FramebufferWrite
Region: 0 Offset: 0x0000.8C70
Tag: 0x018E
Reset Value: Undefined
Read/write
31] 11124|||1||1116|1||| 1111110

32 bit value

Contains the color (and optionally alpha value) to be written to the framebuffer during block writes.
Note the format is the raw data format of the framebuffer. Each block fill writes a pattern of 8 bytes
defined by these registers, repeating the same data until 32 pixels have been filled.

If the framebuffer is used in 8 bit packed mode, then data should be repeated in all 4 bytes of the

register.

If the framebuffer is in 16 bit packed mode then the data must be repeated in both halves of the

FBBlockColorU

3D/.bs

register.
Name: Framebuffer Block Fill Upper color
Unit: FramebufferWrite
Region: 0 Offset: 0x0000.8C68
Tag: 0x018D
Reset Value: Undefined
Read/write

31‘ 1..24|||1||1|16||||| 1111:10

. 111.......32.bit.va!ue... o

Contains the color (and optionally alpha value) to be written to the framebuffer during block writes.
Note the format is the raw data format of the framebuffer. Each block fill writes a pattern of 8 bytes
defined by these registers, repeating the same data until 32 pixels have been filled.
If the framebuffer is used in 8 bit packed mode, then data should be repeated in all 4 bytes of the
register.
If the framebuffer is in 16 bit packed mode then the data must be repeated in both halves of the
register.

182 Proprietary and Confidential

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

FBColor

Name: Framebuffer Color Upload
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8A98
Tag: 0x0153
Reset Value: Undefined
Read/write
31.1.1...24.111..1116.1.1.1118..1.1.110
A bkl e

Internal register used in image upload. Note that this register should not be written to. It is
documented here to give the format and tag value of the data returned through the Host Out FIFO.

The format is dependent on the raw framebuffer organization and any reformatting which takes place
due to the format specified in the DitherMode register.

FBData

Name: Framebuffer Data
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8AA0
Tag: 0x0154
Reset Value: Undefined
Write
3111.1...24.111.11116-1.1.11:8.111111:0
.11..11.......32.bit.va].ue..............

Supplies the data for image download, where subsequent formatting is required. The formatting can be
achieved by means of the AlphaBlendMode register to convert to the internal PERMEDIA format, and
then via the DitherMode register to convert to the required format.

3D/ubs Proprietary and Confidential 183

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FBHardwareWriteMask

Name: Hardware Writemask
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8ACO
Tag: 0x0158
Reset Value: Undefined
Read/write
31lll 24.;;;.11116-1.::nn:gunnnnnnno
32 hit mask

Contains the hardware writemask for the framebuffer. If a bit is set to one then the corresponding bit
in the framebuffer is enabled for writing, otherwise it is disabled. Only applicable to configurations
where the framebuffer supports a hardware writemask. In cases where it is not supported, this register

should NOT be written to.

If hardware writemasks are used then all the bits in the FBSoftwareWriteMask register must be set to
1, so that software writemasking is disabled.

If the framebuffer is used in 8 bit packed mode, then an 8bit hardware writemask must be repeated in
all 4 bytes of the FBHardwareWriteMask register.

If the framebuffer is in 16 bit packed mode then the 16 bit hardware writemask must be repeated in
both halves of the FBHardwareWriteMask register.

184 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

FBPixel Offset

Name: Framebuffer Pixel Offset
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8A90
Tag: 0x0152
Reset Value: Undefined
Read/write
311;.1...24111.11116.1.;.;.:8.11111110
. ll\{otluseldl . o IZétbiltzzsc:lorqlerlnel?tif\tg.er' o

Offset between buffers when operating on multiple buffers in the framebuffer at the same time (e.g.
left/right/top/bottom in some OpenGL implementations). The offset can be treated as signed or
unsigned.

3D/ubs Proprietary and Confidential 185

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FBReadMode

Name: Framebuffer Read Mode
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8A80
Tag: 0x0150
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved Reserved PP2 PP1 PPO
Patch Mode / Data type Partial product selection
Reserved Packed data
Relative offset Patch Enable\ Window origin | ReadSource enable
Reserved ReadDestination enable

Controls reading from framebuffer memory.

Incorrect data can be read if reads are enabled but the same data had just been
written with reads disabled. To avoid this problem, a WaitForCompletion
command should be sent after enabling reads, but prior to the next primitive.

Bit0-2 Partial Product 0 - See Appendix C for a table of values.
Bit3-5 Partial Product 1 - See Appendix C for a table of values.
Bit6-8 Partial Product 2 - See Appendix C for a table of values.
Bit9 Read Source Enable:

0 = no read

1 = do read
Bit10 Read Destination Enable:

0 = no read

1 = do read
Bit15 Data Type:

0 = FBDefault - for data that may be written back to the framebuffer
1 = FBColor - for image upload

Bitl6 Window Origin:
0 = Top left
1 = Bottom left

186 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Bit18

Bicl9

Bit20-22

Bit25-26

Patch Enable:
0 = Disable
1 = Enable patched addressing for framebuffer accesses

PackedData:
0 = Disable. Force PERMEDIA to read one pixel at a time.
1 = Enable. Allow PERMEDIA to read multiple packed pixels when
possible.

RelativeOffset

3 bit 2's compliment value which specifies the number of pixels that the
source data has to be adjusted to align with the destination data. The
PackedDataLimits register also has this field and the last loaded of these two
registers takes effect.

Patch Mode
0 = Patch (suitable for depth buffer patching)
1 = Subpatch (suitable for texture buffer patching)
2 = SubpatchPack (suitable for packed texture patching)

3D/.bs

Proprietary and Confidential 187

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FBReadPixel

Name: Framebuffer Read Pixel
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8ADO0O
Tag: 0x015A
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved
Pixel Size
Sets the pixel size for reading from the framebuffer.
Bit0-1 Pixel Size:
0 = 8 bits
1 = 16 bits
2 = 32 bits
3 = reserved
4 = 24 bits
188 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

FBSoftwareWriteMask

Name: Software Writemask
Unit: Logic Op
Region: 0 Offset: 0x0000.8820
Tag: 0x0104
Reset Value: Undefined
Read/write
31111 24-111.11116-1||:1|:8-:|||:1:0
32 hit mask

Contains the software writemask for the framebuffer. If a bit is set to one then the corresponding bit in
the framebuffer is enabled for writing, otherwise it is disabled. In addition, whenever the writemask is
other than all 1s, framebuffer reads must be enabled by setting the ReadSourceEnable bit in the
FBReadMode register.

If hardware writemasks are used then all the bits in the software writemask must be set to 1, so that
software writemasking is disabled.

FBSourceBase

Name: Base address of source framebuffer data

Unit: Framebuffer Read

Region: 0 Offset: 0x0000.8D80
Tag: 0x01BO

Reset Value: Undefined

Read/write

31 24 16 8 0

T T 1 T 1 1 T T T T T T T T L] T T T T T T T L] T T T T T T T

Reserved 24 bit unsigned integer

The base address of source data for framebuffer copies. Tracks the value of FBWindowBase, so to
modify this register it must be loaded after FBWindowBase.

3D/ubs Proprietary and Confidential 189

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FBSourceData

Name: Framebuffer Source Data
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8AA8
Tag: 0x0155
Reset Value: Undefined
Write
31111 24-1x|||:|16-:|1:1|:8-:|111110
32-bit value

Supplies the data for image download with logic ops, where the data is treated as the source rather than
the destination parameter.

The data supplied should be in raw framebuffer format.

FBSourceDelta

Name: Difference between destination to source data
Unit: Framebuffer Read
Region: 0 Offset: 0x0000.8D88
Tag: 0x01B1
Reset Value: Undefined
Read/write
31:1 24-::1:111161|:1118-11111110
Not used 12 bit 2’s conplement Y delta | Not used 12 bit 2's complement X de

The difference from destination to source data in the framebuffer. Loading this register causes an
appropriate value to be calculated and loaded into FBSourceOffset.

190 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

FBSourceOffset

Name: Framebuffer Source Offset
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8A88
Tag: 0x0151
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used 24 bit 2's complement intger
Sets the offset from destination to source for a copy operation in the framebuffer i.e.
source offset = destination address - source address
FBWindowBase
Name: Framebuffer Window Base
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8AB0O
Tag: 0x0156
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved 24 bit unsigned integer
Contains the current base address of the window in the framebuffer.
3D/ubs Proprietary and Confidential 191

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FBWriteData

Name: Framebuffer Write Data
Unit: Logic Op
Register 0 Offset 0x0000. 8830
Tag: 0x106
Reset Value: Undefined
Read/write
31‘11 24-::1:11116-1:::11:8-11111110
32 bit data

It is not recommended that this register be used. It is included here for the benefit of understanding
legacy PERMEDIA 1 software.

Contains the color value to be written to the framebuffer when the UseConstantFBWriteData bit of
the LogicalOpMode register is set to one. Note that the following conditions must be met for this
mode of rendering to be used:

¢ Flat shaded aliased primitive

e No dithering required

* No logical operation involving a destination factor
¢ No stencil or depth test

* No texture, fog or alpha blending

* No software writemasking

The data is in the raw format of the framebuffer. If the pixel size is 8 bits then the data should be
repeated in all four bytes. If the pixel size is 16 bits the data should be repeated in both halves of the

word.

Hardware writemasks can be used if available.

192 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

FBWriteMode

Name: Framebuffer Write Mode
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8AB8
Tag: 0x0157
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved
UpLoadData

Reserved

Write enable

Controls writing to the framebuffer.

Bit0 Write Enable:

0 = Disable

1 = Enable
Bit3 UpLoadData:

0 = No upload

2 = Upload color to host

3D/ubs Proprietary and Confidential 193

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FilterMode

Name: Filter Mode
Unit: Host Out
Region: 0 Offset: 0x0000.8C00
Tag: 0x0180
Reset Value: Undefined
Read/write
3111.1...24-111.11116:.1.11:8..1111110
Reserved Individual bits defined below

Controls culling of information from the output FIFO. If both tag and data are specified then the tag is
always the first word in the FIFO.

Bit0-3 Reserved for future use - set to zero.

Bit4 Depth Tag Filter: Used in-depth buffer image upload.
0 = Cull Depth Tags from being passed to output FIFO
1 = Pass Depth Tags to output FIFO

Bit5 Depth Data Filter: Used in-depth buffer image upload
0 = Cull Depth data values from being passed to output FIFO
1 = Pass Depth data values to output FIFO

Bit6 Stencil Tag Filter: Used in Stencil buffer image upload
0 = Cull Stencil Tags from being passed to output FIFO
1 = Pass Stencil Tags to output FIFO

Bit7 Stencil Data Filter: Used in Stencil buffer image upload
0 = Cull Stencil data values from being passed to output FIFO
1 = Pass Stencil data values to output FIFO

Bit8 Color Tag Filter: Used in Framebuffer image upload
0 = Cull Color Tags from being passed to output FIFO
1 = Pass Color Tags to output FIFO

Bit9 Color Data Filter: Used in Framebuffer image upload
0 = Cull Color data values from being passed to output FIFO
1 = Pass Color data values to output FIFO

Bit10 Synchronization Tag Filter:
0 = Cull Synchronization Tags from being passed to output FIFO
1 = Pass Synchronization Tags to output FIFO

Bitl1 Synchronization Data Filter:
0 = Cull Synchronization data values from being passed to output FIFO
1 = Pass Synchronization data values to output FIFO

194 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

Bitl12 Statistics Tag Filter: Used in Picking and Extent read back
0 = Cull Statistics Tags from being passed to output FIFO
1 = Pass Statistics Tags to output FIFO
Bit13 Statistics Data Filter: Used in Picking and Extent read back
0 = Cull Statistics data values from being passed to output FIFO
1 = Pass Statistics data values to output FIFO
Bit14-15 Reserved for future use - set to zero.
FogColor
Name: Fog Color
Unit: Texture/Fog/Blend
Region: 0 Offset: 0x0000.8698
Tag: 0x00D3
Reset Value: Undefined
Read/write
31 24 16 0
Alpha Blue Green Red
Provides the color to be blended with the fragment's color when fogging is enabled.
3D/ubs Proprietary and Confidential 195

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

FogMode

Name: Fog Mode
Unit: Texture/Fog/Blend
Region: 0 Offset: 0x0000.8690
Tag: 0x00D2
Reset Value: Undefined
Read/write
31:11 24-::1:11116-1::.nn:gunnnn 0
Reserved
N S S S S S . |
FogTest
Reserved
Fog Enable

Controls operation of the Fog unit.
Enabling FogTest causes fragments with negative fog values to be rejected.

Note that the FogEnable bit in the Render command must be set for fogging to be applied to a

primitive.
Bit0 Enable Fog:
0 = Disable
1 = Enable
Bit2 Fog Test:
0 = Disable
1 = Enable

196 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

FStart

Name: Initial Fog Value

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86A0

Tag: 0x00D4
Reset Value: Undefined
Read/write
31 28 24 20 16 12 8 4 0
Not Used Fractions
Sign _Integer Not UsedJ

Fog coefficient start value. Note the interpolation coefficient is used to blend the fragment's color with

the color in the FogColor register. The value is in 2's complement 2.19 fixed point format.
GStart

Name: Initial Green Color

Unit: Color DDA

Region: 0 Offset: 0x0000.8798

Tag: 0x00F3
Reset Value: Undefined
Read/write
31 24 16 8 0
Not use Integer Fraction Not used
|— Sign
This register is used to set the initial value for the Green value for a vertex when in Gouraud shading
mode. The value is 2's complement 9.11 fixed point format.
3D/ubs Proprietary and Confidential 197

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

KdStart

Name: Initial Kd Value

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86E0

Tag: 0x00DC

Reset Value: Undefined

Read/write
31 28 24 20 16 12 4 0
" NotUsed " Fractions T

_Integer NotUsedJ

Sign

Start value for diffuse light parameter when texture mapping using ramp application mode. The value
is in 2's complement 2.19 fixed point format.

KsStart
Name: Initial Ks Value
Unit: Texture/Fog/Blend
Region: 0 Offset: 0x0000.86C8
Tag; 0x00D9
Reset Value: Undefined
Read/write
31 28 24 20 16 12 4 0
Not Used Fractions
Sign _Integer Not U%dJ

Start value for specular light parameter when texture mapping using ramp application mode. The value

is in 2's complement 2.19 fixed point format.

198

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

LBData

Name: Localbuffer Data Download
Unit: Localbuffer R/W
Region: 0 Offset: 0x0000.8898
Tag: 0x0113
Reset Value: Undefined
Write
31 24 16 8 0

15 or 16 bit Depth value

1 bit Stencil value

Used to download depth and/or stencil data to localbuffer memory. Data should be supplied in the raw

localbuffer format.

LBDepth

Name: Localbuffer Depth Upload
Unit: Localbuffer R/W
Region: 0 Offset: 0x0000.88B0
Tag: 0x0116
Reset Value: Undefined
Read/write
31 24 16 8 0

1 1 1 1 1 1 1 a 1 1 1 1 1

1

1

T T T T T T T L] T T T T T T T

16 bit Depth value

Used to upload depth data from localbuffer memory. This register should not be written to. It is
documented here to give the tag value and format of the data when read from the Host Out FIFO. If
the depth buffer is less than 16 bits, the depth value is right justified and zero extended

3D/ubs Proprietary and Confidential 199

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

LBReadFormat

Name: Localbuffer Read Format

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8888
Tag: 0x0111

Reset Value: Undefined

Read/write

Stencil Width

Depth Width

Specifies the format used when reading from localbuffer memory. The effect of creating a format with
overlapping fields is undefined. There is no need to synchronize PERMEDIA before changing this

register.

Bit0-1 Depth Width:
0=16
1 = reserved
2 = reserved
3=15

Bit2-3 Stencil Width:
0=0
1 = reserved

2 = reserved

3=1

200 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

Name: Localbuffer Read Mode

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8880
Tag: 0x0110

Reset Value: Undefined

Read/write

LBReadMode

31 24 16 8 0
Reserved Reserved PP2 | PPL | PPO
| | T
Patch Enable Data Type Partial product selection
Window origin ReadSource enable
ReadDestination enable
Controls reading from localbuffer memory.
Incorrect data can be read if reads are enabled but the same data had just been written with reads
disabled. To avoid this problem, a WaitForCompletion command should be sent after enabling reads,
but prior to the next primitive.
Bit0-2 Partial Product 0 - See Appendix C for a table of values
Bit3-5 Partial Product 1 - See Appendix C for a table of values
Bit6-8 Partial Product 2 - See Appendix C for a table of values
Bit9 Read Source Enable:
0 = no read
1 = do read
Bit10 Read Destination Enable:
0 = no read
1 = do read
Bitl6-17 Data Type:
0 = Default
1 = Localbuffer Stencil
2 = Localbuffer Depth
Bitl18 Window Origin:
0 = Top left
1 = Bottom left
Bit19 Patch Enable
0 = Disable
1 = Enable patched addressing of the localbuffer
3D/.5 Proprietary and Confidential 201

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

LBSourceOffset

Name: Localbuffer Source Offset
Unit: Localbuffer R/'W
Region: 0 Offset: 0x0000.8890
Tag: 0x0112
Reset Value: Undefined
Read/write
311.1...24::1:11116-1uxunnxgunnnnnnno
Not used

24hit signed integer

Sets the offset from destination to source for a copy operation in the localbuffer, i.e.:

source offset = destination address - source address

LBStencil

Name: Localbuffer Stencil Upload
Unit: Localbuffer R/W
Region: 0 Offset: 0x0000.88A8
Tag: 0x0115
Reset Value: Undefined
Read/Output
3111.1..24||||||||16||:1:11:8|:|||:|0
0

1 bit Stencil value

Used to upload stencil data from localbuffer memory. This register should not be written to. It is
documented here to give the tag value and format of the data when read from the Host Out FIFO.

202

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

LBWindowBase

Name: Localbuffer Window Base
Unit: Localbuffer R/W
Region: 0 Offset: 0x0000.88B8
Tag: 0x0117
Reset Value: Undefined Read/write
31|||1||l24111.11116-1.111118.11111110
Not used 24 bit unsigned integer

Contains the current base address of the window in the localbuffer.

3D/ubs Proprietary and Confidential 203

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

LBWriteFormat

Name: Localbuffer Write Format
Unit: Localbuffer R/W
Region: 0 Offset: 0x0000.88C8
Tag: 0x0119
Reset Value: Undefined
Read/write
31:11 24-::1::1116|1|:|||:8||||110
| o Reserved

Stencil Width

Depth Width

Specifies the format used when writing to localbuffer memory. The effect of setting a configuration
with overlapping fields is undefined.

Bit0-1 Depth Width:
0=16
1 = reserved
2 = reserved
3=15
Bit2-3 Stencil Width:
0=0

1 = reserved
2 = reserved
3=1

204 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

LBWriteMode

Name: Localbuffer Write Mode
Unit: Localbuffer R/W
Region: 0 Offset: 0x0000.88C0
Tag: 0x0118
Reset Value: Undefined
Read/write
31lll 24-111:11116|||||||:8|||||:|0
| o Reserved
Write Enable
Controls writing to the localbuffer.
Bit0 Write Enable:
0 = Disable
1 = Enable

3D/.bs

Proprietary and Confidential 205

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

LogicalOpMode

Name: Logic Op Mode

Unit: Logic Op

Region: 0 Offset: 0x0000.8828
Tag: 0x0105

Reset Value: Undefined

Read/write

T T 1 T 1 1 T T T T T T T T T L] T T T T T T T L] T T T T

Reserved LogicOp

UseConstantFBWriteData

LogicalOp enable

Controls Logical Operations on the framebuffer.

The UseConstantFBWriteData bit when set to one, causes the color value in the FBWriteData register
to be written to the framebuffer, rather than the fragment's color. This can achieve higher bandwidth
into the framebuffer for flat shaded primitives, but may only be used when LogicalOps are disabled (bit
0 cleared to 0)

Bit0 Logic Op Enable:
0 = Disable
1 = Enable
Bitl-4 Logic Op:

Mode Name Operation Mode Name Operation
0 CLEAR 0 8 NOR ~(S|D)
1 AND S&D 9 EQUIV ~(S” D)
2 AND REVERSE S& ~D 10 INVERT ~D
3 COPY S 11 OR REVERSE S|~D
4 AND INVERTED ~S& D 12 COPY INVERT ~S
5 NO-OP D 13 OR INVERT ~S|D
6 XOR S~D 14 NAND ~(S& D)
7 OR S|D 15 SET 1

Where: S = Source (fragment) color, D = Destination (framebuffer) color.
Bit5 UseConstantFBWriteData:
0 = Variable

1 = Constant

206 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

Name:
Unit:

Region: 0

Reset Value:
Write

Max Hit Region

Host Out

Offset: 0x0000.8C30
Tag: 0x0186
Undefined

The format of the data input is:

31 24 16 8
Reserved
The format of the data output is:
31 24 16 8

T T T T T T T

16 bit 2's conplement intger Max Y

T T T T T T T T T T T

T

T

T

16 bit 2's complement intger Max X

MaxHitRegion

This command causes the maximum coordinates of the hit region to be passed to the Host Out FIFO,

unless culled by the statistics bits in the FilterMode register.

The corresponding tag value output is: 0x186

3D/.bs

Proprietary and Confidential

207

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

MaxRegion

Name: Max Region
Unit: Host Out
Region: 0 Offset: 0x0000.8C18
Tag: 0x0183
Reset Value: Undefined
Read/write
31111 24-::;.111161.1.1118.11111110
16 bit 2’s conplement intger Max Y 16 bit 2's conplement intger Max X

This register has two uses:

1. During Picking it contains the maximum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial minimum (X,Y) extent, and thereafter will be
updated whenever an eligible fragment is generated which has a higher X or Y value, with that higher
value. Note eligible fragments can be either those that are written as pixels OR those that were

rasterized, but were culled from being drawn, as controlled by the StatisticMode register.

This register is unusual in that its contents are updated by PERMEDIA during rendering, and so if read

back, will not necessarily be the same as when originally stored.

208

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

MinHitRegion

Name: Min Hit Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C28
Tag: 0x0185

Reset Value: Undefined
Write

The format of the data input is:

31 24 16 8 0
Reserved

The format of the data output is:

31 24 16 8 0

T T 1 T 1 1 T T T T T T T T T T T T T T T T L] T T T T T T T

16 bit 2’s conplement intger Min Y 16 bit 2’s conplement intger Min X

This command causes the minimum coordinates of the hit region to be passed to the Host Out FIFO,
unless culled by the statistics bits in the FilterMode register.

The corresponding tag value output is: 0x185

3D/ubs Proprietary and Confidential 209

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

MinRegion

Name: Min Region
Unit: Host Out
Region: 0 Offset:
Tag:
Reset Value: Undefined
Read/write
31 24

0x0000.8C10
0x0182

16 8

0

T T 1 T 1 1 T T T T T T T

16 bit 2's corplement intger Min Y

T

T

T T T T T T T L] T T T T T T

16 hit 2's conplement intger Min

1 1 1 Il P 1 1 1 1 1

T

1

This register has two uses:

1. During Picking it contains the minimum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial maximum (X,Y) extent, and thereafter will be
updated whenever an eligible fragment is generated which has a lower X or Y value, with that lower
value. Note eligible fragments can be either those that are written as pixels OR those that were
rasterized, but were culled from being drawn, as controlled by the StatisticMode register.

This register is unusual in that its contents are updated by PERMEDIA during rendering, and so if read

back, will not necessarily be the same as when originally stored.

210

Proprietary and Confidential

3D/.bs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

PackedDataLimits

Name: Packed copy limits

Units: Framebuffer R/'W

Region: 0 Offset: 0x0000.8150

Tag: 0x002A
Reset Value: Undefined
Read/write
31ll 24-111:11116||11118-11111110
o I12 bit integer X Start Not used 12 bit integer XEnd
Reserved
RelativeOffset

Sets the start and end limits in X for packed copies. Any pixels lying outside the specified range are not
plotted. This test is only active when the PackedData bit in FBReadMode is enabled.

Bit0-11 XEnd: 12 bit 2's complement value
Bit16-27 XStart: 12 bit 2's complement value
Bit29-31 Relative Offset:

3 bit 2's compliment value which specifies the number of pixels that the source data
has to be adjusted to align with the destination data. The FBReadMode register
also has this field and the last loaded of these two registers takes effect.

3D/ubs Proprietary and Confidential 211

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

PickResult

Name: Pick Result

Unit: Host Out

Region: 0 Offset: 0x0000.8C38
Tag: 0x0187

Reset Value: Undefined
Write

The format of the data input is:

31 24 16 8 0
T T 1 T 1 1] L] T T T T T T T L} T T T T T T T L} T T T T T T T
Reserved

31 24 16 8 0
Reserved
PickFlag

This command causes the current status of the picking result to be passed to the Host Out FIFO,
unless culled by the statistics bits in the FiltertMode register.

The corresponding tag value output is: 0x187

Bit0 PickFlag:

0 = Miss

1 = Hit has occurred
Bitl BusyFlag:

0 =Idle

1 = Busy - used to validate the Pick Flag bit if this register is polled directly

212 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

QStart

Name: Initial texture Q value

Unit: Texture Address

Region: 0 Offset: 0x0000.83B8
Tag: 0x0077

Reset Value: Undefined
Write

The format of the data input is:

31 24 16 8 0
Fraction Reserved
Integer
Sign

Used to set the initial value for the Q coordinate when texture mapping. Format is 2's complement
2.27 fixed point.

3D/ubs Proprietary and Confidential 213

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

RasterizerMode
Name: Rasterizer Mode
Unit: Rasterizer
Region: 0 Offset: 0x0000.80A0
Tag: 0x0014
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved BitMaskOffset
BitMaskRelative // /
LimitsEnable BitMaskPacking BiasCoordinates
Reserved BitMaskByteSwapMode FractionAdjust
HostDataByteSwapMode ForceBackgroundColor InvertBitMask
MirrorBitMask
Defines the long term mode of operation of the Rasterizer.
Bit0 MirrorBitMask
0 = use bit mask from least to most significant bit
1 = use bit mask from most to least significant bit
Bitl InvertBitMask
0 = test against bitmask
1 = test against inverted bitmask
Bit2-3 FractionAdjust These bits are for the ContinueNewLine command and specify how
the fraction bits in the Y and XDom DDAs are adjusted.
0 = No adjustment is done,
1 = Set the fraction bits to zero,
2 = Set the fraction bits to half.
3 = Set the fraction to nearly half, i.e. 0x7FFF
Bit4-5 BiasCoordinates These bits control how much is added onto the StartXDom,

StartXSub and StartY values when they are loaded into the DDA units. The
original registers are not effected.

0 = Zero is added,

1 = Half is added

2= Nearly half is added, i.e. 0x7FFF

Bit6 ForceBackgroundColor Controls operation of bitmask test. If disabled any fragment
failing the test is discarded. If enabled any fragment failing the test is drawn (other

214 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Bit7-8

Bit9

Bitl10-14
Bitl5-16

Bit18

Bit19

tests allowing) but the color is taken from the Texel0 register. Used to support
foreground/background colors.

0 = disabled
1 = enabled

BitMaskByteSwapMode. Controls byte swapping for bitmask. Input ABCD

0 =ABCD
1 = BADC
2 = CDAB
3 = DCBA
BitMaskPacking.

0 = bitmask packed
1 = new data every scanline

BitMaskOffset. Position of first bit to test in bitmask.

HostDataByteSwapMode. Controls byte swapping for host data. Input ABCD

0 =ABCD
1 = BADC
2 = CDAB
3 = DCBA
LimitsEnable. Enable X and Y limits checking
0 = disabled
1 = enabled
BitMaskRelative

0 = bitmask indexed by counter
1 = bit mask indexed by X position

3D/.bs

Proprietary and Confidential 215

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

RectangleOrigin

Name: Rectangle Origin
Unit: Rasterizer
Region: 0 Offset: 0x0000.80D0
Tag: 0x001A
Reset Value: Undefined
Write
31 24 16 8 0
Ignored Y Ignored X
Bits 0-15 X origin of the rectangle to be drawn.
Bits 16-31 Y origin of the rectangle to be drawn.
Name: Rectangle Origin
RectangleSize
Unit: Rasterizer
Region: 0 Offset: 0x0000.80D8
Tag: 0x001B
Reset Value: Undefined
Write
31 24 16 8 0
Ignored Height Ignored Width
Bits 0-15 Width of the rectangle to be drawn.
Bits 16-31 Height of the rectangle to be drawn.
216 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Render

Name: Render
Unit: Rasterizer
Region: 0 Offset: 0x0000.8038
Tag: 0x0007
Reset Value: Undefined
Write
31 24 16 8 0
Reserved Reserved Reserved
IncreaseY IncreaseX Reserved Primitive type
ReuseBitMask Fog enable Reserved
SubPixelCorrectionEnable Texture FastFill enable
SyncOnHostData Reserved
SyncOnBitMask AreaStippleEnable

Command to start the rendering process.

The data field defines the short term modes required by this primitive. For details, see Table 5.4.

Bit0 AreaStippleEnable. Note that area stipple in the Stipple Unit must be enabled as well
for stippling to occur.
0 = Disable
1 = Enable
Bit3 FastFillEnable

0 = Disable block filling
1 = Enable block filling

Bit6-7 PrimitiveType. These bits indicate the type of PERMEDIA primitive to be drawn.
The primitives supported and the corresponding codes are:
0 = lines,
1 = trapezoids,
2 = points,
3 = rectangles.

Bitll SyncOnBitMask. Enable bitmask test. Wait for new bitmask when current one
expires unless SyncOnHostData or ReuseBitMask enabled.
0 = Disable
1 = Enable

3D/ubs Proprietary and Confidential 217

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

Bitl12

Bitl3

Bitl4

Bitl6

Bitl7

Bit18-20
Bit21

Bit22

SyncOnHostData. When this bit is set, a fragment is produced only when one of the
following registers has been written by the host: Depth, FBData, FBSourceData,
Stencil, Color or Texel0. Also BitMaskPattern if SyncOnBitMask is set.

0 = Disable
1 = Enable

TextureEnable. Note that the Texture Units must be suitably enabled as well for any
texturing to occur.

0 = Disable

1 = Enable

FogEnable. Note that the Fog Unit must be suitably enabled as well for any fogging
to occur.

0 = Disable

1 = Enable

SubPixelCorrectionEnable. Enables the sub pixel correction of color, depth, fog and
texture values at the start of a scanline span.

0 = Disable

1 = Enable

ReuseBitMask. Allows the bitmask to be reused when it has expired; if enabled the

Rasterizer will not wait for a new mask when the current one has been used.

0 = Disable
1 = Enable
Reserved.

IncreaseX. Specifies that the rectangle primitive should be filled in the direction of
increasing X.

0 = Disable

1 = Enable

IncreaseY. Specifies that the rectangle primitive should be filled in the direction of
increasing Y.

0 = Disable

1 = Enable

218

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

RepeatLine
Name: Repeat line
Unit: Delta
Region: 0 Offset: 0x0000.9328
Tag: 0x0265
Reset Value: Undefined
Write
31 24 16 8 0
Reserved

The data field is not used

RepeatTriangle

Name: Repeat Triangle

Unit: Delta

Region: 0 Offset: 0x0000.9310
Tag: 0x0262

Reset Value: Undefined

Write
31 24 16 8 0
T T T T T T T L] T T T T T T T L] T T T T T T T L] T T T T T T T
Reserved

The data field is not used.

3D/ubs Proprietary and Confidential 219

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

ResetPickResult

Name: Reset Pick Result

Units: Host Out

Region: 0 Offset: 0x0000.8C20
Tag: 0x0184

Reset Value: Undefined

Write
31 24 16 8 0
T T 1 T 1 1] L] T T T T T T T L} T T T T T T T L} T T T T T T T
Reserved

This command causes the current value of the picking result to be reset to zero. The data field is not
used.

RStart

Name: Initial Red Color
Unit: Color DDA
Region: 0 Offset: 0x0000.8780
Tag: 0x00F0
Reset Value: Undefined
Read/write
31:11 24 ;|||||16-|:|||:8-||11110
Not used Integer Fraction Not used

|—Sin
g

This register is used to set the initial value for the Red value for a vertex when in Gouraud shading
mode. The value is 2's complement 9.11 fixed point format.

220 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

Name:
Unit:

Region: 0

Reset Value:

Read/write

ScissorMaxXY

Scissor Rectangle - Maximum XY

Scissor/Stipple

Offset: 0x0000.8190
Tag: 0x0032
Undefined

31 16 8 0
Not used 12 bit 2's complement Max Y | Not used 12 bit 2's complement Max
Specifies the user scissor rectangle corner farthest from the screen origin.
Name: Scissor Rectangle - Minimum XY
ScissorMinXY
Unit: Scissor/Stipple
Region: 0 Offset: 0x0000.8188
Tag: 0x0031
Reset Value: Undefined
Read/write
31 16 8 0
Not used 12 bit 2's complement Min Y | Not used 12 bit 2's complement Min
Specifies the user scissor rectangle corner closest to the screen origin.
3D/ubs Proprietary and Confidential 221

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

ScissorMode
Name: Scissor Mode
Unit: Scissor/Stipple
Region: 0 Offset: 0x0000.8180
Tag: 0x0030
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved

Screen scissor enable

User scissor enable

Controls enabling of the screen and user scissor tests.

Bit0 User Scissor Enable:
0 = Disable
1 = Enable
Bitl Screen Scissor Enable:
0 = Disable
1 = Enable
ScreenSize
Name: Screen Size
Unit: Scissor/Stipple
Region: 0 Offset: 0x0000.8198
Tag; 0x0033

Reset Value: Undefined

Read/write
31 24 16 8 0
Not used 11 bit unsigned integer Height Not used 11 bit unsigned integer Width

Screen dimensions for screen scissor clip. The screen boundaries are (0, 0) to (width - 1, height - 1)
inclusive.

222 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

SStart
Name: Initial texture S value
Unit: Texture Address
Region: 0 Offset: 0x0000.8388
Tag: 0x0071
Reset Value: Undefined
Read/write
31 24 16 8 0
Integer Fraction
| |
Sign Reserved
Used to set the initial value for the S coordinate when texture mapping. Format is 2's complement
12.18 fixed point.
StartXDom
Name: Start X Value - Dominant Edge
Unit: Rasterizer
Region: 0 Offset: 0x0000.8000
Tag: 0x0000
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used 11 bit integer 15 hit fraction
Sign Not used
Initial X value for the dominant edge in trapezoid filling, or initial X value in line drawing. The value is
in 2's complement 12.15 fixed point format.
3D/ubs Proprietary and Confidential 223

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

StartXSub

Name: Start X Value - Subordinate Edge
Unit: Rasterizer
Region: 0 Offset: 0x0000.8010
Tag: 0x0002
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used 11 bit integer 15 hit fraction
Sign Not used
Initial X value for the subordinate edge in trapezoid filling. The value is in 2's complement 12.15 fixed
point format.
StartY
Name: Start Y Value
Unit: Rasterizer
Region: 0 Offset: 0x0000.8020
Tag: 0x0004
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used 11 bit integer 15 hit fraction
Sign Not used
Initial scanline in trapezoid filling, or initial Y position for line drawing. The value is in 2's
complement 12.15 fixed point format.
224 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

StatisticMode
Name: Statistic Mode
Unit: Host Out
Region: 0 Offset: 0x0000.8C08
Tag: 0x0181
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved
Include Spans
Compare Function
Monitor Culled Fragments Stats Type

Monitor Pixels Written
Enable Stats

Controls the mode of statistics collection.

Bit0 EnableStats:
0 = Disable Statistics collection
1 = Enable Statistics collection

Bitl StatsType:
0 = Picking mode
1 = Extent collection

Bit2 Active Steps:
0 = Excludes Pixels that were drawn
1 = Includes Pixels that were drawn

Bit3 Passive Steps:
0 = Excludes fragments that were culled from being drawn
1 = Includes fragments that were culled from being drawn

Bit4 CompareFunction:
0 = Inside region
1 = Outside region

Bit5 Spans:
0 = Exclude block filled spans
1 = Include block filled spans

3D/ubs Proprietary and Confidential

225

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

Stencil
Name: Stencil
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.8998
Tag: 0x0133
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved

Stencil

The stencil value to be used in clearing down the stencil buffer, or in drawing a primitive where the
host supplies the stencil value.

StencilData

Name: Stencil Data

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.8990

Tag: 0x0132

Reset Value: Undefined

Read/write
31 24 16 8 0

Reserved Reserved Reserved
Write Mask Compare Mask Reference Stencil

Holds data used in the stencil test.

The stencil writemask controls which stencil planes are updated as a result of the test.

Bit0 Reference Stencil is the reference value for the stencil test.

Bit8 Compare Mask is the mask used to determine which bits are significant in the
comparison.

Bit16 Stencil Writemask is the mask used to determine which bits in the localbuffer are
updated.

226 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

StencilMode

Name: Stencil Mode
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.8988
Tag: 0x0131
Reset Value: Undefined
Read/write
31I 1 1 24. - 116. . . : 8. . . 0
Reserved sc | func sfail | dpfail | dppass
Aned compare function Unit enable
Stencil source Update Method

Controls the stencil test, which conditionally rejects fragments based on the outcome of a comparison
between the value in the stencil buffer and a reference value in the StencilData register. If the test is
LESS and the result is true then the fragment value is less than the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable
Bitl-3 Update Method if Depth test passes and Stencil test passes:
(see table below)
Bit4-6 Update Method if Depth test fails and Stencil test passes:
(see table below)
Bit7-9 Update Method if Stencil test fails:
Mode Method Result
0 Keep Source stencil
1 Zero 0
2 Replace Reference stencil
3 Increment Clamp (Source stencil + 1) to 2stencil width _ 1
4 Decrement Clamp (Source stencil -1) to 0
5 Invert ~Source stencil
Bit10-12 Unsigned Comparison Function:
Mode = Comparison Function
0 = NEVER
1 = LESS
2 = EQUAL
3 = LESS OR EQUAL
4 = GREATER

3D/ubs Proprietary and Confidential 227

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

5=NOT EQUAL
6 = GREATER OR EQUAL
7 = ALWAYS

Bit13-14 Stencil Source:
0 = Test Logic
1 = Stencil Register
2 = LBData
3 = LBSourceData

SuspendUntilFrameblank

Name: Suspend until frameblank
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.8C78
Tag; 0x018F
Reset Value: Undefined
Write
31111111124|||1|1116|||||1||8||||11||O

32 hit integer address

1 1 1 1 1 1 1 1 L 1 1 1 1 1 A L 1 1 i 5

This command causes all outstanding framebuffer writes to be flushed and then suspension of
framebuffer accesses until the next frameblank period. The data field is the start address of the next
frame to be displayed. This address will be used from the next frameblank until a new address is
supplied.

Bit0-31 Address

228 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Sync

Name: Synchronization
Unit: Host Out
Region: 0 Offset: 0x0000.8C40
Tag: 0x0188
Reset Value: Undefined
Write
3111 24.;11.11116-||||||:8-||1111:0

31 user defined bits

1 1 1 1 A 1 1 1 L 1 1 1 L 1 L 1 1 1 P 1 1 1 1 1 1

Interrupt enable

This command can be used to synchronize PERMEDIA with the host. It is also used to flush
outstanding PERMEDIA operations such as pending memory accesses. It also causes the current status
of the picking result to be passed to the Host Out FIFO, unless culled by the statistics bits in the
FilterMode register.

Bit0-30 User Defined

Bit31 InterruptEnable:
0 = Disable Interrupt for this command
1 = Enable Interrupt for this command

The data output is the value written to the register by this command. If interrupts are enabled, then the
interrupt does not occur until the tag and/or data have been written to the output FIFO.

The corresponding tag value output is: 0x188

3D/.bs

Proprietary and Confidential 229

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

TexelQ

Name: Texel Value
Unit: Texture/Fog/Blend
Region: 0 Offset: 0x0000.8600
Tag: 0x00C0

Reset Value: Undefined
Read/write

31 24 16 8 0
Alpha Blue Green Red

31 24 16 8 0
Alpha \Y U Y
The texel value can be loaded using the Rasterizer SyncOnHostData mode. This is useful for direct
application of procedural textures. It is also used when downloading YUV data which needs to be
converted to RGB; the YUV conversion is done on the contents of this register.
This register is also used to supply the background color if ForceBackgroundColor has been enabled in
either the RasterizerMode or the AreaStippleMode registers.

Texel LUT[0..15]
Name: Texel LUT entries 0 to 15
Unit: Texture Read
Region: 0 Offset: 0x0000.8E80 ,..., 0x0000.8EF8
Tag: 0x01D0,...,0x1DF

Reset Value: Undefined
Read/write

31 24 16 8 0

Not used Blue Green Red
The value to be loaded into the specified texel look-up-table entry.
230 Proprietary and Confidential 3D/.b5

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Texel LUTAddress

Name: Address of LUT in memory
Unit: Texture Read
Region: 0 Offset: 0x0000.84D0
Tag: 0x009A
Reset Value: Undefined
Read/write
31 11111241lll11116lllll1118llllllllo
Reserved 24 bit unsigned integer
| System Memory
Invalid Address

The address in memory in 32 bit units of data to be loaded into the texture look-up table. If bit 30 is
set the LUT resides in system memory rather than local buffer and should be loaded across the PCI
bus. Bit 31 is ignored if this register is loaded directly. If it is loaded indirectly by the Texel LUTID

Texel LUTData

register, bit 31 indicates that the address is invalid and should not be used.

Name: Data for texture LUT

Unit: Texture Read
Region: 0 Offset: 0x0000.84C8
Tag: 0x0099
Reset Value: Undefined
Read/write
31 24 16 8 0
C Apa | Bl | Gem | Red

Data to be loaded into the texture look-up table.

3D/ubs Proprietary and Confidential 231

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

Texel LUTID

Name: Indirect handle for texture LUT
Unit: Texture Read
Region: 0 Offset: 0x0000.8F78
Tag: 0x001EF
Reset Value: Undefined
Read/write
31 ' 24::1.11116-1.:.11:8-11111110
JReseved | L, JAdbitunsgnedinteger L L L L.
System Memory
Reserved

The 24 bit field holds the address of the data that should be loaded into the TexelLUTAddress register.
If bit 30 is set this data is in system memory and should be fetched across the PCI bus.

Texel LUTIndex

Name: Index data for LUT
Unit: Texture Read
Region: 0 Offset: 0x0000. 84C0
Tag: 0x00098
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved Index
The TexelLUTIndex register holds the index into the texel LUT where the write of subsequent
TexelLUTData will be written. The index is held in the lower 8 bits of the TexelLUTIndex register
and this is auto incremented after every write to TexelLUTData. Reading back from TexelLUTIndex
returns the auto incremented value, if any writes to TexelLUT Data have occured. A side effect of
reading the TexelLUTIndex register is to reset an internal counter used to generate the LUT index
when reading Texel LUTData. This internal counter will autoincrement after every read of
Texel LUTData.
232 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

Texel LUTMode

Name: Texel LUT Mode

Unit: Texture Read

Region: 0 Offset: 0x0000.8678
Tag: 0x00CF

Reset Value: Undefined

Read/write

31 24 16 8 0
Reserved Offset
PixelsPerEntry Directlndex

Enable

Controls the operation of the texture look-up table.

Bit0 Enable:

0 = No

1 = Lookup
Bitl DirectIndex:

0 = Index from texture data
1 = Index from fragment XY values

Bit2-9 Offset: 0x0000. Offset to add index in DirectIndex mode
Bit10-11 PixelsPerEntry: number of pixels per entry in LUT

0 =1 pixel

1 = 2 pixels

2 = 4 pixels

3D/ubs Proprietary and Confidential 233

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

Texel LUT Transfer

Name: Initiates loading of LUT data from memory

Unit: Texture Read

Region: 0 Offset: 0x0000.84D8
Tag: 0x0009B

Reset Value: Undefined

Read/write
31 24 16 8 0
T T 1 T 1 1] L] T T T T T T L} T T T T T T T T T T T T T T
Reserved Count Index

The index field specifies the first entry in the LUT to load, and the Count field specifies the number of
entries to load.

Name: Texture Address Mode

TextureAddressMode

Unit: Texture Address
Region: 0 Offset: 0x0000.8380
Tag; 0x0070

Reset Value: Undefined

Read/write

Perspective Correction——"_
Texture Address Enable

Controls the calculation of texture addresses.

If bit 1 is set, PERMEDIA performs fast, accurate perspective correction.

Bit0 Texture Address Enable:
0 = Disable
1 = Enable

Bitl Perspective Correction:
0 = Disable
1 = Enable

234 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

3D/ubs Proprietary and Confidential 235

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

TextureBaseAddress
Name: Adderess of texture in memory
Unit: Texture Read
Region: 0 Offset: 0x0000.8580
Tag: 0x00B0
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved 24 bit unsigned integer
|..........................1
System Memory
Invalid Address

Base address of texture map. Specified in texels from the base of the memory. If bit 3o is set the texture
resides in system memory rather than local buffer and should be fetched across the PCI bus. Bit 31 is
ignored if this register is loaded directly. If it is loaded indirectly by the TexturelD register, bit 31
indicates that the address is invalid and should not be used.

236 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

TextureColorMode

Name: Texture Color Mode
Unit: Texture/Fog/Blend
Region: 0 Offset: 0x0000.8680
Tag: 0x00D0
Reset Value: Undefined Read/write
31 24 16 8 0
Reserved
KsDDA // ‘
KdDDA Texture Type
Application Mode
Texture Enable
Controls the application of texture. The KsDDA and KdDDA bits enable the internal DDAs and should
be set for modulate or highlight Ramp texture application modes. The Texture Type field differentiates
between RGB (OpenGL) and Ramp (Apple) application modes. With Ramp Application Mode, various
modes can be simultaneously applied e.g. decal with highlight.
Note: ‘The TextureEnable bit in the Render command must also be set for a primitive to be texture mapped.
Bit0 Texture Enable:
0 = Disable
1 = Enable texture application
Bitl-3 Application Mode:
RGB Ramp
0 = Modulate Bit 1 = Decal
1 = Decal Bit 2 = Modulate
2 = Reserved Bit 3 = Highlight
3 = Copy
4 = Modulate + Highlight
5 = Decal + Highlight
6 = Reserved
7 = Copy + Highlight
Bit4 Texture Type:
0 = RGB
1 = Ramp
Bit5 KdDDA:
0 = Disable
1 = Enable
Bit6 KsDDA:
0 = Disable
1 = Enable
3D/ubs Proprietary and Confidential 237

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

TextureData
Name: Texture Data
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.88E8
Tag: 0x011D
Reset Value: Undefined
Write
31 24 16 8 0
Data

Used with TextureDownloadOffset to load raw texture data into memory. This may include multiple
texels depending on the texel size.

Bit0-31 Data

238 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

TextureDataFormat
Name: Texture Data Format
Unit: Texture Read
Region: 0 Offset: 0x0000.8590
Tag: 0x00B2
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved
SpanFormat
AlphaMap
Texture Format Extension
Color Order
No Alpha Buffer
Texture Format
Specifies the color format of the texture map in memory. (see overleaf for description of the bit fields)
Bit0-3 Texture Format:
Internal Color Channel
Format Color Order Name RIY G/U B/V A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24

1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15

2 BGR 4:4:4:4 4@0 4@4 4@8 4@12

5 BGR 3:3:2 Front 3@0 3@3 2@6 0

6 BGR 3:3:2 Back 3@8 3@11 2@14 0

9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7
10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0

12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0

13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31
14 BGR Cl8 8@0 0 0 0

15 BGR Cl4 4@0 0 0 0

16 BGR 5:6:5 Front 5@0 6@5 5@11 0

17 BGR 5:6:5 Back 5@16 6@21 5@27 0

18 BGR YUVvi444 8@0 8@8 8@16 8@24
19 BGR YUV422 8@0 8@8 8@8 0

0 RGB 8:8:8:8 8@16 8@8 8@0 8@24

1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15

2 RGB 4:4:4:4 4@8 4@4 4@0 4@12

5 RGB 3:3:2 Front 3@5 3@2 2@0 0

6 RGB 3:3:2 Back 3@13 3@10 2@8 0

3D/ubs Proprietary and Confidential 239

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7
10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0
12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31
14 RGB Cl8 8@0 0 0 0
15 RGB Cl4 4@0 0 0 0
16 RGB 5:6:5 Front 5@11 6@5 5@0 0
17 RGB 5:6:5 Back 5@27 6@21 5@16 0
18 RGB Yuv444 8@16 8@8 8@0 8@24
19 RGB YUVA422 8@8 8@0 8@0 0

Notes: The format column is also dependent on bit6. n@m means n bits starting at bit m. Front and
Back modes replicate the color value to assist with double buffering. CI values are replicated into each
byte to assist with double buffering. Offset modes have 64 added to the 7 bit formatted value. If the
format has no alpha bits, the alpha field defaults to 0xF8

Bit4

Bit5

Bit6

Bit7-8

Bit9

No Alpha Buffer:
0 = Alpha buffer present
1 = Alpha buffer not present

Color Order:
0 = BGR
1 = RGB

Texture Format Extension. Most significant bit extension to Texture Format held in
bits0-3

AlphaMap:
0 = None
1 = Include: pass texels that lie within the AlphaMap bounds
2 = Exclude: fail texels that lie within the AlphaMap bounds
SpanFormat: used to control the data format of a texture map holding block fill
masks.
0 = Normal
1 = Flip: mirror the bits within each byte

240

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

TextureDownload Offset

Name: Texture Download Offset
Unit: Framebuffer R/W
Region: 0 Offset: 0x0000.88F0
Tag: 0x011E
Reset Value: Undefined
Write/Read
31 24 16 8 0
" Ressved | o2bitunonedintegeraddress

32 bit aligned address at which the texture load will start. Each write to TextureData increments this
value by one after the store has taken place. Note, if this register is read back it will not necessarily

TexturelD

contain the same value as the written value.

Bit0-21 Address

Name: Indirect handle for texture map

Unit: Texture Read

Region: 0 Offset: 0x0000.8F70
Tag: 0x001EE

Reset Value: Undefined

Read/write
31 24 16 8 0
Reserved 24 bit unsigned integer
System Memory
Reserved

The 24 bit field holds the address of the data that should be loaded into the TextureBaseAddress
register. If bit 30 is set this data is in system memory and should be fetched across the PCI bus.

3D/ubs Proprietary and Confidential 241

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

TextureMapFormat
Name: Texture Map Format
Unit: Texture Read
Region: 0 Offset: 0x0000.8588
Tag: 0x00B1
Reset Value: Undefined
Read/write
31 24 16 8 0
Reserved Reserved PP2 PP1 PPO
Partial product selection
Texel Size
Reserved Window origin
SubPatch mode
Specifies the organization of the texture map in memory.
Enabling subpatch addressing improves the performance of texture mapping in typical situations.
Bit0-2 Partial Product 0 - See Appendix C for a table of values
Bit3-5 Partial Product 1 - See Appendix C for a table of values
Bit6-8 Partial Product 2 - See Appendix C for a table of values
Bit16 Window Origin:
0=Top
1 = Bottom Left
Bitl7 Subpatch Mode:
0 = Disable
1 = Enable
Bit19-20 Texel Size:
0 = 8 bits
1 = 16 bits
2 = 32 bits
3 = 4 bits
4 = 24 bits
242 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

TextureReadMode

Name: Texture Read Mode
Unit: Texture Read
Region: 0 Offset: 0x0000.8670
Tag: 0x00CE
Reset Value: Undefined Read/write
31 24 16 8
Reserved Reserved Height Width Reserved
TWrapMode
Packed Data Filter Mode SWrapMode

Controls texture read operations. When FilterMode is set, bilinear texture mapping is performed
otherwise nearest neighbor texture mapping occurs. The S and TWrapModes specify the action to be
taken when the S and T coordinates fall outside the required range. Clamp is useful when texture
mapping a single image onto an object, Repeat cause the texture pattern to be repeated, whilst mirror
causes the texture pattern to be alternately reversed. The Packed Data bit is used to define how texels
are read from memory. If this bit is cleared, each texel is read one at a time; if set several texels can be
read simultaneously improving efficiency. The actual number of texels read in this case is dependent on
the texel size.
Bit0 Enable

0 = Disable texture reads

1 = Enable texture reads
Bitl-2 SWrapMode

0 = Clamp

1 = Repeat

2 = Mirror
Bit3-4 TWrapMode

0 = Clamp

1 = Repeat

2 = Mirror
Bit9-12 Width - log2 texture map width
Bit13-16 Height - log2 texture map height
Bit17 FilterMode

0 = Disable bilinear texture filtering

1 = Enable bilinear texture filtering
Bit24 PackedData

0 = off

1=o0n

3D/.5 Proprietary and Confidential 243

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

TStart

Name: Initial texture T value
Unit: Texture Address
Region: 0 Offset: 0x0000.83A0
Tag: 0x0074
Reset Value: Undefined
Read/write
31ll 24![[]11116llllllll8llllllIO
Integer Fraction

Reserved

Used to set the initial value for the T coordinate when texture mapping. Format is 2's complement
12.18 fixed point.

244 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

VOFixed[0..14]

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9000,.. 0x0000.9078
Tag: 0x00200,..0x0020F

Reset Value: Undefined

Read/write
31 24 16 8 0
32 bit value

Data for vertex 0. The following table shows the valid entries:

Offset Category Parameter Fixed Point Format

0 s 2.30s!

1 Texture t 2.30s

2 q 2.30s

3 Ks 2.22 us
4 Kd 2.22 us
5 red | 1.30 us
6 green 1.30 us
7 Color blue 1.30 us
8 alpha 1.30 us
9 Fog f 10.22 us
10 X 16.16 s
11 Coordinate y 16.16 s
12 z 1.30 us
13 Reserved Reserved

‘ 14 ‘ PackedColor ‘ PackedColor ‘ 8888 ‘

I'This is the range when Normalise is not used. When Normalise is enabled the fixed point format can be
anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they had
2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different from what
the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary point
positions) prior to conversion.

3D/ubs Proprietary and Confidential 245

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

V1Fixed[0..14]

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9080, 0x0000.90F8
Tag: 0x00210, 0x0021F

Reset Value: Undefined

Read/write
31 24 16 8 0
32 hit value

Data for vertex 1. The following table shows the valid entries:

Offset Category Parameter Fixed Point Format

0 s 2.30s!

1 Texture t 2.30 s

2 q 2.30s

3 Ks 2.22 us
4 Kd 2.22 us
5 red | 1.30 us
6 green 1.30 us
7 Color blue 1.30 us
8 alpha 1.30 us
9 Fog f 10.22 us
10 b'e 16.16s
11 Coordinate y 16.16 s
12 z 1.30 us
13 Reserved Reserved

‘ 14 ‘ PackedColor ‘ PackedColor ‘ 8888 |

IThis is the range when Normalise is not used. When Normalise is enabled the fixed point format can be
anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they had
2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different from what
the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary point
positions) prior to conversion.

246 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Graphics Register Reference

V2Fixed[0..14]

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9100, .. 0x0000.9178
Tag: 0x00220 .. 0x0022F

Reset Value: Undefined

Read/write
31 24 16 8 0
32 bit value

Data for vertex 2. The following table shows the valid entries:

Offset Category Parameter Fixed Point Format

0 s 2.30s!

1 Texture t 2.30s

2 q 2.30s

3 Ks 2.22 us
4 Kd 2.22 us
5 red | 1.30 us
6 green 1.30 us
7 Color blue 1.30 us
8 alpha 1.30 us
9 Fog f 10.22 us
10 X 16.16 s
11 Coordinate y 16.16 s
12 z 1.30 us
13 Reserved Reserved

| 14 | PackedColor | PackedColor | 8888 ‘

I'This is the range when Normalise is not used. When Normalise is enabled the fixed point format can be
anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they had
2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different from what
the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary point
positions) prior to conversion.

3D/ubs Proprietary and Confidential 247

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

VOFloat[0..14]

Name: Vertex 0 data
Unit: Delta
Region: 0 Offset: 0x0000.9180, 0x0000.91F8
Tag: 0x00230, 0x0023F
Reset Value: Undefined
Read/write
31 24 16 8 0
32 bit value
Data for vertex 0. The following table shows the valid entries:
Offset Category Parameter IEEE Single Precision Floating Point Range
0 s -1.0...1.0
1 t -1.0...1.0
2 Texture q -1.0...1.0
3 Ks 0.0...2.0
4 Kd 0.0...1.0
5 red 0.0...1.0
6 Color green 0.0...1.0
7 blue 0.0...1.0
8 alpha 0.0...1.0
9 Fog f -1.0...1.0
10 < -32K...+32K footnotes 1,2
11 Co-ordinate y -32K...+32K footnotes 1,2
12 Z 0.0...1.0
13 Reserved Reserved
14 PackedColor | PackedColor 8888
IThe normal range here is limited by the size of the screen.
2K = 1024.
248 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

V1Float[0..14]

Name: Vertex 0 data
Unit: Delta
Region: 0 Offset: 0x0000.9200, 0x0000.8278
Tag; 0x00240, 0x0024F
Reset Value: Undefined
Read/write
31111 24-111.:1116-1:1:11:8-||1|:|:
32 bit value

Data for vertex 1. The following table shows the valid entries:

Offset Category Parameter IEEE Single Precision Floating Point Range

0 s -1.0...1.0

1 Texture t -1.0...1.0

2 q -1.0...1.0

3 Ks 0.0...2.0

4 Kd 0.0...1.0

5 red 0.0...1.0

6 Color green 0.0...1.0

7 blue 0.0...1.0

8 alpha 0.0...1.0

9 Fog f -1.0...1.0

10 x 232K...+32K footnotes 1,2
11 Co-ordinate y -32K...+32K footnotes 1,2
12 z 0.0...1.0

13 Reserved Reserved

14 PackedColor | PackedColor 8888

IThe normal range here is limited by the size of the screen.

2K = 1024.

3D/.bs

Proprietary and Confidential

249

Graphics Register Reference

PERMEDIA 2 Programmers Reference Manual

V2Float[0..14]

Name: Vertex 0 data
Unit: Delta
Region: 0 Offset: 0x0000.9280, 0x0000.92F8
Tag: 0x00250, 0x0025F
Reset Value: Undefined
Read/write
31 24 16 8 0
32 bit value
Data for vertex 2. The following table shows the valid entries:
Offset Category Parameter IEEE Single Precision Floating Point Range
0 s -1.0...1.0
1 Texture t -1.0...1.0
2 q -1.0...1.0
3 Ks 0.0...2.0
4 Kd 0.0...1.0
5 red 0.0...1.0
6 Color green 0.0...1.0
7 blue 0.0...1.0
8 alpha 0.0...1.0
9 Fog f -1.0...1.0
10 < -32K...+32K footnotes 1,2
11 Co-ordinate y -32K...+32K footnotes 1,2
12 Z 0.0...1.0
13 Reserved Reserved
14 PackedColor | PackedColor 8888
IThe normal range here is limited by the size of the screen.
2K = 1024.
250 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

WaitForCompletion
Name: Wait for completion
Unit: Rasterizer
Region: 0 Offset: 0x0000.8088
Tag: 0x0017
Reset Value: Undefined
Write
31 24 16 8 0
Reserved
This command register causes PERMEDIA to suspend operation until all framebuffer writes have
completed. Useful to separate, say, a texture download from subsequent primitives.
Bit0-31 Reserved
3D/ubs Proprietary and Confidential 251

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

Window

Name: Window
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.8980
Tag; 0x0130
Reset Value: Undefined
Read/write
31ll ' 24.llll ;16.1.;|1|:8-11 110
| IR@rvw Reserved

|
LB UpdateSource
Disable LB Update Force LB Update

Reserved

If the Force LB Update bit is set, this overrides the stencil and depth tests, and the per unit enables, to
force the localbuffer to be updated. Writes must still be enabled in the LBWriteMode register. When
this bit is clear any update is conditional on the outcome of the stencil and depth tests.

If the Disable LB Update bit is set the results of the stencil and depth tests are overridden and the
localbuffer not updated, even if localbuffer writes are enabled. When writes are disabled in
LBWriteMode there may be a performance advantage in also setting Disable LB Update.

Bit3 Force LB Update:
0 = Not Forced
1 = Forced
Bit4 LB Update Source:

0 = LBSourceData
1 = Registers

Bitl18 Disable LB Update
0 = Update
1 = No Update

252 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

WindowOrigin

Name: Window Origin
Unit: Scissor/Stipple
Region: 0 Offset: 0x0000.81C8
Tag: 0x0039
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used 12 bit 2’s conplement Y Not used 12 bit 2's complement
As the Rasterizer unit generates each fragment, the fragment’s coordinates are adjusted by the amount
of the origin to generate the fragment’s screen coordinates. This occurs prior to doing the screen scissor
test.
XleltS
Name: X extent for rasterizing
Unit: Rasterizer
Region: 0 Offset: 0x0000.80C8
Tag: 0x0019
Reset Value: Undefined
Read/write
31 24 16 8 0
Not used 12 bit 2’s complement X Max | Not used 12 bit 2’'s complement X M
Defines the X extent the Rasterizer should fill between.
3D/ubs Proprietary and Confidential

253

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

YLimits
Name: Y extent for rasterizing
Unit: Rasterizer
Region: 0 Offset: 0x0000.80A8

Tag: 0x0015
Reset Value: Undefined
Read/write

31 24 16 8 0

T T 1 1 1 T T T T T T T T T T T T T T T L] T T T T T T T

Not used 12 bit 2's conplement Y Max | Not used 12 bit 2’s complement Y Mi

Defines the Y extent the Rasterizer should fill between.

254 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Graphics Register Reference

YUVMode

Name: YUV Mode
Unit: YUV
Region: 0 Offset: 0x0000.8F00
Tag: 0x01E0
Reset Value: Undefined
Read/write
31lll 24-111.11116-||1|1|:8-| l0
Reserved

TexelDisableUpdate
RejectTexel
TestData
TestMode
Enable
Control YUV to RGB conversion and/or chroma test.
Bit0 Enable
0 = YUV to RGB color space conversion disabled
1 = YUV to RGB color space conversion enabled
Bit1-2 TestMode
0 = No chroma test
1 = Pass if within chroma bounds
2 = Fail if within chroma bounds
Bit3 TestData
0 = Apply chroma test on input data (before color space conversion if
enabled)
1 = Apply chroma test on output data (after color space conversion if
enabled)
Bit4 RejectTexel
0 = Do not plot pixel if chroma test fails
1 = Do not texture pixel if chroma test fails
Bit5 TexelDisableUpdate

0 = Pass on texel data
1 = Reject texel data immediately after chroma test

3D/.bs

Proprietary and Confidential 255

Graphics Register Reference PERMEDIA 2 Programmers Reference Manual

ZStartL

Name: Depth Start Value - Lower
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.89B8
Tag: 0x0137
Reset Value: Undefined
Read/write
31111 24-::|11116-||:|||:8-11111110
11 bit fraction Not used

This register holds part of the start value for depth interpolation. ZStartU holds the most significant
bits, and ZStartL the least signiﬁcant bits. The combined value is in 2's complement 17.11 fixed point
format.

ZStartU

Name: Depth Start Value - Upper
Unit: Stencil/Depth
Region: 0 Offset: 0x0000.89B0
Tag; 0x0136
Reset Value: Undefined
Read/write
31.1;;11124-::1||1161.:.11:8-11111110
Not Used 16 bit integer
Sign

This register holds part of the start value for depth interpolation. ZStartU holds the most significant
bits, and ZStartL the least significant bits. The combined value is in 2's complement 17.11 fixed point
format.

256 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Pseudocode Definitions

Appendix B. Pseudocode Definitions

In many areas of the document fragments of pseudocode are given, to describe the
loading of registers. These are based on a C interface to PERMEDIA in which each
32 bit register is represented as a C structure, potentially split into a series of bit
fields. In an example where only a subset of the bit fields in a register are set, it is
assumed either that a software copy of the register is being modified, or that the
current contents of the register has first been read back to the host. This style has
been chosen for clarity; there are often more efficient strategies.

The constant definitions and register bit field definitions are based upon those used
in the 3Dlabs driver software. Sources including header files for this are available
under source license agreement.

Warning: the order of loading control registers into the HyperPipeline has also
been chosen for clarity, rather than efficiency. The optimal order is documented in
section §7.2.3.

Loading of a PERMEDIA register is expressed as:
regi ster-nanme(val ue)

When writing directly to the register file (i.e. to a FIFO) this would be
implemented by writing “value” to the mapped-in address of the register called
“register-name”.

Fragmentary examples are not in strict C syntax, a typical example is:

/1 Sanple code to rasterize a 10x10 rectangle at the
/1 framebuffer origin.

St art XDom (0) /1 Start domi nant edge
Start XSub (1<<16) /1 Start of subordinate
dXDom (0x0)

dXSub (0x0)

Count (OxA)

YStart (0)

dYy (1<<16)

/1 Set-up to render a trapezoid.

render. AreaSti ppl eEnabl e = PERVEDI A DI SABLE
render. PrimtiveType = PERVEDI A TRAPEZO D
render. Fast Fi | | Enabl e = PERVEDI A_DI SABLE
render . FogEnabl e = PERVEDI A_DI SABLE

render. Text ur eEnabl e = PERVEDI A DI SABLE
render . ReuseBi t Mask = PERVEDI A DI SABLE
render. SyncOnBi t Mask = PERMEDI A_FALSE
render. SyncOnHost Dat a = PERMVEDI A FALSE

Render (render) /'l Render the rectangle

Code is shown in courier and comments are C++ style '//' indicating that the rest
of the line is a comment. Any statement which ends in parenthesis is a register
update, other statements will generally be assignments. A variable, say render, is of
a type associated with the register being modified. This will usually be clear by the

3D/.bs

Proprietary and Confidential 257

Pseudocode Definitions PERMEDIA 2 Programmers Reference Manual

context and will not usually be declared as such. All the type definitions are in the
header files. The values assigned to a register will be either a variable as described
above, a macro i.e. PERMEDIA_TRUE, as found in the headers, or an immediate
constant in C style format i.e. 0x45. In registers which have several fields, some of
which are not relevant to a particular example, the field can be ignored completely
or set to don t care. In some registers, values for fields which need to be set but are
not readily available will typically be set as appropriate.

In some fragments, simply a list of commands is given e.g.:

/| Sanmple code to rasterize a rectangle
StartXDom ()// Start dom nant edge
StartXSub ()// Start of subordinate
dXbom ()

dXSub ()

Count ()

YStart ()
dy ()

/] Set-up to render an aliased trapezoid.

Render () /'l Render the rectangle

This technique is used to simply give a feel for the registers involved in a particular
operation and where a detailed treatment is not warranted.

To take the address of a register, the name is used, thus this example stores the
address of the StartXDom register in the buffer pointed to by the variable buf
and increments the pointer:

*puf ++ = Start XDom

To test the value of a register the register name is dereferenced using the C ™'

operator as for instance in this example which tests for the completion of a DMA

operation:
whil e(*DVACount !'= 0) ;

258

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Pseudocode Definitions

Appendix C. Screen Widths Table

The screen width is specified as the sum of selected partial products so a full

multiply operation is not needed. The partial products are selected by the fields
PPO, PP1 and PP2 in the FBReadMode register, LBReadMode register and
TextureMapFormat register. The range of widths supported by this technique are
tabulated below, together with the values for each of the PP fields.

Screen Width

PPO

PP1

PP2

0

32

64

96

128

160

192

224

256

288

320

384

416

448

512

544

576

640

768

800

832

896

1024

1056

1088

1152

1280

1536

1568

1600

1664

1792

2048

(e NexW Rox N oW Ne) N RV B RV, BN AV R AV N VAT BV, B RV, B IV, B O T BN I S B S BN SN I SN S SN (O R IACUR ROV ROV (RN I NS I ST I S B el Bl)

AN RV, VLT RV, T RV, T R B N R I R i R N N N N RN SN ES N BN AN SR SN ROUR ROURY I \S R [SO R I ST I ST E i B el el)

AVAT I SN ORI I ST R AV B N R R S e G RSN BT R BN (RO I SO T R AU I SO Bl IO I SS I B I NS R i I SS T N B B Kl el)

Table C.1 Partial Products

Note that PERMEDIA supports a maximum screen resolution of 2048 x 2048.

3D/.bs

Proprietary and Confidential

259

A Gouraud Shaded Triangle
PERMEDIA 2 Programmers Reference Manual

Appendix D. A Gouraud Shaded Triangle
without using the Delta Unit

For best performance, the Delta unit in PERMEDIA should be used to calculate the

edge deltas used by the Graphics Processor. For backward compatibility, or special
situations, the edge delta registers may be programmed directly, and this appendix
describes the calculations that are needed to do this correctly.

In this section we show how to render a typical 3D graphics primitive without
using the Delta Unit. The primitive is a Gouraud shaded, depth buffered triangle.
This appendix is included to understand any legacy PERMEDIA 1 software to allow
alternative rasterization techniques to be used. For this example, assume the
coordinate origin is bottom left of the window and drawing will be from top to
bottom. PERMEDIA can draw from top to bottom or bottom to top.

D1 A Gouraud Shaded Triangle

Consider a triangle with vertices, v;, v, and v3 where each vertex comprises X, Y

and Z coordinates, shown below. Each vertex has a different color made up of red,

green and blue (R, G and B) components.
XY, Z

17171

RG,B)

vl

v3 (X3Y323
R,G,B)

Figure D1 Example Triangle

The diagram makes a distinction between top and bottom halves because
PERMEDIA is designed to rasterize screen aligned trapezoids and flat topped or
bottomed triangles as shown below:

Figure D2 Screen aligned trapezoid and flat topped triangle

260 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal A Gouraud Shaded Triangle

D2 Initialization

PERMEDIA requires many of its registers to be initialized in a particular way,
regardless of what is to be drawn; for instance, the screen size and appropriate
clipping must be set-up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been done. More details may
be found in the chapter on initialization, chapter §6.

Other state will change occasionally, though not usually on a per primitive basis,
for instance enabling Gouraud shading and depth buffering. A detailed treatment
will be found in later sections of this chapter, and details are not included here.

D3 Dominant and Subordinate Sides of a Triangle

The dominant side of a triangle is that with the greatest range of Y values. The
choice of dominant side is optional when the triangle is either flat bottomed or flat

topped.

PERMEDIA always draws triangles starting from the dominant edge towards the
subordinate edges. This simplifies the calculation of set-up parameters as will be

seen below.
Subordinate Subordinate
Side \ ‘/,/ Sides
Dominant Dominant
Subordinate _w" Side Side
Side
Figure D3 Dominant and Subordinate Sides of a Triangle
D4 Calculating Color values for Interpolation

To draw from left to right and top to bottom, the color gradients (or deltas)
required are:

G:-G& dBdyss = Bs— B:

3— VY1 Ys—YVY1

Rs— Ru
dRdy1s = Yoo Vs dGdyis =

And from the plane equation:

R ={(Ri- R) x Xy (- Ry « T

3D/ubs Proprietary and Confidential 261

A Gouraud Shaded Triangle
PERMEDIA 2 Programmers Reference Manual

G0 =((G1= G x) ~((G:- 69 <)

OB = (B~ B x) (B2 B)

where:

a = ABS({(X1— X3) x(Y2-Y3} —{(X2— X3) x(Y1-Y3)})

These values allow the color of each fragment in the triangle to be determined by
linear interpolation. For example, the red component color value of a fragment at

Xp, Y could be calculated by:
e adding dRdy3, for each scanline between Y| and Yy, to Rj.

* then adding dRdx for each fragment along scanline Y}, from the left edge to Xj,.

The example chosen has the 'knee' i.e. vertex 2, on the right hand side, and
drawing is from left to right. If the knee were on the left side (or drawing was from
right to left), then the Y deltas for both the subordinate sides would be needed to
interpolate the start values for each color component (and the depth value) on each
scanline. For this reason PERMEDIA always draws triangles starting from the
dominant edge and towards the subordinate edges. For the example triangle, this
means left to right.

D5 Register Set-up for Color Interpolation
For the example triangle the PERMEDIA registers must be set as follows. Details of
register formats are given later.
/1 Load the color start and delta values to draw
// a triangle
RStart (R1)
GStart (Gl)
BStart (Bl)
dRdyDom (dRdy13) // To wal k up the dom nant edge
dCGdyDom (dGdy13)
dBdyDom (dBdy13)
dRdx (dRdx) /1 To wal k al ong the scanline
dGdx (dGdx)
dBdx (dBdx)
D6 Calculating Depth Gradient Values
To draw from left to right and top to bottom, the depth gradients (or deltas)
required for interpolation are:
262 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal A Gouraud Shaded Triangle

Z3— 271

dZdyis =
yi2 Ys—Y1

And from the plane equation:

i ={(2:- 79 < -z 29 <

where

a=ABS{(X1— X3) x(Y2=-Y3} —{(X2- X3) x(Y1-Y3)})

The divisor, shown here as a, is the same as for color gradient values. The two
deltas, dZdy,3 and dZdx allow the Z value of each fragment in the triangle to be
determined by linear interpolation as was described for the color interpolation
above.

D7 Register Set-up for Depth Testing
Internally PERMEDIA uses fixed point arithmetic. The formats for each register are
described later. Each depth value must be converted into a 2's complement fixed
point number and then loaded into the appropriate pair of registers. The 'Upper’
or 'U' registers store the integer portion, whilst the 'Lower' or 'L’ registers store the
fractional bits, left justified and zero filled.
For the example triangle, PERMEDIA would need its registers set-up as follows:
/1 Load the depth start and delta val ues
/1l to draw a triangle
ZStartU (Z1_MB)
ZStartL (Z1_LS)
dzdyDomU (dzdy13_Ms)
dzdyDonL (dzdy13_LS)
dzdxU (dzdx_MB)
dzdxL (dzdx_LS)

D8 Calculating the Slopes for each Side
PERMEDIA draws filled shapes such as triangles as a series of spans with one span per
scanline. Therefore it needs to know the start and end X coordinate of each span.
These are determined by 'edge walking'. This process involves adding one delta
value to the previous span's start X coordinate and another delta value to the
previous span's end X coordinate to determine the X coordinates of the new span.
These delta values are in effect the slopes of the triangle sides. To draw from left to
right and top to bottom, the slopes of the three sides are calculated as:

3D/ubs Proprietary and Confidential 263

A Gouraud Shaded Triangle
PERMEDIA 2 Programmers Reference Manual

D9

D10

X3— X1 AXez = X2 — X1 dXos = Xz—Xo2
Ys—VY1 Y2—-Y1 Ys—-Y:2

dXz =

This triangle will be drawn in two parts, top down to the 'knee' i.e. vertex 2 and
then from there to the bottom. The dominant side is the left side so for the top

half:
dXDom = dXiz dXSub = dX12

The start X,Y, the number of scanlines, and the above deltas give PERMEDIA
enough information to edge walk the top half of the triangle. However, to indicate
that this is not a flat topped triangle (PERMEDIA is designed to rasterize screen
aligned trapezoids and flat topped triangles), the same start position in terms of X

must be given twice as StartXDom and StartXSub.

To edge walk the lower half of the triangle, selected additional information is
required. The slope of the dominant edge remains unchanged, but the subordinate
edge slope needs to be set to:

dXSub = dX23

Also the number of scanlines to be covered from Y2 to Y3 needs to be given.
Finally to avoid any rounding errors accumulated in edge walking to X, (which can

lead to pixel errors), StartXSub must be set to X7.

Rasterizer Mode

The PERMEDIA Rasterizer has a number of modes which remain effective from the
time they are set until they are modified and can thus affect many primitives. In
the case of the Gouraud shaded triangle, the default values for these modes are
suitable.

Rast eri zer Mode (0) /1 Default Rasterizer node

Subpixel Correction

PERMEDIA can perform subpixel correction of all interpolated values when
rendering aliased trapezoids. This correction ensures that any parameter
(color/depth/texture/fog) is correctly sampled at the center of a fragment. In
general, subpixel correction will always be enabled when rendering any trapezoid
which has interpolated parameters. Control of subpixel correction is in the Render
command register described in the next section, and is selectable on a per primitive
basis. It does not need to be enabled for any primitive that does not use
interpolation, including copy operations. If it is disabled and interpolators are used,

264

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal A Gouraud Shaded Triangle

the values calculated for the primitive may not be exactly correct; enabling sub-
pixel correction may reduce the performance of the chip, particularly for small

primitives.

D11 Rasterization
PERMEDIA is almost ready to draw the triangle. Setting up the registers as described
here and sending the Render command will cause the top half of the example
triangle to be drawn.
For drawing the example triangle, all the bit fields within the Render command
should be set to 0 except the PrimitiveType which should be set to trapezoid and
the SubPixelCorrectionEnable bit which should be set to TRUE.
/1 Draw triangle with knee
/1 Set deltas
St art XDom (X1<<16) /1 Converted to 16.16 fixed point
dXDom (((X3 - X1)<<16)/(Y3 - Y1))
Start XSub (X1<<16)
dXSub (((X2 - X1)<<16)/(Y2 - Y1))
StartyY (Y1<<16)
dY (-1<<16)
Count (Y1 - Y2)
/1 Set the render conmand node
render.PrimitiveType = PERVEDI A TRAPEZO D PRI M Tl VE
render . SubPi xel Correcti onEnabl e = TRUE
/1 Draw the top half of the triangle
Render (render)
After the Render command has been issued, the registers in PERMEDIA can
immediately be altered to draw the lower half of the triangle. Note that only two
registers need be loaded and the command ContinueNewSub sent. Once
PERMEDIA has received ContinueNewSub, drawing of this sub-triangle will begin.
/] Set-up the delta and start for the new edge
St art XSub (Xp<<16)
dXSub (((X3 - Xp)<<16)/(Y3 - Y2))
/1 Draw sub-triangle
Cont i nueNewSub (Y2 - Y3) /1 Draw | ower half

3D/ubs Proprietary and Confidential 265

Register Tables PERMEDIA 2 Programmers Reference Manual

Appendix E. Register Tables

The following tables list registers by: unit, name and register address, giving their
tag values and indicating their type. The register groups may be used to improve

data transfer rates to PERMEDIA when using DMA.
The following types of register are distinguished:

* Control: Set state and control bits ready to draw a primitive. This is the default
and is indicated by a blank entry in the “Type” column.

e Command: Initiates some operation e.g. drawing of a primitive.

* Mixed A control register which may also be used to supply successive data
values during download.

* Output: An internal register that cannot be read or written, but whose contents
is passed to the Host Out FIFO under the control of certain commands.

In addition the table indicates whether the register can be read back. A blank entry
in this column indicates that the register’s contents cannot be read back.

The following table is a list of registers in unit order:

Unit Register Major Group (hex) Offset (hex) Type Readable

Delta VOFixed[15] 20 0...D .
V1Fixed[15] 21 0...D .
V2Fixed[15] 22 0...D .
VOFloat[15] 23 0...D .
V1Float[15] 24 0...D .
V2Float[15] 25 0...D .
DeltaMode 26 0 .
DrawTriangle 26 1
RepeatTriangle 26 2
DrawLine01 26 3
DrawLinel0 26 4
RepeatLine 26 5

Rasterizer StartXDom 00 0 .
dXDom 00 1 .
StartXSub 00 2 .
dXSub 00 3 .
StartY 00 4 .
dY 00 5 *
Count 00 6 .
Render 00 7 Command
ContinueNewLine 00 8 Command
ContinueNewDom 00 9 Command
ContinueNewSub 00 A Command
Continue 00 B Command
BitMaskPattern 00 D Mixed
RectangleOrigin 01 A
RectangleSize 01 B
RasterizerMode 01 4 .
Ylimits 01 5 .
WaitForCompletion 01 7 Command

266 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Register Tables
Xlimits 01 9 .
PackedDataLimits 02 A .
Scissor/Stipple ScissorMode 03 0 .
ScissorMinXY 03 1 o
ScissorMaxXY 03 2 .
ScreenSize 03 3 °
AreaStippleMode 03 4 .
WindowOrigin 03 9 °
AreaStipplePattern[0..7] 04 0.7 .
LBRead/Write LBReadMode 11 0 o
LBReadFormat 11 1 .
LBSourceOffset 11 2 D
LBData 11 3
LBStencil 11 5 Output
LBDepth 11 6 Output
LBWindowBase 11 7 .
LBWriteMode 11 8]
LBWriteFormat 11 9 *
Stencil/Depth Window 13 0 .
StencilMode 13 1 .
StencilData 13 2 .
Stencil 13 3 Mixed o
DepthMode 13 4 .
Depth 13 5 Mixed .
ZstartU 13 6]
ZStartL 13 7 *
dZdxU 13 8 .
dZdxL 13 9 .
dZdyDomU 13 A .
dZdyDomL 13 B .
Texture Address TextureAddressMode 07 0 .
Sstart 07 1 o
dSdx 07 2 .
dSdyDom 07 3 .
Tstart 07 4 .
dTdx 07 5 *
dTdyDom 07 6 .
Qstart 07 7 .
dQdx 07 8 .
dQdyDom 07 9 .
Texture Read TextureBaseAddress 0B 0 .
TextureMapFormat 0B 1 .
TextureDataFormat 0B 2 .
Texel0 0C 0 .
TextureReadMode 0C E .
Texel LUTMode 0C F .
Texel LUTT0..15] 1D 0..F .
AlphaMapUpperBound 1E 3 .
AlphaMapLowerBound 1E 4 .
Texel LUTIndex 09 8 *
TexelLUTData 09 9 °
Texel LUTAddress 09 A .
Texel LUT Transfer 09 B .
3D/ubs Proprietary and Confidential 267

Register Tables PERMEDIA 2 Programmers Reference Manual

TexturelD 1E E Command .
Texel LUTID 1E F Command .
YUV YUVMode 1E 0 .
ChromaUpperBound 1E 1 .
ChromaLowerBound 1E 2 .
FBRead/Write FBReadMode 15 0 *
FBSourceOffset 15 1 .
FBPixel Offset 15 2 .
FBColor 15 3 Output
FBData 15 4 Mixed
FBSourceData 15 5 Mixed
FBWindowBase 15 6 .
FBWriteMode 15 7 .
FBHardwareWriteMask 15 8 .
FBBlockColor 15 9 .
FBReadPixel 15 A .
TextureData 11 D
TextureDownloadOffset 11 E .
SuspendUntilFrameBlank 18 F Command
FBBlockColorU 18 D .
FBBlockColorL 18 E .
FBSourceBase 1B 0 .
FBSourceDelta 1B 1 Command .
Color DDA Rstart 0F 0 .
dRdx OF 1 .
dRdyDom OF 2 .
Gstart OF 3 .
dGdx OF 4 .
dGdyDom OF 5 .
Bstart OF 6 .
dBdx OF 7 .
dBdyDom OF 8 .
Astart OF 9 .
ColorDDAMode 0F C .
ConstantColor OF D .
Color OF E Mixed
Texture/Fog/Blend TextureColorMode 0D 0 .
FogMode 0D 2 .
FogColor 0D 3 .
Fstart 0D 4 .
dFdx 0D 5 .
dFdyDom 0D 6 .
KsStart 0D 9 .
dKsdx 0D A .
dKsdyDom 0D B .
KdStart 0D C .
dKddx 0D D .
dKddyDom 0D E .
AlphaBlendMode 10 2 .
Color Format DitherMode 10 3 .
Logical Ops FBSoftwareWriteMask 10 4 .
LogicalOpMode 10 5 N
Host Out FilterMode 18 0 .

268 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Register Tables
StatisticMode 18 1 .
MinRegion 18 2 *
MaxRegion 18 3 N
ResetPickResult 18 4 Command
MinHitRegion 18 5 Command
MaxHitRegion 18 6 Command
PickResult 18 7 Command .
Sync 18 8 Command

Multiple Config 1B 2

Table E1 Registers by Unit
3D/ubs Proprietary and Confidential 269

Register Tables PERMEDIA 2 Programmers Reference Manual

The following table is a list of registers in register order.

Register Major Group (hex) Offset (hex) Type Readable
AlphaBlendMode 10 2 .
AlphaMapLowerBound 1E 4 .
AlphaMapUpperBound 1E 3 .
AreaStippleMode 03 4 .
AreaStipplePattern[0..7] 04 0.7 .
AStart OF 9 .
BitMaskPattern 00 D Mixed

BStart OF 6 *
ChromaLowerBound 1E 2 .
ChromaUpperBound 1E 1 .
Color OF E Mixed
ColorDDAMode 0F C .
Config 1B 2

ConstantColor 0F D .
Continue 00 B Command
ContinueNewDom 00 9 Command
ContinueNewLine 00 8 Command
ContinueNewSub 00 A Command

Count 00 6 .
dBdx OF 7 .
dBdyDom OF 8 .
DeltaMode 26 0 .
Depth 13 5 Mixed .
DepthMode 13 4 .
dFdx 0D 5 .
dFdyDom 0D 6 .
dGdx OF 4 .
dGdyDom OF 5 .
DitherMode 10 3 .
dKddx 0D D .
dKddyDom 0D E .
dKsdx 0D A .
dKsdyDom 0D B .
dQdx 07 8 .
dQdyDom 07 9 .
DrawLine(1 26 3

DrawLinel0 26 4

DrawTriangle 26 1

dRdx OF 1 .
dRdyDom OF 2 .
dSdx 07 2 .
dSdyDom 07 3 .
dTdx 07 5 .
dTdyDom 07 6 .
dXDom 00 1 .
dXSub 00 3 .
dY 00 5 *
dZdxL 13 9 *
dZdxU 13 8 .
dZdyDomL 13 B .

270 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Register Tables

dZdyDomU 13 A .
FBBlockColor 15 9 *
FBBlockColorL 18 E .
FBBlockColorU 18 D o
FBColor 15 3 Output

FBData 15 4 Mixed
FBHardwareWriteMask 15 8 .
FBPixel Offset 15 2 o
FBReadMode 15 0 .
FBReadPixel 15 A o
FBSoftwareWriteMask 10 4 .
FBSourceBase 1B 0 o
FBSourceData 15 5 Mixed
FBSourceDelta 1B 1 Command .
FBSourceOffset 15 1 .
FBWindowBase 15 6 .
FBWriteMode 15 7 .
FilterMode 18 0 .
FogColor 0D 3 .
FogMode 0D 2 .
FStart 0D 4 .
GStart OF 3 °
KdStart 0D C .
KsStart 0D 9 °
LBData 11 3

LBDepth 11 6 Output
LBReadFormat 11 1 .
LBReadMode 11 0 .
LBSourceOffset 11 2 .
LBStencil 11 5 Output
LBWindowBase 11 7 .
LBWriteFormat 11 9 *
LBWriteMode 11 8 .
LogicalOpMode 10 5 .
MaxHitRegion 18 6 Command
MaxRegion 18 3 .
MinHitRegion 18 5 Command
MinRegion 18 2 .
PackedDataLimits 02 A .
PickResult 18 7 Command o
QStart 07 7 *
RasterizerMode 01 4 .
RectangleOrigin 01 A

RectangleSize 01 B

Render 00 7 Command
RepeatLine 26 5

RepeatTriangle 26 2

ResetPickResult 18 4 Command

RStart OF 0 .
ScissorMaxXY 03 2 o
ScissorMinXY 03 1 .
ScissorMode 03 0 o
ScreenSize 03 3 .

3D/ubs Proprietary and Confidential 271

Register Tables PERMEDIA 2 Programmers Reference Manual

SStart 07 1 .
StartXDom 00 0 .
StartXSub 00 2 .
StartY 00 4 .
StatisticMode 18 1 .
Stencil 13 3 Mixed .
StencilData 13 2 .
StencilMode 13 1 .
SuspendUntilFrameBlank 18 F Command

Sync 18 8 Command

TexelO 0C 0 .
Texel LUTI0..15] 1D 0..F .
Texel LUTAddress 09 A .
TexelLUTData 09 9 .
TexelLUTID 1E F Command .
Texel LUTIndex 09 8 .
TexelLUTMode 0C F .
Texel LUT Transfer 09 B .
TextureAddressMode 07 0 .
TextureBaseAddress 0B 0 .
TextureColorMode 0D 0 .
TextureData 11 D

TextureDataFormat 0B 2 .
TextureDownloadOffset 11 E .
TextureID 1E E Command .
TextureMapFormat 0B 1 .
TextureReadMode 0C E .
TStart 07 4 .
VOFixed[14] 20 0...D .
VOFloat[14] 23 0...D .
V1Fixed[14] 21 0...D .
V1Float[14] 24 0...D .
V2Fixed[14] 22 0...D .
V2Float[14] 25 0...D .
WaitForCompletion 01 7 Command

Window 13 0 .
WindowOrigin 03 9 .
XLimits 01 9 *
YLimits 01 5 .
YUVMode 1E 0 .
ZStartL 13 7 °
ZStartU 13 6 .

Table E2 Registers by Name

272 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Register Tables
The following table is a list of registers in address order.

Major Group (hex) Offset (hex) Register Type Readable
00 0 StartXDom .
00 1 dXDom .
00 2 StartXSub .
00 3 dXSub .
00 4 StartY .
00 5 dy .
00 6 Count .
00 7 Render Command
00 8 ContinueNewLine Command
00 9 ContinueNewDom Command
00 A ContinueNewSub Command
00 B Continue Command
00 D BitMaskPattern Mixed
01 4 RasterizerMode .
01 5 Ylimits .
01 7 WaitForCompletion Command
01 9 XLimits .
01 A RectangleOrigin
01 B RectangleSize
02 A PackedDataLimits .
03 0 ScissorMode .
03 1 ScissorMinXY .
03 2 ScissorMaxXY .
03 3 ScreenSize .
03 4 AreaStippleMode .
03 9 WindowOrigin .
04 0.7 AreaStipplePattern[0..7] .
07 0 TextureAddressMode .
07 1 SStart .
07 2 dSdx .
07 3 dSdyDom .
07 4 TStart .
07 5 dTdx .
07 6 dTdyDom .
07 7 QStart .
07 8 dQdx .
07 9 dQdyDom .
09 8 Texel LUTIndex .
09 9 TexelLUTData .
09 A Texel LUT Address .
09 B Texel LUT Transfer .
0B 0 TextureBaseAddress .
0B 1 TextureMapFormat .
0B 2 TextureDataFormat *
0C 0 TexelO .
0C E TextureReadMode .
0C F TexelLUTMode .
0D 0 TextureColorMode .
0D 2 FogMode .
0D 3 FogColor .

3D/ubs Proprietary and Confidential 273

Register Tables PERMEDIA 2 Programmers Reference Manual

0D 4 FStart .
0D 5 dFdx o
0D 6 dFdyDom .
0D 9 KsStart .
0D A dKsdx .
0D B dKsdyDom .
0D C KdStart .
0D D dKddx .
0D E dKddyDom .
OF 0 RStart .
OF 1 dRdx .
OF 2 dRdyDom .
OF 3 GStart .
0F 4 dGdx .
OF 5 dGdyDom .
OF 6 BStart o
OF 7 dBdx .
OF 8 dBdyDom .
OF 9 AStart .
OF C ColorDDAMode o
OF D ConstantColor .
OF E Color Mixed

10 2 AlphaBlendMode .
10 3 DitherMode o
10 4 FBSoftwareWriteMask .
10 5 LogicalOpMode .
11 0 LBReadMode .
11 1 LBReadFormat .
11 2 LBSourceOffset .
11 3 LBData

11 5 LBStencil Output

11 6 LBDepth Output

11 7 LBWindowBase .
11 8 LBWriteMode o
11 9 LBWriteFormat .
11 D TextureData

11 E TextureDownloadOffset .
13 0 Window .
13 1 StencilMode .
13 2 StencilData °
13 3 Stencil Mixed .
13 4 DepthMode .
13 5 Depth Mixed .
13 6 ZStartU °
13 7 ZStartL .
13 8 dZdxU .
13 9 dZdxL .
13 A dZdyDomU .
13 B dZdyDomL .
15 0 FBReadMode .
15 1 FBSourceOffset .
15 2 FBPixel Offset o
15 3 FBColor Output

274 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Register Tables
15 4 FBData Mixed
15 5 FBSourceData Mixed
15 6 FBWindowBase
15 7 FBWriteMode
15 8 FBHardwareWriteMask
15 9 FBBlockColor
15 A FBReadPixel
18 0 FilterMode
18 1 StatisticMode
18 2 MinRegion
18 3 MaxRegion
18 4 ResetPickResult Command
18 5 MinHitRegion Command
18 6 MaxHitRegion Command
18 7 PickResult Command
18 8 Sync Command
18 D FBBlockColorU
18 E FBBlockColorL
18 F SuspendUntilFrameBlank Command
1B 0 FBSourceBase
1B 1 FBSourceDelta Command
1B 2 Config
1D 0..F TexelLUTI0..15]
1E 3 AlphaMapUpperBound
1E 4 AlphaMapLowerBound
1E E TexturelD Command
1E F TexelLUTID Command
1E 0 YUVMode
1E 1 ChromaUpperBound
1E 2 ChromalowerBound
20 0...D VOFixed[14]

21 0...D V 1Fixed[14]

22 0...D V2Fixed[14]

23 0...D VOFloat[14]

24 0..D V1Fioa[14]

25 0...D V2Float[14]

26 0 DeltaMode

26 1 DrawTriangle

26 2 RepeatTriangle

26 3 DrawLine01

26 4 DrawLinel0

26 5 RepeatLine

Table E3 Registers by Address

3D/ubs Proprietary and Confidential 275

PERMEDIA 1 and PERMEDIA 2 Differences ~ IPERMEDIA 2 Programmers Reference Manual

Appendix F. PERMEDIA 1 and PERMEDIA 2
Differences

F1 Introduction

This document describes the differences between the original PERMEDIA referred to
as PERMEDIA 1 and PERMEDIA 2. Most of these differences are due to additional
functionality provided in PERMEDIA 2.

F2 New Units

F2.1 Video Streams

PERMEDIA 2 supports independent input and output of digital video. The input
stream complies to the VESA VMI specification. Input data may be scaled and
filtered before being written to local memory. The output stream is based on the
VMI specification and is designed to work with common PAL/NTSC encoders.

Both streams are independent of the video output to the monitor.

The interface may be configured to meet different needs. The table shows the
modes supported:

Input width | Output width | Notes

8 8 Simultaneous input and output

16 0 Input only Zoom Video port

0 16 Output only Zoom Video port

8 0 Input data with random access parallel bus

Input data may be scaled and filtered to reduce memory requirements. The output
stream may be gamma corrected and converted from RGB to YUV. The output
video is a slave and supplies data on demand from the external encoder chip. Both
streams support automatic hardware triple buffering.

Separate control is provided for Vertical Blank Interval (VBI) data such as closed
caption, Teletext, or Intercast. VBI data may be inserted into the output stream or
extracted from the input stream as required.

The interface supports two separate buses for programming devices connected to
the video streams. The I2C bus is a two wire serial bus that is commonly used to
control chips supplying or receiving data on the video ports. The general purpose
bus is a parallel bus that supports a higher bandwidth and uses an eight bit data
path with a four bit address. If the parallel bus is used, only input video is
available.

276 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manna PERMEDIA 1 and PERMEDIA 2 Differences

F2.2

F2.3

F3

F3.1

F3.2

In PERMEDIA 2, the external ROM is used to store the Video BIOS and is also used
to store the power up configuration information (removing most of the
configuration resistors needed for a PERMEDIA 1 design). Access to the ROM is by
the general purpose bus during which both video streams are disabled.

RAMDAC

PERMEDIA 2 incorporates a high performance 230MHz RAMDAC. Resolutions of
up to 1600x1280 @ 85Hz are supported, with a wide variety of pixel formats and a
hardware cursor of 64x64x2. There are also integrated phase locked loops for
generating all clocks required by PERMEDIA 2.

PERMEDIA 2 directly supports DDC1 and DDC2 monitor configuration, and
Apple Macintosh monitor sensing. The DDC2 serial bus is independent of the
serial bus in the VMI interface.

Delta

The 100MFLOP geometry pipeline processor used in the Delta chip is integrated
into PERMEDIA 2. The integrated Delta has been enhanced to support backface
culling; this is enabled by in the DeltaMode register, and rejection of positive or
negative area triangles i.e. front or back faces, is controlled by the Render
command.

A packed color format has been added to the Delta vertex interface allowing all
four color components to be loaded in a single 32 bit word. The data should be
written to offset 14 of the vertex store as packed 8888 format; the order of the
color components within the word can be controlled by the DeltaMode register.

PCI Differences

AGP Support

The Advanced Graphics Port extensions to the PCI protocol are supported by
PERMEDIA 2. When in an AGP slot, PERMEDIA 2 will function as a 66MHz PCI
device, and also perform single edge AGP read master transfers, optionally with

sideband addressing.

Bypass DMA Engine

A DMA engine has been added to allow high speed transfers from system memory
to local memory through the bypass. As the transfer is done the data can be
formatted to match the patching organization used by the graphics core texture
units. It can also do conversion from YUV420 to YUV422 formats.

3D/.bs

Proprietary and Confidential 277

PERMEDIA 1 and PERMEDIA 2 Differences ~ IPERMEDIA 2 Programmers Reference Manual

F3.3 Host Out DMA engine
A DMA engine has been added to the PCI interface to allow high speed transfers
from the graphics core output FIFO to system memory.

F3.4 Extra Interrupts
The following interrupts have been added to PERMEDIA 2.
* Invalid texture
* Bypass DMA complete
* Video stream A interrupt
* Video stream B interrupt
* Video streams external interrupt
* DDC interrupt

F4 Video Unit Differences

F4.1 FIFO Threshold Control
Programmable high and low watermarks have been added to the video FIFO to
allow optimum bursting of video data for different screen resolutions.

F4.2 Stereo Control
Support has been added for left and right eye screens that are displayed alternately.
An external pin signals which eye is being displayed and may be used to drive LCD
shutter glasses.

F4.3 Frameblank Control
PERMEDIA 2 has additional control over behavior at frameblank. It continues to
support automatic synchronization to frameblank where the new base address for
the screen is only accepted during the vertical blank interval. In addition, it
supports a free running mode where the base address is updated immediately
without waiting for the blanking period.
PERMEDIA 2 also supports a sync to frame rate mode which only allows the base
address to be updated in frameblank while the frame rate keeps up with the
monitor refresh rate. If the frame rate drops below the refresh rate the base address
is updated immediately.

F5 Core Differences

F5.1 Maximum Screen Size
The maximum screen size has been increased to 2048x2048.

278 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manna PERMEDIA 1 and PERMEDIA 2 Differences

F5.2

F5.3

F5.4

F5.5

Rectangle Primitive

A new primitive is supported for drawing rectangles. It is restricted to integer pixel
positions only; rectangles requiring sub-pixel positioning should continue to use
the trapezoid primitive. The rectangle is defined with new registers,
RectangleOrigin which defines the X and Y start point, and RectangleSize which
defines the width and height. The direction in which the rectangle is filled can be
controlled by the Render command, with separate control of fill direction in X and
Y making the primitive suitable for copy operations.

Texture Mapping

The TextureAddressMode option for accurate or fast perspective divide has been
removed in PERMEDIA 2. All divides are done faster than the PERMEDIA 1 fast speed,
while the accuracy has been improved beyond that of the PERMEDIA 1 accurate
mode.

Textures may be stored in system memory or local memory but an individual
texture map must not be split across system and local memory.

The base address of the texture map may be accessed indirectly through a table
instead of by the TextureBaseAddress register. If the TexurelD register is loaded,
PERMEDIA 2 will access memory to fetch the actual base address of the texture. Bit
31 of this address is a validity flag, and if set to invalid the graphics pipeline halts
and an interrupt is generated. The host can then load the texture through the
bypass and restart the graphics core. This mechanism allows efficient texture
caching by decoupling the memory management of textures from their use.

LUTs

PERMEDIA 2 has a 256 entry texture LUT, each entry is 32 bits wide. It can also be
used as 16 smaller LUT's of 16 entries each. The contents of the LUT can be
loaded through the graphics pipeline or from memory (local or system). If the LUT
is held in memory its address can be loaded indirectly using the same mechanism as
the texture caching.

The LUT can be used to index 4 or 8 bit textures, in which case the single index is
used to generate all 4 color components. If the texture type has separate color
components (i.e. it is not an index) each component is indexed independently
through the LUT. This allows color remapping operations such as gamma
correction.

The LUT can also be accessed directly from the XY position of the pixel being
drawn, and it can hold block fill colors.

Block Fills

The block fill color register has been extended to 64 bits to allow greater flexibility.
Two new registers have been added, BlockColorUpper and BlockColorLower,

3D/.bs

Proprietary and Confidential 279

PERMEDIA 1 and PERMEDIA 2 Differences ~ IPERMEDIA 2 Programmers Reference Manual

F5.6

F5.7

F5.8

which set the upper and lower 32 bits of the color respectively. If the PERMEDIA 1
BlockColor register is used, its contents are used for both upper and lower halves of

the block color giving full backward compatibility.
Texture mapping has been extended to hold block fill masks. Designed specifically

for font caching, a byte packed font may be stored in local memory and used to
control which pixels are drawn by a block fill.

Any block fill pattern may be stippled using the normal stipple pattern table.

The texture LUT can hold data that is used to update the block fill color on each
scanline. This is designed for pattern filling.

Sprite Control

The chroma key testing has been extended to improve the quality of cut-outs
which have been bilinear filtered, and to smooth the edges of sprites. Two
additional registers, AlphaMapUpperBound and AlphaMapLowerBound, have
been added to define the range of colors that should have their alpha value mapped
to zero. The PERMEDIA 1 chroma key registers are used to reject the pixels with an
alpha value not equal to one. Texels that have failed the alpha map test are not
included in filtering, so edge effects often seen with filtered cut-outs are removed.

The alpha values of the edge pixels are filtered so that they form a range from one
within the area to be drawn to zero within the area not to be drawn. In the region
close to the edge of what is to be drawn, the alpha values are filtered to lie between
zero and one. The range of alpha values rejected by the chroma key test can be
adjusted to allow fine control over the exact size of the cut-out. If blending is
enabled then the varying alpha values smooth the transition of the edge of the
sprite to the background.

Alpha Blending

An optimization has been added to PERMEDIA 2 which reduces the memory
bandwidth if blending is enabled. If the alpha value used for blending is derived
exclusively from a texture map, the FBReadMode register can be set to disable
reading of the framebuffer for any pixels for which the corresponding texel has an
alpha value of one. If the alpha value is one, the final color will not include any of
the previous framebuffer color so it does not need to be read.

PERMEDIA 2 adds extra control over formatting of the framebuffer color when
blending. The AlphaBlendMode register allows control over the way that
framebuffer data is mapped to the internal color format. This can prevent visual
artifacts when blending with a dithered framebuffer.

Color Formats

PERMEDIA 2 performs all internal color calculations at true color accuracy, where
PERMEDIA 1 performed 3D calculations at 5 bits per color component.

280

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manna PERMEDIA 1 and PERMEDIA 2 Differences

F5.9

An additional pixel and texel size has been added to PERMEDIA 2, 24 bits, which has
8 bits of red, green , and blue, but no alpha channel. All pixel operations are
available at this size except block fills which are restricted to colors which have all
bytes the same value (i.e. shades of grey). This restriction is due to the operation of
the memory devices.

Miscellaneous

PERMEDIA 2 will calculate the value of FBSourceOffset from an XY delta value,
removing a multiply from the set-up needed for a copy operation.

The relative offset field in the FBReadMode register is also in the
PackedDataLimits register, the one used will be the last one set before a primitive is
drawn. This reduces the number of registers that have to be written for a copy
operation.

A register has been added to the PERMEDIA 2 PCI interface which can be used to
determine when the chip is idle. If the idle status is set then PERMEDIA 2 will
process the next command without delay. It does not mean that all previous
operations have completed and data written to memory.

An additional PERMEDIA 2 register can be used to configure a number of controls

that are normally set by separate registers. The Config register controls parts of the
FBReadMode, FBWriteMode, LogicalOpMode, and ColorDDAMode, registers.

3D/.bs

Proprietary and Confidential 281

Glossary PERMEDIA 2 Programmers Reference Manual

Glossary

accumulation buffer A color buffer of higher resolution than the displayed buffer (typically
16bits per component for an 8bit per component display). Typically
used to sum the result of rendering several frames from slightly
different viewpoints to achieve motion blur effects or eliminate aliasing
effects.

active fragment A fragment which passes all the various culling tests, such as scissor,
depth(Z), alpha, etc., is written to/combined with the corresponding
pixel in the framebuffer. See also "fragment" and "passive fragment”.

aliasing A phenomena resulting from a rendering style which ignores the fact
that a pixel may not be wholly covered by a primitive, leading to jagged
edges on primitives.

alpha blending The ability to combine supplied Red, Green and Blue color values with
those that exist in the framebuffer according to the supplied alpha
value. Alpha blending forms the basis for techniques such as
transparency and painting.

alpha buffer A memory buffer containing the fourth component of a pixel's color in
addition to Red, Green and Blue. This component is not displayed, but
may be used for instance to control color blending.

area stipple A two dimensional binary pattern which is used to cull fragments from
being drawn.

bitblt Bit aligned block transfer. Copy of a rectangular array of pixels in a
bitmap from one location to another.

bitblt double buffering A technique to provide independent windowed double
buffering by blting an area from one buffer to the other.

bitplane double buffering A technique whereby fast independent windowed double
buffering can be achieved by using a single bitplane bit.

block write A feature provided in some memory devices such as VRAM and
SGRAM which allows multiple pixels to be set to a given value by a
single write. Fast fill is an alternative name for this feature.

chroma keying Also known as bluescreening, this is the practice of excluding color
from an image allowing an underlying image to show through.

chroma test The means by which chroma keying can be achieved.

color index The mode in which the color information is stored for each pixel as a
single number, the color index rather than as separate Red, Green, Blue
and optionally Alpha values (RGBA mode). Each color index references
an entry in a color look up table that contains a particular set of Red,
Green and Blue values.

282 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal

Glossary

command register

context

control register
culling

DDA

delta
depth (Z) buffer

depth-cueing

dithering

dominant edge

double-buffering

extent checking

A register which when loaded triggers activity in PERMEDIA. For
instance the Render command register when loaded will cause
PERMEDIA to start rendering the specified primitive with the parameters
currently set-up in the control registers.

The state information associated with a particular task. Typically in a
system more than one task will be using PERMEDIA to render primitives.
Software on the host must save away the current contents of the
PERMEDIA control registers when suspending one task to allow another
to run, and must restore the state when that task is next scheduled to
run.

A register which contains state that dictates how PERMEDIA will execute
a command.

The process of eliminating a fragment, object face, or primitive, so that
it is not drawn.

Digital Differential Analyzer. An algorithm for determining the pixels
to draw along a line or polygon edge. Also used to interpolate linearly
varying values such as color and depth.

A gradient of color, fog, depth etc. in the X or Y directions for a
primitive.

A memory buffer containing the depth component of a pixel. Used to,
for example, eliminate hidden surfaces.

A technique which determines the color of a pixel based on its depth.
Used, for instance, to fade far away objects into the background. Also
known as fogging.

A rendering style which increases the perceived range of displayed
colors at the cost of spatial resolution. The technique is similar to the
use of stippled patterns of black and white pixels, to achieve shades of
grey on a black and white display.

The side of a primitive such as a triangle, which has the greatest range
of Y values.

A technique for achieving smooth animation, by rendering only to an
undisplayed back buffer, and then swapping the back buffer to the

front once drawing is complete.

A technique which determines the rectangular bounds of the area
which has been rendered to.

fast fill A feature provided in some memory devices such as VRAM and
SGRAM which allows multiple pixels to be set to a given value by a
single write. Block write is an alternative name for this feature.

3D/ubs Proprietary and Confidential 283

Glossary

PERMEDIA 2 Programmers Reference Manual

flat shading
fogging

fragment

framebuffer

Gouraud shading

hardware writemask

host
localbuffer

logic ops
LUT

overlays

packed data

passive fragment

The constant color shading or area filling of a primitive.

A technique which determines the color of a pixel based on its depth.
Used, for instance, to fade far away objects into the background. Also
known as depth-cueing.

A fragment is an object generated as a result of the rasterization of a
primitive. It corresponds to and contains all the components of a single
pixel. If a fragment passes all the various culling tests, such as scissor,
depth(Z), stencil, etc., it will be written to/combined with the
corresponding pixel in the framebuffer.

An area of memory containing the displayable color buffers (front,
back, left, right, overlay, underlay), their (optional) associated alpha
components, and any associated (optional) window control
information. This memory is typically separate from the localbuffer.

The technique of variable color shading or area filling of a primitive
using interpolation to gradually vary the color between vertices. Often
known as smooth shading.

A bitmask implemented in memory devices such as VRAM and
SGRAM to enable or inhibit the writing of the corresponding bits of a
fragment's color into the framebuffer.

The processor which controls PERMEDIA.

An area of memory which may be used to store textures and/or non-
displayable depth(Z) and/or stencil pixel information. This memory is
typically separate from the framebuffer.

The technique of applying logical operations such as OR, XOR or
AND to the fragment color values and/or those in the framebuffer.

A look-up-table. This normally contains color values to allow mapping
from an index value to the desired Red, Green and Blue value.

The technique of ensuring certain drawn objects always remain
foremost in view and not obscured by others. Historically this was one
method of providing a cursor and was usually achieved by providing
extra bit planes.

The arrangement of data in a buffer which allows multiple pixels to be
read or written in a single access.

A fragment which fails one or more of the various culling tests, such as
scissor, depth(Z), stencil, etc., is nor written to/combined with the
corresponding pixel in the framebuffer. See also "fragment” and "active
fragment".

284

Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Mannal Glossary

patched addressing

picking
preMult

pixel

primitive
Ramp blend mode
rasterization

rendering

scissor test

A technique whereby data is organized in memory such that there is
improved performance for accesses to adjacent scanlines in a buffer. For
PERMEDIA, this is available for depth and/or stencil buffer accesses. For
textures a special form, subpatch addressing is provided.

A means of selecting drawn objects or primitives .

A method of alpha blending, also known as Ramp blend mode, used by
QuickDraw3D.

Picture element. A pixel comprises the bits in all the buffers (whether
stored in the localbuffer or framebuffer), corresponding to a particular
location in the framebuffer.

A geometric object to be rendered. The PERMEDIA primitives are points,
lines, trapezoids (including triangles as a subset), and bitmaps.

A method of alpha blending, also known as preMult, used by
QuickDraw3D.

The act of converting a point, line, polygon, or bitmap, in device
coordinates, into fragments.

Conversion of primitives in object coordinates into an image.

A means of culling fragments which lie outside the defined scissor
rectangle. The scissor rectangle is defined in device coordinates.

software writemasking A means of simulating hardware writemasking by performing a

stencil buffer

stipple

subordinate edge

subpatch addressing

subpixel correction

tag

read-modify-write operation on framebuffer data.

A buffer used to store information about a pixel which controls how
subsequent stenciled fragments at the same location may be combined
with its current value. Typically used to mask complex two-
dimensional shapes.

A one or two dimensional binary pattern which is used to cull
fragments from being drawn.

The sides of a primitive such as a triangle, which do not have the
greatest range of Y values.

A technique whereby data is organized in memory such that there is
improved performance for accesses to adjacent scanlines in a buffer. For
PERMEDIA, this particular form of patched addressing is available for
accessing texture maps. See also Patch Addressing.

A means of ensuring that all interpolated parameters associated with a
fragment (color, depth, fog, texture) are correctly sampled at the
fragment’s center. This is required, for example, to ensure correct color
shading of objects comprised of many primitives.

The data item that uniquely identifies a Graphics Core register.

3D/.bs

Proprietary and Confidential 285

Glossary

PERMEDIA 2 Programmers Reference Manual

task

texel

texture

texture mapping

A process, or thread on the host which uses the PERMEDIA co-processor.
Typically tasks assume that they have sole use of PERMEDIA and rely on
a device driver to save and restore their PERMEDIA context, when they
are swapped out.

Texture element. An element of an image stored in texture memory
which represents the color of the texture to be applied (fully or in part)
to a corresponding fragment.

An image used to modify the color of fragments during processing.
Often used for instance to achieve high realism in a scene, with
relatively few primitives.

The process of applying a two dimensional image to a primitive. For
instance to apply a wood grain effect to a table.

writemask A bit pattern used to enable or inhibit the writing of the corresponding
bits of a fragment's color into the framebuffer. See also Software
Writemask and Hardware Writemask.

YUV An alternative color format to RGB, also known as YCbCr. Color
format used by MPEG.

Z buffer An alternative name for the depth buffer.

286 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Index

Index

accumulation buffer, 49, 282

active fragment, 282

Address of texture in memory, 236

adliasing, 80, 282

Alphablend, 99

Alphablend unit, 28, 104, 123

AlphaBlend unit, 23

Alphablending, 28, 30, 37, 48, 89, 91, 93, 103,
104, 106, 112, 124, 125, 147, 192, 282

alphabuffer, 80, 103, 148, 240, 282

alphacolor, 152, 160, 166, 175, 197, 220

AlphaMap Color Test Lower and Upper Bounds,
149

AlphaBlendMode, 23, 29, 103, 104, 106, 123,
126, 147, 183, 268, 270, 274

Application Initialization, 125

areastipple, 30, 61, 62, 64, 150, 151, 217, 282

Area Stippling, 61

AreaStippleMode, 58, 61, 62, 64, 125, 150, 151,
230, 267, 270, 273

AreaStipplePattern, 15, 64, 151, 267, 270, 273

AStart, 98, 152, 160, 166, 175, 197, 220, 268,
270, 274

Base address of source framebuffer data, 189

bilinear texture mapping, 79, 243

bithlt, 27, 34, 282

bitblt double buffering, 34, 282

bitblt Double Buffering, 31

bitmap, 50, 51

bitmaps, 24, 27

Bitmaps, 49, 51

bitmask, 50, 51, 53, 54, 57, 59, 215, 218

bitmask packing, 54, 59, 215

bitmask pattern, 30

bitmask test, 69, 70, 152, 217

BitMaskPattern, 50, 51, 59, 152, 218, 266, 270,
273

bitmasks, 23

bitplane double buffering, 34, 282

block fills, 51

block write, 30, 52

Block write, 49

block writes, 30, 49, 112, 130, 131, 181, 182, 282

Block Writes, 51

BlockWrites, 30

BSt art, 98, 99, 107, 153, 262, 268, 270, 274

bypass, 4, 20, 22, 33, 34, 126

Bypass Initiaization, 126

byte swap, 7

byte swapped, 54

byte swapping, 22, 54, 59, 93, 215

Byte Swapping, 23

chroma keying, 282

chromatest, 37, 86, 87, 88, 134, 149, 153, 255,
282

ChromaTest, 134

ChromalowerBound, 88, 153, 268, 270, 275

ChromaUpperBound, 88, 153, 268, 270, 275

Cl, 28, 29, 81, 96, 108, 111, 148, 154, 157, 168,
239, 240

Cl4, 28

Clears, 130

Color, 14, 19, 28, 92, 104, 114, 122, 154, 194,
218, 268, 270, 274

Color DDA, 53, 197

Color DDA unit, 37, 87, 96, 97, 98, 101, 105,
107, 152, 153, 154, 155, 156, 157, 160, 161,
166, 175, 182, 189, 190, 197, 220, 231, 232,
234, 236, 241, 245, 246, 247, 248, 249, 250,
268

color format, 28, 53, 80, 82, 86, 92, 106, 109,
119, 123, 132, 133, 147, 154, 157, 239

Color Format, 97, 123, 148, 168

Color Format Examples, 109

Color Format unit, 23, 37, 92, 104, 108, 123, 134,
154, 167, 268

Color Format Unit, 108

Color Formats, 29, 108

color formatting, 92, 93

color index, 36

Color Index, 28, 81, 96, 108, 154, 157, 282

color interpolation, 30, 97, 98, 261, 263

Color Interpolation, 262

color order, 29, 82, 148, 168, 239, 240

ColorDDAMode, 98, 99, 107, 125, 155, 157, 268,
270, 274

Command, 266

Command Register, 4, 8, 9, 22, 33, 46, 48, 49, 57,
58, 61, 62, 93, 104, 105, 116, 129, 251, 264,
283

Command Registers, 8, 9

Common Blend Mode, 103

Computer Graphics Principles and Practice, 2

Configuration, 156

ConstantColor, 97, 98, 131, 157, 268, 270, 274

context, 5, 119, 130, 258

context switch, 23, 154

context switching, 22, 112, 130

Continue, 46, 48, 56, 157, 266, 270, 273

Continue commands, 9, 22, 130

ContinueNewDom, 46, 56, 130, 158, 266, 270,
273

3D/ubs Proprietary and Confidential 287

Index

PERMEDIA 2 Programmers Reference Manual

ContinueNewLine, 9, 47, 48, 54, 56, 59, 130, 158,
214, 266, 270, 273

ContinueNewSub, 45, 48, 56, 159, 265, 266, 270,
273

Control, 266

Control register, 4, 7, 9, 11, 98, 120, 129, 257,
266, 283

Control registers, 8

Control Registers, 8

Copies, 131

Copy, 52, 65, 66, 89, 91, 95

Count, 56, 57, 157, 158, 159, 266, 270, 273

culling, 60, 194, 207, 208, 209, 210, 212, 225,
229, 283

Datafor texture LUT, 231

dBdx, 98, 99, 107, 262, 268, 270, 274

dBdyDom, 98, 99, 156, 161, 182, 189, 190, 231,
232, 234, 236, 241, 245, 246, 247, 248, 249,
250, 262, 268, 270, 274

DDA, 46, 47, 48, 54, 56, 59, 71, 73, 76, 98, 99,
101, 105, 157, 158, 159, 214, 237, 283

decal, 100, 237

delta, 45, 46, 47, 48, 51, 56, 75, 76, 78, 98, 99,
102, 106, 107, 129, 157, 261, 262, 263, 264,
265, 283

Ddlta, 219

DeltaMode, 161

depth, 192, 199

Depth, 18, 24, 65, 66, 71, 73, 114, 122, 163, 164,
194, 218, 267, 270, 274

depth buffer, 18, 69, 71, 72, 73, 92, 122, 131,
163, 164, 187, 194, 199

depth buffered, 71, 75, 260

depth buffering, 68, 124, 125, 261

Depth Example, 75

Depth gradients, 262

depth interpolation, 263

depth test, 25, 30, 37, 69, 74, 75, 119, 131, 227,
252

Depth test, 70

depth testing, 112

Depth Testing, 263

depth writemask, 73, 75

Depth(Z) buffer, 37, 114, 283

depth-cueing, 101, 283

DepthMode, 71, 73, 75, 125, 146, 164, 267, 270,
274

devicelD, 119

devicerevision, 119

dFdx, 101, 102, 106, 107, 165, 268, 270, 274

dFdyDom, 101, 102, 106, 107, 165, 268, 270, 274

dGdyx, 98, 99, 107, 262, 268, 270, 274

dGdyDom, 98, 99, 107, 262, 268, 270, 274

Difference between destination and source data,
190

Dither Example, 109

dithering, 27, 30, 108, 109, 112, 123, 168, 192,
283

Dithering, 37, 108, 109

DitherMode, 23, 29, 35, 85, 108, 109, 110, 113,
123, 167, 183, 268, 270, 274

dKddx, 105, 169, 268, 270, 274

dKddyDom, 105, 169, 268, 270, 274

dKsdx, 105, 170, 268, 270, 274

dKsdyDom, 105, 170, 268, 270, 274

DMA, 10, 12, 13, 14, 18, 20, 22, 127, 128, 258,
266

DMA buffer, 12, 13, 14, 15, 16, 17, 18, 56, 128

DMA Buffer Address, 17

DMA buffers, 20, 128

DMA controller, 10, 12, 16, 17, 21

DMA Example, 16

DMA Interface, 12

DMA interrupts, 17, 18, 128

DMA Tag Format, 14

DMAAddress, 12, 17

DMACount, 12, 13, 17, 18, 21, 258

Dominant, 156, 161, 165, 169, 170, 171, 176,
177, 178, 180, 181, 182, 189, 190, 231, 232,
234, 236, 241, 245, 246, 247, 248, 249, 250

dominant edge, 45, 71, 129, 264

Dominant edge, 158, 261

double buffered, 13, 26, 31, 34

double buffering, 20, 28, 32, 93, 133, 148, 168,
240, 283

Double Buffering, 31

Double Buffering - fast, 133

download, 10, 12, 13, 14, 51, 52, 53, 65, 66, 79,
85, 89, 91, 92, 96, 104, 127, 128, 132, 133,
154, 183, 190, 199, 230, 266

Download, 52, 131

dQadx, 77, 78, 86, 171, 267, 270, 273

dQdyDom, 77, 78, 86, 171, 267, 270, 273

Draw ling, 172, 173

Draw Triangle, 174

dRdx, 98, 99, 107, 262, 268, 270, 274

dRdyDom, 98, 99, 107, 262, 268, 270, 274

dsdx, 76, 77, 78, 86, 176, 267, 270, 273

dSdyDom, 76, 77, 78, 86, 176, 267, 270, 273

dTdx, 77, 78, 86, 177, 267, 270, 273

dTdyDom, 77, 78, 86, 177, 267, 270, 273

dXx, 47

dXDom, 11, 49, 57, 178, 266, 270, 273

dXSub, 11, 49, 57, 178, 265, 266, 270, 273

dY, 11, 47, 49, 53, 57, 129, 179, 266, 270, 273

dzdxL, 72, 74, 75, 179, 180, 263, 267, 270, 274

dzdxU, 74, 75, 179, 180, 263, 267, 270, 274

288 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Index

dzdyDomL, 72, 74, 75, 180, 181, 263, 267, 270,
274

dzdyDomU, 74, 75, 180, 181, 263, 267, 271, 274

extent checking, 30, 113, 114, 130, 195, 283

Extent Checking, 115

extent collection, 208, 210, 225

extent regions, 117

Fast block fill lower and upper colors, 182

fast fill, 91, 283

FBBIlockColor, 30, 181, 268, 271, 275

FBColor, 91, 95, 114, 183, 186, 268, 271, 274

FBData, 92, 104, 122, 132, 183, 218, 268, 271,
275

FBHardwareWriteMask, 30, 93, 95, 124, 184,
268, 271, 275

FBPixel Offset, 26, 32, 33, 89, 90, 94, 122, 185,
268, 271, 274

FBRead, 189, 190

FBReadMode, 26, 27, 30, 85, 89, 90, 92, 94, 111,
112, 120, 122, 123, 125, 132, 186, 189, 211,
259, 268, 271, 274

FBReadPixel, 94, 125, 188, 268, 271, 275

FBSoftwareWriteMask, 30, 93, 111, 113, 124,
184, 189, 268, 271, 274

FBSourceData, 92, 190, 218, 268, 271, 275

FBSourceOffset, 26, 27, 89, 90, 94, 122, 191,
268, 271, 274

FBWindowBase, 26, 90, 94, 121, 124, 191, 268,
271, 275

FBWriteData, 112, 131, 192, 206

FBWriteMode, 85, 94, 104, 124, 193, 268, 271,
275

FIFO Control, 11

Filter Mode Example, 117

FilterMode, 18, 19, 21, 114, 115, 116, 117, 118,
122, 194, 207, 209, 212, 229, 243, 268, 271,
275

flat shaded, 98, 192, 206

flat shading, 37, 111, 157, 284

Flat shading, 97

Flat shading - high speed, 112

Flat Shading example, 98

fog, 49, 58, 99, 103, 106, 165, 172, 173, 174,
192, 195, 196, 197, 218

Fog, 37

Fog Application, 101

Fog DDA, 101

Fog Example, 106

fog interpolation, 102

FogColor, 106, 107, 197, 268, 271, 273

fogging, 105, 172, 173, 174, 196, 218, 284

FogMode, 58, 101, 105, 107, 125, 196, 268, 271,
273

fonts, 52

ForceAlpha, 108

ForceBackgroundColor, 54, 59, 61, 214, 230

fragment, 37, 38, 44, 49, 262, 264, 284

Frame Blank Synchronization, 93

framebuffer, 4, 20, 24, 33, 38, 53, 79, 89, 92, 116,
284

Framebuffer, 26, 121

framebuffer base address, 124, 191

framebuffer clears, 131

Framebuffer Color Formats, 27

Framebuffer coordinates, 26

framebuffer depth, 120

framebuffer format, 36, 92, 93, 99, 104, 108, 157,
183, 192

Framebuffer Read, 112

Framebuffer Read unit, 37, 89, 122, 124, 131

Framebuffer Read/Write units, 89, 181, 183, 184,
185, 186, 188, 190, 191, 193, 211, 228, 238,
241, 268

framebuffer reads, 30, 48, 54, 89, 91, 93, 104,
132, 189

framebuffer units, 87

Framebuffer Write unit, 35, 37, 49, 79, 91, 114,
131, 132

framebuffer writes, 54, 89, 93, 94, 95, 104, 133,
228, 251

FStart, 101, 102, 106, 107, 197, 268, 271, 274

Full Screen Double Buffering, 31

Glossary, 282, 287

glyph, 52

Gouraud shading, 37, 96, 97, 98, 99, 260, 261,
264, 284

Gouraud Shading examples, 98

GP FIFO Interface, 18

Graphics HyperPipeline, 37

GStart, 98, 99, 107, 262, 268, 271, 274

hardware writemask, 34, 49, 91, 129, 184, 189,
284

hardware writemasking, 30, 111

hardware writemasks, 93, 192

Hardware Writemasks, 30, 93

highlight, 100, 105, 237

Hold Format, 14

host, 284

Host Interface, 4

Host Memory Bypass, 21

Host Out FIFO, 21, 53, 56, 122, 183, 199, 202,
207, 209, 212, 229, 266

Host Out Filtering, 113

Host Out unit, 37, 53, 55, 113, 122, 129, 130,
194, 207, 208, 209, 210, 212, 220, 225, 229,
268

Host Out Unit, 122

1/0 Interface, 10

3D/ubs Proprietary and Confidential 289

Index

PERMEDIA 2 Programmers Reference Manual

Image Formatting, 104

Increment Format, 15

Indexed Format, 15

Indirect handle for texture LUT, 232

Indirect handle for texture map, 241

InFIFOSpace, 10, 11, 20, 128

Iniates loading of LUT data from memory, 234

Initial Blue Color, 153

Initial Green Color, 197

Initial Red Color, 220

Initializing PERMEDIA, 119

input FIFO, 11, 18, 32

Internal Registers, 9

Internal Video Timing, 120

interpolation, 27, 44, 49

Interrupts, 20

invert bitmask, 51, 52, 54, 59

invert bitmasks, 214

invert stencil, 70, 227

invert stipple, 61, 64, 150

KdStart, 105, 198, 268, 271, 274

KsStart, 105, 198, 268, 271, 274

LBData, 132, 164, 199, 228, 267, 271, 274

LBDepth, 66, 199, 267, 271, 274

LBReadFormat, 25, 66, 67, 68, 122, 200, 267,
271, 274

LBReadMode, 25, 65, 66, 67, 68, 120, 122, 123,
124, 201, 259, 267, 271, 274

LBSourceOffset, 25, 65, 66, 68, 70, 122, 202,
267, 271, 274

LBStencil, 66, 202, 267, 271, 274

LBWindowBase, 25, 65, 68, 121, 124, 203, 267,
271, 274

LBWriteFormat, 25, 66, 67, 68, 122, 204, 267,
271, 274

LBWriteMode, 66, 67, 68, 122, 124, 205, 252,
267, 271, 274

LineCount, 33

Lines, 47, 49

locabuffer, 4, 24, 53, 65, 72, 116, 124, 134, 284

Locabuffer, 24, 121

localbuffer clears, 130

Localbuffer Coordinates, 25

Localbuffer example, 68

Locabuffer Read, 65, 67, 68, 132

Locabuffer Read unit, 37, 122, 124, 129

Localbuffer Read/Write units, 65, 199, 200, 201,
202, 203, 204, 205

Localbuffer Reads, 54

Localbuffer Write, 54, 68, 129, 132, 252

Localbuffer Write unit, 37

Logic Op unit, 37, 131, 189, 192, 206

logical op, 51, 192

Logical Op Unit, 111

Logical Operations, 37

logical ops, 9, 27, 30, 37, 48, 89, 91, 93, 111,
112, 125, 206, 284

LogicaOpMode, 112, 113, 126, 192, 206, 268,
271, 274

LUT, 27, 82, 133, 284
Datafor texture, 231
Indirect handle for texture, 232
Iniates loading of aLUT from memory, 234
Texel Mode, 233

MaxHitRegion, 114, 116, 117, 207, 269, 271, 275

MaxRegion, 115, 116, 117, 118, 208, 269, 271,
275

Memory Configuration, 120

Memory 1/0O and Organization, 24

Memory Organization, 134

Memory Subsystem, 4

MinHitRegion, 114, 116, 117, 209, 269, 271, 275

MinRegion, 115, 116, 117, 118, 210, 269, 271,
275

mirror bitmask, 54, 59, 214

mirror stipple pattern, 150

modulate, 100, 105, 237

Multi-Buffering, 133

nearest neighbour, 81, 243

OpenGL Programming Guide, 2

Origin, 123

Output FIFO, 18

OutputFIFOWords, 19

overlays, 108, 284

Overlays, 133

packed copies, 94, 131, 211

Packed Copies, 92

Packed copy limits, 211

packed data, 284

packed framebuffer, 34

packed mode, 91, 93, 181, 182, 184

packed texture patching, 187

PackedDatal imits, 92, 94, 95, 131, 132, 211, 267,
271, 273

Panning, 34

passive fragment, 284

patch, 24, 67

patched addressing, 92, 187, 201, 285

Patched Data, 24

patched textures, 35

patches, 132

patching, 92, 93, 187

Patching, 92

PCl, 7, 23, 116, 119, 127

PCI burst transfers, 127

PCI bus bandwidth, 127

PCI bus mastership, 128

PCI Disconnect, 10, 128

290 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual

Index

Picking Example, 117

PickResult, 114, 115, 117, 118, 212, 269, 271,
275

pixel, 285

Pixel Size - setting, 125

Points, 48, 172, 173, 174, 217

preMult, 104, 106, 147, 285

primitive, 285

primitives, 37

procedural texture, 105

procedural textures, 230

Programmed 1/0O, 127

QStart, 77, 78, 86, 213, 267, 271, 273

Ramp blend mode, 103, 104, 148, 285

ramp texture application, 99, 105, 169, 170, 198,
237

Ramp Texture Application, 100

rasterization, 56, 265, 285

Rasterizer, 19, 35, 46, 49, 50, 51, 52, 53, 112,
131, 132, 133, 158, 230

Rasterizer unit, 37, 44, 49, 57, 104, 129, 152, 157,
158, 159, 172, 173, 174, 178, 179, 214, 216,
217, 219, 223, 224, 251, 253, 254, 264, 266

RasterizerMode, 50, 51, 54, 55, 56, 57, 59, 152,
158, 214, 230, 264, 266, 271, 273

Red and Blue Swapping, 23

Register file, 8

Register load order, 129

Register Read back, 22

Register Tables, 266

Register Types, 8

Register updates - avoiding, 129

Render, 9, 14, 30, 48, 54, 56, 57, 91, 104, 129,
130, 172, 173, 174, 216, 217

rendering, 285

Repeat line, 219

Repeat Triangle, 219

reserved, 146

reset, 112, 119

reset value, 146

ResetPickResult, 8, 115, 117, 118, 220, 269, 271,
275

reuse bitmask, 218, 257

RGB Texture Application, 100

RStart, 98, 99, 107, 262, 268, 271, 274

scissor, 52

Scissor, 37

scissor clip, 8, 9, 30, 52, 55

Scissor example, 63

scissor rectangle, 37

scissor test, 30, 60, 62, 70, 112, 115, 116, 222,
253, 285

SCissor tests, 69

Scissor/Stipple tests, 37

Scissor/Stipple unit, 38, 55, 60, 124, 129, 150,
151, 217, 221, 222, 253, 267

ScissorMaxXY, 62, 63, 221, 267, 271, 273

ScissorMinXY, 62, 63, 221, 267, 271, 273

ScissorMode, 62, 63, 121, 222, 267, 271, 273

Screen Clipping Region, 121

screen scissor, 53

screen scissor clip, 121

Screen Scissor Tests, 60

Screen Width, 120

Screen Widths Table, 259

ScreenBase, 32, 33, 34

ScreenSize, 60, 62, 63, 121, 222, 267, 271, 273

ScreenStride, 34

software writemask, 89, 91

software writemask example, 113

software writemasking, 89, 93, 111, 124, 125,
184, 189, 192, 285

Software writemasking, 30

Software Writemasks, 111

Specialized Modes - disabling, 122

SStart, 76, 77, 78, 86, 223, 267, 272, 273

StartX, 47

StartXDom, 9, 53, 57, 59, 214, 223, 264, 266,
272, 273

StartXSub, 53, 57, 59, 214, 224, 264, 265, 266,
272, 273

StartY, 9, 44, 47, 53, 57, 59, 214, 224, 266, 272,
273

Statistic Operations, 114

StatisticMode, 115, 117, 126, 208, 210, 225, 269,
272,275

stencil, 4, 53, 68, 74, 112, 122, 132, 192, 199,
202, 226, 228

Stencil, 18, 24, 65, 66, 70, 73, 74, 114, 218, 226,
228, 267, 272, 274

stencil buffer, 18, 114, 122, 129, 194, 226, 227,
285

Stencil Example, 74

stencil test, 37

Stencil Test, 69

stencil testing, 30, 65, 68, 72, 124, 226, 227, 252

stencil writemask, 73, 226

Stencil/Depth, 37

Stencil/Depth unit, 37, 68, 163, 164, 179, 180,
181, 226, 227, 252, 256, 267

StencilData, 70, 73, 75, 226, 227, 267, 272, 274

StencilMode, 69, 70, 72, 75, 125, 227, 267, 272,
274

stipple, 285

Stipple, 37

stipple pattern, 37, 50, 64

stipple test, 38, 53, 60, 69, 70, 105, 131, 150, 151

Sub Pixel Precision, 49

3D/ubs Proprietary and Confidential 291

Index

PERMEDIA 2 Programmers Reference Manual

subordinate edge, 45, 56, 57, 71, 76, 96, 101, 158,
159, 178, 224, 257, 258, 264, 285

Subordinate edge, 261

subordinate side, 262

subpatch, 187

subpatch addressing, 242, 285

subpatch mode, 24, 82, 85, 86, 92, 242

subpatch pack mode, 92, 187

subpixel correction, 46, 49, 57, 77, 97, 172, 173,
174, 218, 264, 265, 285

SuspendUntil FrameBlank, 20, 33, 93, 133, 228,
268, 272, 275

SVGA, 5,7,120

Sync, 8, 48, 55, 116, 122, 130, 229

Sync interrupt, 21

Sync Interrupt Example, 118

Synchronization, 19, 20, 32, 54, 114, 116

System Initialization, 119

tag, 8, 11, 12, 114, 146, 285

task, 286

Task Switching, 5

texel, 286

Texel LUT Mode, 233

TexelO, 50, 54, 59, 61, 86, 87, 105, 150, 153, 215,
218, 230, 267, 272, 273

TexelLUT, 232

TexelLUT[0..15], 82, 230, 267, 272, 275

TexelLUTData, 232

TexelLUTIndex, 232

Texel LUTMode, 82, 125, 267, 272, 273

texture, 24, 49, 52, 80, 81, 87, 99, 103, 132, 134,
172, 173, 174, 192, 218, 238, 286

texture address, 86, 234

Texture Address unit, 35, 37, 76, 79, 171, 176,
177, 213, 223, 234, 244, 267

texture allocation, 121

texture application, 99, 237

Texture Application Example, 106

texture buffer, 4, 24, 28, 187

Texture Buffer, 35

Texture Buffer Coordinates, 35

Texture Color Formats, 36

texture coordinates, 76

texture download, 55, 56, 86, 132, 133, 241, 251

Texture Download, 92

texture download example, 85

Texture Filtering, 80

texture format, 35, 82

Texture Formatting, 80

texture interpolation, 77

Texture Interpolation, 76

Texture Interpolation Example, 78

Texture Loading, 132

texture map, 79, 82, 242

texture mapped, 11

texture mapped trapezoid, 106

texture mapping, 81, 87, 92, 134, 244, 286

Texture Mapping, 37

texture mapping example, 85

texture maps, 79

texture read, 243

Texture Read, 232, 241

Texture Read unit, 23, 27, 35, 37, 50, 55, 77, 79,
105, 132, 230, 233, 239, 242, 243, 267

Texture/Fog/Blend unit, 23, 37, 52, 86, 87, 92, 99,
106, 147, 165, 169, 170, 195, 196, 197, 198,
230, 237, 268

Texture| Read, 149

TextureAddress, 38

TextureAddressMode, 78, 86, 125, 234, 267, 272,
273

TextureBaseAddress, 35, 79, 121, 267, 272, 273

TextureColorMode, 99, 104, 106, 125, 237, 268,
272, 273

TextureData, 35, 93, 132, 238, 241, 268, 272, 274

TextureDataFormat, 23, 29, 80, 82, 86, 239, 267,
272, 273

TextureDownloadOffset, 35, 93, 132, 238, 241,
268, 272, 274

TextureMapFormat, 79, 82, 86, 120, 123, 242,
259, 267, 272, 273

TextureReadMode, 36, 79, 81, 86, 125, 243, 267,
272, 273

textures, 28, 35, 81

Trapezoid Fills, 131

Trapezoids, 44

Triple Buffering, 133

TStart, 77, 78, 86, 244, 267, 272, 273

Unused units - disabling, 129

upload, 18, 19, 53, 62, 65, 66, 89, 91, 92, 93, 95,
96, 104, 183, 186, 193, 194, 199, 202

Upload, 52

uploading, 114

UseConstantFBWriteData, 112

user scissor, 51, 53

User Scissor Test, 60

VBLANK, 33

Vertex O data, 245, 246, 247, 248, 249, 250

VGA,5

VGAControlReg, 120

Video Output, 31

Video Timing, 120

VTG, 120

WaitForCompletion, 55, 56, 91, 132, 186, 201,
251, 266, 272, 273

Window, 72, 73, 74, 123, 124, 129, 252, 267,
272,274

Window Address and Origin, 123

292 Proprietary and Confidential 3D/ubs

PERMEDIA 2 Programmers Reference Manual Index

Window Initialization, 123 Y Derivative Dominant - Blue, 160
WindowOrigin, 60, 62, 253, 267, 272, 273 Y Derivative Dominant - Green, 166
Windows NT 3.1.Graphics Programming, 2 Y Derivative Dominant - Red, 175
writemask, 28, 286 Y CbCr, 86

writemasking, 27, 30 YLimits, 55, 57, 254, 266, 272, 273
writemasks, 108 YUV, 36, 230, 286

Writemasks, 124 YUV color format, 80, 86, 105, 153
Writing - enabling, 124 YUV textures, 28

XandY limits, 55 YUV to RGB conversion, 255

X Derivative - Blue, 160 YUV unit, 37, 86, 153, 255, 268

X Derivative - Green, 166 YUVMode, 87, 125, 134, 153, 255, 268, 272, 275
X Derivative - Red, 175 Z buffer, 286

XLimits, 55, 57, 253, 267, 272, 273 ZStartL, 72, 74, 75, 256, 263, 267, 272, 274
XOR example, 113 ZStartU, 74, 75, 256, 263, 267, 272, 274

3D/ubs Proprietary and Confidential 293

