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1.0 Introduction 

Side channel analysis methods are techniques that may allow an attacker to obtain 
secret or privileged information through observing the system that they would not 
normally be able to access, such as measuring microarchitectural properties about the 
system. Software components, like managed runtimes that generate code—either via 
Just-in-Time (JIT) or Ahead-of-Time (AOT) compilation—or code payloads that need to 
be kept isolated (like applets or programs), should take measures to mitigate these 
attack methods. This document focuses on mitigating the speculative execution side 
channel methods bounds check bypass, branch target injection, and speculative store 
bypass from the perspective of a managed runtime.   

1.1 Document audience 

The intended audience for this document is developers of managed runtime 
environments (for example, JavaScript*, Java*, and C# runtimes). This document 
provides guidance regarding the JIT and AOT compiler frameworks that exist in these 
runtimes, and details how the runtime itself should be compiled if mitigation is 
required. Developers of managed runtime environments should understand the risks of 
speculative execution side channel attacks (https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-
Channels.pdf) and the mitigation options 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf) associated with each variant.  

Because this document deals with managed runtime internal requirements, it is not 
intended to provide guidance for general developers who write managed code that 
runs within a managed runtime, nor is it intended for the users of those managed 
runtime environments. 

1.2 Document scope 

The scope of this document includes intraprocess risks and mitigation suggestions for 
the bounds check bypass, branch target injection, and speculative store bypass side 
channel analysis methods. The key responsibility to mitigate rogue data cache load falls 
upon the OS kernel (https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-
Channels.pdf). The examples and context in this document are primarily focused on 
user-mode runtimes of languages such as JavaScript, Java, and C#.  

The mitigations for bounds check bypass described in this document are focused on 
direct mitigations for the exploits described by Google* Project Zero 

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
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(https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-
side.html). This set of mitigations may grow over time as the industry response matures 
through improved tooling and increased developer awareness. 

Intel is also developing further documentation to describe mitigations for the class of 
vulnerabilities known as side channel analysis methods. Application developers should 
check https://software.intel.com/en-us/side-channel-security-support for updates on 
Intel's latest recommendations for mitigating these exploits. 

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://software.intel.com/en-us/side-channel-security-support
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2.0 General mitigations 

Side channel analysis methods take advantage of speculative execution that may occur 
within the same process address space to gain access to secrets. Secrets can be 
anything that should not be known by other code modules, processes, users, etc. You 
could separate secrets into different process address spaces and/or use processor-
provided security features and technologies for isolation, as described in section 4. In 
general, we recommend implementing software components that belong to different 
security domains in different processes. Code that belongs to different security 
domains should preferably be executed in different process address spaces instead of 
relying on pointer and code flow control to constrain speculative execution. 

2.1 Process isolation 

Sandboxed threads in managed runtimes that execute in the same process and rely on 
language-based security are more susceptible to speculative execution side channel 
attacks. Process isolation is the preferred mitigation for managed runtimes that can 
practicably implement it. To implement process isolation, managed runtimes should 
convert sandboxed threads to sandboxed processes, move secrets into separate 
processes, and rely on separate address spaces for protection. For example, on a web 
browser, code from different sites is assumed to belong to different security domains 
and therefore needs to be in different address spaces 
(https://www.chromium.org/Home/chromium-security/site-isolation).  

However, this strategy could be impractical to implement in some cases. For example, 
Java Platform*, Enterprise Edition (Java* EE) has a decades-long history of running 
multiple threads sharing the same address space. For managed runtimes where 
implementing process isolation is not feasible, you can apply the specific mitigations 
described in the following sections. 

https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
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3.0 Managed runtime sandboxes and specific 
mitigations 

A managed runtime is a software environment that simultaneously hosts one or more 
distinct code payloads (for example, applets, programs, and applications). These 
applications are sandboxed (logically isolated from each other) via some combination 
of language constructs and runtime services. The strength of the sandbox isolation 
varies depending on the particular managed runtime and how that particular managed 
runtime is used. 

For example, assume a Java* runtime supports Java Native Interface* (JNI), which 
allows arbitrary C code to execute within the managed runtime process. This arbitrary C 
code can access arbitrary addresses within the managed runtime process, which breaks 
the sandbox isolation. A Java runtime might prohibit JNI, or might only allow selected, 
signed code payloads that are trusted to maintain sandbox isolation to execute the C 
code. 

As another example, JavaScript engines should ensure that JavaScript programs from 
different origins, or security domains, are isolated from one another through strong 
sandbox isolation. 

 

Figure 1: Stereotypical Sandbox Runtime Environment 

Figure 1 shows an example of three classes of secret assets (privileged data or code) 
that belong to different security domains that managed runtimes should protect with 
sandbox isolation:  

• Secret assets in a code payload.  
• Secret assets in the runtime environment. 
• Secret assets in the runtime host process.  
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This indicates that several types of attacks must be mitigated to assist with sandbox 
isolation, as shown with arrows in Figure 1:  

1. Code payload 2 detecting secret assets in code payload 1. 
2. Code payload 3 detecting secret assets in the runtime environment 
3. Code payload 4 detecting secret assets in the runtime host. 

If the managed runtime provides sandbox isolation to protect secret assets within the 
managed runtime, the following general conditions apply: 

• Managed runtimes and JIT compilers are generally designed to not trust the 
code they execute. For example, a browser executing JavaScript from an 
untrustworthy origin, or security domain. 

• The runtime itself generally executes within a host process (for example, a 
browser) and serves one or more code payloads. 

• Code payloads do not mutually trust each other.  

If a managed runtime provides sandbox isolation, it should implement side-channel 
mitigation techniques. Because mitigation involves some overhead, if a given managed 
runtime only occasionally runs in sandbox isolation mode, managed runtime vendors 
might consider developing both sandbox-capable and non-sandbox-capable release 
versions of their runtime, and/or adding options that allow users to choose whether to 
enable sandboxing or not. On startup, managed runtimes might automatically 
determine whether sandbox isolation is needed and run the appropriate version of the 
runtime. 

A single application environment, like Node.js*, that only runs trusted sources is an 
example of a runtime environment that you might wish to run without side-channel 
mitigations. In this case, a sandbox might not be required within the single-process 
address space. 

Mitigations need to be applied to code executing in the same address space as the 
secret data: the runtime execution engine (for example, a fast/optimizing JIT or AOT 
compiler, etc.), the runtime environment itself, and the process hosting the runtime. 
Note that you may also need to apply the mitigation steps outlined in this document to 
any libraries used by the runtime and hosting process. 

The runtime execution engine mitigations help protect code payloads from side 
channel attacks by other code payloads. We outline some guidelines for how to insert 
these mitigations into the runtime execution engine in Section 3.2 for bounds check 
bypass and Section 3.3 for branch target injection, and 3.4 for speculative store bypass.  

The runtime environment itself should include mitigations whenever sandbox isolation 
is required to help protect the internal runtime state from side channel attacks by code 
payloads. In general, runtime environments themselves are native applications. 
Therefore, you should apply the mitigations identified in Sections 3.2, 3.3, and 3.4 of 
this document to the runtime environment as well.  
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Additionally, if any inline assembly is included in the managed runtime (for example, for 
critical lock, allocation, hash, interpreter, etc.), you should analyze the inline assembly 
as described in Section 3.2, Section 3.3, and Section 3.4 to determine if you need to 
apply mitigations. Some managed runtimes encode these critical sequences as 
compiler intermediate representation (IR) and then use the regular JIT/AOT compiler to 
emit instruction set architecture (ISA) assembly. In this case, managed runtime 
developers should use a high enough IR level to encode these sequences so that the IR 
exercises the mitigation insertion path as it is translated into ISA assembly. For 
example, if the mitigations are inserted during a mid-level IR to low level IR translation 
and custom snippets are pre-encoded in low level IR, those snippets would not have 
any mitigations inserted. 

To complete sandbox isolation, the process that hosts the managed runtime (for 
example, the browser that hosts the web runtime) should include mitigations to help 
protect the host process from being attacked by code payloads. In general, these host 
applications themselves are native applications. Therefore, you should apply the 
mitigations outlined in Sections 3.2, 3.3, and 3.4 to the host application as well.  

3.1 Short term mitigations 

Developers can reduce the precision of timers available to users of the runtime 
(https://www.mozilla.org/en-US/security/advisories/mfsa2018-01) as a short term 
mitigation while long term mitigations are being developed. Another short term 
mitigation that is worth noting is disabling JITs in cases where doing so is acceptable. 
Disabling JITs reduces the freedom that attackers have to generate vulnerable code 
sequences, but it is obviously not practical for some environments. 

3.2 Bounds check bypass mitigation 

Bounds check bypass (https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html) takes advantage of the speculative execution used 
in processors to achieve high performance. To avoid the processor having to wait for 
data to arrive from memory, or for previous operations to finish, the processor may 
speculate as to what will be executed. If it is incorrect, the processor will discard the 
wrong values and then go back and redo the computation with the correct values. At 
the program level this speculation is invisible, but because instructions were 
speculatively executed they might leave hints that a local malicious actor can measure, 
such as which memory locations have been brought into cache. 

Using the bounds check bypass method, malicious actors can use code gadgets 
("confused deputy" code) to infer data values that have been used in speculative 
operations. This presents a method to access data in the system cache and/or memory 
that the malicious actor should not otherwise be able to read.  

https://www.mozilla.org/en-US/security/advisories/mfsa2018-01
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
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3.2.1 Bounds check bypass mitigation overview 

In managed runtime languages (for example, Java, JavaScript, and C#), the runtime 
automatically performs data validation, such as array bounds checks, null checks or 
type checks. While Spectre variant 1 is known as the bounds check bypass vulnerability, 
code sequences can potentially become data exfiltration gadgets even if there is not an 
explicit array access or array bounds check. All data validation, including pointer null 
checks and dynamic object type checks, using conditional branches may need 
mitigation bounds check bypass. You should watch for further research about 
recognizing and disrupting gadgets based on this variant. We describe several currently 
known mitigation techniques in the following sections. When the managed runtime is 
used in sandbox mode, the bounds check bypass mitigations need to be handled in the 
interpreter, JIT compiler, and AOT compilers in the language runtime. Developers 
should do any optimizations in the runtime compilers carefully to avoid inadvertently 
removing the associated mitigations.   

3.2.2 Mitigation through ordering instructions 

You can mitigate bounds check bypass attacks by modifying software to constrain 
speculation in confused deputy code. Specifically, software can insert a barrier that 
stops speculation between a bounds check and a later operation that could be 
exploited. The LFENCE instruction can serve as such a barrier. An LFENCE instruction or 
a serializing instruction will ensure that no later instructions execute, even 
speculatively, until all prior instructions complete locally. Developers might prefer 
LFENCE over a serializing instruction because LFENCE may have lower latency. 
Inserting an LFENCE instruction after a bounds check prevents later operations from 
executing before the bound check completes. Developers should be judicious when 
inserting LFENCE instructions. Overapplication of LFENCE can compromise 
performance.   

// r10 has the base, r8d has index, r11d is the limit loaded 
from memory 

// Bounds check 

mov   r11d, dword ptr [rsi+0xc] 

cmp   r8d, r11d 

jae array_out_of_bounds_error  

// Mitigation with speculation stopping barrier 

lfence    

// Array access 

movsx r13d, byte [r10 + r8 + 0x10] 
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Alternatively you could use an LFENCE instruction after the validated load but before 
the loaded value can be used in a way that creates a side channel (for example, to 
compute a code or data address), thereby preventing attackers from exfiltrating stolen 
data. 

3.2.3 Runtime/Host mitigation through ordering instructions 

Managed runtimes and host application are usually implemented in C/C++. When the 
managed runtime is used in sandbox environment, to mitigate bounds check bypass 
through ordering instructions, you should also consider applying the mitigations to the 
runtime itself, the hosting process, and the libraries used by the runtime. 

The _mm_lfence()  compiler intrinsic can be used for this purpose. It issues an 
LFENCE instruction and also tells the compiler that memory references may not be 
moved across that boundary. For example: 

  #include <emmintrin.h> 

                  ...  

 if (user_value >= LIMIT) 

   return ERROR; 

 _mm_lfence();  /* manually inserted by developer */ 

 x = table[user_value]; 

 node = entry[x] 

In this example, the LFENCE helps ensure that the loads do not occur until the bounds 
check condition has actually been completed. The memory barrier prevents the 
compiler from reordering references around the LFENCE, which would break the 
protection. GCC, Intel® C/C++ Compiler, LLVM, and the Microsoft* Visual* C++ (MSVC) 
compiler all support generating LFENCE instructions for 32- and 64-bit targets when 
you manually use the _mm_lfence() intrinsic in the required places. 

A comprehensive mitigation approach to bounds check bypass 
(https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html) is proposed on 
the LLVM mailing list describing compiler assisted mitigation technique for LLVM. 

Runtimes/hosts compiled using MSVC compiler could also use compiler assisted 
mitigation for bounds check bypass. We provide a few observations below: 

• All versions of MSVC v15.5 and all previews of MSVC v15.61 provide the 
/Qspectre switch, which automatically inserts LFENCE barriers when the 

                                                                    
1  Refer to Microsoft’s public documentation for other options:  

• https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/    

https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
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compiler detects code that is vulnerable to bounds check bypass. This switch is 
effective only on optimized code (for example, /O1 or /O2, but not /Od). MSVC 
v15.7 compiler from preview 3 onwards support the /Qspectre switch in /Od 
mode as well.  

• For performance-critical blocks of code where you know that mitigation is not 
needed, you can use (__declspec( spectre(nomitigation) ) to 
selectively disable the mitigation while compiling with the /Qspectre flag. 

• It is important to note that the automatic analysis performed by MSVC and 
other compilers does not guarantee that the compiler will detect and mitigate 
all possible instances of bounds check bypass by inserting LFENCE barriers2. 
To ensure that bounds check bypass is fully mitigated, manually insert LFENCE 
barriers by using _mm_lfence() intrinsic in the appropriate places.  

3.2.4 Mitigation through index or data clipping 

Other instructions (such as CMOVcc, AND, ADC, SBB and SETcc) can also be used to 
mitigate bounds check bypass attacks by constraining speculative execution on current 
family 6 processors (Intel® Core™, Intel Atom®, Intel® Xeon® and Intel® Xeon Phi™ 
processors). Intel will release further guidance on the usage of instructions to constrain 
speculation if future processors with different behavior are released. 

Example for JIT/AOT with CMOVcc to sanitize index: 

// r10 has the base, r8d has user index, the limit is in 
memory at rsi+0xC, r9d will have sanitized index before array 
access 

// set final index to 0 

xor  r9, r9  

// Bounds check 

cmp r8d, dword ptr [rsi+0xc] 

jae array_out_of_bounds_error  

// Mitigation with Cmovcc: use input index if bounds check 
succeeds, otherwise use 0 

cmovb r9d, r8d 

// Array access 

                                                                    

• https://docs.microsoft.com/en-us/cpp/build/reference/qspectre   
• https://docs.microsoft.com/en-us/cpp/cpp/spectre    

2 Spectre Mitigations in Microsoft's C/C++ Compiler 
• https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html  

https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
https://docs.microsoft.com/en-us/cpp/cpp/spectre
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
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movsx r13d, byte [r10 + r9 + 0x10]   ; r9 would have been 
sanitized to zero for out of bounds index 

 

Example for JIT/AOT with CMOVcc to sanitize data: 

// r10 has the base, r8d has user index, the limit is in 
memory at rsi+0xC, r9d will have sanitized data 

// set final data to 0 

xor  r9, r9  

// Bounds check 

cmp r8d, dword ptr [rsi+0xc] 

jae array_out_of_bounds_error  

// Array access and get data into r13d 

movsx r13d, byte [r10 + r8 + 0x10]   

// Mitigation with Cmovcc: use data read from array if bounds 
check succeeds, otherwise use 0 

cmovb r9d, r13d   ; data in r9d would have been sanitized to 
zero for out of bounds index 

 

Example for JIT/AOT with SBB: 

// r10 has the base, r8d has user index, the limit is in 
memory at rsi+0xC, r9 will have sanitized index before array 
access 

// Bounds check 

cmp r8d, dword ptr [rsi+0xc] 

jae array_out_of_bounds_error  

// Mitigation with SBB: use input index if bounds check 
succeeds, otherwise use 0 

sbb r9, r9  ; set r9 to 0 if out of bounds, else 
0xffffffffffffffff 

and r9d, r8d 

// Array access 
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movsx r13d, byte [r10 + r9 + 0x10]     ; r9 would have been 
sanitized to zero for out of bounds index 

 

Example for Runtime/Host with AND: 

For current family 6 processors (Intel® Core™, Intel Atom®, Intel® Xeon® and Intel® Xeon 
Phi™ processors), the Runtime/Host could use instructions that mask or range check 
without branching. Refer to the simple example below: 

unsigned int user_value; 

if (user_value > 255) 

return ERROR; 

x = table[user_value]; 

You can make this sample code safe as shown below: 

volatile unsigned int user_value; 

If (user_value > 255) 

 return ERROR; 

x = table[user_value & 255]; 
 

This works for powers of two array lengths or bounds only. In the example above the 
table array length is 256 (2^8), and the valid index should be <= 255. Take care so that 
the compiler used doesn’t optimize away the & 255 operation. 

 

Example for Runtime/Host with CMOVcc: 

A comprehensive mitigation approach to bounds check bypass 
(https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html) is proposed on 
the LLVM lists describing compiler assisted mitigation technique for LLVM using 
CMOVcc. 

3.3 Branch target injection mitigation  

Intel processors use indirect branch predictors to determine which operations are 
speculatively executed after a near indirect branch instruction, as shown in Table 3-1. 
Branch target injection (https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html), is a side channel method that takes advantage of 
the indirect branch predictors. By controlling the operation (“training”) of the indirect 

https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
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branch predictors, attackers can cause certain instructions to be speculatively executed 
and then use the effects of this speculative execution for side channel analysis. 

The processor uses indirect branch predictors to control only the operation of the 
branch instructions listed in the table below. 

Table 3-1: Instructions that use Indirect Branch Predictors 

Branch type Instruction Opcode 
Near Call 
Indirect 

CALL r/m16,  

CALL r/m32,  

CALL r/m64 

FF /2 

Near Jump 
Indirect 

JMP r/m16,  

JMP r/m32,  

JMP r/m64 

FF /4 

Near Return RET,  

RET Imm16 

C3, 

C2 Iw 

In this document, references to indirect branches refer only to near call indirect, near 
jump indirect, and near return instructions. We first cover the two general mitigation 
techniques available for the branch target injection method, and then discuss the 
runtime JIT mitigation in detail. The two general mitigation techniques enable software 
ecosystems to select the approach that works for their security, performance, and 
compatibility goals. 

The Speculative Execution Side Channel Mitigations white paper 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf) describes alternate mitigations that are not 
discussed here. These alternate mitigations use various methods to control the indirect 
branch predictor to mitigate branch target injection and bounds check bypass attacks.  

 

Developers of managed runtimes might also consider converting near calls/jumps into 
far calls/jumps as a mitigation technique for branch target injection. 

Section 4 lists several related security features and technologies, which are either 
present in existing Intel processors or are planned for future processors, and can 
reduce the effectiveness of the side channel methods described in this and the 
previous section. 

3.3.1 Indirect branch control mechanisms 

The first general mitigation technique for branch target injection introduces a new 
interface between the processor and system software. This interface provides 
mechanisms that allow software to mitigate exploits that attempt to influence the 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
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victim’s indirect branch predictions, such as flushing the indirect branch predictors at 
the appropriate time to mitigate such attacks. This mitigation strategy requires both 
updated system software as well as a microcode update to be loaded to support the 
new interface for many existing processors. We describe three new capabilities that will 
now be supported for this mitigation strategy in the Speculative Execution Side 
Channel Mitigations white paper 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf). These capabilities are available both on 
existing modern Intel processors when the appropriate microcode update is applied, 
and on future Intel processors, which will improve the performance cost of these 
mitigations. In particular, the capabilities are: 

• Indirect Branch Restricted Speculation (IBRS): Restricts speculation of indirect 
branches. 

• Single Thread Indirect Branch Predictors (STIBP): Prevents indirect branch 
predictions from being controlled by the sibling Hyperthread. 

• Indirect Branch Predictor Barrier (IBPB): Ensures that earlier code’s behavior 
does not control later indirect branch predictions. 

3.3.2 Retpoline 

The second general mitigation technique for branch target injection introduces the 
concept of a “return trampoline”, also known as retpoline 
(https://support.google.com/faqs/answer/7625886). Essentially, software replaces 
indirect near jump and call instructions with a code sequence that includes pushing the 
target of the branch in question onto the stack and then executing a return (RET) 
instruction to jump to that location. 

Intel has worked with various open source compiler developers to ensure compiler 
support for retpoline, and with the OS vendors to ensure support for these mitigation 
techniques. For Intel® Core™ 5th generation processors (code name Broadwell) and 
later, this retpoline mitigation strategy also requires a microcode update for the 
mitigation to be fully effective.  

You can find a detailed explanation of branch target injection and the mitigations 
available in Retpoline: A Branch Target Injection Mitigation 
(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf). As stated in section 3.0 of that document: 

Mitigations for speculation-based, side-channel security issues fall into two 
categories: directly manipulating speculation hardware, or indirectly controlling 
speculation behavior. Direct manipulation of the hardware is generally performed 
by microcode updates or manipulation of hardware registers. Indirect control is 
accomplished via software constructs that limit or constrain speculation. Retpoline 
is a hybrid approach since it requires updated microcode to make the speculation 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
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hardware behavior more predictable on some processor models. However, retpoline 
is primarily a software construct that leverages specific knowledge of the underlying 
hardware to mitigate branch target injection. The retpoline is a method to bypass 
the indirect branch predictor. 

Retpoline is a mitigation for branch target injection on Intel processors belonging to 
family 6 (as enumerated by the CPUID instruction) that do not have support for 
enhanced IBRS. Combined with updated microcode support, retpoline 
(https://support.google.com/faqs/answer/7625886) can help ensure that a given 
indirect branch is resistant to branch target injection exploits. Retpoline sequences 
deliberately steer the processor’s branch prediction logic to a trusted location, thereby 
helping to mitigate a potential exploit from steering the branch prediction logic 
elsewhere.  

The managed runtime JIT and AOT compilers may also generate indirect branches. 
Therefore when the managed runtime is used in sandbox environments or where 
isolation is required, for microprocessors listed in the security advisory 
(https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-
00088&languageid=en-fr), the managed runtime JIT and AOT compilers can 
automatically generate retpoline sequences for “near call indirect” and “near jump 
indirect” instead of vulnerable indirect branches.    

The community is using several retpoline sequences. Generally, these sequences are 
functionally equivalent to each other, but differ with respect to their power impact on 
different microarchitectures. Inserting PAUSE and/or LFENCE instructions may reduce 
the power cost of the speculative spin construct in retpoline on some architectures 
(https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html). 

3.3.3 Mitigation for processors with alternate empty RSB behavior 

As stated in section 5.2 of Retpoline: A Branch Target Injection Mitigation 
(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf): 

The predictable speculative behavior of the RET instruction is the key to retpoline 
being a robust mitigation. RET has this behavior on all processors which are based 
on the Intel® microarchitecture codename Broadwell and earlier when updated with 
the latest microcode. Processors based on the Intel® microarchitecture codename 
Skylake and its close derivatives have different RSB behavior than other processors 
when the RSB is empty. 

For processors based on Intel® microarchitecture code name Skylake and its close 
derivatives which have different Return Stack Buffer (RSB) behavior, although the near 
call indirect and near jump indirect retpolines significantly raise the bar for successful 
attacks, developers need to additionally use return retpolines to further mitigate the 
RET instruction. Refer to Example 3 in the Example retpoline sequences section below. 
You can identify processors with this RSB behavior using the Family/Model signatures 

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00088&languageid=en-fr
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
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in Table 3-2. Refer to the CPUID Instruction 
(https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-software-developer-vol-2a-manual.html) in the Intel® 64 and IA-32 
Architectures Developer's Manual. 

 

Table 3-2: Processor Family/Model signatures with alternate empty RSB behavior3 

Family Model 
06H 4EH 
06H 5EH 
06H 55H 
06H 66H 
06H 67H 
06H 8EH 
06H 9EH 

Managed runtimes could be used in a virtualized environment. A valuable tool in 
modern data centers is live migration of virtual machines (VMs) among a cluster of 
bare-metal hosts. However, those bare-metal hosts often differ in hardware 
capabilities. These differences could prevent a VM that started on one host from being 
migrated to another host that has different capabilities. For instance, a VM using Intel® 
Advanced Vector Extensions 512 (Intel® AVX512) instructions could not be live-
migrated to an older system without Intel® AVX-512. 

A common approach to solving this issue is exposing the oldest processor model with 
the smallest subset of hardware features to the VM. This addresses the live-migration 
issue, but results in a new issue: Software using model/family numbers from CPUID can 
no longer detect when it is running on a newer processor that is vulnerable to exploits 
of Empty RSB conditions. 

To remedy this situation, a managed runtime running in a virtualized environment 
needs to query bit 2 of the IA32_ARCH_CAPABILITIES MSR, known as “RSB Alternate” 
(RSBA). Since applications can’t read MSRs directly, OS vendors may expose this 
information through an API to help applications take corrective measures. When RSBA 
is set, it indicates that the underlying VM may run on a processor vulnerable to exploits 
of Empty RSB conditions regardless of the processor’s Family/Model signature, and 
that the managed runtime should deploy appropriate mitigations.  

3.3.4 Example retpoline sequences 

The assembly snippets below show retpoline mitigations in GNU Assembler syntax. 
Refer to Retpoline: A Branch Target Injection Mitigation 

                                                                    
3 Additional processors may exhibit vulnerable RSB behavior that are not listed in this table. 

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
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(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf) for more details. 

Example 1: Near call/jump indirect retpoline sequence for address in register 

Before: jmp *rax 

After: call load_label 

capture_ret_spec:  

          pause ; lfence  

          jmp capture_ret_spec 

load_label:  

          mov %rax, (%rsp) 

          ret 

 

Before: call *rax 

After: jmp label2    

label0:  

          call label1 

capture_ret_spec: 

          pause ; lfence 

          jmp capture_ret_spec 

label1: 

          mov %rax, (%rsp) 

          ret 

label2: 

          call label0 

 

Example 2: Near call/jump indirect retpoline sequence for address in memory 

Before:    jmp *mem 

After: push mem 

         call load_label 

capture_ret_spec:  

          pause ; lfence  

          jmp capture_ret_spec 

load_label:  

          lea 8(%rsp), %rsp 

https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
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          ret 

 

Before: call *mem 

After: jmp label2    

label0:  

         push mem 

          call label1 

capture_ret_spec: 

          pause ; lfence 

          jmp capture_ret_spec 

label1: 

          lea 8(%rsp), %rsp 

          ret 

label2: 

          call label0 

 

Example 3: Near return retpoline sequence for processors with alternate empty 
RSB behavior 

Before: ret 

After: call load_label 

capture_ret_spec:  

          pause ; lfence  

          jmp capture_ret_spec 

load_label:  

          lea 8(%rsp), %rsp 

          ret 

3.3.5 Runtime/Host retpoline mitigation overview 

Managed runtimes and host application are usually implemented in C/C++. To mitigate 
branch target injection when the managed runtime is used in a sandbox environment, 
you should also consider applying mitigations to the runtime itself, the hosting process, 
and the libraries used by the runtime. 

Managed runtimes can also have inline assembly. Some low-level critical elements of 
the managed runtimes are implemented in assembly for performance reasons (for 
example, interpreter, portions of object allocation or garbage collection, etc.). The 
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mitigations for branch target injection need to be carefully applied to the inline 
assembly as well. 

In the following sections, we outline the compiler flags that you can use to mitigate 
branch target injection when you compile managed runtime C/C++ elements to create a 
sandbox environment. 

3.3.6 Linux* and GCC retpoline mitigation 

Managed runtimes written in C/C++ can use mitigation support in native C/C++ 
compilers. For example, you can implement branch target injection mitigation on Linux* 
with GCC 
(https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90a
a6c335ed6) by compiling the runtime with the following compiler switches: 

-mindirect-branch=thunk/thunk-inline/thunk-extern 

When compiling for the processors identified in Table 3-2 above, you also need to 
generate the ret retpolines 
(https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece
39bf08c6) with the following compiler switches:  

-mfunction-return=thunk/thunk-inline/thunk-extern 

3.3.7 Intel® C Compiler (ICC) retpoline mitigation 

Intel® C Compiler v18.0.3 also supports the switches described above. Work is ongoing 
to backport these switches version 16 and version 17. 

3.3.8 LLVM Clang retpoline mitigation 

The LLVM Clang C/C++ Compiler supports -mretpoline and -mretpoline-
external-thunk (https://reviews.llvm.org/rC323155) switches for retpoline 
generation. These switches are backported to version 6.0.0 
(http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html), and work is ongoing to 
backport to version 5.0.2 (http://lists.llvm.org/pipermail/llvm-dev/2018-
March/121771.html).  

3.4 Speculative store bypass mitigation 

Modern high performance processors use memory disambiguation predictors to 
speculatively execute load operations even when the addresses of preceding store 
operations are unknown. In cases where the memory disambiguation predictor does 
not correctly predict an address overlap, speculative loads could consume stale data 
until the processor makes the necessary corrections.  

https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c156070ba6e90aa6c335ed6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d2132f2f94161ece39bf08c6
https://reviews.llvm.org/rC323155
https://reviews.llvm.org/rC323155
https://reviews.llvm.org/rC323155
http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html
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Refer to the example scenario below: 

//Store N at address ‘ptrA’ 

*ptrA = N;  

 ...  

//expr is a high-latency expression evaluating to address 
‘prtA’ 

*(<expr>) = P;  

//Read value from ‘ptrA’ 

X = *ptrA; //X can read the stale value N 

//Leak the value X into the cache using a gadget. 

For additional information, refer to the Intel Analysis of Speculative Execution Side 
Channels white paper 
(https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-
of-Speculative-Execution-Side-Channels-White-Paper.pdf). 

3.4.1 Speculative store bypass mitigation 

Managed runtimes using language-based security in sandbox environments are 
vulnerable to malicious actors who can use confused deputy code to influence JIT/AOT 
code generation to break the sandbox isolation. Software that does not rely on 
language-based security mechanisms, for example, because it instead uses process 
isolation, might not need the speculative store bypass mitigation. The speculative store 
bypass method can be mitigated with software modifications or using the processor-
supported mitigation mechanism. 

3.4.2 Software-based mitigations 

Isolating secrets to a separate address space from untrusted code will mitigate 
speculative store bypass. For example, creating separate processes for different 
websites ensures that secrets are mapped to different address spaces than a malicious 
website executing code. Similar techniques can be used for other runtime 
environments that rely on language-based security to run trusted and untrusted code 
within the same process. 

Inserting LFENCE between a store and a subsequent load, or between the load and any 
subsequent usage of the data returned that might create a side channel will mitigate 
speculative store bypass. Software should apply this mitigation when there is a realistic 
risk of an exploit to minimize performance degradation. 

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
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3.4.3 Speculative Store Bypass Disable (SSBD) overview 

When the software based mitigations are not feasible, you can use the processor-
supported Speculative Store Bypass Disable (SSBD) mechanism to mitigate speculative 
store bypass. When SSBD is set, loads will not execute speculatively until the addresses 
of the older stores are known. Use SSBD judiciously to minimize the impact on 
performance. Managed runtimes can use OS-provided API’s to enable and disable 
SSBD. 

For additional information on SSBD, refer to the Speculative Execution Side Channel 
Mitigations document 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf). 

3.4.4 Speculative Store Bypass Disable (SSBD) on Linux 

In Linux, the spec_store_bypass_disable boot option controls whether the system 
uses the SSBD optimization. The parameter takes the following values: 

on Unconditionally disable speculative store bypass 

off Unconditionally enable speculative store bypass 

auto The kernel detects whether the CPU model contains an 
implementation of speculative store bypass and picks the 
most appropriate mitigation. If the CPU is not vulnerable, this 
option selects off. If the CPU is vulnerable, the default 
mitigation is architecture and Kconfig dependent. See below. 

prctl Controls speculative store bypass per thread via prctl. 
Speculative store bypass is enabled for processes by default. 
The state of the control is inherited on fork. 

seccomp Same as prctl, except all seccomp threads will disable 
Speculative store bypass unless they explicitly opt out 

Not specifying this boot option is equivalent to setting 
spec_store_bypass_disable=auto. 

Setting the spec_store_bypass_disable parameter value to prctl or seccomp 
enables controlling speculative store bypass per thread. The prctl interface is 
documented in the Linux kernel documentation 
(https://github.com/torvalds/linux/blob/master/Documentation/userspace-
api/spec_ctrl.rst). 

prctl has two options that are related to speculative store bypass disable: 

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
https://github.com/torvalds/linux/blob/master/Documentation/userspace-api/spec_ctrl.rst
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• PR_GET_SPECULATION_CTRL  

• PR_SET_SPECULATION_CTRL 

PR_GET_SPECULATION_CTRL returns the state of the speculation feature selected 
with argument 2 of prctl(2). The return value uses bits 0-3, corresponding to the 
following: 

 

Bit Definition Description 

0 PR_SPEC_PRCTL Mitigation can be controlled per task 
using PR_SET_SPECULATION_CTRL. 

1 PR_SPEC_ENABLE The speculation feature is enabled, 
mitigation is disabled. 

2 PR_SPEC_DISABLE The speculation feature is disabled, 
mitigation is enabled. 

3 PR_SPEC_FORCE_DISABLE Same as PR_SPEC_DISABLE, but cannot 
be undone. A subsequent prctl(..., 
PR_SPEC_ENABLE) will fail. 

PR_SET_SPECULATION_CTRL allows controlling the speculation feature.  

Sample invocations: 

• prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 0, 0, 
0); 

• prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 
PR_SPEC_ENABLE, 0, 0); 

• prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 
PR_SPEC_DISABLE, 0, 0); 

• prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 
PR_SPEC_FORCE_DISABLE, 0, 0); 

3.4.5 Speculative Store Bypass Disable (SSBD) on Windows* 

Microsoft plans to provide a mitigation that leverages the new hardware features in a 
future Windows* update. More details are available on Microsoft’s public blog 
(https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-
speculative-store-bypass-cve-2018-3639/). 

https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
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4.0 Related Intel security features and 
technologies 

Several related security features and technologies, which are either present in existing 
Intel processors or are planned for future processors, can reduce the effectiveness of 
the side channel methods mentioned in the previous sections. 

4.1 Execute Disable Bit 

Execute Disable Bit is a hardware-based security feature present in existing Intel 
processors that can help reduce system exposure to viruses and malicious code. 
Execute Disable Bit allows the processor to classify areas in memory where application 
code can or cannot execute, even speculatively. This helps reduce the gadget space, 
which increases the difficulty of branch target injection attacks. All major operating 
systems enable Execute Disable Bit support by default. 

While generating code, managed runtime JIT/AOT compilers can mark the code buffers 
as not executable until the compilation of the method is complete. This is good code 
hygiene in general, but is especially helpful in mitigating gadget sources in managed 
runtimes. 

4.2 Control flow Enforcement Technology (CET) 

On future Intel processors, Control flow Enforcement Technology (CET) will allow 
developers to limit near indirect jump and call instructions to only target ENDBRANCH 
instructions. This feature can help reduce the speculation allowed to instructions that 
are not ENDBRANCH instructions. This greatly reduces the gadget space, which increases 
the difficulty of branch target injection attacks.  

CET also provides capabilities to defend against Return-Oriented-Programming (ROP) 
control-flow subversion attacks. However, the retpoline technique closely resembles 
the approaches used in ROP attacks. Be aware that if used in conjunction with CET, 
retpoline might trigger false positives in the CET defenses. 

For additional information on CET, refer to the Control-flow Enforcement Technology 
Preview (https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technologypreview.pdf). 

4.3 Protection keys 

On future Intel processors that have both hardware support for mitigating rogue data 
cache load and protection keys support, protection keys can limit the data that is 
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accessible to a piece of software. This can be used to limit the memory addresses that 
could be revealed by a bound check bypass or branch target injection attack.  

A managed runtime could deploy protection keys by changing the protection key used 
to map secrets and then limiting what is executed while those secrets are marked 
accessible in the Protection Keys Rights register (PKRU). The secrets being protected 
could be of any class: runtime host, runtime environment or payload. 

Protection keys can also be used to produce execute-only memory areas. An execute-
only memory area cannot be accessed with loads and stores, which potentially limits 
gadget discovery which might then be used to carry out an exploit. 

As is the case any time protection keys are in use, gadgets containing the WRPKRU 
instruction are valuable in defeating mitigations provided by protection keys. Managed 
runtimes should limit available occurrences of WRPKRU in both their own executables 
and the generated instructions. 

4.4 Trusted execution environments (TEE) 

The goal of all side channel method attacks is to steal secrets in the OS and application 
memory or register states. Removing secret data from the normal OS/application 
security domains would remove the motivation for those attacks. Intel provides Intel® 
Software Guard Extensions (Intel® SGX) and Intel® Trusted Execution Engine (Intel® TXE) 
on some Intel processors to provide a trusted execution environment for parts of 
applications that need to protect their data or algorithms. We encourage application 
developers to partition their applications into normal and secure portions, and then 
move the portions of their application that contain secrets and must be secure into a 
trusted execution environment. 
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5.0 References 
• Google* Project Zero description of bounds check bypass (Spectre variant 1) 

and branch target injection (Spectre variant 2) 
(https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html)  

• Retpoline: A Branch Target Injection Mitigation 
(https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-
Branch-Target-Injection-Mitigation.pdf)  

• Google retpoline introduction 
(https://support.google.com/faqs/answer/7625886)  

• Intel security advisory regarding models and steppings for retpoline 
(https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-
00088&languageid=en-fr)  

• CPUID reference (https://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-vol-2a-manual.html)  

• Side-Channel Security Issue: Intel® Software Support 
(https://software.intel.com/en-us/side-channel-security-support)  

• Speculative Execution Side Channel Mitigations 
(https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf)  

• Intel Analysis of Speculative Execution Side Channels 
(https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf)  

• Site Isolation (https://www.chromium.org/Home/chromium-security/site-
isolation)   

• Mozilla Foundation Security Advisory 2018-01 
(https://www.chromium.org/Home/chromium-security/site-isolation)  

• Linux Speculation Control 
(https://github.com/torvalds/linux/blob/master/Documentation/userspace-
api/spec_ctrl.rst)    

• Analysis and mitigation of speculative store bypass (CVE-2018-3639) 
(https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-
of-speculative-store-bypass-cve-2018-3639/)  

• GCC support 
o https://gcc.gnu.org/ml/gcc-patches/2018-01/msg01209.html 
o https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=c6b72be421ded17e0c1

56070ba6e90aa6c335ed6 
o https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=357311dd400f7f72d21

32f2f94161ece39bf08c6 
• LLVM compiler support 

o https://reviews.llvm.org/rC323155 
o http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html 
o http://lists.llvm.org/pipermail/llvm-dev/2018-March/121771.html  
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o https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html 
• Microsoft compiler options and guidance 

o https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-
mitigations-in-msvc/ 

o https://docs.microsoft.com/en-us/cpp/build/reference/qspectre 
o https://docs.microsoft.com/en-us/cpp/cpp/spectre 

• Spectre Mitigations in Microsoft C/C++ Compiler 
(https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html)  

• Control-Flow Enforcement Technology Preview 
(https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf) 
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