
Reference Number: 337015-001, Revision: 1.1

Intel® 64 Architecture
Processor Topology
Enumeration
January 2018

2 Reference Number: 337015-001, Revision: 1.1

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2018, Intel Corporation. All Rights Reserved.

Reference Number: 337015-001, Revision: 1.1 3

Contents

1
Intel® 64 Architecture Processor Topology Enumeration...5
1.1 Introduction ...5

1.1.1 Glossary ...6
1.2 Unique APIC ID in a Multi-Processor System ...7
1.3 System Topology Enumeration Using CPUID Extended Topology Leaf9
1.4 System Topology Enumeration Using CPUID Leaf 1 and Leaf 4................................. 10

1.4.1 Cache Topology Enumeration ... 11
1.5 Data Processing of Sub IDs of the Topology .. 12

1.5.1 Sub ID Extraction Parameters for x2APIC ID .. 12
1.5.2 Considerations for Using Three Level Topology on a System with More Levels. 13
1.5.3 Sub ID Extraction Parameters for Initial APIC ID... 14
1.5.4 Cache ID Extraction Parameters ... 14

1.6 Analyzing Topology Enumeration Result and Customization 15
1.6.1 Dynamic Software Visibility of Topology Enumeration 16

A
Examples... 17

Figures

1-1 Example of Choosing CPUID Leaf Information for System Topology Enumeration8
1-2 Procedures to Extract Sub IDs from the x2APIC ID of Each Logical Processor...............9
1-3 Procedures to Extract Sub IDs from the Initial APIC ID of Each Logical Processor 10
1-4 Procedures to Extract Cache_ID of the Target Cache Level of Each Logical Processor .. 11
1-5 Procedures to Extract Cache_ID of the Target Cache Level of Each Logical Processor .. 16

4 Reference Number: 337015-001, Revision: 1.1

Revision History

§

Document
Number

Revision
Number Description Date

329176-001 1.1 • Updates to original paper January 2018

Reference Number: 337015-001, Revision: 1.1 5

Intel® 64 Architecture Processor Topology Enumeration

CHAPTER 1
INTEL® 64 ARCHITECTURE PROCESSOR TOPOLOGY

ENUMERATION

1.1 INTRODUCTION
Processor topology information is important for a number of processor-resource management prac-
tices, ranging from task/thread scheduling, licensing policy enforcement, affinity control/migration,
etc. Topology information of the cache hierarchy can be important to optimizing software performance.
This white paper covers topology enumeration algorithm for single-socket to multiple-socket platforms
using Intel 64 and IA-32 processors. The topology enumeration algorithms (both processor and cache)
using initial APIC ID has been extended to use x2APIC ID, the latter mechanism is required for future
platforms supporting more than 256 logical processors in a coherent domain.
Hardware multithreading in microprocessors has proliferated in recent years. The majority of Intel®
architecture processors shipping today provide one or more forms of hardware multi-threading support
(multicore and/or simultaneous multithreading (SMT), the latter introduced as HyperThreading Tech-
nology in 2002). From a processor hardware perspective, the physical package of an Intel 64 processor
can support SMT and multi-core. Consequently, a physical processor is effectively a hierarchically
ordered collection of logical processors with some forms of shared system resources (for example,
memory, bus/system links, caches) From a platform hardware perspective, hardware multithreading
that exists in a multi-processor system may consist of two or more physical processors organized in
either uniform or non-uniform configuration with respect to the memory subsystem.
Application programming using hardware multithreading features must follow the programming
models and software constructs provided by the underlying operating system. For example, an OS
scheduler generally assigns a software task from a queue using hardware resource at the granularity
of a logical processor; an OS may define its own data structure and provide services to applications
that allows them to customize the assignment between task and logical processor via an affinity
construct for multithreaded applications The OS and the software stack underneath an application (the
BIOS, the OS loader) also play significant roles in bringing up the hardware multi-threading features
and configuring the software constructs defined by the OS.
The CPUID instruction in Intel 64 architecture defines a rich set of information to assist BIOS, OS, and
applications to query processor topology that are needed for efficient operation by each respective
member of the software stack. Generally, the BIOS needs to gather topology information of a physical
processor, determine how many physical processors are present in the system; prepare the necessary
software constructs related to system topology, and pass along the system topology information to the
next layer of the software stack that takes over control of the system. The OS and the application
layers have a wide range of uses for topology information. This document covers several common soft-
ware usages by OS and applications for using CPUID to analyze processor topology in a single-
processor or multi-processor system.
The primary software usage of processor topology enumeration deals with querying and identifying the
hierarchical relationship of logical processor, processor cores, and physical packages in a single-
processor or multi-processor system. We’ll refer to this usage as system topology enumeration.
System topology enumeration may be needed by OS or certain applications to implement licensing
policy based on physical processors. It is used by OS to implement efficient task-scheduling, minimize
thread migration, configure application thread management interfaces, and configure memory alloca-
tion services appropriate to the processor/memory topology. Multithreaded applications need system
topology information to determine optimal thread binding, manage memory allocation for optimal
locality, and improve performance scaling in multi-processor systems.

Intel® 64 Architecture Processor Topology Enumeration

6 Reference Number: 337015-001, Revision: 1.1

Intel 64 processors fulfill system topology enumeration requirements:

1. Each logical processor in an Intel 64 or IA-32 platform supporting coherent memory is assigned a
unique ID (APIC ID) within the coherent domain. A multi-node cluster installation may employ
vendor-specific BIOS that preserve the APIC IDs assigned (during processor reset) within each
coherent domain, extend with node IDs to form a superset of unique IDs within the clustered
system. This document will only cover the CPUID interfaces providing unique IDs within a coherent
domain.

2. The values of unique IDs assigned within a coherent Intel 64 or IA-32 platform conform to an
algorithm based on bit-field decomposition of the APIC ID into three sub-fields . The three sets of
sub-fields correspond to three hierarchical levels defined as “SMT”, “processor core” (or “core”),
and “physical package” (or “package”). This allows each hierarchical level to be mapped to a sub-
field (a sub ID) within the APIC ID.

Conceptually, a topology enumeration algorithm is simply to extract the sub ID corresponding to a
given hierarchical level from the APIC ID, based on deriving two parameters that defines the subset of
bits within an APIC ID. The relevant parameters are: (a) the width of a mask that can be used to mask
off unneeded bits in the APIC ID, (b) an offset relative to bit 0 of the APIC ID.
The “SMT” level corresponds to the innermost constituent of the processor topology. So it is located in
the least significant portion of the APIC ID. If the corresponding width for “SMT” is 0, it implies there is
only 1 logical processor within the next outer level of the hierarchy. For example, Intel® CoreTM2 Duo
Processors generally produce a “SMT_Mask_Width” of 0. If the corresponding width is 1 bit wide, there
could be two logical processors within the next outer level of the hierarchy.
If the corresponding width for “core” is 0, it implies there is only 1 processor core within a physical
processor. If the corresponding width for “core” is 1 bit wide, there could be two processor cores within
a physical processor.
Note, the values of APIC ID that are assigned across all logical processor s in the system need not be
contiguous. But the subsets of bit fields corresponding to three hierarchical levels are contiguous at bit
boundary. Due to this requirement, the bit offset of the mask to extract a given Sub ID can be derived
from the “mask width” of the inner hierarchical levels.

1.1.1 Glossary
Physical Processor: The physical package of a microprocessor capable of executing one or more
threads of software at the same time. Each physical package plugs into a physical socket. Each physical
package may contain one or more processor cores, also referred to as a physical package.
Processor Core: The circuitry that provides dedicated functionalities to decode, execute instructions,
and transfer data between certain sub-systems in a physical package. A processor core may contain
one or more logical processors.
Logical Processor: The basic modularity of processor hardware resource that allow software execu-
tive (OS) to dispatch task or execute a thread context. Each logical processor can execute only one
thread context at a time.
Hyper-Threading Technology: A feature within the IA-32 family of processors, where each
processor core provides the functionality of more than one logical processor.
SMT: Abbreviated name for Simultaneous Multi-Threading. An efficient means in silicon to provide the
functionalities of multiple logical processors within the same processor core by sharing execution
resources and cache hierarchy between logical processors.
Multi-core Processor: A physical processor that contains more than one processor cores.
Multi-processor Platform: A computer system made of two or more physical sockets.
Hardware Multi-threading: Refers to any combination of hardware support to allow a system to run
multi-threaded software. The forms of hardware support for multi-threading are: SMT, multi-core, and
multi-processor.

Reference Number: 337015-001, Revision: 1.1 7

Intel® 64 Architecture Processor Topology Enumeration

Processor Topology: Hierarchical relationships processor entities (logical processors, processor
cores) within a physical package relative to the sharing hierarchy of hardware resources within the
physical processor.
Cache Hierarchy: Physical arrangement of cache levels that buffers data transport between a
processor entity and the physical memory subsystem.
Cache Topology: Hierarchical relationships of a cache level relative to the logical processors in a
physical processor.

1.2 UNIQUE APIC ID IN A MULTI-PROCESSOR SYSTEM
Although legacy IA-32 multi-processor systems assigns unique APIC IDs for each logical processors in
the system, the programming interfaces have evolved several times in the past. For Intel Pentium Pro
processors and Pentium III Xeon processors, APIC IDs are accessible only from local APIC registers
(Local APIC registers use memory-mapped IO interfaces and are managed by OS). In the first genera-
tion of Intel Pentium 4 and Intel Xeon processor processors (2000, 2001), CPUID instruction provided
information on the initial APIC ID that is assigned during processor reset. The CPUID instruction in the
first generation of Intel Xeon MP processor and Intel Pentium 4 processor supporting Hyper-Threading
Technology (2002) provided additional information that allows software to decompose initial APIC IDs
into a two-level topology enumeration. With the introduction of dual-core Intel 64 processors in 2005,
system topology enumeration using CPUID evolved into a three-level algorithm on the 8-bit wide initial
APIC IDs. Future Intel 64 platforms may be capable of supporting a large number of logical processors
that exceed the capacity of the 8-bit initial APIC ID field. The x2APIC extension in Intel 64 architecture
defines a 32-bit x2APIC ID, the CPUID instruction in future Intel 64 processors will allow software to
enumerate system topology using x2APIC IDs. The extended topology enumeration leaf of CPUID (leaf
11) is the preferred interface for system topology enumeration for future Intel 64 processor.
The CPUID instruction in future Intel 64 processors may support leaf 11 independent of x2APIC hard-
ware. For many future Intel 64 platforms, system topology enumeration may be performed using
either CPUID leaf 11 or legacy initial APIC ID (via CPUID leaf 1 and leaf 4). Figure 1-1 shows an
example of how software can choose which CPUID leaf information to use for system topology enumer-
ation.

Intel® 64 Architecture Processor Topology Enumeration

8 Reference Number: 337015-001, Revision: 1.1

The maximum value of supported CPUID leaf can be determined by setting EAX = 0, execute CPUID
and examine the returned value in EAX, i.e. CPUID.0:EAX. If CPUID.0:EAX >= 11, software can deter-
mine whether CPUID leaf 11 exists by setting EAX=11, ECX=0, execute CPUID to examine the non-
zero value returned in EBX, i.e. CPUID. (EAX=11, ECX=0):EBX != 0.
Fully functional hardware multithreading requires full-reporting of CPUID leaves.
If software observes that CPUID.0:EAX < 4 on a newer Intel 64 or IA-32 processor (newer than 2004),
it should examine the MSR IA32_MISC_ENABLES[bit 22].
If IA32_MISC_ENABLES[bit 22] was set to 1 (by BIOS or other means), the user can restore CPUID leaf
function full reporting by having IA32_MISC_ENABLES[bit 22] set to ‘0’ (Modify BIOS CMOS setting or
use WRMSR).
For older IA-32 processors that support only two-level topology, the three-level system topology
enumeration algorithm (using CPUID leaf 1 and leaf 4) is fully compatible with older processors
supporting two-level topology (SMT and physical package). For processors that report
CPUID.1:EBX[23:16] as reserved (i.e. 0), the processor supports only one level of topology.
Example A-1 shows a code example of dealing with CPUID leaf functions across three categories of
processor hardware.

Figure 1-1. Example of Choosing CPUID Leaf Information for System Topology Enumeration

Reference Number: 337015-001, Revision: 1.1 9

Intel® 64 Architecture Processor Topology Enumeration

1.3 SYSTEM TOPOLOGY ENUMERATION USING CPUID EXTENDED
TOPOLOGY LEAF

The algorithm of system topology enumeration can be summarized as three phase of operation:
• Derive “mask width” constants that will be used to extract each Sub IDs.
• Gather the unique APIC IDs of each logical processor in the system, and extract/decompose each

APIC ID into three sets of Sub IDs.
• Analyze the relationship of hierarchical Sub IDs to establish mapping tables between OS’s thread

management services according to three hierarchical levels of processor topology.
Example A-2 shows an example of the basic structure of the three phases of system wide topology as
applied to processor topology and cache topology.
Figure 1-2 outlines the procedures of querying CPUID leaf 11 for the x2APIC ID and extracting sub IDs
corresponding to the “SMT”, “Core”, “physical package” levels of the hierarchy.

Example A-3 lists a data structure that holds the APIC ID, various sub IDs, and a hierarchical set of
ordinal numbering scheme to enumerate each entity in the processor topology and/or cache topology
of a system.

Figure 1-2. Procedures to Extract Sub IDs from the x2APIC ID of Each Logical Processor

Intel® 64 Architecture Processor Topology Enumeration

10 Reference Number: 337015-001, Revision: 1.1

System topology enumeration at the application level using CPUID involves executing CPUID instruc-
tion on each logical processor in the system. This implies context switching using services provided by
an OS. On-demand context switching by user code generally relies on a thread affinity management
API provided by the OS. The capability and limitation of thread affinity API by different OS vary. For
example, in some OS, the thread affinity API has a limit of 32 or 64 logical processors. It is expected
that enhancement to thread affinity API to manage larger number of logical processor will be available
in future versions.

1.4 SYSTEM TOPOLOGY ENUMERATION USING CPUID LEAF 1 AND
LEAF 4

Figure 1-3 outlines the procedures of querying initial APIC ID via CPUID leaf 1 and extracting sub IDs
corresponding to the SMT, Core, physical package levels of the hierarchy using CPUID leaf 1 and leaf 4.
Extraction of sub ID from initial APIC ID is based on querying CPUID leaf 1 and 4 to derive the bit widths
of three select masks (SMT mask, Core mask, Pkg mask) that make up the 8-bit initial APIC ID field.
The select masks allow software to extract the sub IDs corresponding to “SMT”, “core”, “package” from
the initial APIC ID of each logical processor.

Figure 1-3. Procedures to Extract Sub IDs from the Initial APIC ID of Each Logical Processor

Reference Number: 337015-001, Revision: 1.1 11

Intel® 64 Architecture Processor Topology Enumeration

Example A-4 shows an example of querying the APID ID for each logical processor in the system and
parsing each APIC ID into respective sub IDs for later analysis of the topological makeup.
Example A-5 lists support routines to extract various sub IDs from each APIC ID of the logical
processor that we have bound the current execution context.
Example A-6 shows OS-specific wrapper functions.

1.4.1 Cache Topology Enumeration
The physical package of an Intel 64 processor has a hierarchy of cache. A given level of the cache hier-
archy may be shared by one or more logical processors. Some software may wish to optimize perfor-
mance by taking advantage of the shared cache of a particular level of the cache hierarchy.
Performance tuning using cache topology can be accomplished by combining the system topology
information with the addition of cache topology information. Figure 1-4 outlines the procedures of
decomposition of sub IDs to enumerate logical processors sharing the target cache level and enumer-
ating the target level caches visible in the system. The Cache_ID can be extracted from the x2APIC ID
for processors that reports 32-bit x2APIC ID or from the initial APIC ID for processors that do not report
x2APIC ID. The array of “Cache_ID” can be used to enumerate different caches in conjunction with
other sub ID derived from the processor topology to implement code-tuning techniques.

Figure 1-4. Procedures to Extract Cache_ID of the Target Cache Level of Each Logical Processor

Intel® 64 Architecture Processor Topology Enumeration

12 Reference Number: 337015-001, Revision: 1.1

The three-level sub IDs, SMT_ID[k], Core_ID[k], Pkg_ID[k], k = 0, .., N-1 can be used by software in
a number of application-specific ways. Some of the more common usages include:

1. Determine the number of physical processors to implement a per-package licensing policy. Each
unique value in the Pkg_ID[] array represents a physical processor.

2. A thread-binding strategy may choose to favor binding each new task to a separate core in the
system. This may require the software to know the relationships between the affinity mask of each
logical processor relative to each distinct processor core.

3. An MP-scaling optimization strategy may wish to partition its data working set according to the size
of the large last-level cache and allow multiple threads to process the data tile residing in each last
level cache. This will require software to manage the affinity masks and thread binding relative to
each Cache_ID and APIC ID in the system.

1.5 DATA PROCESSING OF SUB IDS OF THE TOPOLOGY
Each hierarchy of the sub IDs represents a subset of the APIC ID (either x2APIC ID or initial APIC ID).
It allows software to address each distinct entity within the parent hierarchical level. For processor
topology enumeration:
• SMT_ID: each unique SMT_ID allows software to distinguish different logical processors within a

processor core,
• Core_ID: each unique Core_ID allows software to distinguish different processor cores within a

physical package,
• Pkg_ID: each unique Pkg_ID allows software to distinguish different physical packages in a multi-

processor system.
For cache topology enumeration:
• CacheSMT_ID: each unique CacheSMT_ID allows software to distinguish different logical

processors sharing the same target cache level.
• Cache_ID: each unique Cache_ID allows software to distinguish different target level cache in the

system.
The extraction of sub IDs from the APIC ID makes use of constant parameters that are derived from
CPUID instruction. From platform hardware perspective, Intel 64 and IA-32 multi-processor system
require each physical processor support the same hardware multi-threading capabilities. Therefore,
system topology enumeration can execute the relevant CPUID leaf functions on one logical processor
to derive system-wide sub-ID extraction parameters. But the APIC IDs must be queried by executing
CPUID instruction on each logical processor in the system.

1.5.1 Sub ID Extraction Parameters for x2APIC ID
Extraction of sub ID from x2APIC ID is based on querying the value of CPUID.(EAX=11,
ECX=n):EAX[4:0] for a valid sub leaf index n to obtain the bit width parameter to derive an extraction
mask while x2APIC ID is queried by CPUID.(EAX=1,ECX=0):EDX[31:0]. The extraction mask allows
software to extract a subset of bits from the x2APIC ID as a sub ID for the respective level of the hier-
archy. In order to enumerate the sub IDs, increase sub leaf index (ECX=n) by 1 until
CPUID.(ECX=11,ECX=n).EBX[15:0] == 0
• SMT_ID: CPUID.(EAX=11, ECX=0):EAX[4:0] provides the width parameter to derive a SMT select

mask to extract the SMT_IDs of logical processors within the same processor core. The sub leaf
index (ECX=0) is architecturally defined and associated with the “SMT” level type
(CPUID.(EAX=11, ECX=0):ECX[15:8] == 1)

— SMT_Mask_Width = CPUID.(EAX=11, ECX=0):EAX[4:0] if CPUID.(EAX=11,
ECX=0):ECX[15:8] is 1

Reference Number: 337015-001, Revision: 1.1 13

Intel® 64 Architecture Processor Topology Enumeration

— SMT_Select_Mask = ~((-1) << SMT_Mask_Width)

— SMT_ID = x2APIC_ID & SMT_Select_Mask
• Core_ID: The sub leaf index (ECX=1) is associated with “processor core” level type. Then,

CPUID.(EAX=11,ECX=1):EAX[4:0] provides the width parameter to derive a select mask of all
logical processors within the same physical package. The “processor core” includes “SMT” in this
case, and enumerating different cores in the package can be done by zeroing out the SMT portion
of the inclusive mask derived from this.

— CorePlus_Mask_Width = CPUID.(EAX=11,ECX=1):EAX[4:0] if CPUID.(EAX=11,
ECX=1):ECX[15:8] is 2

— CoreOnly_Select_Mask = (~((-1) << CorePlus_Mask_Width)) ^ SMT_Select_Mask.

— Core_ID = (x2APIC_ID & CoreOnly_Select_Mask) >> SMT_Mask_Width
• Pkg_ID: Within a coherent domain of the three-level topology, the upper bits of the APIC_ID

(except the lower “CorePlus_Mask_Width” bits) can enumerate different physical packages in the
system. In a clustered installation, software may need to consult vendor specific documentation to
distinguish the topology of how many physical packages are organized within a given node.

— Pkg_Select_Mask = (-1) << CorePlus_Mask_Width

— Pkg_ID = (x2APIC_ID & Pkg_Select_Mask) >> CorePlus_Mask_Width
An example of deriving the extraction parameters for x2APIC ID can be found in the support function
“CPUTopologyLeafBConstants()” in the Appendix.
Example A-7 lists the support function to derive bitmask extraction parameters from CPUID leaf 0BH to
extract sub IDs from x2APIC ID.

1.5.2 Considerations for Using Three Level Topology on a System with More
Levels

System software can choose to assume three level hierarchy if it was developed to understand only
three levels. However, software implementation needs to ensure it does not break if it runs on systems
that have more levels in the hierarchy, even if it does not recognize them. If the software does not
recognize or implement certain hierarchical levels, it should assume these unknown levels as an exten-
sion of the last known level. For example, if there were additional levels between core and package
which the software wants to ignore, it can extract the bitmasks as follows:

1. Query the right-shift value for the SMT level of the topology using CPUID leaf 0BH with ECX =0H as
input. The number of bits to shift-right on x2APIC ID (EAX[4:0]) can distinguish different higher-
level entities above SMT (e.g., processor cores) in the same physical package. This is also the width
of the bit mask to extract the SMT_ID.

2. Enumerate until the desired level is found (e.g., processor cores). Determine if the next level is the
expected level. If the next level is not known to the software, keep enumerating until the next
known or the last level. Software should use the previous level before this to represent the last
previously known level (e.g., processor cores).

3. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-level entities (e.g.,
physical processor packages) in the system. The width of the extraction bit mask can be used to
derive the cumulative extraction bitmask to extract the sub IDs of logical processors (including
different processor cores) in the same physical package. The extraction bit mask to distinguish
merely different processor cores can be derived by XOR'ing the SMT extraction bit mask from the
cumulative extraction bit mask.

4. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and PACKAGE_ID, starting
from SMT_ID and apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field IDs.

Intel® 64 Architecture Processor Topology Enumeration

14 Reference Number: 337015-001, Revision: 1.1

1.5.3 Sub ID Extraction Parameters for Initial APIC ID
Topological sub ID extraction from an INITIAL_APIC_ID (CPUID.1:EBX[31:24]) uses parameters
derived from CPUID.1:EBX[23:16] and CPUID.(EAX=04H, ECX=0):EAX[31:26]. CPUID.1:EBX[23:16]
represents the maximum number of addressable IDs (initial APIC ID) that can be assigned to logical
processors in a physical package. The value may not be the same as the number of logical processors
that are present in the hardware of a physical package. The value of (1 + (CPUID.(EAX=4,
ECX=0):EAX[31:26])) represents the maximum number of addressable IDs (Core_ID) that can be
used to enumerate different processor cores in a physical package. The value also can be different than
the actual number of processor cores that are present in the hardware of a physical package.
• SMT_ID: The equivalent “SMT_Mask_Width” can be derived from dividing maximum number of

addressable initial APIC IDs by maximum number of addressable Core IDs

— SMT_Mask_Width = Log21(RoundToNearestPof2(CPUID.1:EBX[23:16]) / ((CPUID.(EAX=4,
ECX=0):EAX[31:26]) + 1)), where Log2 is the logarithmic based on 2 and
RoundToNearestPof2() operation is to round the input integer to the nearest power-of-two
integer that is not less than the input value.

— SMT_Select_Mask = ~((-1) << SMT_Mask_Width)

— SMT_ID = INITIAL_APIC_ID & SMT_Select_Mask
• Core_ID: The value of (1 + (CPUID.(EAX=04H, ECX=0):EAX[31:26])) can also be use to derive an

equivalent “CoreOnly_Mask_Width”

— CoreOnly_Mask_Width = Log2(1 + (CPUID.(EAX=4, ECX=0):EAX[31:26]))

— CoreOnly_Select_Mask = (~((-1) << (CoreOnly_Mask_Width + SMT_Mask_Width))) ^
SMT_Select_Mask.

— Core_ID = (INITIAL_APIC_ID & CoreOnly_Select_Mask) >> SMT_Mask_Width
• Pkg_ID: Pkg_Select_Mask can be derived as follows:

— CorePlus_Mask_Width = CoreOnly_Mask_Width + SMT_Mask_Width

— Pkg_Select_Mask = ((-1) << CorePlus_Mask_Width)

— Pkg_ID = (INITIAL_APIC_ID & Pkg_Select_Mask) >> CorePlus_Mask_Width
Example A-8 lists the support function to derive bitmask extraction parameters from CPUID leaf 01H
and Leaf 04H to extract sub IDs from initial APIC ID. Example A-9 shows the support function to derive
mask widths from the system-wide extraction parameters.

1.5.4 Cache ID Extraction Parameters
Cache IDs are specific to a target level cache of the cache hierarchy. Software must determine, a priori,
the target cache level (the sub-level index n associated with CPUID leaf 4) it wishes to optimize with
respect to the processor topology. After it has chosen the sub-leaf index ECX=n, then
Log2(RoundToNearestPof2((1 + CPUID.(EAX=4, ECX=n):EAX[25:14])) is the equivalent
“Cache_Mask_Width” parameter. The “Cache_Mask_Width” parameter forms the basis to construct
either a select mask to extract the sub IDs of logical processors sharing the target cache level, or a
complementary mask to select the upper bits from APID to identify different cache entities of the spec-
ified target level in the system. To construct a mask to extract sub IDs of different logical processors
sharing a cache, it is simply ~((-1) << Cache_Mask_Width).
The derivation of bitmask extraction parameters for cache topology is analogous to those shown in
Example A-8. Software may choose to focus on one specific cache level in the cache hierarchy. In the
companion full source code package that is released separately with this paper, the reader can find

1. Evaluating the Log2 value of a positive number that happens to be a power of 2 can be implemented using
integer operation. For example, the BSR instruction can be used to obtain the index position of the most signif-
icant bit that is not zero.

Reference Number: 337015-001, Revision: 1.1 15

Intel® 64 Architecture Processor Topology Enumeration

code examples of derivation for the bitmask extraction parameters for each cache level, and corre-
sponding cache topology sorting examples. For space consideration, the full source of the cache
topology code is not listed in the Appendix.

1.6 ANALYZING TOPOLOGY ENUMERATION RESULT AND
CUSTOMIZATION

How can software make use of topological information (in the form of hierarchical sub IDs)? This really
depends on the needs and situations specific to each application. It may need adaptation due to differ-
ences of APIs provided by different OS. For the purpose of illustration, we consider some examples of
using sub IDs to establish manage affinity masks hierarchically.
The knowledge of sub IDs of each topological hierarchy may be useful in several ways, For example:

1. Count the number of entities in a given hierarchical level across the system.

2. Use OS threading management services (e.g. affinity masks) while adding topological insights
(per-core, per-package, per-target-level-cache) to optimize application performance.

Affinity mask is a data structure that is defined within a specific OS, different OS may use the same
concept but providing different means of application programming interface. For example, Microsoft
Windows* provides affinity mask as a data type that can be directly manipulated via bit field by appli-
cations for affinity control. Linux implements a similar data structure internally but abstracts it so appli-
cation can manipulate affinity through an iterative interface that assigned zero-based numbers to each
logical processor.
The affinity mask or the equivalent numbering scheme provided by OS does not carry attributes that
can store hierarchical attributes of the system topology. We will use the “affinity mask” terminology
generically in this section (as the technique can be easily generalized to the numbered interface of
affinity control).
In the reference code example, we use the sub IDs to create an ordinal numbering scheme (zero-
based) for each hierarchical level. Different entities in the system topology (packages, cores) can be
referenced by applications using a set of hierarchical ordinal numbers. Using the hierarchical ordinal
number scheme and a look-up table to the corresponding affinity masks, software can easily control
thread binding, optimize cache usage, etc.
Figure 1-5 depicts a basic example of data processing of Pkg_IDs and Core_IDs in the system to
acquire information on the number of software visible physical packages, processor cores in the
system. This basic technique can also be adapted to acquire affinity mappings, hierarchical break-
downs, and asymmetry information in the system.
Example A-10a, Example A-10b, and Example A-10c list an algorithm to analyze the sub IDs of all
logical processor in the system and derive a triplet of zero-based numbering scheme to index unique
entities within each topological level.
Example A-11 lists a data structure that organizes miscellaneous global variable, arrays, workspace
items that are used throughout the rest of the code example. The full set of source code is provided in
a separate package. The full source code can be compiled under 32-bit and 64-bit Windows and Linux
operating systems. A limited set of OS and compiler tools have been tested.

Intel® 64 Architecture Processor Topology Enumeration

16 Reference Number: 337015-001, Revision: 1.1

1.6.1 Dynamic Software Visibility of Topology Enumeration
When application software examines/uses topology information, it must keep in mind the dynamic
nature of software visibility. The hardware capability present at the platform level may be presented
differently through BIOS setting, through OS boot option, through OS-supported user interfaces. For
example, Intel 64 and IA-32 multi-processor system require each physical processor support the same
hardware multi-threading capabilities. This hardware symmetry that exists at the platform hardware
level may be presented differently at application level. System topology enumeration can uncover
dynamic software visible asymmetry irrespective of the cause of such asymmetry may be caused by
BIOS setting, OS boot option, or UI configurations.
The appendix lists the bulk of the supporting functions that are used in enumerating processor topology
of the system as visible to the current software process. A complete source code is provided separately
for download. The reference code can be compiled in either 32-bit or 64-bit Windows* environment. In
64-bit environment, the cpuid64.asm file is needed to provide an enhanced intrinsic function for
querying CPUID sub-leaves. An equivalent reference code implementation for 32-bit and 64-bit Linux
environment will also be available.

Figure 1-5. Procedures to Extract Cache_ID of the Target Cache Level of Each Logical Processor

Reference Number: 337015-001, Revision: 1.1 17

Examples

 APPENDIX A
EXAMPLES

Example A-1. Determination of System-wide CPU Topology Constant

// Derive parameters used to extract/decompose APIC ID for CPU topology
// The algorithm assumes CPUID feature symmetry across all physical packages.
// Since CPUID reporting by each logical processor in a physical package are
// identical, we only execute CPUID on one logical processor to derive these
// system-wide parameters
// return 0 if successful, non-zero if error occurred
static int CPUTopologyParams()
{

DWORD maxCPUID; // highest CPUID leaf index this processor supports
CPUIDinfo info; // data structure to store register data reported by CPUID
_CPUID(&info, 0, 0);
maxCPUID = info.EAX;

// cpuid leaf B detection
if (maxCPUID >= 0xB)
{

CPUIDinfo CPUInfoB;
_CPUID(&CPUInfoB,0xB, 0);
//glbl_ptr points to assortment of global data, workspace, etc
glbl_ptr->hasLeafB = (CPUInfoB.EBX != 0);

}
_CPUID(&info, 1, 0);

// Use HWMT feature flag CPUID.01:EDX[28] to treat three configurations:
if (getBitsFromDWORD(info.EDX,28,28))
{ // #1, Processors that support CPUID leaf 0BH

if (glbl_ptr->hasLeafB)
{ // use CPUID leaf B to derive extraction parameters

CPUTopologyLeafBConstants();
}
else //#2, Processors that support legacy parameters

// using CPUID leaf 1 and leaf 4
{

CPUTopologyLegacyConstants(&info, maxCPUID);
}

}
else //#3, Prior to HT, there is only one logical

// processor in a physical package
{

glbl_ptr->CoreSelectMask = 0;
glbl_ptr->SMTMaskWidth = 0;
glbl_ptr->PkgSelectMask = (-1);
glbl_ptr->PkgSelectMaskShift = 0;
glbl_ptr->SMTSelectMask = 0;

}
if(glbl_ptr->error)return -1;
else return 0;

}

Examples

18 Reference Number: 337015-001, Revision: 1.1

Example A-2. Modular Structure of Deriving System Topology Enumeration Information

/*
* BuildSystemTopologyTables
*
* Construct the processor topology tables and values necessary to
* support the external functions that display CPU topology and/or
* cache topology derived from system topology enumeration.
* Arguments: None
* Return: None, sets glbl_ptr->error if tables or values can not be calculated.
*/
static void BuildSystemTopologyTables()
{ unsigned lcl_OSProcessorCount, subleaf;

int numMappings = 0;
// call OS-specific service to find out how many logical processors
// are supported by the OS
glbl_ptr->OSProcessorCount = lcl_OSProcessorCount = GetMaxCPUSupportedByOS();

// allocated the memory buffers within the global pointer
AllocArrays(lcl_OSProcessorCount);

// Gather all the system-wide constant parameters needed to
// derive topology information

if (CPUTopologyParams()) return ;
if (CacheTopologyParams()) return ;

// For each logical processor, collect APIC ID and
// parse sub IDs for each APIC ID

numMappings = QueryParseSubIDs();
if (numMappings < 0) return ;
// Derived separate numbering schemes for each level of the cpu topology
if(AnalyzeCPUHierarchy(numMappings) < 0) {

glbl_ptr->error |= _MSGTYP_TOPOLOGY_NOTANALYZED;
}
// an example of building cache topology info for each cache level
if(glbl_ptr->maxCacheSubleaf != -1) {

for(subleaf=0; subleaf <= glbl_ptr->maxCacheSubleaf; subleaf++) {
if(glbl_ptr->EachCacheMaskWidth[subleaf] != 0xffffffff) {

// ensure there is at least one core in the target level cache
if (AnalyzeEachCHierarchy(subleaf, numMappings) < 0) {

glbl_ptr->error |= _MSGTYP_TOPOLOGY_NOTANALYZED;
}

}
}

}
}

Reference Number: 337015-001, Revision: 1.1 19

Examples

Example A-3. Data Structure of APIC ID, Sub IDs, and Mapping of Ordinal Based Numbering Schemes

typedef struct {
unsigned int32 APICID; // the full x2APIC ID or initial APIC ID of a logical processor
assigned by HW
unsigned __int32 OrdIndexOAMsk; // An ordinal index (zero-based) for each logical

// processor in the system, 1:1 with "APICID"
// Next three members are the sub IDs for processor topology enumeration
unsigned __int32 pkg_IDAPIC; // Pkg_ID field, subset of APICID bits

// to distinguish different packages
unsigned __int32 Core_IDAPIC; // Core_ID field, subset of APICID bits to

// distinguish different cores in a package
unsigned __int32 SMT_IDAPIC; // SMT_ID field, subset of APICID bits to

// distinguish different logical processors in a core
// the next three members stores a numbering scheme of ordinal index for each level
// of the processor topology.
unsigned __int32 packageORD; // a zero-based numbering scheme for each physical

// package in the system
unsigned __int32 coreORD; // a zero-based numbering scheme for each core in the same package
unsigned __int32 threadORD; // a zero-based numbering scheme for each thread in the same core
// Next two members are the sub IDs for cache topology enumeration
unsigned __int32 EaCacheSMTIDAPIC[MAX_CACHE_SUBLEAFS]; // SMT_ID field, subset of APICID

// bits to distinguish different logical processors sharing the same cache level
unsigned __int32 EaCacheIDAPIC[MAX_CACHE_SUBLEAFS]; // sub ID to enumerate

// different cache entities of the cache level corresponding
// to the array index/cpuid leaf 4 subleaf index

// the next three members stores a numbering scheme of ordinal index
// for enumerating different cache entities of a cache level, and enumerating
// logical processors sharing the same cache entity.
unsigned __int32 EachCacheORD[MAX_CACHE_SUBLEAFS]; // a zero-based numbering

// scheme for each cache entity of the specified cache level in the system
unsigned __int32 threadPerEaCacheORD[MAX_CACHE_SUBLEAFS]; // a zero-based numbering scheme

// for each logical processor sharing the same cache of the specified cache level
} IdAffMskOrdMapping;

/* Alternate technique for ring 3 code to infer the effect of CMOS setting in BIOS
* that restricted CPUID instruction to report highest leaf index is 2, i.e.
* MSR IA32_MISC_ENABLES[22] was set to 1; This situation
* will prevent software from using CPUID to conduct topology enumeration
* RDMSR instruction is privileged, this alternate routine can run in ring 3.
*/
Int InferBIOSCPUIDLimitSetting()
{ DWORD maxleaf, max8xleaf;

CPUIDinfo info; // data structure to store register data reported by CPUID
// check CPUID leaf reporting capability is intact
CPUID(&info, 0);
maxleaf = info.EAX;
CPUID(&info, 0x80000000);
max8xleaf = info.EAX;
// Earlier Pentium 4 and Intel Xeon processor (prior to 90nm Intel Pentium 4
// processor)support extended with max extended leaf index 0x80000004,
// 90nm Intel Pentium 4 processor and later processors supports higher extended
// leaf index greater than 0x80000004.
If (maxleaf <= 4 && max8xleaf > 0x80000004) return 1;
else return 0;

}

Examples

20 Reference Number: 337015-001, Revision: 1.1

Example A-4. Query APIC ID and Parsing APIC ID into Sub IDs

/*
* QueryParseSubIDs
*
* Use OS specific service to find out how many logical processors can be accessed by
* this application.
* Querying CPUID on each logical processor requires using OS-specific API to
* bind current context to each logical processor first.
* After gathering the APIC ID's for each logical processor,
* we can parse APIC ID into sub IDs for each topological levels
* The thread affnity API to bind the current context limits us in dealing with
* the limit of specific OS
* The loop to iterate each logical processor managed by the OS can be done
* in a manner that abstract the OS-specific affinity mask data structure.
* Here, we construct a generic affinity mask that can handle arbitrary number of logical
processors.
* Return: 0 is no error
*/

long QueryParseSubIDs(void)
{ unsigned i;

//DWORD_PTR processAffinity;
//DWORD_PTR systemAffinity;
unsigned long numMappings = 0, lcl_OSProcessorCount;
unsigned long APICID;
// we already queried OS how many logical processor it sees.
lcl_OSProcessorCount = glbl_ptr->OSProcessorCount;
// we will use our generic affinity bitmap that can be generalized from
// OS specific affinity mask constructs or the bitmap representation of an OS
AllocateGenericAffinityMask(&glbl_ptr->cpuid_values_processAffinity,

lcl_OSProcessorCount);
AllocateGenericAffinityMask(&glbl_ptr->cpuid_values_systemAffinity,

lcl_OSProcessorCount);
// Set the affinity bits of our generic affinity bitmap according to
// the system affinity mask and process affinity mask
SetChkProcessAffinityConsistency(lcl_OSProcessorCount);
if (glbl_ptr->error) return -1;

for (i=0; i < glbl_ptr->OSProcessorCount;i++) {
// can't asume OS affinity bit mask is contiguous,
// but we are using our generic bitmap representation for affinity
if(TestGenericAffinityBit(&glbl_ptr->cpuid_values_processAffinity, i) == 1) {

// bind the execution context to the ith logical processor
// using OS-specifi API
if(BindContext(i, glbl_ptr->cpuid_values_OSProcessorCount)) {

glbl_ptr->error |= _MSGTYP_UNKNOWNERR_OS;
break;

}
// now the execution context is on the i'th cpu, call the parsing routine
ParseIDS4EachThread(i, numMappings);
numMappings++;

}
}
glbl_ptr->EnumeratedThreadCount = numMappings;
if(glbl_ptr->error)return -1;
else return numMappings;

};

Reference Number: 337015-001, Revision: 1.1 21

Examples

Example A-5. Support Routine for Parsing APIC ID into Sub IDs

/*
* ParseIDS4EachThread
* after execution context has already bound to the target logical processor
* Query the 32-bit x2APIC ID if the processor supports it, or
* Query the 8-bit initial APIC ID for older processors. Apply various
* system-wide topology constant to parse the APIC ID into various sub IDs
* Arguments:
* i : the ordinal index to reference a logical processor in the system
* numMappings : running count ot how many processors we've parsed
* Return: 0 is no error
*/
unsigned ParseIDS4EachThread(unsigned i, unsigned numMappings)
{ unsigned APICID;

unsigned subleaf;

APICID = glbl_ptr->PApicAffOrdMapping[numMappings].APICID = GetApicID(i);
glbl_ptr->PApicAffOrdMapping[numMappings].OrdIndexOAMsk = i; // this an ordinal number

that can relate to generic affinitymask
glbl_ptr->PApicAffOrdMapping[numMappings].pkg_IDAPIC =

((APICID & glbl_ptr->PkgSelectMask) >> glbl_ptr->PkgSelectMaskShift);
glbl_ptr->PApicAffOrdMapping[numMappings].Core_IDAPIC =

((APICID & glbl_ptr->CoreSelectMask) >> glbl_ptr->SMTMaskWidth);
glbl_ptr->PApicAffOrdMapping[numMappings].SMT_IDAPIC =

(APICID & glbl_ptr->SMTSelectMask);
if(glbl_ptr->maxCacheSubleaf != -1) {

for(subleaf=0; subleaf <= glbl_ptr->maxCacheSubleaf; subleaf++) {
glbl_ptr->PApicAffOrdMapping[numMappings].EaCacheSMTIDAPIC[subleaf] =

(APICID & glbl_ptr->EachCacheSelectMask[subleaf]);
glbl_ptr->PApicAffOrdMapping[numMappings].EaCacheIDAPIC[subleaf] =

(APICID & (-1 ^ glbl_ptr->EachCacheSelectMask[subleaf]));
}

}
return 0;

}

/*
* GetApicID
* Returns APIC ID from leaf B if it else from leaf 1
* Arguments: None
* Return: APIC ID
*/
static unsigned GetApicID() {

CPUIDinfo info;

if (glbl_ptr->hasLeafB) {
CPUID(&info,0xB); // query subleaf 0 of leaf B
return info.EDX; // x2APIC ID

}
CPUID(&info,1);
return (BYTE)(getBitsFromDWORD(info.EBX,24,31)); // zero extend 8-bit initial APIC ID

}

Examples

22 Reference Number: 337015-001, Revision: 1.1

Example A-6. OS-Specific Wrapper Functions

#define LNX_MY1CON 1
extern GLKTSN_T * glbl_ptr;
extern int countBits(DWORD_PTR x);
/*
* BindContext
* A wrapper function that can compile under two OS environments. The size of the bitmap that
* underlies cpu_set_t is configurable at Linux Kernel C ompile time. Each distro may set limit
* on its own. Some newer Linux distro may support 256 logical processors, For simplicity we
* don't show the check for range on the ordinal index of the target cpu in Linux, interested
* reader can check Linux kernel documentation. Current Windows OS has size limit of 64 cpu in
* 64-bit mode, 32 in 32-bit mode the size limit is checked.
* Arguments:
* cpu : the ordinal index to reference a logical processor in the system
* Return: 0 is no error
*/
unsigned BindContext(unsigned cpu)
{unsigned ret = -1;
#ifdef __linux__

cpu_set_t currentCPU;
// add check for size of cpumask_t.
__CPU_ZERO(¤tCPU);
// turn on the equivalent bit inside the bitmap corresponding to affinitymask
__CPU_SET(cpu, ¤tCPU);
if (!sched_setaffinity (0, sizeof(currentCPU), ¤tCPU))
{ ret = 0;
}

#else
DWORD_PTR affinity, last_affinity;

if(cpu >= MAX_LOG_CPU) return ret;
// flip on the bit in the affinity mask corresponding to the input ordinal index
affinity = (DWORD_PTR)(LNX_MY1CON << cpu);
if (SetThreadAffinityMask(GetCurrentThread(),affinity))
{ ret = 0;}

#endif
return ret;

}

/*
* GetMaxCPUSupportedByOS
* A wrapper function that calls OS specific system API to find out how many logical
* processor the OS supports
* Return: a non-zero value
*/
unsigned GetMaxCPUSupportedByOS()
{unsigned lcl_OSProcessorCount = 0;
#ifdef __linux__

//This will tell us how many CPUs are currently enabled.
lcl_OSProcessorCount = sysconf(_SC_NPROCESSORS_CONF);

#else
SYSTEM_INFO si;
GetSystemInfo(&si);
lcl_OSProcessorCount = si.dwNumberOfProcessors;

#endif
return lcl_OSProcessorCount;

}

Reference Number: 337015-001, Revision: 1.1 23

Examples

Example A-7. Derivation of CPUID Leaf 0BH Parameters for Topology Enumeration

// Derive bitmask extraction parameters used to extract/decompose x2APIC ID. The algorithm
// assumes CPUID feature symmetry across all physical packages. Since CPUID reporting by each
// logical processor in a physical package are identical, we only execute CPUID on one logical
// processor to derive these system-wide parameters
int CPUTopologyLeafBConstants()
{ CPUIDinfo infoB;
 int wasCoreReported = 0;
 int wasThreadReported = 0;
 int subLeaf = 0, levelType, levelShift;
 unsigned long coreplusSMT_Mask = 0;
do
{ // we already tested CPUID leaf 0BH contain valid sub-leaves,
 _CPUID(&infoB,0xB,subLeaf);
 if (infoB.EBX == 0)
 { if EBX[15:0], this subleaf is not valid, we can exit the loop
 break;
 }
 levelType = getBitsFromDWORD(infoB.ECX,8,15);
 levelShift = getBitsFromDWORD(infoB.EAX,0,4);
 switch (levelType)
 {
 case 1: //level type is SMT, so levelShift is the SMT_Mask_Width
 glbl_ptr->SMTSelectMask = ~((-1) << levelShift);
 glbl_ptr->SMTMaskWidth = levelShift;
 wasThreadReported = 1;
 break;
 case 2: //Core reported. Loop through all unknown levels and consider

// them as an extension of Core.
 //this is for softwares choosing to use three level topology on systems

// reporting more levels.
 wasCoreReported = 1;
 break;
 default:
 // handle in the future
 break;
 }
 subLeaf++;
} while (1);
coreplusSMT_Mask = ~((-1) << levelShift);
glbl_ptr->PkgSelectMaskShift = levelShift;
glbl_ptr->PkgSelectMask = (-1) ^ coreplusSMT_Mask;
if (wasThreadReported && wasCoreReported)
{

glbl_ptr->CoreSelectMask = coreplusSMT_Mask ^ glbl_ptr->SMTSelectMask;
}
else
{
 // throw an error, this should not happen if hardware function normally
 glbl_ptr->error |= _MSGTYP_GENERAL_ERROR;
}
if(glbl_ptr->error)return -1;
else return 0;
}

Examples

24 Reference Number: 337015-001, Revision: 1.1

Example A-8. Derivation of Legacy CPUID Leaf 1 and Leaf 4 Parameters for Topology Enumeration

// Calculate parameters used to extract/decompose Initial APIC ID.
// The algorithm assumes CPUID feature symmetry across all physical packages.
// Since CPUID reporting by each logical processor in a physical package are
// identical, we only execute CPUID on one logical processor
/*
* CPUTopologyLegacyConstants
* Derive bitmask extraction parameter using CPUID leaf 1 and leaf 4
* Arguments:
* info Point to strucrture containing CPIUD instruction leaf 1 data
* maxCPUID Maximum CPUID Leaf number supported by the processor
* Return: 0 is no error
*/
int CPUTopologyLegacyConstants(CPUIDinfo *pinfo, DWORD maxCPUID)
{

unsigned corePlusSMTIDMaxCnt;
unsigned coreIDMaxCnt = 1;
unsigned SMTIDPerCoreMaxCnt = 1;
// CPUID.1:EBX[23:16] provides the max # IDs that can be enumerated
// under the CorePlusSMT_SelectMask

corePlusSMTIDMaxCnt = getBitsFromDWORD(pinfo->EBX,16,23);

if (maxCPUID >= 4) // support CPUID 4?
{

CPUIDinfo info4;
_CPUID(&info4, 4, 0);
// (CPUID.(EAX=4, ECX=00:EAX[31:26] +1) provides the max # of Core_IDs
// that's allocated in a package, this is // related to coreMaskWidth

coreIDMaxCnt = getBitsFromDWORD(info4.EAX,26,31)+1;
SMTIDPerCoreMaxCnt = corePlusSMTIDMaxCnt / coreIDMaxCnt;

}
else // no support for CPUID leaf 4 but caller has verified HT support
{ if (!glbl_ptr->Alert_BiosCPUIDmaxLimitSetting) {

coreIDMaxCnt = 1;
SMTIDPerCoreMaxCnt = corePlusSMTIDMaxCnt / coreIDMaxCnt;

}
else { // we got here most likely because

// IA32_MISC_ENABLES[22] was set to 1 by BIOS
glbl_ptr->error |= _MSGTYP_CHECKBIOS_CPUIDMAXSETTING;
// IA32_MISC_ENABLES[22] may have been set to 1,
// it will cause inaccurate reporting

}
}
glbl_ptr->SMTSelectMask = createMask(SMTIDPerCoreMaxCnt,&glbl_ptr->SMTMaskWidth);
glbl_ptr->CoreSelectMask = createMask(coreIDMaxCnt,&glbl_ptr->PkgSelectMaskShift);
glbl_ptr->PkgSelectMaskShift += glbl_ptr->SMTMaskWidth;
glbl_ptr->CoreSelectMask <<= glbl_ptr->SMTMaskWidth;
glbl_ptr->PkgSelectMask = (-1) ^ (glbl_ptr->CoreSelectMask | glbl_ptr->SMTSelectMask);
return 0;

}

Reference Number: 337015-001, Revision: 1.1 25

Examples

Example A-9. Support Functions to Generate Bitmask for Extraction of Sub IDs

/*
* myBitScanReverse
*
* Equivant functionality of BSR
* This c-emulation of the BSR instruction is shown here for tool portability
* Arguments:
* index bit offset of the most significant bit that's not 0 found in mask
* mask input data to search the most significant bit
* Return: 1 if a non-zero bit is found, otherwise 0
*/
unsigned char myBitScanReverse(unsigned long * index, unsigned long mask)
{unsigned long i;

for(i=(8*sizeof(unsigned long)); i > 0; i--) {
if((mask & (LNX_MY1CON << (i-1))) != 0) {

*index = (i-1);
break;

}
}
return (mask != 0);

}

/* createMask
*
* Derive a bit mask and associated mask width (# of bits) such that
* the bit mask is wide enough to select the specified number of
* distinct values "numEntries" within the bit field defined by maskWidth.
* Arguments:
* numEntries : The number of entries in the bit field for which a mask needs to be created
* maskWidth: Optional argument, pointer to argument that get the mask width (# of bits)
*
* Return: Created mask of all 1's up to the maskWidth
*/
static unsigned long createMask(unsigned numEntries, unsigned *maskWidth)
{ unsigned i;

unsigned long k;

// NearestPo2(numEntries) is the nearest power of 2 integer that is not less
// than numEntries
// The most significant bit of (numEntries * 2 -1) matches the above definition

k = (unsigned long)(numEntries) * 2 -1;

if (myBitScanReverse(&i, k) == 0)
{ // No bits set

if (maskWidth) *maskWidth = 0;
return 0;

}

if (maskWidth) *maskWidth = i;

if (i == 31) return -1;

return (1 << i) -1;
}

Examples

26 Reference Number: 337015-001, Revision: 1.1

Example A-10a. Part 1 of Algorithm to Sort Sub IDs into Hierarchical Numbering Scheme

/*

* AnalyzeCPUHierarchy

* Analyze the Pkg_ID, Core_ID to derive hierarchical ordinal numbering scheme

* Arguments:

* numMappings: the number of logical processors successfully queried

* with SMT_ID, Core_ID, Pkg_ID extracted

* Return: 0 is no error

*/

static int AnalyzeCPUHierarchy(unsigned long numMappings)

{

unsigned i, ckDim, maxPackageDetetcted = 0;

unsigned APICID;

unsigned packageID, coreID, threadID;

unsigned *pDetectCoreIDsperPkg, *pDetectedPkgIDs;

// allocate workspace to sort parents and siblings in the topology

// starting from pkg_ID and work our ways down each inner level

pDetectedPkgIDs = (unsigned long *)_alloca(numMappings * sizeof(unsigned long));

if(pDetectedPkgIDs == NULL) return -1;

// we got a 1-D array to store unique Pkg_ID as we sort thru

// each logical processor
memset(pDetectedPkgIDs, 0xff, numMappings*sizeof(unsigned long));

ckDim = numMappings * (1 << glbl_ptr->PkgSelectMaskShift);

pDetectCoreIDsperPkg = (unsigned long *)_alloca(ckDim * sizeof(unsigned long));

if(pDetectCoreIDsperPkg == NULL) return -1;

// we got a 2-D array to store unique Core_ID within each Pkg_ID,

// as we sort thru each logical processor

memset(pDetectCoreIDsperPkg, 0xff, ckDim * sizeof(unsigned long));

// iterate throught each logical processor in the system.

// mark up each unique physical package with a zero-based numbering scheme

// Within each distinct package, mark up distinct cores within that package

// with a zero-based numbering scheme

for (i=0; i < numMappings;i++) {

BOOL PkgMarked;

unsigned h;

APICID = glbl_ptr->PApicAffOrdMapping[i].APICID;

packageID = glbl_ptr->PApicAffOrdMapping[i].pkg_IDAPIC ;

coreID = glbl_ptr->PApicAffOrdMapping[i].Core_IDAPIC ;

threadID = glbl_ptr->PApicAffOrdMapping[i].SMT_IDAPIC;

PkgMarked = FALSE;

Reference Number: 337015-001, Revision: 1.1 27

Examples

Example A-10b. Part 2 of Algorithm to Sort Sub IDs into Hierarchical Numbering Scheme

for (h=0;h<maxPackageDetetcted;h++)
{

if (pDetectedPkgIDs[h] == packageID)
{

BOOL foundCore = FALSE;
unsigned k;
PkgMarked = TRUE;
glbl_ptr->PApicAffOrdMapping[i].packageORD = h;

// look for core in marked packages
for (k=0;k<glbl_ptr->perPkg_detectedCoresCount.data[h];k++)
{

if (coreID == pDetectCoreIDsperPkg[h* numMappings +k])
{
foundCore = TRUE;
// add thread - can't be that the thread already exists,
breaks uniqe APICID spec
glbl_ptr->PApicAffOrdMapping[i].coreORD = k;
glbl_ptr->PApicAffOrdMapping[i].threadORD = glbl_ptr-
>perCore_detectedThreadsCount.data[h*MAX_CORES+k];
glbl_ptr->perCore_detectedThreadsCount.data[h*MAX_CORES+k]++;
break;

}
}
if (!foundCore)
{ // mark up the Core_ID of an unmarked core in a marked package

unsigned core = glbl_ptr->perPkg_detectedCoresCount.data[h];
pDetectCoreIDsperPkg[h* numMappings + core] = coreID;
// keep track of respective hierarchical counts
glbl_ptr->perCore_detectedThreadsCount.data[h*MAX_CORES+core]= 1;
glbl_ptr->perPkg_detectedCoresCount.data[h]++;
// build a set of numbering system to iterate each topological
hierarchy

glbl_ptr->PApicAffOrdMapping[i].coreORD = core;
glbl_ptr->PApicAffOrdMapping[i].threadORD = 0;
glbl_ptr->EnumeratedCoreCount++; // this is an unmarked core,
increment system core count by 1

}
break;

}
}

Examples

28 Reference Number: 337015-001, Revision: 1.1

Example A-10c. Part 3 of Algorithm to Sort Sub IDs into Hierarchical Numbering Scheme

if (!PkgMarked)

{ // mark up the pkg_ID and Core_ID of an unmarked package

pDetectedPkgIDs[maxPackageDetetcted] = packageID;

pDetectCoreIDsperPkg[maxPackageDetetcted* numMappings + 0] = coreID;

// keep track of respective hierarchical counts

glbl_ptr->perPkg_detectedCoresCount.data[maxPackageDetetcted] = 1;

glbl_ptr->perCore_detectedThreadsCount.data

[maxPackageDetetcted*MAX_CORES+0] = 1;

// build a set of zero-based numbering acheme so that

// each logical processor in the same core can be referenced by a

// zero-based index

// each core in the same package can be referenced by another

//zero-based index

// each package in the system can be referenced by a third

// zero-based index scheme.

// each system wide index i can be mapped to a triplet of

// zero-based hierarchical indices

glbl_ptr->PApicAffOrdMapping[i].packageORD = maxPackageDetetcted;

glbl_ptr->PApicAffOrdMapping[i].coreORD = 0;

glbl_ptr->PApicAffOrdMapping[i].threadORD = 0;

// this is an unmarked pkg, increment pkg count by 1

maxPackageDetetcted++;

// there is at least one core in a package

glbl_ptr->EnumeratedCoreCount++;

}

}

glbl_ptr->EnumeratedPkgCount = maxPackageDetetcted;

return 0;
}

Reference Number: 337015-001, Revision: 1.1 29

Examples

Example A-11. Miscellaneous Global Variables, Arrays, Workspaces Organized in a Data Structure

typedef struct

{ // for each logical processor we need spaces to store APIC ID,

// sub IDs, affinity mappings, etc.

IdAffMskOrdMapping *pApicAffOrdMapping;

// workspace for storing hierarchical counts of each level

Dyn1Arr_str perPkg_detectedCoresCount;

Dyn2Arr_str perCore_detectedThreadsCount;

// workspace for storing hierarchical counts relative to the cache topology

// of the largest unified cache (may be shared by several cores)

Dyn1Arr_str perCache_detectedCoreCount;

Dyn2Arr_str perEachCache_detectedThreadCount;

// we use an error code to indicate any abnoral situation

unsigned error;

// If CPUID full reporting capability is restricted, we need to know.

unsigned Alert_BiosCPUIDmaxLimitSetting;

unsigned OSProcessorCount; // how many logical processor the OS sees

// flag to keep track of whether CPUID leaf 0BH is supported

unsigned hasLeafB;

// keep track of highest CPUID leaf 4 subleaf index in a processor

unsigned maxCacheSubleaf;

// the following global variables are the total counts in the system

// resulting from software enumeration

unsigned EnumeratedPkgCount;

unsigned EnumeratedCoreCount;

unsigned EnumeratedThreadCount;

// CPUID ID leaf 4 can report data for several cache levels, we'll

// keep track of each cache level

unsigned EnumeratedEachCacheCount[MAX_CACHE_SUBLEAFS];

// the following global variables are parameters related to

// extracting sub IDs from an APIC ID, common to all processors in the system

unsigned SMTSelectMask;

unsigned PkgSelectMask;

unsigned CoreSelectMask;

unsigned PkgSelectMaskShift;

unsigned SMTMaskWidth;

// We'll do sub ID extractions using parameters from each cache level

unsigned EachCacheSelectMask[MAX_CACHE_SUBLEAFS];

unsigned EachCacheMaskWidth[MAX_CACHE_SUBLEAFS];

// the following global variables are used for product capability identification

unsigned HWMT_SMTperCore;

unsigned HWMT_SMTperPkg;

// a data structure that can store simple leaves and complex subleaves of

// all supported leaf indices of CPUID

CPUIDinfox *cpuid_values;

// workspace of our generic affinitymask structure to allow iteration

// over each logical processors in the system

GenericAffinityMask cpu_generic_processAffinity;

GenericAffinityMask cpu_generic_systemAffinity;

// workspeace to assist text display of cache topology information

cacheDetail_str cacheDetail[MAX_CACHE_SUBLEAFS];

} GLKTSN_T;

GLKTSN_T *glbl_ptr=NULL;

	Intel® 64 Architecture Processor Topology Enumeration
	Chapter 1 Intel® 64 Architecture Processor Topology Enumeration
	1.1 Introduction
	1. Each logical processor in an Intel 64 or IA-32 platform supporting coherent memory is assigned a unique ID (APIC ID) within the coherent domain. A multi-node cluster installation may employ vendor-specific BIOS that preserve the APIC IDs assigned ...
	1.1.1 Glossary

	1.2 Unique APIC ID in a Multi-Processor System
	1.3 System Topology Enumeration Using CPUID Extended Topology Leaf
	1.4 System Topology Enumeration Using CPUID Leaf 1 and Leaf 4
	1.4.1 Cache Topology Enumeration
	1. Determine the number of physical processors to implement a per-package licensing policy. Each unique value in the Pkg_ID[] array represents a physical processor.

	1.5 Data Processing of Sub IDs of the Topology
	1.5.1 Sub ID Extraction Parameters for x2APIC ID
	1.5.2 Considerations for Using Three Level Topology on a System with More Levels
	1. Query the right-shift value for the SMT level of the topology using CPUID leaf 0BH with ECX =0H as input. The number of bits to shift-right on x2APIC ID (EAX[4:0]) can distinguish different higher- level entities above SMT (e.g., processor cores) ...

	1.5.3 Sub ID Extraction Parameters for Initial APIC ID
	1.5.4 Cache ID Extraction Parameters

	1.6 Analyzing Topology Enumeration Result and Customization
	1. Count the number of entities in a given hierarchical level across the system.
	1.6.1 Dynamic Software Visibility of Topology Enumeration

	Appendix A Examples

