SD/:)s

GLINT Gumma

Programmer’s Reference Manual

|
]

 —
"1

Issue 3

GLINT Guamma Programmer’s Reference Manual

The material in this document is the intellectual property of 3Dlabs. It is provided solely
for information. You may not reproduce this document in whole or in part by any means.
While every care has been taken in the preparation of this document, 3Dlabs accepts no
liability for any consequences of its use. Our products are under continual improvement
and we reserve the right to change their specification without notice.

3Dlabs is the worldwide trading name of 3Dlabs Inc. Ltd.
3Dlabs and GLINT are registered trademarks of 3Dlabs.

OpenGL is a trademark of Silicon Graphics, Inc. Windows, Win32, Windows NT,
DirectDraw and Direct3D are trademarks of Microsoft Corp. AutoCAD is a trademark of
AutoDesk Inc. MicroStation is a trademark of Intergraph Corp. Macintosh and
QuickDraw are trademarks of Apple Computers Inc.

All other trademarks are acknowledged.

© Copyright 3Dlabs Inc. Ltd. 1997. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http://www.3dlabs.com

3Dlabs Inc.
181 Metro Drive, Suite 520
San Jose, CA 95110
United States

Tel: (408) 436 3455
Fax: (408) 436 3458

3Dlabs Ltd.
Meadlake Place
Thorpe Lea Road, Egham
Surrey, TW20 8HE
United Kingdom

Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3D/.sbs

Proprietary and Confidential

GLINT Gamma Programmer’s Reference Manual

Change History

Document Issue Date Change

149.4.0 0 2 July 97 Draft

149.4.0 1 29 Sept 97 First issue.

149.4.0 2,3 26 Nov97 Typographical corrections and style changes.

ii Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Contents

L. INErOdUCHION «.veeereerereeeerrreerecssnneeecssneeseessneeseessanesssssanessssssnsesssssssessssssnsasssssssessssssnsessssssesssssanasssssnnne 1
1.1 Conventions Used In This Manual........cccccciieiioiiiiiiieeie ettt eve v 2
1.2 Code snippets are in courier.Performancecoccuvueiriiniiinciiicicececee e 2
1.3 Further Reading......c..ccooiiiiiiiiiiiiiiiiiee et 5
2. General Programming NOTEScocevviiniiininiiiiiniininiiniiiecineiesninsonisoesosssossssssosessee 6
2.1 Gamma as a Register Fileccoiiiiiiiiiiiiicccc e 6
2.2 Re@ISTEL TYPES..uiiiiiiiiiiiiiitiitee et 7
2.3 EAFICIENCY 1.ttt 8
2.4 DMA Tag Description FOIMAtcc.cciiuiiiiiiiiiiiiiicieciccccscteeset sttt 8
2.5 Temporal Ordering......c.cocivieirieiriiinicinieieet ettt sttt 10
2.6 Updating Mode Registers (and/0r)c.coveirieirieiniiiniiiiicinicinicenictee et 11
2.7 Reading Back Values.......c.cooiuiiiiiiiiiiiiiiiiiiccccc ettt 11
2.8 INItIAlIZATION 1oevvieeerie et ectee ettt ete ettt e e et e et e e eaaeeeaeeeeaaeeeaeeeeaeeeensesenseeeenreeeaneeeeteeanns 11
3. Getting Data into GammMIa......cuveieiniieiniieinineiniieiieiiieemmiemimemiiemiemiemesmmesaiesmases 12
3.1 Command FIFOoooiiiiiiie ettt et ee e et e e e et e e eate e eteeeeteeeereeanns 12
3.2Input DMA Lo 14
3.3 Address Mapping......cccivueiriiiiiiiiiieiieieiceee ettt s 16
3.4 Hierarchical DIMAooooiiiiie ettt ea e et e e et e e eeaeeeenaeeereeeeteeanns 19
3.5 Rectangular DIMAcciiiiiiiiiiiie et 20
4. Getting Data out of GAMMA....ccciviiiiniiiiiniiniiiniieeeeseesess e ssssesssresss 23
4.1 Linear DIMA Transfers....coueeoueeooee ettt eeae e e e et e e e eeaeeeeaaeeeteeeeenneean 23
4.2 Feedback and Select DMA Transfersoueioouieiceeeeiee et 24
4.3 Rectangular DMA Transferscccouvueiiiiiiiiiiiiiieeeeseee et 26
5. DIIVET SUPPOIT cuurieiiiiiuieiiiiineeiniiinieiniiiieeisiiieeissmimeessmmesismssstsssssteosssssssssssssssssssssssssssssssssssssses 28
570 N BT s 1<) SN R R U U U SRR RS URRRRR 28
5.2 Errors, Interrupts and Status FeGISTErs.......c.ocueiiuiriiiriiiiiiieiiiieieieiee ettt 28
6. Primitive Assemblyccovuiiniiiiiiiiiiniiniiiiiniiiiii s se s aesane 31
6.1 Specifying Vertices, Normals, Textures and Colors.........ccccueiviiiniiiniiiniiniiicicccieee 31
6.2 Begin/End Paradigm.......ccooooiiiiiiiiiiiiiiii s 33
22 O 1T LT 35
2 T B Yo T 3oY oo L (o) WU TSRS SUROTt 35
7.2 LIGRUING oot 38
7.3 CIIPPING -ttt 44
74 CUllIng .o 46
7.5 PrmItive SEt-UP .ooueeoiiiiiiiiiiicenieeeseeee ettt sttt sttt e s 47
8. Context SAVE and RESLOTE ... uuuueeiireeeiierrrrneeeeeeeeierrssssneeeeeesesessssssseeseesssssssssssssssssssssssssssssssssssssssnnens 55
9. OpenGL Specific OPerations.....uciuuieiueineiiiiisinniiniiiniiiiiemeiemmemmmssms 60
9.1 Polygon Mode ..ot 60
9.2 POlygon OfFSet.....cuiiuiiiiiiiiiiiiiec e s 60
9.3 T eXTUIE (GEMEIATION . ..iiiiiirieeeeiiieeeetieeeeectteeeeetteeeeeteeeeeetaeeeeetaeeeessssaeeassseeeassseeeatesaseasteneeanses 61
D4 SELECT e et e et e e e ettt e e ateeeeeeeeteeeeteeeereeeteeanns 63
9.5 FE@ADACKuviiitieeeeeeeee e e e et e e e et e e et e e e e e e eteeanns 67

3D/.bs Proprietary and Confidential iii

GLINT Gamma Programmer’s Reference Manual

9.6 RaSTEr POSITION .cuvevtiiiiiiieitiiiet ettt ettt ettt sttt sttt eae b sbeenenreeneens 70
9.7 CUITENE VAIUES ...ttt ettt ettt ettt et eb e bt st sa ettt ebeebe e bt ebeebenaen 71
9.8 Window Clipping SUPPOLTc.ciiiuiiiiiiiiiiitiiieieic e 72
9.9 Color Material SUPPOIT...ccuecteieiiieiiitirtietertetet ettt ettt sa e sbe e 73
9.10 Get OPErationsccueiuiuiiiiiiiiiiiiiiiiiti it 74
9. 1T DISPIAY LISTS.eueuteuieiiiiieteetest ettt sttt b b naen 74
10. Direct3D and QuickDraw3D Functionality........ccceeueneiniininnieniinnenininienninennieneesesnen. 76
10.1 Face NOIMIALS ..c.veuiiiiiiieie ettt sttt ettt 76
10.2 DifFUSE TEXTULES «.vvviriietirtirtirteteteteitettete sttt ettt ettt ae st ae st ea ettt ebe bt ebe st e b eebeseenen 77
10.3 SPeCular TeXTULES. ...ceutruieuirtirtinteteteteitettet ettt ettt ettt st b ettt et et ebe bbb e b ebe e nes 77
11. Compatibility with GLINT Delta.......cccceeirruiiinnniniininsiininnicninnicneinneniinenisneienemeeses 78
12. Multi-GLINT SUPPOLL cuviirriiiiiiiriisniiiinsiiinniiiininieniinmeiniineimeimmimmimiensommsstemsesmesssesses 81
Appendix A PCI Related ReGiStersccouvvuiniiriiniiniiniiniinniniinninncninninininiininininsmsnssssssssss 82
Appendix B Tag Values (Numerical Order)cocuvvunininininininininininnnnnniinnnnsssss 86
Appendix C Tag Values (Alphabetical Order)cccvvviviiiiiiininininniniiiinininnnininnnnnnnon. 98
Appendix D Register and Command Reference.........couvinriniininiininininininininnninnnnnnn. 111
T 1 PPN 213

v

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Tables

Table 3.1. Format for the page table entriesoocoiviiiiiiiiiiiiiiiiiecccc e 17
Table 3.2 The address reglonscciiiiiiiiiiiiiiic e 18
Table 3.3 Error bits associated with the address translation process..........cocecvveviiviniccniniincinciinccee 18
Table 3.4 The PCI CommandInterruptEnable register fieldscccoiviiiiiiiiiiiiiiiiiccee 19
Table 3.5 Relevant commands and registers for Rectangular DMAccccooiiiiiiiiiniiiicce 21
Table 3.6 Fields in the DMARectangleRead command...........cccccciviiiiiiiiiiiiiccc 21
Table 4.1 Relevant Command and Registers for Rectangular DMA..........cccooiiiiiiiiiniiiiiicce 26
Table 4.2 DMARectangleWrite Command Fieldscoccocoiiiiiiiiiiiiccc 26
Table 5.1 PCI CommandMode Register FIeldsc.ccviiiiiiiiiiiiiniiiiiiiicciccteeseeeee s 28
Table 5.2 PCI CommandError Register Error Conditionsccoecoiiiiiiiniiiiiiiiiiiiicicccecccececceceeeas 29
Table 5.3 PCI CommandInterruptEnable Interrupt Source Fieldsccooviniiiiniiiniiniiiiiicicccne 29
Table 5.4 PCI CommandStatus Register Fields..........cooiiiiiiiiiniiiniiiiiiiicciccccsees 30
Table 6.1 Begin/End Paradigmcoouiuiiiiiiiiiiiiiiicic ettt 34
Table 7.1 TransformMode Register Vertices Control Bits........cccovveviiiiiiiniiiniiiniiiiiiciccececee 36
Table 7.2 TransformMode Register Normal Control Bits.........cccueiviiiriiiniiiniiiniiiniiiicicciceceee 37
Table 7.3 NormalizeMode Register Control BItscceeviiiiiiiniiiniiiiciiciicecceeeeeeeee e 38
Table 7.4 TransformMode Register Texture Control Bits........ccoovueiviiiiiiiiiiiiniiiiieeeececceeee e 38
Table 7.5 Light 0 REGISTELS ...cveuiiiiiiiiiiiiiiiciitcicec ettt st 40
Table 7.6 Light Mode Word Control Bits Definitions........cccccoiviiiniiiiiiniiiniiiiciicieeccccceceeee 41
Table 7.7 Lighting Calculation Bit S€t up....cccocoiiiiiiiiiiiiiiiicccee e 41
Table 7.8 Material Parameters RegISters.......c.couciiiiuiiieiiiciiiiiiiiiiieiccecec ettt 42
Table 7.9 LightingMode Register Fields.........occcoiiiiiiiiiiiiiiiiiccccceeee e 43
Table 7.10 MaterialMode Register Fields..........coooiiiiiiiiiiiiiiiiiiiiccccc e 44
Table 7.11 Clipping Operation Control BItscccoeiiiiiiiiiiiiiiiiiiiiciciceeeeeee e 45
Table 7.12 Culling Control BItscoociiiiiiiiiiiiiiiiiicee e 47
Table 7.13 DeltaMode Register Fieldsccooiiiiiiiiiiiiiiiiiiccceee e 48
Table 7.14 Antialiasing in the PointMode Registerccociiiiiiiiiiiiiiiiiiicicccccceeee 50
Table 7.15. LineMode Register Fields........cccccooiiiiiiiiiiiiiiiiiiiccce e 51
Table 7.16 TriangleMode Register Fields.........cooiiiiiiiiiiiiiiiiiiicccccee e 52
Table 7.17 GeomRectangle Control Fieldscccooiiiiiiiiiiiiiiiiiiiiccces 52
Table 7.18 Rectangle2DMode Fieldsccccoiiiiiiiiiiiiiiiie e 53
Table 8.1 Context Mask FIeldscoouiiiiiiiiie e et et e e et eeeareeeree e 58
Table 9.1 GeometryMode Register: fields that control the Polygon Mode.ccoccoiiiiiiiiiiiiiiii 60
Table 9.2 Controlled Bits in the GeometryMode Registerccoovuiiiiiiniiiiiiiiiiiiiiccccccccce 61
Table 9.3 TexGen[16] Registers Target fOr goceiiiiiiiiiiiiiiiiiiiicc e 61
Table 9.4 TexGen[16] Registers Target for h.......ccocooiiiiiiiiiiiiice 61
Table 9.5 GeometryMode register Bits Controlling Texture Generation............cccceeveiviinicincinicincnnnenn. 63
Table 9.6 GeometryMode register controlling Field............ccocooiiiiiiiiiicce 64
Table 9.7 NameCount Value Fields.......ccooooiiiiiiiiiiee ettt et 65
Table 9.8 Controlling Fields in the GeometryMode Registercccccooiiiiiiiiiiiiiiiiiiiiccccc 67
Table 9.9 Data Field PossiDIlItIesccviiiiuiiieiiieitie ettt ettt ettt e e et e eetae e e eteeeerreeereeenns 68
Table 9.10 GeomRectangle Data Fieldccooioiiiiiiiiiiiiiiiccciceccet e 70
Table 9.11 ColorMaterialMode Register Fields.........cc.coviiiiiininiiniiiiiiiiinccceceeeesese e 73
Table 11.1 Compatibility with GLINT Delta.....cc.ccoeoiriiininiiiiiiiiiiinieececteeee e 79
Table A1 PCI Related ReGISTErS ..c.coveueiiiiiiiiiiiiinientetctct ettt sttt 82
Table A2 PCI CommandMode Register Fields.........ccoviiiiiiiiiniiiiiiiiiiiiicc s 83

3D/.bs Proprietary and Confidential v

GLINT Gamma Programmer’s Reference Manual

Table A3 PCI CommandError Register Fields

... 84
Table A4 PCI CommandInterruptEnable Register Fieldscccocooiiiiiiiiiiiiiiicccce 85
Table A5 PCI CommandStatus Register Fieldsccccoiiiiiiiiiiiiiiiiiiiiiiiicccceeeeeeee 85

vi

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Figures

Figure 2.1 DMA Tag Description FOrmatcccccoiiiiiiiiiiiiiiiiiiiiic e 8
Figure 2.2 Indexed FOIMAt.......ccoiiiiiiiiiiiiiiiiiccc e 9

3D/.bs Proprietary and Confidential vil

GLINT Guamma Programmer’s Reference Manual Introduction

1.

Introduction

This is the Programmers Reference Manual for the GLINT Gamma device. GLINT
Gamma (subsequently just called Gamma) is a Geometry and Lighting Processor which
directly drives the GLINT 500TX and GLINT MX.

A Geometry and Lighting Processor off loads a substantial amount of computation from the
host computer (to implement the 3D pipeline), thereby removing a major performance
bottleneck and elevates PC graphics cards to new heights. The 3D pipeline is expanded
later but broadly includes transformations, lighting, culling, clipping and rasterizer chip set-

up.
Gamma replaces the GLINT Delta in a system (it is electrically and mechanically

compatible) and can be used as a faster GLINT Delta, but this will only use a small amount
of Gamma's potential.

Gamma has been designed to fully support OpenGL and to faithfully implement all its
modes and interactions so the OpenGL specification and documentation is an excellent
guide to what Gamma does. Gamma does not ignore the needs of the other two main
stream graphics APIs, namely Direct3D from Microsoft and QuickDraw3D from Apple.

In many respects these two APIs are subsets of OpenGL so are well covered by the OpenGL
functionality, however some additional functionality has been incorporated into Gamma

specifically to address the needs of these APIs.

Gamma is predominantly oriented to 3D graphics and there is very little of interest for GUI
operations. The only two things are rectangle set up and faster image uploads and
downloads.

Gamma implements the following parts of the Geometry and Lighting Pipeline. This is
not an exhaustive list, but just summarizes the main elements:

* OpenGL Begin/End paradigm for describing primitives.

* Texture coordinate generation.

* Normal and texture coordinate transformation.

* Normalization of the normal after transformation.

* Full OpenGL RGB material and lighting for up to 16 light sources.
* Two sided lighting.

* Polygon Offset.

* OpenGL Polygon mode and Color Material operations.

* Backface culling.

* Fog calculations.

* Full frustum clipping with an optional 6 user defined clipping planes.

3D/.sbs

Proprietary and Confidential

Introduction GLINT Gamma Programmer’s Reference Manual

* Perspective division and Viewport mapping.

¢ Render, select and feedback modes.

* Triangle set up (aliased and antialiased).

* Line set up (aliased, antialiased, wide and stippled).
* DPoint set up (aliased, antialiased and wide).

* Raster Position.

Parts of OpenGL still left to software (excluding system level things such as multiple
contexts, etc.):

* Matrix generation, including matrix stack.

Attribute Push and Pop.

* Display list creation, management and parsing (in the general case).
e Evaluators.

* General state management and Get functions.

* Color index lighting.

In addition to these the following general facilities are available:

* Queued Input DMA.

Output DMA controller.

Scatter/Gather operations on DMA.

* Rectangular read and write of host memory.
* Rectangle (2D) set up.

* Hierarchical DMA.

The 2D/GUI support is limited to:

* Rectangle upload DMA controller.

* Rectangle download DMA controller.

* Rectangle set up.

11 Conventions Used In This Manual

Registers or commands accessed via the input FIFO or DMA (i.e. core registers) are in bold.
Registers accessed directly from the PCI bus are in italics. Though Gamma operates either

with GLINT 500TX or GLINT MX devices, this manual usually refers to GLINT MX for
brevity.

Code snippets are in courier.

2 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Introduction

1.2 Performance

1.2.1 Gamma By Itself
If Gamma is in the perfect system so the bottle neck is how fast it can do its work then the
expected performance depends on which processing path a primitive takes. The various
paths are:
e Itis not in view.
The throughput of Gamma in this case is 4.4 M vertices per second or 4.4M connected
primitives per second. This rate is independent of any fog, normalization or lighting
modes.
e It is in view, but backface culled.
The throughput of Gamma in this case is 4.1 M connected triangles per second. This rate
is independent of any fog, normalization or lighting modes.
* It is fully in view, but not backface culled.
The throughput of Gamma in this case is 2.6 M connected primitives per second with one
light source. Adding more lights will decrease the throughput. Doubling the number of
lights will approximately half the throughput in the worst case, however this depends on the
type of lights and other enabled modes such as texture generation.
* It is partially in view, but not backface culled.
[t is not possible to give any meaningful figures in this case because the amount of work in
the clipping is very variable depending on the exact geometry of the situation. Needless to
say it will be slower than the previous 2.6M figure, however this situation is comparatively
rare compared to the earlier cases.
A typical scene will have a lot of primitives which are clipped out or backface culled so will
benefit from faster throughput in these cases.
The performance figures are for a 66MHz device.

1.2.2 Input Data Requirements
Given the above vertex rates (the triangle rates amount to vertex rates for meshed triangles) what is the
input data rate needed to sustain these figures?
For the purpose of this analysis, each vertex can be considered to consist of a three
component Cartesian coordinate and a three component normal. Each component being a
single precision floating point number so takes 4 bytes.
The most compact format packs the vertex data into 7 words - one tag word and 6 actual
vertex data words. In this case the tag is repeated for every vertex so there are 28 bytes per
vertex. This format is useful in display lists where the driver has the time to work out the
optimum format for vertices between a glBegin and glEnd.

3D/.bs Proprietary and Confidential 3

Introduction GLINT Gamma Programmer’s Reference Manual

1.2.3

The least compact format, but the one most suitable for 'on the fly' processing (i.e.
dispatching the data as soon as it is given to you) is: normal tag, three components, vertex
tag, three components i.e. 8 words or 32 bytes per vertex.

The following table summarizes these formats against the processing rates in Gamma to give
the bandwidth (MB/s) needed to sustain each one of them:

Clipped Backface Culled In view
7 words per vertex 184.8 120.4 72.8
8 words per vertex 211.2 137.6 83.2

Note this bandwidth doesn't include any allowance for bus efficiencies, latency times or
breaks in burst mode.

The best PCI systems typically have a sustained bandwidth of approximately 80 MB/s so
the in view performance should be achievable, but the higher clipped and culled rate are

not. Gamma can cope with the peak input bandwidth the PCI bus can deliver until its
FIFO fills up (the FIFO depth is greater than 100 words).

Output Data Requirements

The data flows from Gamma over the secondary PCI bus to the GLINT rendering device.
The bandwidth available on this bus is much closer to the theoretical PCI peak of 132
MB/s because very long single cycle bursts can be guaranteed between the two 3Dlabs
devices, and additional (non PCI) sideband signals take care of the hardware flow control.

The original triangle interface used in GLINT 500TX took 34 words to load up the start
and gradients for rasterizer, color interpolants and depth interpolants and then initiate the
triangle rendering. This places an upper limit of 970K triangles per second.

Gamma with a GLINT MX can use an alternative interface (called Triangle Packet
Interface) which reduces the number of words needed to define and render a triangle. This
interface removes some of the earlier redundant data and encodes the remaining data into a
more compact format. This reduces the number of words per triangle down to 21. This
increases the triangle rate to 1.57M per second.

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Introduction

1.2.4

1.2.5

13

PCI (33MHz) Performance Summary

The secondary PCI bus is clearly the limiting factor and with a GLINT MX limits the
triangle throughput to 1.5M/s.

At this rate, the demand on the primary PCI bus is 36MB, 42MB or 48MB for 6, 7 and 8

words per triangle respectively. All these rate are easily achievable on current PCI systems.

If Gamma is being throttled to 1.5M triangles/s by the secondary PCI bus, this allows up to
3 lights to be turned on without any drop in system performance.

AGP Performance Summary

The main benefit an AGP system brings is in running the secondary PCI bus at 66MHz.
This doubles the triangle rate between Gamma and GLINT MX to 3 million triangles per
second so this bus is no longer the bottle-neck. The bottle-neck has moved back into
Gamma.

Even with the most pessimistic view it is hard to see AGP delivering less than 2X over
regular PCI, even with single edge clocking on AGP.

In conclusion an AGP system should be able to allow Gamma to achieve its quoted rates.

Further Reading

This manual is not an introduction or tutorial into 3D graphics or OpenGL. The reader is

assumed to be familiar with these subjects. Similarly the details of using and programming

the GLINT rasterizer family are not covered here. Suitable books or on-line material which
cover these topics are:

* OpenGL Programming Guide, Jackie Neider et al, Reading MA: Addison-Wesley
* OpenGL Reference Manual, Jackie Neider et al, Reading MA: Addison-Wesley

* The OpenGL Graphics System: A Specification (Version 1.1), Mark Segal and Kurt Akeley,
SGI

o Computer Graphics: Principles and Practice, James D. Foley et al, Reading MA: Addison-
Wesley.

3D/.sbs

Proprietary and Confidential 5

General Programming Notes GLINT Gamma Programmer’s Reference Manual

2.

21

General Programming Notes

This manual does not try to specify all the interactions between the modes (for example
when flat shaded which vertex provides the color) - to do so would result in a substantial
portion of the OpenGL specification being included. Gamma follows the OpenGL
specification exactly and any deviations are unintentional. 3Dlabs would be very pleased to
hear of them so they can be fixed in future products.

Unless otherwise noted all input values are in single precision IEEE floating point format
numbers. Denormalized numbers are treated as if they were zero and NaNs are treated as if
they are very large numbers.

The remainder of this section describes the programming model for Gamma. It describes
the interface conceptually rather than detailing specific registers and their exact usage. In
depth descriptions of how to program Gamma for specific operations may be found in later
chapters.

A system will consist of a Gamma chip and at least one GLINT rasterizer chip. As far as the
programmer is concerned the fact that these are two separate chips is transparent - they are
programmed as if they were one.

Gamma as a Register File

The simplest way to view the interface to Gamma is as a flat block of memory-mapped
registers (z.e. a register file). This register file appears as part of Region 0 of the PCI address
map for Gamma. See the Gamma Hardware Reference Manual for details of this address
map.

When a Gamma host software driver is initialized it can map the register file into its address
space. Each register has an associated address tag, giving its offset from the base of the
register file (since all registers reside on a 64-bit boundary, the tag offset is measured in
multiples of 8 bytes). The most straightforward way to load a value into a register is to write
the data to its mapped address. In reality the chip interface comprises a 32 entry deep
FIFO!, and each write to a register causes the written value and the register’s address tag to
be written as a new entry in the FIFO.

Programming Gamma and GLINT to draw a primitive consists of writing initial values to
the appropriate registers followed by a write to a command register. The last write triggers
the start of rendering.

Gamma has several hundred registers. All registers are 32 bits wide and should be 32-bit
addressed. Many registers are split into bit fields.

Note: bit 0 is the least significant bit.

IThis is, in fact a slight simplification - the full story is presented in the Getting Data into Gamma chapter.

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual General Programming Notes

Recall that the graphics registers are shown in the text as bold font (for example:
GeometryMode). In addition there are registers related to initialization and I/O, which are
documented in the Gamma Hardware Reference Manual. Where these registers are referred
to in the text of this manual, they are shown in italic font, for example: InFIFOSpace.

In future chip revisions the register file may be extended and currently unused bits in certain registers
may be assigned new meanings. Software developers should ensure that only defined registers are written
to and that undefined bits in registers are always written as zeros.

22 Register Types
Gamma has three main types of register:
* Control and Data Registers
* Command Registers
* Internal Registers
Control and Data Registers are updated only by the host - the chip effectively uses them
as read-only registers. Examples of control registers are GeometryMode and LightingMode
registers. Example of data registers are FrontDiffuseColorGreen, ViewPortOffsetX
registers. Once initialized by the host, the chip only reads these registers. These registers
can be read back at any time, however writing to a register and then immediately reading it
is not guaranteed to return the value written as it may not have filtered down the pipeline
to this register yet.
Command Registers are those which, when written to, typically cause the chip to start
rendering or some other type of internal processing. Normally, the host will initialize the
appropriate control and data registers and then write to a command register to initiate
drawing. Gamma does not have explicit commands to render a triangle, etc., as it uses the
fact that a vertex has been written to initiate any action. This slightly modified mechanism
is used to reduce the amount of commands sent by the host to render a primitive - this is
very important when millions of primitives per second are being processed. Command
registers cannot be read back.
Note: For convenience in this document we often refer to "sending an XXX command to
Gamma" rather than saying "the XXX Command register is written to, which initiates
drawing (or some other action)".
Internal Registers are not accessible to host software. They are used internally by the chip
to hold intermediate values and share information between adjoining primitives (in a mesh
or polyline).
For the most part internal registers can be ignored, however they do need to be saved and
restored when a primitive group (demarcated by a Begin and End pair of commands) can
be context switched in the middle. This is covered in a later chapter.

3D/.bs Proprietary and Confidential 7

General Programming Notes GLINT Gamma Programmer’s Reference Manual

23

24

2.4.1

Efficiency

Software developers wishing to write device drivers for Gamma and GLINT should become
familiar with the different types of registers. Some registers such as the Vy and Vz registers
have to be updated for almost every primitive whereas other control registers such as the
ViewPortScaleX or the TransformMode can be updated much less frequently. Pre-loading
of the appropriate control registers can reduce the amount of data that has to be loaded into
the chip for a given primitive thus improving efficiency.

The tables in Appendices B and C list the graphics registers and indicate their type.

DMA Tag Description Format

In general the DMA buffer format consists of a 32-bit address tag description word
followed by one or more data words. The DMA buffer consists of one or more sets of these
formats. The following paragraphs describe the different types of tag description words that
can be used.

When DMA is performed each 32-bit tag description in the DMA buffer conforms to the
format in Figure 2.1.

31 24 16 8 0

Count or Mask reserved Address Tag
|
Mode
0 = Hold tag

1 = Increment tag
2 = Indexed tag
3 = Reserved

Figure 2.1 DMA Tag Description Format

There are 3 different tag addressing modes for DMA: hold, increment and indexed. The
different DMA modes are provided to reduce the amount of data which needs to be
transferred, hence making better use of the available DMA bandwidth. Each of these is
described in the following sections. Each row in the following diagrams represents a 32-bit
value in the DMA buffer. The address tag for each register is given in the Graphics Register
Reference Appendices B and C.

Hold Format
Address-tag with Count = n-1, Mode = 0

value 1

value n

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual General Programming Notes

2.4.2

2.4.3

In this format the 32-bit tag description contains a tag value and a count specifying the
number of data words following in the buffer. The DMA controller writes each of the data
words to the same address tag. For example, this is useful for image download where pixel
data is continuously written to the Color register. The bottom 11 bits specify the register to
which the data should be written; the high-order 16 bits specify the number of data words
minus 1 which follow in the buffer and which should be written to the address tag

Note: The 2-bit mode field for this format is zero so a given tag value can simply be loaded into the
low order 16 bits).

A special case of this format is where the top 16 bits are zero indicating that a single data
value follows the tag (i.e. the 32-bit tag description is simply the address tag value itself).
This allows simple DMA buffers to be constructed which consist of tag/data pairs.

Increment Format

address-tag with Count = n-1, Mode = 1

value 1

value n

This format is similar to the hold format except that as each data value is loaded the address
tag is incremented (the value in the DMA buffer is not changed; Gamma updates an
internal copy). Thus, this mode allows contiguous Gamma registers to be loaded by
specifying a single 32-bit tag value followed by a data word for each register. The low-order
11 bits specify the address tag of the first register to be loaded. The 2 bit mode field is set to
1 and the high-order 16 bits are set to the count minus 1 of the number of registers to
update. To enable use of this format, the Gamma register file has been organized so that
registers which are frequently loaded together have adjacent address tags.

Indexed Format

Gamma address tags are 11 bit values. For the purposes of the Indexed DMA Format they
are organized into major groups and within each group there are up to 16 tags. The low-
order 4 bits of a tag give its offset within the group. The high-order 7 bits give the major
group number. Appendices B and C Register Tables, list the individual registers with their
Major Group and Offset.

8 4 0

Major Group Offset

Figure 2.2 Indexed Format

This format allows up to 16 registers within a group to be loaded while still only specifying
a single address tag description word.

3D/.sbs

Proprietary and Confidential ?

General Programming Notes GLINT Gamma Programmer’s Reference Manual

25

address tag with Mask, Mode=2

value 1

value n

If the Mode of the address tag description word is set to indexed mode then the high-order
16 bits are used as a mask to indicate which registers within the group are to be used. The
bottom 4 bits of the address tag description word are unused. The group is specified by bits
4 to 10. Each bit in the mask is used to represent a unique tag within the group. If a bit is
set then the corresponding register will be loaded. The number of bits set in the mask
determines the number of data words that should be following the tag description word in
the DMA buffer. The data is stored in order of increasing corresponding address tag. For

example,
0x003280F0
value 1

value 2

value 3

The Mode bits are set to 2 so this is indexed mode. The Mask field (0x0032) has 3 bits set
so there are three data words following the tag description word. Bits 1, 4 and 5 are set so
the tag offsets are 1, 4 and 5. The major group is given by the bits 4-8 which are 0xOF (in
indexed mode bits 0-3 are ignored). Thus the actual registers to update have address tags
0x0F1, 0x0F4 and 0x0F5. These are updated with value 1, value 2 and value 3 respectively.

Temporal Ordering

All registers are loaded in the order they are given in and all commands are executed in
order as well. A register can be updated at any time and it is guaranteed never to corrupt or
effect any command which may be in operation and depends on the previous register
contents for its correct operation. Updating a register will only effect subsequent
commands.

10

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual General Programming Notes

2.6

2.7

28

Updating Mode Registers (and/or)

Many of the mode registers have an And and Or variant. For example the GeometryMode
register can also be written to using GeometryModeAnd or GeometryModeOr. The And
and Or variants combine the new data with the existing register contents using a bitwise
AND or a bitwise OR operation respectively. This allows single bit fields to be set or
cleared in a single write or multi-bit fields to be set to any value by first clearing the bits in
question with the And variant and then using the Or variant to merge in the new value.
This mechanism alleviates having to keep a software copy so that the fields we wish to retain
are not overwritten. The real benefit of this is that updates to these mode registers can be
held in native format display lists (i.e. display lists which don't need to be parsed by
software but can be read directly by Gamma). Native display lists are obviously faster than
those display lists which must be parsed.

Reading Back Values

Many of the registers can be read back. To read back a particular register read the address
you would use to write to the register. Appendices B and C show which registers can be

read back.

Reading back a register immediately it has been written to does not guarantee to return the
value just written. Recall the writes are buffered in a FIFO so it may take some time before
the actual register is updated. The only way to be sure the registers have been updated and
are not about to be updated by state held in the FIFO or internal pipeline stages is to
synchronize with Gamma and GLINT using the Sync command.

Initialization

Very few registers are initialized by power-on reset or by the software reset. It is advisable to
set all registers into a well defined state before using Gamma.

3D/.sbs

Proprietary and Confidential 11

Getting Data into Gamma GLINT Gamma Programmer’s Reference Manual

3.

3.1

Getting Data into Gamma

The facilities for getting data into Gamma are a super set of those available in the earlier
members of the GLINT family. Some of these are aimed at increasing system performance
while others introduce totally new functionality.

The input FIFO can still be used to pass commands and data into Gamma and any
following GLINT devices, however only a subset of some of the facilities are available via
this method.

A general design philosophy is that much of the new functionality is driven via the FIFO
(or DMA buffer) rather than dedicated PCI registers. This brings many of the benefits
normally associated with core commands such as queuing and asynchronous operation.

Note: The DMA specific commands must be submitted as tag/data pairs and not part of an indexed
tag group. Any DMA commands submitted as part of an indexed group (or indeed in any
other form except as tagldata pairs) will be ignored (but may effect the following rasterizer
chip) and the lllegal DMA bit in the PCI CommandError register will be ser.

All memory reads and writes instigated by Gamma go via the PCI/AGP interface to reach
the host’s memory. The PCI Interface implements a layer of byte swapping (enabled by the
DMAControl register) over and above any byte swapping described in this, or the next
chapter.

There are a number of ways of loading Gamma registers or issuing commands:

* The host writes a value to the mapped address of the register. This still goes via the
input FIFO even though the register appears to be written directly.

* The host can perform a Block Command Transfer by writing address and data values to
the FIFO interface registers.

* The host writes address-tag/data pairs into a host memory buffer and uses the on-chip
DMA to do the transfer.

The first two cases will be covered next and the DMA case later.

Command FIFO

In cases where the host writes data values directly to the chip (via the register file) it has to
worry about FIFO overflow (unless PCI Disconnect is enabled). The InFIFOSpace register
indicates how many free entries remain in the FIFO. Before writing to any register the host
must ensure that there is enough space left in the FIFO. The values in this register can be
read at any time.

12

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data into Gamma

3.1.1

3.1.2

PCI Disconnect

The PCI bus protocol incorporates a feature known as PCI Disconnect, which is supported
by Gamma. PCI Disconnect is enabled by writing to bit zero of the DisconnectControl register
which is at offset 0x68 in PCI Region0. Once the Gamma is in this mode, if the host
processor attempts to write to a full FIFO then instead of the write being lost, Gamma will
assert PCI Disconnect which will cause the host processor to keep retrying the write cycle
until it succeeds.

This feature allows faster download of data to Gamma, since the host need not poll the
InFIFOSpace register it should, however be used with care since whenever the PCI
Disconnect is asserted the bus is effectively hogged by the host processor until such time as
the Gamma frees up an entry in its FIFO. In general this mode should only be used either
for operations where it is known that the Gamma can consume data faster than the host can
generate it, or where there are no time critical peripherals sharing the PCI bus.

FIFO Control

The description above considered the Gamma interface to be a register file. More precisely,
when a data value is written to a register this value and the address tag for that register are
combined and put into the FIFO as a new entry. The actual register is not updated until
Gamma processes this entry. In the case where Gamma or the downstream rasterizer chip is
busy performing a time consuming operation, and not draining the FIFO very quickly, it is
possible for the FIFO to become full. If a write to a register is performed when the FIFO is

full no entry is put into the FIFO and that write is effectively lost (unless PCI Disconnect is
enabled as described above).

The input FIFO is 64 entries deep but a tag/data pair takes up two entries, so it has an
effective size, when used like this, of 32 entries. More compact forms of tag and data (i.e.
an index tag to update several related registers) can be inserted into the FIFO making it
appear deeper. The InFIFOSpace register can be read to determine how many tag/data pairs
can be written. The value returned by this register will never be greater than 32.

The InFIFOSpace FIFO control register contains a count of the number of entries currently
free in the FIFO. The chip increments this register for each entry it removes from the FIFO
and decrements it every time the host puts an entry in the FIFO.

The input FIFO can be written to at any time, even when DMA is in progress. This differs
from the earlier GLINT chips where the input FIFO was shared between the DMA
controller and regular host use.

The CommandStatus PCI register holds a bit (FIFOEmpty) which shows when the FIFO is
empty.

3D/.sbs

Proprietary and Confidential 13

Getting Data into Gamma GLINT Gamma Programmer’s Reference Manual

3.2

3.2.1

3.2.1.1

Iinput DMA

Loading registers directly via the FIFO is often an inefficient way to download data to
Gamma. Given that the FIFO can accommodate only a small number of entries, Gamma
has to be frequently interrogated to determine how much space is left. Also, consider the
situation where a given API function requires a large amount of data to be sent to Gamma.
If the FIFO is written directly then a return from this function is not possible until almost
all the data has been consumed by Gamma. This may take some time depending on the
types of primitives being drawn.

To avoid these problems Gamma provides an on-chip DMA controller which can be used
to load data from arbitrary sized (< 16M 32-bit words) host buffers into the FIFO. At chip
reset the MasterEnable bit in the CFGCommand register must be set to allow DMA to
operate (see the Gamma Hardware Reference Manual for further details). Then, for the
simplest form of DMA, the host software has to prepare a host buffer containing register
address tag descriptions and data values. The host then writes the base address of this buffer
to the DMA Addyess register and the count of the number of words to transfer to the
DMACount register. Writing to the DMA Count register starts the DMA transfer and the host
can now perform other work. In general, if the complete set of rendering commands
required by a given call to a driver function can be loaded into a single DMA buffer, then
the driver function can return. Meanwhile, in parallel, Gamma is reading data from the host
buffer and processing it. The DMA controller uses it’s own private FIFO and FIFO
overflow never occurs since the DMA controller automatically waits until there is room in

the FIFO before doing any transfers.

General DMA Modes

The general input DMA mode of operation is controlled by the Operation field in the PCI
CommandMode register. The options are Single DMA and Queued DMA.

Single DMA. This is the default mode of operation after reset and is identical to the
normal GLINT DMA controller mode of operation. The start address for a DMA
operation is loaded into the DMAAddress PCI register and the length of the DMA transfer
in the DMACount PCI register. The act of loading the DMACount register starts the DMA
controller and this register should not be written until the current DMA transfer has
finished, however reading it will return the amount of data still left to transfer. The end of
a DMA transfer can be signaled by an interrupt. The PCI DMACount register is
decremented as the DMA proceeds.

The only restriction on the use of DMA control registers is that before attempting to reload
the DMA Count register the host software must wait until the previous DMA has completed.
It is valid to load the DMA Address register while the previous DMA is in progress since the
address is latched internally at the start of the DMA transfer.

This mode is just for legacy support and none of the new functionality (quened DMA, hierarchical
DMA, output DMA) should be used when in this mode.

14

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data into Gamma

3.2.1.2

The standard behavior of the DMA controller differs from the earlier DMA controller

designs in three small ways:

* All the data associated with a tag must be in the DMA buffer and cannot carry on in the
next DMA buffer. This means that any tag processing is reset at the start of a DMA
buffer. If insufficient data is found in a DMA buffer to meet the needs of an Indexed,
Incrementing or Hold tag then the DMAOverrun error bit is set in CommandError and an
optional interrupt generated.

* Writing zero to the PCI DMACount register during a DMA transfer will no longer cause
the current DMA transfer to be aborted. The AbortInputDMA bit in the CommandMode

register is available for this purpose.

* The DMACount register has been expanded from 16 bits to 24 bits in size.

Queued DMA. In the Queued DMA operation mode the input FIFO is monitored for
DMAAddress and DMACount tags (they cannot be part of an index or incrementing tag).
When these are found the DMA address and count register are loaded. The DMACount
tag initiates the DMA transfer. The end of each DMA transfer can be signaled by an
interrupt, but as this is probably not very useful an interrupt can be generated when the last
queued DMA has occurred. This interrupt is generated whenever a CommandInterrupt
tag is found in the input FIFO so it is software's responsibility to write the
CommandInterrupt tag into the FIFO following the DMA transfer it is interested in being
notified about.

Any normal PCI writes to the DMA Address and DMA Count PCI registers are ignored while
in this mode. Reading the DMAAddress registers will return the last data written to the
register, reading the DMA Count will return zero. The DMA Count register will return zero
immediately after reset.

Using DMA leaves the host free to return to the application, while in parallel, Gamma is
performing the DMA and drawing. This can increase performance significantly over
loading a FIFO directly.

There is enough room in the input FIFO to queue up 16 pending DMA operations.

Host software must generate the correct DMA buffer address for the Gamma DMA
controller. Gamma includes address translation hardware so the address may be a logical
address, in which case it is translated to the correct physical address via a page mapping
table. Alternatively if logical addressing isn't being used the address passed to Gamma must
be the physical address of the DMA buffer in host memory and the buffer must also reside
at contiguous physical addresses as accessed by Gamma. This is expanded section 3.3.

The CommandStatus PCI register holds a bit (CommandDMABusy) which shows when the
input DMA controller is busy.

3D/.sbs

Proprietary and Confidential 15

Getting Data into Gamma GLINT Gamma Programmer’s Reference Manual

3.2.2

3.3

DMA Interrupts

Gamma provides interrupt support, as an alternative means of determining when a DMA
transfer is complete. If enabled, the interrupt is generated whenever the last data item is

transferred from the DMA buffer.

To enable the DMA interrupt, the DMAlnterruptEnable bit must be set in the InEnable
register. The interrupt handler should check the DMAFlag bit in the IntFlags register to
determine that a DMA interrupt has actually occurred. To clear the interrupt a word should
be written to the IntFlags register with the DMAFlag bit set to one.

This works fine for the original single DMA mode of operation, however with queued or
hierarchical DMA operations this is not very useful and notification when the last DMA has
finished may be more desirable. In this case the CommandInterrupt command can be
written into the input FIFO or into the DMA bulffer itself. This will raise an interrupt (if
enabled) when this command is read by the DMA controller.

Interrupts are complicated and depend on the facilities provided by the host operating
system, however using interrupts frees the processor for other work while DMA is being
completed. Since the overhead of handling an interrupt is often quite high for the host
processor, the scheme should be used with care, and probably tuned to the target host and
operating system.

Address Mapping

In a system which is running with virtual memory the DMA buffer must be locked down to
prevent it being swapped out to disk and hence inaccessible directly across the PCI bus. A
common restriction! is that the locked pages of the DMA buffer are at physically
contiguous addresses, however this can be avoided with the Gamma DMA controller design
so simplifying the allocation of the DMA buffer. This is particularly true if the allocation
of DMA bulffers is done after the system has been up and running for some time as very few
pages may be physically contiguous anymore.

When running in this Logical Addressing mode (as set by the LogicalAddress bit in the PCI
CommandMode register) all addresses generated by the DMA controller (and in fact any of
the DMA controllers present in Gamma) are translated into physical addresses before the
memory read or write is issued on the primary PCI bus. The address translation, or more
accurately the page translation from the logical page number to the physical page number is
done by indexing into a page table held in the host’s memory. This then returns the
corresponding physical page address which is merged with low order address bits of the
logical address to give the physical address.

The page size is fixed at 4K bytes so the bottom 12 bits of the logical address are the offset
within the page and the upper 20 bits are the logical page number used as the index into the
page table. It is these 20 bits which are replaced by the physical page number read from the
page table.

Imposed, for example, by the earlier members of the GLINT family.

16

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data into Gamma

The page table is physically contiguous in memory and holds one 4 byte entry per mapped
logical page. If the page table cannot be held in a single 4K page of memory then two or
more contignous pages must be used, however this is not as onerous as it sounds (we are, after
all trying to avoid finding contiguous physical pages) as a single 4K page is enough to map
in 1K logical pages or 4M bytes.

The address translation involves a table lookup and if this always causes a memory read to
occur the overall performance would be very poor. Standard memory management units
use a technique called Translation Lookaside Buffers (TLB) to hold a cache of the most
recent address translations which are checked first and only if the page translation is not in
the TLB will an access to the memory resident page table be made. Gamma also uses this
technique and because most accesses are sequential a TLB miss will normally occur once
every 1024 reads or writes.

The page table physical address and length are held in the PageTableAddr and
PageTableLength PCI registers respectively. The pagetable length (in multiples of 1K entries)
is only used to implement some range checking on the logical addresses and if an error is
detected an error flag is set and optionally an interrupt (PageMappingError) generated.

The page table starts on a 32 bit word boundary and holds one 32 bit word per logical page.
The first logical address is zero.

Bits Name Function

0 PageResident This bit, when set, marks this page as being resident. When a page is found to
be non resident the PageFault interrupt is raised and the faulting logical
address made available in one of the FaultingAddress PCI registers. This
interrupt can be used as a notification that an actual error has occurred, or to
implement a dynamic paging mechanism. In the latter case the host will make
the page available, update the page table and restart the faulting page again by
clearing the interrupt.

1 ReadAccess This bit, when set, allows read access to this page. Any attempt to read from
this page when the bit is clear will cause one of the PageFaultReadAccess error
bits to be set and the CommandError interrupt to be raised. The faulting
logical address is made available in the corresponding FaultingAddress PCI
register.

2 WriteAccess This bit, when set, allows write access to this page. Any attempt to write to this
page when the bit is clear will cause one of the PageFaultWriteAccess error bits
to be set and the CommandError interrupt to be raised. The faulting logical
address is made available in the corresponding FaultingAddress PCI register.
3...11 Not used, but should be set to zero as they are reserved for future use.

12...31 | PhysicalPage The 20 bit physical page addresses associated with this logical entry. Note that
if the page is not resident then these bits are not used by the hardware and may

be used by the driver to help manage dynamic paging.

Table 3.1. Format for the page table entries

All the addresses are divided up into one of six regions based on what data was being read or
written to that address. Each region has its own set of error bits (in the PCI CommandError
register), interrupt bits and FawultingAddress PCI registers to help identify the cause of the
error, etc.

3D/.sbs

Proprietary and Confidential 17

Getting Data into Gamma GLINT Gamma Programmer’s Reference Manual

Region When used

Vertex This region is used for any data read as part of a RectangleRead command.

Write This region is used for any data written to memory as part of any Output DMA or
RectangleWTrite command.

Table 3.2 The address regions

The CommandError PCI register has error bits associated with the address translation process,

see Table 3.3.

Bit No. Name Description
4 PageMappingFaultCommand
5 PageMappingFaultVertex This is set whenever the logical address exceeds the.
6 Reserved translation range of the Page Mapping Table for the
7 Reserved appropriate region.
8 PageMappingFaultWrite
9 Reserved

10 PageFaultReadAccessCommand
11 PageFaultReadAccessVertex

12 Reserved This is set whenever a read access is made to a page

13 Reserved marked as not supporting read accesses.
14 PageFaultReadAccessWrite

15 Reserved

16 PageFaultWriteAccessCommand
17 PageFaultWriteAccessVertex

18 Reserved This is set whenever a write access is made to a page

19 Reserved marked as not supporting write accesses.
20 PageFaultWriteAccess Write
21 Reserved

22 Illegal DMATag This is set whenever a DMA related tag is detected not in
a tag/data pair.

Table 3.3 Error bits associated with the address translation process

The PCI CommandInterruptEnable register has fields to enable and disable the various
interrupts related to the address translation process , see Table 3.4. The
CommandInterruptStatus register has the same fields to identify the actual source of the
interrupt. Writing a one to a field in the CommandInterruptStatus case clears the
corresponding interrupt.

18 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data into Gamma

Bit Name Description
No.
4 CommandError Enables the occurrence any of the errors detected (including the PageMapping

or PageFault errors above) to generate an interrupt.

8 PageFaultCommand Enables an interrupt to be generated when a non resident page is accessed in
the Command region.

9 PageFaultVertex Enables an interrupt to be generated when a non resident page is accessed in
the Vertex region.

10 | Reserved

11 | Reserved

12 | PageFaultWrite Enables an interrupt to be generated when a non resident page is accessed in
the Write region.

13 Reserved
Table 3.4 The PCI CommandlnterruptEnable register fields

The FaultingAddress register corresponding to each region hold the logical address for that
region at which the error or page fault occurred.

Writing to the PageTableAddr PCI register invalidates all the TLB entries and should be
done whenever any of the contents of the current page table change. One page table and
DMA buffer could be allocated per context or one shared between all contexts. In the
former case the PageTableAddr and PageTableLength registers would be updated on context
switches.

3.4 Hierarchical DMA

During a DMA transfer, if the DMAAddr and DMACount commands are encountered in
the DMA buffer then the current DMA is temporarily suspended and a new DMA started
with the new address and counts This new DMA can similarly be temporarily suspended
and an even newer DMA started. When a 'new' DMA finishes the previously suspended

DMA is restarted immediately after the DMACount command which initiated the new
DMA.

As each DMA is suspended the address and count to restart with are pushed onto a stack
(much like a subroutine return stack in a general purpose CPU). This stack, called the
dmaStack, has eight entries so the maximum nesting level (or hierarchy depth) is set at
eight. Any new DMA which would otherwise cause the stack to overflow is ignored and an
error bit (StackOverflowError) in CommandError is set and this may cause an interrupt, if so

enabled.

Transfer of control to another DMA bulffer can also be achieved by using the DMACall
command (with the new DMA buffer address in the data field). The called DMA buffer
has a DMAReturn command (the data is not used, but must be provided) to indicate the
buffer is finished and to transfer control back to the caller. This mechanism is simpler to
use as you do not need to know the length of the called DMA buffer. The DMAReturn
may cause a stack underflow if the stack is empty. In this case the return is ignored, the
DMA aborted and, input processing is passed back to the input FIFO and an error bit
(StackUnderError) in CommandError is set and this may cause an interrupt, if so enabled.

3D/.bs Proprietary and Confidential 19

Getting Data into Gamma GLINT Gamma Programmer’s Reference Manual

3.5

The motivation for hierarchical DMA is that it allows any number of individual DMAs to
be queued up, independent of the input FIFO depth, and it supports hierarchical display
lists.

Display lists are preferably held in 'native’ Gamma format so they can be executed directly
without having to be parsed by software first. An OpenGL display list can call other
OpenGL display lists and models are typically built as hierarchies of objects. There are
three factors which may prevent hierarchical display lists being used:

* Gamma relies on the host to do any matrix generation and concatenation. Future
versions of Gamma will include these operations, so removing this barrier.

* Mode changes in the current rasterizer chips may involve changing one or two bits in a
register and leaving the rest of the bits unaffected. This requires a software copy of the
register to be used to re-generate the bits to keep. The register contents may be different
when the display list is executed from when the display list was created and so active
involvement from software is needed. All the Gamma mode registers have an And and
an Or version to allow individual bits to be changed. Future rasterizer chips will use this
same method so changing their mode registers can be done safely in display lists.

* Inter dependencies in mode bits. For example the framebuffer, in general, needs to be
enabled for reading when alpha blending is done, however some alpha blending modes
don't use the framebuffer contents. Meanwhile, in a different mode register the logical
operation may or may not require framebuffer data to be read as well. Future rasterizer
chips will do this multi mode register decoding to enable memory reads and writes as
appropriate so these can be included in display lists.

Rectangular DMA

The Rectangle DMA mechanism allows image data to be transferred from host memory to
GLINT. The image data may be a sub image of a larger image and have any natural
alignment or pixel size. Information regarding the rectangle transfer is held in registers

loaded from the input FIFO or a DMA buffer.

The pixel data read from host memory is always packed, however when passed to GLINT it
can be in packed or unpacked format.

20

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data into Gamma

Command or register

Use

DMARectangleRead

This command initiates the image data transfer. See below for a

description of the data field.

DMARectangleReadAddress This register provides the byte address of the first pixel in the image or sub

image to read. This is treated as a logical or physical address depending on
the LogicalAddressing control bit in the CommandMode PCI register. The
address should be aligned to the natural size of the pixel, except for 24 bit
pixels which may be aligned to any byte boundary.

DMARectangleReadLinePitch This register defines the amount, in bytes, to move from one scanline in

the image to the next scanline. For a sub image this is based on width of
the whole image. The pitch is held as a 32 bit 2's complement number.
This is normally an integer multiple of the number of bytes in a pixel.

DMARectangleRead Target This register holds the 16 bit tag sent to GLINT just before the image data

is sent. Normally it would be one of the tags allowed by the rasterizer
during a SyncOnHostData or SyncOnBitMask operation with the tag
mode set to Hold. The secondary PCI bus traffic is minimized by sending
multiple image words with a single tag (with a count).

Note: These tags cannot be part of an indexed group.

Table 3.5 Relevant commands and registers for Rectangular DMA

Bit No. Name

Description

0...11 Width
12...23 Height
24,25 PixelSize

26 PackOut

27,28 ByteSwap

Width of the rectangle in pixels. Range 0...4095.

Height of the rectangle in pixels. Range 0...4095.

The size of the pixels in the source image to read. The pixel size is used during
alignment and packing. The values are:

0 = 8 bits

1 = 16 bits
2 = 24 bits
3 = 32 bits.

This field, when set, causes the data to be packed into 32 bit words when sent to
GLINT, otherwise the data is right justified and any unused bits (in the most
significant end of the word) are set to zero.
These bits control the byte swapping of the data read from the PCI bus before it is
aligned and packed/unpacked. If the input bytes are labeled ABCD on input then
they are swapped as follows:

0 = ABCD (i.e. no swap)

1 = BADC
2 = CDAB
3 = DCBA.

Table 3.6 Fields in the DMARectangleRead command

The minimum number of PCI reads are used to align and pack the image data.

3D/.sbs

Proprietary and Confidential 21

Getting Data into Gamma GLINT Gamma Programmer’s Reference Manual

GLINT is set up to rasterize the destination area for the pixel data (depth, stencil, color,
etc.) with SyncOnHostData or SyncOnBitMask enabled in the Render command (or
equivalent if Gamma is doing the rasterizer set up). This is done before the Rectangular

DMA is started.

22 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data out of Gamma

4.

Getting Data out of Gamma

The Output DMA Controller provides a means to transfer data from the Host Out FIFO
in GLINT to the host's memory. If the data originated from Gamma then it still flows into
GLINT so it can be picked up from the Host Out FIFO - this ensures temporal ordering is

maintained.

The output DMA is useful for image uploads, returning feedback data, returning select data
and Gamma context dumps. The DMA is initiated by commands (and not PCI register
writes) so can be queued up in the Input FIFO or in input DMA buffers.

The output DMA runs asynchronously to the input DMA so command and register
updates continue to be processed. If a second output DMA is initiated before the first one
has finished then all subsequent command and register processing is suspended until the

first output DMA has finished.

An interrupt may be generated whenever an output DMA transfer finishes (controlled by a
bit in the CommandMode PCI register). An interrupt can also be generated selectively by
placing a CommandInterrupt tag into the FIFO or DMA buffer, however this would cause
the interrupt to be generated immediately the input DMA controller found it and not when
the output DMA had finished. The CommandInterrupt command has a bit reserved to
force it to wait for the output DMA to finish before generating the interrupt; a side effect of
this is to suspend any subsequent commands and register processing until the output DMA
also finishes.

The potential exists in the non feedback case for there to be a mismatch between the
amount of data the DMA controller expects to read from the Host Out FIFO and how
much data GLINT will provide. In this case a lockup is almost inevitable with either
Gamma stalling on the next Output DMA command or GLINT stalling because the Host
Out FIFO fills up. In the first case the stuck DMA can be aborted by setting the
AbortOutputDMA bit in the PCI CommandMode register. The CommandStatus PCI register
holds a bit which shows when the Output DMA controller is busy.

In a multi-GLINT system the DMAReadGLINTSource register is used to select which
GLINT is to provide the data. The bottom three bits provide the GLINT ID.

Writing to any of the registers while a DMA is in progress will not disrupt the DMA as a
local copy of each register is taken at the start of a DMA. This has been highlighted as the
output DMA is an asynchronous operation to normal command and register processing.

The dmaStack is not used by either of the two modes of operation.

41 Linear DMA Transfers
A simple linear DMA transfer is set up by using the DMAOutputAddress register and the
DMAOutputCount command.

3D/.bs Proprietary and Confidential 23

Getting Data out of Gamma GLINT Gamma Programmer’s Reference Manual

4.2

The DMAOutputAddress register holds the address (logical or physical) where the stream
of 32 bit words is to be written. The start address is given as a byte address but the lower
two bits are ignored.

The DMAOutputCount command holds the number of 32 bit words to transfer and
initiates the actual transfer to start, providing the output DMA controller is idle. The
count is held as a 24 bit number.

The data to write to memory is read from the GLINT's Host Out FIFO so the FilterMode
register (in the GLINT) must be set up to allow the required data and/or tag through.

Feedback and Select DMA Transfers

When the output DMA is used for image uploading or context dumps the amount of data
to read from GLINT is deterministic, however returning feedback data presents the host
with an interesting problem in that it doesn't know how much feedback data is going to be
generated!. A similar situation also exists for select data.

The Feedback DMA mechanism allows the collection and transfer of an unspecified
amount of data from the Host Out FIFO. This can be used for OpenGL feedback and

select modes.

The feedback DMA transfer is set up by using the DMAOutputAddress register and the
DMAFeedback command.

The DMAOutputAddress holds the address (logical or physical) where the feedback or
select data is to be written The start address is given as a byte address but the lower two bits
are ignored.

The DMAFeedback command with the length of the memory buffer (in words) is sent to
start the Output DMA controller. Data is never written beyond the end of the given buffer
length.

Once all the data to write to memory has been generated as the result of regular Gamma
commands the EndOfFeedback command is sent to Gamma. The Output DMA
controller, when it reads this tag from the Host Out FIFO, will terminate the DMA
transfer and update the FeedbackSelectCount PCI register with the number of words written
into memory.

During the transfer one of two situations will be detected:

1Feedback mode in OpenGL returns the vertex parameters rather than doing the actual rendering these vertex
parameters represent. Vertices are returned after polymode, backface culling and clipping so there is no easy
way for the host software to predict (without doing all the geometry work in exacrly the same order and to the
same precision as Gamma). For example a single triangle going in may end up producing 0, (1...13) * 3
vertices out. A clipped triangle could, in the worst case, yield a 15 sided polygon and this will be returned as
13 triangles or 13 * 3 vertices.

24

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data out of Gamma

* The memory buffer will become full before the EndOfFeedback tag in Host Out FIFO
is detected. In this case the DMA is terminated and the host informed, however the host
output FIFO will continue to be read and its contents discarded until the

EndOfFeedback tag is found. The EndOfFeedback tag and its data will also be
discarded.

* The EndOfFeedback tag is detected before the memory buffer has become full. In this
case the DMA is terminated and the host informed.

The FeedbackSelectCount PCI register will hold the actual number of words transferred. Bit
31 is set if more data was found before the EndOfFeedback tag.

The GLINT FilterMode is set up so that both the tag and data are entered into the FIFO -
the Output DMA controller is looking for a specific tag (EndOfFeedback). All tags are
discarded and never written into the buffer. The data for valid tags is also written into the
buffer while data for invalid tags is discarded. Valid tags in this mode are:

FeedbackX

FeedbackY

FeedbackZ

FeedbackW

FeedbackRed

FeedbackGreen

FeedbackBlue

FeedbackAlpha

Feedback$S

FeedbackT

FeedbackR

FeedbackQ

FeedbackToken

PassThrough

SelectRecord

ContextData

EndOfFeedback

All these tags are part of the previously undocumented Remainder group (bits 14 and 15) in
the FilterMode and both these bits must be set for Feedback DMA to work. The

remaining filter groups do not need to be disabled as they are automatically filtered by the
Output DMA controller when in feedback mode.

Note that the feedback mode can also be used for context dumps.

3D/.sbs

Proprietary and Confidential 25

Getting Data out of Gamma

GLINT Gamma Programmer’s Reference Manual

43 Rectangular DMA Transfers

The Rectangle DMA mechanism allows image data to be transferred from GLINT to host

memory. The image data written to memory may be a sub image of a larger image and

have any natural alignment or pixel size. Information regarding the rectangle transfer is

held in registers loaded from the input FIFO or a DMA buffer.

The pixel data written to host memory is always packed, however when read from GLINT
it can be in packed or unpacked format.

Tag

Use

DMARectangleWrite

This command initiates the image data transfer. See below for a

description of the data field.

DMARectangleWriteAddress This register provides the byte address of the first pixel in the image or

sub image to write. This is treated as a logical or physical address
depending on the LogicalAddressing control bit in the CommandMode
PCI register. The address should be aligned to the natural size of the
pixel, except for 24 bit pixels which may be aligned to any byte
boundary.

DMARectangleWriteLinePitch This register defines the amount, in bytes, to move from one scanline

in the image to the next scanline. For a sub image this is based on
width of the whole image. The pitch is held as a 32 bit 2's
complement number. This is normally an integer multiple of the

number of bytes in a pixel.

Note: These tags cannot be part of an indexed group.

Table 4.1 Relevant Command and Registers for Rectangular DMA

The DMARectangleWrite command.

Bit No. | Name

Description

0...11 Width
12...23 | Height
24, 25 PixelSize

26 PackIn

27,28 ByteSwap

Width of the rectangle in pixels. Range 0...4095.

Height of the rectangle in pixels. Range 0...4095.

The size of the pixels in the source image to read. The pixel size is used during
alignment and packing. The values are:

0 = 8 bits

1 = 16 bits
2 = 24 bits
3 = 32 bits.

This field, when set, indicates the image data from GLINT is packed, otherwise
there is one pixel per 32 bits read from GLINT.
These bits control the byte swapping of the data after it is aligned and
packed/unpacked just prior to doing the PCI write. If the input bytes are labeled
ABCD on input then they are swapped as follows:

0 = ABCD (i.e. no swap)

1 = BADC
2 = CDAB
3 = DCBA.

Table 4.2 DMARectangleWrite Command Fields

The minimum number of PCI writes are used to align and pack the image data.

26

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Getting Data out of Gamma

GLINT is set up to rasterize the source area for the pixel data (depth, stencil, color, etc.)
with the FilterMode set up to allow the appropriate data through (the tag should not be
included). The rasterization is best set up before the Rectangular DMA is started, but as
this is asynchronous it is not necessary to do things in this order.

3D/.sbs

Proprietary and Confidential 27

Driver Support GLINT Gamma Programmer’s Reference Manual

Driver Support

51 Timer
It is frequently useful to be able generate an interrupt after a certain amount of time has
elapsed, maybe to wake up the driver in the absence of regular DMA interrupts, for
example, or as a watchdog timer to catch system lockups. Most operating systems provide
some way of scheduling a timer interrupt to occur, however the call to the operating system
may be prohibitively expensive. Gamma includes a one shot delay timer which can be
programmed directly by a driver without any involvement from the operating system.
Writing to the DelayTimer PCI register starts the timer. When the timer decrements down
to one an interrupt is generated and the timer stops. Writing a zero to DelayTimer aborts
the timer with no interrupt being generated (unless it has already occurred). Reading this
register returns the current timer value. The unit of time is PCI clock / 64, or
approximately 2ps for a 33MHz PCI clock and the register is 24 bits wide giving a
maximum delay of approximately 32 seconds.
5.2 Errors, Interrupts and Status registers
Bit No. Name Description
0,1 Operation This field determines the major operation mode of the DMA
controller. It has the values:
0: Default operation enabled after reset. The DMA is initiated
by writes to the PCI DMAAddress and DMACount registers.
Any DMAAddr and DMACount tags found in the input
FIFO are discarded.
1: The DMA is initiated by the DMAAddr and DMACount
tags in the input FIFO. Writes to the PCI DMA Address and
DMACount registers are ignored.
2 LogicalAddressing When set causes the addresses generated by the DMA controller
to be translated into physical addresses via a page table.
3 AbortOutputDMA When this bit is set any current (or future) Output DMA is
aborted (linear or rectangular).
6 AbortlnputDMA When this bit is set any current (or future) Input DMA is aborted
(normal DMA, hierarchical or rectangular).
Table 5.1 PCI CommandMode Register Fields
28

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual Driver Support

The PCI CommandError register holds the Gamma core error bits, see Table 5.2.

Bit | Name Description
No.

0 StackUnderflow This is set whenever a DMAReturn is attempted from the
InputFIFO or DMA buffer when the stack is empty.

1 StackOverflow This is set whenever a DMACount or DMACall tag in a DMA
buffer are nested more than 8 deep.

2 DMAOverrun This is set whenever data beyond the end of the DMA buffer is
needed to fulfill the requirements of the last tag in the DMA
buffer.

4 PageMappingFaultCommand the translation range of the Page Mapping Table

8 PageMappingFaultWrite for the appropriate region.

10 PageFaultReadAccessCommand | This is set whenever a read access is made to a

14 | PageFaultReadAccessWrite page marked as not supporting read accesses

16 PageFaultWriteAccessCommand | This is set whenever a write access is made to a

20 PageFaultWriteAccess Write page marked as not supporting write accesses.

22 Hlegal DMATag This is set whenever a DMA related tag is detected not in a
tag/data pair.

Table 5.2 PCI CommandError Register Error Conditions

The PCI CommandInterruptEnable register has fields to enable and disable the various
interrupt sources see Table 5.3. The CommandlnterruptStatus register has the same fields to
identify the actual source of the interrupt. Writing a one to a field in

CommandInterruptStatus clears the corresponding interrupt.

Bit Name Description
No.

0 FIFOQueuedCommandDMA | This field determines when interrupts are generated during the
Queued DMA mode of operation. When this bit is set the
interrupts occur after every DMA has finished.

1 OutputDMA When set enables an interrupt to be generated whenever the
Output DMA controller finishes.

2 Command Enables the CommandInterrups tag to generate an interrupt.

3 Timer Enables the DelayTimer to generate an interrupt when it has
counted down to one.

4 CommandError Enables the occurrence of any of the errors shown by the
CommandError register to generate an interrupt.

8 PageFaultCommand Enables an interrupt to be generated when a non resident page is
accessed in the Command region.

9 PageFaultVertex Enables an interrupt to be generated when a non resident page is
accessed in the Vertex region.

12 PageFaultWrite Enables an interrupt to be generated when a non resident page is
accessed in the Write region.

Table 5.3 PCI CommandlnterruptEnable Interrupt Source Fields

3D/.sbs

Proprietary and Confidential 29

Driver Support GLINT Gamma Programmer’s Reference Manual

Bit | Name Description

0 | CommandDMABusy | This is set whenever the input DMA controller is busy or a RectangleRead is
in progress.

1 | OutputDMABusy This is set whenever the OutputDMA controller is busy or a RectangleWrite
is in progress.
2 | FIFOEmpty This is set whenever the input FIFO is empty.

Table 5.4 PCI CommandStatus Register Fields

30 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Primitive Assembly

Primitive Assembly

This section looks at how primitives and vertex data are given to Gamma.

6.1 Specifying Vertices, Normals, Textures and Colors
The normal input format for the data associated with a vertex is IEEE single precision
floating point numbers. All the variants supported by OpenGL such as byte, long, double,
etc. must be converted to single precision floats first. The only exceptions to this are colors
which can be accepted as unsigned packed bytes.
The vertex parameters are multi valued entities (i.e. vectors) so the vectors are assembled
before being processed as they can only be written one component at a time. Frequently
one or more of the vector components are left to take a default value, for example a vertex
coordinate is commonly specified with a w component set to 1.0. Allowing this
component to take its default value saves sending 4 bytes to Gamma which can amount to a
substantial saving in bandwidth.
The vector assembly uses the x component (for vertices and normals), the red component
(for colors) and the s component (for textures) to indicate the assembled vector is complete
and should be processed. The address (or tag) of the trigger component used informs
Gamma which of the short hand formats to use. Several short hand formats exist to reduce
the amount of information the host needs to provide. The possible formats are:
Vertex: xy, xyz and xyzw z=0,w =1 if missing
Raster Position: xy, xyz and xyzw z=0,w =1 if missing
Normal: XyZ
FaceNormal Xyz
Color: rgb, rgba a =1 if missing
Texture: S, St, strq t=0,r=0,q=1 if missing
Each short hand format has a unique register for the trigger component (the number, when
present, indicates the number of components supplied):
Parameter Non-Trigger registers Trigger registers
Vertex: Vy, Vz, Vw Vx2, Vx3, Vx4
Raster Position: RPy, RPz, RPw RPx2, RPx3, RPx4
Normal: Ny, Nz Nx
FaceNormal FNy, FNz FNx
Color: Cg, Cb, Ca Cr3, Cr4
Texture: Tt, Tr, Tq Tsl1, Ts2, Ts4

3D/.bs Proprietary and Confidential

Primitive Assembly GLINT Gamma Programmer’s Reference Manual

The components for a vector are sent in reverse order to ensure the trigger component is
always last. The tags are organized so this naturally fits in to the index tag format. The
main group for the vertex parameters allows any of the vertex formats, a normal, any of the
color formats and the Ts2 texture format to be encoded into one group. This allows a
Gouraud shaded, depth buffered meshed triangle to be described by 7 words (index tag, Nz,
Ny, Nx, Vz, Vy, Vx3)!.

The storage used to assemble a vector is shared by all vectors so it is not possible to mix
components from different vectors. Sending all the components associated with a vector
together 1s not an onerous restriction.

Some general rules when sending vertex parameters are:

* Don't mix Vertex, Color, Normal, Face Normal, Raster Position or Texture components
up. All the components for a particular vector type must be sent together.

* The components must be sent in reverse order from the 'natural’ way. For example send
W, then Z, then Y and finally X (to the appropriate register).

* All components are single precision IEEE floating point numbers.

* Short hand formats will fill in some components for you to save having to send W =1,
for example. These are analogous to the OpenGL glVertex[21314]f, glColor[314]f and
glTexCoord[11214]f function calls.

* Only send the vertex coordinate after any color, normal or texture data has been sent.
A vertex must be sent to provoke the triangle, line, etc. to be drawn The color, normal
and texture update the current color, normal and texture values respectively and are
applied to vertices until subsequently changed. This follows the usual OpenGL rules.

These rules are enforced automatically if the parameters are sent as a group using an index
tag.

The above registers, except the vertex can be read back. All the trigger registers for a
parameter read back the same register but the non trigger registers will not read back the

current values until the trigger has been written. Non trigger registers will return the
default values if the last trigger register substituted the defaults for absent values.

In addition to defining color information via the Ca, Cb, Cg Cr3 and Cr4]registers two
packed color formats are also available. These are PackedColor3 and PackedColor4. The
format of each color component is an unsigned 8 bit number with red in the lower byte,
then green, then blue and finally alpha in the upper byte. In the PackedColor3 case the
alpha byte is ignored and always interpreted as 255.

IThis compares very favorably with the 10 words needed by GLINT Delta for the same triangle (index tag, X,
Y, Z, R, G, B, A, DrawTag, DrawData).

32

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Primitive Assembly

6.2

The current edge flag is updated by writing to the EdgeFlag register. The current edge flag
is used for edges in polygons, independent triangles and independent quads to determine if
they should be drawn when the polygon mode is set to Lines. Connected primitives always
have their edges drawn. Interior edges introduced as part of the rendering process (for
example decomposing a polygon in to several triangles) are never drawn.

Begin/End Paradigm

The main method in OpenGL for issuing primitives is the Begin/End paradigm and
Gamma supports this exactly with no additional control by software. The usual OpenGL
commands can be inserted between the Begin and End commands (in fact Gamma imposes
no restrictions on the mix of mode changes between a Begin and End command) and that
is all there is to it. There is no need to manage the vertex store as there was for GLINT

Delta.

The Begin command starts a sequence of vertices by specifying the primitive type and
various enables. The primitive type is held in the upper 4 bits while the lower bits hold the
same fields used by the Render command in GLINT and allows fine control of the texture
mapping, fog, etc. The format of the Begin command's data field is shown in Table 6.2.
The fields in bits 0 to 18 are the same as those in the Render command and only the fields
which influence Gamma are identified and described. The effect of these fields on the
GLINT rendering device can be found in the appropriate GLINT Programmer’s Reference
Manual.

3D/.sbs

Proprietary and Confidential 33

Primitive Assembly

GLINT Gamma Programmer’s Reference Manual

Bit No. | Name Description

0 AreaStippleEnable Opverridden when incompatible with the primitive type.

1 LineStippleEnable Opverridden when incompatible with the primitive type.

2 ResetLineStipple Ignored and always set by Gamma to meet the OpenGL rules for when
the line stipple is reset within primitives.

3 FastFillEnable Ignored and forced to be disabled.

4,5 Not used

6,7 PrimitiveType Ignored and always set by Gamma depending on the type field and
polymode setting.

8 AntialiasEnable Qualifies the AntialiasEnable held for each primitive type in the
PointMode, LineMode and TriangleMode registers. If both enables are
true then the primitive is antialiased.

9 AntialiasingQuality Ignored. This information is held in the PointMode, LineMode and
TriangleMode registers.

10 UsePointTable Ignored and generated locally when antialiasing points.

11 SyncOnBitMask Ignored, and forced to be disabled.

12 SyncOnHostData Ignored, and forced to be disabled.

13 TextureEnable Passed through but also enables (1) or disables (0) texture calculation to
be performed. Note texture transformations and TexGen operations are
not influenced by this bit (as required by OpenGL).

14 FogEnable Passed through but also enables (1) or disables (0) fog calculation to be
performed.

15 CoverageEnable Ignored and generated locally when antialiasing is done.

16 SubPixelCorrectionEnable | This bit is passed through. When enabled (1) subpixel correction is done
in the Y direction (the rasterizer does it in the X direction).

17 Reserved

18 SpanOperation Ignored and forced to be 0.

28...31 Type This field sets up the primitive type to process on receiving each new
vertex. It has the following values:

0 Null

1 Points

2 Lines

3 LineLoop

4 LineStrip

5 Triangles

6 TriangleStrip

7 TriangleFan

8 Quads

9 QuadSerip

10 Polygon

Table 6.1 Begin/End Paradigm

Raster position registers should not be loaded within a Begin/End sequence (also specified
by OpenGL) as it uses the same temporary working store and would disrupt the Begin/End
sequencing.
The End command ensures any remaining operations for the primitive are complete.
Vertices sent before a Begin command and after an End command are ignored. Texture,
color, normal and face normals will update the corresponding current values.

34 3D/abs

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

7.

71

7.1.1

3D Pipeline

The 3D pipeline defines the normal sequence of operations applied to vertices and
primitives and is well covered in the computer graphics literature.

Each of these stages will be described briefly to introduce the register used to control them.

Transformation

Vertices, normals, face normals and texture coordinates are transformed before they are used
to define the primitives to ultimately draw. The TransformMode and NormalizeMode
registers define what is to be transformed and how.

Vertices

The most involved set of operations are done on vertex coordinates and these pass through
the following coordinate systems (in order):

Object This is the coordinate space (suffix o) objects are defined in and

Coordinates what is usually presented to the input of the 3D pipeline. The
ModelView matrix converts the object coordinates into eye
coordinates (suffix e). The coordinates are four dimensional so the
ModelView matrix, M, is 4x4.

X% C X, C

0, 0 Eg/ a

De0-pm e 0

Oz O 0z, O

WwH By

Eye Coordinates This is the coordinate space where lighting, fog, etc. operations
occur. The Projection matrix converts the eye coordinates into clip
coordinates (suffix ¢). The coordinates are four dimensional so the
Projection matrix, P, is 4x4.

Cx 0 DXC
0, O 0
Dycmng’em
Oz0 020

W B

Clip Coordinates This coordinate space is arranged to make clipping easier. The
perspective division operation converts the clip coordinates (after
any necessary clipping has been done) into normalized device
coordinates (suffix d).

3D/.sbs

Proprietary and Confidential 35

3D Pipeline GLINT Gamma Programmer’s Reference Manual

Normalized Device This coordinate space defines object to be drawn (or the visible

Coordinates parts, if clipped), but the coordinates are normalized to be in the
range + 1.0.

Window The window coordinates (suffix w) are the normalized device

Coordinates coordinates, but now scaled to the size of the window. This scaling

is done by the view port mapping defined by the S and O vectors.
The x and y components of S and O are related to the window's
size and the z components to the depth range.

[x+ox[
Ex”m Es“’ 0

SIS A=

[z, [z, +0,]

Gamma holds two matrices used for vertex transformation. The first matrix is the
ModelView matrix and this is stored in the ViewModelMatrix[0...15] registers. The
second matrix is the combined ModelView and Projection matrix (i.e. MxP matrices from
above) and this is stored in the ModelViewProjectionMatrix[0...15] registers. Both these
matrices are 4x4 and are laid out in the registers as follows:

M, M, My My,LC

O, M, M, M

O B0

M, Mg M, M,O
HMs M, My M15H

The numerical subscripts give the order the elements are stored in the matrix registers (i.e.
M, is stored in ModelViewMatrix[0], for example) and these follow the column-major
order convention. Note this is different from the convention C uses which follows the row-
major order.

The viewport mapping scale and offset values are held in the ViewPortScaleX,

ViewPortScaleY, ViewPortScaleZ, ViewPortOffsetX, ViewPortOffsetY and
ViewPortOffsetZ registers.

The transformation of the vertices is controlled by two bits in the TransformMode register

see Table 7.1.

Bit Name Description
No.
0 UseModelViewMatrix When set causes the incoming vertex to be multiplied by the

ModelView matrix. This is only necessary if the vertex in eye
space is needed for subsequent processing. A slight gain in
performance may be seen when this transformation is disabled.
The eye space vertex is used for EyeLinear, TexGen, user
clipping planes, fog, lighting, or auto generation of the face
normal.

1 UseModelViewProjectionMatrix = When set causes the incoming vertex to be multiplied by the
ModelViewProjection matrix to calculate coordinates in clip

space. This bit should normally be set.

Table 7.1 TransformMode Register Vertices Control Bits

36

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

7.1.2 Normal

The normals are defined in object space and transformed into eye space where the lighting
is calculated, or face culling using a supplied face normal occurs. The normal is
transformed by the 3x3 Normal matrix held in the NormalMatrix[0...8] registers. The
Normal matrix is usually the inverse transpose of the upper 3x3 part of the ModelView
matrix. The Normal matrix is laid out in the registers as follows:

Similarly for a 3x3 matrix multiplication:

ON, N, N
N N Ng
N, N Ny

The numerical subscripts give the order the elements are stored in the matrix registers (i.e.
Ny is stored in NormalMatrix[0], for example) and these follow the column-major order

convention. Note this is different from the convention C uses which follows the row-major
order.

The transformation of the normals is controlled by two bits in the TransformMode register

see Table 7.2

Bit Name Description

No.

2 TransformNormal When set causes any incoming vertex normal to be multiplied by the

Normal matrix. This only needs to be set if lighting is used or
TexGen SphereMap is selected.

3 TransformFaceNormal | When set causes any incoming face normal to be multiplied by the
Normal matrix. This only needs to be set if face normal lighting is
used and/or if face normal backface test is enabled. OpenGL does
not use this, whereas QuickDraw3D does for TriMesh primitives.

Table 7.2 TransformMode Register Normal Control Bits

If the incoming normal was not of unit length or the Normal matrix scaled the normal in
any way then the transformed normal needs to be normalized for the lighting calculation to
work properly. Two bits in the NormalizeMode register control this see Table 7.3.

3D/.bs Proprietary and Confidential 37

3D Pipeline GLINT Gamma Programmer’s Reference Manual

7.1.3

7.2

Bit Name Description

No.

0 NormalEnable When set causes any normals to be normalized.

1 FaceNormalEnable When set causes any face normals supplied by the user to be
normalized. If the face normal is only being used for culling then
it never needs to be normalized.

Table 7.3 NormalizeMode Register Control Bits

Enabling normalization does not effect performance in Gamma.

Texture

The incoming texture coordinates, or the texture coordinates generated under TexGen
control (see later) are transformed by the 4x4 Texture matrix held in the
TextureMatrix[0...15] registers. This matrix is laid out in the registers as follows:

O, T, Tg T,0O

a

Eﬁ_l T, T, T13D
ar, Te T Ty,O
HT3 T, Ty T

The numerical subscripts give the order the elements are stored in the matrix registers (i.e.
Ty is stored in TextureMatrix[0], for example) and these follow the column-major order
convention. Note this is different from the convention C uses which follows the row-major
order.

The transformation of the texture is controlled by one bit in the TransformMode register
see Table 7.4.

Bit Name Description
No.
4 TransformTexture | When set causes the incoming texture or the texture generated from the
TexGen operation to be multiplied by the Texture matrix. Frequently
the texture matrix will be a unit matrix so the transformation can be

preferably avoided.

Table 7.4 TransformMode Register Texture Control Bits

Lighting
Gamma implements the full OpenGL RGB lighting model. The Color Index lighting

model is not supported. The ambient, diffuse and specular lighting components are given
by the following vector equations (vectors in bold). The subscripts used are

¢ color

b position

m material

/ light

i light number

38

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

n-1

lightAmbient = 5 (atti,)(spot, Ja,
1=0
n-1

lightDiffuse = (attii)(spoti)(n-\/Pp|i y
n-1

lightSpecular = Z(attii)(spoti)[(fi)(n k)™ sdi]
1=0
where:
H 1
U 2
atti; = Ky + Ky vapli H + Ky HVPan
E 10, otherwise.
wherek, ,k, andk, are the attenuation coefficients for light .

if mode.Attenuation is trye

H\ippli °§d.i)% , mode.Spotlight is true VP *§, = cos(cm),
[l -
spot; =1 00, mode.Spotlight is true VP *§; <cos(cm),
B 10, mode. Spotlight is false
0

wherec,; is the spotlight cutoff angle for light

Q., Nne \/P i £ 0,
f, =] "
D, otherwise.
B/Pi + VP, local viewer true
h =0

AVPx+(0 0 1), local viewer false

The light and material properties are combined as shown in the following vector equations
to calculate the color, diffuse texture (Kd) and specular texture (Ks) values:

c=e,, +a,a,+ambientLight(a,, + diffuseLightld,, + specularLight(ls,,
diffuseTexture= e, +a,, + ambientLight + diffuseLight
specular Texture = specularLight
where: €m is the emissive material color (front or back)
a, is the ambient material color (front or back)
d., is the diffuse material color (front or back)

Sem is the specular material color (front or back)

3D/.bs Proprietary and Confidential 39

3D Pipeline

GLINT Gamma Programmer’s Reference Manual

The OpenGL specification gives an authoritative description of these equations.

The diffuseTexture and specularTexture are not required for OpenGL, but are used in
Direct3D and Quickdraw3D to add lighting effects after texture mapping.

Gamma supports 16 lights (numbered 0 through 15). The registers for light 0 are shown in

Table 7.5. For other lights substitute the appropriate number for 0. Note the successive

light parameters follow in sequential registers so it is easy to generate the tag number or

register address algorithmically rather than always using symbolic tokens.

Register Equation | Offset from Description

symbol LightMode

LightOMode 0 Mode control for Light (see later).

LightOAmbientIntensityRed 1 Ambient red intensity in floating point format.

LightOAmbientIntensityGreen | 2 Ambient green intensity in floating point
format.

LightOAmbientIntensityBlue 3 Ambient blue intensity in floating point format.

LightODiffuseIntensityRed 4 Diffuse red intensity in floating point format.

LightODiffuselntensityGreen | dy; 5 Diffuse green intensity in floating point format.

LightODiffuselntensityBlue 6 Diffuse blue intensity in floating point format.

LightOSpecularlntensityRed 7 Specular red intensity in floating point format.

LightOSpecularlntensityGreen | s, 8 Specular green intensity in floating point
format.

LightOSpecularlntensityBlue Specular blue intensity in floating point format.

LightOPositionX 10 X position of the light if PositionW = 0,
otherwise it is the normalized X direction.

LightOPositionY Py 11 Y position of the light if PositionW = 0,
otherwise it is the normalized direction.

LightOPositionZ 12 Z position of the light if PositionW = 0,
otherwise it is the normalized Z direction.

LightOPosition W 13 W position of the light. When zero, it changes
the meaning of the Position* values to be
directions.

Light0SpotlightDirectionX 14 Normalized X component for the spotlight
direction or the normalized X component of the
half vector when the light is not a spotlight.

Light0SpotlightDirectionY Sdli 15 Normalized Y component for the spotlight
direction or the normalized Y component of the
half vector when the light is not a spotlight.

Light0SpotlightDirectionZ 16 Normalized Z component for the spotlight
direction or the normalized Z component of the
half vector when the light is not a spotlight.

Light0SpotlightExponent Seli 17 Spotlight exponent. This is held as an
unsigned 7.4 fixed point number.

Light0CosSpotlightCutoffAngl | ¢,/; 18 Cosine of the spotlight cut-off angle. Its range

e is 0.0 to 1.0 inclusive.

Light0ConstantAttenuation ko; 19 Constant attenuation factor.

LightOLinearAttenuation ki; 20 Linear attenuation factor.

Light0QuadraticAttenuation ko, 21 Quadratic attenuation factor.

Table 7.5 Light 0 Registers

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

Each light has a mode word associated with it and the definition of its control bits are
shown in Table 7.6 (these flags are used to optimize the calculations):

Bit No. | Name Description

0 LightOn When set indicates the light is on and contributes illumination to the scene,
otherwise it does not.

1 Spotlight When set indicates the light is a spotlight. If it is not set then the light is not a
spot light and the SpotlightDirection is used to hold the normalized half vector
between the viewer and the light.

2 Attenuation | When set indicates the light is to be attenuated, otherwise no attenuation is
done.
3 LocalLight | When set indicates the light is local and the full lighting equations should be

used. This allows a light to be local without it having to be a spotlight or have

any attenuation applied to it.

Table 7.6 Light Mode Word Control Bits Definitions

Most of the lighting parameters should be self explanatory, however there are a few which
will be clarified:

* The light's position and direction vectors are not transformed automatically when loaded
into Gamma and any transformation required to locate them in eye space (the
coordinate system where lighting is done, i.e. the view vector is always (0, 0, 1)) should
be done in software before they are loaded.

* All direction vectors (i.e. Position vector when the W component is zero,
SpotlightDirection and the half vector) must all be normalized.

* The Light mode bits should be set up as necessary. Any special values assumed by
OpenGL (for example the spotlight cut-off angle of 180°) are ignored. The preferable
state of each bit is zero to avoid some or all of the lighting calculation and the bits are
generally set up as shown in Table 7.7 (to follow OpenGL conventions for identifying
some light mode or operation that is not required).

Bit No. Name Description
1 Spotlight Set when the spotlight cut off angle is not 180 degrees.
2 Attenuation | Set when the light's position has a non zero W (this indicates the position holds

a position and not a direction) and the sum of the attenuation factors is not
unity are not 1, 0, 0 for constant, linear and quadratic respectively.

3 LocalLight Set when the light's position has a non zero W (this indicates the position holds
a position and not a direction).

Table 7.7 Lighting Calculation Bit Set up

* When the Light mode indicates the light is not a spotlight the SpotlightDirection vector
used to hold the normalized half vector. The half vector between the light's position
vector and the eye vector is given by the following equation:

h=P,+(0 0 1)

3D/.bs Proprietary and Confidential 41

3D Pipeline

GLINT Gamma Programmer’s Reference Manual

* The nominal range for the light's intensity colors (and the material colors) is 0.0...1.0

inclusive. Values outside this range (and even negative ones) can be used and the final

vertex colors are clamped (if enabled) to be in the range 0.0...1.0 during the primitive's

set up calculations prior to rasterization.

The material parameters are held in the registers shown in Table 7.8. There are two
identical sets to hold the front and back materials used during two sided lighting.

Register
FrontEmissiveColorRed
FrontEmissiveColorGreen

Equation symbol

€em

FrontEmissiveColorBlue

FrontAmbientColorRed

FrontAmbientColorGreen
FrontAmbientColorBlue
FrontDiffuseColorRed
FrontDiffuseColorGreen

FrontDiffuseColorBlue

FrontAlpha

FrontSpecularColorRed

FrontSpecularColorGreen

FrontSpecularColorBlue
FrontSpecul arExponent

BackEmissiveColorRed

BackEmissiveColorGreen
BackEmissiveColorBlue
BackAmbientColorRed
BackAmbientColorGreen

Aem

BackAmbientColorBlue

BackDiffuseColorRed

BackDiffuseColorGreen
BackDiffuseColorBlue
BackAlpha
BackSpecularColorRed
BackSpecularColorGreen

dﬂﬂ

BackSpecularColorBlue

BackSpecularExponent
SceneAmbientColorRed
SceneAmbientColorGreen
SceneAmbientColorBlue

Table 7.8 Material Parameters Registers

Srm

acs

The OpenGL specification associates an alpha value with each lighting term, however only

the diffuse alpha is used. The diffuse alpha value is held in the FrontAlpha or BackAlpha

registers.

42

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

Bit No.

The lighting calculations are very expensive and can easily dominate the overall
performance so it is very worth while to check the light's parameters to see if a simpler form
of the lighting equation can be used (by setting the appropriate bits in the LightnMode
register) For example if the Constant Attenuation is set to 1.0 and both the Linear and
Quadratic Attenuation factors are set to 0.0 then the attenuation part of the calculation can

be avoided.

In a similar line if the product of the attenuation and spot values for a light falls below the
value given in the AttenuationCutOff register then (if suitably enabled) the calculations for
this light will be automatically terminated. This optimization allows lights which are
becoming too faint to contribute to be terminated early. A suitable value is given by:
1.0/5127% where 7 is the number of lights. The 512 constant was chosen as it is less than the
smallest representable color when converted to a byte integer assuming the light and
material colors are restricted to the range 0.0...1.0.

The lighting calculations are controlled by the LightingMode and the MaterialMode
register. The LightingMode register fields are shown in Table 7.9.

Name Description

1,2

Enable When set causes the vertex to be lit using the lighting equations, otherwise the

current color is assigned.

TwoSidedLighting The three options are:

0 Use the front side material.

1 Use the back side material and invert the normal before it is used in the lighting
calculations.

2 Use the orientation of the face to select between front or back materials and
lighting. The orientation is determined by fields in the GeometryMode
register.

LocalViewer When set causes the viewer to be at (0, 0, 1) in eye coordinates, otherwise the

viewer is at (0, 0,). When the viewer is at infinity some of the lighting equations

can be simplified so run faster, however the position of the specular highlights are
not as correct.

FlipNormal When set causes the absolute value of the lighting dot products to be taken,

otherwise negative dot products are clamped to zero. Clamping is used for

OpenGL, but some other APIs allow the normal to be flipped - this gives a cheap

form of two sided lighting and is useful when the normals are not consistently

facing 'outwards' in the model or scene.

AttenuationTest When set forces the lighting calculation for the current light to be aborted when the

product of a##7 and spor (in the lighting equations) for the light falls below the

threshold given in the AttenuationCutOff register.

NumberLights This 9 bit field holds the number of lights to use. Its legal range is 0...16 inclusive.
Numbers greater than 16 are clamped to be 16.

15

SpecularLightingEnable | When this bit is set the specular part of the lighting calculations are done, otherwise
they are skipped. This bit would normally be set for OpenGL, however some APIs
allow non specular lighting models to be used.

16

UseFaceNormal When this bit is set the face normal is used instead of the vertex normals. The
lighting is still evaluated once per vertex so any position dependent effects (i.e.

attenuation or spotlight) are still computed correctly.

Table 7.9 LightingMode Register Fields

3D/.sbs

Proprietary and Confidential 43

3D Pipeline

GLINT Gamma Programmer’s Reference Manual

Bit | Name Description
No.
0 Enable When set causes the vertex to be calculated from the lighting equations

1 DiffuseTextureEnable

2 SpecularTextureEnable

3 MonochromeDiffuseTexture

4 MonochromeSpecularTexture

5 PremultiplyAlpha

6 ColorSource

7,8 TwoSidedLighting

otherwise the current color is assigned.

When set allows the diffuse texture color to be calculated and sent to
GLINT. This is further qualified by the TextureEnable bit in the Begin
command so is only done when texture mapping is enabled.

When set allows the specular texture color to be calculated and sent to
GLINT. This is further qualified by the TextureEnable bit in the Begin
command so is only done when texture mapping is enabled.

When set the diffuse texture color is converted to a monochrome value
before it is sent to GLINT. This allows the diffuse texture DDA in
GLINT 500TX to be set up.

When clear the true color value is sent and is used when the target
rendering chip is GLINT MX as it has true color diffuse texture DDA:s.
When set the specular texture color is converted to a monochrome value
before it is sent to GLINT. This allows the specular texture DDA in
GLINT 500TX to be set up.

When clear the true color value is sent and is used when the target

rendering chip is GLINT MX as it has true color specular texture DDAs.

When set premultiplies the diffuse and ambient colors by the material

alpha value.

This field selects where the color should be taken from when the Enable

field is 0. The options are:

0: Current color value.

1: Diffuse material value.

The three options are:

0 Use the front side materials.

1 Use the back side materials.

2 Use the orientation of the face to select between front or back
materials and lighting.

Table 7.10 MaterialMode Register Fields

The selection between Gouraud and flat shading is controlled by the FlatShading bit in
GeometryMode. The SmoothShadingEnable bit in the DeltaMode register is ignored.

73 Clipping
Primitives are clipped to the clip volume. In clip coordinates the view volume is defined
by:
—W, < X, SW,
_WC S yC S \/VC
—W, < Z < W,
This view volume may be further restricted by up to six user defined clip planes to define
the clip volume. Each user clip plane defines a half space and it is the intersection of all
these half spaces with the view volume which specifies the clip volume. If no user clip
planes are enabled then the clip volume is just the view volume.
44

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

A point is in view if its clip coordinate falls within the view volume. This is irrespective of
the rasterized point size.

A line is in view if both its end vertices (in clip coordinates) fall within the view volume. If
either of the vertices, or part of the line segment are within the view volume then the line is
clipped to calculate the portion in view. Any parameters (such as depth, color, etc.) for the
new vertices produced by clipping are calculated.

A polygon is in view if all its vertices (in clip coordinates) fall within the view volume. If
any of the vertices, or part of the polygon's area are within the view volume then the
polygon is clipped to calculate the portion in view. Any parameters (such as depth, color,
etc.) for the new vertices produced by clipping are calculated.

A rectangle is in view if its raster position (in clip coordinates) falls within the view volume.
This is irrespective of the rectangle’s width and height.

Clipping is an expensive operation so is only undertaken when a primitive cannot be
determined to be totally in view or out of view. Furthermore short lines and small polygons
(really triangles) can also avoid being clipped if they don't cross the near, far or any user
clipping plane. This relies on it being faster to rasterize a few more fragments and have the
window and/or viewport clipping reject them than to spend a lot of time computing new
vertices and parameters. The LineClipLengthThreshold and TriangleClipAreaThreshold
registers hold the threshold values used to determine if the line or triangle should be clipped
or just rasterized. The line length is measured in screen pixels and the triangle area is twice
the actual area required in screen pixels. Note that this technique assumes the viewport is
the same size as the window, or that scissoring is enabled for a window which is smaller
than the viewport.

A line or polygon whose vertices have w, values of differing sign do not generate multiple

disjoint line segments or polygons after clipping.

The clipping operation is controlled by the GeometryMode register.

Bit No. Name Description

12 ClipShortLines Clipping is an expensive operation and for short lines it is much faster to
draw them and rely on the window and/or screen clipping during
rasterization. When this bit is set lines below the length given in the
LineClipThreshold register are not clipped. This does not apply if the line
crosses the near, far or user clipping planes.

13 ClipSmallTriangles = Clipping is an expensive operation and for small triangles it is much faster to
draw them and rely on the window and/or screen clipping during
rasterization. When this bit is set triangles below the 'area’ given in the
TriangleClipThreshold register are not clipped. This does not apply if the
triangle crosses the near, far or user clipping planes.

22...27 UserClipMask There is one bit per user defined clipping plane. Clipping against a plane is
enabled when the corresponding bit is set.

Bit 0 (i.e. bit 22 in register) corresponds to UserClip0.

Table 7.11 Clipping Operation Control Bits

The coordinates of the user clipping planes are held in 24 registers:

3D/.bs Proprietary and Confidential 45

3D Pipeline GLINT Gamma Programmer’s Reference Manual

7.4

UserClip0X, UserClip0Y, UserClip0Z and UserClipOW for user clip plane 0,
UserClip1X, UserCliplY, UserClip1Z and UserClip1W for user clip plane 1,
UserClip2X, UserClip2Y, UserClip2Z and UserClip2W for user clip plane 2,
UserClip3X, UserClip3Y, UserClip3Z and UserClip3W for user clip plane 3,
UserClip4X, UserClip4Y, UserClip4Z and UserClip4W for user clip plane 4 and
UserClip5X, UserClip5Y, UserClip5Z and UserClip5W for user clip plane 5.

The clip plane coefficients held in the above registers are defined in eye space. For
OpenGL the clip plane is supplied at the API level in model coordinates and is transformed
into eye space by using the inverse transpose of the 4x4 model view matrix (Gamma does
not do this for you).

A point, with eye coordinates (xe ye ze We)7 , is visible with respect to a user clip plane if

%, C
Eg/ O
*U>0
where p is the user clip plane. Note the plane coefficients are frequently labeled A, B, C and
D and these correspond to X, Y, Z and W respectively in the above registers.

Culling

Culling is the process of rejecting polygons based on the vertex ordering (either clockwise or
counter-clockwise) when projected onto the screen. This can typically reject 50% of the
triangles in a scene, however the onus is on the application programmer or modeler to
provide the polygons in a consistent order!.

Gamma provides two methods of doing culling:

* The first method, as done by OpenGL, is to test the sign of the projected area of the
polygon.

* The second method is to use a user provided face normal, as done by QuickDraw3D.
The sign of the z component of the transformed face normal (assuming its
transformation is enabled) is used to determine the orientation. If no face normal is
provided then the area based method will be used (until a face normal is provided).
Normalization of the face normal is not necessary if the face normal is just used for
culling.

1A triangle strip, for example, reverses the order for successive triangles however this is automatically allowed
for when culling.

46

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

These two methods are mutually exclusive so only one form of culling is applied at a time.
The orientation of a face (i.e. front facing or not) is still determined even if culling is
disabled as this also selects which Polygon Mode to apply and which material to calculate
the lighting with for two sided lighting.

The culling is controlled by the GeometryMode register.

Bit No. | Name Description
8 FrontFaceDirection This field selects which direction is the 'front’ facing direction.
0 = Clockwise
1 = Counter Clockwise
9 PolygonCull This field, when set, enables polygon culling based on the front face
direction. It is ignored for points, lines and rectangles.
10,11 PolygonCullFace This field determines which direction of face should be culled (if
enabled). It has the following values:
0 = Front
1 = Back
2 = Front and Back
19 CullUsingFaceNormal This field, if set will cull using the supplied face normal. The face
normal does not have to be of unit length. If no face normal is
supplied then the area method of backface culling is used.
31 InvertFaceNormalCullDirection | This field, if set, causes the supplied Face Normal to be inverted
before it is used for backface culling.

Table 7.12 Culling Control Bits

75 Primitive Set-Up
The general primitive set up operation is controlled by the DeltaMode register. Where
additional control is needed for individual primitive types this can be found in the
PointMode, LineMode, TriangleMode and RectangleMode registers.
The DeltaMode register fields are shown in Table 7.13 (it is identical to the DeltaMode
register in GLINT Delta, but with the addition of BiasCoordinates, ColorDiffuse,
ColorSpecular and FlatShadingMethod fields).

3D/.bs Proprietary and Confidential 47

3D Pipeline

GLINT Gamma Programmer’s Reference Manual

Bit No. Name Description
0,1 [TargetChip This two bit field selects which chip the calculations are tailored to. The options are:
0 =300SX
1 =500TX, MX
2,3 DepthFormat This two bit field defines the depth format GLINT is working in and hence the final format
of the depth parameters to be written into GLINT. The options are:
1 = 16 bits (300SX, 500TX, MX)
2 = 24 bits (300SX, 500TX, MX)
3 = 32 bits (300SX, 500TX, MX)
The depth format is used regardless of any other modes bits.
4 FogEnable When set enables the fog calculations. This is qualified by the FogEnable bit in the Begin or
Draw* commands.
5 TextureEnable When set enables the texture calculations. This is qualified by the TextureEnable bit in the
Begin or Draw* commands.
6 SmoothShadingEnable ~ When set enables the color calculations. This field only has an effect when the Draw*
commands are used and is ignored when the Gamma 3D pipeline is used. In this case the
FlatShading bit in the GeometryMode register is used.
7 DepthEnable When set enables the depth calculations.
8 SpecularEnable When set enables the specular texture calculations. This is qualified by the TextureEnable in
the Begin or Draw* commands.
9 DiffuseEnable ‘When set enables the diffuse texture calculations. This is qualified by the TextureEnable in
the Begin or Draw* commands.
10 SubPixelCorrectionEnable When set provides the subpixel correction in Y. This is qualified by the

SubPixelCorrectionEnable in the Begin or Draw* commands.

11 DiamondExit When set enables the application of the OpenGL 'Diamond-exit' rule to modify the start and
end coordinates of lines.

12 NoDraw When set prevents any rendering from starting after the set up calculations are done and
parameters sent to GLINT. This only effect the Draw* commands and is ignored when the
Gamma 3D pipeline is used.

13 ClampEnable When set causes the input values to be clamped into a parameter specific range. Note that the
texture parameters are not included. This should normally be set.

14, 15 [TextureParameterMode This two bit field causes the texture parameters to be:
0 = Used as given
1 = Clamped to lie in the range -1.0 to 1.0
2 = Normalized to lie in the range -1.0 to 1.0
The normal setting for this field is to select texture normalization.
16...18 reserved

19 BiasCoordinates When set causes the XBias and YBias registers values to be added to the x and y coordinates
respectively.

20 ColorDiffuse When set causes the diffuse texture calculations to be done on the red, green and blue
components, otherwise the red component (representing monochrome) is done by itself.

21 ColorSpecular When set causes specular texture calculations on red, green and blue components, otherwise
the red component (representing monochrome) is done by itself.

22 [FlatShadingMethod This field determines how the ColorDDA unit in GLINT is to do flat shading. The two
options are use the ConstantColor register (0) or the DDA (1) by setting zero gradients. The
rasterization performance is the same in both cases, however the ConstantColor method is
faster to set up. Consider the situation when smooth shading is enabled (in the
GeometryMode register) and a point is to be drawn. The point is always flat shaded. This
field would normally be the inverse of the FlatShading field in the GeometryMode register.

Table 7.13 DeltaMode Register Fields
48 3D/.bs

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

7.5.1

7.5.1.1

How a primitive gets rendered depends on the primitive type given with the Begin
command and the PolyMode setting (for triangles, quads and polygons) in the
GeometryMode register.

Antialiasing is controlled by the AntialiasEnable and AntialiasingQuality bits in the
individual point, line and triangle mode registers. Antialiasing will only occur for a
particular primitive if it is enabled in the corresponding mode register and the
AntialiasEnable bit in the Begin command is also set.

The x and y coordinates for point, line, triangle and 3D rectangle can optionally have a bias
added to them before rendering. This is controlled by the BiasCoordinates bit in the
DeltaMode register and the biases are held in the XBias and YBias registers. This biasing
facility has several uses:

* The coordinates may be window relative (almost guaranteed with 3D graphics) but the
rasterizer may be set up to do screen relative rendering. Adding a bias value will do the
conversion.

* The view port mapping may be set up to add a bias to remove any differences in the
accuracy of the set up calculations as a function of the primitive's position on the screen.
This bias needs to be removed before rendering is actually done.

More consistent (or position independent) set up calculations can be achieved by biasing

the x and y coordinates coming out of the view port mapping. This ensures that all the
calculations on the x and y coordinates all have the same degree of precision irrespective of
their location on the screen. Consider a floating point value of 1.0 - this will have 23 bits of
fractional precision whereas a value of 1024.0 will only have 14 bits of fractional precision.
Biasing the values by 8K (for example) forces both cases to have 11 bits of fractional
precision and hence yield the same rasterized pixels for a given triangle anywhere on the
screen.

Note: This bias will need to be removed from any coordinate information returned during Feedback
mode or by reading back the Raster Position because the application will not be expecting biased
coordinates to be returned.

Points

The PointMode, PointSize and AAPointSize registers control how points are drawn.

Aliased Points

For aliased points the PointSize register holds the desired point size. The range of actual
integral point sizes are 1...255 held in the bottom 8 bits; a 0 point size is treated as a point
size of 1. Points are drawn according to the OpenGL rules so wide points are drawn as
squares centered on the vertex. Any parameters (such as color, depth, etc.) are held constant
for each fragment rasterized as part of the point.

3D/.sbs

Proprietary and Confidential 49

3D Pipeline GLINT Gamma Programmer’s Reference Manual

7.5.1.2 Antialiased Points

Antialiased points have their width, as a floating point number, defined by the
AAPointSize register. In theory any size antialiased points can be defined, however GLINT
places some restrictions on what these widths can be. The Point Table in GLINT restricts
the diameter of antialiased points to be from 0.5 to 16.0 in steps of 0.25 when the
antialiasing quality is 4x4 or 0.25 to 8.0 in steps of 0.125 for 8x8 quality. Gamma does not
set up the Point Table. Points with a zero size will draw a single fragment and points with a
negative size will draw a point of the same positive size.

It is the user’s responsibility to have set up any alpha blending modes. The style of
rendering used for a point is determined by the following registers:

The antialiasing quality is held in the PointMode register.

Bit No. Name Description

0 AntialiasEnable This field, when set, enables antialiasing of points. This is
qualified by the AntialiasEnable field in the Begin command.
Note the Point Table in GLINT must be set up for the
corresponding point size (held in AAPointSize register) and the
selected antialiasing quality (next field).

1 AntialiasingQuality This field defines the quality of antialiased points:
0 =4x4
1 = 8x8

The Point Table in GLINT must be set up appropriately for the
quality and the AAPointSize.

Table 7.14 Antialiasing in the PointMode Register

7.5.2 Lines
The LineMode, LineWidth, LineWidthOffset and AALineWidth registers control how

lines are drawn.

7.5.2.1 Aliased Lines

For aliased lines the LineWidth register holds the desired line width. The range of actual
integral line widths are 1...255 held in the bottom 8 bits; a 0 line width is treated as a line
width of 1. Lines are drawn according to the OpenGL rules so wide lines are drawn as a
sequence of lines offset in X or Y depending on whether the line is X major or Y major.
The LineWidthOffset register is normally set to (line width - 1) / 2. For one pixel wide
lines the LineWidthOffset is set to 0.

If line stipples are enabled (in the LineMode register) then wide aliased lines will be
stippled correctly by repeating the line (offset in X or Y), but with the stipple position re-
established for each line used to make up the width.

50 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

7.5.2.2 Antialiased Lines

7.5.3

Antialiased lines have their width defined as a floating point number by the AALineWidth
register so can take any width. Lines with a zero width will not be drawn. Lines with a
negative width will draw a line of the same positive width. An antialiased line is drawn as
rectangle aligned to the direction of the line. This is decomposed into trapezoids so no
retained alpha buffer is needed (which would be the case if the line were decomposed into
two triangles).

[t is the user’s responsibility to have set up any alpha blending modes.

If line stipples are enabled (in the LineMode register) then antialiased lines will be stippled
using the RepeatFactor, StippleMask and Mirror fields in the LineMode register. These
fields would normally track the fields of the same name in the GLINT LineStippleMode
register. The stipple pattern is converted into a series of short lines which are drawn as
antialiased lines.

The line stipple hardware in GLINT is not used and does not get updated for stippled
antialiased lines, however this does not cause a problem because OpenGL does not allow
switching between aliased and antialiased lines between polyline segments and the stipple
pattern is always reset on a Begin command

Bit Name Description
No.
0 StippleEnable This field, when set, enables the stippling of lines. It only effects wide lines

or antialiased lines. This will normally be the same value as the Enable field
in the LineStippleMode GLINT register.

1...9 | RepeatFactor This 9 bit field holds the repeat factor for antialiased stippled lines. This will
normally be the same value as the RepeatFactor field in the
LineStippleMode GLINT register. The repeat factor stored here is one less
than the desired repeat factor.

10...2 | StippleMask This 16 bit field holds the stipple pattern to use for antialiased lines. This

5 will normally be the same value as the StippleMask field in the
LineStippleMode GLINT register.

26 Mirror This field, when set, will mirror the StippleMask before it is used for

antialiased lines. This will normally be the same value as the Mirror field in
the LineStippleMode GLINT register.

27 AntialiasEnable This field, when set, enables antialiasing of lines. This is qualified by the
AntialiasEnable field in the Begin command.

28 AntialiasingQuality | This field defines the quality of antialiased lines:
0 = 4x4
1 = 8x8

Table 7.15. LineMode Register Fields

Polygons
Triangles, quads and polygons are controlled by the TriangleMode register.

3D/.sbs

Proprietary and Confidential 51

3D Pipeline GLINT Gamma Programmer’s Reference Manual

7.5.4

Bit Name Description

No.

0 AntialiasEnable This field, when set, enables antialiasing of triangles. This is
qualified by the AntialiasEnable field in the Begin
command.

1 AntialiasingQuality This field defines the quality of antialiased triangles:

0 = 4x4
1 = 8x8

2 UseTrianglePacketInterface | This field, when set, causes the triangle set up to use the
Triangle Packet Interface to send the triangle parameters to
GLINT. This is only supported in GLINT MX and
provides a higher triangle throughput.

Table 7.16 TriangleMode Register Fields

3D Rectangle

OpenGL rectangles are positioned and given depth, color, texture, etc. parameters using the
glRasterPos function (which translates into writes to the RPx3, RPy, etc. registers). The
width and height of the rectangle is held in the RectangleWidth and RectangleHeight
registers as floating point numbers and the RectangleMode register holds data to pass to
GLINT in the Render command. When the RPx2, RPx3 or RPx4 registers are written to
the coordinate is transformed, clipped, colored and textured as required by OpenGL and
the results saved to be used by the GeomRectangle command.

Bit Name Description
No.
0,1 Type These two bits define the type of rectangle to be inserted into the

feedback buffer. They have no effect when not in feedback mode. The

options are:

0 = Bitmap

1 = DrawPixel

2 = CopyPixel

3 = Don't insert into the feedback buffer.

2 OffsetEnable When this bit is set the x and y offset values held in RasterPosXOffset
and RasterPosYOffset registers respectively displace the raster position
window coordinates when the rectangle is rendered. This does not

update the raster position state.
3 SelectEnable When this bit is set the rectangle takes part in the selection process.

Table 7.17 GeomRectangle Control Fields

If the rectangle passes the clip test then it is rendered with the above parameters. The fill
direction is always bottom to top (i.e. increasing Y), left to right so any download data or
bitmask must be provided in this order. If the rectangle is clipped out (this is an all or
nothing test, unlike lines, triangles or quads which do geometric clipping of the primitive)
then any following image data or bitmasks are automatically discarded.

52

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual 3D Pipeline

7.5.5

The floating point RasterPosXOffset and RasterPosYOffset registers are temporarily
added to the current raster position X and Y coordinates respectively before the rectangle is
set up in the rasterizer. The original raster position coordinates are not updated. This
temporary offset, measured in pixels, is useful when an OpenGL primitive requires several
passes or is processed in strips because the color formatting or transfers modes are not

handled directly by GLINT.

The floating point RasterPosXIncrement and RasterPosYIncrement registers are added to
the current raster position X and Y coordinates respectively after the rectangle is rendered
but not if the clip test fails. This auto increment cannot be disabled so if it is not desired
the increment values should be set to zero. The increment is measured in pixels.

2D Rectangle

The DrawRectangle2D command provides a convenient way to set up the GLINT
rasterizer to draw a rectangle.

The origin of the rectangle is supplied as data with the DrawRectangle2D command. The
least significant 16 bits hold the 2's complement X coordinate while the most significant 16
bits hold the 2's complement Y coordinate.

The width and height of the rectangle, SyncOnHostData, SyncOnBitMask,
SpanOperation mode and fill direction are defined by the Rectangle2DMode register. The
choice of using spans to fill the rectangle is determined by the least significant bit of the
Rectangle2D Control register.

Bit No. | Name Description

0...11 Width Width of the rectangle. Twelve bit field with range 0...4095

12...23 Height Height of the rectangle. Twelve bit field with range 0...4095

24 AreaStippleEnable Passed to rasterizer in the Render command.

25 SyncOnBitMask Passed to rasterizer in the Render command.

26 SyncOnHostData Passed to rasterizer in the Render command.

27 TextureEnable Passed to rasterizer in the Render command.

28 FogEnable Passed to rasterizer in the Render command.

29 SpanOperation Passed to rasterizer in the Render command.

30 HorizontalDirection | Sets the horizontal rasterization direction.
0 = Left to Right
1 = Right to Left

31 VerticalDirection Sets the vertical rasterization direction.
0 = Increasing Y

1 = Decreasing Y

Table 7.18 Rectangle2DMode Fields

For OpenGL the main use of this is to clear the framebuffer. Note that in this case the
ability to use the faster span method of clearing depends if GID window clipping is being
used. OpenGL does not necessarily know when a window is clipped so by having the
ownership of the Rectangle2DControl register reside with the Display Driver the Display
Driver can change the rasterization method independent of OpenGL as a function of the
window clipping.

3D/.sbs

Proprietary and Confidential 53

3D Pipeline GLINT Gamma Programmer’s Reference Manual

The colors and modes set up by OpenGL for the clear operation need to satisfy span and
non span clears.

For colors spans use FBBlockColor while non spans use ConstantColor. Also spans ignore
many mode settings, such as Depth compare and Alpha blend. The additional set up is not
really a performance issue as clear operations are infrequent and tend to take a
comparatively long time.

For Display Driver GUI operations the Rectangle2D command provides a very fast way of
setting up rectangles - just one register and one command compared to the 6 registers and
one command when programming GLINT directly (this is obviously reduced when
multiple rectangles are drawn one after the other).

The XBias and YBias are ignored for this primitive type.

54

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual Context Save and Restore

Context Save and Restore

The natural boundary for context switching in a DMA driven system is on the completion
of a DMA buffer. This requires that no internal state is carried over from one DMA buffer
to the next as there are no mechanisms for saving and restoring the internal state. This has
not been a problem so far because the main time this could arise is between the upper and

lower trapezoids in a triangle - a situation which is easy to avoid.

OpenGL places no restrictions on the number of primitives between a Begin/End pair so
circumstances will occur when it crosses one or more DMA buffer boundaries. With
GLINT Delta this was not a problem as no private internal state was carried from one
primitive to the next, however Gamma carries a significant amount of state from one
primitive to the next, especially for meshed primitives. The readback mechanism allows all
user loadable registers to be read back, however it cannot return any of the internal state.

The software solution to this is for the software to track the last three vertices so a
Begin/End sequence can be terminated at the end of a DMA buffer and restarted in the
next DMA buffer without any change to the semantics of the original Begin/End sequence.
The main objection to this technique is that the overheads of this tracking will seriously
effect the system performance, particularly as the Gamma interface only requires the
minimal amount of host work to copy (and convert number formats) the vertex and normal
arguments to the DMA buffer.

Gamma has a mechanism which allows all the state (public as well as private) to be saved
and restored in a consistent manner!. The context switch can only happen on a register
load or command boundary so cannot happen part way through any internal processing, for
example during clipping, so many intermediate results are not required to be saved. This
simplifies the hardware while giving the software a convenient level of granularity to work
with.

Even with this new context switching method, context switching in the middle of an image
or texture download is not handled:

I'This will also be available in future rasterizer chips, however existing rasterizer chips will need to use the
normal read back mechanisms for context switching.

3D/.sbs

Proprietary and Confidential 55

Context Save and Restore GLINT Gamma Programmer’s Reference Manual

The Gamma context switch is done by sending the DumpContext command. The data
sent with this command (the context mask) dictates what subset of the full context is to be
dumped. The context data (with the ContextData tag) will appear in the Host Out FIFO
in GLINT. The last tag and data in the FIFO will be the DumpContext tag and the
context mask. The context data is read from the Host Out FIFO and stored in memory in
a context buffer (excluding any tags), the context mask is typically discarded. This context
buffer can be restored by prefixing it with the three words: RestoreContext tag, context
mask (used to generate the buffer in the first place) and the ContextData tag and loading it
all back into Gamma. The ContextData tag has the upper 16 bits set to the number of
words of context data in the buffer minus one!. The layout of the data in the context dump
buffer is not important because no massaging of the data is necessary before it can be
restored, and in fact, is largely undocumented.

Restoring the context data is easily accomplished by the DMA controller. Saving the
context data can also be done by the Output DMA controller, with a probably 10X speed
up over software. The Output DMA controller can be used in one of two modes (see
Section 4 for a more comprehensive description and details on how to initiate output DMA
operations):

* Fixed Count. In this mode the Output DMA controller is given the exacr number of
words of context data to read from GLINT's Host Out FIFO. This count should also
include the extra context mask. Setting an inappropriate count for the supplied context
mask will likely lead to a lock up situation. The FilterMode register should be set up to
only allow the context data and not tags through, and the Host Out FIFO should also be
empty so as not to interpret any left over contents as context data.

* Variable Count. In this mode the Output DMA controller is placed in Feedback mode
so will continue to transfer data from the GLINT's Host Out FIFO until an
EndOfFeedback tag is found. The FilterMode register should be set up to allow both
context data and tags through so tags and data inappropriate to this mode can be
discarded and the EndOfFeedback tag can be identified. The Host Out FIFO does not
need to be empty, however this would be preferable. The PCI FeedbackSelectCount
register will hold the number of words written to memory when the Output DMA has
finished. This method relieves the programmer from knowing before hand how much
context data will be saved, however there may be a performance penalty in that one extra
word (to hold the tag) passes on the secondary PCI bus between Gamma and GLINT.
This extra word may or may not effect the overall system performance depending on the
primary PCI bus and host write performance.

The sequence of events to do a context switch are:

* Update the FilterMode register by setting bits 14 and 15 to enable the context tags and
data respectively to be written into the host Output FIFO. These two bits are not
documented in the GLINT Programmer Reference manual.

1A tag with a count in the upper 16 bits is a hold mode tag so all the subsequent data is automatically given the

56

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual Context Save and Restore

Start the Output FIFO DMA controller transferring » words of context data, or in
Feedback mode so the context data is terminated by the EndOfFeedback command.

Send the ContextDump command to Gamma.

Send the EndOfFeedback command if the Output FIFO DMA controller is being used
in feedback mode.

Send the ContextRestore command to Gamma (for the new context).
Copy the new context data into Gamma.
The following observations can be made about this:

No synchronization is necessary to context switch and the queued command DMA
controller facility also helps here.

The Output FIFO DMA controller cannot have transfers queued. In general this is not
necessary as it is returning data which the application has asked for so it is already
delayed waiting for the data. This does mean that the context switching software cannot
just assume the Output FIFO DMA controller is always free.

In a system with a Gamma and one of the existing rasterizer chips the context save and
restore will have to be done in two parts because the ContextDump command is not
available in the rasterizer. The rasterizer context is saved using the normal Sync and
readback methods. The Gamma context is saved using the ContextDump command.

Changing the state of the Host Out Unit in GLINT to allow the context data through
will mean that the original context of this unit is not being saved. For existing rasterizer
chips this will not matter as the context save is done in two parts. Future rasterizer chips
will address this problem.

The context dump method with the Output FIFO DMA controller should be capable of
saving the context to host memory at an estimated rate of 40 to 60MB/s (this is very host
dependent). This contrasts to the readback method of 4 to 6MB/s.

All the context data is tagged with the ContextData tag and this is most easily achieved
using a hold tag with a count. Tag and data pairs can be used but this is clearly less
bandwidth and memory efficient.

Gamma holds a considerable amount of state (public and private) and future rasterizer chips
will add to this. Switching between two 3D contexts requires all (or nearly all) the context
to be saved, while switching from a 3D context to a 2D context can get by with far fewer
registers. The data associated with the ContextDump and ContextRestore commands give
some control over what is saved and restored and obviously the same setting must be used
with paired saves and restores.

same tag.

3D/.sbs

Proprietary and Confidential 57

Context Save and Restore

GLINT Gamma Programmer’s Reference Manual

Bit | Name Context data includes Words
0 GeneralControl = Mode and general control registers. 17
1 Geometry Some user geometric state and much of the internal state. 377
2 Matrices The user defined matrices. 82
3 | Material The user defined material parameters. 27
4 | Lights0_7 The user defined light parameters for lights 0 to 7. 176
5 | Lights8_15 The user defined light parameters for lights 8 to 15. 176
6 | RasterPos The raster position related state. This is expanded below so the 19
current raster position, color, etc. can be read back to satisfy the
OpenGL Get calls.
7 CurrentState The current state. This is expanded below so the current texture, | 12
color, etc. can be read back to satisfy the OpenGL Get calls.
8 TwoD The 2D related control registers. 2
9 DMA The DMA related registers. 7
10 | Select The select related registers and name stack. 67

Table 8.1 Context Mask Fields

The actual contents of the context buffer is not particularly useful for a programmer to
know - the user defined state is readily available via the read back mechanism and the
internal state of Gamma is not publicly documented.

The context dump mechanism is also used as a convenient way to report some internal state
which can be queried by OpenGL, namely the current state (color, normal and texture) and
the raster position. This data is in single precision floating point format unless otherwise

noted.

If a context dump is done with only the CurrentState bit set then the resultant context

buffer will hold the following information (the tags and context mask are assumed to have
been discarded):
Offset Data
Current edge flag in bit 5

0 QNN A= O

O

10
11

Current normal, X component

Current normal, Y component

Current normal, Z component

Current texture, S component

Current texture, T component

Current texture, R component

Current texture, Q component

Current color, Red component

Current color, Green component

Current color, Blue component

Current color, Alpha component

If a context dump is done with only the RasterPos bit set then the resultant context buffer
will hold the following information (the tags and context mask are assumed to have been
discarded). Note that some user defined state is also included:

58

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Context Save and Restore

Offset

N NN A= O

O

10
11
12
13
14
15
16
17
18

Data

Window coordinate, X component
Window coordinate, Y component
Window coordinate, Z component
Eye coordinate, Z component

Clip coordinate, W component
Texture, S component

Texture, T component

Texture, R component

Texture, Q component

Fog

In View (bit 0: 0 = out of view, 1 = in view)

xIncrement (user register)
ylncrement (user register)
xOffset (user register)
yOffset (user register)
Color, Red component
Color, Green component
Color, Blue component

Color, Alpha component

The ContextRestore with the CurrentState bit set can also be used to restore new current
values such as might be required during the OpenGL glPopAttrib API function. In this
case the new current values must be propagated through out Gamma by using the
TransformCurrent command. This command takes a four bit mask to specify which
parameters are to be refreshed and in this case the simplest thing is to set all four bits (see

the reference section for a description of these bits). Note if a full chip context restore is
being done then the TransformCurrent command is not needed, however it will do no

harm if it is sent after the full context restore, or indeed at any time.

The 2D operations do not make much use of Gamma and can be completely switched
using the TwoD and DMA settings.

3D/.sbs

Proprietary and Confidential

59

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

9.2

OpenGL Specific Operations

Polygon Mode

Polygon mode allows primitives submitted as triangles, quads or polygons to be rendered as
filled primitives, points at the vertices or lines connecting vertices.

The polygon mode can be different for front facing polygons and back facing polygons.

Bit Name Description

No.

4,5 FrontPolyMode This field selects how a triangle, quad or polygon should be drawn
when its orientation is forwards facing . The options are:

0 = Point

1 = Line

2 = Fill

6,7 BackPolyMode This field selects how a triangle or quad or polygon should be drawn
when its orientation is backwards facing. The options are:

0 = Point

1 = Line

2 = Fill

Table 9.1 GeometryMode Register: fields that control the Polygon Mode.

Polygon Offset

Polygon offset provides a mechanism whereby a polygon is offset in Z by an amount given
by the following equation:

offset = mx factor + bias

where factor and bias are the PolygonOffsetFactor and PolygonOffsetBias registers
respectively and is an approximation to the z gradient of the triangle:

_ Uz,
mmaxﬂx

The bias is the product of two components: a user defined value (called #nizs in the

L
72,
A, 0

OpenGL API) and an implementation constant, . The constant, , is the minimum
resolvable difference (i.e. is the smallest difference in window coordinate z values that is
guaranteed to remain distinct throughout polygon rasterization and in the depth buffer).
Typical values for » are given by:

3.0
2"-1

where 7 is the number of bits in the depth buffer and 3.0 is a constant found empirically to
give good results.

Polygon offset is used to draw co-planar polygons slightly offset so the visual order of the
polygons are guaranteed and no depth bleeding occurs between them. Examples of where
this is useful is in adding decals to surfaces, shadow polygons or reflection polygons.

60

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

Polygon offset only applies to polygons, however a submitted polygon can be drawn as a
series of points or lines under control of the Polygon Mode. Polygon offset can be enabled
individually in each case and is controlled by three bits in the GeometryMode register.

Bit No. | Name Description

28 PolygonOffsetPoint | This field, if set, causes the polygon offset to be calculated and applied to
the points of a polygon when PolyMode is set to Point.

29 PolygonOffsetLine This field, if set, causes the polygon offset to be calculated and applied to
the lines of a polygon when PolyMode is set to Line.

30 PolygonOffsetFill This field, if set, causes the polygon offset to be calculated and applied to
the triangles of a polygon when PolyMode is set to Fill.

Table 9.2 Controlled Bits in the GeometryMode Register

9.3 Texture Generation

Texture generation allows some or all of the texture coordinates to be derived automatically
from the incoming vertex coordinate or normal information. Each component of the
texture (s, t, r and q) can have a different texture generation mode assigned to it. The four
options are:

None. The current texture coordinate is used.

ObjectLinear. The incoming vertex is converted using the following equation:

g = paxo + poyo + pczo + deo

where p is the user supplied coefficient held in the TexGen[16] registers are shown in

Table 9.3
Target for g Pa Pb P Pa
s TexGen0 TexGen4 TexGen8 TexGenl2
t TexGenl TexGen5 TexGen9 TexGenl3
r TexGen2 TexGen6 TexGenl0 TexGenl4
q TexGen3 TexGen7 TexGenll TexGenl5

Table 9.3 TexGen[16] Registers Target for g

EyeLinear. The incoming vertex is transformed into eye space and then converted using
the following equation:

h = paxe + pbye + pcze + dee

where p is the user supplied coefficient held in the TexGen[16] registers are shown in

Table 9.4
Target for A P Pb Pc Pd
s TexGen0 TexGen4 TexGen8 TexGenl2
t TexGenl TexGen5 TexGen9 TexGenl3
r TexGen2 TexGen6 TexGenl10 TexGenl4
q TexGen3 TexGen7 TexGenll TexGenl5

Table 9.4 TexGen[16] Registers Target for h

SphereMap. The transformed normal is used in the following equation:

3D/.bs Proprietary and Confidential 61

OpenGL Specific Operations

GLINT Gamma Programmer’s Reference Manual

x y
s=r,/m+
1
t:ry/m+7

where
r isthereflection vector,

u isthe unit vector pointing from the origin to the vertex in eye coordinates,
n isthe unit transformed normal in eye space

* is a dot product

Note:

SphereMap can only be applied to the s and t components.

OpenGL maintains separate 16 entry stores for the object linear and eye linear coefficients,
where as in Gamma they share a single 16 entry store (TexGen[16]). This means that the
OpenGL driver needs to hold both sets and build up TexGen[16] depending on what the

texture generation enables are set to.

62 Proprietary and Confidential

3D/.sbs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

Bit No.

Name

Description

5,6

7,8

9,10

11,12

13

14

15

16

9.4

TexGenModeS

TexGenModeT

TexGenModeR

TexGenModeQ

TexGenS

TexGenT

TexGenR

TexGenQ

This field controls the automatic generation of texture coordinates for the S texture
component from the vertex or normal information. The TexGen operations are:

0 None (use current texture S).

1 ObjectLinear.

2 EyeLinear.

3 SphereMap.
This field controls the automatic generation of texture coordinates for the T texture
component from the vertex or normal information. The TexGen operations are:

0 None (use current texture T).

1 ObjectLinear.

2 EyeLinear.

3 SphereMap.
This field controls the automatic generation of texture coordinates for the R texture
component from the vertex information. The TexGen operations are:

0 None (use current texture R).

1 ObjectLinear.

2 EyeLinear.

3 None (use current texture R, SphereMap is illegal).
This field controls the automatic generation of texture coordinates for the Q texture
component from the vertex information. The TexGen operations are:

0 None (use current texture Q).

1 ObjectLinear.

2 EyeLinear.

3 None (use current texture Q, SphereMap is illegal).
When this bit is set the S component of the texture coordinate is generated automatically,
otherwise it is taken from the current texture S value. This only has an effect when the
TexGen operation is ObjectLinear, EyeLinear or SphereMap.
When this bit is set the T component of the texture coordinate is generated automatically,
otherwise it is taken from the current texture T value. This only has an effect when the
TexGen operation is ObjectLinear, EyeLinear or SphereMap.
When this bit is set the R component of the texture coordinate is generated automatically,
otherwise it is taken from the current texture R value. This only has an effect when the
TexGen operation is ObjectLinear or EyeLinear.
When this bit is set the Q component of the texture coordinate is generated automatically,
otherwise it is taken from the current texture Q value. This only has an effect when the
TexGen operation is ObjectLinear or EyeLinear.

Table 9.5 GeometryMode register Bits Controlling Texture Generation

After any texture generation has been done the resultant texture coordinate is optionally

transformed.

Select Mode

The SelectMode is used typically during picking or selection operations of a user interface.
Placing Gamma into select mode and specifying the select data to return is controlled by

the fields in the GeometryMode register as shown in Table 9.6.

3D/.sbs

Proprietary and Confidential 63

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

Bit No. Name Description

14,15 | RenderMode | The RenderMode field controls the action when processing any

primitive. The options are:

0: Render
1: Select
2: Feedback

Table 9.6 GeometryMode register controlling Field

In OpenGL the select mode is broken down into two parts:

* All primitives are clipped and culled, but not rendered. If a primitive (or raster position)
passed the clipping and culling phases then a hit flag is set and the minimum and
maximum Z range grown, if necessary, to include this primitive. Subsequent primitives
which also pass the clipping and backface culling may extend the minimum and/or
maximum Z values.

* Name stack manipulation. The name stack holds names (as 32 bit integers) the user can
push, pop or load to keep track of the model hierarchy. The commands PushName,
PopName, LoadName do these actions. PushName and LoadName update the stack
with the 32 bit value in the data field. The name stack is reset with the InitNames
command. The name stack is 64 entries deep.

If the hit flag is set when a name stack manipulation is done a hit record is written to the
host output FIFO (in GLINT). The hit flag is then reset along with the minimum and

maximum Z range. The hit record consists of (in order):

* The count of the names (NameCount) on the stack (plus some error flags),
* The minimum Z value as a normalized floating point number,

* The maximum Z value as a normalized floating point number,

¢ The name stack entries, oldest first (variable number [0...64] words).

Bits 14 and 15 in the FilterMode register in GLINT must be set to allow the SelectRecord

tag and data values to be written in to the FIFO - all the select record data uses the same
tag.
The name stack manipulations commands are ignored when not in Select mode.

The hit record data is almost in the correct format for OpenGL. The only thing the
software needs to do is to convert the minimum and maximum Z values from the floating
point format (normalized to be in the range 0.0...1.0) to the 32 bit integer format required

by OpenGL.

64

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

Bit Name Description

0...6 | Count This field holds the number of names on the name stack.

7...28 Not used.

29 InvalidOperation | A LoadName operation was attempted on an empty name stack when this hit

record was being collected. This is cleared for subsequent hit records (unless
they manifest this error) however the stack may no longer be totally valid.

30 StackUnderflow The name stack was popped while empty when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

31 StackOverflow The name stack was pushed while full when this hit record was being collected.
This is cleared for subsequent hit records (unless they manifest this error)

however the stack may no longer be totally valid.

Table 9.7 NameCount Value Fields

The SelectResult command can be used to flush out a hit record (but only if the hit flag
has been set) without having to do a name stack manipulation. This provides a convenient
method when re-entering or leaving the select mode. The SelectResult command will also
reset the hit flag.

During Select mode the lighting is still calculated even though it is never used so a useful
optimization is to disable lighting. Similarly for texture and fog modes. Also it is advisable
to disable short line and small triangle threshold testing and always do a full clip otherwise
there is a chance that primitives which would have been clipped out actually get included in
the selection process.

The amount of data generated in select mode is not easily determined by the host as it
depends on how primitives are clipped and backface culled, and the name stack depth when
the hit record is written. The EndOfFeedback command can be used by the host as a
marker to indicate the end of the select stream. When this is found in the Host Out FIFO
all the select data will have been read from GLINT.

Host software can read the Host Out FIFO, analyze the tags and build up an OpenGL
conformant select buffer. This action of the host reading the FIFO must be done
simultaneously with sending user commands or the Host Out FIFO will fill up and
GLINT, and then Gamma will stall. Alternatively the Output DMA controller can be

placed in feedback mode to simplify and speed up this operation.

The Output DMA controller feedback mode:

* Discards the tags (these are still necessary in the Host Out FIFO so the type of data can
be ascertained).

* Discard any surplus select data when the buffer is full.

* Terminate the transfer when the end of the select data is found (as indicated by the
EndOfFeedback tag).

* Discard any invalid tag and data pairs while in select mode.

The overall method for implementing select with the Output DMA controller is as follows:

3D/.bs Proprietary and Confidential 65

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

* The GLINT FilterMode is set up so that the tag and data for the Remainder group of
tags (bits 14 and 15 set) are written to the host out FIFO and this FIFO is assumed to be
empty after the filter mode has been set up.

* The DMAOutputAddress holds the address (logical or physical) where the select data is
to be written The start address is given as a byte address but the lower two bits are
ignored.

* The DMAFeedback command with the length of the memory buffer (in words) is sent
to start the Output DMA controller.

* The RenderMode in the GeometryMode register is set to Select .
* The user rendering is done.
¢ The EndOfFeedback command is sent to mark the end of the select mode.

* Wait for all the select data to be transferred. This can be done by polling the
CommandStatus PCI register or via an interrupt.

¢ Read the count of the number of words transferred from the FeedbackSelectCount PCI
register. If the most significant bit is set then the buffer is full and there was more data
to append to it (but this has been discarded).

If the select buffer becomes full before the EndOfFeedback tag in the tag/data stream is
detected the Output DMA is terminated and the host informed, however the host output
FIFO will continue to be read and its contents discarded until the EndOfFeedback is
found. The EndOfFeedback tag and its data will also be discarded. The
FeedbackSelectCount PCI register will hold the actual number of words transferred. Bit 31 is
set if more data was found before the EndOfFeedback tag.

Once the select buffer has been updated the host software needs to parse the buffer to:

* Convert the minimum and maximum Z values from floating point format (in the range
0.0...1.0) to the integer format needed by OpenGL.

* Remove the status bits from the hit record (in the most significant byte of the name

stack depth).

* Count the number of hit records present in the buffer.

66 Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

9.5 Feedback

The OpenGL Feedback mode returns the vertex data for the primitives which have passed
clipping and culling. Placing Gamma into feedback mode and specifying the vertex data to
return is controlled by the two fields in the GeometryMode register shown in Table 9.8.

Bit No. | Name Description

14,15 | RenderMode | The RenderMode field controls the action when processing any primitive. The
options are:

0: Render

1: Select

2: Feedback

16...18 | FeedbackType | This field only has any effect if the RenderMode is Feedback. In this case it

determines the parameters to be returned for every primitive. The options are:

0: XY 2D

1: X,Y,Z 3D

2: X,Y,Z,R, G, B, A 3DColor

3: X,Y,Z,R,G,B,A S, T,RQ 3DColorTexture
4 XY, Z,W,R,G,B,A, S, T,R,Q 4DColorTexture

Table 9.8 Controlling Fields in the GeometryMode Register

While in Feedback mode no rendering is done, however details about what would have
been rendered are returned.

The vertex data will appear in the host output FIFO in the order given here, i.e. the X value
will appear first, followed by the Y value, etc. Bits 14 and 15 in the FilterMode register in
GLINT must be set to allow the feedback tag and data values to be written in to the FIFO.

The data is identified in the FIFO by a tag starting with 'Feedback' with the appropriate
name appended. For example the X value will have a tag of FeedbackX, the Red value a tag
of FeedbackRed, etc.!. All the data is returned in floating point format.

The vertex data is associated with a particular primitive and before any of the vertex data is
written to the FIFO the FeedbackToken tag will be written. The data with this tag defines
what primitive would have been drawn and implicitly how many vertices worth of vertex
data are in the FIFO.

I'The full set of feedback tags is: FeedbackX, FeedbackY, FeedbackZ, FeedbackW, FeedbackRed, FeedbackGreen, FeedbackBlue,
FeedbackAlpha, FeedbackS, FeedbackT, FeedbackR, FeedbackQ.

3D/.bs Proprietary and Confidential 67

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

Data value Primitive Type Number of vertices
0x44e02000 Point 1
0x44e04000 Line 2
0x44e06000 Triangle 3
0x44e08000 Bitmap 1
0x44e0a000 DrawPixel 1
0x44e0c000 CopyPixel 1
0x44e0e000 LineReset 2
0x44e00000 PassThrough 0

Table 9.9 Data Field Possibilities

The LineReset is the same as a Line but the stipple pattern was reset for this line.

The hex values supplied match up with the tokens defined by OpenGL. Note that the
Triangle token is the same as the Polygon token in OpenGL, however the vertex count is
fixed at three and not included in the tag and data stream.

The Bitmap, DrawPixel and CopyPixel are all the Rectangle primitive with bits 13 and 14
(of the data value) set from the low two bits of the GeomRectangle command. These two
bits are only used to generate the correct OpenGL feedback token. Note a value of 3 is
used to indicate this rectangle shouldn't have an entry in the feedback buffer and this is
used to prevent multiple feedback entries when the GeomRectangle is used several times to
implement a single APT call.

The number and type of primitives returned during feedback depends on what primitives
are sent in the first place, the Polymode setting and the result of any clipping operation.
Polygons and Quads are always decomposed into triangles and clipping a triangle can give
anywhere between 0 and 14 triangles depending on the number of clipping planes (frustum
and user) the original triangle cuts.

For some FeedbackType settings the color and/or texture values are not required. In these
cases these can be disabled for higher performance (this does assume that the host reading
back the feedback tags and data will not be the limiting factor). Fog can always be disabled.
[t is also advisable to disable short line and small triangle threshold testing and always do a
full clip otherwise there is a chance that primitives which would have been clipped out
actually get included in the feedback process.

It may be useful to inject markers while doing feedback (OpenGL has a function call
glPassThrough to do this) to help keep track of which part of the model you are in. This is
done by using the PassThrough command - the tag and data are written directly into the
Host Out FIFO without changing any internal state in Gamma or GLINT.

The amount of data generated in feedback mode is not easily determined by the host as it
depends on how primitives are clipped, polygon mode and backface culling. The
EndOfFeedback command can be used by the host as a marker to indicate the end of the
feedback stream. When this is found in the Host Out FIFO all the feedback data will have
been read from GLINT.

68

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

Host software can read the Host Out FIFO, analyze the tags and build up an OpenGL
conferment feedback buffer. This action of the host reading the FIFO must be done

simultaneously with sending user commands or the Host Out FIFO will fill up and
GLINT, and then Gamma will stall. Alternatively the Output DMA controller can be
placed in feedback mode to simplify and speed up this operation.

The Output DMA controller feedback mode does the following:

* Formats the feedback data from GLINT into the exact format required by OpenGL and
write it into a memory buffer. This includes adding in the vertex count (3.0) for
triangles (a.k.a. polygons), otherwise just involves discarding the tags (these are still
necessary in the Host Out FIFO so the type of data can be ascertained).

* Converts the PassThrough tag to the PassThrough token and also append its associated
data.

* Discards any surplus feedback data when the buffer is full.

* Terminates the transfer when the end of the feedback data is found (as indicated by the
EndOfFeedback tag).

* Discards any invalid tag and data pairs while in feedback mode.

The overall method for implementing feedback with the Output DMA controller is as

follows:

* The GLINT FilterMode is set up so that the tag and data for the Remainder group of
tags (bits 14 and 15 set) are written to the host out FIFO and this FIFO is assumed to be
empty after the filter mode has been set up.

e The DMAOutputAddress holds the address (logical or physical) where the feedback
data is to be written The start address is given as a byte address but the lower two bits
are ignored.

* The DMAFeedback command with the length of the memory buffer (in words) is sent
to start the Output DMA controller.

* The RenderMode in the GeometryMode register is set to Feedback .

* The user rendering is done.
¢ The EndOfFeedback command is sent to mark the end of the feedback mode.
* Wait for all the feedback data to be transferred. This can be done by polling the

CommandStatus PCI register or via an interrupt.

¢ Read the count of the number of words transferred from the FeedbackSelectCount PCI
register. If the most significant bit is set then the buffer is full and there was more data
to append to it (but this has been discarded).

If the feedback buffer becomes full before the EndOfFeedback tag in the tag/data stream is
detected the Output DMA is terminated and the host informed, however the host output
FIFO will continue to be read and its contents discarded until the EndOfFeedback is
found. The EndOfFeedback tag and its data will also be discarded. The
FeedbackSelectCount PCI register will hold the actual number of words transferred. Bit 31 is
set if more data was found before the EndOfFeedback tag.

3D/.sbs

Proprietary and Confidential 69

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

Note: If the viewport mapping includes any additional biasing normally removed during the
primitive set up operation (see section 7.5) using the X Bias and Y Bias register values then the
X and Y coordinates in the feedback buffer need to have the X Bias and Y Bias values added
to. This will restore the coordinates to the number range the application is expecting. This is
not done automatically by Gamma and is a post processing operation by software once the

[feedback buffer has been created.

Raster Position
The raster position in OpenGL is set by writing to the RP* registers (RPy, RPz, RPw and

one of RPx2, RPx3 or RPx4). The raster position is transformed and lit as a normal vertex
would be and the results saved away.

OpenGL has a rectangle primitive (glReadPixels, gl WritePixels, etc.) where the raster
position (previously established as above) defines the rectangle origin. The
RectangleWidth and RectangleHeight registers define the width and height respectively.
The texture, normal, fog, color, etc. values are calculated and stored with the raster position
when the raster position is first defined.

The GeomRectangle command is used to render the rectangle. If the raster position is not
in view then all GeomRectangle command are ignored until a new raster position is
established. If the raster position is in view then the operation is controlled by the data field.

Bit | Name Description

0,1 | Type These two bits define the type of rectangle to be inserted into the feedback buffer.
They have no effect when not in feedback mode. The options are:

0 = Bitmap

1 = DrawPixel

2 = CopyPixel

3 = Don't insert into the feedback buffer.
2 OffsetEnable | When this bit is set the x and y offset values held in RasterPosXOffset and
RasterPosYOffset respectively displace the raster position window coordinates when
the rectangle is rendered. This does not update the raster position state.

3 SelectEnable | When this bit is set the rectangle takes part in the selection process.
Table 9.10 GeomRectangle Data Field

After every rectangle is submitted using the GeomRectangle command (in any
RenderMode) the window coordinate x and y components are updated by the amount held
in the RasterPosXIncrement and RasterPosYIncrement registers respectively. This occurs
irrespective of the raster position being in view either before or after the update. If the
initial raster position was in view then all subsequent raster positions updated via the
increment will be in view. The converse also holds. The texture, fog and color values are
only updated when the raster position is changed by an update to one of the RPx2, RPx3
or RPx4 registers.

The width and height of the rectangle is held in the RectangleWidth and
RectangleHeight registers as floating point numbers. The RectangleMode holds the low
level enables to control TextureEnable, FogEnable, etc. and has the same format as the

GLINT Render command.

70

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

9.7

A raster position should not be sent between a Begin/End sequence as it will corrupt the
vertex data being carried from one primitive to the next (an OpenGL requirement as well).
For OpenGL bitmap operations the supplied RasterPosOffsetX and RasterPosOffsetY
should be set from the -origin values given in the API call. Also 0.4999 (nearly half) should
be subtracted as well to get the required floor operation the OpenGL specification required
for bit maps.

All the state associated with the raster position can be saved and restored via the context
dump and context restore mechanisms (see the context saving section for details). This
mechanism is also used to get the current raster position when it is queried by the glGet
function in OpenGL.

If a ContextDump is done with only the RasterPos bit set then the resultant context buffer
will hold the following information (the tags and context mask are assumed to have been
discarded). Note there is some user defined state also included:

Offset Data Offset Data

0 Window coordinate, X component 10 In View (bit 0: 0 = out of view,
1 Window coordinate, Y component 1 = in view)

2 Window coordinate, Z component 11 xIncrement (user register)
3 Eye coordinate, Z component 12 ylncrement (user register)
4 Clip coordinate, W component 13 xOffset (user register)

5 Texture, S component 14 yOffset (user register)

6 Texture, T component 15 Color, Red component

7 Texture, R component 16 Color, Green component
8 Texture, Q component 17 Color, Blue component
9 Fog 18 Color, Alpha component

This data is in single precision floating point format unless otherwise noted.

Current Texture, Normal and Color values

The current values for texture, normal and color are updated when texture coordinates,
normals and colors are written to Gamma. OpenGL allows these to be queried and these
can be read back from Gamma or the ContextDump command with the CurrentState
context mask bit set can be used.

If a context dump is done with only the CurrentState bit set then the resultant context
buffer will hold the following information (the tags and context mask are assumed to have

been discarded):

Offset Data Offset Data
0 Current edge flag in bit 5 6 Current texture, R component
1 Current normal, X component 7 Current texture, Q component
2 Current normal, Y component 8 Current color, Red component
3 Current normal, Z component 9 Current color, Green component
4 Current texture, S component 10 Current color, Blue component
5 Current texture, T component 11 Current color, Alpha component

This data is in single precision floating point format unless otherwise noted.

3D/.sbs

Proprietary and Confidential 71

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

9.8

The current data can be restored by writing to their assigned registers (as would normally be
done to pass this data to Gamma in the first place) or by using the ContextRestore
command with the CurrentState context mask bit set. In this case the new current values
must be propagated through out Gamma by using the TransformCurrent command. This
command takes a four bit mask to specify which parameters are to be refreshed and in this
case the simplest thing is to set all four bits (see the reference section for a description of
these bits).

The current values can also be saved and restored using a set of internal registers. This is
controlled by the SaveCurrent and RestoreCurrent commands. There is only one set of
registers so the SaveCurrent command will overwrite the data saved by the previous
SaveCurrent. This mechanism is much faster and simpler to use than using the
DumpContext and RestoreContext commands.

OpenGL evaluators (used for curved surfaces, NURBS, etc.) calculate texture, normal and
color values (depending on what is enabled) and they are treated as if the programmer had
supplied them directly, but with one important exception. The current values (or any
derived state such as material parameters edited using ColorMaterial) are not changed. The
SaveCurrent and RestoreCurrent commands are used to bracket the evaluator operations.
All derived state is also refreshed by the TransformCurrent command.

Window Clipping Support

Gamma does not have any support for window clipping. The method of repeating a DMA
buffer used by the earlier 3Dlabs drivers can be used, however a f#// Gamma context dump
is required before the DMA buffer is read for the first time. On subsequent repeats of the
DMA buffer the previous Gamma state is restored. Clearly this is unlikely to be a high

performance solution.

Window clipping should be done using the Graphics ID (GID) facility in GLINT. The
GID is stored in the GLINT's local buffer and provides a pixel ownership test. See one of
the GLINT Programmer's Reference manuals for more details on using GIDs for window

clipping.
The OpenGL driver does not know when one of its windows is clipped and even if there

were a callback to notify of this situation this does not help any DMA buffers already
generated, and waiting to be read.

GID testing is controlled by the Window register and the LBReadMode register (to enable
local buffer reads), unfortunately the display (GUI) driver needs to own some bits in these
registers while the OpenGL driver need to own others. To prevent some sort of software
handshaking or locking being necessary to control access to these register Gamma intercepts
writes to these registers and keeps a local copy. The local copies of these registers can be
modified using the WindowAnd, WindowOr, LBReadModeAnd and LBReadModeOr
commands. Recall that the data associated with the command is logically combined with
the existing data so individual bits can be modified in isolation. Once the local copy is
updated the GLINT copy is updated. One further modification to the LBReadMode is
done and this is to enable destination reads if GID testing is required.

72

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

The Rectangle2DControl register holds a single bit which is set when window clipping is
needed. This bit is used to force local buffer reads to be done and this register is owned by
the display driver.

GID testing, for the most part on the GLINT MX, is a free test, however it is not
compatible with the span operations. Normally these are used by 2D GUI operations
which are pre clipped to the window so don't need to use GIDs. There is one situation
where OpenGL would use spans and this is to clear the color buffer (i.e. as part of the
glClear function). When GID testing is being used OpenGL can't use spans to implement
the clear. To avoid OpenGL needing to know which style of clears to use, or using a driver
call to do the clear it sets up the clear for both methods and lets the display driver choose
depending if window clipping is necessary.

OpenGL does the set up for clears assuming a single pixel at a time rendering will be used.
In addition the clear color (in framebuffer raw format) is written to the FBBlockColor
register. The Rectangle2D command is used to render the rectangle. The

Rectangle2D Control register, under control of the driver, will select the appropriate
rasterization method.

9.9 Color Material Support
OpenGL has the facility to allow the current color or a color sent to the graphics pipeline to
change one or more selected material parameters. In Gamma there is no performance
penalty for changing a material's parameter directly rather than via the color material
mechanism. The ColorMaterialMode register controls the color material mechanism.
Bit No. | Name Description
0 Enable When set causes a vertex color to update the material parameter(s) for the given face(s).
1,2 Face This field selects which face(s) any material changes should be made to by the updating
color. The values are:
0 = front material
1 = back material
2 = front and back material
3...5 Parameter | This three bit field selects which material parameter(s) should be updated by the
updating color. The values are:
0 = Emissive
1 = Ambient
2 = Diffuse
3 = Specular
4 = Ambient and diffuse
Table 9.11 ColorMaterialMode Register Fields
When color material is first enabled the existing current color is immediately applied to the
selected material parameter(s).
The OpenGL specification states that material edits using glMaterial do not affect any
material properties selected for update by ColorMaterial. Gamma does not enforce this
behavior.
3D/.bs Proprietary and Confidential 73

OpenGL Specific Operations GLINT Gamma Programmer’s Reference Manual

Note: The OpenGL specification stipulates that when ColorMaterial is enabled the target material
parameter(s) are updated by calls to glColor. This is handled automatically by Gamma. The
OpenGL specification also goes on to state that the target material parameters are no longer
updated by calls to glMaterial. This is not done automatically by Gamma and the OpenGL
driver must do this filtering.

910 Get Operations

OpenGL provides a query mechanism. The parameters which can be queried broadly fall

into three categories:

* User defined state. User defined state is state the application sets directly, for example a
light's color or position. The OpenGL driver can choose to track this state itself or read
it back from the hardware. If the state is to be read back from the hardware any pending
DMA must be finished and Gamma and GLINT synchronized with first.

* Derived state. Derived state is state which could be tracked by the OpenGL, but will
impact performance too much to do so. State in this category is the current texture,
normal and color values. The material state may be included in this if Color Material is
enabled.

* Transformed state. This is state which undergoes significant processing before the
results are queried. An example of this is raster position, and unless a software geometry
and lighting pipeline is maintained there is no alternative but to read back the state from
Gamma.

Keeping a software copy of state looks like it is a big performance win, however it does have

one big drawback - state changes cannot be included in native display lists as these would

not be reflected by the software copy when the display list was executed.
9.11 Display Lists

Display lists can be held in two formats: some internal OpenGL format which is parsed into

Gamma commands when executed, or in native Gamma format. Clearly the native format

will be much faster and is the preferred format.

The native format suffers from three drawbacks:

* Gamma relies on the host to do any matrix generation and concatenation so OpenGL
commands for this cannot exist in a display list.

* Mode changes in the current rasterizer chips may involve changing one or two bits in a
register and leaving the rest of the bits unaffected. This requires a software copy of the
register to be used to re-generate the bits to keep. The register contents may be different
when the display list is executed from when the display list was created so needs active
involvement from software. All the Gamma mode registers have an And and an Or
version to allow individual bits to be changed.

74

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual OpenGL Specific Operations

* Inter dependencies in mode bits. For example the framebuffer, in general, needs to be
enabled for reading when alpha blending is done, however some alpha blending modes
don't use the framebuffer contents. Meanwhile, in a different mode register the logical
operation may or may not require framebuffer data to be read as well.

Future Gamma devices and new rasterizers will address these problems so most operations
can be included in display lists. Meanwhile a composite scheme of mixing native and
parsed display lists based on their contents is a good compromise.

3D/.sbs

Proprietary and Confidential 75

Direct3D and QuickDraw3D Functionality GLINT Gamma Programmer’s Reference Manual

10.

101

Direct3D and QuickDraw3D Functionality

Face Normals

QuickDraw3D uses face normals for culling and for flat shading. Face normals are written
using FNx, FNy and FNz registers (recall FNx must be sent last) and this must be sent
before the last vertex for the triangle, or the last vertex of the first triangle a quad or
polygon is decomposed into. If a face normal is not received in time then the area based
calculation may be used for culling, however the same face normal is used for subsequent
triangles a quad or polygon is decomposed into unless a new one is received.

The face normals are transformed (if enabled by the TransformFaceNormal bit in the
TransformMode register) using the NormalMatrix[9] used by the vertex normals. Face
normals never need to be of unit length if they are just going to be used for culling.

The CullUsingFaceNormal bit in the GeometryMode register enables culling using the
face normal. If the sign of the Z component of the transformed face normal is positive the
vertices are assumed to be ordered counter clockwise. This sense can be inverted by the
InvertFaceNormalCullDirection bit in GeometryMode.

The association of front facing to vertex order is controlled by the FrontFaceDirection bit
in GeometryMode and the facing direction to cull is set by PolygonCullFace in
GeometryMode. The PolygonCull bit in GeometryMode enables polygon culling,

however this is ignored when a face normal is provided.

If CullUsingFaceNormal is true and no face normal has been provided then the area based
method will be used in which case the PolygonCull bit is taken into account. This allows
polygons to be culled if and only if a face normal is provided.

The face normal can be used for lighting rather than the vertex normal and in this case it
can be normalized (enabled by the FaceNormalEnable in NormalizeMode) if, after
transformation, it will not be of unit length. If no face normal is provided then setting the
AutoGenerateFaceNormal bit in GeometryMode automatically calculates the normalized
face normal (the setting of FaceNormalEnable in NormalizeMode is ignored). The
automatically generated face normal can be optionally inverted (by setting the
InvertAutoFaceNormal bit in NormalizeMode) in case the cross product order of the two
edges doesn't follow the application’s convention.

Setting the UseFaceNormal bit in the LightingMode register forces the lighting to be
calculated with the face normals rather than the vertex normals. The lighting is still
evaluated once per vertex so any position dependent effects (i.e. attenuation or spotlight) are
computed correctly.

76

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Direct3D and QuickDraw3D Functionality

10.2 Diffuse Textures
QuickDraw3D allows a diffuse lighting component to be applied after texture mapping.
The diffuse values (monochrome for GLINT 500TX, color for GLINT MX) are
interpolated across a triangle and are derived from the diffuse light value at each vertex (see
the earlier lighting equations).
Diffuse textures are enabled by the DiffuseTextureEnable bit in MaterialMode,
DiffuseEnable bit in DeltaMode and the TextureEnable bit in the Begin command. The
diffuse texture (at each vertex) is calculated using:

diffuseTexture=¢e_, +a,, + ambientLight + diffuseLight

where
€.n is the emissive material color
a., isthe ambient material color
The monochrome or color is selected by the MonochromeDiffuseTexture bit in
MaterialMode and ColorDiffuse bit in DeltaMode.

10.3 Specular Textures
Direct3D and QuickDraw3D allows a specular lighting component to be applied after
texture mapping. The specular values (monochrome for GLINT 500TX, color for GLINT
MX) are interpolated across a triangle and are derived from the specular light value at each
vertex (see the earlier lighting equations).
Specular textures are enabled by the SpecularTextureEnable bit in MaterialMode,
SpecularEnable bit in DeltaMode and the TextureEnable bit in the Begin command. The
specular texture (at each vertex) is calculated using:

specular Texture = specularLight

The monochrome or color is selected by the MonochromeSpecularTexture bit in
MaterialMode and ColorSpecular bit in DeltaMode.

3D/.bs Proprietary and Confidential 77

Compatibility with GLINT Delta GLINT Gamma Programmer’s Reference Manual

11. Compatibility with GLINT Delta

Gamma can be programmed like GLINT Delta where the host software provides the
coordinate, color, etc. information for one or more vertices and then issues one of the
Draw* commands. Obviously this forgoes all the benefits of using the Gamma specific
commands and facilities, but will give a significant performance increase over GLINT

Delta.

The contents of any of the vertex stores must not be changed while the rest of Gamma is
being used, or more precisely between the Begin and End commands.

The software interface and behavior is basically compatible with GLINT Delta (once the
new mode registers have been initialized to zero) but 100% software compatibility was not a
design goal. The differences are:

* Antialiased triangles are enabled by the AntialiasEnable bit in the TriangleMode register
in addition to the AntialiasEnable bit in the DrawTriangle command.

* The antialiasing quality is taken from the TriangleMode register and not the
DrawTriangle command.

* The Render command issued by Gamma to control the rasterizer chip has the data field
set to sensible values rather than using the given value in the Draw* command directly.

* All texture, specular texture, diffuse texture, fog and subpixel correction operations are
qualified by bozh the corresponding bits in the DeltaMode register and the Draw*
command.

The vertex information is held in three areas VO, V1 and V2, each area has storage for the

16 words assigned to the usual parameters. The input format for each parameter is also

shown in fixed point format (s is unsigned and s is 2's complement) and floating point

format:

78

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual Compatibility with GLINT Delta

Offset | Category Parameter Fixed Point Format Floating Point Range
0 s 230 s! -1.0...1.02

1 Texture t 2.30s -1.0...1.0

2 q 2.30s -1.0...1.0

3 Ks 2.22 us 0.0...2.0

4 Kd 2.22 us 0.0...2.0

5 red 1.30 us 0.0...1.0

6 Color green 1.30 us 0.0...1.0

7 blue 1.30 us 0.0...1.0

8 alpha 1.30 us 0.0...1.0

9 Fog f 10.22 s -512.0...512.0
10 x 16.16 s -32K...+32K3 4
11 Coordinate y 16.16s -32K...+32K
12 z 1.30us 0.0...1.0

13

14 Reserved

15 |

Table 11.1 Compatibility with GLINT Delta

Each value can be written to two addresses:

* The VnFixed* address treats the data value as a fixed point number with the format
associated with the parameter. The fixed point value is converted to IEEE floating point
format and clamped (if enabled) to lie in the range assigned to this parameter.

The unused bits in some of the formats are zero extended when the format is unsigned or
sign extended when the format is signed, prior to converting to floating point format.

* The VnFloat* address treats the data value as a IEEE floating point number and clamp it
(if enabled) to lie in the range assigned to this parameter.

The values read back from the vertex store via the readback mechanism are the clamped
floating point version of the number written (in either format).

No parameters are corrupted by the calculations so parameter sharing between primitives is
simply achieved by not re-loading those parameters. For example if the first triangle in a
tri-strip is loaded into VO, V1 and V2, then the next triangle will load V0, the next V1, etc..

IThis is the range when Normalize is not used. When Normalize is enabled the fixed point format can be
anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they had
2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different from
what the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference in

binary point positions) prior to conversion.
.. 32
2This is the range when Normalize is not used. When Normalize is enabled the range is extended to 2*

approximately. This also applies to the t and q values as well.

3The normal range here is limited by the size of the screen.

4K = 1024.

3D/.sbs

Proprietary and Confidential 79

Compatibility with GLINT Delta GLINT Gamma Programmer’s Reference Manual

Lines are handled slightly differently in that only V0 and V1 are used. The direction the
line is drawn is defined as part of the command so the line runs from V0 to V1
(DrawLine01), or V1 to VO (DrawLinel0). To draw a polyline the initial segment starts
as VO to V1 and then V1 to VO (new parameters loaded), etc..

The texture parameters (S, T and Q) are handled differently to the other parameters as their
dynamic range is much more variable from the application’s view point, but must be
constrained to get the best out of the finite precision DDA and perspective division
hardware available in GLINT. Any operation on the texture coordinates before they are
used is controlled by the TextureParameterMode in the DeltaMode register. The options
are NoClamp, Clamp or Normalize . The NoClamp and Clamp work the same as for the
other parameters. The Normalize option finds the maximum absolute value of the texture
S, T and Q values for the primitive and normalizes all the value to lie in the range -1.0 ...
1.0 inclusive prior to being used in the set-up calculations. Note that the texture values in
the vertex store are ot changed by the Normalize option.

In addition to the DeltaMode register the unit's operation is also influenced by the bits in
the data field associated with one of the Draw* commands. The data field for the Draw*
command is identical to that defined for the Render command, and provides the data field
whenever a Render command is sent to GLINT to initiate rendering (nonsensical
combinations default to reasonable combinations).

See the GLINT Delta documentation for more specific programming details.

80

Proprietary and Confidential 3D/abs

GLINT Gamma Programmer’s Reference Manual Multi-GLINT Support

12.

Multi-GLINT Support

Gamma can support up to two GLINTSs and broadcast the commands and register loads to
any combination of the two GLINTS at the same time.

The selection of which GLINT to direct the broadcast at is determined by the
BroadcastMask register. The data field has bit 0 assigned to GLINTO, bit 1 to GLINT1,
etc. When one of these bits are set the corresponding GLINT is included in the broadcast.

The assumed mode for the two GLINTS is scan line interleaved so it is very natural for both
GLINTS to get the same command stream. The obvious exception is the initial scan line
ownership set up.

A BroadcastMask value of zero results in all subsequent commands being discarded until
the broadcast mask is changed.

3D/.sbs

Proprietary and Confidential 81

PCI Related Registers GLINT Gamma Programmer’s Reference Manual

Appendix A PCI Related Registers

This Appendix summarizes the PCI registers which directly effect programming Gamma
rather than those registers concerned with set up and configuration. The Gamma
Hardware Reference Manual gives more details.

Address | PCI Register Description

0x0000. | PageTableAddr This register holds the physical base address of the page table used during
0C00 the logical to physical mapping. The base address is given as a byte

address but must be on a 32 bit word boundary.

0x0000. | PageTableLength This register holds the length, in multiples of 1K entries of the page table.
0Co8 It is only used for some basic range checking. The register is 24 bits wide.
0x0000. | DelayTimer This register, when written to, starts a timer. When the timer decrements
0C38 down to one an interrupt is generated and the timer stops. Writing zero

aborts the timer with no interrupt being generated (unless it has already
occurred). Reading this register returns the current timer value.

0x0000. CommandMode This register holds some basic mode information. It is described in a later
0C40 table.

0x0000. | DMAAddress This register holds the address a DMA will start from when the Operation
0028 mode (held in the CommandMode register) is 'default’. When the mode is

not 'default’ then this register can be read and written as normal, but is
not used internally.

0x0000. DMACount This register holds the number of words in the DMA transfer. The

0030 transfer size is held as a 24 bit number. When the Operation mode (held
in the CommandMode register) is 'default’ a write to this register will start a
DMA transfer. When the mode is not 'default’ then this register can be
read and written as normal, but is not used internally and does not start a

DMA transfer.
0x0000. = CommandError This register holds the error bits for each type of error which can be
0C58 detected by the Gamma core.
0x0000. | CommandInterruptEnable This register holds the enables for each type of interrupt the Gamma core
0C48 can generate.
0x0000. | CommandInterruptStatus This register reports on which interrupt(s) have been generated.
0C50
0x0000. | CommandStatus This register holds various status information such as when a DMA is
0C60 busy.
0x0000. | FaultingAddress[6] These register holds the logical page which caused the page fault interrupt
0C68... or the one of the three errors detected during logical to physical address
0C90 translation for each region.
0x0000. | FeedbackSelectCount This register holds the number of words written to memory when the
0C98 Feedback output mode is used, or the number of hit records when in
Select output mode is used. The most significant 8 bits are reserved/used
as error flags.
0x0000. ' GammaProcessorMode This register enables (0) or disables (1) the use of the Delta Unit in
0CB8 Gamma. For the GLINT 500TX and GLINT MX this will be set to 0.

Table A1 PCI Related Registers

82 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

PCI Related Registers

Bit No. Name Description
0,1 Operation This field determines the major operation mode of the DMA
controller. It has the values:
0: Default operation enabled after reset. The DMA is initiated by
writes to the PCI DMAAddress and DMACount registers. Any
DMAAddr and DMACount tags found in the input FIFO are
discarded.
1: The DMA is initiated by the DMAAddr and DMACount tags
in the input FIFO. Werites to the PCI DMAAddress and
DMACount registers are ignored.
2 LogicalAddressing When set causes the addresses generated by the DMA controller to
be translated into physical addresses via a page table.
3 AbortOutputDMA When this bit is set any current (or future) Output DMA is aborted
(linear or rectangular).
4 Reserved
5 Reserved
6 AbortInputDMA When this bit is set any current (or future) Input DMA is aborted
(normal DMA, hierarchical or rectangular).
Table A2 PCI CommandMode Register Fields
Bit No. Name Description
0 StackUnderflow This is set whenever a DMAReturn is attempted from the
InputFIFO
1 StackOverflow This is set whenever a DMACount or DMACall tag in a DMA
buffer are nested more than 8 deep.
2 DMAOverrun This is set whenever data beyond the DMA bulffer is needed to fulfill
the requirements of the last tag in the DMA buffer.
3 Reserved
4 PageMappingFaultCommand
5 PageMappingFaultVertex This is set whenever the logical address exceeds the
6 Reserved translation range of the Page Mapping Table for the
7 Reserved appropriate region.
8 PageMappingFaultWrite
9 Reserved
10 PageFaultReadAccessCommand
11 PageFaultReadAccessVertex This is set whenever a read access is made to a page
12 Reserved marked as not supporting read accesses.
13 Reserved
14 PageFaultReadAccessWrite
15 Reserved
16 PageFaultWriteAccessComman
d
17 PageFaultWriteAccessVertex This is set whenever a write access is made to a page
18 Reserved marked as not supporting write accesses.
19 Reserved
20 PageFaultWriteAccess Write
21 Reserved
22 Hlegal DMATag This is set whenever a DMA related tag is detected not in a tag/data
pair.
3D/.bs Proprietary and Confidential 83

PCI Related Registers GLINT Gamma Programmer’s Reference Manual

Table A3 PCI CommandError Register Fields

The PCI CommandInterruptEnable register has the following fields to enable and disable the
various interrupt sources. The CommandInterruptStatus register has the same fields to identify
the actual source of the interrupt. Writing a one to a field in the CommandInterruptStatus
clears the corresponding interrupt.

84 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

PCI Related Registers

Bit No. | Name Description

0 FIFOQueuedCommandDMA | This field determines when interrupts are generated during the
Queued DMA mode of operation. When this bit is set the
interrupts occur after every DMA has finished.

1 OutputDMA When set causes an interrupt to be generated whenever the Output
DMA controller finishes.

2 Command Enables the CommandInterrupt tag to generate an interrupt.

3 Timer Enables the DelayTimer to generate an interrupt when it has
counted down to one.

4 CommandError Enables the occurrence any of the errors detected by the command
unit to generate an interrupt.

5 Reserved

6 Reserved

7 Reserved

8 PageFaultCommand Enables an interrupt to be generated when a non resident page is
accessed in the Command region.

9 PageFaultVertex Enables an interrupt to be generated when a non resident page is
accessed in the Vertex region.

10 Reserved

11 Reserved

12 PageFaultWrite Enables an interrupt to be generated when a non resident page is
accessed in the Write region.

13 Reserved

Table A4 PCI CommandInterruptEnable Register Fields

Bit No. | Name Description

0 CommandDMABusy This is set whenever the command stream DMA controller is busy
or a RectangleRead is in progress.

1 OutputDMABusy This is set whenever the OutputDMA controller is busy or a
RectangleWrite is in progress.

2 Reserved

3 Reserved

Table A5 PCI CommandStatus Register Fields

3D/.sbs

Proprietary and Confidential

85

Tag Values (Numerical Order)

GLINT Gamma Programmer’s Reference Manual

Appendix B Tag Values (Numerical Order)

Tags Major Group (Hex) = Offset (Hex) | Readback Notes
ContextDump 1B 8 Command
ContextRestore 1B 9 Command
ContextData 1B A

FeedbackToken 1F 0

FeedbackX 1F 1

FeedbackY 1F 2

FeedbackZ 1F 3

FeedbackW 1F 4

FeedbackRed 1F 5

FeedbackGreen 1F 6

FeedbackBlue 1F 7

FeedbackAlpha 1F 8

FeedbackS$ 1F 9

FeedbackT 1F A

FeedbackR 1F B

FeedbackQ 1F C

SelectRecord 1F D Command
PassThrough 1F E Command
EndOfFeedback 1F F Command
VOFixedS 20 0 .

VOFixedT 20 1 .

VOFixedQ 20 2 .

VOFixedKs 20 3 .

VOFixedKd 20 4 .

VOFixedR 20 5 .

VOFixedG 20 6 .

VOFixedB 20 7 .

VOFixedA 20 8 .

VOFixedF 20 9 .

VOFixedX 20 A .

VOFixedY 20 B .

VOFixedZ 20 C .

V1FixedS 21 0 .

V1FixedT 21 1 .

V1FixedQ 21 2 .

V1FixedKs 21 3 .

V1FixedKd 21 4 .

V1FixedR 21 5 .

V1FixedG 21 6 .

V1FixedB 21 7 .

V1FixedA 21 8 .

V1FixedF 21 9 .

V1FixedX 21 A .

V1FixedY 21 B .

V1FixedZ 21 C .

V2FixedS 22 0 .

V2FixedT 22 1 .

V2FixedQ 22 2 .

V2FixedKs 22 3 .

V2FixedKd 22 4 .

V2FixedR 22 5 .

86 3D/ubs

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual

Tag Values (Numerical Order)

V2FixedG 22 6 .

V2FixedB 22 7 .

V2FixedA 22 8 o

V2FixedF 22 9 .

V2FixedX 22 A .

V2FixedY 22 B .

V2FixedZ 22 C .

VOFloatS 23 0 .

VOFloatT 23 1 .

VO0FloatQ 23 2 .

VOFloatKs 23 3 .

VOFloatKd 23 4 .

VOFloatR 23 5 .

VOFloatG 23 6 .

VOFloatB 23 7 .

VOFloatA 23 8 .

VOFloatF 23 9 .

VOFloatX 23 A .

VOFloatY 23 B .

VOFloatZ 23 C .

V1FloatS 24 0 .

V1FloatT 24 1 .

V1FloatQ 24 2 .

V1FloatKs 24 3 .

V1FloatKd 24 4 .

V1FloatR 24 5 .

V1FloatG 24 6 .

V1FloatB 24 7 .

V1FloatA 24 8 .

V1FloatF 24 9 .

V1FloatX 24 A .

V1FloatY 24 B .

V1FloatZ 24 C .

V2FloatS 25 0 .

V2FloatT 25 1 .

V2FloatQ 25 2 .

V2FloatKs 25 3 .

V2FloatKd 25 4 .

V2FloatR 25 5 .

V2FloatG 25 6 .

V2FloatB 25 7 .

V2FloatA 25 8 .

V2FloatF 25 9 .

V2FloatX 25 A .

V2FloatY 25 B .

V2FloatZ 25 C .

DeltaMode 26 0 .

DrawTriangle 26 1 Command
RepeatTriangle 26 2 Command
DrawLine01 26 3 Command
DrawLinel0 26 4 Command
RepeatLine 26 5 Command
EpilogueTag 26 D .

EpilogueData 26 E .

3D/abs Proprietary and Confidential 87

Tag Values (Numerical Order)

GLINT Gamma Programmer’s Reference Manual

BroadcastMask 26 F .

XBias 29 0 o

YBias 29 1 .

PointMode 29 2 .

PointSize 29 3 .

AAPointSize 29 4 .

LineMode 29 5 .

LineWidth 29 6 o
LineWidthOffset 29 7 *

AALineWidth 29 8 o

TriangleMode 29 9 .

RectangleMode 29 A .

RectangleWidth 29 B .
RectangleHeight 29 C .
Rectangle2DMode 29 D .

Rectangle2D Control 29 E .
TransformMode 2A 1 .

GeometryMode 2A 2 .
NormalizeMode 2A 3 .

LightingMode 2A 4 .
ColorMaterialMode 2A 5 .

MaterialMode 2A 6 .

SelectResult 2B 0 Command
Begin 2B 2 Command
End 2B 3 Command
EdgeFlag 2B 4 .

ObjectIDValue 2B 5 .
IncrementObject!D 2B 6 Command
TransformCurrent 2B 7 Command
SaveCurrent 2B 9 Command
RestoreCurrent 2B A Command
InitNames 2B B Command
PushName 2B C Command
PopName 2B D Command
LoadName 2B E Command
GeomRectangle 2D 4 Command
DrawRectangle2D 2F 4 Command
Nz 30 0 .

Ny 30 1 .

Nx 30 2 . Trigger

Ca 30 3 .

Cb 30 4 .

Cg 30 5 .

Cr3 30 6 . Trigger
Cr4 30 7 . Trigger
T2 30 8 .

Ts2 30 9 . Trigger
Vw 30 A

Vz 30 B

Vy 30 C

Vx2 30 D Trigger
Vx3 30 E Trigger
Vx4 30 F Trigger
FNz 31 0 o

88 3D/ubs

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual

Tag Values (Numerical Order)

FNy 31 1 .

FNx 31 2 . Trigger
PackedColor3 31 3 Trigger
PackedColor4 31 4 Trigger
Tq4 31 5 .

Trd 31 6 .

Tt4 31 7 .

Ts4 31 8 . Trigger
RPw 31 9

RPz 31 A

RPy 31 B

RPx2 31 C Trigger
RPx3 31 D Trigger
RPx4 31 E Trigger
Tsl 31 F . Trigger
ModelViewMatrix[16] 32 0...F .
ModelViewProjectionMatrix[16] 33 0...F .
NormalMatrix[9] 34 0...8 .
TextureMatrix[16] 35 0...F .

TexGen[16] 36 0...F .
ViewPortScaleX 37 0 .
ViewPortScaleY 37 1 .
ViewPortScaleZ 37 2 .
ViewPortOffsetX 37 3 .
ViewPortOffsetY 37 4 .
ViewPortOffsetZ 37 5 .

FogDensity 37 6 .

FogScale 37 7 .

FogEnd 37 8 °
PolygonOffsetFactor 37 9 .
PolygonOffsetBias 37 A .
LineClipLengthThreshold 37 B .
TriangleClipAreaThreshold 37 C .
RasterPosXIncrement 37 D .
RasterPosYIncrement 37 E .

UserClip0X 38 0 .

UserClip0Y 38 1 .

UserClip0Z 38 2 .

UserClip0W 38 3 .

UserCliplX 38 4 .

UserCliplY 38 5 .

UserCliplZ 38 6 .

UserClipl W 38 7 .

UserClip2X 38 8 .

UserClip2Y 38 9 .

UserClip2Z 38 A .

UserClip2 W 38 B .

UserClip3X 38 C .

UserClip3Y 38 D .

UserClip3Z 38 E .

UserClip3W 38 F .

UserClip4X 39 0 .

UserClip4Y 39 1 .

3D/.bs Proprietary and Confidential 89

Tag Values (Numerical Order)

GLINT Gamma Programmer’s Reference Manual

UserClip4Z 39 2 .
UserClip4dW 39 3 .
UserClip5X 39 4 .
UserClip5Y 39 5 .
UserClip5Z 39 6 .
UserClip5W 39 7 .
RasterPosXOffset 39 D .
RasterPosYOffset 39 E .
AttenuationCutOff 39 F .
LightOMode 3A 0 .
LightOAmbientlntensityRed 3A 1 .
LightOAmbientIntensityGreen 3A 2 .
LightOAmbientIntensityBlue 3A 3 .
LightODiffuselntensityRed 3A 4 .
LightODiffuselntensityGreen 3A 5 .
LightODiffuselntensityBlue 3A 6 .
LightOSpecularIntensityRed 3A 7 .
LightOSpecularIntensityGreen 3A 8 .
LightOSpecularIntensityBlue 3A 9 .
LightOPositionX 3A A .
LightOPositionY 3A B .
LightOPositionZ 3A C .
LightOPosition W 3A D .
Light0SpotlightDirectionX 3A E .
Light0SpotlightDirectionY 3A F .
Light0SpotlightDirectionZ 3B 0 .
Light0SpotlightExponent 3B 1 .
Light0CosSpotlightCutoffAngle 3B 2 .
Light0ConstantAttenuation 3B 3 .
LightOLinearAttenuation 3B 4 .
Light0QuadraticAttenuation 3B 5 .
Lightl1Mode 3B 6 .
LightlAmbientlntensityRed 3B 7 .
LightlAmbientIntensityGreen 3B 8 .
LightlAmbientIntensityBlue 3B 9 .
Lightl DiffuselntensityRed 3B A .
Lightl DiffuselntensityGreen 3B B .
Lightl DiffuselntensityBlue 3B C .
LightlSpecularIntensityRed 3B D .
LightlSpecularIntensityGreen 3B E .
LightlSpecularIntensityBlue 3B F .
LightlPositionX 3C 0 .
Light1PositionY 3C 1 .
LightlPositionZ 3C 2 .
LightlPosition W 3C 3 .
Light1SpotlightDirectionX 3C 4 .
Light1SpotlightDirectionY 3C 5 .
Light1SpotlightDirectionZ 3C 6 .
Light1SpotlightExponent 3C 7 .
Light1CosSpotlightCutoffAngle 3C 8 .
Lightl ConstantAttenuation 3C 9 .
LightlLinearAttenuation 3C A .
Lightl QuadraticAttenuation 3C B .
Light2Mode 3C C .

90

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Tag Values (Numerical Order)

Light2AmbientIntensityRed 3C D .
Light2AmbientIntensityGreen 3C E .
Light2AmbientlntensityBlue 3C F .
Light2DiffuselntensityRed 3D 0 .
Light2DiffuselntensityGreen 3D 1 .
Light2DiffuselntensityBlue 3D 2 .
Light2SpecularIntensityRed 3D 3 .
Light2SpecularIntensityGreen 3D 4 .
Light2SpecularlntensityBlue 3D 5 .
Light2PositionX 3D 6 .
Light2PositionY 3D 7 .
Light2PositionZ 3D 8 .
Light2Position W 3D 9 .
Light2SpotlightDirectionX 3D A .
Light2SpotlightDirectionY 3D B .
Light2SpotlightDirectionZ 3D C .
Light2SpotlightExponent 3D D .
Light2CosSpotlightCutoffAngle 3D E .
Light2ConstantAttenuation 3D F .
Light2LinearAttenuation 3E 0 .
Light2QuadraticAttenuation 3E 1 .
Light3Mode 3E 2 .
Light3AmbientlntensityRed 3E 3 .
Light3AmbientlntensityGreen 3E 4 .
Light3AmbientlntensityBlue 3E 5 .
Light3DiffuselntensityRed 3E 6 .
Light3DiffuselntensityGreen 3E 7 .
Light3DiffuselntensityBlue 3E 8 .
Light3SpecularlntensityRed 3E 9 .
Light3SpecularlntensityGreen 3E A .
Light3SpecularlntensityBlue 3E B .
Light3PositionX 3E C .
Light3PositionY 3E D i
Light3PositionZ 3E E .
Light3Position W 3E F .
Light3SpotlightDirectionX 3F 0 .
Light3SpotlightDirectionY 3F 1 .
Light3SpotlightDirectionZ 3F 2 .
Light3SpotlightExponent 3F 3 .
Light3CosSpotlightCutoffAngle 3F 4 .
Light3ConstantAttenuation 3F 5 .
Light3LinearAttenuation 3F 6 .
Light3QuadraticAttenuation 3F 7 .
Light4Mode 3F 8 .
Light4AmbientlntensityRed 3F 9 .
Light4AmbientIntensityGreen 3F A .
Light4AmbientIntensityBlue 3F B .
Light4DiffuselntensityRed 3F C .
Light4DiffuselntensityGreen 3F D .
Light4DiffuselntensityBlue 3F E .
Light4SpecularIntensityRed 3F F .
Light4SpecularlntensityGreen 40 0 .
Light4SpecularIntensityBlue 40 1 .
Light4PositionX 40 2 .
3D/.bs Proprietary and Confidential 91

Tag Values (Numerical Order)

GLINT Gamma Programmer’s Reference Manual

Light4PositionY 40 3 .
Light4PositionZ 40 4 .
Light4Position W 40 5 .
Light4SpotlightDirectionX 40 6 .
Light4SpotlightDirectionY 40 7 .
Light4SpotlightDirectionZ 40 8 .
Light4SpotlightExponent 40 9 .
Light4CosSpotlightCutoffAngle 40 A .
Light4ConstantAttenuation 40 B .
Light4LinearAttenuation 40 C .
Light4QuadraticAttenuation 40 D .
Light5Mode 40 E .
Light5AmbientlntensityRed 40 F .
Light5AmbientlntensityGreen 41 0 .
Light5AmbientlntensityBlue 41 1 .
Light5DiffuselntensityRed 41 2 .
Light5DiffuselntensityGreen 41 3 .
Light5DiffuselntensityBlue 41 4 .
Light5SpecularIntensityRed 41 5 .
Light5SpecularIntensityGreen 41 6 .
Light5SpecularntensityBlue 41 7 .
Light5PositionX 41 8 .
Light5PositionY 41 9 .
Light5PositionZ 41 A .
Light5Position W 41 B .
Light5SpotlightDirectionX 41 C .
Light5SpotlightDirectionY 41 D .
Light5SpotlightDirectionZ 41 E .
Light5SpotlightExponent 41 F .
Light5CosSpotlightCutoffAngle 42 0 .
Light5ConstantAttenuation 42 1 .
Light5LinearAttenuation 42 2 .
Light5QuadraticAttenuation 42 3 .
LighttMode 42 4 .
Light6AmbientlntensityRed 42 5 .
Light6AmbientIntensityGreen 42 6 .
Light6AmbientlntensityBlue 42 7 .
Light6DiffuselntensityRed 42 8 .
Light6DiffuselntensityGreen 42 9 .
Light6DiffuselntensityBlue 42 A .
Light6SpecularIntensityRed 42 B .
Light6SpecularIntensityGreen 42 C .
Light6SpecularlntensityBlue 42 D .
Light6PositionX 42 E .
Light6PositionY 42 F .
Light6PositionZ 43 0 .
Light6Position W 43 1 .
Light6SpotlightDirectionX 43 2 .
Light6SpotlightDirectionY 43 3 .
Light6SpotlightDirectionZ 43 4 .
Light6SpotlightExponent 43 5 .
Light6CosSpotlightCutoffAngle 43 6 .
Light6ConstantAttenuation 43 7 .
Light6LinearAttenuation 43 8 .

92

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Tag Values (Numerical Order)

Light6QuadraticAttenuation 43 9 .
Light7Mode 43 A .
Light7AmbientlntensityRed 43 B .
Light7AmbientlntensityGreen 43 C .
Light7AmbientIntensityBlue 43 D .
Light7DiffuselntensityRed 43 E .
Light7DiffuselntensityGreen 43 F .
Light7DiffuselntensityBlue 44 0 .
Light7SpecularIntensityRed 44 1 .
Light7SpecularlntensityGreen 44 2 .
Light7SpecularlntensityBlue 44 3 .
Light7PositionX 44 4 .
Light7PositionY 44 5 .
Light7PositionZ 44 6 .
Light7Position W 44 7 .
Light7SpotlightDirectionX 44 8 .
Light7SpotlightDirectionY 44 9 .
Light7SpotlightDirectionZ 44 A .
Light7SpotlightExponent 44 B .
Light7CosSpotlightCutoffAngle 44 C .
Light7ConstantAttenuation 44 D .
Light7LinearAttenuation 44 E .
Light7QuadraticAttenuation 44 F .
Light8Mode 45 0 .
Light8AmbientIntensityRed 45 1 .
Light8 AmbientIntensityGreen 45 2 .
Light8 AmbientIntensityBlue 45 3 .
Light8DiffuselntensityRed 45 4 .
Light8DiffuselntensityGreen 45 5 .
Light8DiffuselntensityBlue 45 6 .
Light8SpecularIntensityRed 45 7 .
Light8SpecularIntensityGreen 45 8 .
Light8SpecularlntensityBlue 45 9 .
Light8PositionX 45 A .
Light8PositionY 45 B .
Light8PositionZ 45 C .
Light8PositionW 45 D .
Light8SpotlightDirectionX 45 E .
Light8SpotlightDirectionY 45 F .
Light8SpotlightDirectionZ 46 0 .
Light8SpotlightExponent 46 1 .
Light8CosSpotlightCutoffAngle 46 2 .
Light8ConstantAttenuation 46 3 .
Light8LinearAttenuation 46 4 .
Light8QuadraticAttenuation 46 5 .
Light9Mode 46 6 .
Light9AmbientlntensityRed 46 7 .
Light9AmbientlntensityGreen 46 8 .
Light9AmbientlntensityBlue 46 9 .
Light9DiffuselntensityRed 46 A .
Light9DiffuselntensityGreen 46 B .
Light9DiffuselntensityBlue 46 C .
Light9SpecularlntensityRed 46 D .
Light9SpecularlntensityGreen 46 E .

3D/.sbs

Proprietary and Confidential

93

Tag Values (Numerical Order)

GLINT Gamma Programmer’s Reference Manual

Light9SpecularlntensityBlue

46

Light9PositionX
Light9PositionY
Light9PositionZ
Light9Position W
Light9SpotlightDirectionX
Light9SpotlightDirectionY
Light9SpotlightDirectionZ
Light9SpotlightExponent
Light9CosSpotlightCutoffAngle
Light9ConstantAttenuation
Light9LinearAttenuation
Light9QuadraticAttenuation
Light10Mode
Light10AmbientIntensityRed
Lightl0AmbientIntensityGreen
Lightl0AmbientlntensityBlue

47
47
47
47
47
47
47
47
47
47
47
47
47
47
47
47

Light10DiffuselntensityRed
Light10DiffuselntensityGreen
Light10DiffuselntensityBlue
Light10SpecularIntensityRed
Light10SpecularIntensityGreen
Light10SpecularIntensityBlue
Light10PositionX
Light10PositionY
Light10PositionZ
Light10Position W
Light10SpotlightDirectionX
Light10SpotlightDirectionY
Light10SpotlightDirectionZ
Light10SpotlightExponent
Light10CosSpotlightCutoffAngle
Light10ConstantAttenuation

Lightl0LinearAttenuation
Light10QuadraticAttenuation
Light11Mode
Lightl1AmbientIntensityRed
Lightl 1AmbientIntensityGreen
Lightl 1AmbientlntensityBlue
Light11DiffuselntensityRed
Lightl1DiffuselntensityGreen
Light11DiffuselntensityBlue
Lightl1SpecularIntensityRed
Light11SpecularIntensityGreen
Light11SpecularIntensityBlue
Lightl1PositionX
Light11PositionY
Lightl1PositionZ
Lightl1Position W

Light11SpotlightDirectionX
Light11SpotlightDirectionY
Light11SpotlightDirectionZ
Light11SpotlightExponent
Light11CosSpotlightCutoffAngle

4A
4A
4A
4A
4A

AR N = o|m MmO 0 Wm0 0NV RWN e~ om0 >0 0NN W N = om0 0 0NN AW~ o
[]

94

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Tag Values (Numerical Order)

Lightl1ConstantAttenuation 4A 5 .
Lightl1LinearAttenuation 4A 6 .
Light11QuadraticAttenuation 4A 7 .
Light12Mode 4A 8 .
Light12AmbientIntensityRed 4A 9 .
Lightl2AmbientIntensityGreen 4A A .
Light12AmbientIntensityBlue 4A B .
Light12DiffuselntensityRed 4A C .
Light12DiffuselntensityGreen 4A D .
Light12DiffuselntensityBlue 4A E .
Light12SpecularlntensityRed 4A F .
Light12SpecularlntensityGreen 4B 0 .
Light12SpecularIntensityBlue 4B 1 .
Light12PositionX 4B 2 .
Light12PositionY 4B 3 .
Light12PositionZ 4B 4 .
Light12Position W 4B 5 .
Light12SpotlightDirectionX 4B 6 .
Light12SpotlightDirectionY 4B 7 .
Light12SpotlightDirectionZ 4B 8 .
Light12SpotlightExponent 4B 9 .
Light12CosSpotlightCutoffAngle 4B A .
Light12ConstantAttenuation 4B B .
Lightl2LinearAttenuation 4B C .
Light12QuadraticAttenuation 4B D .
Light1 3Mode 4B E .
Lightl3AmbientlntensityRed 4B F .
Lightl 3AmbientIntensityGreen 4C 0 .
Lightl13AmbientlntensityBlue 4C 1 .
Light13DiffuselntensityRed 4C 2 .
Light13DiffuselntensityGreen 4C 3 .
Light13DiffuselntensityBlue 4C 4 .
Light13SpecularIntensityRed 4C 5 .
Lightl13SpecularlntensityGreen 4C 6 .
Light13SpecularlntensityBlue 4C 7 .
Lightl3PositionX 4C 8 .
Light13PositionY 4C 9 .
Lightl3PositionZ 4C A .
Light13Position W 4C B .
Light13SpotlightDirectionX 4C C .
Light13SpotlightDirectionY 4C D .
Light13SpotlightDirectionZ 4C E .
Light13SpotlightExponent 4C F .
Light13CosSpotlightCutoffAngle 4D 0 .
Light13ConstantAttenuation 4D 1 .
Lightl3LinearAttenuation 4D 2 .
Light13QuadraticAttenuation 4D 3 .
Light14Mode 4D 4 .
Light14AmbientIntensityRed 4D 5 .
Light14AmbientIntensityGreen 4D 6 .
Light14AmbientlntensityBlue 4D 7 .
Light14DiffuselntensityRed 4D 8 .
Light14DiffuselntensityGreen 4D 9 .
Light14DiffuselntensityBlue 4D A .

3D/.sbs

Proprietary and Confidential

95

Tag Values (Numerical Order)

GLINT Gamma Programmer’s Reference Manual

Light14SpecularIntensityRed 4D .
Light14SpecularIntensityGreen 4D .
Light14SpecularIntensityBlue 4D .
Light14PositionX 4D .
Light14PositionY 4D .
Light14PositionZ 4E .
Light14Position W 4E .
Light14SpotlightDirectionX 4E .
Light14SpotlightDirectionY 4E .
Light14SpotlightDirectionZ 4E .
Light14SpotlightExponent 4E .
Light14CosSpotlightCutoffAngle 4E .
Light14ConstantAttenuation 4E .
Lightl4LinearAttenuation 4E .
Light14QuadraticAttenuation 4E .
Light15Mode 4E .
Lightl 5AmbientlntensityRed 4E .
Lightl 5AmbientIntensityGreen 4E .
Lightl5AmbientlntensityBlue 4E .
Lightl5DiffuselntensityRed 4E .
Lightl5DiffuselntensityGreen 4E .
Lightl5DiffuselntensityBlue 4F .
Lightl5SpecularIntensityRed 4F .
Lightl5SpecularIntensityGreen 4F .

Lightl5SpecularIntensityBlue
Lightl5PositionX
Lightl5PositionY
Lightl5PositionZ
Lightl5Position W
Light15SpotlightDirectionX
Light15SpotlightDirectionY
Light15SpotlightDirectionZ
Light15SpotlightExponent
Light15CosSpotlightCutoffAngle
Lightl5ConstantAttenuation
Lightl5LinearAttenuation
Lightl 5QuadraticAttenuation

4F
4F
4F
4F

4F
4F
4F

SceneAmbientColorRed
SceneAmbientColorGreen
SceneAmbientColorBlue

FrontAmbientColorRed
FrontAmbientColorGreen
FrontAmbientColorBlue
FrontDiffuseColorRed
FrontDiffuseColorGreen
FrontDiffuseColorBlue
FrontAlpha
FrontSpecularColorRed
FrontSpecularColorGreen
FrontSpecularColorBlue
FrontEmissiveColorRed
FrontEmissiveColorGreen
FrontEmissiveColorBlue
FrontSpecularExponent

DO >0 o dawun it wh=o|lv~olmmgOmesvooNawn s wie—=olmmOOOm> o N wdhwoe~olmmdAOw
[]

96

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Tag Values (Numerical Order)

BackAmbientColorRed 52 0 .

BackAmbientColorGreen 52 1 .

BackAmbientColorBlue 52 2 .

BackDiffuseColorRed 52 3 .

BackDiffuseColorGreen 52 4 .

BackDiffuseColorBlue 52 5 .

BackAlpha 52 6 .

BackSpecularColorRed 52 7 .

BackSpecularColorGreen 52 8 .

BackSpecularColorBlue 52 9 .

BackEmissiveColorRed 52 A .

BackEmissiveColorGreen 52 B .

BackEmissiveColorBlue 52 C .

BackSpecularExponent 52 D .

DMAAddr 53 0 Tag/data pair format only.
DMACount 53 1 Command. Tag/data pair format only.
CommandInterrupt 53 2 Command. Tag/data pair format only.
DMACall 53 3 Command. Tag/data pair format only.
DMAReturn 53 4 Command. Tag/data pair format only.
DMARectangleRead 53 5 Command. Tag/data pair format only.
DMARectangleReadAddress 53 6 . Tag/data pair format only.
DMARectangleReadLinePitch 53 7 . Tag/data pair format only.
DMARectangleRead Target 53 8 . Tag/data pair format only.
DMARectangleWrite 53 9 Command. Tag/data pair format only.
DMARectangleWriteAddress 53 A . Tag/data pair format only.
DMARectangleWriteLinePitch 53 B . Tag/data pair format only.
DMAOQutputAddress 53 C Tag/data pair format only.
DMAOutputCount 53 D Command. Tag/data pair format only.
DMAReadGLINT Source 53 E . Tag/data pair format only.
DMAFeedback 54 2 Command. Tag/data pair format only.
TransformModeAnd 55 0

TransformModeOr 55 1

GeometryModeAnd 55 2

GeometryModeOr 55 3

NormalizeModeAnd 55 4

NormalizeModeOr 55 5

LightingModeAnd 55 6

LightingModeOr 55 7

ColorMaterialModeAnd 55 8

ColorMaterialModeOr 55 9

DeltaModeAnd 55 A

DeltaModeOr 55 B

PointModeAnd 55 C

PointModeOr 55 D

LineModeAnd 55 E

LineModeOr 55 F

TriangleModeAnd 56 0

TriangleModeOr 56 1

MaterialModeAnd 56 2

MaterialModeOr 56 3

WindowAnd 57 0

WindowOr 57 1

LBReadModeAnd 57 2

LBReadModeOr 57 3

3D/.bs Proprietary and Confidential 97

Tag Values (Alphabetical Order) GLINT Gamma Programmer’s Reference Manual

Appendix C Tag Values (Alphabetical Order)

Tags Major Group (Hex) | Offset (Hex) | Readback |Notes

AALineWidth 29 8 .

AAPointSize 29 4 .

AttenuationCutOff 39 F .

BackAlpha 52 6 .

BackAmbientColorBlue 52 2 .

BackAmbientColorGreen 52 1 .

BackAmbientColorRed 52 0 .

BackDiffuseColorBlue 52 5 .

BackDiffuseColorGreen 52 4 .

BackDiffuseColorRed 52 3 .

BackEmissiveColorBlue 52 C .

BackEmissiveColorGreen 52 B .

BackEmissiveColorRed 52 A .

BackSpecularColorBlue 52 9 .

BackSpecularColorGreen 52 8 .

BackSpecularColorRed 52 7 .

BackSpecularExponent 52 D .

Begin 2B 2 Command

BroadcastMask 26 F .

Ca 30 3 .

Cb 30 4 .

Cg 30 5 .

ColorMaterialMode 2A 5 .

ColorMaterialModeAnd 55 8

ColorMaterialModeOr 55 9

CommandInterrupt 53 2 Command

ContextData 1B A

ContextDump 1B 8 Command

ContextRestore 1B 9 Command

Cr3 30 6 . Trigger

Cr4 30 7 . Trigger

DeltaMode 26 0 .

DeltaModeAnd 55 A

DeltaModeOr 55 B

DMAAddr 53 0 Tag/data pair format only.

DMACall 53 3 Command. Tag/data pair format only.
DMACount 53 1 Command Tag/data pair format only.
DMAFeedback 54 2 Command. Tag/data pair format only.
DMAOutputAddress 53 C Tag/data pair format only.
DMAOutputCount 53 D Command. Tag/data pair format only.
DMAReadGLINTSSource 53 E . Tag/data pair format only.
DMARectangleRead 53 5 Command. Tag/data pair format only.
DMARectangleReadAddress 53 6 . Tag/data pair format only.
DMARectangleReadLinePitch 53 7 . Tag/data pair format only.
DMARectangleRead Target 53 8 . Tag/data pair format only.
DMARectangleWrite 53 9 Command. Tag/data pair format only.
DMARectangleWriteAddress 53 A . Tag/data pair format only.
DMARectangleWriteLinePitch 53 B . Tag/data pair format only.
DMAReturn 53 4 Command. Tag/data pair format only.

98 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Tag Values (Alphabetical Order)

DrawLine01 26 3 Command
DrawLinel0 26 4 Command
DrawRectangle2D 2F 4 Command
DrawT'riangle 26 1 Command
EdgeFlag 2B 4 .

End 2B 3 Command
EndOfFeedback 1F F Command
EpilogueData 26 E .

EpilogueTag 26 D .

FeedbackAlpha 1F 8

FeedbackBlue 1F 7

FeedbackGreen 1F 6

FeedbackQ 1F C

FeedbackR 1F B

FeedbackRed 1F 5

FeedbackS 1F 9

FeedbackT 1F A

FeedbackToken 1F 0

FeedbackW 1F 4

FeedbackX 1F 1

FeedbackY 1F 2

FeedbackZ 1F 3

FNx 31 2 . Trigger
FNy 31 1 .

FNz 31 0 o

FogDensity 37 6 .

FogEnd 37 8 °

FogScale 37 7 .

FrontAlpha 51 6 .
FrontAmbientColorBlue 51 2 .
FrontAmbientColorGreen 51 1 .
FrontAmbientColorRed 51 0 .
FrontDiffuseColorBlue 51 5 .
FrontDiffuseColorGreen 51 4 .
FrontDiffuseColorRed 51 3 .
FrontEmissiveColorBlue 51 C .
FrontEmissiveColorGreen 51 B .
FrontEmissiveColorRed 51 A .
FrontSpecularColorBlue 51 9 .
FrontSpecularColorGreen 51 8 .
FrontSpecularColorRed 51 7 .
FrontSpecularExponent 51 D .
GeometryMode 2A 2 .
GeometryModeAnd 55 2

GeometryModeOr 55 3

GeomRectangle 2D 4 Command
IncrementObject!D 2B 6 Command
InitNames 2B B Command
LBReadModeAnd 57 2

LBReadModeOr 57 3
LightOAmbientlntensityBlue 3A 3 .
LightOAmbientlntensityGreen 3A 2 .

3D/24s

Proprietary and Confidential

99

Tag Values (Alphabetical Order)

GLINT Gamma Programmer’s Reference Manual

LightOAmbientlntensityRed 3A 1 .
Light0ConstantAttenuation 3B 3 .
Light0CosSpotlightCutoffAngle 3B 2 .
LightODiffuselntensityBlue 3A 6 .
LightODiffuselntensityGreen 3A 5 *
LightODiffuselntensityRed 3A 4 .
LightOLinearAttenuation 3B 4 .
LightOMode 3A 0 .
LightOPosition W 3A D .
LightOPositionX 3A A .
LightOPositionY 3A B .
LightOPositionZ 3A C .
Light0QuadraticAttenuation 3B 5 .
LightOSpecularIntensityBlue 3A 9 .
LightOSpecularIntensityGreen 3A 8 .
LightOSpecularIntensityRed 3A 7 .
Light0SpotlightDirectionX 3A E .
Light0SpotlightDirectionY 3A F .
Light0SpotlightDirectionZ 3B 0 .
Light0SpotlightExponent 3B 1 .
Lightl0AmbientlntensityBlue 47 F .
Lightl 0AmbientIntensityGreen 47 E .
Lightl0AmbientIntensityRed 47 D .
Light10ConstantAttenuation F .
Light10CosSpotlightCutoffAngle E .
Light10DiffuselntensityBlue 2 .
Light10DiffuselntensityGreen 1 .
Light10DiffuselntensityRed 0 .
Lightl0LinearAttenuation 0 .
Light10Mode 47 C .
Light10Position W 9 .
Light10PositionX 6 .
Light10PositionY 7 .
Light10PositionZ 8 .
Light10QuadraticAttenuation 1 .
Light10SpecularIntensityBlue 5 .
Light10SpecularlntensityGreen 4 .
Light10SpecularIntensityRed 3 .
Light10SpotlightDirectionX A .
Light10SpotlightDirectionY B .
Light10SpotlightDirectionZ C .
Light10SpotlightExponent D .
Lightl 1AmbientlntensityBlue 5 .
Lightl 1AmbientIntensityGreen 4 .
Lightl 1AmbientIntensityRed 3 .
Lightl1ConstantAttenuation 4A 5 .
Light11CosSpotlightCutoffAngle 4A 4 .
Lightl1DiffuselntensityBlue 8 .
Lightl1DiffuselntensityGreen 7 .
Lightl1DiffuselntensityRed 6 .
Lightl1LinearAttenuation 4A 6 .
Light11Mode 2 *
100 3D/.45

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual

Tag Values (Alphabetical Order)

Lightl 1PositionW F .
Lightl1PositionX C .
Light11PositionY D .
Lightl1PositionZ E .
Lightl1QuadraticAttenuation 4A 7 .
Lightl1SpecularIntensityBlue B .
Light11SpecularlntensityGreen A .
Lightl1SpecularlntensityRed 9 .
Lightl1SpotlightDirectionX 4A 0 .
Light11SpotlightDirectionY 4A 1 .
Lightl1SpotlightDirectionZ 4A 2 .
Lightl1SpotlightExponent 4A 3 .
Lightl12AmbientlntensityBlue 4A B .
Lightl2AmbientIntensityGreen 4A A .
Light12AmbientIntensityRed 4A 9 .
Light12ConstantAttenuation 4B B .
Light12CosSpotlightCutoffAngle 4B A .
Light12DiffuselntensityBlue 4A E .
Light12DiffuselntensityGreen 4A D .
Light12DiffuselntensityRed 4A C .
Lightl2LinearAttenuation 4B C .
Light12Mode 4A 8 .
Light12Position W 4B 5 .
Light12PositionX 4B 2 .
Light12PositionY 4B 3 .
Light12PositionZ 4B 4 .
Light12QuadraticAttenuation 4B D .
Light12SpecularIntensityBlue 4B 1 .
Light12SpecularlntensityGreen 4B 0 .
Light12SpecularlntensityRed 4A F .
Light12SpotlightDirectionX 4B 6 .
Light12SpotlightDirectionY 4B 7 .
Light12SpotlightDirectionZ 4B 8 .
Light12SpotlightExponent 4B 9 .
Lightl 3AmbientlntensityBlue 4C 1 .
Lightl 3AmbientIntensityGreen 4C 0 .
Lightl 3AmbientntensityRed 4B F .
Light13ConstantAttenuation 4D 1 .
Light13CosSpotlightCutoffAngle 4D 0 .
Lightl13DiffuselntensityBlue 4C 4 .
Lightl3DiffuselntensityGreen 4C 3 .
Light13DiffuselntensityRed 4C 2 .
Lightl3LinearAttenuation 4D 2 .
Light13Mode 4B E .
Lightl3Position W 4C B .
Lightl3PositionX 4C 8 .
Light13PositionY 4C 9 .
Lightl3PositionZ 4C A .
Light13QuadraticAttenuation 4D 3 .
Lightl3SpecularIntensityBlue 4C 7 .
Lightl13SpecularlntensityGreen 4C 6 .
Lightl3SpecularlntensityRed 4C 5 .

3D/24s

Proprietary and Confidential

101

Tag Values (Alphabetical Order)

GLINT Gamma Programmer’s Reference Manual

Lightl5SpecularIntensityBlue

Lightl5SpecularlntensityGreen

4F

Lightl5SpecularlntensityRed

4F

Lightl5SpotlightDirectionX

Light15SpotlightDirectionY

Lightl5SpotlightDirectionZ

Lightl5SpotlightExponent

Light13SpotlightDirectionX 4C C .
Light13SpotlightDirectionY 4C D .
Light13SpotlightDirectionZ 4C E .
Light13SpotlightExponent 4C F .
Lightl4AmbientlntensityBlue 4D 7 .
Light14AmbientIntensityGreen 4D 6 .
Light14AmbientIntensityRed 4D 5 .
Light14ConstantAttenuation 4E 7 .
Light14CosSpotlightCutoffAngle 4E 6 .
Light14DiffuselntensityBlue 4D A .
Lightl14DiffuselntensityGreen 4D 9 .
Light14DiffuselntensityRed 4D 8 .
Lightl4LinearAttenuation 4E 8 .
Light14Mode 4D 4 .
Light14Position W 4E 1 .
Light14PositionX 4D E .
Light14PositionY 4D F .
Light14PositionZ 4E 0 .
Light14QuadraticAttenuation 4E 9 .
Light14SpecularIntensityBlue 4D D .
Light14SpecularlntensityGreen 4D C .
Light14SpecularlntensityRed 4D B .
Light14SpotlightDirectionX 4E 2 .
Light14SpotlightDirectionY 4E 3 .
Light14SpotlightDirectionZ 4E 4 .
Light14SpotlightExponent 4E 5 .
Lightl 5AmbientlntensityBlue 4E D .
Lightl 5AmbientIntensityGreen 4E C .
Lightl 5AmbientlntensityRed 4E B .
Lightl5ConstantAttenuation D .
Light15CosSpotlightCutoffAngle C .
Lightl5DiffuselntensityBlue 4F 0 .
Lightl5DiffuselntensityGreen 4E F .
Lightl5DiffuselntensityRed 4E E .
Lightl5LinearAttenuation 4F E .
Lightl5Mode 4E A .
Lightl5Position W 4F 7 .
Lightl5PositionX 4F 4 .
Lightl5PositionY 4F 5 .
Lightl5PositionZ 4F 6 .
Lightl5QuadraticAttenuation 4F F .

3

2

1

8

9

A

B

9

8

7

9

Lightl AmbientlntensityBlue 3B .
LightlAmbientlntensityGreen 3B .
LightlAmbientlntensityRed 3B .
Lightl ConstantAttenuation 3C .

102

Proprietary and Confidential

3D/.ks

GLINT Guamma Programmer’s Reference Manual

Tag Values (Alphabetical Order)

Lightl CosSpotlightCutoffAngle 3C 8 .
Lightl DiffuselntensityBlue 3B C .
Lightl DiffuselntensityGreen 3B B J
Lightl DiffuselntensityRed 3B A .
LightlLinearAttenuation 3C A .
LightlMode 3B 6 .
Lightl Position W 3C 3 .
Lightl PositionX 3C 0 .
LightlPositionY 3C 1 .
Lightl PositionZ 3C 2 .
Lightl QuadraticAttenuation 3C B .
LightlSpecularIntensityBlue 3B F .
LightlSpecularIntensityGreen 3B E .
LightlSpecularIntensityRed 3B D .
Light1SpotlightDirectionX 3C 4 .
LightlSpotlightDirectionY 3C 5 .
Light1SpotlightDirectionZ 3C 6 .
LightlSpotlightExponent 3C 7 .
Light2AmbientlntensityBlue 3C F .
Light2AmbientIntensityGreen 3C E .
Light2AmbientIntensityRed 3C D .
Light2ConstantAttenuation 3D F .
Light2CosSpotlightCutoffAngle 3D E .
Light2DiffuselntensityBlue 3D 2 .
Light2DiffuselntensityGreen 3D 1 .
Light2DiffuselntensityRed 3D 0 .
Light2LinearAttenuation 3E 0 .
Light2Mode 3C C .
Light2Position W 3D 9 .
Light2PositionX 3D 6 .
Light2PositionY 3D 7 .
Light2PositionZ 3D 8 .
Light2QuadraticAttenuation 3E 1 .
Light2SpecularlntensityBlue 3D 5 N
Light2SpecularlntensityGreen 3D 4 .
Light2SpecularIntensityRed 3D 3 .
Light2SpotightDirectionX 3D A .
Light2SpotlightDirectionY 3D B .
Light2SpotlightDirectionZ 3D C .
Light2SpotlightExponent 3D D .
Light3AmbientlntensityBlue 3E 5 .
Light3AmbientlntensityGreen 3E 4 .
Light3AmbientlntensityRed 3E 3 .
Light3ConstantAttenuation 5 .
Light3CosSpotlightCutoffAngle 4 .
Light3DiffuselntensityBlue 3E 8 .
Light3DiffuselntensityGreen 3E 7 .
Light3DiffuselntensityRed 3E 6 .
Light3LinearAttenuation 6 .
Light3Mode 3E 2 .
Light3Position W 3E F .
Light3PositionX 3E C .
3D/.bs Proprietary and Confidential 103

Tag Values (Alphabetical Order)

GLINT Gamma Programmer’s Reference Manual

Light3PositionY 3E D .
Light3PositionZ 3E E .
Light3QuadraticAttenuation 3F 7 .
Light3SpecularlntensityBlue 3E B .
Light3SpecularlntensityGreen 3E A .
Light3SpecularlntensityRed 3E 9 .
Light3SpotlightDirectionX 3F 0 .
Light3SpotlightDirectionY 3F 1 .
Light3SpotlightDirectionZ 3F 2 .
Light3SpotlightExponent 3F 3 .
Light4AmbientlntensityBlue 3F B .
Light4AmbientlntensityGreen 3F A .
Light4AmbientIntensityRed 3F 9 .
Light4ConstantAttenuation 40 B .
Light4CosSpotlightCutoffAngle 40 A .
Light4DiffuselntensityBlue 3F E .
Light4DiffuselntensityGreen 3F D .
Light4DiffuselntensityRed 3F C .
Light4LinearAttenuation 40 C .
Light4Mode 3F 8 .
Light4Position W 40 5 .
Light4PositionX 40 2 .
Light4PositionY 40 3 .
Light4PositionZ 40 4 .
Light4QuadraticAttenuation 40 D .
Light4SpecularlntensityBlue 40 1 .
Light4SpecularlntensityGreen 40 0 .
Light4SpecularIntensityRed 3F F .
Light4SpotlightDirectionX 40 6 .
Light4SpotlightDirectionY 40 7 .
Light4SpotlightDirectionZ 40 8 .
Light4SpotlightExponent 40 9 .
Light5AmbientlntensityBlue 41 1 .
Light5AmbientlntensityGreen 41 0 .
Light5AmbientlntensityRed 40 F .
Light5ConstantAttenuation 42 1 .
Light5CosSpotlightCutoffAngle 42 0 .
Light5DiffuselntensityBlue 41 4 .
Light5DiffuselntensityGreen 41 3 .
Light5DiffuselntensityRed 41 2 .
Light5LinearAttenuation 42 2 .
Light5Mode 40 E .
Light5Position W 41 B .
Light5PositionX 41 8 .
Light5PositionY 41 9 .
Light5PositionZ 41 A .
Light5QuadraticAttenuation 42 3 .
Light5SpecularlntensityBlue 41 7 .
Light5SpecularlntensityGreen 41 6 .
Light5SpecularIntensityRed 41 5 .
Light5SpotlightDirectionX 41 C .
Light5SpotlightDirectionY 41 D .

104

Proprietary and Confidential

3D/.ks

GLINT Guamma Programmer’s Reference Manual

Tag Values (Alphabetical Order)

Light5SpotlightDirectionZ 41 E .
Light5SpotlightExponent 41 F .
Light6AmbientlntensityBlue 42 7 .
Light6AmbientlntensityGreen 42 6 .
Light6AmbientlntensityRed 42 5 .
Light6ConstantAttenuation 43 7 .
Light6CosSpotlightCutoffAngle 43 6 .
Light6DiffuselntensityBlue 42 A .
Light6DiffuselntensityGreen 42 9 .
Light6DiffuselntensityRed 42 8 .
Light6LinearAttenuation 43 8 .
LighttMode 42 4 .
Light6Position W 43 1 .
Light6PositionX 42 E .
Light6PositionY 42 F .
Light6PositionZ 43 0 .
Light6QuadraticAttenuation 43 9 .
Light6SpecularlntensityBlue 42 D .
Light6SpecularlntensityGreen 42 C .
Light6SpecularlntensityRed 42 B .
Light6SpotlightDirectionX 43 2 .
Light6SpotlightDirectionY 43 3 .
Light6SpotlightDirectionZ 43 4 .
Light6SpotlightExponent 43 5 .
Light7AmbientlntensityBlue 43 D .
Light7AmbientlntensityGreen 43 C .
Light7AmbientlntensityRed 43 B .
Light7ConstantAttenuation 44 D .
Light7CosSpotlightCutoffAngle 44 C .
Light7DiffuselntensityBlue 44 0 .
Light7DiffuselntensityGreen 43 F .
Light7DiffuselntensityRed 43 E .
Light7LinearAttenuation 44 E .
Light7Mode 43 A .
Light7Position W 44 7 .
Light7PositionX 44 4 .
Light7PositionY 44 5 .
Light7PositionZ 44 6 .
Light7QuadraticAttenuation 44 F .
Light7SpecularlntensityBlue 44 3 .
Light7SpecularlntensityGreen 44 2 .
Light7SpecularIntensityRed 44 1 .
Light7SpotightDirectionX 44 8 .
Light7SpotlightDirectionY 44 9 .
Light7SpotlightDirectionZ 44 A .
Light7SpotlightExponent 44 B .
Light8AmbientIntensityBlue 45 3 .
Light8 AmbientIntensityGreen 45 2 .
Light8AmbientIntensityRed 45 1 .
Light8ConstantAttenuation 46 3 .
Light8CosSpotlightCutoffAngle 46 2 .
Light8DiffuselntensityBlue 45 6 .

3D/24s

Proprietary and Confidential

105

Tag Values (Alphabetical Order)

GLINT Gamma Programmer’s Reference Manual

Light8DiffuselntensityGreen 45 5 .
Light8DiffuselntensityRed 45 4 .
Light8LinearAttenuation 46 4 .
Light8Mode 45 0 .
Light8Position W 45 D .
Light8PositionX 45 A .
Light8PositionY 45 B .
Light8PositionZ 45 C .
Light8QuadraticAttenuation 46 5 .
Light8SpecularlntensityBlue 45 9 .
Light8SpecularlntensityGreen 45 8 .
Light8SpecularlntensityRed 45 7 .
Light8SpotlightDirectionX 45 E .
Light8SpotlightDirectionY 45 F .
Light8SpotlightDirectionZ 46 0 .
Light8SpotlightExponent 46 1 .
Light9AmbientlntensityBlue 46 9 .
Light9AmbientlntensityGreen 46 8 .
Light9AmbientlntensityRed 46 7 .
Light9ConstantAttenuation 47 9 .
Light9CosSpotlightCutoffAngle 47 8 .
Light9DiffuselntensityBlue 46 C .
Light9DiffuselntensityGreen 46 B .
Light9DiffuselntensityRed 46 A .
Light9LinearAttenuation 47 A .
Light9Mode 46 6 .
Light9Position W 47 3 .
Light9PositionX 47 0 .
Light9PositionY 47 1 .
Light9PositionZ 47 2 .
Light9QuadraticAttenuation 47 B .
Light9SpecularlntensityBlue 46 F .
Light9SpecularlntensityGreen 46 E .
Light9SpecularIntensityRed 46 D .
Light9SpotightDirectionX 47 4 .
Light9SpotlightDirectionY 47 5 .
Light9SpotlightDirectionZ 47 6 .
Light9SpotlightExponent 47 7 .
LightingMode 2A 4 .
LightingModeAnd 55 6
LightingModeOr 55 7
LineClipLengthThreshold 37 B .
LineMode 29 5 .
LineModeAnd 55 E
LineModeOr 55 F

LineWidth 29 6 .
LineWidthOffset 29 7 °
LoadName 2B E Command
MaterialMode 2A 6 .
MaterialModeAnd 56 2
MaterialModeOr 56 3
ModelViewMatrix[16] 32 0...F .
106 3D/.45

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual

Tag Values (Alphabetical Order)

ModelViewProjectionMatrix[16] 33 0...F .
NormalizeMode 2A 3 .
NormalizeModeAnd 55 4

NormalizeModeOr 55 5

NormalMatrix[9] 34 0...8 .

Nx 30 2 . Trigger
Ny 30 1 .

Nz 30 0 .

ObjectIDValue 2B 5 .

PackedColor3 31 3 Trigger
PackedColor4 31 4 Trigger
PassThrough 1F E Command
PointMode 29 2 .

PointModeAnd 55 C

PointModeOr 55 D

PointSize 29 3 o
PolygonOffsetBias 37 A .
PolygonOffsetFactor 37 9 .

PopName 2B D Command
PushName 2B C Command
RasterPosXIncrement 37 D *
RasterPosXOffset 39 D .
RasterPosYIncrement 37 E *
RasterPosYOffset 39 E .

Rectangle2D Control 29 E .
Rectangle2DMode 29 D .
RectangleHeight 29 C .

RectangleMode 29 A .
RectangleWidth 29 B .

RepeatLine 26 5 Command
RepeatTriangle 26 2 Command
RestoreCurrent 2B A Command
RPw 31 9

RPx2 31 C Trigger
RPx3 31 D Trigger
RPx4 31 E Trigger
RPy 31 B

RPz 31 A

SaveCurrent 2B 9 Command
SceneAmbientColorBlue 50 2 .
SceneAmbientColorGreen 50 1 .
SceneAmbientColorRed 50 0 .

SelectRecord 1F D Command
SelectResult 2B 0 Command
TexGen[16] 36 0...F .
TextureMatrix[16] 35 0...F .

Tq4 31 5 .

Trd 31 6 .
TransformCurrent 2B 7 Command
TransformMode 2A 1 .
TransformModeAnd 55 0

TransformModeOr 55 1

3D/.bs Proprietary and Confidential 107

Tag Values (Alphabetical Order)

GLINT Gamma Programmer’s Reference Manual

TriangleClipAreaThreshold 37 C .

TriangleMode 29 9 .

TriangleModeAnd 56 0

TriangleModeOr 56 1

Tsl 31 F . Trigger

Ts2 30 9 . Trigger

Ts4 31 8 . Trigger

T2 30 8 .

T4 31 7 .

UserClip0W 38 3 .

UserClip0X 38 0 .

UserClip0Y 38 1 .

UserClip0Z 38 2 .

UserClipl W 38 7 .

UserCliplX 38 4 .

UserCliplY 38 5 .

UserCliplZ 38 6 .

UserClip2 W 38 B .

UserClip2X 38 8 .

UserClip2Y 38 9 .

UserClip2Z 38 A .

UserClip3W 38 F .

UserClip3X 38 C .

UserClip3Y 38 D .

UserClip3Z 38 E .

UserClip4W 39 3 .

UserClip4X 39 0 .

UserClip4Y 39 1 .

UserClip4Z 39 2 .

UserClip5W 39 7 .

UserClip5X 39 4 .

UserClip5Y 39 5 .

UserClip5Z 39 6 .

VOFixedA 20 8 . Reads back as a float
VOFixedB 20 7 . Reads back as a float
VOFixedF 20 9 . Reads back as a float
VOFixedG 20 6 . Reads back as a float
VOFixedKd 20 4 . Reads back as a float
VOFixedKs 20 3 . Reads back as a float
VOFixedQ 20 2 . Reads back as a float
VOFixedR 20 5 . Reads back as a float
VOFixedS 20 0 . Reads back as a float
VOFixed T 20 1 . Reads back as a float
VOFixedX 20 A . Reads back as a float
VOFixedY 20 B . Reads back as a float
VOFixedZ 20 C . Reads back as a float
VOFloatA 23 8 .

VOFloatB 23 7 .

VOFloatF 23 9 .

VOFloatG 23 6 .

VOFloatKd 23 4 .

VOFloatKs 23 3 .

108 3D/.45

Proprietary and Confidential

GLINT Guamma Programmer’s Reference Manual

Tag Values (Alphabetical Order)

VOFloatQ 23 2 .

VOFloatR 23 5 .

VO0FloatS 23 0 .

VOFloatT 23 1 .

VOFloatX 23 A .

VOFloatY 23 B .

VOFloatZ 23 C .

V1FixedA 21 8 . Reads back as a float
V1FixedB 21 7 . Reads back as a float
V1FixedF 21 9 . Reads back as a float
V1FixedG 21 6 . Reads back as a float
V1FixedKd 21 4 . Reads back as a float
V1FixedKs 21 3 . Reads back as a float
V1FixedQ 21 2 . Reads back as a float
V1FixedR 21 5 . Reads back as a float
V1FixedS 21 0 . Reads back as a float
V1FixedT 21 1 . Reads back as a float
V1FixedX 21 A . Reads back as a float
V1FixedY 21 B . Reads back as a float
V1FixedZ 21 C . Reads back as a float
V1FloatA 24 8 .

V1FloatB 24 7 .

V1FloatF 24 9 .

V1FloatG 24 6 .

V1FloatKd 24 4 .

V1FloatKs 24 3 .

V1FloatQ 24 2 .

V1FloatR 24 5 .

V1FloatS 24 0 .

V1FloatT 24 1 .

V1FloatX 24 A .

V1FloatY 24 B .

V1FloatZ 24 C .

V2FixedA 22 8 . Reads back as a float
V2FixedB 22 7 . Reads back as a float
V2FixedF 22 9 . Reads back as a float
V2FixedG 22 6 . Reads back as a float
V2FixedKd 22 4 . Reads back as a float
V2FixedKs 22 3 . Reads back as a float
V2FixedQ 22 2 . Reads back as a float
V2FixedR 22 5 . Reads back as a float
V2FixedS 22 0 . Reads back as a float
V2FixedT 22 1 . Reads back as a float
V2FixedX 22 A . Reads back as a float
V2FixedY 22 B . Reads back as a float
V2FixedZ 22 C . Reads back as a float
V2FloatA 25 8 .

V2FloatB 25 7 .

V2FloatF 25 9 .

V2FloatG 25 6 .

V2FloatKd 25 4 .

V2FloatKs 25 3 .

3D/.bs Proprietary and Confidential 109

Tag Values (Alphabetical Order)

GLINT Gamma Programmer’s Reference Manual

V2FloatQ 25 2 .

V2FloatR 25 5 .

V2FloatS 25 0 .

V2FloatT 25 1 .

V2FloatX 25 A .

V2FloatY 25 B .

V2FloatZ 25 C .
ViewPortOffsetX 37 3 .
ViewPortOffsetY 37 4 .
ViewPortOffsetZ 37 5 .
ViewPortScaleX 37 0 .
ViewPortScaleY 37 1 .
ViewPortScaleZ 37 2 .

Vw 30 A

Vx2 30 D Trigger
Vx3 30 E Trigger
Vx4 30 F Trigger
Vy 30 C

Vz 30 B

WindowAnd 57 0

WindowOr 57 1

XBias 29 0 *

YBias 29 1 .

110

Proprietary and Confidential

3D/.ks

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Appendix D Register and Command Reference

AALI neW dt h

Name Tag Offset Access Reset Format
AALineWidth 0x298 0x0000.14C0 Read/Write Undefined Float

This register sets the width of antialiased lines. Lines with a zero width will not be drawn and lines
with a negative width will draw a line of the same positive width. The width is measured in pixels.
Lines with a width less than 1.0 can be drawn, however they may contain gaps due to sampling

errors.

AAPoI nt Si ze
Name Tag Offset Access Reset Format
AAPointSize 0x294 0x0000.14A0 Read/Write Undefined Float

This register sets the point size (diameter) for antialiased points. In theory any size antialiased points
can be defined, however GLINT places some restrictions on what these widths can be. The Point
Table in GLINT restricts the diameter of antialiased points to be from 0.5 to 16.0 in steps of 0.25
when the antialiasing quality is 4x4 or 0.25 to 8.0 in steps of 0.125 for 8x8 quality. Gamma does
not set up the Point Table. Points with a zero size will draw a single fragment and points with a
negative size will draw a point of the same positive size.

3D/.bs Proprietary and Confidential 111

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

At t enuat i onCut O f

Name Tag Offset Access Reset Format
AttenuationCutOff 0x39F 0x0000.1CF8 Read/Write Undefined Float

A positional light has its intensity attenuated by its distance and the constant, linear and quadratic
attenuation factors. A spot light has its intensity attenuated by the angle the spot light makes with
the vertex being lit. If the product of the distance attenuation and the spot attenuation for a light
falls below the value in this register then this light doesn't contribute to this vertex. This
optimization allows lights which are becoming too faint to contribute to be terminated early.

A suitable value is given by: 1.0/5127 where 7 is the number of lights. The 512 constant was chosen
as it is less than the smallest representable color when converted to a byte integer assuming the light
and material colors are restricted to the range 0.0...1.0.

This optimization is enabled by the AttenuationTest field in the LightingMode register.

BackAl pha

Name Tag Offset Access Reset Format
BackAlpha 0x526 0x0000.2930 Read/Write Undefined Float

This register holds the alpha value for the back material. Its normal range of values is 0.0...1.0,
however any value can be used.

This register would normally take the back material diffuse alpha in OpenGL.

112 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Back Anbi ent Col or Bl ue
BackAnmbi ent Col or Gr een
Back Anbi ent Col or Red

Name Tag Offset Access Reset Format
BackAmbientColorBlue 0x522 0x0000.2910 Read/Write Undefined Float
BackAmbientColorGreen 0x521 0x0000.2908 Read/Write Undefined Float
BackAmbientColorRed 0x520 0x0000.2900 Read/Write Undefined Float

These registers hold the red, green and blue ambient colors for the back material. Their normal
range of values is 0.0...1.0, however any value can be used.

BackDi f f useCol or Bl ue
BackDi f f useCol or Gr een
BackD f f useCol or Red

Name Tag Offset Access Reset Format
BackDiffuseColorBlue 0x525 0x0000.2928 Read/Write Undefined Float
BackDiffuseColorGreen 0x524 0x0000.2920 Read/Write Undefined Float
BackDiffuseColorRed 0x523 0x0000.2918 Read/Write Undefined Float

These registers hold the red, green and blue diffuse colors for the back material. Their normal range
of values is 0.0...1.0, however any value can be used.

3D/.bs Proprietary and Confidential 113

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

BackEm ssi veCol or Bl ue
BackEm ssi veCol or G een
BackEm ssi veCol or Red

Name Tag Offset

BackEmissiveColorBlue 0x52C 0x0000.2960
BackEmissiveColorGreen 0x52B 0x0000.2958
BackEmissiveColorRed 0x52A 0x0000.2950

Access Reset Format
Read/Write Undefined Float
Read/Write Undefined Float
Read/Write Undefined Float

These registers hold the red, green and blue emissive colors for the back material. Their normal

range of values is 0.0...1.0, however any value can be used.

BackSpecul ar Col or Bl ue
BackSpecul ar Col or G een
BackSpecul ar Col or Red

Name Tag Offset

BackSpecularColorBlue 0x529 0x0000.2948
BackSpecularColorGreen 0x528 0x0000.2940
BackSpecularColorRed 0x527 0x0000.2938

Access Reset Format
Read/Write Undefined Float
Read/Write Undefined Float
Read/Write Undefined Float

These registers hold the red, green and blue specular colors for the back material. Their normal

range of values is 0.0...1.0, however any value can be used. Setting the red, green and blue color to

0.0 is detected and the specular part of the calculations are avoided.

114 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

BackSpecul ar Exponent

Name Tag Offset Access Reset Format
BackSpecularExponent 0x52D 0x0000.2968 Read/Write Undefined Fixed point

This register holds back material specular exponent as an unsigned 7.4 fixed point format.

3D/.bs Proprietary and Confidential 115

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Begi n

Name Tag Offset Access Reset Format
Begin 0x2B2 0x0000.1590 Write Undefined Bitfield

This command identifies the start of a sequence of primitives. As each new vertex is received the
next point, line, triangle is generated, if sufficient vertices have been received. The Begin command
should have a corresponding End command to ensure the primitive sequence is tidied up.

The format of the Begin command's data field is shown overleaf. The fields in bits 0 to 18 are the
same as those in the Render command and only the fields which influence Gamma are identified

and described. The effect of the fields on GLINT can be found in the relevant GLINT

Programmer’s Reference Manual.

116 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Bit No. Name Description

0 AreaStippleEnable Overridden when incompatible with the primitive type.

1 LineStippleEnable Overridden when incompatible with the primitive type.

2 ResetLineStipple Ignored and always set by Gamma to meet the OpenGL rules for when the line
stipple is reset within primitives.

3 FastFillEnable Ignored and forced to be disabled.

4,5 Not used

6,7 PrimitiveType Ignored and always set by Gamma depending on the type field and polymode
setting.

8 AntialiasEnable Qualifies the AntialiasEnable held for each primitive type in the PointMode,
LineMode and TriangleMode registers. If both enables are true then the
primitive is antialiased.

9 AntialiasingQuality Ignored. This information is held in the PointMode, LineMode and
TriangleMode registers.

10 UsePointTable Ignored and generated locally when antialiasing points.

11 SyncOnBitMask Ignored, and forced to be disabled.

12 SyncOnHostData Ignored, and forced to be disabled.

13 TextureEnable Passed through but also enables (1) or disables (0) texture calculation to be
performed. Note texture transformations and TexGen operations are not
influenced by this bit (as required by OpenGL).

14 FogEnable Passed through but also enables (1) or disables (0) fog calculation to be
performed.

15 CoverageEnable Ignored and generated locally when antialiasing is done.

16 SubPixelCorrectionEnable | This bit is passed through. When enabled (1) subpixel correction is done in the Y
direction (the rasterizer does it in the X direction).

17 Reserved

18 SpanOperation Ignored and forced to be 0.

19...27 Not used

28...31 Type This field sets up the primitive type to process on receiving each new vertex. It

has the following values:
Null
Points
Lines
LineLoop
LineStrip
Triangles
TriangleStrip
TriangleFan
Quads
QuadStrip

0 Polygon

— O 0N QNN AW N = O

3D/.sbs

Proprietary and Confidential 117

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Br oadcast Mask

Name Tag Offset Access Reset Format
BroadcastMask 0x26F 0x0000.1378 Read/Write Undefined Bitfield

The broadcast mask is used to specify to which GLINT rendering device the command and data
stream should be written. The possible values are:
0 No GLINT is written to. All the GLINT commands and data are discarded so nothing gets
rendered. Not really useful except to explore performance bottle-necks.
1 GLINT 0 is written to.
2 GLINT 1 is written to.
3 GLINT 0 and GLINT 1 are written to. The writes are done simultaneously so there is no
loss in performance.

118 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Name Tag

Ca 0x303
Cb 0x304
Cg 0x305
Cr3 0x306
Crd 0x307

Offset
0x0000.1818
0x0000.1820
0x0000.1828
0x0000.1830
0x0000.1838

Access Reset
Read/Write Undefined
Read/Write Undefined
Read/Write Undefined

Read/Write/Trigger Undefined
Read/Write/Trigger Undefined

Ca
Cb
Co
Cr3
Cr4

Format

Float
Float
Float
Float
Float

These registers hold the red, green, blue and alpha color components. The nominal range for these
values are 0.0...1.0, however this is not enforced. The Cr3 or Cr4 registers must be written last as

these write will trigger the color to be entered into Gamma. With Cr3 the alpha value provided (if

any) is ignored and set to 1.0. All the color components should be written together and not

interleaved with writes to the normal (N*), face normal (FN*), texture (T*) or vertex (V*) registers.

The color may be used as the vertex color (if lighting is disabled), or to change a material property if

color material is enabled.

See also: ColorMaterialMode, LightingMode, MaterialMode.

3D/.sbs

Proprietary and Confidential

119

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Col or Mat eri al Mbde
Col or Mat eri al ModeAnd
Col or Mat eri al ModeOr

Name Tag Offset Access Reset Format
ColorMaterialMode 0x2A5 0x0000.1528 Read/Write Undefined Bitfield
ColorMaterialModeAnd 0x558 0x0000.2ACO Write Undefined Bitfield
ColorMaterialModeOr 0x559 0x0000.2AC8 Write Undefined Bitfield
The ColorMaterialMode has the following fields:
Bit No. | Name Description
0 ColorMaterialEnable When set causes a write to the color registers to update the material
parameter(s) for the given face(s).
1...2 Face This field selects which face(s) any material changes should be made to by
the color writes. The values are:
0 = front material
1 = back material
2 = front and back material
3...5 Parameter This field selects which material parameter(s) should be updated by the

color writes The values are:
0 = Emissive

1 = Ambient
2 = Diffuse
3 = Specular

4 = Ambient and diffuse

Writing to the ColorMaterialModeAnd and ColorMaterialModeOr registers logically combine
the new value with the existing values in the ColorMaterialMode register rather than replacing its

contents.

120

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Commandl nt er r upt

Name Tag Offset Access Reset Format
CommandInterrupt 0x532 0x0000.2990 Write Undefined Bitfield

This command will generate an interrupt whenever it is first processed by Gamma. If the least
significant bit is set the interrupt is delayed until the Output DMA controller has finished. A
consequence of this is that command processing is also suspended while waiting.

Cont ext Dat a

Name Tag Offset Access Reset Format
ContextData 0x1BA 0x0000.0DD0 Write/Output Undefined Variable

The context data generated by the ContextDump command has this tag on output. When the
context data is restored it is sent with this tag, although using the hold mode tag format is more
economical.

3D/.bs Proprietary and Confidential 121

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Cont ext Dunp
Cont ext Rest or e

Name Tag Offset Access Reset Format
ContextDump 0x1B8 0x0000.0DCO Write Undefined Bitfield
ContextRestore 0x1B9 0x0000.0DCS8 Write Undefined Bitfield

The context mask sent with the ContextDump or ContextRestore commands have the following

fields:

Bit | Name Context data includes Words
0 GeneralControl | Mode and general control registers. 19
1 | Geometry Some user geometric state and much of the internal state. 381
2 Matrices The user defined matrices. 82
3 Material The user defined material parameters. 27
4 | Lights0_7 The user defined light parameters for lights 0 to 7. 176
5 Lights8_15 The user defined light parameters for lights 8 to 15. 176
6 | RasterPos The raster position related state. This is expanded below so the current raster 19
position, color, etc. can be read back to satisfy the OpenGL Get calls.
7 CurrentState The current state. This is expanded below so the current texture, color, etc. can be 12
read back to satisfy the OpenGL Get calls.
TwoD The 2D related control registers. 2
DMA The DMA related registers. 7
10 | Select The select related registers and name stack. 67

The ContextDump command forces Gamma to dump the selected context out. This appears in the
Host Output FIFO in GLINT where it can be read from (by the host of the Output DMA
controller). The amount of data placed in the FIFO depends on the context mask sent with the
command (shown in the table). The context mask is also in the FIFO after the context data, but is
not included in the table count. The FilterMode register (in GLINT) has bit 14 set to allow the
ContextData tag to be written into the FIFO and bit 15 the context data.

The context data is largely undocumented, however the CurrentState and RasterPos selections, when
used by themselves, allow state which OpenGL can query to be provided.

If a context dump is done with only the CurrentState bit set then the resultant context buffer will

hold the following information (the tags and context mask are assumed to have been discarded):
Offset Data

Current edge flag in bit 5

Current normal, X component

Current normal, Y component

Current normal, Z component

Current texture, S component

Current texture, T component

Current texture, R component

Current texture, Q component

Current color, Red component

Current color, Green component

o

Current color, Blue component

— = O 00N QNN NN — O

—_

Current color, Alpha component

122 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

If a context dump is done with only the RasterPos bit set then the resultant context buffer will hold
the following information (the tags and context mask are assumed to have been discarded). Note
that some user defined state is also included:

Offset

0 N O\ N W~ O

=]

10
11
12
13
14
15
16
17
18

Data

Window coordinate, X component
Window coordinate, Y component
Window coordinate, Z component
Eye coordinate, Z component

Clip coordinate, W component
Texture, S component

Texture, T component

Texture, R component

Texture, Q component

Fog

In View (bit 0: 0 = out of view, 1 = in view)

xIncrement (user register)
ylncrement (user register)
xOffset (user register)
yOffset (user register)
Color, Red component
Color, Green component
Color, Blue component

Color, Alpha component

The ContextRestore command prepares Gamma to receive context data. The context mask should
be the same as was used to generate the context data in the first place. The context data in the buffer
is written to the ContextData register.

3D/.sbs

Proprietary and Confidential

123

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Cr3
Cr4

See: Ca/Cb/Cg

124 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Del t aMbde
Del t aMbdeAnd
Del t aMbdeOr

Name Tag Offset Access Reset Format
DeltaMode 0x260 0x0000.1300 Read/Write Undefined Bitfield
DeltaModeAnd 0x55A 0x0000.2ADO0O Write Undefined Bitfield
DeltaModeOr 0x55B 0x0000.2AD8 Write Undefined Bitfield

The DeltaMode register has the following fields (it is identical to the DeltaMode register in
GLINT Delta, but with the addition of BiasCoordinates, ColorDiffuse, ColorSpecular,
FlatShadingMethod, EpilogueEnable and EpilogueCount fields):

Bit No. Name Description

0,1 TargetChip This two bit field selects which chip the calculations are tailored to. The options
are:

0 =300SX
1 =500TX, MX

2,3 DepthFormat This two bit field defines the depth format GLINT is working in and hence the

final format of the depth parameters to be written into GLINT. The options are:
1 = 16 bits (300SX, 500TX, MX)
2 = 24 bits (300SX, 500TX, MX)
3 = 32 bits (300SX, 500TX, MX)

The depth format is used regardless of any other modes bits.

4 FogEnable When set enables the fog calculations. This is qualified by the FogEnable bit in
the Begin or Draw* commands.

5 TextureEnable When set enables the texture calculations. This is qualified by the TextureEnable
bit in the Begin or Draw* commands.

6 SmoothShadingEnable When set enables the color calculations. This field only has an effect when the
Draw* commands are used and is ignored when the Gamma 3D pipeline is used.
In this case the FlatShading bit in the GeometryMode register is used.

7 DepthEnable When set enables the depth calculations.

8 SpecularEnable When set enables the specular texture calculations. This is qualified by the
TextureEnable in the Begin or Draw* commands.

9 DiffuseEnable When set enables the diffuse texture calculations. This is qualified by the
TextureEnable in the Begin or Draw* commands.

10 SubPixelCorrectionEnable = When set provides the subpixel correction in Y. This is qualified by the
SubPixelCorrectionEnable in the Begin or Draw* commands.

11 DiamondExit When set enables the application of the OpenGL ‘Diamond-exit’ rule to modify
the start and end coordinates of lines.

12 NoDraw When set prevents any rendering from starting after the set up calculations are
done and parameters sent to GLINT. This only effect the Draw* commands and
is ignored when the Gamma 3D pipeline is used.

13 ClampEnable When set causes the input values to be clamped into a parameter specific range.
Note that the texture parameters are not included. This should normally be set.

3D/.bs Proprietary and Confidential 125

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

14,15 | TextureParameterMode This two bit field causes the texture parameters to be:
0 = Used as given
1 = Clamped to lie in the range -1.0 to 1.0
2 = Normalized to lie in the range -1.0 to 1.0
The normal setting for this field is to select texture normalization.

16...18 | reserved

19 BiasCoordinates When set causes the XBias and YBias registers values to be added to the x and y
coordinates respectively.

20 ColorDiffuse When set causes the diffuse texture calculations to be done on the red, green and
blue components, otherwise the red component (representing monochrome) is
done by itself.

21 ColorSpecular When set causes the specular texture calculations to be done on the red, green

and blue components, otherwise the red component (representing monochrome)
is done by itself.

22 FlatShadingMethod This field determines how the ColorDDA unit in GLINT is to do flat shading.
The two options are use the ConstantColor register (0) or the DDA (1) by
setting zero gradients. The rasterization performance is the same in both cases,
however the ConstantColor method is faster to set up. Consider the situation
when smooth shading is enabled (in the GeometryMode register) and a point is
to be drawn. The point is always flat shaded. This field would normally be the
inverse of the FlatShading field in the GeometryMode register.

23 EpilogueEnable

24...25 | EpilogueCount

Writing to the DeltaModeAnd and DeltaModeOr registers logically combine the new value with
the existing values in the DeltaMode register rather than replacing its contents.

DVAAddr

Name Tag Offset Access Reset Format
DMAAddr 0x530 0x0000.2980 Write Undefined Integer

This register holds the byte address of the next DMA buffer to read from (reading doesn't start until
the DMACount command). The bottom two bits of the address are ignored.

This register should not be confused by the PCI register of the same name.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also: DMACount.

126 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

DVACal |

Name Tag Offset Access Reset Format
DMACall 0x533 0x0000.2998 Write Undefined Integer

This command starts a new DMA buffer being read. The length of the DMA buffer is set to Oxfftttf
as the DMAReturn command (in the called DMA buffer) is expected to be used to end the DMA
buffer. DMACalls can be nested 8 deep. If the DMACall were to exceed the maximum nesting
levels then the DMACzall is ignored.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMAReturn.

DMACount

Name Tag Offset Access Reset Format
DMACount 0x531 0x0000.2988 Write Undefined Integer

This command starts a new DMA buffer being read starting at the previously loaded address in
DMAAddr. The length of the DMA buffer is given in the bottom 24 bits of the command. New
DMAs can be nested 8 deep. If the DMACount were to exceed the maximum nesting levels then
the DMACount is ignored.

This register should not be confused by the PCI register of the same name.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also: DMAAddr.

3D/.bs Proprietary and Confidential 127

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

DVMAFeedback

Name Tag Offset Access Reset Format
DMAFeedback 0x542 0x0000.2A10 Write Undefined Integer

This command starts a new output DMA if the output DMA controller is idle, otherwise it will
block until the output DMA controller becomes available suspending all subsequent commands and
register loads.

The length in words of the destination memory buffer is given in the least significant 24 bits of the
command, and the memory buffer address will have previously been set up in the

DMAOQutputAddress register.
The output DMA expects to read tags and data from the Host Out FIFO in GLINT so bits 14 and

15 of FilterMode register must be set. All tags are discarded and not written into memory and only
the data for the following tags is written into memory:

FeedbackX
FeedbackY
FeedbackZ
FeedbackW
FeedbackRed
FeedbackGreen
FeedbackBlue
FeedbackAlpha
Feedback$S
FeedbackT
FeedbackR
FeedbackQ
FeedbackToken
PassThrough
SelectRecord
ContextData

The output DMA terminates when the EndOfFeedback tag is found or when the buffer is full.
The Host Out FIFO is read until the EndOfFeedback tag is found and any data which would

overflow the memory buffer is discarded.

The DMAReadGLINTSource register identifies the GLINT to read from in a multi-GLINT

system.

The actual number of words written to memory is loaded into the FeedbackSelectCount PCI register.
Overflows are indicated in bit 31.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also: DMAOutputAddress, DMAReadGLINTSource.

128 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

DMVAQut put Addr ess

Name Tag Offset Access Reset Format
DMAOQutputAddress 0x53C 0x0000.29E0 Write Undefined Integer

This register holds the byte address where the output DMA controller will write to. The lower two
bits of the address are ignored. The address can be logical or physical. If logical addresses are used
then the corresponding page table entries must be set up to allow write access.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also: DMAFeedback, DMAOutputCount.

DMAQut put Count

Name Tag Offset Access Reset Format
DMAOutputCount 0x53D 0x0000.29E8 Write Undefined Integer

This command starts a new output DMA if the output DMA controller is idle, otherwise it will
block until the output DMA controller becomes available and all subsequent commands and register
loads are suspended.

The number of words to read from the GLINT Host Out FIFO is given in the bottom 24 bits of
the command, and the memory buffer address will have previously been set up in the

DMAOQutputAddress register.

The GLINT FilterMode register must have been set up to allow the required tags and/or data to be
written in to the FIFO.

The DMAReadGLINTSource register identifies the GLINT to read from in a multi-GLINT

system.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also: DMAOutputAddress, DMAReadGLINTSource.

3D/.bs Proprietary and Confidential 129

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

DVARead@GL| NTSour ce

Name Tag Offset Access Reset Format
DMAReadGLINT Source 0x53E 0x0000.29F0 Read/Write Undefined Integer

This register identifies which GLINT's Host Out FIFO is to be read in a multi-GLINT system by
the output DMA controller (in linear, feedback or rectangle modes). The bottom three bits provide
the GLINT ID.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleWriteAddress
DMARectangleWriteLinePitch

130 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

DMARect angl eRead

Name Tag Offset Access Reset Format
DMARectangleRead 0x535 0x0000.29A8 Write Undefined Bitfield
The DMARectangleRead command has the following fields:
Bit No. Name Description
0...11 | Widch Width of the rectangle in pixels. Range 0...4095
12...23 Height Height of the rectangle in pixels. Range 0...4095
24,25 PixelSize The size of the pixels in the source image to read. The pixel size is used during
alignment and packing. The values are:
0 = 8 bits
1 = 16 bits
2 = 24 bits
3 = 32 bits
26 PackOut This field, when set, causes the data to be packed into 32 bit words when sent to

GLINT, otherwise the data is right justified and any unused bits (in the most
significant end of the word) are set to zero
27,28 | ByteSwap These bits control the byte swapping of the data read from the PCI bus before it is
aligned and packed/unpacked. If the input bytes are labeled ABCD on input then
they are swapped as follows:
0 = ABCD (i.e. no swap)

1 = BADC
2 = CDAB
3 =DCBA

The Rectangle DMA mechanism allows image data to be transferred from host memory to GLINT.
The image data may be a sub image of a larger image and have any natural alignment or pixel size.
Information regarding the rectangle transfer is held in registers loaded from the input FIFO or a

DMA buffer.

The pixel data read from host memory is always packed, however when passed to GLINT it can be
in packed or unpacked format.

The minimum number of PCI reads are used to align and pack the image data.

GLINT is set up to rasterize the destination area for the pixel data (depth, stencil, color, etc.) with
SyncOnHostData or SyncOnBitMask enabled in the Render command (or equivalent if Gamma is
doing the rasterizer set up). This is done before the Rectangular DMA is started.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleReadAddress
DMARectangleReadLinePitch
DMARectangleRead Target

3D/.bs Proprietary and Confidential 131

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

DMARect angl eReadAddr ess

Name Tag Offset Access Reset Format
DMARectangleReadAddress 0x536 0x0000.29B0 Read/Write Undefined Integer

This register provides the byte address of the first pixel in the image or sub image to read during a
rectangular DMA transfer from host memory to GLINT. This is treated as a logical or physical
address depending on the LogicalAddressing control bit in the CommandMode PCI register. The
address should be aligned to the natural size of the pixel, except for 24 bit pixels which may be
aligned to any byte boundary.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleRead
DMARectangleReadLinePitch
DMARectangleRead Target

DVARect angl eReadLi nePi t ch

Name Tag Offset Access Reset Format
DMARectangleReadLinePitch 0x537 0x0000.29B8 Read/Write Undefined Integer

This register defines the amount, in bytes, to move from one scanline in the image to the next
scanline during a rectangular DMA transfer from host memory to GLINT. For a sub image this is
based on width of the whole image. The pitch is held as a 32 bit 2's complement number. This is
normally an integer multiple of the number of bytes in a pixel.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleReadAddress
DMARectangleRead
DMARectangleRead Target

132 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

DMARect angl eReadTar get

Name Tag Offset Access Reset Format
DMARectangleRead Target 0x538 0x0000.29C0 Read/Write Undefined Integer

This register holds the 16 bit tag sent to GLINT just before the image data is sent during a
rectangular DMA transfer from host memory to GLINT. Normally it would be one of the tags
allowed by the rasterizer during a SyncOnHostData or SyncOnBitMask operation with the tag
mode set to Hold. The secondary PCI bus traffic is minimized by sending multiple image words
with a single tag (with a count).

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleReadAddress
DMARectangleReadLinePitch
DMARectangleRead

3D/.bs Proprietary and Confidential 133

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

DMARect angl eWite

Name Tag Offset Access Reset Format
DMARectangleWrite 0x539 0x0000.29C8 Write Undefined Bitfield
The DMARectangleWrite command has the following fields:
Bit No. Name Description
0...11 | Widch Width of the rectangle in pixels. Range 0...4095
12...23 Height Height of the rectangle in pixels. Range 0...4095
24,25 PixelSize The size of the pixels in the source image to read. The pixel size is used during
alignment and packing. The values are:
0 = 8 bits
1 =16 bits
2 = 24 bits
3 = 32 bits
26 PackIn This field, when set, indicates the image data from GLINT is packed, otherwise there
is one pixel per 32 bits read from GLINT.
27,28 | ByteSwap These bits control the byte swapping of the data after it is aligned and

packed/unpacked just prior to doing the PCI write. If the input bytes are labeled
ABCD on input then they are swapped as follows:
0 = ABCD (i.e. no swap)

1 = BADC
2 = CDAB
3 =DCBA

The Rectangle DMA mechanism allows image data to be transferred from GLINT to host memory.
The image data written to memory may be a sub image of a larger image and have any natural
alignment or pixel size. Information regarding the rectangle transfer is held in registers loaded from

the input FIFO or a DMA buffer.

The pixel data written to host memory is always packed, however when read from GLINT it can be
in packed or unpacked format.

The minimum number of PCI writes are used to align and pack the image data.

GLINT is set up to rasterize the source area for the pixel data (depth, stencil, color, etc.) with the
FilterMode set up to allow the appropriate data through (the tag should not be included). The
rasterization is best set up before the Rectangular DMA is started, but as this is asynchronous it is
not necessary to do things in this order.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleWriteAddress
DMARectangleWriteLinePitch
DMAReadGLINTSource

134 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

DVARect angl eW i t eAddr ess

Name Tag Offset Access Reset Format
DMARectangleWriteAddress 0x53A 0x0000.29D0 Read/Write Undefined Integer

This register provides the byte address of the first pixel in the image or sub image to read during a
rectangular DMA transfer from GLINT to host memory. This is treated as a logical or physical
address depending on the LogicalAddressing control bit in the CommandMode PCI register. The
address should be aligned to the natural size of the pixel, except for 24 bit pixels which may be
aligned to any byte boundary.

If logical addresses are used then the corresponding page table entries must be set up to allow write
access.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

See also DMARectangleWrite
DMARectangleWriteLinePitch
DMAReadGLINTSource

DVARect angl eW it eLi nePi tch

Name Tag Offset Access Reset Format
DMARectangleWriteLinePitch 0x53B 0x0000.29D8 Read/Write Undefined Integer

This register defines the amount, in bytes, to move from one scanline in the image to the next
scanline during a rectangular DMA transfer from GLINT to host memory. For a sub image this is
based on width of the whole image. The pitch is held as a 32 bit 2's complement number. This is
normally an integer multiple of the number of bytes in a group.

See also DMARectangleWriteAddress
DMARectangleWrite
DMAReadGLINTSource

3D/.bs Proprietary and Confidential 135

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

DVARet ur n

Name Tag Offset Access Reset Format
DMAReturn 0x534 0x0000.29A0 Write Undefined Unused

This command causes the current DMA transfer to be terminated and control is returned back to
whoever initiated the DMA transfer. This can be used with DMACall or DMACount commands.
The DMAReturn will cause a stack underflow if the stack is empty and it was loaded into the stack
FIFO. An error bit (StackUnderError) in CommandError is set and this will cause an interrupt, if so

enabled.

This register must be loaded by itself and not as part of any increment, hold or indexed group.

136 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Dr awLi ne01
Dr awLi nelO

Name Tag Offset Access Reset Format
DrawLine01 0x263 0x0000.1318 Write Undefined Bitfield
DrawLinel0 0x264 0x0000.1320 Write Undefined Bitfield

These commands draw a line from vertex store 0 to vertex store 1 (DrawLine01) or from vertex
store 1 to vertex store 0 (DrawLinel0). The data with this command is identical to the data with
the Render command.

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

Dr awRect angl e2D

Name Tag Offset Access Reset Format
DrawRectangle2D 0x2F4 0x0000.17A0 Write Undefined Bitfield

This command causes GLINT to rasterize a rectangle using the width, height and various modes
found in the Rectangle2DMode register. The data supplied with this command has the 2's
complement X coordinate in the lower 16 bits and the 2's complement Y coordinate in the upper

16 bits.
See also Rectangle2DMode, Rectangle2D Control

3D/.bs Proprietary and Confidential 137

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

DrawTri angl e

Name Tag Offset Access Reset Format
DrawTriangle 0x261 0x0000.1308 Write Undefined Bitfield

This command draws a triangle from vertex store 0, 1 and 2. The data with this command is
identical to the data with the Render command.

This is a legacy command and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

EdgeFl ag

Name Tag Offset Access Reset Format
EdgeFlag 0x2B4 0x0000.15A0 Read/Write Undefined Boolean

This register holds the current edge flag. The edge flag is associated with the following vertex (it
starts the next edge) and is used to disable edges being drawn when Polygon Mode (set in
GeometryMode register) is lines or points. It only has an effect when the primitive type is Triangles,
Quads or Polygons. The edge is always set for TriangleStrip, TriangleFan and QuadStrip.

The data value (0) disables the edge being drawn (for the appropriate primitive) and the value (1)
enables the edge being drawn.

138 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

End

Name Tag Offset Access Reset Format
End 0x2B3 0x0000.1598 Write Undefined Unused

This command marks the end of a sequence of vertices and causes any residual lines or triangles to
be rendered. This action is dependent on the primitive type defined by the Begin command and
the number of vertices received (since the Begin).

See also: Begin.

EndOF Feedback

Name Tag Offset Access Reset Format
EndOfFeedback 0x1FF 0x0000.0FF8 Write Undefined Unused

This command is sent to mark the end of data the output DMA controller is collecting when it is in
feedback mode. When the output DMA controller (or host software) detects this tag in the GLINT

Host Out FIFO it knows all the preceding feedback, select or context data has been read from the
FIFO.

3D/.bs Proprietary and Confidential 139

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

FeedbackAl pha
FeedbackBIl ue
FeedbackG een
FeedbackQ
FeedbackR
FeedbackRed
FeedbackS
FeedbackT
FeedbackToken
FeedbackW
FeedbackX
FeedbackyY
FeedbackZ

Name Tag

FeedbackAlpha 0x1F8
FeedbackBlue 0x1E7
FeedbackGreen 0x1F6
FeedbackQ 0x1FC
FeedbackR 0x1FB
FeedbackRed 0x1F5
Feedback$ 0x1F9
FeedbackT 0x1FA
FeedbackToken 0x1F0
FeedbackW 0x1F4
FeedbackX 0x1F1
FeedbackY 0x1F2
FeedbackZ 0x1F3

These tags will be read from GLINT's Host Out FIFO when Gamma is in feedback mode

Offset
0x0000.0FCO0
0x0000.0FB8
0x0000.0FBO
0x0000.0FEO0
0x0000.0FD8
0x0000.0FAS8
0x0000.0FCS8
0x0000.0FDO
0x0000.0E80
0x0000.0FA0
0x0000.0F88
0x0000.0F90
0x0000.0F98

Access
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output

Reset
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Format
Float
Float
Float
Float
Float
Float
Float
Float

Integer
Float
Float
Float
Float

(RenderMode field in GeometryMode is set to feedback). The actual tags returned depend on what

parameters have been selected.

The data with the FeedbackToken tag defines what primitive would have been drawn and
implicitly how many vertices worth of vertex data are in the FIFO. The data field can be one of the

following:

Data value (0x44e*****) | 02000 | 04000 06000 08000 0a000 0c000 0e000 00000
Primitive Type Point Line | Triangle | Bitmap | DrawPixel | CopyPixel | LineReset |PassThrough
Number of vertices 1 2 3 1 2 3 2 0

The LineReset is the same as a Line but the stipple pattern was reset to the start for this line. The

hex values supplied match up with the tokens defined by OpenGL.

Note:

three and not included in the tag and data stream.

The Triangle token is the same as the Polygon token in OpenG L, however the vertex count is fixed at

140

Proprietary and Confidential

3D/.2ks

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

FNXx

FNy
FNz

Name Tag Offset Access Reset Format
FNx 0x312 0x0000.1890 Read/Write/TriggerUndefined Float
FNy 0x311 0x0000.1888 Read/Write Undefined Float
FNz 0x310 0x0000.1880 Read/Write Undefined Float

These registers hold the x, y and z face normal components. The FNx register must be written last
as this write will trigger the face normal to be entered into Gamma. All the face normal components
should be written together and not interleaved with writes to the color (C*), normal (N*), texture
(T*) or vertex (V*) registers.

The face normals can be used for culling or lighting and it is optionally transformed by the
NormalMatrix. If the face normal is used for culling only then it does not need to have unit length,
however if it is used for lighting then it must have a unit length. The face normal can be optionally
normalized, if necessary.

See also: NormalMatrix, TransformMode, NormalizeMode, GeometryMode, LightingMode.

3D/.bs Proprietary and Confidential 141

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

FogDensity
FogEnd
FogScal e

Name Tag

FogDensity 0x376
FogEnd 0x378
FogScale 0x377

Offset Access Reset Format
0x0000.1BB0O Read/Write Undefined Float
0x0000.1BCO Read/Write Undefined Float
0x0000.1BB8 Read/Write Undefined Float

These registers hold the parameters used during the fog calculations. The fog calculation takes the

vertex z value in eye coordinates and applies one of the selected equations:

f =gt
f =g @
f=(e-2)A

where:

d is the fog density
5 is the fog start value

£ is the fog end value.

where A =¥ (£-5)

Exponential

Exponentia sgquared
Linear

The values 4, A, and € are held in the FogDensity, FogScale and FogEnd registers respectively.

142

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Front Al pha

Name Tag Offset Access Reset Format
FrontAlpha 0x516 0x0000.28B0 Read/Write Undefined Float

This register holds the alpha value for the front material. Its normal range of values is 0.0...1.0,
however any value can be used.

This register would normally take the front material diffuse alpha in OpenGL.

Fr ont Anbi ent Col or Bl ue
Fr ont Anbi ent Col or G een
Fr ont Anbi ent Col or Red

Name Tag Offset Access Reset Format
FrontAmbientColorRed 0x510 0x0000.2880 Read/Write Undefined Float
FrontAmbientColorGreen 0x511 0x0000.2888 Read/Write Undefined Float
FrontAmbientColorBlue 0x512 0x0000.2890 Read/Write Undefined Float

These registers hold the red, green and blue ambient colors for the front material. Their normal
range of values is 0.0...1.0, however any value can be used.

3D/.bs Proprietary and Confidential 143

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Front D f fuseCol or Bl ue
Front D f f useCol or G een
Front D f f useCol or Red

Name Tag Offset

FrontDiffuseColorBlue 0x515 0x0000.28A8
FrontDiffuseColorGreen 0x514 0x0000.28A0
FrontDiffuseColorRed 0x513 0x0000.2898

Access Reset Format
Read/Write Undefined Float
Read/Write Undefined Float
Read/Write Undefined Float

These registers hold the red, green and blue diffuse colors for the front material. Their normal range

of values is 0.0...1.0, however any value can be used.

Fr ont Em ssi veCol or Bl ue
Front Em ssi veCol or & een
Fr ont Em ssi veCol or Red

Name Tag Offset

FrontEmissiveColorBlue 0x51C 0x0000.28E0
FrontEmissiveColorGreen 0x51B 0x0000.28D8
FrontEmissiveColorRed 0x51A 0x0000.28D0

Access Reset Format
Read/Write Undefined Float
Read/Write Undefined Float
Read/Write Undefined Float

These registers hold the red, green and blue emissive colors for the front material. Their normal

range of values is 0.0...1.0, however any value can be used.

144 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Front Specul ar Col or Bl ue
Front Specul ar Col or G een
Front Specul ar Col or Red

Name Tag Offset Access Reset Format
FrontSpecularColorBlue 0x519 0x0000.28C8 Read/Write Undefined Float
FrontSpecularColorGreen 0x518 0x0000.28C0 Read/Write Undefined Float
FrontSpecularColorRed 0x517 0x0000.28B8 Read/Write Undefined Float

These registers hold the red, green and blue specular colors for the front material. Their normal
range of values is 0.0...1.0, however any value can be used. Setting the red, green and blue color to
0.0 is detected and the specular part of the calculations are avoided.

Front Specul ar Exponent

Name Tag Offset Access Reset Format
FrontSpecularExponent 0x51D 0x0000.28E8 Read/Write Undefined Fixed point

This register holds front material specular exponent as an unsigned 7.4 fixed point format.

3D/.bs Proprietary and Confidential 145

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Geonet r yMode
Geonet r yModeAnd
Geonet r yModeOr

Name Tag Offset Access Reset Format
GeometryMode 0x2A2 0x0000.1510 Read/Write Undefined Bitfield
GeometryModeAnd 0x552 0x0000.2A90 Write Undefined Bitfield
GeometryModeOr 0x553 0x0000.2A98 Write Undefined Bitfield

This register has the following fields:

Bit | Name
No.

Description

0 TextureEnable

1 FogEnable

2,3 | FogFunction

4,5 | FrontPolyMode

6,7 | BackPolyMode

8 FrontFaceDirection

9 PolygonCull

10, | PolygonCullFace
11

When set causes the texture value associated with a vertex to be calculated.
This calculation is just the division by the homogeneous coordinate w. It is
qualified by the TextureEnable bit in the Begin command.
When set causes the fog value associated with the vertex to be calculated. Itis
qualified by the FogEnable bit in the Begin command. The actual method
of calculating the fog value is given by the FogFunction field.
This field selects the function used to calculate the fog value as a function of
the vertex's Z value. The options are:

0 = Linear

1 = Exponential

2 = ExponentialSquared
This field selects the how a triangle, quad or polygon should be drawn when its
orientation is facing forwards. The options are:

0 = Point
1 = Line
2 =Fill

This field selects the how a triangle or quad or polygon should be drawn when
its orientation is facing backwards. The options are:

0 = Point
1 = Line
2 =Fill

This field selects which direction is the 'front' facing direction. The direction is
important as it is used to determine if a triangle, etc. should be culled (if
enabled), the material to use during lighting, and the PolyMode to use.

0 = Clockwise

1 = Counter Clockwise
This field, when set, enables polygon culling based on the front face direction.
It is ignored for points, lines and rectangles.
This field determines which direction of face should be culled (if enabled). It
has the following values:

0 = Front

1 = Back

2 = Front and Back

146

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

12

ClipShortLines

Clipping is an expensive operation and for short lines, it is much faster to draw
them and rely on the window and/or screen clipping during rasterization.
When this bit is set lines below the length given in the LineClipThreshold
register are not clipped. This does not apply if the line crosses the near, far or
user clipping planes.

13

ClipSmallTriangles

Clipping is an expensive operation and for small triangles it is much faster to
draw them and rely on the window and/or screen clipping during rasterization.
When this bit is set triangles below the 'area’ given in the
TriangleClipThreshold register are not clipped. This does not apply if the
triangle crosses the near, far or user clipping planes.

14,
15

RenderMode

The RenderMode field controls the action when processing any primitive. The
options are:

0 = Render

1 = Select

2 = Feedback

16

18

FeedbackType

This field only has any effect if the RenderMode is Feedback. In this case it
determines the parameters to be returned for every primitive. The options are:
0=XY 2D
1=X,Y,Z 3D
2=XY,Z,R,G,B, A 3DColor
3=X,Y,Z,R,G,B,A, S, T,R,Q 3DColorTexture
4=X,Y,7Z,W,R,G,B,A, S, T,R,Q 4DColorTexture

19

CullUsingFaceNormal

This field, if set will cull using the supplied face normal. The face normal does
not have to be of unit length. If no face normal is supplied then the area
method of backface culling is used.

20

AutoGenerateFaceNormal

This field, if set, will calculate the face normal for a triangle or quad to be used
in the lighting calculations if one has not been provided. It will be normalized
automatically.

21

FlatShading

When set selects flat shading to be used, otherwise Gouraud shading will be
used.

22

27

UserClipMask

There is one bit per user defined clipping plane. Clipping against a plane is
enabled when the corresponding bit is set. The clipping plane is defined in eye
space by

UserClipn{X | Y | Z | W}.

Bit 0 (i.e. bit 22 in register) corresponds to UserClip0.

28

PolygonOffsetPoint

This field, if set, causes the polygon offset to be calculated and applied to the
points of a polygon when PolyMode is set to Point.

29

PolygonOffsetLine

This field, if set, causes the polygon offset to be calculated and applied to the
lines of a polygon when PolyMode is set to Line.

30

PolygonOffsetFill

This field, if set, causes the polygon offset to be calculated and applied to the
triangles of a polygon when PolyMode is set to Fill.

31

InvertFaceNormalCullDirection

This field, if set, causes the supplied Face Normal to be inverted before it is
used for backface culling.

Writing to the GeometryModeAnd and GeometryModeOr registers logically combine the
new value with the existing values in the GeometryMode register rather than replacing its

contents.

3D/.sbs

Proprietary and Confidential 147

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

GeonRect angl e

Name Tag Offset Access Reset Format
GeomRectangle 0x2D4 0x0000.16A0 Write Undefined Bitfield

The GeomRectangle command is used to render the rectangle, based on the position, color, etc.
established with the write to the RPx2, RPx3 or RPx4 registers. If the raster position is not in view
then all GeomRectangle commands are ignored. If the raster position is in view then the operation

is controlled by the data field:

Bit No. Name Description

0,1 Type These two bits define the type of rectangle to be inserted into the feedback buffer.
They have no effect when not in feedback mode. The options are:
0 = Bitmap
1 = DrawPixel
2 = CopyPixel
3 = Don't insert into the feedback buffer.

2 OffsetEnable When this bit is set the x and y offset values held in RasterPosXOffset and
RasterPosYOffset respectively displace the raster position window coordinates when
the rectangle is rendered. This does not update the raster position state.

3 SelectEnable When this bit is set the rectangle takes part in the selection process.

After every rectangle is submitted using the GeomRectangle command (in any RenderMode) the
window coordinate x and y components are updated by the amount held in the
RasterPosXIncrement and RasterPosYIncrement registers, respectively. This occurs irrespective of
the raster position being in view either before or after the update. If the initial raster position was in
view then all subsequent raster positions updated via the increment will be in view. The converse

also holds.

The width and height of the rectangle are held in the RectangleWidth and RectangleHeight
registers. The RectangleMode register holds the low level enables to control TextureEnable,
FogEnable, etc. and has the same format as the Render command.

148 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

| ncrenent Qoj ectI D

Name Tag Offset Access Reset Format
IncrementObject]D 0x2B6 0x0000.15B0 Write Undefined Unused

This command increments the object ID register. This is for future use.

See also: ObjectIDValue.

| ni t Nanmes
Name Tag Offset Access Reset Format
InitNames 0x2BB 0x0000.15D8 Write Undefined Unused

This command resets the name stack and hit flag when the RenderMode field in GeometryMode
register is set to select mode, otherwise it is ignored.

See also: PushName, PopName, LoadName.

3D/.bs Proprietary and Confidential 149

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

LBReadMbdeAnd
LBReadMdeOr

Name Tag Offset Access Reset Format
LBReadModeAnd 0x572 0x0000.2B90 Write Undefined Bitfield
LBReadModeOr 0x573 0x0000.2B98 Write Undefined Bitfield

See the GLINT documentation for the field definition of the LBReadMode and these registers.

Gamma tracks GLINT's LBReadMode to allow its functionality to be extended to better support
window clipping using GIDs.

Writing to the LBReadModeAnd and LBReadModeOrr registers logically combine the new value
with the existing values in the LBReadMode register rather than replacing its contents.

The DestinationReadEnable field is OR’ed with the Rectangle2DControl register to always force
local buffer reads (where the GID is held) when window clipping is enabled.

150 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li ghti ngMbde
Li ght i ngMbdeAnd
Li ghti ngMbdeOr

Name Tag Offset Access Reset Format
LightingMode 0x2A4 0x0000.1520 Read/Write Undefined Bitfield
LightingModeAnd 0x556 0x0000.2ABO Write Undefined Bitfield
LightingModeOr 0x557 0x0000.2AB8 Write Undefined Bitfield
This register has the following fields:

Bit No. Name Description

0 Enable When set causes the vertex to be lit using the lighting equations, otherwise the

current color is assigned.

1,2 TwoSidedLighting The three options are:

0 Use the front side materials.

1 Use the back side materials and invert the normal before it is used in the
lighting calculations.

2 Use the orientation of the face to select between front or back materials and
lighting. The orientation is determined by the geometry processing. Fields
in the GeometryMode register control the association between a front face
and the vertex ordering.

3 LocalViewer When set causes the viewer to be at (0, 0, 1) in eye coordinates, otherwise the

viewer is at (0, 0,). When the viewer is at infinity some of the lighting

equations can be simplified and so run faster, however the position of the
specular highlights are not as correct.

4 FlipNormal When set causes the absolute value of the lighting dot products to be taken,

otherwise negative dot products are clamped. Clamping is used for OpenGL,

but some other APIs allow the normal to be flipped - this gives a cheap form of
two sided lighting and is useful when the normals are not consistently facing

'outwards' in the model or scene.

5 AttenuationTest When set forces the lighting calculation for the current light to be aborted when

the product of a7 and spor (in the lighting equations) for the light falls below

the threshold given in the AttenuationCutOff register. This optimization
allows lights which are becoming too faint to contribute to be terminated early.

A suitable value is given by: 1.0/512% where # is the number of lights. The 512

constant was chosen as it is less than the smallest representable color when

converted to a byte integer assuming the light and material colors are restricted
to the range 0.0...1.0.

6...14 | NumberLights This 9 bit field holds the number of lights to use. Its legal range is 0...16

inclusive. Numbers greater than 16 are clamped to be 16.

15 SpecularLightingEnable When this bit is set the specular part of the lighting calculations are done,

otherwise they are skipped.

16 UseFaceNormal When this bit is set the face normal is used instead of the vertex normals. The

lighting is still evaluated once per vertex so any position dependent effects (i.e.

attenuation or spotlight) are still computed correctly.

Writing to the LightingModeAnd and LightingModeOr registers logically combine the new value

with the existing values in the LightingMode register rather than replacing its contents.

3D/.bs Proprietary and Confidential 151

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Li ght nAnbi ent | nt ensi t yBl ue

Li ght nAnbi ent I ntensityG een

Li ght nAnbi ent | nt ensi t yRed

Light

P Ooo~NOOUh, WNPEFEO

o

Name

Red Tag Red Offset

0x3A1 0x0000.1D08
0x3B7 0x0000.1DB8
0x3CD 0x0000.1E68
Ox3E3 0x0000.1F18
0x3F9 0x0000.1FC8
Ox40F 0x0000.2078
0x425 0x0000.2128
0x43B 0x0000.21D8
0x451 0x0000.2288
0x467 0x0000.2338
0x47D 0x0000.23E8
0x493 0x0000.2498
Ox4A9 0x0000.2548
Ox4BF 0x0000.25F8
0x4D5 0x0000.26A8
Ox4EB 0x0000.2758

Access

allRead/Write Undefined

Green Tag Green Offset

Ox3A2
0x3B8
0x3CE
Ox3E4
Ox3FA
0x410
0x426
0x43C
0x452
0x468
Ox47E
0x494
Ox4AA
0x4C0
0x4D6
Ox4EC

Reset
Float

0x0000.1D10
0x0000.1DCO
0x0000.1E70
0x0000.1F20
0x0000.1FDO
0x0000.2080
0x0000.2130
0x0000.21E0
0x0000.2290
0x0000.2340
0x0000.23F0
0x0000.24A0
0x0000.2550
0x0000.2600
0x0000.26B0
0x0000.2760

Format

BlueTag BlueOffset

0x3A3
0x3B9
Ox3CF
Ox3E5
Ox3FB
0x411
0x427
0x43D
0x453
0x469
Ox47F
0x495
0x4AB
0x4C1
0x4D7
Ox4ED

0x0000.1D18
0x0000.1DC8
0x0000.1E78
0x0000.1F28
0x0000.1FD8
0x0000.2088
0x0000.2138
0x0000.21E8
0x0000.2298
0x0000.2348
0x0000.23F8
0x0000.24A8
0x0000.2558
0x0000.2608
0x0000.26B8
0x0000.2768

These registers hold the ambient intensity per color component the light contributes to the scene.

The nominal range of values is 0.0 to 1.0, although this is not enforced.

The register name is formed by inserting the light number for » and appending Red, Green or Blue

as appropriate.

152

Proprietary and Confidential

3D/.2ks

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li ght nConst ant Att enuat i on

Light Tag Offset

0 0x3B3 0x0000.1D98
1 0x3C9 0x0000.1E48
2 O0x3DF 0x0000.1EF8
3 Ox3F5 0x0000.1FA8
4 0x40B 0x0000.2058

5 0x421 0x0000.2108

6 0x437 0x0000.21B8
7 0x44D 0x0000.2268

8 0x463 0x0000.2318

9 0x479 0x0000.23C8
10 Ox48F 0x0000.2478

11 O0x4A5 0x0000.2528
12 0x4BB 0x0000.25D8
13 0x4D1 0x0000.2688
14 Ox4E7 0x0000.2738
15 Ox4FD 0x0000.27E8

Name Access Reset Format
allRead/Write Undefined Float

These registers hold the constant attenuation factor the lights intensity is decreased by .

The register name is formed by inserting the light number for 7 .

3D/.bs Proprietary and Confidential 153

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Li ght nCosSpot | i ght Cut of f Angl e

Light

P OooO~NOOULh WNPEFEO

o

Name

Tag
0x3B2
0x3C8
Ox3DE
Ox3F4
Ox40A
0x420
0x436
0x44C
0x462
0x478
Ox48E
0x4A4
Ox4BA
0x4DO0
Ox4E6
Ox4FC

Offset
0x0000.1D90
0x0000.1E40
0x0000.1EFO
0x0000.1FAQ
0x0000.2050
0x0000.2100
0x0000.21B0
0x0000.2260
0x0000.2310
0x0000.23C0
0x0000.2470
0x0000.2520
0x0000.25D0
0x0000.2680
0x0000.2730
0x0000.27E0

Access

allRead/Write Undefined

Reset Format
Float

These registers hold the cosine of the spot light cut off angle.

The register name is formed by inserting the light number for 7 .

154

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li ght nDi f fusel nt ensi t yBl ue
Li ght nDi f fusel ntensityG een
Li ght nDi f f usel nt ensi t yRed

Light RedTag Red Offset Green Tag Green Offset BlueTag BlueOffset
0 0x3A4 0x0000.1D20 Ox3A5 0x0000.1D28 Ox3A6 0x0000.1D30
1 0x3BA 0x0000.1DDO0 0x3BB 0x0000.1DD8 0x3BC 0x0000.1DEO
2 0x3DO0 0x0000.1E80 0x3D1 0x0000.1E88 0x3D2 0x0000.1E90
3 Ox3E6 0x0000.1F30 Ox3E7 0x0000.1F38 Ox3E8 0x0000.1F40
4 Ox3FC 0x0000.1FEO Ox3FD 0x0000.1FE8 Ox3FE 0x0000.1FFO0
5 0x412 0x0000.2090 0x413 0x0000.2098 0x414 0x0000.20A0
6 0x428 0x0000.2140 0x429 0x0000.2148 Ox42A 0x0000.2150
7 Ox43E 0x0000.21F0 Ox43F 0x0000.21F8 0x440 0x0000.2200
8 0x454 0x0000.22A0 0x455 0x0000.22A8 0x456 0x0000.22B0
9 Ox46A 0x0000.2350 0x46B 0x0000.2358 0x46C 0x0000.2360
10 0x480 0x0000.2400 0x481 0x0000.2408 0x482 0x0000.2410
11 0x496 0x0000.24B0 0x497 0x0000.24B8 0x498 0x0000.24C0
12 Ox4AC 0x0000.2560 Ox4AD 0x0000.2568 Ox4AE 0x0000.2570
13 0x4C2 0x0000.2610 0x4C3 0x0000.2618 0x4C4 0x0000.2620
14 0x4D8 0x0000.26C0 0x4D9 0x0000.26C8 Ox4DA 0x0000.26D0
15 Ox4EE 0x0000.2770 Ox4EF 0x0000.2778 0x4F0 0x0000.2780
Name Access Reset Format

allRead/Write Undefined Float

These registers hold the diffuse intensity per color component the light contributes to the scene.
The nominal range of values is 0.0 to 1.0, although this is not enforced.

The register name is formed by inserting the light number for » and appending Red, Green or Blue

as appropriate.

3D/.bs Proprietary and Confidential 155

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Li ght nLi near At t enuati on

Light

P OooO~NOOULh WNPEFEO

o

Name

Tag
0x3B4
Ox3CA
Ox3EO0
Ox3F6
0x40C
0x422
0x438
Ox44E
0x464
Ox47A
0x490
Ox4A6
0x4BC
0x4D2
Ox4E8
Ox4FE

Offset
0x0000.1DA0
0x0000.1E50
0x0000.1F00
0x0000.1FBO
0x0000.2060
0x0000.2110
0x0000.21C0
0x0000.2270
0x0000.2320
0x0000.23D0
0x0000.2480
0x0000.2530
0x0000.25E0
0x0000.2690
0x0000.2740
0x0000.27F0

Access

allRead/Write Undefined

These registers hold the linear attenuation factor the lights intensity is decreased by .

Reset Format
Float

The register name is formed by inserting the light number for 7 .

156

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li ght nivbde

Light Tag Offset
0 O0x3A0 0x0000.1D00
1 0x3B6 0x0000.1DBO
2 0x3CC 0x0000.1E60
3 Ox3E2 0x0000.1F10
4 O0x3F8 0x0000.1FCO0
5 0x40E 0x0000.2070
6 0x424 0x0000.2120
7 O0x43A 0x0000.21D0
8 0x450 0x0000.2280
9 0x466 0x0000.2330
10 0x47C 0x0000.23E0
11 0x492 0x0000.2490
12 0x4A8 0x0000.2540
13 O0x4BE 0x0000.25F0
14 0x4D4 0x0000.26A0
15 Ox4EA 0x0000.2750
Name Access Reset Format
allRead/Write Undefined Bitfield
These registers hold the individual mode words for each light. The mode as the following fields:
Bit Name Description
No.
0 LightOn When set indicates the light is on and contributes illumination to the scene,
otherwise it does not.
1 Spotlight When set indicates the light is a spotlight. If it is not set then the light is not a

spot light and the SpotlightDirection is used to hold the normalized half
vector between the viewer and the light. OpenGL would set this bit when the
spot light's cut off angle is not 180 degrees.

2 Attenuation When set indicates the light is to be attenuated, otherwise no attenuation is
done. OpenGL would set this when the W component of the light's
position is non zero.

3 LocalLight When set indicates the light is local and the full lighting equations should be
used. This allows a light to be local without it having to be a spotlight or have
any attenuation applied to it.

The register name is formed by inserting the light number for .

3D/.bs Proprietary and Confidential 157

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Li ght nPosi ti onW
Li ght nPosi ti onX
Li ght nPosi ti onY
Li ght nPosi ti onZ

Light X Tag X Offset Y Tag Y Offset ZTag Z Offset W Tag W Offset

0 Ox3AA 0x0000.1D50 O0x3AB 0x0000.1D58 Ox3AC 0x0000.1D60 Ox3AD 0x0000.1D68
1 0x3CO 0x0000.1E00 0x3C1 0x0000.1E08 0x3C2 0x0000.1E10 0x3C3 0x0000.1E18
2 0x3D6 0x0000.1EBO 0x3D7 0x0000.1EB8 0x3D8 0x0000.1ECO 0x3D9 0x0000.1EC8
3 Ox3EC 0x0000.1F60 Ox3ED 0x0000.1F68 Ox3EE 0x0000.1F70 Ox3EF 0x0000.1F78
4 0x402 0x0000.2010 0x403 0x0000.2018 0x404 0x0000.2020 0x405 0x0000.2028
5 0x418 0x0000.20C0 0x419 0x0000.20C8 0x41A 0x0000.20D0 0x41B 0x0000.20D8
6 0x42E 0x0000.2170 Ox42F 0x0000.2178 0x430 0x0000.2180 0x431 0x0000.2188
7 0x444 0x0000.2220 0x445 0x0000.2228 0x446 0x0000.2230 0x447 0x0000.2238
8 0x45A 0x0000.22D0 0x45B 0x0000.22D8 0x45C 0x0000.22E0 0x45D 0x0000.22E8
9 0x470 0x0000.2380 0x471 0x0000.2388 0x472 0x0000.2390 0x473 0x0000.2398
10 0x486 0x0000.2430 0x487 0x0000.2438 0x488 0x0000.2440 0x489 0x0000.2448
11 0x49C 0x0000.24E0 0x49D 0x0000.24E8 Ox49E 0x0000.24F0 Ox49F 0x0000.24F8
12 0x4B2 0x0000.2590 0x4B3 0x0000.2598 0x4B4 0x0000.25A0 0x4B5 0x0000.25A8
13 0x4C8 0x0000.2640 0x4C9 0x0000.2648 0x4CA 0x0000.2650 0x4CB 0x0000.2658
14 0x4DE 0x0000.26F0 0x4DF 0x0000.26F8 Ox4EO0 0x0000.2700 Ox4E1 0x0000.2708
15 0x4F4 0x0000.27A0 0x4F5 0x0000.27A8 Ox4F6 0x0000.27B0 0x4F7 0x0000.27B8
Name Access Reset Format

allRead/Write Undefined Float

These registers hold the position or direction of the light. If the direction is being held then the W
component should be set to zero and the direction is normalized. The Attenuation bit in the light's
mode should be 0 for a direction light or 1 for a position light.

The register name is formed by inserting the light number for # and appending X, Y, Z or W as
appropriate.

158 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Light

P OooO~NOOULh WNPEFEO

o

Name

Tag
0x3B5
0x3CB
Ox3E1
Ox3F7
0x40D
0x423
0x439
Ox44F
0x465
0x47B
0x491
Ox4A7
0x4BD
0x4D3
Ox4E9
Ox4FF

Offset
0x0000.1DAS8
0x0000.1E58
0x0000.1F08
0x0000.1FB8
0x0000.2068
0x0000.2118
0x0000.21C8
0x0000.2278
0x0000.2328
0x0000.23D8
0x0000.2488
0x0000.2538
0x0000.25E8
0x0000.2698
0x0000.2748
0x0000.27F8

Access

allRead/Write Undefined

These registers hold the quadratic attenuation factor corresponding to the decrease in a lights

intensity.

Li ght nQuadr ati cAttenuati on

Reset Format
Float

The register name is formed by inserting the light number for # .

3D/.sbs

Proprietary and Confidential

159

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Li ght nSpecul arl ntensi tyBl ue
Li ght nSpecul arl ntensityG een

Li ght nSpecul ar |l nt ensi t yRed

Light

P Ooo~NOOUh, WNPEFEO

o

Name

Red Tag Red Offset
O0x3A7 0x0000.1D38
0x3BD 0x0000.1DES8
0x3D3 0x0000.1E98
Ox3E9 0x0000.1F48
Ox3FF 0x0000.1FF8
0x415 0x0000.20A8
0x42B 0x0000.2158
0x441 0x0000.2208
0x457 0x0000.22B8
0x46D 0x0000.2368
0x483 0x0000.2418
0x499 0x0000.24C8
Ox4AF 0x0000.2578
0x4C5 0x0000.2628
0x4DB 0x0000.26D8
Ox4F1 0x0000.2788
Access

allRead/Write Undefined

Green Tag Green Offset

0x3A8
Ox3BE
0x3D4
OX3EA
0x400
0x416
0x42C
0x442
0x458
Ox46E
0x484
Ox49A
0x4B0
0x4C6
0x4DC
0x4F2

Reset
Float

0x0000.1D40
0x0000.1DF0
0x0000.1EAQ
0x0000.1F50
0x0000.2000
0x0000.20B0
0x0000.2160
0x0000.2210
0x0000.22C0
0x0000.2370
0x0000.2420
0x0000.24D0
0x0000.2580
0x0000.2630
0x0000.26E0
0x0000.2790

Format

Blue Tag
0x3A9
Ox3BF
0x3D5
Ox3EB
0x401
0x417
0x42D
0x443
0x459
Ox46F
0x485
0x49B
0x4B1
0x4C7
0x4DD
O0x4F3

Blue Offset
0x0000.1D48
0x0000.1DF8
0x0000.1EA8
0x0000.1F58
0x0000.2008
0x0000.20B8
0x0000.2168
0x0000.2218
0x0000.22C8
0x0000.2378
0x0000.2428
0x0000.24D8
0x0000.2588
0x0000.2638
0x0000.26E8
0x0000.2798

These registers hold the specular intensity per color component the light contributes to the scene.

The nominal range of values is 0.0 to 1.0, although this is not enforced.

The register name is formed by inserting the light number for » and appending Red, Green or Blue

as appropriate.

160

Proprietary and Confidential

3D/.2ks

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li ght nSpot | i ghtDi recti onW
Li ght nSpot | i ghtDi recti onX
Li ght nSpot | i ghtDirectionY
Li ght nSpot | i ghtDi rectionZ

Light X Tag X Offset Y Tag Y Offset ZTag Z Offset

0 Ox3AE 0x0000.1D70 Ox3AF 0x0000.1D78 0x3B0O 0x0000.1D80
1 0x3C4 0x0000.1E20 0x3C5 0x0000.1E28 0x3C6 0x0000.1E30
2 0x3DA 0x0000.1EDO 0x3DB 0x0000.1ED8 0x3DC 0x0000.1EEO0
3 0x3F0 0x0000.1F80 Ox3F1 0x0000.1F88 Ox3F2 0x0000.1F90
4 0x406 0x0000.2030 0x407 0x0000.2038 0x408 0x0000.2040
5 0x41C 0x0000.20E0 0x41D 0x0000.20E8 Ox41E 0x0000.20F0
6 0x432 0x0000.2190 0x433 0x0000.2198 0x434 0x0000.21A0
7 0x448 0x0000.2240 0x449 0x0000.2248 Ox44A 0x0000.2250
8 0Ox45E 0x0000.22F0 Ox45F 0x0000.22F8 0x460 0x0000.2300
9 0x474 0x0000.23A0 0x475 0x0000.23A8 0x476 0x0000.23B0
10 0x48A 0x0000.2450 0x48B 0x0000.2458 0x48C 0x0000.2460
11 0x4A0 0x0000.2500 Ox4A1 0x0000.2508 0x4A2 0x0000.2510
12 0x4B6 0x0000.25B0 0x4B7 0x0000.25B8 0x4B8 0x0000.25C0
13 0x4CC 0x0000.2660 0x4CD 0x0000.2668 0x4CE 0x0000.2670
14 Ox4E2 0x0000.2710 Ox4E3 0x0000.2718 Ox4E4 0x0000.2720
15 0x4F8 0x0000.27CO 0x4F9 0x0000.27C8 Ox4FA 0x0000.27D0
Name Access Reset Format

allRead/Write Undefined Float

When the Spotlight bit in the light's mode indicates the light is a spotlight these registers hold the
normalized spot lights direction.

When the Spotlight bit in the light's mode indicates the light is not a spotlight these registers hold
the normalized half vector. The half vector between the light's position vector and the eye vector is
given by the following equation:

h=pP,+(0 0 1)

The register name is formed by inserting the light number for # and appending X, Y or Z as
appropriate.

3D/.bs Proprietary and Confidential 161

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Li ght nSpot | i ght Exponent

Light

P OooO~NOOULh WNPEFEO

o

Name

Tag
0x3B1
0x3C7
0x3DD
O0x3F3
0x409
Ox41F
0x435
0x44B
0x461
ox477
0x48D
Ox4A3
0x4B9
Ox4CF
Ox4E5
Ox4FB

Offset
0x0000.1D88
0x0000.1E38
0x0000.1EE8
0x0000.1F98
0x0000.2048
0x0000.20F8
0x0000.21A8
0x0000.2258
0x0000.2308
0x0000.23B8
0x0000.2468
0x0000.2518
0x0000.25C8
0x0000.2678
0x0000.2728
0x0000.27D8

Access

allRead/Write Undefined

These registers hold the spot light exponent as an unsigned 7.4 fixed point number.

Reset Format
Fixed point

The register name is formed by inserting the light number for 7 .

162

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li ned i pLengt hThreshol d

Name Tag Offset Access Reset Format
LineClipLengthThreshold 0x37B 0x0000.1BD8 Read/Write Undefined Float

This register holds the length (in pixels) below which lines should not be clipped as it is faster to use
screen or window clipping during rasterization . This is enabled in the GeometryMode register and
automatically disabled if the line crossed the near, far or user clipping planes.

It is best to disable this if any of the following conditions arise:

* The viewport is smaller than the window and user scissoring isn't enabled. The rasterization level
clipping cannot be relied upon to do the clipping.

* Select or Feedback modes are enabled. Short lines which would otherwise have been clipped out
will be included in the select or feedback data.

3D/.bs Proprietary and Confidential 163

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Li neMbde

Li neMbdeAnd

Li neMbdeOr

Name Tag Offset Access Reset Format
LineMode 0x295 0x0000.14A8 Read/Write Undefined Bitfield
LineModeAnd 0x55E 0x0000.2AF0 Write Undefined Bitfield
LineModeOr 0x55F 0x0000.2AF8 Write Undefined Bitfield
The LineMode register defines how lines are to be rendered and has the following fields:

Bit No. | Name Description

0 StippleEnable This field, when set, enables the stippling of lines. It only effects wide lines or
antialiased lines. This will normally be the same value as the Enable field in the
LineStippleMode GLINT register.

1...9 RepeatFactor This 9 bit field holds the repeat factor for antialiased stippled lines. This will normally
be the same value as the RepeatFactor field in the LineStippleMode GLINT register.
The repeat factor stored here is one less than the desired repeat factor.

10...25 | StippleMask This 16 bit field holds the stipple pattern to use for antialiased lines. This will
normally be the same value as the StippleMask field in the LineStippleMode GLINT
register.

26 Mirror This field, when set, will mirror the StippleMask before it is used for antialiased lines.
This will normally be the same value as the Mirror field in the LineStippleMode
GLINT register.

27 AntialiasEnable This field, when set, enables antialiasing of lines. This is qualified by the
AntialiasEnable field in the Begin command.

28 AntialiasingQuality | This field defines the quality of antialiased lines:

0 = 4x4
1 =8x8

Writing to the LineModeAnd and LineModeOr registers logically combine the new value with the
existing values in the LineMode register rather than replacing its contents.

164

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Li neW dt h

Name Tag Offset Access Reset Format
LineWidth 0x296 0x0000.14B0 Read/Write Undefined Integer

This register holds the 8 bit unsigned integer width for aliased lines. The width is measured in
pixels. A zero width is treated as if the width were one. The LineWidthOffset register must also be
set up as well.

Li neW dt hOF f set

Name Tag Offset Access Reset Format
LineWidthOffset 0x297 0x0000.14B8 Read/Write Undefined Integer

The LineWidthOffset register is normally set to (LineWidth - 1) / 2. For one pixel wide lines the
LineWidthOffset is set to 0.

This sets up the initial offset subtracted from the line's mathematical X (for Y major lines) or Y (for
X major lines) before the line is stepped and repeated LineWidth times.

3D/.bs Proprietary and Confidential 165

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

LoadNane

Name Tag Offset Access Reset Format
LoadName 0x2BE 0x0000.15F0 Write Undefined Integer

This command replaces the name at the top of the name stack with the given name (a 32 bit integer)
when in select mode (RenderMode field in GeometryMode register).

If the hit flag is set and select mode is enabled then the hit record is written to the GLINT's Host
Out FIFO and the hit flag reset.

The hit record consists of (in order):
The count of the names (NameCount) on the stack (plus some error flags),
The minimum Z value as a normalized floating point number,
The maximum Z value as a normalized floating point number,

The name stack entries, oldest first (variable number [0...64] words.

Bits 14 and 15 in the FilterMode register in GLINT must be set to allow the SelectRecord tag and
data values to be written in to the FIFO - all the select record data uses the same tag.

The NameCount value has the following fields:

Bit Name Description

0...6 | Count This field holds the number of names on the name stack.

7...28 Not used.

29 InvalidOperation = A LoadName operation was attempted on an empty name stack when this hit

record was being collected. This is cleared for subsequent hit records (unless
they manifest this error) however the stack may no longer be totally valid.

30 StackUnderflow The name stack was popped while empty when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

31 StackOverflow The name stack was pushed while full when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

The LoadName stack manipulation command is ignored when not in Select mode.

166 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Mat eri al Mbde
Mat eri al ModeAnd
Mat eri al ModeOr

Name Tag Offset Access Reset Format
MaterialMode 0x2A6 0x0000.1530 Read/Write Undefined Bitfield
MaterialModeAnd 0x562 0x0000.2B10 Write Undefined Bitfield
MaterialModeOr 0x563 0x0000.2B18 Write Undefined Bitfield
This register has the following fields:

Bit No. Name Description

0 Enable When set causes the vertex to be calculated from the lighting equations
otherwise the current color is assigned.

1 DiffuseTextureEnable When set allows the diffuse texture color to be calculated and sent to
GLINT. This is further qualified by the EnableTexture bit in the Begin
command so is only done when texture mapping is enabled.

2 SpecularTextureEnable When set allows the specular texture color to be calculated and sent to
GLINT. This is further qualified by the EnableTexture bit in the Begin
command so is only done when texture mapping is enabled.

3 MonochromeDiffuseTexture When set the diffuse texture color is converted to a monochrome value
before it is sent to GLINT. This allows the diffuse texture DDA in
GLINT 500TX to be set up.

When clear the true color value is sent and is used when the target
rendering chip is GLINT MX as it has true color diffuse texture DDAs.

4 MonochromeSpecularTexture | When set the specular texture color is converted to a monochrome value
before it is sent to GLINT. This allows the specular texture DDA in
GLINT 500TX to be set up.

When clear the true color value is sent and is used when the target
rendering chip is GLINT MX as it has true color specular texture
DDA:s.

5 PremultiplyAlpha When set premultiplies the diffuse and ambient colors by the material
alpha value.

6 ColorSource This field selects where the color should be taken from when the Enable
field is 0. The options are:

0 Current color value.
1 Diffuse material value.
7,8 TwoSidedLighting The three options are:
0 Use the front side materials.
1 Use the back side materials.
2 Use the orientation of the face to select between front or back
materials and lighting.

The selection between Gouraud and flat shading is controlled by the FlatShading bit in
GeometryMode. The SmoothShadingEnable bit in the DeltaMode register is ignored.

Writing to the MaterialModeAnd and MaterialModeOr registers logically combine the new value
with the existing values in the MaterialMode register rather than replacing its contents.

3D/.sbs

Proprietary and Confidential 167

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Model Vi ewivat ri x0 ...

Name
ModelViewMatrix0
ModelViewMatrix1
ModelViewMatrix2
ModelViewMatrix3
ModelViewMatrix4
ModelViewMatrix5
ModelViewMatrix6
ModelViewMatrix7
ModelViewMatrix8
ModelViewMatrix9
ModelViewMatrix10
ModelViewMatrix11
ModelViewMatrix12
ModelViewMatrix13
ModelViewMatrix14
ModelViewMatrix15

Tag
0x320
0x321
0x322
0x323
0x324
0x325
0x326
0x327
0x328
0x329
0x32A
0x32B
0x32C
0x32D
0x32E
0x32F

ModelViewMatrix15

Offset
0x0000.1900
0x0000.1908
0x0000.1910
0x0000.1918
0x0000.1920
0x0000.1928
0x0000.1930
0x0000.1938
0x0000.1940
0x0000.1948
0x0000.1950
0x0000.1958
0x0000.1960
0x0000.1968
0x0000.1970
0x0000.1978

Access
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

Reset
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Format

Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float

These 16 registers hold the model view matrix used to multiply the input vertex coordinates (as a

column vector). If the matrix is subscripted:

M,
M,
M,

v,

MS M12|:
9 MlSB
(0] Ml4|:|
1 M15

then the numerical subscripts give the order the elements are stored in the matrix registers (i.e. My is

stored in ModelViewMatrix0, for example) and these follow the column-major order convention.

Note this is different from the convention C uses which follows the row-major order.

This matrix is only used if enabled by the TransformMode register and can be avoided if the vertex

in eye space is not needed for fog, lighting, texture generation or user clipping.

168

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

ModelViewProjectionMatrixO...
ModelViewProjectionMatrix15

Name Tag Offset Access Reset Format
ModelViewProjectionMatrix0 ~ 0x330 0x0000.1980 Read/Write Undefined Float
ModelViewProjectionMatrix] ~ 0x331 0x0000.1988 Read/Write Undefined Float
ModelViewProjectionMatrix2 ~ 0x332 0x0000.1990 Read/Write Undefined Float
ModelViewProjectionMatrix3 0x333 0x0000.1998 Read/Write Undefined Float
ModelViewProjectionMatrix4 ~ 0x334 0x0000.19A0 Read/Write Undefined Float
ModelViewProjectionMatrix5 0x335 0x0000.19A8 Read/Write Undefined Float
ModelViewProjectionMatrix6 ~ 0x336 0x0000.19B0 Read/Write Undefined Float
ModelViewProjectionMatrix7 0x337 0x0000.19B8 Read/Write Undefined Float
ModelViewProjectionMatrix8 0x338 0x0000.19CO Read/Write Undefined Float
ModelViewProjectionMatrix9 0x339 0x0000.19C8 Read/Write Undefined Float
ModelViewProjectionMatrix10 0x33A 0x0000.19D0 Read/Write Undefined Float
ModelViewProjectionMatrix11 0x33B 0x0000.19D8 Read/Write Undefined Float
ModelViewProjectionMatrix12 0x33C 0x0000.19E0 Read/Write Undefined Float
ModelViewProjectionMatrix13 0x33D 0x0000.19E8 Read/Write Undefined Float
ModelViewProjectionMatrix14 0x33E 0x0000.19F0 Read/Write Undefined Float
ModelViewProjectionMatrix15 0x33F 0x0000.19F8 Read/Write Undefined Float

These 16 registers hold the concatenated model view matrix and projection matrix used to multiply

the input vertex coordinates (as a column vector). If the matrix is subscripted:

M, M, My My,LC
O O
DMl M; M, M13|:|
M, Mg M, M,O
HMs M, M, Mg

then the numerical subscripts give the order the elements are stored in the matrix registers (i.e. My is
stored in ModelViewProjectionMatrix0 for example) and these follow the column-major order
convention. Note this is different from the convention C uses which follows the row-major order.

This matrix should always be enabled by the TransformMode register.

169

3D/.bs Proprietary and Confidential

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Nor mal i zeMbode

Nor mal i zeMbodeAnd

Nor mal i zeMbdeOr

Name Tag Offset Access
NormalizeMode 0x2A3 0x0000.1518 Read/Write
NormalizeModeAnd 0x554 0x0000.2AA0 Write
NormalizeModeOr 0x555 0x0000.2AA8 Write

This register has the following fields:

Reset
Undefined
Undefined
Undefined

Format
Bitfield
Bitfield
Bitfield

Bit No. Name Description

0 NormalEnable When set causes any normals to be normalized.

1 FaceNormalEnable When set causes any face normals supplied by the user to be
normalized. If the face normal is only being used for culling then it
never needs to be normalized.

2 InvertAutoFaceNormal When set causes the automatically generated face normal to have its

direction reversed.

Writing to the NormalizeModeAnd and NormalizeModeOr registers logically combine the new
value with the existing values in the NormalizeMode register rather than replacing its contents.

These registers are also spelt as NormaliseMode, NormaliseModeAnd and NormaliseModeOr

170

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

NormalMatrixO ... NormalMatrix8

Name Tag Offset Access Reset Format
NormalMatrix0 0x340 0x0000.1A00 Read/Write Undefined Float
NormalMatrix1 0x341 0x0000.1A08 Read/Write Undefined Float
NormalMatrix2 0x342 0x0000.1A10 Read/Write Undefined Float
NormalMatrix3 0x343 0x0000.1A18 Read/Write Undefined Float
NormalMatrix4 0x344 0x0000.1A20 Read/Write Undefined Float
NormalMatrix5 0x345 0x0000.1A28 Read/Write Undefined Float
NormalMatrix6 0x346 0x0000.1A30 Read/Write Undefined Float
NormalMatrix7 0x347 0x0000.1A38 Read/Write Undefined Float
NormalMatrix8 0x348 0x0000.1A40 Read/Write Undefined Float

These 9 registers hold the normal matrix used to transform the vertex normal or face normal into

eye space (where lighting is done). If the matrix is subscripted:

ON, N, N

N N Ng
N, N Ny

then the numerical subscripts give the order the elements are stored in the matrix registers (i.e. Ny is

stored in NormalMatrix0, for example) and these follow the column-major order convention. Note

this is different from the convention C uses which follows the row-major order.

The Normal matrix is usually the inverse transpose of the upper 3x3 part of the ModelView matrix.

This matrix is only used if enabled by the TransformMode register and can be avoided if lighting,

sphere map in texture generation or face culling (using the face normal) are not required. There are

separate enables for vertex normals and face normals.

3D/.sbs

Proprietary and Confidential

171

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

NX

Name Tag

Nx 0x302
Ny 0x301
Nz 0x300

Offset
0x0000.1810
0x0000.1808
0x0000.1800

Access Reset Format
Read/Write/TriggerUndefined Float
Read/Write Undefined Float
Read/Write Undefined Float

These registers hold the x, y and z normal components. The Nx register must be written last as this

write will trigger the normal to be entered into Gamma. All the normal components should be

written together and not interleaved with writes to the color (C*), face normal (N*), texture (T*) or

vertex (V*) registers.

The normal is used for lighting and it is optionally transformed by the NormalMatrix. It must have

a unit length for lighting to work properly. The normal can be optionally normalized, if necessary.

See also: NormalMatrix, TransformMode, NormalizeMode, GeometryMode, LightingMode.

172

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Offset
0x0000.15A8

Name Tag
ObjectIDValue 0x2B5

This is for future use.

Name Tag Offset
PackedColor3 0x313 0x0000.1898
PackedColor4 0x314 0x0000.18A0

(bj ect | Dval ue

Reset Format

Undefined

Access

Read/Write

Integer

PackedCol or 3
PackedCol or 4

Access Reset Format
Write Undefined Bitfield
Write Undefined Bitfield

These registers provide a more compact way of getting colors into Gamma. The color information

is packed as unsigned bytes with red in the lowest byte, then green, then blue and finally alpha in the

most significant byte.

The unsigned byte color components are divided by 255.0 to convert them into floats for internal

use.

In PackedColor3 the alpha value is ignored and is always set to 1.0.

3D/.sbs

Proprietary and Confidential 173

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

PassThr ough

Name Tag Offset Access Reset Format
PassThrough 0x1FE 0x0000.0FF0 Output Undefined Integer

This command passes straight through Gamma and GLINT without changing any state or causing
any other action. The tag and data are written into the GLINT Host Out FIFO (assuming bits 14
and 15 in the GLINT FilterMode register are set). This would typically be used to inject marker
tags into a feedback buffer.

Poi nt Mbde
Poi nt ModeAnd
Poi nt ModeOr

Name Tag Offset Access Reset Format
PointMode 0x292 0x0000.1490 Read/Write Undefined Bitfield
PointModeAnd 0x55C 0x0000.2AE0 Write Undefined Bitfield
PointModeOr 0x55D 0x0000.2AES8 Write Undefined Bitfield
This register has the following fields:

Bit No. | Name Description

0 AntialiasEnable This field, when set, enables antialiasing of points. This is qualified by the

AntialiasEnable field in the Begin command. Note the Point Table in
GLINT must be set up for the corresponding point size (held in AAPointSize
register) and the selected antialiasing quality (next field).
1 AntialiasingQuality This field defines the quality of antialiased points:

0 = 4x4

1 = 8x8
The Point Table in GLINT must be set up appropriately for the quality and
the AAPointSize.

Writing to the PointModeAnd and PointModeOr registers logically combine the new value with
the existing values in the PointMode register rather than replacing its contents.

174 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Poi nt Si ze
Name Tag Offset Access Reset Format
PointSize 0x293 0x0000.1498 Read/Write Undefined Integer

This register holds the point size (diameter) used for aliased points. The size is held as an unsigned 8
bit value and a size of zero is treated as a size of one.

Pol ygonOf f set Bi as
Pol ygonO f set Fact or

Name Tag Offset Access Reset Format
PolygonOffsetBias 0x37A 0x0000.1BDO Read/Write Undefined Float
PolygonOffsetFactor 0x379 0x0000.1BC8 Read/Write Undefined Float

These registers hold the polygon offset and bias values used during polygon offset processing
(enabled in the GeometryMode register).

3D/.bs Proprietary and Confidential 175

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

PopNanme

Name Tag Offset Access Reset Format
PopName 0x2BD 0x0000.15E8 Write Undefined Unused

This command removes the name at the top of the name stack when in select mode (RenderMode

field in GeometryMode register).

If the hit flag is set and select mode is enabled then the hit record is written to the GLINT's Host
Out FIFO and the hit flag reset.

The hit record consists of (in order):
The count of the names (NameCount) on the stack (plus some error flags),
The minimum Z value as a normalized floating point number,
The maximum Z value as a normalized floating point number,

The name stack entries, oldest first (variable number [0...64] words.

Bits 14 and 15 in the FilterMode register in GLINT must be set to allow the SelectRecord tag and
data values to be written in to the FIFO - all the select record data uses the same tag.

The NameCount value has the following fields:

Bit Name Description

0...6 | Count This field holds the number of names on the name stack.

7...28 Not used.

29 InvalidOperation = A LoadName operation was attempted on an empty name stack when this hit

record was being collected. This is cleared for subsequent hit records (unless
they manifest this error) however the stack may no longer be totally valid.

30 StackUnderflow The name stack was popped while empty when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

31 StackOverflow The name stack was pushed while full when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

The PopName stack manipulation command is ignored when not in Select mode.

176 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

PushNane

Name Tag Offset Access Reset Format
PushName 0x2BC 0x0000.15E0 Write Undefined Integer

This command pushes the given name (a 32 bit integer) onto the name stack when in select mode

(RenderMode field in GeometryMode register).

If the hit flag is set and select mode is enabled then the hit record is written to the GLINT's Host
Out FIFO and the hit flag reset.

The hit record consists of (in order):
The count of the names (NameCount) on the stack (plus some error flags),
The minimum Z value as a normalized floating point number,
The maximum Z value as a normalized floating point number,

The name stack entries, oldest first (variable number [0...64] words.

Bits 14 and 15 in the FilterMode register in GLINT must be set to allow the SelectRecord tag and
data values to be written in to the FIFO - all the select record data uses the same tag.

The NameCount value has the following fields:

Bit Name Description

0...6 | Count This field holds the number of names on the name stack.

7...28 Not used.

29 InvalidOperation = A LoadName operation was attempted on an empty name stack when this hit

record was being collected. This is cleared for subsequent hit records (unless
they manifest this error) however the stack may no longer be totally valid.

30 StackUnderflow The name stack was popped while empty when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

31 StackOverflow The name stack was pushed while full when this hit record was being collected.
This is cleared for subsequent hit records (unless they manifest this error)

however the stack may no longer be totally valid.

The PushName stack manipulation command is ignored when not in Select mode.

3D/.bs Proprietary and Confidential 177

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Rast er Pos Xl ncr enent
Rast er PosYIl ncr enent

Name Tag Offset Access Reset Format
RasterPosXIncrement 0x37D 0x0000.1BES Read/Write Undefined Float
RasterPosYIncrement 0x37E 0x0000.1BFO Read/Write Undefined Float

These registers hold the value to add to the raster pointer’s coordinate after it is rendered (only if it
passed the chip test). The increment is measured in pixels.

Rast er PosXOF f set
Rast er PosYOr f set

Name Tag Offset Access Reset Format
RasterPosXOffset 0x39D 0x0000.1CES8 Read/Write Undefined Float
RasterPosYOffset 0x39E 0x0000.1CF0 Read/Write Undefined Float

These registers hold an offset added to the raster pointer’s coordinate prior to rendering. The raster
pointer is not updated. The offset is measured in pixels.

178 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Rect angl e2DCont r ol

Name Tag Offset Access Reset Format
Rectangle2DControl 0x29E 0x0000.14F0 Read/Write Undefined Boolean

This register has a single bit to specify whether the DrawRectangle2D command is to use GID
window clipping (1) or not (0). The side effects of this are:

Window clipping Side effect
0 Use spans and no local buffer reads (GIDs are not used/needed).
1 Don't use spans and the local buffer is read.

3D/.bs Proprietary and Confidential 179

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Rect angl e2DMVbde

Name Tag Offset Access Reset Format
Rectangle2DMode 0x29D 0x0000.14E8 Read/Write Undefined Bitfield

This register has the following fields and this is used by the DrawRectangle2D command to

rasterize rectangles .

Bit No. Name Description
0...11 | Width Width of the rectangle. Twelve bit field with range 0...4095
12...23 Height Height of the rectangle. Twelve bit field with range 0...4095
24 AreaStippleEnable Passed to rasterizer in the Render command.
25 SyncOnBitMask Passed to rasterizer in the Render command.
26 SyncOnHostData Passed to rasterizer in the Render command.
27 TextureEnable Passed to rasterizer in the Render command.
28 FogEnable Passed to rasterizer in the Render command.
29 SpanOperation Passed to rasterizer in the Render command.
30 HorizontalDirection Sets the horizontal rasterization direction.
0 = Left to Right
1 = Right to Left
31 VerticalDirection Sets the vertical rasterization direction.
0 = Increasing Y
1 = Decreasing Y

See also DrawRectangle2D, Rectangle2D Control.

Rect angl eHei ght

Name Tag Offset Access Reset Format
RectangleHeight 0x29C 0x0000.14E0 Read/Write Undefined Float

This register holds the height of the rectangle when GeomRectangle command is used. It should be
a positive number. The origin (color, texture, etc.) of the rectangle is set by the raster position and
the opposite vertical edge is set by adding on the height value.

See also: GeomRectangle, RectangleWidth, RP*

180 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Rect angl eMbde

Name Tag Offset Access Reset Format
RectangleMode 0x29A 0x0000.14D0 Read/Write Undefined Bitfield

This register holds the rasterizer mode to use for the GeomRectangle command. This mode is

identical to the data provided with the GLINT Render command.

Rect angl eW dt h

Name Tag Offset Access Reset Format
RectangleWidth 0x29B 0x0000.14D8 Read/Write Undefined Float

This register holds the width of the rectangle when GeomRectangle command is used. It should be
a positive number. The origin (color, texture, etc.) of the rectangle is set by the raster position and
the opposite horizontal edge is set by adding on the width value.

See also: GeomRectangle, RectangleHeight, RP*

3D/.bs Proprietary and Confidential 181

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Repeat Li ne

Name Tag Offset Access Reset Format
RepeatLine 0x265 0x0000.1328 Write Undefined Unused

This command causes the previous line drawn with DrawLine01 or DrawLinel0 to be repeated. It
would be normal for some mode or other state information to have been changed before the line is
repeated. An example of this is to use scissor clipping with the line being repeated for each clip
rectangle.

This is a legacy command and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

Repeat Tri angl e

Name Tag Offset Access Reset Format
RepeatTriangle 0x262 0x0000.1310 Write Undefined Unused

This command causes the previous triangle drawn with DrawTriangle to be repeated. It would be
normal for some mode or other state information to have been changed before the triangle is
repeated. An example of this is to use scissor clipping with the triangle being repeated for each clip
rectangle.

This is a legacy command and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

182 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Rest or eCur r ent

Name Tag Offset Access Reset Format
RestoreCurrent 0x2BA 0x0000.15D0 Write Undefined Unused

This command causes the current color, current normal and current texture values to be restored
from internal registers. This is useful for preserving the current values across evaluator calls in

OpenGL.

See also: SaveCurrent.

3D/.bs Proprietary and Confidential 183

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

RPw

RPx 2
RPx 3
RPx4

RPy
RPz

Name Tag Offset Access Reset Format
RPw 0x319 0x0000.18C8 Write Undefined Float
RPx2 0x31C 0x0000.18E0 Write/Trigger Undefined Float
RPx3 0x31D 0x0000.18E8 Write/Trigger Undefined Float
RPx4 0x31E 0x0000.18F0 Write/Trigger Undefined Float
RPy 0x31B 0x0000.18D8 Write Undefined Float
RPz 0x31A 0x0000.18D0 Write Undefined Float

These registers hold the x, y and z raster position components. The RPx2, RPx3 or RPx4 registers
must be written to last as the write will trigger the raster position to be entered into Gamma. All the
raster position components should be written together and not interleaved with writes to the color
(C*), face normal (FN*), normal (N*) or texture (T*) registers.

Writing to RPx2 will ignore any supplied values for RPz and RPw and set them to 0.0 and 1.0
respectively.

Writing to RPx3 will ignore any supplied values for RPw and set it to 1.0.

A raster position is optionally transformed by the ModelViewMatrix and/or the
ModelViewProjectionMatrix.

Once the raster position has been entered into Gamma it is transformed and lit like a regular vertex
and causes the resultant color, texture, fog and coordinate to be saved for later use by the
GeomRectangle command. No primitive is rendered, however, if Gamma is in Select mode (set in
RenderMode field in the GeometryMode register) a select hit may occur.

The raster position should not be sent between the Begin and End commands as it will corrupt
vertex data.

See also: TransformMode, GeomRectangle.

184 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

SaveCurr ent

Name Tag Offset Access Reset Format
SaveCurrent 0x2B9 0x0000.15C8 Write Undefined Unused

This command causes the current color, current normal and current texture values to be saved in
internal registers. Only one level of saving can be done. This is useful for preserving the current
values across evaluator calls in OpenGL.

See also: RestoreCurrent.

SceneAnhi ent Col or Bl ue
SceneAnmhi ent Col or G een
SceneAnmhi ent Col or Red

Name Tag Offset Access Reset Format
SceneAmbientColorBlue 0x502 0x0000.2810 Read/Write Undefined Float
SceneAmbientColorGreen 0x501 0x0000.2808 Read/Write Undefined Float
SceneAmbientColorRed 0x500 0x0000.2800 Read/Write Undefined Float

These registers hold the scene ambient color values used in lighting the equations. The normal range
of values is 0.0 ... 1.0, however any value can be used.

3D/.bs Proprietary and Confidential 185

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Sel ect Record

Name Tag Offset Access Reset Format
SelectRecord 0x1FD 0x0000.0FES8 Output Undefined Variable

The select record is written into GLINT's Host Out FIFO when select mode is enabled
(RenderMode field in GeometryMode) and a name stack operation (LoadName, PushName,

PopName) occurs after a hit has been found, or on a SelectResult when a hit record has been

found.

All the words in a hit record are given the SelectRecord tag and the select record consists of (in
order):

The count of the names (NameCount) on the stack (plus some error flags),
The minimum Z value as a normalized floating point number,

The maximum Z value as a normalized floating point number,

The name stack entries, oldest first (variable number [0...64] words.

Bits 14 and 15 in the FilterMode register in GLINT must be set to allow the SelectRecord tag and
data values to be written in to the FIFO - all the select record data uses the same tag.

The NameCount value has the following fields:

Bit No. | Name Description

0...6 Count This field holds the number of names on the name stack.

7...28 Not used.

29 InvalidOperation A LoadName operation was attempted on an empty name stack when this hit

record was being collected. This is cleared for subsequent hit records (unless
they manifest this error) however the stack may no longer be totally valid.

30 StackUnderflow The name stack was popped while empty when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this
error) however the stack may no longer be totally valid.

31 StackOverflow The name stack was pushed while full when this hit record was being
collected. This is cleared for subsequent hit records (unless they manifest this

error) however the stack may no longer be totally valid.

186 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Sel ect Resul t

Name Tag Offset Access Reset Format
SelectResult 0x2B0 0x0000.1580 Write Undefined Unused

The SelectResult command flushes out the select record if a hit had occurred since the last time the
select record was written out. This avoids doing a name stack manipulation to get the select record
out which may result in a stack under or over flow.

3D/.bs Proprietary and Confidential 187

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

TexGenO... TexGenl5

Name
TexGen0
TexGenl
TexGen2
TexGen3
TexGen4
TexGen5
TexGenb
TexGen7
TexGen8
TexGen9
TexGenl0
TexGenll
TexGenl2
TexGenl3
TexGenl4
TexGenl5

Tag
0x360
0x361
0x362
0x363
0x364
0x365
0x366
0x367
0x368
0x369
0x36A
0x36B
0x36C
0x36D
0x36E
0x36F

Offset
0x0000.1B00
0x0000.1B08
0x0000.1B10
0x0000.1B18
0x0000.1B20
0x0000.1B28
0x0000.1B30
0x0000.1B38
0x0000.1B40
0x0000.1B48
0x0000.1B50
0x0000.1B58
0x0000.1B60
0x0000.1B68
0x0000.1B70
0x0000.1B78

Access
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

Reset
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Format
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float

These registers hold the texture generation coefficients to be used for object and eye linear texture

generation. Each texture component has 4 registers assigned to hold the coefficients for object linear

or eye linear operation for that component. The registers are assigned as follows:

Texture component

S
T
R

Q

Registers
TexGenO, TexGenl, TexGen2, TexGen3
TexGen4, TexGen5, TexGen6, TexGen7
TexGen8, TexGen9, TexGenl0, TexGenl1
TexGenl2, TexGenl3, TexGenl4, TexGenl5

The texture generation modes are controlled by the TransformMode register.

188

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Name
TextureMatrix0
TextureMatrix1
TextureMatrix2
TextureMatrix3
TextureMatrix4
TextureMatrix5
TextureMatrix6
TextureMatrix7
TextureMatrix8
TextureMatrix9
TextureMatrix10
TextureMatrix11
TextureMatrix12
TextureMatrix13
TextureMatrix14
TextureMatrix15

TextureMatrixO... TextureMatrix15

Tag
0x350
0x351
0x352
0x353
0x354
0x355
0x356
0x357
0x358
0x359
0x35A
0x35B
0x35C
0x35D
0x35E
0x35F

Offset
0x0000.1A80
0x0000.1A88
0x0000.1A90
0x0000.1A98
0x0000.1AA0
0x0000.1AAS8
0x0000.1ABO
0x0000.1AB8
0x0000.1ACO
0x0000.1AC8
0x0000.1ADO
0x0000.1AD8
0x0000.1AE0
0x0000.1AE8
0x0000.1AF0
0x0000.1AF8

Access
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

Reset
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Format

Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float

These 16 registers hold the texture matrix used to multiply the input vertex coordinates (as a column

vector). If the matrix is subscripted:

M, M,
0

DMl M5
M, M,
M, M,

M,,C

U
MlSD
My, O

Iv|15

then the numerical subscripts give the order the elements are stored in the matrix registers (i.e. My is

stored in TextureMatrix0, for example) and these follow the column-major order convention. Note

this is different from the convention C uses which follows the row-major order.

This matrix is only used if enabled by the TransformMode register and can be avoided if the texture

matrix is a unit matrix, or the API doesn't support texture matrices.

3D/.sbs

Proprietary and Confidential

189

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

Tr ansf or nCurr ent

Name Tag Offset Access Reset Format
TransformCurrent 0x2B7 0x0000.15B8 Write Undefined Bitfield

This command is used to refresh the current values when they have been restored using the
ContextRestore command with the CurrentState bit set. It has the following fields:

Bit No. Name Description

0 Normal When set refreshes the vertex normal.

1 FaceNormal When set refreshes the face normal.

2 Texture When set refreshes the texture coordinates.
3 Color When set refreshes the color.

190 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Name Tag Offset

TransformMode 0x2A1 0x0000.1508
TransformModeAnd 0x550 0x0000.2A80
TransformModeOr 0x551 0x0000.2A88

This register has the following fields:

Tr ansf or mvbde
Tr ansf or mMvbdeAnd
Tr ansf or mvbdeOr

Access
Read/Write
Write
Write

Reset
Undefined
Undefined
Undefined

Format
Bitfield
Bitfield
Bitfield

Bit No.

Name

Description

0

UseModelViewMatrix

When set causes the incoming vertex to be multiplied by the
ModelView matrix. This is only necessary if the vertex in eye space
is needed for subsequent processing. A slight gain in performance
will be seen when this transformation is disabled. The eye space
vertex is used for EyeLinear TexGen, user clipping planes, fog,
lighting, or auto generation of the face normal..

UseModelViewProjectionMatrix

When set causes the incoming vertex to be multiplied by the
ModelViewProjection matrix to calculate coordinates in clip space.
This bit should normally be set.

TransformNormal

When set causes any incoming vertex normal to be multiplied by
the Normal matrix. This only needs to be set if lighting is used or
TexGen SphereMap is selected.

TransformFaceNormal

When set causes any incoming face normal to be multiplied by the
Normal matrix. This only needs to be set if face normal lighting is
used and/or if face normal backface test is enabled.

TransformTexture

When set causes the incoming texture or the texture generated from
the TexGen operation to be multiplied by the Texture matrix.
Frequently the texture matrix will be a unit matrix so the
transformation can be preferably avoided.

5)6

TexGenModeS

This field controls the automatic generation of texture coordinates
for the S texture component from the vertex or normal
information. The TexGen operations are:

0 = None.

1 = ObjectLinear.

2 = EyeLinear.

3 = SphereMap.

7,8

TexGenModeT

This field controls the automatic generation of texture coordinates
for the T texture component from the vertex or normal
information. The TexGen operations are:

0 = None.

1 = ObjectLinear.

2 = EyeLinear.

3 = SphereMap.

3D/.sbs

Proprietary and Confidential 191

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

9,10 TexGenModeR This field controls the automatic generation of texture coordinates
for the R texture component from the vertex or normal
information. The TexGen operations are:

0 = None.

1 = ObjectLinear.

2 = EyeLinear.

3 = None (SphereMap is illegal).

9,10 TexGenModeR This field controls the automatic generation of texture coordinates
for the R texture component from the vertex or normal
information. The TexGen operations are:

0 = None.

1 = ObjectLinear.

2 = EyeLinear.

3 = None (SphereMap is illegal).

11,12 | TexGenModeQ This field controls the automatic generation of texture coordinates
for the Q texture component from the vertex or normal
information. The TexGen operations are:

0 = None.

1 = ObjectLinear.

2 = EyeLinear.

3 = None (SphereMap is illegal).

13 TexGenS When this bit is set the S component of the texture coordinate is
generated automatically, otherwise it is taken from the current
texture S value. This only has an effect when the TexGen
operation is ObjectLinear, EyeLinear or SphereMap.

14 TexGenT When this bit is set the T component of the texture coordinate is
generated automatically, otherwise it is taken from the current
texture T value. This only has an effect when the TexGen
operation is ObjectLinear, EyeLinear or SphereMap.

15 TexGenR When this bit is set the R component of the texture coordinate is
generated automatically, otherwise it is taken from the current
texture R value. This only has an effect when the TexGen
operation is ObjectLinear or EyeLinear.

16 TexGenQ When this bit is set the Q component of the texture coordinate is
generated automatically, otherwise it is taken from the current
texture Q value. This only has an effect when the TexGen
operation is ObjectLinear or EyeLinear.

Writing to the TransformModeAnd and TransformModeOr registers logically combine the new
value with the existing values in the TransformMode register rather than replacing its contents.

192 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Tri angl el i pAreaThreshol d

Name Tag Offset Access Reset Format
TriangleClipAreaThreshold ~ 0x37C 0x0000.1BEO Read/Write Undefined Float

This register holds the area below which triangles should not be clipped as it is faster to use screen or
window clipping during rasterization . This is enabled in the GeometryMode register and
automatically disabled if the triangle crossed the near, far or user clipping planes.

The area tested against is twice the desired area in pixels. For example, triangles with a true area of 5
pixels or less should not be clipped then this register will have the value of 10 written into it.

It is best to disable this if any of the following conditions arise:

* The viewport is smaller than the window and user scissoring isn't enabled. The rasterization
level clipping cannot be relied on to do the clipping.

e Select or Feedback modes are enabled. Small triangles which would otherwise have been
clipped out will be included in the select or feedback data.

3D/.bs Proprietary and Confidential 193

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Tri angl eMode
Tri angl eModeAnd
Tri angl eModeOr

Name Tag Offset Access Reset Format
TriangleMode 0x299 0x0000.14C8 Read/Write Undefined Bitfield
TriangleModeAnd 0x560 0x0000.2B00 Write Undefined Bitfield
TriangleModeOr 0x561 0x0000.2B08 Write Undefined Bitfield
The TriangleMode register has the following fields:

Bit No. Name Description

0 AntialiasEnable This field, when set, enables antialiasing of triangles. This is qualified by

1 AntialiasingQuality This field defines the quality of antialiased triangles:
0=4x4
1 =8x8
2 UseTrianglePacketInterface This field, when set, causes the triangle set up to use the Triangle Packet

the AntialiasEnable field in the Begin command.

Interface to send the triangle parameters to GLINT. This is only
supported in GLINT MX and provides a higher triangle throughput.

Writing to the TriangleModeAnd and TriangleModeOr registers logically combine the new value

with the existing values in the TriangleMode register rather than replacing its contents.

194

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Tq4
Tr4
Ts1
Ts?2
Ts4
Tt 2
Tt 4

Name Tag Offset Access Reset Format
Ts10x31F 0x0000.18F8 Read/Write/ Trigger Undefined Float

Ts20x309 0x0000.1848 Read/Write/ Trigger Undefined Float

Tt20x308 0x0000.1840 Read/Write Undefined Float

Ts40x318 0x0000.18C0 Read/Write/Trigger Undefined Float

Tt40x317 0x0000.18B8 Read/Write Undefined Float

Trd 0x316 0x0000.18B0 Read/Write Undefined Float
Tq4 0x315 0x0000.18A8 Read/Write Undefined Float

These registers hold the s, t, r and q texture components. The Ts1, Ts2 or Ts4 registers must be
written last as they write will trigger the texture to be entered into Gamma. All the texture
components should be written together and not interleaved with writes to the color (C*), face
normal (FN*), normal (N*) or vertex (V*) registers.

Writing to Ts1 will ignore any supplied values for the t, r and q components and set them to 0.0,
0.0 and 1.0 respectively.

Writing to Ts2 will ignore any supplied values for the r and q components and set them to 0.0 and
1.0 respectively.

The t component can be written using either of the registers (Tt2 or Tt4) however the tags are
grouped with the Ts2 or Ts4 registers so the natural one to use depends on what other texture
components are being sent as well.

A texture is optionally transformed by the TextureMatrix.

See also: TransformMode.

3D/.bs Proprietary and Confidential 195

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

UserClipOX...UserClipOW
UserCliplX...UserCliplW
UserClip2X...UserClip2W
UserClip3X...UserClip3W
UserClip4X...UserClip4W
UserClip5X...UserClip5W

Name Tag Offset Access Reset Format
UserClip0X 0x380 0x0000.1C00 Read/Write Undefined Float
UserClip0Y 0x381 0x0000.1C08 Read/Write Undefined Float
UserClip0Z 0x382 0x0000.1C10 Read/Write Undefined Float
UserClip0W 0x383 0x0000.1C18 Read/Write Undefined Float
UserClip1X 0x384 0x0000.1C20 Read/Write Undefined Float
UserCliplY 0x385 0x0000.1C28 Read/Write Undefined Float
UserCliplZ 0x386 0x0000.1C30 Read/Write Undefined Float
UserClipl W 0x387 0x0000.1C38 Read/Write Undefined Float
UserClip2X 0x388 0x0000.1C40 Read/Write Undefined Float
UserClip2Y 0x389 0x0000.1C48 Read/Write Undefined Float
UserClip2Z 0x38A 0x0000.1C50 Read/Write Undefined Float
UserClip2 W 0x38B 0x0000.1C58 Read/Write Undefined Float
UserClip3X 0x38C 0x0000.1C60 Read/Write Undefined Float
UserClip3Y 0x38D 0x0000.1C68 Read/Write Undefined Float
UserClip3Z 0x38E 0x0000.1C70 Read/Write Undefined Float
UserClip3W 0x38F 0x0000.1C78 Read/Write Undefined Float
UserClip4X 0x390 0x0000.1C80 Read/Write Undefined Float
UserClip4Y 0x391 0x0000.1C88 Read/Write Undefined Float
UserClip4Z 0x392 0x0000.1C90 Read/Write Undefined Float
UserClip4W 0x393 0x0000.1C98 Read/Write Undefined Float
UserClip5X 0x394 0x0000.1CA0 Read/Write Undefined Float
UserClip5Y 0x395 0x0000.1CA8 Read/Write Undefined Float
UserClip5Z 0x396 0x0000.1CBO Read/Write Undefined Float
UserClip5W 0x397 0x0000.1CB8 Read/Write Undefined Float

These registers hold the plane equation coefficients for the 6 user clipping planes. The planes are
enabled by the GeometryMode register.

196 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Name
VOFixedA
VOFixedB
VOFixedF
VOFixedG
VOFixedKd
VOFixedKs
VOFixedQ
VOFixedR
VOFixedS
VOFixed T
VOFixedX
VOFixedY
VOFixedZ

Tag
0x208
0x207
0x209
0x206
0x204
0x203
0x202
0x205
0x200
0x201
0x20A
0x20B
0x20C

Offset
0x0000.1040
0x0000.1038
0x0000.1048
0x0000.1030
0x0000.1020
0x0000.1018
0x0000.1010
0x0000.1028
0x0000.1000
0x0000.1008
0x0000.1050
0x0000.1058
0x0000.1060

VOFI xedA
VOFi xedB
VOFI xedF
VOFi xedG
VOFi xedKd
VOFi xedKs
VOFi xedQ
VOFi xedR
VOFi xedS
VOFi xedT
VOFI xedX
VOFi xedY
VOFI xedZ

AccessReset Format
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point
Read/WriteUndefinedFixed Point

The input format for each parameter is shown below. The s is unsigned and s is 2's complement.

The clamping range, if clamping is enabled, is also shown.

3D/.sbs

Proprietary and Confidential

197

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

These values read back as floating point and share the same storage as the VOFloat* registers.

Category Parameter Fixed Point Format | Clamping Range

s 2.30 s -1.0...1.02
Texture t 2.30 s -1.0...1.0

q 230 1.0...1.0

Ks 2.22 us 0.0...2.0

Kd 2.22 us 0.0...2.0

red 1.30 us 0.0...1.0
Color green 1.30 us 0.0...1.0

blue 1.30 us 0.0...1.0

alpha 1.30 us 0.0...1.0
Fog f 10.22 s -512.0...512.0

x 16.16 s -32K...+32K34
Coordinate y 16.16 s -32K...+32K

z 1.30 us 0.0...1.0

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

I'This is the range when Normalize is not used. When Normalize is enabled the fixed point format can be

anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they
had 2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different
from what the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference

in binary point positions) prior to conversion.

2This is the range when Normalize is not used. When Normalize is enabled the range is extended to 27
approximately. This also applies to the t and q values as well.
3The normal range here is limited by the size of the screen.
4K = 1024.
198 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

VOFI| oat A
VOF| oat B
VOFI| oat F
VOFI| oat G
VOFI| oat Kd
VOFI oat Ks
VOFI oat Q
VOFI| oat R
VOFI| oat S
VOFl oat T
VOFI oat X
VOFI| oat Y
VOFI| oat Z
Name Tag Offset Access Reset Format
VOFloatA 0x238 0x0000.11C0 Read/Write Undefined Float
VOFloatB 0x237 0x0000.11B8 Read/Write Undefined Float
VOFloatF 0x239 0x0000.11C8 Read/Write Undefined Float
VOFloatG 0x236 0x0000.11BO Read/Write Undefined Float
VOFloatKd 0x234 0x0000.11A0 Read/Write Undefined Float
VOFloatKs 0x233 0x0000.1198 Read/Write Undefined Float
VOFloatQ 0x232 0x0000.1190 Read/Write Undefined Float
VOFloatR 0x235 0x0000.11A8 Read/Write Undefined Float
VOFloatS 0x230 0x0000.1180 Read/Write Undefined Float
VOFloatT 0x231 0x0000.1188 Read/Write Undefined Float
VOFloatX 0x23A 0x0000.11D0 Read/Write Undefined Float
VOFloatY 0x23B 0x0000.11D8 Read/Write Undefined Float
VOFloatZ 0x23C 0x0000.11E0 Read/Write Undefined Float
The clamping range, if enabled, for each parameter is shown below.
199

3D/.sbs

Proprietary and Confidential

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

These registers share the same storage as the VOFixed* registers.

Category Parameter Clamping Range

s -1.0...1.0!
Texture t -1.0...1.0

q 1.0...1.0

Ks 0.0...2.0

Kd 0.0...2.0

red 0.0...1.0
Color green 0.0...1.0

blue 0.0...1.0

alpha 0.0...1.0
Fog f -512.0...512.0

X -32K...+32K%3
Coordinate y -32K...+32K

z 0.0...1.0

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT

Delta and none of the additional Gamma functionality is being used.

IThis is the range when Normalize is not used. When Normalize is enabled the range is extended to
approximately. This also applies to the t and q values as well.

2The normal range here is limited by the size of the screen.

3K = 1024.

2132

200

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Name
V1FixedA
V1FixedB
V1FixedF
V1FixedG
V1FixedKd
V1FixedKs
V1FixedQ
V1FixedR
V1FixedS
V1FixedT
V1FixedX
V1FixedY
V1FixedZ

Tag
0x218
0x217
0x219
0x216
0x214
0x213
0x212
0x215
0x210
0x211
0x21A
0x21B
0x21C

Offset
0x0000.10CO0
0x0000.10B8
0x0000.10C8
0x0000.10B0O
0x0000.10A0
0x0000.1098
0x0000.1090
0x0000.10A8
0x0000.1080
0x0000.1088
0x0000.10D0
0x0000.10D8
0x0000.10E0

AccessReset
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

V1Fi xedA
V1Fi xedB
V1Fi xedF
V1Fi xedG
V1Fi xedKd
V1Fi xedKs
V1Fi xedQ
V1Fi xedR
V1Fi xedS
V1Fi xedT
V1Fi xedX
V1Fi xedY
V1Fi xedZ

Format
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point

The input format for each parameter is shown below. The #s is unsigned and s is 2's complement.
p p g p

The clamping range, if clamping is enabled, is also shown.

3D/.sbs

Proprietary and Confidential

201

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

These values read back as floating point and share the same storage as the V1Float* registers.

Category Parameter Fixed Point Format | Clamping Range

s 2.30 s -1.0...1.02
Texture t 2.30 s -1.0...1.0

q 230 1.0...1.0

Ks 2.22 us 0.0...2.0

Kd 2.22 us 0.0...2.0

red 1.30 us 0.0...1.0
Color green 1.30 us 0.0...1.0

blue 1.30 us 0.0...1.0

alpha 1.30 us 0.0...1.0
Fog f 10.22 s -512.0...512.0

x 16.16 s -32K...+32K34
Coordinate y 16.16 s -32K...+32K

z 1.30 us 0.0...1.0

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

I'This is the range when Normalize is not used. When Normalize is enabled the fixed point format can be

anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they
had 2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different
from what the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference

in binary point positions) prior to conversion.

2This is the range when Normalize is not used. When Normalize is enabled the range is extended to 27
approximately. This also applies to the t and q values as well.
3The normal range here is limited by the size of the screen.
4K = 1024.
202 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

V1Fl oat A
V1F| oat B
V1Fl oat F
V1F| oat G
V1F| oat Kd
V1F| oat Ks
V1F| oat Q
V1Fl oat R
V1Fl oat S
V1Fl oat T
V1F| oat X
V1Fl oat Y
V1Fl oat Z
Name Tag Offset Access Reset Format
V1FloatA 0x248 0x0000.1240 Read/Write Undefined Float
V1FloatB 0x247 0x0000.1238 Read/Write Undefined Float
V1FloatF 0x249 0x0000.1248 Read/Write Undefined Float
V1FloatG 0x246 0x0000.1230 Read/Write Undefined Float
V1FloatKd 0x244 0x0000.1220 Read/Write Undefined Float
V1FloatKs 0x243 0x0000.1218 Read/Write Undefined Float
V1FloatQ 0x242 0x0000.1210 Read/Write Undefined Float
V1FloatR 0x245 0x0000.1228 Read/Write Undefined Float
V1FloatS 0x240 0x0000.1200 Read/Write Undefined Float
V1FloatT 0x241 0x0000.1208 Read/Write Undefined Float
V1FloatX 0x24A 0x0000.1250 Read/Write Undefined Float
V1FloatY 0x24B 0x0000.1258 Read/Write Undefined Float
V1FloatZ 0x24C 0x0000.1260 Read/Write Undefined Float
The clamping range, if enabled, for each parameter is shown below.
203

3D/.sbs

Proprietary and Confidential

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

These registers share the same storage as the V1Fixed* registers.

Category Parameter Clamping Range

s -1.0...1.0!
Texture t -1.0...1.0

q 1.0...1.0

Ks 0.0...2.0

Kd 0.0...2.0

red 0.0...1.0
Color green 0.0...1.0

blue 0.0...1.0

alpha 0.0...1.0
Fog f -512.0...512.0

X -32K...+32K%3
Coordinate y -32K...+32K

z 0.0...1.0

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT

Delta and none of the additional Gamma functionality is being used.

IThis is the range when Normalize is not used. When Normalize is enabled the range is extended to
approximately. This also applies to the t and q values as well.

2The normal range here is limited by the size of the screen.

3K = 1024.

2132

204

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

Name
V2FixedA
V2FixedB
V2FixedF
V2FixedG
V2FixedKd
V2FixedKs
V2FixedQ
V2FixedR
V2FixedS
V2FixedT
V2FixedX
V2FixedY
V2FixedZ

Tag
0x228
0x227
0x229
0x226
0x224
0x223
0x222
0x225
0x220
0x221
0x22A
0x22B
0x22C

Offset
0x0000.1140
0x0000.1138
0x0000.1148
0x0000.1130
0x0000.1120
0x0000.1118
0x0000.1110
0x0000.1128
0x0000.1100
0x0000.1108
0x0000.1150
0x0000.1158
0x0000.1160

Access
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write
Read/Write

V2Fi xedA
V2Fi xedB
V2Fi xedF
V2Fi xedG
V2Fi xedKd
V2Fi xedKs
V2Fi xedQ
V2Fi xedR
V2Fi xedS
V2Fi xedT
V2Fi xedX
V2Fi xedY
V2Fi xedZ

Reset Format
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point
Undefined Fixed Point

The input format for each parameter is shown below. The #s is unsigned and s is 2's complement.
p p g p

The clamping range, if clamping is enabled, is also shown.

3D/.sbs

Proprietary and Confidential

205

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

These values read back as floating point and share the same storage as the V2Float* registers.

Category Parameter Fixed Point Format | Clamping Range

s 2.30 s -1.0...1.02
Texture t 2.30 s -1.0...1.0

q 230 1.0...1.0

Ks 2.22 us 0.0...2.0

Kd 2.22 us 0.0...2.0

red 1.30 us 0.0...1.0
Color green 1.30 us 0.0...1.0

blue 1.30 us 0.0...1.0

alpha 1.30 us 0.0...1.0
Fog f 10.22 s -512.0...512.0

x 16.16 s -32K...+32K34
Coordinate y 16.16 s -32K...+32K

z 1.30us 0.0...1.0

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT
Delta and none of the additional Gamma functionality is being used.

I'This is the range when Normalize is not used. When Normalize is enabled the fixed point format can be

anything, providing it is the same for the s, t and q parameters. The numbers will be interpreted as if they

had 2.30 format for the purpose of conversion to floating point. If the fixed point format (2.30) is different

from what the user had in mind then the input values are just pre-scaled by a fixed amount (i.e. the difference

in binary point positions) prior to conversion.

2This is the range when Normalize is not used. When Normalize is enabled the range is extended to 27
approximately. This also applies to the t and q values as well.
3The normal range here is limited by the size of the screen.
4K = 1024.
206 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Register and Command Reference

V2F| oat A
V2F| oat B
V2F| oat F
V2F| oat G
V2FI| oat Kd
V2F| oat Ks
V2F| oat Q
V2F| oat R
V2F| oat S
V2Fl oat T
V2F| oat X
V2F| oat Y
V2F| oat Z
Name Tag Offset Access Reset Format
V2FloatA 0x258 0x0000.12C0 Read/Write Undefined Float
V2FloatB 0x257 0x0000.12B8 Read/Write Undefined Float
V2FloatF 0x259 0x0000.12C8 Read/Write Undefined Float
V2FloatG 0x256 0x0000.12B0 Read/Write Undefined Float
V2FloatKd 0x254 0x0000.12A0 Read/Write Undefined Float
V2FloatKs 0x253 0x0000.1298 Read/Write Undefined Float
V2FloatQ 0x252 0x0000.1290 Read/Write Undefined Float
V2FloatR 0x255 0x0000.12A8 Read/Write Undefined Float
V2FloatS 0x250 0x0000.1280 Read/Write Undefined Float
V2FloatT 0x251 0x0000.1288 Read/Write Undefined Float
V2FloatX 0x25A 0x0000.12D0 Read/Write Undefined Float
V2FloatY 0x25B 0x0000.12D8 Read/Write Undefined Float
V2FloatZ 0x25C 0x0000.12E0 Read/Write Undefined Float
The clamping range, if enabled, for each parameter is shown below.
207

3D/.sbs

Proprietary and Confidential

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

These registers share the same storage as the V2Fixed* registers.

Category Parameter Clamping Range

s -1.0...1.0!
Texture t -1.0...1.0

q 1.0...1.0

Ks 0.0...2.0

Kd 0.0...2.0

red 0.0...1.0
Color green 0.0...1.0

blue 0.0...1.0

alpha 0.0...1.0
Fog f -512.0...512.0

X -32K...+32K%3
Coordinate y -32K...+32K

z 0.0...1.0

These are legacy commands and should only be used if Gamma is just being used as a faster GLINT

Delta and none of the additional Gamma functionality is being used.

IThis is the range when Normalize is not used. When Normalize is enabled the range is extended to
approximately. This also applies to the t and q values as well.

2The normal range here is limited by the size of the screen.

3K = 1024.

2132

208

Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Vert exMachi neMode

Name Tag Offset Access Reset Format
VertexMachineMode 0x2A0 0x0000.1500 Read/Write Undefined Bitfield

For future use.

Vi ewPort O f set X
ViewPort O f setY
ViewPort O fsetZ

Name Tag Offset Access Reset Format
ViewPortOffsetX 0x373 0x0000.1B98 Read/Write Undefined Float
ViewPortOffsetY 0x374 0x0000.1BA0 Read/Write Undefined Float
ViewPortOffsetZ 0x375 0x0000.1BAS8 Read/Write Undefined Float

These registers hold the offset values to add to the vertex coordinates (in normalized device
coordinates) after they have been scaled by the viewport scale values.

3D/.bs Proprietary and Confidential 209

Register and Command Reference

GLINT Gamma Programmer’s Reference Manual

Vi ewPor t Scal eX
Vi ewPort Scal eY
Vi ewPor t Scal eZ

Name Tag

ViewPortScaleX 0x370
ViewPortScaleY 0x371
ViewPortScaleZ 0x372

Offset Access Reset Format
0x0000.1B80 Read/Write Undefined Float
0x0000.1B88 Read/Write Undefined Float
0x0000.1B90 Read/Write Undefined Float

These registers hold the scale values to multiply the vertex coordinates (in normalized device

coordinates) by.

210

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual Register and Command Reference

Vw

VX2
VX3
Vx4

Vy
Vz

Name Tag Offset Access Reset Format
Vw 0x30A 0x0000.1850 Write Undefined Float
Vx2 0x30D 0x0000.1868 Write/Trigger Undefined Float
Vx3 0x30E 0x0000.1870 Write/Trigger Undefined Float
Vx4 0x30F 0x0000.1878 Write/Trigger Undefined Float
Vy 0x30C 0x0000.1860 Write Undefined Float
Vz 0x30B 0x0000.1858 Write Undefined Float

These registers hold the x, y and z vertex components. The Vx2, Vx3 or Vx4 registers must be
written last as they write will trigger the vertex to be entered into Gamma. All the vertex
components should be written together and not interleaved with writes to the color (C*), face
normal (FN*), normal (N*) or texture (T*) registers.

Writing to Vx2 will ignore any supplied values for Vz and Vw and set them to 0.0 and 1.0
respectively.

Writing to Vx3 will ignore any supplied values for Vw and set it to 1.0.

A vertex is optionally transformed by the ModelViewMatrix and/or the
ModelViewProjectionMatrix.

Once the vertex has been entered into Gamma this may be sufficient to cause a primitive(s) to be
generated and rendered. This depends on the primitive type defined by the Begin command and
how many vertices have been sent (since the previous Begin). Vertices are ignored if they are sent
before a Begin command or after an End command.

See also: Begin, End, TransformMode.

3D/.bs Proprietary and Confidential 211

Register and Command Reference GLINT Gamma Programmer’s Reference Manual

W ndowAnd
W ndowOr

Name Tag Offset Access Reset Format
WindowAnd 0x570 0x0000.2B80 Write Undefined Bitfield
WindowOr 0x571 0x0000.2B88 Write Undefined Bitfield

See the GLINT documentation for the field definition of the Window and these registers.

Gamma tracks GLINT's Window register to allow its functionality to be extended to better support
window clipping using GIDs.

Writing to the WindowAnd and WindowOr registers logically combine the new value with the
existing values in the Window register rather than replacing its contents.

XBi as
YBi as

Name Tag Offset Access Reset Format
XBias 0x290 0x0000.1480 Read/Write Undefined Float
YBias 0x291 0x0000.1488 Read/Write Undefined Float

These registers are added to the primitive’s vertex coordinates during the set up calculation. They
can be used to convert window relative coordinates into screen relative coordinates, or to remove the
bias added in during viewport mapping to force all set up calculation to have the same accuracy,
independent of the primitive's screen position.

212 Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Index

Index

AALineWidth, 50, 111
AAPointSize, 49, 50, 111
Address Mapping, 16

AGP Performance Summary, 5
AGP system, 5

Aliased Points, 49

Antialiased Lines, 51
Antialiased Points, 50
AttenuationCutOff, 43, 112

BackAlpha, 42, 112

BackAmbientColorBlue, 113

BackAmbientColorGreen, 113

BackAmbientColorRed, 113

BackDiffuseColorBlue, 113. See Lighting also Materials

BackDiffuseColorGreen, 113. See Lighting also
Materials

BackDiffuseColorRed, 113. See Lighting also Materials

BackEmissiveColorBlue, 114. See Lighting also
Materials

BackEmissiveColorGreen, 114. See Lighting also
Materials

BackEmissiveColorRed, 114. See Lighting also
Materials

BackSpecularColorBlue, 114. See Lighting also
Materials

BackSpecularColorGreen, 114. See Lighting also
Materials

BackSpecularColorRed, 114. See Lighting also
Materials

BackSpecularExponent, 115. See Lighting also
Materials

Begin, 7, 33, 49, 51, 77, 78, 116, 139, 184

Begin/End Paradigm, 33, 34

BroadcastMask, 81, 118

ByteSwap, 21

Ca, 32

Cb, 32

CFGCommand, 14

Cg, 32

Clipping, 44

Clipping Operation Control Bits, 45
Color, 9, 31

Color Material Support, 73
ColorMaterialAnd, 120
ColorMaterialMode, 73, 119, 120
ColorMaterialModeOr, 120
Command FIFO, 12

Command Registers, 7
CommandError, 15,17, 19, 29, 136
CommandInterrupt, 15, 16, 23, 121
CommandInterruptEnable, 18, 29, 84
CommandInterruptStatus, 18, 29, 84
CommandMode, 14, 15, 16, 22, 23, 135
CommandStatus, 13, 15, 23, 66, 69
Compatibility with GLINT Delta, 78
ConstantColor, 54

context data, 56

Context Mask Fields, 58

Context Save and Restore, 55
ContextData, 25, 56, 121, 123, 128
ContextDump, 57, 71, 121, 122
ContextRestore, 57, 59, 72, 122, 123
Control and Data Registers, 7
Controlled Bits in the GeometryMode Register, 61
Conventions, 2

Cr3, 32,119, 124

Cr4, 32,119, 124

Culling, 46

Current Texture, Normal and Color values, 71

D

Data Field Possibilities, 68
DelayTimer, 28

DeltaMode, 44, 47, 49, 77, 78, 80, 125, 126, 167
DeltaMode Register Fields, 48
DeltaModeAnd, 125, 126
DeltaModeOr, 125, 126

Diffuse Textures, 77

Direct3D, 76

DisconnectControl, 13

Display Lists, 74

DMA buffer, 9, 15

DMA buffers, 23

DMA Interrupts, 16

DMA Tag Description Format, 8
DMAAddr, 126, 127

DMAAddress, 14, 15, 19

DMACall, 19, 127, 136
DMAControl, 12

DMACount, 14, 15,19, 126, 127, 136
DMAFeedback, 24, 66, 69, 128, 129

3D/.bs Proprietary and Confidential 213

Index

GLINT Gamma Programmer’s Reference Manual

DMAOQOutputAddress, 24, 66, 69, 128, 129
DMAOQOutputCount, 23, 24, 129
DMAReadGLINT Source, 23, 128, 129, 130
DMARectangle, 26

DMARectangleRead, 21, 131
DMARectangleReadAddress, 21, 132
DMARectangleReadLinePitch, 21, 132
DMARectangleRead Target, 21, 133
DMARectangleWrite, 26, 134
DMARectangleWriteAddress, 26, 135
DMARectangleWritel inePitch, 26, 135
DMAReturn, 19, 127, 136

Draw, 78

DrawLine01, 80, 137, 182

DrawLinel0, 80, 137, 182
DrawRectangle2D, 53, 137, 179
DrawTriangle, 78, 138, 182

Driver Support, 28

DumpContext, 56, 72

EdgeFlag, 33, 138

Efficiency, 8

End, 7, 33, 78, 116, 139, 184

End command, 33

EndOfFeedback, 24, 25, 56, 57, 65, 66, 68, 69, 128,
139

Errors, Interrupts and Status registers, 28

F

FaceNormal, 76

FaultingAddress, 17, 19

FBBlockColor, 54, 73

Feedback, 67

Feedback and Select DMA Transfers, 24
FeedbackAlpha, 25, 128, 140
FeedbackBlue, 25, 128, 140
FeedbackGreen, 25, 128, 140
FeedbackQ), 25, 128, 140

FeedbackR, 25, 128, 140

FeedbackRed, 25, 67, 128, 140
FeedbacksS, 25, 128, 140
FeedbackSelectCount, 24, 25, 56, 66, 69, 128
FeedbackT, 25, 128, 140
FeedbackToken, 25, 67, 128, 140
FeedbackW, 25, 128, 140

FeedbackX, 25, 67, 128, 140
FeedbackY, 25, 128, 140

FeedbackZ, 25, 128, 140

FIFO Control, 13

FilterMode, 24, 25, 27, 56, 64, 69, 122, 128, 129,
134, 166, 174, 176, 177, 186

FNx, 76, 141

ENy, 76, 141

FNz, 76, 141

FogDensity, 142

FogEnd, 142

FogScale, 142

FrontAlpha, 42, 143

FrontAmbientColorBlue, 143. See Lighting also
Materials

FrontAmbientColorGreen, 143. See Lighting also
Materials

FrontAmbientColorRed, 143. See Lighting also
Materials

FrontDiffuseColorBlue, 144. See Lighting also
Materials

FrontDiffuseColorGreen, 7, 144. See Lighting also
Materials

FrontDiffuseColorRed, 144. See Lighting also Materials

FrontEmissiveColorBlue, 144. See Lighting also
Materials

FrontEmissiveColorGreen, 144. See Lighting also
Materials

FrontEmissiveColorRed, 144. See Lighting also
Materials

FrontSpecularColorBlue, 145. See Lighting also
Materials

FrontSpecularColorGreen, 145. See Lighting also
Materials

FrontSpecularColorRed, 145. See Lighting also
Materials

FrontSpecularExponent, 145. See Lighting also
Materials

G

Gamma, 6

Gamma By Itself, 3

General DMA Modes, 14

General Programming Notes, 6

GeometryMode, 7, 11, 44, 45, 47, 49, 61, 63, 66, 67,
69, 76, 138, 140, 141, 146, 163, 166, 167, 172,
175,176, 177, 186, 193, 196

GeometryMode Register, 67
fields, 60

GeometryModeAnd, 11, 146, 147

GeometryModeOr, 11, 146, 147

GeomRectangle, 52, 68, 70, 148, 184

GeomRectangle Control Fields, 52

Get Operations, 74

Getting Data into Gamma, 12

Getting Data out of Gamma, 23

214 Proprietary and Confidential

3D/.sbs

GLINT Guamma Programmer’s Reference Manual

Index

GID, 72

glBegin, 3

glEnd, 3

GLINT, 6, 12, 22
GLINT 300SX, 1
GLINT 500TX, 1, 4
GLINT MX, 1, 4

Hierarchical DMA, 19
Hold Format, 8

IEEE floating point format, 6
Increment Format, 9
IncrementObjectID, 149
Indexed Format, 9
InFIFOSpace, 7,12, 13
InitNames, 64, 149

Input Data Requirements, 3
Input DMA, 14

IntEnable, 16

Internal Registers, 7
IntFlags, 16

Introduction, 1

LBReadMode, 72, 150

LBReadModeAnd, 150

LBReadModeOr, 150

Light 0 Registers, 40

Lighting, 38

Lighting Calculation Bit, 41

LightingMode, 7, 76, 112, 119, 141, 151, 172
LightingMode Register Fields, 43
LightingModeAnd, 151

LightingModeOr, 151
LightnAmbientlntensity, 152. See Lighting
LightnConstantAttenuation, 153. See Lighting
LightnCosSpotlightCutoffAngle, 154. See Lighting
LightnDiffuselntensity, 155. See Lighting
LightnLinearAttenuation, 156. See Lighting
LightnMode, 43, 157. See Lighting.
LightnPosition, 158. See Lighting
LightzQuadraticAttenuation, 159. See Lighting
LightaSpecularlntensity, 160. See Lighting
LightaSpotlightDirection, 161. See Lighting
LightaSpotlightExponent, 162. See Lighting
Linear DMA Transfers, 23
LineClipLengthThreshold, 45, 163

LineMode, 47, 50, 51, 164
LineModeAnd, 164
LineModeOr, 164

Lines, 50

LineStippleMode, 51
LineWidth, 50, 165
LineWidthOffset, 50, 165
LoadName, 64, 149, 166, 186

M

Material Parameters Registers, 42
MaterialMode, 43, 77, 167

MaterialModeAnd, 167

MaterialModeOr, 167

ModelView matrix, 35

ModelViewMatrix, 36, 168, 184, 211
ModelViewProjectionMatrix, 36, 169, 184, 211
Multi-GLINT, 81

N

NameCount, 65

Normal, 37

NormalizatlonMode, 76
NormalizeMode, 35, 37, 76, 141, 170, 172
NormalizeModeAnd, 170
NormalizeModeOr, 170
NormalMatrix, 37, 76, 141, 171, 172
Normals, 31

Nx, 32, 172

Ny, 32, 172

Nz, 32,172

O

ObjectIDValue, 149, 173
OpenGL, 1, 6, 32

OpenGL Specific Operations, 60
Output Data Requirements, 4

P

PackedColor, 32

PackedColor3, 32, 173

PackedColor4, 32, 173

PackOut, 21
PageMappingFaultCommand, 18
PageMappingFaultVertex, 18
PageResident, 17

PageTableLength, 17, 19

PassThrough, 25, 68, 69, 128, 174

PCI (33MHz) Performance Summary, 5

3D/.bs Proprietary and Confidential 215

Index

GLINT Gamma Programmer’s Reference Manual

PCI bus, 5

PCI CommandStatus, 30
PCI Disconnect, 13

PCI Related Registers, 82
Performance, 3

PhysicalPage, 17

PixelSize, 21

PointMode, 47, 49, 50, 174
PointModeAnd, 174
PointModeOr, 174

Points, 49

PointSize, 49, 175

Polygon Mode, 60

Polygon Offset, 60
PolygonOffsetBias, 60, 175
PolygonOffsetFactor, 60, 175
PopName, 64, 149, 176, 186
Primitive Assembly, 31
Primitive Set-Up, 47
Programming Gamma, 6

PushName, 64, 149, 177, 186

Q

QuickDraw3D, 76

R

Raster Position, 31, 70
RasterPosOffsetX, 71
RasterPosOffsetY, 71
RasterPosXIncrement, 53, 70, 148, 178
RasterPosXOffset, 53, 178
RasterPosYIncrement, 53, 70, 148, 178
RasterPosYOffset, 53, 178

ReadAccess, 17

Reading Back Values, 11
Rectangle2DControl, 53, 73, 137, 150, 179
Rectangle2DMode, 53, 137, 180
Rectangle2DMode Fields, 53
RectangleHeight, 52, 70, 148, 180
RectangleMode, 47, 52, 70, 148, 181
RectangleWidth, 52, 70, 148, 181
Rectangular DMA, 20

Rectangular DMA Transfers, 26
Register Types, 7

Render, 52, 80, 116, 131, 137, 148
Render command, 33

RepeatLine, 182

RepeatTriangle, 182

RestoreContext, 56, 72
RestoreCurrent, 72, 183, 185

RP, 181

RPw, 70, 184

RPx2, 52, 148, 184
RPx3, 52, 70, 148, 184
RPx4, 52, 70, 148, 184
RPy, 52, 70, 184

RPz, 70, 184

S

SaveCurrent, 72, 183, 185

SceneAmbientColorBlue, 185. See Lighting also
Materials

SceneAmbientColorGreen, 185. See Lighting also
Materials

SceneAmbientColorRed, 185. See Lighting also
Materials

Select, 63

SelectRecord, 25, 64, 128, 166, 176, 177, 186

SelectResult, 65, 186, 187

Specifying Vertices, Normals, Textures and Colors, 31

Specula Textures, 77

Sync, 11

Temporal Ordering, 10

TexGen, 61, 62, 188

Texture, 31, 38

Texture Generation, 61, 63

TextureMatrix, 38, 189

Timer, 28

Tq4, 195

Tr4, 195

TransformAnd, 192

Transformation, 35

TransformCurrent, 59, 72, 190

TransformMode, 8, 35, 36, 37, 38, 76, 141, 168, 169,
171,172, 184, 188, 189, 191, 192, 195

TransformModeAnd, 191

TransformModeOr, 191

TriangleClipAreaThreshold, 45, 193

TriangleMode, 47, 51, 78, 194

TriangleMode Register Fields, 52

TriangleModeAnd, 194

TriangleModeOr, 194

Ts1, 195

Ts2, 32, 195

Ts4, 195

Tt2, 195

Tt4, 195

216

Proprietary and Confidential 3D/abs

GLINT Guamma Programmer’s Reference Manual

Index

Updating Mode Registers, 11
UserClip0, 46, 196
UserClip1, 46, 196
UserClip2, 46, 196
UserClip3, 46, 196
UserClip4, 46, 196
UserClip5, 46, 196

VOFixed, 197
VOFloat, 199
V1Fixed, 201
V1Float, 203
V2Fixed, 205
V2Float, 207
vertex, 4
Vertex, 31
VertexArray, 49
VertexMachineMode, 209
Vertices, 35

ViewModelMatrix[0...15], 36

ViewPortOffsetX, 7, 36, 209
ViewPortOffsetY, 36, 209
ViewPortOffsetZ, 36, 209

ViewPortScaleX, 8, 36, 210
ViewPortScaleY, 36, 210
ViewPortScaleZ, 36, 210
VnFixed, 79

VnFloat, 79

Vw, 211

Vx2, 211

Vx3, 32, 211

Vx4, 211

Vy, 8, 32,211

Vz, 8, 32, 211

Window, 72, 212

Window Clipping Support, 72

WindowAnd, 72, 212
WindowOr, 72, 212
WriteAccess, 17

XBias, 49, 54, 212

YBias, 49, 54, 212

\\4

3D/.sbs

Proprietary and Confidential

217

