

P 10
Reference Guide Volume III -
Core Registers

DRAFT

P ROP RIETARY AND CONFIDENTIAL
INFORMATION

®

3 Dlabs®

P 10
Reference Guide Volume III -
Graphics Core and T&L
Registers

P ROP RIETARY AND CONFIDENTIAL
INFORMATION

Is s u e 1

®

 Front Matter Miranda P10 Reference Guide Volume III

ii Proprietary and Confidential 3 Dlabs

Miranda P10 Reference Guide Volume III Front Matter

3 Dlabs Proprietary and Confidential iii

Proprietary Notice
The material in this document is the intellectual property of 3 Dlabs®. It is provided solely
for information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3 Dlabs accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice. 3 Dlabs may not
produce printed versions of each issue of this document. The latest version will be
available from the 3 Dlabs web site.

3 Dlabs products and technology are protected by a number of worldwide patents.
Unlicensed use of any information contained herein may infringe one or more of these
patents and may violate the appropriate patent laws and conventions.
3 Dlabs ® is the worldwide trading name of 3 Dlabs Inc. Ltd.

3 Dlabs, GLINT, GLINT Gamma, PERMEDIA, OXYGEN AND POWERTHREADS are trademarks or
registered trademarks of 3 Dlabs Ltd., 3 Dlabs Inc. Ltd or 3 Dlabs Inc.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of
Microsoft Corp. in the United States and/or other countries. OpenGL is a registered
trademark of Silicon Graphics, Inc. All other trademarks are acknowledged and
recognized.

© Copyright 3 Dlabs Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com

Web: http://www.3dlabs.com

3 Dlabs Ltd.
Meadlake Place

Thorpe Lea Road, Egham
Surrey, TW20 8HE

United Kingdom
Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3 Dlabs K.K.
Shiroyama JT Mori Bldg 16F

40301 Toranomon
Minato-ku, Tokyo, 105, Japan

Tel: +81-3-5403-4653
Fax: +91-3-5403-4646

3 Dlabs GmbH
Breckenheimer Weg 29

65205 Wiesbaden
Deutschland

Tel: +49 6122 916 778
Fax: +49 6122 919 646

3 Dlabs Inc.
480 Potrero Avenue

Sunnyvale, CA 94086,
United States

Tel: +1 (408) 530-4700
Fax: +1 (408) 530-4701

 Front Matter Miranda P10 Reference Guide Volume III

iv Proprietary and Confidential 3 Dlabs

Change History

Document Issue Date Change
174.2.1 01 1 08/06/2001 Creation

User Note
This manual uses hyperlinks in MSWord file distributions to improve ease of access to relevant
information for online users. To enable hyperlinks, the complete Reference Guide and
Programmer’s Guide file set should be in a single Windows directory or folder.

Miranda P10 Reference Guide Volume III Front Matter

3 Dlabs Proprietary and Confidential v

Table of Contents
1 FUNCTIONAL OVERVIEW ... 1-1

1.1 Fixed Function Registers .. 1-2
1.2 Programmable Registers ... 1-91
1.2.1 Vertex Shading Unit (T&L) ... 1-91
1.2.2 Shader (Primitive Color) Unit ... 1-98
1.2.3 Texture Coordinate Unit ... 1-105
1.2.4 Pixel Address ... 1-114
1.2.5 Pixel Programming .. 1-119

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-1

1
1 Fu n c tio n a l Ove rvie w

This chapter describes, in section 5.1, the static T&L and graphics core registers in region
0, offset group 0x8000-0xFFFF. Within this group the registers are listed
alphanumerically.
In P10 some units are fixed-function while others are programmable. Section 5.2
describes the programmable units including interface resources, instruction set and basic
programming notes. Programmable registers are described in greater detail in the P10
Programmer’s Guide. I/O registers were described previously, in chapter 4 volume II of
the P10 Reference Guide.
Static register details may have the following format information:

Name The register’s name.
Type Region and function, i.e. core (region 0) command
Tag The offset of this register from the base address of the region.
Format Can be bitfield, mask, int or float, for example.
Bit Bit number and name
Description What the bitfield is intended to do.
Reserved Bits that may be used in future devices. To ensure upwards compatibility, any

software should always write them as zeros.

Programmable units (Vertex Shading, Texture Coordinate, Shading, Pixel Address and
Pixel) are defined by their Instruction Set, ALU characteristics and Sequencer operation.
These are all presented in section 5.2.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-2 Proprietary and Confidential 3 Dlabs

1.1 Fixed Function Registers

AALineSamples
Type Tag Format Context Sw Datawords Isochronous
Core control 0x281 fixed Yes 1 - 4 No

Bits

Name Description

0…127 PointCoords Sample points are defined as up to 16 pairs of 4.4 fixed point x,
y coordinates, or (setting RasterMode
DualAALineSamplePatterns = true) as up to 8 pairs of
coordinates aligned optimally for x-major and y major lines in
the lower and upper 64 bits respectively.

Notes: Holds the sub pixel sample points used when antialiasing lines. Up to 16 sub pixel sample

points can be defined using the AA Sample table. They are positioned on a 16x16 grid
within a pixel and the coordinates are held as unsigned offsets from the upper left corner of
the pixel.. Sample points start at byte 0 in the AALineSamples register. The number of
sample points to use is held in the RasterMode field AALineSamplePoints[n] where n = 0 to
15. (Rasterizer)

AATriangleSamples
Type Tag Format Context Sw Datawords Isochronous
Core control 0x280 fixed Yes 1 - 4 No

Bits

Name Description

0…127 PointCoords Sample points are defined as pairs of 4.4 fixed point x, y
coordinates packed 16 to a register.

Notes: Holds the sub pixel sample points used when antialiasing triangles or points. Up to 16 sub

pixel sample points can be defined using the AA Sample table. They are positioned on a
16x16 grid within a pixel and the coordinates are held as unsigned offsets from the upper
left corner of the pixel.. Sample points start at byte 0 in the AATriangleSamples register.
The number of sample points to use is held in the RasterMode field
AATriangleSamplePoints[n] where n=0 to 15. (Rasterizer)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-3

AreaStipple [0-15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x240-0x24F mask Yes 2 No

Bits Name Description
0…63 PatternMask Holds the screen relative area stipple pattern. See below for

how these are defined. Loaded 64 bits at a time

Notes: When the AreaStippleEnable bit in the RasterMode register is Set every tile is further qualified

by the area stipple pattern held in the AreaStipple[0…15] registers. The selection between 8x8
and 32x32 stipple pattern is done by RasterMode.AreaStipple8x8, (8x8 when set, 32x32 when
clear).
The area stipple can be inverted by RasterMode.Invert, but not mirrored, byte-swapped or
nibble-swapped.
The diagram below shows how the area stipple bits are allocated to the AreaStipple0…15
registers. (Rasterizer)

Figure 1.1 Area Stipple Bitfield Allocation

0 1 2 3

4 5 6 7

8 10

12 14

9 11

13 15

0

31

7

24

6356

The gray rectangles represent the 64 bits in a register and the large numbers are the
register numbers. The small numbers in rectangle 0 are the bit numbers in the word. The
stipple pattern is as it would appear on the screen.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-4 Proprietary and Confidential 3 Dlabs

Begin
Type Tag Format Context Sw Datawords Isochronous
Core command 0x1B0 Bitfield No 1 No

Bits Name Description
0…3 PrimitiveType The lower 4 bits sets up the primitive type to process on

receiving each new vertex. It has the following values:
 0 Null 1 Points
 2 Lines 3 LineLoop
 4 LineStrip 5 Triangles
 6 TriangleStrip 7 TriangleFan
 8 Quads 9 QuadStrip
 10 Polygon 11 Grid

4…7 GridWidth Grid width in vertices. The sensible range of widths is 2 to 14
vertices.

8 ProvokingVertex When set, applies the D3D provoking vertex rules.
9…29 Reserved
30 Enable Enables vertex cacheing for indexed vertex arrays. This should

only be enabled for Lines, Trangles or Quads
31 Invalidate Invalidates the current vertex cache

Notes: The following restrictions apply:

• The unit should only be enabled when a single index buffer is used (or emulated). Disable
it otherwise.

• The unit should only be enabled when indexed primitives are used.. Disable it otherwise.
• The cache should be invalidated when the unit is first enabled.
• The cache should be invalidated when indexed primitives follow non-indexed primitives.
• The cache should be invalidated when the same indices yield changed vertices (i.e. when

the data buffers’ addresses or contents change).
(Vertex Machine)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-5

BitMask
Type Tag Format Context Sw Datawords Isochronous
Core control 0x18F mask No 1 No

Bits Name Description
0…31 Bitmask Bitmask data

Notes: When the DrawRectangle2D command is invoked with the operation set to SyncOnBitMask a

bitmask must be provided for every pixel in the rectangle. If the rasterizer does not receive
enough values it aborts the operation. If a bitmask is received at any other time, it is silently
discarded. The bitmask is used from the least significant end and any residue at the end of a
scanline is (optionally) discarded.
SyncOnBitMask processes one scanline at a time, in the direction given by the IncreasingX and
IncreasingY fields, however it is only useful when X is increasing1. (Rasterizer)

CacheControl
Type Tag Format Context Sw Datawords Isochronous
Core control 0x182 Bitmask No 1 Yes

Bits Name Description
0 Flush LB Cache
1 Invalidate LB Cache
2 Flush Pixel Cache
3 Invalidate Pixel Cache
4 Invalidate Texture Primary

Cache

5 Invalidate Texture Secondary
Cache

Notes: Implements cache control operations. (Pixel Address unit, Vertex Shader unit)

1 For decreasing X the data or bitmask are assigned within each aligned 8 pixel group in the increasing X direction, but between
the pixel groups in decreasing X order. In practice this makes this operation very hard for software to use, but all required
operations can be achieved by an increasing X order.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-6 Proprietary and Confidential 3 Dlabs

ChangeContext
Type Tag Format Context Sw Datawords Isochronous
Core command 0x188 tag No 1 Yes

Bits Name Description
0…27 ContextAddress Indicates the context is changing and any local parameter values

should be dumped (in 64-byte tiles) to the context record at the
address given.

28…31 Reserved
32…35 Reserved Context-id.
36…63 Reserved

Notes: • This command causes the current context to be written out to memory and the new

context to be loaded for the current active port. The address of the new context is
supplied in the data field and is a 28 bit number giving the planar byte tile where the
context record starts.

• If this is received on the isochronous port then only the units after the Context Unit will
be Context Saved. If it is received on the geom port then the whole chip is Context
Saved. (Context unit)

• High frequency transient data such as vertex parameters are not context-switched as any
isochronous rendering will set up the plane equations directly rather than via vertex
values. (GPIO Command End)

ChangePort
Type Tag Format Context Sw Datawords Isochronous
Core command 0x189 tag No 1 Yes

Bits Name Description
0 ChangePort When the ChangePort field is set to 0, the port is changed to the

Geometry fifo. When set to 1, it is changed to the Isochronous
fifo.

Notes: The ChangePort command can be used to force the active port, and hence context, to change.

This is intended as a test aid. (Context unit)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-7

CoeffAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x004 bitfield Yes 1 No

Bits Name Description
0…7 Address

Notes: Incrementing register load. The address selects the float to write to (not read from) the

Coefficient Memory in the Vertex Shader unit. The address is not modified in any way.

CoeffData
Type Tag Format Context Sw Datawords Isochronous
Core comand 0x134 data Yes 4 No

Bits Name Description
0…127 coeffdata 128 bits of coeff data

Notes: The data is written in when the command is received. After doing the write, the

coefficient address (not the program address) is incremented.

ColourPlaneDX[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x100 – 0x107 Fixed point Yes 4 Yes

Bits Name Description
0…21 Gradient Dx gradient for a color parameter
22…31 Reserved

Notes: These hold the four dx gradients for a colour parameter in 2's complement 9.13 fixed point

format aligned on 32 bit boundaries. (Shader unit)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-8 Proprietary and Confidential 3 Dlabs

ColourPlaneDY[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x108 – 0x10F Fixed point Yes 4 Yes

Bits Name Description
0…21 Gradient dy gradient for a color parameter
22…31 Reserved

Notes: These hold the four dy gradients for a colour parameter in 2's complement 9.13 fixed point

format aligned on 32 bit boundaries. (Shader unit)

ColourPlaneStart[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x110 – 0x117 Fixed point Yes 4 Yes

Bits Name Description
0…21 StartValue Starting value for a color parameter
22…31 Reserved

Notes: Hold the four starting values for a colour parameter in 2's complement 9.13 fixed point format

aligned on 32 bit boundaries. (Shader unit)

CommandID
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C0 bitfield No 4 No

Bits Name Description
0…29 CommandId Identifier which drives the 30-bit CommandId signal.
30 Reserved
31 Intr 0 = Command interrupt is not requested.

1 = Command interrupt is requested.

Notes:

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-9

CylindricalWrap
Type Tag Format Context Sw Datawords Isochronous
Core control 0x212 bitfield Yes 1 No

Bits Name Description
0…7 S wrap Enables S texture coordinate wrapping
8…15 T wrap Enables T texture coordinate wrapping

Notes: Defines the cylindrical wrap mode for the 8 sets of texture coordinates. When a bit is Set, the

corresponding S or T component of the texture will be wrapped. (Geometry)

DepthMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x018 bitfield Yes 1 Yes

Bits Name Description
0 Enable This bit, when set, enables the depth set up calculations
1 WriteMask This bit, when set enables the depth value in the local buffer to be

updated when doing a read-modify-write operation
2…4 CompareFunction[3] This field selects the compare function to use. The options are:

 0 = Never 1 = Less
 2 = Equals 3 = Less Equals
 4 = Greater 5 = Not Equal
 6 = Greater Equal 7 = Always
The compare operation compares the calculated depth value
against the source depth value. If the compare function is 'Less'
and the result is true then the calculated value is less than the
source value

5…6 Width This field holds the width in bits of the depth field in local buffer.
The options are:
 0 = 16 bits wide 1 = 24 bits wide
 2 = 32 bits wide 3 = 16 bits wide

7,8 Reserved

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-10 Proprietary and Confidential 3 Dlabs

9 Format This bit controls the format of the Z value in the local buffer.
The options are:
 0 = Integer 1 = Floating Point

10 Complement This bit, when set, causes the set up calculations to be done with
1.0 - Z value at each vertex rather than Z. This, in conjunction
with a floating point Z format allows a non linear Z buffer to be
used. This field should not be changed in the middle of a mesh
or during rendering as the vertex store and depth buffer will not
be consistent.

11 SamplePoint This field determines where the sample point in a pixel is
considered to be. The two options are:
 0 = Centre of the pixel (at 0.5, 0.5)
 1 = Origin of the pixel (at 0.0, 0.0)
OpenGL expects the sample to be at the pixel center while D3D
expects it to be at the origin.

12 MultiSampleEnable When set (=1) maintains multiple depth buffers, one for each bit
set in Depth Mode and Multi-sample Mode

13…20 MultiSampleMask This mask normally has the same number of bits (0…n) set as
there are sub-pixel samples set up in the Rasterizer. Setting fewer
bits masks out subpixels which would otherwise be tested and
updated – providing the basis for implementation of effects such
as motion blur and depth of field.

21 UseAllSubsamples When set, tells the system to write all subpixel buffers, i.e. there
will not be any subpixel masking, so motion blur and similar
effects will not be used. This sends a completely covered tile,
usually without needing any coverage messages (see notes).

22…31 Reserved

Notes: • In the UseAllSubsamples field, coverage messages are still needed if the Depth test failed some

subsamples. Coverage information cannot be derived from the MultiSampleMask field
because that describes used buffers rather than total buffers (e.g. 0x8 could represent 4
buffers, or 8 buffers of which only the first 4 are used.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-11

DrawIsocRectangle2D
Type Tag Format Context Sw Datawords Isochronous
Core command 0x14C tag No 1 Yes

Bits Name Description
0…12 Width[13] Specifies the width of the rectangle in pixels. Its range is

0…8191.
13 IncreasingX This bit, when set, specifies the rasterisation is to be done in

increasing X direction.
14 IncreasingY This bit, when set, specifies the rasterisation is to be done in

increasing Y direction.
15 MultiRasteriserEnable This bit, when set causes super tiles which are not owned by the

rasteriser to be skipped.
16…28 Height[13] Specifies the height of the rectangle in pixels. Its range is

0…8191.
29…31 Reserved

Notes: The DrawIsocRectangle2D command sets up and draws rectangles in two steps. First the

origin is established using the RectanglePosition command. The DrawIsocRectangle2D
command provides the width, height and some mode bits and causes the rectangle to be
rendered

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-12 Proprietary and Confidential 3 Dlabs

DrawRectangle
Type Tag Format Context Sw Datawords Isochronous
Core command 0x14A bitfield No 4 No

Bits Name Description
0…17 x in 2's complement 14.4 fixed point
18…35 y in 2's complement 14.4 fixed point
36…53 mx in 2's complement 14.4 fixed point
54…71 px in 2's complement 14.4 fixed point
72…89 my in 2's complement 14.4 fixed point
90…107 py in 2's complement 14.4 fixed point

Notes: Tells the Rasteriser Unit to draw a rectangle. (x + mx, y + my) is the corner nearest the origin,

and (x + px, y + py) the corner farthest from the origin. These fields allow an asymmetric
rectangle centred on (x, y) to be defined, or a rectangle with a given position and width and
height, or opposite corner of a rectangle. The mx, my, etc values are set up to describe a
clockwise order when moving from the origin corner to the farthest corner.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-13

DrawRectangle2D
Type Tag Format Context Sw Datawords Isochronous
Core command 0x14B bitfield No 1 No

Bits Name Description
0…12 Width Specifies the width of the rectangle in pixels (0-8191)
13 Increasing x When set, specifies that rasterization is to be in the direction of

increasing x
14 Increasing y When set, specifies that rasterization is to be in the direction of

increasing y
15 PixelsPerScanline This field selects the number of pixels per scanline per tile

which are processed together. The options are:
4 pixels = 0 8 pixels = 1

16…28 Height Specifies the height of the rectangle in pixels (0...8191).
29,30 Operation 0 = Normal

1 = SyncOnHostData - When set, a fragment is produced only
when one of the following registers have been received
from the host: Depth, Stencil, Color or FBData, FBSourceData

2 = SyncOnBitMask - This bit, when set, causes a number of
actions:

 - The least significant bit or most significant bit (depending
on the MirrorBitMask bit) in the BitMask register is
extracted and optionally inverted (controlled by the
InvertBitMask bit).
- If this bit is 0 then any fragments are skipped. After
every fragment the BitMask register is rotated by one bit.

3 = ScanLineOrder -

31 PackedBitMask When set, allows a bitmask to continue across scanlines,
otherwise a new bitmask is needed per scanline. This can
significantly reduce the number of words of bitmask data
downloaded for narrow glyphs.
Note: this is intended for glyph download to an aligned
address, not for g;yph drawing to an arbitrary pixel
boundary.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-14 Proprietary and Confidential 3 Dlabs

Notes: • The register the Rasteriser Unit to draw a rectangle. (x + mx, y + my) is the corner
nearest the origin, and (x + px, y + py) the corner farthest from the origin. These
fields allow an asymmetric rectangle centred on (x, y) to be defined, or a rectangle
with a given position and width and height, or opposite corner of a rectangle. The
mx, my, etc values are set up to describe a clockwise order when moving from the
origin corner to the farthest corner.

• With SyncOnBitMask enabled, if all the bits in the BitMask register have been used
then rasterisation is suspended until a new BitMaskPattern tag is received. If any
other tag is received while the rasterisation is suspended then the rasterisation is
aborted. The register which caused the abort is then processed as normal.

• The behaviour of SyncOnBitMask is slightly different when the SyncOnHostData bit is
set to prevent a deadlock from occurring. In this case the rasterisation doesn't
suspend when all the bits have been used and if new BitMaskPattern tags are not
received in a timely manner then the subsequent fragments will just reuse the bit
mask.

EdgeFlag
Type Tag Format Context Sw Datawords Isochronous
Core command 0x1BD No 1 No

Bits Name Description
0 EdgeFlag 1 = Enable
1…31 Reserved

Notes: Sets the current edge flag to the value in the least significant bit (1 = true).

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-15

End
Type Tag Format Context Sw Datawords Isochronous
Core command 0x1B1 tag No 1 No

Bits Name Description
0…31 Reserved

Notes: Terminates the series of primitives and performs any tidy up action such as forcing the closing

edge of a polygon. The data field is not used. (Vertex Cache…)

FBAddrInfo[0…3]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x07F Bitfield/fixed Yes 1 Yes

Bits Name Description
0…13 x x offset
14,15 Reserved
16…29 y y offset
30,31 Reserved

Notes: Each register holds paired user-supplied data, typically x and y offsets. These can be used

within a Pixel Address program as constant data. The format is 2's complement 14 bit number
and is typically used to hold counts, offsets, masks, etc. For more information on using
FBAddrInfo for microcode programs see the P10 Programers Guide.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-16 Proprietary and Confidential 3 Dlabs

FBBaseAddr[0…3]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x074 – 0x077 data Yes 1 Yes

Bits Name Description
0…27 Address The base address for the framebuffer region in byte tile units.
28…31 Reserved

Notes: • These registers hold the base address in planar byte tile units of the 5 regions in memory

where buffers are located. The x, y coordinates of the tile to read and/or write are
calculated as part of the program and get applied to the selected buffer.

• For example, in loading fonts the origin of the tiles holding the glyph data is held in
FBBaseAddrGlobal with FBBufferGlobal set up with the width of the glyph, pitch and
size set to 4. The SubFieldStartByte and subFieldByteCount in FBBuffer are set up to select
the specific byte holding the glyph's bit plane. The height field is set to the glyph's height
(in tiles) to enable source read clipping. The alignment of the glyph to the tile (which also
takes into account the character position within the tile) is held in FBAddrInfo[6, 7] for
the x and y offsets respectively.

• The Primitive Set Up Unit has mechanisms to allow glyph rendering to be set up with the
minimum number of host words. (Pixel Address)

• FBBuffer operations can also be performed on Localbuffer memory for purposes such as
Depth clears. The FBBuffer would then be set back to pixel memory.

FBBaseAddrGlobal
Type Tag Format Context Sw Datawords Isochronous
Core control 0x070 Yes 1 No

Bits Name Description
0…27 Address The base address for the framebuffer region in byte tile units.
28…31 Reserved

Notes: Holds the base address of the framebuffer regions where the glyph data is stored. It is used

when setting up a glyph.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-17

FBBuffer[0…3]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x078 – 07B bitfield Yes 1 Yes

Bits Name Description
0 ReadEnable When Set, initiates a framebuffer read which may be satisfied by

the Pixel cache. If the Pixel Unit's operation doesn't need a
read to occur then this bit would be 0, however a read would
still be done if a partial tile was being processed as the whole tile
is always written (there is no fragment or byte level masking on
memory writes). This is only used on Destination addresses.
This bit is ORed with the corresponding bit in the
FBReadEnables register so reads can be enabled from two
places.

1 AAReadOnly This bit, when set, indicates reads should only be done (if
ReadEnable is set) if the tile has the aaEnable bit set so the
destination pixel values are needed during blending. If aaEnable
is not set then the fragments have 100% coverage and the
blending does not require the destination pixel data.

2…12 Width[11] This field holds the width in tiles of the buffer. The range is
0…2047 to allow an 8K pixel wide buffer to be accommodated.

13…16 PixelBytePitch[4] This field defines the offset between tiles in memory. This is
normally the depth of a tile in bytes. The range is 0…15.

17…18 PixelSize[2] This field defines the number of bytes read from memory (+1)
and transferred to the cache. Normally this is the depth of a tile
in bytes, but can be less if a subset of the field needs to be read
and/or written. The corresponding FBBaseAddr register is
updated to point to the first byte tile in the subset.

19…20 SubFieldStartByte[2] This field defines the first byte to transfer from the cache to the
Pixel Unit. Normally this is zero (0), but can be non-zero if a
subset of the field needs to be read and/or written.
This is useful for font alignment where for best cache efficiency
the font is stored in 32 bit tiles, but only the byte holding the
font bit plane needs to be aligned.

21…22 SubFieldByteCount[2] Defines the number of bytes to transfer from the cache (+1) to
the Pixel Unit. Normally this is the same as the PixelSize, but
can be less if a subset of the field needs to be read and/or
written.

23 XMask When set, ANDs the x coordinate with the xMask register
before the address is calculated. This can be used for pattern
replication.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-18 Proprietary and Confidential 3 Dlabs

24 YMask When set, ANDs the y coordinate with the yMask register
before the address is calculated. This can be used for pattern
replication.

25…28 Height[4] This field holds the height of the buffer region measured in
tiles. This is only used for clipping tile reads outside the region
as can occur when aligning tiles in a source read. By skipping
these tiles it is possible to save the memory read of the tile
outside of the legal buffer region and the time taken to align
and merge it. This is particularly relevant for font processing.
When this field is zero then clipping is disabled.

29…31 Reserved

Notes: The buffer address calculation, the amount of data read from memory and the amount of data

transferred from the cache to the Pixel Unit are controlled by the five FBBuffer registers:
These 5 registers hold the key parameters concerning each buffer region. (Pixel-address).
FBBuffer operations can also be performed on Localbuffer memory for purposes such as fast
depth clears. The FBBuffer would then be set back to pixel memory.

FBBufferEnables
Type Tag Format Context Sw Datawords Isochronous
Core control 0x072 bitfield Yes 1 No

Bits Name Description
0…3 Enables One bit per buffer:

0 = FBBuffer0 enabled
1 = FBBuffer1 enabled
2 = FBBuffer2 enabled
3 = FBBuffer3 enabled

4…31 Reserved

Notes: Defines which of the four possible buffers the program should be run on. If no buffers are

enabled then the FB subsystem is disabled - i.e. no program in the Pixel Address Unit or in the
Pixel Unit will be run. (Pixel Address)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-19

FBBufferGlobal
Type Tag Format Context Sw Datawords Isochronous
Core control 0x071 bitfield Yes 1 No

Bits Name Description
0…3 Enables One bit per buffer:

0 = FBBuffer0 enabled
1 = FBBuffer1 enabled
2 = FBBuffer2 enabled
3 = FBBuffer3 enabled

4…31 Reserved

Notes: Holds the buffer parameters of the framebuffer regions where the glyph data is stored. It is

used when setting up a glyph.

FBBufferReadEnables
Type Tag Format Context Sw Datawords Isochronous
Core control 0x073 Bitfield Yes 1 No

Bits Name Description
0 FBBuffer0 Enable = 1
1 FBBuffer1 Enable = 1
2 FBBuffer2 Enable = 1
3 FBBuffer3 Enable = 1
4 Global buffer Enable = 1
5…31 Reserved

Notes: Defines the read enable status of the five possible buffers. Bit 0 corresponds to buffer 0, bit 1

to buffer 1, etc. and bit 4 to the global buffer.
A bit, when set, initiates a framebuffer read which may be satisfied by the Pixel cache. If the
Pixel Unit's operation doesn't need a read to occur then this bit would be 0, however a read is
still done if a partial tile is being processed as the whole tile is always written (there is no
fragment or byte level masking on memory writes). This is only used on Destination addresses.
Each bit is ORed with the ReadEnable bit in the corresponding FBBuffer register so reads can
be enabled from two places. (Pixel Address unit)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-20 Proprietary and Confidential 3 Dlabs

FBMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x01C Yes 1 Yes

Bits Name Description
0 SameTileEnable Enables 'same tile' caching. If this tile has the same

coordinates as the previous tile then the read enable to
the cache is forced to be false on destination reads and
the sameTile bit in the Tile command forwarded on to the
Pixel Unit. This forces it to use its own copy of the
previous tile results rather than waiting for it from the
cache. This improves small primitive performance where
successive primitives are likely to be in the same tile.
This is normally only set for simple single destination
buffer processing

1…5 EntryPoint[5] This field holds the start address of the program to run
when a Tile command is received.

6…31 Reserved

Notes: Defines the basic mode of operation for the Pixel Address unit.

FBProg[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x080 – 0x08F Bitfield Yes 1 Yes

Bits Name Description
0…14 lower instruction of the pair
15 Reserved
16…30 upper instruction of the pair
31 Reserved

Notes: Each register holds two program instructions For the instruction set see the Pixel Address unit

below.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-21

FillDrawRectangle2D
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2CB No 1 No

Bits Name Description

Notes: Aliased to DrawRectangle2D by GPIO.

FillFBAddrInfo0
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C7 No 1 No

Bits Name Description

Notes: Aliased to FBAddrInfo0 by GPIO.

FillFBBaseAddr[0-1]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C5

0x2C6
 No 1 No

Bits Name Description

Notes: Aliased to FBAddrInfo[0-1] by GPIO.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-22 Proprietary and Confidential 3 Dlabs

FillFBBuffer0
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C4 No 1 No

Bits Name Description

Notes: Aliased to FBBuffer0 by GPIO.

FillFBMode[0-1]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C1 No 1 No

Bits Name Description

Notes: Aliased to FBMode by GPIO.

FillGlyphPosition
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2CC No 1 No

Bits Name Description

Notes: Aliased to GlyphPosition by GPIO.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-23

FillPixelGlobal[0-1]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C8 – 0x2C9 No 1 No

Bits Name Description

Notes: Aliased to PixelGlobal[0-1] by GPIO.

FillPixelMode[0-1]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C0 - 0x2CF No 1 No

Bits Name Description

Notes: Aliased to PixelMode by GPIO.

FillPrimSetupMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C3 No 1 No

Bits Name Description

Notes: Aliased to PrimSetupMode by GPIO.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-24 Proprietary and Confidential 3 Dlabs

FillRasterMode[0-1]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2C2, 0x2CD No 1 No

Bits Name Description

Notes: Aliased to RasterMode by GPIO.

FillRectanglePosition
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2CA No 1 No

Bits Name Description

Notes: Aliased to RectanglePosition by GPIO.

FlushContext
Type Tag Format Context Sw Datawords Isochronous
Core command 0x18B tag No 1 Yes

Bits Name Description
0…31

Notes: This command causes any outstanding vertices to be processed before it is forwarded. (Vertex

Shader unit). It also flushes the context state to memory.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-25

FrustumMax
Type Tag Format Context Sw Datawords Isochronous
Core control 0x28C bitfield Yes 3 No

Bits Name Description
0…31 X Pixels
31…63 Y Pixels
64…95 Z Pixels

Notes: Holds the maximum x, y and z values of the viewing frustum. x and y are measured in pixels

(but window relative) and z is normally 1.0. x is in the lower 32 bits, then y and finally z Only
3 significant words. (Clip)

FrustumMin
Type Tag Format Context Sw Datawords Isochronous
Core control 0x28B bitfield Yes 3 No

Bits Name Description
0…31 X Pixels
31…63 Y Pixels
64…95 Z Pixels

Notes: Holds the minimum x, y and z values of the viewing frustum. x and y are measured in pixels

(but window relative) and z is normally 0.0. x is in the lower 32 bits, then y and finally z Only
3 significant words. (Clip)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-26 Proprietary and Confidential 3 Dlabs

GeometryMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x211 bitfield Yes 1 No

Bits Name Description
0, 1 FrontPolyMode[2] Selects the how a triangle, quad or polygon should be

drawn when its orientation is facing forwards. The
options are:
 0 Point 1: Line
 2: Fill

2, 3 BackPolyMode[2] Selects the how a triangle, quad or polygon should be
drawn when its orientation is facing backwards. The
options are:
 0: Point 1: Line
 2: Fill

4 FrontFaceDirection Selects which direction is the 'front' facing direction. The
direction is important as it is used to determine if a
triangle, etc. should be culled (if enabled), the material to
use during lighting, and the PolyMode to use:
 0: Clockwise 1 Counter Clockwise

5 PolygonCull Enables polygon culling based on the front face
direction. It is ignored for points, lines and rectangles.

6, 7 PolygonCullFace[2] This field determines which direction of face should be
culled (if enabled). It has the following values:
 0: Front 1: Back
 2: Front and Back

8 FlatShading When set, selects flat shading to be used, otherwise
Gouraud shading will be used.

9…
14

UserClipMask[6] There is one bit per user defined clipping plane. Clipping
against a plane is enabled when the corresponding bit is
set. The clipping plane is defined in eye space.
Bit 0 (i.e. bit 9 in register) corresponds to UserClip0.

15 PolygonOffsetPoint This bit, if set, causes the polygon offset to be calculated
and applied to the points of a polygon when PolyMode is
set to Point.

16 PolygonOffsetLine This bit, if set, causes the polygon offset to be calculated
and applied to the lines of a polygon when PolyMode is
set to Line.

17 PolygonOffsetFill This bit, if set, causes the polygon offset to be calculated
and applied to the triangles of a polygon when PolyMode
is set to Fill.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-27

18 ClipPoint This bit, if set, causes the points to be clipped against the
guard band limits and not the view frustum limits. This
has the effect of allowing points just outside of the
viewing frustum, but whose area extends into the viewing
frustum to be drawn. OpenGL requires a point (of any
size) is rejected if the vertex is out of view. D3D
PointSprites require that the visible part (if any) of the
point is still rendered even when the vertex is out of
view.

19…21 UploadParameters[3] This field, when set appropriately, causes the parameter
results which would normally be sent to set up a
primitive to be made available for upload in different
registers. The parameters are provided in order
ColourA…ColourH and then TextureA…TextureH, but
only for those parameters calculated in the Vertex
Shading Unit. No parameters are passed for primitives
which have been clipped because the intended use for
this is to allow data in on pass of the Vertex Shader to be
passed onto the next pass of the Vertex Shader.
The options are::
0 = none.
1 = Use the Upload128 command.
2 = Use the VertexBufferData command.
3 = Use the Pixel Command.
4 = Use the Pixel Command, but pack the least
significant byte into the bottom 32 bits.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-28 Proprietary and Confidential 3 Dlabs

22 OutputPointSize This bit, when set, causes the selected parameter to be
used as the point size rather than a colour or texture
coordinate. The point size will be taken from the bottom
32 bits of the parameter and the other 96 bits are
effectively discarded.

23…26 PointSizeParameter[4] This field identifies which parameter, if any, should be
used as the point size.

27 RasterPosEnable This bit, when set, will cause all points to be treated as
rectangles for the purposes of implementing the
RasterPos operation in OpenGL.

28…31 Reserved

Notes: Defines the operation of the Geometry unit. The association of the vertex ordering to a front

facing triangle is defined in the GeometryMode register. The normal OpenGL way is to
calculate the ‘area’ of the triangle. A zero area is a degenerate triangle (i.e. two or three of the
vertices have the same coordinates), otherwise the sign of area indicates if the vertex ordering is
clockwise or counter clockwise.

GetCurrent
Type Tag Format Context Sw Datawords Isochronous
Core command 0x1BE tag No 1 No

Bits Name Description
0…31 GetCurrent Tag only

Notes: • OpenGL can query at any time what the current values are. Tracking this in software

impacts performance as it is the rate at which vertex data is processed which determines
overall throughput. Display lists and vertex arrays must also be included in the tracking
and it is desirable that the host does not touch any of this vertex data.

• The GetCurrent command triggers the current values to be output to the HostOut FIFO
using the Upload128 register where they can be read or DMAed into memory. All 16
parameters are written from this unit and the Vertex Machine Unit appends the current
edge flag information.

• The Get buffer holds the 16 parameters in order from VertexData0 to VertexData15 and
then the current edge flag. The actual meaning of the parameters depends on what
conventions have been adopted.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-29

GidMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x015 bitfield Yes 1 Yes

Bits Name Description
0 Enable When set, allows GID testing to be done so the

Reference field in this register is compared against the
GID information provided by the cache. The pixel
ownership is True whenever the two are the same. When
this test is disabled then every pixel is owned.

1…8 Reference[8] This holds the GID value to test each pixel against.
9 Present This bit, when set, indicates the local buffer pixel format

includes the GID field. The GID field is always the least
significant byte in the pixel, if it is present.

10 EarlyExitProcessing This bit, when set, enables early exit processing for the
GID, stencil and depth tests.

Notes: State in these registers is used to control the address generation, reads and number of bytes

accessed.

GlyphAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x206 bitfield Yes 1 No

Bits Name Description
0…4 Plane bit plane in the 32 bit tile to use
5…28 PlaneAddr address of the planar byte tile where the glyph data starts
29…31 Reserved

Notes:

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-30 Proprietary and Confidential 3 Dlabs

GlyphPosition
Type Tag Format Context Sw Datawords Isochronous
Core control 0x207 Bitfield No 1 Yes

Bits Name Description
0…13 x
14,15 Reserved
16…29 y
30,31 Reserved

Notes: Holds the position of the glyph on the screen in 2’s complement screen relative coordinates (i.e.

the window origin value is ignored). The values are updated as part of the RenderGlyph
command.

GuardBandLimits
Type Tag Format Context Sw Datawords Isochronous
Core control 0x28D bitfield Yes 4 No

Bits Name Description
0…31 xMin Floating point value
32…63 yMin Floating point value
64…95 xMax Floating point value
96…127 yMax Floating point value

Notes: Holds the two corners of the guard band clipping rectangle. The coordinates are entered in

windows-relative pixels.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-31

HoldPort
Type Tag Format Context Sw Datawords Isochronous
Core control 0x18A NO 1 Yes

Bits Name Description
0 Hold 0= Release 1 = Hold
1..31 Reserved

Notes: When set (=1) prevents any change to the receiving port (Geometry of Isochronous) until the

port is released by resetting bit 1 (=0).

HostOutMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x01E Bitfield Yes 1 No

Bits Name Description
0…1 StatsOperation[2] This field controls the type of statistics which are gathered on

primitives which get rendered. The options are:
 0 = None 1 = Picking
 2 = Extent

2 OutputSyncTag This bit, when set, allows Sync tags to be forwarded to the bus
interface unit.

3 OutputUploadTag This bit, when set, allows UploadData tags and data to be
written to the output FIFO.

4 OutputStatsTag This bit, when set, allows statistics related tags and data to be
written to the output FIFO.

5 OutputUploadDMA Tags This bit, when set, allows the UploadDMAControl and
UploadDMA tags to be output.

Notes: Defines HostOut functionality.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-32 Proprietary and Confidential 3 Dlabs

InvalidateSecondaryCacheCount
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0EC Bitfield Yes 1 Yes

Bits Name Description
0…9 Count Number of quad-byte tiles to invalidate
10…31 Reserved

Notes: Holds a 10-bit Count value used when invalidating secondary texture cache entries based on

their tile address. N.B. that the count is in 32-bit tile groups.

InvalidateSecondaryTextureCache
Type Tag Format Context Sw Datawords Isochronous
Command 0x183 Address No 1 Yes

Bits Name Description
0…31 Address

Notes: Invalidates tiles starting at the address in the 32-bit data field if they are in the secondary texture

cache. The address is a byte tile address, but the bottom two bits are ignored – to reach the
address of the next tile to invalidate the current address is incremented by 4.

InvViewPortScale
Type Tag Format Context Sw Datawords Isochronous
Core control 0x283 Float Yes 3 No

Bits Name Description
0…31 X
32…63 Y
64…95 Z

Notes: Inverse viewpoint scaling factor for the x, y and z directions as floating point numbers. This is

read when clipping, to undo the viewport scaling factor already applied to the input window
coordinates.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-33

LBBaseAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x012 int Yes 1 Yes

Bits Name Description
0…7 BaseAddress LB region base address
8…31 Reserved

Notes: Holds the base address of the local buffer region. The address is in planar byte tile units and is

a 28 bit value

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-34 Proprietary and Confidential 3 Dlabs

LBMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x011 Bitfield Yes 1 Yes

Bits Name Description
0 SameTileEnable This bit, when set enables 'same tile' caching. If this tile has the

same coordinates as the previous tile then the read enable to the
cache is forced to be false and the sameTile bit in the Tile
command forwarded on to the GDS Unit. This forces it to use
its own copy of the previous tile results rather than waiting for
it from the cache. This improves the small primitive
persormance where sucessive primitives are likely to be in the
same tile.

1…11 Width[11] This field holds the width in tiles of the buffer. The range is
0…2047 to allow up to an 8K pixel wide buffer to be
accommodated.

12…14 PixelBytePitch[3] This field defines the offset between tiles in memory. This is
normally the depth of a tile in bytes. The range is 1…8.

15…26 OffsetBetweenBuffers Holds the offset between successive multisample buffers,
defined as multiples of 1024-byte tiles. An additional 24
(decimal) byte tile offset is also added between successive
multisample buffers to reduce page/bank costs in the memory
system when cycling between the multisample buffers and each
tile..

27…31 Reserved

Notes: • LBMode configures Local Buffer setup including LBAddress, which calculates the

address where the data for the input tile is stored in memory.
• Local buffer data is held in byte planar format - each memory read returns the same byte

of data for all fragments within a tile. Multiple reads to successive addresses are needed to
build up the full width of the local buffer pixel data. Storing the data in this way results in
a consistent format irrespective of the size of a local buffer pixel so keeps the address
calculation simple. It also allows non ‘power of two’ pixel depths without complicated
packing of pixels into memory.

• Local buffer pixel depths from 1 to 6 bytes are supported although not all bytes allocated
have to be read, if only a subset of the information is needed. An example where this is
useful is in just reading the GID field when doing 2D operations.

• The origin of the buffer in memory is always the top left corner and the maximum width is
2047 tiles (to allow an 8K pixel width). Tiles are stored sequentially in memory..

LimitLine

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-35

Type Tag Format Context Sw Datawords Isochronous
Core control 0x17B bitfield No 2 No

Bits Name Description
0…17 StartLimit New start limit
18…31 Reserved
32…49 EndLimit New end limit
50…63 Reserved

Notes: Used to limit the extent of the line in x or y depending on the major axis of the line.

(Rasterizer)

LineStart
Type Tag Format Context Sw Datawords Isochronous
Core command 0x204 Fixed point Yes 1 No

Bits Name Description
0…13 XStart X start parameter
14,15 Reserved
16…29 YStart Y start parameter
30,31 Reserved

Notes: Holds the start coordinate of the line drawn by the RenderLine2D command. After the line

has been drawn the LineStart register is updated with the line end point passed in the
RenderLine2D command. This allows polylines to set up the start vertex with the LineStart
command, but then just use the RenderLine2D command for all subsequent vertices.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-36 Proprietary and Confidential 3 Dlabs

LineStipple
Type Tag Format Context Sw Datawords Isochronous
Core control 0x201 Bitfield Yes 1 No

Bits Name Description
0…7 RepeatFactor[8] This field holds the positive repeat factor for stippled

lines. The repeat factor stored here is one less than the
desired repeat factor.

8…23 Pattern[16] This field holds the stipple pattern to use for lines.
24…31 Reserved

Notes: Defines the stipple pattern and repeat factor to use for all lines

LineStipplePosition
Type Tag Format Context Sw Datawords Isochronous
Core control 0x20E Bitfield Yes 1 No

Bits Name Description
0…3 BitPosition Current bit position
4…11 RepeatCount Repeat counter
12…31 Reserved

Notes: holds the current bit position and the repeat counter in the stipple pattern. This is normally

only used during context save and restore.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-37

MaxHitRegion
Type Tag Format Context Sw Datawords Isochronous
Core control 0x186 bitfield No 1 Yes

Bits Name Description
0…12 MaxX unsigned maximum X
13…25 MaxY unsigned maximum Y
26…31 Reserved

Notes: Writes the current value of the maxRegion register to the output FIFO under control of the

HostOutMode settings. The data field (on input) is not used.(Host Out)

MaxRegion
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0E1 Bitfield Yes 1 Yes

Bits Name Description
0…12 MaxX unsigned maximum X
13…25 MaxY unsigned maximum Y
26…31 Reserved

Notes: Starts the maximum region register, which is then updated during Extent checking.

MinHitRegion
Type Tag Format Context Sw Datawords Isochronous
Core control 0x185 Bitfield No 1 Yes

Bits Name Description
0…12 MinX unsigned minimum X
13…25 MinY unsigned minimum Y
26…31 Reserved

Notes: Writes the current value of the MinRegion register to the output FIFO under control of the

HostOutMode settings. The data field (on input) is not used. (Host Out)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-38 Proprietary and Confidential 3 Dlabs

MinRegion
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0E0 Bitfield Yes 1 No

Bits Name Description
0…12 MinX unsigned minimum X
13…25 MinY unsigned minimum Y
26…31 Reserved

Notes: Starts the minimum region register, which is then updated during Extent checking.

Nop
Type Tag Format Context Sw Datawords Isochronous
Core command 0x1CC Yes - Yes

Bits Name Description
0…31 Reserved

Notes: Null command

ParameterSetUpMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x01A Bitfield Yes 1 Yes

Bits Name Description
0…7 UseProvoking[8] These bits specify which color parameters should be

treated as being flat shaded when a primitive is flat
shaded. These are not used for points (which are
automatically flat shaded) as this is achieved by using the
t1…t4 parameters.

8 SamplePoint Determines where the sample point in a pixel is
considered to be. The two options are:
 0 = Center of the pixel (at 0.5, 0.5)
 1 = Origin of the pixel (at 0.0, 0.0)
OpenGL expects the sample to be at the pixel center
while D3D expects it to be at the origin.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-39

9 TwoSidedEnable When set, divides the 8 sets of colours in two:
• If the frontFacing bit in the Tile register is set (=1) it

selects set A, C, E, G;
• If the frontFacing bit in the Tile register is reset (=0)

it selects set B, D, F, H.
• Both sets map to ColourPlane*[0…3] on output.
This allows OpenGL two-sided lighting to be
implemented.

10 UnitTexture When set, forces the texture coordinates to vary from (0,
0, 0, 1) to (1, 1, 0, 1) across the primitive. This is
intended to support Sprite Points where, unlike normal
points, the texture coordinates vary from 0 at the origin
to 1 in the opposite corner. The q value is forced to be
one so no perspective is applied across the sprite point.

11…31 Reserved

Notes:

PickResult
Type Tag Format Context Sw Datawords Isochronous
Core command 0x184 tag No 1 Yes

Bits Name Description
 Output = 0 for false or 1 for true.

Notes: This command causes the current value of the pick result flag to be written to the output FIFO

under control of the HostOutMode settings. The data field (on input) is not used.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-40 Proprietary and Confidential 3 Dlabs

PixelData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x18E Data No 1 No

Bits Name Description
0…31 Data

Notes: Used in the Pixel unit to pass run length data to the Rasteriser, which holds the packed data for

an image download. It only has an effect when the DrawRectangle2D command is invoked
with the operation set to SyncOnHostData. If received at any other time it is silently discarded.
When the pixel data is not 32 bits wide the data is unpacked from the least significant end and
any residue at the end of a scanline is discarded.

PixelGlobal[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x068 – 0x06F Data Yes 1 Yes

Bits Name Description
0…31 Data Four 8-bit bytes of program data

Notes: In Primitive Setup, holds the bit plane the glyph data is present in. In the Pixel unit, updates

the global registers. The registers are updated 32 bits at a time but are read by a program one
byte at a time. Byte 0 (from the program) is the ls byte of PixelGlobal0. Byte 31 (from the
program) is the ms byte of PixelGlobal7. Byte31 can be optionally updated by the
RunPixelProg register.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-41

PixelMask
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0F0 mask Yes 2 Yes

Bits Name Description
0…63 Mask

Notes: Post-context unit 64 bit tags generated by the rasteriser from the bitmask data (when suitably

enabled). These can be used by the Pixel Unit to differentiate between foreground and
background colour pixels. When this is received it is optionally byte and nibble swapped,
mirrored and inverted before being sent on. Note the swapping and mirroring is done
separately on the upper and lower 32 bits.

PixelMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x01D Bitmap Yes 1 Yes

Bits Name Description
0…6 TileAddrOnly This field holds the address of the program to run when a Tile

command is received (assuming it is enabled) when the progID is
0 and the SameTile bit in the Tile register is 0.

7…13 TileAddrFirst This field holds the address of the program to run when a Tile
command is received (assuming it is enabled) when the progID is
1.

14…20 TileAddrMiddle Holds the address of the program to run when a Tile command
is received (assuming it is enabled) when the progID is 2. It also
holds the address of the program to run when the progID is 0,
but the sameTile bit in the Tile register is set.

21…27 TileAddrLast Holds the address of the program to run when a Tile command
is received (assuming it is enabled) when the progID is 3.

28…31 Reserved

Notes:

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-42 Proprietary and Confidential 3 Dlabs

PixelProgramAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x002 Tag Yes 1 Yes

Bits Name Description
0…6 Address
7…31 Reserved

Notes: Holds the address where subsequent PixelProgramData commands will be loaded. The address

is auto incremented after every load. (Pixel unit)

PixelProgramData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x132 User data Yes 2 yes

Bits Name Description
0…63 Data Hold tag indicating number of instructions

Notes: Holds the program data to write into the program memory (WCS). After receiving this message

and doing the write the program address is incremented.

PointSize
Type Tag Format Context Sw Datawords Isochronous
Core control 0x20A Float No 1 yes

Bits Name Description
0…31 PointSize point size as float

Notes: Holds the point size as a floating point number. The point size is automatically clamped and

rounded before use so the range is:
 1.0 <= aliased point size < 128 in steps of 1.0
 1/16 <= antialiased point size < 128 in steps of 1/16 (Primitive Setup)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-43

PolygonOffsetBias
Type Tag Format Context Sw Datawords Isochronous
Core control 0x014 Float Yes 1 Yes

Bits Name Description
0…31 Bias

Notes: Polygon offset bias as a floatingpoint number

PolygonOffsetFactor
Type Tag Format Context Sw Datawords Isochronous
Core control 0x013 Float Yes 1 Yes

Bits Name Description
0…31 Offset

Notes: Polygon offset factor as a floatingpoint number. (Depth Setup)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-44 Proprietary and Confidential 3 Dlabs

PrimSetupMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x200 Bitfield Yes 1 No

Bits Name Description
0 AAPointEnable This bit, when set, causes points to be rendered as

antialiased points, otherwise they are drawn as aliased
points.

1 AALineEnable This bit, when set, causes lines to be rendered as
antialiased lines, otherwise they are drawn as aliased lines.
This bit is ignored by the RenderLine2D command.

2 DiamondExit This bit, when set, causes aliased line end points to be
modified based on the OpenGL diamond exit rule.

3 LineStippleEnable This bit, when set, enables line stipple processing on both
aliased and antialiased lines. The stipple pattern and
repeat are held in the LineStipple message.
This bit is ignored by the RenderLine2D command.

4 ConstantLineParameters This bit, when set, avoids any parameter gradient
calculations from being done for aliased lines. This is a
performance optimisation.

5 AATriangleEnable This bit, when set, causes triangles to be rendered as
antialiased triangles.

6…9 LineWidth[4] This field holds the width of an aliased line. Legal values
are 0…15.

10…17 AALineWidth[8] This field holds the width of an antialiased line. The
width is in unsigned 4.4 fixed point format.

18 NoPlaneEquationsNeeded This bit, when set, disabled the plane equation
calculations and prevents the results from being sent to
downstream units. This is primarily done to reduce
message traffic and not to increase the calculation speed
of this unit.

19 PointGradientEnable This bit, when set, enables the gradient across a point to
be calculated so that a texture map, for example, can be
used to modify fragments within the point. The gradient
is set up so that (0, 0) is in the top left and (1, 1) is in the
bottom right.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-45

20 BiasY This bit, when set, forces y coordinate value to be
incremented by one before it is used during the primitive
set up. This allows OpenGL compatible coordinates and
arises because the OpenGL coordinate system has its
origin at the bottom left and not at the top left like P10
does.

21 D3DpointRules When set, forces aliased points to conform to D3D point
rules about odd and even point size handling and where
they are rasterized.

22…31 Reserved

Notes: Defines the basic mode of operation for Primitive Setup (PrimSetup).

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-46 Proprietary and Confidential 3 Dlabs

RasterMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x208 bitfield Yes 1 No

Bits Name Description
0 SampleRule Determines where the sample point in a pixel is considered to

be. The two options are:
 0 = Centre of the pixel (at 0.5, 0.5)
 1 = Origin of the pixel (at 0.0, 0.0)
OpenGL expects the sample to be at the pixel center while
D3D expects it to be at the origin.

1…4 AATriangleSample Points[4] Holds the number of entries in the AASamples table to use
when antialiasing triangles and points. A value of zero means
use one entry, etc.
More entries improve antialiasing quality at the expense of
performance.

5 IncludeLineEndPoint When set, includes the line's end point. This is normally reset
(=0) for OpenGL.

6 AAType Controls how antialiasing coverage is accumulated. This can be
done as a mask (setting the number of sample points to be
greater than 7 discards earlier sample results), or as a count.
The coverage mask allows T buffer-like algorithms to be
implemented, while a coverage count is more typical for
OpenGL style antialiasing. The options are
 0 = Mask 1 = Count

7 UserScissorEnable Clips the rasterised region (the intersection of the primitive
against the visible rectangle) against the user supplied scissor
region. This is done as the final stage so any host data or
bitmask for pixels outside of the user scissor region is
consumed as expected.

8 AreaStippleEnable Enables testing of the rasteriser output against the area stipple
pattern. Fragments with a corresponding area stipple bit of
zero are discarded.

9 AreaStipple8x8 Reduces the area stipple table from 32x32 in size to 8x8 in size.
This avoids the software having to replicate an 8x8 stipple
pattern up to 32x32 in size.

10…11 ByteSwap Controls the byte swapping of the image data , bitmask data or
area stipple patterns. If the input data has its bytes labelled
ABCD then the options are:
 0 = ABCD (i.e. no swap) 1 = BADC
 2 = CDAB 3 = DCBA

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-47

12 Mirror Controls mirroring of the image data, bitmask data or area
stipple patterns. When set, bits 0 and 31 are swapped, bits 1
and 30 are swapped, etc.

13…15 PixelSize Holds the pixel size for image data being downloaded through
the rasteriser. The options are:
 0 = 4 bits 1 = 8 bits
 2 = 16 bits 3 = 24 bits
 4 = 32 bits

16 NTLines Forces the edge flags to be set in such a way that NT compliant
lines are rasterised.

17 MultiRasterEnable This bit, when set, forces the rasteriser to skip over super tiles it
doesn't own and to reject small primitives which fall entirely in
super tiles also not owned. Super tile ownership is established
via an external signal.

18…21 AALineSamplePoints[4] This field holds the number of entries in the AASamples table
to use when antialiasing lines. A value of zero means use one
entry, etc.
More entries improve antialiasing quality at the expense of
performance.

22 DualAALineSample Patterns Setting this bit selects an AA sample pattern from the lower or
upper half of the sample point table depending on the
orientation of the line (X-major or Y-major).
• If the line is x major then the AA sample points will be

taken from the lower half of the AA line sample point
table, otherwise for y major lines they are taken from the
upper half of the table. The maximum number of samples
in each set is 8 when in this mode.

• The reason for the dual-mode is that you can tailor each of
the two sample patterns to suit the line type, and hence get
better quality images with fewer samples. This is to benefit
performance.

• The sample coordinates are set up to go horizontally
through the pixel for x-major lines and vertically through
the pixel for y-major lines.

23 Invert Inverts any image data, bitmask data or area stipple patterns
before using them or passing them on

24 GeneratePixelMask This bit passes the bitmask data (after suitable alignment to the
current tile) to the Pixel Unit as a PixelMask.
When reset (=0) it is ANDed with the tile mask to delete
fragments from the tile.

25 AreaStippleRule Applies OpenGL rules to the area stipple (if enabled). In
OpenGL the area stipple is not applied to points and lines.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-48 Proprietary and Confidential 3 Dlabs

26 NibbleSwap Swaps the two nibbles within each byte before the image,
bitmask data or area stipple patterns.

27 LimitLine Limits the extent of a line by using the limits defined in the
LineLimits register. This should only be used when very fine
control is needed over exactly which pixels are generated (as for
some NT lines).

28…31 Reserved

Notes: • The Rasterizer calculates the fragment visibility of the set of tiles which overlaps the

primitive and sends them to the rest of the chip via the Tile message. All primitive types
are decomposed into 8x8 screen aligned tiles.

• The coordinate system the rasterizer works in is ±8K pixels with 16x16 sub pixels per
pixel. The origin is always top left and the rasterizer coordinates are always screen relative.
All primitives except Rectangle2D define their vertices in sub pixel units.

• The sample point can be in the center of the pixel as OpenGL expects or at the origin of
the pixel for D3D. This is controlled by the SamplePoint field in e.g. DepthMode.

• A primitive is described by one or more vertices and optionally some supplementary
width/height/size information. This extra information, if any, is part of the Draw*
command.

• The types of primitives handled directly are:
 Antialiased Point Line
 Triangle Rectangle
 Rectangle2D

RasterPosRectangle
Type Tag Format Context Sw Datawords Isochronous
Core control 0x202 fixed Yes 1 No

Bits Name Description
0…12 width
13…15 Reserved
16…28 height
29…31 Reserved

Notes: Holds the width and height of the rectangle to draw when initiated by the RenderRectangle

command.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-49

RectanglePosition
Type Tag Format Context Sw Datawords Isochronous
Core control 0x203 fixed Yes 1 No

Bits Name Description
0…13 x 2's complement integer coordinate
14,15 Reserved
16…29 y 2's complement integer coordinate
30,31 Reserved

Notes: Holds the origin of the rectangle drawn with the DrawRectangle2D command. The

coordinates have the window origin added to them as the message flows through this unit.
(Rasterizer)

RenderGlyph
Type Tag Format Context Sw Datawords Isochronous
Core control 0x146 bitfield No 1 No

Bits Name Description
0…6 Width Specifies the width of the rectangle in pixels. Its range is

0…127.
7…13 Heigth Specifies the height of the rectangle in pixels. Its range is

0…127.
14…22 AdvanceX Specifies how much the glyph's position should change in

X before the glyph is rendered. The offset is measured in
pixels is held as a 9 bit 2's complement number.

23…31 AdvanceY Specifies how much the glyph's position should change in
Y before the glyph is rendered. The offset is measured in
pixels is held as a 9 bit 2's complement number.

Notes:

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-50 Proprietary and Confidential 3 Dlabs

RenderLine
Type Tag Format Context Sw Datawords Isochronous
Core command 0x142 bitfield No 1 No

Bits Name Description
0…3 A[4] Defines the first vertex.
4…7 B[4] Defines the second vertex.
8…11 Reserved
12…15 P[4] Defines the provoking vertex - i.e. the last vertex in the

primitive - used by OpenGL to select which colour to
use when flat shading.

16 ResetLineStipple When this bit is set the line stipple pattern will be reset to
the start before a line is drawn.

17 UseProvoking When this bit is set the colour in the provoking vertex
should be used.

18 FrontFacing This bit, when set, indicates this primitive is front facing
and if two sided lighting is enabled (in the Parameter Set
Up Unit) then the colour is taken from the appropriate
place.

19…20 PolygonOffsetMode[2] This field defines the polgon offset mode. The options are:
 0 = Reset 1 = Calculate
 2 = CalculateApply 3 = Hold

Notes: This command communicate to the Primitive Set Up Unit what is to be rendered and initiates

the rendering described in the data field. The data field encodes information about the line.
The data field for the RenderPoint, RenderLine and RenderTriangle messages are similar.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-51

RenderLine2D
Type Tag Format Context Sw Datawords Isochronous
Core control 0x145 fixed No 1 No

Bits Name Description
0…13 X 2's complement integer end coordinate
14,15 Reserved
16…29 Y 2's complement integer end coordinate
30,31 Reserved

Notes: Holds the end coordinate of the line and causes the line to be drawn once the start coordinate

has been loaded by the LineStart command. After the line has been drawn the LineStart
register is updated with the end coordinate from this command.

RenderPoint
Type Tag Format Context Sw Datawords Isochronous
Core control 0x141 Bitfield No 1 No

Bits Name Description
0…3 A[4] Defines the first vertex.
4…11 Reserved
12…15 P[4] Defines the provoking vertex - i.e. the last vertex in the

primitive - used by OpenGL to select which colour to
use when flat shading.

16 Reserved
17 UseProvoking When this bit is set the colour in the provoking vertex

should be used.
18 FrontFacing This bit, when set, indicates this primitive is front facing

and if two sided lighting is enabled (in the Parameter Set
Up Unit) then the colour is taken from the appropriate
place.

19…20 PolygonOffsetMode[2] This field defines the polgon offset mode. The options are:
 0 = Reset
 1 = Calculate
 2 = CalculateApply
 3 = Hold

21…31 Reserved

Notes: Defines the point to set up and draw.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-52 Proprietary and Confidential 3 Dlabs

RenderRectangle
Type Tag Format Context Sw Datawords Isochronous
Core control 0x144 No 1 No

Bits Name Description
0…3 VertexStore Vertex coordinates
4…31 Reserved

Notes: This command starts rendering of the rectangle described in RasterPosRectangle. Vertex store

identified by bits 0…3 is used for the vertex coordinates. (Geometry)

RenderText
Type Tag Format Context Sw Datawords Isochronous
Core control 0x2D0 Int No 2 No

Bits Name Description
0…31 GlyphAddr
32…63 RenderGlyph

Notes:

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-53

RenderTriangle
Type Tag Format Context Sw Datawords Isochronous
Core control 0x143 Bitfield No 1 No

Bits Name Description
0…3 A[4] Defines the first vertex.
4…7 B[4] Defines the second vertex.
8…11 C[4] Defines the third vertex.
12…15 P[4] Defines the provoking vertex - i.e. the last vertex in the

primitive - used by OpenGL to select which colour to
use when flat shading.

16 Reserved
17 UseProvoking When this bit is set the colour in the provoking vertex

should be used.
18 FrontFacing This bit, when set, indicates this primitive is front facing

and if two sided lighting is enabled (in the Parameter Set
Up Unit) then the colour is taken from the appropriate
place.

19…20 PolygonOffsetMode[2] This field defines the polgon offset mode. The options are:
 0 = Reset 1 = Calculate
 2 = CalculateApply 3 = Hold

21…31 Reserved

Notes: Defines the point to set up and draw.

RLCount
Type Tag Format Context Sw Datawords Isochronous
Core control 0x14D Int No 1 No

Bits Name Description
0…31 Count

Notes: This register holds the number of times the 32 bit run length data should be replicated

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-54 Proprietary and Confidential 3 Dlabs

RLData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x234 Int Yes 1 No

Bits Name Description
0…31 Data

Notes: Holds the run length data to replicate

RouterMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x010 bitfield Yes 1 Yes

Bits Name Description
0 Order 0 = TextureDepth

1 = DepthTexture
1…31 Reserved

Notes: 32 bit post context data tags

RunPixelProg
Type Tag Format Context Sw Datawords Isochronous
Core command 0x0EF Bitfield Yes 1 Yes

Bits Name Description
0…6 run address
7…14 run data
15…19 pass number
20…29 Reserved
30 EnableData
31 EnableRun

Notes: Starts a program depending on bitfield settings.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-55

RunShadeProg
Type Tag Format Context Sw Datawords Isochronous
Core command 0x0EE Bitfield Yes 1 Yes

Bits Name Description
0…6 run address
7…14 run data
15…29 Reserved
30 EnableData 1 = Set
31 EnableRun 1 = Set

Notes: • Starts a program running at the address given by the least significant 7 bits of the data field

providing bit 31 is set.
• If bit 31 is not set then this message does nothing.
• If bit 30 is set then the value in bits 7…14 is copied into the last global register so it can be

used within a program

RunTextureProg
Type Tag Format Context Sw Datawords Isochronous
Core command 0xOED Bitfield Yes 1 Yes

Bits Name Description
0…6 run address
7…30 Reserved
31 EnableRun 1 = Set

Notes: • Starts a program running at the address given by the least significant 7 bits of the data field

providing bit 31 is set.
• If bit 31 is not set then this message does nothing.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-56 Proprietary and Confidential 3 Dlabs

SetPickResult
Type Tag Format Context Sw Datawords Isochronous
Core command 0x0E2 Tag Yes 1 No

Bits Name Description
0 Flag
1…31 Reserved

Notes: Updates the picking result flag with the least significant bit of the data field.

SetUpDerivatives
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0F8 Bitfield Yes 4 No

Bits Name Description
0…26 reduced float t1 1 bit sign, 6 bits exponent (with a bias of 31) and a 20 bit

mantissa (with unspecified leading 1 as in IEEE format).
27…53 reduced float t2 1 bit sign, 6 bits exponent (with a bias of 31) and a 20 bit

mantissa (with unspecified leading 1 as in IEEE format).
54…80 reduced float t3 1 bit sign, 6 bits exponent (with a bias of 31) and a 20 bit

mantissa (with unspecified leading 1 as in IEEE format).
81…107 reduced float t4 1 bit sign, 6 bits exponent (with a bias of 31) and a 20 bit

mantissa (with unspecified leading 1 as in IEEE format).
108…111 a
112…115 b
116…119 c
120…123 P (provoking vertex)
124 UseProvoking
125…126 PolygonOffsetMode
127 FrontFacing

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-57

Notes: • Defines the parameter gradients and which vertices are to be used in a primitive. It is

consumed so that it is not sent to the Pixel Address Unit. Consists of post-context unit
128 bit tags.

• The three vertices to use (out of the possible 16 vertex stores2) are given in the
SetUpDerivatives command as is the provoking vertex. For lines or points (where there
are less than 3 vertices) the missing vertex is a repeat of a real vertex and the t1…t4 value
will be set up to do the correct calculation. (Parmeter_set_up_unit)

• The SetUpDerivatives command invalidates any previous calculations and the next Tile
command causes the enabled parameters to be calculated and sent on. This means that
parameter set up is only done for primitives which are not scissor clipped out or rejected
totally by the GID or depth test (assuming the router is switched appropriately). (Depth,
Set Up Primitives..)

ShadeGlobal[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x060…0x067 Yes 1 yes

Bits Name Description

Notes: These commands update the global registers. The registers are updated 32 bits at a time but are

read by a program one byte at a time. Byte 0 (from the program) is the ls byte of PixelGlobal0.
Byte 31 (from the program) is the ms byte of PixelGlobal7. Byte31 can be optionally updated
by the RunPixelProg register.

2 The message structure has provision for 16 vertex stores so an efficient vertex cache can be implemented local to where the
calculations are done. This obviously comes with a gate cost so may be reduced later.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-58 Proprietary and Confidential 3 Dlabs

ShadeMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x01B Bitfield Yes 1 Yes

Bits Name Description
0 TileEnable This bit, when set, enables a Tile message to start a program

running.
1…7 TileAddrDefault[7] This field holds the address of the program to run when a

subtile is received (assuming it is enabled) when the prog field is
0. This field also holds the address of the program to run when
the Texture Coordinate Unit is disabled.

8…14 TileAddrFirst[7] This field holds the address of the program to run when a
subtile is received (assuming it is enabled) when progID = 1

15…21 TileAddrMiddle[7] This field holds the address of the program to run when a
subtile is received (assuming it is enabled) when progID = 2

22…28 TileAddrLast[7] This field holds the address of the program to run when a
subtile is received (assuming it is enabled) when progID = 3.

29 PlaneOriginAtZero This bit, when set, forces the plane equation origin to be at zero
otherwise the plane origin is the coordinate of the first tile seen
by this unit. This bit would normally be set when the
Parameter Set Up Unit is not being used to set up the plane
equations, such as for 2D operations.

30,31 Reserved

Notes: ShadeMode controls the operation of the Shading unit. The Shading Unit is responsible for

calculating fragment color. The color is normally a function of some iterated parameters, some
constants and one or more sampled and filtered textures. P10 Shading includes the
functionality found in several discrete units in earlier rasterizers incl. Colour DDA, Texture
Composition, Texture Application, YUV conversion, Fog and Alpha Test.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-59

ShadeProgramAddr
Type Tag Format Context Sw Datawords Isochronous
Command 0x001 Int Yes 1 Yes

Bits Name Description
0…6 ShadeAddress

Notes: Holds the address where subsequent ShadeProgramData registers will be loaded. The address

is auto-incremented after every load.

ShadeProgramData
Type Tag Format Context Sw Datawords Isochronous
Command 0x131 User Data Yes 2 Yes

Bits Name Description
0…63 ProgrammeData

Notes: Holds the program data to write into the program memory (WCS). After receiving this data

and doing the write the program address is incremented.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-60 Proprietary and Confidential 3 Dlabs

StencilData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x017 Bitfield Yes 1 Yes

Bits Name Description
0…7 Reference[8] This field holds the value the stencil data from the local buffer

is compared with. Before the comparison the reference data is
masked by the CompareMask (also held in this register).

8…15 CompareMask[8] This field holds the mask which is ANDed with the stencil data
read from the local buffer and the reference stencil value before
the comparison is done. A bit set in the mask allows the
corresponding bits in the reference and local buffer stencil
values to take part in the comparison operation.

16…23 WriteMask[8] This field holds the mask used to only allow certain bits in the
local buffer stencil field to be updated. A bit set in the mask
allows the corresponding stencil bit in the local buffer to be
updated.

24…31 Reserved

Notes: These messages are passed through, but only after the cache has been flushed. This prevents a

potential race condition in the GSD Unit from occuring.
State in these messages is used to control the address generation, reads and number of bytes
accessed. (GSD)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-61

StencilMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x016 Bitfield Yes 1 Yes

Bits Name Description
0 Enable When set, enables the stencil test and the replacement stencil

value to depend on the outcome of the test (and depth test).
Otherwise the test always passes and the stencil data in the local
buffer is not changed.

1…3 DPpass[3] These fields control how the stencil field is updated when the
depth and stencil tests pass, when the depth test fails and stencil
test passes, or when the stencil test fails. The options are:
 0 = Keep (i.e. local buffer value not changed)
 1 = Zero
 2 = Replace with StencilData.Reference
 3 = Increment (with saturation)
 4 = Decrement (with saturation)
 5 = Invert
 6 = Increment (with wrapping)
 7 = Decrement (with wrapping)

4…6 DPfail[3]
7…9 Sfail[3]

10…12 CompareFunction[3] This field selects the compare function to use. The options are:
 0 = Never 1 = Less
 2 = Equals 3 = Less Equals
 4 = Greater 5 = Not Equal
 6 = Greater Equal 7 = Always
The compare operation compares the stencil reference value
against the source stencil value. If the compare function is
'Less' and the result is true then the reference value is less than
the source value.

13 Present This bit, when set, indicates the local buffer pixel format
includes the Stencil field. The Stencil field is always the byte
following the GID field or byte 0 if there is no GID field.

14…31 Reserved

Notes: StencilMode controls the address generation, reads and number of bytes accessed.

StencilMode updates are passed on after the GSD cache has been flushed. (GSD)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-62 Proprietary and Confidential 3 Dlabs

Sync
Type Tag Format Context Sw Datawords Isochronous
Core command 0x180 Bitfield No 1 Yes

Bits Name Description
0…29 SyncId Identifier which drives the SyncId register.
30 Flush When 0, a bus master flush is not requested.

When 1, a bus master flush is requested and completion
awaited.

31 Interrupt When 0, a Sync interrupt is not requested.
When 1, a Sync interrupt is requested.

Notes: Waits for all outstanding vertices to be processed and cache entries to be flushed back to

memory (LBAddress) before being processed according to HostOutMode settings. If bit 31
of the input data is set then an interrupt is generated. (HostOut, LBAddress, Vertex Shader)

SyncWithVTG
Type Tag Format Context Sw Datawords Isochronous
Core command 0x174 bitfield No 1 No

Bits Name Description
0 VTG head
1…31 Reserved

Notes: Suspends graphics processing until the selected VTG (held in bit 0) indicates it has reached its

sync point. The sync point will typically be when is has swapped buffers and this command
could be used to delay the clearing of the colour buffer. The suspension is done with a time out
so the chip will not hang if the VTG has not been told to generate a sync signal. An interrupt is
generated if a timeout occurs. (Vertex Shader)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-63

TextureAddressMode[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x030 – 0x037 Bitfield Yes 1 Yes

Bits Name Description
0…3 Width[4] This field holds the width of the texture map in texels as a

power of two. For a mip map this corresponds to the width of
level 0 i.e. the highest resolution level. The maximum value of
this is 13 if no border is present, or 12 if there is a border. Also
note that if the map type is 3D then the limits are 10 and 9
respectively.
If the texture is compressed then this field should hold the
width after compression.

4…7 Height[4] This field holds the height of the texture map in texels as a
power of two. For a mip map this corresponds to the height of
level 0 i.e. the highest resolution level. The maximum value of
this is 13 if no border is present, or 12 if there is a border. Also
note that if the map type is 3D then the limits are 10 and 9
respectively. This field should be set to zero for a 1D map.
If the texture is compressed then this field should hold the
height after compression.

8…11 Depth[4] This field holds the depth of the texture map in texels as a
power of two. For a mip map this corresponds to the depth of
level 0 i.e. the highest resolution level. The maximum value of
this is 10 if no border is present, or 9 if there is a border. This
field should be set to zero for a 1D or 2D map.

12 Border This bit, when set, indicates the texture map is surrounded by
border texels. The true width, for example, will be 2width + 2.

13…14 MapType[2] This field defines the map type. The options are:
 0 = 1D map 1 = 2D map
 2 = 3D map 3 = Cube map

15…17 Pitch[3] This field holds the pitch - 1 between tiles of the texture map
and is measured in planar byte tiles. Normally this is set to the
depth of a texture tile (i.e. 3 for a texture in 8888 format). It
allows one colour component to be extracted, for example,
from a true colour texture, or the depth value from a buffer
with GID and Stencil fields.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-64 Proprietary and Confidential 3 Dlabs

18 PowerOfTwoTexture This bit, when set, indicates the texture is a power of two in size
and mip mapping, border, cube processing, etc. should be done,
when necessary. When this bit is clear the texture map width is
not restricted to be a power of two but can be 0…2047 tiles
wide. The 11 bit width is held as the concatenation of the
Width, Height and Depth fields.

19 MipMap This bit, when set, indicates there is a mip map chain (or set of
6 mip map chains for cube maps).

20…24 Format[5] This field holds the format of the texture map. See below for a
description.

25 ConvolutionBorder This bit, when set, forces the border colour to be taken from
the base address given in the next texture map, otherwise it will
be taken from the first tile after the selected texture map.

26…31 Reserved

Notes: Controls the way textures are located and formatted before passing the information on to the

Secondary Texture Cache:
• Texture maps used for 3D are generally a power of two in size to allow ease of mip

mapping and cube mapping and to allow the repeat, mirror and clamp wrap modes to
work. Texture maps used during 2D operations are rarely a power of two in size, but
don’t need the mip map chains for better minification filtering.

• A 1D texture map occupies (width + 7) / 8 tiles. A 1D texture map can be folded into a 2D
texture map to conserve memory and cache space.

• A 2D texture map always has its width and height rounded up to the nearest tile so will
occupy (width + 7) / 8 * (height + 7) / 8 tiles. The tiles are stored linearly in memory
with one row following the previous.

• A 3D map is a collection of 2D slices. The layout rules for a 2D slice are the same as for a
2D map. The slices are stored sequentially in memory and if there is a border then there
are two extra border slices also stored.

• Mipmap levels are stored sequentially in memory with the highest resolution first. Each
map level in the mip map chain is treated as a unique map as far as its storage
requirements are concerned and will start in the first available byte tile after the previous
(higher resolution) map level.

• A cube map is a collection of six 2D texture maps indexed by a face number. The face
textures are stored sequentially in memory after each other with no gaps. A face texture
may be a single texture or a mip map chain and they are always square, with or without a
border.

• The convolution border colour is not normally intimately bound to the image data as a
texture border colour is to a texture map. It needs to be defined separately and not as part
of the texture map. (Texture Address)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-65

 Table 1-5 Supported Texture Formats

Format Name Width R G B A
0 A4L4 8 4@0 4@0 4@0 4@4
1 L8 8 8@0 8@0 8@0 255
2 I8 8 8@0 8@0 8@0 8@0
3 A8 8 0 0 0 8@0
4 A8L8 16 8@0 8@0 8@0 8@8
5 555 16 5@0 5@5 5@10 255
6 5551 16 5@0 5@5 5@10 1@15
7 565 16 5@0 6@5 5@11 255
8 4444 16 4@0 4@4 4@8 4@12
9 888 24 8@0 8@8 8@16 255
10 8888 32 8@0 8@8 8@16 8@24
11 YUV422

 Compressed formats

12 DXT1
13 DXT2
14 DXT3
15 DXT4
16 DXT5
The DXT1…5 compressed formats are the Microsoft DX texture formats.

TextureBaseAddress[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x038 – ox03F Int Yes 1 Yes

Bits Name Description

Notes:

mailto:8@0
mailto:1@15
mailto:4@12
mailto:8@24

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-66 Proprietary and Confidential 3 Dlabs

TextureCoordMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x019 Bitfield Yes 1 Yes

Bits Name Description
0 FeedbackSource This bit determines where the feedback data will come from.

The options are:
 0 = Download Image data
 1 = Texture pipe

1 TileEnable This bit, when set, enables a Tile message to start a program
running.

2…8 TileAddr[7] This field holds the address of the program to run when a Tile
message is received (assuming it is enabled).

9 PlaneOriginAtZero This bit, when set, forces the plane equation origin to be at zero
otherwise the plane origin is the coordinate of the first tile seen
by this unit. This bit would normally be set when the
Parameter Set Up Unit is not being used to set up the plane
equations, such as for 2D operations.

10…31 Reserved

Notes: The Texture Coordinate Unit computes one or more perspectively correct texture coordinates

for each fragment and the appropriate level of detail (lod) when mip mapping. In addition the
texture coordinates can be perturbed by an earlier texture access (bump mapping) or treated a
the index into a cube (cube mapping). Higher qualities of filtering are supported by way of
anisotropic mip mapping and high order filters (bicubic for example). Texture coordinates can
have 1, 2 or 3 components to support 1D, 2D or 3D texture maps. (Texture Coordinate)
The register is snooped by the Shading unit to find out if any texture data (or at least
handshake) is imminent on the texture input port (Shading)

TextureGlobal[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x040 – 0x04F User data Yes 1 Yes

Bits Name Description

Notes: Updates the global registers available in program space to hold lod bias values, bump matrices,

etc.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-67

TextureGlobal[16…31]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x050 – 0x05F User data Yes 1 Yes

Bits Name Description
0…31 data

Notes: Updates the global registers available in program space to hold lod bias values, bump matrices,

etc.

TextureIndexMipControl[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x008 – ox00F Yes 1 Yes

Bits Name Description
0…11

MinLod[12] This field holds the minimum level of detail (lod) value. Any
input lod less than this will be clamped to this value. Its format
is 4.8 unsigned fixed point.

12…23 MaxLod[12] This field holds the maximum level of detail (lod) value. Any
input lod greater than this will be clamped to this value. Its
format is 4.8 unsigned fixed point.

24…27 BaseLevel[4] This field holds the map level which should be treated as level
0. Set to 0

28…31 MaxLevel[4] This field holds the map level which should be treated as last
level in the mip map chain. Set to 14, the theoretical maximum.

Notes:

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-68 Proprietary and Confidential 3 Dlabs

TextureIndexMode[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x028 – 0x02F Bitfield Yes 1 Yes

Bits Name Description
0…3 Width[4] This field holds the width of the texture map as a power of two.

The legal range of values for this field is 0 (map width = 1) to
13 (map width = 8192). If a border is present then the
maximum value is 12, and for a 3D map it is 10 without a
border, or 9 with a border. These later limits are not enforced
by hardware.

4…7 Height[4] This field holds the height of the texture map as a power of
two. The legal range of values for this field is 0 (map width =
1) to 13 (map width = 8192). If a border is present then the
maximum value is 12, and for a 3D map it is 10 without a
border, or 9 with a border. These later limits are not enforced
by hardware.
This field should be set to 0 for a 1D map.

8…11 Depth[4] This field holds the depth (i.e. number of slices) of the texture
map as a power of two. The legal range of values for this field
is 0 (map width = 1) to 10 (map width = 1024). If a border is
present then the maximum value is 9. These later limits are not
enforced by hardware.
This field should be set to 0 for a 1D or 2D map.

12 Border This bit, when set indicates there is a one texel border
surrounding the texture map.

13…14 MapType[2] This field selects the type of map and how many axis it has.
The options are:
 0 = 1D texture map 1 = 2D texture map
 2 = 3D texture map 3 = Cube map

15…17
18…20
21…23

WrapU[3]
WrapV[3]
WrapW[3]

These fields selects how the u, v and w coordinate are wrapped
to fit on the texture map. The options are:
 0 = Clamp 1 = Repeat
 2 = Mirror 3 = ClampEdge
 4 = ClampBorder

24 MagnificationFilter This field selects the magnification filter to use. The options
are
 0 = Nearest 1 = Linear

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-69

25…27 MinificationFilter This field selects the minification filter to use. The options are
 0 = Nearest
 1 = Linear
 2 = NearestMipNearest
 3 = NearestMipLinear
 4 = LinearMipNearest
 5 = LinearMipLinear

28 FilterBank When the filter mode is Nearest or Linear then this field will
specify which filter bank to use in the Primary Texture Cache.
By using alternating banks there will be less thrashing between
the texture maps in the cache.

29…31 Reserved

Notes:

TexturePlaneDX[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x118 – 0x11F Float Yes 4 Yes

Bits Name Description
0…31 Gradient

Notes: Hold the four dx gradients for a texture coordinates in floating point format. (Texture

Coordinate)

TexturePlaneDY[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x120 – 0x127 Float Yes 4 Yes

Bits Name Description
0…31 Gradient

Notes: Hold the four dy gradients for a texture coordinates in floating point format. (Texture

Coordinate)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-70 Proprietary and Confidential 3 Dlabs

TexturePlaneScale[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x020 – 0x027 Bitfield Yes 1 Yes

Bits Name Description
0…3 S scale
4…7 T scale
8…11 R scale
12…15 Q scale
16…31 Reserved

Notes: These messages hold with length of the axis of the texture map each component refers to.

These are just used in lod calculation and are held as a power of two

TexturePlaneStart[0…7]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x128 – 0x12F Float Yes 4 Yes

Bits Name Description
0…127 data 4 texture coordinate start values as floating point numbers

Notes: Holds the four starting values for texture coordinate parameter in floating point format.

(Texture Coordinate)

TextureProgramAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x000 bitfield Yes 1 Yes

Bits Name Description
0…6 ProgramAddr
7…31 Reserved

Notes: Holds the address where subsequent TextureProgramData registers will be loaded, and is auto

incremented after every load.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-71

TextureProgramData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x130 Data Yes 2 Yes

Bits Name Description
0…63 UserData

Notes: Holds the program data to write into the program memory (WCS). After receiving this message

and doing the write the program address is incremented.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-72 Proprietary and Confidential 3 Dlabs

Tile
Type Tag Format Context Sw Datawords Isochronous
Core control 0x140 Bitfield No 4 Yes

Bits Name Description
0…2 Reserved
3…12 X unsigned X coordinate
13…18 Reserved
19…28 Y unsigned Y coordinate

29…31 Reserved
32…95 tile mask
96 subsystemEnable SubsystemEnable is the master enable for the whole LB

subsystem and is derived from one place to ensure consistent
operation

97 PixBufSelect OR
destBuffer

pixBufSelect identifies which of the P double buffers to use when
processing the pixel (Pixel unit)
destBuffer (Depth Setup, LBAddress) identifies which of the
double buffers to use when processing the pixel

98 newPrimitive
99 sameTile
100 aaEnable
101…108 passNumber
109…110 progID
111 destCacheEnable destCacheEnable prevents a destination cache line from being

released or updated if one has not been allocated because only
source reads have been done (Pixel unit)

112 endOfTile endOfTile controls when the fragment buffer is swapped as it
must be retained across multiple buffers. On output the tile
mask field may be modified. (Pixel unit)

101…132 Dzdx (DepthSetup only) Float (output)
133…164 Dzdy (DepthSetup only) Float (output)
165…196 zStart (DepthSetup only) Float (output)
197…228 zRef (DepthSetup only) Float (output)

Notes: Holds the detail on the current tile to process.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-73

TimeStamp
Type Tag Format Context Sw Datawords Isochronous
Core command 0x187 Bitfield No 1 Yes

Bits Name Description
0…14 StartScanline
15…29 EndScanline
30 Head
31 Reserved

Notes: Holds the range of scanlines within which Isochronous stream commands are to be carried out.

This register is ignored by Geometry functions.

Upload128
Type Tag Format Context Sw Datawords Isochronous
Core control 0x170 User data No 4 No

Bits Name Description
0…127 Data

Notes: Transient data or commands - a generic message any unit can use to pass wide data back to the

host (such as the current vertex state). (Geometry)

Upload32
Type Tag Format Context Sw Datawords Isochronous
Core control 0x171 User data No 1 No

Bits Name Description

Notes: a generic message any unit can use to pass 32 bit wide data back to the host (such as the line

stipple state). (Host Out)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-74 Proprietary and Confidential 3 Dlabs

UploadDMA
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C9 Bitfield No 2 No

Bits Name Description
0,1 ByteSwap Byte swap:

0 = ABCD (no swap) 1 = BADC
2 = CDAB 3 = DCBA

2,3 PixelSize Pixel size:
0 = 8-bit pixel 1 = 16-bit pixel
2 = 24-bit pixel 3 = 32-bit pixel

4 Protocol Bus Protocol:
0 = PCI 1 = AGP

5 Enable Unit enable:
0 = Input messages forwarded to next unit
1 = Input messages forwarded to bus master

6…19 Count The upload count, in pixels – 1.
20…31 - Reserved.
32…63 Addr The upload address, in bus address space. If the address is not

aligned on a pixel boundary then upload performance will be
degraded.

Notes: Controls the upload DMA controller (GPIO Upload DMA)

UploadDMAControl
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C8 No 3 No

Bits Name Description

Notes:

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-75

UploadPixelData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x172 Bitfield No 3 No

Bits Name Description
0…63 Scan 8 byte planes on the current scanline
64…71 Mask byte mask
72…73 PlaneNo byte plane number.

Notes: holds pixel data to upload. (Host Out)

UserClip[0…5]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x285 – 0x28A Yes 4 No

Bits Name Description

Notes: Hold the user clip plane (x, y, z, w) components for the 6 possible clipping planes.

UserFragData[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x090 – 0x09F Int Yes 1 Yes

Bits Name Description

Notes: Hold download image data which will be loaded into the appropriate fragment's feedback

register when enabled by the mode register.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-76 Proprietary and Confidential 3 Dlabs

UserFragData[16…31]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0A0 – 0x0AF Int Yes 1 Yes

Bits Name Description

Notes: Hold download image data which will be loaded into the appropriate fragment's feedback

register when enabled by the mode register.

UserFragData[32…47]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0B0 – 0x0BF Int Yes 1 Yes

Bits Name Description

Notes: Hold download image data which will be loaded into the appropriate fragment's feedback

register when enabled by the mode register.

UserFragData[48…63]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x0C0 – 0x0CF Int Yes 1 Yes

Bits Name Description
0…31 UserData Download image data

Notes: Hold download image data which will be loaded into the appropriate fragment's feedback

register when enabled by the mode register.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-77

UserScissor
Type Tag Format Context Sw Datawords Isochronous
Core control 0x251 Bitfield Yes 1 No

Bits Name Description
0…13 x
14,15 Reserved
16…29 y
30,31 Reserved

Notes: Holds the x and y coordinate of the user scissor rectangle region. The rasteriser processes tiles

outside this region (so unwanted image or bitmask data will be clipped), but does not render
pixels outside this area. A pixel is 'in' if min <= (x and y) < max This is enabled by a mode
bit.

VertexBufferAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x005 Int Yes 1 No

Bits Name Description
0..7 Address

Notes: Holds the auto-incrementing address used to load Vertex Program data into the WCS

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-78 Proprietary and Confidential 3 Dlabs

VertexCacheMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1E3 bitfield Yes 1 No

Bits Name Description
0…3 Type Primitive Type:

0 = Null 1 = Points
2 = Lines 3 = LineLoop
4 = LineStrip 5 = Triangles
6 = TriangleStrip 7 = TriangleFan
8 = Quads 9 = QuadStrip
10 = Polygon 11 = Grid

4…7 GridWidth Gris width in vertices
8 Provoking Vertex Select OpenGL or D3D provoking vertex rules:

0 = OpenGL rule (last vertex in a primitive)
1 = D3D rule (first vertex in a primitive)

9…29 Reserved
30 Enable Unit enable:

0 = Disabled
1 = Enabled

31 Invalidate Cache invalidated when set to 1, unmodified otherwise.

Notes: (Vertex Cache Unit)

VertexData[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x190 – ox19F Float No 4 No

Bits Name Description

Notes: Hold the parameter values as 4 floating point values. On input the tag size field is used to

indicate a short form of the parameter and the missing components are set to their default
values.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-79

VertexDataBuffer[0..15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x260-26f Bitfield Yes 2 No

Bits Name Description
0…31 Addr Data buffer address, in 32-bit words.
32,33 ByteSwap Byte swap:

0 = ABCD (no swap)
1 = BADC
2 = CDAB
3 = DCBA

34…39 DataSize Data size, in 32-bit words – 1.
40…53 DataStride Data stride, in 32-bit words – 1.
54…63 - Reserved.

Notes: Vertex parameters can be grouped into vertex elements and read from multiple data buffers.

The maximum number of buffers supported for this implementation is 16. The address of each
buffer is defined in the VertexDataBuffer registers. (GPIO Vertex Data)

VertexDataBufferEnable
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1E1 Bitfield Yes 1 No

Bits Name Description
0…15 Enable Data buffer enable mask. This indicates which data buffers are

used (if index buffers are not used), or which data buffers are
used by the lowest numbered index buffer (otherwise).

16…18 CacheMode Tile cache mode:
0 = 1×16 1 = 2×8
2 = 4×4 3 = 8×2
4 = 16×1 5 = 16×1
6 = 16×1 7 = 16×1

19…31 - Reserved.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-80 Proprietary and Confidential 3 Dlabs

Notes: To help save memory bandwidth when reading single elements from memory, an internal 16-

entry tile cache exploits the locality of elements within groups of tiles. The tile cache is
configured and invalidated by the VertexDataBufferEnable command. The CacheMode field
specifies how the 16-entry tile cache is to be shared among the 16 data buffers as shown in the
table below.
Each buffer is individually enabled according to the 16-bit mask supplied by the
VertexIndexBuffer[0..15] messages (in Index Lookup Mode) or VertexDataBufferEnable
message (in Data Lookup Mode). (GPIO Vertex Data)

Data Lookup Mode can read element arrays from memory (“fast path”) if:
• only one buffer is enabled, and
• the element size is equal to the stride.
Otherwise Data Lookup Mode can only read single elements from memory (“slow path”).

CacheMode Sharing Use With …
0 (1×16) Buffers 0-15 share entries 0-15 1 indexed buffer
1 (2×8) Buffers 0,2,4,6,8,10,12,14 share entries 0-7

Buffers 1,3,5,7,9,11,13,15 share entries 8-15
2 indexed buffers

2 (4×4) Buffers 0,4,8,12 share entries 0-3
Buffers 1,5,9,13 share entries 4-7
Buffers 2,6,10,14 share entries 8-11
Buffers 3,7,11,15 share entries 12-15

3-4 indexed buffers

3 (8×2) Buffers 0 & 8 share entries 0-1
Buffers 1 & 9 share entries 2-3
Buffers 2 & 10 share entries 4-5
Buffers 3 & 11 share entries 6-7
Buffers 4 & 12 share entries 8-9
Buffers 5 & 13 share entries 10-11
Buffers 6 & 14 share entries 12-13
Buffers 7 & 15 share entries 14-15

5-8 indexed buffers

4 (16×1) Buffer n uses entry n (no sharing) 9-16 indexed buffers
5 (16×1) Buffer n uses entry n (no sharing) Reserved
6 (16×1) Buffer n uses entry n (no sharing) Reserved
7 (16×1) Buffer n uses entry n (no sharing) Non-indexed buffers

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-81

VertexDataBufferLookup
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C4 Bitfield No 2 No

Bits Name Description
0…31 First The first element to read in each buffer.
32…61 Count The number of elements to read in each buffer.
61…63 Reserved

Notes: In Data Lookup Mode, the offset of the first element to read and the number of elements to

read are given by the VertexDataBufferLookup message. This message then triggers the
DMA. (GPIO Vertex Data)

VertexDataBufferLookupPacked
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C5 Bitfield No 1 No

Bits Name Description
0…15 First The first element to read in each buffer.
16…31 Count The number of elements to read in each buffer.

Notes: In Data Lookup Mode, the offset of the first element to read and the number of elements to

read are given by the VertexDataBufferLookup message. This message then triggers the DMA.
(GPIO Vertex Data)

VertexDataByte[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1A0 – 0x1AF Float No 1 No

Bits Name Description
0…31

Notes: Hold the parameter values as 4 unsigned byte values.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-82 Proprietary and Confidential 3 Dlabs

VertexGridLookup
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C3 bitfield No 1 No

Bits Name Description
0…15 First The first column to read in each row.
16…19 Count The number of columns to read in each row. This must be in

the range 2–15.
20…31 Reserved

Notes:

VertexGridSize
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1E5 bitfield No 1 No

Bits Name Description
0…15 Width Grid width – 1
16…31 Height Grid height – 1

Notes:

VertexIndex
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C2 No 1 No

Bits Name Description
0…31 Index The element to read in each buffer.

Notes: In Index Lookup Mode, the association of indices to index buffers is given by the 16-bit mask

supplied by the VertexIndexBufferEnable message, and the index of each element to read is
given by the VertexIndex message. This message then triggers the DMA. (GPIO Vertex Data)
(GPIO Vertex Cache)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-83

VertexIndexBounds
Type Tag Format Context Sw Datawords Isochronous
Core control 0x253 Yes 2 No

Bits Name Description
0…31 Base Index base
32…63 Count Index count

Notes: Index values supplied by VertexIndex messages are checked against base and count values given

by the VertexIndexBounds message. If the check fails then an Index error signal is asserted
and the remaining VertexIndex messages in the sequence are discarded. (GPIO Vertex Data)

VertexIndexBuffer[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x270 – 0x27F Bitfield Yes 2 No

Bits Name Description
0..31 Addr Index buffer address, in 32-bit words.
32,33 ByteSwap Byte swap:

0 = ABCD (no swap)
1 = BADC
2 = CDAB
3 = DCBA

34,35 IndexSize Index size:
0 = 8-bit index
1 = 16-bit index
2 = 32-bit index
3 = Reserved (32-bit index)

36…47 - Reserved.
48…63 Enable Data buffer enable mask. This indicates which data buffers are

used by this index buffer.

Notes: Each buffer is individually enabled according to the 16-bit mask supplied by the

VertexIndexBuffer[0..15] messages (in Index Lookup Mode) or VertexDataBufferEnable
message (in Data Lookup Mode).. (GPIO Vertex Data)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-84 Proprietary and Confidential 3 Dlabs

VertexIndexBufferEnable
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1E2 Yes 1 No

Bits Name Description
0…15 Enable Index buffer enable mask.
16…31 Reserved

Notes: In Index Lookup Mode, the association of indices to index buffers is given by the 16-bit mask

supplied by the VertexIndexBufferEnable message, and the index of each element to read is
given by the VertexIndex message. This message then triggers the DMA. (GPIO Vertex Data)

VertexIndexBufferLookup
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1C1 bitfield No 2 No

Bits Name Description
0…31 First The first index to read in each buffer. This is scaled by the

index size to give a byte offset, which is then added to the
buffer address.

31…63 Count The number of indices to read in each buffer. This is scaled by
the index size to give a byte count

Notes:

VertexParameterEnable
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1E0 Yes 1 No

Bits Name Description
0…15 Enable Parameter enable mask.
16…31 Reserved

Notes: Each vertex parameter is individually enabled by setting the corresponding bit. Pre-context 32

bit tags. (GPIO Vertex Data)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-85

VertexParameterMsg[0…15]
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1F0 – 0x1FF Bitfield Yes 1 No

Bits Name Description
0..9 Tag Parameter message tag.
10,11 Reserved Reserved for future tag expansion.
12,13 Size Parameter size, in 32-bit data words – 1.
14 Reserved

15 Send When 0, the parameter is skipped.

When 1, the parameter is sent.

16…31 Reserved .

Notes: • Each API vertex is characterized by a number of parameters. For OpenGL, parameters

include the vertex coordinates, RGBA colour, surface normal, texture coordinates, and
polygon edge flag. For DX7, parameters include the position, normal, diffuse colour,
specular colour, and texture coordinates.

• Each parameter contains 1 to 4 32-bit words. These will usually be IEEE floating-point
values. However, apart from the size, this unit places no interpretat.

• Each parameter is individually enabled according to the 16-bit mask supplied by the
VertexParameterEnable message.

 (GPIO Vertex Data)

VertexProgramAddr
Type Tag Format Context Sw Datawords Isochronous
Core control 0x003 Yes 1 No

Bits Name Description
0…7 ProgramAddr
8..31 Reserved

Notes: Holds the address where subsequent VertexProgramData registers will be loaded. The

address is auto-incremented after every load.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-86 Proprietary and Confidential 3 Dlabs

VertexProgramData
Type Tag Format Context Sw Datawords Isochronous
Core control 0x133 User data Yes 3 No

Bits Name Description
0…95 UserData

Notes: Holds the program data to write into program memory (WCS). After receiving the data and

writing it, the program address is incremented.

VertexShadingMode
Type Tag Format Context Sw Datawords Isochronous
Core control 0x210 bitfield Yes 1 No

Bits Name Description
0…3 TriggerParameter[4] This field holds the parameter which should be used as the

trigger parameter. This will typically be the vertex position
when in Begin/End paradigm, or the last parameter in the
vertex array (per vertex).

4…11 ProgramAddr[8] This field holds the address of the vertex shading program to
run to transform, light, etc. the input vertices.

12 EyeVertexPresent This bit, when set, will cause the parameter selected by the
EyeVertexParameter field to be used as the eyeVertex for user
plane clipping in the Geometry Unit.

13 UserOutcodePresent This bit, when set, will cause the parameter selected by the
SpecialParameter field to be used as the user clipping planes
outcode value for user plane clip testing in the Cull Unit.

14…17 EyeVertexParameter[4] This field identifies the Vec4 output parameter register to be
used as holding the eyeVertex.

18…21 SpecialParameter[4] This field identifies the Vec4 output parameter register to be
used as holding UserClipOutcode (in the x component).

22…31 Reserved

Notes: Defines the trigger parameter for this unit (Vertex Shading, Current Parameter))

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-87

ViewPortOffset
Type Tag Format Context Sw Datawords Isochronous
Core control 0x284 Float Yes 3 No

Bits Name Description
0…31 OffsetX
32…63 OffsetY
64…95 OffsetZ

Notes: Viewport offset factor for the x, y and z directions as floating point numbers. This is used

during viewport mapping after clipping has taken place. Only 3 significant words. (Geometry)
 .

ViewPortScale
Type Tag Format Context Sw Datawords Isochronous
Core control 0x282 Float Yes 3 No

Bits Name Description
0…31 ScaleX
32…63 ScaleY
64…95 ScaleZ

Notes: Viewport scaling factor for the x, y and z directions as floating point numbers. This is used

during viewport mapping after clipping has taken place.. Only 3 significant words. (Geometry)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-88 Proprietary and Confidential 3 Dlabs

VisRect
Type Tag Format Context Sw Datawords Isochronous
Core control 0x250 Bitfield Yes 2 No

Bits Name Description
0…13 min x
14,15 Reserved
16…29 min y
30,31 Reserved
32…45 max x
46,47 Reserved
48…61 max y

Notes: Holds the x and y coordinate of the visible rectangle region the rasteriser will stay within. This

would typically be the overlap of the screen rectangle and the window rectangle (or viewport).
The coordinates are held as unsigned integers: A pixel is 'in' if min <= (x and y) < max

VTGCommand
Type Tag Format Context Sw Datawords Isochronous
Core control 0x173 No 1 No

Bits Name Description

Notes: Holds the serial command stream to pass on to the VTG. No interpretation of the data is done

and it is serialised into an 8 bit wide FIFO. (Host_Out)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-89

WaitForCompletion
Type Tag Format Context Sw Datawords Isochronous
Core command 0x181 bitfield Yes 1 Yes

Bits Name Description
0,1 UnitName 0 = Rasteriser 1 = Rectangle Rasteriser

 2 = GPIO 3 = none
2…31 Reserved

Notes: This message causes the rasterizer (if selected) to suspend all processing until a Completion

signal has been received from the Host Out Unit. The WaitForCompletion command is
forwarded on immediately by the rasteriser, but is delayed by any unit which can write to
memory until all outstanding writes have completed. This allows gross synchronisation to be
done between different parts of the core such as making sure an edit to a texture map (via the
Pixel Unit) is in memory before the texture map is referenced by the Texture subsystem.
(Rasterizer) When the tag reaches the Host Out Unit it releases the rasterizer, which will have
stalled after sending the command into the message stream.

WindowOrigin
Type Tag Format Context Sw Datawords Isochronous
Core control 0x205 Fixed Yes 1 No

Bits Name Description
0…13 x
14,15 Reserved
16…29 y
30,31 reserved

Notes: Holds the window origin coordinate added to all primitives (except RenderLine2D) to convert

a window relative coordinate to a screen relative 2's complement coordinate.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-90 Proprietary and Confidential 3 Dlabs

WriteCurrent
Type Tag Format Context Sw Datawords Isochronous
Core control 0x1BF No 1 No

Bits Name Description
0…3 Parameter
4…31 Reserved

Notes: Writes the selected parameter (in the lower 4 bits) to the Coefficient Memory in the Vertex

Shading Unit.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-91

1.2 Programmable Registers
The Vertex Shading T&L unit is programmable, as are the Texture Coordinate, Shading (or
Primitive Coloring), Pixel Address and Pixel Units in the graphics core. Of these, each
functional group contains both programmable and fixed-function registers.
P10 supports hardware context switching which maintains the current chip state in
memory. Switches occur automatically on GPIO circular buffer events (15us) and
Isochronous evnts (3us) triggered by timestamps based on VTG# and scanline range.
Each programmable unit has its own assembler, disassembler, instruction set and
interfaces. The Assemblers produce “C” array files with unsigned integers for inclusion in
a compilation. It is also possible to generate these “on the fly” using supplied library
function files. Each programmable unit has full assembler/disassembler user
documentation:
The assembled instructions behave as if they complete in one (1) cycle but for floating
point operations this is unusual. However the hardware automatically stalls to give the
correct behavior. Understanding stall behavior and recovery is important to efficient use of
the P10 chip.
All memory accesses are virtual and unified (command and vertex buffers, depth, colors)
whether on- or off-card). On-card bandwidth is app. 16Gb/s (250MHz memory), while host
bandwidth is constrained by the AGP rate – typically 1Gb/s for AGP 4x.
Most programs are generated algorithmically with some hand polishing for frequently-used
routines. Programs run when a Tile command or Run*prog command is received by the
appropriate unit.
This section does not provide programming examples or suggestions. For more detailed
information on the use of programmable registers see the Miranda P10 Programmers
Guide.

1.2.1 Vertex Shading Unit (T&L)
The DX8 vertex shading language has only one type of data – a four component floating
point vector (“Vec4”). The instruction set is very much geared to vector operations. Scalar
operations are supported by promoting one component to a vector and then completing
the vector operation as normal. Operations like dot products between two vectors are also
supported as well some scalar-only operations (e.g. reciprocals and inverse square roots).
Each vector operation should take only one cycle.
Each vertex is processed independently and no connectivity knowledge is available.
Effectively, a vertex is simply a unit of work. So for multi-pass processes it may be
necessary to use WaitForCompletion to ensure pass 1 finishes before pass 2 starts.
The vertex shader program can be up to 128 instructions long.
Vertex Shading allows T&L programs for OpenGL Basic Transforms, Directional Lights,
Material, Projection and Viewport Mapping and Tessellation, Transform Coding (e.g. for
IDCT MPEG decoding) and color space conversion.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-92 Proprietary and Confidential 3 Dlabs

1.2.1.1 Resources
Constant registers (“coefficient memory”) hold long-term data such as matrices, lighting
and material parameters.. The programs can only read this memory which has a minimum
size of 96 Vec4 words.
The vertex registers hold vertex parameter data likely to be updated frequently. It has a
minimum size of 16 Vec4 words and is read only from the program.

The scratch registers hold the temporary working variables. They have three read ports3
and one write port and support masked writes to address individual components. The
registers hold 16 Vec4 entries and the read and write addresses are encoded in the
instruction. There are scratch registers for 64 floating point numbers and program storage
for 256 instructions.
The ALU is basically a three input Vec4 multiplier/adder with instructions like add, subtract,
multiply, multiply add, dot product, etc. Scalar instructions include reciprocal, inverse
square root, log2 and antilog2. The input components can be swizzled to reorder or
replicate components to allow scalar operations.
Updates to the scratch registers and the output registers can be masked so any
combination of the 4 components in the vector can be written.
Starting any program triggers a watchdog timer. The watchdog will time out after 4096
cycles - if the program hasn’t finished normally by then it is terminated (by an interrupt).
This mechanism prevents a faulty program from hanging the unit (and hence chip).

3 There is one instruction (Multiply add) which could use the three ports but most of the example programs only need two
vectors to come from the scratch memory, so it would be possible to limit this to a two read port device and catch any three
port read access in a user program (during translation to our microcode format) and use two instruction with some temporary
storage to implement this operation.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-93

1.2.1.2 Vertex Shader Instruction Set

Bits Name Description
0…4 OpCode This field holds the ALU operation. See later for a description.
5…6 VectorCount This field holds the number of components in the vector. The

options are:
 0 = one component vector (i.e. a scalar)
 1 = two component vector
 2 = three component vector
 3 = four component vector

7…16 CoeffAddr This field selects the float to read from the coefficient memory.
The address is modified by the CoeffAddrBase and
CoeffDataType fields.

17…22 InVertexAddr This field selects the float to read from the input vertex
registers. The address is modified by the InVertexAddrBase and
InVertexDataType fields.

23…28 ScrAddrA This field selects the float to read from the scratch register file.
This value is srcA data. The address is modified by the
ScrAddrBaseA and ScrDataTypeA fields.

29…34 ScrAddrB This field selects the float to read from the scratch register file.
This value is srcB data. The address is modified by the
ScrAddrBaseB and ScrDataTypeB fields.

35…36 ArgA This field selects the argA input to the ALU. The options are:
 0 = coeff data
 1 = input vertex data
 2 = srcA from the scratch register file
 3 = srcB from the scratch register file

37…38 ArgB This field selects the argB input to the ALU. The options are:
 0 = coeff data
 1 = input vertex data
 2 = srcA from the scratch register file
 3 = srcB from the scratch register file

39…40 ArgC This field selects the argC input to the ALU. The options are:
 0 = coeff data
 1 = input vertex data
 2 = srcA from the scratch register file
 3 = srcB from the scratch register file

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-94 Proprietary and Confidential 3 Dlabs

Bits Name Description
41…42 ModA This field defines how argA is modified before going into the

ALU. The options are:
 0 = pass
 1 = negate
 2 = absolute
 3 = clamp to zero if negative

43…44 ModB This field defines how argB is modified before going into the
ALU. The options are:
 0 = pass
 1 = negate
 2 = absolute
 3 = clamp to zero if negative

45…46 CoeffAddrBase This field defines how the coefficient address is generated. The
options are::
 0 = relative (i.e. base + CoeffAddr)
 1 = absolute (i.e. CoeffAddr)
 2 = indirect (i.e. addressReg + CoeffAddr)
 3 = circular
 addr = coeffBase + coeffAddr
 if (addr > coeffEnd)
 addr = coeffOrigin + addr - coeffEnd

47 CoeffDataType 0 = Scalar 1 = Vector
48 InVertexAddrBase 0 = Relative 1 = Absolute
49 InVertexDataType 0 = Scalar 1 = Vector
50 SrcAddrBaseA 0 = Relative 1 = Absolute
51 ScrDataTypeA 0 = Scalar 1 = Vector
52 SrcAddrBaseB This field defines how the scratch regiseter B address is

generated. The options are:
 0 = relative (i.e. base + ScrAddrB)
 1 = absolute (i.e. SrcAddrB)

53 SrcDataTypeB This field defines the data type. The options are:
 0 = scalar
 1 = vector

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-95

Bits Name Description
54…61 DestAddr This field holds the address to update with the results of an

ALU operation. The address (after modification by the
DestAddrBase) is decoded into the following ranges:
0…63 = scratch register
64…95 = ColourA[r, g, b, a]…ColourH[r, g, b, a]
96…127 = TextureCoordH[s, t, r, q]…
128…130 = window coordinate
131 = homogenous W
132 = address register
133…256 = no write
Note the ColourA…ColourH parameters are automatically
clamped when used downstream.
The interpretation of the ColourA…ColourH and
TextureCoordA…TextureCoordH values is down to the
programs running in the Texture Coordinate Unit and the
Shading Unit.

62 DestAddrBase This field defines how the destination address is generated. The
options are:
 0 = relative (i.e. base + DestAddr)
 1 = absolute (i.e. DestAddr)

63 DestDataType This field defines the data type. The options are:
 0 = scalar
 1 = vector

64…67 Sequencer This field holds the sequencer operation. See later for a
description.

68…76 SeqData This field holds data mainly for sequencer related operations
such as jump or subroutine addresses, loop counter values. It
can also supply a value to be loaded or added to the base
registers. Instruction addresses can be absolute (0) or relative
(1) and this is controlled by the most significant bit.

Notes: Typical instructions are:

Reg[0+] = Add3 ([coeff3+], in[8]);
 //Add scalar held in input vertex register 8 to
 //Vec3 starting at address3 in coefficient memory, then store result in
 //scratch register starting at 0.
 Reg[0] = Madd4 (coeff[4+], reg[8+], reg[0];
 //4-component dot product of the Vec4 in coeff memory at address 4 and
 //the Vec4 in Scratch register 8, add the result to Scratch register 0.
 //If Madd is changed to Dot then reg[0] is cleared first..

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-96 Proprietary and Confidential 3 Dlabs

1.2.1.3 Vertex Shader ALU

The Arithmetic Logic Unit supports common operators such as Move, Add, Mul, MAdd,
Min, Max, RSqrt, Fract etc. Some special purpose opcodes are also supported:
• ShiftSign – used to build up outcode for user clip planes
• Mantissa and Exponent – For DX Log instruction

The ALU instructions are shown below (d is destination, s0, s1 and s2 are the three
sources).

Value. Name Stall Description
0 Move 0 d = s0
1 Add 1 d = s0 + s1
2 MAdd 3 d = s0 * s1 + s2
3 Mul 1 d = s0 * s1
4 Min 1 d = Min (s0, s1)
5 Max 1 d = Max (s0, s1)
6 SLT 1 if (s0 < s1) d = 1.0 else d = 0.0
7 SGE 1 if (s0 >= s1) d = 1.0 else d = 0.0
8 Fract 1 d = fractional part of s0
9 Trunc 0 d = integer part of s0 (as a floating point number)
10 Dot 3 d = s0 * s1 for first component, else d = s0 * s1 + s2
11 ShiftSign 0 d = s0 << 1 | s1.sign allows user clip outcode to be build up
12 Recip 84 d = 1.0 / s0, returns maximum positive number if s0 = 0.0
13 Div 8 d = s1 / s0, returns maximum positive or negative number if s0 = 0.0
14 RSqrt 0 d = 1.0 / sqrt (s0) (10 bits precision)
15 ALog 1 d = 2s0 (10 bits prescision)
16 Log 2 d = log2 (s0) (10 bit precision)
17 Exponent 2 d = IntToFloat (s0.e - 127)
18 Mantissa 2 d = IntToFloat (1.0 + s0.m)
19 IntToFloat 2 d = IntToFloat (s0)
20 FloatToInt 2 d = FloatToInt (s0)
21 HRecip 8 d = 1.0 / s0, returns 1.0 if |s0| < epsilon. epsilon = 2-120

The ALU is pipelined and has a throughput of one operation per cycle with an anticipated
latency of 3 cycles for the result.

1.2.1.4 Vertex Shader Sequencer Instructions
All sequencer operations are free. Miranda P10 includes flow control for subroutines:

4 The Recip, Div and HRecip instructions will stall by the same amount if the next instruction also uses the multiplier.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-97

Value Name Description
0 Inc The next sequencer address is the current sequencer address + 1.
1 Jump The next sequencer address is the address in the seqData field. The

address in the seqData field is an absolute address if the most
significant bit is clear, or a relative address if it is set.

2
3

Loop0
Loop1

The loop counter 0 or 1 is loaded with the contents of the seqData
field. The maximum loop count is 127 and is primarily intended for
looping around lights.
The next sequencer address is the current sequencer address + 1.

4
5

DJNZ0
DJNZ1

The loop counter 0 or 1 is decremented and if the result is zero the
next sequencer address is the current sequencer address + 1, otherwise
the address in the seqData field is used as the next sequencer address.
The seqData address can be absolute or relative.

6 Call The current address + 1 is pushed on to the return stack and the next
sequencer address is the address in the seqData field. The stack is
only four deep and there is no protection against overflow. The
seqData address can be absolute or relative.

7 Return The next sequencer address is taken from the return stack and the
stack is popped. The stack is only four deep and there is no
protection against underflow.

8 Stop This terminates the program and implements the necessary
handshaking to accept more vertex data and pass any results into the
pipeline for culling and clipping.

9 IncCoeffBaseReg The coeff address register used for relative addressing has the
sequencer data field added to it. The sequencer data is sign extented
before the addition.
The next sequencer address is the current sequencer address + 1.

10 LoadCoeffBaseReg The coeff address register used for relative addressing has the
sequencer data field loaded into it. The sequencer data is first
multiplied by 2 before loading. The next sequencer address is the
current sequencer address + 1.

11 LoadCoeffOriginReg The coeff origin register used for circular addressing has the sequencer
data field loaded into it. The sequencer data is first multiplied by 2
before loading. The next sequencer address is the current sequencer
address + 1.

12 LoadCoeffEndReg The coeff end register used for circular addressing has the sequencer
data field loaded into it. The sequencer data is first multiplied by 2
before loading. The next sequencer address is the current sequencer
address + 1.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-98 Proprietary and Confidential 3 Dlabs

1.2.2 Shader (Primitive Color) Unit
The Shading Unit is responsible for calculating the color of a fragment. The color is
normally a function of some iterated parameters, some constants and one or more
sampled and filtered textures. This unit replaces the functions previously carried out by
the following units in earlier rasterizer chips:
• Color DDA Unit
• Texture Composite Unit
• Texture Application Unit
• YUV Unit
• Fog Unit
• Alpha Test Unit
P10 supports primitive color programming in two stages: Texture co-ordinate calculation
and color calculation. Texture coordinate calculation is handled by the Texture Coordinate
unit, described later. Color calculation handled by the Shader unit programme(s) combine
texel data with interpolated values and constants. Calculations are done in fixed point
signed 4.8 integers. The distinction between units is in the type of plane equation
supported – textures and colors themselves are simply names, so for example a color can
be perspective-corrected.

1.2.2.1 Resources
The unit supports 8 simultaneous textures with any combination of 1d, 2d, 3d and cube
maps, however by using cube maps to hold mipmap chains, or 3d maps to hold bilinear 2d
arrays, many more are possible. The limit is probably the number of possible floating point
plane equations (32 each for texture and color).

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-99

1.2.2.2 Shader (Primitive Color) Instruction Set

Bits Name Width Description
0…7 Aaddr 8 This field selects a byte or 12 bits to input into the A port of the

ALU. The field is decoded into the following ranges:
 0…31 Local register (1 off 32)
 32…63 Texture register (1 off 32)
 64…95 Plane equation (1 off 32)
 96…127 Global register (1 off 32)
 128…255 Constant field (only one)
The common address range allows one parameterised subroutine to
be used for all input sources. The address can be modified
according to the AAddrMode field.

8…9 AAddrMode 2 This field defines how the address given in the AAddr field is to be
modified. The options are:
0 Absolute (i.e. use value as given)
1 Absolute Component. Replace bottom two bits by
 component number.
2 ArgRelative (to value pushed on subroutine call).
3 ArgRelative Component. As for relative but with
 bottom two bits replaced by component number.
The ArgRelative mode uses the top two bits of the AAddr field to
select which of the four arguments should be used as the base
address. The remaining AAddr bits are zero extended before the
relative calculation is done.

10…12 AFormat 3 This field selects how the selected A data is converted from a byte
to the 12 bit signed format. Data which is already in 12 bit format
(i.e. from the local register file) is passed on unchanged. The
options are:
 0 MapToOne (if x == 255, y = 1.0 else y = 0.x)
 1 Zero extend
 2 Bias1 (if x == 255, y = 0.5 else y = x - 0.5)
 3 Bias2 (if x == 255, y = 1.0 else y = (x - 0.5) * 2)
 4 Bias8 (if x == 255, y = 4.0 else y = (x - 0.5) * 8)
 5 Invert (y = ~x, zero extended)
 6 Half (y = 0.5)

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-100 Proprietary and Confidential 3 Dlabs

13…20 BAddr 8 This field selects a byte or 12 bits to input into the B port of the
ALU. The field is decoded into the following ranges:
 0…31 Local register (1 off 32)
 32…63 Texture register (1 off 32)
 64…95 Plane equation (1 off 32)
 96…127 Global register (1 off 32)
 128…255 Constant field (only one)
The common address range allows one parameterised subroutine to
be used for all input sources.
When a resource conflict occurs between the AAddr and BAddr the
AAddr always wins and the value referenced by it will be used as the
B value. The plane, global and constant fields use the same
resources so are mutually exclusive across both addresses. The
texture registers can only be used once in an instruction. The
address can be modified according to the BAddrMode field.
The ArgRelative mode uses the top two bits of the BAddr field to
select which of the four arguments should be used as the base
address. The remaining BAddr bits are zero extended before the
relative calculation is done.

21…22 BAddrMode 2 This field defines how the address given in the BAddr field is to be
modified. The options are:
 0 Absolute (i.e. use value as given)
 1 Absolute Component. Replace bottom two bits by
 component number.
 2 ArgRelative (to value pushed on subroutine call).
 3 ArgRelative Component. As for relative but with
 bottom two bits replaced by component number.

23…25 BFormat 3 This field selects how the selected B data is converted from a byte
to the 12 bit signed format. Data which is already in 12 bit format
(i.e. from the local register file) is passed on unchanged. The
options are:
 0 MapToOne (if x == 255, y = 1.0 else y = 0.x)
 1 Zero extend
 2 Bias1 (if x == 255, y = 0.5 else y = x - 0.5)
 3 Bias2 (if x == 255, y = 1.0 else y = (x - 0.5) * 2)
 4 Bias8 (if x == 255, y = 4.0 else y = (x - 0.5) * 8)
 5 Invert (y = ~x, zero extended)
 6 Half (y = 0.5)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-101

26…31 Waddr 6 This field selects a register to write to. The address range is split up:
0…31 Local register (1 off 32)
32…63 C FIFO (1 off 8, but replicated 4 times)
The address is modified by the WAddrMode field and the write
action is qualified by the WEMode field.
Writes to the C FIFO are automatically scaled and clamped to be in
the range 0…255.
The WAddr field also supplies the test condition used when the
ALU operation is Sub* as follows:
0 = Never 1 = Less
2 = Equal 3 = Less Equal
4 = Greater 5 = Not Equal
6 = Greater Equal 7 = Always

32…33 WAddrMode 2 This field defines how the address given in the WAddr field is to be
modified. The options are:
0 Absolute (i.e. use value as given)
1 Absolute Component. Replace bottom two bits by
 component number.
2 ArgRelative (to value pushed on subroutine call).
3 ArgRelative Component. As for relative but with
 bottom two bits replaced by component number.
The ArgRelative mode uses the top two bits of the WAddr field to
select which of the four arguments should be used as the base
address. The remaining WAddr bits are zero extended before the
relative calculation is done.

34…35 WEMode 2 This field defines the write action in the local register file. The
options are:
 0 = No write
 1 = Unconditional write
 2 = Write if flag bit is 0
 3 = Write if flag bit is 1
Also forms bits 0…1 of arg D on a subroutine call when Op is Arg.

36…39 Op 4 See table below
40 Div2 1 This bit when set will divide the ALU output by 2, making use of

the extra bit of internal precision on add, sub and mulS(which is not
available easily if this is done as a separate instruction). For Saturate
it selects between the ranges 0…1 (when set) and -1…1 (when
clear).
Also forms bits 2 of arg D on a subroutine call when Op is Arg.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-102 Proprietary and Confidential 3 Dlabs

41…42 FlagMode 2 This field determines how the status value generated by the ALU is
combined with the value in the flag register. The options are:
 0 = Hold
 1 = Replace
 2 = Replace with status AND flag
 3 = Replace with status OR flag
This field is also used to hold the value to load into the component
register on a subroutine call if the CC field is also set.
Also forms bits 3…4 of arg D on a subroutine call when Op is Arg.

43…45 Sequencer 3 This field controls the sequencer operations. The options are:
 0 = Increment
 1 = Jump
 2 = JumpTrue
 3 = JumpFalse
 4 = Call
 5 = Return
 6 = Done
 7 = DoneAnd

46 CC 1 This field selects which condition code the sequencer should test.
The options are:
 0 = AND of all flag bits from fragment array
 1 = OR of all flag bits from fragment array
If this bit is set on a Call then the FlagMode field is used to load the
Component register used in the address modification process.

47…54 Constant 8 Holds a constant or jump address (absolute or relative).

1.2.2.3 Shader (Primitive Color) ALU
The ALU supports ADD and SUB with and without Carry or Saturation. Subroutines are
supported with Args.

Number Operation Q Notes
0 Add Q = A + B
1 AddC Q = A + B + carry Add with carry
2 AddS Q = Min (A + B,0x7.ff) Add with saturate
3 AddSC Q = Min (A + B + carry,

0x7.ff)

4 Sub Q = A - B
5 SubC Q = A - B – carry
6 SubS Q = Max (A - B, -0x8.00)
7 SubSC Q = Max (A - B – carry, -

0x8.00)

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-103

8 MultU Q = (A * B) >> 12 upper 12 bits
9 MultL Q = (A * B) lower 12 bits
10 MultS Q = A * B

Q = Min (Q, 0x7.ff)
Q = Max (Q, -0x8.00)

11 PassA Q = A
12 SelectA Q = A if flag is true else

Q = B

13 SelectB Q = B if flag is true else
Q = A

14 Saturate if (Div2)
Q = Max (A, 0)
Q = Min (Q, 0x1.00)
else
Q = Max (A, -0x1.00)
Q = Min (Q, 0x1.00)

if div2 field is set
Clamp to 0…+1 range
else
Clamp to -1…+1 range

15 Arg Nop Sets arg D from the WEMode,
FlagMode and Div2 fields. No writes
are done.

1.2.2.4 Shader (Primitive Color) - Sequencer Instructions

Name Description
Increment This causes the next instruction address to be current instruction address + 1.
Jump This causes the next instruction address to be taken from the constant field in the

instruction. The most significant bit of the constant field determines if the address is
an absolute address (0) or a relative address (1). If it is a relative address then the
value in the constant field is added to the current address.

JumpTrue This causes the next instruction address to be taken from the constant field in the
instruction if the selected condition (masked by the subtile mask) is true, otherwise
the next instruction address is the current instruction address + 1. The address can
be absolute or relative.

JumpFalse This causes the next instruction address to be taken from the constant field in the
instruction if the selected condition (masked by the subtile mask) is false, otherwise
the next instruction address is the current instruction address + 1. The address can
be absolute or relative.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-104 Proprietary and Confidential 3 Dlabs

Name Description
Call This causes the next instruction address to be taken from the constant field in the

instruction and the current instruction address + 1 written to the return address
stack. The address can be absolute or relative.
The A, B and W addresses in effect at the time of the call are also pushed onto the
stack. Subsequent addresses can be made relative to these pushed addresses to allow
limited input parameters to subroutines without having to copy data into fixed
places.

Return This causes the next instruction address to be taken from the return stack. Calls and
Returns do not need to be balanced as the stack is reset at the start of a program.
The address stack is also popped.

Done This causes the sequencer to halt and any handshaking with the double buffered
texel registers and output colour FIFO to be done. The handshaking is only done in
the case of a program initiated by the Tile message.

DoneAnd This causes the sequencer to halt and any handshaking with the double buffered
texel registers and output colour FIFO to be done. The handshaking is only done in
the case of a program initiated by the Tile message. The fragment flags are anded
with the subtile mask before the subtile is passed on.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-105

1.2.3 Texture Coordinate Unit
The Texture Coordinate Unit computes one or more perspectively correct texture
coordinates for each fragment and the appropriate level of detail (lod) when mip mapping.
In addition the texture coordinates can be perturbed by an earlier texture access (bump
mapping) or treated as the index into a cube (cube mapping). Higher qualities of filtering
are supported by way of anisotropic mip mapping and high order filters (bicubic for
example). Texture coordinates can have 1, 2 or 3 components to support 1D, 2D or 3D
texture maps.

1.2.3.1 Resources
The Texture Coordinate ALU supports 32 floating point plane equations, 32 global
registers and 16 scratch registers. The output register is 64 bits wide and normally holds
32bit RGBA plus optional depth, 16-bit color components etc. Program storage handles
up to 128 instructions. There is also a flag register for conditional execution.

Bump Mapping, Displacement Mapping5 and High Order or Multi-tap filters are supported
using cubic functions to hold additional texel descriptors.

1.2.3.2 Texture Coordinate Instruction Set
The Texture Coordinate unit can run a First program, a Middle program and a Last
program in the Shader unit (below), revisiting the same Shader data repeatedly. Each
program can be run up to n times for n bits of source data. (For example, First = Zero
Accumulator; Second = Add to the Accumulator; Third = Scale and Output the
Accumulator.)

Bits Name Width Description
0…2 SourceA6

PlaneBase[0…2]
3 This field selects what data is placed on the inputs to the

A input of the fragment array. The options are:
 0 = the constant 0.0.
 1 = the constant 1.0
 2 = dpdx plane equation parameter.
 3 = dpdy plane equation parameter.
 4 = start plane equation parameter.
The plane equation to use is held in the constant field.
It also holds 3 of the 5 bits of the base address of the
plane registers when this is enabled for loading.

6 Displacement mapping is a technique where a surface is tessellated and the tessellation vertices are displaced along the normal
by an amount looked up from a displacement map. The displacement map is really a height field stored in a texture map. The
displaced surface will naturally also perturb the normal from the base surface so the surface lighting will match the new
geometry. The advantage displacement mapping has over bump mapping 1 is that the visibility along the silhouette edge follows
the cues given by the lighting, but this comes at a very high cost as the tessellation triangles need to be very small - of the order
of a few pixels in size.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-106 Proprietary and Confidential 3 Dlabs

Bits Name Width Description
3…4 SourceB

PlaneBase[3…4]
2 This field selects what data is placed on the inputs to the

B input of the fragment array. The options are:
 0 = the constant 0.0.
 1 = the constant 1.0
 2 = lower word of the global registers.
 3 = upper word of the global registers.
The global register to use is held in the constant field.
It also holds 2 of the 5 bits of the base address of the
plane registers when this is enabled for loading.

5…7 SourceC
GRBase[0…2]

3 This field selects what data is placed on the inputs to the
C input of the fragment array. The options are:
 0 = the constant 0.0.
 1 = the constant 1.0
 2 = dpdx plane equation parameter.
 3 = dpdy plane equation parameter.
 4 = saved dpdx plane equation parameter.
 5 = saved dpdy plane equation parameter.
The plane equation to use is held in the constant field.
It also holds 3 of the 4 bits of the base address of the
global registers when this is enabled for loading (note
these are addressed in pairs).

8…9 SourceD
GRBase[3]

2 This field selects what data is placed on the inputs to the
D input of the fragment array. The options are:
 0 = the constant 0.0.
 1 = the constant 1.0
 2 = lower word of the global registers.
 3 = upper word of the global registers.
The global register to use is held in the constant field.
It also holds 1 of the 4 bits of the base address of the
global registers when this is enabled for loading (note
these are addressed in pairs).

6 We could combine the Source* and corresponding Arg* fields into a single field and save 5 bits on the instruction width. This
two level decode at present separates the decode and muxing into a set which is outside of the fragment processors and a set
which is inside the fragment processors. This split can naturally be done from a single combined field, but is less obvious.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-107

Bits Name Width Description
10…11 SourceScale

NegateScale
2 This field selects what data is placed on the inputs to the

Scale input of the fragment array. The options are:
 0 = zero
 1 = the plane equation scale field.
 2 = the constant field (bottom 5 bits)
The plane equation to use is held in the constant field.
This may be overridden by the ArgScale field, and when
it does it the least significant bit is then used to control
the negation of the scale value.

12 SaveParameterGradients 1 This bit, when set, will copy the currently addressed plane
equation dx and dy gradients into separate registers so
they can be used by SourceC. This avoids needing two
read ports on the plane equation storage during partial
derivative calculations.

13…14 ArgA 2 This field selects what data is placed on the inputs to the
A port of the ALU. The options are:
 0 = register file A output port.
 1 = SourceA input.
 2 = divide result.
 3 = feedback value (see Feedback* fields)

15…16 ArgB 2 This field selects what data is placed on the inputs to the
B port of the ALU. The options are:
 0 = register file A output port.
 1 = register file B output port.
 2 = SourceB input.
 3 = X coordinate for current fragment.

17…18 ArgC 2 This field selects what data is placed on the inputs to the
C port of the ALU. The options are:
 0 = register file A output port.
 1 = register file B output port.
 2 = SourceC input.

19…20 ArgD 2 This field selects what data is placed on the inputs to the
D port of the ALU. The options are:
 0 = register file B output port.
 1 = SourceD input.
 2 = X coordinate for current fragment.
 3 = current lod value

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-108 Proprietary and Confidential 3 Dlabs

Bits Name Width Description
21 ArgScale 1 This field selects what data is placed on the inputs to the

Scale port of the ALU. The options are:
 0 = SourceScale input.
 1 = Scale register (loaded as a Special Function

Operation).
22…25 AddrA

TexID
GRegDestRegTexID

4 This field provides the address for the register file A port.
It also provides the 3 bit textureID (in the least
significant bits) when a command is being sent. When
GRegDestRegTexID (in the most significant bit) is set the
TexID and DestReg will come from the global register
selected by an earlier field rather than from the
corresponding integer fields. The TexID is loaded from
bits 0…2 of an even global register and the DestReg is
loaded from bits 3…5 of the same even global register.

26…29 AddrB
DestReg
LoadShading

4 This field provides the address for the register file B port.
It also provides the 3 bit destReg (in the least significant
bits) when a command is being sent. The most
significant bit is loadShading bit.

30…33 AddrW 4 This field provides the address for the register file W
port.

34 Indirect 1 This bit, when set, causes the AddrA and AddrB fields to
be treated as indirect offsets which are mapped to actual
addresses via mapping information set up from cube
sorting. It will also cause the values read from these two
ports to be optionally negated and this is controlled by
the cube sorting information.

35…38 ALUOp 4 See table below.
39…40 FlagMode 2 This field determines how the status value generated by

the ALU is combined with the value in the flag register.
The options are:
 0 = Hold
 1 = Replace
 2 = Replace with status AND flag
 3 = Replace with status OR flag

41…42 WEMode 2 This field defines the write action in the local register file.
The options are:
 0 = No write
 1 = Unconditional write
 2 = Write if flag bit is 0
 3 = Write if flag bit is 1

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-109

Bits Name Width Description
43…45 Output 3 This field controls writing to the output FIFO. The

options are:
 0 = No write.
 1 = Write the output of the ALU (texelCoord) to addr

0.
 2 = Write the output of the ALU (texelCoord) to addr

1.
 3 = Write the output of the ALU (texelCoord) to addr

2.
 4 = Write the output of the ALU (texelCoord) to addr

3.
 5 = Write the lod and face number to addr 3.
 6 = Write the Command to the output FIFO.
 7 = Special Function Operation
The command data is taken from Command, TexID,
DestReg, LoadShading, FeedbackEnable and Prog fields.

46…47 FeedbackSize
Command
SpecialFunction[0…1]

2 When accessing the feedback register this field holds the
size of the item to be read. The options are:
 0 = 8 bits
 1 = 16 bits
 2 = 24 bits
 3 = 32 bits
When a command is being sent this field holds the
command. The options are:
 0 = Nop
 1 = PassThrough2
 2 = FilterTexture
 3 = PassThrough4
When Special Function Operation this field (in
conjunction with the next field) holds the command it
should execute:
 0 = Load ScaleReg from ALU output
 1 = Load PlaneBaseReg (from PlaneBase fields)
 2 = Load GRegBaseReg (from GRBase fields)
 3 = Load PlaneBaseReg and GRegBase
 4 = LoadQ2 from ALU output
 5 = LoadMax from ALU output
 6 = MergeMax from ALU output
 7 = LoadMag from ALU output
 8 = MergeMag from ALU output

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-110 Proprietary and Confidential 3 Dlabs

Bits Name Width Description
48…49 FeedbackPosition

Prog
SpecialFunction[2…3]

2 When accessing the feedback register this field holds the
position of the data in the 32 bit word to extract. The
options are:
 0 = starts at bit 0
 1 = starts at bit 8
 2 = starts at bit 16
 3 = starts at bit 24.
When a command is being sent this field holds the
program in the Shading Unit to run. The options are:
 0 = default program (none if not end of subtile)
 1 = start program
 2 = middle program
 3 = last program

50 FeedbackSignExtend
EnableFeedback

1 When accessing the feedback register this bit causes the
data (with width and position given by the previous two
fields) to be sign extended (1) or zero extended (0) to 32
bits before being used.
When a command is being sent this bit, when set,
enabled the filtered texture data to be fed back to the
Texture Coordinate Unit.

51…54 Sequencer 4 This field controls the sequencer operations. The
options are:
 0 = Increment 1 = Jump
 2 = JumpTrue 3 = JumpFalse
 4 = Call 5 = Return
 6 = Done 7 = DoneAnd
 8 = LoadCounter 9 = DJNZ
 10 = WaitForFeedbackData
 11 = FinishedWithFeedbackData
 12 = KillFragment

55 CC
LoopID
Status

1 This field selects which condition code the sequencer
should test. The options are:
 0 = AND of all flag bits from fragment array
 1 = OR of all flag bits from fragment array
For the loop related operations this filed holds which
counter to use. It also selects what status is generated
from the ALU from the zero and negative flags. The
options are:
 0 = Zero
 1 = Positive

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-111

Bits Name Width Description
56…63 Constant 8 This field is used for several different purposes:

For sequencer jump address the type of address is
encoded in the most significant bit. Two types of
addresses are supported: absolute address (0) or relative
addresses (1). The bottom 7 bits hold the address or
offset from the current address.
For plane equation addresses the type of address is
encoded in bit 5 (of the field).
Two types of addresses are supported:
• absolute address (0) or
• relative addresses (1).
The bottom 5 bits hold the address or offset from the
PlaneBaseReg (loaded as a Special Function Operation).
For global register addresses the type of address is
encoded in bit 6 (of the field). Two types of addresses
are supported: absolute address (0) or relative addresses
(1). The bottom 5 bits hold the address or offset from
the GRegBaseReg (loaded as a Special Function
Operation).

1.2.3.3 Texture Coordinate ALU
The Texture Coordinate ALU includes special logic for LOD and cube mapping.

Number Operation Result Notes
0 MAdd r = a * b + c * d Add, Mult and Pass are done by setting

input values to 0.0 or 1.0 as necessary.
1 MSub r = a * b - c * d Sub is done by setting input values to

0.0 or 1.0 as necessary.
2 IntToFloat r = Float (a) a is treated as a signed integer.
3 FloatToInt r = Integer (a)
4 Fract r = Fraction of (a)
5 Min if (a > b) r = b else r = a
6 Max if (a > b) r = a else r = b
7 AMax if (|a| > |b|) r = |a| else r =

|b|
Can also be used for Abs

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-112 Proprietary and Confidential 3 Dlabs

Number Operation Result Notes
8 Wrap f = Fract (a * b)

set flags if:
 (a * b) > 1.0
 (a * b) is odd
 (a * b) is < 0.0

The fixed point fract value and the two
flags are combined into a 24 bit texture
coordinate value intended to be passed
to the Texture Index Unit.

9 Select if (flag) r = a else r = b Flag is taken from the flag register.
10 Div divResult = a / b

r = 0.0
Asynchronous divide operation, result
accurate to 24 bits, i.e. three levels of
refinement. This will return a result after
7 cycles.

11 AnisoRatio if (a / b <= 4.0) r = 2.0
if (a / b < 8.0) r = 4.0
if (a / b >= 8.0) r = 8.0

The divide is just done by subtracting
the exponents.

12 LoadDiv
Result

divResult = a
r = 0.0

Used during cube sort to provide a third
argument (S in this case).

13 CubeSort Sort (a, b, c) and set up face
number and indirect addressing.
r = 0.0

14 DivLP divResult = a / b
r = 0

Asynchronous divide operation, result
accurate to 14 bits, i.e. two levels of
refinement. This will return a result
after 5 cycles.

1.2.3.4 Texture Coordinate Sequencer Instructions

Name Description
Increment This causes the next instruction address to be current instruction address + 1.
Jump This causes the next instruction address to be taken from the constant field in the

instruction. The most significant bit of the constant field determines if the address is an
absolute address (0) or a relative address (1). If it is a relative address then the value in
the constant field is added to the current address.

JumpTrue This causes the next instruction address to be taken from the constant field in the
instruction if the selected condition is true, otherwise the next instruction address is the
current instruction address + 1. The true address can be absolute or relative.
The condition to test is either the AND of all the fragment flags (masked by the tile
mask) or the OR of all the fragment flags.

JumpFalse This causes the next instruction address to be taken from the constant field in the
instruction if the selected condition is false, otherwise the next instruction address is the
current instruction address + 1. The false address can be absolute or relative.
The condition to test is either the AND of all the fragment flags (masked by the tile
mask) or the OR of all the fragment flags.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-113

Name Description
Call This causes the next instruction address to be taken from the constant field in the

instruction and the current instruction address + 1 written to the return address stack.
The call address can be absolute or relative.

Return This causes the next instruction address to be taken from the return stack. Calls and
Returns do not need to be balanced as the stack is reset at the start of a program.

Done This causes the sequencer to halt and any handshaking done. The handshaking is only
done in the case of a program initiated by the Tile message.

DoneAnd This causes the sequencer to halt and any handshaking done. The handshaking is only
done in the case of a program initiated by the Tile message. The fragment flags are anded
with the tile mask before the tile mask is passed on.

KillFragment The fragment flags are anded with the tile mask before the tile mask is passed on. This is
the same as the DoneAnd command but program execution continues. This allows an
early test to delete fragments from subsequent texture accesses, whereas the DoneAnd
would only do it for the last texture access.

LoadCounter This loads one of the two 8 bit counters from the constant field in the instruction.
DJNZ This Decrements the counter and Jumps if the counter is Not Zero to the address in the

constant field of the instruction, otherwise the next instruction address is the current
instruction address + 1. The jump address can be absolute or relative. One of the two
counters is used.

WaitForFeedback
Data

This instruction stalls the program execution until all the feedback data has been received.
If no feedback data has been requested then this instruction is ignored.

FinishedWith
FeedbackData

This instruction is used to indicate the data in the Feedback registers has been finished
with and any pending feedback data can be loaded. A count of the number of
outstanding feedback requests is kept to try and prevent a lock up occurring.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-114 Proprietary and Confidential 3 Dlabs

1.2.4 Pixel Address
The Pixel Address Unit calculates the address where the data for the input tile(s) are
stored in memory. This is more complicated than the address calculation for the LB pixel
data because multiple addresses are needed and source reads may not be aligned to tile
boundaries. The Pixel Addressing unit works with the Pixel Unit (below). The Pixel Unit
only ‘knows’ about data from the Shader and memory. The Pixel Address unit controls
access to additional memory data by the Pixel Unit.
The range of operations for which addresses are calculated can include:
• Simple: aligned destination reads and writes for regular 2D or 3D operations.
• Blits where the source tile is typically non-aligned and the destination tile may need to

be read (e.g. because only a subset of the bits (in a pixel) are being blitted, or only a
partial destination tile is being updated).

• Multibuffer updates.
• Accumulation buffer processing. This involves mixed 32 bit/64 bit buffer reads and

writes. To accumulate the color buffer, for example, we store 8 successive planar
byte tiles per accumulation tile. The actual accumulation and any scaling are actually
done in the Pixel Unit, which expects to find the destination data in register0.

• Font processing: The font bitmask needs to be read and aligned to the destination
rectangle.

• Convolution: This involves multiple (9 for a 3x3 kernel) non aligned tile reads and a
single aligned destination tile read and/or write.

• Mipmapping
• Multi-sample antialiasing: The subpixel mask information is used to control the update

of n subpixel color buffers, which are then averaged for display. The averaging can
be done at video level, using a blit before display, or on the fly.7

1.2.4.1 Pixel Address Programming
Address generation is controlled by a user-defined program instead of a long and changing
list of mode bits for various APIs and extensions. The program runs once per enabled
buffer, typically Front/Back, Left/Right. There is also one global buffer. Usually the
program reads 64 bits of Read data (Source and Destination) and writes 32 bits
(Destination Write).
The general mode of operation is that an input Tile starts the address generation program
running. It calculates all the addresses needed and issues them to the Pixel Cache Unit.
If there are two or less tiles (up to 32 bpp) to read it forwards the Tile to the Pixel Unit
where it will be paired up with the data (if any). If there are more than two tiles to read
then multiple tiles are sent to the Pixel Unit to be matched up with sets of tile data from the
cache. Different programs in the Pixel Unit can be run on the first set, middle sets and last
set of tile data and a pass number is also provided.
Programming in this unit typically provides blitting, pattern fills and multi-sample
antialiasing.

7 Although the Pixel Unit could also perform this task it is far simpler for the Pixel Address Unit to use the coverage
information to generate the tile masks for each buffer.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-115

1.2.4.2 Resources
Program store: 32 instructions of 15 bits, loaded 2 per 32 bit word.
FBAddrInfo registers.
FBBaseAddr registers
FBBuffer registers

1.2.4.3 Pixel Address Instruction Set
The instruction format for Copy, Add, Dec, LoadXYMask, LoadXYFromTile, LoadXY
and SetTileMaskfromCoverage is:

Bits Name Width Description
0…3 opCode 4 This field selects the basic operation. The options are:

 0 = Copy 1 = Add
 2 = Dec 3 = LoadXYMask
 4 = LoadXYFromTile 5 = LoadXY
 6 = SendDestAddr 7 = SendSourceAddr
 8 = SendTile 9 = JumpNotZero
 10 = SendDestAddrAndTile
 11 = SendSourceAddrAndTile
 12 = SetTileMaskfromCoverage

4 argA 1 This field selects the source for argument A. The options
are:
 0 = working register given by the ra field
 1 = addrInfo register given by the ra field

5…7 ra 3 This field selects the register in the working set or addrInfo
to load the alu a argument from.

8 argB 1 This field selects the source for argument B. The options
are:
 0 = working register given by the rb field
 1 = tileX or tileY register given by the rb field

9…11 rb 3 This field selects the register in the working set or tileX (0)
or tileY (1) to load the alu b argument from.

12…14 rc 3 This field selects the register in the working set to update if
required by the opCode.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-116 Proprietary and Confidential 3 Dlabs

The instruction format for SendDestAddr, SendSourceAddr, SendTile,
SendDestAddrAndTile and SendSourceAddrAndTile is:

Bits Name Width Description
0…3 opCode 4 This field selects the basic operation. The options are:

 0 = Copy
 1 = Add
 2 = Dec
 3 = LoadXYMask
 4 = LoadXYFromTile
 5 = LoadXY
 6 = SendDestAddr
 7 = SendSourceAddr
 8 = SendTile
 9 = JumpNotZero
 10 = SendDestAddrAndTile
 11 = SendSourceAddrAndTile
 12 = SetTileMaskfromCoverage

4…6 buffer 3 This field selects which of the 5 buffers to use with
SendDestAddr or SendSourceAddr opcodes. Buffers 0…3
are relative and are offset by the buffer number the
program is being run on. Buffers 4…7 all map to buffer 4
and this is an absolute buffer so can be used to select
global data to apply to each buffer such as font data.

7 puReg 1 This field selects the target register in the Pixel Unit
register to update on a SendDestAddr or SendSourceAddr
opcode.

8…9 progID 2 This field holds the tile program the Pixel Unit should run
once all the data has been delivered from the cache. The
options are:
 0 = Only 1 = First
 2 = Middle 3 = Last
This field is only used by the SendTile opcode.

10…14 not used 5

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-117

The instruction format for JumpNotZero is:

Bits Name Width Description
0…3 opCode 4 This field selects the basic operation. The options are:

 0 = Copy 1 = Add
 2 = Dec 3 = LoadXYMask
 4 = LoadXYFromTile 5 = LoadXY
 6 = SendDestAddr 7 = SendSourceAddr
 8 = SendTile 9 = JumpNotZero
 10 = SendDestAddrAndTile
 11 = SendSourceAddrAndTile

4 argA 1 This field selects the source for argument A. The
options are:
 0 = working register given by the ra field
 1 = addrInfo register given by the ra field

5…7 ra 3 This field selects the register in the working set or
addrInfo to test for zero.

8…12 jumpAddr 5 This field holds the address to jump to if the result of
the test is true.

13…14 not used 2

The Opcodes have the following effects:

Opcode Syntax Description
Copy Copy (rc, ra) rc = ra
Add Add (rc, ra, rb) rc = ra + rb
Dec Dec (rc, ra) rc = ra – 1
LoadXYMask LoadXYMask

 (ra, rb)
xMask = ra, yMask = rb; the xMask and yMask
registers are used in source address calculations to
limit the range of x and y coordinates (if enabled by
the buffer state).

LoadXYFromTile LoadXYFromTile () x = tileX, y = tileY; x and y are registers used in the
address computation

LoadXY LoadXY (ra, rb) x = ra, y = rb; x and y are registers used in the address
computation

SendDestAddr SendDestAddr (buffer,
puReg)

Read, if necessary, an aligned tile and transfer to the
Pixel Unit. Instruction fields provide which memory
region (buffer) to read and/or write, and the Pixel
Unit register to write to. The planar byte tile address
is automatically calculated using the values in the x and
y registers and the selected buffer parameters (base
address, width, etc).

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-118 Proprietary and Confidential 3 Dlabs

SendSourceAddr SendSourceAddr
(buffer, puReg)

Read a tile (maybe non aligned) and transfer to the
Pixel Unit. Instruction fields provide which memory
region (buffer) to read, and the Pixel Unit register to
write to. The planar byte tile address is automatically
calculated using the values in the x and y registers and
the selected buffer parameters (base address, width,
etc). Multiple reads may be initiated depending on the
degree of missalignment and the tiles are automatically
merged together.

SendTile SendTile (progID) The Tile message which caused the program to run is
forwarded on and the pass number and double
buffering information automatically appended. The
tile program to run in the Pixel Unit is provided as
part of the instruction. The options are:
0 = Only 1 = First
2 = Middle 3 = Last
A SendTime (Only) or SendTile (Last) instruction will
terminate the program.

JumpNotZero JumpNonZero (ra,
jumpAddr)

This tests ra against zero and if it is not zero then the
program control is passed to the address held in the
jump instruction.

SendDestAddrAndTile Send…Tile
(buffer, puReg,
progID)

This instruction combines the SendDestAddr and
SendTile actions and is only provided as an
optimisation to allow a shorter program and less
commands being sent to the cache.

SendSourceAddrAndTile Send…Tile
(buffer, puReg,
progID)

This instruction combines the SendSourceAddr and
SendTile actions and is only provided as an
�ptimisation to allow a shorter program and fewer
commands being sent to the cache.

SetTileMaskfromCoverage Set…Coverage() This instruction replaces the tile mask used in all
subsequent instructions with one extracted from the
coverage information for this tile. The fragment
position in the coverage mask is give by the pass
number.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-119

1.2.5 Pixel Unit

1.2.5.1 Resources
The Pixel Unit uses a programming syntax similar to “C” in several respects:
• It assumes predefined variables and arrays corresponding to the registers introduced

earlier, e.g. A[], B[] and W[] are entries in the local register file for reading, reading and
writing respectively.

• Conditional writes are shown within the [], e.g. W[2, flag==false] updates local register
2 only if the flag is false.

• ALU operations are treated as functions with the input arguments as parameters.
• A single instruction may run across several lines for clarity, and is closed with a

semicolon;
• Labels are shown as a symbol name and semicolon
• The default sequencer operation is Increment. It is not normally specified.

Particularly in conjunction with the Pixel Address unit the Pixel Unit supports multi-pass
programs capable of both conventional and exotic effects, including pattern fill, BLITs with
XOR, dither, scaling during color buffer accumulation, convolutions, Radial gradient fill and
Photoshop filters. It would, for example, be theoretically possible to implement the Game
of Life in hardware. For details of programming implementation see the Miranda P10
Programmers Guide.

1.2.5.2 Pixel Programming Instruction Set

Bits Name Width Description
0…2 Paddr 3 This field selects a byte of the eight P[0…7] register files

to read. An additional address bit is supplied by the
double buffer logic and the least significant bit is ignored
when the ArgA field selects the R, G or B component of
a 16 bit colour.

3…4 Faddr 2 This field selects a byte of the four F[0…7] register files
to read. An additional address bit is supplied by the
double buffer logic if double buffering, or by the
FAddrExt bit if single buffering..

5…8 Aaddr 4 This field selects a byte from the local register file to
read on port A.

9…12 Baddr 4 This field selects a byte from the local register file to
read on port B.

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-120 Proprietary and Confidential 3 Dlabs

Bits Name Width Description
13…16 Waddr 4 This field selects a byte to write to from port W in the

local register file. The write action is qualified by the
WEMode field. The WAddr field also supplies the test
condition used when the ALU operation is Sub* as
follows:
 0 = Never
 1 = Less
 2 = Equal
 3 = Less Equal
 4 = Greater
 5 = Not Equal
 6 = Greater Equal
 7 = Always

17…18 WEMode 2 This field defines the write action in the local register
file. The options are:
 0 = No write
 1 = Unconditional write
 2 = Write if flag bit is 0
 3 = Write if flag bit is 1

19…20 CAddr 2 This field selects which byte in the cache line to write to.
The cache line is automatically provided. The write is
qualified by the CWEMode and CWEMask fields.

21…23 CWEMode 3 This field defines the write action in the local register
file. The options are:
 0 = No write
 1 = Unconditional write
 2 = Unconditional write R
 3 = Unconditional write G
 4 = Unconditional write B
 5 = ForwardToHostOut

24 CWEMask 1 This field determines how the cache writes should be
masked. The options are:
 0 = By the Tile Mask
 1 = By the TileMask & flag register

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-121

Bits Name Width Description
25…27 ArgA 3 This bit selects where the argument for the ALU port A

comes from. The options are:
 0 = Local register file Read A
 1 = Local register file Read A
 2 = External Data
 3 = External Data
 4 = Red Pixel Data (Pr)
 5 = Green Pixel Data (Pg)
 6 = Blue Pixel Data (Pb)
 7 = Pixel data (P)

28 InvA 1 This bit, when set, inverts the A input to the ALU. If
the CC field is zero then all the bits are inverted,
otherwise just the ms bit is inverted. This can be used
to convert a biased (by 128) number into a negative
number.

29…30 ArgB 2 This bit selects where the argument for the ALU port B
comes from. The options are:
 0 = Local register file Read B
 1 = Local register file Read B
 2 = External Data
 3 = Fragment data (F)

31 InvB 1 This bit, when set, inverts the B input to the ALU. If the
CC field is zero then all the bits are inverted, otherwise
just the ms bit is inverted. This can be used to convert a
biased (by 128) number into a negative number.

32 ArgI 1 This bit selects where the argument for the ALU port I
comes from. The options are:
 0 = Local register file Read A
 1 = Local register file Read B

33…37 Op 5 See table below.
38…40 FlagMode 3 This field determines how the status value generated by

the ALU is combined with the value in the flag register.
The options are:
 0 = Hold
 1 = Replace
 2 = Replace with status AND flag
 3 = Replace with status OR flag
 4 = Replace with corresponding bit from
Pixel Mask

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-122 Proprietary and Confidential 3 Dlabs

Bits Name Width Description
41…42 ExternalType 2 This field selects where the external data to the fragment

array comes from. The options are:
 0 = Global registers
 1 = Constant (from the jump field)
 2 = PerFragmentData
 3 = DecodeFromExternalSource

43…47 ExternalSource 5 This field selects from one of 32 sets of global registers
or one of 4 sets of per fragment data depending on the
ExternalType field.
When the ExternalType field is
DecodeFromExternalSource this field is decoded as
follows:
 0 = GlobalIndex8 (GReg[passNumber])
 1 = GlobalIndex16U
(GReg[passNumber*2+1])
 2 = GlobalIndex16L (GReg[passNumber*2])
 3 = Upper byte of fragment X coordinate
(XU)
 4 = Lower byte of fragment X coordinate
(XL)
 5 = Upper byte of fragment Y coordinate
(YU)
 6 = Lower byte of fragment Y coordinate
(YL)
 7 = Coverage

48…50 Sequencer 3 This field controls the sequencer operations. The
options are:
 0 = Increment
 1 = Jump
 2 = JumpTrue
 3 = JumpFalse
 4 = Call
 5 = Return
 6 = Done
 7 = DoneAnd

51…52 CC 2 This field selects which condition code the sequencer
should test. The options are:
0 = AND of all flag bits from fragment array
1 = OR of all flag bits from fragment array
2 = aaEnable bit from tile message.

53…60 Constant 8 Holds a constant or jump address.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-123

Bits Name Width Description
61 InvI 1 This bit, when set, inverts the I input to the ALU.
62 InvQ 1 This bit, when set, inverts the Q output of the ALU.
63 FAddrExt 1 This bit is used to extend the FAddr field by one bit

when accessing 64 bit fragment data from the Shading
Unit.

1.2.5.3 Pixel Programming ALU

Number Operation Q Notes
0 Add Q = A + B
1 AddC Q = A + B + carry Add with carry
2 AddS Q = Min (A + B, 255) Add with saturate
3 AddSC Q = Min (A + B + carry, 255)
4 Sub Q = A - B
5 SubC Q = A - B – carry
6 SubS Q = Max (A - B, 0)
7 SubSC Q = Max (A - B – carry, 0)
8 MultU Q = (A * B) >> 8 upper byte
9 MultL Q = (A * B) lower byte
10 Modulate Q = B if A == 255, else

Q = A if B == 255, else
Q = (A * B) >> 8

11 Lerp Q = B if I == 255 else
Q = A + (B – A) * I

12 And Q = A & B
13 Or Q = A | B
14 Xor Q = A ^ B
15 Bit flag = bit B of A Uses ls 3 bits of B
16 PassA Q = A
17 SelectA Q = A if flag is true else

Q = B

18 CarryExtend Q = carry in all bit positions
19 PassB Q = B
20 SelectB Q = B if flag is true else

Q = A

21 SMultU Q = (A * B) >> 8 upper byte, A and B are
signed

22 SMultL Q = (A * B) lower byte, A and B are
signed

Graphics and T&L Registers Miranda P10 Reference Guide Volume III

1-124 Proprietary and Confidential 3 Dlabs

23 LerpR Q = B if I == 255 else
Q = A + (B – A) * I + 128

0.5 added to round result

24 MAddU Q = (B * I + A) >> 8 upper byte
25 MAddL Q = B * I + A lower byte

1.2.5.4 Pixel Sequencer

Name Description
Increment This causes the next instruction address to be current instruction address + 1.
Jump This causes the next instruction address to be taken from the constant field in the

instruction. The most significant bit of the constant field determines if the address is
an absolute address (0) or a relative address (1). If it is a relative address then the
value in the constant field is added to the current address.

JumpTrue This causes the next instruction address to be taken from the constant field in the
instruction if the selected condition (masked by the tile mask) is true, otherwise the
next instruction address is the current instruction address + 1. The true address can
be absolute or relative.

JumpFalse This causes the next instruction address to be taken from the constant field in the
instruction if the selected condition (masked by the tile mask)is false, otherwise the
next instruction address is the current instruction address + 1. The true address can
be absolute or relative.

Call This causes the next instruction address to be taken from the constant field in the
instruction and the current instruction address + 1 written to the return address
register. The true address can be absolute or relative.

Return This causes the next instruction address to be taken from the return register. Calls
and Returns do not need to be balanced as the stack is reset at the start of a
program.

Done This causes the sequencer to halt and any handshaking with the double buffered
fragment and pixel registers to be done. The handshaking is only done in the case of
a program initiated by the Tile message.

DoneAnd This causes the sequencer to halt and any handshaking with the double buffered
fragment and pixel registers to be done. The handshaking is only done in the case
of a program initiated by the Tile message. The fragment flags are anded with the
tile mask before the Tile message is passed on.

Miranda P10 Reference Guide Volume III Graphics and T&L Registers

3 Dlabs Proprietary and Confidential 1-125

INDEX

Area Stipple Bitfield Allocation 1-3
FBBufferEnables 1-18
isochronous 1-6
Pixel Address Instruction Set 1-115
Pixel Address Programming 1-114
Pixel Programming 1-119
polylines 1-35
Shader (Primitive Color) - Sequencer Instructions

 1-103

Shader (Primitive Color) ALU 1-102
Shader (Primitive Color) Instruction Set 1-99
Shader (Primitive Color) Unit 1-98
Texture Coordinate ALU 1-111
Texture Coordinate Instruction Set 1-105
Texture Coordinate Unit 1-105
Vertex Shader ALU 1-96
Vertex Shader Sequencer Instructions 1-96

