GLINT R4

Programmer's Guide - Volume 11

DRAFT ONLY

PROPRIETARY AND CONFIDENTIAL
INFORMATION

3D/

SD/:)s

GLINT R4

Programmer's Guide - Volume 11

PROPRIETARY AND CONFIDENTIAL
INFORMATION

Issue 3

GLINT R4 Programmer’s Guide Volume || Contents

Proprietary Notice

3D/abs

The material in this document is the intellectual property of 3D/4s. 1t is provided solely for
information. You may not reproduce this document in whole or in part by any means. While
every care has been taken in the preparation of this document, 3D/.4s accepts no liability for
any consequences of its use. Our products are under continual improvement and we reserve
the right to change their specification without notice. 3D/z4s may not produce printed versions
of each issue of this document. The latest version will be available from the 3D/z45s web site.

3D/.4s products and technology are protected by a number of worldwide patents. Unlicensed
use of any information contained herein may infringe one or more of these patents and may
violate the appropriate patent laws and conventions.

3D/./s is the worldwide trading name of 3D/4s Inc. Ltd.
3D/.)5, GLINT R4 and GLINT R4 are registered trademarks of 3D/s Inc. Ltd.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks of Microsoft
Corp. in the United States and/or other countries. OpenGL is a registered trademark of Silicon
Graphics, Inc. All other trademarks are acknowledged and recognized.

© Copyright 3D/zbs Inc. Ltd. 1999. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http://www.3dlabs.com

3D/abs Ltd. 3D/hs KK

Meadlake Place Shiroyama |JT Mori Bldg 16F

Thorpe Lea Road, Egham 40301 Toranomon
Surrey, TW20 8HE Minato-ku, Tokyo, 105, Japan

United Kingdom Tel: +81-3-5403-4653
Tel: +44 (0) 1784 470555 Fax: +91-3-5403-4646
Fax: +44 (0) 1784 470699

3D/.bs Inc.

480 Potrero Avenue
Sunnyvale, CA 94080,
United States
Tel: (408) 530-4700
Fax: (408) 530-4701

Proprietary and Confidential i

Contents

GLINT R4 Programmer’s Guide Volume ||

Change History

Document | Issue Date Change

160.4.2 1 1 Dec 99 First DRAFT Issue.

160.4.2 2 25 January 2000 Extensive updates

160.4.2 3 18 June 2001 Clarified OpaqueSpan bit; fixed Initialization example values

for stencil position and width, GID; removed index entries and
traces of FBReadMode, deleted Windowbase references,
corrected GID test control (no longer in Windows reg),
Stencil source data field.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Contents

Contents

Propr1etary INOICE ..c.vvieciiciceict s 1
Change HISTOIYc.ouiiiiiiiciic s il
Contents il

GRAPHICS PROGRAMMING ...t 7-1
7.1 The Graphics PIPEHNEc.c.oviuiioiiiiiiccic e 7-1
7.1.1 ROUIOE ..o e 7-3
7.1.2 IRZEEALIZARION o sesss st ettt e e 7-3
7.1.3 Dominant and Subordinate Sides of @ Triangleooo.oveovveorveoseeseioseoseeseoseeeseeeseosveseesrenn. 7-3
7.1.4 Register Set Up for Deprh TeSIINgcoovvvmmiieiiiiiiiiiie e 7-4
7.1.5 SHBPINel COPPECLIONcovvvv oo 7-4
7.2 PIpeline OVEIVIEWS. ..uviuiuiiiiiiieiicccie s 7-5
7.2.1 A day in the Life of @ 3D $5AnGLe .oov....ovveooeeoeeeeoeeeeoeeeeeeee e 7-5
7.2.2 A day in the Life of @ 2D Priitive.......oov..ovveooeeeeoeeeeeseeeeeeeeeeeeeeeeeeeeee e 7-10

RASTERIZER AND 2D SETUP ..o 8-1
8.1 DIESCIIPHON oottt 8-1
8.1.1 THAPOZOCS ..o §8-2
8.2 ANHANASING. ..o 8-4
8.2.1 AREALIAS APPLICALIONo...ovveooeeooeeeoeeee oot 8-4
8.2.2 Polygon Antialiasing Considerationsovvovveosveseeosseoseoseeossssseeseosseesseesseessesoseeseessen, 8-5
8.2.3 REGISEETS covv.. vt 8-6
8.2.4 AREILAS EXAMPLer.....o....ovv..oeveooeeeoeeeeeeeeeeeeo e, 86
8.2.5 Aticliasing Primitive TYPES .oov...ovv.eoveveeoeeeoeeeeoeseeeseeeeseeeeeeeeeseseeeeeeeeese e e 86
8.2.6 POIHES oo 8-9
8.2.7 LLZRES oo et §8-12
8.2.8 POLYGONS cvv.ovvoevveoeeeeeeeeee ettt ettt 8-15
8.3 SPAN OPELALIONS ..ot 8-18
8.3.1 Mode changes in SPan OPerationsooveeoooveeeooeeeeeoeeeeioseeeeseseeeeeeseeeeeeseseesseeesossseen 8-19
8.3.2 ALPha FAltering.........ovv..oovveoeeeeoeeeeoeeeeoeeeoeeee e 8-20
8.3.3 SPARt MASE PPOGESSING.....orveoeeeoeeeeeeeoesee e eeee e eeee et ee et 8-20
8.3.4 BLOCE W P10 i 8-21
8.3.5 PIXCL STZE5 .. vvuiiisiess sttt a e §8-21
8.3.6 Bitmaps, SPans @nd INagesov.ovveoveeseeeoseeoseeoeseoeeeosseoseeoeee e eseeoseeee s es e 8-22
8.4 RASTELIZET IMOAE ..ttt ettt et et et e e s ensaenesenan 8-32

3D /b5 Proprietary and Confidential iii

Contents

GLINT R4 Programmer’s Guide Volume ||

8.4.2 Multi-rasterizer OPerarioncc.cocumiiiuiieriiiiiieiiiisiee et 8-33
8.4.3 Rasterizer Unit REgISIErSc..oviuiiiiiiiiiiiiiiiii ettt 8-33
8.4.4 Render Command..............cc...uuuuiiiiiiiiiiiii e 8-36
8.5 2D SELUP oo 8-42
8.5.1 GLYPD PERAEING ..ottt 8-42
SCISSOR, STIPPLE AND COLOR DDA UNITS ...eiiiiiiiieiiiiiiiiie et 9-1
9.1 SCISSOT UTIEtutiaitetiiete ettt ettt ettt s e bttt st b et e st s s et st ene e senees 9-1
9.1.1 USEr SCiSs0r TESEoovccoiviiiii e 9-1
9.1.2 SCPEEN SCISSOT TESES covvvviiiiiii e 9-1
9.1.3 SCISSOP REGISIENS ... 9-2
9.1.4 Span Operations and the Scissor UMtc..cccueiiiiiiiiaiiiiniiiiiiiiiiiiee et 9-3
9.1.5 SCISSOP BXGMPI ... oeeeeee oot eeeeee oo see oo, 9-3
9.2 SUPPLE UNIt oot 9-3
9.2.1 AT SEPPLING ...ovveooveeoeeoeeeeeeeeeeee et 9-4
9.2.2 L0 SEPPLING cvv. oo 9-5
9.2.3 Span Operations and SHPPIINGccoccieioiiiiis e 9-5
I A - 95
9.2.5 EXAMPLES ..ot 9-7
9.2.6 Line Stipple EXAMPLe............cocooiiiiiiiiiiiiiiiiiiiiiee e 9-8
9.2.7 Avea Stipple Pattern EXAmple............c..cccccoiiiiiiimiiiiiiiiiiiiiiiiiesesee e 9-8
9.3 COlOL DIDA ULttt ettt 9-9
9.3.1 RGBA and Color-Index(CI) MOdes..........occuvuiiiiiiiiiaiiiiiiisiiiiiies st 9-10
9.3.2 GOUPHA SHATING ..ottt 9-11
9.3.3 Flat Shading EXamplecccoiioiiiiiiiiiiiiiiieiiee e, 9-12
9.3.4 Gourand Shaded Trapezoid Example...............ccocccoiviiviiiiniiiiiiniiiiiiiiiiiiiiiiiiiiiiieiaiiacei 9-12
0.3.5 Gourand Shaded Line EXample.......ovvvvvveveeeeeoooooseesseseeeeeeeeesosesseessseeeseeseeeeessseesssesseseeeeeee 9-13
LOCALBUFFER READ/WRITE.....coiiiiiiiiiie ettt 10-1
10.1.1 MOdE REGISIENS ... 10-2
10.2° WINAOW LTEGISEL w..uuiuiiiiciiicieiicc e eea e 10-4
10.3 Pixel Ownership (GID) Test Unit.....ocoovoiiiiiiriiiiiiicccccscc e 10-4
10.3.1 Pixel QWnErSHIP TESE ..oouvviviiiiiiiisee s 10-4
10.4 SENCIL T ESTuuuueuiieiieiietiieteeetee ettt ettt ettt et et s et e et et et esesensesanesseseneeseseannssesesensesn 10-7
L R - 2 Y 10-8
10.4.2 SENCIL EXANIPLE. ... 10-10
T0.5 DePth TesSt i 10-11

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Contents

10.5.1 ROGISTONS oo 10-13
10.5.2 Depth EX@MPLe..........ccoviioiiiiiiiiseeeee e 10-15

TEXTURE MAPPING. ...t a ettt e e e e e e eeenaaes 11-1
11.1.1 Compatibility with Earlier CHIPSersccccoiviiiviiiiiiiiiiiiiiiiiieiieieeeeee e 11-1
11.2 Texture Co-0rdinate GENELATIONc.cccoiririeiiueueuieiiririeeieieietrttee ettt seseseseaes 11-2
11.2.1 Calcnlate 1eXture COOPAINALES............ccviviiiiiiiiiiiiiiii e, 11-2
11.2.2 Level of Detail calculationccccciuiimiiiiiiiiiiiiisiiie et 11-3
11.2.3 TEXIUTE ROAG ... 11-6
11.2.4 FEI161 MOAES ... 11-8
11.2.5 Texel FOYMAIING.......cc.covieiiiiiiieie e 11-12
11.2.6 Looksp Table (LUT) ...c.cocoiiiiiiiiiiieeee ettt 11-16
11.2.7 Texture Filtering and Alpha Mapping............c..ccccccveiiiiiiiiniiiiniiiiiiiiiiiiiiiiiiieiiieiee e 11-17
11.2.8 Texture Color COMPOSIIINGcvcueiriiiiiiiiiiii et 11-18
11.2.9 IIIPLETIENIATION ... 11-29

VOLUME T INDEXcititiitietiieeiiieieieissitieisseeseesee s s e e n e e e e 33

3D /b5 Proprietary and Confidential %

GLINT R4 Programmer’s Guide Volume || Graphics Programming

7

Graphics Programming

GLINT R4 provides a rich variety of operations for 2D and 3D graphics supported by its
pipeline architecture. Primarily intended as a rasterizer, the R4 also has an onboard Delta
setup unit for standalone operation.

In this chapter, section 87.1 shows the basic units in the Pipeline. The following chapters
describe a typical rendering process for a Gouraud shaded triangle and looks at each of the
units in detalil.

7.1 The Graphics Pipeline

Command |
Setup |)
— Rasterizer Scissor &

i Localbuffer
" sl Read GID and
Stencil Localbuffer
Depth Write Color
Interpol-
ation
Texture
Texture Coordinates
Texture Index
LUT Read
Texture =y
Texture Filter
Composite
Te>_(tur_e p o
Application
Fog
e Alpha "
st Framebuffer o
pha
Read Dither

Pipeline

Blend I Lodic
Figure 7.1 Graphics Og Framebuffer
P Write

Host
Out

-

3D /b5 Proprietary and Confidential 7-1

Graphics Programming GLINT R4 Programmer’s Guide Volume ||

Figure 7.1 shows a schematic of the pipeline. In this diagram, the localbuffer contains? the
pixel ownership values (known as Graphic IDs), the Depth (Z) and Stencil buffer. The
framebuffer contains the Red, Green, Blue and Alpha bitplanes. The units in the HyperPipeline

are.

Rasterizer scan converts the given primitive into a series of fragments for processing by
the rest of the pipeline.

Scissor Test clips out fragments that lie outside the bounds of a user defined scissor
rectangle and also performs screen clipping to stop illegal accesses outside the screen
memory.

Stipple Test masks out certain fragments according to a specified pattern. Line and area
stipples are available.

GID (Pixel Ownership) is concerned with ensuring that the location in the framebuffer for
the current fragment is owned by the current visual. Comparison occurs between the given
fragment and the Graphic ID value in the localbuffer, at the corresponding location, to
determine whether the fragment should be discarded.

Stencil Test conditionally discards a fragment based on the outcome of a test between the
given fragment and the value in the stencil buffer at the corresponding location. The
stencil buffer is updated dependent on the result of the stencil test and the depth test.
Depth Test conditionally discards a fragment based on the outcome of a test between the
depth value for the given fragment and the value in the depth buffer at the corresponding
location. The result of the depth test can be used to control the updating of the stencil
buffer.

Color DDA is responsible for generating the color information (RGBA or Color Index(Cl))
associated with a fragment.

Texture is concerned with mapping a portion of a specified image (texture) onto a
fragment. The process involves interpolating to determine the texel coordinates including
perspective division, reading the texels, filtering to calculate the texture color, and
application which applies the texture color to the fragment color.

Fog blends a fog color with a fragment’s color according to a given fog factor. Fogging is
used for depth cueing images and to simulate atmospheric fogging.

Antialias Application combines the incoming fragment’s alpha value with its coverage
value when antialiasing is enabled.

Alpha Test conditionally discards a fragment based on the outcome of a comparison
between the fragments alpha value and a reference alpha value.

Alpha Blending combines the incoming fragment’s color with the color in the framebuffer at
the corresponding location.

Color Formatting converts the fragment’s color into the format in which the color
information is stored in the framebuffer. This may optionally involve dithering.

Logical Op/Framebuffer Mask performs Logical Operations between the fragment and
destination, and optionally applies a writemask.

Host Out optionally gathers statistics for picking and extent checking, and returns data to
the host for image uploads.

I That is, provides the access functionality to the areas of memory used for LB storage.

7-2

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Graphics Programming

7.11

7.1.2

7.1.3

3D/abs

The Pipeline structure of GLINT R4 is very efficient at processing fragments. For example,
texture mapping calculations are not actually performed on fragments that are clipped off by
scissor testing. This approach saves substantial computational effort.

To obtain the best results when programming for pipelined processing, however, you need to
be aware of what all the pipeline stages are doing at any time. For example, many operations
require both a read and/or write to the localbuffer and framebuffer. Because these are at
different points in the pipeline the programmer must enable and control data read/write from/to
the framebuffer — simply setting a logical operation to XOR and enabling logical operations will
not have the desired effect.

The R4 introduces additional optimization to help the programmer manage memory accesses.
The ReadMonitor unit allows Local and Framebuffer writes without waiting for earlier memory
operations to complete where different polygons are affected. The result is a significant
reduction in rendering latency, particularly for small polygons.

Router

As discussed in Volume I, the register address space can be seen conceptually as either a
message passing system or a flat address map. This allows some significant adaptive
performance enhancements. One important performance feature of the pipeline is the Router.
This is essentially a switch which allows the order of some of the units to be swapped, by
setting or clearing the Sequence bit of the RouterMode register.

Textured primitives are typically more processor-intensive than non-textured primitives. When
the Sequence bit is set, fragments are tested against the GID (Pixel Ownership), Stencil and
Depth(2Z) before the texture value is calculated. If the fragment fails any of these tests nothing
is drawn so texture value calculations can be skipped - leading to higher performance.

OpenGL defines the order of operations on a fragment as texture, alpha test, stencil then
depth(Z), which is the sequence used when the Sequence bit in the Router register is
cleared. However, if the alpha test is disabled (or cannot reject fragments) then OpenGL
compatible semantics are maintained even if the operation order is changed to the more
efficient stencil, depth(Z), texture, and alpha test.

The order can be dynamically reconfigured at any time without any need to synchronize simply
by writing to the Order bit.

Initialization
GLINT R4 requires many of its registers to be initialized in a particular way regardless of what
is to be drawn. For instance, the screen size and appropriate clipping must be set up.

Normally this only needs to be done once and for clarity this example assumes that all
initialization has already been done. More details may be found later in this volume.

Other states (e.g. enabling Gouraud shading and depth buffering) change occasionally though
rarely on a per primitive basis.

Dominant and Subordinate Sides of a Triangle

The dominant side of a triangle is that with the greatest range of Y values. The choice of
dominant side is optional when the triangle is either flat bottomed or flat topped.

GLINT R4 always draws triangles from the dominant edge towards the subordinate edges. This
simplifies the calculation of set up parameters as will be seen below.

Proprietary and Confidential 7-3

Graphics Programming GLINT R4 Programmer’s Guide Volume ||

Figure 7.2 Dominant and Subordinate Sides of a Triangle

7.1.4

7.1.4.1

7.1.5

Register Set Up for Depth Testing

Internally GLINT R4 uses fixed point arithmetic. The formats for each register are described in
the Reference Guide. Each depth value must be converted into a 2’s complement 16.32 bit
fixed point number and then loaded into the appropriate pair of 32 bit registers (DZdxL,
DzdxU, DzdyDomL, DZdyDomU). The ‘Upper’ or ‘U’ registers store the integer portion, whilst
the ‘Lower’ or ‘L’ registers store the 16 bit LSB, left justified and zero filled.

For the example triangle, R4 would need its registers set up as follows:

// Load the depth start and delta values
// to draw a triangle

ZstartU (Z1_MS)
Zstartl, (Z1_LS)
dZdyDomU (dZdy13_MS)
dZdyDoml (dZdy13_LS)
dZdxU (dZdx_MS)
d7dxl. (dZdx_LS)

RasterizerMode

The R4 rasterizer has a number of mode bits which take effect until cleared and therefore tend
to affect many primitives. These primarily involve bit mask operations described below. For
details refer to the Reference Guide, RasterizerMode register. In the case of the Gouraud
shaded triangle the default value for these modes is suitable.

Subpixel Correction

GLINT R4 supports subpixel correction of interpolated values when rendering aliased
trapezoids (smooth shaded, textured, fogged or depth buffered). Subpixel correction ensures
that all interpolated parameters associated with a fragment (color, depth, fog, texture) are
correctly sampled at the fragment’s center. This correction is required to ensure consistent
shading of objects made from many primitives.

Subpixel correction is not applied to antialiased primitivesz.

2 This applies only to antialiased primitives generated via the Gamzma front end accelerator.

7-4

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Graphics Programming

Control of subpixel correction is in the Render command register described below, and can be
selected in bit settings for individual primitives (DrawLine, DrawTriangle. A full code
example is given in the Appendices.

7.2 Pipeline Overviews

Before we review each unit in detail it is worth looking in general terms at how a graphic
primitive passes through the pipeline, what messages are generated and what happens in
each unit. Some simplifications have been made in the description to avoid detail which would
otherwise complicate what is in fact a very simple process.

The descriptions concentrate on what happens as a fragment flows down the message stream.
It is important to remember that at any instant in time there are many fragments flowing down
the message stream and the further they get the more processing has occurred.

7.2.1 A day in the life of a 3D triangle

This section previews the render process for a typical 3D graphics primitive, the Gouraud
shaded, depth buffered, dithered triangle.

For this example assume that the triangle is to be drawn into a window which has its colormap
set for RGB as opposed to color index operation. This means that all three color components;
red, green and blue, must be handled. Also, assume the coordinate origin is bottom left of the
window and drawing will be from top to bottom. GLINT R4 can draw from top to bottom or
bottom to top.

For clarity the equations are shown in full in the appendices, though in practice there are many
common terms and factors which need only be computed once and normally the OGL driver
performs all the necessary interpolations.

Consider a triangle with vertices, v1, v2 and v3 where each vertex comprises X, Y and Z
coordinates, shown below. Each vertex has a different color made up of red, green and blue
(R, G and B) components. The alpha component is omitted for this example.

(Xllel
RIG1BI)

vl

N’G’B’)
m—————————=—==- --—-::-, V2
Lower half

R.G,B)

3773

Figure 7.3 Example Triangle

3D /b5 Proprietary and Confidential 7-5

Graphics Programming GLINT R4 Programmer’s Guide Volume ||

The diagram makes a distinction between top and bottom halves because GLINT R4 is
designed to rasterize (a) screen aligned trapezoids, and (b) flat-topped or -bottomed triangles;
as shown below:

Figure 7.4 Screen aligned trapezoid and flat topped triangle

7.2.1.1

7.2.1.2

7.2.1.3

7-6

Delta Unit
The drawing process starts by generating and loading vertex data in the Delta Unit:

1. The application generates the triangle vertex information and makes the necessary
OpenGL calls to draw it.

2. The OpenGL server/library gets the vertex information, transforms, clips and lights it. The
vertex coordinates and color values are written into the vertex stores (in the Delta Unit)
and the DrawTriangle command is issued.

3. The Delta Unit calculates the initial values and derivatives for the values to interpolate
(Xleft: Xright, red, green, blue and depth) for unit change in dx and dxdyjeft. All these

values are in fixed point integer and have unique message tags. Some of the values (the
depth derivatives) have more than 32 bits to cope with the dynamic range and resolution
so are sent in two halves Finally, once the derivatives, start and end values have been
sent the 'render triangle’ message begins the rendering process.

4. The derivative, start and end parameter messages are received and filter down the
message stream to the appropriate units. The depth parameters and derivatives to the
Depth Unit; the RGB parameters and derivative to the Color DDA Unit; the edge values
and derivatives to the Rasteriser Unit.

Rasterizer

The 'render triangle’ message is received by the rasteriser unit and all subsequent messages
(from the host) are blocked until the triangle has been rasterised (but not necessarily written to
the framebuffer). A ’prepare to render’ command is passed on so any other units can prepare
themselves.

The Rasteriser Unit walks the left and right edges of the triangle and fills in the spans between.
As the walk progresses messages are send to indicate the direction of the next step: StepX or
StepYDomEdge.

Rasterizer 'Edge walking' - Calculating the Slope for each Side

GLINT R4 draws filled shapes such as triangles as a series of spans with one span per
scanline. Therefore it needs to know the start and end X coordinate of each span. These are
determined by ‘edge walking’. This process involves adding one delta value to the previous

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Graphics Programming

span’s start X coordinate and another delta value to the previous span’s end x coordinate to
determine the X coordinates of the new span. These delta values are in effect the slopes of the
triangle sides. To draw from left to right and top to bottom, the slopes of the three sides are
calculated as:

dX 23 =—X3_ Xz
Yz—=Y2

dXpp = N3 X1
Y3—Y1

dX 12 Z—XZ_ X1
Y2-Y1

This triangle will be drawn in two parts, top down to the ‘knee’ i.e. vertex 2 and then from there
to the bottom. The dominant side is the left side so for the top half:

The start X,Y, the number of scanlines, and the deltas (above) give GLINT R4 enough
information to edge walk the top half of the triangle. However, to indicate that this is not a flat
topped triangle (GLINT R4 is designed to rasterize screen aligned trapezoids and flat topped
triangles), the same start position in terms of X must be given twice as StartXDom and
StartXSub.

To edge walk the lower half of the triangle, selected additional information is required. The
slope of the dominant edge remains unchanged, but the subordinate edge slope needs to be
set to:

Also the number of scanlines to be covered from Y2 to Y3 needs to be given. Finally to avoid
any rounding errors accumulated in edge walking to X2 (which can lead to pixel errors),
StartXSub must be set to X2.

The data field holds the current (x, y) coordinate. One message is sent per pixel within the
triangle boundary. These messages, or fragments, are divided into two groups, active and
passive. Fragments always start off in the active group but may be changed to the passive
group if the pixel fails one of the tests (e.g. depth) on its path down the message stream. The
two groups are distinguished by a single bit in the message tag.

The fragments (in either form) are always passed throughout the length of the message stream
and are used by all the DDA units to keep their interpolation values in step. Any other
messages pertaining to fragments always precede the fragment in the message stream.

The messages hold X, Y, color and coverage data for each fragment 3. The data field expands
between units to accommodate additional data when necessary.

3The coverage field is only used for antialiasing. For aliased primitives the coverage field holds a dErr value used for subpixel
correction.

3D /b5 Proprietary and Confidential 7-7

Graphics Programming GLINT R4 Programmer’s Guide Volume ||

7.2.1.4 Rasterizing the Triangle

We are almost ready to draw the triangle. Setting up the registers as described here and
sending the Render command draws the top half of the example triangle first.

To draw the example triangle, all the bit fields within the Render command should be setto 0
except the PrimitiveType which should be set to trapezoid and the SubPixelCorrection Enable
bit which should be set to TRUE.

{// Draw triangle with knee

Il Set deltas

StartXDom (X 1<<16) //Converted to 16.16 fixed point
dXDom (((X3—X1)<<16)/(Y3-Y1))

StartX Sub (X 1<<16)

dX Sub (X2 — X1)<<16)/(Y2-Y1))

StartY (Y 1<<16)

dY (-1<<16)

Count (Y1-Y9)

/' Set the render command mode

render.PrimitiveType = GLINT R4_TRAPEZOID_PRIMITIVE

render.SubPixel CorrectionEnable = TRUE
/I Draw the top half of the triangle

Render(render)

After the Render command has been issued the registers in R4 can immediately be altered to
draw the lower half of the triangle. Only two registers need be loaded and the
ContinueNewSub command sent. Once R4 has received ContinueNewSub it starts drawing
the sub-triangle.

/I Set-up the delta and start for the new edge
StartX Sub (X2<<16)
dXSub (((X3-X2)<<16)/(Y3-Y2))

// Draw sub-triangle
ContinueNewSub (Y2 -Y3) /I Draw lower half

7.2.1.5 Scissor and Stipple

This unit does 4 tests on the fragment (as embodied by the active step message). The screen
scissor test takes the coordinates associated with the fragment, converts them to be screen

7-8 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Graphics Programming

7.2.1.6

7.2.1.7

7.2.1.8

7.2.1.9

7.2.1.10

7.21.11

7.2.1.12

3D/abs

relative (if necessary) and compares them against the screen boundaries. (The other three
tests - user scissor, line stipple and area stipple - are disabled in this example.) If the enabled
tests pass then the active fragment is forwarded to the next unit, otherwise it is changed into a
passive step and then forwarded.

Router

In this example the Router is set up so the Depth test occurs before the texture operations (i.e.
RouterMode Sequence bit = 1).

Local Buffer Read

In general terms the Local Buffer Read Unit reads the Graphic ID, Stencil and Depth
information from the Local Buffer and passes it to the next unit. This includes performing the
GID test on fragments, checking cache and local buffer for data, and data formatting. See
volume | - Localbuffer - for more information

Stencil and Depth

When an active fragment is received the internal stencil and depth values are compared with
the fragment’s as specified in the StencilMode and DepthMode registers. If the enabled tests
pass then the new local buffer data is written back to the fragment, which is forwarded to the
next unit.

If any of the enabled tests fail then equivalent passive step message is forwarded instead (a
local buffer write may still be done). The Depth DDA is stepped to update the local depth
value.

Local Buffer Write

The Local Buffer Write Unit calculates the address, formats the GID, Stencil and Depth data
and (if writes are enabled) passes the formatted data and address to the Memory Controller.

The memory is much wider than the pixel data so any writes are first done into a write combine
buffer which is flushed to memory as required. See volume | - Localbuffer - for more
information.

The fragment is forwarded to the next unit.

Color DDA

The Color DDA unit responds to an active fragment by updating the fragment's color field and
sending this to the next unit. The color field holds the current RGBA value from the DDA.
After the step message is sent the DDA is incremented in the correct direction, ready for the
next pixel.

Texturing, Fog and Alpha Tests

In this example, Texturing, Fog and Alpha Tests are disabled so the fragments are forwarded
unchanged.

Framebuffer Read

In general terms Framebuffer Read reads the color information from the framebuffer and
passes it onto the next unit. It is functionally similar to the Localbuffer but handles color data

Proprietary and Confidential 7-9

Graphics Programming GLINT R4 Programmer’s Guide Volume ||

7.2.1.13

7.2.1.14

7.2.1.15

7.2.1.16

7.2.1.17

7.2.2

7-10

rather than GID, depth and stencil data, write-combined operations and Patch2 and Patch32_2
formats. See volume | - Framebuffer - for more information.

Alpha Blend

The formatting of the Framebuffer data is deferred until the Alpha Blend Unit as it is the only
unit which needs to match buffer formats with the internal formats.

In this example no alpha blending or logical ops are taking place so reads are disabled and
fragments pass through unaltered.

Dither

The Dither Unit uses the least significant bits of the (X, Y) coordinate information from the step
message to dither the color field. Part of the dithering process is to convert from the internal
color format into the format of the framebuffer. The new color is inserted back into the color
field and the fragment forwarded.

Logical Ops
In this example Logical Ops are disabled so the fragments pass through.

Framebuffer Write

The Framebuffer Write Unit calculates the address and (if writes are enabled) passes the
formatted data and address to the Memory Controller.

The memory is much wider than the pixel data so any writes are first done into a write combine
buffer and only when this needs to be flushed is the Memory Controller given the write
command - see volume | - Framebuffer - for more information.

Host Out

The Host Out Unit deals with host synchronisation and statistics. In this example it simply
consumes any fragments which reach this point in the message stream.

A day in the life of a 2D primitive

GLINT R4 introduces an alternative method for rendering which is particularly suited to 2D
operations. These are pure 2D without any 3D functionality such as depth or stencil testing or
alpha blending.

2D drawing works on spans of pixels, where a span is always 64 pixels sequentially along a
scanline. The core now works on 64 pixels in parallel (in addition to processing multiple spans
along the length of the message stream) and a pixel can be 8, 16 or 32 bits in size. Spans can
be read, written, copied, uploaded or downloaded. A span can have a constant color or a
variable color per pixel in the span.

The primitive we are going to look at is a fill with a constant color through a bit mask held in the
texture memory. The zero bits in the bit mask do not cause the corresponding pixels in the
framebuffer to be written to. The fill shape is a rectangle for simplicity, but could be any shape
(with suitable decomposition into primitives GLINT R4 understands). As usual, we refer to
"units" along the message stream but these are more accurately considered as functional
groupings than physical entities.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Graphics Programming

7.2.21

7.2.2.2

7.2.2.3

7.2.2.4

7.2.2.5

7.2.2.6

7.2.2.7

3D/abs

Initialization

The application generates the rectangle information and makes the necessary Windows API
calls to draw it.

2D Set Up Unit

The NT device driver gets the rectangle information and uses the Render2D command to set
up and rasterise the rectangle. Other state data and information is also set up, as discussed
below.

Rasterizer

The render trapezoid’ message is received by the rasteriser unit and all subsequent messages
(from the host) are blocked until the trapezoid has been rasterised (but not necessarily written
to the framebuffer). The Render message has the FastFillEnable bit set. A 'prepare to render’
message is also passed on internally so any other units can prepare themselves.

The Rasteriser Unit walks the left and right edges of the trapezoid (a rectangle in this case)
and fills in the spans between the left and right hand edges. As the walk progresses messages
are sent to indicate the direction of the next step. These internal SpanStep commands control
the subsequent processing of the span fragment.

Scissor and Stipple Unit

Scissor and Stipple Unit. This unit does 3 tests on the span (as embodied by the SpanStep
message). The screen scissor test takes the coordinates associated with the SpanStep
message, converts them to be screen relative (if necessary) and compares the pixel mask
against the screen boundaries and clears the bits for pixels which lie outside the screen
boundary. The pixel mask is potentially further reduced using the scissor tests (applied in a
similar way). The area stipple test is disabled for this example but, if it was enabled would
potentially remove further pixels after suitable alignment. The modified SpanStep message is
forwarded to the next unit.

Color DDA
The Color DDA unit does not respond to the SpanStep messages so they just pass through.

Texture Coordinate and Index

The Texturing Coordinate Unit responds to the SpanStep message and appends the u, v
coordinates of the texel where the bit mask data for this span is held. The S and T DDAs are
set up to step through the bit mask pattern. The SpanStep is forwarded on to the next unit.

The Texture Index Unit converts the uv coordinate in the SpanStep message into an ij
coordinate of the texel where the bit mask data for this span is held. The SpanStep is
forwarded on to the next unit.

Texturing, Fog and Alpha

The Texture Read Unit converts the ij coordinate into a physical address where the texel data
is held. The texel data is read (maybe sourced from the secondary cache) and zero extended
up to 64 bits if the bit mask was held as 8, 16, or 32 bits. After being optionally inverted or
mirrored it is ANDed with the pixel mask field in the SpanStep message and forwarded to the
next unit.

Proprietary and Confidential 7-11

Graphics Programming GLINT R4 Programmer’s Guide Volume ||

7.2.2.8

7.2.2.9

7.2.2.10

7.2.2.11

7.2.2.12

7.2.2.13

7-12

The remaining texture units, Fog and Alpha Tests Units do not respond to the SpanStep
messages so they just pass through.

Localbuffer Read, Stencil/Depth and Localbuffer Write

The LB Read, Stencil/Depth, LB Write Units do not respond to the SpanStep messages (in this
example) so they just pass through.

Framebuffer Read

In general terms the Framebuffer Read Unit reads the color information from the framebuffer
and forwards it to the next unit. More specifically for spans it calculates the linear address in
the framebuffer of the required data. This is done using the (X, Y) position recorded internally
and locally stored information on the 'screen width’ and window base address. The span is
decomposed into a series of memory aligned reads.

In this example no logical ops are taking place so reads are disabled and hence no read
address is sent to the Memory Controller. The span tags just pass through.

Alpha Blend and Dither
The Alpha Blend and Dither Units do not respond and the span data simply passes through.

Logical Ops
The Logical Ops are disabled so the Span data passes through.

Framebuffer Write

The Framebuffer Write Unit calculates the address, aligns the pixel mask to the memory block
write boundaries and passes these to the Memory Controller. The pixel data previously set up
in the FBColor Register can be written, ideally using the block fill capability of the SGRAM.
The Span data is passed on to the next unit.

Host Out

The Host Out Unit is concerned with synchronisation with the host - for this example it simply
consumes any messages which reach this point in the message stream.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

Rasterizer and 2D Setup

The rasterizer decomposes a primitive into a series of fragments for processing by the rest of
the HyperPipeline.

GLINT R4 can directly rasterize:

« aliased screen aligned trapezoids

- aliased single pixel wide lines

- aliased single pixel points

« antialiased screen aligned trapezoids
« antialiased circular points

All other primitives are treated as one or more of the above, for example an antialiased line is
drawn as a series of antialiased trapezoids.

2D Operations can be largely implemented using the Render2D and Render2Dglyph
registers. These, together with the GlyphData and GlyphPosition registers constitute a
functional subunit of the Rasterizer and are discussed below.

8.1 Description

The rasterizer unit scan converts the given primitive into a list of pixel coordinates which meet
the rasterisation rules of OpenGL, X and NT. In addition to generating the coordinates, the
order in which pixels are visited is also defined (by the Render command) so the local DDA
units in the Texture, Color, Fog and Depth units can incrementally keep in step.

When a primitive is antialiased the percentage coverage of the primitive within the scan
converted pixels is calculated for later use in the alpha blend unit. The same method of

antialiasing is used for all primitives?.

The primitive is scan converted to a higher resolution (e.g. 4x4 sub samples per Render
command) and the number of sub pixel sample points covered is counted. The ratio of
covered sample points to total number of sample points gives the coverage weighting by which
to adjust the color.

The rasterisation process steps through along the Y axis and calculates the two intersection
points for this scanline. For normal rasterisation the pixels between these two intersection
points are filled in. During antialiasing a step of Y/4 (for example) is used and within each scan
line four pairs of intersections are calculated per scanline. The coverage for each of the four
sub pixel scanline makes in a pixel (on this scanline) are calculated and summed.

The coordinates passed to the rasterizer can be window relative or screen relative. The
rasterizer treats both the same. Conversion to memory addresses does not happen until they
reach the Local Buffer and Framebuffer Units.

4 Applies to Gamma intetface only.

3D /b5 Proprietary and Confidential 8-1

Rasterizer

8.1.1

8.1.1.1

8-2

GLINT R4 Programmer’s Guide Volume ||

The Rasterizer is not concerned whether the origin is the bottom left or top left and again it is
the Local Buffer and Framebuffer Units which take this into account when calculating the
memory address. Obviously if the direction of scan conversion is important then the
parameters must match up with the origin definition to give the desired effect.

Note: Long term mode information is held in the RasterizerM ode command and short
term mode information (which only applies to the primitive being rasterised) is
passed with the Render command.

Trapezoids

GLINT R4’s basic area primitive is the screen aligned trapezoid, discussed in the previous
chapter. This is characterized by having top and bottom edges parallel to the X axis. The side
edges may be vertical (a rectangle), but are usually diagonal. The top or bottom edges can
degenerate into points in which case we are left with either flat topped or flat bottomed
triangles.

Any polygon can be decomposed into screen aligned trapezoids or triangles. Usually, polygons
are decomposed into triangles because the interpolation of values over non-triangular polygons
is ill defined. The rasterizer does handle flat topped and flat bottomed ‘bow tie’ polygons which
are a special case of screen aligned trapezoids.

X's definition of a polygon is more complex than OpenGL’s. It can be concave and self
intersecting. In the non convex case the best thing is for X to do is to decompose the polygon
into a series of spans and render them as 1 pixel high rectangles. For any convex polygons X
can decompose them into screen aligned trapezoids as a further optimisation over just using
spans. X does not support antialiased polygons.

Edge Matching for Meshes, Fans etc.

Adjacent triangles or polygons which share an edge or vertex must be drawn so that pixels
which make up the edge or vertex are drawn once only. This may be achieved by omitting the
pixels down the left or the right sides and the pixels along the top or lower sides. GLINT R4
follows the convention of omitting the pixels down the right hand edge. Control of whether
pixels along the top or lower sides are omitted depends on the start Y value and the number of
scanlines to be covered. With the example, if StartY = Y1 and the number of scanlines is set
to Y1toY2, the lower edge of the top half of the triangle will be excluded. This excluded edge is
drawn as the top of the lower half of the triangle.

To minimize delta calculations, triangles may be scan converted from left to right or from right
to left. The direction depends on the dominant edge, that is the edge which has the maximum
range of Y values. Rendering always proceeds from the dominant edge towards the relevant
subordinate edge. In the example above, the edge with the greatest Y range (dominant) is on
the right so rendering will be from right to left.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

Subordinate Edge 2-3

Subordinate Edge 1-2 (X1,Y1)

S

Dominant Edge 1-3

e

dXSub 1-2

Knee

Top
Trapezoid dXDom

Xy) fK————— — — — — —

Bottom

Trapezoid

dXSub 2-3
(X3,Y3)

Figure 8.1 Rasterizing a triangle

The sequence of actions required to render a triangle (with a ‘knee’) are:

« Load the edge parameters and derivatives for the dominant edge and the first subordinate
edges in the first triangle.

« Send the Render command. This starts the scan conversion of the first triangle, working
from the dominant edge. This means that for triangles where the knee is on the left we are
scanning right to left, and vice versa for triangles where the knee is on the right.

« Load the edge parameters and derivatives for the remaining subordinate edge in the
second triangle.

+ Send the ContinueNewSub command. This starts the scan conversion of the second

triangle.
Render Data Field
AreaStippleEnable 1 LineStippleEnable 0[Primitive Type 1
FastFillEnable 0 FastFilllncrement X UsePointTable 0
AntialiaseEnable 0 AntialiasingQuality X ResetLineStipple X
SyncOnBitMask 0 SyncOnHostData 0| TextureEnable 1
FogEnable 1 CoverageEnable 0|SubPixelCorrectionEnable 1
StartXDom (X 1)

dXDom ((X3- X)/I(Y3- Y1)

3D/abs

Proprietary and Confidential 8-3

Rasterizer

8.2

8.2.1

8-4

GLINT R4 Programmer’s Guide Volume ||

StartX Sub (X 1)

dXSub ((X2- X1)/(Y2- Y1)
StartY (Y1)

dy (-1.0)

Count (Y1 -Y?2)

Render

StartX Sub (X 2)

dXSub ((X3- X2)/(Y3-Y2)
ContinueNewSub (Y2 - Y3) // Bottom half

Note: If both edges need to be reloaded to continue on with the bottom half of the
polygon then issue ContinueNewSub (0) and then ContinueNewDom (count). The
ContinueNewSub (0) will just update the DDA with the new start value but not
draw any scanlines. Alternatively , if the accuracy of the DDA end values is good
enough and can be used as the start values for the next trapezoid then the delta
values can be updated and the Continue message used.

The sub pixe correction is only needed if color, depth, fog or texture interpolation
is being used.

After the Render command has been sent the registers can be updated immediately to draw
the second half of the triangle. Only two registers need to be loaded to do this, followed by the
ContinueNewSub command. When the first triangle has been drawn and the
ContinueNewSub command issued, GLINT R4 starts drawing the sub-triangle and the
ContinueNewSub command register is loaded with the remaining number of scanlines to be
rendered.

Antialiasing
Antialias application controls the way the coverage value generated by the rasterizer combines

with the color generated in the color DDA units. The application depends on the color mode -
RGBA or Color Index (Cl).

Note: The following comments apply to rasterization of polygons set up in the front end
Gamma chip. R4 does not directly support antialiasing in standalone mode.

Antialias Application

When antialiasing is enabled by setting the AntialiasMode Enable bit and the Render
register's CoverageEnable bit, the fragment’s color and alpha is weighted by the percentage
area of the pixel covered by the fragment. The coverage weighting is determined by the
Rasteriser and varies from 0 to 100% "saturation".

If antialiasing is not enabled the fragment is forwarded for alpha testing.

The mode (RGBA or Cl) is set using the ColorMode bit in the AntialiasMode register. In
RGBA mode the color value is multiplied by the coverage value calculated in the rasterizer (its
range is 0% to 100%). The RGB values remain unchanged unless the ScaleColor bit is also
set. Color scaling is not required by OGL and may reduce performance.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.2.2

In Cl mode the coverage value is placed in the lower 4 bits of the color field. The Color Look
Up Table is assumed to be set up so that each color has 16 intensities associated with it, one
per coverage entry.

Polygon Antialiasing Considerations

A number of issues should be considered when using GLINT R4 to render antialiased
polygons. Depth buffering cannot be used with GLINT R4 antialiasing. This is because the
order the fragments are combined in is critical in producing the correct final color. Polygons
must therefore be depth sorted, and rendered front to back, using the alpha blend modes:
SourceAlphaSaturate for the source blend function and One for the destination blend function.
In this way the alpha component of a fragment represents the percentage pixel coverage, and
the blend function accumulates coverage until the value in the alpha buffer equals one, at
which point no further contributions can be made to a pixel.

Although this technique works well in many cases, it is an approximation. Consider the case
below which shows three polygons of equal depth which intersect a single pixel. In this case
there would ideally be a contribution from each of the polygons. However, if the rendering order
is polygon A followed by polygon B, each of which contributes approximately 50% pixel
coverage, then polygon C will make no contribution to the pixel as the alpha value is saturated
(50%+50%=100%).

Figure 8-2 Polygon Antialiasing

3D/abs

When antialiasing general scenes with no restrictions on rendering order, the accumulation
buffer is the preferred choice. This is indirectly supported on GLINT R4 via image uploading
and downloading, with the accumulation buffer residing on the host.

When antialiasing, interpolated parameters which are sampled within a fragment (color, fog
and texture), sometimes are not representative of a continuous sampling of a surface so care
should be taken when rendering smooth shaded antialiased primitives. This problem does not
occur in aliased rendering, as the sample point is consistently at the center of a pixel. See The
OpenGL Programming Guide for more details of antialiasing.

Proprietary and Confidential 8-5

Rasterizer GLINT R4 Programmer’s Guide Volume ||

8.2.3 Registers

The AntialiasMode register provides the enables described earlier:

Name Type Offset Format
AntialiasMode Alpha Test 0x8808 Bitfield
AntialiasModeAnd Alpha Test 0x ABFO Bitfield Logic Mask
AntialiasModeOr Alpha Test Ox ABF8 Bitfield Logic Mask
Control register
Bits Name Read | Write | Reset | Description
0 Enable 0] X When set, scales the fragment's alpha value under

control of the remaining bits in this register and the
coverage value. When clear, the fragment's alpha
value is not changed.

0 = Disable 1 = Enable
1 Color Mode 0 il X This bit defines the fragment's color format:
0 = RGBA 1=CI
2 Scale Color 0 u| X This bit, when set allows the coverage value to scale

3..31 Unused 0 0 X

Notes: For the coverage application to take place the enable in the AntialiasMode register must be qualified
by the CoverageEnable bit in the Render command register.

Figure 8-3 AntialiasMode Register

8.2.4 Antialias Example

Enable antialiasing for an RGBA primitive:

Il Set AA application for RGBA primitive
begin.AntialiasEnable = GLINT_R4_TRUE
antialiasMode. AntialiasEnable= GLINT_R4 TRUE
antidliasMode.ColorMode = GLINT_R4_TRUE
AntialiasM ode(antialiasM ode)

I/ Set the blend mode to an appropriate value if

// blending is required. Not shown.

/I When issuing a Render command the CoverageEnable
/1 bit should be set in addition to the antialias

/1 unit being enabled:

I/ render.CoverageEnable = GLINT_R4 TRUE

8.2.5 Antialiasing Primitive Types

R4 uses a subpixel point sampling algorithm to antialias primitives. R4 can directly rasterize
antialiased trapezoids and points. Other primitives are composed from these base primitives.

8-6 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

The rasterizer associates a coverage value with each fragment produced when antialiasing.
This value represents the percentage coverage of the pixel by the fragment. GLINT R4
supports two levels of antialiasing quality:

« normal, which represents 4x4 pixel subsampling
« high, which represents 8x8 pixel subsampling

Selection between these two is made by the AntialiasingQuality bit in the Render, PointMode,
TriangleMode or LineMode registers.

Use the FlushSpan command to terminate rendering an antialiased primitive. This is
necessary because of the way R4 maintains antialiasing continuity.

When rendering a primitive which does not complete on a scanline boundary, R4 retains
antialiasing information about the last sub-scanline(s) it has processed but does not generate
fragments for them unless a FlushSpan command is received. The commands
ContinueNewSub, ContinueNewDom or Continue can then be used to maintain continuity
between adjacent trapezoids, which allows complex antialiased primitives to be built up from
simple trapezoids or points.

To illustrate this consider using screen aligned trapezoids to render an antialiased line. The
line will in general consist of three screen aligned trapezoids as shown in the diagram below.

Figure 8-4 Antialiased Line

3D/abs

The procedure to render the line is as follows:

// Set-up the blend and coverage application units
// as approptiate — not shown

// In this example only the edge deltas are shown
// loaded into registers for clarity. In reality

// start X and Y values are requited. This example
// uses 4x4 antialiasing.

Proprietary and Confidential 8-7

Rasterizer GLINT R4 Programmer’s Guide Volume ||

// Render Trapezoid A

dY(1<<14)

dXDom(dXDom1<<14)

dXSub(dXSub1<<14)

Count(count1<<2)

render.PrimitiveType = GLINT R4_TRAPEZOID
render.AntialiasEnable = GLINT R4 _TRUE
render.AntialiasQuality = GLINT R4_MIN_ANTIALIAS
render.CoverageEnable = GLINT R4_TRUE
Render(render)

/l Render Trapezoid B

dX Sub(dX Sub2<<14)
ContinueNewSub(count2<<2)

// Render Trapezoid C

dXDom(dXDom2<<14)
ContinueNewDom(count3<<2)

/I Now we have finished the primitive flush out
I/ the last scanline
FlushSpan()

Note: When rendering antialiased primitives, any count values should be given in
subscanlines. For example if the quality is 4x4 then the count will be 4 times the
number of scanlines completely covered by the primitive plus the number of
subscanlines contained in the remaining partially covered scanlines. Also, if
using 4x4 quality then any delta value must be divided by 4. If using 8x8 quality
then the multiply/divide factor is 8.

When rendering, AntialiasEnable must be set in the AntialiasMode register to scale the
fragment’s color by the coverage value. An appropriate blending function should also be
enabled. See the Antialias Application and Alpha Blend sections for more details.

Note: When rendering antialiased bow-ties the coverage value on the cross-over scanline
may be incorrect.

8.2.5.1 Antialiased Polygons

As for other primitives, the following comments apply to rasterization of polygons set up in the
front end Gamma chip. R4 does not directly support antialiasing in standalone mode.

8-8 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.2.5.2

8.2.5.3

8.2.6

3D/abs

Antialiased polygons (or more precisely, screen aligned trapezoids) are scan converted by
walking the trapezoid’s edges to a higher resolution (x4, say). The coverage for a specific pixel
is calculated by summing the coverage each of the sub scanlines contributes. More specific
details are given in the implementation section.

Care needs to be taken when trapezoids (from the same polygon) meet part way through a
scan line. The span of pixels cannot be generated until the second trapezoid is available as it
will contribute to the coverage in this scanline. If, on the last trapezoid, the scan line is only
part covered then a ‘flush’ command is needed to generate the coverage for these pixels as
there is no follow-on trapezoid.

Stippling during Rasterizing
Normally, stipple processing is accommodated in the Stipple Unit. This covers all stipple

requirements for OpenGL (e.g. aliased lines, polygons) and most other platforms, e.g. X.
Details are given in the Stipple Unit section.

The Rasterizer does provide additional stipple functionality, for example stippling requirements
for X which cannot be met by the Stipple Unit:

« Arbitrary stipple on lines.
- Arbitrary stipple on polygons, especially rectangles.

The bit mask unit in the rasterizer (normally used for characters) can give an arbitrary stipple to
any primitive. The stipple pattern required is loaded into the BitMaskPattern register 32 bits at
a time, in the order in which the pixels in the primitive are generated. The state of each bit in
the bit mask determines if an active pixel is generated or a passive one. One bit in the stipple
sequence is required for each pixel in the primitive.

This stippling method is independent of the Stipple Unit and can replace its function or be used
as a second level of stippling.

Stipple Lines (X)

The standard OpenGL method of stippling lines can be used in X for the more restricted case
where the mark/space ratio of the stipple is the same. X allows an arbitrary stipple pattern to
be defined using the Bitmap facility. Here the host provides a number of bit mask words where
each bit corresponds to one pixel in the line. The state of this bit determines whether the
associated pixel is generated or skipped.

Points

Points are the easiest of all primitives to scan convert but there are a number of special cases.
The main questions are whether the point is antialiased or not, and its size.

All the DDA related parameters are held constant over a point (a point may cover many pixels),
and between points in a Begin/End set. Before any point rasterisation is done the host must
have set up the Texture, Color, Fog and Depth units so they maintain a constant value and
don’t increment between pixels in a point.

In OpenGL no stipple operations are defined for points so stippling must be disabled. This can
be done by changing the stipple mode (see Stipple Unit) or by setting the stipple operation in
the Render command to ‘none’. This later method is much easier for the software to use.

Proprietary and Confidential 8-9

Rasterizer GLINT R4 Programmer’s Guide Volume ||
R4 does not support a DrawPoint command because points do not require setup calculations.
Instead points can be individually loaded as below, or set up as line segments and rendered as
points.
8.2.6.1 Aliased Points (OpenGL)
For points larger than one pixel, trapezoids should be used. The fields in the Render command
register are described in detail later, however, in this case the PrimitiveType field in the Render
command should be set to equal GLINT R4_POINT_PRIMITIVE.
8.2.6.2 Worked example — one-pixel points
A series of one pixel points P(X1, Y1), P(X2, Y2) ... P(Xp, Yn) are required. The Render
command is set up as shown:
Render Data Field
AreaStippleEnable 0 |LineStippleEnable 0 |PrimitiveType 2
FastFillEnable 0 [|FastFilllncrement X |UsePointTable X
AntialiaseEnable X | AntialiasingQuality X |ResetLineStipple X
SyncOnBitMask X |SyncOnHostData X |TextureEnable 1
FogEnable 1 [CoverageEnable 0 [SubPixelCorrectionEnable 0
StartXDom (X1)
StartY (Y1)
Render
StartXDom (X2)
StartY (Y2)
Render
StartXDom (Xn)
StartY (Yn)
Render
8.2.6.3 Aliased Points (X)
X only has single pixel sized points so these are rendered by sending any of the step
commands with the (X, Y) position encoded in the data field for each point to render.
8.2.6.4 Antialiased Points (OpenGL)
R4 can render antialiased points using the Gamma front end to define OpenGL points.
Antialiased points are treated as circles, with the coverage of the boundary fragments ranging
from 0% to 100%. For information about available sizes and the Points Table, see the
AAPointSize register in the R4 Reference Guide, volume IlI.
8-10 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

R4 supports:

« point diameters of 0.5 to 16.0 in steps of 0.25 for 4x4 antialiasing
« point diameters of 0.25 to 8.0 in steps of 0.125 for 8x8 antialiasing
...using the AntiAliasQuality bit in the Render or PointMode register

To scan convert an antialiased point as a circle R4 traverses the boundary in sub scanline
steps to calculate the coverage value. For this, the sub scanline intersections are calculated
incrementally using a small table. The table holds the change in X for a step in Y. Symmetry is
used so the table only holds the delta values for one quadrant.

The pattern of table accesses, additions and subtractions are shown in Figure 2.3 below for an
odd diameter point. On the diagram the symbol +/-= Table[n] by an arrow indicates the
contents of the PointTable at address n are added/subtracted to move along the arrow.

StartXDom, StartXSub and StartY are set to the top or bottom of the circle and dY set to the
subscanline step. In this example the point table will have three entries.

Figure 2-3 Antialiasing an odd-diameter point.

3D/abs

Proprietary and Confidential 8-11

Rasterizer GLINT R4 Programmer’s Guide Volume ||
Note: in the case of an even diameter the last of the required entries in the tableis set to
Zero.
The GLINT R4 Reference Guide gives full details of how the point table is laid out.
Note that the table is configurable and point shapes other than circles can be rendered. Also if
the StartXDom and StartXSub values are not coincident then horizontal thick lines with
rounded ends, can be rendered.
The point looks like this and we will render
from bottom to top. The origin is assumed to
be bottom left and we are using 4x4
antialiasing quality. The point’'s diameter is 3
pixels, or 12 sub scanlines. The point table
is assumed to be set up already.
Render Data Field
AreaStippleEnable 0 [LineStippleEnable 0 [PrimitiveType 1
FastFillEnable 0 |FastFilllncrement X |UsePointTable 1
AntialiaseEnable 1 | AntaliasingQuality 0 |ResetLineStipple X
SyncOnBitMask 0 [SyncOnHostData X |TextureEnable 1
FogEnable 1 CoverageEnable 1 SubPixelCorrectionEnable 0
StartXDom (X)
StartX Sub (X)
StartY (Y)
dy (1.0/ 4.0)
Count (12)
Render
FlushSpan ()
The SubPixelCorrection bit may be turned on to enable correction of the color, depth, fog and
texture values at the start of a scanline.
8.2.7 Lines
There are two accepted way of drawing lines: using a DDA, or Bresenham’s algorithm.
Bresenham'’s algorithm has an advantage over DDAs because no divide is necessary. This
has some benefits, particularly for 2D. For OpenGL we use the DDA method because the cost
of the divide is acceptable and is needed to calculate the gradient of any color or depth
change.
Lines are specified by their end points (accurate to 4 bits of sub pixel position) and rate of
change in X and Y per step along the major axis of the line.
8-12 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume ||

8.2.7.1 Aliased Lines (OpenGL and X)

Rasterizer

Single pixel wide aliased lines are drawn using a DDA algorithm so all it needs by way of input
data is StartX, StartY, dX, dY and length. The algorithm just calculates:

while (length--)
{

X =X +dx
Y=Y +dy

plot ((in)X, (int)Y)
}

The variables X, Y, dx and dy are all fixed point numbers. The conversion to memory address

using the X, Y coordinate is done in the memory read units.

8.2.7.2 Worked example - Aliased PolyLine (OpenGL)

A two segment polyline from (X1, Y1) to
(X2, Y2) to (X3, Y3) is required. Both

segments are X major, So:
abs (Xp+1 - Xp) > abs (Yp+1- Yp)

Note; For individual line segments or the first line segment in a polyline the line stipple
isreset (as shown).
Render Data Field

AreaStipple Enable 0 |LineStippleEnable 1 |PrimitiveType 0
FastFillEnable 0 [FastFilllncrement X |UsePointTable 0
AntialiaseEnable 0 |AntialiasingQuality X |ResetLineStipple 1
SyncOnBitMask 0 [SyncOnHostData 0 |TextureEnable 1
FogEnable 1 |CoverageEnable 0 |SubPixelCorrectionEnable 0

StartXDom (X 1)

dXDom (£1.0)

StartY (Y1)

3D/abs

dy ((Y2- YD/(X2- X1))
Count (abs (X2 - X1))
Render

dXDom (+£1.0)

dy ((Y3- Y2)/(X3-X2))

ContinueNewLine (abs (X3 - X2))

Proprietary and Confidential

8-13

Rasterizer GLINT R4 Programmer’s Guide Volume ||

Note: The use of ContinueNewLine is not recommended for OpenGL because the DDA
units will start with a dight error as compared with the value they would have
been loaded with for the second and subsequent segments. The fractional bits of
the DDA can be forces to zero or half on the ContinueNewLine action.

8.2.7.3 Aliased Wide Lines (OpenGL)
There is no direct support for wide lines. The OpenGL server has two options:

1. Wide lines can be drawn by repeating a single pixel wide line, but offset by one pixel in X
for X major lines or one pixel in Y for Y major lines. Any values interpolated along the line
(e.g. color) will need to be re-initialised at the start of each individual line. This is easily
done with the Render command.

2. Wide lines can be converted to parallelograms (the ends of a wide line are parallel to the
edge of the screen in OpenGL) and then rendered as polygons.

As you might expect neither method is the best in all cases. For vertical or near vertical lines
method 2 will cause fewer page breaks in memory so should be faster. However if there is any
stippling then method 1 is likely to be much faster. Method 1 is the simpler method and is the
preferred implementation.

A single wide line from (X1, Y1) to (X2, Y2) is
required. The line is 3 pixels wide. The line is X
major so abs (X2 - X1) > abs (Y2- Y1).

Render Data Field

AreaStippleEnable 0 |LineStippleEnable 1 |PrimitiveType 0
FastFillEnable 0 |FastFillilncrement X |UsePointTable 0
AntialiaseEnable 0 [AntaliasingQuality X |ResetLineStipple 1
SyncOnBitMask 0 |SyncOnHostData X |TextureEnable 1
FogEnable 1 |CoverageEnable 0 |SubPixelCorrectionEnable 0

StartXDom (X1 - 1)
dXDom (£1.0)

StartY (Y1)

dy ((Y2- YD/(X2 - X1))
Count (abs (X2 - X1))
Render

StartXDom (X 1)

8-14 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.2.7.4

8.2.7.5

8.2.8

Render
StartXDom (X1 + 1)

Render

Aliased Wide Lines (X)

Individual wide lines in X have square ends and multiple connected wide lines have a range of
joint styles. X needs to convert the wide lines either to polygons, or to a series of spans, to
achieve the desired effect.

Antialiased Lines (OpenGL)

Antialiased lines on R4 are supported via the Gamma OpenGL interface only - the onboard
Delta unit does not implement antialiased lines.

Antialiased lines of any width are drawn as antialiased polygons (see below). If stipple is
enabled then the line is drawn as a series of polygons to match up with the stipple parameters,
using the RepeatFactor, StippleMask and Mirror fields in the LineMode or LineStippleMode
registers. The line width is defined in the AALineWidth register as a floating point number.

Polygons

The only non-triangle polygons the rasteriser handles are screen aligned trapezoids. These
are characterised by having the top and bottom edges parallel to the X axis. The side edges
may be vertical but are more usually diagonal. The top or bottom edges can degenerate into
points in which case we are left with flat topped or flat bottomed triangles. Any polygon can be
decomposed into this shape, however the sample OpenGL server always decomposes

polygons® into triangles because the interpolation of values over non-triangular polygons is ill
defined.

The rasteriser does handle vertical 'bow tie’
polygons.

As part of the rasterisation process a number of parameters (color, depth, fog and texture) are
calculated for each fragment generated. These are calculated in the DDA unit down stream
under the guidance of the rasteriser step messages. The ideal way to calculate these values is
to use the fragments XY coordinate and substitute this into the plane equation for each
parameter in turn. This technique gives the best result, however it is computationally
expensive so it is normal to use an incremental method such as a DDA to approximate to it.
The DDA method introduces some errors of its own:

« Anincremental error due to the finite precision of the delta values. To overcome this
source of errors enough fractional bits are used so that the error cannot propagate into the
actual bit range of the DDA where the parameter value is extracted from.

« The start value for a parameter, P, can be nearly dPdx (one step in the X direction) out
because the value calculated as a result of a Y step (shown as a circle in the following

5 Excluding the special case of screen aligned rectangles.

3D/abs

Proprietary and Confidential 8-15

Rasterizer

8.2.8.1

8-16

GLINT R4 Programmer’s Guide Volume ||

diagram) corresponds to the value of the sample on the edge and not at the center of the
first fragment to be drawn.

It is necessary to correct for this error to eliminate bright edge artefacts and achieve high
quality rendering.

This correction is needed for every scanline. A similar correction is needed at the start of the
primitive because the parameter value at the start vertex is unlikely to lie on the horizontal
center of a pixel so needs adjustment in Y. This correction is handled by software.

If dErr is the distance the edge is away from the pixel's center (must be < 1) and dPdx is the
change in P for unit change in x then the correct value at the first sample point is:

The distance dErr is sent internally by the rasteriser in PrepareToRender and Step messages.
The multiplication is done in the DDA units whenever these messages are received, but only
update Px on the SubPixelCorrectionregister if the LS bit of the data field is set. The
correction dErr is sent as a 7 bit 2's complement 1.6 fixed point format. The dErr value sent in
the messages is the dErr needed for the next scanline (of the first one in the case of a
PrepareToRender).

Sub Pixel Correction not Supported for Antialiased Primitives

Sub pixel correction must be enabled by the SubPixelCorrectionEnable bit in the Render
command if it is required. See the GLINT R4 Reference Guide for more information.

Antialiasing presents a much more complex problem to solve in that the sample point for the
parameters must be inside the boundary of the fragment, but this may not be the center of the
pixel anymore. Near horizontal edges can give rise to a dErr value which approaches the width
of the screen (or window). Two methods can be used to overcome this:

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

« The sample point can be moved to be within the boundary by 'micro nudging’ the DDAs in
XandY.

« The parameter being interpolated can be integrated over the interior sub pixel sample
points and then divided by the number of interior points (this is the method in the OpenGL
spec).

In both these cases the changes to the DDA units are too extensive given the other problems

antialiasing presents (the coverage calculation doesn't take into account sub pixel visibility and

doesn’t work well with a depth buffer). No sub pixel corrections are done for antialised
primitives.

8.2.8.2 Antialiased Triangle

The triangle looks like this and is
rendered from top to bottom. The origin
is assumed to be bottom left. Antialias

quality is 4x4:
Render Data Field

AreaStippleEnable 1 LineStippleEnable 0 |PrmitiveType 1
FastFillEnable 0 FastFilllncrement X | UsePointTable 0
AntialiaseEnable 1 |AntialiasingQuality 0 |ResetLineStipple X
SyncOnBitMask 0 SyncOnHostData 0 |TextureEnable 1
FogEnable 1 |CoverageEnable 1 |SubPixelCorrectionEnable 1

StartXDom (X1)

dXDom ((X3- XD/(4* (Y3-Y1)))

StartXSub (X1)

dXSub ((X2- Xp)/(4* (Y2- Y1)

StartY (Y1)

dy (-1.0/ 4.0)

Count (Y1-Y2) * 4)

Render

StartXSub (X2)

dXSub ((X3- X2)/(4* (Y3-Y2))
ContinueNewSub ((Y2 - Y3) * 4) // Bottom half
FlushSpan ()

3D /b5 Proprietary and Confidential 8-17

Rasterizer

8.3

8-18

GLINT R4 Programmer’s Guide Volume ||

Note: Tthe DDA units need to have their sample point biased from the center of the pixel
to the lower edge of the pixel so the DDA units can be tracked properly with the
walk messages. This can be done by calculating the start values for integer Y
values rather than at Y+0.5 aswould normally be done.

The sub pixel correction is only needed if color, depth, fog or texture interpolation
isbeing used.

Span Operations

Many 2D rendering operations can be implemented more efficiently using span operations,
enabled with the FastFillEnable bit in Render and Render2D. For both 2D textures and
rasterizer bit mask operations the improvement can be from about 40 Mpixels/s to 400
Mpixels/s.

GLINT R4’s span filling implementation can be used for image upload, image download, filling

with constant color, filling with a pattern, characters (i.e. bit masks), copies, and copies with

logical ops. Any trapezoid can be used and the scanning direction can be left-to-right or right-

to-left. Benefits of span fill for 2D operations include:

« Better utilization of SGRAM block fill (where memory devices permit) for solid, stippled and
patterned fills and character bitmaps.

« Span mechanism is independent of pixel size — makes maximum use of framebuffer
bandwidth for 8, 16 and 32 bit pixels.

« Multiple pixels processed in parallel

« No alignment restrictions — any span operation may be performed to any pixel alignment
for all pixel sizes.

« Page break overheads are spread over many more read/write operations during a BitBIt
operation — performance of BitBIts is much closer to peak memory bandwidth

« Both window- and screen-relative operations supported

« Scissor clipping can be used in conjunction with span operations

If any reads are enabled, span operations are converted into a series of normal memory reads.
The memory data returned is aligned and sent on in 64 bit words for further processing.

Note: This differs from earlier chips where the memory interface was responsible for
decoding the span mask and returning the appropriate aligned data.

Span reads are only supported when the pixel data is laid out in the Linear or Patch64 formats.
32_2 and patch_2 formats do not support spans (but packed support is available for non-span
rasterization - see Packed8Pixels and Packed16Pixels in the GLINT R4 Reference Guide.)

If source and destination reads are enabled then the source data is read first and stored in the
scratch pad ram. Then the destination data is read and packed into 64 bit words and sent on.
After each destination word is sent the corresponding source word from the scratch pad ram is
read and sent on. The destination buffers are read in increasing numerical order.

Page breaks are kept to a minimum by reading all the data from a buffer for a span before
moving onto the next buffer (for the same span mask).

The span operation does have some restrictions:

« Stencil and Depth tests are not available. These units just ignore the commands
associated with fast span fills.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.3.1

3D/abs

« Gouraud shading, alpha tests, alpha blend and dither operations are not available.

« If GIDs are being used for window clipping then spans cannot be used at full speed as
they normally ignore GID information and write to all pixels in the span. However the result
writes 4 pixels per cycle.

When span operation is enabled the rasterizer divides the pixels between the left- and right-
hand edges of the polygon or rectangle into a succession of spans, each 64 pixels wide.

Each span is described by a 64 bit wide span mask and each pixel in the span has a
corresponding bit in the span mask. If a bit in the span mask is set, then the corresponding
pixel will be read and/or written. The least significant bit in the span mask (bit 0) corresponds
to the leftmost pixel on the screen for the span.

The span mask does not have any fixed alignment with the pixels stored in the framebuffer, i.e.
the first pixel in the span may correspond to any pixel in the framebuffer. Any masking or
shifting to align the span data being read or written to the 64 bit framebuffer architecture is
performed automatically.

Span filling may be performed left-to-right or right-to-left, but the pixels within an individual span
are always read and/or written left to right. Hence if bitmask or image download data is
provided, the data within individual spans must be ordered left to right. Normally if any data is
provided span filling should be left-to-right.

The use of spans for image handling is shown later (Bitmaps, Spans and Images).

Spans operate in both the LB and FB functional groups. In the Localbuffer the data written is
constant for the span and is held in the LBClearDataU and LBClearDatal registers which
together provide 40 bits of data. This is replicated automatically to the four pixels in a memory
word. For Packed16 mode where there are 8 pixels in a memory word software must replicate
the 16 bits of clear data into the 32 bit LBClearDatal register. The LBClearData registers
hold the depth, stencil and GID data in the format it is in the local buffer - i.e. no formatting is
done on the clear data before it is written.

The byte enables (in LBWriteMode) can be used to protect bytes from being updated. If,
however, the field to clear is not byte aligned and a multiple of bytes in width (i.e. a 3 bit stencil
field), then clearing this field while leaving the others intact can only be done via a read-modify-
write operation so will run at one quarter the speed.

Mode changes in Span Operations

GLINT R4 supports major mode changes during native display list operations. This is
described in greater detail in the Framebuffer chapter. However to ensure that the effect of
mode changes during display lists can be software controlled, two registers
(FBDestReadEnables and FBSourceReadEnables) are set up to provide monitoring and
readback for software-specified modes e.g. AlphaBlend or LogicalOps.

The Boolean equation for a span read in buffer n is:
destRead = (mode.ReadEnable & mode.Enable[n] & ~mode.UseReadEnables) |
(mode.ReadEnable & mode.Enable[n] & mode.UseReadEnables &
(E4 & R4 |E5& R5|E6 & R6|E7 & R7))

where “mode” is shorthand for FBDestReadMode and E* and R* are taken from
FBDestReadEnables. The logical operations versions of the registers

Proprietary and Confidential 8-19

Rasterizer

8.3.2

8.3.3

8-20

GLINT R4 Programmer’s Guide Volume ||

(FBDestReadEnablesAnd and FBDestReadEnablesOr) can be used to change individual
bits.

Alpha Filtering

One use of the mode monitoring feature is an alpha filtering enhancement. In many cases
when doing alpha blending the blend mode is set such that if the fragment’s alpha is a specific
value (typically 0 or 255) then the framebuffer color (from a destination read) is effectively
ignored as it doesn’t contribute to the final alpha blended color. In this case there is no point in
reading the destination pixel value and we can save memory bandwidth by avoiding it.

Alpha filtering is enabled by the AlphaFiltering bit in FBDestReadMode and the reference
alpha value to compare against can be found in FBDestReadEnables.

Span Mask Processing

Span fills are enabled by setting the FastFillEnable bit in the Render command. The
SpanOperation bit when clear indicates writes are to use the constant color found in the
previous FBBlockColor register. When this bit is set write data is variable and is either
provided by the host (i.e. SyncOnHostData is set) or is read from the framebuffer. All other
trapezoid parameters are the same.

The span mask can also be used to grow the extent region or perform picking as part of
HostOut statistics gathering.

The span mask undergoes several processing steps before it is used by the Framebuffer Unit

to determine which pixel to read and/or write:

« The Rasterizer generates the mask using the left and right hand edge information. Note
that the edges may be vertical or sloped.

« If SyncOnBitMask is enabled in the Render command, then the span mask is ANDed with
the bit mask data provided by the host. If no bit mask data is present the Rasterizer wait
for it to arrive before proceeding.

« The bit mask data may be optionally inverted, byte swapped, word swapped or mirrored (in
any combination) before the ANDing is performed. The inversion can be used to enable
drawing of the background bits. The byte and word swapping allows bit mask data from
different endian hosts to be accommodated. The mirror operation swaps bits 0 and 31,
bits 1 and 30, etc. which changes the left most pixel in a span from being controlled by the
least significant bit to the most significant bit in the bit mask.

« If Screen Scissor testing is enabled then pixels falling outside the left and right edges of
the screen scissor region have their corresponding bits in the span mask cleared.

« If the User Scissor test is enabled, then pixels falling outside the left and right edges of the
user scissor region have their corresponding bits in the span mask cleared.

- If Area Stippling is enabled, then the stipple mask is extracted from the area stipple table
for the appropriate scan line and expanded, if necessary, to 32 bits by replication. The
normal offset, select and mirror controls in X and in Y may be used as for non-span
rendering. The stipple mask is ANDed with the span mask.

« If Texture Mapping is enabled, then a texel is read from the texture logical or physical
address under the control of the TextureCoordMode, TextureOperation,
LogicalTexturePage, TextureReadMode and the S, T and Q DDA parameters. If the

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.3.4

8.3.5

8.3.5.1

3D/abs

texel is to be used as a bit mask, then any specified texel formatting is performed and the
final 64 bit texel value is optionally inverted, byte swapped and mirrored before being
ANDed with the span mask.

« The span mask is now used to read/write the framestore pixel data

Block Write

The FastFillincrement and BlockWidth parameters in Render and FBWriteMode are no longer
required or supported. For more information on block write see Volume I, section 4.2.5,
Clearing the Localbuffer using FBWrite.

Pixel Sizes

The local buffer holds up to four fields of information: Depth, Stencil, GID and fast clear planes
(FCP). FCPs are not implemented in GLINT R4 and the bitfields are reserved for historical
reasons.

R4 allows pixel sizing on a unit-by-unit basis, which can be desirable for texturing. When using
span operations it is important to maximize the number of pixels per 32 or 64 bits processed,
The Rasterizer unit PixelSize register can have the following values on either a global or unit-
tailored basis:

. Depth: 15, 16, 24 and 31.
. Stencil: 0,1, 2,3,4,5,6, 7 and 8.
. GID: 0,1, 2, 3and 4.

The depth plane always starts at bit 0. The Stencil and GID fields can start on any bit position
from 16 to 39 inclusive. It is the user’s responsibility to ensure that they don'’t overlay or
reference bits outside the pixel width.

Selecting a depth width of 15 bits forces the stencil and GID fields to be set from bit 15 of the
pixel and ignores the normal stencil and GID settings. If the specified width of a field is less
than its internal width then the field is zero extended at the Least Significant end to its internal
width.

Since PixelSize is a core register it can be maodified at any time without affecting in-progress
rendering. Itis not necessary to synchronize with the chip before changing pixel depth.

Pixel size is also definable in the DMARectangleRead and DMARectangleWrite registers.

Sub Pixel Precision
The rasterizer has 16 bits of fraction precision and the screen width used is typically less than
2'® wide, so a number of bits (called subpixel precision bits) are available.

Consider a screen width of 4096 pixels. This figure gives a subpixel precision of 4 bits

(4096=2"%). The extra bits are required for a number of reasons:

- antialiasing (where vertex start positions can be supplied to subpixel precision)

« when using an accumulation buffer (where scans are rendered multiple times with jittered
input vertices)

« for correct interpolation of parameters to give high quality shading as described below

Proprietary and Confidential 8-21

Rasterizer

8.3.6

8.3.6.1

8-22

GLINT R4 Programmer’s Guide Volume ||

Bitmaps, Spans and Images

The GLINT R4 is not software-compatible with earlier MX chips. Specific changes affecting
bitmaps, spans and images include separate control of source and destination FB and LB
reads using new registers, automatic span read alignment, pattern RAM data held in
localbuffer, and texture units now generate source offsets but not addresses.

Bitmaps
A Bitmap primitive is a trapezoid or line of ones and zeros which controls which fragments are

generated by the rasterizer. The bitmap operates on any fragments produced by the rasterizer,
including spans and characters.

Bitmaps may be implemented as Rasterizer bitmasks or 2D Textures with or without span fill
enabled. Span Fills are described in the next section. Span fills are generally an order of
magnitude faster but do not normally support LB test functions (Depth, GID, Stencil) or Alpha
Test, Logical Ops, Texturing or Dither. (But see Volume I, Section 1.1.6 - GID Field - for GID
testing of LB spans.)

Bitmaps are controlled using the BitMaskPattern register and parameters enabled in the
RasterizerMode command: ByteSwapBitMask; MirrorBitMask; InvertBitMask; BitMaskPacking
and BitMaskOffset. In addition to its raw data, each bitmap is characterised by its origin
coordinates (bottom left or top left); width and height.

When SyncOnHost is enabled in the Render command only fragments where the
corresponding Bitmap bit is set are submitted for drawing. The normal use for this is in drawing
characters, although the mechanism is available for all primitives. Bitmap data unless
otherwise formatted is by default packed contiguously into 32 bit words so that rows are
packed adjacent to each other. Bits in the mask word are by default used from the least
significant end towards the most significant end and are applied to pixels in the order they are
generated in. The relationship between bits in the mask and the scanning order is shown in
Figure 8-5.

The rasterizer scans through the bits in each word of the Bitmap data and increments the X,Y
coordinates to trace out the rectangle of the given width and height. By default, any set bits (1)
in the Bitmap cause a fragment to be generated, any reset bits (0) cause the fragment to be
rejected.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer
BitMask value
FI|E|D BlA 6|5 312(1]0
0 213 C|D|E|F F|E| D| C 3121110
4 617 819A| B BlA]|9] 8 7161514
A| B 4 (51617 71651 4 Bl|A|[9] 38
C|{D|E| F 0] 11213 3121160 F|IE|D]|C
—> —> <+ <+
Figure 8-5 Relationship between Bitmask and Scanning Directions

3D/abs

The selection of bits from the BitMaskPattern register can be mirrored, that is, the pattern is
traversed from MSB to LSB rather than LSB to MSB. GLINT R4 allows the pattern to be byte
swapped on download. This is useful for downloading Windows/NT bitmaps in their native
format. Also, the sense of the test can be reversed such that a set bit causes a fragment to be
rejected and vice versa. This control is found in the RasterizerMode register, described in
section § 2.2.

When one Bitmap word has been exhausted but there are still pixels remaining in the
rectangle, rasterization is suspended until the next write to the BitMaskPattern register. Any
unused bits in the last Bitmap word are discarded.

For example a 5 pixel wide, 8 pixel high bitmap requires a register set up as follows:

I Set the rasterizer mode to the default

RasterizerM ode(0)

/I Set-up the start values and the deltas.

// Note that the X and Y coordinates are converted

// t0 16.16 format

StartXDom (X<<16)

dXDom (0)

StartXSub ((X + 5)<<16) // Right hand edge pixels
I/ get missed off.

StartY (Y<<16)

dY (1<<16)

Count (8)

/I At least the following bits require setting for

// the Render command.

Proprietary and Confidential

8-23

Rasterizer

8.3.6.2

GLINT R4 Programmer’s Guide Volume ||

Render.PrimitiveType = GLINT R4_TRAPEZOID_PRIMITIVE
render.SyncOnBitMask = PERMDIA3_TRUE

/' 1ssue render command. First fragment will be

/I generated on receipt of the BitMaskPattern

Render (render)

{1 8x5 pixel bitmap requires 40 bits, and so 2

/1 32 bit words.

BitMaskPattern (patternwWordO0)

BitMaskPattern (patternwWord1l)

Rendering starts as soon as the first patternWord is loaded into the BitMaskPattern register.

R4 provides the ability to start a scanline at an arbitrary offset into the first bitmask that is
downloaded for each scanline, and to discard unused bits at the end of a scanline. This lets the
host download data directly from a host bitmap without having to shift and pack the bits. This
functionality is controlled by the BitMaskPacking and the five BitMaskOffset bits in the
RasterizerMode register.

Bitmaps with Spans

The fastest way to render downloaded bitmap data is to use a span operation (described in
82.1.6, Span Operations, above). The rasterizer is set up as normal and the FastFill[Enable bit
in the Render command is enabled. The SpanOperation bit determines the if the span writes
use constant color data or variable color data. All other trapezoid parameters are the same.

A span is always 64 pixels long and any combination of pixels within the span can be read
and/or written. Pixels with a width of 8 or 16 bits are processed 8 or 4 pixels at a time
respectively and all read and write alignment is handled in hardware. The span mechanism
can be used for image upload, image download, filling with constant color, filling with a pattern,
characters (i.e. bit masks), copies and copies with logical ops. Any trapezoid can be used and
the scanning direction can be left-to-right or right-to-left6.

If the span is being written with a constant color value7 and the SGRAM supports block fills
(where a number of pixels can be written simultaneously) then span filling automatically uses
this mode of operation to give a very much faster filling rate.

The Memory Controller takes care of mapping this logical configuration on to the actual
SGRAM configuration where the SGRAM chips may have fewer pixels in a block, the
framebuffer may be interleaved and/or hold packed pixels.

When the bitmap data is downloaded it is ANDed with the span mask generated by the
rasterizer. The resulting mask is passed through the core to be used as the block fill mask.
Thus a single memory access can be used to process up to 32 pixels.

6The pixels within a span are always read and/or written in a left to right order so if the host if providing any bitmask or image
download data then it needs to take this into account. The simplest thing is for the host to always scan left to right when supplying

data.

7This is not strictly true as the framebuffer may be in packed pixel format so adjacent pixels within a 32/64 bit word could have
different colots.

8-24

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

3D/abs

Since the downloaded bitmask data will be ANDed with masks generated by the Rasterizer
without any re-alignment being performed, the host software must ensure that the masks
match up. This can be achieved in either of two ways:

1. the host software can align the bits that it downloads to match the alignment of the
Rasterizer.
2. use the User Scissor (generally faster and recommended).

Note: thisis a general algorithm. In the special case where the data to be downloaded is
already aligned to 32 bits on both the left and right edges the scissor need not be
used.

For example, suppose we want to download data to fill a rectangle with left edge at 10 and right
edge at 200. Assume that the host bitmap data is to be loaded from an offset of 35 within the
bitmap. Our goal is to match the bit at offset 35 with the pixel at offset 10.

Since we want to avoiding shifting the data and incurring a host processing overhead, we
download the host bitmap data at the previous 32-bit boundary. This means that we must set
GLINT R4 up to discard the first 3 bits of data.

Proprietary and Confidential 8-25

Rasterizer GLINT R4 Programmer’s Guide Volume ||

We achieve this by rasterizing a rectangle whose left edge is 3 pixels less than that required, in

AN\

Host bitmap

7
2%

o
w

0\7\10

Arepunoq 11q g¢
o e e o mm mm mm mw Em e == g

Target Rectangle

A\

this case we would rasterize the left edge to start at pixel 7. This aligns the source bitmap data
with the mask data produced by the rasterizer. But, in order to protect the 3 pixels that we
would otherwise overwrite, we use the scissor clip and set its bounds to be those of the original
rectangle.

When using a span operation like this the rasterizer waits for new bitmask data to be
downloaded at the start of each scanline. So we do not have to perform the alignment
operation on the right hand edge.

The following gives the outline for this algorithm:

leftalign = bitmapxleft & 31

width = Xright — Xleft + leftalign
StartXDom ((XIeft — leftalign)<<16)
dXDom (0)

StartX Sub (Xright<<16)

8-26 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume ||

3D/abs

StartY (Y<<16)
dY (1<<16)
Count (height)

/I protect the edge pixels with the scissor

minXY.X = Xleft
minxXY.Y =Y
maxXY.X = Xright
maxXY.Y =Y + height

ScissorMinXY (minXY) /I Load the registers

ScissorMaxXY (maxXY)

/! Enable the unit

scissorMode.UserScissorEnable = GLINT R4_ENABLE
scissorM ode. ScreenScissorEnable = GLINT R4_ENABLE

/I At least the following bits require setting for
// the Render command.

Render.PrimitiveType = GLINT R4_TRAPEZOID_PRIMITIVE

render.SyncOnBitMask = GLINT R4_TRUE
render.FastFillEnable = GLINT R4_TRUE

/I I'ssue render command. First fragment will be
Il generated on receipt of the BitMaskPattern.

Render (render)

/I download the bits from the source bitmap 32 bits
/I at atime aligning the bitmap pointer at the
/[start of each scanline

BitmapBase += bitmapyorg * bitmapwidth
bitmapxleft &= ~31
for (h =0; h < height; ++h) {

pul Bitmap = BitmapBase + bitmapx|eft/8;

Proprietary and Confidential

Rasterizer

8-27

Rasterizer

8.3.6.3

8.3.6.4

8.3.6.5

8-28

GLINT R4 Programmer’s Guide Volume ||

for (c = 0; c<width; c += 32) {
BitM askPattern(pul Bitmap)
pul Bitmap += sizeof(ULONG)

}
BitmapBase += bitmapwidth

Glyphs

A byte stream of glyph data (packed four to a word) can be downloaded and automatically
chopped up and padded to the necessary width for the texture units to use as a bitmap. For
example a gyph with a width between 17 and 24 pixels will be sent down as a stream of bytes
and each triplet of bytes will be padded with zero and sent to be written into memory. If the
input words have their bytes labelled:

First word: DCBA (A is the least significant byte)
Second word: HGFE
Then the output words send on to the rasterizer are:
First word: 0CBA
Second word: OFED

Image Copy/Upload/Download
R4 supports three “pixel rectangle” operations — Copy, Upload and Download.

Image operations involve rectangular regions with pixel coordinates rather than the usual 3D
coordinates. The image regions can be moved among host memory and any GLINT R4
buffer(s).

Copy
Image Copy moves raw blocks of data around buffers. To zoom or re-format data external
software must upload the data, process and return it.

To copy a rectangular area the rasterizer would be configured to render the destination
rectangle, thus generating fragments for the area to be copied.

Note: Care must be taken when the source and destination overlap to choose the source
scanning direction so that the overlapping area is not overwritten before it has
been moved. This may be done by swapping the values written to the StartXDom
and StartXSub, or by changing the sign of dY and setting StartY to be the opposite
side of the rectangle.

If the source and destination rectangles overlap then the direction of the scan conversion is
important and must be set up correctly by the host. Localbuffer copy operations are tested for
pixel ownership (GID). Note that this implies two reads of the localbuffer, one to collect the
source data, and one to get the destination GID for the pixel ownership test.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.3.6.6 Upload/Download

The host places a pixel image in a windows-relative rectangle, in any buffer (depth, stencil or
color) using the Rasterizer.

The host could control the process directly, but the rasterizer also manages clipping, fragment
processing and window coordinate tracking.

During download, for example, the rasterizer scans the image so the host does not need to
provide X,Y coordinates, waits for a depth, stencil or color command from the host, then
processes the next pixel. In other words, the process is synchronous with host processing. To
maintain synchronization enable the SyncOnHost bit in the Render command.

The image download rectangle looks like
this and the origin is assumed to be
bottom left. The host provides the data in
top to bottom, left to right order. Color
data will be provided. There are n pixels
in the rectangle.

Render Data Field
AreaStippleEnable 0 |LineStippleEnable 0 |PrimitiveType 1
FastFillEnable 0 FastFilllncrement X |UsePointTable 0
AntialiaseEnable 0 |AntialiasingQuality X |ResetLineStipple X
SyncOnBitMask 0 SyncOnHostData 1 TextureEnable 0
FogEnable 0 CoverageEnable 0 SubPixelCorrectionEnable 0

In OpenGL the AreaStippleEnable would always be 0, but in X may be enabled or disabled.

StartXDom (X1)
dXDom (0)

StartX Sub (X2)

dXSub (0)

StartY (Y2)

dy (-1.0)

Count (Y2-Y1+1) /I Width of image
Render

Color (PO) // Pixel O
Color (P1)

Color (P2)

Color (Pn)

Note: the rasteriser overscans the rectangle because the right hand edge is not plotted
and the downloaded image doesn’t include these pixels

3D /b5 Proprietary and Confidential 8-29

Rasterizer

8.3.6.7

GLINT R4 Programmer’s Guide Volume ||

Any functions which can generate fragment values, the color DDA for example, should
generally be disabled for any copy, upload or download operations.

Warning: During image upload, all the returned fragments must be read from the Host Out
FIFO, otherwise the GLINT R4 pipeline will stall. In addition it is strongly
recommended that any units which can discard fragments (for instance the
following tests. bitmask, alpha, user scissor, screen scissor, stipple, pixel
ownership, depth, stencil), are disabled otherwise a shortfall in pixels returned
may occur, also leading to deadlock.

Bit mask processing can be used in conjunction with image operations to allow arbitrary
stipples, for example. Use the BitMaskPattern command to load the bit mask.

Unlike conventional bit mask functionality, during image loading the Bitmaskpattern command
must be interleaved accurately with the image data to ensure that the new mask is available
immediately the old mask is consumed. Pixels arriving without mask bits are considered
passive until the new mask arrives.

If the host fails to supply a required color, depth or stencil tag the chip waits until one arrives, or
(to avoid unnecessary hangs) terminates the image operation when any tag other than color,
depth, stencil, FBData or BitMaskPattern are received.

During image uploads the host can read back a window-relative rectangle from any buffer. The
buffer read must be set up using the FBSourceReadAddress, Offset and Operations
registers.

Image Copy/Upload/Download with Spans
2D image operations to and from the framebuffer can be optimized by using a span operation.

The benefits are greatest at lower pixel depths since packed pixel data is transferred through
the core.

Copy

Using span operations when copying pixel data within the framebuffer is straightforward.
Simply set the FastFillEnable and SpanOperation bits in the Render command.

Note: This works both with and without logical op processing.
Download

Download facilities ("Write Pixels") allow the host to transfer image data to local memory. The
rasteriser supports this function by scan converting the rectangle (so the host doesn’t need to
generate X, Y coordinates). The rasteriser is constrained by the SyncOnHostData bit in the
Render command to wait for Depth, Stencil or Color data from the host (in the Depth, Stencil
or Color registers) before moving on to the next pixel. In other words it runs synchronously to
the host for the duration of this primitive.

The bit mask mode can also be enabled during this function so arbitrary stippling can be done
on the image being downloaded (useful in X). The bit mask register is loaded whenever the

BitMaskPattern register is received. This is slightly different8 to the way it works when the
rasteriser is not in Image download mode. The BitMaskPattern data must be interleaved

SThis change is necessary to prevent a deadlock situation arising if too many Colot messages (for example) are sent before the next
BitMask message is due.

8-30

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

3D/abs

correctly with the image data to ensure the new mask is available immediately after the last bit
in the current mask has been used. It this sequence is not correct then all subsequent
fragments until the new mask is received will be passive.

There is the potential for the host to send too few Color (Depth, Stencil or FBData) messages
for the size of primitive it has defined. Rather than have GLINT R4 hang because it is waiting
for messages which will never arrive, any message other than Color, Depth, Stencil, FBData
or BitMaskPattern stop primitive generation.

The SyncOnHost functionality is in fact available for any primitive, although usually used in
conjunction with downloads.

Image downloads are also supported by DMA - see DMARectangleRead in the GLINT R4
Reference Manual

Upload

Image upload ("ReadPixels"”). This function provides the host with a method of reading back a
windows-relative rectangular region of any of the buffers (depth, stencil, color). The rasteriser
supports this function by scan converting the rectangle and sending the active walk messages.
The Local Buffer Read Unit or the Framebuffer Read Unit will have already been set up to do
the read and generate the appropriate LBDepth, LBStencil or FBColor message, which will
collected by the Host Out Unit and passed back to the host.

Upload can also be run via DMA using the DMARectangleWrite command. The image data
may be a sub image of a larger image and have any natural alignment or pixel size.
Information regarding the rectangle transfer is held in registers loaded from the input FIFO or a
DMA buffer.

Note: failure to supply an EOF may have unpredictable results.

The pixel data written to host memory is always packed, however when read from the Host Out
FIFO it can be in packed or unpacked format (packed when Reset). It can also, optionally, be
aligned on 64 byte boundaries. The minimum number of PCI writes are used to align and pack
the image data.

GLINT R4 is set up to rasterize the source area for the pixel data (depth, stencil, color, etc.)
enabled in the Render command. This is done before the Rectangular DMA is started.

Proprietary and Confidential 8-31

Rasterizer GLINT R4 Programmer’s Guide Volume ||

8.4 Rasterizer Mode
The RasterizerMode register sets long-term modes, particularly these:

« MirrorBitMask: This is a single bit flag which specifies the direction that bits are checked in
the BitMaskPattern register. If the bit is reset, the direction is from least significant to
most significant (bit O to bit 31), if the bit is set, it is from most significant to least significant
(from bit 31 to bit 0). Using a value of 3 is very useful in conjunction with the MirrorBitMask
bit for handling Microsoft Windows bitmaps since this causes a complete byte swap of the
downloaded data.

« InvertBitMask: This is a single bit which controls the sense of the accept/reject test when
using a Bitmask. If the bit is reset then when the BitMask bit is set the fragment is
accepted and when it is reset the fragment is rejected. When the bit is set the sense of
the test is reversed.

« BitMaskPacking: This is a single bit which controls the packing of bits which are
downloaded as part of a SyncOnBitMask operation. If this bit is reset then any spare bits at
the end of a scanline are used to start the next scanline. If this bit is set then extra bits at
the end of a scanline are discarded. This is not available for use with span fills.

« BitMaskOffset: This is a 5 bit field which specifies the first bit to be used in the first bitmask
word of every scanline downloaded as part of a SyncOnBitMask operation. This is not
available for use with span fills.

« Fraction Adjust: These 2 bits control the action taken by the rasterizer on receiving a
ContinueNewLine command. As GLINT R4 uses a DDA algorithm to render lines, an
error accumulates in the DDA value. GLINT R4 provides for greater control of the error by:
1. leaving the DDA running, which means errors will be propagated along a line, or
2. setting the fraction bits to either zero, a half or almost a half (Ox7FFF).

« Bias Coordinates is a 2-bit field with the following actions:

0 — Add 0 to the coordinates (Effectively do nothing)
1 — Add exactly one half to the coordinates
2 — Add nearly one half (Ox7FFF) to the coordinates

+ Host Data Byte Swap Mode: The data downloaded by the host when using
SyncOnHostData can have its bytes re-ordered. If the downloaded data has a byte
ordering of ABCD then, this 2 bit field specifies re-ordering as follows:

0: ABCD (no swap)

1: BADC (swap within halfwords)
2. CDAB (halfword swap)

3: DCBA (full byte swap)

« Y Limits Clipping: When set, this bit enables Y Limits clipping. When reset Y Limits
clipping is disabled. This is described in the next section.

- Multi Rasterizer: If set this bit causes the rasterizer to work in multi-Rasterizer mode. If
reset the rasterizer works in single Rasterizer mode.

8-32 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

8.4.1.1

8.4.2

8.4.3

Y Limits Clipping

The rasterizer normally rasterizes all pixels on every scanline, generating a fragment per pixel.
If large numbers of scanlines are subsequently clipped out by, for example, one of the scissor
units, then a lot of time can be wasted. The Ylimits register has been added to provide a way

of quickly eliminating whole scanlines for a given primitive. This is effectively a Y scissor clip in
the Rasterizer.

If Y limits testing has been enabled in the RaserizerMode register, and if a scanline being
rasterized falls outside the Y limits bounds, then the rasterizer will move directly onto the next
scanline without rasterizing in X.

« Y Limits clipping is automatically disabled when SyncOnHostData or SyncOnBitMask is
used.

Multi-rasterizer Operation

R4 is specifically designed for multi-rasterizer operation behind a geometry accelerator.
Typically, two R4s are used to rasterize the output from one Gamma chip.

To support multi-rasterizer operation, R4 implements:

= adisplay striping bus to carry video data from one R4 to the next

* video and RAMDAC enhancements

= pixel-accurate genlock.

The setup procedure is described in Volume I, section 5.2.4, Multi-rasterizer Setup

Rasterizer Unit Registers

Real coordinates with fractional parts are provided to the rasterizer in 2’'s complement 16 bit
integer, 16 bit fraction format, as illustrated below for a typical register in this unit:

Name

ContinueNewDom Rasterizer 0x8048 Integer

Type Offset Format

Command

Bits

Name Read | Write Reset | Description

0...15

Scanlines v v X 16 bit unsigned integer

16...31

Reserved 0 0 X Reserved for future use, mask to 0

Table 1.1 Typical register description — ContinueNewDom

8.4.3.1

3D/abs

Command registers

The following table lists the command registers which control the rasterizer unit. The control
registers are shown separately below.

Proprietary and Confidential 8-33

Rasterizer GLINT R4 Programmer’s Guide Volume ||

Register Name Data Field [Description

Render Bitfield Starts the rasterization process

ContinueNewDom |16 bit integer Allows the rasterization to continue with a new dominant edge. The
dominant edge DDA in the rasterizer is reloaded with the new
parameters. The subordinate edge is carried on from the previous
trapezoid. This allows any convex polygon to be broken down into a
collection of trapezoids, with continuity maintained across boundaries.
Note: other DDASs are not reloaded with new start values until the next
Render command. Thus it is not possible to use this command, for
example, to Gouraud shade a triangle from left to right which has a knee
on the left hand side. To avoid this, 3D rendering should always start
from the side without the knee.

The data field holds the number of scanlines (or sub scanlines) to fill.
This count is not loaded into the Count register.

ContinueNewSub |10 bit integer |Allows the rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant
edge is carried on from the previous trapezoid. This is useful when scan
converting triangles with a 'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines (or sub scanlines) to fill.
This count is not loaded into the Count register.

Continue 16 bit integer [Allows the rasterization to continue after new delta value(s) have been
loaded, but does not cause either of the trapezoid's edge DDAs to be

reloaded.

The data field holds the number of scanlines (or sub scanlines) to fill.

This count is not loaded into the Count register.

ContinueNewLine |10 bitinteger |Allows rasterization to continue for the next segment in a polyline. The
XY position is carried on from the previous line, but the fraction bits in
the DDAs can be: kept, set to zero, half, or nearly one half, under control
of the RasterizerMode.

The data field holds the number of pixels or subpixels in a line. This
count is not loaded into the Count register.

The use of ContinueNewLine is not recommended in OpenGL as for the
second and subsequent segments the DDA units will start with a slight
error compared with the value they would have been loaded with.

FlushSpan Not used Used when antialiasing to force the last span out when not all sub spans
may be defined.
PixelSize 0 = 32 bits Configures the Rasterizer (and other core units) with the size of pixel to
1 = 16 bits process when spans are used. It also informs the framebuffer interface
2 = 8 bits Unit, but in this case all reads and writes are affected and not just spans.

This replaces the pixel size field in the PCI FBModeSel register and
works the same way for single pixel reads and writes (i.e. the framebuffer
can be set to 32 bit pixels even though it is displaying 8 bit pixels to
process 4 pixels at a time).

8-34 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume ||

Rasterizer

Register Name

Data Field

Description

WaitFor Completion

Not used

This is used to suspend the core until all outstanding reads and writes in
both the localbuffer and framebuffer memory units have completed. This
is intended to prevent a new primitive from starting to be rasterized
before the previous primitive is completely finished. It would be used, for
example, to separate texture downloads from the surrounding primitives.
The same functionality can be achieved using the Sync register and
waiting for it in the Host Out FIFO; however, this method doesn’t
involve the host and can be inserted into a DMA buffer.

3D/abs

Proprietary and Confidential

8-35

Rasterizer

GLINT R4 Programmer’s Guide Volume ||

Table 8.1 Command Register Descriptions

Register Name Data Field Description
RasterizerMode See below Defines the long term mode of operation of the rasterizer.
StartXDom Fixed point 16.16 Initial X value for the dominant edge in trapezoid filling, or initial X
format value in line drawing.
dXDom Fixed point 16.16 Value added when moving from one scanline (or sub scanline) to the
format next for the dominant edge in trapezoid filling.
Also holds the change in X when plotting lines so for Y major lines
this will be some fraction (dx/dy), otherwise it is normally + 1.0,
depending on the required scanning direction.
StartXSub Fixed point 16.16 Initial X value for the subordinate edge.
format
dXSub Fixed point 16.16 Value added when moving from one scanline (or sub scanline) to the
format next for the subordinate edge in trapezoid filling.
StartY Fixed point 16.16 Initial scanline (or sub scanline) in trapezoid filling, or initial Y position
format for line drawing.
dy Fixed point 16.16 Value added to Y to move from one scanline to the next. For X major
format lines this will be some fraction (dy/dx), otherwise it is normally & 1.0,
depending on the required scanning direction.
Count 16 bit integer Number of pixels in a line.
Number of scanlines in a trapezoid.
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines.
BitMaskPattern 32 bits defined eatlier |Value used to control the BitMask stipple operation (if enabled).
PointTable0 Packed dx point data. |Antialias point data table. There are 4 words in the table and the
PointTablel register tag is decoded to select a word.
PointTable2
PointTable3
ScanLine Ownership See Multi-Rasterizer |Defines which scanlines are owned when in multi-rasterizer mode.
chapter
Ylimits Ymax: 2°s Defines the Y extents the rasterizer should fill between. A scanline is

complement 16 bit
value in the upper
word.

Ymin: 2’s complement
16 bit value in the
lower word.

filled if its Y value satisfies Y min<Y<Ymax

Table 8.2 Rasterizer Registers

8.4.4

Render Command

For efficiency, the Render command register has a number of bit fields that can be set or
cleared per render operation and which qualify other state information. These bits are:

« AreaStippleEnable
« LineStippleEnable

8-36

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

+ ResetLineStipple

+ TextureEnable

+ FogEnable

« CoverageEnable

« SubpixelCorrection.

This feature enables units to be set or cleared in one step as part of a specific render
operation. For example, to clear a window to a background color when stippling and fog have
already been enabled for 3D operations it is not necessary to clear the enable bits in
FogMode, AreaStippleMode and LineStippleMode individually. They can be left enabled but
overriden for the window clear operation simply by adjusting the Render command bitfield
settings, shown below:

Render

Name Type Offset Format

Render Global 0x8038 Bitfield
Command

Bits Name Read | Write | Reset | Description

0 AreaStipple 0 H| X This bit, when set, enables area stippling of the
Enable fragments produced during rasterisation in the Stipple
Unit. Note that area stipple in the Stipple Unit must
be enabled as well for stippling to occur.

When this bit is reset no area stippling occurs
irrespective of the setting of the area stipple enable bit
in the Stipple Unit.

This bit is useful to temporarily force no area stippling
for this primitive.

1 LineStipple 0] X This bit, when set, enables line stippling of the

Enable fragments produced during rasterisation in the Stipple
Unit. Note that line stipple in the Stipple Unit must
be enabled as well for stippling to occur.

When this bit is reset no line stippling occurs
irrespective of the setting of the line stipple enable bit
in the Stipple Unit.

This bit is useful to temporarily force no line stippling
for this primitive.

2 ResetLine 0] X This bit, when set, causes the line stipple counters in
Stipple the Stipple Unit to be reset to zero, and would
typically be used for the first segment in a polyline.
This action is also qualified by the LineStippleEnable
bit and also the stipple enable bits in the Stipple Unit.
When this bit is reset the stipple counters carry on
from where they left off (if line stippling is enabled)

3 FastFillEnable | [] X This bit, when set, causes the span fill mechanisms to
be used for the rasterisation process. The type of span
filling is specified in the SpanOperation field. When

this bit is reset the normal rasterisation process occurs.

3D /b5 Proprietary and Confidential 8-37

Rasterizer GLINT R4 Programmer’s Guide Volume ||

4,5 Unused 0 0 X
6,7 Primitive Type | [J u This two bit field selects the primitive type to rasterise.
The primitives are:

0 = Line

1 = Trapezoid

2 = Point

8 Antialiase 0] This bit, when set, causes the generation of sub
Enable scanline data and the coverage value to be calculated
for each fragment. The number of sub pixel samples
to use is controlled by the AntialiasingQuality bit.
When this bit is reset normal rasterisation occurs.

9 Antialiasing 0] This bit, when set, sets the sub pixel resolution to be
Quality 8x8

When this bit is reset the sub pixel resolution is 4x4.
10 UsePoint Table | []] When this bit and the AntialiasingEnable are set, the
dx values used to move from one scanline to the next
are derived from the Point Table.

11 SyncOnBit 0] This bit, when set, causes a number of actions:

Mask The least significant bit or most significant bit
(depending on the MirrorBitMask bit) in the Bit Mask
register is extracted and optionally inverted

(controlled by the InvertBitMask bit). If this bitis 0
then any fragments are skipped.

After every fragment the BitMask register is rotated by
one bit.

If all the bits in the BitMask register have been used
then rasterisation is suspended until a new
BitMaskPattern tag is received. If any other tag is
received while the rasterisation is suspended then the
rasterisation is aborted. The message which caused
the abort is then processed as normal.

Note the behaviour is slightly different when the
SyncOnHostData bit is set to prevent a deadlock from
occurring. In this case the rasterisation doesn't
suspend when all the bits have been used and if new
BitMaskPattern tags are not received in a timely
manner then the subsequent fragments will just reuse
the bit mask.

12 SyncOnHost OJ Hl When this bit is set a fragment is produced only when
Data one of the following tags have been received from the
host: Depth, Stencil, Color or FBData, FBSourceData.
If SyncOnBitMask is reset then any tag other than one
of these three is received then the rasterisation is
aborted. If SyncOnBitMask is set then any tag other
than one of these five or BitMaskPattern is received
then the rasterisation is aborted. The tag which
caused the abort is then processed as normal for that
register type. The BitMaskPattern register doesn't
cause any fragments to be generated, but just updates

the BitMask register.

8-38 Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Rasterizer

13 TextureEnable | [| X This bit, when set, enables texturing of the fragments
produced during rasterisation. Note that the Texture
Units must be suitably enabled as well for any
texturing to occut.

When this bit is reset no texturing occurs irrespective
of the setting of the Texture Unit controls.

This bit is useful to temporarily force no texturing for
this primitive.

14 FogEnable O | X This bit, when set, enables fogging of the fragments
produced during rasterisation. Note that the Fog Unit
must be suitably enabled as well for any fogging to
occut.

When this bit is reset no fogging occurs irrespective of
the setting of the Fog Unit controls.

This bit is useful to temporarily force no fogging for
this primitive.

15 Coverage O | X This bit, when set, enables the coverage value

Enable produced as part of the antialiasing to weight the alpha
value in the alpha test unit. Note that this unit must
be suitably enabled as well. When this bit is reset no
coverage application occurs irrespective of the setting

of the AntialiasMode.
16 SubPixel O | X This bit, when set enables the sub pixel correction of
Correction the color, depth, fog and texture values at the start of a
Enable scanline. When this bit is reset no correction is done

at the start of a scanline. Sub pixel corrections are
only applied to aliased trapezoids.

17 Reserved 0 0 X

18 SpanOperation | [J | X This bit, when clear, indicates the writes are to use the
constant color found in the previous FBBlckColor
register. When this bit is set write data is variable and
is either provided by the host (i.e. SyncOnHostData is
set) ot is read from the framebuffer.

19 Unused 0 0 X

20...26 Reserved O il X

27 FBSourceRead | [J Hl X This bit, when set enables source buffer reads to be

Enable done in the Framebuffer Read Unit. Note that the

Framebuffer Read Unit must be suitably enabled as
well for the source read to occut.
When this bit is reset no source reads occur
irrespective of the setting of the Framebuffer Read
Unit controls.

28...31 Unused 0 0 X

3D /b5 Proprietary and Confidential 8-39

Rasterizer

RasterizerMode

Name
RaasterizerMode
RaasterizerModeAnd
RaasterizerModeOr

Type

Rasterizer
Rasterizer
Rasterizer

Offset
0x80A0
0xABAO
0xABAS

Control register

GLINT R4 Programmer’s Guide Volume ||

Format
Bitfield
Bitfield
Bitfield

Bits

Name

Read’

Write

Reset

Description

MirrorBit Mask

g

]

. When set the bit mask bits are consumed from
the most significant end towards the least
significant end.

. When reset the bit mask bits are consumed from
the least significant end towards the most
significant end.

InvertBit Mask

When this bit is set the bit mask is inverted first before
being tested.

23

>

Fraction Adjust

These bits control the action of a ContinueNewLine
command and specify how the fraction bits in the Y
and XDom DDAs are adjusted.

0: No adjustment is done,

1: Set the fraction bits to zero,

2: Set the fraction bits to half.

3: Set the fraction to nearly half; i.e. OXTtft

4,5

Bias

Coordinates

These bits control how much is added onto the
SartXDom, StartXSub and StartY values when they
are loaded into the DDA units. The original registers
are not affected.

0: Zero is added,

1: Half is added,

2: Nearly half, i.e. Ox7tft is added

Reserved

||

Reserved

BitMask
ByteSwap
Mode

These bit controls the byte swapping of the BitMask
data before it is used. If the bytes are labelled ABCD
on input then they are swapped as follows:

0: ABCD (i.e. no swap)

1: BADC

2: CDAB

3: DCBA

BitMask
Packing

This bit controls whether the bitMask data is packed
or if a new BitMask data is required on every scanline.
0: BitMask data is packed,
1: BitMask data is provided for each
scanline.

? Logic Op register readback is via the main register only

8-40

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume ||

Rasterizer

10-14

BitMaskOffset

These bits hold the bit position in the BitMask data
where the first bit is taken from for the bit mask test
for the first BitMask data on a new scanline.
Subsequent BitMask data starts from bit 0 until the
next scanline. Successive bits are taken from
increasing bit positions until the bit mask is consumed
(i.e. bit 31 is reached). The least significant bit is bit
Zero.

15,16

HostDataByteS
wapMode

These bits controls the byte swapping of the BitMask
data before it is used. If the bytes are labelled ABCD
on input then they are swapped as follows:

0: ABCD (i.e. no swap)

1: BADC

2: CDAB

3: DCBA

17

MultiRasterizer

This bit selects whether the rasterizer is to wotk in
single rasterizer mode or in multi-Rasterizer mode. In
multi-rasterizer mode it only processes the scanlines
allocated to it.

0: Single Rasterizer mode

1: Multi-Rasterizer mode

18

YLimitsEnable

This bit, when set, enables the Y limits testing to be
done between the minimum and maximum Y values
given by the YLimits register.

19

Reserved

||

20...22

StripeHeight

This field specifies the number of scanlines in a stripe.
The options are:

0=1 3=8

1=2 4 =16

2=4

23

WordPacking

This bit controls how the two host words sent during,
a span operation are packed into the 64 bit internal
span data.
0 = first word in bits 0...31, second word
in 32...63
1 = first word in bits 32...63, second word
in 0...31

24

OpaqueSpans

This bit, when set allows the color of each pixel in the
span to be either foreground or background as set by
the supplied bit masks. If this bitis O then any
supplied bit masks are anded with the pixel mask to
delete pixels from the span.

25

Reserved

]

26

D3DRules

This bit, if set, uses D3D rules for subpixel correction
calculations, otherwise OpenGL rules are used.

27...31

Reserved

Reserved for future use, mask to 0

3D/abs

Proprietary and Confidential

8-41

Rasterizer

GLINT R4 Programmer’s Guide Volume ||

Notes:

Defines the long term mode of operation of the rasterizer.

The OpaqueSpan field determines how constant color spans are written (recall the Render
command selects between constant color or variable color spans). Transparent spans just use one
color for the foreground pixels and the background pixels are not written. Opaque spans write to
foreground and background pixels using 'BBlockColor for the foreground pixels and
FBBlockColorBack for the background pixels. This bit should be set to 0 for performance reasons
when foreground/background processing is not required.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with
the former mode before replacing it.

8.5

8.5.1

8-42

2D Setup

This unit performs a nuber of fuctions to improve the throughput of 2D rendering. There are
two new registers - Render2D and Render2DGlyph - which allow:

Rectangle setup using only two messages

Glyph rendering from texture memory in two messages

Glyph data can be handled (downloaded, chopped and padded) scanline by scanline
compatibly with bitmap textures

Packed pixel downloads are converted from 4- to 8-bit format

Run Length Encoded (RLE) data downloads are automatically expanded

The Render2D command incidentally flushes the write combine buffers to ensure memory is
updated (and therefore visible to bypass or video reads) after the rectangle is rendered.

Glyph rendering

Once the position is established (GlyphPosition) subsequent glyphs can be rendered by
writing the address of the texture bitmap containing the glyph to the TextureBaseAddr(0)
register folllwed by the Render2DGlyph Command. The glyph position is updated
automatically from the Width bitfield.Because glyphs are rendered as a span, the direction is
always increasing X and Y.

Proprietary and Confidential 3D/.bs

GLINT R4 Programmer’s Guide Volume || Scissor, Stipple

Scissor, Stipple and Color DDA Units

9.1

9.1.1

9.1.2

3D/.bs

Scissor Unit

Two scissor tests are provided in GLINT R4, the User Scissor test and the Screen Scissor
test.

The user scissor checks each fragment or span against a user supplied scissor region; the
screen scissor converts the fragment to screen-relative coordinates and checks that the
fragment or span lies within the screen.

The scissor unit operates both on active fragments and spans. In span processing the
pixel mask bits corresponding to a failed fragment are reset.

User Scissor Test

The user scissor test checks each fragment as follows:
XMin <= X < XMax

YMin<=Y <YMax

Where X and Y are the coordinates for the fragments, and XMin, XMax, YMin and YMax
define the user supplied scissor region. If a fragment fails the test it is discarded. The test
may be screen- or window- relative.

Screen Scissor Tests

This test ensures that a fragment lies within the screen boundaries. For each fragment the
XY origin stored in the WindowOrigin register is added to the fragment coordinates and
this is tested against the screen boundaries stored in the ScreenSize register. Since the
X and Y coordinates are held as 2's complement numbers, the window origin can be
moved off the edges of the screen.

Note that the WindowOrigin register only affects the origin for clipping, it does not affect
the base address for rendering. The Windows Initialization chapter gives further details on
how to set the base address of a window for rendering.

The Screen Scissor test is:
0 X +WX) <SW
0< (Y +WY) <SH

Where:

X = Fragment X coordinate WX = Window origin X coordinate
Y = Fragment Y coordinate WY = Window origin Y coordinate
SW = Screen Width SH = Screen Height

The diagram below shows a simple case of a screen with a single window which has a
user defined scissor region. The shaded area shows the region where fragments pass the

Proprietary and Confidential 9-1

Scissor, Stipple GLINT R4 Programmer’s Guide Volume Il

user and screen scissor tests and so can progress in the pipeline. Fragments outside this
region are culled from the pipeline.

User X,Y) RN
Scissor User
Min \ S;\:/'lﬂ’r
Screen \. N
Height
(SH) L N
\ Writeable Region
Window Origin Scissor Region
(WX, WY) \
Screen

<«—— Screen Width (SW) ———»

Figure 9-1 Screen Scissor and User Scissor Tests

This test may reject fragments if some part of a window has been moved off the screen. It
does not reject fragments if part of a window is simply overlapped by another window (GID
testing can be used to detect this).

9.1.3 Scissor Registers
The unit is controlled by the ScissorMode register:

Name Type Offset Format
ScissorMode Scissor 0x8180 Bitfield
ScissorModeAnd Scissor 0xABBO Bitfield Logic Mask
ScissorModeOr Scissor 0xABBS8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
10
0 UsetScissor O] X enables the user scissor clipping
Enable
1 ScreenScissor O] X enables the screen scissor clipping
Enable
2...31 Unused 0 0 be

10 Logic Op register readback is via the main register only

9-2 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Scissor, Stipple

Figure 9-2 ScissorMode Register

9.14

9.1.5

9.2

3D/.bs

The screen scissor test would normally be left enabled by default. The most common
exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and ScissorMaxXY
the X values are stored in the least significant 16 bits of the register, the Y values in the
most significant 16 bits of the register.

The WindowOrigin register has the X coordinate of the origin stored in the least
significant 16 bits of the register, and the Y coordinate in the most significant 16 bits of the
register. As each fragment is generated by the rasterization unit this origin is added to the
coordinates of the fragment to generate its screen coordinates.

The ScreenSize register specifies the screen width and height, with the width in the least
significant 16 bits and the height in the most significant 16 bits.

Span Operations and the Scissor Unit

If a span mask is presented to the scissor unit, the pixel mask (and potentially the color
mask) is modified to zero out bits corresponding to pixels which lie outside the scissor
region. This is true for both the user scissor and the screen scissor. The screen scissor
first converts the span’s coordinates to screen-relative.

Scissor Example

To enable screen scissor for a region: 10 <= X < 500, 100 <= Y < 200 with a screen size of
1280x1024 and the window origin at (100,100).

Il Set the screen size
screenSize Width = 1280
screenSize.Height = 1024
ScreenSize(screenSize)

/I Set the window origin
ScissorM ode(scissorM ode)
WindowOrigin(windowOrigin)
/I Render primitives

Stipple Unit

Stippling is a process which checks each fragment against a bit in a defined pattern. The
fragment can either be rejected or accepted depending on the result of the stipple test. If it
is rejected, then it undergoes no further processing, otherwise it proceeds down the
pipeline. GLINT R4 supports line and area stippling.

Proprietary and Confidential 9-3

Scissor, Stipple GLINT R4 Programmer’s Guide Volume Il

9.21

9-4

Area Stippling

Both the AreaStippleEnable in the PrepareToRender message and enable in the
AreaStippleMode message must be set to enable the area stipple test. If the stipple test
is disabled then the area span mask is set to Oxffffffffffffffff, otherwise it is calculated as
follows.

The address of the stipple pattern row to use in the test is calculated as follows:

« Add the Y offset to the bottom five bits of Y coordinates of the span coordinate. If the
corresponding mirror bits are set then invert the Y address.

« Extract the bottom m bits of the resulting Y value where m is determined by the Y Sel
fields. The extracted Y address is zero extended to 5 bits where necessary and is
now called Y.

« Addthe YTableOffset to Y’ to move the test to the required sub stipple pattern row.

The Y’ value selects the row in the stipple RAM (row zero is at AreaStipplePattern[0]) and

this is the first value of the area stipple mask which is processed by each of the following

stages and passed on to the next:

« The mask is rotated right by the XTableOffset amount to select the sub stipple pattern
to replicate, mirror, etc.

. The least significant 2, 4, 8, 16 or 32 bits are extracted from the area stipple mask
and replicated to fill all 32 bits of the mask. The Xsel field determines the number of
bits to replicate (0 = 2 bit to replicate, etc.).

« Next the area stipple mask is mirrored if the MirrorX bit is set. The mirroring is done
by swapping bits (0, 63), (1, 62), (2, 61), etc..

« The area span mask is inverted under control of the InvertStipplePattern bit.

« The area span mask is rotated right by (Xoffset + X) bits.

The area stipple pattern is always 32x32 and is window relative. However the XtableOffset
and YtableOffset fields in AreaStippleMode allow the 32x32 bit table to hold several
smaller area stipple patterns. The least significant 5 bits of the fragment’s (X,Y)
coordinates, index into the controlling bit of the 2D stipple pattern. If the selected bit in the
pattern is set, then the fragment passes the test, otherwise it is rejected as described
above.

The mask is defined in the AreaStipplePattern registers. Area stippling is enabled and
controlled using the AreaStippleMode register and must be qualified by the AreaStipple
Enable bit in the Render command register. This allows temporary disable stippling when
Bitmaps or OGL pixel rectangles are being rendered.

The address selection can be controlled independently in the X and Y directions. In
addition the bitpattern can be inverted or mirrored using InvertStipplePattern or MirrorX.
Inverting the bit pattern has the effect of changing the sense of the accept/reject test. If the
mirror bit is set the most significant bit of the pattern is towards the left of the window, the
default is the converse.

In some situations window relative stippling is required but coordinates are only available
screen relative. To allow windows relative stippling, an offset can be added to the
coordinates before indexing the stipple table. X and Y offsets can be controlled
independently.

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Scissor, Stipple

9.2.2

9.2.3

9.24

Name

Line Stippling
Line stippling applies normally to aliased lines. Antialisaed lines can be stippled by
applying the stipple pattern to the rectangles which constitute the antialiased line.

In this test, fragments are conditionally rejected on the outcome of testing a linear stipple
mask. If the bit is zero then the test fails, otherwise it passes. The line stipple pattern is 16
bits in length and is scaled by a repeat factor, r, (in the range 1 to 512). The stipple mask
bit, b, which controls the acceptance or rejection of a fragment is determined using:

b = (floor (s/r)) mod 16

where s is the stipple counter which is incremented for every fragment (normally along the
line). This counter may be reset at the start of a polyline, but between segments it
continues as if there were no break.

The stipple pattern can be optionally mirrored, that is the bit pattern is traversed from most
significant to least significant bits, rather than the default, from least significant to most
significant.

The UpdateLineStippleCounters register controls initialization of the line stipple
counters, which can be reset or loaded from a previously saved value. The
UpdateLineStippleCounters register can be reset by writing 0 to bit O (earlier chips
required resetting all 32 bits in the register).

The SaveLineStippleCounters register is used to save the current line stipple counters.
The combination of UpdateLineStippleCounters and SaveLineStippleCounters is
useful to implement stippling of wide polylines.

Line stippling is enabled using the LineStippleMode register and must be qualified by the
LineStippleEnable bit in the Render command register.

Span Operations and Stippling

If the Area Stipple unit is enabled it modifies span masks generated by the rasterizer.

(Line stipple has no effect on the span mask.) The mask can be rotated or inverted
before being ANDed with the pixel mask for transparent spans, or the color mask for spans
using the OpaqueSpan bit in the AreaStippleMode register.

Registers
The LineStippleMode register controls line stipple:
Type Offset Format

LineStippleMode Stipple 0x81A8 Bitfield
LineStippleModeAnd Stipple 0xABCO Bitfield Logic Mask
LineStippleModeOtr Stipple 0xABCS8 Bitfield Logic Mask

Control register

Bits

Name Read | Write | Reset | Description

StippleEnable 0 u < This field, when set, enables the stippling of lines. The
LineStippleEnable bit in the Render command must
also be set.

RepeatFactor 0 N X This field holds the positive repeat factor for stippled
lines. The repeat factor stored here is one less than
the desired repeat factor.

3D/.bs

Proprietary and Confidential 9-5

Scissor, Stipple

GLINT R4 Programmer’s Guide Volume Il

10...25 StippleMask 0 i x This field holds the stipple pattern.
26 Mirror 0 i x This field, when set, will mirror the StippleMask
before it is used.
27...31 Unused 0 0 %
Figure 9-3 LineStippleMode Register

The least significant bit of the UpdateLineStippleCounters register controls loading the
line stipple counters. If set the line stipple counters are loaded with the previously saved
values. If reset, the counters are cleared to zero. The counters can also be reset by means
of the ResetLineStipple bit in the Render command.

The AreaStippleMode register controls area stipple operation:

Name Type Offset Format
AreaStippleMode Stipple 0x81A0 Bitfield
AreaStippleModeAnd Stipple 0xABDO Bitfield Logic Mask
AreaStippleModeOr Stipple 0xABD8 Bitfield Logic Mask
Control registers
Bits Name Read!l |Write |Reset |Description
0 Enable 0 0 X This field, when set, enables area stippling. The
AreaStippleEnable bit in Render must also be set for this
to have an effect.
1.3 X address select: |[] [X 0 =1 bit 1 =2 bit
2 = 3 bit 3 = 4 bit
4 =5 bit
4.6 Y address select: |[] m X 0 =1 bit 1 =2 bit
2 = 3 bit 3 = 4 bit
4 =5 bit
7.11 X Offset N [X This field holds the offset to add to the X value before
it is used to index into the stipple bit. This allows a
window relative stipple pattern to be selected when the
coordinates are given in screen relative format.
12..16 Y Offset 0 m X This field holds the offset to add to the Y value before
it is used to index into the area stipple pattern table.
This allows a window relative stipple pattern to be
selected when the coordinates are given in screen
relative format.
17 Invert Stipple 0 m X 0 = No Invert 1 = Invert
Pattern
18 Mirror X 0 [0 = No Mirror 1 = Mirror
19 Mirror Y 0 [0 = No Mirror 1 = Mirror
20 OpaqueSpan N [This bit, when set, allows the area stipple pattern to
modify the color mask, otherwise the pixel mask is
modified.

1 Logic Op register readback is via the main register only

9-6

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume || Scissor, Stipple

21...25 XTableOffset |[] m X This field allows a sub area stipple pattern to be
extracted from the area stipple table, i.e. the area stipple
table is treated as a cache of smaller stipple patterns.

26...30 Y TableOffset N [X This field allows a sub area stipple pattern to be
extracted from the area stipple table, i.e. the area stipple
table is treated as a cache of smaller stipple patterns.

31 Unused 0 0 X

Figure 9-4 AreaStippleMode Register

The EnableUnit bit in the LineStippleMode and AreaStippleMode registers are qualified
by the LineStippleEnable and AreaStippleEnable bits in the Render command register.

The SaveLineStippleCounters register (which has no data field) saves the line stipple
counters internally.

The area stipple is set up in the AreaStipplePattern register, where n represents an
integer between 0 and 31.

The LoadLineStippleCounters register is shown in the GLINT R4 Reference Guide

Name Type Offset Format
LoadLineStippleCounters Global 0x81B0 Bitfield
Command
Bits Name Read | Write | Reset | Description
0...3 LiveBit O W X
Counter
4...12 LiveRepeat O il X
Counter
13...16 SegmentBit O]] X
Counter
17...25 SegmentRepeat | [] 1 X
Counter
26...31 Unused 0 0 X

Figure 9-5 LoadLineStippleCounters register

9.2.5

3D/.bs

Examples
A repeating area stipple pattern of 2x2 pixels producing a 50% grey area:
/I Use only thefirst two table entries
AreaStipplePattern0(0x1)
AreaStipplePattern1(0x2)
/I Set-up mode register
areaStippleMode.UnitEnable= GLINT R4_ENABLE
areaStippleMode. XSel = 0 // Address index based on
areaStippleMode.Y Sel = 0 // LSB of address, repeats

Proprietary and Confidential 9-7

Scissor, Stipple GLINT R4 Programmer’s Guide Volume Il

[l every 2nd pixel in X & Y

areaStippleMode. X Offset = 0

areaStippleMode.Y Offset =0
areaStippleMode.Invert = 0
areaStippleMode.MirrorY =0
areaStippleMode.MirrorX =0

/I Load mode register
AreaStippleM ode(areaStippleM ode)

/I When the Render command is sent the
Il AreaStippleEnable

/1 bit should be set in addition to the area stipple
I/ test being enabled:
Il render.AreaStippleEnable = GLINT R4_TRUE

9.2.6 Line Stipple Example

A line stipple which rejects alternate fragments:
/I Set countersto zero
UpdateL ineSti ppleCounters(0x0)
Il Set the stipple mode
lineStippleM ode.UnitEnable= GLINT R4_ENABLE
lineStippleM ode.RepeatFactor = 0 // Repeat factor 1
lineStippleMode.StippleMask = OXAAAA
LineStippleM ode(lineStippleM ode)

/l When issuing a Render command the
I/ LineStippleEnable bit should be set in addition
// to the line stipple test being enabled:

/l render.LineStippleEnable= GLINT R4_TRUE

9.2.7 Area Stipple Pattern Example

Another repeating area stipple pattern of 2x2 pixels producing a 50% grey area.:

AreaStiPPlePattern0 (OXAAAAAAAA)
AreaStipplePatternl (0Ox55555555)
AreaStipplePattern2 (OXAAAAAAAA)
AreaStipplePattern3 (0x55555555)
AreaStipplePattern4 (OXAAAAAAAA)
AreaStipplePatfern5 (0x55555555)
AreaStipplePattern6 (OXAAAAAAAA)

9-8 Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume || Scissor, Stipple

AreaStipplePattern? (0x55555555)
AreaStipplePattern31 (0x55555555)

I/ Set-up mode register
areaStippleMode.UnitEnable = GLINT R4_ENABLE
areaStippleMode. Xselect =0
areaStippleMode.Y select =0
areaStippleMode. X offset =0
areaStippleMode.Y offset = 0
areaStippleMode.lnvert =0
areaStippleMode.MirrorY =0
areaStippleMode.MirrorX =0

// Load mode register
AreaStippleM odeareaStippleM ode)

/I When issuing a Render command, the
/I AreaStippleEnable bit should be set to enabled:

/I Arender.AreaStippleEnable = GLINT R4_TRUE

9.3 Color DDA Unit

The color DDA unit is used to associate a color with a fragment produced by the rasterizer.
This unit should be enabled for rendering operations and disabled for pixel rectangle
operations (i.e. copies, uploads and downloads). Color DDA functionality is controlled by
the ColorDDA register:

ColorDDAMode
ColorDDAModeAnd
ColorDDAModeOr

Name Type Offset Format
ColorDDAMode Color 0x87E0 Bitfield
ColorDDAModeAnd Color 0xABEO Bitfield Logic Mask
ColorDDAModeOr Color 0xABES Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
12
1 Enable N B X This bit, when set, causes the current color to be
generated.

12 Logic Op register readback is via the main register only

3D/.b5 Proprietary and Confidential 9-9

Scissor, Stipple GLINT R4 Programmer’s Guide Volume Il

2 Shading 0] X Selects the shading mode. The two options are:
0 = Flat — the color is taken from the Constant Color
register.
1 = Gouraud — the color is taken from the DDAs.
3...31 Unused 0 0 X
Notes: The ColortDDAMode register controls the operation of the Color DDA unit using the Enable and
Shading bits. The logic operator equivalents behave the same way but the new mode is AND’d or
OR’d with the former mode before replacing it.
9.3.1 RGBA and Color-Index(CI) Modes

Two color modes are supported by GLINT R4, RGBA and color index (Cl). GLINT R4’s
internal color representation is RGBA with 8 bits per component: A typical register layout
is ConstantColor:

Constant Color

Name Type Offset Format
ConstantColor Delta 0x87E8 Bitfield
Control register
Bits Name Read | Write | Reset Description

0...7 Red |] X

8...15 Green |] X

16...23 Blue O i X

24..31 | Alpha 0O [x

Notes: This register holds the constant color in packed format. This is a legacy register maintained for

backwards compatibility which has been superceded by the ConstantColorDD.A register.

The ConstantColorDDA register, as well as loading up the constant color register, also loads the DDA
start register from the corresponding color byte and sets the dx and dyDom gradients to zero. This
allows a constant color to be set up irrespective of the shading mode.

9-10

This format is the same for all the different framebuffer configurations supported. If the
number of bits in the framebuffer for a color component is less than 8 then the color value
is left shifted into the most significant bits of that component’s field. The unused least
significant bits should be set to zero.

In CI mode the color index is placed in the lower byte of the 32 bit register (i.e., the red
component). If less than 8 bits are used the index is left justified to be in the most
significant end of the red component. The unused least significant bits should be set to
zero.

For further information on Color modes see chapter 9 - Color Format and Logical Ops.

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Scissor, Stipple

9.3.2

Gouraud Shading

Shading may be flat or Gouraud. For flat shading, the color value is taken from the
ConstantColor register, not from the DDA. When in Gouraud shading mode, the color
DDA unit performs linear interpolation given a set of start and increment values.
Interpolated values are clamped to avoid overflow or underflow. For details of color
interpolation calculation see Appendix 13-2 - Calculating Depth Gradient Values.

Figure 9-6 Color Interpolation

Color interpolates from the dominant edge of the trapezoid to the subordinate edges. This
means that two increment values are required per color component, one to move along the
dominant edge and one to move across the span to the subordinate edge. This is
illustrated in Figure 9-6, where C represents a color component (red, green, blue, alpha or
color index). The control registers are shown in table 3.3, below.

For Gouraud shaded lines, each line is treated as the dominant edge of a trapezoid so no
dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a 24bit fixed point
format. The format is 2’'s complement with 9 bits of integer and 15 bits of fraction. A typical
register layout is shown below:

Name Type Offset Format
dAdyDom Color DDA 0x87D8 Fixed point
Control register
Bits Name Read | Write | Reset Description
0...14 Fraction 0 0 X 2’s complement 9.15 fixed point fraction
15...23 Integer 0 0 X 2’s complement 9.15 fixed point integer
24...31 Unused 0 0

Figure 9-7 Fixed Point Color Format

3D/.bs

Proprietary and Confidential 9-11

Scissor, Stipple GLINT R4 Programmer’s Guide Volume Il

Note that if you are rendering to multiple buffers and have initialized the start and
increment values in the color DDA unit, then any subsequent Render command will reload
the start values.

If subpixel correction has been enabled for a primitive, then any correction required will be
applied to the color components.

The registers to set up Gouraud shading in the color DDA unit are:

Register Data Field Description

RStart Fixed point 9.15 format Red start value

dRdx Fixed point 9.15 format Red derivative per unit X

dRdyDom Fixed point 9.15 format Red derivative per unit Y, dominant edge

GStart Fixed point 9.15 format Green start value

dGdx Fixed point 9.15 format Green derivative per unit X

dGdyDom Fixed point 9.15 format Green derivative per unit Y, dominant edge

BStart Fixed point 9.15 format Blue start value

dBdx Fixed point 9.15 format Blue derivative per unit X

dBdyDom Fixed point 9.15 format Blue derivative per unit Y, dominant edge

AStart Fixed point 9.15 format Alpha start value

dAdx Fixed point 9.15 format Alpha derivative per unit X

dAdyDom Fixed point 9.15 format Alpha derivative per unit Y, dominant edge
Table 9.3 Color Interpolation Registers

9.3.3 Flat Shading Example
A flat shaded primitive:

I/ Set DDA to flat shade mode
colorDDAMode.UnitEnable = GLINT R4 ENABLE
colorDDAMode.Shade= GLINT R4 FLAT_SHADE_MODE
ColorDDAM ode(colorDDAMode)

ConstantCol or(OxFFFFFFFF)

/I Load the flat color

9.3.4 Gouraud Shaded Trapezoid Example

// Enable unit in Gouraud shading mode
colorDDAMode.UnitEnable = GLINT R4_ENABLE

colorDDAM ode.Shade = GLINT R4_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

/I Load the color start values and deltas for dominant
// edge and the body of the trapezoid

9-12

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume ||

9.3.5

3D/.bs

RStart() // Set-up the red component start value
dRdx() // Set-up the red component increments
dRdyDom()

GStart() // Set-up the green component start value
dGdx() /I Set-up the green component increments
dGdyDom()

BStart() // Set-up the blue component start value
dBdx () // Set-up the blue component increments
dBdyDom ()

Gouraud Shaded Line Example
// Set DDA for Gouraud shaded mode

colorDDAMode.UnitEnable = GLINT R4_ENABLE
colorDDAMode.Shade = GLINT R4_GOURAUD_SHADE_MODE
ColorDDAM ode(colorDDAM ode)

// For lines we need only start values and
// dominant edge deltas

RStart() // Set-up the red component start value
dRdyDom() // Set-up the red component increment
GStart() // Set-up the green component start value
dGdyDom() // Set-up the green component increment
BStart() // Set-up the blue component start value
dBdyDom() // Set-up the blue component increment

Proprietary and Confidential

Scissor, Stipple

9-13

GLINT R4 Programmer’s Guide Volume || Localbuffer

10

Localbuffer Read/Write

The localbuffer holds the Graphic ID, Stencil and Depth data associated with a fragment.
The localbuffer address calculation uses the LocalBuffer mode, address and offset
registers registers to set base addresses and screen-relative offsets, as well as positioning
the Depth, Stencil and GID planes. For details see “Localbuffer and
Framebufferonfiguration” in Initialization section 12.2.7 below.

The origin can be set in the relevant BufferMode register(s) to top left or bottom right using
the Origin field.

Note: Enabling Patch addressing in the Layout field of the buffer mode registers
introduces additional complexity into the address calculation which is beyond
the scope of this manual. Localbuffer bypass accesses are not recommended
when Patch mode addressing is enabled.

The localbuffer read format is controlled by the LBDestReadFormat register’s definition of
the positions of the Depth, Stencil and GID planes.

Selecting a depth width of 15 bits forces the stencil and GID fields to be set from bit 15 of
the pixel and ignores the normal stencil and GID settings.

The natural internal width of the fields are depth (31), stencil (8), GID (4). If the specified
width of a field is less than its internal width then the field is zero extended to its internal
width.

Field Width Position

Depth 16, 24, 31, 15 Bit O to bit 3

Stencil 0-8 Starts at 16 to 39 (entered as 0 — 23)

GID 0-4 Starts at 16 to 39 (entered as 0 — 23) following Stencil

Table 10.4 Localbuffer Configurations

The enables for these are in the GIDMode, StencilMode and DepthMode registers.
These tell Permediad which areas of the localbuffer are required for various operations.
The operations are specified by the LBWriteMode Operation field in bits 29-31:

29...31 Operation N B X This field defines where the data is to be taken from to
do the write and what is to happen to it afterwards.
This is only of interest during an upload or download
operation. The options are:
0 = No operation 1 = Download depth
2 = Download stencil 3 = Upload depth
4 = Upload stencil
3D/.b5 Proprietary and Confidential 10-1

Localbuffer

Table 10.5

Localbuffer Read/Write Modes.

GLINT R4 Programmer’s Guide Volume Il

Note that the LBReadFormat and LBWriteFormat registers should not be written to while
there are pending reads to the localbuffer. To avoid this a write to these registers should
normally be preceded by a WaitForCompletion command.

10.1.1 Mode Registers

The LBDestReadMode register is as shown below:

LBDestReadMode
LBDestReadModeAnd
LBDestReadModeOr
Name Type Offset Format
LBDestReadMode Localbuffer 0xB500 Bitfield
LBDestReadModeAnd Localbuffer 0xB580 Bitfield Logic Mask
LBDestReadModeOr Localbuffer 0xB588 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
13
0 Enable 0 i - This bit, when set, causes fragments or spans to read
from the destination buffer
Reserved O n X
2.4 StripePitch 0 i x This field specifies the number of scanlines between
the first scanline in a stripe and the first scanline in the
next stripe. (It would normally be set to a number of
RXs * StripeHeight). The options are:
0=1 1=2 2=4 3=8 4=16
5=32 6=64 7=128
This field will normally be set to zero for GLINT R4.
5...7 StripeHeight 0 i x This field specifies the number of scanlines in a stripe.
The options are:
0=1 1=2 2=4 3=8 4=16
This field will normally be set to zero for GLINT R4.
8 Layout 0 i < This field selects the layout of the pixel data in
memory for the destination buffer. The options are:
0 = Linear 1 = Patch64
9 Origin 0 i x This field selects where the window origin is for the
destination buffer. The options are:
0 = Top Left. 1 = Bottom Left
10 UseRead 0 i < When this bits is set the enables in the
Enables LBDestReadEnables register are used to determine if a
destination read is required. The Enable bit must also
be set as well for a read to occut.

13 Logic Op register readback is via the main register only

10-2

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Localbuffer

11 Packed16 0 N X When this bit is set the pixel size is 16 bits so a single
memory word can hold 8 depth values.

12...23 Width 0 N x This field holds the width of the destination buffer.
Its range is 0...4095.

Notes: Defines the localbuffer destination read operation. The destination address calculations are controlled

by the L.BDestReadMode register and the address is a function of X, Y, L.BDestReadBufferAddr,
LBDestReadBufferOffset, width and Packed16 parameters.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

Figure 10-1 LBDestReadMode Register

LBWriteFormat

Name Type Offset Format
LBWriteFormat Localbuffer 0x88C8 Bitfield
Control register

Bits Name Read | Write | Reset | Description

0...1 DepthWidth 0 B x This field specifies the width of the depth field. The
depth field always starts at bit position 0. The width
options are:

0 = 16 bits

1 = 24 bits

2 = 31 bits

3 = 15 bits
When the depth width is 15 the GID and Stencil fields
are ignored and a one bit GID and Stencil are taken
from bit 15. Only one of the GID or Stencil
operation are enabled to select the desired field type.

2...5 StencilWidth 0 N - This field specifies the width of the stencil field. The
legal range of values are 0...8. The stencil field always
starts at bit position given in the next field.

6...10 StencilPosition |] B x This field holds position of the least significant bit of
the stencil field. The legal range of values are 0...23,
representing bit positions 16...39 respectively.

11...19 Reserved 0 0 X

20...22 GIDWidth 0 N x This field specifies the width of the Graphics ID field.
The legal range of values are 0...4. The GID field
always starts at the bit position given in the
GIDPosition field.

23...27 GIDPosition 0 B x This field holds position of the least significant bit of
the Graphics ID field. The legal range of values are
0...23, representing bit positions 16...39 respectively.

28...31 Reserved 0 0 x

3D/abs Proprietary and Confidential 10-3

Localbuffer GLINT R4 Programmer’s Guide Volume Il

Notes: This register defines the position and width of the depth, stencil, GID (Graphics ID) in the data read
back from the local buffer.

Figure 10-2 LBWriteFormat Register Layout

10.2 Window register

A number of Localbuffer operations, particularly Stencil, are conditioned by the Window
register.

« The ForceLBUpdate bit is used to allow all the fields in the localbuffer to be updated
simultaneously. ForceLBUpdate overrides all stencil and Depth testing. This is useful
during initialization and copy operations.

« When the LBUpdateSource bit is set the source of the stencil and depth data is
determined by the StencilMode and DepthMode registers respectively.

» The OverrideWriteFiltering control bit, when set causes the testing of LBData =
LBWriteData to always fail. This is mainly used when the GID field needs to be
changed. It also allows the LBReadFormat to be different to the LBWriteFormat so
the write data as seen by the memory is really different to the data that was read.

« LBUpdateSource is used in conjunction with the ForceLBUpdate bit to select whether
the source data comes from: the localbuffer, or values held in local registers (Depth,
Window, Stencil).

« The combination of LBUpdateSource being set to LBSourceData, and the
ForceLBUpdate bit being enabled is particularly useful when copying a window from
one location on the screen to another.

« The combination of LBUpdateSource being set to Registers and the force LBUpdate
bit being enabled is particularly useful for initializing the contents of the various
localbuffer fields in a window.

* Normally Permedia4 detects the case where the data to be written to the localbuffer is
the same as the data read from the localbuffer, and avoids performing the write.
Setting the OverrideWriteFiltering bit prevents these writes from being filtered out.
This is of value when the localbuffer read format is different from the localbuffer write
format since the comparison is done on the internal data format.

10.3 Pixel Ownership (GID) Test Unit

Any fragment generated by the rasterizer may undergo a pixel ownership test. This test
establishes the current fragment’s write permission to the localbuffer and framebuffer.

10.3.1 Pixel Ownership Test

The ownership of a pixel is established by testing the GID of the current window against
the GID of a fragment’s destination in the GID buffer. If the test passes, then a write can
take place, otherwise the write is discarded.

The sense of the test can be set to one of: always pass, always fail, pass if equal, or pass
if not equal. Pass if equal is the normal mode. In Permedia4 the GID planes, if present, are

10-4 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Localbuffer

4 bits deep allowing 16 possible Graphic ID’s. If GIDMode is disabled fragments pass
through undisturbed.

Pixel ownership is controlled by the relevant LB Format and GIDMode registers:

3D/.b5 Proprietary and Confidential 10-5

Localbuffer

GIDMode
GIDModeAnd
GIDModeOr

GLINT R4 Programmer’s Guide Volume Il

Name Type Offset Format
GIDMode Localbuffer 0xB538 Bitfield
GIDMode And Localbuffer 0x B5B0 Bitfield Logic Mask
GIDMode Or Localbuffer 0x B5B8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
14
0 Fragment 0 il X This bit, when set, causes GID testing to occur on
Enable fragments. If the test fails then the fragment is
discarded
1 Span Enable 0 7 X This bit, when set, allows the span pixel mask to be
modified by GID testing each pixel. The mask is
modified to disable those pixels which fail the test.
2...5 Compare Value | il X This field holds the 4 bit GID value to compare
against. Unused bits (where the GID width in the
local buffer format is less than 4 bits) should be set to
Zero.
6...7 Compare Mode |] u| X This field holds the comparison modes available for
use during GID testing. The options are:
0 = Always pass
1 = Never pass (i.e. always fail)
2 = Pass when local buffer gid == CompareValue
3 = Pass when local buffer gid = CompareValue
8...9 Replace Mode | [0 il X This field specifies the replacement mode. This is
independent of the FragmentEnable bit (except when
the replacement depends on the outcome of the GID
test). The options are:
0 = Always replace
1 = Never replace
2 = Replace on GID test pass.
3 = Replace on GID test fails
10...13 Replace Value 0 u| X This field holds the 4 bit GID value to replace the
value read from the local buffer, if the replace mode is
satisfied.
13...31 Reserved 0 0 X Reserved

Figure 10-3 GIDMode Register

The CompareMode field will generally be set to 'Pass if Equal’ for GID testing, with the
current GID in the appropriate field.

14 Logic Op register readback is via the main register only

10-6

Proprietary and Confidential

3D/.bs

GLINT R4 Programmer’s Guide Volume || Localbuffer

10.4

Stencil Test

The stencil test conditionally rejects fragments based on the outcome of a comparison
between the value in the stencil buffer and a reference value. The stencil buffer is updated
according to the current stencil update mode which depends on the result of the stencil
test and the depth test.

This test only occurs if all the preceding tests (bitmask, scissor, stipple, alpha, pixel
ownership) have passed. The stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test between the reference stencil value
and the value held in the stencil buffer. If the test is LESS and the result is true then the
fragment value is less than the source value. The stencil operation controls the updating of
the stencil buffer, and is dependent on the result of the stencil and depth tests.

The table below shows the stencil functions available:

Mode

Comparison Function Mode Comparison Function

0

Never 4 Greater

Less Not Equal

1
2
3

5
Equal 6 Greater or Equal
7

Less or Equal Always

Table 10.6 Stencil Functions

If the stencil test is enabled then the stencil buffer will be updated depending on the
outcome of both the stencil and the depth tests (if the depth test is disabled the depth
result is set to pass). Refer to the tables below and the definition of the StencilMode
register in section §10.4.1 to fully understand their relationship.

Stencil Test
Pass Fail
Depth Test Pass dppass sfail
Fail dpfail sfail

Table 10.7 Possible Update Operations for Stencil Planes

The entries dppass, dpfail and sfail are set to one of the update operations below. Source
stencil is the value in the stencil buffer:

Update Method Mode Stencil Value

Keep 0 Source stencil

Zero 1 0

Replace 2 Reference stencil

Increment 3 Clamp (Source stencil + 1) to pstencil width _ ¢
Decrement 4 Clamp (Source stencil -1) to 0

Invert 5 ~Source stencil

Table 10.8 Stencil Operations

3D/.bs

Proprietary and Confidential 10-7

Localbuffer

GLINT R4 Programmer’s Guide Volume Il

In addition a comparison bit mask is supplied in the StencilData register. This is used to
establish which bits of the source and reference value are used in the stencil function test.
It should normally be set to exclude the top four bits when the stencil width has been set to
4 bits in the StencilMode register.

The source stencil value can be from a number of places as controlled by bits 13-14
(StencilSource) in the StencilMode register:

Stencil Source Mode |Use

Test logic 0 This is the normal mode.

Stencil register 1 This is used, for instance, in the OpenGL draw pixels function where
the host supplies the stencil values in the Stencil register. This is used
when a constant stencil value is needed, for example, when clearing the
stencil buffer when fast clear planes are not available.

Source stencil value read 2 This is used, for instance, in the OpenGL copy pixels function when

from the localbuffer

the stencil planes in the destination are not to be updated. The stencil
data comes from the localbuffer.

LBSourceData: 3 This is used, for instance, in the OpenGL copy pixels function when
(stencil value read from the the stencil planes are to be copied to the destination. .
localbuffer)

Table 10.9 Stencil Sources

See The OpenGL Reference Manual and The OpenGL Programming Guide from Addison-
Wesley for more details of stencil operations and examples of its use.

10.4.1 Registers

Stencil test is controlled by the StencilMode register:

10-8

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

StencilMode
StencilModeAnd
StencilModeOr

Localbuffer

Name Type Offset Format
StencilMode Stencil 0x8988 Bitfield
StencilModeAnd Stencil 0xAC60 Bitfield Logic Mask
StencilModeOr Stencil 0xAC68 Bitfield Logic Mask
Control registers

Bits Name Read | Write | Reset | Description
0 Unit enable O i X 0 = Disable

1 = Enable
1... Update method | 0 N - if Depth test passes and Stencil test passes (see table 1)
4. Update method | [J u x if Depth test fails and Stencil test passes (see table 1)
7. Update method | [B x if Stencil test fails (see table 1)
10...12 Mode 0-7 0 N % Unsigned comparison function (see table 2)
13...14 Stencil source O] X 0 = Test Logic

1 = Stencil Register

2 = LBData

3 = LBSourceData
15...16 Stencil widths 0 i X 0 = 4 bits

1 = 8 bits

2 =1 bit
17...31 Unused 0 0 X

Figure 10-4 StencilMode Register

3D/.bs

The StencilData register holds the other data associated with the test.

Proprietary and Confidential 10-9

Localbuffer

GLINT R4 Programmer’s Guide Volume Il

StencilData
StencilDataAnd
StencilDataOr
Name Type Offset Format
StencilData Stencil 0x8990 Bitfield
StencilDataAnd Stencil 0xB3E0 Bitfield Logic Mask
StencilDataOr Stencil 0xB3ES8 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
0...7 Stencil value O] X 8 bit stencil test value
8...15 Compare mask | [J] X Determines which bits are significant in the test
16...23 Writemask O il X Determines which bits in localbuffer are updated
24...31 Reserved 0 0 X

Figure 10-5 StencilData Register

10.4.2

10-10

The stencil writemask is used to control which stencil planes are updated as a result of the
test.

The Stencil register holds an externally sourced stencil value. It is a 32 bit register of
which only the least significant 8 bits are used. The unused most significant bits should be
set to zero.

The Stencil register must be enabled to update the stencil buffer. If it is disabled then the
stencil buffer will only be updated if ForceLBUpdate is set in the Window register.

Stencil Example

This example sets the stencil unit to use a supplied reference value (0x80) and to test
fragments to be LESS than this value. It also sets the stencil planes update function to be
Increment if the test passes and the depth test passes (or is not enabled), otherwise it sets
the update function to Keep.

/I Set the localbuffer read and write modes
/] Set the stencil modes

stencilMode.UnitEnable = GLINT R4_ENABLE

stencilMode.DPPass= GLINT R4 _STENCIL_METHOD INCREMENT
stencilMode.DPFail = GLINT R4 _STENCIL_METHOD KEEP
stencilMode.SFail = GLINT R4_STENCIL_METHOD_KEEP
stencilMode.CompareFunction = GLINT R4 _STENCIL_COMPARE_LESS
stencilMode.Stencil Source = GLINT R4_SOURCE_TEST_LOGIC
stencilMode.Width = as appropriate

StencilM ode(stencilM ode)

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Localbuffer

I Set the reference stencil value and set the

/l compare and writemasks to OXFF

stencilData.ReferenceStencil = 0x80

stencilData.CompareMask = OxFF

stencil Data. Stencil WriteMask = as appropriate for width of Stencil buffer
stencilData.FCStencil = don’t care

Stencil Data(stencil Data)

// Enable the depth test hereif required, if not enabled the result of the depth test is set to pass.

10.5 Depth Test
The depth (2) test, if enabled, compares a fragment’'s depth against the corresponding
depth in the depth buffer. The result of the depth test can affect the stencil buffer update if
stencil testing is enabled.
This test is only performed if all the preceding tests (bitmask, scissor, stipple, alpha, pixel
ownership, stencil) have passed. The comparison tests available are:
Mode Comparison Function Mode Comparison Function

0 Never 4 Greater

1 Less 5 Not Equal

2 Equal 6 Greater Than or Equal

3 Less Than or Equal 7 Always

Table 10.10 Depth Comparison Modes.

3D/.bs

The test compares the fragment’s depth against a source depth value. If the compare
function is LESS and the result is true then the fragment value is less than the source
value. The source value can be obtained from a number of places as controlled by a field
in the DepthMode register.

Proprietary and Confidential 10-11

Localbuffer GLINT R4 Programmer’s Guide Volume Il

Source Use

DDA (see below) |This is used for normal Depth (Z) buffered 3D rendering.

Depth register This is used, for instance, in the OpenGL draw pixels function where the host supplies the
depth values through the Depth register.
Alternatively this is used when a constant depth value is needed, for example, when clearing
the depth buffer or 2D rendering where the depth is held constant.

LBSourcData: Source depth value from the localbuffer:
This is used, for instance, in the OpenGL copy pixels function when the depth planes are to
be copied to the destination.

Source Depth This is used by X during the a window copy operation where all the fields in the pixel are

moved.

This is used in the OpenGL CopyPixels function when the depth planes in the destination are
not updated. The depth data will come either from the LBData message of the FCDepth
register depending the state of the Fast Clear modes in operation.

Table 10.11 Depth Sources

When using the depth DDA for normal depth buffered rendering operations the depth
values required are similar to those required for the color values in the color DDA unit:

Zstart = Start Z Vaue
dzdyDom = Increment along dominant edge.
dzdX = Increment along the scan line.

The dzdX valueis not required for Z-buffered lines.

Figure 10-6 Depth Interpolation

The number format for the increment values is 2's complement fixed point integer: 32 bits
integer and 16 bits fraction. All the start, derivative and internal data is in this format. This
is mapped into the Upper and Lower registers (U and L) as shown below:

10-12

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Localbuffer

Figure 10-7 Depth Derivative Format.

The depth unit must be enabled to update the depth buffer. If it is disabled then the depth
buffer will only be updated if ForceLBUpdate is set in the Window register.

10.5.1 Registers
Operation of the Depth unit is controlled by the DepthMode register:

3D/.b5 Proprietary and Confidential 10-13

Localbuffer GLINT R4 Programmer’s Guide Volume Il

DepthMode
DepthModeAnd
DepthModeOr

Name Type Offset Format
DepthMode Depth 0x89A0 Bitfield
DepthModeAnd Depth 0xAC70 Bitfield Logic Mask
DepthModeOrx Depth 0xAC78 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
15
0 Enable 0 il X This bit, when set, enables the depth test and the

replacement depth value to depend on the outcome of
the test. Otherwise the test always passes and the
depth data in the local buffer is not changed.

1 WriteMask 0 u| X This bit, when set enables the depth value in the local
buffer to be updated when doing a read-modify-write
operation. The byte enables (LB Write) can also be
used when the Z value is 16 or 24 bits in size.

2...3 NewDepth 0 7 X The depth value to write to the local buffer can come
Soutce from several places. The options are:
0 = DDA.

1 = Source depth (i.e. read from Local Buffer)

2 = Depth register

3 = LBSourceData register. Only generated when
source and destination reads are enabled.

4...6 Compare 0] X This field selects the compare function to use. The
Function options are:
0 = Never 1 = Less
2 = Equals 3 = Less Equals
4 = Greater 5 = Not Equal
6 = Greater Equal 7 = Always
7...8 Width 0 7 X This field holds the width in bits of the depth field in
local buffer. The options are:
0 = 16 bits wide 1 = 24 bits wide
2 = 31 bits wide 3 =15 bits wide
9 Normalise 0] X This bit, when set, will use all 50 bits of the DDA for

Z interpolation, even for 24 or less bits of depth. The
Width field must be set up to restrict the number of
bits used in the comparison operation. When this bit
is clear the depth test is compatible with GLINT MX.
This bit should be 0 if NonLinearZ. is set.

10 NonlLinearZ. 0 7 X This bit, when set, enables the 32 bit DDA Z value to
be encoded in 15, 16 or 24 bits using a non linear
pseudo floating point representation. The non linear
format is controlled by the following two fields.

15 Logic Op register readback is via the main register only

10-14 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Localbuffer

11...12 Exponent Scale | [J B X This field defines how much the exponent should be
scaled by. The options are:

0 = scale by 1 1 = scale by 2

2 = scale by 4 3 = scale by 8
13...14 Exponent 0 il X This field defines the number of bits in the depth

Width word to use as exponent bits. The options are:

0 =1 bit wide exponent field

1 = 2 bits wide 2 = 3 bits wide

3 = 4 bits wide
15...31 Unused 0 0 X

Notes: The register defines Depth operation. It controls the comparison of a fragment's depth value and
updating of the depth buffer. (If the compare function is LESS and result = TRUE then the fragment
value is less than the source value.)

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the
former mode before replacing it.

Figure 10-8 DepthMode Register.

The single bit writemask is used to control updating all the bits in the depth buffer. Depth
values can come from the Depth register or Source or Destination Framebuffer reads, or
the DDA.

The Depth register holds an externally sourced 32 bit depth value. If the depth buffer holds
less than 32bits then the user supplied depth value is right justified to the least significant
end of the register. The unused most significant bits should be set to zero.

The DDA and other registers are shown below (note the increment values are split into two

registers):
Register Description
ZStartU Depth start value
ZStartL
dZdxU Depth derivative per unit X
dZdxL
dZdyDomU Depth derivative per unit Y, dominant edge, or along a line.
dZdyDomL

Table 10.12 Depth Interpolation Registers.

10.5.2 Depth Example
Rendering a Gouraud shaded depth buffered trapezoid.

/I Set the localbuffer read and write modes
/I Set the depth mode

depthMode.UnitEnable = GLINT R4_ENABLE

3D/.b5 Proprietary and Confidential 10-15

Localbuffer GLINT R4 Programmer’s Guide Volume Il

depthMode.WriteMask = 1

depthM ode.NewDepthSource = GLINT R4_NEW_DEPTH_SOURCE_DDA
depthMode.CompareMode = GLINT R4_DEPTH_COMPARE_MODE_LESS
DepthM ode(depthM ode)

I/l Load the depth start values and deltas for

/I dominant edge and the body of the trapezoid

ZStartU() /I Load upper and lower start values
ZStartL()

dzZdxU() // Load upper and lower dZdX deltas
dzdxL()

dzdyDomU() // Load upper and lower dominant edge deltas
dzdyDomL ()

// Enable unit in Gouraud shading mode
colorDDAMode.UnitEnable = GLINT R4_ENABLE
colorDDAMode.Shade = GLINT R4_GOURAUD_SHADE_MODE
ColorDDAM ode(colorDDAM ode)

/I Load the color start values and deltas for

/I dominant edge and the body of the trapezoid
Rstart() // Set-up the red component start value
dRdX() // Set-up the red component increments
dRdY Dom()

Gstart() // Set-up the green component start value
dGdX() // Set-up the green component increments
dGdY Dom()

Bstart() // Set-up the blue component start value
dBdX() // Set-up the blue component increments
dBY Dom()

/l Render primitive

10-16 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

11

Texture Mapping

11.1.1

3D/.bs

Texture Mapping memory management was introduced in Volume I, section 4.5 - Texture
Mapping. The following pages describe the process from the graphics programming point
of view. For a discussion of the theory and practice of texture mapping.see the OpenGL
Specification and the OpenGL Programming Guide.

For each fragment within a primitive, texture mapping involves the following steps:

o gk wNPE

© N

calculate the perspecively correct texture coordinates for each fragment
calculate the level of detail for mipmapping

convert texture coordinates into memory indices

load texels into primary cache

format cache data into texels for filtering

check color values and optionally replace a range with apha values to indicate
transparency

filter texels from cache based on color components

composite the color and texel values with constant color values to produce a final
texture value.

These fall into several different phases of operation:

o gk wnNkE

Coordinate interpolation and perspective correction

Memory indexing

Cache loading

Alpha and texture filtering and border color

Texel compositing

Color value calculation and application including lighting effects and application
modes

Compatibility with Earlier Chipsets

Color interpolation is largely unchanged although TextureAddressMode is how
named TextureCoordMode and TextureLODBias -S and -T need to be set to 0 to be
compatible with GLINT MX.

Level of Detail calculations now use TextureFilterMode instead of
TextureReadMode. Supported texels must be 4, 8 or 16 bpp - 1, 2 and 4 bpp texels
are not supported.

TextureReadMode is not backward compatible with the MX chipset.

LUT control registers have been consistently renamed (LUT[O0...15], LUTAddress,
LUTIndex, LUTData, LUTTransfer, LUTMode)

The TextureColorMode register has been renamed TextureApplicationMode and
the Color and Alpha data are managed separately during compositing and application.

Proprietary and Confidential 11-1

Texture GLINT R4 Programmer’s Guide Volume Il

« TextureFilterMode enable must be set (=1) when texture mapping is enabled. The
enable bit works in conjunction with the TextureEnable bit in the Render Command.

11.2 Texture Co-ordinate Generation
To generate the texture addresses, DDAs are used to interpolate the texture coordinates
over a trapezoid or line primitive.

There are two general modes of operation: 2D and 3D. In 3D mode, the task divides into

the following steps:

« interpolate the texture coordinates (S, T, Q) using the DDA units

« perspective correction of the coordinates by calculating S/Q and T/Q

« level of detail calculation

« wrap the corrected coordinates (s, t) using mirror, repeat or clamp operations to map
the coordinates into the range 0.0 to 1.0 (u, v)

« pass the resulting coordinates (u, v) to the texture read unit.

For the 2D mode, the perspective correction stage is omitted, the wrap operation is always

a repeat operation and no level of detail is performed.

In R4, per-pixel perspective correction is only available in texture O (see the
TexturelndexMode register in the GLINT R4 Reference Guide for further information).

Note: This means that while per-poly mipmapping is available in both textures, per-
pixel mipmapping is only availablein one.

11.2.1 Calculate texture coordinates
Coordinate interpolation can be either 2D or 3D (set in the TexturelndexMode register):

For 2D operations the step or span messages trigger interpolation of the Sand T
coordinates (Q, S1, T1 and Q1 are not used). This is used for tiled fills, characters and
icons, arbitrary large stipple patterns, color index dithering etc.

For 3D operations, TextureCoordMode interpolates two sets of texture coordinates (S,T
and Q and S1, T1, Q1) and corrects them for perspective and range before they are used
for Cache loading.

The coordinates can be used for (a) determining the Level of Detail for MIP mapping, or
(b) calculating a 3D texture coordinate.

When used for LOD, the S, T and Q values are applied as a set of linked coordinates to
the current fragment, while S1, T1 and Q1 are automatically offset in dY to track the
coordinates in the adjacent fragment.

When used for 3D texturing, the Delta unit allocates S, T, Q and R as a set of linked
coordinatesto S, T, Q and S1. T1isignored and Q1 is a copy of Q.

The S, T and Q parameters are interpolated in DDA units in the same way as other
interpolants: the 9 control registers: SStart, dSdx, dSdyDom, TStart, dTdx, dTdyDom,
QStart, dQdx and dQdyDom hold the start, dX and dYDom parameters for S, T and Q.
The values of S, T and Q at each vertex are used to calculate the gradient values in much
the same way as the color gradients when Gouraud shading.

The fixed point format of these registers can be defined as you wish but must be internally
consistent - the divide operation yields consistent internal results. One method of ensuring
that the full range of accuracy available in the DDAs is used but not exceeded (the DDAs

11-2 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

11.2.11

11.2.2

3D/.bs

clamp if the range is exceeded) is to normalize the S, T, Q values before calculating the
gradient values. For example, for a triangle primitive this involves finding the maximum
absolute value of the 9 register values defined at the vertices, and scaling the other 8
values appropriately.

Perspective Correction

At each pixel there is a division operation to achieve perspective correction of the texture
coordinates and derive the s, t coordinates used to index the texture map through the
equations:

After the division, the s, t coordinates are wrapped to lie in the range 0.0 to 1.0 inclusive
(and therefore within the range of the defined texture map). The wrapped coordinates are
denoted as u, v. These are used to index the raw texel data in memory.

Automatic perspective correction is only available in texture 0.

Level of Detail calculation

The Level Of Detail (LOD) calculates the approximate area a fragment projects onto the
texture map. The LOD value is then used:

« To select between the mininfication and magnification filter modes provided in the
TextureReadMode register.

« The one or two texture maps to use when mipmapping.

« The between-maps interpolation factor if the mipmapping requires two maps.

The LOD calculation requires the dSdy, dTdy and dQdy values to proceed. These are not
supplied by the onboard Delta unit or Gamma accellerator so must be provided by the
Texture unit.

Note: To support both mipmapped textures the polygon LOD calculation must be
user-supplied. Trilinear filtering is not supported with multi-texture.

The EnableDY bit in the TextureCoordMode register selects the data source for the
calculation. If the EnableDY bit is not set the dSdy, dTdy and dQdy values can be
provided externally by writing into the corresponding registers.

The LOD calculation itself is enabled by the EnableLOD bit in the TextureCoordMode
register. When this bit is clear a constant LOD from the LOD register is used (when it is
required by TextureReadMode). The format is unsigned 4.8 fixed point and can be
interpreted as follows: the integer part selects the higher resolution map of the pair to use
with 0 using the map at the address given by TextureBaseAddr[0] register; the fraction
gives the between map interpolation coefficient measured from the higher resolution map
selected.

LodO is the LOD value calculated as described above. This always relates to texture O.
Lodl is a user-supplied value relating to texture 1. Both LOD values can be clamped
using LODRange0 and LODRangel respectively. LOD values can be further clamped or
constrained by setting the width and height values in TextureCoordMode, biased in

Proprietary and Confidential 11-3

Texture GLINT R4 Programmer’s Guide Volume Il

TexturelndexMode and clamped in TextureReadMode. These constraints allow large

textures to be loaded at a low resolution and gradually, by continuous clamping, raised to
its final resolution without "popping" artefacts.

11.2.2.1 Texture Coordinate Wrapping Modes

Three wrapping modes are available - Clamp, Repeat and Mirror - and s and t can be
wrapped individually. The selected mode is held in the WrapS and WrapT fields in the
TextureCoordMode register, and in the WrapU and WrapV fields in the

TexturelndexMode register. The wrapping modes are listed in the register descriptions in
the Reference Guide.

Wrapping |Description

Mode

Clamp This tests the coordinate against 1.0 and if the coordinate is larger sets the coordinate
to 1.0. Similarly if the coordinate is less that 0.0 it is set to 0.0.
This causes texels outside of the texture map to be set to the edge values.

Repeat The integer part of the coordinate is discarded just to leave the fractional part. The

Repeat mode creates a saw-tooth transfer function, which as the name suggests,
causes the texture pattern to be repeated (i.e. tiled) over the polygon. Abutting edges

are from opposite sides of the texture map so unless care is taken a discontinuity may
be seen.

11-4 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

Table 4-1 Texture Wrapping - Repeat and Clamp modes are as defined by OpenGL.

11.2.2.2

Texture

Mirror

This is similar to Repeat, but when the integer part is odd the value (1.0 - fraction) is
used instead of just the fraction. This creates a triangle transfer function, which has
the advantage that butting edges always match.

Texture Address Registers

The following registers set up the texture interpolation deltas :

Register Description

Sstart S start value

DSdx S derivative per unit X

DSdyDom S derivative per unit Y, dominant edge
Tstart T start value

DTdx T derivative per unit X

dTdyDom T derivative per unit Y, dominant edge
Qstart Q start value

DQdx Q derivative per unit X

DQdyDom Q derivative per unit Y, dominant edge
DSdy S derivative per unit Y

DTdy T derivative per unit Y

DQdy Q derivative per unit Y

Table 11.2 Texture Interpolation Registers

11.2.2.3 Mipmapping

3D/.bs

A mipmap is an ordered set of arrays representing the same image. Each array has half
the linear resolution of the preceding one. This technique allows minification filtering to

occur with a constant time overhead irrespective of the size of the projected area.

The first filter name for mipmapping in the MinFilter field specifies the filtering to be done
on a level, and the second filter name specifies the filtering to be done between levels.

Mipmap is enabled by setting the MipMapEnable bit (bit 20) in the TexturelIndexMode
register. Other Mipmap parameters are also controlled by TexturelndexMode, including
Magnification and Minification filter types.

Note: Both single and dual texture mipmaps are supported but the calculation must
be implemented manually.

Proprietary and Confidential 11-5

Texture

11.2.3

GLINT R4 Programmer’s Guide Volume Il

Texture Read

The texture read phase fetches and formats texel data. This involves taking the u, v
coordinates generated by the texture address unit and possibly the LOD value and
calculating the physical address in the localbuffer where the texture is stored. The texture
information (texels) is read and forwarded for Texture Filtering. The interpolation
coefficients (if any are needed) are derived from the u, v coordinates (and possibly the
LOD value) and passed on as well. The texture cache management process is described
in Volume I, Section 4-6 - Primary Cache.

The Texture Read operation is controlled by TextureReadModeO and

TextureReadModel which are the same. However most modes cannot be eabled in both

caches at the same time. The supported combinations are:

« One nearest or linear filtered texture using both halves of the cache to achieve higher
cache hit rates on larger texture maps or polygons.

« Any two independent nearest or linear filtered textures, one per half of the cache.

« One automatically (or per pixel) mip mapped texture (always texture 0) using both
halves of the cache to store alternate levels of the mip map.

« One 3D texture map using both halves of the cache to store alternate slices of the 3D
volume.

« Two independent mip mapped textures where the minification filters only use texels
from one level at a time (i.e. the filter are NearestMipNearest or LinearMipNearest).
Each texture uses half the cache.

There are no interlocks to prevent the user selecting a non-supported combination and in
this case the mode settings in TextureReadModeO take priority.

TextureReadModeO
TextureReadModeOANd
TextureReadModeOOr

Name

Type Offset Format

TextureReadMode0 Texture 0xB400 Bitfield
TextureReadModeOAnd Texture 0xAC30 Bitfield Logic Mask
TextureReadMode0Or Texture 0xAC38 Bitfield Logic Mask

Control registers

Bits

Name Read | Write | Reset | Description
16

0

Enable 0 i < When set causes any texels needed by the fragment to
be read. This is also qualified by the TextureEnable
bit in the Render command.

Width 0 u < This field holds the width of the map as a power of
two. The legal range of values for this field is 0 (map
width = 1) to 11 (map width = 2048). This is only
used when Texture3D is enabled and then is only used
for cache management purposes and #of for address
calculations.

16 Logic Op register readback is via the main register only

11-6

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

Texture

Height

This field holds the height of the map as a power of
two. The legal range of values for this field is 0 (map
height = 1) to 11 (map height = 2048). This is only
used when Texture3D is enabled and then is only used
for cache management purposes and 7o/ for address
calculations.

..10

TexelSize

This field holds the size of the texels in the textutre
map. The options are:

0 = 8 bits 1 = 16 bits

2 = 32 bits 3 = 64 bits (Only valid for spans)

11

Textue3D

This bit, when set, enables 3D texture index
generation.

The CombinedCache mode bit should not be set
when 3D textures are being used.

12

Combine
Caches

This bit, when set, causes the two banks of the
Primary Cache to be joined together, thereby
increasing the size of a single texture map which can

be efficiently handled.

13..

.16

MapBaseLevel

This field defines which TextureBaseAddr register
should be used to hold the address for map level 0
when mip mapping or the texture map when not mip
mapping. Successive map levels are at increasing
TextureBaseAddr registers upto (and including) the
MapMaxLevel (next field).

3D textures always use TextureBaseAddr0.

17..

.20

MapMaxlLevel

This field defines the maximum TextureBaseAddr
register this texture should use when mip mapping.
Any attempt to use beyond this level will clamp to this
level.

21

LogicalTexture

This bit, when set, defines this texture or all mip map
levels, if mip mapping, to be logically mapped so
undergo logical to physical translation of the texture
addresses.

22

Origin

This field selects where the origin is for a texture map
with a Linear or Patch64 layout. The options are:

0 = Top Left. 1 = Bottom Left

A Patch32_2 or Patch2 texture map is always bottom
left origin.

23.

.24

TextureType

This field defines any special processing needed on the
texel data before it can be used. The options are:

0 = Normal. 1 = Eight bit indexed texture.

2 = Sixteen bit YVYU texture in 422 format.

3 = Sixteen bit VYUY texture in 422 format..

3D/.bs

Proprietary and Confidential 11-7

Texture

GLINT R4 Programmer’s Guide Volume Il

25...27

ByteSwap 0 i < This field defines the byte swapping, if any, to be done

on texel data when it is used as a bitmap. This is
automatically done when spans are used. Bit 27, when
set, causes adjacent bytes to be swapped, bit 26
adjacent 16 bit words to be swapped and bit 27
adjacent 32 bit words to be swapped. In combination
this byte swap the input (ABCDEFGH) as follows:

0 ABCDEFGH
BADCFEHG
CDABGHEF
ABCDEFGH
EFGHABCD
FEHGBADC
GHEFCDAB
7 HGFEDCBA

N UL BN

28

Mirror 0 i x This bit, when set will mirror any bitmap data. This

only works for spans.

29

Invert 0 i - This bit, when set will invert any bitmap data. This

only works for spans.

30

OpaqueSpan 0 i X This bit, when set allows the color of each pixel in the

span to be either foreground or background as set by
the supplied bit masks. If this bitis O then any
supplied bit masks are anded with the pixel mask to
delete pixels from the span.

31

Reserved 0 0 X

Notes:

The unit is controlled by the TextureReadModeO and TexctureReadModel registers for texture 0 and
texture 1 respectively. Not all combinations of modes across both registers are supported and
where there is a clash the modes in TextureReadModeO take priority. For per pixel mip mapping the
TextureRead0 and TextureReadModel register should be set up the same as should the
TexctureMapWidthO and TextureMapWidih registers.

N.B. The layout and use of the TextureReadMode register is not compatible with GLINT MX: 1, 2,
and 4 bit textures are no longer supported.

The OpaqueSpan field determines how constant color spans are written (recall the Render
command selects between constant color or variable color spans). Transparent spans just use one
color for the foreground pixels and the background pixels are not written. Opaque spans write to
foreground and background pixels using 'BBlockColor for the foreground pixels and
FBBlockColorBack for the background pixels. This bit should be set to 0 for performance reasons
when foreground/background processing is not required.

The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with
the former mode before replacing it.

Figure 11-1 TextureReadMode Register

11.2.4 Filter Modes

11-8

All the filter modes of OpenGL are supported, that is:

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

11.2.4.1

11.2.4.2

3D/.bs

Minification Magnification

Nearest Nearest

Linear Linear

NearestMipMapNearest

NearestMipMapLinear

LinearMipMapNearest

LinearMipMapLinear

“Minification” is the name given to the filtering situation where multiple texels map to a
single fragment, while magnification is the name given to the filtering situation where only
a portion of a single texel maps to a single fragment.

“Nearest” is the simplest form of filtering where the nearest texel to the texture coordinate
location is selected.

“Linear” is a more sophisticated filtering algorithm which is dependent on the type of
primitive. For lines (which are 1D), it involves linear interpolation between the two nearest
texels. For polygons and points which are considered to have finite area, linear is in fact bi-
linear interpolation which interpolates between the nearest 4 texels.

Texture Patching

In GLINT R4 the data part of the primary cache is managed by the TextureFilterMode
register, while the tag part is managed by the TextureReadMode register. The Filter
functionality includes data formatting and alpha mapping.

Primary Cache

The primary cache holds the texel data in 8, 16 or 32 bits per texel format. The cache is
divided up into 8 banks and there is a fixed relationship between a texel's position in the
texture map and which bank of cache it must be stored in. The 8 banks are assigned
depending on the type of texture mapping being done:

Single bilinear The texture map is stored in both banks of the cache. This is achieved
by connecting the output of the second bank's register files to the
corresponding register files in bank 0. This is controlled by the
CombineCaches bit in TextureFiltertMode. This allows the full size of
the cache to be used on a single texture, so a larger texture map can be
handled before scanline coherency starts to break down, with the
consequential loss of performance.

Dual bilinear Texels from texture map 0 are stored in banks 0...3 and texels from
texture map 1 are stored in banks 4...7.

Mip mapping Even mip maps are stored in banks 0...3, odd mip maps are stored in
banks 4...7.

3D texture maps Texels with an even k coordinate (i.e. the third coordinate) are in banks

0...3 and maps with an odd k coordinate are in banks 4...7.

Proprietary and Confidential 11-9

Texture GLINT R4 Programmer’s Guide Volume Il

Note; It is not possible to perform dual texturing and perspective correction at the
sametime.

The texels within a map have a fixed allocation to the cache banks as shown by the
following diagram:

where T0...T3 represents the cache banks and the numbers in brackets are the coordinate
of the texel in the map.

Storing the texture map in memory with one row following the next can gives poor access
times when scanning along a column due to the page breaks. This does not apply If the
texture map is smaller than the page size.

When the texture map is significantly larger than the page size, make access time less
dependent on scanning direction by patching the texture map. This ensures that a 2D
region of the map is stored in one page.

All the texels within a word are always sequential along a row and a patch is 16x16 words,
hence the patch size in texels varies from 16x16 (for 32 bit texels) to 512x16 (for 1 bit
texels). If packed texture maps are required then the packing can be done automatically
during texture downloadl’, or must be done by the host if the localbuffer bypass is used.

Note that some wastage of the memory space will occur if the texture map dimensions are
not an integer multiple of the patch size.

17 See Volume I, Section 4.5.1.2 - Patch Layout Rules

11-10 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

16

2D texture with 32bit
texels ordered in patches
m
255 511 n
16, 3272, 287
012 14 15]256 . 271
< T > width
1D memory layout
n m

012 ceninennnn. 255256ooieeei ST

width/16 * 256

Figure 11-2 Texture Patch Example

3D/.bs

Map Width: The patch mode is only useful when the width of the map exceeds 16
words.

Map Height: The patch mode works best when the height of the map is greater than
16 texels. For maps which are less than this in height a portion of the patch will not
be used so the texel data will be spread out in memory. Consider a 1K word x 4
texture map. This will occupy a quarter of the patch memory so 16K words need to be
set aside for 4K of texels. Moving between rows will occur without page breaks,
where as in the non patch case it would incur a page break. It is possible to interleave

Proprietary and Confidential 11-11

Texture

GLINT R4 Programmer’s Guide Volume Il

4 such maps so getting the benefit of less page breaks without the cost of the
additional memory.

« Filter and MapType: The filter (Nearest or Linear) and map type (1D or 2D) determine
how many addresses are generated.

A texel on the map has the integer coordinates i, j and these are calculated from u, v and
the width and height values. These integer coordinates are guaranteed to lie on the
texture map (excluding the border texels, if present), so for the nearest filter mode the texel
is just read and used.

For the linear filter mode and 2D MapType the four texels (i,), (i+1,), (i, j+1) and (i+1, j+1)
are read, with obvious reductions for the 1D MapType. The coordinates (i+1) and/or (j+1)
may not lie on the texture map. If the texture map has a border (specified in the Border
field) then the appropriate texel from the texture map is read, otherwise texel is taken from
the BorderColor0O or BorderColorl registers. The texel color stored in this register is in
8:8:8:8 format.

Texture maps are preferably stored in memory as a 2x2 patch so that the texels in the
patch are in the same memory word. When texture maps are not in this format (i.e. the
memory layout is Linear or Patch64) the Texture Read Unit passes the texel data on in the
patched format.

The following diagram shows the layout of texels assumed by this unit when loading up the
cache. This exactly matches the layout in memory when one of the 2x2 patch modes are
used.

32 bits per texel

120' 112' 104' 96 88' 801 72' 64 56' 48' 40, 32 24' 16' 8' 0
1,1 (0,1 (1,0 (0,0
T30..431 T20..431 T]-0..431 T00..431
1 1 1 1 1 1 1 1 1 1 1 1
16 bits per texel
120' 112 104' 96 88' 80 72' 64 56' 48 4Q 32 24' 16 8' 0
GBI 21 (3.0 (2,0 (11 0, 1) (1,0 (0,0
T3 116...31 T21?...31 TlllG...31 TOl?...Sl T30115 T20 .15 TlO .15 Toqls
8 bits per texel
120 40 32 24 16 8 0
(7, 1) (6 1) (7 0) (6, 0) G, 1) (4, 1) (G, 0) (4, 0) G, 1) @, 1) 3.0]20](11)f(©1)f(1,0)((0O,0)
324. 3 24 3 24 .3 024 3T316 2T216 .2 T116 2T016 .2 T38 1! T28 .19 T18...1 TOB...15 T30...7 T20...7 TlO...7 TOO...7
11.2.5 Texel Formatting
Texel formatting is controlled by the TextureFilterMode register:
11-12 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

TextureFilterMode
TextureFilterModeAnd
TextureFilterModeOr

Texture

Name Type Offset Format
TextureFilterMode Alpha Blend 0x84E0 Bitfield
TextureFilterModeAnd Alpha Blend 0xAD50 Bitfield Logic Mask
ChromaTestModeOr Alpha Blend 0xAD58 Bitfield Logic Mask
Control registers
Bits Name Read | Write | Reset | Description
18
0 Enable 0 u X When set causes the output to be calculated as defined
by the fields in this register, otherwise the texel0 and
texell values are set to zero. The TextureEnable bit in
the Render command must also be set to enable this
unit.
1...4 Format0 0 u x This field selects the format of the texel data TO...T3.
The options are
0=A41L4 1=18
2=18 3=A8
4 =332 5= A8I8
6 = 5551 7 =565
\\\\\\\\\\\\\\\\ 3 = 4444
9 = 888
10 = 8888 or YUV
5 ColorOrder0 0 i < This bit selects the color component order of the texel
data TO...T3. The two options are:
0 =AGBR
1 = ARGB
6 AlphaMapEnab | i < This bit, when set, enables the alpha value of texels
le0 TO... T3 to be forced to zero based on testing the
color values.
7 AlphaMapSense |] i - This bit selects if the alpha value for texels T0...T3
0 should be set to zero when the colors are in range or
out of range. The options are:
0 = Out of range
1 = In range

18 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential 11-13

Texture

GLINT R4 Programmer’s Guide Volume Il

Combine
Caches

This bit, when set, combines both banks of the cache
so they are used for texture 0. This is an optimisation
and allows larger textures to be handled before
scanline coherency starts to break down.

12

Formatl

This field selects the format of the texel data T4...T7.
The options are

0=A414

1=18

2=18

3=A8

4 =332

5= A8I8

6 = 5551

7 =565

8 = 4444

9 =888

10 = 8888 or YUV

13

ColorOrder1

This bit selects the color component order of the texel
data T4...'T7. The two options are:

0 = AGBR

1 = ARGB

14

AlphaMap
Enablel

This bit, when set, enables the alpha value of texels
T4...T7 to be forced to zero based on testing the
color values.

15

AlphaMap

Sensel

This bit selects if the alpha value for texels T4...T7
should be set to zero when the colors are in range or
out of range. The options are:

0 = Out of range

1 = In range

16

AlphaMap
Filtering

This bit, when set, will allow the alpha mapped texels
(AlphaMapEnable must be set) to cause the fragment
to be discarded depending on the comparison of the
number of texels to be alpha mapped with the
following three limit fields.

17..

.19

AlphaMap
FilterLimitO

This field holds the number of alpha mapped texels in
the group T0...T3 which must be exceeded for the
fragment to be discarded.

20..

.22

AlphaMap
FilterLimit1

This field holds the number of alpha mapped texels in
the group T4...T7 which must be exceeded for the
fragment to be discarded.

23..

.26

AlphaMap
FilterLimit01

This field holds the number of alpha mapped texels in
the group T0...T7 which must be exceeded for the
fragment to be discarded.

27

MultiTexture

This bit, when set, prevents the Alpha Map Filtering
logic from testing the 14 interpolant and maybe
disregarding the alpha map result of T0...T3 or
T4...T7 . This bit should be set for multi texture
operation when alpha map filtering is required. It
should be clear otherwise.

11-14

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

28 ForceAlphaTo | i < This bit, when set, will force the alpha channel of
One0 TO... T3 to be set to 1.0 (255) regardless of the color
format or the presence of a real alpha channel.

29 ForceAlphaTo | i x This bit, when set, will force the alpha channel of

Onel T4...T7 to be set to 1.0 (255) regardless of the color
format or the presence of a real alpha channel.

30 Shift0 This bit, when set, causes the conversion of TO... T3
for color components less than 8 bits wide to be done
by a shift operation, otherwise a scale operation is
needed. The shift operation is useful where the exact
color (after dithering) is to be preserved for flat
shaded areas, such as in a stretch blit.

31 Shiftl This bit, when set, causes the conversion of T4...T7
for color components less than 8 bits wide to be done
by a shift operation, otherwise a scale operation is
needed. The shift operation is useful where the exact
color (after dithering) is to be preserved for flat
shaded areas, such as in a stretch blit.

Notes: The logic operator equivalents behave the same way but the new mode is AND’d or OR’d with the

former mode before replacing it.
For most texel formats the data in the cache is held in the raw memory format. The two
exceptions to this are 8 bit indexed textures and YUV422 format textures. In both these
cases the original texel data is converted into 32 bit AGBR format before being loaded into
the cache.
The first task is to extract the byte or short - this is given by the bottom two bits of the
address for this cache channel. The second task it to isolate the individual color
components from the texel data. The following table shows the different color modes
supported. Inthe R, G, B and A columns the nomenclature n@m means this component
is n bits wide and starts at bit position m in the data. The least significant bit position is O.
The number 255 indicates this component is hardwired to this value.
Two color ordering formats are supported, namely ABGR and ARGB, with the right most
letter representing the color in the least significant part of the word. This is controlled by
the Color Order bit in the TextureFilterMode message, and is easily implemented by just
swapping the R and B components after conversion into the internal format. The only
exception to this are the 3:3:2 format where the actual bit fields extracted need to be
modified as well because the R and B components are differing widths.

Format Color Name Width R G B A

Order

0 A4l 4 8 4@0 4@0 4@0 4@4

1 L8 8 8@0 8@0 8@0 255

2 I8 8 8@0 8@0 8@0 8@0

3 A8 8 255 255 255 8@0

4 332 8 3@0 3@3 2@06 255

5 ABGR ASI8 16 8@0 8@0 8@0 8@8

3D/.b5 Proprietary and Confidential 11-15

Texture

GLINT R4 Programmer’s Guide Volume Il

Table 4.2.5 - Texture Color Modes

11.2.6

6 5551 16 5@0 5@5 5@10 1@15
7 565 16 5@0 6@5 5@11 255

8 4444 16 4@0 A@4 4@8 4@12
9 888 32 8@0 8@8 8@16 255
10 8888 or YUV |32 8@0 8@8 8@16 8@24
0 A4L4 8 4@0 4@0 4@0 4@4
1 1.8 8 8@0 8@0 8@0 255

2 18 8 8@0 8@0 8@0 8@0
3 A8 8 255 255 255 8@0
4 332 8 3@5 3@2 2@0 255

5 ARGB AS8I8 16 8@0 8@0 8@0 8@8
6 5551 16 5@10 5@5 5@0 1@15
7 565 16 s5@11 6@5 5@0 255

8 4444 16 4@8 A@4 4@0 4@12
9 888 32 8@16 8@8 8@0 255
10 8888 or YUV |32 8@16 8@8 8@0 8@24

The alpha channel can be forced to 1.0 to override the alpha value, when the alpha
channel in the texel data is to be ignored (this is independent of the color conversion mode
- see next paragraph).

When an extracted component is less than 8 bits wide it is made up to 8 bits by scaling or
shifting. Scaling is preferred for normal 3D usage, however when the texture maps are
being used for 2D operations (such as stretch blits) the shift method is preferred as it will
maintain the same color during bilinear filtering over regions of constant color.

Scaling is done by replicating the extracted component from the most significant end
towards the least significant end of the byte. For example if a three bit component has bits

B2, B1 and BO then the 8 bit value would be made up as follows:

Bit 7 Bit 0 of
output
byte

B> By B B> By Bo B> By

Lookup Table (LUT)

The LUT functionality includes:

Translating color data on a color-by-color basis (for, e.g., un-Gamma correcting)

Mapping Cl data to 32-bit RGBA

Conversion of span pixel data from 8bpp to 8, 16 or 32 bpp, or RGB conversion from
32bpp to 32bpp.

« Sourcing pattern fill data
« Applying motion compensation to video streams

11-16 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

11.2.6.1

11.2.6.2

11.2.6.3

11.2.6.4

11.2.7

3D/.bs

« Map 8 bit Cl texel data to 32bpp RGBA texel data needed for Texture Filter functiona..

Loading the Texel LUT

The LUT is 256 entries deep by 32 bits wide. The bottom 16 locations are directly
accessed by the LUTJO0...15] registers, and can be read back directly. The remaining
entries are accessed in another way.

The LUT can be loaded via the auto incrementing register writes or from the local buffer.
The ability to load the entire LUT from the local buffer by writing to two registers greatly
reduces the burden on the host of managing the LUT. The LUT data can be written into
the local buffer initially either via the bypass or (better) using the normal texture download
mechanism.

Loading the LUT via auto incrementing registers

The start index in the LUT is written to the LUTTransfer register. The bottom 8 bits of the
data give the index. Every subsequent write to the LUTData register loads the LUT with
the data and increments the index. Reading back the LUTIndex register will return the
incremented index value.

Loading the LUT from the local buffer.

The local buffer address where the LUT is held is in the LUTAddress register. The start
index and number of words to fill in the LUT are given in the LUTTransfer register with the
index in the bits 0...7 and the count in bits 8...16. The write to the LUTTransfer register
starts the transfer. A count of zero loads zero words into the LUT so this effectively
disables the loading operation. The transfer wraps around in the LUT if necessary.

The LUTAddress and LUTTransfer registers are not changed by the transfer and both
can be read back. The restoration of these registers after a context switch automatically
restores the LUT to it's previous contents. This assumes that the LUT hasn't been loaded
piecemeal or via one of the other mechanisms and that the LUT data in the local buffer is
still valid. If these conditions do not hold then the LUT will have to be restored manually.

The LUT data is only held in the bottom 32 bits of the local buffer memory and the red
component is in the least significant byte.

Reading the LUT.

To read the LUT first read the LUTIndex register. As well as returning the current LUT
index (as noted above) it also has the side effect of setting an Index counter to zero. The
Index counter is only used during readback. Each subsequent read from the LUTData
register returns the LUT data at the Index and increments the Index counter. The Index
counter wraps from 255 to 0.

Texture Filtering and Alpha Mapping

The required texture filter mode is set up in the TextureReadMode register as already
outlined. Texture filtering must be enabled separately via the TextureFilterMode register.
This register has the following fields:

Proprietary and Confidential 11-17

Texture GLINT R4 Programmer’s Guide Volume Il

Name Width Function
Enable 1 Enables texture filtering to occur when set.
AlphaMapEnable 1 Enables Alpha map processing to occur when set
AlphaMapSense 1 When clear the alpha map sense is Include, otherwise it is exclude.

Table 11.13 Texture Filtering

Alpha Map processing provides a mechanism where the color of the input texels are tested
against a range of colors and the alpha value of the texel is set based on the outcome of
the test. This subsequently allows an Alpha Test to be done, however it doesn't rely on
the presence of an alpha channel in the texture map.. Direct3D and Quick Draw 3D both
have the notion of a transparent color in the texture map for doing cut-outs so the alpha
map operation allows the Alpha Test to be used.

The alpha map test is given by:

where Cl is the lower chroma value held in the TextureChromaLower register, Cu is the
upper chroma value held in the TextureChromaUpper register and T is the input texel
value. Each component is tested separately and obviously a component can be excluded
from the test by setting the lower and upper values to 0 and 255 respectively.

The TextureChromalLower and TextureChromaUpper registers hold the color bytes with
the red component in the lower byte, then the green byte and finally the blue byte.

The alpha map test is only enabled when TextureFilterMode enable bit is set and the
AlphaMapEnable bit in TextureFilterMode is set. The sense of the alpha map test (when
enabled) is controlled by the AlphaMapSense bit and the effect of this is tabulated below:

AlphaMap Test Enabled Test Result AlphaMapSense [Action

N X X Alpha value unchanged.
Y False Include Alpha set to 0x00.

Y True Include Alpha set to OxFF.

Y False Exclude Alpha set to OxFF.

Y True Exclude Alpha set to 0x00.

Table 11.14 AlphaMapTest Enabled

11.2.8 Texture Color Compositing

During compositing, the Color, Texel0 and Texell values are combined with constant color
value(s) held in registers to produce a combined Texture value for the texel, which is
passed on to the Application phase.

The whole unit operation is enabled and disabled by the TextureCompositeMode
register. It has the following format:

11-18 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

Texture

Bit No.

Name

Description

Enable

When set causes the compositing operation to be calculated
and to replace the texture(value sent to the next unit,
otherwise the texture value remains unchanged. This enable is
also qualified by the TextureEnable bit in the PrepareToRender
message.

The compositing is controlled by five registers:

Register Channels Stage
TextureCompositeColorMode0 RGB 0
TextureCompositeColorMode1 RGB 1
TextureCompositeAlphaMode0 A 0
TextureCompositeAlphaModel A 1

These registers all have the same format:

Bit No. |Name Description
0 Enable When set causes the output to be calculated as defined by the
tields in this register, otherwise the texelO data is passed through
for stage0 and Output data is passed through for stage 1.
1...4 Argl This field selects the source value for Argl. The options are:
0 = Output.C of the previous stage or height if the
first stage
1 = Output.A of the previous stage or height if the
first stage
2 = Color.C
3 = Color.A
4 = TextureCompositeFactorn.C
5 = TextureCompositeFactorn.A
6 = Texel0.C
7 = Texel0.A
8 = Texell.C
9 = Texell A
10 = Sum of the color components of the previous
stage or 0 if the first stage.
where n is the same as the message suffix and C is the RGB or
A depending on the channel.
height is defined as clamp (Texel0.A - Texell.A + 128)
5 InvertArgl This bit, if set, will invert the selected Argl value before it is
used.
3D/.b5 Proprietary and Confidential 11-19

Texture

GLINT R4 Programmer’s Guide Volume Il

6...9 Arg2 This field selects the soutrce value for Arg2. The options are:
0 = Output.C of the previous stage or height if the
first stage
1 = Output.A of the previous stage or height if the
first stage
2 = Color.C
3 = Color.A
4 = TextureCompositeFactorn.C
5 = TextureCompositeFactorn.A
6 = Texel0.C
7 = Texel0.A
8 = Texell.C
9 = Texell A
10 = Sum of the color components of the previous
stage or 0 if the first stage.
where n is the same as the message suffix and C is the RGB or
A depending on the channel.
height is defined as clamp (Texel0.A - Texell.A + 128)
10 [nvertArg2 This bit, if set, will invert the selected Arg2 value before it is
used.
11...13 1 This field selects what is used as the interpolation factor when
the Operation field is set to Lerp, for example. The options are:
0 = Output.A of the previous stage or 0 if the first
stage
1 = Color.A
2 = TextureCompositeFactorn. A
3 = Texel0.A
4 = Texell A
5 = Texel0.C
6 = Texell.C
where n is the same as the message suffix and C is the RGB or
A depending on the channel.
14 Invertl This bit, if set, will invert the selected I value before it is used.
15 A This bit selects which Arg (after any inversion) is to be used as
A in the Operation. The options are:
0 = Argl
1= Arg2
11-20 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

Texture

16

This bit selects which Arg (after any inversion) is to be
used as B 1n the Operation. The options are:

0 = Argl

1= Arg2

17...20

Operation

This field defines how the three inputs (A, B and I) are
combined. Note the inputs can be optionally inverted before
being combined. The 8 bit inputs are unsigned 0.8 fixed point
format, but 255 is treated as if it were 1.0 for the calculations.
The possible operations are:

0 = Pass (A)

1=Add (A+B)

2 = AddSigned (A + B - 128)

3 = Subtract (A - B)

4 = Modulate (A * B)

5=Letp(A*(1.0O-T)+B*1I)

6 = ModulateColorAddAlpha (A * B + I)

7 = ModulateAlphaAddColor (A * I + B)

8 = AddSmoothSaturate (A + B - A * B)

9 = ModulateSigned (A * B, but A and B are biased 8
bit numbers)

21...22

Scale

This field selects the scale factor to apply to the final result
before it is clamped. The options are:

0=05

1=1

2=2

3=4

11.2.8.1 Texture Application

The Application phase applies the texel values calculated in the previous phases of
texturing to the incoming pixel color (generated in the color DDA unit). The function used
to combine these two colors is defined in the TextureApplicationMode register and
includes various types of blend, decal, replacement and modulation for the different APIs.

3D/.bs

The available options are split into three types - OpenGL, QuickDraw 3D and Direct3D.

The OpenGL options are one of:

Decal
Blend
Modulate
Replace.

The QuickDraw 3D options are any combination of:

Decal
Modulate
Highlight.

The D3D options are:

Copy
Add
Modulate

Proprietary and Confidential 11-21

Texture

GLINT R4 Programmer’s Guide Volume Il

. Blend

11.2.8.2 OpenGL Application Modes

11-22

The fragment’s color is calculated based on the following equations:

Type Equation

Modulate

Decal

Blend

Replace Base Format
Alpha
Luminance
LuminanceAlpha
Intensity
RGB
RGBA

...where R is the final color after texture has been applied, C is the fragment color (in a
Color field), T is the texel value (in the texel field) and K is a constant color stored in a
register locally (loaded by the TextureEnvColor register). The equations are executed on
the four color components in parallel and the suffixes show how the different component
values are combined.

The setting of the TextureApplicationMode register fields to implement these OpenGL
equations is as follows.

Enable is 1, KsEnable, KdEnable are both O for all entries and some obvious abbreviations
have been used to keep the table width down.

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture
Color fields Alphafields
Type A B I Invl Operation A B I Invl Operatio
n

Modulate C.C |TC Modulate C.A TA Modulate

Decal Cc.C |T.C T A |N Lerp C.A N PassA

Blend C.C |[KC |T.C |N Lerp C.A TA Modulate

Replace C.C PassA TA PassB
(Alpha)

Replace T.C PassB C.A PassA
(Luminance)

Replace T.C PassB TA PassB
(LuminanceAlpha)

Replace T.C PassB TA PassB
(Intensity)

Replace T.C PassB C.A PassA
(RGB)

Replace (RGBA) T.C PassB TA PassB

So for example, the TextureApplicationMode fields for OGL Decal would be set as
follows (see the Value column):

Bits Name Read | Write | Value | Description
19
0 Enable 0 N 1 When set causes the output to be calculated as defined
by the fields in this register, otherwise the fragment's
data 1s passed through.
1...2 ColorA 0 B 0 This field selects the source value for A. The options
are:
0 = Color.C
1 = Colotr.A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
3...4 ColorB 0 N 0 This field selects the soutrce value for B. The options
are:
0 = Texel.C
1 = Texel A
2 = K.C (TextureEnvColor)
3 = K.A (TextureEnvColor)
5...6 ColotI 0 N 3 This field selects the source value for I. The options
are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C
3 = Texel A

13 Logic Op register readback is via the main register only

3D/.bs

Proprietary and Confidential 11-23

Texture GLINT R4 Programmer’s Guide Volume Il

7 Colorlnvertl This bit, if set, will invert the selected I value before it
is used.

8...10 Color The possible operations are:

Operation 0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=Letp(A*(1.0-)H+B*I]
5 = ModulateColorAddAlpha (A * B + I)
6 = ModulateAlphaAddColor (A * I + B)
7 = ModulateBIAddA (B * I + A)

11...12 AlphaA This field selects the source value for A. The options

are:
0 = Color.C (effectively Color.A)
1 = Color.A
2 = K.C (TextureEnvColor) (effectively
K.A)
3 = K.A (TextureEnvColor)

13...14 AlphaB This field selects the source value for B. The options

are:

0 = Texel.C (effectively T.A)

1 = Texel A

2 = K.C (TextureEnvColor) (effectively
K.A)

3 = KA (TextureEnvColor)

15...16 Alphal This field selects the source value for I. The options

are:
0 = Color.A
1 = K.A (TextureEnvColor)
2 = Texel.C (effectively T.A)
3 = Texel. A

17 Alpha Invertl This bit, if set, will invert the selected I value before it
is used.

18...20 Alpha This field defines how the three inputs (A, B and I) are

Operation combined. The possible operations are:
0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=Terp (A*(10-T) +B*1)
5 = ModulateABAddI (A * B + I)
6 = ModulateAIAddB (A * I + B)
7 = ModulateBIAddA (B * I + A)

21 KdEnable When set this bit causes the RGB results of the texture
application to be multiplied by the Kd DDA values. It
also enables the Kd DDA sto be updated.

22 KsEnable When set this bit causes the RGB results of the texture
application (or Kd processing) to be added with the
Ks DDA values. It also enables the Ks DDAs to be
updated.

11-24 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

23 Motion Comp |] N X
Enable

11.2.8.3 Apple Texture Application

The fragment’s color is calculated based on the following equations (any combination of
these operations are allowed and they are done in the order given):

Type Equation
Decal If enabled

Rrgb = TaTrgb + (1_ Ta)Crgb
R, =C,
else
Rrgb = Trgb
Ra = TaCa

Modulate

Highlight

...where T is the texel color, C is the fragment color (in a Color message), Kd is the diffuse
RGB components from the Kd DDA unit, and Ks is the specular RGB components from the
Ks DDA unit. The equations are executed on the four color components in parallel and the
suffixes show how the different component values are combined.

The final value R is forwarded in the Color field of the active step to the next unit.

The setting of the TextureApplicationMode fields to implement these Apple equations is
as follows. Enable is 1, KsEnable is set if Modulate is required, KdEnable is set if highlight
is required. Some obvious abbreviations have been used to keep the table width down.

Color fields Alpha fields
Type A B I Invl Operatio A B I Invl Operation
n
Decal enabled cC |TC 'TA N Lerp C.A PassA
Modulate disabled T.C PassB C.A TA Modulate

So for example, the TextureApplicationMode fields for Apple Quickdraw Decal with
highlighting but no modulation would be as follows (see the Value column):

3D/.b5 Proprietary and Confidential 11-25

Textu

re

GLINT R4 Programmer’s Guide Volume Il

Bits Name Read | Write | Value | Description
20
0 Enable 0 i 1 When set causes the output to be calculated as defined
by the fields in this register, otherwise the fragment's
data is passed through.
1...2 ColorA 0 i 0 This field selects the source value for A. The options
are:
0 = Color.C
1 = Colotr.A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
3.4 ColorB 0 i 0 This field selects the source value for B. The options
are:
0 = Texel.C
1 = Texel A
2 = K.C (TextureEnvColor)
3 = K.A (TextureEnvColor)
5...6 ColorI 0 i 3 This field selects the source value for I. The options
are:
0 = Color.A
1 = KA (TextureEnvColor)
2 = Texel.C
3 = Texel. A
7 Colorlnvertl 0 i 0 This bit, if set, will invert the selected I value before it
is used.
8...10 Color 0 i 4 The possible operations are:
Operation 0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=Terp (A*(10-T) + B*1)
5 = ModulateColorAddAlpha (A * B + I)
6 = ModulateAlphaAddColor (A * I + B)
7 = ModulateBIAddA (B *I + A)
11...12 AlphaA 0 i 1 This field selects the source value for A. The options
are:
0 = Colot.C (effectively Color.A)
1 = Color.A
2 = K.C (TextureEnvColor) (effectively
K.A)
3 = KA (TextureEnvColor)
13...14 AlphaB 0 i 1 This field selects the source value for B. The options

are:

0 = Texel.C (effectively T.A)

1 = Texel A

2 = K.C (TextureEnvColor) (effectively
K.A)

3 = KA (TextureEnvColor)

20 Logic Op register readback is via the main register only

11-26

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume ||

Texture

15...16 Alphal 0 N X This field selects the source value for I. The options

are:
0 = Color.A
1 = K.A (TextureEnvColor)
2 = Texel.C (effectively T.A)
3 = Texel A

17 Alpha Invertl 0 N X This bit, if set, will invert the selected I value before it
is used.

18...20 Alpha 0 B 0 This field defines how the three inputs (A, B and I) are

Operation combined. The possible operations are:
0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=TLerp A*(1.0-I)+B*I)
5 = ModulateABAddI (A * B + I)
6 = ModulateAIAddB (A * I + B)
7 = ModulateBIAddA (B * I + A)

21 KdEnable 0 N 1 When set this bit causes the RGB results of the texture
application to be multiplied by the Kd DDA values. It
also enables the Kd DDA sto be updated.

22 KsEnable 0 B 0 When set this bit causes the RGB results of the texture
application (or Kd processing) to be added with the
Ks DDA values. It also enables the Ks DDAs to be
updated.

23 Motion Comp |] N X

Enable
11.2.8.4 Direct 3D Texture Application (TBlend)
The D3D texture color ops are as follows: Enable is 1, KsEnable is 0, KdEnable is set if
specular highlight is required.
Color fields
Type A I Invl | Operation
Disable C.C PassA
Copy T.C PassB
CopyAlpha T.A PassB
Add CC | TC Add
AddAlpha CC TA Add
Modulate CC | TC Modulate
ModulateAlpha CC TA Modulate
BlendFactorAlpha cCcC TC |KA ? Lerp
BlendTextureAlpha cc TC |TA °? Lerp
BlendDiffuseAlpha cCc TC |CA ? Lerp
ModulateColorAddAlpha CC TC |TA ? ModulateABAddI
The D3D texture alpha ops are as follows. Enable is 1:
3D/.b5 Proprietary and Confidential 11-27

Texture

GLINT R4 Programmer’s Guide Volume Il

Color fields
Type A B I Invl | Operation
Disable CA PassA
Copy T.A PassB
Add C.A TA Add
Modulate CA 'TA Modulate

So for example, the TextureApplicationMode fields for D3D Modulate with Specular
highlights would be set as follows (see the Value column):

Bits Name Read | Write | Value | Description
21
0 Enable 0 i 1 When set causes the output to be calculated as defined
by the fields in this register, otherwise the fragment's
data is passed through.
1...2 ColotA 0 i 0 This field selects the source value for A. The options
are:
0 = Color.C
1 = Colot.A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
3.4 ColorB 0 i 0 This field selects the source value for B. The options
are:
0 = Texel.C
1 = Texel A
2 = K.C (TextureEnvColor)
3 = KA (TextureEnvColor)
5...6 Colorl 0 i X This field selects the source value for I. The options
are:
0 = Color.A
1 = K.A (TextureEnvColor)
2 = Texel.C
3 = Texel A
7 ColorInvert] 0 i X This bit, if set, will invert the selected I value before it
is used.
8...10 Color 0 i 3 The possible operations are:
Operation 0 = PassA (A)
1 = PassB (B)
2=Add (A +B)
3 = Modulate (A * B)
4=Letp(A*(1.0-H+B*I]
5 = ModulateColorAddAlpha (A * B + I)
6 = ModulateAlphaAddColor (A * I + B)
7 = ModulateBIAddA (B * I + A)

21 Logic Op register readback is via the main register only

11-28

Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture

11...12 AlphaA 0 N 1 This field selects the source value for A. The options
are:
0 = Colot.C (effectively Color.A)
1 = Color.A
2 = K.C (TextureEnvColor) (effectively
K.A)
3 = KA (TextureEnvColor)

13...14 AlphaB 0 B 1 This field selects the source value for B. The options

are:

0 = Texel.C (effectively T.A)

1 = Texel A

2 = K.C (TextureEnvColor) (effectively
K.A)

3 = K.A (TextureEnvColor)

15...16 Alphal 0 N X This field selects the source value for I. The options

are:
0 = Color.A
1 = K.A (TextureEnvColor)
2 = Texel.C (effectively T.A)
3 = Texel A

17 Alpha Invertl 0 B X This bit, if set, will invert the selected I value before it
is used.

18...20 Alpha 0 B 3 This field defines how the three inputs (A, B and I) are

Operation combined. The possible operations are:
0 = PassA (A)
1 = PassB (B)
2=Add (A + B)
3 = Modulate (A * B)
4=Lerp(A*(1.0-)H+B*I)
5 = ModulateABAddI (A * B + I)
6 = ModulateATAddB (A * I + B)
7 = ModulateBIAddA (B * I + A)

21 KdEnable 0 N 1 When set this bit causes the RGB results of the texture
application to be multiplied by the Kd DDA values. It
also enables the Kd DDA sto be updated.

22 KsEnable 0 B 0 When set this bit causes the RGB results of the texture
application (or Kd processing) to be added with the
Ks DDA values. It also enables the Ks DDAs to be
updated.

23 Motion Comp |] N X

Enable

11.2.9 Implementation
Texture processing has two enables which must both be set to enable modification of the
Color register. The first enable is loaded via the TextureApplicationMode register and is
effective until changed by a new TextureApplicationMode message. The second enable
is the TextureEnable bit in the Render register and this is only effective until the next
Render message is received. This second enable is used to temporarily disable texturing
when a primitive must not be textured.

3D/ubs Proprietary and Confidential 11-29

Texture

GLINT R4 Programmer’s Guide Volume Il

11.2.9.1 The Ks and Kd DDAs
The Ks and Kd DDA units interpolate the specular and diffuse RGB values. Sub pixel
corrections can be applied to correct for an initial start error on a span.
The output of the DDA units is applied to the texture calculations outlined earlier when the
corresponding Apple texure modes are enabled.
» The original Ks and Kd registers (e.g. KsRStart) when written to load the
corresponding R, G and B registers. This gives some backward compatibility.
« The new KsRStart, dKsRdx and dKsRdyDom registers load up the start, dx and dyDom
registers for the Ks Red DDA unit. Similarly for the Ks GB components and also the
Kd RGB components. This allows for future set up chips to program these registers
directly.
The format is 2's complement 2.22 fixed point format with an effective range clamped to
+1.999. There is a small underflow/overflow guard band - if it is exceeded the value wraps
around and produces an abrupt color change artefact. (This should not happen if the
setup is correct and sub-pixel correction is applied at the start of each span.)
The values of Ks and Kd at each vertex are used to calculate the gradient values in much
the same way as the color gradients when Gouraud shading.
The parameters to control the two DDA units are loaded into the red, green and blue
values (there is no alpha value) and are held as 1.8 unsigned fixed point numbers so
values greater than 1.0 can be represented.
11.2.9.2 Texture Color Registers
The application of texture is qualified by the TextureEnable bit in the Render command
register. The following registers (together with the TextureApplicationMode register)
control the application of textures.
Register Data Field Description
TextureEnvColor 32 bit RGBA format, R
in least significant byte
KsStart 24 bit 2's comp fix pt | Ks start value, loads up the R, G and B DDA start
registers.
DKsdx 24 bit 2's comp fix pt | Ks derivative unit X, loads up the R, G and B DDA dx
registers.
DKsdyDom 24 bit 2's comp fix pt | Ks derivative unit Y, dominant edge, loads up the R, G
and B DDA dyDom registers.
KdStart 24 bit 2's comp fix pt |Kd start value, loads up the R, G and B DDA start
registers.
DKddx 24 bit 2's comp fix pt |Kd derivative unit X, loads up the R, G and B DDA dx
registers.
DKddyDom 24 bit 2's comp fix pt |Kd derivative unit Y, dominant edge, loads up the R, G
and B DDA dyDom registers.
KsRStart 24 bit 2's comp fix pt |Ks Red start value
DKsRdx 24 bit 2's comp fix pt | Ks Red derivative unit X
DKsRdyDom 24 bit 2's comp fix pt |Ks Red derivative unit Y, dominant edge
KsGStart 24 bit 2's comp fix pt |Ks Green start value
11-30 Proprietary and Confidential 3D/.2bs

GLINT R4 Programmer’s Guide Volume || Texture
dKsGdx 24 bit 2's comp fix pt |Ks Green derivative unit X

dKsGdyDom 24 bit 2's comp fix pt | Ks Green derivative unit Y, dominant edge

KsBStart 24 bit 2's comp fix pt | Ks Blue start value

dKsBdx 24 bit 2's comp fix pt | Ks Blue derivative unit X

dKsBdyDom 24 bit 2's comp fix pt | Ks Blue derivative unit Y, dominant edge

KdRStart 24 bit 2's comp fix pt |Kd Red start value

DKdRdx 24 bit 2's comp fix pt |Kd Red derivative unit X

DKdRdyDom 24 bit 2's comp fix pt |Kd Red derivative unit Y, dominant edge

KdGStart 24 bit 2's comp fix pt |Kd Green start value

DKdGdx 24 bit 2's comp fix pt |Kd Green derivative unit X

DKdGdyDom 24 bit 2's comp fix pt |Kd Green derivative unit Y, dominant edge

KdBStart 24 bit 2's comp fix pt |Kd Blue start value

DKdBdx 24 bit 2's comp fix pt |Kd Blue derivative unit X

DKdBdyDom 24 bit 2's comp fix pt |Kd Blue derivative unit Y, dominant edge

Table 11.15 Texture Color Registers

3D/.b5 Proprietary and Confidential 11-31

GLINT R4 Programmer’s Guide Volume ||

Texture

12

Volume Il Index

AlphaBlend, 7-2, 8-5
AlphaBlending, 7-2
aphabuffer, 8-5

AlphaTest, 7-2

Antialias Application, 7-2, 8-4
Antiadias Example, 8-6
Antiadiasing, 8-5, 8-6
AntialiasM ode, 8-6, 8-8

area gtippling, 9-5

Area Stippling, 8-20, 9-4
AreaStippleM ode, 9-4, 9-6, 9-7
AreaStipplePattern, 9-7
AStart, 9-12

Bitmaps, 8-22

BitMaskPattern, 8-23, 8-24, 8-32, 8-36
BorderColor0, 11-12

BStart, 9-12, 9-13, 11-5, 11-31
ChromalL ower, 11-18
ChromaUpper, 11-18

Color DDA, 7-2, 9-9

Color Formatting, 7-2
ColorDDAMode, 9-12, 9-13
CongtantColor, 9-12
Continue, 8-34
ContinueNewDom, 8-7, 8-34
ContinueNewlLine, 8-34
ContinueNewSub, 7-8, 8-4, 8-34
Count, 8-36

dAdx, 9-12

dAdyDom, 9-12

dBdx, 9-12, 9-13

dBdyDom, 9-12, 9-13

DDA, 9-12, 9-13

delta, 8-2, 8-34

Depth, 7-4, 10-4, 10-15

3D/.bs

Depth Example, 10-15

Depth Gradient, 9-11

Depth Test, 7-2

Depth Test, 10-11

DepthMode, 10-11, 10-13, 10-15
dGdx, 9-12, 9-13, 11-5, 11-31

dGdyDom, 9-12, 9-13, 11-5, 11-31

dKdBdx, 11-31
dKdBdyDom, 11-31
dKddx, 11-30
dKddyDom, 11-30
dKdGdx, 11-31
dKdGdyDom, 11-31
dKdRdx, 11-31
dKdRdyDom, 11-31
dKsBdx, 11-31
dKsBdyDom, 11-31
dKsdx, 11-30
dKsdyDom, 11-30
dKsGdx, 11-31
dKsGdyDom, 11-31
dKsRdx, 11-30
dKsRdyDom, 11-30
Dominant, 7-3

dQdx, 11-2, 11-5
dQdy, 11-2, 11-3, 11-5
dQdyDom, 11-5
dRdx, 9-12, 9-13
dRdyDom, 9-12, 9-13
dsdx, 11-2, 11-5
dsdy, 11-2, 11-3, 11-5
dSdyDom, 11-5

dTdx, 11-2, 11-5
dTdy, 11-2,11-3, 11-5
dXDom, 8-36

Proprietary and Confidential

33

Texture

dXSub, 8-36

dv, 8-11, 8-28, 8-36
dZdxL, 10-15

dZdxU, 10-15
dZdyDomL, 10-15
dZdyDomU, 10-15
Examples, 9-7

flat shaded, 9-12

Flat Shading example, 9-12
FlushSpan, 8-7, 8-34
Fog, 7-2

Gouraud shading, 9-13
Gouraud Shading, 9-11

Gouraud Shading examples, 9-12

Graphics Pipeline, 7-1
Graphics Programming, 7-1

GStart, 9-12, 9-13, 11-5, 11-30, 11-31

Host Out, 7-2

Image Copy/Upload/Download, 8-28

Initialization, 7-3

KdBStart, 11-31

KdGStart, 11-31

KdRStart, 11-31

KdStart, 11-30

KsBStart, 11-31

KsGStart, 11-30

KsRStart, 11-30

KsStart, 11-30

L BDestReadM ode, 10-2

L BReadFormat, 10-2
LBReadMode, 10-3
LBWriteFormat, 10-2, 10-4
Level of Detail calculation, 11-3
Line Stippling, 9-5
LineStippleM ode, 9-5, 9-6, 9-7
LoadL ineStippleCounters, 9-7
LOD, 11-3,11-6

OpenGL Application Modes, 11-22

patch, 11-10

Patch, 10-1

Perspective Correction, 11-3
Pixel Ownership, 7-2

Pixel Ownership Test, 10-4
Pixel Sizes, 8-21

34

Proprietary and Confidential

GLINT R4 Programmer’s Guide Volume Il

PixelSize, 8-21, 8-34
PointTable, 8-36
PointTable0, 8-36
QStart, 11-2, 11-5
Rasterization, 7-8
Rasterizer, 7-2, 8-1
Rasterizer Mode, 7-4, 8-32
Rasterizer Unit Registers, 8-33
RasterizerM ode, 8-23, 8-24, 8-32, 8-34, 8-36
Render, 7-5, 8-31, 8-34
RGBA and Color-Index(Cl) Modes, 9-10
Router, 7-3
Router M ode, 7-3
RStart, 9-12, 9-13, 11-5, 11-30, 11-31
Savel ineStippleCounters, 9-5, 9-7
SaveStippleL ineCounters, 9-5
ScanLineOwnership, 8-36
Scissor, 9-1
Scissor Example, 9-3
Scissor Test, 7-2
ScissorMaxXxY, 9-3
ScissorMinXY, 9-3
Scissor M ode, 9-2
Screen Scissor Tests, 9-1
ScreenSize, 9-1, 9-3
Sides
Cdlculating the Slope, 7-6
Span Mask Processing, 8-20
Span Operations, 8-18
Span Operations and Bitmaps, 8-24
Span Operations and Image
Copy/Upload/Download, 8-30
Span Operations and Stippling, 9-5
Span Operations and the Scissor Unit, 9-3
SStart, 11-2, 11-5
StartXDom, 7-7, 8-11, 8-12, 8-28, 8-36
StartXSub, 7-7, 8-11, 8-12, 8-28, 8-36
StartY, 8-2, 8-11, 8-28, 8-36
Stencil, 10-4, 10-10
Stencil Example, 10-10
Stencil Test, 7-2
Stencil Test, 10-7
StencilData, 10-8, 10-9, 10-10
StencilM ode, 10-7, 10-8, 10-9

3D/.bs

GLINT R4 Programmer’s Guide Volume ||

Stipple, 9-3
Stipple Test, 7-2

Sub Pixd Precision and Correction, 8-21

Subordinate, 7-3

Subpixel Correction, 7-4
TexelLUT, 11-17
TexelLUTAddress, 11-17
TexelLUTData, 11-17
TexelLUTIndex, 11-17
TexelLUT Transfer, 11-17
Texture, 7-2, 11-1, 11-2
Texture Filtering, 11-17
texture mapping, 7-3, 11-1
TextureBaseAddr, 11-3
TextureChromal ower, 11-18
TextureChromaUpper, 11-18

3D/.bs

Texture

TextureColor Generation, 11-21

TextureCoordMode, 8-20, 11-3, 11-4

TextureEnvColor, 11-30

TextureFilterMode, 11-2, 11-17, 11-18

TextureReadM ode, 8-20, 11-3, 11-4, 11-5, 11-8,
11-17

Trapezoids, 8-2

TStart, 11-2, 11-5

Updatel ineStippleCounters, 9-5, 9-6

User Scissor Test, 9-1

WaitForCompletion, 8-35, 10-2

Window, 10-4, 10-10, 10-13

WindowOrigin, 9-1, 9-3

Y Limits Clipping, 8-33

ZStartL, 10-15

ZStartU, 10-15

Proprietary and Confidential 35

