
Intel® 64 Architecture x2APIC
Specification

Reference Number: 318148-001
September 2007
i

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “re-
served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre-
dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves
these features or instructions for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 2006-2007 Intel Corporation
ii

CONTENTS

CHAPTER 1
INTRODUCTION
1.1 INTRODUCTION . 1-9
1.2 IMPACTED PLATFORM COMPONENTS . 1-9
1.3 GLOSSARY. 1-10
1.4 REFERENCES . 1-11

CHAPTER 2
LOCAL X2APIC ARCHITECTURE
2.1 X2APIC ENHANCEMENTS. 2-13
2.2 DETECTING AND ENABLING X2APIC . 2-14
2.3 X2APIC MODE REGISTER INTERFACE. 2-15
2.3.1 Instructions to Access APIC Registers . 2-15
2.3.2 APIC Register Address Space. 2-15
2.3.3 Reserved Bit Checking . 2-18
2.3.4 Error Handling . 2-19
2.3.5 MSR Access Semantics . 2-19
2.3.5.1 Interrupt Command Register Semantics . 2-19
2.3.5.2 Task Priority Register Semantics. 2-20
2.3.5.3 End Of Interrupt Register Semantics. 2-20
2.3.5.4 Error Status Register Semantics . 2-20
2.3.6 x2APIC Register Availability . 2-21
2.4 EXTENDED PROCESSOR ADDRESSABILITY . 2-22
2.4.1 Local APIC ID Register . 2-22
2.4.2 Logical Destination Register. 2-23
2.4.3 Interrupt Command Register. 2-25
2.4.4 Deriving Logical x2APIC ID from the Local x2APIC ID . 2-26
2.4.5 SELF IPI register . 2-26
2.5 X2APIC ENHANCEMENTS TO LEGACY XAPIC ARCHITECTURE 2-27
2.5.1 Directed EOI . 2-27
2.6 INTERACTION WITH PROCESSOR CORE OPERATING MODES 2-28
2.7 X2APIC STATE TRANSITIONS . 2-29
2.7.1 x2APIC States . 2-29
2.7.1.1 x2APIC After RESET . 2-30
2.7.1.2 x2APIC Transitions From x2APIC Mode . 2-31
2.7.1.3 x2APIC Transitions From Disabled Mode . 2-31
2.8 CPUID EXTENSIONS AND TOPOLOGY ENUMERATION . 2-31
2.8.1 Consistency of APIC IDs and CPUID . 2-34
2.9 SYSTEM TRANSITIONS. 2-34
2.10 LEGACY XAPIC CLARIFICATIONS . 2-34
iii

This page intentionally left blank
iv

TABLES

Table 1-1. Description of terminology .10
Table 2-2. x2APIC Operating Mode Configurations .14
Table 2-3. Local APIC Register Address Map Supported by x2APIC .16
Table 2-4. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation 21
Table 2-5. CPUID Leaf 0BH Information .32
v

This page intentionally left blank
vi

FIGURES

Figure 2-1. IA32_APIC_BASE MSR Supporting x2APIC .14
Figure 2-2. Error Status Register (ESR). .21
Figure 2-3. Local APIC ID Register in x2APIC Mode .23
Figure 2-4. Logical Destination Register in x2APIC Mode. .23
Figure 2-5. Interrupt Command Register (ICR) in x2APIC Mode .25
Figure 2-6. SELF IPI register .26
Figure 2-7. Spurious Interrupt Vector Register (SVR) of x2APIC .28
Figure 2-8. Local APIC Version Register of x2APIC .28
Figure 2-9. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and RESET 30
vii

This page intentionally left blank
viii

INTRODUCTION
CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION
The xAPIC architecture provided a key mechanism for interrupt delivery in many
generations of Intel processors and platforms across different market segments. This
document describes the x2APIC architecture which is extended from the xAPIC archi-
tecture (the latter was first implemented on Intel® Pentium® 4 Processors, and
extended the APIC architecture implemented on Pentium and P6 processors). Exten-
sions to the xAPIC architecture are intended primarily to increase processor addres-
sability. The x2APIC architecture provides backward compatibility to the xAPIC
architecture and forward extendability for future Intel platform innovations. Specifi-
cally, x2APIC

• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;

• Provides extensions to scale processor addressability for both the logical and
physical destination modes;

• Adds new features to enhance performance of interrupt delivery;

• Reduces complexity of logical destination mode interrupt delivery on link based
architectures.

1.2 IMPACTED PLATFORM COMPONENTS
x2APIC is architected to extend from the xAPIC architecture while minimizing the
impact on platform components. Specifically, support for the x2APIC architecture can
be implemented in the local APIC unit. All existing PCI/MSI capable devices and
IOxAPIC unit should work with the x2APIC extensions defined in this document. The
x2APIC architecture also provides flexibility to cope with the underlying fabrics that
connect the PCI devices, IOxAPICs and Local APIC units.

The extensions provided in this specification translate into modifications to:

• the local APIC unit,

• the underlying fabrics connecting Message Signaled Interrupts (MSI) capable PCI
devices to local xAPICs,

• the underlying fabrics connecting the IOxAPICs to the local APIC units.
9

INTRODUCTION
However no modifications are required to PCI or PCI-e devices that support direct
interrupt delivery to the processors via Message Signaled Interrupts. Similarly no
modifications are required to the IOxAPIC. The routing of interrupts from these
devices in x2APIC mode leverages the interrupt remapping architecture specified in
the Intel Virtualization Technology for Directed I/O, Rev 1.1 specification.

1.3 GLOSSARY
This document uses the terms listed in the following table.

Table 1-1. Description of terminology
Term Description

APIC The set of advanced programmable interrupt controller features which may be
implemented in a stand-alone controller, part of a system chipset, or in a
microprocessor.

local APIC The processor component that implements the APIC functionalities. The
underlying APIC registers their functionalities are documented in Chapter 8
of “Intel® 64 and IA-32 Architectures Software Developer’s Manual“, Vol.
3B. Historically, this may refer narrowly to early generations of processor
component in the Pentium and P6 processors. In this document, we also use
this term generically across multiple generations of processor components.

I/O APIC The system chipset component that implements APIC functionalities to
communicate with a local APIC.

xAPIC The extension of the APIC architecture that includes messaged APIC
interface over the system bus and expanding processor physical addressability
from 4 bits to 8 bits.

local xAPIC The processor component that implements the associated xAPIC
functionalities. This is supported by Intel® Pentium® 4 processors,
Pentium® M processors, Intel® CoreTM 2 Duo processors, and Intel®
Xeon® processors based on Intel® NetBurst microarchitecture and Intel®
CoreTM microarchitecture.

x2APIC The extension of xAPIC architecture to support 32 bit addressability of
processors and associated enhancements.

local x2APIC The processor component that implements the associated x2APIC
functionalities.

xAPIC mode The operating mode of a local xAPIC unit when it is enabled, or that of a local
x2APIC unit when it is enabled but not in extended mode.

x2APIC mode The operating mode of a local x2APIC unit when it is enabled and in
extended mode.
10

INTRODUCTION
1.4 REFERENCES
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)

http://developer.intel.com/products/processor/manuals/index.htm

• Intel Virtualization Technology for Directed I/O, Rev 1.1 specification
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direc
t_IO.pdf

• Detecting Multi-Core Processor Topology in an IA-32 Platform
http://www3.intel.com/cd/ids/developer/asmo-na/eng/recent/275339.htm

APIC ID A unique ID that can identify individual agent in a platform (or clustered
configuration). The maximum bit-width supported in x2APIC is 32 bits,
versus 8 bits in xAPIC.

local xAPIC ID The value configured in the local APIC ID register in xAPIC mode. This is an
8-bit value for xAPIC, and x2APIC in xAPIC mode. Because this is used to
specify a target destination in physical delivery mode, it is also referred to as
physical xAPIC ID.

physical xAPIC ID See “local xAPIC ID”

logical xAPIC ID The APIC ID value that specifies a target processor to receive interrupt
delivered in logical destination mode in a local xAPIC. See documentation on
logical destination register (LDR). This is an 8-bit value.

initial APIC ID The value reported by CPUID.01H:EBX[31:24]

x2APIC ID The 32-bit value in the local APIC ID register defined by the x2APIC
architecture. The value is initialized by hardware and can be accessed via
RDMSR in x2APIC mode. It is also reported by CPUID.0BH:EDX.
Application can query CPUID.0BH:EDX in user mode without RDMSR.

logical x2APIC ID The APIC ID value that specifies a target processor to receive interrupt
delivered in logical destination mode in a local x2APIC. This is a 32-bit
value.

RsvdZ Reads of reserved bits return zero

Table 1-1. Description of terminology
Term Description
11

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

INTRODUCTION
This page intentionally left blank
12

LOCAL X2APIC ARCHITECTURE
CHAPTER 2
LOCAL X2APIC ARCHITECTURE

2.1 X2APIC ENHANCEMENTS
The key enhancements provided by the x2APIC architecture over xAPIC are the
following:

• Support for two modes of operation to provide backward compatibility and exten-
sibility for future platform innovations:

— In xAPIC compatibility mode, APIC registers are accessed through memory
mapped interface to a 4K-Byte page, identical to the xAPIC architecture.

— In x2APIC mode, APIC registers are accessed through Model Specific Register
(MSR) interfaces. In this mode, the x2APIC architecture provides significantly
increased processor addressability and some enhancements on interrupt
delivery.

• Increased range of processor addressability in x2APIC mode:

— Physical xAPIC ID field increases from 8 bits to 32 bits, allowing for interrupt
processor addressability up to 4G-1 processors in physical destination mode.
A processor implementation of x2APIC architecture can support fewer than
32-bits in a software transparent fashion.

— Logical xAPIC ID field increases from 8 bits to 32 bits. The 32-bit logical
x2APIC ID is partitioned into two sub-fields: a 16-bit cluster ID and a 16-bit
logical ID within the cluster. Consequently, ((2^20) -16) processors can be
addressed in logical destination mode. Processor implementations can
support fewer than 16 bits in the cluster ID sub-field and logical ID sub-field
in a software agnostic fashion.

• More efficient MSR interface to access APIC registers.

— To enhance inter-processor and self directed interrupt delivery as well as the
ability to virtualize the local APIC, the APIC register set can be accessed only
through MSR based interfaces in the x2APIC mode. The Memory Mapped IO
(MMIO) interface used by xAPIC is not supported in the x2APIC mode.

• The semantics for accessing APIC registers have been revised to simplify the
programming of frequently-used APIC registers by system software. Specifically
the software semantics for using the Interrupt Command Register (ICR) and End
Of Interrupt (EOI) registers have been modified to allow for more efficient
delivery and dispatching of interrupts.

The x2APIC extensions are made available to system software by enabling the local
x2APIC unit in the "x2APIC" mode. The rest of this chapter provides details for
detecting, enabling and programming features of x2APIC.
13

LOCAL X2APIC ARCHITECTURE
2.2 DETECTING AND ENABLING X2APIC
A processor’s support to operate its local APIC in the x2APIC mode can be detected
by querying the extended feature flag information reported by CPUID. When CPUID
is executed with EAX = 1, the returned value in ECX[Bit 21] indicates processor’s
support for the x2APIC mode. If CPUID.01H:ECX[Bit 21] is set, then the local APIC in
the processor supports the x2APIC capability and can be placed into the x2APIC
mode. This bit is set only when the x2APIC hardware is present.

• System software can place the local APIC in the x2APIC mode by setting the
x2APIC mode enable bit (bit 10) in the IA32_APIC_BASE MSR at MSR address
01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 2-1.

Table 2-2 describes the possible combinations of the enable bit (EN - bit 11) and the
extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1),
switching back to xAPIC mode would require system software to disable the local
APIC unit. Specifically, attempting to write a value to the IA32_APIC_BASE MSR that
has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode will raise
a GP exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave
x2APIC mode using IA32_APIC_BASE would require a WRMSR to set both bit 11 and

Figure 2-1. IA32_APIC_BASE MSR Supporting x2APIC

Table 2-2. x2APIC Operating Mode Configurations
xAPIC global enable

(IA32_APIC_BASE[11])
x2APIC enable

(IA32_APIC_BASE[10])
Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
14

LOCAL X2APIC ARCHITECTURE
bit 10 to zero. Section 2.7 provides a detailed state diagram for the state transitions
allowed for the local APIC.

2.3 X2APIC MODE REGISTER INTERFACE
In xAPIC mode, the software model for accessing the APIC registers is through a
memory mapped interface. Specifically, the APIC registers are mapped to a 4K-Byte
region in the processor's memory address space, the physical address base of the
4K-Byte region is specified in the IA32_APIC_BASE MSR (Default value of
FEE0_0000H).

In x2APIC mode, a block of MSR address range is reserved for accessing APIC regis-
ters through the processor’s MSR address space. This section provides details of this
MSR based interface.

2.3.1 Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC regis-
ters. The MSR addresses for accessing the x2APIC registers are architecturally
defined and specified in Section 2.3.2. Executing the RDMSR instruction with APIC
register address specified in ECX returns the content of bits 0 through 31 of the APIC
registers in EAX. Bits 32 through 63 are returned in register EDX - these bits are
reserved if the APIC register being read is a 32-bit register. Similarly executing the
WRMSR instruction with the APIC register address in ECX, writes bits 0 to 31 of
register EAX to bits 0 to 31 of the specified APIC register. If the register is a 64-bit
register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC
register. The Interrupt Command Register is the only APIC register that is imple-
mented as a 64-bit MSR. The semantics of handling reserved bits are defined in
Section 2.3.3.

2.3.2 APIC Register Address Space
The MSR address range between 0000_0800H through 0000_0BFFH is architectur-
ally reserved and dedicated for accessing APIC registers in x2APIC mode. Figure 2-3
provides the detailed list of the APIC registers in xAPIC mode and x2APIC mode. The
MSR address offset specified in the table is relative to the base MSR address of 800H.
The MMIO offset specified in the table is relative to the default base address of
FEE00000H.

There is a one-to-one mapping between the legacy xAPIC register MMIO offset and
the MSR address offset with the following exceptions:

• The Interrupt Command Register (ICR): The two 32-bit ICR registers in xAPIC
mode are merged into a single 64-bit MSR in x2APIC mode.

• The Destination Format Register (DFR) is not supported in x2APIC mode.
15

LOCAL X2APIC ARCHITECTURE
• The SELF IPI register is available only if x2APIC mode is enabled.

The MSR address space is compressed to allow for future growth. Every 32 bit
register on a 128- bit boundary in the legacy MMIO space is mapped to a single MSR
in the local x2APIC MSR address space. The upper 32-bits of all x2APIC MSRs (except
for the ICR) are reserved.

Table 2-3. Local APIC Register Address Map Supported by x2APIC
MMIO Offset
(xAPIC mode)

MSR Offset
(x2APIC
mode)

Register Name R/W
Semantics

Comments

0000H-0010H 000H-001H Reserved

0020H 002H Local APIC ID Register Read only See Section 2.7.1 for
initial values.

0030H 003H Local APIC Version
Register

Read only. Same version between
extended and legacy
modes. Bit 24 is available
only to an x2APIC unit (in
xAPIC mode and x2APIC
modes, See Section 2.5.1).

0040H-0070H 004H-007H Reserved

0080H 008H Task Priority Register
(TPR)

Read/Write. Bits 7:0 are RW. Bits 31:8
are Reserved.

0090H 009H Reserved

00A0H 00AH Processor Priority
Register (PPR)

Read only.

00B0H 00BH EOI Register Write only. 0 is the only valid value to
write. GP fault on non-zero
write

00C0H 00CH Reserved

00D0H 00DH Logical Destination
Register

Read only.

00E0H 00EH Reserved1 GP fault on Read Write in
x2APIC mode.

00F0H 00FH Spurious Interrupt Vector
Register

Read/Write. Bits 0-8, 12 Read/Write;
other bits reserved.

0100H 010H In-Service Register
(ISR); bits 0:31

Read Only.

0110H 011H ISR bits 32:63 Read Only.

0120H 012H ISR bits 64:95 Read Only.
16

LOCAL X2APIC ARCHITECTURE
0130H 013H ISR bits 96:127 Read Only.

0140H 014H ISR bits 128:159 Read Only.

0150H 015H ISR bits 160:191 Read Only.

0160H 016H ISR bits 192:223 Read Only.

0170H 017H ISR bits 224:255 Read Only.

0180H 018H Trigger Mode Register
(TMR); bits 0:31

Read Only.

0190H 019H TMR bits 32:63 Read Only.

01A0H 01AH TMR bits 64:95 Read Only.

01B0H 01BH TMR bits 96:127 Read Only.

01C0H 01CH TMR bits 128:159 Read Only.

01D0H 01DH TMR bits 160:191 Read Only.

01E0H 01EH TMR bits 192:223 Read Only.

01F0H 01FH TMR bits 224:255 Read Only.

0200H 020H Interrupt Request
Register (IRR); bits 0:31

Read Only.

0210H 021H IRR bits32:63 Read Only.

0220H 022H IRR bits 64:95 Read Only.

0230H 023H IRR bits 96:127 Read Only.

0240H 024H IRR bits 128:159 Read Only.

0250H 025H IRR bits 160:191 Read Only.

0260H 026H IRR bits 192:223 Read Only.

0270H 027H IRR bits 224:255 Read Only.

0280H 028H Error Status Register Read/Write. GP fault on non-zero
writes

0290H-02E0H 029H-02EH Reserved

02F0H 02FH Reserved

0300H-
0310H2

030H3 Interrupt Command
Register (ICR); bits 0-63

Read/Write.

0320H 032H LVT Timer Register Read/Write.

Table 2-3. Local APIC Register Address Map Supported by x2APIC (Contd.)
MMIO Offset
(xAPIC mode)

MSR Offset
(x2APIC
mode)

Register Name R/W
Semantics

Comments
17

LOCAL X2APIC ARCHITECTURE
2.3.3 Reserved Bit Checking
Section 2.3.2 and Table 2-3 specifies the reserved bit definitions for the APIC regis-
ters in x2APIC mode. Non-zero writes (by WRMSR instruction) to reserved bits to
these registers will raise a general protection fault exception while reads return zeros
(RsvdZ semantics).

0330H 033H LVT Thermal Sensor
Register

Read/Write.

0340H 034H LVT Performance
Monitoring Register

Read/Write.

0350H 035H LVT LINT0 Register Read/Write.

0360H 036H LVT LINT1 Register Read/Write.

0370H 037H LVT Error Register Read/Write.

0380H 038H Initial Count Register
(for Timer)

Read/Write.

0390H 039H Current Count Register
(for Timer)

Read Only.

03A0H-
03D0H

03AH-03DH Reserved

03E0H 03EH Divide Configuration
Register (for Timer)

Read/Write.

03F0H 03FH Reserved

040H SELF IPI4 Write only

041H-3FFH Reserved

NOTES:
1. Destination format register (DFR) is supported in xAPIC mode at

MMIO offset 00E0H.
2. APIC register at MMIO offset 0310H is accessible in xAPIC mode only
3. MSR 831H (offset 31H) is reserved.
4. SELF IPI register is supported only if x2APIC mode is enabled..

Table 2-3. Local APIC Register Address Map Supported by x2APIC (Contd.)
MMIO Offset
(xAPIC mode)

MSR Offset
(x2APIC
mode)

Register Name R/W
Semantics

Comments
18

LOCAL X2APIC ARCHITECTURE
2.3.4 Error Handling
RDMSR and WRMSR operations to reserved addresses in the x2APIC mode will raise
a GP fault. (Note: In xAPIC mode, an APIC error is indicated in the Error Status
Register on an illegal register access.) Additionally reserved bit violations cause GP
faults as detailed in Section 2.3.3. Beyond illegal register access and reserved bit
violations, other APIC errors are logged in Error Status Register. The details on Error
Status Register are in Section 2.3.5.4.

2.3.5 MSR Access Semantics
To allow for efficient access to the APIC registers in x2APIC mode, the serializing
semantics of WRMSR are relaxed when writing to the APIC registers. Thus, system
software should not use “WRMSR to APIC registers in x2APIC mode” as a serializing
instruction.

Additional semantics for the WRMSR instruction expected by system software for
specific registers (EOI, TPR, SELF IPI) are described in Section 2.3.5.3, Section
2.3.5.2, and Section 2.4.5.

The RDMSR instruction is not serializing and this behavior is unchanged when
reading APIC registers in x2APIC mode. System software accessing the APIC regis-
ters using the RDMSR instruction should not expect a serializing behavior. (Note: The
MMIO-based xAPIC interface is mapped by system software as an un-cached region.
Consequently, read/writes to the xAPIC-MMIO interface have serializing semantics in
the xAPIC mode.)

There are some simplifications to the means used by system software for accessing
the Interrupt Control Register via the register interface in the x2APIC mode. These
changes are described in Section 2.3.5.1.

2.3.5.1 Interrupt Command Register Semantics
A processor generates an inter-processor interrupt (IPI) by writing to the Interrupt
Command Register (ICR) in the local xAPIC unit. In xAPIC mode, ICR contains a
delivery status bit (bit 12) that indicates the status of the delivery of this interrupt.
The field has software read-only semantics. A value of 0 implies that there is
currently no activity while a value of 1 implies that the transmission is pending. The
delivery status bit gets cleared when the interrupt has been transmitted. With the
legacy xAPIC interface, system software would poll the delivery status bit until it is
clear prior to sending an IPI. Similarly if the semantics of the send operation required
that the interrupt be sent from the local xAPIC unit, then system software would
busy-wait for the delivery status bit to be cleared.

In the x2APIC mode, the semantics of programming Interrupt Command Register to
dispatch an interrupt is simplified. A single MSR write to the 64-bit ICR (see Figure 2-
5) is required for dispatching an interrupt. Specifically with the 64-bit MSR interface
to ICR, system software is not required to check the status of the delivery status bit
19

LOCAL X2APIC ARCHITECTURE
prior to writing to the ICR to send an IPI. The value returned on reading ICR[bit 12]
is undefined.

Other semantics change related to reading/writing the ICR in x2APIC mode vs. xAPIC
mode are:

• Completion of the WRMSR instruction to the ICR does not guarantee that the
interrupt to be dispatched has been received by the targeted processors. If the
system software usage requires this guarantee, then the system software should
explicitly confirm the delivery of the interrupt to the specified targets using an
alternate software mechanisms. For example, one possible mechanism would be
having the interrupt service routine associated with the target interrupt delivery
to update a memory location, thereby allowing the dispatching software to verify
the memory location has been updated.

• A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both
logical destination and physical destination modes.

2.3.5.2 Task Priority Register Semantics
In x2APIC mode, the layout of the Task Priority Register has the same layout as in the
xAPIC mode.

The semantics for reading and writing to the TPR register via the MSR interface are
identical to those used for TPR access via the CR8 register. Specifically, the write to
the TPR register ensures that the result of any re-prioritization action due to the
change in processor priority is reflected to the processor prior to the next instruction
following the TPR write. Any deliverable interrupts resulting from the TPR write would
be taken at the instruction boundary following the TPR write.

2.3.5.3 End Of Interrupt Register Semantics
In xAPIC mode, the EOI register is written by an interrupt service routine to indicate
that the current interrupt service has completed. System software performs a write
to the EOI register to signal an EOI .

In the x2APIC mode, the write of a zero value to EOI register is enforced. Writes of a
non-zero value to the EOI register in x2APIC mode will raise a GP fault. System soft-
ware continues to have to perform the EOI write to indicate interrupt service comple-
tion. But in x2APIC mode, the EOI write is with a value of zero.

Writing to the EOI register via the MSR interface ensures that the result of any re-
prioritization action due to the EOI is reflected to the processor prior to the next
instruction following the EOI write. Any deliverable interrupts resulting from an EOI
write would be taken at the instruction boundary following the EOI write.

2.3.5.4 Error Status Register Semantics
The Error Status register (ESR) records all errors detected by the local APIC. In
xAPIC mode, software can read/write to the ESR. In the x2APIC mode, the write of a
20

LOCAL X2APIC ARCHITECTURE
zero value is enforced. Software writes zero’s to the ESR to clear the error status.
Writes of a non-zero value to the Error Status Register in x2APIC mode will raise a GP
fault.

The layout of ESR is shown in Figure 2-2. In x2APIC mode, a RDMSR or WRMSR to an
illegal register address raises a GP fault. In xAPIC mode, the equivalent MMIO
accesses would have generated an APIC error. So in the x2APIC mode, the Illegal
Register Address field in the Error Status register will not have any errors logged.

Write to the ICR (in xAPIC and x2APIC modes) or to SELF IPI register (x2APIC mode
only) with an illegal vector (vector <= 0FH) will set the "Send Illegal Vector" bit. On
receiving an IPI with an illegal vector (vector <= 0FH), the "Receive Illegal Vector"
bit will be set. On receiving an interrupt with illegal vector in the range 0H – 0FH, the
interrupt will not be delivered to the processor nor will an IRR bit be set in that range.
Only the ESR “Receive Illegal Vector” bit will be set.

If the ICR is programmed with lowest priority delivery mode then "Re-directible IPI"
bit will be set in x2APIC modes (same as legacy xAPIC behavior)

2.3.6 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local
x2APIC has been switched to the x2APIC mode as described in Section 2.2. Accessing
any APIC register in the MSR address range 0800H through 0BFFH via RDMSR or
WRMSR when the local APIC is not in x2APIC mode will cause the instructions to raise
a GP fault. In x2APIC mode, the memory mapped interface is not available and any
access to the MMIO interface will behave similar to that of a legacy xAPIC in globally
disabled state. Table 2-4 provides the interactions between the legacy & extended
modes and the legacy and register interfaces.

Figure 2-2. Error Status Register (ESR)

Table 2-4. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation
MMIO Interface MSR Interface

xAPIC mode Available GP Fault

MSR Address: 828H

31 0

Reserved
78 123456

Illegal Register Address
Received Illegal Vector
Send Illegal Vector
Redirectible IPI
Reserved
21

LOCAL X2APIC ARCHITECTURE
2.4 EXTENDED PROCESSOR ADDRESSABILITY
This section provides details on extensions to the physical xAPIC ID and the logical
xAPIC ID to support extended processor addressability.

The x2APIC architecture also provides two destination modes - physical destination
mode and logical destination mode. Each logical processor in the system has a
unique physical xAPIC ID which is used for targeting interrupts to that processor in
physical destination mode. The local APIC ID register provides the physical destina-
tion mode 8-bit or 32-bit ID for the processor, depending on xAPIC mode or x2APIC
mode. Section 2.4.1 describes the 32-bit x2APIC ID in x2APIC mode.

Each logical processor in the system also can have a unique logical xAPIC ID which is
used for targeting interrupts to that processor in logical destination mode. The
Logical Destination Register specified in Section 2.4.2. It contains the logical x2APIC
ID for the processor in x2APIC mode.

2.4.1 Local APIC ID Register
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables
2^32 -1 processors to be addressable in physical destination mode. This 32-bit value
is referred to as “x2APIC ID”. A processor implementation may choose to support less
than 32 bits in its hardware. System software should be agnostic to the actual
number of bits that are implemented. All non-implemented bits will return zeros on
reads by software.

The APIC ID value of FFFF_FFFFH and the highest value corresponding to the imple-
mented bit-width of the local APIC ID register in the system are reserved and cannot
be assigned to any logical processor.

In x2APIC mode, the local APIC ID register is a read-only register to system software
and will be initialized by hardware. It is accessed via the RDMSR instruction reading
the MSR at address 0802H. Figure 2-3 provides the layout of the Local x2APIC ID
register.

x2APIC mode Behavior identical to xAPIC in globally
disabled state

Available

Table 2-4. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation
MMIO Interface MSR Interface
22

LOCAL X2APIC ARCHITECTURE
Each logical processor in the system (including clusters with a communication fabric)
must be configured with an unique x2APIC ID to avoid collisions of x2APIC IDs. On
DP and high-end MP processors targeted to specific market segments and depending
on the system configuration, it is possible that logical processors in different and "un-
connected" clusters power up initialized with overlapping x2APIC IDs. In these
configurations, a model-specific means may be provided in those product segments
to enable BIOS and/or platform firmware to re-configure the x2APIC IDs in some
clusters to provide for unique and non-overlapping system wide IDs before config-
uring the disconnected components into a single system.

2.4.2 Logical Destination Register
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide.
It is a read-only register to system software. This 32-bit value is referred to as
“logical x2APIC ID”. System software accesses this register via the RDMSR instruc-
tion reading the MSR at address 80DH. Figure 2-4 provides the layout of the Logical
Destination Register in x2APIC mode.

In the xAPIC mode, the Destination Format Register (DFR) through MMIO interface
determines the choice of a flat logical mode or a clustered logical mode. Flat logical

Figure 2-3. Local APIC ID Register in x2APIC Mode

Figure 2-4. Logical Destination Register in x2APIC Mode

MSR Address: 802H

31 0

x2APIC ID

MSR Address: 80DH

31 0

Logical x2APIC ID
23

LOCAL X2APIC ARCHITECTURE
mode is not supported in the x2APIC mode. Hence the Destination Format Register
(DFR) is eliminated in x2APIC mode.

The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:

• Cluster ID (LDR[31:16]): is the address of the destination cluster

• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within
the cluster specified by LDR[31:16].

This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effec-
tively providing an addressability of ((2^20) - 16) processors in logical destination
mode.

It is likely that processor implementations may choose to support less than 16 bits of
the cluster ID or less than 16-bits of the Logical ID in the Logical Destination Register.
However system software should be agnostic to the number of bits implemented in
the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will ensure
that the appropriately initialized logical x2APIC IDs are available to system software
and reads of non-implemented bits return zero.

To enable cluster ID assignment in a fashion that matches the system topology char-
acteristics and to enable efficient routing of logical mode lowest priority device inter-
rupts in link based platform interconnects, the LDR are initialized by hardware based
on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization
are provided in Section 2.4.4.
24

LOCAL X2APIC ARCHITECTURE
2.4.3 Interrupt Command Register
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 2-
5. The lower 32 bits of ICR in x2APIC mode is identical to the lower half of the ICR in
xAPIC mode. The destination ID field is expanded to 32 bits in x2APIC mode.

A single MSR write to the Interrupt Command Register is required for dispatching an
interrupt in x2APIC mode. System software is not required to check the status of the
delivery status bit prior to writing to the ICR to send an IPI.

A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both
logical destination and physical destination modes.

Figure 2-5. Interrupt Command Register (ICR) in x2APIC Mode

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Reserved

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

Destination Field

Address: 830H (63 - 0)

Value after Reset: 0H

Reserved

20

25

LOCAL X2APIC ARCHITECTURE
2.4.4 Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived
from the 32-bit local x2APIC ID. Specifically, the 16-bit logical ID sub-field is derived
by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. Logical ID = 1 << x2APIC
ID[3:0]. The rest of the bits of the x2APIC ID then form the cluster ID portion of the
logical x2APIC ID:

Logical x2APIC ID = [(x2APIC ID[31:4] << 16) | (1 << x2APIC ID[3:0])]

The use of lowest 4 bits in x2APIC ID implies that at least 16 APIC IDs are reserved
for logical processors within a socket in multi-socket configurations. If there are more
than 16 logical processors in a socket/package then multiple cluster IDs can exist
within the package.

The LDR initialization occurs whenever the x2APIC mode is enabled. This is described
in Section 2.7.

2.4.5 SELF IPI register
SELF IPIs are used extensively by some system software. The xAPIC architecture
provided a mechanism for sending an IPI to the current local APIC using the "self-IPI"
short-hand in the interrupt command register (see Figure 2-5). The x2APIC architec-
ture introduces a new register interface. This new register is dedicated to the
purpose of sending self-IPIs with the intent of enabling a highly optimized path for
sending self-IPIs.

Figure 2-6 provides the layout of the SELF IPI register. System software only speci-
fies the vector associated with the interrupt to be sent. The semantics of sending a
self-IPI via the SELF IPI register are identical to sending a self targeted edge trig-
gered fixed interrupt with the specified vector. Specifically the semantics are identical
to the following settings for an inter-processor interrupt sent via the ICR - Destina-
tion Shorthand (ICR[19:18] = 01 (Self)), Trigger Mode (ICR[15] = 0 (Edge)),
Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

Figure 2-6. SELF IPI register

MSR Address: 0840H

31 8 7 0

Reserved Vector
26

LOCAL X2APIC ARCHITECTURE
The SELF IPI register is a write-only register. A RDMSR instruction with address of the
SELF IPI register will raise a GP fault.

The handling and prioritization of a self-IPI sent via the SELF IPI register is architec-
turally identical to that for an IPI sent via the ICR from a legacy xAPIC unit. Specifi-
cally the state of the interrupt would be tracked via the Interrupt Request Register
(IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were
received from the system bus. Also sending the IPI via the Self Interrupt Register
ensures that interrupt is delivered to the processor core. Specifically completion of
the WRMSR instruction to the SELF IPI register implies that the interrupt has been
logged into the IRR. As expected for edge triggered interrupts, depending on the
processor priority and readiness to accept interrupts, it is possible that interrupts
sent via the SELF IPI register or via the ICR with identical vectors can be combined.

2.5 X2APIC ENHANCEMENTS TO LEGACY XAPIC
ARCHITECTURE

The x2APIC architecture also provides enhanced features for a local x2APIC unit
operating in xAPIC mode. This section describes x2APIC enhancements that are
common to xAPIC mode and x2APIC mode.

2.5.1 Directed EOI
To support level triggered interrupts, the legacy xAPIC architecture broadcasts EOI
messages for level triggered interrupts over the system interconnect to all the
IOxAPICs in the system indicating that the interrupt has been serviced. Broadcasting
the EOIs can lead to system inefficiencies on a link-based system interconnect. Also,
in systems with multiple IOxAPICs, where different IOxAPICs have been
programmed with the same vector but different processor destinations, the broad-
casting of the EOI message can lead to duplicate interrupts being delivered to the
local xAPIC for the same event on an IO device.

Directed EOI capability is intended to enable system software to perform directed
EOIs to specific IOxAPICs in the system. System software desiring to perform a
directed EOI would do the following:

• inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt
Vector Register, and

• following the EOI to the local x2APIC unit for a level triggered interrupt, perform
a directed EOI to the IOxAPIC generating the interrupt by writing to its EOI
register.

Supporting directed EOI capability would require system software to retain a
mapping associating level triggered interrupts with IOxAPICs in the system.

Bit 12 of the Spurious Interrupt Vector Register (SVR) in the local x2APIC unit
controls the generation of the EOI broadcast. If SVR[bit 12] is set, a broadcast EOI is
27

LOCAL X2APIC ARCHITECTURE
not generated on an EOI cycle even if the associated TMR bit is indicating the current
interrupt is a level triggered interrupt. Layout of the Spurious Interrupt Vector
Register is shown in Figure 2-7.

The default value for SVR[bit 12] is clear, indicating that an EOI broadcast will be
performed.

The support for Directed EOI capability can be detected by means of bit 24 in the
Local APIC Version Register. This feature is supported in both the xAPIC mode and
x2APIC modes of a local x2APIC unit. Layout of the Local APIC Version register is as
shown in Figure 2-8. The Directed EOI feature is supported if bit 24 is set to 1.

2.6 INTERACTION WITH PROCESSOR CORE
OPERATING MODES

Similar to the xAPIC architecture, the APIC registers defined in the x2APIC architec-
ture are accessible in the following operating modes of the processor: Protected

Figure 2-7. Spurious Interrupt Vector Register (SVR) of x2APIC

Figure 2-8. Local APIC Version Register of x2APIC

31 0

Reserved

7

APIC Software Enable/Disable

8911

0: APIC Disabled
1: APIC Enabled
Spurious Vector

MMIO Address: FEE0 00F0H
MSR Address: 080FH

EOI Broadcast Disable

12

31 0

Reserved

7823 15

MMIO Address: FEE0 0030H
MSR Address: 0803H

Directed EOI Support

16

Reserved

25 24

VectorMax LVT Entry
28

LOCAL X2APIC ARCHITECTURE
Mode, Virtual-8086 Mode, Real Mode, and IA-32e mode (both 64-bit and compati-
bility sub-modes).

2.7 X2APIC STATE TRANSITIONS
This section provides a detailed description of the x2APIC states of a local x2APIC
unit, transitions between these states as well as interactions of these states with INIT
and RESET.

2.7.1 x2APIC States
The valid states for a local x2APIC unit is listed in Table 2-2:

• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0

• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0

• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1

• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1

The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get
into this state. Values written to the IA32_APIC_BASE_MSR that attempt a transition
from a valid state to this invalid state will cause a GP fault. Figure 2-9 shows the
comprehensive state transition diagram for a local x2APIC unit.

On coming out of RESET, the local x2APIC unit is enabled and is in the xAPIC mode.
The APIC registers are initialized as:

• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The
lowest 8 bits of the x2APIC ID is the legacy local xAPIC ID, and is stored in the
upper 8 bits of the APIC register for access in xAPIC mode.

• The following APIC registers are reset to all zeros for those fields that are defined
in the xAPIC mode:

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Chapter 8
of “Intel® 64 and IA-32 Architectures Software Developer’s Manual“, Vol. 3B
for details of individual APIC registers),

— Timer initial count and timer current count registers,

• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.

• The local APIC version register is not affected.

• The Spurious Interrupt Vector Register is initialized to 000000EFH.

• The DFR (available only in xAPIC mode) is reset to all 1s.

• SELF IPI register is reset to zero.
29

LOCAL X2APIC ARCHITECTURE
2.7.1.1 x2APIC After RESET
The valid transitions from the xAPIC mode state are:

• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical
x2APIC ID (see Figure 2-3) is preserved across this transition and the logical
x2APIC ID (see Figure 2-4) is initialized by hardware during this transition as
documented in Section 2.4.4. The state of the extended fields in other APIC
registers, which was not initialized at RESET, is not architecturally defined across
this transition and system software should explicitly initialize those program-
mable APIC registers.

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).

The result of an INIT in the xAPIC state places the x2APIC in the state with EN= 1,
ENTD= 0. The state of the local APIC ID register is preserved (the 8-bit xAPIC ID is in
the upper 8 bits of the APIC ID register). All the other APIC registers are initialized as
a result of INIT.

A RESET in this state places the x2APIC in the state with EN= 1, EXTD= 0. The state
of the local APIC ID register is initialized as described in Section 2.7.1. All the other
APIC registers are initialized described in Section 2.7.1.

Figure 2-9. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and RESET

xAPIC Mode

EN =1 Illegal
Transition

Init

EN=1, Extd=1

Extended

Invalid
State

Mode

Reset

Extd = 1

Illegal
Transition

EN = 0

EN = 0 Illegal
TransitionExtd = 0

Illegal
Transition

Extd = 0

EN=1, Extd=0

EN = 0

Extd = 1

Reset

Reset

Init

Init

Disabled
EN = 0
Extd = 0
30

LOCAL X2APIC ARCHITECTURE
2.7.1.2 x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to
the state where the x2APIC is disabled by setting EN to 0 and EXTD to 0. The x2APIC
ID (32 bits) and the legacy local xAPIC ID (8 bits) are preserved across this transi-
tion. A transition from the x2APIC mode to xAPIC mode is not valid and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR will raise a GP fault.

A RESET in this state places the x2APIC in xAPIC mode. All APIC registers (including
the local APIC ID register) are initialized as described in Section 2.7.1.

An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local
APIC ID register is preserved (all 32 bits). However, all the other APIC registers are
initialized as a result of the INIT transition.

2.7.1.3 x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to
the xAPIC mode (EN= 1, EXTD = 0). Thus the only means to transition from x2APIC
mode to xAPIC mode is a two-step process:

• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD =
0),

• followed by another transition from disabled mode to xAPIC mode (EN= 1,
EXTD= 0).

Consequently, all the APIC register state in the x2APIC, except for the x2APIC ID (32
bits), are not preserved across mode transitions.

A RESET in the disabled state places the x2APIC in the xAPIC mode. All APIC registers
(including the local APIC ID register) are initialized as described in Section 2.7.1.

An INIT in the disabled state keeps the x2APIC in the disabled state.

2.8 CPUID EXTENSIONS AND TOPOLOGY
ENUMERATION

For Intel 64 and IA-32 processors that support x2APIC, the CPUID instruction
provides additional mechanism for identifying processor topology information.
Specifically, a value of 1 reported by CPUID.01H:ECX[21] indicates that the
processor supports x2APIC and the extended topology enumeration leaf
(CPUID.0BH).

The extended topology enumeration leaf can be accessed by executing CPUID with
EAX = 0BH. Software can detect the availability of the extended topology enumera-
tion leaf (0BH) by performing two steps:

• Check maximum input value for basic CPUID information by executing CPUID
with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed
to next step
31

LOCAL X2APIC ARCHITECTURE
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is avail-
able. The presence of CPUID leaf 0BH in a processor does not guarantee support for
x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero and maximum input value for
basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not supported
on that processor.

The extended topology enumeration leaf is intended to assist software with enumer-
ating processor topology on systems that requires 32-bit x2APIC IDs to address indi-
vidual logical processors. For example, a system with greater than 256 logical
processors or greater than 64 processor cores will require the OS to us 32-bit x2APIC
IDs.

The basic concept of processor topology enumeration using 8-bit initial APIC ID
(CPUID.01H:EBX[31:24]) on legacy systems is similar to using 32-bit x2APIC ID
reported by CPUID leaf 0BH: apply appropriate bit masks on unique IDs to sort out
levels of topology in a system.

Legacy processor enumeration algorithm is based on examining the initial APIC IDs
and additional information from CPUID leaves 01H and 04H to infer system-wide
processor topology. The relevant information in CPUID leaves 01H and 04H do not
directly map to individual levels of the topology, but merely relate to the sharing
characteristics below different levels.

The extended topology enumeration leaf of CPUID provides topology information and
data that simplify the algorithm to sort out the the processor topology within a phys-
ical package from a 32-bit x2APIC ID. Each level of the processor topology is
enumerated by specifying a “level number“ in ECX as input when executing
CPUID.EAX=0BH. This enumeration by level number allows the CPUID.0BH leaf to
support more sophisticated topology than the limitation of legacy topology defini-
tions (SMT, core, package).

The bit fields reported by CPUID.EAX=0BH include the x2APIC ID of the current
logical processor (in EDX), an encoded value of hierarchy referred to as “level type“
(in ECX[15:8]), the number of enabled logical processors at each queried level type
(below its immediate parent level type), and a bit-vector length field to simplify the
parsing of 32-bit x2APIC ID into hierachical components. The detailed bit field defini-
tions for CPUID.0BH leaf are shown in Table 2-5.

Table 2-5. CPUID Leaf 0BH Information
Initial EAX

Value Information Provided about the Processor

CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Extended Topology Enumeration Leaf

0BH NOTE:
Leaf 0BH output depends on the initial value in ECX.
32

LOCAL X2APIC ARCHITECTURE
The lowest level number is zero. Level number = 0 is reserved to specify SMT-related
topology information (see Hyper-Threading Technology in Section 7.8 of “Intel® 64
and IA-32 Architectures Software Developer’s Manual“, Vol. 3A). If SMT is disabled or
not present in a processor implementation but CPUID leaf 0BH is supported,
CPUID.EAX=0BH, ECX=0 will return EAX = 0, EBX = 1 and level type = 1.

CPUID.0BH leaf can report “level type“ and “level number“ in any order. Each level
type defines a specific topology configuration within the physical package. Thus there
is no level type corresponding to “package“ for CPUID.0BH leaf. The Level Type
encodings indicate the topology level and need not correspond to any Level number.

The legacy processor topology enumeration fields in CPUID.01H and CPUID.04H will
continue to report correct topology up to the maximum values supported by the
fields and 8-bit initial APIC ID. For future processors with topology that exceeds the
limits of CPUID.01H:EBX[23:16],CPUID.01H:EBX[31:24], CPUID.EAX=04H,
ECX=0H:EAX[31:26], these legacy fields will report the respective modulo maximum
values.

EAX

EBX

Bits 4-0: Number of bits to shift x2APIC ID right to get unique topology
ID of next level type. All logical processors with same next level ID share
current level
Bits 31-5: Reserved

Bits 15-00: Number of enabled logical processors at this level type
Bits 31-16: Reserved

ECX

EDX

Bits 07-00: Level number. Same value as input
Bits 15-08: *Level Type
Bits 31-16: Reserved.

Bits 31-0: x2APIC ID of the current logical processor

NOTES:

* The value of Level Type field is not related to level numbers in any
way, higher level type values do not mean higher levels. Level Type
field has the following encoding:

0 = Invalid
1 = SMT
2 = Core
3-255 = Reserved

Table 2-5. CPUID Leaf 0BH Information (Contd.)
Initial EAX

Value Information Provided about the Processor
33

LOCAL X2APIC ARCHITECTURE
If CPUID.0BH returns EBX=0 when input ECX=0 then assume that CPUID.0BH leaf
data for extended processor topology enumeration is not supported on this
processor. Use CPUID.01H and CPUID.04H leaves for topology information.

2.8.1 Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit
value returned in CPUID.0BH:EDX is facilitated by processor hardware.

The consistency requirement on the legacy local APIC ID (MMIO offset 0020H), initial
APIC ID (CPUID.01H:EBX[31:24]), and CPUID.0BH:EDX in xAPIC mode requires
cooperation between system software and hardware to ensure consistent application
behavior regarding processor enumeration. Specifically, some examples of the
system software requirement may include:

• An OS which is configured to address active logical processors in a system
exceeding the limits of 8-bit initial APIC IDs, must received hand-off from the
BIOS in x2APIC mode. The Boot Strap Processor (BSP) and all the Application
Processors (AP) operate in x2APIC mode after BIOS passed control to the OS.
Application requiring processor topology information must use OS provided
services based on x2APIC IDs or CPUID.0BH leaf.

• If the number of logical processors in a system exceeds the limits of legacy 8-bit
local xAPIC IDs, the BIOS may choose to enable a subset of less than 255 logical
processor and transfer control to the OS in xAPIC mode. The BIOS must ensure
that only processors with CPUID.0BH.EDX value less than 255 are enabled. The
BSP and all the enabled logical processor operate in xAPIC mode after BIOS
passed control to OS. Application requiring processor topology information can
use OS provided legacy services based on 8-bit initial APIC IDs or legacy topology
information from CPUID.01H and CPUID 04H leaves.

2.9 SYSTEM TRANSITIONS
This section describes implications for the x2APIC across system state transitions -
specifically initialization and booting.

The default will be for the BIOS to pass the control to the OS with the local x2APICs
in xAPIC mode if all x2APIC IDs reported by CPUID.0BH:EDX are less than 255, and
in x2APIC mode if there are any logical processor reporting its x2APIC ID at 255 or
greater.

2.10 LEGACY XAPIC CLARIFICATIONS
The x2APIC architecture eliminates/deprecates some of the features provided by the
legacy xAPIC and some of the legacy xAPIC features that were not used by prevailing
34

LOCAL X2APIC ARCHITECTURE
commercial system software. This section provides a list of the features/capabilities
that are not supported in the x2APIC architecture

• Re-directible/Lowest Priority inter-processor interrupts are not supported in the
x2APIC architecture.
35

LOCAL X2APIC ARCHITECTURE
This page intentionally left blank
36

INDEX

A
APIC 9, 10, 13, 18, 19, 21, 28, 29
APIC ID . 11, 22, 26, 34

C
CPUID instruction

deterministic cache parameters leaf 32

D
DFR

Destination Format Register 15, 23, 29

E
EOI

End Of Interrupt register. 13, 16, 19, 27
ESR

Error Status Register 17, 19

I
ICR

Interrupt Command Register . . . 15, 25, 26, 27, 29
Initial APIC ID . 11, 32, 34
Interrupt Command Register 15
IRR

Interrupt Request Register 17, 27, 29
ISR

In Service Register 13, 16, 27, 29
I/O APIC . 10

L
LDR

Logical Destination Register . . . 11, 22, 23, 26, 29
Local APIC. 10, 16

register address map . 16
Local x2APIC 10, 13, 24, 27, 29, 34
Local xAPIC. 9, 10, 27
Local xAPIC ID . 11, 29, 34
Logical x2APIC ID 11, 13, 22, 24, 26
Logical xAPIC ID 11, 13, 22

M
MSR

Model Specific Register 13, 14, 15, 19

P
Physical xAPIC ID 11, 13, 22

R
RsvdZ . 11, 18
37

S
SELF IPI register . 16, 19
SVR

Spurious Interrupt Vector Register 27

T
TMR

Trigger Mode Register. 17, 27, 28, 29
TPR

Task Priority Register 16, 19, 29

X
x2APIC . 10, 13, 14, 27, 34
x2APIC ID. 11, 22, 23, 24, 26, 29, 32, 34
x2APIC Mode10, 13, 14, 15, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 34
xAPIC 9, 10, 13, 15, 19, 21, 26, 28, 34
xAPIC Mode10, 14, 15, 19, 22, 23, 25, 27, 28, 29, 34
38

This page intentionally left blank
39

	CHAPTER 1 INTRODUCTION
	1.1 INTRODUCTION
	1.2 IMPACTED PLATFORM COMPONENTS
	1.3 Glossary
	1.4 References

	CHAPTER 2 LOCAL x2APIC ARCHITECTURE
	2.1 x2APIC ENHANCEMENTS
	2.2 DETECTING AND ENABLING x2APIC
	2.3 x2APIC MODE REGISTER INTERFACE
	2.3.1 Instructions to Access APIC Registers
	2.3.2 APIC Register Address Space
	2.3.3 Reserved Bit Checking
	2.3.4 Error Handling
	2.3.5 MSR Access Semantics
	2.3.5.1 Interrupt Command Register Semantics
	2.3.5.2 Task Priority Register Semantics
	2.3.5.3 End Of Interrupt Register Semantics
	2.3.5.4 Error Status Register Semantics

	2.3.6 x2APIC Register Availability

	2.4 EXTENDED PROCESSOR ADDRESSABILITY
	2.4.1 Local APIC ID Register
	2.4.2 Logical Destination Register
	2.4.3 Interrupt Command Register
	2.4.4 Deriving Logical x2APIC ID from the Local x2APIC ID
	2.4.5 SELF IPI register

	2.5 x2APIC ENHANCEMENTS TO LEGACY xAPIC ARCHITECTURE
	2.5.1 Directed EOI

	2.6 INTERACTION WITH PROCESSOR CORE OPERATING MODES
	2.7 x2APIC STATE TRANSITIONS
	2.7.1 x2APIC States
	2.7.1.1 x2APIC After RESET
	2.7.1.2 x2APIC Transitions From x2APIC Mode
	2.7.1.3 x2APIC Transitions From Disabled Mode

	2.8 CPUID EXTENSIONS AND TOPOLOGY ENUMERATION
	2.8.1 Consistency of APIC IDs and CPUID

	2.9 SYSTEM TRANSITIONS
	2.10 LEGACY xAPIC CLARIFICATIONS

