

Speculative Execution Side Channel
Mitigations

Revision 1.0

January 2018

Document Number: 336996-001

ii Document Number: 336996-001, Revision 1.0

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware,
software or service activation. Performance varies depending on system configuration. No computer system can be
absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast,
schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations
from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course
of performance, course of dealing, or usage in trade.

Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Xeon, Intel Core, Intel Atom, Intel Xeon Phi, Intel Hyper-Threading Technology (Intel HT
Technology), and Intel Memory Protection Extensions (Intel MPX) are trademarks of Intel Corporation or its
subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation.

iii Document Number: 336996-001, Revision 1.0

Contents
1 Introduction ... 1

2 Indirect Branch Control Mitigation .. 2
 Overview of Branch Target Injection .. 2
 Overview of Indirect Branch Control Mechanisms 2
 Background and Terminology .. 2

 Indirect Branch Prediction ... 2
 Indirect Branch Prediction and Intel® Hyper-Threading Technology

(Intel® HT Technology) ... 3
 Return Stack Buffer (RSB) ... 3
 Predictor Mode ... 3

 Enumeration... 3
 Enumeration by CPUID .. 4
 Enumeration by IA32_ARCH_CAPABILITIES 4

 Indirect Branch Control Mechanisms .. 5
 Indirect Branch Restricted Speculation (IBRS) 5
 Single Thread Indirect Branch Predictors (STIBP) 6
 Indirect Branch Predictor Barrier (IBPB) .. 7

 New Architectural MSRs ... 8
 IA32_SPEC_CTRL MSR .. 8
 IA32_PRED_CMD MSR .. 9
 IA32_ARCH_CAPABILITIES MSR .. 10

3 Bounds Check Bypass Mitigation ... 11
 Overview of Bounds Check Bypass .. 11
 Bounds Check Bypass Mitigation ... 11

§

iv Document Number: 336996-001, Revision 1.0

Revision History

Document
Number

Revision
Number Description Date

336996-001 1.0 Initial release. January 2018

§

1 Document Number: 336996-001, Revision 1.0

1 Introduction

Side channel methods are techniques that may allow an attacker to gain information through
observing the system, such as measuring microarchitectural properties about the system. This
document considers two side channel methods: branch target injection and bounds check bypass.

Section 2 describes branch target injection and presents mitigation techniques based on indirect
branch control mechanisms, which are new interfaces between the processor and system software.

Section 3 describes bounds check bypass as well as mitigation techniques based on software
modification.

2 Document Number: 336996-001, Revision 1.0

2 Indirect Branch Control
Mitigation

 Overview of Branch Target Injection
Intel processors use indirect branch predictors to determine the operations that are speculatively
executed after a near indirect branch instruction. Branch target injection is a side channel method that
takes advantage of the indirect branch predictors. By controlling the operation of the indirect branch
predictors (“training”), an attacker can cause certain instructions to be speculatively executed and
then use the effects for side channel analysis.

 Overview of Indirect Branch Control Mechanisms
Intel has developed mitigation techniques for branch target injection. One technique uses indirect
branch control mechanisms, which are new interfaces between the processor and system software.
These mechanisms allow system software to prevent an attacker from controlling a victim's indirect
branch predictions (e.g., by invalidating the indirect branch predictors at appropriate times).

Three indirect branch control mechanisms are defined in this specification:

• Indirect Branch Restricted Speculation (IBRS): Restricts speculation of indirect branches.

• Single Thread Indirect Branch Predictors (STIBP): Prevents indirect branch predictions from
being controlled by a sibling Hyperthread.

• Indirect Branch Predictor Barrier (IBPB): Prevents indirect branch predictions after the barrier
from being controlled by software executed before the barrier.

Appropriately written software can use these indirect branch control mechanisms to defend against
branch target injection attacks.

 Background and Terminology

 Indirect Branch Prediction

The processor uses indirect branch predictors to control only the operation of the branch instructions
enumerated in the table below.

Table 2-1. Instructions that use Indirect Branch Predictors

Branch Type Instruction Opcode

Near Call Indirect CALL r/m16, CALL r/m32, CALL r/m64 FF /2

Near Jump Indirect JMP r/m16, JMP r/m32, JMP r/m64 FF /4

Near Return RET, RET Imm16 C3, C2 Iw

3 Document Number: 336996-001, Revision 1.0

References in this document to indirect branches are only to near call indirect, near jump indirect and
near return instructions.

 Indirect Branch Prediction and Intel® Hyper-Threading
Technology (Intel® HT Technology)

In a processor supporting Intel® Hyper-Threading Technology, a core (or physical processor) may
include multiple logical processors. In such a processor, the logical processors sharing a core may
share indirect branch predictors. As a result of this sharing, software on one of a core’s logical
processors may be able to control the predicted target of an indirect branch executed on another
logical processor of the same core.

This sharing occurs only within a core. Software executing on a logical processor of one core cannot
control the predicted target of an indirect branch by a logical processor of a different core.

 Return Stack Buffer (RSB)

The Return Stack Buffer (RSB) is a microarchitectural structure that holds predictions for execution of
near RET instructions.

Each execution of a near CALL instruction with a non-zero displacement1 adds an entry to the RSB
that contains the address of the instruction sequentially following that CALL instruction. The RSB is not
used or updated by far CALL, far RET, or IRET instructions.

 Predictor Mode

Intel processors support different modes of operation corresponding to different degrees of privilege.
VMX root operation (for a virtual-machine monitor, or host) is more privileged than VMX non-root
operation (for a virtual machine, or guest). Within either VMX root operation or VMX non-root
operation, supervisor mode (CPL < 3) is more privileged than user mode (CPL= 3).

To prevent attacks based on branch target injection, it can be important to ensure that less privileged
software cannot control use of the branch predictors by more privileged software. For this reason, it is
useful to introduce the concept of predictor mode. There are four predictor modes: host-supervisor,
host-user, guest-supervisor, and guest-user.

The guest predictor modes are considered less privileged than the host predictor modes. Similarly, the
user predictor modes are considered less privileged than the supervisor predictor modes.

There are operations that may be used to transition between unrelated software components but
which do not change CPL or cause a VMX transition. These operations do not change predictor mode.
Examples include MOV to CR3, VMPTRLD, EPTP switching (using VM function 0), and
GETSEC[SENTER].

 Enumeration
Processor support for the new indirect branch control mechanisms is enumerated using the CPUID
instruction and the IA32_ARCH_CAPABILITIES MSR.

1 A CALL with a target of the next sequential instruction has zero displacement.

4 Document Number: 336996-001, Revision 1.0

 Enumeration by CPUID

The CPUID instruction enumerates support for the indirect branch control mechanisms using three
feature flags in CPUID.(EAX=7H,ECX=0):EDX:

• CPUID.(EAX=7H,ECX=0):EDX[26] enumerates support for indirect branch restricted
speculation (IBRS) and the indirect branch predictor barrier (IBPB). Processors that set this bit
support the IA32_SPEC_CTRL MSR and the IA32_PRED_CMD MSR. They allow software to set
IA32_SPEC_CTRL[0] (IBRS) and IA32_PRED_CMD[0] (IBPB).

• CPUID.(EAX=7H,ECX=0):EDX[27] enumerates support for single thread indirect branch
predictors (STIBP). Processors that set this bit support the IA32_SPEC_CTRL MSR. They allow
software to set IA32_SPEC_CTRL[1] (STIBP).

• CPUID.(EAX=7H,ECX=0):EDX[29] enumerates support for the IA32_ARCH_CAPABILITIES
MSR.

The indirect branch control mechanisms may be introduced to a processor by loading a microcode
update. In such cases, software should re-evaluate the enumeration after loading that microcode
update.

Table 2-2. CPUID Leaf 07H, Sub-leaf 0: Updated EDX Register Details

Initial EAX
Value Information Provided About the Processor

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H NOTES:
Leaf 07H main leaf (ECX = 0).
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0.

EDX Bits 25-00: Reserved
Bit 26: IBRS and IBPB supported
Bit 27: STIBP supported
Bit 28: Reserved
Bit 29: IA32_ARCH_CAPABILITIES supported
Bits 31-30: Reserved

NOTE: The table above is not intended to provide full details of this leaf; see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A (CPUID instruction), for full details on CPUID
leaf 07H.

 Enumeration by IA32_ARCH_CAPABILITIES

Additional features are enumerated by the IA32_ARCH_CAPABILITIES MSR (MSR index 10AH). This is
a read-only MSR that is supported if CPUID.(EAX=7H,ECX=0):EDX[29] is enumerated as 1.

5 Document Number: 336996-001, Revision 1.0

Two bits are currently defined in the IA32_ARCH_CAPABILITIES MSR:

• Bit 0 is defined as RDCL_NO. If RDMSR returns 1 for this bit, the processor is not susceptible
to RDCL (rogue data cache load)2.

• Bit 1 is defined as IBRS_ALL. If RDMSR returns 1 for this bit, the processor supports enhanced
IBRS (see Section 2.5.1.3, “Enhanced IBRS”).

 Indirect Branch Control Mechanisms

 Indirect Branch Restricted Speculation (IBRS)

Indirect branch restricted speculation (IBRS) is an indirect branch control mechanism that
restricts speculation of indirect branches. A processor supports IBRS if it enumerates
CPUID.(EAX=7H,ECX=0):EDX[26] as 1.

2.5.1.1 IBRS: Basic Support

Processors that support IBRS provide the following guarantees without any enabling by software:

• The predicted targets of near indirect branches executed in an enclave (a protected container
defined by Intel® SGX) cannot be controlled by software executing outside the enclave.

• If the default treatment of SMIs and SMM is active, software executed before a system-
management interrupt (SMI) cannot control the predicted targets of indirect branches
executed in system-management mode (SMM) after the SMI.

2.5.1.2 IBRS: Support Based on Software Enabling

IBRS provides a method for critical software to protect their indirect branch predictions.

If software sets IA32_SPEC_CTRL.IBRS to 1 after a transition to a more privileged predictor mode,
predicted targets of indirect branches executed in that predictor mode with IA32_SPEC_CTRL.IBRS =
1 cannot be controlled by software that was executed in a less privileged predictor mode or on another
logical processor.3

If IA32_SPEC_CTRL.IBRS is already 1 before a transition to a more privileged predictor mode, some
processors may allow the predicted targets of indirect branches executed in that predictor mode to be
controlled by software that executed before the transition. Software can avoid this by using WRMSR
on the IA32_SPEC_CTRL MSR to set the IBRS bit to 1 after any such transition, regardless of the bit’s
previous value. It is not necessary to clear the bit first; writing it with a value of 1 after the transition
suffices, regardless of the bit’s original value.

Setting IA32_SPEC_CTRL.IBRS to 1 does not suffice to prevent the predicted target of a near return
from using an RSB entry created in a less privileged predictor mode. Software can avoid this by using

2 See Section 2.2.3 “Rogue Data Cache Load” of the Intel Analysis of Speculative Execution Side
Channels White Paper, available here: https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf.
3 A transition to a more privileged predictor mode through an INIT# is an exception to this and may
not be sufficient to prevent the predicted targets of indirect branches executed in the new predictor
mode from being controlled by software operating in a less privileged predictor mode.

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

6 Document Number: 336996-001, Revision 1.0

an RSB overwrite sequence4 following a transition to a more privileged predictor mode. It is not
necessary to use such a sequence following a transition from user mode to supervisor mode if
supervisor-mode execution prevention (SMEP) is enabled.

Enabling IBRS does not prevent software from controlling the predicted targets of indirect branches of
unrelated software executed later at the same predictor mode (for example, between two different
user applications, or two different virtual machines). Such isolation can be ensured through use of the
IBPB command, described in Section 2.5.3, “Indirect Branch Predictor Barrier (IBPB)”.

Enabling IBRS on one logical processor of a core with Intel Hyper-Threading Technology may affect
branch prediction on other logical processors of the same core. For this reason, software should
disable IBRS (by clearing IA32_SPEC_CTRL.IBRS) prior to entering a sleep state (e.g., by executing
HLT or MWAIT) and re-enable IBRS upon wakeup and prior to executing any indirect branch.

2.5.1.3 Enhanced IBRS

Some processors may enhance IBRS by simplifying software enabling and improving performance. A
processor supports enhanced IBRS if RDMSR returns a value of 1 for bit 1 of the
IA32_ARCH_CAPABILITIES MSR.

Enhanced IBRS supports an ‘always on’ model in which IBRS is enabled once (by setting
IA32_SPEC_CTRL.IBRS) and never disabled. If IA32_SPEC_CTRL.IBRS = 1 on a processor with
enhanced IBRS, the predicted targets of indirect branches executed cannot be controlled by software
that was executed in a less privileged predictor mode or on another logical processor.

As a result, software operating on a processor with enhanced IBRS need not use WRMSR to set
IA32_SPEC_CTRL.IBRS after every transition to a more privileged predictor mode. Software can
isolate predictor modes effectively simply by setting the bit once. Software need not disable enhanced
IBRS prior to entering a sleep state such as MWAIT or HLT.

On processors with enhanced IBRS, an RSB overwrite sequence does not suffice to prevent the
predicted target of a near return from using an RSB entry created in a less privileged predictor mode.
Software can avoid this by enabling SMEP (for transitions from user mode to supervisor mode) and by
maintaining IA32_SPEC_CTRL.IBRS = 1 (for VM exits).

As with ordinary IBRS, enhanced IBRS does not prevent software from affecting the predicted target
of an indirect branch executed at the same predictor mode. For such cases, software should use the
IBPB command, described in Section 2.5.3, “Indirect Branch Predictor Barrier (IBPB)”.

 Single Thread Indirect Branch Predictors (STIBP)

Single thread indirect branch predictors (STIBP) is an indirect branch control mechanism that
restricts the sharing of branch prediction between logical processors on a core. A processor supports
STIBP if it enumerates CPUID.(EAX=7H,ECX=0):EDX[27] as 1.

As noted in Section 2.3.2, “Indirect Branch Prediction and Intel® Hyper-Threading Technology (Intel®
HT Technology)”, the logical processors sharing a core may share indirect branch predictors, allowing
one logical processor to control the predicted targets of indirect branches by another logical processor
of the same core. Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR prevents the predicted targets of
indirect branches from being controlled by software that executes (or executed previously) on another
logical processor of the same core.

4 An RSB overwrite sequence is a sequence of instructions that includes 32 more near CALL
instructions with non-zero displacements than it has near RETs.

7 Document Number: 336996-001, Revision 1.0

Recall that indirect branch predictors are never shared across cores. Thus, the predicted target of an
indirect branch executed on one core can never be affected by software operating on a different core.
It is not necessary to set IA32_SPEC_CTRL.STIBP to isolate indirect branch predictions from software
operating on other cores.

Many processors do not allow the predicted targets of indirect branches to be controlled by software
operating on another logical processor, regardless of STIBP. These include processors on which Intel
Hyper-Threading Technology is not enabled and those that do not share indirect branch predictors
between logical processors. To simplify software enabling and enhance workload migration, STIBP
may be enumerated (and setting IA32_SPEC_CTRL.STIBP allowed) on such processors.

A processor may enumerate support for the IA32_SPEC_CTRL MSR (e.g., by enumerating
CPUID.(EAX=7H,ECX=0):EDX[26] as 1) but not for STIBP (CPUID.(EAX=7H,ECX=0):EDX[27] is
enumerated as 0). On such processors, execution of WRMSR to IA32_SPEC_CTRL ignores the value of
bit 1 (STIBP) and does not cause a general-protection exception (#GP) if bit 1 of the source operand
is set. It is expected that this fact will simplify virtualization in some cases.

As noted in Section 2.5.1, “Indirect Branch Restricted Speculation (IBRS)”, enabling IBRS prevents
software operating on one logical processor from controlling the predicted targets of indirect branches
executed on another logical processor. For that reason, it is not necessary to enable STIBP when IBRS
is enabled.

Enabling STIBP on one logical processor of a core with Intel Hyper-Threading Technology may affect
branch prediction on other logical processors of the same core. For this reason, software should
disable STIBP (by clearing IA32_SPEC_CTRL.STIBP) prior to entering a sleep state (e.g., by executing
HLT or MWAIT) and re-enable STIBP upon wakeup and prior to executing any indirect branch.

 Indirect Branch Predictor Barrier (IBPB)

The indirect branch predictor barrier (IBPB) is an indirect branch control mechanism that
establishes a barrier, preventing software that executed before the barrier from controlling the
predicted targets of indirect branches executed after the barrier. A processor supports IBPB if it
enumerates CPUID.(EAX=7H,ECX=0):EDX[26] as 1.

Unlike IBRS and STIBP, IBPB does not define a new mode of processor operation that controls the
branch predictors. As a result, it is not enabled by setting a bit in the IA32_SPEC_CTRL MSR. Instead,
IBPB is a “command” that software executes when necessary.

Software executes an IBPB command by writing the IA32_PRED_CMD MSR to set bit 0 (IBPB). This
can be done either using the WRMSR instruction or as part of a VMX transition that loads the MSR
from an MSR-load area. Software that executed before the IBPB command cannot control the
predicted targets of indirect branches executed after the command. The IA32_PRED_CMD MSR is
write-only, and it is not necessary to clear the IBPB bit before writing it with a value of 1.

IBPB can be used in conjunction with IBRS to account for cases that IBRS does not cover:

• As noted in Section 2.5.1, “Indirect Branch Restricted Speculation (IBRS)”, IBRS does not
prevent software from controlling the predicted target of an indirect branch of unrelated
software (e.g., a different user application or a different virtual machine) executed at the
same predictor mode. Software can prevent such control by executing an IBPB command
when changing the identity of software operating at a particular predictor mode (e.g., when
changing user applications or virtual machines).

• Software may choose to clear IA32_SPEC_CTRL.IBRS in certain situations (e.g., for execution
with CPL = 3 in VMX root operation). In such cases, software can use an IBPB command on
certain transitions (e.g., after running an untrusted virtual machine) to prevent software that

8 Document Number: 336996-001, Revision 1.0

executed earlier from controlling the predicted targets of indirect branches executed
subsequently with IBRS disabled.

 New Architectural MSRs

 IA32_SPEC_CTRL MSR

This MSR has a value of 0 after reset and is unaffected by INIT# or SIPI#.

Like IA32_TSC_DEADLINE MSR (MSR index 6E0H), the x2APIC MSRs (MSR indices 802H to 83FH) and
IA32_PRED_CMD (MSR index 49H), WRMSR to IA32_SPEC_CTRL (MSR index 48H) is not serializing.

WRMSR to IA32_SPEC_CTRL does not execute until all prior instructions have completed locally and no
later instructions begin execution until the WRMSR completes.

Table 2-3. IA32_SPEC_CTRL MSR Details

Register Address
Register Name Bit Description Comment

Hex Dec

48H 72 IA32_SPEC_CTRL Speculation Control (R/W) If any one of the
enumeration conditions
for defined bit field
positions holds.

0 Indirect Branch Restricted
Speculation (IBRS). Restricts
speculation of indirect branch.

If CPUID.(EAX=07H,
ECX=0):EDX[26]=1.

1 Single Thread Indirect Branch
Predictors (STIBP). Prevents
indirect branch predictions from
being controlled by code
executing on a sibling logical
processor in the same core.

If CPUID.(EAX=07H,
ECX=0):EDX[27]=1.5

63:2 Reserved.

Figure 2-1. IA32_ SPEC_CTRL MSR

Reserved

IA32_SPEC_CTRL MSR
2 1 063

IBRS
STIBP

5 Processors that support IBRS but not STIBP (CPUID.(EAX=07H, ECX=0):EDX[27:26] = 01b) will
ignore attempts to set STIBP instead of causing an exception due to setting that reserved bit.

9 Document Number: 336996-001, Revision 1.0

 IA32_PRED_CMD MSR

The IA32_PRED_CMD MSR gives software a way to issue commands that affect the state of predictors.

Table 2-4. IA32_ PRED_CMD MSR Details

Register Address
Register Name Bit Description Comment

Hex Dec

49H 73 IA32_ PRED_CMD Prediction Command (WO) If any one of the
enumeration conditions
for defined bit field
positions holds.

0 Indirect Branch Prediction Barrier
(IBPB).

If CPUID.(EAX=07H,
ECX=0):EDX[26]=1.

63:1 Reserved.

Figure 2-2. IA32_ ARCH_PRED_CMD MSR

Reserved

IA32_PRED_CMD MSR
1 063

IBPB

Like IA32_TSC_DEADLINE MSR (MSR index 6E0H), the X2APIC MSRs (MSR indices 802H to 83FH) and
IA32_SPEC_CTRL (MSR index 48H), WRMSR to IA32_PRED_CMD (MSR index 49H) is not serializing.

WRMSR to IA32_PRED_CMD does not execute until all prior instructions have completed locally and no
later instructions begin execution until the WRMSR completes.

10 Document Number: 336996-001, Revision 1.0

 IA32_ARCH_CAPABILITIES MSR

A new read-only enumeration MSR called IA32_ARCH_CAPABILITIES is supported when
CPUID.(EAX=07H, ECX=0):EDX[29] is set. It enumerates architectural features to software. See
Section 2.4.2, “Enumeration by IA32_ARCH_CAPABILITIES”, for details.

Table 2-5. IA32_ ARCH_CAPABILITIES MSR Details

Register Address
Register Name Bit Description Comment

Hex Dec

10AH 266 IA32_ ARCH_CAPABILITIES Enumeration of Architectural
Features (RO)

If CPUID.(EAX=07H,
ECX=0):EDX[29]=1.

0 RDCL_NO: The processor is not
susceptible to Rogue Data Cache
Load (RDCL)6.

1 IBRS_ALL: The processor supports
enhanced IBRS.

63:2 Reserved.

Figure 2-3. IA32_ ARCH_CAPABILITIES MSR

Reserved

IA32_ ARCH_CAPABILITIES MSR
2 1 063

RDCL_NO
IBRS_ALL

6 See Section 2.2.3, “Rogue Data Cache Load”, of the Intel Analysis of Speculative Execution Side
Channels White Paper, available here: https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf.

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

11 Document Number: 336996-001, Revision 1.0

3 Bounds Check Bypass Mitigation

 Overview of Bounds Check Bypass
Bounds check bypass is a side channel method that takes advantage of the speculative execution that
may occur following a conditional branch instruction. Specifically, the method is used in situations in
which the processor is checking whether an input is in bounds (e.g., while checking whether the index
of an array element being read is within acceptable values). The processor may issue operations
speculatively before the bounds check resolves. If the attacker contrives for these operations to
access out-of-bound memory, information may be leaked to the attacker in certain circumstances.

 Bounds Check Bypass Mitigation
Bounds check bypass can be mitigated through the modification of software to constrain speculation in
confused deputies. Specifically, software can insert a speculation stopping barrier between a bounds
check and a later operation that could cause a speculative side channel. The LFENCE instruction, or
any serializing instruction, can serve as such a barrier. These instructions suffice regardless of
whether the bounds checking is implemented using conditional branches or through the use of bound-
checking instructions (BNDCL and BNDCU) that are part of the Intel® Memory Protection Extensions
(Intel® MPX).

The LFENCE instruction and the serializing instructions all ensure that no later instruction will execute,
even speculatively, until all prior instructions have completed locally. The LFENCE instruction has lower
latency than the serializing instructions and thus is recommended.

Other instructions such as CMOVcc, AND, ADC, SBB and SETcc can also be used to prevent bounds
check bypass by constraining speculative execution on current family 6 processors (Intel® Core™,
Intel® Atom™, Intel® Xeon® and Intel® Xeon Phi™ processors). However, these instructions may not
be guaranteed to do so on future Intel processors. Intel will release further guidance on the usage of
instructions to constrain speculation in the future before processors with different behavior are
released.

	1 Introduction
	2 Indirect Branch Control Mitigation
	2.1 Overview of Branch Target Injection
	2.2 Overview of Indirect Branch Control Mechanisms
	2.3 Background and Terminology
	2.3.1 Indirect Branch Prediction
	2.3.2 Indirect Branch Prediction and Intel® Hyper-Threading Technology (Intel® HT Technology)
	2.3.3 Return Stack Buffer (RSB)
	2.3.4 Predictor Mode

	2.4 Enumeration
	2.4.1 Enumeration by CPUID
	2.4.2 Enumeration by IA32_ARCH_CAPABILITIES

	2.5 Indirect Branch Control Mechanisms
	2.5.1 Indirect Branch Restricted Speculation (IBRS)
	2.5.1.1 IBRS: Basic Support
	2.5.1.2 IBRS: Support Based on Software Enabling
	2.5.1.3 Enhanced IBRS

	2.5.2 Single Thread Indirect Branch Predictors (STIBP)
	2.5.3 Indirect Branch Predictor Barrier (IBPB)

	2.6 New Architectural MSRs
	2.6.1 IA32_SPEC_CTRL MSR
	2.6.2 IA32_PRED_CMD MSR
	2.6.3 IA32_ARCH_CAPABILITIES MSR

	3 Bounds Check Bypass Mitigation
	3.1 Overview of Bounds Check Bypass
	3.2 Bounds Check Bypass Mitigation

