
Intel® Virtualization Technology Specification
for the IA-32 Intel® Architecture

C97063-002
April 2005

ii

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED “AS IS” WITH NO WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. INTEL ASSUMES NO
RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS
FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.

INTEL DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS,
RELATING TO USE OF INFORMATION IN THIS SPECIFICATION. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.

INTEL MAY MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME, WITHOUT
NOTICE.

DEVELOPERS MUST NOT RELY ON THE ABSENCE OR CHARACTERISTICS OF ANY FEATURES OR
INSTRUCTIONS MARKED “RESERVED” OR “UNDEFINED.” IMPROPER USE OF RESERVED OR UNDEFINED
FEATURES OR INSTRUCTIONS MAY CAUSE UNPREDICTABLE BEHAVIOR OR FAILURE IN DEVELOPER'S
SOFTWARE CODE WHEN RUNNING ON AN INTEL® PROCESSOR. INTEL RESERVES THESE FEATURES OR
INSTRUCTIONS FOR FUTURE DEFINITION AND SHALL HAVE NO RESPONSIBILITY WHATSOEVER FOR
CONFLICTS OR INCOMPATIBILITIES ARISING FROM THEIR UNAUTHORIZED USE.

INTEL PROCESSORS MAY CONTAIN DESIGN DEFECTS OR ERRORS KNOWN AS ERRATA, WHICH MAY CAUSE
THE PRODUCT TO DEVIATE FROM PUBLISHED SPECIFICATIONS. CURRENT CHARACTERIZED ERRATA ARE
AVAILABLE UPON REQUEST.

INTEL CORPORATION MAY HAVE PATENTS OR PENDING PATENT APPLICATIONS, TRADEMARKS, COPYRIGHTS,
OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT RELATE TO THE PRESENTED SUBJECT MATTER. THE
FURNISHING OF DOCUMENTS AND OTHER MATERIALS AND INFORMATION DOES NOT PROVIDE ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY SUCH PATENTS, TRADEMARKS, COPYRIGHTS,
OR OTHER INTELLECTUAL PROPERTY RIGHTS. EXCEPT THAT A LICENSE IS HEREBY GRANTED TO COPY AND
REPRODUCE THIS DOCUMENT FOR INTERNAL USE ONLY.

COPYRIGHT © 2000-2005, INTEL CORPORATION.

* OTHER NAMES AND BRANDS MAY BE CLAIMED AS THE PROPERTY OF OTHERS.

iii

CONTENTS
PAGE

CHAPTER 1
INTRODUCTION AND VMX OVERVIEW
1.1 ABOUT THIS DOCUMENT . 1-1
1.2 VIRTUAL MACHINE ARCHITECTURE . 1-1
1.3 INTRODUCTION TO VMX OPERATION . 1-2
1.4 LIFE CYCLE OF VMM SOFTWARE . 1-2
1.5 VIRTUAL-MACHINE CONTROL STRUCTURE. 1-3
1.6 DISCOVERING SUPPORT FOR VMX OPERATION. 1-4
1.7 ENABLING AND ENTERING VMX OPERATION . 1-4
1.8 RESTRICTIONS ON VMX OPERATION . 1-5

CHAPTER 2
VIRTUAL-MACHINE CONTROL STRUCTURE
2.1 OVERVIEW . 2-1
2.2 FORMAT OF THE VMCS REGION . 2-2
2.3 ORGANIZATION OF VMCS DATA . 2-3
2.4 GUEST-STATE AREA . 2-3
2.4.1 Guest Register State . 2-3
2.4.2 Guest Non-Register State . 2-5
2.5 HOST-STATE AREA . 2-7
2.6 VM-EXECUTION CONTROL FIELDS . 2-7
2.6.1 Pin-Based VM-Execution Controls . 2-8
2.6.2 Processor-Based VM-Execution Controls . 2-8
2.6.3 Exception Bitmap. 2-9
2.6.4 I/O-Bitmap Addresses . 2-10
2.6.5 Time-Stamp Counter Offset . 2-10
2.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4. 2-10
2.6.7 CR3-Target Controls . 2-10
2.6.8 Controls for CR8 Accesses . 2-11
2.7 VM-EXIT CONTROL FIELDS. 2-11
2.7.1 VM-Exit Controls . 2-11
2.7.2 VM-Exit Controls for MSRs . 2-12
2.8 VM-ENTRY CONTROL FIELDS. 2-13
2.8.1 VM-Entry Controls . 2-13
2.8.2 VM-Entry Controls for MSRs . 2-13
2.8.3 VM-Entry Controls for Event Injection . 2-14
2.9 VM-EXIT INFORMATION FIELDS . 2-15
2.9.1 Basic VM-Exit Information . 2-15
2.9.2 Information for VM Exits Due to Vectored Events . 2-15
2.9.3 Information for VM Exits That Occur During Event Delivery 2-16
2.9.4 Information for VM Exits Due to Instruction Execution. 2-17
2.9.5 VM-Instruction Error Field . 2-19
2.10 SOFTWARE ACCESS TO THE VMCS AND RELATED STRUCTURES 2-19
2.10.1 Software Access to the Virtual-Machine Control Structure 2-19
2.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields. 2-20
2.10.3 Software Access to Related Structures . 2-22
2.10.4 The VMXON Region . 2-22
2.11 USING VMCLEAR TO INITIALIZE A VMCS REGION . 2-23

iv

CONTENTS

PAGE

CHAPTER 3
VMX NON-ROOT OPERATION
3.1 INSTRUCTIONS THAT CAUSE VM EXITS. 3-1
3.1.1 Relative Priority of IA-32 Faults and VM Exits. .3-1
3.1.2 Instructions That Cause VM Exits Unconditionally .3-2
3.1.3 Instructions That Cause VM Exits Conditionally .3-2
3.2 OTHER CAUSES OF VM EXITS . 3-4
3.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION . . 3-5
3.4 OTHER CHANGES IN VMX NON-ROOT OPERATION . 3-7
3.4.1 Event Blocking. .3-7
3.4.2 Treatment of Task Switches .3-8

CHAPTER 4
VM ENTRIES
4.1 BASIC VM-ENTRY CHECKS. 4-2
4.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA. 4-2
4.2.1 Basic Checks on VMX Controls. .4-2
4.2.2 Checks on Physical Addresses and Referenced Data .4-3
4.2.3 Checks on Host Control Registers and MSRs. .4-4
4.2.4 Checks on Segment and Descriptor-Table Registers .4-5
4.2.5 Checks Related to Address-Space Size .4-5
4.3 CHECKING AND LOADING GUEST STATE. 4-5
4.3.1 Checks on the Guest State Area. .4-6
4.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs4-6
4.3.1.2 Checks on Guest Segment Registers. .4-6
4.3.1.3 Checks on Guest Descriptor-Table Registers .4-10
4.3.1.4 Checks on Guest RIP and RFLAGS. .4-10
4.3.1.5 Checks on Guest Non-Register State. .4-10
4.3.1.6 Checks on Guest Page-Directory Pointers .4-12
4.3.2 Loading Guest State .4-12
4.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs4-13
4.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers 4-14
4.3.2.3 Loading Guest RIP, RSP, and RFLAGS. .4-15
4.3.2.4 Loading Page-Directory Pointers .4-15
4.3.3 Clearing Address-Range Monitoring .4-15
4.4 LOADING MSRS . 4-15
4.5 EVENT INJECTION . 4-16
4.5.1 Details of Event Injection .4-16
4.5.2 VM Exits During Event Injection .4-18
4.6 SPECIAL FEATURES OF VM ENTRY . 4-19
4.6.1 Interruptibility State .4-19
4.6.2 Activity State .4-19
4.6.3 Delivery of Pending Debug Exceptions after VM Entry .4-20
4.6.4 Interrupt-Window Exiting .4-21
4.6.5 VM Entries and Advanced Debugging Features .4-21
4.7 VM-ENTRY FAILURES DUE TO GUEST STATE . 4-22
4.8 MACHINE CHECKS DURING VM ENTRY . 4-23

CHAPTER 5
VM EXITS
5.1 ARCHITECTURAL STATE BEFORE A VM EXIT . 5-1

v

CONTENTS

PAGE

5.2 RECORDING VM-EXIT INFORMATION AND UPDATING CONTROLS. 5-4
5.2.1 Basic VM-Exit Information . 5-4
5.2.2 Information for VM Exits Due to Vectored Events . 5-8
5.2.3 Information for VM Exits During Event Delivery. 5-9
5.2.4 Information for VM Exits Due to Instruction Execution. 5-10
5.3 SAVING GUEST STATE . 5-11
5.3.1 Saving Control Registers, Debug Registers, and MSRs 5-12
5.3.2 Saving Segment Registers and Descriptor-Table Registers 5-12
5.3.3 Saving RIP, RSP, and RFLAGS . 5-13
5.3.4 Saving Non-Register State . 5-14
5.4 SAVING MSRS. 5-16
5.5 LOADING HOST STATE . 5-16
5.5.1 Loading Host Control Registers, Debug Registers, MSRs 5-16
5.5.2 Loading Host Segment and Descriptor-Table Registers 5-17
5.5.3 Loading Host RIP, RSP, and RFLAGS . 5-19
5.5.4 Checking and Loading Host Page-Directory Pointers . 5-19
5.5.5 Updating Non-Register State. 5-19
5.5.6 Clearing Address-Range Monitoring . 5-20
5.6 LOADING MSRS . 5-20
5.7 VMX ABORTS . 5-20
5.8 MACHINE CHECK DURING VM EXIT. 5-21

CHAPTER 6
VMX CAPABILITY REPORTING
6.1 BASIC INFORMATION. 6-1
6.2 VM-EXECUTION CONTROLS . 6-2
6.3 VM-EXIT CONTROLS . 6-2
6.4 VM-ENTRY CONTROLS . 6-2
6.5 MISCELLANEOUS DATA . 6-3
6.6 VMX-FIXED BITS IN CR0 . 6-3
6.7 VMX-FIXED BITS IN CR4 . 6-3
6.8 VMCS ENUMERATION . 6-4

CHAPTER 7
VMX INSTRUCTION SET REFERENCE
7.1 OVERVIEW . 7-1
7.2 CONVENTIONS . 7-2
7.3 VMX INSTRUCTION REFERENCE . 7-3

VMCALL—Call to VM Monitor . 7-4
VMCLEAR—Clear Virtual-Machine Control Structure . 7-6
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine 7-9
VMPTRLD—Load Pointer to Virtual-Machine Control Structure 7-12
VMPTRST—Store Pointer to Virtual-Machine Control Structure. 7-15
VMREAD—Read Field from Virtual-Machine Control Structure 7-17
VMRESUME—Resume Virtual Machine . 7-20
VMWRITE—Write Field to Virtual-Machine Control Structure. 7-21
VMXOFF—Leave VMX Operation. 7-24
VMXON—Enter VMX Operation . 7-26

vi

CONTENTS

PAGE

CHAPTER 8
INTERACTIONS WITH SYSTEM-MANAGEMENT MODE
8.1 TREATMENT OF SMI DELIVERY . 8-1
8.2 TREATMENT OF RSM . 8-2
8.3 PROTECTION OF CR4.VMXE IN SMM . 8-3

APPENDIX A
BASIC EXIT REASONS

APPENDIX B
VM-INSTRUCTION ERROR NUMBERS

APPENDIX C
ENCODINGS OF FIELDS IN THE VMCS
C.1 16-BIT FIELDS. C-1
C.1.1 16-Bit Guest-State Fields . C-1
C.1.2 16-Bit Host-State Fields. C-2
C.2 FULL 64-BIT FIELDS . C-2
C.2.1 Full 64-Bit Control Fields . C-2
C.2.2 Full 64-Bit Guest-State Fields . C-3
C.3 32-BIT FIELDS. C-3
C.3.1 32-Bit Control Fields . C-4
C.3.2 32-Bit Read-Only Data Fields . C-4
C.3.3 32-Bit Guest-State Fields . C-5
C.3.4 32-Bit Host-State Field . C-6
C.4 NATURAL 64-BIT FIELDS . C-6
C.4.1 Natural 64-Bit Control Fields . C-7
C.4.2 Natural 64-Bit Read-Only Data Fields . C-7
C.4.3 Natural 64-Bit Guest-State Fields . C-8
C.4.4 Natural 64-Bit Host-State Fields . C-9

INDEX

1

CHAPTER 1
INTRODUCTION AND VMX OVERVIEW

1.1 ABOUT THIS DOCUMENT
This documents describes Intel® Virtualization Technology for IA-32 processors, referred to as
VT-x. VT-x constitutes a set of virtual-machine extensions (VMX) that support virtualization of
processor hardware for multiple software environments by using virtual machines.

This document is organized as follows:

• Chapter 1 gives an overview of the virtual-machine extensions.

• Chapter 2 details the virtual-machine control structure (VMCS) and its usage.

• Chapter 3 details processor behavior in VMX non-root operation.

• Chapter 4 details the operation of VM entries.

• Chapter 5 details the operation of VM exits.

• Chapter 6 details VMX capability reporting.

• Chapter 7 provides a reference for the new VMX instructions.

• Chapter 8 details interactions between VMX operation and system-management mode
(SMM).

This document assumes the reader is familiar with IA-32 processor features and makes refer-
ences to IA-32 features published in the following documents:

• The IA-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture.

• The IA-32 Intel® Architecture Software Developer’s Manual, Volumes 2A & 2B:
Instruction Set Reference.

• The IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System
Programming Guide.

• The Intel® Extended Memory 64 Technology Software Developer’s Guide, Volume 1 & 2.

1.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on IA-32 proces-
sors. Two principal classes of software are supported under the virtual machine architecture:

• Virtual-machine monitor (VMM): A VMM acts as a host and has full control of the
processor(s) and other platform hardware. VMM presents guest software (see below) with
an abstraction of a virtual processor and allows it to execute directly on a logical processor.

1-2

INTRODUCTION AND VMX OVERVIEW

A VMM is able to retain selective control of processor resources, physical memory,
interrupt management, and I/O.

• Guest software: Each virtual machine is a guest software environment that supports a
stack consisting of operating system (OS) and application software. Each operates
independently of other virtual machines and uses on the same interface to processor(s),
memory, storage, graphics, and I/O provided by a physical platform. The software stack
acts as if it were running on a platform with no VMM. Software executing in a virtual
machine must operate with reduced privilege so that the VMM can retain control of
platform resources.

1.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a new form of processor operation called
VMX operation. There are two kinds of VMX operation: VMX root operation and VMX non-
root operation. In general, a VMM will run in VMX root operation and guest software will run
in VMX non-root operation. Transitions between VMX root operation and VMX non-root oper-
ation are called VMX transitions. There are two kinds of VMX transitions. Transitions into
VMX non-root operation are called VM entries. Transitions from VMX non-root operation to
VMX root operation are called VM exits.

Processor behavior in VMX root operation is very much as it is outside VMX operation. The
principal differences are that a set of new instructions (the VMX instructions) is available and
that the values that can be loaded into certain control registers are limited (see Section 1.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate virtual-
ization. Instead of their ordinary operation, certain instructions (including the new VMCALL
instruction) and events cause VM exits to the VMM. Because these VM exits replace ordinary
behavior, the functionality of software in VMX non-root operation is limited. It is this limitation
that allows the VMM to retain control of processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is in VMX
non-root operation. This fact may allow a VMM to prevent guest software from determining that
it is running in a virtual machine

Because VMX operation places these restrictions even on software running with current privi-
lege level (CPL) 0, guest software can run at the privilege level for which it was originally
designed. This capability may simplify the development of a VMM.

1.4 LIFE CYCLE OF VMM SOFTWARE
Figure 1-1 illustrates the life cycle of a VMM and its guest software by illustrating the interac-
tions between them.

• Software enters VMX operation through execution of the VMXON instruction.

• The VMM can then enter its guests into virtual machines (one at a time) using VM entries.
The VMM effects a VM entry using the VMX instructions VMLAUNCH and

1-3

INTRODUCTION AND VMX OVERVIEW

VMRESUME; it regains control using VM exits. VM exits transfer control to an entry
point specified by the VMM. The VMM can take action appropriate to the cause of the
VM exit and can then return to the virtual machine via a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so
by executing the VMXOFF instruction.

1.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called a virtual-
machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the VMCS
pointer (one per logical processor). The value of the VMCS pointer is the 64-bit address of the
VMCS. The VMCS pointer can be read and written using the instructions VMPTRST and
VMPTRLD. The VMM configures a VMCS using other instructions: VMREAD, VMWRITE,
and VMCLEAR.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual
machine with multiple logical processors (virtual processors), the VMM could use a different
VMCS for each virtual processor.

Chapter 2 describes the structure of a VMCS. Chapter 3, Chapter 4, and Chapter 5 provide
details on how the VMCS controls VMX non-root operation, VM entries, and VM exits.
Chapter 7 provides detailed descriptions for each of the new VMX instructions.

Figure 1-1. Interaction of a Virtual-Machine Monitor and Guests

VM Monitor

Guest 0 Guest 1

VM Exit VM ExitVM Entry

VMXOFFVMXON

1-4

INTRODUCTION AND VMX OVERVIEW

1.6 DISCOVERING SUPPORT FOR VMX OPERATION
System software can determine whether a processor supports VMX operation using CPUID. If
CPUID.1:ECX.VMX[bit 5] =1, then VMX operation is supported. See Figure 1-2.

The VMX architecture is designed to be extensible so that future processors can support features
not present initially and not described in this document. The availability of such features is
reported to software using a set of capability MSRs (see Chapter 6).

1.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it must enable it by setting
CR4.VMXE[bit 13] = 1. VMX operation can then be entered by executing the VMXON instruc-
tion. VMXON causes an invalid-opcode exception (#UD) if executed with CR4.VMXE = 0.
Once in VMX operation, it is not possible to clear CR4.VMXE (see Section 1.8). System soft-
ware can leave VMX operation by executing the VMXOFF instruction. CR4.VMXE can be
cleared outside of VMX operation after executing of VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address
0000003AH). This MSR is cleared to zero when a logical processor is reset. The relevant bits
of the MSR are described below:

• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection exception. If
the lock bit is set, WRMSR to this MSR causes a general-protection exception. Once the
lock bit is set, the MSR cannot be modified until a power-up reset condition.

• Bit 2 enables VMXON. If this bit is clear, VMXON causes a general-protection exception.

Figure 1-2. CPUID Extended Feature Information ECX

31 15 1314 12 9 8 6 5 4 3 2 1 0

Reserved

ECX

11 101623 1718192021222425262728

VMX—Virtual Machine Extensions
DS-CPL—CPL Qual. Debug Store

SSE3—Streaming SIMD Extensions 3

30 29

TM2—Thermal Monitor 2
CNXT-ID—L1 Context ID

EST—Enhanced Intel® SpeedStep Tech.

MONITOR—Monitor/Mwait

7

1-5

INTRODUCTION AND VMX OVERVIEW

Before executing VMXON, software should allocate a naturally aligned 4KB region of memory
that a logical processor may use to support VMX operation.1 This region is called the VMXON
region. The physical address of the VMXON region (called the VMXON pointer) is provided
in an operand to VMXON. Section 2.10.4 details how software should initialize and access the
VMXON region.

1.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:

• VMX operation restricts the values that may be loaded in registers CR0 and CR4. The
following bits must be 1: CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE. VMXON fails if
any of these bits are clear (see “VMXON—Enter VMX Operation” on page 7-26). Any
attempt to clear these bits during VMX operation (including VMX root operation) using
the MOV CR instruction causes a general-protection exception. These bits cannot be
cleared by VM entry or VM exit.

CR0.PE and CR0.PG restrictions imply that VMX operation is supported only in paged
protected mode (including IA-32e mode). Therefore, guest software cannot be run in
unpaged protected mode or in real-address mode. If a VMM is to support guest software
that expects to run in unpaged protected mode or in real-address mode, the VMM must
support emulation of these modes. A VMM can use “identity” page tables to emulate
unpaged protected mode and can use virtual-8086 mode as part of a strategy to emulate
real-address mode.

Future processors may differ with regard to bits in CR0 and CR4 that are fixed while in
VMX operation. The requirements imposed by a particular processor is reported to
software using VMX capability MSRs (see Section 6.6 and Section 6.7).

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” on page 7-26). Once the processor is in VMX operation, A20M interrupts are
blocked. Thus, it is impossible to be in A20M mode in VMX operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not
blocked in VMX non-root operation; instead, INITs cause VM exits (see Section 3.2).

1. Future processors may require that a different amount of memory be reserved. If so, this fact is reported
to software via the VMX capability-reporting mechanism.

1-6

INTRODUCTION AND VMX OVERVIEW

1

CHAPTER 2
VIRTUAL-MACHINE CONTROL STRUCTURE

2.1 OVERVIEW
The virtual-machine control data structure (VMCS) is defined for VMX operation. The VMCS
manages transitions in and out of VMX non-root operation (VM entries and VM exits) as well
as processor behavior in VMX non-root operation. A VMCS can be manipulated by the new
instructions VMCLEAR, VMPTRLD, VMREAD, and VMWRITE.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual
machine with multiple logical processors (virtual processors), the VMM could use a different
VMCS for each virtual processor.

A logical processor associates with each VMCS a 4KB region in memory called the VMCS
region.1 Software references a VMCS by using the 64-bit physical address of this region; such
an address is called a VMCS pointer. Every VMCS pointer must be 4KB-aligned (bits 11:0
must be zero). In addition, the pointer must not set bits beyond the processor’s physical-address
width.2

A logical processor may maintain any number of active VMCSs, at most one of which is the
current VMCS:

• Software makes a VMCS active by executing VMPTLRD with the address of the VMCS.
The processor may optimize VMX operation by maintaining the state of an active VMCS
in memory, on the processor, or both. Software should not make a VMCS active on more
than one logical processor (see Section 2.10.1 for how to migrate a VMCS from one
logical processor to another). Software makes a VMCS inactive by executing VMCLEAR
with the address of the VMCS. A logical processor will not use an inactive VMCS or
maintain its state on the processor.

If VMXOFF is executed while a VMCS is active, the VMCS data in the corresponding
VMCS region are undefined after execution of VMXOFF. Software can avoid this problem
by avoiding execution of VMXOFF while any VMCS is active.

• Software makes a VMCS current by executing VMPTLRD with the address of the
VMCS; that address is loaded into the current-VMCS pointer. The VMX instructions
VMLAUNCH, VMPTRST, VMREAD, VMRESUME, and VMWRITE operate on the
current VMCS. In particular, the VMPTRST instruction stores the current-VMCS pointer
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is no
current VMCS). A VMCS remains current until either software executes VMPTRLD with

1. Future implementations may use VMCS regions of a different size. Software should consult the VMX
capability MSR VMX_BASIC to determine the size of the VMCS region (see Section 6.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

2-2

VIRTUAL-MACHINE CONTROL STRUCTURE

the address of a different VMCS (which then becomes the current VMCS) or software
executes VMCLEAR with the address of the current VMCS (after which there is no
current VMCS).

This document frequently uses the term “the VMCS” to refer to the current VMCS.

2.2 FORMAT OF THE VMCS REGION
A VMCS region comprises 4KB contiguous bytes. The format of a VMCS region is given in
Table 2-1.

The first 4 bytes of the VMCS region contain the VMCS revision identifier. Processors that
maintain VMCS data in different formats (see below) use different VMCS revision identifiers.
These identifiers enable software to avoid using a VMCS region formatted for one processor on
a processor that uses a different format.

Software should write the VMCS revision identifier to the VMCS region before using that
region for a VMCS. The VMCS revision identifier is never written by the processor; VMPTRLD
may fail if its operand references a VMCS region whose VMCS revision identifier differs from
that used by the processor. Software can discover the VMCS revision identifier that a processor
uses by reading the VMX capability MSR VMX_BASIC (see Section 6.1).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of
these bytes do not control processor operation in any way. A logical processor writes a non-zero
value into these bytes if a VMX abort occurs (see Section 5.7). Software may also write into this
field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that
control VMX non-root operation and the VMX transitions). The format of these data is imple-
mentation-specific. VMCS data are discussed in Section 2.3 through Section 2.9.

To ensure proper behavior in VMX operation, software should maintain the VMCS region and
related structures (enumerated in Section 2.10.3) in writeback cacheable memory. Future imple-
mentations may allow or require a different memory type. Software should consult the VMX
capability MSR VMX_BASIC (see Section 6.1).

Table 2-1. Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

2-3

VIRTUAL-MACHINE CONTROL STRUCTURE

2.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:

• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded
from there on VM entries.

• Host-state area. Processor state is loaded from the host-state area on VM exits.

• VM-execution control fields. These fields control processor behavior in VMX non-root
operation. They determine in part the causes of VM exits.

• VM-exit control fields. These fields control VM exits.

• VM-entry control fields. These fields control VM entries.

• VM-exit information fields. These fields receive information on VM exits and describe
the cause and the nature of VM exits. They are read-only.

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields
are sometimes referred to collectively as VMX controls.

2.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted earlier,
processor state is loaded from these fields on every VM entry (see Section 4.3.2) and stored into
these fields on every VM exit (see Section 5.3).

2.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:

• Control registers CR0, CR3, and CR4 (64 bits each).

• Debug register DR7 (64 bits).

• RSP, RIP, and RFLAGS (64 bits each).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits). The base-address fields for CS, SS, DS, and ES have only 32
architecturally-defined bits; nevertheless, the corresponding VMCS fields have 64
bits.

— Segment limit (32 bits). The limit field is always a measure in bytes.

1. This document uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because imple-
mentations of VMX also support Intel® EM64T. In a few places, notation such as EAX is used to refer to
lower 32 bits of the indicated register.

2-4

VIRTUAL-MACHINE CONTROL STRUCTURE

— Access rights (32 bits). The format of this field is given in Table 2-2 and detailed as
follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment
descriptor. While bits 19:16 of code-segment and data-segment descriptors
correspond to the upper 4 bits of the segment limit, the corresponding bits
(bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault
except in 64-bit mode. In general, a segment register is unusable if it has been
loaded with a null selector.1

• Bits 31:17 are reserved.

The base address, segment limit, and access rights compose the “hidden” part (or
“descriptor cache”) of each segment register. These data are included in the VMCS
because it is possible for a segment register’s descriptor cache to be inconsistent with the
segment descriptor in memory (in the GDT or the LDT) referenced by the segment
register’s selector.

1. There are a few exceptions to this general statement. For example, a segment with a non-null selector
may be unusable following a task switch that fails after its commit point; see “Interrupt 10—Invalid TSS
Exception (#TS)“ in Section 5.14 (Exception and Interrupt Reference) of IA-32 Intel® Architecture Soft-
ware Developer’s Manual, Volume 3. In contrast, the TR register is usable after processor reset despite
having a null selector; see Table 9-1 in Section 9.1 (Initialization Overview) of IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3.

Table 2-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

2-5

VIRTUAL-MACHINE CONTROL STRUCTURE

Note that the value of the DPL field for SS is always equal to the logical processor’s
current privilege level (CPL).1

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified
as only 16 bits in the architecture.

• The MSRs IA32_DEBUGCTL (64 bits), IA32_SYSENTER_CS (32 bits),
IA32_SYSENTER_ESP (64 bits), and IA32_SYSENTER_EIP (64 bits).

2.4.2 Guest Non-Register State
In addition to the register state described in Section 2.4.1, the guest-state area includes the
following fields that characterize guest state but which do not correspond to processor registers:

• Activity state (32 bits). This field identifies the logical processor’s activity state. When a
logical processor is executing instructions normally, it is in the active state. Execution of
certain instructions and the occurrence of certain events may cause a logical processor to
transition to an inactive state in which it ceases to execute instructions.

The following activity states are defined:2

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault3 or
some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-
IPI (SIPI).

Future processors may include support for other activity states. Software should read the
VMX capability MSR VMX_MISC (see Section 6.5) to determine what activity states are
supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit
certain events to be blocked for a period of time. This field contains information about
such blocking. Details and the format of this field are given in Table 2-3.

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields
are not meaningful in real-address mode or in virtual-8086 mode.

2. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this
VMCS field never reflects this state. See Section 5.1.

3. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a dou-
ble fault.

2-6

VIRTUAL-MACHINE CONTROL STRUCTURE

• Pending debug exceptions (64 bits). IA-32 processors may recognize one or more debug
exceptions without immediately delivering them.1 This field contains information about
such exceptions. Details and the format of this field is given in Table 2-4.

• VMCS link pointer (64 bits). This field is included for future expansion. Software should
set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 4.3.1.5).

Table 2-3. Format of Interruptibility State

Bit Position(s) Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 2B.
Execution of STI with RFLAGS.IF = 0 blocks interrupts (and,
optionally, other events) for one instruction after its execution.
Setting this bit indicates that this blocking is in effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop a
Value from the Stack” sections in Chapters 3 and 4 of the IA-32
Intel® Architecture Software Developer’s Manual, Volumes 2A &
2B and Section 5.8.3 (“Masking Exceptions and Interrupts When
Switching Stacks”) in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3.
Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that the
blocking of all these events is in effect. This document uses the
term “blocking by MOV SS,” but it applies equally to POP SS.

2 Reserved VM entry will fail if this bit is not 0. See Section 4.3.1.5.

3 Blocking by NMI See Section 5.7.1 (“Handling Multiple NMIs”) in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3.
Delivery of a non-maskable interrupt (NMI) blocks subsequent
NMIs until the next execution of IRET (see Section 3.3 of this
document regarding how this behavior of IRET may change in
VMX non-root operation). Setting this bit indicates that blocking of
NMIs is in effect. Clearing this bit does not imply that NMIs are not
(temporarily) blocked for other reasons.

31:4 Reserved VM entry will fail if these bits are not 0. See Section 4.3.1.5.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one
instruction. See Section 5.8.3 (“Masking Exceptions and Interrupts When Switching Stacks”) of IA-32
Intel® Architecture Software Developer’s Manual, Volume 3.
In addition, certain events incident to an instruction (for example, INIT) may take priority over debug traps
generated by that instruction. See Table 5-2 (“Priority Among Simultaneous Exceptions and Interrupts”) in
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3.

2-7

VIRTUAL-MACHINE CONTROL STRUCTURE

2.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier,
processor state is loaded from these fields on every VM exit (see Section 5.5).

All fields in the host-state area correspond to processor registers:

• CR0, CR3, and CR4 (64 bits each).

• RSP and RIP (64 bits each).

• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR.
There is no field in the host-state area for the LDTR selector.

• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each).

• The MSRs IA32_SYSENTER_CS (32 bits), IA32_SYSENTER_ESP (64 bits), and
IA32_SYSENTER_EIP (64 bits).

In addition to the state identified here, some processor state components are loaded with fixed
values on every VM exit; there are no fields corresponding to these components in the host-state
area. See Section 5.5 for details of how state is loaded on VM exits.

2.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described in
Section 2.6.1 through Section 2.6.8.

Table 2-4. Format of Pending-Debug-Exceptions

Bit Position(s) Bit Name Notes

3:0 B3–B0 When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if
its corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry will fail if these bits are not 0. See Section 4.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint
was met and was enabled in DR7.

13 Reserved VM entry will fail if this bit is not 0. See Section 4.3.1.5.

14 BS When set, this bit indicates that a debug exception would have
been triggered by single-step execution mode.

63:15 Reserved VM entry will fail if these bits are not 0. See Section 4.3.1.5.

2-8

VIRTUAL-MACHINE CONTROL STRUCTURE

2.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of
asynchronous events (interrupts). There are two pin-based VM-execution controls currently
defined:

• Bit 0: External-interrupt exiting. If this control is 1, external interrupts cause VM exits.
Otherwise, they are delivered normally through the guest interrupt-descriptor table (IDT).
If this control is 1, the value of RFLAGS.IF does not affect interrupt blocking.

• Bit 3: NMI exiting. If this control is 1, non-maskable interrupts (NMIs) cause VM exits.
Otherwise, they are delivered normally using descriptor 2 of the IDT. This control also
determines interactions between IRET and blocking by NMI (see Section 3.3).

All other bits in this field are reserved as follows: bits 31:5 are reserved to 0; bit 1, bit 2, and
bit 4 are reserved to 1.1 Failure to set reserved bits properly causes subsequent VM entries to fail
(see Section 4.2).

2.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls are a 32-bit vector that governs the handling of
synchronous events, mainly those caused by the execution of specific instructions.2 Table 2-5
lists the controls supported. See Chapter 3 for complete details of how these controls affect
processor behavior in VMX non-root operation.

1. Software may consult the VMX capability MSR VMX_PINBASED_CTLS (see Section 6.2) to determine
how it should set the reserved bits.

2. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution con-
trols (see Section 3.1.2), as do task switches (see Section 3.2).

Table 2-5. Definitions of Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking of
interrupts (see Section 2.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC return a
value modified by the TSC offset field (see Section 3.3).

7 HLT exiting This control determines whether executions of HLT cause
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC cause
VM exits.

2-9

VIRTUAL-MACHINE CONTROL STRUCTURE

Other bits in this field are reserved as follows: bit 0, bits 18:17, bit 22, bits 28:27, and bit 31 are
reserved to 0; bit 1, bits 6:4, bit 8, bits 16:13, and bit 26 are reserved to 1.1 Failure to set reserved
bits properly causes subsequent VM entries to fail (see Section 4.2).

2.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each IA-32 exception. When an
exception occurs, its vector is used to select a bit in this field. If the bit is 1, the exception causes
a VM exit. If the bit is 0, the exception is delivered normally through the IDT, using the
descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the
exception bitmap as well as the error code produced by the page fault and two 32-bit fields in
the VMCS: the page-fault error-code mask and page-fault error-code match. See Section 3.2
for details.

19 CR8-load exiting This control determines whether executions of MOV to CR8
cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8
cause VM exits.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-APIC
address. See Section 3.3.

23 MOV-DR exiting This control determines whether executions of MOV DR cause
VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O instructions
(IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.
This control is ignored if the “activate I/O bitmaps” control is 1.

25 Activate I/O bitmaps This control determines whether I/O bitmaps are used to restrict
executions of I/O instructions (see Section 2.6.4 and
Section 3.1.3).
For this control, “0” means “do not activate I/O bitmaps” and “1”
means “activate I/O bitmaps.” If the I/O bitmaps are activated, the
setting of the “unconditional I/O exiting” is ignored.

29 MONITOR exiting This control determines whether executions of MONITOR cause
VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

1. Software may consult the VMX capability MSR VMX_PROCBASED_CTLS (see Section 6.2) to deter-
mine how it should set the reserved bits.

Table 2-5. Definitions of Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

2-10

VIRTUAL-MACHINE CONTROL STRUCTURE

2.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O bitmaps A and B
(each of which are 4KB in size). I/O bitmap A contains one bit for each I/O port in the range
0000H through 7FFFH; I/O bitmap B contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “activate I/O bitmaps” control is 1. If
the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit in the I/O
bitmaps corresponding to a port it accesses is 1. See Section 3.1.3 for details. If the bitmaps are
used, their addresses must be 4KB-aligned.

2.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control
is 0 and the “use TSC offsetting” control is 1, this field controls executions of the RDTSC
instruction. The signed value is combined with the contents of the time-stamp counter (using
signed addition) and the sum is reported to guest software in EDX:EAX. See Chapter 3 for a
detailed treatment of the behavior of RDTSC in VMX non-root operation.

2.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4
registers. These fields control executions of instructions that access those registers (including
CLTS, LMSW, MOV CR, and SMSW).

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from
the corresponding bits in the corresponding read shadow cause VM exits.

• Guest reads (using MOV from CR or SMSW) return values for these bits from the corre-
sponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them
succeed and guest reads return values for these bits from the control register itself.

See Chapter 3 for details regarding how these fields affect VMX non-root operation.

2.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 64-bit CR3 target values and a 32-bit CR3-
target count. Executions of MOV to CR3 in VMX non-root operation do not cause a VM exit
if its source operand matches one of these values; if the CR3-target count is less than 4, then not
all the CR3-target values are considered.

There are no limitations on the values that can be written for the CR3 target values. VM entry
fails (see Section 4.2) if the CR3-target count is greater than 4.

2-11

VIRTUAL-MACHINE CONTROL STRUCTURE

Future processors may support a different number of CR3-target values. Software should read
the VMX capability MSR VMX_MISC (see Section 6.5) to determine the number of values
supported.

2.6.8 Controls for CR8 Accesses
The CR8 register can be used to access the task-priority register (TPR) of the logical processor’s
local APIC. The VMCS contains two fields that control MOV CR8 instructions if the “use TPR
shadow” VM-execution control is 1:

• Virtual-APIC page address (64 bits). This field is the physical address of the 4KB
virtual-APIC page. The virtual-APIC page contains the TPR shadow, which is read and
written by the MOV CR8 instructions. The TPR shadow comprises bits 7:4 in byte 128 of
the virtual-APIC page. If the “use TPR shadow” VM-execution control is 1, the virtual-
APIC page address must be 4KB-aligned.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which the
TPR shadow (see previous item) cannot fall. A VM exit occurs after an execution of MOV
to CR8 that reduces the TPR shadow below this value.

Note that the TPR in the local APIC can also be accessed using memory-mapped I/O. These
controls does not affect access made in that way. They affect only MOV CR8 instructions (see
Section 3.1.3 and Section 3.3).

2.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in
Section 2.7.1 and Section 2.7.2.

2.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits.
Two VM-exit controls are currently defined:

• Bit 9: host address-space size. This control determines whether a logical processor is in
64-bit mode after the next VM exit. Its value is loaded into CS.L, IA32_EFER.LME, and
IA32_EFER.LMA on every VM exit.1

1. Since Intel® EM64T specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and
IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical
to IA32_EFER.LME in VMX operation.

2-12

VIRTUAL-MACHINE CONTROL STRUCTURE

• Bit 15: acknowledge interrupt on exit. This control affects VM exits due to external
interrupts:

— If such a VM exit occurs and this control is 1, the logical processor acknowledges the
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the
VM-exit interruption-information field, which is marked valid.

— If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and
the VM-exit interruption-information field is marked invalid.

All other bits in this field are reserved as follows: bit 12 and bits 31:18 are reserved to 0; bits 8:0,
bits 11:10, bits 14:13, and bits 17:16 are reserved to 1.1 Failure to set reserved bits properly
causes subsequent VM entries to fail (see Section 4.2).

2.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits.

The following VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored
on VM exit. It is recommended that this count not exceed 512.2 Otherwise, unpredictable
processor behavior (including a machine check) may result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address of the
VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry, where the
number of entries is given by the VM-exit MSR-store count. The format of each entry is
given in Table 2-6. If the VM-exit MSR-store count is not zero, the address must be
16-byte aligned.

See Section 5.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:

• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded
on VM exit. It is recommended that this count not exceed 512. Otherwise, unpredictable
processor behavior (including a machine check) may result during VM exit.3

1. Software may consult the VMX capability MSR VMX_EXIT_CTLS (see Section 6.3) to determine how it
should set the reserved bits.

2. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX
capability MSR VMX_MISC to determine the number supported (see Section 6.5).

Table 2-6. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

3. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX
capability MSR VMX_MISC to determine the number supported (see Section 6.5).

2-13

VIRTUAL-MACHINE CONTROL STRUCTURE

• VM-exit MSR-load address (64 bits). This field contains the physical address of the
VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry, where the
number of entries is given by the VM-exit MSR-load count (see Table 2-6). If the VM-exit
MSR-load count is not zero, the address must be 16-byte aligned.

See Section 5.6 for how this area is used on VM exits.

2.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in
Section 2.8.1 through Section 2.8.3.

2.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries.

There is one VM-entry control currently defined: bit 9, IA-32e mode guest. This bit determines
whether the logical processor is in IA-32e mode after VM entry. Its value is loaded into
IA32_EFER.LMA and IA32_EFER.LME as part of VM entry.1

All other bits in this field are reserved as follows: bits 11:10 and bits 31:13 are reserved to 0;
bits 8:0 and bit 12 are reserved to 1.2 Failure to set reserved bits properly causes subsequent
VM entries to fail (see Section 4.2).

2.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:

• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be
loaded on VM entry. It is recommended that this count not exceed 512. Otherwise, unpre-
dictable processor behavior (including a machine check) may result during VM entry.3

• VM-entry MSR-load address (64 bits). This field contains the physical address of the
VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry, where the
number of entries is given by the VM-entry MSR-load count. The format of entries is
described in Table 2-6. If the VM-entry MSR-load count is not zero, the address must be
16-byte aligned.

See Section 4.4 for details of how this area is used on VM entries.

1. Since Intel® EM64T specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and
IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical
to IA32_EFER.LME in VMX operation.

2. Software may consult the VMX capability MSR VMX_ENTRY_CTLS (see Section 6.4) to determine how
it should set the reserved bits.

3. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX
capability MSR VMX_MISC to determine the number supported (see Section 6.5).

2-14

VIRTUAL-MACHINE CONTROL STRUCTURE

2.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the guest IDT (after all
guest state and MSRs have been loaded). This process is called event injection and is controlled
by the following three VM-entry control fields:

• VM-entry interruption-information field (32 bits). This field provides details of the
event to be injected. Table 2-7 gives the format of this field.

— The vector (bits 7:0) determines which entry in the IDT is used.

— The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for all
exceptions other than breakpoint exceptions (#BP; generated by INT3) and overflow
exceptions (#OF; generated by INTO); it should use the type software exception for
#BP and #OF.

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery
pushes an error code on the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1.

• VM-entry exception error code (32 bits). This field is used if and only if the valid bit
(bit 31) and the deliver-error-code bit (bit 11) are both set in the VM-entry interruption-
information field.

• VM-entry instruction length (32 bits). For injection of events whose type is software
interrupt, software exception, or privileged software exception, this field is used to
determine the value of RIP that is pushed on the stack.

See Section 4.5 for details regarding the mechanics of event injection, including the use of the
interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

Table 2-7. Format of the VM-Entry Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:
0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Reserved

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

2-15

VIRTUAL-MACHINE CONTROL STRUCTURE

2.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the most recent
VM exit. Attempts to write to these fields with VMWRITE fail (see Chapter 7).

2.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:

• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure
given in Table 2-8.

Because some VM-entry failures load processor state from the host-state area (see
Section 4.7), software must be able to distinguish such cases from true VM exits. Bit 31 is
used for that purpose. Bits 15:0 provide basic information about the cause of the VM exit
(if bit 31 is clear) or of the VM-entry failure (if bit 31 is set). Appendix A lists basic exit
reasons.

• Exit qualification (64 bits). This field contains additional information about the cause of
VM exits due to the following: debug exceptions; page-fault exceptions; start-up IPIs
(SIPIs); task switches; INVLPG; VMCLEAR; VMPTRLD; VMPTRST; VMREAD;
VMWRITE; VMXON; control-register accesses; MOV DR; I/O instructions; and
MWAIT. The format of the field depends on the cause of the VM exit. See Section 5.2.1
for details.

2.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored events:
exceptions (including those generated by the instructions INT3, INTO, BOUND, and UD2);
external interrupts that occur while the “acknowledge interrupt on exit” VM-exit control is 1;
and non-maskable interrupts (NMIs). This information is provided in the following fields:

• VM-exit interruption information (32 bits). This field receives basic information
associated with the event causing the VM exit. The format of this field is given in
Table 2-9.

Table 2-8. Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

30:16 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

2-16

VIRTUAL-MACHINE CONTROL STRUCTURE

• VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions
that would have delivered an error code on the stack, this field receives that error code.

Section 5.2.2 explains the interruption-type field and provides details of how these fields are
saved on VM exits.

2.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in VMX non-
root operation. This information is provided in the following fields:

• IDT-vectoring information (32 bits): see Table 2-10. The individual fields are defined as
they were for the VM-exit interruption-information field (see Section 2.9.2). However, in
this case, they refer not to the cause of the VM exit but to the event that was being
delivered in VMX non-root operation when the VM exit occurred. The type field may
receive value 4 (software interrupt) if the VM exit occurred during the delivery of a
software interrupt. In this case, the vector field receives the interrupt number.

Table 2-9. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:
0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid

2-17

VIRTUAL-MACHINE CONTROL STRUCTURE

• IDT-vectoring error code (32 bits). On VM exits that set bits 31 and 11 in the IDT-
vectoring information field, this field receives the error code that would have been
delivered onto the stack by the event that was being delivered through the IDT (see above)
at the time of the VM exit.

See Section 5.2.3 explains the interruption-type field and provides details of how these fields are
saved on VM exits.

2.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain instructions in
VMX non-root operation:

• VM-exit instruction length (32 bits). For VM exits resulting from instruction execution,
this field receives the length in bytes of the instruction whose execution led to the VM exit.
See Section 5.2.4 for details of when and how this field is used.

• Guest linear address (64 bits). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand. This field
receives the linear address of that operand.

— VM exits due to attempts to execute INS or OUTS. The field receives the value of the
linear address generated by ES:(E)DI (for INS) or segment:(E)SI (for OUTS) at the
time the instruction started.

See Section 5.2.4 for details of when and how this field is used.

Table 2-10. Format of the IDT-Vectoring Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:
0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

2-18

VIRTUAL-MACHINE CONTROL STRUCTURE

• VMX-instruction information (32 bits). For VM exits due to attempts to execute
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or VMXON, this field
receives details about the instruction that caused the VM exit. The format of the field is
given in Table 2-11.

Table 2-11. Format of the VMX-Instruction Information Field
Bit Position(s) Content

1:0 Scaling:
0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8

Undefined for register instructions (bit 10 is set) or for memory instructions with no index
register (bit 10 is clear and bit 22 is set)

2 Reserved (cleared to 0)

6:3 Reg1:
0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively

Undefined for memory instructions (bit 10 is clear)

9:7 Address size:
0: 16-bit
1: 32-bit
2: 64-bit

Other values not used
Undefined for register instructions (bit 10 is set)

10 Mem/Reg (0 = memory; 1 = register)
Note that VMCLEAR, VMPTRLD, VMPTRST, and VMXON are always memory
instructions and thus clear this bit.

14:11 Reserved (cleared to 0)

17:15 Segment register:
0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values unused
Undefined for register instructions (bit 10 is set)

21:18 IndexReg (encoded as Reg1 above)
Undefined if bit 22 is set or undefined

22 IndexReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set)

2-19

VIRTUAL-MACHINE CONTROL STRUCTURE

2.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most recent
VM exit; in fact, it is not modified on VM exits. Instead, it provides information about any error
encountered by a non-faulting execution of one of the VMX instructions. See Section 7.2 for
details of its use and Appendix B for a listing of error numbers.

2.10 SOFTWARE ACCESS TO THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when accessing a VMCS and related
structures as well as the potential consequences for failing to follow such guidelines.

2.10.1 Software Access to the Virtual-Machine Control Structure
To ensure proper processor behavior, software should observe certain guidelines when accessing
an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be
“migrated” from one logical processor to another, the first logical processor should execute
VMCLEAR for the VMCS (to make it inactive on that logical processor and to ensure that all
VMCS data are in memory) before the other logical processor executes VMPTRLD for the
VMCS (to make it active on the second logical processor).

Software should never access or modify the VMCS data of an active VMCS using ordinary
memory operations, in part because the format used to store the VMCS data is implementation-
specific and not architecturally defined, and also because a logical processor may maintain some
VMCS data of an active VMCS on the processor and not in the VMCS region. The following
items detail some of the hazards of performing such accesses:

• Any data read from a VMCS with an ordinary memory read does not reliably reflect the
state of the VMCS. Results may vary from time to time or from logical processor to logical
processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a determin-
istic effect on the VMCS. Doing so may lead to unpredictable behavior. Any or all of the

26:23 BaseReg (encoded as Reg1 above)
Undefined if bit 27 is set or undefined

27 BaseReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set)

31:28 Reg2 (same encoding as Reg1 above)
Undefined on VM exits due to VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Table 2-11. Format of the VMX-Instruction Information Field (Contd.)
Bit Position(s) Content

2-20

VIRTUAL-MACHINE CONTROL STRUCTURE

following may occur: (1) VM entries may fail for unexplained reasons or may load
undesired processor state; (2) the processor may not correctly support VMX non-root
operation as documented in Chapter 3 and may generate unexpected VM exits; and
(3) VM exits may load undesired processor state, save incorrect state into the VMCS, or
cause the logical processor to transition to a shutdown state.

Software can avoid such problems by removing any linear-address mappings to a VMCS region
before executing a VMPTRLD for that region and by not remapping it until after executing
VMCLEAR for that region.

Software should use the VMREAD and VMWRITE instructions to access the different fields in
the current VMCS (see Section 2.10.2 for details).

Software should initialize all fields in a VMCS (using VMWRITE) before using the VMCS for
VM entry. Failure to do so may result in unpredictable behavior; for example, a VM entry may
fail for unexplained reasons, or a successful transition (VM entry or VM exit) may load
processor state with unexpected values.

2.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is
provided in an operand to VMREAD and VMWRITE when software wishes to read or write that
field. These instructions fail if given, in 64-bit mode, an operand that sets an encoding bit
beyond bit 32. See Chapter 7 for details of the operation of these instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the
width of the fields and their function in the VMCS. The structure is summarized in Table 2-12.

Table 2-12. Structure of VMCS Component Encoding

Bit Position(s) Contents

31:15 Reserved (must be 0)

14:13 Width:
0: 16-bit
1: full 64-bit
2: 32-bit
3: natural 64-bit

12 Reserved (must be 0)

11:10 Type:
0: control
1: read-only data
2: guest state
3: host state

9:1 Index

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural 64-bit fields

2-21

VIRTUAL-MACHINE CONTROL STRUCTURE

The following items detail the meaning of the bits in each encoding:

• Field width. Bits 14:13 encode the width of the field (which may be 16 bits, 32 bits, full 64
bits, or natural 64 bits). A field is full 64 bits if a 32-bit VM monitor would need to access
the entire field; it is natural 64 bits if a 32-bit VM monitor would need to access only the
low 32 bits. For example, the field for RIP in the host-state area is natural 64 bits because a
32-bit VM monitor does not need to access the high 32 bits of the field (they would always
be zero); in contrast, the VM-exit MSR-store address requires full 64 bits because it is a
physical address that may be 64 bits in any processor mode.

Full 64-bit fields are specially treated to allow 32-bit software access to all 64 bits of the
field. Such access is allowed by defining, for each such field, an encoding that allows
direct access to the high 32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or
read-only data. The last category includes the VM-exit information fields and the VM-
instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.

• Access type. Bit 0 must be 0 for all fields except those whose field width is full 64-bit (see
above). A VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses
the entire field. For a full 64-bit field, a VMREAD or VMWRITE using an encoding with
this bit set to 1 accesses only the high 32 bits of the field.

Appendix C gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode,
VMCS-field width, and access type:

• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other
bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field;
other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in
64-bit mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field;
in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields (full and natural) using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand;
bits 63:32 of the field are ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears
bits 63:32 of the field.

2-22

VIRTUAL-MACHINE CONTROL STRUCTURE

• 64-bit fields (full and natural) using the full access type in 64-bit mode.

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.

• Full 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the
field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to modify a full 64-bit field outside IA-32e mode should first use VMWRITE
with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then
use VMWRITE with the high access type (establishing bits 63:32 of the field).

2.10.3 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data
structures that are referenced by pointers in a VMCS (for example, the I/O bitmaps). Note that,
while the pointers to these data structures are parts of the VMCS, the data structures themselves
are not. They are not accessible using VMREAD and VMWRITE but by ordinary memory
writes.

Software should ensure that each such data structure is modified only when no logical processor
with a current VMCS that references it is in VMX non-root operation. Doing otherwise may lead
to unpredictable behavior (including behaviors identified in Section 2.10.1).

2.10.4 The VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON region)
that the logical processor may use to support VMX operation. The physical address of this
region (the VMXON pointer) is provided in an operand to VMXON. Like VMCS pointers, the
VMXON pointer must be 4KB-aligned (bits 11:0 must be zero); in addition, the pointer must
not set any bits beyond the processor’s physical-address width.

Before executing VMXON, software should write the VMCS revision identifier (see
Section 2.2) to the VMXON region. It need not initialize the VMXON region in any other way.
Software should use a separate region for each logical processor and should not access or modify
the VMXON region of a logical processor between execution of VMXON and VMXOFF on
that logical processor. Doing otherwise may lead to unpredictable behavior (including behaviors
identified in Section 2.10.1).

2-23

VIRTUAL-MACHINE CONTROL STRUCTURE

2.11 USING VMCLEAR TO INITIALIZE A VMCS REGION
A processor may use the VMCS data portion of a VMCS region to maintain implementation-
specific information about the VMCS. When software first allocates a region of memory for use
as a VMCS region, the data in that region may be interpreted in an implementation-specific
manner. In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid the uncer-
tainties of implementation-specific behavior, software should execute VMCLEAR on a VMCS
region before making the corresponding VMCS active with VMPTRLD.

A logical processor uses the VMCS region to maintain the launch state of the corresponding
VMCS. The launch state may be clear or launched. The VMCLEAR instruction puts the
VMCS referenced by its operand into the clear state. The VMLAUNCH instruction requires a
VMCS whose launch state is clear and changes its launch state to launched. The VMRESUME
instruction requires a VMCS whose launch state is launched. There are no other ways to modify
the launch state of a VMCS (it cannot be modified using VMWRITE) and there is no direct way
to read it (it cannot be read using VMREAD). Improper software usage (for example, software
writing to the VMCS data of an active VMCS) may leave the launch state undefined.

The following software usage is consistent with these limitations:

• VMCLEAR should be executed for a VMCS before it is used for VM entry.

• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has
been executed for that VMCS.

• VMRESUME should be used for any subsequent VM entry using a VMCS (until the next
execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since
“migrating” a VMCS from one logical processor to another requires use of VMCLEAR (see
Section 2.10.1), which sets the launch state of the VMCS to “clear,” such migration requires the
next VM entry to be performed using VMLAUNCH. Software developers can avoid the perfor-
mance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS from
one logical processor to another.

2-24

VIRTUAL-MACHINE CONTROL STRUCTURE

1

CHAPTER 3
VMX NON-ROOT OPERATION

This chapter describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits:

• Section 3.1 identifies the instructions that can cause VM exits.

• Section 3.2 identifies other sources of VM exits.

• Section 3.3 describes how some instructions, when they do not cause VM exits, operate
differently in VMX non-root operation.

• Section 3.4 describes other changes to processor execution in VMX non-root operation.

3.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation. Unless other-
wise specified, these VM exits are “fault-like,” meaning that the instruction causing the VM exit
does not execute and no processor state is updated by the instruction (for example, the value of
RIP saved in the guest-state area of the VMCS references the instruction causing the VM exit).
Section 5.1 provides details of how architectural state is updated before a VM exit.

Section 3.1.1 defines the prioritization between IA-32 faults and VM exits for instructions
subject to both. Section 3.1.2 identifies instructions that cause VM exits whenever they are
executed in VMX non-root operation (and thus can never be executed in VMX non-root opera-
tion). Section 3.1.3 identifies instructions that cause VM exits depending on the settings of
certain VM-execution control fields.

3.1.1 Relative Priority of IA-32 Faults and VM Exits
The following general principles describe the ordering between existing IA-32 faults and
VM exits:

• Certain exceptions have priority over VM exits. These include invalid-opcode exceptions,
faults based on privilege level, and general-protection exceptions based on checking I/O
permission bits in the task-state segment (TSS). For example, execution of RDMSR with
CPL = 3 generates a general-protection exception and not a VM exit.1

• Faults incurred while fetching instruction operands have priority over VM exits that are
conditioned based on the contents of those operands (see the case of LMSW in
Section 3.1.3).

1. MOV DR is an exception to this rule; see Section 3.1.3.

3-2

VMX NON-ROOT OPERATION

• Fault-like VM exits have priority over general-protection exceptions other than those
mentioned above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a
VM exit and not a general-protection exception.

When Section 3.1.2 or Section 3.1.3 below identifies an instruction execution that may lead to
a VM exit, it is assumed that the instruction does not incur a fault that would take priority over
a VM exit.

3.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits whenever they are executed in VMX non-root oper-
ation: CPUID, INVD, MOV from CR3, RDMSR, WRMSR, and the new instructions
VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME,
VMWRITE, VMXOFF, and VMXON.

3.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the
VM-execution controls. The following instructions can cause “fault-like” VM exits based on the
conditions described:

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to
CR0.TS) are set in both the CR0 guest/host mask and the CR0 read shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control
is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of
each of these instructions is determined by the settings of the “unconditional I/O exiting”
and “activate I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “activate I/O
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “activate I/O bitmaps” VM-execution control is 1, the instruction causes a
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in the
appropriate I/O bitmap (see Section 2.6.4). If an I/O operation “wraps around” the
16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction causes a
VM exit. (The “unconditional I/O exiting” VM-execution control is ignored if the
“activate I/O bitmaps” VM-execution control is 1.)

• INLVPG. The INLVPG instruction causes a VM exit if the “INLVPG exiting” VM-
execution control is 1.

• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit
set in the low 4 bits of the CR0 guest/host mask, a value different than the corresponding

3-3

VMX NON-ROOT OPERATION

bit in the CR0 read shadow. Note that LMSW never clears bit 0 of CR0 (CR0.PE). Thus,
LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask
and the source operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0
guest/mask and the values of the corresponding bits in the source operand and the CR0
read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store
exiting” VM-execution control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR0 guest/host mask, the
corresponding bit in the CR0 read shadow. (If every bit is clear in the CR0 guest/host
mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the value of its
source operand is equal to one of the CR3-target values specified in the VMCS. Note that,
if the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-
target count is 0, MOV to CR3 always causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host mask, the
corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting”
VM-execution control is 1. Note that, if this control is 0, the behavior of the MOV to CR8
instruction is modified if the “use TPR shadow” VM-execution control is 1 (see
Section 3.3), and it may cause a trap-like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 3.1.1; they take priority over all faults that may occur in the execution
of MOV DR.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-
execution control is 1.

• PAUSE. The PAUSE instruction causes a VM exit if the “PAUSE exiting” VM-execution
control is 1.

• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-
execution control is 1.

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution
control is 1.

The MOV to CR8 instruction may cause a “trap-like” VM exit. This means that the instruction
completes before the VM exit occurs and that processor state is updated by the instruction (for

3-4

VMX NON-ROOT OPERATION

example, the value of RIP saved in the guest-state area of the VMCS references the next instruc-
tion). Specifically, a VM exit occurs after execution of MOV to CR8 if the following are true:

• The “CR8-load exiting” VM-execution control is 0.

• The “use TPR shadow” VM-execution control is 1.

• The execution of MOV to CR8 reduces the value of the TPR shadow below that of the
TPR threshold (see Section 2.6.8 and Section 3.3).

3.2 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause
VM exits:

• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception
bitmap (see Section 2.6.3). If an exception occurs, its vector (in the range 0–31) is used to
select a bit in the exception bitmap. If the bit is 1, a VM exit occurs; if the bit is 0, the
exception is delivered normally through the guest IDT. This use of the exception bitmap
applies also to exceptions generated by the instructions INT3, INTO, BOUND, and UD2.

Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a
logical processor consults (1) bit 14 of the exception bitmap; (2) the error code produced
with the page fault (PFEC); (3) the page-fault error-code mask field (PFEC_MASK); and
(4) the page-fault error-code match field (PFEC_MATCH). It checks if PFEC &
PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the
exception bitmap is followed (for example, a VM exit occurs if that bit is set). If there is
inequality, the meaning of that bit is reversed (for example, a VM exit occurs if that bit is
clear).

Thus, if software wants VM exits on all page faults, it could set bit 14 in the exception
bitmap to 1 and set the page-fault error-code mask and match fields each to 00000000H. If
it does not require VM exits on page faults, it could set bit 14 in the exception bitmap to 1,
set the page-fault error-code mask field to 00000000H, and set the page-fault error-code
match field to FFFFFFFFH.

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt
exiting” VM-execution control is 1. Otherwise, the interrupt is delivered normally through
the IDT. (If a logical processor is in the shutdown state or the wait-for-SIPI state, external
interrupts are blocked. The interrupt is not delivered through the IDT and no VM exit
occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-
execution control is 1. Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical
processor is in the wait-for-SIPI state, NMIs are blocked. The NMI is not delivered
through the IDT and no VM exit occurs.)

• INITs. Assertions of the INIT signal cause VM exits. A logical processor performs none of
the normal operations associated with these events: they do not modify register state or

3-5

VMX NON-ROOT OPERATION

clear pending events as they would outside of VMX operation. (If a logical processor is in
the wait-for-SIPI state, INITs are blocked. They do not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-
SIPI activity state when a SIPI arrives, no VM exit occurs and the SIPI is discarded.
VM exits due to SIPIs do not perform any of the normal operations associated with those
events: they do not modify register state as they would outside of VMX operation. (If a
logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to
effect a task switch in VMX non-root operation causes a VM exit. See Section 3.4.2.

In addition, there is one control that causes VM exits based on the readiness of guest software
to receive an external interrupt:

• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if RFLAGS.IF = 1 and there is no blocking of events by STI
or by MOV SS (see Table 2-3). Such a VM exit occurs immediately after VM entry if
these conditions hold at that time (see Section 4.6.4).

A pending non-maskable interrupt (NMI) takes priority over a VM exit caused by the
“interrupt-window exiting” VM-execution control. VM exits caused by this control take
priority over any pending external interrupts.

Such VM exits wake a logical processor from the same inactive states as would an external
interrupt. Specifically, they wake a logical processor from the states entered using the HLT
and MWAIT instructions. They do not occur if the logical processor is in the shutdown
state or the wait-for-SIPI state.

3.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT
OPERATION

The behavior of some instructions is changed in VMX non-root operation; some of these
changes are determined by the settings of certain VM-execution control fields. The following
items detail these changes:

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corre-
sponding to CR0.TS) in the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of
bit 3 in the CR0 read shadow is irrelevant in this case).

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS
completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both
1, CLTS causes a VM exit (see Section 3.1.3).

3-6

VMX NON-ROOT OPERATION

• IRET. Behavior of IRET with regard to the blocking by NMI (see Table 2-3) is determined
by the setting of the “NMI exiting” VM-execution control:

— If the control is 0, IRET operates normally and unblocks NMIs.

— If the control is 1, IRET does not affect blocking by NMI.

• LMSW. An execution of LMSW that does not cause a VM exit (see Section 3.1.3) leaves
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host
mask and the CR0 read shadow. For each position corresponding to a bit clear in the CR0
guest/host mask, the destination operand is loaded with the value of the corresponding bit
in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, the
destination operand is loaded with the value of the corresponding bit in the CR0 read
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads
normally from CR0; if every bit is set in the CR0 guest/host mask, MOV from CR0 returns
the value of the CR0 read shadow.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host
mask and the CR4 read shadow. For each position corresponding to a bit clear in the CR4
guest/host mask, the destination operand is loaded with the value of the corresponding bit
in CR4. For each position corresponding to a bit set in the CR4 guest/host mask, the
destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow.

• MOV from CR8. Behavior of the MOV from CR8 instruction is determined by the settings
of the “CR8-store exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR shadow” VM-
execution control is 1, MOV from CR8 reads from the TPR shadow. Specifically, it
loads bits 3:0 of its destination operand with the value of bits 7:4 of byte 128 of the
page referenced by the virtual-APIC page address (see Section 2.6.8).

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit (see Section 3.1.3); the “use TPR shadow” VM-execution control is ignored
in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see
Section 3.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the CR0
guest/host mask. It causes a general-protection exception if it attempts to clear PE, NE, or
PG (if a bit corresponding to one of these is clear in the CR0 guest/host mask); see
Section 1.8.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see
Section 3.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the CR4
guest/host mask. It causes a general-protection exception if it attempts to clear VMXE (if
the corresponding bit is clear in the CR4 guest/host mask); see Section 1.8.

3-7

VMX NON-ROOT OPERATION

• MOV to CR8. Behavior of the MOV to CR8 instruction is determined by the settings of
the “CR8-load exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically, it
stores bits 3:0 of its source operand into bits 7:4 of bytes 128 of the page referenced by
the virtual-APIC page address (see Section 2.6.8). Such a store may cause a VM exit
to occur after it completes (see Section 3.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a VM exit
(see Section 3.1.3); the “use TPR shadow” VM-execution control is ignored in this
case.

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC
exiting” and “use TSC offsetting” VM-execution controls:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the value of
the TSC-offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit (see
Section 3.1.3).

3.4 OTHER CHANGES IN VMX NON-ROOT OPERATION
The treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

3.4.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:

• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control
the blocking of external interrupts. In this case, an external interrupt that is not blocked for
other reasons causes a VM exit, even if RFLAGS.IF = 0.

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or
may not be blocked by STI or by MOV SS. (Behavior is implementation-specific.)

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or
may not be blocked by STI or by MOV SS. (Behavior is implementation-specific.)

3-8

VMX NON-ROOT OPERATION

3.4.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch
in VMX non-root operation causes a VM exit. However, the following checks are performed (in
the order indicated), possibly resulting in a fault, before there is any possibility of a VM exit due
to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper
values of the relevant privilege fields. The following cases detail the privilege checks
performed:

— If CALL, INT n, INT3, INTO, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

— If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode,
privilege-levels checks are performed on the task gate but, if they pass, privilege levels
are not checked on the referenced task-state segment (TSS) descriptor.

— If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

— If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, privilege
levels are checked on the TSS descriptor.

— If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by INTO), or an
external interrupt accesses a task gate in the IDT in IA-32e mode, a general-protection
exception occurs.

— If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions
(#BP) and overflow exceptions (#OF), or an external interrupt accesses a task gate in
the IDT in legacy mode, no privilege checks are performed.

— If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-protection
exception occurs.

— If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS descriptor is
accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch),
P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, the
ordering between a VM exit due to a task switch and a page fault resulting from accessing the
old TSS or the new TSS is implementation-specific. Some logical processors may generate a
page fault (instead of a VM exit due to a task switch) if accessing either TSS would cause a page
fault. Other logical processors may generate a VM exit due to a task switch even if accessing
either TSS would cause a page fault.

3-9

VMX NON-ROOT OPERATION

If an attempt at a task switch through a task gate in the IDT causes an exception (before gener-
ating a VM exit due to the task switch) and that exception causes a VM exit, information about
the event whose delivery that accessed the task gate is recorded in the IDT-vectoring information
fields and information about the exception that caused the VM exit is recorded in the VM-exit
interruption-information fields. See Section 5.2. The fact that a task gate was being accessed is
not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task
switch, information about the event whose delivery accessed the task gate is recorded in the IDT-
vectoring fields of the VMCS. Since the cause of such a VM exit is a task switch and not an
interruption, the valid bit for the VM-exit interruption information field is 0. See Section 5.2.

3-10

VMX NON-ROOT OPERATION

1

CHAPTER 4
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state is
launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRESUME
should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence (Section 4.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are proper
for supporting VMX non-root operation and that the VMCS is correctly configured to
support the next VM exit (Section 4.2).

3. The following may be performed in parallel and in any order (Section 4.3):

• The guest-state area of the VMCS is checked to ensure that, after the VM entry
completes, the state of the logical processor is consistent with IA-32 (as extended by
Intel EM64T).

• Processor state is loaded from the guest-state area and based on the VM-entry controls.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 4.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

6. An event may be injected in the guest context (Section 4.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur in one of
the following three ways:

• Some of the checks in Section 4.1 may generate ordinary IA-32 faults (for example, an
invalid-opcode exception). Such faults are delivered normally.

• Some of the checks in Section 4.1 and all the checks in Section 4.2 cause control to pass to
the instruction following the VM-entry instruction. The failure is indicated by setting
RFLAGS.ZF (if there is a current VMCS) or RFLAGS.CF (if there is no current VMCS).
If there is a current VMCS, an error number indicating the cause of the failure is stored in
the VM-instruction error field. See Appendix B for the error numbers.

• The checks in Section 4.3 and Section 4.4 cause processor state to be loaded from the host-
state area of the VMCS (as would be done on a VM exit). Information about the failure is
stored in the VM-exit information fields. See Section 4.7 for more details.

4-2

VM ENTRIES

4.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, current processor state is checked in the following order:

1. If a logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode
exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order, any one of
which causes VM entry to fail:

a. if there is MOV-SS blocking (see Table 2-3);

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear;

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not
launched.

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the VM-
instruction error field. See Appendix B for an enumeration of error numbers.

4.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 4.1 do not cause VM entry to fail, the control and host-state areas of the
VMCS are checked to ensure that they are proper for supporting VMX non-root operation, that
the VMCS is correctly configured to support the next VM exit, and that, after the next VM exit,
the processor’s state is consistent with IA-32 as extended by Intel EM64T.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next
instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is
loaded with an error number that indicates whether the failure was due to VMX controls or host-
state area (see Appendix B).

These checks may be performed in any order. Thus, an indication by error number of one cause
(for example, VMX controls) does not imply that there are not also other errors.

The checks on VMX controls and the host-state area are presented in Section 4.2.1 through
Section 4.2.5. These sections reference VMCS fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the host-state area.

4.2.1 Basic Checks on VMX Controls
This section enumerates checks on VMX control fields:

• Reserved bits in the pin-based VM-execution controls must be set properly. The reserved
settings are indicated in Section 2.6.1. In addition, software may consult the VMX

4-3

VM ENTRIES

capability MSR VMX_PINBASED_CTLS to determine the proper settings (see
Section 6.2).

• Reserved bits in the processor-based VM-execution controls must be set properly. The
reserved settings are indicated in Section 2.6.2. In addition, software may consult the
VMX capability MSR VMX_PROCBASED_CTLS to determine the proper settings (see
Section 6.2).

• Reserved bits in the VM-exit controls must be set properly. The reserved settings are
indicated in Section 2.7.1. In addition, software may consult the VMX capability MSR
VMX_EXIT_CTLS to determine the proper settings (see Section 6.3).

• Reserved bits in the VM-entry controls must be set properly. The reserved settings are
indicated in Section 2.8.1. In addition, software may consult the VMX capability MSR
VMX_ENTRY_CTLS to determine the proper settings (see Section 6.4).

• The CR3-target count must not be greater than 4. Future processors may support a different
number of CR3-target values. Software should read the VMX capability MSR
VMX_MISC to determine the number of values supported (see Section 6.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are the VM-
entry interruption-information field (see Table 2-7), the VM-entry exception error code,
and the VM-entry instruction length. If the valid bit (bit 31) in the VM-entry interruption-
information field is 1, the following must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value (1 or 7).

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

— The field’s deliver-error-code bit (bit 11) is 1 if and only if the interruption type is
hardware exception and the vector indicates an exception that would normally deliver
an error code (8=#DF; 10=TS; 11=#NP; 12=#SS; 13=#GP; 14=PF; or 17=#AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry exception error-
code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software
exception, the VM-entry instruction-length field is in the range 1–15.

4.2.2 Checks on Physical Addresses and Referenced Data
The VMX controls include a number of fields that contain physical addresses. These must be
properly aligned and must respect the processor’s physical-address width:1

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

4-4

VM ENTRIES

• If the “activate I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. In addition, neither address should set any bits beyond the processor’s
physical-address width.

• If the “use TPR shadow” VM-execution control is 1, bits 11:0 of each virtual-APIC page
address must be 0. In addition, the address should not set any bits beyond the processor’s
physical-address width.

• The following check is performed for each MSR area (VM exit MSR-store, VM exit MSR-
load, VM entry MSR-load) if the corresponding MSR count field is non-zero:

— The lower 4 bits of the MSR storage-area address must be 0. In addition, the address
should not set any bits beyond the processor’s physical-address width.

— The address of the last byte in the MSR-storage area should not set any bits beyond the
processor’s physical-address width. The address of this last byte is
MSR storage-area address + (MSR count * 16) – 1. (The arithmetic used for the
computation uses more bits than the processor’s physical-address width.)

In addition to these checks on the physical addresses, the following check is performed if the
“use TPR shadow” VM-execution control is 1: the value of bits 3:0 of the TPR threshold should
not be greater than the value of bits 7:4 in byte 128 on the page referenced by the virtual-APIC
page address.

4.2.3 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area corresponding to control
registers and MSRs:

• The CR0 field must set bit 0 (corresponding to CR0.PE), bit 5 (CR0.NE), and bit 31
(CR0.PG). Future implementations may restrict CR0 differently. Software should read the
VMX capability MSRs VMX_CR0_FIXED0 and VMX_CR0_FIXED1 to determine the
number of values supported (see Section 6.6).1

• The CR4 field must set bit 13 (corresponding to CR4.VMXE). Future implementations
may restrict CR4 differently. Software should read the VMX capability MSRs
VMX_CR4_FIXED0 and VMX_CR4_FIXED1 to determine the number of values
supported (see Section 6.7).

• The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the
processor’s physical-address width must be 0.2

• The IA32_SYSENTER_ESP field and the IA32_SYSENTER_RIP field must each contain
a canonical address.

1. The bits corresponding to NW (bit 29) and CD (bit 30) are never checked because the values of these bits
are not changed by VM exit; see Section 5.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

4-5

VM ENTRIES

4.2.4 Checks on Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area corresponding to segment
and descriptor-table registers:

• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) and the
TI flag (bit 2) must be 0.

• The selector fields for CS and TR cannot be 0000H.

• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit control
is 0.

• The base-address fields for FS, GS, GDTR, IDTR, and TR must contain canonical
addresses.

4.2.5 Checks Related to Address-Space Size
The following checks related to address-space size are performed on VMX controls and fields
in the host-state area:

• If a logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the time of
VM entry, the “IA-32e mode guest” VM-entry control must be 0.

• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bits 63:32 in the RIP field is 0.

• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

4.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 4.2), the following
operations take place concurrently: (1) the guest-state area of the VMCS is checked to ensure
that, after the VM entry completes, the state of the logical processor is consistent with IA-32 as
extended by Intel EM64T; (2) processor state is loaded from the guest-state area or as specified
by the VM-entry control fields; and (3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discovered only after
some state has been loaded. For this reason, a logical processor responds to such failures by
loading state from the host-state area, as it would for a VM exit. See Section 4.7.

4-6

VM ENTRIES

4.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area of the VMCS. These
checks may be performed in any order. The following subsections reference VMCS fields that
correspond to processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

4.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs

The following checks are performed on fields in the guest-state area corresponding to control
registers, debug registers, and MSRs:

• The CR0 field must set bit 0 (corresponding to CR0.PE), bit 5 (CR0.NE), and bit 31
(CR0.PG). Future implementations may restrict CR0 differently. Software should read the
VMX capability MSRs VMX_CR0_FIXED0 and VMX_CR0_FIXED1 to determine the
number of values supported (see Section 6.6).1

• The CR4 field must set bit 13 (corresponding to CR0.VMXE). Future implementations
may restrict CR4 differently. Software should read the VMX capability MSRs
VMX_CR4_FIXED0 and VMX_CR4_FIXED1 to determine the number of values
supported (see Section 6.7).

• If the “IA-32e mode guest” VM-entry control is 1, bit 5 in the CR4 field (corresponding to
CR4.PAE) must be 1.

• The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the
processor’s physical-address width are 0.2

• Bits 63:32 in the DR7 field must be 0.

• Bits reserved in the IA32_DEBUGCTL MSR must be 0 in the field for that register.

• The IA32_SYSENTER_ESP field and the IA32_SYSENTER_RIP field must each contain
a canonical address.

4.3.1.2 Checks on Guest Segment Registers

This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The
following terms are used in defining these checks:

• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the
guest-state area.

• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1.

1. The bits corresponding to NW (bit 29) and CD (bit 30) are never checked because the values of these bits
are not changed by VM entry; see Section 4.3.2.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

4-7

VM ENTRIES

• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in the access-
rights field for that register.

The following are the checks on these fields:

• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086, the RPL (bits 1:0) must equal the RPL of the
selector field for CS.

• Base-address fields.

— TR. The address must be canonical.

— LDTR. If LDTR is usable, the address must be canonical.

— CS.

• Bits 63:32 of the address must be zero.

• If the guest will be virtual-8086, the address must be the selector field shifted right
4 bits.

— SS, DS, ES.

• If the register is usable, bits 63:32 of the address must be zero.

• If the guest will be virtual-8086, the address must be the selector field shifted right
4 bits.

— FS, GS.

• The address must be canonical.

• If the guest will be virtual-8086, the address must be the selector field shifted right
4 bits.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be
0000FFFFH.

• Access-rights fields. The different sub-fields are considered separately:

— Bits 3:0 (Type).

• TR.

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit busy TSS) or
11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy TSS).

• LDTR. If LDTR is usable, the Type must be 2 (LDT).

4-8

VM ENTRIES

• CS.

— Bit 0 of the Type must be 1 (accessed).

— If the guest will not be virtual-8086, bit 3 of the Type must be 1 (code
segment).

— If the guest will be virtual-8086, the Type must be 3 (read/write, accessed,
expand-up data segment).

• SS.

— If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

— If the guest will be virtual-8086, the Type must be 3 (read/write, accessed,
expand-up data segment).

• DS, ES, FS, GS.

— If the register is usable, bit 0 of the Type must be 1 (accessed).

— If the register is usable and bit 3 of the Type is 1 (code segment), then bit 1 of
the Type must be 1 (readable).

— If the guest will be virtual-8086, the Type must be 3 (read/write, accessed,
expand-up data segment).

— Bit 4 (S).

• TR. S must be 0.

• LDTR. If LDTR is usable, S must be 0.

• CS. S must be 1.

• SS, DS, ES, FS, GS. If the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is in the range 8–11 (non-conforming code segment), the DPL
must equal the RPL (bits 1:0) from the selector field.

— If the Type is in the range 13–15 (conforming code segment), the DPL cannot
be greater than the RPL from the selector field.

— If the guest will be virtual-8086, the DPL must be 3.

• SS.

— If the guest will not be virtual-8086, the DPL must equal the RPL from the
selector field

— If the guest will be virtual-8086, the DPL must be 3.

4-9

VM ENTRIES

• DS, ES, FS, GS.

— If the guest will not be virtual-8086, the register is usable, and the register’s
Type is in the range 0 – 11 (data segment or non-conforming code segment),
then the DPL cannot be less than the RPL from the selector field

— If the guest will be virtual-8086, the DPL must be 3.

— Bit 7 (P).

• CS, TR. P must be 1.

• SS, DS, ES, FS, GS, LDTR. If the register is usable, P must be 1.

— Bits 11:8 (reserved).

• CS, TR. These bits must all be 0.

• SS, DS, ES, FS, GS, LDTR. If the register is usable, these bits must all be 0.

— Bit 14 (D/B).

• CS. D/B must be 0 if the guest will be virtual-8086, or if the guest will be IA-32e
mode and the L bit (bit 13) in the access-rights field is 1.

• SS, DS, ES, FS, GS. D/B must be 0 if the guest will be virtual-8086.

— Bit 15 (G).

• CS, TR.

— If any bit in the limit field in the range 11:0 is 0, or if the guest will be virtual-
8086, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• SS, DS, ES, FS, GS, LDTR. The following checks apply if the register is usable:

— If any bit in the limit field in the range 11:0 is 0 or if the guest will be virtual-
8086, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bit 16 (Unusable).

• TR. The unusable bit must be 0.

• CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the unusable bit must be
0.

— Bits 31:17 (reserved).

• CS, TR. These bits must all be 0.

• SS, DS, ES, FS, GS, LDTR. If the register is usable, these bits must all be 0.

4-10

VM ENTRIES

4.3.1.3 Checks on Guest Descriptor-Table Registers

The following checks are performed on the fields for GDTR and IDTR:

• The base-address fields must contain canonical addresses.

• Bits 31:16 of each limit field must be 0.

4.3.1.4 Checks on Guest RIP and RFLAGS

The following checks are performed on fields in the guest-state area corresponding to RIP and
RFLAGS:

• RIP.

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L bit
(bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the
“IA-32e mode guest” VM-entry control is 1 and the L bit in the access-rights field for
CS is 1.1 (No check applies if the processor supports 64 linear-address bits.)

• RFLAGS.

— Reserved bits 63:22, 15, 5 and 3 must be 0 in the field, and reserved bit 1 must be 1. In
addition, the VM flag (bit 17) must be 0 if the “IA-32e mode guest” VM-entry control
is 1.

— The RF flag (bit 9) must be 1 if the valid bit (bit 31) in the VM-entry interruption-
information field is 1 and the interruption type (bits 10:8) is external interrupt.

4.3.1.5 Checks on Guest Non-Register State

The following checks are performed on fields in the guest-state area corresponding to non-
register state:

• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity
state supported by the implementation (see Section 2.4.2). Future processors may
include support for other activity states. Software should read the VMX capability
MSR VMX_MISC (see Section 6.5) to determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the
access-rights field for SS is not 0.2

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of lin-
ear-address bits supported is returned in bits 15:8 of EAX.

2. As noted in Section 2.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).

4-11

VM ENTRIES

— The activity-state field must indicate the active state if the interruptibility-state field
indicates blocking by either MOV-SS or by STI (if either bit 0 or bit 1 in that field
is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the inter-
ruption to be delivered (as defined by interruption type and vector) must not be one
that would normally be blocked while a logical processor is in the activity state corre-
sponding to the contents of the activity-state field. The following items enumerate the
interruptions whose injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are those with interruption type external interrupt or
non-maskable interrupt (NMI) and those with interruption type hardware
exception and vector 1 (debug exception) or vector 18 (machine-check exception).

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

• Interruptibility state.

— The reserved bits (bits 31:4 and 2) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both
be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit
(bit 31) in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 0, indicating external interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry inter-
ruption-information field is 1 and the interruption type (bits 10:8) in that field has
value 2, indicating non-maskable interrupt (NMI).

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) in the
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in
that field has value 2, indicating NMI. Other processors may not make this
requirement.

— Note that there is no requirement that bit 3 (blocking by NMI) be 0 if the valid bit
(bit 31) in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 must be 0.

— The following checks are performed if any of the following holds: (1) the interrupt-
ibility-state field indicates blocking by STI (bit 0 in that field is 1); (2) the interrupt-

4-12

VM ENTRIES

ibility-state field indicates blocking by MOV SS (bit 1 in that field is 1); or (3) the
activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF
flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF
flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other than
FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1

— The 32 bits located in memory referenced by the value of the field (as a physical
address) must contain the processor’s VMCS revision identifier (see Section 2.2).

— The value of the field must differ from that of the current VMCS pointer.

4.3.1.6 Checks on Guest Page-Directory Pointers

If the “IA-32e mode guest” VM-entry control is 0 and bit 5 in the CR4 field (corresponding to
CR4.PAE) is 1, the logical processor will use the physical-address extension (PAE) if the
VM entry completes successfully. See Section 3.8 (“36-Bit Physical Addressing Using the PAE
Paging Mechanism”) of IA-32 Intel® Architecture Software Developer’s Manual, Volume 3.2

When PAE is in use, the physical address in CR3 references a table of page-directory pointers
(PDPTRs). A MOV to CR3 when PAE is in use checks the validity of these pointers. A
VM entry to a guest that uses PAE checks the validity of the PDPTRs referenced by the CR3
field, using the same checks that are used when CR3 is loaded with MOV to CR3. If MOV to
CR3 would cause a general-protection exception due to the PDPTRs that would be loaded (e.g.,
because a reserved bit is set), the VM entry fails.

4.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:

• Some state is loaded from the guest-state area.

• Some state is determined by VM-entry controls.

• The page-directory pointers are loaded based on the values of certain control registers.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

2. The physical-address extension now supports more than 36 physical-address bits. Software can deter-
mine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The
physical-address width is returned in bits 7:0 of EAX.

4-13

VM ENTRIES

This loading may be performed in parallel with the checking of VMCS contents (see
Section 4.3.1).

The loading of guest state is detailed in Section 4.3.2.1 to Section 4.3.2.4. These sections refer-
ence VMCS fields that correspond to processor state. Unless otherwise stated, these references
are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the
VM-entry MSR-load area (see Section 4.4). This loading occurs only after the state loading
described in this section and the checking of VMCS contents described in Section 4.3.1.

4.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs

The following items describe how guest control registers, debug registers, and MSRs are loaded
on VM entry:

• CR0 is loaded from the CR0 field with the exception of the following bits, which are never
modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD
(bit 30).1 The values of these bits in the CR0 field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

• DR7 is loaded from the DR7 field with the exception that bit 12 and bits 15:14 are always
0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.

• The following describes how some MSRs are loaded using fields in the guest-state area:

— IA32_DEBUGCTL MSR is loaded from the IA32_DEBUGCTL field.

— The MSRs FS.base and GS.base are loaded from the base-address fields for FS and
GS, respectively (see Section 4.3.2.2).

— IA32_EFER.LMA and IA32_EFER.LME are each loaded with the setting of the
“IA-32e mode guest” VM-entry control.

— The IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP
MSRs are loaded from the IA32_SYSENTER_CS field, IA32_SYSENTER_ESP
field, and the IA32_SYSENTER_EIP field, respectively. Bits 63:32 of
IA32_SYSENTER_CS (whose field is only 32 bits) are cleared to 0.

Each of these MSRs is subsequently overwritten if it appears in the VM-entry MSR-load
area. See Section 4.4.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM entry, a logical processor will not use any translations that were
cached before the transition. This is not necessary for changes that would not affect paging due
to the settings of other bits (for example, changes to CR4.PSE if IA32_EFER.LMA was 1 before
and after the transition).

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.

4-14

VM ENTRIES

4.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers

For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area
as follows:
• The unusable bit is loaded from the access-rights field. This bit can never be set for TR

(see Section 4.3.1.2). If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-
protection exception or stack-fault exception) outside 64-bit mode, just as they would
had the segment been loaded using a null selector. This bit does not cause accesses to
fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all
modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value
does not cause a fault (general-protection exception or stack-fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.

• CS.
— The following fields are always loaded: selector, base address, limit, and (from the

access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights fields are loaded.

• If the unusable bit is 1, the remainder of CS access rights are undefined after
VM entry.

• SS, DS, ES, FS, and GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field is

consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.
• If the unusable bit is 1, the base address, the segment limit, and the remainder of

the access rights are undefined after VM entry. The only exceptions are the
following:

— SS.DPL: always loaded from the SS access-rights field. This will be the
current privilege level (CPL) after the VM entry completes.

— The base addresses for FS and GS: always loaded.
— The base address for LDTR: set to an undefined but canonical value.
— Bits 63:32 of the base addresses for SS, DS, and ES: cleared to 0.

Note that the values loaded for base addresses for FS and GS are also manifest in the
FS.base and GS.base MSRs.

GDTR and IDTR are loaded using the base and limit fields.

4-15

VM ENTRIES

4.3.2.3 Loading Guest RIP, RSP, and RFLAGS

RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field,
respectively.

4.3.2.4 Loading Page-Directory Pointers

If the “IA-32e mode guest” VM-entry control is 0 and bit 5 in the CR4 field (corresponding to
CR4.PAE) is 1, the logical processor will use the physical-address extension (PAE) after the
VM entry. See Section 3.8 (“36-Bit Physical Addressing Using the PAE Paging Mechanism”)
of IA-32 Intel® Architecture Software Developer’s Manual, Volume 3.1

When PAE is in use, the physical address in CR3 references a table of page-directory pointers
(PDPTRs). A MOV to CR3 when PAE is in use loads the PDPTRs into the processor (into
internal, non-architectural registers). A VM entry to a guest that uses PAE loads the PDPTRs
into the processor as would MOV to CR3.

4.3.3 Clearing Address-Range Monitoring
IA-32 processors allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 7.7.3 (“MONITOR/MWAIT Instruction”) of IA-32 Intel®

Architecture Software Developer’s Manual, Volume 3. VM entries clear any address-range
monitoring that may be in effect.

4.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 2.8.2). Specifically
each entry in that area (up to the number specified in the VM-entry MSR-load count) is
processed in order by loading the MSR indexed by bits 31:0 with the contents of bits 127:64 as
they would be written by WRMSR.

Processing of an entry fails in either of the following cases:

• Bits 63:32 of the entry are not all 0.

• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 would cause a general-
protection exception if executed via WRMSR with CPL = 0.2

The VM entry fails if processing fails for any entry. A logical processor responds to such failures
by loading state from the host-state area, as it would for a VM exit. See Section 4.7.

1. The physical-address extension now supports more than 36 physical-address bits. Software can deter-
mine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The
physical-address width is returned in bits 7:0 of EAX.

2. Note that, if CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it
would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not
be included in the VM-entry MSR-load area for the purpose of modifying the LME bit.

4-16

VM ENTRIES

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the
TLBs are updated so that, after VM entry, a logical processor will not use any translations that
were cached before the transition.

4.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field is 1, a logical processor delivers
an event after all components of guest state have been loaded (including MSRs). The event is
delivered using the vector in that field to select a descriptor in the IDT. Since event injection
occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 4.5.1 provides details of event injection. In general, the event is delivered exactly as it
would had it been generated normally.

If event delivery encounters a nested exception (for example, a general-protection exception
because the vector indicates a descriptor beyond the IDT limit), the exception bitmap is
consulted using the vector of that exception. If the bit is 0, the exception is delivered through the
IDT. If the bit is 1, a VM exit occurs. Section 4.5.2 details cases in which event injection causes
a VM exit.

4.5.1 Details of Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption informa-
tion field (format given in Table 2-7), the VM-entry exception error-code field, and the VM-
entry instruction-length field. The following items provide details of the process:

• The value pushed on the stack for RFLAGS is generally that which was loaded from the
guest-state area. The value pushed for the RF flag is not modified based on the type of
event being delivered. However, the pushed value of RFLAGS may be modified if a
software interrupt is being injected into a guest that will be in virtual-8086 mode (see
below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is
modified as is done normally when delivering an event through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event and
whether nested exceptions occur during its delivery. The term current guest RIP refers to
the value to be loaded from the guest-state area. The value pushed is determined as
follows:1

— If VM entry successfully injects (with no nested exception) an event with interruption
type external interrupt, NMI, or hardware exception, the current guest RIP is pushed
on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption
type software interrupt, privileged software exception, or software exception, the

1. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined
normally.

4-17

VM ENTRIES

current guest RIP is incremented by the VM-entry instruction length before being
pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does
not cause a VM exit, the current guest RIP is pushed on the stack regardless of event
type or VM-entry instruction length. If the encountered exception does cause a
VM exit that saves RIP, the saved RIP is current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field,
the contents of the VM-entry exception error-code field is pushed on the stack as an error
code would be pushed during delivery of an exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, even if
the event has vector 1 (normal deliveries of debug exceptions, which have vector 1, do
update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode
(RFLAGS.VM = 1), no general-protection exception can occur due to RFLAGS.IOPL < 3.
A VM monitor should check RFLAGS.IOPL before injecting such an event and, if desired,
inject a general-protection exception instead of a software interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode
with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event delivery is
subject to VME-based interrupt redirection based on the software interrupt redirection
bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the
interrupt is directed to an 8086 program interrupt handler: the processor uses a 16-bit
interrupt-vector table (IVT) located at linear address zero. If the value of
RFLAGS.IOPL is less than 3, the following modifications are made to the value of
RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt), the
interrupt is directed to a protected-mode interrupt handler. (In other words, the
injection is treated as described in the next item.) In IA-32, a software interrupt in this
case does not invoke such a handler if RFLAGS.IOPL < 3 (a general-protection
exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an
injected software interrupt to cause such a exception. Thus, in this case, the injection
invokes a protected-mode interrupt handler independent of the value of
RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.

• If VM entry is injecting a software interrupt (not redirected as described above) or
software exception, ordinary INT n/INT3/INTO-style privilege checking is performed on
the IDT descriptor being accessed (there is no checking of RFLAGS.IOPL, even if the
guest will be in virtual-8086 mode). Failure of this check may lead to a nested exception.
Injection of an event with interruption type external interrupt, NMI, hardware exception,
and privileged software exception, or with interruption type software interrupt and being
redirected as described above, do not perform these checks.

4-18

VM ENTRIES

• The transition causes a last-branch record to be logged if the LBR bit is set in the
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions, which
normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of the LBR
bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which normally
clear the LBR bit before they are delivered, and therefore do not normally update the
LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a VM exit,
the value of the EXT bit (bit 0) in any error code pushed on the stack is determined as
follows:

— If event being injected has interruption type external interrupt, NMI, hardware
exception, or privileged software exception and encounters a nested exception (but
does not produce a double fault), the error code for the first such exception
encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and encounters
a nested exception (but does not produce a double fault), the error code for the first
such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that exception
encounters another exception (but does not produce a double fault), the error code for
that exception sets the EXT bit. If a double fault is produced, the error code for the
double fault is 0000H (the EXT bit is clear).

4.5.2 VM Exits During Event Injection
An event being injected never directly causes a VM exit regardless of the settings of the
VM-execution controls. For example, setting the “NMI exiting” VM-execution control to 1 does
not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit. If the vector in the VM-entry inter-
ruption-information field identifies a task gate in the IDT, the attempted task switch may cause
a VM exit just as it would had the injected event occurred during normal execution in VMX non-
root operation (see Section 3.4.2). Similarly, if event delivery encounters a nested exception, a
VM exit may occur depending on the contents of the exception bitmap.

If the event-delivery process does cause a VM exit, the processor state before the VM exit is
determined just as it would be had the injected event occurred during normal execution in VMX
non-root operation (see Section 5.1). If the injected event directly accesses a task gate that cause
a VM exit or if the first nested exception encountered causes a VM exit, information about the
injected event is saved in the IDT-vectoring information field (see Section 5.2.3).

4-19

VM ENTRIES

4.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following terminology: a
VM entry is injecting if the valid bit (bit 31) of the VM-entry interruption information field is
set.

4.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 2-3) contains bits that control
blocking by STI, blocking by MOV SS, and blocking by NMI. This field impacts event blocking
after VM entry as follows:

• If the VM entry is injecting, there is no blocking by STI or by MOV SS following the
VM entry, regardless of the contents of the interruptibility-state field.

• If the VM entry is not injecting, the following apply:

— Events are blocked by STI if and only if the bit 0 in the interruptibility-state field is 1.
Such blocking is cleared after the guest executes one instruction or incurs an exception
(including a debug exception made pending by VM entry; see Section 4.6.3).

— Events are blocked by MOV SS if and only if the bit 1 in the interruptibility-state field
is 1. This may affect the treatment of pending debug exceptions; see Section 4.6.3.
Such blocking is cleared after the guest executes one instruction or incurs an exception
(including a debug exception made pending by VM entry).

— Non-maskable interrupts (NMIs) are blocked if the bit 3 in the interruptibility-state
field is 1. If the “NMI exiting” VM-execution control is 0, such blocking remains in
effect until IRET is executed (even if the instruction generates a fault). If the “NMI
exiting” control is 1, such blocking remains in effect as long as the logical processor is
in VMX non-root operation.

4.6.2 Activity State
The activity-state field in the guest-state area of the VMCS controls whether, after VM entry, a
logical processor is active or in one of the inactive states identified in Section 2.4.2. The use of
this field is determined as follows:

• If the VM entry is injecting, the logical processor is in the active state after VM entry.
While the consistency checks described in Section 4.3.1.5 on the activity-state field do
apply in this case, the contents of the activity-state field do not determine the activity state
after VM entry.

• If the VM entry is not injecting, a logical processor ends VM entry in the activity state
specified in the guest-state area. If VM entry ends with the logical processor in an inactive
activity state, the VM entry generates any special bus cycle that is normally generated
when that activity state is entered from the active state.

4-20

VM ENTRIES

• Some activity states unconditionally block certain events. The following blocking is in
effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor
is in the active state and in VMX non-root operation are discarded and do not cause
VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor
is in the HLT state and in VMX non-root operation are discarded and do not cause
VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive
while a logical processor is in the shutdown state and in VMX non-root operation do
not cause VM exits even if the “external-interrupt exiting” VM-execution control is 1.
SIPIs that arrive while a logical processor is in the shutdown state and in VMX non-
root operation are discarded and do not cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMIs),
INITs, and system-management interrupts (SMIs). External interrupts, NMIs, and
INITs that arrive while a logical processor is in the wait-for-SIPI state and in VMX
non-root operation do not cause VM exits regardless of the settings of the pin-based
VM-execution controls.

4.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area of the VMCS indicates whether there
are debug exceptions that have not yet been delivered (see Section 2.4.2). This section describes
how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:

• The VM entry is injecting with one of the following interruption types: external interrupt,
non-maskable interrupt (NMI), hardware exception, or privileged software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is
injecting with either of the following interruption type: software interrupt or software
exception.

• The VM entry is not injecting and the activity-state field indicates either shutdown or wait-
for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that
are pending for the guest. There are valid pending debug exceptions if either the BS bit (bit 14)
or the enable-breakpoint bit (bit 12) is 1. If there are valid pending debug exceptions, they are
handled as follows:

4-21

VM ENTRIES

• If the VM entry is not injecting, the pending debug exceptions are treated as they would
had they been encountered normally in guest execution:

— If a logical processor is not blocking such exceptions (the interruptibility-state field
indicates no blocking by MOV SS), a debug exception is delivered after VM entry
(see below).

— If a logical processor is blocking such exceptions (due to blocking by MOV SS), the
pending debug exceptions are held pending or lost as would normally be the case.

• If the VM entry is injecting (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or
vector 4 (#OF), the pending debug exceptions are treated as they would had they been
encountered normally in guest execution if the corresponding instruction (INT3 or
INTO) were executed after a MOV SS that encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending
debug exceptions may be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions
are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the
previous instruction” (see Section 5.9, “Priority Among Simultaneous Exceptions and Inter-
rupts” in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3). Thus, an INIT
or a system-management interrupt (SMI) takes priority of such an exception. The exception
takes priority over any pending non-maskable interrupt (NMI) or external interrupt.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in
the exception bitmap. If it does not cause a VM exit, it updates DR6 normally.

4.6.4 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur immedi-
ately after VM entry (see Section 3.2 for details).

A pending non-maskable interrupt (NMI) takes priority over VM exits caused by this control.
VM exits caused by this control take priority over any pending external interrupts.

VM exits cause by this control wake the logical processor if the logical processor just entered
the HLT state because of a VM entry (see Section 4.6.2). Such VM exits do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

4.6.5 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace messages, and
do not update the branch-trace store.

4-22

VM ENTRIES

4.7 VM-ENTRY FAILURES DUE TO GUEST STATE
VM-entry failures due to the checks identified in Section 4.3.1 and failures during MSR loading
identified in Section 4.4 are treated differently from those that occur earlier in VM entry. In
these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The basic exit reason part of the exit-reason field is loaded with a number
indicating the general cause of the VM-entry failure. The following numbers are
used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the
checks identified in Section 4.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to
load MSRs (see Section 4.4).

41. VM-entry failure due to machine check. A machine check occurred during
VM entry (see Section 4.8).

• The remainder of the exit-reason field is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit qualification is
cleared to 0. The following non-zero values are used in the cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTRs (see Section 4.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a
guest that is blocking events through the STI blocking bit in the interrupt-
ibility-state field. Such failures are implementation-specific
(see Section 4.3.1.5, page 4-11).

4. Failure was due to an invalid VMCS link pointer (see Section 4.3.1.5,
page 4-12).

• VM-entry failure due to MSR loading. The exit qualification is loaded to indicate
which entry in the VM-entry MSR-load area caused the problem (1 for the first
entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 5.5). If this results in
[CR4.PAE & CR0.PG & IA32_EFER.LMA] = 1, page-directory pointers (PDPTRS) may
be checked and loaded (see Section 5.5.4).

3. MSRs may be loaded from the VM-exit MSR-load area (see Section 5.6).

4-23

VM ENTRIES

Although this process resembles that of a VM exit, many steps taken during a VM exit do not
occur for these VM-entry failures:

• Most VM-exit information fields are not updated (see step 1 above).

• The valid bit in the VM-entry interruption-information field is not cleared.

• The guest-state area is not modified.

• No MSRs are saved into the VM-exit MSR-store area.

4.8 MACHINE CHECKS DURING VM ENTRY
If a machine check occurs during a VM entry, one of the following occurs:

• The machine check is handled normally. If CR4.MCE = 1, a machine-check exception
(#MC) is delivered through the IDT. If CR4.MCE = 0, the processor goes to the shutdown
state.

• A VM-entry failure occurs as described in Section 4.7. The basic exit reason is 41, for
“VM-entry failure due to machine check.”

The first option is not used if the machine check occurs after any guest state has been loaded.

4-24

VM ENTRIES

1

CHAPTER 5
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation.
Section 3.1 and Section 3.2 detail the causes of VM exits. VM exits perform the following
operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields
and the valid bit (bit 31) is cleared in the VM-entry interruption-information field
(Section 5.2).

2. Processor state is saved into the guest-state area (Section 5.3).

3. MSRs may be saved into the VM-exit MSR-store area (Section 5.4).

4. The following may be performed in parallel and in any order (Section 5.5):

• Processor state is loaded based in part on the host-state area and some VM-exit
controls.

• Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 5.6).

These steps are detailed in Section 5.2 through Section 5.6. Section 5.1 clarifies the nature of the
architectural state before a VM exit begins.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and
do not update the branch-trace store.

5.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section clarifies the architectural state that exists before a VM exit, especially for those
VM exits caused by events that would normally be delivered through the IDT. Note the
following:

• An exception causes a VM exit directly if the bit corresponding to that exception is set in
the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit directly if the
“NMI exiting” VM-execution control is 1. An external interrupt causes a VM exit directly
if the “external-interrupt exiting” VM-execution control is 1. A start-up IPI (SIPI) that
arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit
directly. INITs that arrive while the processor is not in the wait-for-SIPI activity state cause
VM exits directly.

• An exception, NMI, or external interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, or task switch
that causes a VM exit.

• An event results in a VM exit if it causes a VM exit, directly or indirectly.

5-2

VM EXITS

The following items provide details of when architectural state is and is not updated in response
to VM exits resulting from certain events:

• If an event causes a VM exit directly, it does not update the architectural state as it would
had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit qualification.)

— A page fault does not update CR2. (The linear address causing the page fault is saved
in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt
remains pending, unless the “acknowledge interrupt on exit” VM-exit control is 1, in
which case the interrupt controller is acknowledged and the interrupt is no longer
pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task
switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by a task switch:
old task-state segment (TSS); new TSS; old TSS descriptor; new TSS descriptor;
RFLAGS.NT; or the TR register.

— No last-exception record is made if the event that would do so causes a VM exit
directly.

— The fact that a machine-check exception causes a VM exit directly does not prevent
the machine-check MSRs from being updated. These are considered to be updated by
the machine check itself and not the resulting machine-check exception.

— If a logical processor had been in an inactive state (see Section 2.4.2) and not
executing instructions, some events are blocked but others may return the logical
processor to the active state. If an unblocked event causes a VM exit directly, the
return to the active state occurs only after the VM exit completes.1 The VM exit
generates any special bus cycle that is normally generated when the active state is
entered from that activity state.

• If an event causes a VM exit indirectly, the exception does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug
exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

1. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case,
it is considered to have become active before the VM exit.

5-3

VM EXITS

— An external interrupt acknowledges the interrupt controller and the interrupt is no
longer pending.

— If a logical processor had been in an inactive state, it enters the active state and, before
the VM exit commences, generates any special bus cycle that is normally generated
when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP,
SS, RSP, RFLAGS) is not modified. However, the incomplete delivery of the event
may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an
event through the IDT (before it can encounter a nested exception). Such
processors perform this update even if the event encounters a nested exception
that causes a VM exit (including the case where nested exceptions lead to a triple
fault).

• Other processors delay making a last-exception record until event delivery has
reached some event handler successfully (perhaps after one or more nested excep-
tions). Such processors do not update the last-exception record if a VM exit or
triple fault occurs before an event handler is reached.

• If a VM exit results from a fault encountered during execution of IRET and the “NMI
exiting” VM-execution control is 0, any blocking by NMI is cleared before the VM exit
commences. However, the state of previous blocking by NMI may be recorded in the VM-
exit interruption-information field; see Section 5.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by
any of the following events if the event was unblocked due to (and given priority over) an
x87 FPU Floating-Point Error: an INIT, an external interrupt, an NMI, or a machine-check
exception. In these cases, there is no blocking by STI or by MOV SS when the VM exit
commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT.
However, if such an event results in a VM exit before delivery is complete, no last-branch
record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result
in suspect state being saved to the guest-state area. A VM monitor should consult the RIPV
and EIPV bits in the IA32_MCG_STATUS MSR before resuming a guest that caused a
VM exit resulting from a machine-check exception.

• If a VM exit results from a fault encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information about them
may be saved in the pending debug exceptions field (see Section 5.3.4).

5-4

VM EXITS

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data break-
points).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking
by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting”
VM-execution control is 0 and the “use TPR shadow” VM-execution control is 1.

For these VM exits, the instruction’s modifications to architectural state complete before
the VM exit occurs. Such modifications include those to a logical processor’s interrupt-
ibility state (see Table 2-3). If there had been blocking by STI before the instruction
executed, such blocking is no longer in effect (the same is true for blocking by MOV SS).

5.2 RECORDING VM-EXIT INFORMATION AND UPDATING
CONTROLS

VM exits begin by recording information about the nature of and reason for the VM exit in the
VM-exit information fields. Section 5.2.1 to Section 5.2.4 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the
VM-entry interruption-information field.

5.2.1 Basic VM-Exit Information
Section 2.9.1 defines the basic VM-exit information fields. The following items detail their use.

• The basic exit reason part of the exit-reason field is loaded with a number indicating the
general cause of the VM exit. Appendix A enumerates the numbers used and their
meaning. The remainder of the exit-reason field is cleared.

• Exit qualification. This field is saved for VM exits due to the following causes: page-fault
exceptions; start-up IPIs (SIPIs); task switches; INVLPG; VMCLEAR; VMPTRLD;
VMPTRST; VMREAD; VMWRITE; VMXON; control-register accesses; MOV DR; I/O
instructions; and MWAIT. For all other VM exits, this field is cleared. The following items
provide details:

— For debug exceptions, the exit qualification has the format given in Table 5-1.

5-5

VM EXITS

— For page-fault exceptions, the exit qualification contains the linear address that caused
the page fault. Bits 63:32 are cleared if a logical processor was not in 64-bit mode
before the VM exit.

— Start-up IPI (SIPI). The SIPI vector information is stored in bits 7:0 of the exit qualifi-
cation. Bits 63:8 are cleared to 0.

— Task switch. Details about the reason for the VM exit are encoded as given in
Table 5-2.

— For INVLPG, the exit qualification contains the linear-address operand of the
instruction. Bits 63:32 are cleared if a logical processor was not in 64-bit mode before
the VM exit. If the INVLPG source operand specifies an unusable segment, the linear
address specified in the exit qualification will match the linear address that the
INVLPG would have used if no VM exit occurred. Note that this address is not archi-
tecturally defined and may be implementation-specific.

Table 5-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3–B0. When set, each of these bits indicates that the corresponding breakpoint
condition was met. Any of these bits may be set even if its corresponding enabling bit
in DR7 is not set.

12:4 Reserved (cleared to 0)

13 BD. When set, this bit indicates that the cause of the debug exception is “debug
register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the
execution of a single instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or
a taken branch (if RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0)

Table 5-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:
0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0)

5-6

VM EXITS

— VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXON. The 64-bit
instruction displacement. The exit qualification receives the value of the instruction’s
displacement field, which is sign-extended to 64 bits if necessary. If the instruction has
no displacement (for example, has a register operand), zero is stored into the exit
qualification.

An exception is made for RIP-relative addressing (which can be used only in 64-bit
mode), which causes an instruction to use an address that is the sum of the
displacement field and the value of RIP that references the following instruction. In
this case, the exit qualification is loaded with the sum of the displacement field and the
appropriate RIP value.

In all cases, the bits of this field beyond the instruction's address size are undefined.
Specifically, suppose that the address-size field in the instruction-information field
(see below) reports an N-bit address size. Then bits 63:N of the reported instruction
displacement are undefined.

— For control-register accesses, the exit qualification has the format given in Table 5-3.

Table 5-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW)

5:4 Access type:
0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:
0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

5-7

VM EXITS

— For MOV DR, the exit qualification has the format given in Table 5-4.

— For I/O instructions, the exit qualification has the format given in Table 5-5.

31:16 For LMSW, the LMSW source data
For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0)

Table 5-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:
0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively

63:12 Reserved (cleared to 0)

Table 5-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:
0 = 1-byte
1 = 2-byte
3 = 4-byte
other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

Table 5-3. Exit Qualification for Control-Register Accesses (Contd.)

Bit Positions Contents

5-8

VM EXITS

— MWAIT. A value that indicates whether address-range monitoring hardware was
armed. The exit qualification is set to either 0 (if address-range monitoring hardware is
not armed) or 1 (if address-range monitoring hardware is armed).

5.2.2 Information for VM Exits Due to Vectored Events
Section 2.9.2 defines fields containing information for VM exits due to the following events:
exceptions (including those generated by the instructions INT3, INTO, BOUND, and UD2);
external interrupts that occur while the “acknowledge interrupt on exit” VM-exit control is 1;
and non-maskable interrupts (NMIs). (These VM exits include those that occur on an attempt at
a task switch that causes an exception (before generating a VM exit due to the task switch) that
causes a VM exit.)

The following items detail the use of these fields.

• VM-exit interruption information (format given in Table 2-9). The following items detail
how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI,
bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware
exception), or 6 (software exception). Hardware exceptions comprise all exceptions
except breakpoint exceptions (#BP; generated by INT3) and overflow exceptions
(#OF; generated by INTO); these are software exceptions. Note that BOUND range
exceeded exceptions (#BR; generated by BOUND) and those invalid opcode
exceptions (#UD) generated by UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have
delivered an error code on the stack. If bit 11 is set to 1, that error code is placed in the
VM-exit exception error-code field (see below).

— Bit 12 is undefined in any of the following cases:

• If the VM exit occurs with the “NMI exiting” VM-execution control set to 1.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 5.2.3).

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0)

Table 5-5. Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents

5-9

VM EXITS

• If the VM exit is due to a double fault (the interruption type is hardware exception
and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the VM exit is due to a fault on the IRET instruction and blocking by NMI (see
Table 2-3) was in effect before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

For other VM exits (including those due to external interrupts when the “acknowledge
interrupt on exit” VM-exit control is 0), the field is marked invalid (by clearing bit 31) and
the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit
interruption-information field, this field receives the error code that would have been
pushed on the stack had the event causing the VM exit been delivered normally
through the IDT. The EXT bit is set in this field exactly when it would be set for IA-32
exceptions. For exceptions that occur during the delivery of double fault (if the IDT-
vectoring information field indicates a double fault), the EXT bit is set to 1, assuming
that (1) that the exception would produce an error code normally (if not incident to
double-fault delivery) and (2) that the error code uses the EXT bit (not for page faults,
which use a different format).

— For other VM exits, the value of this field is undefined.

5.2.3 Information for VM Exits During Event Delivery
Section 2.9.3 defined fields containing information for VM exits that occur while delivering an
event through the IDT1 and as a result of either of the following two cases:

• A fault occurs during event delivery and causes a VM exit (because the bit associated with
the fault is set to 1 in the exception bitmap).2

• A task switch is invoked via a task gate in the IDT. Note that the VM exit occurs due to the
task switch only after the initial checks of the task switch pass (see Section 3.4.2).

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see
Section 4.5.2.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the
16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-machine extensions (if
RFLAGS.VM = CR4.VME = 1).

5-10

VM EXITS

A VM exit is not considered to occur during event delivery in any of the following circum-
stances:

• The original event causes the VM exit directly (for example, because the original event is a
non-maskable interrupt (NMI) and the “NMI exiting” VM-execution control is 1).

• The original event results in a double-fault exception that causes the VM exit directly.

• The VM exit occurred as a result of fetching the first instruction of the handler invoked by
the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:

• IDT-vectoring information (format given in Table 2-10).

— This field is marked valid (by setting bit 31) and the relevant data are saved for
VM exits that occur in the course of delivering an event through the IDT and as a
result of either of the following two cases: (1) a fault occurs during event delivery and
causes a VM exit; or (2) a task switch is invoked via a task gate in the IDT.

— For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder
of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-
vectoring information field, this field receives the error code that would have been
pushed on the stack by the event that was being delivered through the IDT at the time
of the VM exit. The EXT bit is set in this field exactly when it would be set for IA-32
exceptions.

— For other VM exits, the value of this field is undefined.

5.2.4 Information for VM Exits Due to Instruction Execution
Section 2.9.4 defined fields containing information for VM exits that occur due to instruction
execution. The following items detail their use.

• VM-exit instruction length. This field is used in the following cases:

— For VM exits due to attempts to execute one of the following instructions that cause
VM exits unconditionally (see Section 3.1.2) or based on the settings of VM-
execution controls (see Section 3.1.3): CLTS, CPUID, HLT, IN, INS INVD, INVLPG,
LMSW, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR,
RDPMC, RDTSC, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST,
VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, and WRMSR.

— For VM exits due to software exceptions (those generated by executions of INT3 or
INTO).

5-11

VM EXITS

— For VM exits due to exceptions that occur during delivery of a software interrupt
(generated by INT n) or a software exception (generated by an execution of INT3 or
INTO).

— For VM exits due to attempts to effect a task switch via instruction execution. These
are VM exits that produce an exit reason indicating task switch and either of the
following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and a IDT-vectoring
information field indicating a software interrupt or software exception.

In all these cases, this fields receives the length in bytes (1–15) of the instruction
(including any instruction prefixes) whose execution led to the VM exit. All other
VM exits leave this field undefined.

• Guest linear address. For VM exits due to some instructions, this field receives the linear
address of one of the instruction operands. Bits 63:32 are cleared if a logical processor was
not in 64-bit mode before the VM exit.

— For VM exits due to attempts to execute LMSW with a memory operand, this field
receives the linear address of that operand.

— For VM exits due to attempts to execute INS or OUTS, this field receives the value of
the linear address generated by ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the
default segment is DS but can be overridden for OUTS by a segment override prefix)
at the time the instruction started.

— For all other VM exits, the field is undefined.

• VMX-instruction information (format given in Table 2-11).

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON, this field receives information about the
instruction that caused the VM exit.

— For all other VM exits, the field is undefined.

5.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 2.4) is written with the corre-
sponding component of processor state. The full values of each 64-bit field (for example, the
base address for GDTR) is saved regardless of the mode of a logical processor before and after
the VM exit.

In general, the state saved is that which was in a logical processor at the time the VM exit
commences. See Section 5.1 for a discussion of which architectural updates occur at that time.

Section 5.3.1 through Section 5.3.4 provide details for how certain components of processor
state are saved. These sections reference VMCS fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the guest-state area.

5-12

VM EXITS

5.3.1 Saving Control Registers, Debug Registers, and MSRs
The contents of CR0, CR3, CR4, DR7, and the IA32_DEBUGCTL, IA32_SYSENTER_CS,
IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corresponding
fields.

5.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the
base-address, segment-limit, and access rights are based on whether the register was unusable
(see Section 2.4.1) before the VM exit:

• If the register was unusable, the values saved into the following fields are undefined:
(1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights
field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• Bits 63:32 of the values saved for the base addresses are always zero.

• DS and ES. Bits 63:32 of the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.

• If the register was not unusable, the values saved into the following fields are those which
were in the register before the VM exit: (1) base address; (2) segment limit; and
(3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and
only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address
and limit fields.

5-13

VM EXITS

5.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:

• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that causes
VM exits unconditionally or that has been configured to cause a VM exit via the VM-
execution controls, the value saved references that instruction.

— If the VM exit is caused by an occurrence of an INIT or a start-up IPI (SIPI), the value
saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of the “interrupt-window exiting” VM-
execution control, the value saved is that which would be in the register had the
VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or
hardware exception (as defined in Section 5.2.2), the value saved is the return pointer
that would have been saved (either on the stack had the event been delivered through a
trap or interrupt gate,1 or into the old task-state segment had the event been delivered
through a task gate).

— If the VM exits is due to a triple fault, the value saved is exactly that which would
have been provided to the guest event handler (see above) had delivery of the double
fault not encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO),
the value saved references the INT3 or INTO instruction that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of
CALL, IRET, or JMP or by execution of a software interrupt (INT n) or software
exception (due to execution of INT3 or INTO) that encountered a task gate in the IDT.
The value saved references the instruction that caused the task switch (CALL, IRET,
JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the
IDT that was encountered for any reason except the direct access by a software
interrupt or software exception. The value saved is that which would have been saved
in the old task-state segment had the task switch completed normally.

— If the VM exit is due to a MOV to CR8 that reduced the value of the TPR shadow
below that of the TPR threshold, the value saved references the instruction following
the MOV to CR8.

• The contents of the RSP register are saved into the RSP field.

1. The reference here is to the full 64-bit value of RIP before any truncation that would occur had the stack
width been only 32 bits or 16 bits.

5-14

VM EXITS

• With the exception of the RF (bit 16), the contents of the RFLAGS register is saved into
the RFLAGS field. The RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered through
the IDT, the value saved is that which would appear in the saved RFLAGS image
(either that which would be saved on the stack had the event been delivered through a
trap or interrupt gate1 or into the old task-state segment had the event been delivered
through a task gate) had the event been delivered through the IDT. See below for
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical
processor would have in RF in the RFLAGS register had the triple fault taken the
logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the
IDT), the value saved is that which would have been saved in the RFLAGS image in
the old task-state segment (TSS) had the task switch completed normally without
exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally
causes VM exits or one that was configured to do with a VM-execution control, the
value saved is 0.2

— For all other VM exits, the value saved in is the value RFLAGS.RF had before the
VM exit occurred.

5.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:

• The activity-state field is saved with the logical processor’s activity state before the
VM exit. See Section 5.1 for details of how events leading to a VM exit may affect the
activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interruptibility
before the VM exit. See Section 5.1 for details of how events leading to a VM exit may
affect this state.

• The pending debug exceptions field is saved as clear for all VM exits except the following:

— VM exits caused by an INIT, a machine-check exception, an execution of MOV to
CR8 that reduces the value of the TPR shadow below that of the TPR threshold.

1. The reference here is to the full 64-bit value of RFLAGS before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

2. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a
VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the VM exit (for
example, after clearing the VM-execution control that caused the VM exit), the instruction may encounter
a code breakpoint that has already been processed. A VM monitor can avoid this by setting the guest
value of RFLAGS.RF to 1 before resuming guest software.

5-15

VM EXITS

— VM exits that not caused by debug exceptions and that occur while there is MOV-SS
blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true
even if the corresponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT, a machine-check exception, or MOV to CR8
that reduces the value of the TPR shadow below that of the TPR threshold. In this
case, the value saved sets bits corresponding to the causes of any debug exceptions
that were pending at the time of the VM exit. If an INIT or machine check occurs
immediately after VM entry, the value saved may match that which was loaded on
VM entry (see Section 4.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O
breakpoint that was enabled in DR7. Bit 12 is also set if it had been set on
VM entry, causing there to be valid pending debug exceptions (see Section 4.6.3)
and the VM exit occurred before those exceptions were either delivered or lost. In
other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was
the execution of a single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a
taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception) and
occurs while there is MOV-SS blocking of debug exceptions. In this case, the value
saved sets bits corresponding to the causes of any debug exceptions that were pending
at the time of the VM exit. If the VM exit occurs immediately after VM entry (no
instructions were executed in VMX non-root operation), the value saved may match
that which was loaded on VM entry (see Section 4.6.3). Otherwise, the following
items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O
breakpoint that was enabled in DR7. Bit 12 is also set if it had been set on
VM entry, causing there to be valid pending debug exceptions (see Section 4.6.3)
and the VM exit occurred before those exceptions were either delivered or lost. In
other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if
RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.

5-16

VM EXITS

5.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored into the
VM-exit MSR-store area (see Section 2.7.2). Specifically each entry in that area (up to the
number specified in the VM-exit MSR-store count) is processed in order by storing the value of
the MSR indexed by bits 31:0 (as they would be read by RDMSR) into bits 127:64. Processing
of an entry fails in either of the following cases:

• Bits 63:32 of the entry are not all 0.

• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection
exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 5.7.

5.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:

• Some state is loaded from or otherwise determined by the contents of the host-state area.

• Some state is determined by VM-exit controls.

• Some state is established in the same way on every VM exit.

• The page-directory pointers are loaded based on the values of certain control registers.

The full values of each 64-bit field loaded (for example, the base address for GDTR) is loaded
regardless of the mode of a logical processor before and after the VM exit.

The loading of host state is detailed in Section 5.5.1 to Section 5.5.5. These sections reference
VMCS fields that correspond to processor state. Unless otherwise stated, these references are to
fields in the host-state area.

In addition to loading host state, VM exits clear address-range monitoring (Section 5.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit
MSR-load area (see Section 5.6). This loading occurs only after the state loading described in
this section.

5.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:

• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field,
respectively. However, the following bits are not modified:

— For CR0, PE, ET, NE, CD, NW, PG, and bits 63:32, 28:19, 17, and 15:6.1

1. Note that bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
CR0.ET is always 1 and the other bits are always 0.

5-17

VM EXITS

— For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width (they are cleared to 0).1

— CR4.VMXE.

• DR7 is set to 00000000_00000400H.

• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP are
loaded from the IA32_SYSENTER_CS field, the IA32_SYSENTER_ESP field, and
the IA32_SYSENTER_EIP field, respectively. Since the IA32_SYSENTER_CS field
contains only 32 bits, bits 63:32 of that register are cleared to 0.

— IA32_EFER.LMA and IA32_EFER.LME are each loaded with the setting of the “host
address-space size” VM-exit control.

Each of these MSRs is subsequently overwritten if it appears in the VM-exit MSR-load
area. See Section 5.6.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, a logical processor does not use translations that were cached
before the transition. This is not necessary for changes that would not affect paging due to the
settings of other bits (for example, changes to CR4.PSE if IA32_EFER.LMA was 1 before and
after the transition).

5.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the
treatment of LDTR):

• The selector is loaded from the selector field. The segment is unusable if its selector is
loaded with zero. Note that the checks specified Section 4.3.1.2 limit the selector values
that may be loaded. In particular, CS and TR are never loaded with zero and are thus never
unusable. SS can be loaded with zero only if the VM exit is to 64-bit mode, when it is
possible to use segments marked unusable.

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in
EAX. The physical-address width is returned in bits 7:0 of EAX.

5-18

VM EXITS

— FS and GS. Undefined (but canonical) if the segment is unusable and the VM exit is
not to 64-bit mode; otherwise, loaded from the base-address field. The MSRs FS.base
and GS.base are always identical to the base addresses of FS and GS, respectively.

— TR. Loaded from the host-state area.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit
setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
FFFFFFFFH.

— TR. Set to 00000067H.

• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code
segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3
and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).

• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit
completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.

• The P bit is set as follows:
— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

• CS.L is loaded with the setting of the “host address-space size” VM-exit control. Because
this control is also loaded into IA32_EFER.LMA (see Section 5.5.1), no VM exit is ever to
compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit
control. For example, if that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

• G.
— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

5-19

VM EXITS

The host-state area does not contain a selector field for LDTR. LDTR is established as follows
on all VM exits: the selector is set to zero, the segment is marked unusable and is otherwise
undefined (although the base address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the
IDTR base-address field, respectively. The GDTR and IDTR limits are each set to FFFFH.

5.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively.

RFLAGS is set to 00000000_00000002H.

5.5.4 Checking and Loading Host Page-Directory Pointers
If the “host address-space size” VM-exit control is 0 and bit 5 in the CR4 field (corresponding
to CR4.PAE) is 1, the logical processor will use the physical-address extension (PAE) after the
VM exit. See Section 3.8 (“36-Bit Physical Addressing Using the PAE Paging Mechanism”) of
IA-32 Intel® Architecture Software Developer’s Manual, Volume 3.1 When PAE is in use, the
physical address in CR3 references a table of page-directory pointers (PDPTRs). A MOV to
CR3 when PAE is in use checks the validity of the PDPTRs and loads them into the processor
(into internal, non-architectural registers).

A VM exit to a VMM that uses PAE checks the validity of the PDPTRs referenced by the CR3
field, using the same checks that are used when CR3 is loaded with MOV to CR3. If MOV to
CR3 would cause a general-protection exception due to the PDPTRs that would be loaded (e.g.,
because a reserved bit is set), a VMX abort occurs. If a VM exit to a VMM that uses PAE does
not cause a VMX abort, the PDPTRs are loaded into the processor as would MOV to CR3.

5.5.5 Updating Non-Register State
A logical processor is always in the active state after a VM exit.

There is no blocking by STI or by MOV SS after a VM exit. VM exits caused directly by a non-
maskable interrupt (NMI) block subsequent NMIs; other VM exits do not affect blocking by
NMI (but see Section 5.1 for the case in which an NMI causes a VM exit indirectly).

There are no pending debug exceptions after a VM exit.

1. The physical-address extension now supports more than 36 physical-address bits. Software can deter-
mine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The
physical-address width is returned in bits 7:0 of EAX.

5-20

VM EXITS

5.5.6 Clearing Address-Range Monitoring
IA-32 processors allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 7.7.3 (“MONITOR/MWAIT Instruction”) of IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3. VM exits clear any address-range moni-
toring that may be in effect.

5.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 2.7.2). Specifically
each entry in that area (up to the number specified in the VM-exit MSR-load count) is processed
in order by loading the MSR indexed by bits 31:0 with the contents of bits 127:64 as they would
be written by WRMSR. Processing of an entry fails in either of the following cases:

• Bits 63:32 of the entry are not all 0.

• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 would cause a general-
protection exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 5.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the
TLBs are updated so that, after VM exit, a logical processor does not use any translations that
were cached before the transition.

5.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical
processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The
contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte
offset 4 in the VMCS region of the VMCS whose misconfiguration caused the failure (see
Section 2.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 5.4).

2. Host checking of the page-directory pointers (PDPTRs) failed (see Section 5.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS
region) in such a way that the logical processor cannot complete the VM exit properly.

1. Note that, if CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it
would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.

5-21

VM EXITS

4. There was a failure on loading host MSRs (see Section 5.6).

5. There was a machine check during VM exit (see Section 5.8).

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only
with one of the non-zero values mentioned above. The VMX-abort indicator allows software on
one logical processor to diagnose the VMX-abort on another. For this reason, it is recommended
that software running in VMX root operation zero the VMX-abort indicator in the VMCS region
of any VMCS that it uses.

After saving the VMX-abort indicator, a logical processor experiencing a VMX abort issues a
special bus cycle (to notify the chipset) and enters the VMX-abort shutdown state. RESET is
the only event that wakes a logical processor from the VMX-abort shutdown state. The
following events do not affect a logical processor in this state: machine checks; INITs; external
interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-management
interrupts (SMIs).

5.8 MACHINE CHECK DURING VM EXIT
If a machine check occurs during VM exit, one of the following occurs:

• The machine check is handled normally. If CR4.MCE = 1, a machine-check exception
(#MC) delivered through the guest IDT. If CR4.MCE = 0, the processor goes to the
shutdown state.

• A VMX abort is generated (see Section 5.7). The logical processor blocks events as done
normally in VMX abort. The VMX abort indicator is 5, for “machine check during
VM exit.”

The first option is not used if the machine check occurs after any host state has been loaded.

5-22

VM EXITS

6-1

VMX CAPABILITY REPORTING

CHAPTER 6
VMX CAPABILITY REPORTING

As noted in Section 1.6, the ability of a processor to support VMX operation and related instruc-
tions is indicated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for
the features described in this document.

Support for specific features detailed in this document is reported through values that can be
read from a set of capability MSRs. These MSRs are indexed starting at MSR address 1152. The
MSRs are read-only; an attempt to write them (with WRMSR) produces a general-protection
exception (#GP(0)). These MSRs do not exist on processors that do not support VMX operation;
an attempt to read them (with RDMSR) on such processors produces a general-protection excep-
tion (#GP(0)).

6.1 BASIC INFORMATION
The VMX_BASIC MSR (index 1152) consists of the following fields:

• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor.

• Bits 44:32 report the number of bytes that software should allocate for the VMXON region
and any VMCS region. It is a value greater than 0 and at most 4096 (bit 44 is set if and
only if bits 43:32 are all clear).

• Bits 53:50 report the memory type that the processor uses to access the VMCS for
VMREAD and VMWRITE and to access the VMCS and data structures referenced by
pointers in the VMCS (for example, I/O bitmaps, TPR shadow, etc.) during VM entries,
VM exits, and in VMX non-root operation. The first processors to support VMX operation
use the write-back type. The values used are given in Table 6-1.

Software should map all VMCS regions and referenced data structures with the indicated
memory type.

• The values of bits 49:45 and bits 63:54 are reserved and are read as 0.

Table 6-1. Memory Types Used For VMCS Access

Value(s) Field

0 Strong Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

6-2

VMX CAPABILITY REPORTING

6.2 VM-EXECUTION CONTROLS
The VMX_PINBASED_CTLS MSR (index 1153) reports on the allowed settings of the pin-
based VM-execution controls (see Section 2.6.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X in the
pin-based VM-execution controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X in the
pin-based VM-execution controls is 1 and bit 32+X is 0 in this MSR.

The VMX_PROCBASED_CTLS MSR (index 1154) reports on the allowed settings of the
processor-based VM-execution controls (see Section 2.6.2):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X in the
processor-based VM-execution controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X in the
processor-based VM-execution controls is 1 and bit 32+X is 0 in this MSR.

6.3 VM-EXIT CONTROLS
The VMX_EXIT_CTLS MSR (index 1155) reports on the allowed settings of the VM-exit
controls (see Section 2.7.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X in the
VM-exit controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X in the
VM-exit controls is 1 and bit 32+X is 0 in this MSR.

6.4 VM-ENTRY CONTROLS
The VMX_ENTRY_CTLS MSR (index 1156) reports on the allowed settings of the VM-entry
controls (see Section 2.8.1):

• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry fails if bit X in the
VM-entry controls is 0 and bit X is 1 in this MSR.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X in the
VM-entry controls is 1 and bit 32+X is 0 in this MSR. VM entry also fails if either bit 10
or bit 11 in the VM-entry controls is 1 regardless of the values of bit 42 and bit 43 in this
MSR.

6-3

VMX CAPABILITY REPORTING

6.5 MISCELLANEOUS DATA
The VMX_MISC MSR (index 1157) consists of the following fields:

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).

If an activity state is not supported, the implementation causes a VM entry to fail if it
attempts to establish that activity state. Note that all implementations support VM entry to
activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This
number is a value between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are
clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should
appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-
load list. Specifically, if the value bits 27:25 of VMX_MISC is N, then 512 * (N + 1) is the
recommended maximum number of MSRs to be included in each list. If the limit is
exceeded, undefined processor behavior may result (including a machine check during the
VMX transition).

• Bits 5:0, bits 15:9, and bits 63:28 are reserved and are read as 0.

6.6 VMX-FIXED BITS IN CR0
The first processors to support VMX operation require that CR0.PE, CR0.NE, and CR0.PG all
be 1 when the processor is in VMX operation (see Section 1.8). Future processors may differ
with regard to bits in CR0 that are fixed while in VMX operation. The VMX_CR0_FIXED0
MSR (index 1158) and VMX_CR0_FIXED1 MSR (index 1159) indicate how bits in CR0 may
be set in VMX operation.

The VMX_CR0_FIXED0 MSR and the VMX_CR0_FIXED1 MSR report on bits in CR0 that
are allowed to be 0 and 1, respectively, in VMX operation. If bit X of VMX_CR0_FIXED0 is
1, then that bit of CR0 is fixed to 1 in VMX operation. Similarly, if bit X of
VMX_CR0_FIXED1 is 0, then that bit of CR0 is fixed to 0 in VMX operation.

In addition to indicating that CR0.PE, CR0.NE, and CR0.PG must be 1 in VMX operation, these
MSRs indicates that bits 63:32 must be 0.

6.7 VMX-FIXED BITS IN CR4
The first processors to support VMX operation require that CR4.VMXE be set whenever the
processor is in VMX operation (see Section 1.8). Future processors may differ with regard to
bits in CR4 that are fixed while in VMX operation. The VMX_CR4_FIXED0 MSR (index

6-4

VMX CAPABILITY REPORTING

1160) and VMX_CR4_FIXED1 MSR (index 1161) indicate how bits in CR4 may be set in
VMX operation.

The VMX_CR4_FIXED0 MSR and the VMX_CR4_FIXED1 MSR report on bits in CR4 that
are allowed to be 0 and 1, respectively, in VMX operation. If bit X of VMX_CR4_FIXED0 is
1, then that bit of CR4 is fixed to 1 in VMX operation. Similarly, if bit X of
VMX_CR4_FIXED1 is 0, then that bit of CR4 is fixed to 0 in VMX operation.

In addition to indicating that CR0.PE, CR0.NE, and CR0.PG must be 1 in VMX operation, these
MSRs indicates that all reserved bits in CR4 must be 0.

6.8 VMCS ENUMERATION
The VMX_VMCS_ENUM MSR (index 1162) provides information to assist software in
enumerating fields in the VMCS.

As noted in Section 2.10.2, each field in the VMCS is associated with a 32-bit encoding which
is structured as follows:

• Bits 31:15 are reserved (must be 0).

• Bits 14:13 indicate the field’s width.

• Bit 12 is reserved (must be 0).

• Bits 11:10 indicate the field’s type.

• Bits 9:1 is an index field that distinguishes different fields with the same width and type.

• Bit 0 indicates access type.

VMX_VMCS_ENUM indicates to software the highest index value used in the encoding of any
field supported by the processor:

• Bits 9:1 contain the highest index value used for any VMCS encoding.

• The values of bit 0 and bits 63:10 are reserved and are read as 0.

1

CHAPTER 7
VMX INSTRUCTION SET REFERENCE

The virtual-machine extensions (VMX) includes five instructions that manage the virtual-
machine control structure (VMCS) and five instruction that manage VMX operation.

Section 7.1 provides an overview of the instructions. Section 7.2 describes conventions used in
documenting the instructions. Section 7.3 contains the a detailed description of each instruction.

7.1 OVERVIEW
The behavior of the VMCS-maintenance instructions are summarized below:

• VMPTRLD. This instruction takes a single 64-bit source operand that is in memory. It
makes the referenced VMCS active and current, loading the current-VMCS pointer with
this operand and establishes the current VMCS based on the contents of VMCS-data area
in the referenced VMCS region. Because this makes the referenced VMCS active, a logical
processor may start maintaining on the processor some of the VMCS data for the VMCS.

• VMPTRST. This instruction takes a single 64-bit destination operand that is in memory.
The current-VMCS pointer is stored into the destination operand.

• VMCLEAR. This instruction takes a single 64-bit operand that is in memory. The
instruction sets the launch state of the VMCS referenced by the operand to “clear”, renders
that VMCS inactive, and ensures that data for the VMCS have been written to the VMCS-
data area in the referenced VMCS region. If the operand is the same as the current-VMCS
pointer, that pointer is made invalid.

• VMREAD This instruction reads a component from the VMCS (the encoding of that field
is given in a register operand) and stores it into a destination operand that may be a register
or in memory.

• VMWRITE. This instruction writes a component to the VMCS (the encoding of that field
is given in a register operand) from a source operand that may be a register or in memory.

The behaviors of the rest of the VMX instructions are summarized below:

• VMCALL. This instruction allows a guest in VMX non-root operation to call the VMM
for service. A VM exit occurs, transferring control to the VMM.

• VMLAUNCH. This instruction launches a virtual machine managed by the VMCS. A
VM entry occurs, transferring control to the VM.

• VMRESUME. This instruction resumes a virtual machine managed by the VMCS. A
VM entry occurs, transferring control to the VM.

• VMXOFF. This instruction leaves VMX operation.

7-2

VMX INSTRUCTION SET REFERENCE

• VMXON. This instruction takes a single 64-bit source operand that is in memory. It causes
a logical processor to enter VMX root operation and to use the memory referenced by the
operand to support VMX operation.

Only VMCALL can be executed in compatibility mode (it causes a VM exit). The other instruc-
tions generate invalid-opcode exceptions if executed in compatibility mode.

7.2 CONVENTIONS
The operation sections for the VMX instructions in Section 7.3 use the pseudo-function VMexit,
which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfailInvalid, and
VMfailValid. These pseudo-functions signal instruction success or failure by setting or clearing
bits in RFLAGS and, in some cases, by writing the VM-instruction error field. The following
pseudocode fragments detail these functions:
VMsucceed:

CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid

THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF ← 1;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 1;
SF ← 0;
OF ← 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Appendix B.

7-3

VMX INSTRUCTION SET REFERENCE

7.3 VMX INSTRUCTION REFERENCE
This section provides detailed descriptions of the VMX instructions.

This section does not completely detail the debug exceptions (#DB) that may be generated by
the VMX instructions. Debug exceptions are controlled by basic IA-32 functionality and, in
general, this is not changed in VMX operation. Debug exceptions are mentioned below only
when their treatment differs from normal IA-32 functionality. Failure to mention debug excep-
tions in conjunction with a particular instruction should not be construed as implying that that
instruction cannot cause a debug exception. Accesses by a logical processor to a VMCS region
or to data structures referenced by addresses in the VMCS cannot trigger data breakpoints.

7-4

VMX INSTRUCTION SET REFERENCE

VMCALL—Call to VM Monitor

Description
This instruction is designed so that guest software can make a call for service into an underlying
VM monitor. The details of the programming interface for such calls are monitor-specific; this
instruction does nothing more than cause a VM exit, registering the appropriate exit reason.

Operation
IF not in VMX operation

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA = 1 AND CS.L = 0)

THEN #UD;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(VMCALL executed in VMX root operation);

FI;

If retired instructions are being counted, an execution of VMCALL is counted if the instruction
does not fault. A non-faulting execution is counted regardless of whether it causes a VM exit or
fails due to being executed in VMX root operation.

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is in VMX

root operation.

Opcode Instruction Description
0F 01 C1 VMCALL Call to VM monitor by causing VM exit

7-5

VMX INSTRUCTION SET REFERENCE

#UD If executed outside VMX operation.

#DB This instruction does not cause a single-step trap due to RFLAGS.TF=1 if
it causes a VM exit.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMCALL instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.

#DB This instruction does not cause a single-step trap due to RFLAGS.TF=1 if
it causes a VM exit.

7-6

VMX INSTRUCTION SET REFERENCE

VMCLEAR—Clear Virtual-Machine Control Structure

Description
This instruction applies to the VMCS whose VMCS region resides at the physical address
contained in the instruction operand. The instruction ensures that VMCS data for that VMCS
(some of these data may be currently maintained on the processor) are copied to the VMCS
region in memory. It also initializes parts of the VMCS region (for example, it sets the launch
state of that VMCS to clear). See Section 2.11.

The operand of this instruction is always 64 bits and is always in memory.

If the operand is the current-VMCS pointer, then that pointer is made invalid (set to
FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the
data may be already resident in memory before the VMCLEAR is executed.

Operation
IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR addr sets any bits beyond the physical-address width

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand ← “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

Opcode Instruction Description
66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory

7-7

VMX INSTRUCTION SET REFERENCE

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD.

REP* Reserved and may cause unpredictable behavior (applies to both
REPNE/REPNZ and REP/REPE/REPZ).

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMCLEAR instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility mode.

7-8

VMX INSTRUCTION SET REFERENCE

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.

If not in VMX operation.

7-9

VMX INSTRUCTION SET REFERENCE

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description
Effects a VM entry managed by the current VMCS.

VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is
successful, it sets the launch state to “launched.”

VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, a logical processor performs a series of consistency checks as detailed
in Section 4.2 (VMX controls and host-state area) and Section 4.3.1 (guest-state area). Failure
to pass checks on the VMX controls or on the host-state area passes control to the instruction
following the VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-
state area fail, the logical processor loads state from the host-state area of the VMCS, passing
control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS. Neither VMLAUNCH nor
VMRESUME should be used immediately after either MOV to SS or POP to SS.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF events are being blocked by MOV SS

THEN VMfailValid(VM entry with events blocked by MOV SS);
ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)

THEN VMfailValid(VMLAUNCH with non-clear VMCS);
ELSIF (VMRESUME and launch state of current VMCS is not “launched”)

THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;

Opcode Instruction Description
0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS
0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS

7-10

VMX INSTRUCTION SET REFERENCE

clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 4.7);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 4.7);
ELSE

IF VMLAUNCH
THEN launch state of VMCS ← “launched”;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;

Further details of the operation of the VM-entry instructions appear in Chapter 4.

If retired instructions are being counted, an execution of one of the VM-entry instructions are
counted if it does not fault. A non-faulting execution are counted regardless of whether it leads
to a successful VM entry.

Flags Affected
See the operation section.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If executed outside VMX operation.

#DB These instructions does not cause a single-step trap due to RFLAGS.TF=1
if they cause a successful VM entry.

7-11

VMX INSTRUCTION SET REFERENCE

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMLAUNCH and VMRESUME instructions are not recog-
nized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in

virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in

compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If executed outside VMX operation.

#DB These instructions does not cause a single-step trap due to RFLAGS.TF=1
if they cause a successful VM entry.

7-12

VMX INSTRUCTION SET REFERENCE

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description
Marks the current-VMCS pointer valid and loads it with the physical address in the instruction
operand. The instruction fails if its operand is not properly aligned, sets unsupported physical-
address bits, or is equal to the VMXON pointer. In addition, the instruction fails if the 32 bits in
memory referenced by the operand do not match the VMCS revision identifier supported by this
processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation
IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the processor’s physical-address width

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

FI;
FI;

FI;

Opcode Instruction Description
0F C7 /6 VMPTRLD m64 Loads the current-VMCS pointer from memory

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier
supported by this processor (see Section 6.1).

7-13

VMX INSTRUCTION SET REFERENCE

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD

REPNE/REPNZ Causes #UD

REP/REPE/REPZ Changes encoding to that of VMXON; see “VMXON—Enter VMX Oper-
ation” for operation and interactions with other prefixes.

Segment overrides Treated normally

Operand size Changes encoding to that of VMCLEAR; see “VMCLEAR—Clear
Virtual-Machine Control Structure” for operation and interactions with
other prefixes.

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMPTRLD instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.

7-14

VMX INSTRUCTION SET REFERENCE

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.

If not in VMX operation.

7-15

VMX INSTRUCTION SET REFERENCE

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description
Stores the current-VMCS pointer into a specified memory address.

The operand of this instruction is always 64 bits and is always in memory.

Operation
IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit(reason=”VMPTRST”);
ELSIF CPL > 0

THEN #GP(0);
ELSE

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Opcode Instruction Description
0F C7 /7 VMPTRST m64 Stores the current-VMCS pointer into memory

7-16

VMX INSTRUCTION SET REFERENCE

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any
code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.

#SS(0) If the memory destination operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMPTRST instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS segments and
the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.

#SS(0) If the destination operand is in the SS segment and the memory address is
in a non-canonical form.

#UD If operand is a register.

If not in VMX operation.

7-17

VMX INSTRUCTION SET REFERENCE

VMREAD—Read Field from Virtual-Machine Control Structure

Description
Reads a specified field from the VMCS and stores it into a specified destination operand
(register or memory). The specific VMCS field is identified by the VMCS-field encoding
contained in the register source operand. This source operand is always 32 bits, regardless of the
value of CS.D. The destination operand, which may be a register or in memory, is always treated
as a 32-bit quantity outside IA-32e mode (the setting of CS.D is ignored) and as a 64-bit quantity
in 64-bit mode. The value of CS.D and any address-size overrides continue to determine the
resolved memory address size normally. If the specified VMCS field is shorter than this, the high
bits of the destination are cleared to 0. If the field is longer than the destination, then the high
bits of the field are not read.

Note that any faults resulting from accessing a memory destination operand can occur only after
determining, in the operation section below, that the VMCS pointer is valid and that the speci-
fied VMCS field is supported.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit(reason=”VMREAD”);
ELSIF CPL > 0

THEN #GP(0);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF register source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

DEST ← contents of VMCS field indexed by register source operand;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD

Opcode Instruction Description
0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode)
0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode)

7-18

VMX INSTRUCTION SET REFERENCE

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any
code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.

#SS(0) If a memory destination operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMREAD instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.

7-19

VMX INSTRUCTION SET REFERENCE

#SS(0) If the memory destination operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

7-20

VMX INSTRUCTION SET REFERENCE

VMRESUME—Resume Virtual Machine
See entry for VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.

7-21

VMX INSTRUCTION SET REFERENCE

VMWRITE—Write Field to Virtual-Machine Control Structure

Description
Writes to a specified field in the VMCS using the contents of a specified primary source operand
(register or memory). The VMCS field is identified by the VMCS-field encoding contained in
the register secondary source operand. This secondary source operand is always 32 bits, regard-
less of the value of CS.D. The primary source operand, which may be a register or in memory,
is always treated as a 32-bit quantity outside IA-32e mode (the setting of CS.D is ignored) and
as a 64-bit quantity in 64-bit mode. The value of CS.D and any address-size overrides continue
to determine the resolved memory address size normally. If the specified VMCS field is shorter
than this, the high bits of the primary source operand are ignored. If the field is longer than the
primary source operand, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining,
in the operation section below, that the VMCS pointer is valid but before determining if the
destination VMCS field is supported.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit(reason=”VMWRITE”);
ELSIF CPL > 0

THEN #GP(0);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF register destination operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by register destination operand is read-only)

THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand ← SRC;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 7.2.

Opcode Instruction Description
0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)
0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)

7-22

VMX INSTRUCTION SET REFERENCE

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If a memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMWRITE instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

7-23

VMX INSTRUCTION SET REFERENCE

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If the memory source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

7-24

VMX INSTRUCTION SET REFERENCE

VMXOFF—Leave VMX Operation

Description
Takes a logical processor out of VMX operation, unblocks INIT, re-enables A20M, and clears
any address-range monitoring. See Section 7.7.3 (“MONITOR/MWAIT Instruction”) of IA-32
Intel® Architecture Software Developer’s Manual, Volume 3.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

leave VMX operation;
unblock INIT;
unblock and enable A20M;
clear address-range monitoring;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Opcode Instruction Description
0F 01 C4 VMXOFF Leaves VMX operation

7-25

VMX INSTRUCTION SET REFERENCE

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMXOFF instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

#UD If executed outside VMX operation.

7-26

VMX INSTRUCTION SET REFERENCE

VMXON—Enter VMX Operation

Description
Puts a logical processor in VMX operation with no current VMCS, blocks INIT, disables A20M,
and clears any address-range monitoring established by the MONITOR instruction. See
Section 7.7.3 (“MONITOR/MWAIT Instruction”) of IA-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 3.

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that
references the VMXON region, which the logical processor may use to support VMX operation.

The operand of this instruction is always 64 bits and is always in memory.

Operation
IF (register operand) or (CR4.VMXE = 0) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(CR0.NE = 0) or (CR0.PG = 0) (* see Section 1.8 *) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
addr sets any bits beyond the VMX physical-address width

THEN VMfailInvalid;
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;

Opcode Instruction Description
F3 0F C7 /6 VMXON m64 Enter VMX root operation

7-27

VMX INSTRUCTION SET REFERENCE

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 7.2.

Use of Prefixes
LOCK Causes #UD

REP* Ignored (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or

CR4 fixed bits.

If executed in A20M mode.

If the memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

7-28

VMX INSTRUCTION SET REFERENCE

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or

CR4 fixed bits.

If executed in A20M mode.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.

If executed with CR4.VMXE = 0.

1

CHAPTER 8
INTERACTIONS WITH SYSTEM-MANAGEMENT

MODE

The interactions of the virtual-machine extensions (VMX) with system-management interrupts
(SMIs) and system-management mode (SMM) are few. This section details those interactions.

8.1 TREATMENT OF SMI DELIVERY
Ordinary SMI delivery saves processor state into SMRAM and then loads state based on certain
architectural definitions. Processors that support VMX operation perform SMI delivery as
follows:

Assert SMMEM on subsequent bus transactions
IF processor generally issues SMIACK on entry to SMM
 THEN issue SMIACK special bus transaction before subsequent bus transactions
FI
Enter SMM
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

leave VMX operation;
save VMX-critical state defined below;
preserve current VMCS pointer as noted below;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

The pseudocode above makes reference to the saving of VMX-critical state. This state
comprises the following: (1) SS.DPL (the current privilege level); (2) RFLAGS.VM; and
(3) the state of blocking by STI and by MOV SS (see Table 2-3). These data may be saved
internal to the processor or in the VMCS region of the current VMCS. Note that a processor that
does not support SMI recognition while blocking by STI or by MOV SS need not save the state
of such blocking.

SMI delivery in VMX operation ensures that the current VMCS pointer is preserved. It is not
saved in SMRAM.

1. This causes the logical processor to block assertions of INIT, NMI, and SMI.

8-2

INTERACTIONS WITH SYSTEM-MANAGEMENT MODE

Because SMI delivery causes a logical processor to leave VMX operation, all the controls asso-
ciated with VMX non-root operation are disabled in SMM and thus cannot cause VM exits.

If a logical processor is in the wait-for-SIPI state, SMIs are blocked. The behavior described in
this section is not invoked in this case.

8.2 TREATMENT OF RSM
Ordinary execution of RSM restores processor state from SMRAM. Processors that support
VMX operation perform RSM as follows:

IF VMXE=1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
CR4.VMXE ← value stored internally;
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Appendix 8.1;
set CR0.PE, CR0.NE, and CR0.PG to 1;
IF RFLAGS.VM = 0

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
If necessary, restore current VMCS pointer;

FI;
Leave SMM
Deassert SMMEM on subsequent bus transactions
IF processor generally issues SMIACK on leaving SMM

 THEN issue SMIACK special bus transaction
before subsequent bus transactions

FI
IF logical processor will be in VMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls
associated with the current VMCS. If the “interrupt-window exiting” VM-execution control is
1, a VM exit occurs immediately after RSM if the enabling conditions apply (see Section 3.2).

RSM unblocks SMIs and restores the state of blocking by NMI (see Table 2-3), as it does
normally. Assertions of INIT are blocked after RSM if and only if a logical processor will be in
VMX root operation.

8-3

INTERACTIONS WITH SYSTEM-MANAGEMENT MODE

8.3 PROTECTION OF CR4.VMXE IN SMM
While a logical processor is in SMM, CR4.VMXE is treated as a reserved bit. Any attempt by
software running in SMM to set this bit causes a general-protection exception. Software cannot
use VMX instructions or enter VMX operation while in SMM.

8-4

INTERACTIONS WITH SYSTEM-MANAGEMENT MODE

1

APPENDIX A
BASIC EXIT REASONS

As noted in Section 2.9.1, every VM exit writes a 32-bit exit reason to the VMCS. As noted in
Section 4.7, certain VM-entry failures also do this. The low 16 bits of the exit-reason field form
the basic exit reason, which provides basic information about the cause of the VM exit or
VM-entry failure.

Table A-1 provides values that may be written for the basic exit reason and explains their
meaning. Each entry corresponds to a VM exit unless otherwise noted.

Table A-1. Basic Exit Reasons
Error Number Description

0 Exception or non-maskable interrupt (NMI). Either (1) guest software caused an
exception and the bit in the exception bitmap associated with exception’s vector was 1;
or (2) an NMI was delivered to the logical processor and the “NMI exiting” VM-execution
control was 1. This case includes executions of BOUND that cause #BR, executions of
INT3 (they cause #BP), executions of INTO that cause #OF, and executions of UD2
(they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-
execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the
double-fault handler and that exception did not itself cause a VM exit due to the
exception bitmap.

3 INIT. An INIT arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI”
state.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not
blocked by STI or by MOV SS; and the “interrupt-window exiting” VM-execution control
was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution
control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-
execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-
execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-
execution control was 1.

18 VMCALL. Guest software executed VMCALL.

A-2

BASIC EXIT REASONS

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8
using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate that a
VM exit should occur (see Section 3.1 for details).

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-
DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either (1) the
“activate I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting”
VM-execution control was 1 or (2) the “activate I/O bitmaps” VM-execution control was 1
and a bit in the I/O bitmap associated with one of the ports accessed by the I/O
instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR.

32 WRMSR. Guest software attempted to execute WRMSR.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified
in Section 4.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See
Section 4.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-
execution control was 1.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting”
VM-execution control was 1.

40 PAUSE. Guest software attempted to execute PAUSE and the “PAUSE exiting” VM-
execution control was 1.

41 VM-entry failure due to machine check. A machine check occurred during VM entry (see
Section 4.8).

43 TPR below threshold. Guest software executed MOV to CR8, the “use TPR shadow”
VM-execution control was 1, and the instruction reduces the value of the TPR shadow
below that of the TPR threshold.

Table A-1. Basic Exit Reasons (Contd.)
Error Number Description

1

APPENDIX B
VM-INSTRUCTION ERROR NUMBERS

The operation sections for the VMX instructions in Section 7.3 indicate that, for certain error
conditions, the VM-instruction error field is loaded with an error number to indicate the source
of the error. Table B-1 lists the error numbers that are used:

Table B-1. VM-Instruction Error Numbers
Error Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address.

3 VMCLEAR with VMXON pointer.

4 VMLAUNCH with non-clear VMCS.

5 VMRESUME with non-launched VMCS.

6 VMRESUME with a corrupted VMCS. Indicates corruption of the current VMCS (see
Section 2.10.1).

7 VM entry with invalid VMX-control field(s).

8 VM entry with invalid host-state field(s).

9 VMPTRLD with invalid physical address.

10 VMPTRLD with VMXON pointer.

11 VMPTRLD with incorrect VMCS revision identifier.

12 VMREAD/VMWRITE from/to unsupported VMCS component.

13 VMWRITE to read-only VMCS component.

15 VMXON executed in VMX root operation.

26 VM entry with events blocked by MOV SS.

B-2

VM-INSTRUCTION ERROR NUMBERS

1

APPENDIX C
ENCODINGS OF FIELDS IN THE VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by VMREAD and
VMWRITE. Section 2.10.2 describes the structure of the encoding space (the meanings of the
bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are grouped by
width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

C.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only the guest-state area and
the host-state area contain 16-bit fields. As noted in Section 2.10.2, each 16-bit field allows only
full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

C.1.1 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields
are distinguished by their index value in bits 9:1. Table C-1 enumerates the 16-bit guest-state
fields.

Table C-1. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

C-2

ENCODINGS OF FIELDS IN THE VMCS

C.1.2 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are
distinguished by their index value in bits 9:1. Table C-2 enumerates the 16-bit host-state fields.

C.2 FULL 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a full 64-bit field. There are full 64-bit fields
only for controls and for guest state. As noted in Section 2.10.2, every full 64-bit field has two
encodings, which differ on bit 0, the access type. Thus, each such field has an even encoding for
full access and an odd encoding for high access.

C.2.1 Full 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished
by their index value in bits 9:1. Table C-3 enumerates the full 64-bit control fields.

Table C-2. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table C-3. Encodings for Full 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)

Field Name Index Encoding

I/O bitmap A (full) 000000000B 00002000H

I/O bitmap A (high) 000000000B 00002001H

I/O bitmap B (full) 000000001B 00002002H

I/O bitmap B (high) 000000001B 00002003H

VM-exit MSR-store address (full) 000000011B 00002006H

VM-exit MSR-store address (high) 000000011B 00002007H

C-3

ENCODINGS OF FIELDS IN THE VMCS

C.2.2 Full 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields
are distinguished by their index value in bits 9:1. Table C-4 enumerates the full 64-bit guest-
state fields.

C.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 2.10.2,
each 32-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such
encoding is thus an even number.

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC page address (full) 000001001B 00002012H

Virtual-APIC page address (high) 000001001B 00002013H

Table C-4. Encodings for Full 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)

Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Table C-3. Encodings for Full 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)

Field Name Index Encoding

C-4

ENCODINGS OF FIELDS IN THE VMCS

C.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished
by their index value in bits 9:1. Table C-5 enumerates the 32-bit control fields.

C.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distin-
guished by their index value in bits 9:1. Table C-6 enumerates the 32-bit read-only data fields.

Table C-5. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)

Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold 000001110B 0000401CH

Table C-6. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)

Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

C-5

ENCODINGS OF FIELDS IN THE VMCS

C.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields
are distinguished by their index value in bits 9:1. Table C-7 enumerates the 32-bit guest-state
fields.

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VMX-instruction information 000000111B 0000440EH

Table C-7. Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Table C-6. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding

C-6

ENCODINGS OF FIELDS IN THE VMCS

Note that the limit fields for GDTR and IDTR are defined to be 32 bits in width even though
these fields are only 16-bits wide in the IA-32 architecture. VM entry ensures that the high 16
bits of both these fields are cleared to 0.

C.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. There is only
one such 32-bit field as given in Table C-8.

C.4 NATURAL 64-BIT FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural 64-bit field. As noted in
Section 2.10.2, each of these fields allows only full access, meaning that bit 0 of its encoding is
0. Each such encoding is thus an even number.

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility information 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

Table C-8. Encodings for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table C-7. Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding

C-7

ENCODINGS OF FIELDS IN THE VMCS

C.4.1 Natural 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished
by their index value in bits 9:1. Table C-9 enumerates the natural 64-bit control fields.

C.4.2 Natural 64-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distin-
guished by their index value in bits 9:1. Table C-10 enumerates the natural 64-bit read-only data
fields.

Table C-9. Encodings for Natural 64-Bit Control Fields (0110_00xx_xxxx_xxx0B)

Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 3a

NOTES
a. If a future implementation supports more than 4 CR3-target values, they will be encoded consecutively fol-

lowing the 4 encodings given here.

000000111B 0000600EH

Table C-10. Encodings for Natural 64-Bit Read-Only Data Fields (0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

Guest linear address 000000101B 0000640AH

C-8

ENCODINGS OF FIELDS IN THE VMCS

C.4.3 Natural 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields
are distinguished by their index value in bits 9:1. Table C-11 enumerates the natural 64-bit
guest-state fields.

Note that the base-address fields for ES, CS, SS, and DS in the guest-state area are defined to be
natural 64-bit even though these fields are only 32-bits wide in the EM64T architecture.
VM entry ensures that the high 32 bits of these fields are cleared to 0.

Table C-11. Encodings for Natural 64-Bit Guest-State Fields (0110_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

C-9

ENCODINGS OF FIELDS IN THE VMCS

C.4.4 Natural 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are
distinguished by their index value in bits 9:1. Table C-12 enumerates the natural 64-bit host-
state fields.

Table C-12. Encodings for Natural 64-Bit Host-State Fields (0110_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

C-10

ENCODINGS OF FIELDS IN THE VMCS

INDEX-1

B
Basic exit reasons . A-1

E
Error numbers

VM-instruction error field. B-1
Exit-reason numbers

VM entries & exits. A-1

F
Field encodings, VMCS C-1

P
Pseudo-functions

VMfail .7-2
VMfailInvalid .7-2
VMfailValid .7-2
VMsucceed .7-2

R
RSM instruction .8-2

S
SMM

VMCS pointer preservation.8-1
VMX interactions. .8-1
VMX-critical state .8-1

V
VM entries

basic VM-entry checks4-2
checking guest state

control registers.4-6
debug registers .4-6
descriptor-table registers.4-10
MSRs. .4-6
non-register state 4-10
RIP and RFLAGS4-10
segment registers4-6

checks on controls, host-state area 4-2
address space .4-5
physical addresses4-3
referenced data .4-3
registers and MSRs.4-4
segment and descriptor-table registers . .4-5
VMX control checks.4-2

error numbers . A-1
loading guest state4-12

control and debug registers, MSRs4-13
RIP, RSP, RFLAGS.4-15
segment & descriptor-table registers. . .4-14

loading MSRs . 4-15
failure cases. 4-15
VM-entry MSR-load area 4-15

overview of failure conditions 4-1
overview of steps . 4-1
VMLAUNCH and VMRESUME 4-1
See also: VMX, VMCS, VM exits

VM exits
architectural state

existing before exit 5-1
updating state before exit 5-2

basic VM-exit information fields 5-4
basic exit reasons 5-4, A-1
exit qualification 5-4

exception bitmap . 5-1
exceptions (faults, traps, and aborts) 3-4
exit-reason numbers A-1
external interrupts . 3-4
IA-32 faults and VM exits 3-1
INITs . 3-4
instructions that cause:

conditional exits 3-2
unconditional exits 3-2

interrupt-window exiting 3-5
non-maskable interrupts (NMIs) 3-4
overview of . 5-1
page faults. 3-4
start-up IPIs (SIPIs). 3-5
task switches. 3-5
See also: VMX, VMCS, VM entries

VMCALL instruction . 7-4
VMCLEAR instruction. 7-6
VMCS

activating and de-activating. 2-1
field encodings . C-1
format of VMCS region 2-2
guest-state area . 2-3

guest non-register state 2-5
guest register state 2-3

host-state area 2-3, 2-7
introduction . 2-1
migrating between processors 2-19
software access to 2-19
VMCS data . 2-2
VMCS pointer . 2-1
VMCS region. 2-1
VMCS revision identifier 2-2
VM-entry control fields 2-3, 2-13

entry controls . 2-13
entry controls for event injection 2-14
entry controls for MSRs 2-13

VM-execution control fields 2-3, 2-7
controls for CR8 accesses. 2-11
CR3-target controls 2-10
exception bitmap 2-9
I/O bitmaps . 2-10

INDEX

INDEX

INDEX-2

masks & read shadows for CR0 & CR4 2-10
pin-based controls2-8
processor-based controls 2-8
time-stamp counter offset2-10

VM-exit control fields 2-3, 2-11
exit controls .2-11
exit controls for MSRs2-12

VM-exit information fields 2-3, 2-15
basic exit information.2-15
basic VM-exit information 2-15
exits due to instruction execution 2-17
exits due to vectored events2-15
exits occurring during event delivery . . .2-16
VM-instruction error field2-19

VMX-abort indicator 2-2
VMLAUNCH instruction7-9
VMPTRLD instruction.7-12
VMPTRST instruction.7-15
VMREAD instruction .7-17

VMCS encodings . C-1
VMRESUME instruction7-9
VMWRITE instruction.7-21

VMCS encodings . C-1
VMX

A20M mode .1-5
capability MSRs .6-1

VMX_BASIC MSR.6-1
VMX_CR0_FIXED0 MSR6-3
VMX_CR0_FIXED1 MSR6-3
VMX_CR4_FIXED0 MSR6-4
VMX_CR4_FIXED1 MSR6-4
VMX_ENTRY_CTLS MSR 6-2
VMX_EXIT_CTLS MSR 6-2
VMX_MISC MSR.6-3
VMX_PINBASED_CTLS MSR 6-2
VMX_PROCBASED_CTLS MSR6-2

CPUID flag .1-4
CR0 and CR4 .1-5
CR0 fixed bits .6-3
CR4 fixed bits .6-3
guest software .1-1
INIT signal. .1-5
instruction set

capability summary7-1
error numbers . B-1
pseudo-functions7-2
VMCALL instruction.7-4
VMCLEAR instruction7-6
VMLAUNCH instruction.7-9
VMPTRLD instruction7-12
VMPTRST instruction7-15
VMREAD instruction7-17
VMRESUME instruction 7-9
VMWRITE instruction 7-21
VMXOFF instruction 7-24

VMXON instruction 7-26
introduction . 1-1
non-root operation

event blocking . 3-7
instruction changes 3-5
task switches not allowed 3-8

operation
enabling and disabling 1-4
restrictions on . 1-5
root and non-root 1-2

real-address mode 1-5
RMX instruction. 8-2
SMM

CR4.VMXE reserved 8-3
overview. 8-1
RSM instruction 8-2
SMI delivery . 8-1
VMCS pointer . 8-1
VMX-critical state. 8-1

unpaged protected mode 1-5
virtual-machine control structure (VMCS) . . 1-3
virtual-machine monitor (VMM) 1-1
VM entries and exits 1-2
VMCS pointer . 1-3
VMM life cycle . 1-2
See also: VMCS, VM entries, VM exits

VMXOFF instruction . 7-24
VMXON instruction . 7-26
VMX_BASIC MSR 2-2, 6-1
VMX_CR0_FIXED0 MSR 6-3
VMX_CR1_FIXED0 MSR 6-3
VMX_CR4_FIXED0 MSR 6-4
VMX_CR4_FIXED1 MSR 6-4
VMX_ENTRY_CTLS MSR 6-2
VMX_EXIT_CTLS MSR 6-2
VMX_MISC MSR . 2-5, 6-3
VMX_PINBASED_CTLS MSR 6-2
VMX_PROCBASED_CTLS MSR 6-2
VT-x

introduction . 1-1
See also: VMX

	Intel® Virtualization Technology Specification for the IA-32 Intel® Architecture
	CHAPTER 1 Introduction and VMX Overview
	1.1 About This Document
	1.2 Virtual Machine Architecture
	1.3 Introduction to VMX Operation
	1.4 Life Cycle of VMM Software
	1.5 Virtual-Machine Control Structure
	1.6 Discovering Support for VMX Operation
	1.7 Enabling and Entering VMX Operation
	1.8 Restrictions on VMX Operation

	CHAPTER 2 Virtual-Machine Control Structure
	2.1 Overview
	2.2 Format of the VMCS Region
	2.3 Organization of VMCS Data
	2.4 Guest-State Area
	2.4.1 Guest Register State
	2.4.2 Guest Non-Register State

	2.5 Host-State Area
	2.6 VM-Execution Control Fields
	2.6.1 Pin-Based VM-Execution Controls
	2.6.2 Processor-Based VM-Execution Controls
	2.6.3 Exception Bitmap
	2.6.4 I/O-Bitmap Addresses
	2.6.5 Time-Stamp Counter Offset
	2.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
	2.6.7 CR3-Target Controls
	2.6.8 Controls for CR8 Accesses

	2.7 VM-Exit Control Fields
	2.7.1 VM-Exit Controls
	2.7.2 VM-Exit Controls for MSRs

	2.8 VM-Entry Control Fields
	2.8.1 VM-Entry Controls
	2.8.2 VM-Entry Controls for MSRs
	2.8.3 VM-Entry Controls for Event Injection

	2.9 VM-Exit Information Fields
	2.9.1 Basic VM-Exit Information
	2.9.2 Information for VM Exits Due to Vectored Events
	2.9.3 Information for VM Exits That Occur During Event Delivery
	2.9.4 Information for VM Exits Due to Instruction Execution
	2.9.5 VM-Instruction Error Field

	2.10 Software Access to the VMCS and Related Structures
	2.10.1 Software Access to the Virtual-Machine Control Structure
	2.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
	2.10.3 Software Access to Related Structures
	2.10.4 The VMXON Region

	2.11 Using VMCLEAR to Initialize a VMCS Region

	CHAPTER 3 VMX Non-Root Operation
	3.1 Instructions That Cause VM Exits
	3.1.1 Relative Priority of IA-32 Faults and VM Exits
	3.1.2 Instructions That Cause VM Exits Unconditionally
	3.1.3 Instructions That Cause VM Exits Conditionally

	3.2 Other Causes of VM Exits
	3.3 Changes to Instruction Behavior in VMX Non-Root Operation
	3.4 Other Changes in VMX Non-Root Operation
	3.4.1 Event Blocking
	3.4.2 Treatment of Task Switches

	CHAPTER 4 VM Entries
	4.1 Basic VM-Entry Checks
	4.2 Checks on VMX Controls and Host-State Area
	4.2.1 Basic Checks on VMX Controls
	4.2.2 Checks on Physical Addresses and Referenced Data
	4.2.3 Checks on Host Control Registers and MSRs
	4.2.4 Checks on Segment and Descriptor-Table Registers
	4.2.5 Checks Related to Address-Space Size

	4.3 Checking and Loading Guest State
	4.3.1 Checks on the Guest State Area
	4.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
	4.3.1.2 Checks on Guest Segment Registers
	4.3.1.3 Checks on Guest Descriptor-Table Registers
	4.3.1.4 Checks on Guest RIP and RFLAGS
	4.3.1.5 Checks on Guest Non-Register State
	4.3.1.6 Checks on Guest Page-Directory Pointers

	4.3.2 Loading Guest State
	4.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
	4.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
	4.3.2.3 Loading Guest RIP, RSP, and RFLAGS
	4.3.2.4 Loading Page-Directory Pointers

	4.3.3 Clearing Address-Range Monitoring

	4.4 Loading MSRs
	4.5 Event Injection
	4.5.1 Details of Event Injection
	4.5.2 VM Exits During Event Injection

	4.6 Special Features of VM Entry
	4.6.1 Interruptibility State
	4.6.2 Activity State
	4.6.3 Delivery of Pending Debug Exceptions after VM Entry
	4.6.4 Interrupt-Window Exiting
	4.6.5 VM Entries and Advanced Debugging Features

	4.7 VM-Entry Failures Due to Guest State
	4.8 Machine Checks During VM Entry

	CHAPTER 5 VM Exits
	5.1 Architectural State Before a VM Exit
	5.2 Recording VM-Exit Information and Updating Controls
	5.2.1 Basic VM-Exit Information
	5.2.2 Information for VM Exits Due to Vectored Events
	5.2.3 Information for VM Exits During Event Delivery
	5.2.4 Information for VM Exits Due to Instruction Execution

	5.3 Saving Guest State
	5.3.1 Saving Control Registers, Debug Registers, and MSRs
	5.3.2 Saving Segment Registers and Descriptor-Table Registers
	5.3.3 Saving RIP, RSP, and RFLAGS
	5.3.4 Saving Non-Register State

	5.4 Saving MSRs
	5.5 Loading Host State
	5.5.1 Loading Host Control Registers, Debug Registers, MSRs
	5.5.2 Loading Host Segment and Descriptor-Table Registers
	5.5.3 Loading Host RIP, RSP, and RFLAGS
	5.5.4 Checking and Loading Host Page-Directory Pointers
	5.5.5 Updating Non-Register State
	5.5.6 Clearing Address-Range Monitoring

	5.6 Loading MSRs
	5.7 VMX Aborts
	5.8 Machine Check During VM Exit

	CHAPTER 6 VMX Capability Reporting
	6.1 Basic Information
	6.2 VM-Execution Controls
	6.3 VM-Exit Controls
	6.4 VM-Entry Controls
	6.5 Miscellaneous Data
	6.6 VMX-Fixed Bits in CR0
	6.7 VMX-Fixed Bits in CR4
	6.8 VMCS Enumeration

	CHAPTER 7 VMX Instruction Set Reference
	7.1 Overview
	7.2 Conventions
	7.3 VMX Instruction Reference
	VMCALL-Call to VM Monitor
	VMCLEAR-Clear Virtual-Machine Control Structure
	VMLAUNCH/VMRESUME-Launch/Resume Virtual Machine
	VMPTRLD-Load Pointer to Virtual-Machine Control Structure
	VMPTRST-Store Pointer to Virtual-Machine Control Structure
	VMREAD-Read Field from Virtual-Machine Control Structure
	VMRESUME-Resume Virtual Machine
	VMWRITE-Write Field to Virtual-Machine Control Structure
	VMXOFF-Leave VMX Operation
	VMXON-Enter VMX Operation

	CHAPTER 8 Interactions with SYstem-Management Mode
	8.1 Treatment of SMI Delivery
	8.2 Treatment of RSM
	8.3 Protection of CR4.VMXE in SMM

	APPENDIX A Basic Exit Reasons
	APPENDIX B VM-Instruction Error Numbers
	APPENDIX C Encodings of Fields in the VMCS
	C.1 16-Bit Fields
	C.1.1 16-Bit Guest-State Fields
	C.1.2 16-Bit Host-State Fields

	C.2 Full 64-Bit Fields
	C.2.1 Full 64-Bit Control Fields
	C.2.2 Full 64-Bit Guest-State Fields

	C.3 32-Bit Fields
	C.3.1 32-Bit Control Fields
	C.3.2 32-Bit Read-Only Data Fields
	C.3.3 32-Bit Guest-State Fields
	C.3.4 32-Bit Host-State Field

	C.4 Natural 64-Bit Fields
	C.4.1 Natural 64-Bit Control Fields
	C.4.2 Natural 64-Bit Read-Only Data Fields
	C.4.3 Natural 64-Bit Guest-State Fields
	C.4.4 Natural 64-Bit Host-State Fields

	INDEX

