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1111    
N=Introduction 

The P10 Graphics Processor is a scalable design using extensive parallelism and programmability to
render multiple primitives per clock cycle and support texture-intensive APIs such as Microsoft DX8.
Using programmable T&L and programmable pixel shaders in conjunction with highly optimised fixed-
function units results in a simpler, faster and more flexible design.

Programmable registers also allow dynamic reconfiguration of the number of vertex shaders, the number
of texture pipes and the number of rasterizers.

1.1 Design Performance

Performance estimates are based on design simulation rates pending availability of silicon-based test
results. Primitive rates assume single tile coverage (reduced to 8x4 for z), Single directional light,
Gouraud shaded, Depth buffered and .13 micron manufacturing.1

 

P10 Performance Overview

Points, lines 75M lines/Sec.

Triangles 75M lines/Sec.

AA Lines 75M lines/Sec.
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Vertex rendering – no depth, texture or
lighting

150M vertices/sec.

Vertex rendering – with depth, not texture
or lighting

132M vertices/sec.

Vertex rendering – texture and fog, no
lighting

106M vertices/sec.
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Scissor (core:memory) 19.2: - G/sec. (64 primitives/
cycle)

32bpp Clear (core:memory) 4.8:4.25 G/sec.

GID rejected (core:memory) 19.2:17 G/sec.

Trilinear (core:memory, 32bpp, one
texel/pixel read)

1.2 : 1.1G/s

P
ix
e
l F
ill 

R
a
t
e
s

Peak Memory Bandwidth 17 GBytes/s

Max. memory 128Mbytes

Up to 8 textures per primitive with any combination of
trilinear, 3D, anisotropic filtering, bump mapping or cube
mapping.
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1 The list of supported features is intended to illustrate P10’s capabilities rather than to be a comprehensive listing.
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P10 Performance Overview

Programmable texture co-ordinate generation ✔ 

Programmable shaders (i.e. texture combiners) ✔ 

Programmable pixel unit ✔ 

Accumulation buffering and convolution ✔ 

Precomputed displacement maps and tessellation ✔ 

T buffer full-scene antialiasing ✔ 

Integrated geometry and lighting ✔ 

 

Table 1.1 P10 Performance Overview

1.2 Changes from Earlier Chips
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Table 1.3 Lighting Performance

Because of the extent of P10’s paradigm shift a complete list of changes is pointless. However the table
below illustrates the areas where developers will find the most extensive innovation.

Previous Rasterizer Chips (P4/R4, MX) P10

Scanline Framebuffer Tiled framebuffer

DDA based interpolators Plane equations

Edge-walking rasterization Tile-seeking rasterization

Multiple cycles per primitive Multiple primitives per cycle

Fixed function units Fixed/Programmable hybrid

FIFO-based memory Cache-based memory

Asynchronous pipeline Parallel pipes with pre-emption

Command and control data visits every unit Command and control independent routing

Table 1.1 Evolutionary Changes

1.2.1 Tile-based working
P10 adopts the tile as its sole unit of internal work. All operations are performed on 8x8 square screen-
aligned planar byte pixel tiles similar to the 64x1 pixel spans used in earlier chips. All data types are
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stored the same way, so for example anything (e.g. the Depth buffer) can be a texture, and it is possible to
render to a texture. Each memory access returns a planar byte tile. Two or more accesses are used for
pixel depths greater than 8 bits, which allows unusual formats such as 24, 40 and 48 bpp. All memory
accesses are virtual and page faults are handled with a CPU-like page swap.

This uniformity results in tile scalability and substantial performance improvements, particularly in 3D and
small 2D primitives (e.g. characters) where the improved scanline coherence and memories efficiencies
are most noticeable. Performance is further enhanced by the use of 256-bit DDR memories running at
266MHz (peak bandwidth 17GB/s).

1.2.2 Multitasking
Architecture innovations include the Context unit, which implements pre-emptive multitasking to support
time-critical operations such as render during frame blank. The Context unit caches context data and
keeps a copy in local memory. A small cache handles frequently updated values such as mode registers.
When a context switch is needed the cache is flushed, the new context record is read from memory and
the data converted into a message stream to update downstream units. Because only a small amount of
cache data needs to be saved this process can be very fast – typically ¼ scanline.

1.2.3 Command Input
Unlike earlier graphics processors, P10 command and control data (register updates, mode changes etc.)
does not generally take the same route as pixel data. This improves flexibility and bandwidth between
units.

P10 uses two independent Command Units - one servicing the GP stream (for 3D and general 2D
commands), the other servicing the Isochronous stream. Both command units manage the Circular
Buffers and Input DMA. The GP Command unit also manages Vertex Arrays.

1.2.3.1 Circular Buffers
Circular buffers, also new in P10, allow small packets of work to be transferred rapidly without incurring
the delays and overhead of setting up a DMA buffer and making an escape call to the O/S. Because DMA
transfers take time to initiate they are normally optimized for large bursts of data to improve efficiency.
This can result in the graphics system being idle while some work has accumulated in the DMA buffer, but
not enough to trigger a burst.

Circular buffers are usually stored in local memory and mapped into the ICD. When commands and data
are added to the circular buffers, chip-resident write pointer registers are updated accordingly (without any
O/S intervention). When the current circular buffer goes empty the hardware automatically searches the
pool of 16 circular buffers for more work and instigates a context switch if necessary.

Circular buffers process the command stream identically to input DMA and can even call DMA buffers.

1.2.3.2 Vertex Arrays and Vertex Caching for Indexed Arrays
Vertex arrays are supported for compactness and flexibility in data layout. An array element can hold up
to 16 parameters, which can be stored consecutively in memory or held in arrays. Vertex elements can be
accessed in sequence or using array indices. The most recent 16 array indices are cached to allow
comparison with the current index to check for vertex meshing, which in turn allows substantial savings in
memory reads and Shader processing.

1.2.4 Scalability
The design allows unusual flexibility in adapting performance to specific applications and to market targets
as well as future proofing:

• Tile size can be varied
• the number of texture pipes and vertex shaders is configurable
• Changing the number of pipes and shaders does not affect the API
• Memory devices can be picked to suit market conditions (although 256bit DDR memories are

preferred).
• When a programmable register is idle it can be reprogrammed on the fly as an additional rasterizer to

further improve fill and small primitive rates.
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1.2.5 Legacy Support
Because of the design paradigm shift it has not been possible to continue support for many legacy items.
This has incidentally removed up to 40% of the total code lines, which translates into a substantial
reduction in gate count and chip complexity and a smaller, more flexible and faster design.
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1.3 Block Diagrams

Figure 1.1 Chip-level Block Diagram
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Figure 1.2 Transformation and Lighting Block Diagram

1.3.1 Isochronous Command Stream and Context Switching
Microsoft’s ‘hot button’ for GDI+ establishes a new requirement for real-time processing slaved to the
display state to support tasks such as rendering during frame blank or non-tear bliting to a window.

P10 addresses this need by implementing a separate graphics core pre-emption channel which uses fast
on-board context-switching (including switching during a primitive).
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As context switchable state flows through into the rasterizer it goes through a Context Unit which snoops
and caches the context data and keeps a local copy for context switches.

A second command queue handles real-time rendering commands, i.e. those using Video Timing
Generator (VTG) and scanline timestamps. If the context switch is to allow isochronous rendering it
invokes a small, dedicated isochronous stream rasterizer. A typical partial context switch to and from an
isochronous context should take less than 700 cycles (3.5µs at 200MHz or ¼ scanline).

The Isochronous rasterizer only deals with rectangular primitives, which it can render in either direction. It
is not a parallel blit engine – it is invoked only for Isochronous service requests using existing processor
capacity.

For more information, see the Timestamp, Changeport and HoldPort commands in the P10 Reference
Guide volume III.
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2222    
O=Graphics Pipeline Organization 

This chapter describes the P10 graphics pipeline functional layout.

2.1 Transform and Lighting System

Transform and Lighting (T&L) functionality includes five functional groupings (‘Units’) which handle vertex
setup, transforms, lighting and culling.

2.1.1 Current Parameter Unit
The Current Parameter unit tracks the 16 possible vertex parameters (position, color(s), texture
coordinates(s) and normal) for each vertex and forwards any missing ones to the Vertex Shader Unit.

In the process, it substitutes any missing parameters the most recent version of that parameter. This is
particularly relevant for OpenGL where a parameter like color can be sent once and it is then applied to all
subsequent vertices until re-sent. This is frequently found where the Begin/End paradigm is in use.

Note: For vertex arrays or vertex buffers in D3D this functionality is not needed as each parameter
is supplied for every vertex.

To avoid passing all 16 parameters for each vertex to the Vertex Shader Unit, this unit counts how many
times each parameter has been sent and stops sending when each recipient vertex store now holds it. For
example if the Vertex Shader processes n vertices in parallel and the vertex store is double-buffered then
after each parameter has been sent 2n times each vertex store should contain current values. This causes
an initial flurry of transfers during context switches but after 2n vertices the steady state condition prevail
and the minimum number of messages will be generated per vertex.

Note: The parameters are typeless – the names (VertexData0…VertexData15) are simply
placeholders. The program running in the Vertex Shader Unit assigns meaning to the
parameters, although conventional meanings are used in our documentation. This allows the
use of the Vertex Shader for much more varied applications.

OpenGL can interrogate the current vertex values at any time. To avoid the performance constraints of
tracking this in software, the GetCurrent command dumps the current values using the Upload128
command so that they appear in the Host Out FIFO. From there they can be read or DMA’d into memory.

All 16 parameters are written from this unit and the Vertex Machine Unit appends the current edge flag
information.

Color Material support: OpenGL allows the Color parameter to be used to edit one or more material
parameters on a per vertex basis. Updating the material values stored in the Coefficient memory in the
Vertex Shading Unit would be very bad for performance as this would prevent the parallel vertex
processing (it is done as a SIMD architecture where the Coefficient memory is broadcast to all processing
elements). Instead the program is changed to expect the material parameter to come from the color
parameter in the vertex store rather than the material value in the Coefficient memory. When the Color
Material mode changes the real material parameter(s) must be updated from the current color. As outlined
above the driver software is not tracking this parameter and you certainly don't want to do a Get to find its
value (getting state out of the hardware is

2.1.2 Vertex Shading Unit
This performs the bulk of the transformation, lighting and texture generation work. As noted previously the
unit is fully programmable. Programs can be up to 256 instructions long, including subroutines and loops.
Details of programmable registers and the Vertex Shader instruction set are in “Programmable Registers”,
Volume III of the P10 Reference Guide.

The Vertex Shading Unit is implemented as a 16 element SIMD array, with each element (VP) working on
a separate vertex. The floating point ALU in each VP is a scalar multiplier accumulator which also
supports multi cycle vector instructions.
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2.1.3 Vertex Machine Unit
Co-ordinate results from the Vertex Shader are passed to the Vertex Machine Unit via the message
stream. The 16 parameter results go directly to the Geometry Unit via a private bus. (Two output ports
allow for a higher vertex throughput.)

The Vertex Machine Unit monitors vertex coordinates (really window coordinates now) as they pass
through. When enough vertices for the given primitive type have passed through, the unit issues a draw
command for the appropriate primitive. Keeping the orientation of triangles constant, which vertex is a
provoking vertex, when to reset the line stipple, etc. are all handled here. The Vertex Machine uses all 16
vertex cache entries (even though for many of the primitives it is not possible to extract any more than the
inherent cache locality) as this greatly reduces the chance of stalling while loading a scoreboarded
parameter register.

2.1.4 Cull Unit (Primitive Assembly)
The Cull Unit caches the window coordinates for the 16 vertices. When cull and geometry processing for a
primitive starts it uses the cached window coordinates to test clip against the viewing frustum and, for
triangles, do a back-face test. Any primitives failing these tests (if enabled) are discarded. Any primitives
passing these tests are passed on. If the clip test is inconclusive the primitive is further tested against the
guard band limits. A pass against these new limits means that it will be left to the rasterizer to clip the
primitive while it is being filled - it can do this very efficiency and spends very little time in 'out of view'
regions. A fail against the guard band limits or the near, far or user clip plane will cause the primitive to be
geometrically clipped in the Geometry Unit.

2.1.5 Geometry Unit
The Geometry Unit holds the full vertex cache for 16 vertices. Each entry holds 16 parameters and a
window coordinate. As each primitive is processed the Geometry Unit checks that the necessary vertex
data is present. It tracks the progress of the destination circular buffers and the state of the downstream
setup units. If vertex data is missing it supplies it. The Geometry Unit can accept vertex data faster than it
can be passed on to the rasterizer and it filters out vertex data for culled primitives. This allows for a faster
cull rate than rendering rate.

Note: Primitives which need to be geometrically clipped are clipped in this Unit. 2 The clip polygon
is rendered as a series of triangles.

2.2 Rasterizer Setup

The Rasterizer’s Primitive Setup Subsystem decomposes geometric objects into primitives and converts
windows relative coordinates into absolute coordinates.

2.2.1 Primitive Setup Subsystem
This subsystem is made up from:

• Primitive SetUp Unit

• Depth SetUp Unit

• Parameter SetUp Unit(s)

Input to this subsystem is the coordinates, colors, texture coordinates, etc. per vertex and these are stored
in local vertex stores. The vertex stores are distributed so each Setup Unit only holds the parameters it is
concerned with.

Primitive Setup does any primitive specific processing. This includes calculating the area of triangles,
splitting stippled lines (aliased and antialiased) into individual line segments, converting lines into quads
for rasterization and converting points into screen aligned squares for rasterization. Window relative
coordinates are converted into fixed point screen relative coordinates. Finally it calculates the projected x
and y gradients from the floating point coordinates (used when calculating the parameter gradients) for all
primitives.

Depth Setup and Parameter Setup are very similar with the differences being limited to the parameter tag
values, input clamping requirements and output format conversion. The Depth Setup Unit has a 16-entry

2 This is done by calculating the barycentric coordinates for the vertices in the clip polygon using the Sutherland Hodgman clipping
algorithm.



P9 Reference Guide Volume I Layout

3Dä~Äë Proprietary and Confidential = 2-3

direct-mapped vertex store. The common part is a plane equation evaluator which implements 3
equations - one for the gradient in x, one for the gradient in y and one for the start value. These equations
are common for all primitive types and are applied once per parameter per primitive. The Setup units are
adjacent to their corresponding units which will evaluate the parameter value over the primitive.

2.3 Rasterizer

The Rasterizer subsystem consists of a Rasterizer Unit and a Rectangle Rasterizer Unit.

The Rectangle Rasterizer Unit only rasterizes rectangles and is located in the isochronous stream – see
the Isochronous Command Stream section for a discussion. .

The input to the Rasterizer Unit is in fixed point 2's complement 14.4 fixed point coordinates. When a
Draw* command is received the unit will then calculate the 3 or 4 edge functions for the primitive type,
identify which edges are inclusive edges (i.e. should return inside if a sample point lies exactly on the
edge3) and identify the start tile.

Once the edges of the primitive and a start tile is known the rasterizer seeks out tiles which are inside the
edges or intersect the edges. This seeking is further qualified by a user defined visible rectangle (VisRect)
to prevent the rasterizer visiting tiles outside of the screen/window/viewport. Tiles which pass this stage
will be either totally inside or partially inside the primitive. Tiles which are partially inside are further tested
to determine which fragments in the tile are inside the primitive and a tile mask built up.

The output of the rasterizer is the Tile command which controls the rest of the core. Each Tile holds the
tile's coordinate and tile mask. The tiles are always screen relative and are aligned to tile (8x8 pixel)
boundaries. Before a Tile command is sent it is optionally scissored and masked using the area stipple
pattern. The rasterizer generates tiles in an order that maximizes memory bandwidth by staying within a
single memory page as much as possible. Memory is organized in 8x8 tiles and these are stored linearly
in memory.

The rasterizer has an input coordinate range of ±8K, but after visible rectangle clipping this is reduced to
0…8K. This can be communicated to the other units in 10 bit fields for x and y by omitting the bottom 3
bits (which are always 0). Destination tiles are always aligned as indicated above, but source tiles can
have any alignment. The Pixel Address Unit uses a local 2D offset to generate non aligned tiles, but
converts these into 1, 2 or 4 aligned tile reads to memory, merges the results and passes them on to the
Pixel Unit for processing.

The triangle, antialiased triangles, lines, antialiased lines, points and 3D rectangles are all rasterized with
basically the same algorithm, however antialiased points and 2D rectangles are treated as special cases.

The DrawRectangle2D primitive is limited to rasterizing screen aligned rectangles but can rasterize tiles in
any of four directions (left to right, right to left, top to bottom, bottom to top) so overlapping blit regions can
be implemented. The rasterization of the rectangle is further qualified by an operation field so a rectangle
can sync on host data (for image download), or sync on bit masks (for monochrome expansion or glyph
handling) in which case the tiles are output in linear scanline order.

Each tile is visited multiple times, but with one row of fragments selected so that the host can present data
in scanline order without any regard to the tile structure of the framebuffer.

The host bitmask is aligned to the tile and row position and then forwarded to the Pixel Unit as a PixelMask
before the Tile command, where it can be tested and used. Alternatively the bitmask can be combined
with the Tile mask using logical AND. For image upload the tiles can also be visited in scanline order.

2.3.1 Rasterization Process
The Rasterizer Unit handles arbitrary quad and triangle rasterization, antialiase subpixel mask and
coverage calculation, scissor operations and area stippling. The rasterization process can be broken down
into three parts:

• Calculate the bounding box of the primitive and test this against the VisRect. The VisRect defines the
only pixels which are allowed to be touched. In a dual P10 system each P10 is assigned alternating
super tiles (64x64 pixels) in a checker board pattern. If the bounding box of the primitive is contained
in the other P10's super tile the primitive is discarded at this stage.

• Visiting the tiles which are interior to, or on the edge of a primitive while spending no time visiting tiles
outside the primitive or in clipped out regions of the primitive which fall outside of the VisRect. Extra

3 This needs to vary depending on which is the top or right edge so that butting triangles don't write to a pixel twice.
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sample points outside of the current tile being processed are used as 'out riggers' to assist in this.
One other area where care is needed is on thin slivers of primitives which fall between sample points
and give a zero tile mask, thereby giving the impression the edge of a primitive has been found.

• Computing the tile mask to show which fragments in the tile are inside the primitive. This also
extends to calculating the coverage mask for antialiasing.

There are 4 edge function generators so that arbitrary quads can be supported, although these will
normally be screen aligned parallelograms or non screen aligned rectangles for aliased lines or antialiased
lines respectively. Screen aligned rectangles are used for 2D and 3D points. Triangles only need to use 3
edge function generators.

The edge functions will test which side of an edge the 64 sample positions in a tile lay and return an inside
mask. ANDing together the 3 or 4 inside masks will give a tile mask with the inside fragments of the
primitive for this tile set. Sample points which lie exactly on an edge need to be handled carefully so
shared edges only touch a sample point once.

The sample points are normally positioned at the center of the pixels4, but when antialiasing up to 16
sample points are configured to lie within a pixel. The 16 subpixel sample points are irregularly positioned
(via a user programmable table) on a regular 8x8 grid within the pixel so that any edge moving across a
pixel will cover (or uncover) the sample points gradually and not 4 at a time. This emulates stochastic (or
jittered) sampling and gives better antialiasing results as, in general, more intensity levels are used.

2.3.2 Antialiasing
Antialiasing is done by jittering the tile's position and generating a new tile mask. The jittered tile masks
are then accumulated to calculate a coverage value or coverage mask for each fragment position. The
number of times a tile is jittered can be varied to trade off antialiasing quality against speed. Tiles which
are totally inside the primitive are automatically marked with 100% coverage so these are processed at
non antialiasing speeds. This information is also passed to the Pixel Unit so it can implement a faster
processing path for fully covered pixels.

The UserScissor rectangle will optionally modify the tile mask if the tile intersects the scissor rectangle or
delete a Tile message if it is outside of the scissor rectangle. This, unlike the VisRect, does not influence
which tiles are visited.

Finally the tile mask is optionally ANDed with the 8x8 area stipple mask extracted from the stipple mask
table. The stipple mask held in the table is always 32x32 and screen aligned5.

The rasterizer computes the tile mask in a single cycle and this may seem excessively fast (and hence
expensive) when the remainder of the core is usually taking, say 4…8 cycles per tile. The reasons for this
apparent mismatch are:

• To allow guard band clipping and scissoring to occur faster.

• Searching for interior tiles when the start tile is outside the primitive (maybe due to guard band
clipping) is wasted processing time and should be minimized.

• To allow for some inefficiencies in tracking the primitive boundary where empty tiles outside the
primitive are visited.

• The antialiasing hardware uses the same 64 point sampler to calculate the subsample values so
could take up to 16 cycles to calculate each fragment's coverage.

• It allows some simple operations to run much faster. Examples of this are clearing a buffer, GID
testing and early exit depth testing.

Antialiased points are processed in a different way as it is not possible to use the edge function generators
without making them very expensive or converting the point to an polygon. The method used it to
calculate the distance from each subpixel sample point in the point's bounding box to the point's center and
compare this to the point's radius. Subpixel sample points with a distance greater than the radius do not
contribute to a pixel's coverage. The cost of this is kept low by only allowing small radius points hence the
distance calculation6 is a small multiply and by taking a cycle per subpixel sample per pixel within the
bounding box. This will limit the performance on this primitive, however this is not a performance critical

4 D3D expects the sample point to be at the origin of the pixel and this is allowed for when the appropriate mode bit is set.
5 This is much simpler than in earlier chips where different size stipple masks could be held and these masks could be aligned to window
coordinates, screen coordinates and be mirrored and inverted. Now it is software's responsibility to replicate the mask to 32x32 and to
realign if the window moves (if necessary).
6 Really distance squared to avoid the square root.
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operation but does need to be supported as the software has no way to substitute alternative rendering
commands due to polymode behavior.

2.4 Texture

The texture subsystem is the largest and most complicated subsystem and will be further split up for this
description.

The main components of the texture subsystem are:
• Texture Switch Unit
• One or more Texture Pipes
• Texture Arbiter Unit
• Texture Address Unit
• Texture Format Unit
• Secondary Texture Cache
• Texture Mux Unit
The Texture Switch Unit provides the interface for all the texture unit (except the Parameter Unit and the
Shading Unit) to the message stream. It will decode tags and, where necessary, cause the state in each
the texture pipe to be updated.

A texture pipe does all the color and texture processing necessary for a single tile so the Texture Switch
Unit distributes the Tile messages in round robin fashion to the active texture pipes. Distributing the work
in this fashion (as opposed to the alternative described in the footnote) probably takes more gates7, but
does have the following advantages:

• It allows the design to be more scalable and not limited to a power of two number of pipes.

• The performance is not quantized as much when the number of textures is not an exact multiple or
fraction of the number of pipes. For example 3 textures would leave one pipe unused with the
alternative scheme, whereas with this approach all pipes are kept at maximum throughput.

• The number of texture pipes is transparent to the software and the Texture Switch Unit can avoid
using texture pipes with manufacturing defects. Obviously this will reduce performance but it does
allow a device which would have otherwise been scrapped to be recovered and sold into a market
where the drop in texture performance is acceptable. This will improve the effective manufacturing
yield.

• The Texture Switch Unit is much simpler than would have been true with texture pipes working
together with feedback from one pipe to the next.

• Small primitive performance is improved because each pipe only sets up and processes the tiles (i.e.
small primitives) given to it.

Each texture pipe works autonomously and computes the filtered texture values for the valid fragments in
the tile it has been given. It will do this for up to eight sets of textures and pass the results to the Shader
Unit in the pipe, and potentially back to the Texture Coordinate Unit for bump mapping.

2.4.1 Processing Within Texture Pipes
Processing within the texture pipe is done as a mixture of SIMD units (Texture Coordinate Unit and
Shading Unit) or one fragment at a time (Primary Texture Cache Unit and Texture Filter Unit) depending on
how efficient it is to process the required operations in parallel or linear fashion.

Each texture in a pipe can be trilinear filtered with per pixel LOD, cube mapped, bump mapped, anisotropic
filtered and access 1D, 2D, or 3D maps. The texture pipe will issue read requests to the Texture Arbiter
when cache misses occur. The texture pipe will be expanded on later.

The Texture Arbiter collects texture read requests from the texture pipes, serializes them and forwards
them onto the Texture Address Unit. When the texture data is returned, after any necessary formatting,
this unit will then route it to the requesting pipe. Each pipe has pair of ports in each direction so that
requests from different Mipmap levels can be grouped together. The arbitration between the texture pipes
is done on a round robin basis.

7 The 64 plane equations (8 texture coordinates and 8 colors) are duplicated as is the Parameter Setup Unit.
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The Texture Address Unit calculates the address in memory where the texel data resides. This operation
is shared by all texture pipes (to saves gates by not duplicating it), and in any case it only needs to
calculate addresses as fast as the memory/secondary cache can service them. The texture map to read is
identified by a 3 bit texture ID, its coordinate (i, j, k), a map level and a cube face. This together with local
registers allow a memory address to be calculated. This unit only works in logical addresses and the
translation to physical addresses and handling any page faulting is done in the Memory Controller. The
layout of texture data in cube maps and Mipmap chains is now fully specified algorithmically so just the
base address needs to be provided. The maximum texture map size is 8Kx8K and they do not have to be
square or a power of two in size8.

Once the logical address has been calculated it is passed on to the Secondary Texture Cache Unit. This
unit will check if the texture tile is in the cache and if so will send the data to the Texture Format Unit. If
the texture tile is not present then it will issue a request to the Memory Pipe Unit and when the data arrives
update the cache and then forward the data on. The cache lines hold a 256 byte block of data and this
would normally represent an 8x8 by 32bpp tile, but could be some other format (8 or 16 bpp, YUV or
compressed). The cache is 4 way set associative and holds 128 lines (i.e. for a total cache size of
32Kbytes), although this may change once some simulations have been done. Cache coherence with the
memory is not maintained and it is up to the programmer to invalidate the cache whenever textures in
memory are edited. The Secondary Texture Cache capitalizes on the coherency between tiles or sub tiles
when more than one texture is being accessed.

The primary texture cache in the texture pipes always holds the texture data as 32bpp 4x4 tiles so when
the Texture Format Unit receives the raw texture data from the Texture Secondary Cache Unit it needs to
convert it into this format before passing it on to the Texture Arbiter Unit. As well as handling the normal
1, 2, 3 or 4 component textures held as 8, 16 or 32 bits it also does any YUV 422 conversions (to YUV
444) and expands the DX compressed texture formats. Indexed textures are not handled directly but are
converted to one of the texture formats when they are downloaded. Border colors are converted to a
memory access as the border color for a texture map is held in the memory location after the texture map.

The Texture Mux Unit collects the fragment data for each tile from the various texture pipes and the
message stream and multiplexes them to restore temporal ordering before passing them onto the Pixel
Unit or Router respectively.

2.4.2 Texture Pipe Components
A Texture Pipe comprises six units:

• Parameter Setup Unit
• Texture Coordinate Unit
• Texture Index Unit
• Primary Texture Cache Unit
• Texture Filter Unit
• Shading Unit

8 Mipmapping requires a map size which is a power of two or has a border. Cube maps are always square and each face always has the
same size map (if present).
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2.4.2.1 Parameter Setup
The Parameter Setup Unit sets up the plane equations for the texture coordinates and color values used in
the Texture Coordinate Unit and Shading Unit respectively. See earlier for details.

2.4.2.2 Texture Coordinate
The Texture Coordinate Unit computes one or more perspectively correct texture coordinates for each
fragment and the appropriate level of detail (LOD) when Mipmapping. In addition the texture coordinates
can be perturbed by an earlier texture access (bump mapping) or treated as the index into a cube (cube
mapping). Higher qualities of filtering are supported by way of anisotropic Mipmapping and high order
filters (bicubic for example). Texture coordinates can have 1, 2 or 3 components to support 1D, 2D or 3D
texture maps. A fragment can have multiple texture maps applied to it and any combination of the above
are allowed by the APIs. There is support for 8 simultaneous texture maps.

The Texture Coordinate Unit is a programmable SIMD array 4x4 in size which runs a program once per
sub-tile for those sub tiles with valid fragments. All the texture calculations for a sub-tile are done before
moving on to the next sub sub-tile.

A SIMD architecture is used so these steps are carried out sequentially, but on multiple fragments at a
time. If this 'program' takes n cycles to implement and the desired performance is to generate one set of
texture coordinates per cycle then the SIMD array needs to hold n fragment processors. The value of n is
constrained to be a power of two for ease of implementation and as will be seen later (in the section on
programming) the above program takes about 14 cycles to run, hence n is ideally 16 processors.

Plane equation evaluation, cube mapping coordinate selection, bump mapping transformation and
coordinate perturbation, 3D texture generation, perspective division and level of detail calculation are all
done by the program. Anisotropic filtering loops through the program depending on the amount of filtering
needed. The integration of the different filter samples in the Shading Unit is controlled from here.

2.4.2.3 Texture Index Unit
The final conversion to fixed point u, v, w coordinate includes an out-of-range test so the wrapping is all
done in the Texture Index Unit.

The Texture Index Unit takes the u, v, w, LOD and cube face information from the Texture Coordinate Unit
and converts it in to the texture indices (i, j, k) and interpolation coefficients depending on the filter and
wrapping modes in operation. Filtering across the edge of a cube map is handled by surrounding each
face map with a border of texels taken from the butting face. Texture indices are adjusted if a border is
present. The output of this unit is a record which identifies the 8 potential texels needed for the filtering,
the associated interpolation coefficients, map levels and face number.

2.4.2.4 Texture Cache
The Primary Texture Cache Unit uses the output record from the Texture Index Unit to look up in the cache
directory if the required texels are already in the cache and if so where. Texels which are not in the cache
are passed to the Texture Arbiter so they can be read from memory (or the secondary cache) and
formatted. The read texture data passes through this unit on the way to the Texture Filter Unit (where the
data part of the cache is held) so the expedited loading can be monitored and the fragment delayed if the
texels it requires are not present in the cache. Expedited loading of the cache and FIFO buffering (between
the cache lookup and dispatch operations) allows for the latency for a round trip to the secondary cache
without any degradation in performance.

The primary cache is divided into two banks and each bank has 16 cache lines, each holding 16 texels in a
4x4 patch. The search is fully associative and 8 queries per cycle (4 in each bank) can be made. The
replacement policy is LRU, but only on the set of cache lines not referenced by the current fragment or
fragments in the latency FIFO. The banks are assigned so even Mipmap levels or 3D slices are in one
bank while odd ones are in the other. The search key is based on the texel's index and texture ID not
address in memory (saves having to compute 8 addresses)

2.4.2.5 Texture Filter Unit
The Texture Filter Unit holds the data part of the primary texture cache in two banks and implements a
trilinear lerp between the 8 texels simultaneously read from the cache. The texel data is always in 32 bit
color format and there is no conversion or processing between the cache output and lerp tree. The lerp
tree is configured between the different filter types (nearest, linear, 1D, 2D and 3D) by forcing the 5
interpolation coefficients to be 0.0, 1.0 or take their real value. The filtered results are passed on to the
Shading Unit and include the filtered texel color, the fragment position (within the tile), a destination
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register and some handshaking flags. The filtered texel color can be feedback to the Texture Coordinate
Unit for bump mapping or any other purpose.

2.4.2.6 Shader Unit
The Shading Unit is a programmable SIMD machine operating on a logical 8x8 array of bytes (i.e. one per
fragment position within a tile). The physical implementation uses a 4x4 array to save gate cost. The
Shading Unit is passed up to 8 tiles worth of texture data, has storage for 32 plane equations (an RGBA
color takes 4 plane equations) and 32 byte constant values. These values are combined under program
control and passed to the Pixel Unit, via the Texture Mux Unit, for alpha blending, dithering, logical ops,
etc. Fragments within a tile can be deleted so chroma keying or alpha testing is also possible. All
synchronization (i.e. with the texture data) is done automatically in hardware so the program doesn't need
to worry where the texture data will come from or when it will turn up.

Typically the Shading Unit program will do some combination of Gouraud shading, texture compositing
and application, specular color processing, alpha test, YUV conversion and fogging9.

The Shading Unit's processing element is 8 bits wide so takes multiple cycles to process a full color. The
ALU has add, subtract, multiply, lerp and a range of logical operations. It does not have divide or inverse
square root operations. Saturation arithmetic is also supported and multi byte arithmetic can be done.
Programs are limited to 128 instructions and conditionals jumps and subroutines are supported. The
arrival of a Tile message initiates the execution of a program and a watchdog timer prevents lockups due
to an erroneous program.

In order to support some of the more complex operations such as high order filtering, convolution and go
beyond 8 textures per fragment several programs can be run on the same sub tile, with different input data
before the final fragment color is produced. This multi pass operation is controlled by the Texture
Coordinate Unit. This works in a very similar way as the multi pass operation of the Pixel Unit.

2.5 Framebuffer

The Framebuffer subsystem is responsible for combining the color calculated in the Shading Unit with the
color information read from the framebuffer and writing the result back to the framebuffer. Its simplest
level of processing is therefore antialiasing coverage, alpha blending, dithering, chroma keying and logical
operations, but the same hardware can also be used for doing accumulation buffer operations, multi buffer
operations, convolution and T buffer antialiasing. This is also the main focus for 2D operations with most
of the other units (except the rasterizer) being quiescent, except perhaps for some of the esoteric 2D
operations such as anisotropically filtered perspective text.

2.6 Local Buffer

See Localbuffer in the P10 Programmer’s Guide volume I.
 

2.7 Memory Pipe

P10 memory is cache-based and all data types are stored as 8bpp planar tiles. All memory access is
logical/virtual and page faults cause CPU-like page swaps.

Memory is preferably 256 bit wide DDR devices running at 266MHz. From 32MB to 256MB of x32 devices
are supported, or alternatively up to 512MB of x16 devices.10 SDR devices are not supported.

There are two independent 128bit controllers which hold alternating groups of 8 tiles. Memory is divided
into 4 regions corresponding to the 4 internal banks of a DDR device:

9 Table based fog is implemented as a 1D texture as it is too expensive to allow each fragment access to an internal look up table.
10 The additional address lines will somewhat constrain performance with x16 memories.
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Bank Controller 0 Controller 1

0 0-7 8-15 

1 16-23 24-31 

2 32-39 40-47 

3 48-55 56-63 

0 64-71 72-79 

Local memory is used to store color, depth, stencil, and texture data. These are largely interchangeable
depending on the microcode application context. For more information on data typing and usage refer to
the P10 Programmers Guide.

For more information on Memory devices and layouts see “Memory Systems” in the P10 Reference Guide.

2.8 AGP/PCI Interface

2.8.1 PCI Interface

2.8.1.1 PCI Target features
• PCI Configuration Space transactions
• PCI Memory Space transactions
• PCI Fast Writes (2X and 4X)
• PCI I/O Space transactions
• VGA palette write snooping
• 32-bit and 64-bit addressing (dual address cycles)
• PCI multi-function operation

2.8.1.2 PCI Master features
• PCI Memory Space transactions
• 32-bit read and write data transfers
• 32-bit and 64-bit addressing (dual address cycles)

2.8.2 AGPBus

AGP 4X is Intel’s high performance, component level interconnect targeted at 3D display applications,
which uses a 66MHz PCI specification as an operation baseline and provides significant performance
extensions to the PCI specification.

Implementing these features enables P10 to achieve better than 1 GByte per second bandwidth from the
host for instructions, textures, video data (limited by the host system throughput).

The add-in slot defined for AGP uses a connector body which is not compatible with the PCI connector.
Boards designed for use in an AGP slot are not mechanically interchangeable with PCI boards. P10
supports AGP2x, AGP4x and PCI at signal voltages from 1.5vdc to 3.3vdc only. Legacy 5vdc PCI logic
may severely damage the chip.

2.8.2.1 AGP Master features
��AGP low-priority Read transactions
��AGP low-priority Write transactions
��AGP Fence and Flush transactions
��Operation at 1X, 2X, and 4X data rates
��Sideband and pipe operation
�� 48-bit addressing using sideband
�� 64-bit addressing using pipe and dual address cycles

2.8.3 SVGA
The on-chip SVGA unit is register level compatible with standard VGA devices and requires no software
emulation. It natively supports all standard VGA modes and certain VESA VBE extended modes.
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The following standard VESA VBE extended video modes are supported - those not supportable by the
SVGA unit may be supported using the Graphics Processor:
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Table 1- 2 VESA VBE Graphics Modes

Mode
(hex)

Pixels Colors Window-
ed

Lin-
ear

Support-
able in
SVGA

Support-
able in
GP

0x100 640x400 256 � � � � 

0x101 640x480 256 � � � � 

0x103 800x600 256 � � ✕ � 

0x105 1024x768 256 � � ✕ � 

0x107 1280x1024 256 � � ✕ � 

0x109 320x200 32K (5:5:5:1) � � ✕ � 

0x10D 320x200 64K (5:6:5) � � ✕ � 

0x10F 320x200 16.8M (8:8:8) � � ✕ � 

0x110 640x480 32K (5:5:5:1) � � ✕ � 

0x111 640x480 64K (5:6:5) � � ✕ � 

0x112 640x480 16.8M (8:8:8) � � ✕ � 

0x113 800x600 32K (5:5:5:1) � � ✕ � 

0x114 800x600 64K (5:6:5) � � ✕ � 

0x115 800x600 16.8M (8:8:8) � � ✕ � 

0x116 1024x768 32K (5:5:5:1) � � ✕ � 

0x117 1024x768 64K (5:6:5) � � ✕ � 

0x118 1024x768 16.8M (8:8:8) � � ✕ � 

0x119 1280x1024 32K (5:5:5:1) � � ✕ � 

0x11A 1280x1024 64K (5:6:5) � � ✕ � 

0x11B 1280x1024 16.8M (8:8:8) � � ✕ � 

The following VESA VBE text modes are supportable in the SVGA:

Table 1- 3 VESA VBE Text Modes

Mode (hex) Characters

(col/row)

0x108 80x60 

0x109 132x25 

0x10A 132x43 

0x10B 132x50 

0x10C 132x60 

P10 allows VESA bank switching to be done through the bypass to enable additional VESA mode support.
ModeX is RAMDAC. P10 incorporates high performance 350MHz RAMDAC. Typical screen resolutions up
to 1600x1200 are supported with refresh rates of 96Hz or 1920x1080 with refresh rates of 90Hz, or
2048x1536 at 60Hz. It supports packed pixel formats, with color depths of 8, 16, 24, 32 and 40 bits per
pixel. It has 4 dot-clock phase locked loops (PLLs) and triple 10-bit D/A converters. The RAMDAC
contains a 64x64x2 bit cursor array to support a 2, 4, or 16 color hardware cursor with cursor shapes
cache.

2.8.4 Video Overlay
The video overlay is used to display incoming video data on screen. The overlay selection is based on a
transparent color, the overlay key, which can be any RGB color or alpha value. Optionally, the overlay can
be blended with the main image by using a 2-bit blend factor. A filter process supports zooming and
shrinking at any rate. It combines four pixels into one by using bilinear filtering to achieve best results.
Furthermore the filtered output is optionally converted from YUV to RGB color space format.
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2.9 DMA

P10 supports a comprehensive set of DMA engines and uses Circular buffer input stream handling to
reduce Command DMA set-up overhead and latencies. Input streams can be from host or on-card
memory with two levels of nesting. Output DMA returns data to host or local memory, performs image
uploads and state return.

2.9.1 Graphics Core to Graphics I/O – Upload Controller
The GPIO Upload DMA Unit – GPIOUD – uploads message data from the graphics pipeline to the PCI and
AGP bus masters.

The unit is controlled by PCI slave register writes and reads, which are resynchronized from P clock to K
clock and back through the PCI slave write (PciGpWr) and PCI slave read (GpPciRd) FIFOs respectively.

The GP input half of the unit maintains 2 input message ports and 16+1 circular buffers. These generate
outgoing message streams on the API and Isochronous output message FIFOs.

The GP output half of the unit maintains an output message port and a Sync interrupt signal. These are
driven from the incoming message stream on the input message FIFO.

• Autonomous - set-up/fetch parallelism
• No wait state - maximum transfer rate
• Programmable block size - large DMA buffers
• Separate DMA controllers for upload and download can run concurrently

2.9.2 Graphics I/O to Geometry and Rasterizer – GPIO Command DMA
The GPIO Command DMA Unit issues DMA requests and processes the return data for GP command
packets. These are inserted into the message stream. DMA packets are usually submitted via circular
buffers which manage the GP core command interface.

2.9.3 Circular Buffers
Apart from the input message port, the circular buffer provides the only command interface to the GP core.
They replace the GP Input FIFO and command DMA schemes of earlier chips.

The intention is that 16 user contexts (API) and the GDI+ driver (ISO) each have their own private circular
buffer backed by a DMA engine.11 Wraparound is handled automatically by the GPIO Bus Interface.

11 A “user context” here is considered to be the display driver, an OpenGL ICD process, or anything else wanting to make use of the GP
core for 2D or 3D rendering.
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Figure 2.5 Graphics Processor I/O

2.9.4 Interrupt Controller
• End-of-DMA - allows DMA chaining
• VSYNC - efficient double buffering
• Scanline - special effects
• Texture invalid
• Bypass DMA interrupt
• I2C start condition - alert host to start of I2C transfer
• Sync - indicates graphics core is idle
• Error - e.g. writing to a full FIFO

2.9.5 Video Streaming
P10 supports digital video output. The 24-bit streamed output is designed to work with common
PAL/NTSC encoders and flat panel controllers.

2.9.6 ROM support
P10 supports a Flash ROM. The ROM stores code needed for device-specific initialization and the SVGA
BIOS. For more information see the P10 Reference Guide, volume 4, “Reset”
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3333    
P=Address Maps and Regions 

3.1 PCI Configuration Region

The PCI Configuration Space is intended to provide an appropriate set of configuration ‘hooks’ which
satisfy the needs of current and anticipated system configuration mechanisms. The registers in this 256-
byte space are accessed and modified by the use of PCI Configuration Read and Write commands, and
are normally initialized by BIOS or similar low-level code at system power-up and reset. The configuration
registers are described in detail in P10 Reference Guide volume II.

When configured for multi-function operation the bus interface provides a unique 256-byte configuration
space for each PCI function, but will map accesses to other regions to the same underlying hardware
regardless of the function being addressed.

3.1.1 Control Registers
Region Zero is a 256 KByte region containing control registers, and ports to and from the graphics
processor. The control space is mapped twice within the 256 KByte region. In the second 128K the
registers are mapped to be byte swappable for big-endian hosts. See Section 3 of this document for further
details of Region Zero.

3.1.2 Memory Apertures
Two separate apertures are provided to allow access to local memory. Each has a programmable size,
and can be disabled if required.

As well as being used to access local memory, these two apertures can also be programmed to allow
reading and writing of the Expansion ROM. This ensures that the “ROM” is visible beyond system boot
time, allowing an EEPROM device to be reprogrammed in the field. Finally, either aperture can be
programmed to forward memory accesses to the VGA memory controller.

3.1.3 Expansion ROM
In earlier 3Dlabs bus interface designs a number of parameters for the bus interface were initialized at
reset time using pull-up or pull-down resistors connected to configuration pins. Configuration signals were
loaded into the ChipConfig register which controlled the initialization and operation of the device.

This approach is impractical with new, much faster chips so the P10 design loads all but the most critical
initialization information from an external Expansion ROM. Loading from the ROM is enabled using a
single “RomConfig” configuration pin and default initialization values are used for registers when loading is
disabled. This also allows use of the ROM Controller for other devices, such as an I2C bus. See the
ROMControl section of the Reference Guide volume II for details.

Once the Configuration Table pointer has been read a sequence of 32-bit words are loaded from the table
into configuration space registers in the PCI Config unit and control registers in the ROM Controller unit:

Table
Offset

Table Field Destination Unit Destination Register

00h BusConfig PCI Config CFGBusConfig 

04h FunConfig PCI Config CFGFunConfig 

08h Subsystem PCI Config CFGSubsystemID and CFGSubsystemVendorID 

0Ch DevConfig PCI Config CFGDevConfig 

10h DevConfigMask PCI Config CFGDevConfigMask 

14h RomTiming ROM Controller ROMTiming 
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The CFGBusConfig, CFGFunConfig, CFGDevConfig, and CFGDevConfigMask registers are described
below. Each of these four user-defined registers is shared between all functions in a multi-function device,
and accesses through any function are mapped to the same underlying register hardware by the bus
interface.

3.1.4 VGA Addresses
The bus interface can be configured to respond to standard VGA-compatible Memory and I/O Space
addresses (memory addresses 0xA0000 through 0xBFFFF, and various I/O addresses in the ranges 0x3B0
through 0x3BB and 0x3C0 through 0x3DF). Further details are given in Section 4 of this document (“Video
and RAMDAC”).

BIST Header Type Latency Timer Cache Line Size

Revision IDClass Code

Status Command

Device ID Vendor ID

Subsystem ID Subsystem Vendor ID

CardBus CIS Pointer

Base Address Registers

Expansion ROM Base Address

Reserved Capabilities Ptr

Reserved

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

31 24 16 8 0

Table 3.1 Predefined and Base Address Registers (offsets 00h to 3Fh)
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40h

44h

48h

4Ch

50h

54h

E0h

E4h

E8h

ECh

F0h

F4h

F8h

FCh

31 24 16 8 0

Reserved AGP Revision AGP Next Ptr AGP Capability ID

AGP Status

AGP Command

PM Capability IDPM Next PtrPM Capabilities

PM_BSEPM Data PM Control/Status

DevConfig

BusConfig

DevConfigMask

Indirect Data

Indirect Address

Reserved

Indirect Trigger

FunConfig

Table 3.2 AGP, Power Management, and User-Defined Registers (offsets 40h to FFh)
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3.2 Region Zero Address Map

Region Zero is a 256 KByte region containing control registers and ports to and from the graphics
processor. The control space is mapped twice within the 256 KByte region. In the second 128K the
registers are mapped as byte swapped for big endian hosts.

Region Zero Address Map
Address Range Size (bytes) Sub-Region Select Byte Swap

0x00000 – 0x00FFF 4 K Bus Interface CSR No
0x01000 – 0x01FFF 4 K Interrupt Control No
0x02000 – 0x02FFF 4 K Video Head 0 Control No
0x03000 – 0x03FFF 4 K Memory Control No
0x04000 – 0x04FFF 4 K VGA Control No
0x05000 – 0x05FFF 4 K ROM Control No
0x06000 – 0x06FFF 4 K Bypass Control No
0x07000 – 0x07FFF 4K Video Port Control No
0x08000 – 0x08FFF 4K Video Head 1 Control No
0x09000 – 0x0EFFF 24 K reserved n/a
0x0F000 – 0x0FFFF 4 K GPIO Driver Registers No
0x10000 – 0x1FFFF 64 K GPIO “User” Registers No
0x20000 – 0x20FFF 4 K Bus Interface CSR Yes
0x21000 – 0x21FFF 4 K Interrupt Control Yes
0x22000 – 0x22FFF 4 K Video Head 0 Control Yes
0x23000 – 0x23FFF 4 K Memory Control Yes
0x24000 – 0x24FFF 4 K VGA Control Yes
0x25000 – 0x25FFF 4 K ROM Control Yes
0x26000 – 0x26FFF 4 K Bypass Control Yes
0x27000 – 0x27FFF 4K Video Port Control Yes
0x28000 – 0x28FFF 4K Video Head 1 Control Yes
0x29000 – 0x2EFFF 24 K reserved n/a
0x2F000 – 0x2FFFF 4 K GPIO Driver Registers Yes
0x30000 – 0x3FFFF 64 K GPIO “User” Registers Yes

Table 3.3 Region Zero Address Map

3.2.1 Reserved Registers
All accesses to reserved sub-regions in the table above are intercepted and handled by the bus interface:
writes are discarded, and reads return zero. Accesses to non-reserved sections of the address map are
forwarded to the appropriate target unit. The bus interface has no information about the internal register
map of individual target units, so where target units have a sparse register map they themselves are
responsible for handling accesses to reserved registers. By convention, they too should absorb writes and
read back zero from reserved addresses.

3.2.2 PCI Address Regions
The PCI Slave interface implements six PCI Address Regions, shown in the table below. The standard
VGA compatible Memory and I/O Space addresses are decoded when the device has been suitably
configured. These addresses do not form a single contiguous region but are mentioned in the table for
completeness:



P10 Reference Guide Volume I Address Maps

3Dä~Äë Proprietary and Confidential = 3-5

PCI Address Regions
Region Address Space Size (bytes) Description Comments

Config Configuration 256 PCI Configuration PCI Special
Zero Memory 256 K Control Registers relocatable
One Memory configured Memory Aperture One relocatable
Two Memory configured Memory Aperture Two relocatable
ROM Memory 64 K Expansion ROM relocatable
VGA Memory & I/O - VGA Address optional & fixed

Table 3.4 PCI Address Regions

For more information on Reset Configuration, see P10 Reference Guide volume IV, chapter 10, Reset
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4444    
Q=Video Unit 

The P10 Video Unit displays data held in memory. It generates the video timing, requests data from
memory, formats the data returned, and prepares it for display. There are four independent channels that
can each request data; they are normally used for the underlay, the main image, the overlay, and the
cursor. The four channels are combined to form a single channel by applying color key and blend
operations. The result is passed through two lookup tables one after the other before being sent to a
display device such as DAC or a TV encoder.

Address
Generator

Format

Format

Format

Timing
LookU

pZero

DAC

TMDS

TV

Memory
Controller

Underlay

Main

Overlay

LookU
pO

ne

D
isplay

Background or composite

Pixel Processor Lookup

VGA

Key

Composite

Format Cursor

C
hannel

All channels are identical except that they have a fixed stacking order (cursor over overlay over main over
underlay) and the main and overlay channels can be run in stereo mode.

4.1 LUTs

There are two lookup tables to remap the pixel color. Typical uses include:
�� using one table to de-reference index data while another gamma corrects RGB data
�� supporting two different gammas (perhaps one for video and another for 3D).
Each channel selects which LUTs to use from a bitfield in the VideoControl register; each channel can use
one or both LUTs. Alternatively the LUT may be selected from the upper 2 bits of the alpha component,
again as a bit field indicating one or both LUTs.

If a LUT is in index mode, as opposed to RGB mode, it uses one channel to index all 3 components; the
channel to use can be selected.

4.2 Display Resolutions

TBD

4.3 Display Data Channels

P10 supports both analogue and digital I/O. Digital input channels include an I2C bus

4.4 Analogue Display Timing Parameters

All timing values are relative to the first clock of vertical blank (i.e. the first pixel in vertical blank is at zero
horizontal and 0 vertical). The horizontal values are defined in pixels and the vertical value in lines. The
base address of the frame buffer is the first pixel to be displayed. Addresses must be aligned to the nearest
tile and offsets with the tile specified through the pan register. The screen stride may be different to the
screen width.
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The values loaded into registers represent the pixel (or line) on which the event takes place, so the
horizontal blank end register holds the last pixel of blank; as the count is from zero, the number in the
register is length of the horizontal blank.

(0,0)

H Blank

V
Blank

H
Sync

V
Sync

H Sync Start
H Sync End

H Blank End

V Sync Start

V Sync End

V Blank End

Active Video

First active pixel = base address

H Total

V Total

(0,0)

H Blank

V
Blank

H
Sync

V
Sync

H Sync Start
H Sync End

H Blank End

V Sync Start

V Sync End

V Blank End

Active Video

First active pixel = base address

H Total

V Total

There is an implementation requirement that the horizontal total value be no less than 4 and that there
must be at least one line of vertical blank.

4.4.1 Synchronization
There are two lock bits which may be used to synchronize different channels within a head, or different
heads. The lock registers hold a mask of which channels take part in the lock; there are two lock registers
per head.

The locking operation uses an open-drain pin which is pulled high by a resistor. When a channel is not
ready to synchronize it pulls the pin low, so when the pin is sampled it returns ‘not locked.’ When a
channel is ready to synchronize it tri-states the pin, and when all channels have tri-stated the pin is pulled
high and returns ‘locked.’

All heads have access to all lock pins so they can be used to synchronize two heads in the same chip; the
pins can also be shared by separate chips.

Note: Synchronization, PLL setup and Genlocking are described in more detail in the P10
Programmer’s Guide Chapter 6 – Synchronization – and section 5.6.3, Dual Head Video
Output. .Sync on Green is not supported on P10

4.4.2 Multi-Head
There is one PClk process that holds all registers for all heads; most registers are unique to the head they
control, some are shared by all heads. The DClk processes are repeated for each head in the system.

4.5 Digital Display Timing Parameters

VIP2 DTV display formats are specified by the position of the SAV and EAV. These in turn identify the
task, field, and blanking intervals.
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In the VPU, horizontal samples are counted from 0 at the start of the horizontal blanking interval, and the
first line of the frame is the first line of the vertical blanking interval. In interlaced video, with two vertical
blanking intervals, the start field is also specified.

For example, this is how the 525-line System is formatted for the VPU:

Refer to the P10 Programmer’s Guide for more information.

4.6 Multi-rasterizer and Genlock

Refer to the P10 Programmer’s Guide for details of multi-rasterizer and Genlock implementation and use.
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