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1 Introduction

This document describes the Intel® Virtualization Technology (Intel® VT) for Directed 1/0 (Intel® VT-
d); specifically, it describes the components supporting 1/0 virtualization as it applies to platforms
that use Intel® processors and core logic chipsets complying with Intel® platform specifications.

Figure 1-1 illustrates the general platform topology.

Processor Processor

@System Bus

North Bridge /\~I\
DMA & Interrupt Remapping W DRAM
Devices
PCIl Express South [[ PCI, LPC,

Devices Bridge Legacy devices

Figure 1-1. General Platform Topology

The document includes the following topics:
= An overview of 1/0 subsystem hardware functions for virtualization support.
= A brief overview of expected usages of the generalized hardware functions.
« The theory of operation of hardware, including the programming interface.

The following topics are not covered (or are covered in a limited context):

« Intel® Virtualization Technology for Intel® 64 Architecture. For more information, refer to the
“Intel® 64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide”.

1.1 Audience

This document is aimed at hardware designers developing Intel platforms or core-logic providing
hardware support for virtualization. The document is also expected to be used by Operating System
(0S) and Virtual Machine Monitor (VMM) developers utilizing the 1/0 virtualization hardware
functions.
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1.2

Glossary

The document uses the terms listed in the following table.

Table 1. Glossary
Term Definition

Context A hardware representation of state that identifies a device and the domain to which the device is assigned.

S:;feext— Remapping hardware cache that stores device to domain mappings

Device-TLB A translation cache at the endpoint device (as opposed to in the platform).

DMA Direct Memory Access: Address routed in-bound requests from 1/0 devices

DMA ; The act of translating the address in a DMA request to a host physical address (HPA)

Remapping :

Domain A collection of physical, logical, or virtual resources that are allocated to work together. Used as a generic term
for virtual machines, partitions, etc.

DMA Address in a DMA request: Depending on the software usage and hardware capabilities, DMA address can be

Address Guest Physical Address (GPA), Guest Virtual Address (GVA), Virtual Address (VA), or 1/0 Virtual Address (IOVA).

E:ar;itr;léevel Paging structures used in scalable-mode for first-level of DMA address translation.

First-Level Translation caches used by remapping hardware units to cache intermediate (non-leaf) entries of the first-level

Caches paging structures. These may include PML5 cache, PML4 cache, PDP cache, and PDE cache.

GAW Guest Address Width: Physical addressability limit within a partition (virtual machine)

GPA Guest Physical Address: the view of physical memory from software running in a partition (virtual machine).

Guest Software running within a virtual machine environment (partition).

GVA Guest Virtual Address: Processor virtual address used by software running in a partition (virtual machine).

HAW Host Address Width: the DMA physical addressability limit for a platform.

HPA Host Physical Address: Physical address used by hardware to access memory and memory-mapped resources.

IEC Interrupt Entry Cache: A translation cache in remapping hardware unit that caches frequently used interrupt-
remapping table entries.

1OTLB 1/0 Translation Lookaside Buffer: an address translation cache in remapping hardware unit that caches effective
translations from DVA (GPA) to HPA.

1/0xAPIC 1/0 Advanced Programmable Interrupt Controller

IOVA 1/0 Virtual Address: Virtual address created by software for use in 1/0 requests.

Interrupt The act of translating an interrupt request before it is delivered to the CPU complex

Remapping .

MGAW Maximum Guest Address Width: the maximum DMA virtual addressability supported by a remapping hardware
implementation.

MSI Message Signaled Interrupts.

Second- Translation caches used by remapping hardware units to cache intermediate (non-leaf) entries of the second-

Level level (SL) paging structures. Depending on the Guest Address Width supported by hardware, these may include

Caches SL-PML5 cache, SL-PML4 cache, SL-PDP cache, and SL-PDE cache.
Process Address Space ldentifier that identifies the address space targeted by DMA requests. For requests with

PASID PASID, the PASID value is provided in the PASID TLP prefix of the request. For requests without PASID, the
PASID value is programmed in the scalable-mode context-entry used to process the request.
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Table 1. Glossary
Term Definition
PASID- Remapping hardware cache that caches frequently accessed PASID-table entries used to translate DMA
cache requests.
Second-
Level Paging structures used for second-level of DMA address translation.
Paging
Source ID A 16-bit identification number to identify the source of a DMA or interrupt request. For PCI family devices this is
the ‘Requester ID’ which consists of PCI Bus number, Device number, and Function number.
Root- Refers to one or more hardware components that connect processor complexes to the 1/0 and memory
Complex subsystems. The chipset may include a variety of integrated devices.
VA Virtual Address: Virtual address used by software on a host processor.
VMM Virtual Machine Monitor: a software layer that controls virtualization. Also referred to as hypervisor in this
document.
X2APIC The extension of XAPIC architecture to support 32-bit APIC addressability of processors and associated
enhancements.
1.3 References
Table 2. References

Description

Intel® 64 Architecture Software Developer's Manuals
http://www.intel.com/sdm

PCI Express* Base Specification Revision 4.0, Version 1.0
http://www.pcisig.com/specifications/pciexpress

Intel® Scalable 1/0 Virtualization Architecture Specification, Version 1.0
https://software.intel.com/en-us/articles/intel-sdm#specification

ACPI Specification
http://www.acpi.info/

PCI Express™ to PCI/PCI-X Bridge Specification, Revision 1.0
http://www.pcisig.com/specifications/pciexpress/bridge
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2 Overview

This chapter provides a brief overview of Intel® VT, the virtualization software ecosystem it enables,
and hardware support offered for processor and 1/0 virtualization.

2.1 Intel® Virtualization Technology Overview

Intel VT consists of technology components that support virtualization of platforms based on Intel
processors, thereby enabling the running of multiple operating systems and applications in
independent partitions. Each partition behaves like a virtual machine (VM) and provides isolation and
protection across partitions. This hardware-based virtualization solution, along with virtualization
software, enables multiple usages such as server consolidation, activity partitioning, workload
isolation, embedded management, legacy software migration, and disaster recovery.

2.2 VMM and Virtual Machines

Intel VT supports virtual machine architectures comprised of two principal classes of software:

= Virtual-Machine Monitor (VMM): A VMM acts as a host and has full control of the processor(s)
and other platform hardware. VMM presents guest software (see below) with an abstraction of a
virtual processor and allows it to execute directly on a logical processor. A VMM is able to retain
selective control of processor resources, physical memory, interrupt management, and 1/0.

 Guest Software: Each virtual machine is a guest software environment that supports a stack
consisting of an operating system (OS) and application software. Each operates independently of
other virtual machines and uses the same interface to processor(s), memory, storage, graphics,
and 1/0 provided by a physical platform. The software stack acts as if it were running on a
platform with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

The VMM is a key component of the platform infrastructure in virtualization usages. Intel VT can
improve the reliability and supportability of virtualization infrastructure software with programming
interfaces to virtualize processor hardware. It also provides a foundation for additional virtualization
support for other hardware components in the platform.

2.3 Hardware Support for Processor Virtualization

Hardware support for processor virtualization enables simple, robust and reliable VMM software. VMM
software relies on hardware support on operational details for the handling of events, exceptions, and
resources allocated to virtual machines.

Intel VT provides hardware support for processor virtualization. For Intel® 64 processors, this support

consists of a set of virtual-machine extensions (VMX) that support virtualization of processor
hardware for multiple software environments by using virtual machines.
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2.4 1/0 Virtualization

A VMM must support virtualization of 1/0 requests from guest software. 1/0 virtualization may be
supported by a VMM through any of the following models:

< Emulation: A VMM may expose a virtual device to guest software by emulating an existing
(legacy) 1/0 device. VMM emulates the functionality of the 1/0 device in software over whatever
physical devices are available on the physical platform. 1/0 virtualization through emulation
provides good compatibility (by allowing existing device drivers to run within a guest), but pose
limitations with performance and functionality.

< New Software Interfaces: This model is similar to 1/0 emulation, but instead of emulating legacy
devices, VMM software exposes a synthetic device interface to guest software. The synthetic
device interface is defined to be virtualization-friendly to enable efficient virtualization compared
to the overhead associated with 1/0 emulation. This model provides improved performance over
emulation, but has reduced compatibility (due to the need for specialized guest software or
drivers utilizing the new software interfaces).

« Assignment: A VMM may directly assign the physical 1/0 devices to VMs. In this model, the driver
for an assigned 1/0 device runs in the VM to which it is assigned and is allowed to interact directly
with the device hardware with minimal or no VMM involvement. Robust 1I/0 assignment requires
additional hardware support to ensure the assigned device accesses are isolated and restricted to
resources owned by the assigned partition. The 1/0 assignment model may also be used to create
one or more 1/0 container partitions that support emulation or software interfaces for virtualizing
1/0 requests from other guests. The 1/0-container-based approach removes the need for running
the physical device drivers as part of VMM privileged software.

« 1/0 Device Sharing: In this model, which is an extension to the 1/0 assignment model, an 1/0
device supports multiple functional interfaces, each of which may be independently assigned to a
VM. The device hardware itself is capable of accepting multiple 1/0 requests through any of these
functional interfaces and processing them utilizing the device's hardware resources.

Depending on the usage requirements, a VMM may support any of the above models for 1/0
virtualization. For example, 1/0 emulation may be best suited for virtualizing legacy devices. 1/0
assignment may provide the best performance when hosting 1/0-intensive workloads in a guest.
Using new software interfaces makes a trade-off between compatibility and performance, and device
1/0 sharing provides more virtual devices than the number of physical devices in the platform.

2.5 Intel® Virtualization Technology For Directed 1/0
Overview
A general requirement for all of above 1/0 virtualization models is the ability to isolate and restrict

device accesses to the resources owned by the partition managing the device. Intel VT for Directed
1/0 provides VMM software with the following capabilities:

« 1/0 device assignment: for flexibly assigning 1/0 devices to VMs and extending the protection and
isolation properties of VMs for 1/0 operations.

< DMA remapping: for supporting address translations for Direct Memory Accesses (DMA) from
devices.

« Interrupt remapping: for supporting isolation and routing of interrupts from devices and external
interrupt controllers to appropriate VMs.

= Interrupt posting: for supporting direct delivery of virtual interrupts from devices and external
interrupt controllers to virtual processors.

« Reliability: for recording and reporting of DMA and interrupt errors to system software that may
otherwise corrupt memory or impact VM isolation.
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2.5.1 Hardware Support for DMA Remapping

To generalize 1/0 virtualization and make it applicable to different processor architectures and
operating systems, this document refers to domains as abstract isolated environments in the platform
to which a subset of host physical memory is allocated.

DMA remapping provides hardware support for isolation of device accesses to memory, and enables
each device in the system to be assigned to a specific domain through a distinct set of paging
structures. When the device attempts to access system memory, the DMA-remapping hardware
intercepts the access and utilizes the page tables to determine whether the access can be permitted;
it also determines the actual location to access. Frequently used paging structures can be cached in
hardware. DMA remapping can be configured independently for each device, or collectively across
multiple devices.

2.5.1.1 OS Usages of DMA Remapping

There are several ways in which operating systems can use DMA remapping:

= OS Protection: An OS may define a domain containing its critical code and data structures, and
restrict access to this domain from all 1/0 devices in the system. This allows the OS to limit
erroneous or unintended corruption of its data and code through incorrect programming of
devices by device drivers, thereby improving OS robustness and reliability.

e Feature Support: An OS may use domains to better manage DMA from legacy devices to high
memory (For example, 32-bit PCI devices accessing memory above 4GB). This is achieved by
programming the 1/0 page-tables to remap DMA from these devices to high memory. Without
such support, software must resort to data copying through OS “bounce buffers”.

< DMA Isolation: An OS may manage 1/0 by creating multiple domains and assigning one or more
1/0 devices to each domain. Each device-driver explicitly registers its 1/0 buffers with the OS, and
the OS assigns these 1/0 buffers to specific domains, using hardware to enforce DMA domain
protection. See Figure 2-2.

- Shared Virtual Memory: For devices supporting appropriate PCI Express! capabilities, OS may use
the DMA remapping hardware capabilities to share virtual address space of application processes
with 1/0 devices. Shared virtual memory along with support for 1/0 page-faults enable application
programs to freely pass arbitrary data-structures to devices such as graphics processors or
accelerators, without the overheads of pinning and marshalling of data.

System Memory System Memory
Domain 1 Domain 2
0S Code & Driver A Driver B
Data 1/0 Buffers 1/0 Buffers
Py Driver A ; Driver B
1/0 Buffers o I/0 Buffers I/0 Buffers| / /0 Buffers
S L — 3
DMA-Remapping Hardware |
x A
1/0 Devices Device A Device B

Device DMA without isolation

Device DMA isolated using DMA remapping hardware

Figure 2-2. Example OS Usage of DMA Remapping

1. Refer to Process Address Space ID (PASID) capability in PCI Express™ base specification.
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2.5.1.2 VMM Usages of DMA Remapping

The limitations of software-only methods for 1/0 virtualization can be improved through direct
assignment of 1/0 devices to partitions. With this approach, the driver for an assigned 1/0 device runs
only in the partition to which it is assigned and is allowed to interact directly with the device hardware
with minimal or no VMM involvement. The hardware support for DMA remapping enables this direct
device assignment without device-specific knowledge in the VMM. See Figure 2-3.

Virtual Machine (0) Virtual Machine (n) Virtual Machine (0) Virtual Machine (n)
| Aep | | App | | Aep | | App | | Aep | | App | | Aep | | App |
| Guest OS | | Guest OS | | Guest OS | | Guest OS |

river for Driver for ?ewcef Device B
Virtual Devices Virtual Devices Driver

A

w

VirtuaLMachine Monitor (VMM) or Hosting G
[ Virtual Devices Emulation |

& & VirtualiMachine Monitor (VMM) or Hosting OS
Device A Device B
Driver Driver

A

| DMA-Remapping Hardware |

] [ L1 -
Device A Device B Device A Device B

Example Software-based
110 Virtualization

Direct Assignment of I/0 Devices

Figure 2-3. Example Virtualization Usage of DMA Remapping

In this model, the VMM restricts itself to enabling direct assignment of devices to their partitions.
Rather than invoking the VMM for all 1/0 requests from a partition, the VMM is invoked only when
guest software accesses protected resources (such as configuration accesses, interrupt management,
etc.) that impact system functionality and isolation.

To support direct assignment of 1/0 devices, a VMM must enforce isolation of DMA requests. 1/0
devices can be assigned to domains, and the remapping hardware can be used to restrict DMA from
an 1/0 device to the physical memory presently owned by its domain. For domains that may be
relocated in physical memory, the remapping hardware can be programmed to perform the necessary
translation.

1/0 device assignment allows other 1/0 sharing usages — for example, assigning an 1/0 device to an
1/0 partition that provides 1/0 services to other user partitions. Remapping hardware enables
virtualization software to choose the right combination of device assignment and software-based
methods for 1/0 virtualization.

DMA-remapping also enables hardware based 1/0 virtualization technologies such as Single Root 1/0
Virtualization (SR-10V) and Intel® Scalable 1/0 Virtualization (Intel® Scalable 10V)1. with SR-10V
capability, a device Physical Function may be configured to support multiple Virtual Functions (VFs)

1. Refer to PCI Express* specification for SR-10V architecture details. Refer to Intel® Scalable 170
Virtualization architecture specification for Intel® Scalable 10V architecture details.
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that can be assigned to different partitions. Similarly with Intel Scalable 10V capability, a device
Physical Function may be configured to support multiple light-weight Assignable Device Interfaces
(ADIs) that can similarly be assigned to different partitions as virtual devices.

2.5.1.3 DMA Remapping Usages by Guests

A guest OS running in a VM may benefit from the availability of remapping hardware to support the
usages described in Section 2.5.1.1. To support such usages, the VMM may virtualize the remapping
hardware to its guests. For example, the VMM may intercept guest accesses to the virtual remapping
hardware registers, and manage a shadow copy of the guest remapping structures that is provided to
the physical remapping hardware. On updates to the guest 1/0 page tables, the guest software
performs appropriate virtual invalidation operations. The virtual invalidation requests may be
intercepted by the VMM, to update the respective shadow page tables and perform invalidations of
remapping hardware. Due to the non-restartability of faulting DMA transactions (unlike CPU memory
management virtualization), a VMM cannot perform lazy updates to its shadow remapping structures.
To keep the shadow structures consistent with the guest structures, the VMM may expose virtual
remapping hardware with eager pre-fetching behavior (including caching of not-present entries) or
use processor memory management mechanisms to write-protect the guest remapping structures.

On hardware implementations supporting two levels of address translations (first-level translation to
remap a virtual address to intermediate (guest) physical address, and second-level translations to
remap a intermediate physical address to machine (host) physical address), a VMM may virtualize
guest OS use of first-level translations without shadowing page-tables, but by configuring hardware to
perform nested translation of first and second-levels.

2.5.1.4 Interaction with Processor Virtualization

Figure 2-4 depicts how system software interacts with hardware support for both processor-level
virtualization and Intel VT for Directed 1/0.

Virtual Machines

0Ss

el

‘ Virtual Machine Monitor (VMM) ‘

Physical Memory

[ DMA CPU Accesses |
Del\//(if:es . Logical
DMA CPU Memory Processors
Remapping Virtualization

Figure 2-4. Interaction Between 1/0 and Processor Virtualization

The VMM manages processor requests to access physical memory via the processor’s memory
management hardware. DMA requests to access physical memory use remapping hardware. Both
processor memory management and DMA memory management are under the control of the VMM.
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2.5.2 Hardware Support for Interrupt Remapping

Interrupt remapping provides hardware support for remapping and routing of interrupt requests from
1/0 devices (generated directly or through 1/0 interrupt controllers). The indirection achieved through
remapping enables isolation of interrupts across partitions.

The following usages are envisioned for the interrupt-remapping hardware.

2.5.2.1 Interrupt Isolation

On Intel® architecture platforms, interrupt requests are identified by the Root-Complex as write
transactions targeting an architectural address range (OXFEEx_xxxxh). The interrupt requests are
self-describing (i.e., attributes of the interrupt request are encoded in the request address and data),
allowing any DMA initiator to generate interrupt messages with arbitrary attributes.

The interrupt-remapping hardware may be utilized by a Virtual Machine Monitor (VMM) to improve the
isolation of external interrupt requests across domains. For example, the VMM may utilize the
interrupt-remapping hardware to distinguish interrupt requests from specific devices and route them
to the appropriate VMs to which the respective devices are assigned. The VMM may also utilize the
interrupt-remapping hardware to control the attributes of these interrupt requests (such as
destination CPU, interrupt vector, delivery mode etc.).

Another example usage is for the VMM to use the interrupt-remapping hardware to disambiguate
external interrupts from the VMM owned inter-processor interrupts (IPIs). Software may enforce this
by ensuring none of the remapped external interrupts have attributes (such as vector number) that
matches the attributes of the VMM IPIs.

2.5.2.2 Interrupt Migration

The interrupt-remapping architecture may be used to support dynamic re-direction of interrupts when
the target for an interrupt request is migrated from one logical processor to another logical processor.
Without interrupt-remapping hardware support, re-balancing of interrupts require software to re-
program the interrupt sources. However re-programming of these resources are non-atomic (requires
multiple registers to be re-programmed), often complex (may require temporary masking of interrupt
source), and dependent on interrupt source characteristics (e.g. no masking capability for some
interrupt sources; edge interrupts may be lost when masked on some sources, etc.)

Interrupt-remapping enables software to efficiently re-direct interrupts without re-programming the
interrupt configuration at the sources. Interrupt migration may be used by OS software for balancing
load across processors (such as when running 1/0 intensive workloads), or by the VMM when it
migrates virtual CPUs of a partition with assigned devices across physical processors to improve CPU
utilization.

2.5.2.3 X2APIC Support

Intel® 64 x2APIC architecture extends the APIC addressability to 32-bits (from 8-bits). Refer to Intel®
64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide for details.

Interrupt remapping enables x2APICs to support the expanded APIC addressability for external

interrupts without requiring hardware changes to interrupt sources (such as I/0xAPICs and MSI/MSI-
X devices).
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2.5.3 Hardware Support for Interrupt Posting

Interrupt posting includes hardware support for optimized processing of interrupt requests from 1/0
devices (Physical Functions, SR-10V Virtual Functions, or Intel® Scalable 10V Assignable Device
Interfaces (ADIs)) that are directly assigned to a virtual machine. The following usages are envisioned
for the interrupt-posting hardware.

2.5.3.1 Interrupt Vector Scalability

Devices supporting 1/0 virtualization capabilities such as SR-10V and/or Intel® Scalable 10V, virtually
increases the 1/0 fan-out of the platform, by allowing multiple Virtual Functions (VFs) or Assignable
Device Interfaces (ADIs) to be enabled for a Physical Function (PF). Any of these PFs, VFs or ADIs can
be assigned to a virtual machine. Interrupt requests from such assigned devices/resources are
referred to as virtual interrupts as they target virtual processors of the assigned VM.

Each VF or ADI requires its own independent interrupt resources, resulting in more interrupt vectors
needed than otherwise required without such 1/0 virtualization. Without interrupt-posting hardware
support, all interrupt sources in the platform are mapped to the same physical interrupt vector space
(8-bit vector space per logical CPU on Intel® 64 processors). For virtualization usages, partitioning the
physical vector space across virtual processors is challenging in a dynamic environment when there is
no static affinity between virtual process and logical processors.

Hardware support for interrupt posting addresses this vector scalability problem by allowing interrupt
requests from device functions/resources assigned to virtual machines to operate in virtual vector
space, thereby scaling naturally with the number of virtual machines or virtual processors.

2.5.3.2 Interrupt Virtualization Efficiency

Without hardware support for interrupt posting, interrupts from devices assigned to virtual machines
are processed through the VMM software. Specifically, whenever an external interrupt destined for a
virtual machine is received by the CPU, control is transferred to the VMM, requiring the VMM to
process and inject corresponding virtual interrupt to the virtual machine. The control transfers
associated with such VMM processing of external interrupts incurs both hardware and software
overheads.

With hardware support for interrupt posting, interrupts from devices (PFs, VFs, or ADISs) assigned to
virtual machines are posted (recorded) in memory descriptors specified by the VMM, and processed
based on the running state of the virtual processor targeted by the interrupt.

For example, if the target virtual processor is running on any logical processor, hardware can directly
deliver external interrupts to the virtual processor without any VMM intervention. Interrupts received
while the target virtual processor is preempted (waiting for its turn to run) can be accumulated in
memory by hardware for delivery when the virtual processor is later scheduled. This avoids disrupting
execution of currently running virtual processors on external interrupts for non-running virtual
machines. If the target virtual processor is halted (idle) at the time of interrupt arrival or if the
interrupt is qualified as requiring real-time processing, hardware can transfer control to VMM,
enabling VMM to schedule the virtual processor and have hardware directly deliver pending interrupts
to that virtual processor.

This target virtual processor state based processing of interrupts reduces overall interrupt latency to
virtual machines and reduces overheads otherwise incurred by the VMM for virtualizing interrupts.

2.5.3.3 Virtual Interrupt Migration

To optimize overall platform utilization, VMM software may need to dynamically evaluate the optimal
logical processor to schedule a virtual processor, and in that process, migrate virtual processors
across CPUs. For virtual machines with assigned devices, migrating a virtual processor across logical
processors either incurs the overhead of forwarding interrupts in software (e.g., via VMM generated
IPIs), or complexity to independently migrate each interrupt targeting the virtual processor to the
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new logical processor. Hardware support for interrupt posting enables VMM software to atomically co-
migrate all interrupts targeting a virtual processor when the virtual processor is scheduled to another
logical processor.
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3 DMA Remapping

This chapter describes the hardware architecture for DMA remapping. The architecture envisions
remapping hardware to be implemented in the Root-Complex integrated into the Processor complex
or in core logic chipset components.

3.1 Types of DMA requests

Remapplng hardware treats inbound memory requests from root-complex integrated devices and PCI
Express” attached discrete devices into two categories:

« Requests without address-space-identifier: These are the normal memory requests from endpoint
devices. These requests typically specify the type of access (read/write/atomics), targeted DMA
address/size, and source-id of the device originating the request (e.g. Bus/Dev/Function).

< Requests with address-space-identifier: These are memory requests with additional information
identifying the targeted address space from endpoint devices. Beyond attributes in normal
requests, these requests specify the targeted process address space identifier (PASID), and
optional attributes such as Execute-Requested (ER) flag (to indicate reads that are instruction
fetches), and Privileged-mode-Requested (PR) flag (to distinguish user versus supervisor access).
For details, refer to the Process Address Space ID (PASID) Capability in the PCI Express
specification.

For simplicity, this document refers to these categories as Requests-without-PASID, and
Requests-with-PASID. Tagging requests of a DMA stream with a unique PASID enables scalable and
fine-grained sharing of 1/0 devices, and operation of devices with a host application’s virtual memory.
Later sections describe these usages for Requests-with-PASID. Versions of this specification prior to
revision 2.0 supported only remapping of requests-without-PASID.

3.2 Domains and Address Translation

A domain is abstractly defined as an isolated environment in the platform, to which a subset of the
host physical memory is allocated. 1/0 devices that are allowed to access physical memory directly
are allocated to a domain and are referred to as the domain’s assigned devices. For virtualization
usages, software may treat each virtual machine as a domain.

The isolation property of a domain is achieved by blocking access to its physical memory from
resources not assigned to it. Multiple isolated domains are supported in a system by ensuring that all
1/0 devices are assigned to some domain (possibly a null domain), and that they can only access the
physical resources allocated to their domain. The DMA remapping architecture facilitates flexible
assignment of 1/0 devices to an arbitrary number of domains. Each domain has a view of physical
address space that may be different than the host physical address space. Remapping hardware
treats the address in inbound requests as DMA Address. Depending on the software usage model, the
DMA address space of a device (be it a Physical Function, SR-10V Virtual Function, or Intel® Scalable
IOV Assignable Device Interface (ADI)) may be the Guest-Physical Address (GPA) space of a virtual
machine to which it is assigned, Virtual Address (VA) space of host application on whose behalf it is
performing DMA requests, Guest Virtual Address (GVA) space of a client application executing within a
virtual machine, 1/0 virtual address (IOVA) space managed by host software, or Guest 1/0 virtual
address (GIOVA) space managed by guest software. In all cases, DMA remapping transforms the
address in a DMA request issued by an 1/0 device to its corresponding Host-Physical Address (HPA).
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Figure 3-5 illustrates DMA address translation. 1/0 devices 1 and 2 are assigned to domains 1 and 2,
respectively. The software responsible for creating and managing the domains allocates system
physical memory for both domains and sets up the DMA address translation function. DMA address in
requests initiated by devices 1 & 2 are translated to appropriate HPAs by the remapping hardware.
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Figure 3-5. DMA Address Translation

The host platform may support one or more remapping hardware units. Each hardware unit supports
remapping DMA requests originating within its hardware scope. For example, a desktop platform may
expose a single remapping hardware unit in its processor complex that translates all DMA
transactions. A server platform with one or more core components may support independent
translation hardware units in each component, each translating DMA requests originating within its
1/0 hierarchy (such as a PCI Express root port). The architecture supports configurations in which
these hardware units may either share the same translation data structures (in system memory) or
use independent structures, depending on software programming.

The remapping hardware translates the address in a request to host physical address (HPA) before
further hardware processing (such as address decoding, snooping of processor caches, and/or
forwarding to the memory controllers).

3.3 Remapping Hardware - Software View

The remapping architecture allows hardware implementations supporting a single PCl segment group
to expose (to software) the remapping function either as a single hardware unit covering the entire
PCI segment group, or as multiple hardware units, each supporting a mutually exclusive subset of
devices in the PCI segment group hierarchy. For example, an implementation may expose a
remapping hardware unit that supports one or more integrated devices on the root bus, and
additional remapping hardware units for devices behind one or a set of PCl Express root ports. The
platform firmware (BIOS) reports each remapping hardware unit in the platform to software. Chapter
8 describes the reporting structure through ACPI constructs.

For hardware implementations supporting multiple PCl segment groups, the remapping architecture

requires hardware to expose independent remapping hardware units (at least one per PCI segment
group) for processing requests originating within the 1/0 hierarchy of each segment group.

3.4 Mapping Devices to Domains

The following sub-sections describe the DMA remapping architecture and data structures used to map
1/0 devices to domains.
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3.4.1 Source ldentifier

Each inbound request appearing at the address-translation hardware is required to identify the device
originating the request. The attribute identifying the originator of an 1/0 transaction is referred to as
the “source-id” in this document. The remapping hardware may determine the source-id of a
transaction in implementation-specific ways. For example, some 1/0 bus protocols may provide the
originating device identity as part of each 1/0 transaction. In other cases (for Root-Complex
integrated devices, for example), the source-id may be derived based on the Root-Complex internal
implementation.

For PCI Express devices, the source-id is the requester identifier in the PCI Express transaction layer
header. The requester identifier of a device, which is composed of its PCI Bus/Device/Function
number, is assigned by configuration software and uniquely identifies the hardware function that
initiated the request. Figure 3-6 illustrates the Requester-id1 as defined by the PCI Express
Specification.

-

5 87 32 0

Bus # Device # Function #

Figure 3-6. Requester Identifier Format

The following sections describe the data structures for mapping 1/0 devices to domains.

1. For PCI Express devices supporting Alternative Routing-ID Interpretation (ARI), bits traditionally
used for the Device Number field in the Requester-id are used instead to expand the Function
Number field.
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3.4.2 Legacy Mode Address Translation

Figure 3-7 illustrates device to domain mapping in legacy mode.
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Figure 3-7. Device to Domain Mapping Structures in Legacy Mode

The root-table functions as the top level structure to map devices to their respective domains. The
location of the root-table in system memory is programmed through the Root Table Address Register
described in Section 10.4.6. Root Table Address Register (RTADDR_REG) points to a root-table when
Translation Table Mode field in RTADDR_REG register is programmed to legacy mode
(RTADDR_REG.TTM is 00b). The root-table is 4-KByte in size and contains 256 root-entries to cover
the PCI bus number space (0-255). The bus number (upper 8-bits) encoded in a request’s source-id
field is used to index into the root-entry structure.The root-table-entry contains the context-table
pointer which references the context-table for all the devices on the bus identified by the root-entry.

A context-entry maps a specific 1/0 device on a bus to the domain to which it is assigned, and, in
turn, to the address translation structures for the domain. Each context-table contains 256 entries,
with each entry corresponding to a PCI device function on the bus. For a PCI device, the device and
function numbers (lower 8-bits) of source-id are used to index into the context-table.

Multiple devices may be assigned to the same domain by programming the context-entries for the
devices to reference the same translation structures, and programming them with the same domain
identifier. Root-entry format is described in Section 9.1 and context-entry format is described in
Section 9.3.
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3.4.3 Scalable Mode Address Translation

For implementations supporting Scalable Mode Translation (SMTS=1 in Extended Capability Register),
the Root Table Address Register (RTADDR_REG) points to a scalable-mode root-table when the
Translation Table Mode field in the RTADDR_REG register is programmed to scalable-mode
(RTADDR_REG.TTM is 01b). The scalable-mode root-table is similar to the root-table (4KB in size and
containing 256 scalable-mode root-entries to cover the 0-255 PCI bus number space), but has a
different format to reference scalable-mode context-entries. Each scalable-mode root-entry
references a lower scalable-mode context-table and a upper scalable-mode context-table.

The lower scalable-mode context-table is 4-KByte in size and contains 128 scalable-mode context-
entries corresponding to PCI functions in device range 0-15 on the bus. The upper scalable-mode
context-table is also 4-KByte in size and contains 128 scalable-mode context-entries corresponding to
PCI functions in device range 16-31 on the bus. Scalable-mode context-entries support both
requests-without-PASID and requests-with-PASID. However unlike legacy mode, in scalable-mode,
requests-without-PASID obtain a PASID value from the scalable-mode context-entry and are
processed similarly to requests-with-PASID.

The scalable-mode context-entry contains a pointer to a scalable-mode PASID directory. The upper 14
bits (bits 19:6) of the request’s PASID value are used to index into the scalable-mode PASID
directory. Each present scalable-mode PASID directory entry contains a pointer to a scalable-mode
PASID-table. The lower 6 bits (bits 5:0) of the request's PASID value are used to index into the
scalable-mode PASID-table. The PASID-table entries contain pointers to both first-level and second-
level translation structures, along with PASID Granular Translation Type (PGTT) field which specifies
whether the request undergoes a first-level, second-level, nested, or pass-through translation
process.

Figure 3-8 illustrates device to domain mapping with scalable-mode context-table.
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Figure 3-8. Device to Domain Mapping Structures in Scalable Mode

The scalable-mode root-entry format is described in Section 9.2, the scalable-mode context-entry
format is described in Section 9.4, the scalable-mode PASID-directory-entry format is described in
Section 9.5, and the scalable-mode PASID-table entry format is described in Section 9.6.
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Note: Prior version of this specification supported a limited form of address translation for
requests-with-PASID, that was referred to as Extended Mode address translation
(enumerated through ECAP_REG bit 24). This mode is no longer supported and
replaced with Scalable Mode address translation. ECAP_REG bit 24 must be reported
as 0 in all future implementations to ensure software backward compatibility.

3.5 Hierarchical Translation Structures

DMA remapping uses hierarchical translation structures for both first-level translation and second-
level translation.

For first-level only translation and second-level only translation, the DMA-address in the request is
used as the input address. For nested translation, any address generated by first-level translation
(both addresses to access first-level translation structures and the output address from first-level
translation) is used as the input address for nesting with second-level translation. Section 3.6,
Section 3.7 and Section 3.8 provides more details on first-level, second-level, and nested translation
respectively.

Every paging structure in the hierarchy is 4-KByte in size, with 512 8-Byte entries. Remapping
hardware uses the upper portion of the input address to identify a series of paging-structure entries.
The last of these entries identifies the physical address of the region to which the input address
translates (called the page frame). The lower portion of the input address (called the page offset)
identifies the specific offset within that region to which the input address translates. Each paging-
structure entry contains a physical address, which is either the address of another paging structure or
the address of a page frame. First-level translation supports a 4-level structure or a 5-level structure.
Second-level translation supports an N-level structure, where the value of N depends on the Guest
Address Width (GAW) supported by an implementation as enumerated in the Capability Register.

The paging structures support a base page-size of 4-KByte. The page-size field in paging entries
enable larger page allocations. When a paging entry with the page-size field Set is encountered by
hardware on a page-table walk, the translated address is formed immediately by combining the page-
base-address in the paging-entry with the unused input address bits. The remapping architecture
defines support for 2-MByte and 1-GByte large-page sizes. Implementations report support for each
large page size through the Capability Register.
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Figure 3-9 illustrates the paging structure for translating a 48-bit address to a 4-KByte page.
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Figure 3-9. Address Translation to a 4-KByte Page

Figure 3-10 illustrates the paging structure for translating a 48-bit address to a 2-MByte large page.
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Figure 3-10. Address Translation to a 2-MByte Large Page
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Figure 3-11 illustrates the paging structure for translating a 48-bit address to a 1-GByte large page.
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Figure 3-11. Address Translation to a 1-GByte Large Page

3.6 First-Level Translation

Scalable-mode context-entries can be configured to translate requests (with or without PASID) using
first-level translation. Requests-without-PASID use the PASID value configured in the RID_PASID field
in the scalable-mode context-entry to process the request.

First-level translation restricts the input-address to a canonical address (i.e., address bits 63:N have
the same value as address bit [N-1], where N is 48-bits with 4-level paging and 57-bits with 5-level
paging). Requests subject to first-level translation by remapping hardware are subject to canonical
address checking as a pre-condition for first-level translation, and a violation is treated as a
translation-fault. Chapter 7 provides details of translation-fault conditions and how they are reported
to software.

First-level translation supports the same paging structures as Intel 64 processors when operating in
64-bit mode. Table 3 gives the different names of the first-level translation structures, that are given
based on their use in the translation process. It also provides, for each structure, the source of the
physical-address used to locate it, the bits in the input-address used to select an entry from the
structure, and details of whether and how such an entry can map a page. Section 9.7 describes the
format of each of these paging structures in detail. For implementations supporting 5-level paging for
first-level translation, 4-level versus 5-level paging is selected based on the programming of the First
level Paging Mode (FLPM) field in the corresponding scalable-mode PASID-table entry (see

Section 9.5 and Section 9.6).
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Table 3. First-level Paging Structures
Pagi Ent : Bits Selecti .
Stri%ltrbgtj’e Ngn?é Physical Address of Structure Its Er?t?)? ng Page Mapping

PML5 table PMLSE Scalable-mode F’ASID-tabIe entry 56:48 N/A
(for 5-level paging)
PML5E (for 5-level paging); 47:39 N/A

PML4 table PML4E scalable-mode PASID-table entry
(for 4-level paging)

Page-directory- PDPE PML4E 38:30 1-GByte page (if Page-Size (PS) field

pointer table is Set)

Page directory PDE PDPE 29:21 2-MByte page (if Page-Size (PS) field

is Set)
Page table PTE PDE 20:12 4-KByte page

First-level translation may map input addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.
Support for 4-KByte pages and 2-Mbyte pages are mandatory for first-level translation.
Implementations supporting 1-GByte pages report it through the FL1GP field in the Capability
Register (see Section 10.4.2). Figure 3-9 illustrates the translation process when it produces a 4-
KByte page; Figure 3-10 covers the case of a 2-MByte page; Figure 3-11 covers the case of a 1-GByte

page.
The following describe the first-level translation in more detail and how the page size is determined:

< When 5-level page-tables are used for first-level translation, a 4-KByte naturally aligned PML5
table is located at the physical address specified in First-level-page-table-pointer (FLPTPTR) field
in the scalable-mode PASID-table entry (see Section 9.5 and Section 9.6). A PML5 table
comprises 512 64-bit entries (PML5ESs). A PML5E is selected using the physical address defined as
follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 56:48 of the input address.

— Bits 12 and higher are from the FLPTPTR field in the scalable-mode PASID-table entry.

Because a PMLS5E is identified using bits 63:48 of the input address, it controls access to a 256-
TByte region of the input-address space.

< When 5-level page-tables are used for first-level translation, a 4-KByte naturally aligned PML4
table is located at the physical address specified in address (ADDR) field in the PML5E (see
Table 29). If 4-level page-tables are used for first-level translation, the 4-KByte naturally aligned
PMLA4 table is located at the physical address specified in First-level-page-table-pointer (FLPTPTR)
field in the PASID-table entry (see Section 9.5). A PML4 table comprises 512 64-bit entries
(PML4Es). A PMLA4E is selected using the physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 47:39 of the input address.

— Bits 12 and higher are from the ADDR field in the PML5E (with 5-level page-tables) or from

the FLPTPTR field in the scalable-mode PASID-table entry (with 4-level page-tables).
Because a PMLA4E is identified using bits 63:39 of the input address, it controls access to a 512-
GByte region of the input-address space.

= A 4-KByte naturally aligned page-directory-pointer table is located at the physical address
specified in address (ADDR) field in the PML4E (see Table 30). A page-directory-pointer table
comprises 512 64-bit entries (PDPEs). A PDPE is selected using the physical address defined as
follows:

— Bits 2:0 are all O.
— Bits 11:3 are bits 38:30 of the input address.

Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010 3-9



[ ] ®
DMA Remapping—lntel® Virtualization Technology for Directed 170 l n tel ’

— Bits 12 and higher are from the ADDR field in the PML4E.

Because a PDPE is identified using bits 63:30 of the input address, it controls access to a 1-GByte
region of the input-address space. Use of the PDPE depends on its page-size (PS) field:

If the PDPE’s PS field is 1, the PDPE maps a 1-GByte page (see Table 31). The final physical
address is computed as follows:

— Bits 29:0 are from the input address.
— Bits 30 and higher are from the ADDR field in the PDPE.

If the PDPE’s PS field is O, a 4-KByte naturally aligned page directory is located at the physical
address specified in the address (ADDR) field in the PDPE (see Table 32). A page directory
comprises 512 64-bit entries (PDESs). A PDE is selected using the physical address defined as
follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 29:21 of the input address.

— Bits 12 and higher are from the ADDR field in the PDPE.

Because a PDE is identified using bits 63:21 of the input address, it controls access to a 2-MByte
region of the input-address space. Use of the PDPE depends on its page-size (PS) field:

If the PDE’s PS field is 1, the PDE maps a 2-MByte page (see Table 33). The final physical address
is computed as follows:

— Bits 20:0 are from the input address.
— Bits 21 and higher are from the ADDR field in the PDE.

If the PDE’s PS field is O, a 4-KByte naturally aligned page table is located at the physical address
specified in the address (ADDR) field in the PDE (see Table 34). A page table comprises 512 64-bit
entries (PTEs). A PTE is selected using the physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 20:12 of the input address.

— Bits 12 and higher are from the ADDR field in the PDE.

Because a PTE referenced by a PDE is identified using bits 63:12 of the input address, every such
PTE maps a 4-KByte page (Table 35). The final page address is translated as follows:

— Bits 11:0 are from the input address.
— Bits 12 and higher are from the ADDR field in the PTE.

If a paging-structure entry’s Present (P) field (bit O) is O or if the entry sets any reserved field, the
entry is used neither to reference another paging-structure entry nor to map a page. A reference
using a input address whose translation would use such a paging-structure entry causes a translation
fault (see Chapter 7).

The following bits are reserved with first-level translation:

3-10

If the P field of a paging-structure entry is 1, bits 51:HAW (Host Address Width) are reserved.
If the P field of a PML5E is 1, the PS field is reserved.

If the P field of a PML4E is 1, the PS field is reserved.

If 1-GByte pages are not supported and the P field of a PDPE is 1, the PS field is reserved.

If the P field and PS field of a PDPE are both 1, bits 29:13 are reserved.

If the P field and PS field of a PDE are both 1, bits 20:13 are reserved.

If Extended-Accessed flag is not supported, the EA field in the paging entries are ignored.

If No-Execute-Enable (NXE) field is O in the scalable-mode context-entry and the P field of a
paging-structure entry is 1, the Execute-Disable (XD) field is reserved.
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3.6.1 Access Rights

Requests can result in first-level translation faults for either of two reasons: (1) there is no valid
translation for the input address; or (2) there is a valid translation for the input address, but its
access rights do not permit the access. Chapter 7 provides detailed hardware behavior on translation
faults and reporting to software.

The accesses permitted for a request whose input address is successfully translated through first-level
translation is determined by the attributes of the request and the access rights specified by the
paging-structure entries controlling the translation.

Devices report support for requests-with-PASID through the PCI Express PASID Capability structure.
The PASID Capability allows software to query and control if the endpoint can issue requests-with-
PASID that request execute permission (such as for instruction fetches) and requests with supervisor-
privilege. Remapping hardware implementations report support for requests seeking execute
permission and requests seeking supervisor privilege through the Extended Capability Register (see
ERS and SRS fields in Section 10.4.3).

The following describes how first-level translation determines access rights:

= For requests with supervisor privilege (value of 1 in Privilege-mode-Requested (PR) field)
processed through a scalable-mode PASID-table entry with SRE (Supervisor Requests Enable)
field Set:

— Data reads (Read requests with value of O in Execute-Requested (ER) field)
= Data reads are allowed from any input address with a valid translation.
— Instruction Fetches (Read requests with value of 1 in Execute-Requested (ER) field)

= If No-Execute-Enable (NXE) field in the scalable-mode PASID-table entry used to translate
the request is O

— If the Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-
table entry used to translate the request is O, instructions may be fetched from any
input address with a valid translation.

— If the Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-
table entry used to translate the request is 1, instructions may be fetched from any
input address with a valid translation for which the U/S field (bit 2) is O in at least one of
the paging-structure entries controlling the translation.

= If No-Execute-Enable (NXE) field in scalable-mode PASID-table entry used to translate
request is 1

— If Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-table
entry used to translate the request is O, instructions may be fetched from any input
address with a valid translation for which the XD field (bit 63) is O in every paging-
structure entry controlling the translation.

— If Supervisor-Mode-Execute-Protection (SMEP) field in the scalable-mode PASID-table
entry used to translate the request is 1, instructions may be fetched from any input
address with a valid translation for which the U/S field is O in at least one of the paging-
structure entries controlling the translation and the XD field is O in every paging-
structure entry controlling the translation.

— Write requests and Atomics requests

= If Write-Protect-Enable (WPE) field in the scalable-mode PASID-table entry used to
translate the request is 0, writes are allowed to any input address with a valid translation.

- If WPE is 1, writes are allowed to any input address with a valid translation for which the
R/W field (bit 1) is 1 in every paging-structure entry controlling the translation.

= For requests with user privilege (value of O in Privilege-mode-Requested (PR) field):
— Data reads (Read requests with value of O in Execute-Requested (ER) field)
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- Data reads are allowed from any input address with a valid translation for which the U/S
field is 1 in every paging-structure entry controlling the translation.

— Instruction fetches (Read requests with value of 1 in Execute-Requested (ER) field)

= If No-Execute-Enable (NXE) field in the scalable-mode PASID-table entry used to translate
the request is 0, instructions may be fetched from any input address with a valid translation
for which the U/S field is 1 in every paging structure entry controlling the translation.

= If No-Execute-Enable (NXE) field in the scalable-mode PASID-table entry used to translate
the request is 1, instructions may be fetched from any input address with a valid translation
for which the U/S field is 1 and XD field is O in every paging-structure entry controlling the
translation.

— Write requests and Atomics requests

= Writes are allowed to any input address with a valid translation for which the R/W field and
the U/S field are 1 in every paging-structure entry controlling the translation.

Remapping hardware may cache information from the paging-structure entries in translation caches.
These caches may include information about access rights. Remapping hardware may enforce access
rights based on these caches instead of on the paging structures in memory. This fact implies that, if
software modifies a paging-structure entry to change access rights, the hardware might not use that
change for a subsequent access to an affected input address. Refer to Chapter 6 for details on
hardware translation caching and how software can enforce consistency with translation caches when
modifying paging structures in memory.

3.6.2 Accessed, Extended Accessed, and Dirty Flags

For any paging-structure entry that is used during first-level translation, bit 5 is the Accessed (A) flag.
For first-level paging-structure entries referenced through a scalable-mode PASID-table entry with
EAFE=1, bit 10 is the Extended-Accessed flag. For paging-structure entries that map a page (as
opposed to referencing another paging structure), bit 6 is the Dirty (D) flag. These flags are provided
for use by memory-management software to manage the transfer of pages and paging structures into
and out of physical memory.

= Whenever the remapping hardware uses a first-level paging-structure entry as part of input-
address translation, it atomically sets the A field in that entry (if it is not already set).

- If the Extended-Accessed-Flag-Enable (EAFE) is 1 in a scalable-mode PASID-table entry that
references a first-level paging-structure entry used by the remapping hardware, it atomically sets
the EA field in that entry. Whenever EA field is atomically set, the A field is also set in the same
atomic operation. For software usages where the first-level paging structures are shared across
heterogeneous agents (e.g., CPUs and accelerator devices such as GPUs), the EA flag may be
used by software to identify pages accessed by non-CPU agent(s) (as opposed to the A flag which
indicates access by any agent sharing the paging structures).

= Whenever there is a write to a input address, the remapping hardware atomically sets the D field
(if it is not already set) in the paging-structure entry that identifies the final translated address for
the input address (either a PTE or a paging-structure entry in which the PS field is 1). The atomic
operation that sets the D field also sets the A field (and the EA field, if EAFE=1 as described
above).

Memory-management software may clear these flags when a page or a paging structure is initially
loaded into physical memory. These flags are “sticky”, meaning that, once set, the remapping
hardware does not clear them; only software can clear them.

Remapping hardware may cache information from the first-level paging-structure entries in
translation caches (see Chapter 6). These caches may include information about accessed, extended-
accessed, and dirty flags. This fact implies that, if software modifies an accessed flag, extended-
accessed flag, or a dirty flag from 1 to O, the hardware might not set the corresponding bit in memory
on a subsequent access using an affected input address. Refer to Chapter 6 for details on hardware
translation caching and how software can enforce consistency with translation caches when modifying
paging structures in memory.

3-12 Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010



"] ®
l n tel Intel® Virtualization Technology for Directed 1/0—DMA Remapping

3.7 Second-Level Translation

Context entries and scalable-mode PASID-Table entries can be configured to support second-level
translation. With context entries, second-level translation applies only to requests-without-PASID.
With scalable-mode PASID-Table entries, second-level translation can be applied to all requests (with
or without PASID), and can be applied nested with first-level translation for all requests (with or
without PASID). This section describes the use of second-level translation without nesting.

Section 3.8 describes the nested use of second-level translation.

Each context entry contains a pointer to the base of a second-level translation structure. Section 9.3
describe the exact format of the context entry. Scalable-mode context-entries reference a scalable-
mode PASID structure. Each scalable-mode PASID-table entry contains a pointer to the base of a
second-level translation structure. Second-level translation restricts the input-address to an
implementation-specific address-width reported through the Maximum Guest Address Width (MGAW)
field in the Capability Register. The input address is subject to MGAW address checking, and any
violations are treated as a translation fault. Chapter 7 provides details of fault conditions and its
reporting to software.

Second-level translation uses a hierarchical paging structure as described in Section 3.5. To allow
page-table walks with 9-bit stride, the Adjusted Guest Address Width (AGAW) value for a domain is
defined as its Guest Address Width (GAW) value adjusted, such that (AGAW-12) is a multiple of 9.
The AGAW indicates the number of levels of page walk. Hardware implementations report the
supported AGAWSs through the Capability Register. Second-level translation may map input addresses
to 4-KByte pages, 2-MByte pages, or 1-GByte pages. Implementations report support in second-level
translation for 2-MByte and 1-GByte large-pages through the Capability Register. Figure 3-9
illustrates the translation process for a 4-level paging structure when it produces a 4-KByte page;
Figure 3-10 illustrates mapping to a 2-MByte page; Figure 3-11 illustrates mapping to a 1-GByte
page.

Table 4. Second-level Paging Structures
Paging Entry Physical Address of Structure Sel%icttsin Page Mappin
Structure Name y Entry 9 9 pping
Second-level SL-PML5E Context-entry or scalable-mode PASID-table | 56:48 N/A
PML5 table entry (with 5-level translation)
Second-level SL-PML5E (with 5-level translation); 47:39 N/A
PML4 table SL-PML4E Context-entry or scalable-mode PASID-table
entry (with 4-level translation)
| | SL-PDPE SL-PML4E (with 4-level or 5-level 38:30 1-GByte page (if Page Size
Second-leve translation); (PS) field is Set)
Page-directory-
pointer table Context-entry or scalable-mode PASID-table
entry (with 3-level translation)
Second-level _ _ 29:21 2-MByte page (if Page-Size
Page directory SL-PDE SL-PDPE (PS) field is Set)
Second-level SL-PTE SL-PDE 20:12 4-KByte page
Page table

Table 4 gives the different names of the second-level translation structures, that are given based on
their use in the translation process. It also provides, for each structure, the source of the physical-
address used to locate it, the bits in the input-address used to select an entry from the structure, and
details of whether and how such an entry can map a page. Section 9.8 describes format of each of
these paging structures in detail.
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The following describe the second-level translation in more detail and how the page size is
determined:

= For implementations supporting a 5-level paging structure for second-level paging, a 4-KByte
naturally aligned second-level-PML5 table is located at the physical address specified in the
SLPTPTR field in the context-entry or scalable-mode PASID-table entry. A second-level-PML5 table
comprises 512 64-bit entries (SL-PML5Es). A SL-PML5E is selected using the physical address
defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits MGAW:48 of the input address.

— Bits 12 and higher are from the SLPTPTR field in the context-entry or scalable-mode PASID-
table entry.

Because a SL-PML5E is identified using bits MGAW:48 of the input address, it controls access to a
256-TByte region of the input-address space.

« For implementations supporting a 5-level paging structure for second-level translation, a 4-KByte
naturally aligned second-level-PML4 table is located at the physical address specified in the
address (ADDR) field in the SL-PML5E (see Table 36). For implementations supporting a 4-level
paging structure for second-level paging, a 4-KByte naturally aligned second-level-PML4 table is
located at the physical address specified in the SLPTPTR field in the context-entry or scalable-
mode PASID-table entry. A second-level-PML4 table comprises 512 64-bit entries (SL-PML4Es). A
SL-PMLA4E is selected using the physical address defined as follows:

— Bits 2:0 are all O.

— Bits 11:3 are bits 47:39 (for 5-level translation) or MGAW:39 (for 4-level translation) of the
input address.

— Bits 12 and higher are from the ADDR field in SL-PML5E (for 5-level translation) or from the
SLPTPTR field in the context-entry or scalable-mode PASID-table entry (for 4-level
translation).

Because a SL-PMLA4E is identified using bits MGAW:39 of the input address, it controls access to a
512-GByte region of the input-address space.

= For implementations supporting 5-level or 4-level paging structures for second-level translation, a
4-KByte naturally aligned page-directory-pointer table is located at the physical address specified
in the address (ADDR) field in the SL-PML4E (see Table 37). For implementations supporting 3-
level paging structures, the 4-KByte naturally aligned page-directory-pointer table is located at
the physical address specified in the SLPTPTR field in the context-entry or scalable-mode PASID-
table entry. A page-directory-pointer table comprises of 512 64-bit entries (SL-PDPEs). A SL-PDPE
is selected using the physical address defined as follows:

— Bits 2:0 are all O.

— Bits 11:3 are bits 38:30 (for 4-level or 5-level translation) or MGAW:30 (for 3-level
translation) of the input address.

— Bits 12 and higher are from the ADDR field in the SL-PML4E (or from the SLPTPTR field in the
context-entry or scalable-mode PASID-table entry for implementations supporting 3-level
paging structures).

Because a SL-PDPE is identified using bits MGAW:30 of the input address, it controls access to a
1-GByte region of the input-address space. Use of the SL-PDPE depends on its page-size (PS)
field:

« If the SL-PDPE’s PS field is 1, the SL-PDPE maps a 1-GByte page (see Table 38). The final physical
address is computed as follows:

— Bits 29:0 are from the input address.
— Bits 30 and higher are from the ADDR field in the SL-PDPE.

- If the SL-PDPE’s PS field is 0, a 4-KByte naturally aligned second-level page directory is located at
the physical address specified in the address (ADDR) field in the SL-PDPE (see Table 39). A
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second-level page directory comprises 512 64-bit entries (SL-PDES). A PDE is selected using the
physical address defined as follows:

— Bits 2:0 are all O.
— Bits 11:3 are bits 29:21 of the input address.

— Bits 12 and higher are from the ADDR field in the SL-PDPE.

Because a SL-PDE is identified using bits MGAW:21 of the input address, it controls access to a 2-
MByte region of the input-address space. Use of the SL-PDPE depends on its page-size (PS) field:

- If the SL-PDE’s PS field is 1, the SL-PDE maps a 2-MByte page (see Table 40). The final physical
address is computed as follows:

— Bits 20:0 are from the input address.
— Bits 21 and higher are from the ADDR field in the SL-PDE.

- If the SL-PDE’s PS field is O, a 4-KByte naturally aligned second-level page-table is located at the
physical address specified in the address (ADDR) field in the SL-PDE (see Table 41). Such a
second-level page-table comprises 512 64-bit entries (SL-PTEs). A SL-PTE is selected using the
physical address defined as follows:

— Bits 2:0 are all 0.
— Bits 11:3 are bits 20:12 of the input address.

— Bits 12 and higher are from the ADDR field in the SL-PDE.

Because a SL-PTE referenced by a SL-PDE is identified using bits MGAW:12 of the input address,
every such SL-PTE maps a 4-KByte page (Table 42). The final page address is translated as
follows:

— Bits 11:0 are from the input address.
— Bits 12 and higher are from the ADDR field in the SL-PTE.
If a second-level paging-structure entry’s Read (R) and Write (W) fields® are both O or if the entry
sets any reserved field, the entry is used neither to reference another paging-structure entry nor to
map a page. A reference using an input address whose translation would use such a paging-structure
entry causes a translation error (see Chapter 7).
The following bits are reserved with second-level translation:
- If either the R or W field of a paging-structure entry is 1, bits 51: HAW are reserved.
« |f either the R or W field of a SL-PML5E is 1, the PS field is reserved.
< If either the R or W field of a SL-PML4E is 1, the PS field is reserved.

- If 1-GByte pages are not supported and the R or W fields of a SL-PDPE is 1, the PS field is
reserved.

e If the R or W fields of a SL-PDPE is 1, and PS field in that SL-PDPE is 1, bits 29:12 are reserved.

- If 2-MByte pages are not supported and the R or W fields of a SL-PDE is 1, the PS field is
reserved.

« |f either the R or W field of a SL-PDE is 1, and the PS field in that SL-PDE is 1, bits 20:12 are
reserved.

- If either the R or W field of a non-leaf paging-structure entry (i.e. SL-PML5E, SL-PML4E, SL-PDPE,
or SL-PDE with PS=0) is 1, the SNP (Snoop) field and the TM (Transient Mapping) field are
reserved.

- If either the R or W field of a SL-PTE is 1, and Snoop Control (SC) is reported as O in Extended
Capability Register, the SNP field is reserved.

1. Execute (X) field in second-level paging-structure entries is ignored when translating requests-
without-PASID.
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= If either the R or W field of a SL-PTE is 1, and Device-TLBs (DT) is reported as O in Extended
Capability Register, the TM field is reserved.

3.7.1 Access Rights

Requests can result in second-level translation faults for either of two reasons: (1) there is no valid
translation for the input address; or (2) there is a valid translation for the input address, but its
access rights do not permit the access. Chapter 7 provides detailed hardware behavior on translation
faults and reporting to software.

The accesses permitted for a request whose input address is successfully translated through second-
level translation is determined by the attributes of the request and the access rights specified by the
second-level paging-structure entries controlling the translation.

Devices can issue requests for reads, writes, or atomics. The following describes how second-level
translation determines access rights for such requests:

- Data reads: Read requests with value of O in Execute-Requested (ER) field

— Reads are allowed from any input address with a valid translation for which the Read (R) field
is 1 in every paging-structure entry controlling the translation.

= Instruction fetches: Read requests with value of 1 in Execute-Requested (ER) field
— If Second-level Execute-Enable (SLEE) field used to translate request is O

« Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) field is 1 in every second-level paging-entry controlling the translation.

— If Second-level Execute-Enable (SLEE) field used to translate request is 1

< Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) and Execute (X) fields are both 1 in every second-level paging-entry
controlling the translation.

= Write request:

— Writes are allowed to any input address with a valid translation for which the Write (W) field is
1 in every paging-structure entry controlling the translation.

= Atomics request:

— Atomics requests are allowed from any input address with a valid translation for which the
Read (R) and Write (W) fields are both 1 in every paging-structure entry controlling the
translation.

Remapping hardware may cache information from the second-level paging-structure entries in
translation caches. These caches may include information about access rights. Remapping hardware
may enforce access rights based on these caches instead of on the paging structures in memory. This
fact implies that, if software modifies a paging-structure entry to change access rights, the hardware
might not use that change for a subsequent access to an affected input address. Refer to Chapter 6
for details on hardware translation caching and how software can enforce consistency with translation
caches when modifying paging structures in memory.

3.7.2 Accessed and Dirty Flags

Accessed and dirty flags support in first-level paging-structure entries are described in Section 3.6.2.
DMA Remapping hardware implementations can also support accessed and dirty flags in second-level
paging-structure entries. Software should read the ECAP_REG.SLADS field to determine whether the
implementation supports this feature.
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When supported, software can enable accessed and dirty flags for second-level translation using the
‘Second Level Accessed Dirty Enable’ (SLADE) field in the PASID-table entry. When enabled, for any
second-level paging-structure entry that is used during address translation, bit 8 is the accessed flag.
For a second-level paging-structure entry that maps a page (as opposed to referencing another
second-level paging structure), bit 9 is the dirty flag.

When enabled, the hardware will set the accessed and dirty flags for second-level translation as
follows:

® Whenever hardware uses a second-level paging-structure entry as part of address translation, it
sets the accessed flag in that entry (if it is not already set).

® Whenever there is a write to an input address, the hardware sets the dirty flag (if it is not already
set) in the second-level paging-structure entry that identifies the final physical address for the
input address (either an SL-PTE or a second-level paging-structure entry in which bit 7 (SP) is 1).

These flags are “sticky,” meaning that, once set, hardware does not clear them; only software can
clear them. Hardware may cache information from the second-level paging-structure entries in TLBs
and paging-structure caches. This fact implies that, if software changes an accessed flag or a dirty
flag from 1 to O, the hardware might not set the corresponding bit in memory on a subsequent access
using an affected second-level input address. Refer to Chapter 6 for details on hardware translation
caching and how software can enforce consistency with translation caches when modifying paging
structures in memory.

3.8 Nested Translation

When PASID Granular Translation Type (PGTT) field is set to 011b in scalable-mode PASID-table-
entry, requests translated through first-level translation are also subjected to nested second-level
translation. Scalable-mode PASID-table entries configured for nested translation contain both the
pointer to the first-level translation structures, and the pointer to the second-level translation
structures. Nested translation can be applied to any request (with or without PASID) as request-
without-PASID obtain the PASID value from RID_PASID field in scalable-mode context-entry.

Figure 3-12 illustrates the nested translation for a request mapped to a 4-KByte page through 4-level
first-level translation, and interleaved through 4-KByte mappings in 4-level second-level paging
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Figure 3-12. Nested Translation with 4-KByte pages

With nesting, all memory accesses generated when processing a request through first-level
translation are subjected to second-level translation. This includes access to first-level paging
structure entries (PML5E, PML4E, PDPE, PDE, PTE), and access to the output address from first-level
translation. Just like root-table and context-table in legacy-mode address translation are in host
physical address, scalable-mode root/context/PASID-directory/PASID-tables are in host physical
address and not subjected to first or second level translation.

With nested translation, a guest operating system running within a virtual machine may utilize first-
level translation as described in Section 2.5.1.3, while the virtual machine monitor may virtualize
memory by enabling nested second-level translations.

The first-level translation follows the same process as described in Section 3.6 to map input
addresses to 4-KByte, 2-MByte or 1-GByte pages. The second-level translation is interleaved at each
step, and follows the process described in Section 3.7 to map input addresses to 4-KByte, 2-MByte or
1-GByte pages.
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3.8.1 Access Rights

Requests subjected to nested translation can result in fault at the first-level translation or any of the
second-level translation stages. Translation faults at a level can result from either of two reasons: (1)
there is no valid translation for the respective input address; or (2) there is a valid translation for the
respective input address, but its access rights do not permit the access. Chapter 7 provides detailed
hardware behavior on translation faults and reporting to software.

For requests subjected to nested translation, access rights are checked at both first and second levels
of translation.

Access rights checking for first-level translation follows the behavior described in Section 3.6.1.

Access rights for second-level translations function as follows:

= Access to paging structures (First-level paging structure pointer, PML5E, PML4E, PDPE, PDE, PTE)
is treated as follows:

— When Second-Level Accessed/Dirty flags are not enabled in PASID-table entry(SLADE=0)
= Reads of paging structures

— Reads of paging structures are allowed from any input address with a valid translation
for which the Read (R) field is 1 in every second-level paging-entry controlling the
translation.

= Accessed (A), Extended-Accessed (EA), Dirty (D) flag update of first-level paging-structure
entries

— Atomic A/EA/D flag update of first-level paging-entries are allowed from any input
address with a valid translation for which the Read (R) and Write (W) fields are 1 in
every second-level paging-entry controlling the translation to the respective first-level
paging-entry.

— When Second-Level Accessed/Dirty flags are enabled in PASID-table entry(SLADE=1)

= All non-leaf first-level paging structure access are treated as if they will need to update
A/EA flags.

— Access to first-level paging structures are allowed from any input address with valid
translation for which the Read (R) and Write (W) fields are 1 in every second-level
paging-entry controlling the translation to the respective first-level paging-entry.

= All leaf first-level paging structure access are treated as if they will need to update A/EA/D
flags.

— Access to first-level paging structures are allowed from any input address with valid
translation for which the Read (R) and Write (W) fields are 1 in every second-level
paging-entry controlling the translation to the respective first-level paging-entry.

= Access to the final page is treated as follows:
— Data reads (Read requests with value of O in Execute-Requested (ER) field)

« Data reads are allowed from any input address with a valid translation for which the Read
(R) field is 1 in every second-level paging-structure entry controlling the translation.

— Instruction Fetches (Read requests with value of 1 in Execute-Requested (ER) field)
= If Second-level Execute-Enable (SLEE) field used to translate request is O

— Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) field is 1 in every second-level paging-entry controlling the translation.

= If Second-level Execute-Enable (SLEE) field used to translate request is 1

— Instruction fetches are allowed from any input address with a valid translation for which
the Read (R) and Execute (X) fields are both 1 in every second-level paging-entry
controlling the translation.
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— Write requests

= Writes are allowed from any input address with a valid translation for which the Write (W)
field is 1 in every second-level paging-entry controlling the translation.

— Atomics requests

= Atomics requests are allowed from any input address with a valid translation for which both
the Read (R) and Write (W) fields are 1 in every second-level paging-entry controlling the
translation.

With nested translations, remapping hardware may cache information from both first-level and
second-level paging-structure entries in translation caches. These caches may include information
about access rights. Remapping hardware may enforce access rights based on these caches instead of
on the paging structures in memory. This fact implies that, if software modifies a paging-structure
entry to change access rights, the hardware might not use that change for a subsequent access to an
affected input address. Refer to Chapter 6 for details on hardware translation caching and how
software can enforce consistency with translation caches when modifying paging structures in
memory.

3.9 Snoop Behavior

Snoop behavior for a memory access (to a translation structure entry or access to the mapped page)
specifies if the access is coherent (snoops the processor caches) or not. The snoop behavior is
independent of the memory typing described in Section 3.10. The snoop behavior for various
accesses is specified as follows:

e Access to root, scalable-mode root, context, scalable-mode context, scalable-mode PASID-
directory and scalable-mode PASID-table entries are snooped if the Coherency (C) field in
Extended Capability Register (ECAP_REG: see Section 10.4.3) is reported as 1. These accesses
are not required to be snooped if the field is reported as 0.

= Access to paging structures have snoop behavior as follows:
— Remapping hardware is setup in legacy mode (RTADDR_REG.TTM=00b)

= Access to paging structures is snooped if the C field in ECAP_REG is reported as 1. These
accesses are not required to be snooped if the C field is reported as O.

— Remapping hardware is setup in scalable-mode (RTADDR_REG.TTM=01b)

< Remapping hardware encountering need to atomically update A/EA/D bits in a paging-
structure entry that is not snooped will result in a non-recoverable fault.

= When Scalable-mode Page-walk Coherency (SMPWC) field in ECAP_REG is reported as O
software must pre-set certain bits as specified below to avoid non-recoverable fault:

— Pre-set A/D bits in all first-level paging structures.

— Pre-set EA bit in all first-level paging structures accessed through PASID-table entries
with EAFE=1.

— Pre-set A/D bits in all second-level paging structures accessed through PASID-table
entries with SLADE=1.

= When software programs the Page-walk Snoop (PWSNP) field in a PASID-table entry as 0O,
software must pre-set certain bits as specified below to avoid non-recoverable fault:

— Pre-set A/D bits in first-level paging structures accessed through the PASID-table entry.

— If the EAFE field is also set in the PASID-table entry, then pre-set the EA bit in first-level
paging structures accessed through the PASID-table entry.

— If the SLADE field is also set in the PASID-table entry, then pre-set A/D bit in second-
level paging structures accessed through the PASID-table entry.
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= Access to paging structures are snooped if the Scalable-mode Page-walk Coherency
(SMPWC) field in ECAP_REG is reported as 1 and Page-walk Snoop (PWSNP) field in the
PASID-table entry is 1. Otherwise these accesses are not required to be snooped.

= Access to the final page by untranslated request has snoop behavior as follows:
— If the no-snoop attribute in the request is Clear, the access to the final page is snooped.

— If the remapping hardware is setup in scalable-mode (RTADDR_REG.TTM=01b) and the Page
Snoop (PGSNP) field in PASID-table entry is Set, access to the final page is snooped.

— When the remapping hardware reports Snoop Control (SC) field as 1 in the ECAP_REG, if the
translation process used second-level leaf paging structure entry with Snoop (SNP) field Set,
the access to the final page is snooped.

— Otherwise access to the final page is not required to be snooped.

The table below summarizes the snoop behavior for access to translation structures by hardware and
for access to the final page by untranslated request. A value of 1 implies memory access is snooped
and a value of O implies memory access is not snooped. For snoop behavior on translation request see
Table 10.

= ECAP.C is Page-walk Coherency field in ECAP_REG.

e ECAP.SC is Snoop Control field in ECAP_REG.

< ECAP.SMPWC is the Scalable-mode Page-walk Coherency filed in ECAP_REG.
« Request.NS is the No-Snoop bit that comes with a DMA transaction.

« SlL.Leaf.SNP is the Snoop field in leaf second level paging structure.

Table 5. Snoop Behavior for Root/Context/PASID-structures
Root Tables/ Context Tables/ .
Mode SM Root Tables SM Context Tables PASID Directory PASID Table
legacy ECAP.C ECAP.C NA NA
scalable ECAP.C ECAP.C ECAP.C ECAP.C
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Table 6. Snoop Behavior for FL/SL Paging Structures and Final Page
phddress | TT(egeey) Firstlevel | second-level
Mode PGTT (Scalable) Structures Paging Structures Untranslated Request
TT=00b
(second-level with
ATS blocked)
ECAP.C I(Request.NS) ||

legacy TT=01b . ) ) _ (ECAP.SC && SL.leaf.SNP)
(second-level with Note: Not applicable if the paging
ATS allowed) structures don’t exist for specific TT Note: SL.leaf.SNP = O for TT=10
TT=10b
(pass-through)
PGTT=001b
(first-level)

ECAP.SMPWC && 1(Request.NS) ||

PGTT=010b PASID-table-entry.PWSNP PASID-table-entry.PGSNP ||
(second-level) (ECAP.SC && SL.leaf.SNP)

scalable Note: Not applicable if certain paging
PGTT=011b structures do not exist for specific
(nested) PGTT e.g. FL-tables in case of Note: The SL.leaf.SNP = O for

PGTT=010b. PGTT=001b/100b
PGTT=100b
(pass-through)
3.10 Memory Type

The memory type of a memory access (to a translation structure entry or access to the mapped page)
refers to the type of caching used for that access. Refer to Intel® 64 processor specifications for
definition and properties of each supported memory-type (UC, UC-, WC, WT, WB, WP). Support for
memory typing in remapping hardware is reported through the Memory-Type-Support (MTS) field in
the Extended Capability Register (see Section 10.4.3). This section describes how memory type is
determined.

= Memory-type has no meaning (and hence is ignored) for memory accesses from devices
operating outside the processor coherency domain.

< Memory-type is applicable to memory accesses through a coherent link from devices operating
inside the processor coherency domain (such as Intel processor graphics device). Memory-type is
also applicable to DMA Remapping hardware accesses through a coherent link.

The following sub-sections describe details of computing memory-type from PAT, memory type from
MTRR, and how to combine them to form the effective memory type.

3.10.1 Selecting Memory Type from Page Attribute Table

Memory-type selection from Page Attribute Table requires hardware to form a 3-bit index made up of
the PAT, PCD and PWT bits from the respective paging-structure entries. The PAT bit is bit 7 in page-
table entries that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure entries that point to
pages of any size.

The PAT memory-type comes from entry i of the Page Attribute Table in the scalable-mode context-
entry controlling the request, where i is defined as follows:

e For access to PML5E, i = 2*PCD+PWT, where the PCD and PWT values come from the PASID-table
entry.

3-22 Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010



u ®>
l n tel Intel® Virtualization Technology for Directed 1/0—DMA Remapping

e For access to PML4E with 4-level paging, i = 2*PCD+PWT, where the PCD and PWT values come
from the PASID-table entry.

= For access to a paging-structure entry X whose address is in another paging structure entry Y
(i.e., PTE, PDE, PDPE, PML4E with 5-level paging), i = 2*PCD+PWT, where the PCD and PWT
values come from Y.

= For access to the physical address that is the translation of an input address, i =
4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant PTE (if the
translation uses a 4-KByte page), the relevant PDE (if the translation uses a 2-MByte page), or
the relevant PDPE (if the translation uses a 1-GByte page).

3.10.2 Selecting Memory Type from Memory Type Range Registers

Remapping hardware implementations reporting Memory-Type-Support (MTS) field as Set in the
Extended Capability Register support the Memory Type Range Registers (MTRRs). These include the
MTRR Capability Register (see Section 10.4.38), MTRR Default Type Register (see Section 10.4.39),
fixed-range MTRRs (see Section 10.4.40), and variable-range MTRRs (see Section 10.4.41).

Selection of memory-type from the MTRR registers function as follows:

- If the MTRRs are not enabled (Enable (E) field is O in the MTRR Default Type Register), then MTRR
memory-type is uncacheable (UC).

< If the MTRRs are enabled (E=1 in MTRR Default Type Register), then the MTRR memory-type is
determined as follows:

— If the physical address falls within the first 1-MByte and fixed MTRRs are enabled, the MTRR
memory-type is the memory-type stored for the appropriate fixed-range MTRR (see
Section 10.4.40).

— Otherwise, hardware attempts to match the physical address with a memory type set by the
variable-range MTRRs ((see Section 10.4.41):

= If one variable memory range matches, the MTRR memory-type is the memory type stored
in the MTRR_PHYSBASEN_REG Register for that range.

= If two or more variable memory ranges match and the memory-types are identical, then
MTRR memory-type is that memory-type.

= If two or more variable memory ranges match and one of the memory types is UC, then
MTRR memory-type is UC.

= If two or more variable memory ranges match and the memory types are WT and WB, then
MTRR memory-type is WT.

= For overlaps not defined by above rules, hardware behavior is undefined.

= If no fixed or variable memory range matches, then the MTRR memory-type is the default
memory-type from the MTRR Default Type Register (see Section 10.4.39).

3.10.3 Selecting Effective Memory Type

The effective memory-type for an access is computed from the PAT memory-type and the MTRR
memory-type as illustrated in Table 7 below.

Remapping hardware may cache information from the first-level paging-structure entries in
translation caches (see Chapter 6). These caches may include information about memory typing.
Hardware may use memory-typing information from these caches instead of from the paging
structures in memory. This fact implies that, if software modifies a paging-structure entry to change
the memory-typing bits, hardware might not use that change for a subsequent translation using that
entry or for access to an affected input-address. Refer to Chapter 6 for details on hardware translation
caching and how software can enforce consistency with translation caches when modifying paging
structures in memory.
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Table 7. Effective Memory Types
MTRR Memory Type MemgﬁyTType Effective Memory Type

uc uc
ucC- uc
WwC WwcC

uc
WT ucC
wB uc
WP uc
uc uc
ucC- wC
wC WwcC

wC
WT uc
wB wcC
WP uc
uc uc
ucC- uc
WwC WwcC

WT
WT WT
WB WT
WP WP
uc uc
ucC- uc
WC wC

WB
WT WT
WB wB
WP WP
uc uc
uc- wcC
WwC wcC

WP
WT WT
WB WP
WP WP
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3.10.4 Determining Memory Type

When processing requests from devices operating in the processor coherency domain, the memory
type for any access is computed as follows.

3.10.4.1 Memory Type in Legacy Mode (RTADDR_REG.TTM = 00b)

« Access to root and context entries use memory-type of write-back (WB)

« Access to second-level translation entries (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, SL-PTE) and
the final page use memory-type of write-back (WB).

3.10.4.2 Memory Type in Scalable Mode (RTADDR_REG.TTM = 01b)

= Access to scalable-mode root-table, scalable-mode context-table, scalable-mode PASID-directory
and scalable-mode PASID-table entries use memory-type of write-back (WB).

< If cache-disable (CD) field in scalable-mode PASID-table entry used to process the request is 1,
all accesses to first-level translation structures, second-level translation structures and the final
page use memory-type of uncacheable (UC).

= If cache-disable (CD) is 0 in the scalable-mode PASID-table entry, the memory-type for accesses
is computed as follows:

— Memory-type for access to second-level translation entries (SL-PML5E, SL-PML4E, SL-PDPE,
SL-PDE, SL-PTE) is computed as follows:

« If extended memory-type enable (EMTE) field in the scalable-mode PASID-table entry used
is 0, memory-type of write-back (WB) is used.

= If EMTE field in scalable-mode PASID-table entry used is 1, memory-type specified in the
extended memory-type (EMT) field in the scalable-mode PASID-table entry is used.

— Memory-type for access to first-level translation-structure entries (PML5E, PML4E, PDPE, PDE,
and PTE) is computed as follows:

= First, the first-level memory-type specified by the Page Attribute Table (PAT) is computed as
described in Section 3.10.1.

= Second, the memory-type for the target physical address as specified by the Memory Type
Range Registers (MTRRS) is computed as described in Section 3.10.2.

= In the scalable-mode PASID-table entry used to process this request, if PASID Granular
Translation Type (PGTT) field is 001b (first-level-only) or if extended memory-type enable
(EMTE) field is O effective memory-type used is computed by combining the first-level PAT
memory-type with the MTRR memory-type computed above as described in Section 3.10.3.

= If EMTE field in scalable-mode PASID-table entry used is 1, memory-type is computed as
follows:

— During the second-level translation to access the respective first-level paging entry, the
ignore-PAT (IPAT) and extended memory-type (EMT) fields from the last (leaf) second-
level translation-structure entry used is fetched.

— If IPAT field is 1, the PAT memory-type computed from first-level translation is ignored,
and memory-type specified by the EMT field is used as the memory-type for the access.

— If IPAT field is 0O, the effective memory-type for the access is computed by combining the
first-level PAT memory-type above with the EMT field. The effective memory-type
computation follows the same rules described in Table 7 in Section 3.10.3, except
memory-type specified by the EMT field is used instead of the MTRR memory-type.

— Memory-type for access to the final page, is computed as follows:

= If PASID Granular Translation Type (PGTT) field in the scalable-mode PASID-table entry has
a value of 001b or 011b, the memory type is computed exactly like the first-level
translation-structure entries described above.
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< If PASID Granular Translation Type (PGTT) field in the scalable-mode PASID-table entry has
a value of 010b, the memory type is computed as follows:

— If extended memory-type enable (EMTE) field in the scalable-mode PASID-table entry
used is 0, memory-type of write-back (WB) is used.

— If EMTE field in scalable-mode PASID-table entry used is 1, memory-type specified in the
extended memory-type (EMT) field in the last (leaf) second-level translation-structure
entry is used.

= If PASID Granular Translation Type (PGTT) field in scalable-mode PASID-table entry has a
value of 100b is, memory-type of write-back (WB) is used.

The table below summarizes the memory type calculation for memory access to various translation
structures.

Table 8. Memory Type Calculation for various tables and final Page
Mode Root Table or Context Tables or PASID Directory, First-level Second-level Page
SM Root Table SM Context Tables PASID Table Tables Tables 9
Legacy wB wB NA NA wB wB
Scalable WB WB wB see Table 9 see Table 9 see Table 9
Table 9. Memory Type Calculation for FL/SL-tables and Page in Scalable Mode
Second-
CD PGTT EMTE First-level Tables level Page
Tables
1 |don'tcare |d9ont uc uc uc
care
001b (first- don’t Eff_mem_type(FL.PAT, MTRR)
[0} level-only) care Eff_mem_type (FL.PAT, MTRR) NA
010b
[0} (second- [0} NA wB WB
level-only)
010b
0 (second- 1 NA PASID-Table- SL.leaf.EMT
entry.EMT
level-only)
0 011b 0 Eff_mem_type (FL.PAT, MTRR) WB Eff_mem_type (FL.PAT, MTRR)
(nested) —mem_typ -PAT, _mem_typ -PAT,
if(SL.leaf.IPAT) {SL.leaf.EMT if(SL.leaf.IPAT) {SL.leaf.EMT
o 011b 1 } else { PASID-Table- 3 else {
(nested) entry.EMT
Eff_mem_type(FL.PAT, SL.leaf.EMT)} Eff_mem_type (FL.PAT, SL.leaf.EMT)}
o 100b (pass- | don’t NA NA WB
through) care

With nesting, remapping hardware may cache information from the first-level and second-level
paging-structure entries in translation caches (see Chapter 6). These caches may include information
about memory typing. Hardware may use memory-typing information from these caches instead of
from the paging structures in memory. flags. This fact implies that, if software modifies a paging-
structure entry to change the memory-typing bits, hardware might not use that change for a
subsequent translation using that entry or for access to an affected input-address. Refer to Chapter 6
for details on hardware translation caching and how software can enforce consistency with translation
caches when modifying paging structures in memory.
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3.11 Identifying Origination of DMA Requests

In order to support usages requiring isolation, the platform must be capable of uniquely identifying
the requestor (Source-ld) for each DMA request. The DMA sources in a platform and use of source-id
in these requests may be categorized as below.

3.11.1 Devices Behind PCI Express* to PCI/PCI-X Bridges

The PCI Express-to-PCI/PCI-X bridges may generate a different requester-id and tag combination in
some instances for transactions forwarded to the bridge’s PCl Express interface. The action of
replacing the original transaction’s requester-id with one assigned by the bridge is generally referred
to as taking ‘ownership’ of the transaction. If the bridge generates a new requester-id for a
transaction forwarded from the secondary interface to the primary interface, the bridge assigns the
PCI Express requester-id using the secondary interface’s bus number, and sets both the device
number and function number fields to zero. Refer to the PCl Express-to-PCI/PCI-X bridge
specifications for more details.

For remapping requests from devices behind PCI Express-to-PCI/PCI-X bridges, software must
consider the possibility of requests arriving with the source-id in the original PCI-X transaction or the
source-id provided by the bridge. Devices behind these bridges can only be collectively assigned to a
single domain. When setting up remapping structures for these devices, software must program
multiple context entries, each corresponding to the possible set of source-ids. Each of these context-
entries must be programmed identically to ensure the DMA requests with any of these source-ids are
processed identically.

3.11.2 Devices Behind Conventional PCI Bridges

For devices behind conventional PCI bridges, the source-id in the DMA requests is the requester-id of
the bridge device. For remapping requests from devices behind conventional PCI bridges, software
must program the context-entry corresponding to the bridge device. Devices behind these bridges
can only be collectively assigned to a single domain.

3.11.3 Root-Complex Integrated Devices

Transactions generated by all root-complex integrated devices must be uniquely identifiable through
its source-id (PCI requester-id). This enables any root-complex integrated endpoint device (PCI or PCI
Express) to be independently assigned to a domain.

3.11.4 PCI Express™ Devices Using Phantom Functions

To increase the maximum possible number of outstanding requests requiring completion, PCI Express
allows a device to use function numbers not assigned to implemented functions to logically extend the
Tag identifier. Unclaimed function numbers are referred to as Phantom Function Numbers (PhFN). A
device reports its support for phantom functions through the Device Capability configuration register,
and requires software to explicitly enable use of phantom functions through the Device Control
configuration register.

Since the function number is part of the requester-id used to locate the context-entry for processing a
DMA request, when assigning PCIl Express devices with phantom functions enabled, software must
program multiple context entries, each corresponding to the PhFN enabled for use by the device
function. Each of these context-entries must be programmed identically to ensure the DMA requests
with any of these requester-ids are processed identically.
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3.11.5 Single-Root 1/0 Virtualization Capable Devices

Single-Root 1/0 Virtualization (SR-10V) architecture enables an endpoint device Physical Function (PF)
to support multiple Virtual Function (VFs). To support independent assignment of PF and VFs to a
domain, transactions generated by PF and VFs must each have uniquely identifiable source-id (PCI
Express requester-id). Refer to the PCIl Express base specification for SR-10V endpoint architecture
and requirements.

3.11.6 Intel® Scalable 1/0 Virtualization Capable Devices

Intel® Scalable 1/0 Virtualization (Intel® Scalable 10V) architecture enables fine-grained partitioning
of an endpoint device Physical Function (PF) to support multiple Assignable Device Interface (ADI).
Transactions generated by ADIs share the same source-id (PCI Express requester-id) as the hosting
PF. To support independent assignment of ADIs to a domain, transactions generated by ADIs must
each have a uniquely identifiable PASID (Process Address Space ldentifier) so that DMA-remapping
hardware with Scalable Mode Translation can be used to apply a unique translation function per ADI.
Refer to the PCI Express base specification for PASID capability and Intel® Scalable 1/0 Virtualization
specification for Intel® Scalable 10V endpoint device requirements.

3.12 Handling Requests Crossing Page Boundaries

PCI Express memory requests are specified to disallow address/length combinations which cause a
memory space access to cross a page (4KB) boundary. However, the PCI Express Specification defines
checking for violations of this rule at the receivers as optional. If checked, violations are treated as
malformed transaction layer packets and reported as PCI Express errors. Checking for violations from
Root-Complex integrated devices is typically platform-dependent.

Platforms supporting DMA remapping are expected to check for violations of the rule in one of the
following ways:

= The platform hardware checks for violations and explicitly blocks them. For PCI Express memory
requests, this may be implemented by hardware that checks for the condition at the PCI Express
receivers and handles violations as PCI Express errors. DMA requests from other devices (such as
Root-Complex integrated devices) that violate the rule (and hence are blocked by hardware) may
be handled in platform-specific ways. In this model, the remapping hardware units never receive
DMA requests that cross page boundaries.

« If the platform hardware cannot check for violations, the remapping hardware units must perform
these checks and re-map the requests as if they were multiple independent DMA requests.

3.13 Handling of Zero-Length Reads

A memory read request of one double-word with no bytes enabled (“zero-length read”) is typically
used by devices as a type of flush request. For a requester, the semantics of the flush request allow a
device to ensure that previously issued posted writes in the same traffic class have been completed at
its destination.

Zero-length read requests are handled as follows by remapping hardware:

= Implementations reporting ZLR field as Clear in the Capability Register process zero-length read
requests like any other read requests. Specifically, zero-length read requests are address-
translated based on the programming of the remapping structures. Zero-length reads translated
to memory are completed in the coherency domain with all byte enables off. Unsuccessful
translations result in translation faults. For example, zero-length read requests to write-only
pages in second-level translation are blocked due to read permission violation.

« Implementations reporting ZLR field as Set in the Capability Register handles zero-length read
requests same as above, except if it is to a write-only page. Zero-length read requests to write-
only pages that do not encounter any faulting conditions other than read permission violation are
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successfully remapped and completed. Zero-length reads translated to memory complete in the
coherency domain with all byte enables off. Data returned in the read completion is obfuscated.

DMA remapping hardware implementations are recommended to report ZLR field as Set and support
the associated hardware behavior.

3.14 Handling Requests to Interrupt Address Range

on Intel® architecture platforms, physical address range OXFEEx_xxxx is designated as the interrupt
address range. Write requests without PASID of DWORD length to this range are interpreted by the
platform as interrupt requests. For details refer to message signalled interrupts in Intel® 64
Architecture Software Developer's Manual, Volume 3B.

Hardware treats following requests to the interrupt address range as illegal requests and handles
them as error:

< Read requests without PASID.
= Atomics requests without PASID.
< Non-DWORD length write requests without PASID.

Write requests without PASID of DWORD length are treated as interrupt requests. Interrupt requests
are not subjected to DMA remapping (even if translation structures specify a mapping for this range).
Instead, remapping hardware can be enabled to subject such interrupt requests to interrupt
remapping. Chapter 5 provides details on the interrupt remapping architecture.

Software must ensure that paging-structure entries are programmed not to remap input addresses to
the interrupt address range. Hardware behavior is undefined for memory requests remapped to the
interrupt address range.

Requests-with-PASID with input address in range OXFEExX_xxxx are translated normally like any other
request-with-PASID through DMA-remapping hardware.

3.15 Handling Requests to Reserved System Memory

Reserved system memory regions are typically allocated by BIOS at boot time and reported to OS as
reserved address ranges in the system memory map. Requests to these reserved regions may either
occur as a result of operations performed by the system software driver (for example in the case of
DMA from unified memory access (UMA) graphics controllers to graphics reserved memory), or may
be initiated by non system software (for example in case of DMA performed by a USB controller under
BIOS SMM control for legacy keyboard emulation). For proper functioning of these legacy reserved
memory usages, when system software enables DMA remapping, the second-level translation
structures for the respective devices are expected to be set up to provide identity mapping for the
specified reserved memory regions with read and write permissions.

Platform implementations supporting reserved memory must carefully consider the system software
and security implications of its usages. These usages are beyond the scope of this specification.
Platform hardware may use implementation-specific methods to distinguish accesses to system
reserved memory. These methods must not depend on simple address-based decoding since DMA
virtual addresses can indeed overlap with the host physical addresses of reserved system memory.

For platforms that cannot distinguish between device accesses to OS-visible system memory and
device accesses to reserved system memory, the architecture defines a standard reporting method to
inform system software about the reserved system memory address ranges and the specific devices
that require device access to these ranges for proper operation. Refer to Section 8.4 for details on the
reporting of reserved memory regions.
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For legacy compatibility, system software is expected to setup identity mapping in second-level
translation (with read and write privileges) for these reserved address ranges, for the specified
devices. For these devices, the system software is also responsible for ensuring that any input
addresses used for device accesses to OS-visible memory do not overlap with the reserved system
memory address ranges.

3.16 Root-Complex Peer to Peer Considerations

When DMA remapping is enabled, peer-to-peer requests through the Root-Complex must be handled
as follows:

« The input address in the request is translated (through first-level, second-level or nested
translation) to a host physical address (HPA). The address decoding for peer addresses must be
done only on the translated HPA. Hardware implementations are free to further limit peer-to-peer
accesses to specific host physical address regions (or to completely disallow peer-forwarding of
translated requests).

= Since address translation changes the contents (address field) of the PCI Express Transaction
Layer Packet (TLP), for PCI Express peer-to-peer requests with ECRC, the Root-Complex
hardware must use the new ECRC (re-computed with the translated address) if it decides to
forward the TLP as a peer request.

« Root-ports, and multi-function root-complex integrated endpoints, may support additional peer-
to-peer control features by supporting PCI Express Access Control Services (ACS) capability. Refer
to ACS capability in PCI Express specifications for details.
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4 Support For Device-TLBs

The DMA remapping architecture described in Chapter 3 supports address translation of DMA requests
received by the Root-Complex. Hardware may accelerate the address-translation process by caching
data from the translation structures. Chapter 6 describes details of these translation caches
supported by remapping hardware. Translation caches at the remapping hardware is a finite resource
that supports requests from multiple endpoint devices. As a result, efficiency of these translation
caches in the platform can depend on number of simultaneously active DMA streams in the platform,
and address locality of DMA accesses.

One approach to scaling translation caches is to enable endpoint devices to participate in the
remapping process with translation caches implemented at the devices. These translation caches on
the device are referred to as Device-TLBs (Device Translation Lookaside Buffers). Device-TLBs
alleviate pressure for translation caches in the Root-Complex, and provide opportunities for devices to
improve performance by pre-fetching address translations before issuing DMA requests. Device-TLBs
can be useful for devices with strict access latency requirements (such as isochronous devices), and
for devices that have large DMA working sets or multiple active DMA streams. Remapping hardware
units report support for Device-TLBs through the Extended Capability Register (see Section 10.4.3).
Additionally, Device-TLBs may be utilized by devices to support recoverable 1/0 page faults. This
chapter describes the basic operation of Device-TLBs. Chapter 7 covers use of Device-TLBs to support
recoverable 1/0 page faults.

4.1 Device-TLB Operation

Device-TLB support in endpoint devices requires standardized mechanisms to:
* Request and receive translations from the Root-Complex
« Indicate if a memory request (with or without PASID) has a translated or un-translated address
< Invalidate translations cached at Device-TLBs.

Figure 4-13 illustrates the basic interaction between the Device-TLB in an endpoint and remapping

hardware in the Root-Complex, as defined by Address Translation Services (ATS) in PCI Express Base
Specification, Revision 4.0 or later.
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Figure 4-13. Device-TLB Operation
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ATS defines the ‘Address Type’ (AT) field in the PCI Express transaction header for memory requests.
The AT field indicates if transaction is a memory request with ‘Untranslated’ address (AT=00Db),
‘Translation Request’ (AT=01b), or memory request with ‘Translated’ address (AT=10b). ATS also
define Device-TLB invalidation messages. Following sections describe details of these transactions.

4.1.1 Translation Request

Translation-requests-without-PASID specify the following attributes that are used by remapping
hardware to process the request:

* Address Type (AT):

— AT field has value of 01b to identify it as a translation-request.
* Address:

— Address field indicates the starting input address for which the translation is requested.
* Length:

— Length field indicates how many sequential translations may be returned in response to this
request. Each translation is 8 bytes in length. The length field must always indicate an even
number of DWORDs with a minimum value of 2 (DWs). If the length field has a value greater
than 2, then the additional translations (if returned in the translation response) are for
sequentially increasing equal-sized pages starting at the requested input address. Refer to
ATS specification within PCI Express Base Specification Revision 4.0 or later for more details.

* No Write (NW) flag:
— The NW flag, when Set, indicates if the endpoint is requesting read-only access for this
translation.

Translation-requests-with-PASID specify the same attributes as above, and also specify the additional
attributes (PASID value, Execute-Requested (ER) flag, and Privileged-mode-Requested (PR) flag) in
the PASID prefix.

4.1.2 Translation Completion

If the remapping hardware was not able to successfully process the translation-request (with or
without PASID), a translation-completion without data is returned.

= A status code of UR (Unsupported Request) is returned in the completion if the remapping
hardware is configured to not support translation requests from this endpoint.

= A status code of CA (Completer Abort) is returned if the remapping hardware encountered errors
when processing the translation-request.

If the remapping hardware was able to successfully process a translation-request, a translation-
completion with data is returned.

For successful translation-requests-without-PASID, each translation returned in the translation-
completion data specifies the following attributes:

« Size (S):

— Value of 0Ob in Size field indicates the translation is for a 4-KByte page. If Size field is 1b, the
size of the translation is determined by the lowest bit in the Translated Address field (bits
63:12) with a value of 0. For example, if bit 12 is O, the translation applies to a 8-KByte page.
If bit 12 is 1 and bit 13 is O, the translation applies to a 16-KByte page, and so on. Refer to
Address Translation Services (ATS) in PCl Express base specification, Rev 4.0 for details on
translation size encoding.

= Non-Snooped access flag (N):

— When Set, the Non-Snooped access field indicates that the translated-requests that use this
translation must clear the No Snoop Attribute in the request.
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Untranslated access only flag (U):

— When Set, the input address range for the translation can only be accessed by the endpoint
using untranslated-request.

* Read permission (R):

— If Set, read permission is granted for the input address range of this translation. If Clear, read
permission is not granted for the input address range of this translation.

* Write permission (W):

— If Set, write permission is granted for the input address range of this translation. If Clear,
write permission is not granted for the input address range of this translation.

Translated Address:

— If either the R or W field is Set, and the U field is Clear, the translated address field contains
the result of the translation for the respective input address. Endpoints can access the page
through Translated-requests with this address.

For successful translation-requests-with-PASID, each translation returned in the translation-
completion data specifies the same attributes as above, along with following attributes:
- Execute permission (EXE):

— If EXE=R=1, execute permission is granted for the input address range of this translation.
Else, execute permission is not granted for the input address range of this translation.

« Privilege Mode Access (PRIV):

— If Set, R, W and EXE refer to permissions associated with privileged mode access. If Clear, R,
W, and EXE refer to permissions associated with non-privileged access.

* Global Mapping (G):

— If Set, the translation is common across all PASIDs at this endpoint. If Clear, the translation is
specific to the PASID value specified in the PASID prefix in the associated Translation-request.

— Remapping hardware provides a value of 0 in this field.

4.1.3 Translated Request

Translated-requests are regular memory read/write/atomics requests with Address Type (AT) field
value of 10b. When generating a request to a given input (untranslated) address, the endpoint may
look in the local Device-TLB for a cached translation (result of a previous translation-request) for the
input address. If a cached translation is found with appropriate permissions and privilege, the
endpoint may generate a translated-request (AT=10b) specifying the Translated address obtained
from the Device-TLB lookup. Translated-requests are issued as requests-without-PASID.

4.1.4 Invalidation Request & Completion

Invalidation requests are issued by software through remapping hardware to invalidate translations
cached at endpoint Device-TLBs.
Invalidation-requests-without-PASID specify the following attributes:
e Device ID
— ldentity of the device (bus/device/function) whose Device-TLB is the target of invalidation.
* Size (S):

— Value of Ob in Size field indicates the target of invalidation is a 4-KByte input address range. If
Size field is 1b, the input address range to be invalidated is determined by the lowest bit in
the Untranslated Address field (bits 63:12) with a value of 0. Refer to the PCI Express ATS
Specification for details on invalidation address size encoding.

e Untranslated Address
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— Specifies the base of the input (untranslated) address range to be invalidated.

Invalidation-requests-with-PASID specify the same attributes as above, along with a global-invalidate
flag. If the global-invalidate flag is 1, the invalidation affects all PASID values. If the global-invalidate
flag is O, the invalidation is only required to affect the PASID value specified in the PASID TLP prefix.

Invalidation requests and completions carry additional tags (ITags) managed by hardware to uniquely
identify invalidation requests and completions. Refer to the Address Translation Services in PCI
Express Base Specification Revision 4.0 or later for more details on use of ITags.

4.2 Remapping Hardware Handling of Device-TLBs

Remapping hardware reports support for Device-TLBs through the Extended Capability Register (see
Section 10.4.3). The translation-type (TT) field in the context-entries and Device TLB Enable (DTE)
field in scalable-mode context entries can be programmed to enable or disable processing of
translation-requests and translated-requests from specific endpoints by remapping hardware. The
following sections describe the remapping hardware handling of ATS requests.

4.2.1 Handling of ATS Protocol Errors

The following upstream requests are always handled as Unsupported Request (UR) by hardware:
= Memory read or write request (with or without PASID) with AT field value of ‘Reserved’ (11b).
< Memory write request (with or without PASID) with AT field value of ‘Translation Request’ (01b).
* Requests-with-PASID with AT field value of ‘Translated’ (10b).

The following upstream requests (with or without PASID) are always handled as malformed packets:
< Memory read request with AT field value of ‘Translation Request’ with any of the following:
— Length specifying odd number of DWORDs (i.e. least significant bit of length field is non-zero)

— Length greater than N/4 DWORDs where N is the Read Completion Boundary (RCB) value (in
bytes) supported by the Root-Complex.

— First and last DWORD byte enable (BE) fields not equal to 1111b.
« ‘Invalidation Request’ message.
When remapping hardware is disabled (TES=0 in Global Status Register), following upstream
requests are treated as Unsupported Request (UR).
< Memory requests with non-zero AT field (i.e. AT field is not ‘Untranslated’).

« ATS ‘Invalidation Completion’ messages.

4.2.2 Root-Port Control of ATS Address Types

Root-ports supporting Access Control Services (ACS) capability can support ‘Translation Blocking’
control to block upstream memory requests with non-zero value in the AT field. When enabled, such
requests are reported as ACS violation by the receiving root-port. Refer to the ACS Capability in PCI
Express Specifications for more details. Upstream requests that cause ACS violations are blocked at
the root-port as error and are not presented to remapping hardware.

4.2.3 Handling of Translation Requests

This section describes the handling of translation-requests when remapping hardware is enabled.

= The requester-id in the translation-request is used to parse the respective legacy root/context
entry or scalable-mode root/context entry as described in Section 3.4.

« If hardware detects any of the conditions below that explicitly block translation-requests from this
endpoint, a translation-completion is returned with status code of Unsupported Request (UR), and
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hardware treats it as a translation-fault.(See Section 7.2.3 for details of conditions and
translation-fault behavior.)

— Condition codes: LRT.2, LCT.2, LCT.5 SRTA.2, SRT.2, SCT.2, SCT,5, SCT.6, SCT.7.

= For translation-requests (with or without PASID), if hardware detects any of the error conditions
below, a translation-completion is returned with status code of Completer Abort (CA), and
hardware treats it as a translation-fault. (see Section 7.2.3 for details of conditions and
translation-fault behavior.)

— Condition codes: LRT.1, LRT.3, LCT.1, LCT.3, LCT.4.x, LSL.1, LSL.2, SRTA.1.x, SRT.1, SRT.3,
SCT.1, SCT.3, SCT.4.x, SPD.1, SPD.3, SPT.1, SPT.3, SPT.4.x, SFL.1, SFL.3, SFL.4, SSL.1,
SSL.3, SSL.4.

« If none of the error conditions above are detected, hardware handles the translation-request as
follows:

— If the input address in a translation-request-without-PASID is within the interrupt address
range (OXFEEx_xxxx)1, a successful translation-completion is issued with R=0, W=1, U=1,
and S=0 in the Translation-Completion data. This special handling for translation-requests-
without-PASID to the interrupt address range is provided to comprehend potential endpoint
Device-TLB behavior of issuing translation requests to all of its memory transactions including
its message signaled interrupt (MSI) posted writes.

— If remapping hardware encounters any of the conditions below that result in either not finding
a translation for the address specified in the translation-request, or detecting that the
requested translation lacks both read and write permissions, a translation-completion with
status code of Success is returned with R=W=U=S=0 in the translation-completion-data.

e Condition code: LGN.1, SPD.2, SPT.2, SPT.5, SPT.6, SFL.2, SFL.5, SSL.2, SGN.1, SGN.2,
SGN.5 (see Section 7.2.3 for definition of conditions).

— If remapping hardware successfully fetches the translation requested, and the translation has
at least one of Read and Write permissions, a translation-completion with status code of
Success is returned with translation-completion-data as follows:

» Read (R) bit: The R bit in the translation-completion data is the effective read permission
for this translation.

— For translation-requests, R bit is 1 if the respective access rights checking (as described
in Section 3.6.1, Section 3.7.1, and Section 3.8.1) allows read access to the page. Else,
R bit is O.

= Write (W) bit: The W bit in the translation-completion data is the effective write
permission for this translation.

— For translation-requests with NW=1 (i.e., requests indicating translation is for read-only
accesses), remapping hardware reporting no-write-flag support (NWFS=1 in the
Extended Capability Register) returns the W bit as 0. Remapping hardware not
supporting no-write-flag (NWFS=0) ignores value of NW field in translation-requests
and functions as if NW is O (see below).

— For translation-requests with NW=0, W bit is 1 if the respective access rights checking
(as described in Section 3.6.1, Section 3.7.1 and Section 3.8.1) allows write access to
the page. Else, W bit is 0.

1. Translation-requests-with-PASID with input address in the range OXFEEX_xxxxx are processed
normally through page-table translation, like any other translation-request-with-PASID.
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= Execute (EXE) bit: The EXE bit in the translation-completion data is the effective execute
permission for this translation.

— For translation-requests-without-PASID, this bit is always 0.

— For translation-requests-with-PASID with ER=0 (i.e., requests indicating translation is
not for instruction fetch), this bit is always 0.

— For translation-requests-with-PASID with ER=1 (i.e., requests indicating translation is
for instruction fetch), remapping hardware reporting Execute-Requests as not
supported (ERS=0 in the Extended Capability Register) returns the EXE bit as always 0.
Remapping hardware supporting Execute-Requests (ERS=1) returns EXE bit as 1 if the
access rights checking (as described in Section 3.6.1, Section 3.7.1, and Section 3.8.1)
allows instruction fetch from the page. Else, EXE bit is O.

= Privilege Mode (PRI1V) bit: The PRIV bit in the translation-completion data is the
effective privilege for this translation.

— For translation-request-with-PASID with PR=1, this bit is always 1. For all other
requests, this bit is always 0.

— For translation-request-with-PASID with PR-1, remapping hardware not supporting
supervisor requests (SRS=0 in the Extended Capability Register) forces R=W=E=0 in
addition to setting PRIV=1.

— If the scalable-mode PASID-table entry used to process translation-request-with-PASID
with PR=1 and the SRE field is clear, the remapping hardware forces R=W=E=0 in
addition to setting PRIV=1.

= Global Mapping (G) bit: The G bit in the translation-completion data is the effective
privilege for this translation.

— This bit is set to O.

* Non-snooped access (N) bit: The N bit in the translation-completion data indicates the
use of the No-Snoop (NS) flag in accesses that use this translation.

— For requests that use first-level translation (scalable-mode PGTT=001b), remapping
hardware supporting First-level Snoop Control (ECAP_REG.FLSCS=1) returns the FLSNP
bit in the scalable-mode PASID-table entry as the N bit. Remapping hardware not
supporting First-level Snoop Control returns a value of O as the N bit.

— For requests that use second-level translation (legacy-mode TT=01b or scalable-mode
PGTT=010b), remapping hardware supporting Snoop Control (ECAP_REG.SC=1)
returns the SNP bit in the leaf second-level paging structure entry controlling the
translation as the N bit. Remapping hardware not supporting Snoop Control returns a
value of O as the N bit.

— For requests that use nested translation (scalable-mode PGTT=011b), remapping
hardware returns a value of 1 as the N bit, if both ECAP_REG.FLCS and the FLSNP field
in the scalable-mode PASID-table entry are set, or if both ECAP_REG.SC and the SNP
field in the leaf second-level paging structure entry controlling the translation are set.
Otherwise, remapping hardware returns a value of O as the N bit.

— For requests that use pass-through translation (legacy-mode TT=10b or scalable-mode
PGTT=100b), remapping hardware returns a value of O as the N bit.
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Table 10. N bit in Translation Completion
TT (Legacy) Page:
Mode or Translation Completion.N
PGTT (Scalable) (Non-snooped Access)
TT=00b NA
(second-level with ATS blocked) (Translation request are treated as UR)
TT=01b
L i N=(ECAP.SC && SL.leaf.SNP
egacy (second-level with ATS allowed) ( ea )
TT=10 NA
(pass-through) (Translation request are treated as UR)
001b
(first-level)
010b N=PASID-table-entry.PGSNP ||
(second-level) (ECAP.SC && SL.leaf.SNP)
Scalable
011b Note: SL.leaf.SNP = O for PGTT=001b/100b and PASID-
(nested) table-entry.PGSNP = O for PGTT=100b
100b

(pass-through)

Untranslated access only (U) bit: The U bit in the translation-completion data indicates
the address range for the translation can only be accessed using untranslated-requests.

— For translation-requests that are subject to only second-level translation, this bit is the
TM (transient-mapping) bit from the second-level paging-structure entry controlling the
translation (SL-PTE or second-level paging-structure entry with PS=1).

— For translation-requests that are subject to only first-level translation, this bit is always
0.

— For translation-requests that are subject to nested translation, this bit is the TM
(transient-mapping) bit from the second-level paging-structure entry used to translate
the page (SL-PTE or second-level paging-structure entry with PS=1).

Size (S) bit: The S bit in the translation-completion data indicates the page size for the
translation.

— This bit is O if translation returned is for 4-KByte page.

— This bit is 1 if translation returned if for page larger than 4-KByte. In this case, the size
of the translation is determined by the lowest bit in the Translated Address field (bits
63:12) with a value of 0. For example, if bit 12 is O, the translation applies to a 8-KByte
page. If bit 12 is 1 and bit 13 is O, the translation applies to a 16-KByte page, and so
on. Refer to Address Translation Services in PCI Express Base Specification Revision 4.0
or later for details on translation size encoding.

Translated Address (ADDR): If either R or W bit is 1, and U bit is O, the ADDR field in
the translation-completion data contains the result of the translation.

— For translation-requests that are subject to second-level translation only, this is the
translated address from the second-level translation.

— For translation-requests that are subject to first-level translation only, this is the output
address from the first-level translation.

— For translation-requests that are subject to nested translation, this is the output
address from the nested translation.
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4.2.3.1 Accessed, Extended Accessed, and Dirty Flags

While processing a translation-request through first-level translation, remapping hardware manages
the accessed, extended-accessed, and dirty flags in the first-level paging-structure entries as follows:

« Remapping hardware atomically sets the A field (if it is not already set) in each first-level paging-
structure entry used to successfully translate the request.

< Remapping hardware atomically sets the EA field (if it is not already set) in each first-level
paging-structure entry used to successfully translate the request, if the scalable-mode PASID-
table entry used to process the request has a value of 1 for the Extended-Accessed-Flag-Enable
(EAFE) field.

= For a translation-request with NW=0, remapping hardware reporting No-Write-Flag Support
(NWFS=1 in Extended Capability Register) atomically sets the D field (if it is not already set) in
the first-level paging-structure entry that identifies the final translated address for the input
address (i.e., either a PTE or a paging-structure entry in which the PS field is 1). Remapping
hardware not supporting No-Write-Flag (NWFS=0) atomically sets the D field, ignoring the value
of the NW field in the translation-request.

As described above, the accessed, extended accessed, and dirty flags are set at the time of
processing a translation-request, before the endpoint accesses the page using the translation
returned in the translation-completion.

Setting of Accessed, Extended Accessed, and Dirty flags in the first level paging-structure entries are
subject to the access rights checking described in Section 3.6.1 (or Section 3.8.1, when nested
translations are enabled).

4.2.3.2 Translation Requests for Multiple Translations

Translation-requests for multiple mappings indicate a length field greater than 2 DWORDs. Hardware
implementations may handle these requests in any one of the following ways:

= Always return a single translation

— Hardware performs translation only for the starting address specified in the translation-
request, and a translation-completion is returned depending on the result of this processing.
In this case, the translation-completion has a Length of 2 DWORDs, Byte Count of 8, and the
Lower Address indicates a value of Read Completion Boundary (RCB) minus 8.

* Return multiple translations

— Hardware performs translations starting with the address specified in the translation-request,
until a Completer Abort (CA) or Unsupported Request (UR) condition as described in
Section 4.2.3 is detected, or until a translation with different page-size than the previous
translation in this request is detected. Remapping hardware may also limit fetching of
translations to those that are resident within a cache line. When returning multiple
translations (which may be less than the number of translations requested), hardware must
ensure that successive translations must apply to the untranslated address range that abuts
the previous translation in the same completion. Refer to Address Translation Services in PCI
Express Base Specification Revision 4.0 or later for requirements on translation-completions
returning multiple mappings in one or two packets.

4.2.4 Handling of Translated Requests

This section describes the handling of Translated-requests when remapping hardware is enabled.
= If a translated-request has a PASID prefix, it is treated as malformed request.

- If a translated-request is a write or atomics request to the interrupt address range
(OXFEEX_xxxx), it is treated as an Unsupported Request (UR). Also, all translated (and
untranslated) requests that are reads to the interrupt address range always return UR.
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- If hardware detects any of the conditions below, the translated-request is blocked (handled as
UR) and is treated as a translation fault (see Section 7.2.3 for details of conditions and hardware
behavior).

— Condition code: LRT.1, LRT.2, LRT.3, LCT.1, LCT.2, LCT.3, LCT4.x, SRT.1, SRT.2, SRT.3, SCT.1,
SCT.2, SCT.3, SCT.4.1, SCT.5.

« If none of the error conditions above are detected, the translated-request is processed as pass-
through (i.e., bypasses address translation).

4.3 Handling of Device-TLB Invalidations

The Address Translation Services (ATS) support in PCI Express defines the wire protocol for the Root-
Complex to issue Device-TLB invalidation requests to an endpoint and to receive Device-TLB
invalidation completion responses from the endpoint.

For remapping hardware supporting Device-TLBs, software submits the Device-TLB invalidation
requests through the invalidation queue interface of the remapping hardware. Section 6.5.2 describes
the queued invalidation interface details.

Hardware processes a Device-TLB invalidation request as follows:

« Hardware allocates a free invalidation tag (ITag). ITags are used to uniquely identify an
invalidation request issued to an endpoint. If there are no free ITags in hardware, the Device-TLB
invalidation request is deferred until a free ITag is available. For each allocated ITag, hardware
stores a counter (InvCmpCnt) to track the number of invalidation completions received with this
ITag.

« Hardware starts an invalidation completion timer for this ITag, and issues the invalidation request
message to the specified endpoint. If the invalidation command from software is for a translation
with PASID, the invalidation request message is generated with the appropriate PASID prefix to
identify the target PASID. The invalidation completion time-out value is recommended to be
sufficiently larger than the PCI Express read completion time-outs.

Hardware processes a Device-TLB invalidation response received as follows:

= ITag-vector in the invalidation completion response indicates the ITags corresponding to
completed Device-TLB invalidation requests. The completion count in the invalidation response
indicates the number of invalidation completion messages expected with the same ITag-vector
and completion count.

« For each ITag Set in the ITag-vector, hardware checks if it is a valid (currently allocated) ITag for
the source-id in the invalidation completion response. If hardware detects an invalid 1Tag, the
invalidation completion message is dropped by hardware. The error condition is reported by
setting the Invalidation Completion Error (ICE) field in the Fault Status Register (see
Section 10.4.9), and depending on the programming of the Fault Control Register a fault event
may be generated.

- If above checks are completed successfully, for each ITag in the ITag-vector, the corresponding
InvCmpCnt counter is incremented and compared with the ‘completion count’ value in the
invalidation response (‘completion count’ value of O indicates 8 invalidation completions). If the
comparison matches, the Device-TLB invalidation request corresponding to the ITag is considered
completed, and the ITag is freed.

< If the invalidation completion time-out expires for an ITag before the InvCmpCnt invalidation
responses are received, hardware frees the ITag and reports it through the ITE field in the Fault
Status Register. Depending on the programming of the Fault Control Register a fault event may be
generated. Section 6.5.2.10 describes hardware behavior on invalidation completion time-outs.
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5 Interrupt Remapping and Interrupt Posting

This chapter discuss architecture and hardware details for interrupt-remapping and interrupt-posting.

51 Interrupt Remapping

The interrupt-remapping architecture enables system software to control and censor external
interrupt requests generated by all sources including those from interrupt controllers (1/OxAPICs),
MSI/MSI-X capable devices including endpoints, root-ports and Root-Complex integrated end-points.

Interrupts generated by the remapping hardware itself (Fault Event and Invalidation Completion
Events) are not subject to interrupt remapping.

Interrupt requests appear to the Root-Complex as upstream memory write requests to the interrupt-
address-range OXFEEX_XXXXh. Since interrupt requests arrive at the Root-Complex as write requests,
interrupt-remapping is co-located with the remapping hardware units. The interrupt-remapping
capability is reported through the Extended Capability Register.

51.1 Identifying Origination of Interrupt Requests

To support domain-isolation usages, the platform hardware must be capable of uniquely identifying
the requestor (Source-ld) for each interrupt message. The interrupt sources in a platform and use of
source-id in these requests may be categorized as follows:

 Message Signaled Interrupts from PCIl Express Devices

— For message-signaled interrupt requests from PCIl Express devices, the source-id is the
requester identifier in the PCl Express transaction header. The requester-id of a device is
composed of its PCI Bus/Device/Function humber assigned by configuration software and
uniquely identifies the hardware function that initiated the 1/0 request. Section 3.4.1
illustrates the requester-id as defined by the PCI Express specification. Section 3.11.4
describes use of source-id field by PCI Express devices using phantom functions.

+ Message Signhaled Interrupts from Root-Complex Integrated Devices

— For message-signaled interrupt requests from root-complex integrated PCI or PCI Express
devices, the source-id is its PCI requester-id.

 Message Signaled Interrupts from Devices behind PCI Express to PCI/PCI-X Bridges

— For message-signaled interrupt requests from devices behind PCI Express-to-PCI/PCI-X
bridges, the requester identifier in those interrupt requests may be that of the interrupting
device or the requester-id with the bus number field equal to the bridge’s secondary
interface’s bus number and device and function number fields value of zero. Section 3.11.1
describes legacy behavior of these bridges. Due to this aliasing, interrupt-remapping
hardware does not isolate interrupts from individual devices behind such bridges.

= Message Sighaled Interrupts from Devices behind Conventional PCI bridges

— For message-signaled interrupt requests from devices behind conventional PCI bridges, the
source-id in those interrupt requests is the requester-id of the legacy bridge device.
Section 3.11.2 describes legacy behavior of these bridges. Due to this, interrupt-remapping
hardware does not isolate message-signaled interrupt requests from individual devices behind
such bridges.
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* Legacy pin interrupts

— For devices that use legacy methods for interrupt routing (such as either through direct wiring
to the I/OXAPIC input pins, or through INTx messages), the I/OxXAPIC hardware generates the
interrupt-request transaction. To identify the source of interrupt requests generated by
1/OXAPICs, the interrupt-remapping hardware requires each I/OXAPIC in the platform
(enumerated through the ACPI Multiple APIC Descriptor Tables (MADT)) to include a unique
16-bit source-id in its requests. BIOS reports the source-id for these 1I/OxAPICs via ACPI
structures to system software. Refer to Section 8.3.1.1 for more details on I/OxAPIC identity
reporting.

« Other Message Signaled Interrupts

— For any other platform devices that are not PCI discoverable and yet capable of generating
message-signaled interrupt requests (such as the integrated High Precision Event Timer -
HPET devices), the platform must assign unique source-ids that do not conflict with any other
source-ids on the platform. BIOS must report the 16-bit source-id for these via ACPI
structures described in Section 8.3.1.2.

51.2 Interrupt Request Formats On Intel® 64 Platforms

Interrupt-remapping on Intel® 64 platforms support two interrupt request formats. These are
described in the following sub-sections.

51.2.1 Interrupt Requests in Compatibility Format

Figure 5-14 illustrates the interrupt request in Compatibility format. The Interrupt Format field
(Address bit 4) is Clear in Compatibility format requests. Refer to the Intel 64 Architecture software
developer’s manuals for details on other fields in the Compatibility format interrupt requests.
Platforms without interrupt-remapping capability support only Compatibility format interrupts.

Address
3 21 11
1 09 2 1 54321 0
0 XX
L> Don't Care
» Destination Mode
P Redirection Hint
» Interrupt Format (Ob)
> Reserved
» Destination ID
Data » FEEh
3 1111 11
1 6543 10 8 7 0

\—> Vector

t—————————» Delivery Mode

» Reserved

» Trigger Mode Level
» Trigger Mode

» Reserved

Figure 5-14. Compatibility Format Interrupt Request
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5.1.2.2 Interrupt Requests in Remappable Format

Figure 5-15 illustrates the Remappable interrupt request format. The Interrupt Format field (Address
bit 4) is Set for Remappable format interrupt requests. Remappable interrupt requests are applicable
only on platforms with interrupt-remapping support.

Address
21
31 09 54321 0
1 XX
|
L Don't Care
L——» HANDLE[15]
L——» SHV
L——— > Interrupt Format
——  » HANDLE [14:0]
|-
Data » FEEh
11
31 65 0

Oh

\—>SUBHANDLE (if SHV==1)

» Reserved (0)

Figure 5-15. Remappable Format Interrupt Request

Table 11 describes the various address fields in the Remappable interrupt request format.

Table 11. Address Fields in Remappable Interrupt Request Format
Address - L
Bits Field Description
31: 20 Interrupt Identifier DWORD DMA write request with value of FEEh in these bits are decoded as interrupt

requests by the Root-Complex.

This field along with bit 2 provides a 16-bit Handle. The Handle is used by interrupt-
19: 5 Handle[14:0] remapping hardware to identify the interrupt request. 16-bit Handle provides 64K unique
interrupt requests per interrupt-remapping hardware unit.

4 Interrupt Format This field must have a value of 1b for Remappable format interrupts.
This field specifies if the interrupt request payload (data) contains a valid Subhandle. Use
3 SubHandle Valid (SHV) | of Subhandle enables MSI constructs that supports only a single address and multiple
data values.
2 Handle[15] This field carries the most significant bit of the 16-bit Handle.
1:0 Don’t Care These bits are ignored by interrupt-remapping hardware.

Table 12 describes the various data fields in the Remappable interrupt request format.
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Table 12. Data Fields in Remappable Interrupt Request Format

Data Bits Field Description

When SHYV field in the interrupt request address is Set, this field treated as reserved (0) by
31:16 Reserved hardware.
When SHYV field in the interrupt request address is Clear, this field is ignored by hardware.

When SHYV field in the interrupt request address is Set, this field contains the 16-bit Subhandle.

15:0 Subhandle
“ When SHYV field in the interrupt request address is Clear, this field is ignored by hardware.

5.1.3 Interrupt Remapping Table

Interrupt-remapping hardware utilizes a memory-resident single-level table, called the Interrupt
Remapping Table. The interrupt remapping table is expected to be setup by system software, and its
base address and size is specified through the Interrupt Remap Table Address Register. Each entry in
the table is 128-bits in size and is referred to as Interrupt Remapping Table Entry (IRTE).Section 9.10
illustrates the IRTE format.

For interrupt requests in Remappable format, the interrupt-remapping hardware computes the
‘interrupt_index’ as below. The Handle, SHV and Subhandle are respective fields from the interrupt
address and data per the Remappable interrupt format.

if (address.SHV == 0) {
interrupt_index = address.handle;
} else {
interrupt_index = (address.handle + data.subhandle);

}

The Interrupt Remap Table Address Register is programmed by software to specify the number of
IRTEs in the Interrupt Remapping Table (maximum number of IRTEs in an Interrupt Remapping Table
is 64K). Remapping hardware units in the platform may be configured to share interrupt-remapping
table or use independent tables. The interrupt_index is used to index the appropriate IRTE in the
interrupt-remapping table. If the interrupt_index value computed is equal to or larger than the
number of IRTEs in the remapping table, hardware treats the interrupt request as error.

Unlike the Compatibility interrupt format where all the interrupt attributes are encoded in the
interrupt request address/data, the Remappable interrupt format specifies only the fields needed to
compute the interrupt_index. The attributes of the remapped interrupt request is specified through
the IRTE referenced by the interrupt_index.The interrupt-remapping architecture defines support for
hardware to cache frequently used IRTEs for improved performance. For usages where software may
need to dynamically update the IRTE, architecture defines commands to invalidate the IEC. Chapter 6
describes the caching constructs and associated invalidation commands.

51.4 Interrupt-Remapping Hardware Operation

The following provides a functional overview of the interrupt-remapping hardware operation:

« An interrupt request is identified by hardware as a DWORD sized write request to interrupt
address ranges OXFEEX_ XXXxX.

< When interrupt-remapping is not enabled (IRES field Clear in Global Status Register), all interrupt
requests are processed per the Compatibility interrupt request format described in
Section 5.1.2.1.

< When interrupt-remapping is enabled (IRES field Set in Global Status Register), interrupt requests
are processed as follows:

— Interrupt requests in the Compatibility format (i.e requests with Interrupt Format field Clear)
are processed as follows:
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¢ If Extended Interrupt Mode is enabled (EIME field in Interrupt Remapping Table Address
Register is Set), or if the Compatibility format interrupts are disabled (CFIS field in the
Global Status Register is Clear), the Compatibility format interrupts are blocked.

* Else, Compatibility format interrupts are processed as pass-through (bypasses interrupt-
remapping).

— Interrupt requests in the Remappable format (i.e. request with Interrupt Format field Set) are
processed as follows:

®* The reserved fields in the Remappable interrupt requests are checked to be zero. If the
reserved field checking fails, the interrupt request is blocked. Else, the Source-id, Handle,
SHV, and Subhandle fields are retrieved from the interrupt request.

* Hardware computes the interrupt_index per the algorithm described in Section 5.1.3. The
computed interrupt_index is validated to be less than the interrupt-remapping table size
configured in the Interrupt Remap Table Address Register. If the bounds check fails, the
interrupt request is blocked.

* If the above bounds check succeeds, the IRTE corresponding to the interrupt_index value
is either retrieved from the Interrupt Entry Cache, or fetched from the interrupt-
remapping table. If the Coherent (C) field is reported as Clear in the Extended Capability
Register, the IRTE fetch from memory will not snoop the processor caches. Hardware must
read the entire IRTE as a single operation and not use multiple reads to get the contents of
the IRTE as software may change the contents of the IRTE atomically. Hardware imple-
mentations reporting Memory Type Support (MTS=1 in ECAP_REG) must use write-back
(WB) memory type for IRTE fetches. If the Present (P) field in the IRTE is Clear, the
interrupt request is blocked and treated as a fault.

* If IRTE is present (P=1), hardware performs verification of the interrupt requester per the
programming of the SVT, SID and SQ fields in the IRTE as described in Section 9.10. If the
source-id checking fails, the interrupt request is blocked.

— If IRTE has Mode field clear (IM=0):1

* Hardware interprets the IRTE in remappable format (as described in Section 9.10). If
invalid programming of remappable-format IRTE is detected, the interrupt request is
blocked.

¢ If above checks succeed, a remapped interrupt request is generated per the programming
of the IRTE fields?.

= Any of the above checks that result in interrupt request to be blocked is treated as a interrupt-
remapping fault condition. The interrupt-remapping fault conditions are enumerated in the
following section.

1. If the IM field is 1, hardware interprets the IRTE in posted format (as described in Section 9.11).
Refer to Section 5.2.3 for interrupt-posting hardware operation.

2. When forwarding the remapped interrupt request to the system bus, the ‘Trigger Mode Level’ field
in the interrupt request on the system bus is always set to “asserted” (1b).
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51.4.1 Interrupt Remapping Fault Conditions

The following table enumerates the various conditions resulting in faults when processing interrupt
requests. A fault conditions is treated as ‘qualified’ if the fault is reported to software only when the
Fault Processing Disable (FPD) field is Clear in the IRTE used to process the faulting interrupt request.

Table 13. Interrupt Remapping Fault Conditions
Interrupt Remapping Fault Conditions RZE;L;IOtn Qualified Behavior
Decoding of the interrupt request per the Remappable request format detected 20h No
one or more reserved fields as Set.
The interrupt_index value computed for the Remappable interrupt request is
greater than the maximum allowed for the interrupt-remapping table size 21h No
configured by software, or hardware attempt to access the IRTE corresponding to
the interrupt_index value referenced an address above Host Address Width (HAW).
The Present (P) field in the IRTE entry corresponding to the interrupt_index of the 22h Yes

interrupt request is Clear.

Hardware attempt to access the interrupt-remapping table through the Interrupt-
Remapping Table Address (IRTA) field in the Interrupt Remap Table Address 23h No
Register resulted in error.

Hardware detected one ore more reserved fields that are not initialized to zero in
an IRTE with Present (P) field Set. This also includes cases where software 24h Yes Unsupported
programmed various conditional reserved fields wrongly. Request

on Intel® 64 platforms, hardware blocked an interrupt request in Compatibility
format either due to Extended Interrupt Mode Enabled (EIME field Set in Interrupt
Remapping Table Address Register) or Compatibility format interrupts disabled
(CFIS field Clear in Global Status Register).

25h No

Hardware blocked a Remappable interrupt request due to verification failure of the
interrupt requester’s source-id per the programming of SID, SVT and SQ fields in 26h Yes
the corresponding IRTE with Present (P) field Set.

Hardware attempt to access the Posted Interrupt Descriptor (PID) through the
Posted Descriptor Address High/Low fields of an IRTE for posted interrupts resulted 27h Yes
in error.

Hardware detected one ore more reserved fields that are not initialized to zero in

an Posted Interrupt Descriptor (PID).1 28h ves

1. Fault Reasons 27h and 28h are applicable only for interrupt requests processed through IRTEs programmed for Interrupt Posting
as described in Section 9.11. Refer to Section 5.2 for details on Interrupt Posting.

5.1.5 Programming Interrupt Sources To Generate Remappable
Interrupts

Software performs the following general steps to configure an interrupt source to generate
remappable interrupts:

« Allocate a free interrupt remap table entry (IRTE) and program the remapped interrupt attributes
per the IRTE format described in Section 9.10.

= Program the interrupt source to generate interrupts in remappable format with appropriate
handle, subhandle and SHV fields that effectively encodes the index of the allocated IRTE as the
interrupt_index defined in Section 5.1.3. The interrupt_index may be encoded using the handle,
subhandle and SHYV fields in one of the following ways:

— SHV = 0; handle = interrupt_index;

— SHV = 1; handle = interrupt_index; subhandle = O;
— SHV = 1; handle = 0; subhandle = interrupt_index;
— SHV = 1; handle = interrupt_index - subhandle;
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The following sub-sections describes example programming for I/OxAPIC, MSI and MSI-X interrupt
sources to generate interrupts per the Remappable interrupt request format.

5151 1/O0xAPIC Programming

Software programs the Redirection Table Entries (RTES) in I/OXAPICs as illustrated in Figure 5-16.

6 44 4 11111111
3 98 7 76543210 87 0
1 000

Ly Vector
L pInterrupt_Index [15]
L Delivery Status
L Interrupt Polarity

P Remote IRR

P Trigger Mode

P Mask

P Reserved (0)

> Interrupt Format (1b)
> Interrupt_Index [14:0]

Figure 5-16. 1I/O0xAPIC RTE Programming

e The Interrupt_Index[14:0] is programmed in bits 63:49 of the I/OxAPIC RTE. The most
significant bit of the Interrupt_Index (Interrupt_Index[15]) is programmed in bit 11 of the
1/OXAPIC RTE.

« Bit 48 in the I/OXAPIC RTE is Set to indicate the Interrupt is in Remappable format.

« RTE bits 10:8 is programmed to 000b (Fixed) to force the SHV (SubHandle Valid) field as Clear in
the interrupt address generated.

« The Trigger Mode field (bit 15) in the I/OXAPIC RTE must match the Trigger Mode in the IRTE
referenced by the I/OxAPIC RTE. This is required for proper functioning of level-triggered
interrupts.

e For platforms using End-of-Interrupt (EOI) broadcasts, Vector field in the I/OxAPIC RTEs for level-
triggered interrupts (i.e. Trigger Mode field in I/OXAPIC RTE is Set, and Trigger Mode field in the
IRTE referenced by the I/OXAPIC RTE is Set), must match the Vector field programmed in the
referenced IRTE. This is required for proper processing of End-Of-Interrupt (EOI) broadcast by the
1/OXAPIC.

= Programing of all other fields in the I/OXAPIC RTE are not impacted by interrupt remapping.
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5152 MSI and MSI-X Register Programming

Figure 5-17 illustrates the programming of MSI/MSI-X address and data registers to support
remapping of the message signaled interrupt.

Address
63 / 21
31 09 54321 0
OFEEh 111 XX
L
L>Don’t Care
L— Interrupt_Index [15]
Data L »SHV (1)
L pInterrupt Format (1)
31/ »Interrupt_index[14:0]
15 0
Oh

Figure 5-17. MSI-X Programming

Specifically, each address and data registers must be programmed as follows:

« Address register bits 63/31: 20 must be programmed with the interrupt address identifier value of
OFEEh.

= Address register bits 19:5 is programmed with Interrupt_Index[14:0] and address register bit 2
must be programmed with Interrupt_Index[15]. The Interrupt_Index is the index of the Interrupt
Remapping Table Entry (IRTE) that remaps the corresponding interrupt requests.

— Devices supporting MSI allows software to enable multiple vectors (up to 32) in powers of 2.
For such multiple-vector MSI usages, software must allocate N contiguous IRTE entries
(where N is the number of vectors enabled on the MSI device) and the interrupt_index value
programmed to the Handle field must be the index of the first IRTE out of the N contiguous
IRTEs allocated. The device owns the least significant log-N bits of the data register, and
encodes the relative interrupt number (O to N-1) in these bits of the interrupt request
payload.

= Address register bit 4 must be Set to indicate the interrupt is in Remappable format.

= Address register bit 3 is Set so as to set the SubHandle Valid (SHV) field in the generated
interrupt request.

= Data register is programmed to Oh.
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5.1.6 Remapping Hardware - Interrupt Programming

Interrupts generated by the remapping hardware itself (Fault Event and Invalidation Completion
Events) are not subject to interrupt remapping. The following sections describe the programming of
the Fault Event and Invalidation Completion Event data/address registers on Intel 64 platforms.

51.7 Programming in Intel® 64 xAPIC Mode

Data Register
3
1 8 7 0

0h

\—FVector

————————® Delivery Mode
: Fixed
1: Lowest Priority
» Reserved (0)

Address Register

3
1

(SEN]

1
1 4321 0

©
N =

XX
I

LDon’tC

 — Destina?iroen Mode

—_» Redirection Hint

———» Reserved (0)

»- Destination ID
(APIC ID 7:0)

» FEEh

Upper Address Register
3
1 0

= Reserved (0)

Figure 5-18. Remapping Hardware Interrupt Programming in Intel® 64 XAPIC Mode
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5.1.8 Programming in Intel® 64 x2APIC Model
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Figure 5-19. Remapping Hardware Interrupt Programming in Intel® 64 x2APIC Mode

51.9 Handling of Platform Events

Platforms supporting interrupt remapping are highly recommended to use side-band mechanisms
(such as dedicated pins between chipset/board-logic and CPU), or in-band methods (such as
platform/vendor defined messages) to deliver platforms events such as SMI/PMI/NMI/INIT/MCA. This
is to avoid the dependence on system software to deliver these critical platform events.

Some existing platforms are known to use I/OxAPIC RTEs (Redirection Table Entries) to deliver SMI,
PMI and NMI events. There are at least two existing initialization approaches for such platform events
delivered through I/OXAPIC RTEs.

= Some existing platforms report to system software the 1/OxAPIC RTEs connected to platform
event sources through ACPI, enabling system software to explicitly program/enable these RTEs.
Example for this include, the 'NMI Source Reporting' structure in ACPI MADT (for reporting NMI
source).

« Alternatively, some existing platforms program the I/OxAPIC RTEs connected to specific platform
event sources during BIOS initialization, and depend on system software to explicitly preserve

1. Hardware support for x2APIC mode is reported through the EIM field in the Extended Capability
Register. x2APIC mode is enabled through the Interrupt Remapping Table Address Register.
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these RTEs in the BIOS initialized state. (For example, some platforms are known to program
specific I/OxAPIC RTE for SMI generation through BIOS before handing control to system
software, and depend on system software preserving the RTEs pre-programmed with SMI delivery
mode).

On platforms supporting interrupt-remapping, delivery of SMI, PMI and NMI events through I/OXAPIC
RTEs require system software programming the respective RTEs to be properly remapped through the
Interrupt Remapping Table. To avoid this management burden on system software, platforms
supporting interrupt remapping are highly recommended to avoid delivering platform events through
I/OxAPIC RTEs, and instead deliver them through dedicated pins (such as the processor’s XAPIC
LINTn input) or through alternative platform-specific messages.

52 Interrupt Posting

Interrupt-posting capability is an extension of interrupt-remapping hardware for extended processing
of remappable format interrupt requests. Interrupt-posting enables a remappable format interrupt
request to be posted (recorded) in a coherent main memory resident data-structure, with an optional
notification event to the CPU complex to signal pending posted interrupt.

Interrupt-posting capability (along with the support in Intel 64 processors for posted-interrupt
processing and APIC Virtualization) enables a Virtual Machine Monitor (VMM) software to efficiently
process interrupts from devices assigned to virtual machines. Section 2.5.3 describes high-level
usages and benefits of interrupt-posting. Refer to ‘Intel® 64 Architecture Software Developer's
Manual, Volume 3B: System Programming’ for details on Intel 64 processor support for APIC
virtualization and posted-interrupt processing.

Remapping hardware support for interrupt-posting capability is reported through the Posted Interrupt
Support (PI) field in the Capability register (CAP_REG). Section 10.4.2 describes interrupt-posting
capability reporting.

52.1 Interrupt Remapping Table Support for Interrupt Posting

All remappable interrupt requests are processed through the Interrupt Remapping Table as described
in Section 5.1.3. The IRTE Mode (IM) field in an Interrupt Remapping Table Entry (IRTE) specifies if
remappable interrupt requests processed through that IRTE is subject to interrupt-remapping or
interrupt-posting.

« If the IM field is 0 in an IRTE, the IRTE is interpreted in remappable format (described in
Section 9.10) to remap interrupt requests processed through it. The interrupt-remapping
hardware operation is described in Section 5.1.4.

- If the IM field is 1 in an IRTE, the IRTE is interpreted in posted format (described in Section 9.11)
to post interrupt requests processed through it. The interrupt-posting hardware operation is
described in Section 5.2.3.

IRTE entries in posted format support following new fields:

= Address of the Posted Interrupt Descriptor data structure to post (record) the interrupt to.
Section 5.2.2 describes the Posted Interrupt Descriptor.

< Urgent (URG) qualification to indicate if interrupt requests processed through this IRTE require
real-time processing or not. Section 5.2.3 describes the hardware operation with this field.

« Vector field specifies the vector to use when posting interrupts processed through an IRTE. Unlike
remappable-format (where the Vector field is used when generating the remapped interrupt
request), the Vector field for posted-format IRTEs is used to determine which bit to Set when
posting the interrupt to the Posted Interrupt Descriptor referenced by the IRTE.

As with interrupt remapping, interrupts generated by the remapping hardware itself are not subject to
interrupt posting.
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52.2 Posted Interrupt Descriptor

Posted Interrupt Descriptor is a 64-byte aligned and sized structure in memory used by interrupt-
posting hardware to post (record) interrupt requests subject to posting. Section 9.12 describes the
Posted Interrupt Descriptor Format. System software must allocate the Posted Interrupt Descriptors
in coherent (write-back) main memory.

The Posted Interrupt Descriptor hosts the following fields:

= Posted Interrupt Request (PIR) field provides storage for posting (recording) interrupts (one bit
per vector, for up to 256 vectors).

« Outstanding Notification (ON) field indicates if there is a notification event outstanding (not
processed by processor or software) for this Posted Interrupt Descriptor. When this field is O,
hardware modifies it from O to 1 when generating a notification event, and the entity receiving
the notification event (processor or software) resets it as part of posted interrupt processing.

= Suppress Notification (SN) field indicates if a notification event is to be suppressed (not
generated) for non-urgent interrupt requests (interrupts processed through an IRTE with
URG=0).

= Notification Vector (NV) field specifies the vector for notification event (interrupt).

= Notification Destination (NDST) field specifies the physical APIC-ID of the destination logical
processor for the notification event.

5.2.3 Interrupt-Posting Hardware Operation

Interrupt requests in remappable format are processed by hardware as described in Section 5.1.4.
When such processing encounters a IRTE entry in posted format (IM=1), the interrupt request is
processed through posting (instead of remapping). The following provides a functional overview of the
interrupt-posting hardware operation:

- If IRTE retrieved has Mode field as set (IM=1)1

— Hardware interprets the IRTE in posted format (as described in Section 9.11). If invalid
programming of posted-format IRTE is detected, the interrupt request is blocked.

— If above checks succeed, the IRTE provides the pointer to the Posted Interrupt Descriptor
(PDA-L/PDA-H), the vector value (Vector) to be posted, and if the interrupt request is
qualified as urgent (URG) or not.

= Hardware performs a coherent atomic read-modify-write operation of the posted-interrupt
descriptor as follows:

— Hardware implementations reporting Memory Type Support (MTS=1 in ECAP_REG) must use
write-back (WB) memory type with the atomic operation that updates posted-interrupt
descriptor.

— This atomic read-modify-write operation will always snoop processor caches irrespective of
the value of Pagewalk Coherency (C) field in Extended Capability Register (ECAP_REG).

— Read contents of the Posted Interrupt Descriptor, claiming exclusive ownership of its hosting
cache-line. If invalid programming (e.g., non-zero reserved fields) of Posted Interrupt
Descriptor is detected, release ownership of the cache-line, and block the interrupt request.

— If above checks succeed, retrieve current values of Posted Interrupt Requests (PIR bits
255:0), Outstanding Notification (ON), Suppress Notification (SN), Notification Vector (NV),
and Notification Destination (NDST) fields in the Posted Interrupt Descriptor.

— Modify the following descriptor field values atomically:
* Set bit in PIR corresponding to the Vector field value from the IRTE
* Compute X = ((ON == 0) & (URG | (SN == 0)))

1. If the IM field is O, hardware interprets the IRTE in remapped format (described in Section 9.10).
Refer to Section 5.1.4 for interrupt-remapping hardware operation.
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* If (X == 1), Set ON field.
— Promote the cache-line to be globally observable, so that the modifications are visible to other
caching agents. Hardware may write-back the cache-line anytime after this step.

— If (X == 1) in previous step, generate a notification event (interrupt) with attributes as
follows:

* NSDT field specifies the physical APIC-ID of destination logical CPU. Refer to Section 9.12
on how this field is interpreted for xAPIC and x2APIC modes.

* NV field specifies the vector to be used for the notification interrupt to signal the
destination CPU about pending posted interrupt.

* Delivery mode field for notification interrupt is forced to Fixed (0O00b)

* Re-direction Hint field for notification interrupt is forced to Clear (Ob)

* Trigger Mode field for notification interrupt is forced to Edge (Ob)

* Trigger Mode Level field for notification interrupt is forced to Asserted (1b).

- Any of the above checks that result in interrupt request to be blocked is treated as a interrupt-
remapping fault condition as enumerated in Section 5.1.4.1.

524 Ordering Requirements for Interrupt Posting

This section summarizes the ordering requirements to be met by interrupt-posting hardware when
posting interrupts.

= Interrupt requests are posted transactions and follow PCI Express posted ordering rules. This
ensures that an interrupt request will not be observed by software until all prior inbound posted
requests (writes) are committed to their destinations.

— This requirement needs to be maintained even if the interrupt requests are posted. i.e.,
before an interrupt is posted (recorded) in the posted-interrupt descriptor and made visible to
software, all preceding posted requests must be completed.

= Since interrupt requests are posted transactions, upstream read completions must push
preceding interrupt requests.

— This requirement needs to be maintained even if one or more of the preceding interrupt
requests are posted. i.e., An upstream read completion must wait until all preceding
interrupts (irrespective of if they are remapped or posted) are completed. In case of an
interrupt that is posted, ‘completion’ of the interrupt means, both the atomic update of the
posted interrupt descriptor and the associated notification event are completed.

< In the interrupt-posting operation, hardware must make sure that modifications to a posted-
interrupt descriptor is observable to software before issuing the notification event for that
descriptor.

5.2.5 Using Interrupt Posting for Virtual Interrupt Delivery

This section is informative and intended to illustrate a simplified example1 usage of how a Virtual
Machine Monitor (VMM) software may use interrupt-posting hardware to support efficient delivery of
virtual interrupts from assigned devices to virtual machines.

VMM software may enable interrupt-posting for a virtual machine as follows:

= For each virtual processor in the virtual machine, the VMM software may allocate a Posted
Interrupt Descriptor. Each such descriptor is used for posting all interrupts that are to be delivered
to the respective virtual processor.

1. This simplified usage example assumes the VMM software typically runs with interrupts masked,
except perhaps when placing the logical CPUs in low power states. The example illustrated here
may be extended to cover other usage scenarios.
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< The VMM software allocates two physical interrupt vectors (across all logical CPUs in the platform)
for notification events.

— One of this physical vectors may be used as the ‘Active Notification Vector’ (ANV) for posted
interrupt notifications to any virtual processor that is active (executing) at the time of posting
an interrupt to it.

— The other physical vector allocated may be used as the ‘Wake-up Notification Vector’ (WNV)
for posted interrupt notifications to any virtual processor that is blocked (halted) at the time
of posting an interrupt to it.

= For each interrupt source from any assigned device(s) to this virtual machine, the VMM software
may intercept and virtualize the guest software programming of respective interrupt resources
(IOXAPIC entries and/or MSI/MSI-X registers). Through this virtualization, the VMM software
detects the target virtual processor and virtual vector assigned by guest software.

« For each such interrupt source, the VMM software allocates a posted-format IRTE.

— The vector field in each such IRTE is programmed by the VMM software with the respective
virtual vector value assigned for the interrupt source by guest software.

— The posted descriptor address field in each such IRTE is programmed by the VMM software to
reference the posted descriptor allocated for the virtual processor assigned by guest software
for the interrupt source.

— The urgent (URG) field in an IRTE is Set by the VMM software if the respective interrupt
source is designated as requiring immediate (non-deferred) processing.

= The VMM software configures the processor hardware to enable APIC virtualization (including
‘virtual-interrupt delivery’ and ‘process posted interrupts’ capabilities) for the virtual processors.

— The ‘posted-interrupt notification vector’ for the virtual processors are configured with the
‘Active Notification Vector’ (ANV) value described earlier in this section.

— The *posted-interrupt descriptor’ for the virtual processors are configured with the address of
the Posted Interrupt Descriptor allocated for respective virtual processors.

= The VMM software scheduler may manage a virtual processor’s scheduling state as follows:

— When a virtual processor is selected for execution, the virtual processor state is designated as
‘active’ before entering/resuming it. This state is specified in its Posted Interrupt Descriptor
by programming its Notification Vector (NV) field with the ANV vector valuel. This allows all
interrupts for this virtual processor that are received while it is active (running) are processed
by the processor hardware without transferring control to the VMM software. The processor
hardware processes these notification events (with ANV vector value) by transferring any
posted interrupts in the Posted Interrupt Descriptor to the Virtual-APIC page of the virtual
processor and directly delivering it (without VMM software intervention) to the virtual
processor. Refer to ‘Intel® 64 Architecture Software Developer's Manual, Volume 3: System
Programming Guide’ for details on Intel 64 processor support for APIC Virtualization and
Posted-Interrupt Processing.

— When a virtual processor is preempted (e.g., on quantum expiry), the virtual processor state
is designated as ‘ready-to-run’. This state is specified in its Posted Interrupt Descriptor by
programming the Suppress Notification (SN) field to 1. This allows all non-urgent interrupts
for this virtual processor received while it is in preempted state to be posted to its Posted
Interrupts Descriptor without generating a notification interrupt (thereby avoiding disruption
of currently running virtual processors). If there are interrupt sources qualified as urgent for
targeting this virtual processor, the VMM software may also modify the NV field in the Posted
Interrupt Descriptor to WNV vector value. This enables the VMM software to receive

1. There may be varying approaches for VMM software to manage notification vectors. For example,
an alternate approach may be for VMM software to allocate unique Activation Notification Vectors
(ANV) for each virtual processor (as opposed to sharing the same ANV for all virtual processors).
This approach may enable such VMM software to avoid switching between active and wake-up
vector values in the Posted Interrupt Descriptor on virtual processor scheduling state changes,
and instead update them only on virtual processor migrations across logical processors.
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notifications (with WNV vector value) when urgent interrupts are posted when virtual
processor is not running, allowing appropriate software actions (such as preempting the
current running virtual processor and immediately scheduling this virtual processor).

— When a virtual processor halts (e.g., on execution of HLT instruction), the VMM software may
get control, blocks further execution of the virtual processor, and designate the virtual
processor state as ‘halted’. This state is specified in its Posted Interrupt Descriptor by
programming its Notification Vector (NV) field with the WNV vector value. This enables the
VMM software to receive notifications (with WNV vector value) when any interrupt (urgent or
non-urgent) is posted for this virtual processor, allowing appropriate software action (such as
to schedule the virtual processor for future or immediate activation).

< When entering/resuming a virtual processor, the VMM software may process any pending posted
interrupts in its posted descriptor as follows:

— VMM first transitions the virtual CPU to ‘active’ state by programming the notification vector in
the Posted Interrupt Descriptor to ANV vector value.

— VMM may check if there are pending interrupts in the posted descriptor (e.g. by scanning PIR
field for non-zero value).

— If there are pending posted interrupts, VMM may generate a self-IPI1 (Inter Processor
Interrupt to the same logical CPU) with vector value of ANV, through the Local XAPIC. This
interrupt is recognized by the processor as soon as interrupts are enabled in the virtual
processor enter/resume path. Since the virtual processor is configured with ANV vector value
as the ‘posted-interrupt notification vector’, this results in processor hardware processing it
same as any notification event it may receive while the virtual processor is active. This
approach enables the VMM software to ‘off-load’ the posted interrupt processing (such as
delivering the interrupt to the virtual processor through the Virtual-APIC) to the processor
hardware, irrespective of the scheduling state of the virtual processor when the interrupt was
posted by remapping hardware to the Posted Interrupt Descriptor.

< The VMM software may also apply the ‘posted-interrupt processing’ capability of the processor to
inject virtual interrupts generated by VMM software to a virtual machine (in addition to interrupts
from direct assigned devices to the virtual machine). This may be done by the VMM software
atomically ‘posting’ a virtual interrupt to the Posted Interrupt Descriptor (using atomic/LOCK
instructions that enforces cache-line update atomicity) and generating a notification event (as
IP1) to the logical processor identified as notify destination in the Posted interrupt Descriptor.

< The VMM software may handle virtual processor migrations across logical processors by
atomically updating the Notification Destination (NDST) field in the respective Posted Interrupt
Descriptor to the physical APIC-ID of the logical processor to which the virtual processor is
migrated to. This enables all new notification events from the posted descriptor of this virtual
processor to be routed to the new logical processor.

52.6 Interrupt Posting for Level Triggered Interrupts

Level-triggered interrupts generated through IOXAPICs Redirection Table Entries (illustrated in
Figure 5-16) can be processed through Interrupt Remap Table Entries (IRTE) for Posted Interrupts
(illustrated in Section 9.11). However, unlike with interrupt-remapping, all interrupts (including level
interrupts) processed by the posted interrupt processing hardware are treated as edge-triggered
interrupts. Thus VMM software enabling posting of Level-triggered interrupts must take special care to
properly virtualize the End of Interrupt (EOI) processing by the virtual processor. For example, the
VMM software may set up the virtual processor execution controls to gain control on EOI operation to
the Virtual APIC controller by guest software, and virtualize the operation by performing a Directed-

1. The usage illustrated in this section assumes the VMM software is executing with interrupts
disables, and interrupts are enabled by the processor hardware as part of entering/resuming the
virtual processor. For VMM software implementations that have interrupt enabled in the VMM,
precaution must be taken by the VMM software to disable interrupt on the logical processor before
generating the self-1Pl and resuming the virtual processor.
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EOI to the IOXAPIC that generated the level-triggered interrupt. A Directed-EOI is performed by
software writing directly to the IOXAPIC EOI register. Refer to the IOXAPIC specification for details on
IOXAPIC EOI register.

5.3 Memory Type and Snoop Behavior Summary

The table below summarizes cache snooping behavior for memory accesses during the interrupt
translation process. The table also summarizes the memory type used when accesses are made on a
coherent link. The memory type value provided by hardware is not used by a non-coherent link.

= A value of 1 implies memory access snoops processor caches. A value of O implies that the
memory access does not snoop processor caches.

= ECAP.C is the Page-walk Coherency field in Extended Capability Register (ECAP_REG).

« Hardware implementations reporting Memory Type Support (MTS=1 in ECAP_REG) must use
write-back (WB) memory type for IRTE and PID access.

Table 14. Memory Type and Snoop Behavior for Interrupt Remap Structures
Interrupt Structure Access Snoop Memory Type
Read of Interrupt Remap Table Entry ECAP.C WB
Atomic Update of Posted Interrupt Descriptor 1 WB
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6 Caching Translation Information

Remapping hardware may accelerate the address-translation process by caching data from the
memory-resident paging structures. Because the hardware does not ensure that the data that it
caches are always consistent with the structures in memory, it is important for software to
comprehend how and when the hardware may cache such data, what actions can be taken to remove
cached data that may be inconsistent, and when it should do so.

6.1 Caching Mode

The Caching Mode (CM) field in Capability Register indicates if the hardware implementation caches
not-present or erroneous translation-structure entries. When the CM field is reported as Set, any
software updates to any remapping structures (including updates to not-present entries or present
entries whose programming resulted in translation faults) requires explicit invalidation of the caches.

Hardware implementations of this architecture must support operation corresponding to CM=0.
Operation corresponding to CM=1 may be supported by software implementations (emulation) of this
architecture for efficient virtualization of remapping hardware. Software managing remapping
hardware should be written to handle both caching modes.

Software implementations virtualizing the remapping architecture (such as a VMM emulating
remapping hardware to an operating system running within a guest partition) may report CM=1 to
efficiently virtualize the hardware. Software virtualization typically requires the guest remapping
structures to be shadowed in the host. Reporting the Caching Mode as Set for the virtual hardware
requires the guest software to explicitly issue invalidation operations on the virtual hardware for
any/all updates to the guest remapping structures. The virtualizing software may trap these guest
invalidation operations to keep the shadow translation structures consistent to guest translation
structure modifications, without resorting to other less efficient techniques (such as write-protecting
the guest translation structures through the processor’s paging facility).

6.2 Address Translation Caches
This section provides architectural behavior of following remapping hardware address translation
caches:

- Context-cache

— Caches context-entry, or scalable-mode context-entry encountered on a address translation
of requests.

< PASID-cache
— Caches scalable-mode PASID-table entries encountered on address translation of requests.
« 1/0 Translation Look-aside Buffer (I0OTLB)

— Caches the effective translation for a request. This can be the result of second-level only
page-walk, first-level only page-walk, or nested page-walk - depending on the type of request
(with or without PASID) that is address translated, and the programming of the DMA
remapping hardware and various translation structures.

« Paging-structure Caches
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— Caches the intermediate paging-structure entries (i.e., entries referencing a paging-structure
entry) encountered on a first-level page-walk or second-level page-walk (including for nested
translation).

6.2.1 Tagging of Cached Translations

Remapping architecture supports tagging of various translation caches as follows. Tags can be used
by remapping hardware for cache lookup during address translation processing, or for selecting cache
entries to be invalidated. For a lookup to be considered a match, all the associated tags must match.
Depending on the type of invalidation, one or more tag matches are sufficient to consider the entry as
a match.

Table 15. Cache Tagging
Caches Tags for_ LOQKUD/ Legacy Scalable Mode
Invalidation Mode
Lookup = Source-ID = Source-ID
Context Cache « Source-1D
Invalidation . = Source-ID
« Domain-ID
Looku NA - PASID
P = Source-ID
PASID Cache
Invalidation NA - PASID
= Domain-1D
= PASID
Lookup NA = Domain-1D
* Address
First-level paging structure cache
= PASID
Invalidation NA < Domain-ID
= Address
Looku < Domain-ID < Domain-ID
p = Address = Address
Second-level paging structure cache
Invalidation < Domain-ID < Domain-ID
= Address = Address
Reg-without-PASID
 Source-ID
= Address
« Source-ID « Entry allocated by request-without-
Lookup Add PASID
ress Req-with-PASID
10TLB  Source-ID
= PASID
= Address
= Domain-ID
Invalidation - Domain-ID - PGTT
= Address = PASID
= Address
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- Address tagging:

— IOTLB entries are tagged by the upper bits of the input-address (called the page number) in
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the request that resulted in allocation of the respective cache entry.

Table 16. Address Tags for 10TLB
Type of Mapping 4K pages 2M pages 1G pages
first-level only or nested mapping Addr[N:12] Addr[N:21] Addr[N:30]

second level only mapping

Addr[MGAW:12]

Addr[MGAW:21]

Addr[MGAW:30]

N=56 for 5-level paging and N=47 for 4-level paging.

— Paging-structure caches are tagged by the respective bits of the input-address.

Table 17.

Address Tags for paging-structure caches

Type of Mapping

PML5E

PML4E

PDPE

PDE

FL page-structure cache

Addr[56:48]

Addr[56:39]

Addr[56:30]

Addr[56:21]

SL page-structure cache

Addr[MGAW: 48]

Addr[MGAW:21]

Addr[MGAW:30]

Addr[MGAW:21]

« PASID tagging:

— In scalable-mode, requests-without-PASID are treated as requests-with-PASID when looking
up the paging-structure cache, and PASID-cache. Such lookups use the PASID value from the
RID_PASID field in the scalable-mode context-entry used to process the request-without-
PASID. Refer to Section 9.4 for more details on scalable-mode context-entry. Additionally,
after translation process when such requests fill into IOTLB, the entries are tagged with PASID
value obtained from RID_PASID field but are still marked as entries for requests-without-
PASID. Tagging of such entries with PASID value is required so that PASID-selective IOTLB_P
invalidation can correctly remove all stale mappings. Implementation may allow requests-
with-PASID from a given Requester-ID to hit entries brought into IOTLB by requests-without-
PASID from the same Requester-I1D to improve performance.

< Interrupt-index tagging:

— Interrupt-remapping cache is architecturally tagged by the interrupt-index of remappable-
format interrupt requests that resulted in allocation of the interrupt-entry-cache entry.

Tagging of cached translations enable remapping hardware to cache information to process requests
from multiple endpoint devices targeting multiple address-spaces. Tagging also enable software to
efficiently invalidate groups of cached translations that are associated with the same tag value.

6.2.2 Context-Cache
Context-cache is used to cache context-entries or scalable-mode context-entries used to address
translate requests. Each cached entry is referenced by the source-id in the request.

For implementations reporting Caching Mode (CM) as O in the Capability Register, if any fault
conditions are encountered as part of accessing a context-entry, or scalable-mode context-entry, the
resulting entry is not cached in the context-cache (and hence do not require software to invalidate the
context-cache on modifications to such entries). The conditions that prevent cacheability in Context
Cache are LRT.1, LRT.2, LRT.3, LCT.1, LCT.2, LCT.3, LCT.4.x, SRTA.1.x, SRTA.2, SRT.1, SRT.2, SRT.3,
SCT.1, SCT.2, SCT.3, SCT.4 (see Section 7.2.3 for definition of conditions).
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For implementations reporting Caching Mode (CM) as 1 in the Capability Register, above conditions
may cause caching of the entry that resulted in the fault, and require explicit invalidation by software
to invalidate such cached entries. When CM=1, if the fault was detected without a present context-
entry the reserved domain-id value of O is used to tag the cached entry that caused the fault.

6.2.2.1 Context-Entry Programming Considerations

Software must ensure that, if multiple context-entries are programmed with the same Domain-id
(DID), such entries must be programmed with same value for the second-level page-table pointer
(SLPTPTR) field, same value for Address Width (AW) field, and same value for the PASID Table Pointer
(PASIDTPTR) field. This is required since hardware implementations tag the various translation caches
with DID (see Section 6.2.1). Context-entries with the same value in these table address pointer
fields are recommended to use the same DID value for best hardware efficiency.

When modifying root-entries, scalable-mode root-entries, context-entries, or scalable-mode context
entries:

< When modifying fields in present (P=1) entries, software must ensure that at any point of time
during the modification (performed through single or multiple write operations), the before and
after state of the entry being modified is individually self-consistent. For example, software
performing such updates must factor in the guaranteed write atomicity of processor hardware (8-
Byte aligned writes for Intel® 64 processors). This is required as remapping hardware may be
fetching these entries at any point of time while they are being modified by software. Software
modifying these present (P=1) entries are also responsible to ensure these does not impact in-
flight transactions from the affected endpoint devices?.

- Software must serially invalidate the context-cache, PASID-cache (if applicable), and the 10TLB.
The serialization is required since hardware may utilize information from the context-caches (e.g.,
Domain-ID) to tag new entries inserted to the PASID-cache and IOTLB for processing in-flight
requests. Section 6.5 describe the invalidation operations.

Software must not use domain-id value of O on when programming context-entries on
implementations reporting CM=1 in the Capability register.

6.2.3 PASID-Cache

PASID-cache is used to cache PASID-entries or scalable-mode PASID-table entries that are used for
address translations.

= When Scalable Mode Translation is enabled (RTADDR_REG.TTM=01b), the scalable-mode PASID-
table entries cached are referenced using the PASID value in request-with-PASID (and in case of
requests-without-PASID, the PASID value from RID_PASID field in the scalable-mode context-
entry used to process the request) along with the source-id in the request.

For implementations reporting Caching Mode (CM) as O in the Capability Register, if any of the
following translation fault conditions are encountered leading up to or as part of accessing a PASID-
table entry, the entry is not cached in the PASID-cache. The fault conditions that prevent cacheability
in PASID Cache are LRT.1, LRT.2, LRT.3, LCT.1, LCT.2, LCT.3, LCT.4.x, LCT.5, SRTA.1.x, SRTA.2, SRT.1,
SRT.2, SRT.3, SCT.1, SCT.2, SCT.3, SCT.4, SCT.5, SCT.6, SCT.7, SPD.1, SPD.2, SPD.3, SPT.1, SPT.2,
SPT.3, SPT.4.x (see Section 7.2.3 for definition of conditions).

For implementations reporting Caching Mode (CM) as 1 in the Capability Register, above conditions
may cause caching of the entry that resulted in the fault, and require explicit invalidation by software
to invalidate such cached entries. The caching of such faulted translations in PASID-cache follows
same tagging as if there was no faults (i.e., PASID value from the request-with-PASID or RID_PASID
from the scalable-mode context-entry processing request-without-PASID, Domain-id from the
scalable-mode PASID-table entry etc.).

1. Example usages for modifying present context entry may include modifying the translation-type (TT) field to
transition between pass-through and non-pass-through modes. Section 9.3 for details on these fields.
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Since information from the present entries (e.g., PML5 table pointer with 5-level paging or PML4 table
pointer with 4-level paging) can be utilized to fill other caches (e.g., IOTLB, Paging-structure caches),
to ensure updates to scalable-mode PASID-directory/table entries are visible to hardware, software
must invalidate the PASID-cache followed by invalidation of IOTLB and paging-structure caches, in
that order. Section 6.5 describe the invalidation operations.

6.2.3.1 Scalable-Mode PASID-Table Entry Programming Considerations

Software must ensure that, if multiple scalable-mode PASID-table entries are programmed with the
same Domain-id (DID), such entries must be programmed with the same value for the second-level
page-table pointer (SLPTPTR) field, and the same value for the Address Width (AW) field. This is
required since hardware implementations tag the various translation caches with domain-id (see
Section 6.2.1). Scalable-mode PASID-table entries with the same value in the SLPTPTR field are
recommended to use the same domain-id value for best hardware efficiency.

Software must program a valid value in the DID field of all scalable-mode PASID-table entries,
including entries where the PASID Granular translation type field is set to pass-through or first-level-
only (PGTT equal to 001b or 100b). Scalable-mode PASID table entries programmed for first-level
translation or pass-through (PGTT equal to 001b or 100b) must be programmed with a DID value that
is different from those used in any PASID table entries that are programmed for second-level or
nested translation (PGTT equal to 010b or 011b). This is required since hardware implementations tag
various caches with domain-id as described in Section 6.2.1. Scalable-mode PASID-table entries with
PGTT value of 001b or 100b are recommended to use the same domain-id value for best hardware
efficiency.

When modifying scalable-mode PASID-table entries:

< When modifying fields in present (P=1) entries, software must ensure that at any point of time
during the modification (performed through single or multiple write operations), the before and
after state of the entry being modified is individually self-consistent. For example, software
performing such updates must factor in the guaranteed write atomicity of processor hardware (8-
Byte aligned writes for Intel 64 processors). This is required as remapping hardware may be
fetching these entries at any point of time while they are being modified by software. Software
modifying these present (P=1) entries are also responsible to ensure these do not impact in-flight
transactions from the affected endpoint devices?®.

« Software must serially invalidate the PASID-cache and the IOTLB. The serialization is required
since hardware may utilize information from the PASID-cache (e.g., Domain-ID) to tag new
entries inserted to the IOTLB for processing in-flight requests. Section 6.5 describes the
invalidation operations.

Software must not use a domain-id value of O when programming scalable-mode PASID-table entries
on implementations reporting CM=1 in the capability register.

6.2.4 1I0TLB
Remapping hardware caches information about the translation of input-addresses in the IOTLB. IOTLB
may cache information with different functionality as below:

« First-level mappings:

— Each of these is a mapping from a input page number in a request to the physical page frame
to which it translates (derived from first-level translation), along with information about
access privileges and memory typing (if applicable).

1. Example usages for modifying present scalable-mode PASID-table entries may include modifying the PASID
Granular Translation-Type (PGTT) field to transition between pass-through and non-pass-through modes.
Refer to Section 9.6 for details on these fields.
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* Second-level mappings:

— Each of these is a mapping from a input page number in a request to the physical page frame
to which it translates (derived from second-level translation), along with information about
access privileges and memory typing (if applicable).

* Nested mappings:

— Each of these is a mapping from a input page number in a request to the physical page frame
to which it translates (derived from both first-level and second-level translation), along with
information about access privileges and memory typing (if applicable).

Each entry in a IOTLB is an individual translation. Each translation is referenced by a page number.
Each entry architecturally contains the following information:

* I0TLB entries hosting first-level mappings:
— The physical address corresponding to the page number (the page frame).

— The access rights from the first-level paging-structure entries used to translate input-
addresses with the page number (see Section 3.6.1)

= The logical-AND of the R/W flags.
= The logical-AND of the U/S flags.
= The logical-OR of the XD flags (necessary only if NXE=1).

— Attributes from a first-level paging-structure entry that identifies the final page frame for the
page number (either a PTE or a first-level paging-structure entry with PS=1):

= The dirty flag (see Section 3.6.2).
= The memory type (see Section 3.10).
= I0OTLB entries hosting second-level mappings:
— The physical address corresponding to the page number (the page frame).

— The access rights from the second-level paging-structure entries used to translate input-
addresses with the page number (see Section 3.7.1)

= The logical-AND of the R flags.
= The logical-AND of the W flags.
= The logical-NAND of the X flags (necessary only if SLEE=1)

— Attributes from a second-level paging-structure entry that identifies the final page frame for
the page number (either a SL-PTE or a second-level paging-structure entry with PS=1):

= The memory type (see Section 3.10).
= The snoop (SNP) bit (see Section 3.9 and Section 4.2.3).
= The Transient-Mapping (TM) bit (see Section 4.2.3).
= The dirty flag (necessary only if SLADE=1)
« |OTLB entries hosting nested mappings:
— The physical address corresponding to the page number (the page frame).

— The combined access rights from the first-level paging-structure and second-level paging-
structure entries used to translate input-addresses with the page number (see Section 3.8.1)

= The logical-AND of the R/W flags (from first-level translation) and W flags (from second-
level translation of the result of first-level translation).

= The logical-AND of the U/S flags (from first-level translation).

The logical-OR of the XD flags from first-level translation (necessary only if NXE=1) with
the logical-NAND of the X flags from second-level translation (necessary only if SLEE=1).
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— Attributes from a first-level paging-structure entry that identifies the final page frame for the
page number (either a PTE or a paging-structure entry with PS=1):

= The dirty flag (see Section 3.6.2).

— Combined attributes from first-level and second-level paging-structure entries that identifies
the final page frame for the page number (either a page-table-entry or a paging-structure
entry with PS=1):

= The memory type (see Section 3.10).

= The Transient-Mapping (TM) bit from second-level paging-entry that identifies the final
page frame for the page number (see Section 4.2.3).

IOTLB entries may contain other information as well. A remapping hardware may implement multiple
I0TLBs, and some of these may be for special purposes, e.g., only for instruction fetches. Such

special-purpose I0TLBs may not contain some of this information if it is not necessary. For example, a
I0TLB used only for instruction fetches need not contain information about the R/W and dirty flags.)

As noted in Section 6.2.1, any IOTLB entries created by hardware are associated with appropriate
tags (e.g., source-id of request that allocated the entry, PASID value if request is associated to a
PASID, domain-id from the context entry or scalable-mode PASID-table entry that led to the
translation, etc.).

Remapping hardware need not implement any I0TLBs. Remapping hardware that do implement
I0TLBs may evict or invalidate any IOTLB entry at any time. Software should not rely on the existence
of I0OTLBs or on the retention of IOTLB entries.

6.2.4.1 Details of IOTLB Use

For implementations reporting Caching Mode (CM) as O in the Capability Register, IOTLB caches only
valid mappings (i.e. results of successful page-walks that did not result in a translation fault).
Specifically, if any of the translation fault conditions described in Section 7.2.3 are encountered, the
results are not cached in the IOTLB.

For implementations reporting Caching Mode (CM) as Set in the Capability Register, these translation
fault conditions may cause caching of the faulted translation in the IOTLB. The caching of such faulted
translations in 1OTLB follows same tagging as if there was no faults (i.e., source-id of request that
allocated the entry, PASID value if request is associated with a PASID, domain-id from the context
entry or scalable-mode PASID-table entry that led to the translation, etc.).

With first-level translation, when CM is O, before caching a translation, hardware sets the accessed
(A) flag to 1 in each of the first-level paging-structure entries used for the translation, if not already
set. If EAFE = 1 in the scalable-mode PASID-table entry, hardware also sets the extended-accessed
(EA) flag to 1 in each of the paging-structure entries, if not already set.

With second-level translation, when CM is 0 and SLADE in PASID-table entry used to process the
request is 1, before caching a translation, hardware sets the accessed (A) flag to 1 in each of the
second-level paging-structure entries used for the translation, if not already set.

With nested translation, hardware applies these rules for both first- and second-level translation.
Setting of accessed and extended-accessed flags in the first-level paging structure entries is subject
to write permission checks at second-level translation.

When CM is 1, hardware applies the above rules to translations where all paging structures leading to
the translation are present. However the A and EA flags are not set when caching not present entries

If the page number of a input-address corresponds to a IOTLB entry tagged with the right source-id
(and PASID, if applicable), the hardware may use that IOTLB entry to determine the page frame,
access rights, and other attributes for accesses to that input-address. In this case, the hardware may
not actually consult the paging structures in memory. The hardware may retain a IOTLB entry
unmodified even if software subsequently modifies the relevant paging-structure entries in memory.
See Section 6.5 for how software can ensure that the hardware uses the modified paging-structure
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entries.

If the paging structures specify a translation using a page larger than 4-KBytes, some hardware
implementations may choose to cache multiple smaller-page 10TLB entries for that translation. Each
such I0TLB entry would be associated with a page number corresponding to the smaller page size
(E.g., bits N:12 of a input-address with first-level translation, where N is 56 bits with 5-level paging or
47 bits with 4-level paging), even though part of that page number (e.g., bits 20:12) is part of the
offset with respect to the page specified by the paging structures. The upper bits of the physical
address in such a IOTLB entry are derived from the physical address in the PDE used to create the
translation, while the lower bits come from the input-address of the access for which the translation is
created.

There is no way for software to be aware that multiple translations for smaller pages have been used
for a large page. If software modifies the paging structures so that the page size used for a 4-KByte
range of input-addresses changes, the IOTLBs may subsequently contain multiple translations for the
address range (one for each page size). A reference to a input- address in the address range may use
any of these translations. Which translation is used may vary from one execution to another, and the
choice may be implementation-specific.

6.2.4.2 Global Pages

In legacy mode (RTADDR_REG.TTM=00b) and scalable mode (RTADDR_REG.TTM=01b), hardware
does not recognize global pages (functions as if PGE=0) for first-level translation.

6.2.5 Caches for Paging Structures

Remapping hardware may cache frequently used paging-structure entries that reference other
paging-structure entries (as opposed to page frames). Depending on the type of the paging-structure
entry cached, the paging-structure caches may be classified as PML5-cache, PML4-cache, PDPE-
cache, and PDE-cache. These may cache information with different functionality as below:

= First-level-paging-structure entries:

— Each of these is a mapping from the upper portion of a input-address in a request to the
physical address of the first-level paging structure used to translate the corresponding region
of the input-address space, along with information about access privileges. For example: With
5-level paging, bits 56:48 of the input-address would map to the address of the relevant first-
level PML4 table; With 4-level paging, bits 47:39 of the input-address would map to the
address of the relevant first-level page-directory-pointer table.

= Second-level-paging-structure entries:

— Each of these is a mapping from the upper portion of a input-address to the physical address
of the second-level paging structure used to translate the corresponding region of the input-
address space, along with information about access privileges. For example, bits MGAW: 39 of
the input-address would map to the address of the relevant second-level page-directory-
pointer table. When Scalable Mode Translation is enabled (RTADDR_REG.TTM=01b) and
PASID Granular Translation Type (PGTT) field in scalable-mode PASID-table entry is
programmed as nested, the input-address can be the input-address in a request (with or
without PASID), or can be the second-level address of a first-level paging-structure entry
(accessed as part of a nested translation).

= Combined-paging-structure entries:

— Each of these is a mapping from the upper portion of a input-address in a request to the
physical address of the first-level paging structure (after nesting through second-level
translation) used to translate the corresponding region of the input-address space, along with
information about access privileges.

Hardware implementations may implement none or any of these paging-structure-caches, and may
use separate caches in implementation specific ways to manage different types of cached mappings
(e.g., first-level and nested mappings may be held in one cache and second-level in a different cache,
or any other formations).
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6.2.5.1

PML5-cache

When 5-level paging is effective, each entry in a PML5-cache holds the following information:
 PML5-cache entries hosting first-level PML5Es:

— Each PML5-cache entry caching a first-level PML5E is referenced by a 9-bit value and is used
for input-addresses for which bits 56:48 have that value.

— The entry contains information from the PML5E used to translated such input-addresses:

The physical address from the PML5E (address of first-level PML4 table).
The value of R/W flag of the PML5E.

The value of U/S flag of the PML5E.

The value of XD flag of the PML5E (necessary only if NXE=1).

The values of PCD and PWT flags of the PML5E.

* PML5-cache entries hosting SL-PML5Es:

— Each PML5-cache entry caching a second-level mapping is referenced by a N-bit value and is
used for input-addresses for which bits MGAW:48 have that value.

— The entry contains information from the SL-PML5E used to translate such input-addresses:

The physical address from the SL-PML5E (address of second-level PML4 table).
The value of R flag of the SL-PML5E.

The value of W flag of the SL-PML5E.

The value of X flag of the SL-PML5E (necessary only if SLEE=1).

e PML5-cache entries hosting nested PML5Es:

— Each PML5-cache entry caching a nested mapping is referenced by a 9-bit value and is used
for input-addresses for which bits 56:48 have that value.

— The entry contains information from the first-level PML5E used to translate such input-
addresses, combined with information from the nested second-level translation of the physical
address from that PML5E:

The physical address from the second-level translation of the address in the PML5E
(physical-address of first-level PML4 table).

The logical-AND of the R/W flag from the PML5E with the W flags from second-level
translation of the address in PML5E.

The value of U/S flag of the PML5E.

The logical-OR of the XD flag of the PML5E (necessary only if NXE=1) with the logical-
NAND of the X flags from second-level translation of the address in PML5E (necessary only
if SLEE=1).

The following describes how a hardware implementation may use the PML5-cache:

< If the hardware has a PML5-cache entry for a input-address, it may use that entry when
translating the input-address (instead of the PML5E in memory).

= For first-level mappings, hardware does not create a PML5-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML5E in memory. For nested mappings, hardware also does not
create a PML5-cache entry unless there is a second-level translation with read permission for the
address in PML5E. For second-level mappings, hardware does not create a PML5E-cache entry
unless at least one of R and W flags is 1 and all reserved bits are 0 in the SL-PML5E in memory?.

1. This behavior applies for implementations reporting Caching Mode (CM) as O in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.
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= For first-level mappings, before creating a PML5-cache entry, hardware sets the accessed (A) flag
to 1 in the PML5E in memory, if it is not already 1. Hardware also sets the extended-accessed
(EA) flag to 1, if EAFE=1. With nested translation, setting of accessed and extended-accessed
flags are subject to write permission checks at second-level translation.

= The hardware may create a PML5-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
PML4 table).

If the hardware creates a PML5-cache entry, the hardware may retain it unmodified even if software
subsequently modifies the corresponding PML5E (SL-PML5E) in memory.

6.2.5.2 PML4-cache

Each entry in a PML4-cache holds the following information:
= PML4-cache entries hosting first-level PML4Es:

— Each PML4-cache entry caching a first-level PMLAE is referenced by a 9-bit (or 18-bit with 5-
level paging) value and is used for input-addresses for which bits N:39 (N=56 with 5-level
paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E and PML4E used to translated such input-
addresses:

= The physical address from the PML4E (address of first-level page-directory-pointer table).

= The logical-AND of the R/W flags in the PML5E and PML4E (with 5-level paging), or the
value of R/W flag of the PML4E (with 4-level paging).

= The logical-AND of the U/S flags in the PML5E and PML4E (with 5-level paging), or the
value of U/S flag of the PML4E (with 4-level paging).

= The logical-OR of the XD flags in the PML5E and PML4E (with 5-level paging), or the value
of XD flag of the PML4E (with 4-level paging); This is necessary only if NXE=1.

= The values of PCD and PWT flags of the PML4E.
e PML4-cache entries hosting SL-PML4Es:

— Each PML4-cache entry caching a second-level mapping is referenced by a N-bit value and is
used for input-addresses for which bits MGAW:39 have that value.

— The entry contains information from the SL-PML5E and SL-PML4E used to translate such
input-addresses:

= The physical address from the SL-PML4E (address of second-level page-directory-pointer
table).

= The logical-AND of the R flags in the SL-PML5E and SL-PML4E (with 5-level translation), or
the value of R flag of the SL-PML4E (with 4-level translation).

= The logical-AND of the W flags in the SL-PML5E and SL-PML4E with 5-level translation), or
the value of W flag of the SL-PML4E (with 4-level translation).

= The logical-NAND of the X flag in the SL-PML5E and SL-PML4E (with 5-level translation), or
the value of X flag of the SL-PML4E (with 4-level translation); This is necessary only if
SLEE=1).

* PML4-cache entries hosting nested PML4Es:

— Each PML4-cache entry caching a nested mapping is referenced by a 9-bit (or 18-bit with 5-
level paging) value and is used for input-addresses for which bits N:39 (where N=56 with 5-
level paging and N=47 with 4-level paging) have that value.

— The entry contains information from the first-level PML5E and PML4E used to translate such
input-addresses, combined with information from the nested second-level translation of the
physical address from that PML4E:
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= The physical address from the second-level translation of the address in the PML4E
(physical-address of first-level page-directory-pointer table).

= With 5-level paging: The logical-AND of the R/W flags in the PML5E and PML4E, with the W
flags from second-level translation of the address in the PML4E; With 4-level paging: The
logical-AND of the R/W flag from the PML4E with the W flags from second-level translation
of the address in PML4E.

= With 5-level paging: The logical-AND of the U/S flags in the PML5E and PML4E; With 4-
level paging: The value of U/S flag of the PML4E.

« With 5-level paging: The logical-OR of the XD flags in the PML5E and PML4E (necessary
only if NXE=1) with the logical-NAND of the X flags from second-level translation of the
address in PML4E (necessary only if SLEE=1); With 4-level paging: The logical-OR of the
XD flag of the PML4E (necessary only if NXE=1) with the logical-NAND of the X flags from
second-level translation of the address in PML4E (necessary only if SLEE=1).

The following items detail how a hardware implementation may use the PML4-cache:

< If the hardware has a PML4-cache entry for a input-address, it may use that entry when
translating the input-address (instead of the PML5E and PML4E in memory).

= For first-level mappings, hardware does not create a PML4-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML5E and PML4E in memory. For nested mappings, hardware also
does not create a PML4-cache entry unless there is a second-level translation with read
permission for the address in PML5E and PML4E. For second-level mappings, hardware does not
create a PML4E-cache entry unless at least one of R and W flags is 1 and all reserved bits are 0 in
the SL-PML5E and SL-PMLA4E in memoryl.

= For first-level mappings, before creating a PML4-cache entry, hardware sets the accessed (A) flag
to 1 in the relevant PML5E and PML4E in memory, if it is not already 1. Hardware also sets the
extended-accessed (EA) flag to 1 in these entries, if EAFE=1. With nested translation, setting of
accessed and extended-accessed flags are subject to write permission checks at second-level
translation®.

= The hardware may create a PML4-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are O in all entries in the referenced
page-directory-pointer table).

< If the hardware creates a PML4-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML5E (SL-PML5E) or PML4E (SL-PML4E) in
memory.

6.2.5.3 PDPE-cache

Each entry in a PDPE-cache holds the following information:
« PDPE-cache entries hosting first-level PDPEs:

— Each PDPE-cache entry caching a first-level PDPE is referenced by an 18-bit (27-bit with 5-
level paging) value and is used for input-addresses for which bits N:30 (where N=56 with 5-
level paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E and PDPE used
to translate such input-addresses:

= The physical address from the PDPE (address of first-level page-directory). (No PDPE-
cache entry is created for a PDPE that maps a page.)

e The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E and PDPE.
= The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E and PDPE.

1. This behavior applies for implementations reporting Caching Mode (CM) as O in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.
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e The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E and PDPE
(necessary only if NXE=1).

e The values of PCD and PWT flags of the PDPE.
« PDPE-cache entries hosting SL-PDPEs:

— Each PDPE-cache entry caching a SL-PDPE is referenced by a N-bit value and is used for
input-addresses for which bits MGAW:30 have that value.

— The entry contains information from the SL-PML4E and SL-PDPE used to translated such
input-addresses:

= The physical address from the SL-PDPE (address of second-level page-directory). (No
PDPE-cache entry is created for a SL-PDPE that maps a page.)

= The logical-AND of the R flags in the SL-PML5E (with 5-level translation), SL-PML4E and
SL-PDPE.

= The logical-AND of the W flags in the SL-PML5E (with 5-level translation), SL-PML4E and
SL-PDPE.

= The logical-NAND of the X flag in the SL-PML5E (with 5-level translation), SL-PML4E and
SL-PDPE (necessary only if SLEE=1).

= PDPE-cache entries hosting nested PDPEs:

— Each PDPE-cache entry caching a nested mapping is referenced by a 18-bit (27-bit with 5-
level paging) value and is used for input-addresses for which bits N:30 (where N=56 with 5-
level paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E and PDPE used
to translated such input-addresses, combined with information from the nested second-level
translation of the physical address from that PDPE:

= The physical address from the second-level translation of the address in the PDPE
(physical-address of first-level page-directory). (No PDPE-cache entry is created for a
PDPE that maps a page.)

= The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E and PDPE,
with the W flags from second-level translation of the address in the PDPE.

« The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E and PDPE.

e The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E and PDPE
(necessary only if NXE=1) with the logical-NAND of the X flags from second-level
translation of the address in PDPE (necessary only if SLEE=1).

The following items detail how a hardware implementation may use the PDPE-cache:

« If the hardware has a PDPE-cache entry for a input-address, it may use that entry when
translating the input-address (instead of the PML5E, PML4E and PDPE in memory).

= For first-level mappings, hardware does not create a PDPE-cache entry unless the P flag is 1 and
all reserved bits are 0O in the PML5E, PML4E and the PDPE in memory. For nested mappings,
hardware also does not create a PDPE-cache entry unless there is a second-level translation with
read permission for the address in the PML5E, PML4E and the PDPE. For second-level mappings,
hardware does not create a PDPE-cache entry unless at least one of R and W flags is 1 and all
reserved bits are O in the SL-PML5E, SL-PML4E and the SL-PDPE in memoryl.

= For first-level mappings, before creating a PDPE-cache entry, hardware sets the accessed (A) flag
to 1 in the relevant PML5E, PML4E and PDPE in memory, if it is not already 1. Hardware also sets
the extended-accessed (EA) flag to 1 in these entries, if EAFE=1. With nested translation, setting
of accessed and extended-accessed flags are subject to write permission checks at second-level
translation.

1. This behavior applies for implementations reporting Caching Mode (CM) as O in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.
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< The hardware may create a PDPE-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are O in all entries in the referenced
page-directory)

- If the hardware creates a PDPE-cache entry, the hardware may retain it unmodified even if

software subsequently modifies the corresponding PML5E (SL-PML5E), PML4E (SL-PML4E) or
PDPE (SL-PDPE) in memory.

6.2.5.4

PDE-cache

Each entry in a PDE-cache holds the following information:
= PDE-cache entries hosting first-level PDEs:

— Each PDE-cache entry caching a first-level PDE is referenced by an 27-bit (36-bit with 5-level
paging) value and is used for input-addresses for which bits N:21 (where N=56 with 5-level
paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E, PDPE and PDE
used to translate such input-addresses:

The physical address from the PDE (address of first-level page-table). (No PDE-cache entry
is created for a PDE that maps a page.)

The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE.

The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE.

The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E, PDPE and PDE
(necessary only if NXE=1).

The values of PCD and PWT flags of the PDE.

 PDE-cache entries hosting SL-PDEs:

— Each PDE-cache entry caching a SL-PDE is referenced by a N-bit value and is used for input-
addresses for which bits MGAW:21 have that value.

— The entry contains information from the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE used to translated such input-addresses:

The physical address from the SL-PDE (address of second-level page-table). (No PDE-
cache entry is created for a SL-PDE that maps a page.)

The logical-AND of the R flags in the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE.

The logical-AND of the W flags in the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE.

The logical-NAND of the X flag in the SL-PML5E (with 5-level translation), SL-PML4E, SL-
PDPE and SL-PDE (necessary only if SLEE=1).

 PDE-cache entries hosting nested PDEs:

— Each PDE-cache entry caching a nested mapping is referenced by a 27-bit (36-bit with 5-level
paging) value and is used for input-addresses for which bits N:21 (where N=56 with 5-level
paging and N=47 with 4-level paging) have that value.

— The entry contains information from the PML5E (with 5-level paging), PML4E, PDPE and PDE
used to translated such input-addresses, combined with information from the nested second-
level translation of the physical address from that PDE:

The physical address from the second-level translation of the address in the PDE (physical-
address of first-level page-table). (No PDE-cache entry is created for a PDE that maps a
page.)
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* The logical-AND of the R/W flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE, with the W flags (from second-level translation of the address in the PDE).

= The logical-AND of the U/S flags in the PML5E (with 5-level paging), PML4E, PDPE and
PDE.

= The logical-OR of the XD flags in the PML5E (with 5-level paging), PML4E, PDPE and PDE
(necessary only if NXE=1) with the logical-NAND of the X flags from second-level
translation of the address in PDE (necessary only if SLEE=1).

The following items detail how a hardware implementation may use the PDE-cache:

« If the hardware has a PDE-cache entry for a input-address, it may use that entry when translating
the input-address (instead of the PML5E, PML4E, the PDPE, and the PDE in memory).

= For first-level mappings, hardware does not create a PDE-cache entry unless the P flag is 1 and all
reserved bits are 0 in the PML5E, PML4E, the PDPTE, and the PDE in memory. For nested
mappings, hardware also does not create a PDE-cache entry unless there is a second-level
translation with read permission for the address in the PML5E, PML4E, the PDPE, and the PDE. For
second-level mappings, hardware does not create a PDE-cache entry unless at least one of R and
W flags is 1 and all reserved bits are O in the SL-PML5E, SL-PML4E, the SL-PDPE, and the SL-PDE
in memory?.

= For first-level mappings, before creating a PDE-cache entry, hardware sets the accessed (A) flag
to 1 in the relevant PML5E, PML4E, PDPE and PDE in memory, if it is not already 1. Hardware also
sets the extended-accessed (EA) flag to 1 in these entries, if EAFE=1. With nested translation,
setting of accessed and extended-accessed flags are subject to write permission checks at
second-level translation.

= The hardware may create a PDE-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-table).

= If the hardware creates a PDE-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML5E (SL-PML5E), PML4E (SL-PML4E), PDPE
(SL-PDPE), or PDE (SL-PDE) in memory.

6.2.5.5 Details of Paging-Structure Cache Use

For implementations reporting Caching Mode (CM) as Clear in the Capability Register, paging-
structure-caches host only valid mappings (i.e. results of successful page-walks up to the cached
paging-structure entry that did not result in a translation fault).

For implementations reporting Caching Mode (CM) as Set in the Capability Register, these translation
fault conditions may cause caching of the faulted translation in the paging-structure caches. The
caching of such faulted translations in paging-structure caches follows same tagging as if there was
no faults (i.e. domain-id from the context entry or scalable-mode PASID-table entry that led to the
translation, PASID value attached to the request, etc.).

Information from a paging-structure entry can be included in entries in the paging-structure-caches

for other paging-structure entries referenced by the original entry. For example, with 4-level paging,
if the R/W flag is O in a PML4E, then the R/W flag will be O in any PDPTE-cache entry for a PDPTE from
the page-directory-pointer table referenced by that PML4E. This is because the R/W flag of each such
PDPTE-cache entry is the logical-AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference
other paging structures (and not those that map pages). For first-level-paging-structure cache
entries, because the G flag is not used in such paging-structure entries, the global-page feature does
not affect the behavior of the paging-structure caches.

1. This behavior applies for implementations reporting Caching Mode (CM) as O in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.
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As noted in Section 6.2.1, any entries created in paging-structure caches are associated with the
target domain-ID (and PASID when applicable).

A remapping hardware implementation may or may not implement any of the paging-structure
caches. Software should rely on neither their presence nor their absence. The hardware may
invalidate entries in these caches at any time. Because the hardware may create the cache entries at
the time of translation and not update them following subsequent modifications to the paging
structures in memory, software should take care to invalidate the cache entries appropriately when
causing such modifications. The invalidation of IOTLBs and the paging-structure caches is described in
Section 6.5.

6.2.6 Translating Address Using Caches in Legacy Mode

If the hardware finds an IOTLB entry that is for the page number of the input-address and that is
associated with the Source-ID in the request, it may use the physical address, access rights, and
other attributes from that entry.

Hardware may use the source-ID of the request to select a context-cache entry. It can use that entry
to qualify the request based on the attributes in the entry. If the hardware does not find a matching
context-cache entry, it can traverse the root-table and context-table to obtain and cache the context-
entry. Context-cache entry provides hardware with the Domain-1D attached to the Source-ID. If the
context-cache entry indicates pass-through access, the request is processed as if it found a I0OTLB
entry with a matching unity translation. Else, it continues the translation process as follows

If the hardware does not find a relevant IOTLB entry, it may use the bits MGAW:21 of the input-
address to select an entry from the PDE-cache that is associated with the Domain-ID. It can then use
that entry to complete the translation process (locating a PTE, etc.) as if it had traversed the PML5E,
PML4E, PDPE and PDE corresponding to the PDE-cache entry.

If the hardware does not find a relevant IOTLB entry and a relevant PDE-cache entry, it may use bits
MGAW:30 of the input-address to select an entry from the PDPE cache that is associated with the
Domain-ID. It can then use that entry to complete the translation process (locating a SL-PDE, etc.) as
if it had traversed the PML5E, PML4E and the PDPE corresponding to the PDPE-cache entry.

If the hardware does not find a relevant IOTLB entry, a relevant PDE-cache entry, or a relevant PDPE-
cache entry, it may use bits MGAW:39 of the input-address to select an entry from the PML4E-cache

that is associated with the Domain-ID. It can then use that entry to complete the translation process
(locating a PDPE, etc.) as if it had traversed the corresponding PML5E and SL-PML4E.

With 5-level translation, if the hardware does not find a relevant IOTLB entry, a relevant PDE-cache
entry, a relevant PDPE-cache entry, or a relevant PML4E-cache entry, it may use bits MGAW:48 of the
input-address to select an entry from the PML5E-cache that is associated with the Domain-ID. It can
then use that entry to complete the translation process (locating a PML4E, PDPE, etc.) as if it had
traversed the corresponding PML5E.

6.2.7 Multiple Cached Entries for a Single Paging-Structure Entry

The I0OTLBs and paging-structure caches may contain multiple entries associated with a PASID and/or
domain-ID and with information derived from a single paging-structure entry. For illustration,
following are some examples for first-level translation with 4-level paging (similar scenarios are
possible with 5-level paging):

= Suppose that two PML4Es contain the same physical address and thus reference the same page-
directory-pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each
associated with a different set of input-addresses. Specifically, suppose that the n1 and n2th
entries in the PML4 table contain the same physical address. This implies that the physical
address in the mt" PDPTE in the page-directory-pointer table would appear in the PDPTE-cache
entries associated with both pl and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (pl & 1FFH) =
(p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one resulting
from a reference from the n1™ PML4E and one from the n2t" PML4E.
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= Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in
PASID-table entry (the physical address of the PML4 table). This implies the following:

— Any PML4-cache entry associated with input-address with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with input-addresses with O in bits 47:30 contains address
X. This is because the translation for a input-address for which the value of bits 47:30 is O
uses the value of bits 47:39 (0) to locate a page-directory-pointer table at address X (the
address of the PML4 table). It then uses the value of bits 38:30 (also 0) to find address X
again and to store that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with input-addresses with O in bits 47:21 contains address X
for similar reasons.

— Any IOTLB entry for page number 0 (associated with input-addresses with O in bits 47:12)
translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing
nature of the entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

Similar examples can be constructed with other paging structures (e.g., PDPE, PDE) and with PML5E
(with 5-level paging). Multiple cached entries for a single paging-structure entry are also possible with
second-level translation (involving SL-PML5Es (with 5-level translation), SL-PML4Es, SL-PDPEs, SL-
PDEs, and SL-PTEs).

6.3 Translation Caching at Endpoint Device

Chapter 4 described support for endpoint devices to request translations from remapping hardware
and cache on Device-TLBs that are local to the endpoint device. Device-TLBs may be utilized to
improve address-translation performance and/or to support recoverable translation faults (see
Chapter 7). Translation requests from endpoint devices are address translated by the remapping
hardware using its translation caches as described in previous sections, and the resulting translation
is returned to the endpoint device in a Translation Completion. Refer to Section 4.1.2 for attributes
returned in the Translation-Completion. The endpoint device may cache the information returned in
the Translation-Completion locally in its Device-TLBs.

6.4 Interrupt Entry Cache

Remapping hardware supporting interrupt remapping may cache frequently used interrupt remapping
table entries in the interrupt-entry-cache (IEC). Each entry in a interrupt-entry-cache is an individual
interrupt-remap-table-entry. Each cached entry is referenced by the interrupt_index number
computed from attributes in the interrupt request (see Section 5.1.3). Each interrupt-entry-cache
entry architecturally contains the following information (see Section 9.10):

= Attributes of the remapped interrupt from the IRTE:
— Interrupt Vector
— Destination ID
— Delivery Mode
— Trigger Mode
— Redirection Hint
— Interrupt Mode (to determine interrupt is remapped or posted)
— Urgent Flag
— Posted Descriptor Address
= The Fault Processing Disable (FPD) flag from the IRTE
= The interrupt source validation attributes (SID, SQ, SVT fields) from the IRTE.
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For implementations reporting Caching Mode (CM) as Clear in the Capability Register, if any of the
interrupt-remapping fault conditions described in Section 5.1.4.1 is encountered, the resulting entry
is not cached in the IEC. For implementations reporting Caching Mode (CM) as Set in the Capability
Register, interrupt-remapping fault conditions may cause caching of the corresponding interrupt
remapping entries.

Remapping hardware utilize the interrupt-entry cache as follows:

« If the hardware finds an IEC entry that is for the interrupt_index number of the request, it may
use the interrupt attributes from the IEC entry (subject to the interrupt-source validation checks
as described in Section 9.10).

< If the hardware does not find a matching IEC entry, it uses the interrupt_index computed for the
request to fetch the interrupt-remap-table-entry from the interrupt-remap-table.

6.5 Invalidation of Translation Caches

As noted in Section 6.2, the remapping hardware may create entries in the various translation caches
when requests are translated, and it may retain these entries even after the translation structures
used to create them have been modified by software. To ensure that address translation uses the
modified translation structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

For software to invalidate the various caching structures, the architecture supports the following two
types of invalidation interfaces:

 Register-based invalidation interface: A legacy invalidation interface with limited capabilities,
supported by all implementations of this architecture.

 Queued invalidation interface: An expanded invalidation interface with extended capabilities,
supported by later implementations of this architecture. Hardware implementations report
support for queued invalidation interface through the Extended Capability Register (see
Section 10.4.3).

The following sections provides more details on these hardware interfaces.

6.5.1 Register-based Invalidation Interface

The register-based invalidations provides a synchronous hardware interface for invalidations.
Software writes to the invalidation command registers to submit invalidation command and may poll
on these registers to check for invalidation completion.

Hardware implementations must process commands submitted through the invalidation registers
irrespective of the remapping hardware enable status (i.e irrespective of TES and IES status in the
Global Status Register. See Section 10.4.5).
Register-based invalidation has the following limitations:

= Register-based invalidation can be used only when queued-invalidations are not enabled.

+ Register-based invalidations are not supported with scalable-mode Translation. This mode
requires queued-invalidations to be enabled by software for proper operation.

* Register-based invalidation can target only invalidation of second-level translations. Invalidation
of first-level and nested translations are not supported (which are supported only through
queued-invalidations).

+ Register-based invalidation cannot invalidate Device-TLBs on endpoint devices.

The following sub-sections describe the register-based invalidation command registers.
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6.5.1.1 Context Command Register

Context Command Register (see Section 10.4.7) supports invalidating the context-cache. The
architecture defines the following types of context-cache invalidation requests. Hardware
implementations may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity is not supported.

« Global Invalidation: All context-cache entries cached at the remapping hardware are invalidated.

= Domain-Selective Invalidation: Context-cache entries associated with the specified domain-id are
invalidated.

« Device-Selective Invalidation: Context-cache entries associated with the specified device source-
id and domain-id are invalidated.

When modifying root-entries or context-entries referenced by more than one remapping hardware
units in a platform, software is responsible to explicitly invalidate the context-cache at each of these
hardware units.

6.5.1.2 IOTLB Registers

IOTLB invalidation is supported through two 64-bit registers; (a) IOTLB Invalidate Register (see
Section 10.4.8.1) and (b) Invalidation Address Register (see Section 10.4.8.2).

The architecture defines the following types of IOTLB invalidation requests. Hardware
implementations may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity is not supported.

* Global Invalidation:

— Al IOTLB entries are invalidated.

— All paging-structure-cache entries are invalidated.
< Domain-Selective Invalidation:

— IOTLB entries caching mappings (first-level, second-level, and nested) associated with the
specified domain-id are invalidated.

— Paging-structure-cache entries caching mappings (first-level, second-level and nested)
associated with the specified domain-id are invalidated.

« Page-Selective-within-Domain Invalidation:

— IOTLB entries caching second-level mappings associated with the specified domain-id and the
second-level-input-address range are invalidated.

— IOTLB entries caching first-level and nested mappings associated with the specified domain-id
are invalidated.

— Paging-structure-cache entries caching first-level and nested mappings associated with the
specified domain-id tare invalidated.

— Paging-structure-cache entries caching second-level mappings associated with the specified
domain-id and the second-level-input-address range are invalidated, if the Invalidation Hint
(IH) field is Clear. Else, the paging-structure-cache entries caching second-level mappings are
preserved.

For any of the above operations, hardware may perform coarser invalidation. The actual invalidation
granularity reported by hardware in the IOTLB Invalidate Register is always the granularity at which
the invalidation was performed on the IOTLB.

When modifying page-table entries referenced by more than one remapping hardware units in a
platform, software is responsible to explicitly invalidate the IOTLB at each of these hardware units.
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6.5.2 Queued Invalidation Interface

The queued invalidation provides an advanced interface for software to submit invalidation requests
to hardware and to synchronize invalidation completions with hardware. The Invalidation Queue (1Q)
is also used by software to submit Page Group Response descriptors, which are described in

Section 7.7.1. Hardware implementations report queued invalidation support through the Extended
Capability Register.

The queued invalidation interface uses 1Q, which is a circular buffer in system memory. Software
submits commands by writing Invalidation Descriptors to the 1Q. The following registers are defined
to configure and manage the 1Q:

< Invalidation Queue Address Register: Software programs this register to configure the base
physical address and size of the contiguous memory region in the system memory hosting the
Invalidation Queue. Remapping hardware supporting Scalable Mode Translations
(ECAP_REG.SMTS=1) allow software to additionally program the width of the descriptors (128-
bits or 256-bits) that will be written into the Queue. Software should setup the Invalidation Queue
for 256-bit descriptors before programming remapping hardware for scalable-mode translation
(RTADDR_REG.TTM=01b) as 128-bit descriptors are treated as invalid descriptors (see Table 21 in
Section 6.5.2.10) in scalable-mode.

« Invalidation Queue Head Register: This register points to the invalidation descriptor in the 1Q that
hardware will process next. The Invalidation Queue Head register is incremented by hardware
after fetching a valid descriptor from the 1Q. Hardware interprets the 1Q as empty when the head
and tail registers are equal.

< Invalidation Queue Tail Register: This register points to the invalidation descriptor in the 1Q to be
written next by software. Software increments this register after writing one or more invalidation
descriptors to the 1Q. When the descriptor width is set to be 256-bit, hardware will treat bit 4 of
this register as reserved along with bits 3:0.

To enable queued invalidations, software must:

« Ensure all invalidation requests submitted to hardware through the register-based invalidation
registers are completed. (i.e. no pending invalidation requests in hardware).

< Initialize the Invalidation Queue Tail Register (see Section 10.4.22) to zero.

e Setup the IQ address, size and descriptor width through the Invalidation Queue Address Register
(see Section 10.4.23).

< Enable the queued invalidation interface through the Global Command Register (see
Section 10.4.4). When enabled, hardware sets the QIES field in the Global Status Register (see
Section 10.4.5).

When the queued invalidation is enabled, software must submit invalidation commands only through
the 1Q (and not through any register-based invalidation command registers).

Hardware fetches descriptors from the 1Q in FIFO order starting from the Head Register if all of the
following conditions are true. This is independent of the remapping hardware enable status (state of
TES and IES fields in Global Status Register).

« QIES field in the Global Status Register is Set (indicating queued invalidation is enabled)

< 1Q is not empty (i.e. Head and Tail pointer Registers are not equal)

« There is no pending Invalidation Queue Error or Invalidation Time-out Error (IQE and ITE fields in
the Fault Status Register are both Clear)

Hardware implementations may fetch one or more descriptors together. However, hardware must
increment the Invalidation Queue Head Register only after verifying the fetched descriptor to be valid.
Hardware handling of invalidation queue errors are described in Section 6.5.2.10.
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Once enabled, to disable the queued invalidation interface, software must:

* Quiesce the invalidation queue. The invalidation queue is considered quiesced when the queue is
empty (head and tail registers equal) and the last descriptor completed is an Invalidation Wait
Descriptor (which indicates no invalidation requests are pending in hardware).

« Disable queued invalidation. The queued invalidation interface is disabled through the Global
Command Register. When disabled, hardware resets the Invalidation Queue Head Register to
zero, and clears the QIES field in the Global Status Register.

The following subsections describe the various Invalidation Descriptors. Some of the descriptors are
treated as invalid in certain address translation mode (see Table 21 for list of valid descriptors in each
address translation mode). Type field (bits 11:9 and bits 3:0) of each descriptor identifies the
descriptor type. Software must program the reserved fields in the descriptors as zero.

6.5.2.1 Context-cache Invalidate Descriptor

The Context-cache Invalidate Descriptor (cc_inv_dsc) allows software to invalidate the context-cache,
there by forcing hardware to use the entries from root (scalable-mode root) and context (scalable-
mode context) tables in system memory. The context-cache invalidate descriptor is a 128-bit
descriptor. It must be padded with 128-bits of Os in the upper bytes to create a 256-bit descriptor
when the invalidation queue is configured for 256-bit descriptors (IQA_REG.DW=1). If a 128-bit
version of this descriptor is submitted into an 1Q that is setup to provide hardware with 256-bit
descriptors or vice-versa it will result in an invalid descriptor error.
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Figure 6-20. Context-cache Invalidate Descriptor (128-bit version)

The context-cache invalidate descriptor includes the following parameters:

= Granularity (G): The G field indicates the requested invalidation granularity. The encoding of the G
field is same as the CIRG field in the Context Command Register (described in Section 10.4.7).
Hardware implementations may perform coarser invalidation than the granularity requested.

— Global Invalidation (01b): All context-cache entries cached at the remapping hardware are
invalidated.

— Domain-Selective Invalidation (10b): Context-cache entries associated with the specified
domain-id are invalidated. Since context-cache is not tagged by domain-id when Scalable
Mode Translation is enabled (refer Section 6.2.1), domain-selective context-cache
invalidations are processed by hardware as global invalidations when RTADDR_REG.TTM=01b.

— Device-Selective Invalidation (11b): Context-cache entries associated with the specified
device source-id and domain-id are invalidated. Since context-cache is not tagged by domain-
id when Scalable Mode Translation is enabled (refer Section 6.2.1), domain-id field in device-
selective context-cache invalidations are ignored by hardware when RTADDR_REG.TTM=01b.
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< Domain-ID (DID): For domain-selective and device-selective invalidations, the DID field indicates
the target domain-id. This field is ignored by hardware when Scalable Mode Translation is enabled
(RTADDR_REG.TTM=01Db).

« Source-ID (SID): For device-selective invalidations, the SID field indicates the device source-id.

« Function Mask (FM): The Function Mask field indicates the bits of the SID field to be masked for
device-selective invalidations. The usage and encoding of the FM field is same as the FM field
encoding in the Context Command Register (see Section 10.4.7).

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the context-cache. Refer
to Section 6.8 for write buffer flushing requirements.

Since information from the context-cache may be used to tag entries in the PASID-cache, 10TLB and
paging-structure caches, software must always follow a context-cache invalidation with a PASID-
cache invalidation (if context-cache entry supports requests-with-PASID, or if Scalable Mode
Translation is enabled), followed by an I0OTLB invalidation. The granularity of the PASID-cache and
IOTLB invalidation must be equal or greater than the preceding context-cache invalidation (e.g., A
global context-cache invalidation must be followed by all-PASIDs PASID-cache invalidation and global
IOTLB invalidation; A domain/device selective context-cache invalidation must be followed by all-
PASIDs PASID-cache invalidation and domain-selective or global IOTLB invalidation).

6.5.2.2 PASID-cache Invalidate Descriptor

The PASID-cache Invalidate Descriptor (pc_inv_dsc) allows software to invalidate the PASID-cache,
forcing hardware to use entries from the scalable-mode PASID-directory/table in system memory for
translating requests. This descriptor is a 256-bit descriptor and will result in an invalid descriptor error
if submitted in an 1Q that is setup to provide hardware with 128-bit descriptors (IQA_REG.DW=0).
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Figure 6-21. PASID-cache Invalidate Descriptor

Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010 6-21



[ ] ®
Caching Translation Information—Intel® Virtualization Technology for Directed 1/0 l n tel ’

The PASID-cache invalidate descriptor includes the following parameters:

« Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is as follows:

— Domain-Selective (00b): All PASID-cache entries associated with the specified domain-id are
invalidated.

— PASID-Selective-within-Domain Invalidation (01b): PASID-cache entries associated with the
specified PASID value and the domain-id are invalidated.

— Global Invalidation (11b): All PASID-cache entries are invalidated.

< Domain-ID (DID): The DID field indicates the target domain-id. Hardware ignores bits
31:(16+N), where N is the domain-id width reported in the Capability Register.

= PASID: The PASID value indicates the target process-address-space to be invalidated. This field is
ignored by hardware for all-PASIDs invalidation granularity.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the PASID-cache. Refer to
Section 6.8 for write buffer flushing requirements.

Since information from the PASID-cache may be used to tag the IOTLB and paging-structure caches,
software must always follow a PASID-cache invalidation with an I0TLB invalidation. Domain-Selective
granularity PASID-cache invalidation must be followed by Domain-Selective IOTLB invalidation. A
PASIDs-selective-within-Domain granularity PASID-cache invalidation must be followed by PASID-
selective IOTLB_P invalidation). A Global granularity of PASID-cache invalidation must be followed by
Global I0TLB invalidation.

6.5.2.3 IOTLB Invalidate

The 10TLB Invalidate Descriptor (iotlb_inv_dsc) allows software to invalidate the IOTLB and paging-
structure-caches. This descriptor is expected to be used when software has changed second-level
tables and wants to invalidate affected cache entries. The I0TLB invalidate descriptor is a 128-bit
descriptor. It must be padded with 128-bits of Os in the upper bytes to create a 256-bit descriptor
when the invalidation queue is configured for 256-bit descriptors (IQA_REG.DW=1). If a 128-bit
version of this descriptor is submitted into an 1Q that is setup to provide hardware with 256-bit
descriptors or vice-versa it will result in an invalid descriptor error.
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Figure 6-22. 10TLB Invalidate Descriptor (128-bit version)

The descriptor includes the following parameters:
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e Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is same as the IIRG field in the IOTLB Invalidate Register (see Section 10.4.8):

— Global Invalidation (01b):
« All IOTLB entries are invalidated.
= All paging-structure-cache entries are invalidated.
— Domain-Selective Invalidation (10b):
« I0TLB entries caching mappings associated with the specified domain-id are invalidated.

= Paging-structure-cache entries caching mappings associated with the specified domain-id
are invalidated.

— Page-Selective-within-Domain Invalidation (11b):

< |OTLB entries caching second-level mappings (IOTLB entries tagged with PGTT=010b)
associated with the specified domain-id and the second-level-input-address range are
invalidated.

« |OTLB entries caching mappings other than second-level-mapping (IOTLB entries tagged
with PGTT!=010b) associated with specified domain-id are invalidated.

= Paging-structure-cache entries caching mappings other than second-level-mapping
associated with the specified domain-id are invalidated.

= Paging-structure-cache entries caching second-level mappings associated with the
specified domain-id and the second-level-input-address range are invalidated, if the
Invalidation Hint (IH) field has value of O. If the IH value is 1, the paging-structure-cache
entries caching second-level mappings are preserved.

« Drain Reads (DR): Software sets this flag to indicate hardware must drain read requests that are
already processed by the remapping hardware, but queued within the Root-Complex to be
completed. When the value of this flag is 1, hardware must perform the read drain before the
next Invalidation Wait Descriptor (see Section 6.5.2.8) is completed. Section 6.5.4 describes
hardware support for draining.

« Drain Writes (DW): Software sets this flag to indicate hardware must drain relevant write
requests that are already processed by the remapping hardware, but queued within the Root-
Complex to be completed. When the value of this flag is 1, hardware must drain the relevant
writes before the next Invalidation Wait Descriptor is completed. Section 6.5.4 describes
hardware support for draining.

< Domain-ID (DID): For domain-selective and page-selective invalidations, the DID field indicates
the target domain-id. Hardware ignores bits 31:(16+N), where N is the domain-id width reported
in the Capability Register. This field is ignored by hardware for global invalidations. When
RTADDR_REG.TTM=01b, domain-id field has a value in relevant scalable-mode PASID-table entry.

< Invalidation Hint (IH): For page-selective-within-domain invalidations, the Invalidation Hint
specifies if the second-level mappings cached in the paging-structure-caches that controls the
specified address/mask range needs to be invalidated or not. For software usages that updates
only the leaf SL-PTEs, the second-level mappings in the paging-structure-caches can be
preserved by specifying the Invalidation Hint field value of 1. This field is ignored by hardware for
global and domain-selective invalidations.

« Address (ADDR): For page-selective-within-domain invalidations, the Address field indicates the
starting second-level page address of the mappings that needs to be invalidated. Hardware
ignores bits 127:(64+N), where N is the maximum guest address width (MGAW) supported. This
field is ignored by hardware for global and domain-selective invalidations.

e Address Mask (AM): For page-selective-within-domain invalidations, the Address Mask specifies
the number of contiguous second-level pages that needs to be invalidated. The encoding for the
AM field is same as the AM field encoding in the Invalidate Address Register (see
Section 10.4.8.2). When invalidating a large-page translation, software must use the appropriate
Address Mask value (O for 4KByte page, 9 for 2-MByte page, and 18 for 1-GByte page).
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Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability

intel.

Register) must implicitly perform a write buffer flushing before invalidating the 10TLB.

The table below summarizes what tags are used to find matching entries and invalidate them by
various granularity of I0TLB invalidation.

Table 18.

I0TLB Invalidation

Granularity

I10TLB Entries
with PGTT=010b

I0TLB Entries
with PGTT!=010b

FL-paging
Structure Cache

SL-paging Structure Cache

Domain (11b)?

Global (01b) All All All All
Domain-Selective (10) DID DID DID DID
Page-Selective-within- DID, Address DIDL BID If IH is O, DID, Address

Otherwise NA

1. Page-selective-within-domain I0TLB invalidation is used when second-level page tables are modified by software. In the table
above it may appear that hardware is unnecessarily invalidating IOTLB entries caching mapping from PASID that don’t use
second-level table (i.e., mapping from first-level or pass-through PASIDs). Each domain-id is associated with exactly one
second-level table. PASIDs that don’t use second-level table are thought of as having a NULL second-level table and are assigned
a domain-id that can never match a domain-id of a PASID that has a valid second-level table. Since the domain-id used by this
invalidation had a second-level table, the domain-id will never match an IOTLB entry caching mapping from first-level or pass-

though PASID.

6.5.2.4

The PASID-based-10TLB Invalidate Descriptor (p_iotlb_inv_dsc) allows software to invalidate 10TLB
and the paging-structure-caches. This descriptor is expected to be used when software has changed
first-level tables and wants to invalidate affected cache entries. This descriptor is a 256-bit descriptor
and will result in an invalid descriptor error if submitted in an 1Q that is setup to provide hardware

with 128-bit descriptors (IQA_REG.DW=0).

6-24

PASID-based I10TLB Invalidate Descriptor (P_I1OTLB)
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Figure 6-23. PASID-based-10TLB Invalidate Descriptor

The descriptor includes the following parameters:

e Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is as follows:

— PASID-selective (10b):

< |OTLB entries caching mappings that are associated with the specified PASID and domain-
id are invalidated.

= Paging-structure-cache entries caching first-level and nested mappings that are associated
with the specified PASID and domain-id are invalidated.

— Page-Selective-within-PASID (11b):
= |OTLB entries caching mappings that are associated with the specified PASID, domain-id,
and the first-level-input-address range are invalidated.

= Paging-structure-cache entries caching first-level and nested mappings that are associated
with the specified PASID, domain-id, and the first-level-input-address range are invalidated
if the Invalidation Hint (IH) field has value of O. If the IH value is 1, the paging-structure-
cache entries are preserved.

< Domain-ID (DID): The DID field indicates the target domain-id. Hardware ignores bits
31:(16+N), where N is the domain-id width reported in the Capability Register. When
RTADDR_REG.TTM=01b, the domain-id field has a value in the relevant scalable-mode PASID-
table entry.

« PASID: The PASID value indicates the target process-address-space to be invalidated.

« Invalidation Hint (IH): For page-selective-within-PASID invalidations, the Invalidation Hint
specifies if the first-level and nested mappings cached in the paging-structure-caches that

Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010 6-25



[ ] ®
Caching Translation Information—Intel® Virtualization Technology for Directed 1/0 l n tel

controls the specified address/mask range needs to be invalidated or not. For software usages
that update only the leaf PTEs, the first-level and nested mappings in the paging-structure-caches
can be preserved by specifying the Invalidation Hint field value of 1. This field is ignored by
hardware for other invalidation granularities.

= Address (ADDR): For page-selective-within-PASID invalidations, the Address field indicates the
starting first-level page address of the mappings that need to be invalidated. This field is ignored
by hardware for PASID-selective invalidations.

+ Address Mask (AM): For page-selective-within-PASID invalidations, the Address Mask specifies
the number of contiguous first-level 4-KByte pages that need to be invalidated. The encoding for
the AM field is same as the AM field encoding in the Invalidate Address Register (see
Section 10.4.8.2). When invalidating a large-page translation, software must use the appropriate
Address Mask value (O for 4KByte page, 9 for 2-MByte page, and 18 for 1-GByte page).

PASID-based-10TLB invalidations are not required by hardware to invalidate PASID-cache entries, and
second-level mappings cached in paging-structure-caches.

PASID-based-10TLB invalidations must always drain read and write requests that are already
processed by the remapping hardware, but queued within the Root-Complex to be completed.
Hardware must drain such outstanding read and write requests (to make them globally observable)
before the next Invalidation Wait Descriptor (see Section 6.5.2.8) is completed. Section 6.5.4 further
describes hardware support for draining.

The table below summarizes what tags are used to find matching entries and invalidate them by
various granularity of PASID-based-10TLB invalidation.

Table 19. PASID-based-10TLB invalidation

Granularity (G) 10TLB FL-paging Structure Cache SL—paggz:‘;Cﬁteructure
PASID-Selective (10) DID, PASID DID, PASID NA
If IH is 0, (DID, PASID, Address
Page-Selective-within-PASID (11b)? DID, PASID, Address® ) (¢ ) NA
Otherwise, NA

1. Page-selective-within-PASID P_IOTLB invalidation is used when first-level page tables are modified by software. In the table above
it may appear that hardware is unnecessarily invalidating I0TLB entries caching mapping from PASIDs that don’t use first-level
tables, i.e., mappings from second-level or pass-through PASIDs. Each domain-id and PASID pair has a unique PASID Granular
Translation Type (first-level, second-level, nested, pass-through). Since the domain-id and PASID pair used by this invalidation
has a first-level table, the PGTT value must either be first-level or nested and can not be second-level or a pass-through. Thus,
invalidation using the desired domain-id and PASID pair will not match any of the IOTLB entries caching mapping from second-
level or pass-through PASIDs and none of them will be invalidated.

6.5.2.5 Device-TLB Invalidate Descriptor

The Device-TLB Invalidate Descriptor (dev_tlb_inv_dsc) allows software to invalidate cached
mappings used by requests-without-PASID from the Device-TLB on a endpoint device. The Device-TLB
invalidate descriptor is a 128-bit descriptor. It must be padded with 128-bits of Os in the upper bytes
to create a 256-bit descriptor when the invalidation queue is configured for 256-bit descriptors
(IQA_REG.DW=1). If a 128-bit version of this descriptor is submitted into an 1Q that is setup to
provide hardware with 256-bit descriptors or vice-versa it will result in an invalid descriptor error.
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Figure 6-24. Device-TLB Invalidate Descriptor (128-bit version)

The descriptor includes the following parameters:

e Source-ID (SID): The SID field indicates the source-id of the endpoint device whose Device-TLB
needs to be invalidated.

= Address (ADDR): The address field indicates the starting input-address for the mappings that
needs to be invalidated. The Address field is qualified by the S field.

« Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If S field is zero, a single page at page address specified by Address [63:12] is requested
to be invalidated. If S field is Set, the least significant bit in the Address field with value Ob
indicates the invalidation address range. For example, if S field is Set and Address[12] is Cleatr, it
indicates an 8KB invalidation address range with base address in Address [63:13]. If S field and
Address[12] is Set and bit 13 is Clear, it indicates a 16KB invalidation address range with base
address in Address [63:14], etc.

 Max Invalidations Pending (MIP): This field is a hint to hardware to indicate the maximum number
of pending invalidation requests the specified PCI Express endpoint device (Physical Function) can
handle optimally. Endpoint devices are required to accept up to 32 pending invalidation requests,
but the device may put back pressure on the 1/0 interconnect (E.g., PCI Express link) for multiple
pending invalidations beyond Max Invalidations Pending. A value of Oh in MIP field indicates the
device is capable of handling maximum (32) pending invalidation requests without throttling the
link. Hardware implementations may utilize this field to throttle the number of pending
invalidation requests issued to the specified device. Remapping hardware implementations
reporting Pending Invalidation Throttling (DIT=1 in ECAP_REG) utilize this field to throttle the
number of pending invalidation requests issued to the physical function specified in PFSID.

« Physical Function Source-1D (PFSID): Remapping hardware implementations reporting Device-
TLB Invalidation Throttling as not supported (DIT = 0 in ECAP_REG) treats this field as reserved.
For implementations reporting Device-TLB Invalidation Throttling as supported (DIT=1 in
ECAP_REG), if the Source-ID (SID) field specifies a Physical Function (PF), PFSID field specifies
same value as the SID field; If the Source-ID (SID) field specifies a SR-10V Virtual Function (VF),
PFSID field specifies the Source-ID of the Physical Function (PF) associated with the Virtual
Function (VF).

Since translation requests-without-PASID from a device may be serviced by hardware from the

I0TLB, software must always request IOTLB invalidation (iotlb_inv_dsc) before requesting
corresponding Device-TLB (dev_tlb_inv_dsc) invalidation.
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6.5.2.6 PASID-based-Device-TLB Invalidate Descriptor

The PASID-based-Device-TLB Invalidate Descriptor (p_dev_tlb_inv_dsc) allows software to invalidate
cached mappings used by requests-with-PASID from the Device-TLB on an endpoint device. This
descriptor is a 256-bit descriptor and will result in an invalid descriptor error if submitted in an 1Q that
is setup to provide hardware with 128-bit descriptors (IQA_REG.DW=0).
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Figure 6-25. PASID-based-Device-TLB Invalidate Descriptor

The descriptor includes the following parameters:

« Source-ID (SID): The SID field indicates the source-id of the endpoint device whose Device-TLB
needs to be invalidated.

= Global (G): If the G field value is 1, the PASID-based-device-TLB invalidation request applies
across all PASIDs at the endpoint device-TLB. If G field value is 0, the invalidated is targeted to a
specific PASID specified by the PASID value field.

< PASID: The PASID value indicates the target process-address-space to be invalidated. This field is
ignored by hardware if the value of G field is 1.

« Address (ADDR): The address field indicates the starting input-address for the mappings that
need to be invalidated. The address field is qualified by the S field.

= Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If the S field is zero, a single page at the page address specified by address [63:12] is
requested to be invalidated. If the S field is set, the least significant bit in the address field with
value Ob indicates the invalidation address range. For example, if the S field is set and
address[12] is clear, it indicates an 8KB invalidation address range with base address in address
[63:13]. If the S field and address[12] are set and bit 13 is clear, it indicates a 16KB invalidation
address range with base address in address [63:14], etc.

< Max Invalidations Pending (MIP): This field is a hint to hardware to indicate the maximum number
of pending invalidation requests the specified PCI Express endpoint device (Physical Function) can
handle optimally. Endpoint devices are required to accept up to 32 pending invalidation requests,
but the device may put back pressure on the 1/0 interconnect (e.g., PCI Express link) for multiple
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pending invalidations beyond Max Invalidations Pending. A value of Oh in the MIP field indicates
the device is capable of handling maximum (32) pending invalidation requests without throttling
the link. Hardware implementations may utilize this field to throttle the number of pending
invalidation requests issued to the specified device. Remapping hardware implementations
reporting Pending Invalidation Throttling (DIT=1 in ECAP_REG) utilize this field to throttle the
number of pending invalidation requests issued to the physical function specified in PFSID.

« Physical Function Source-ID (PFSID): Remapping hardware implementations reporting Device-
TLB Invalidation Throttling as not supported (DIT = 0 in ECAP_REG) treat this field as reserved.
For implementations reporting Device-TLB Invalidation Throttling as supported (DIT=1 in
ECAP_REGQG), if the Source-ID (SID) field specifies a Physical Function (PF), PFSID field specifies
same value as the SID field; if the Source-ID (SID) field specifies a SR-10OV Virtual Function (VF),
PFSID field specifies the Source-ID of the Physical Function (PF) associated with the Virtual
Function (VF).

Since translation requests-with-PASID from a device may be serviced by hardware from the I0TLB:

= When Scalable Mode Translation is enabled (RTADDR_REG.TTM=01b), software must always
request an appropriate IOTLB invalidation (p_iotlb_inv_dsc if the corresponding scalable-mode
PASID-table entry is configured for first-level or nested translation, or iotlb_inv_dsc if the
corresponding scalable-mode PASID-table entry is configured for second-level only translation)
before corresponding PASID-based-device-TLB (p_dev_tlb_inv_dsc) invalidation.

6.5.2.7 Interrupt Entry Cache Invalidate Descriptor

The Interrupt Entry Cache Invalidate Descriptor (iec_inv_dsc) allows software to invalidate the
Interrupt Entry Cache. The Interrupt Entry Cache invalidate descriptor is a 128-bit descriptor. It must
be padded with 128-bits of Os in the upper bytes to create a 256-bit descriptor when the invalidation
queue is configured for 256-bit descriptors (IQA_REG.DW=1). If a 128-bit version of this descriptor is
submitted into an IQ that is setup to provide hardware with 256-bit descriptors or vice-versa it will
result in an invalid descriptor error.
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Figure 6-26. Interrupt Entry Cache Invalidate Descriptor (128-bit version)

The descriptor includes the following parameters:

e Granularity (G): This field indicates the granularity of the invalidation request. If Clear, a global
invalidation of the interrupt-remapping cache is requested. If Set, a index-selective invalidation is
requested.

< Interrupt Index (1IDX): This field specifies the index of the interrupt remapping entry that needs
to be invalidated through a index-selective invalidation.

« Index Mask (IM): For index-selective invalidations, the index-mask specifies the number of
contiguous interrupt indexes that needs to be invalidated. The encoding for the IM field is
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described below in Table 20).

Table 20. Index Mask Programming

Index Mask Value Index bits Masked Mappings Invalidated
0 None 1
1 0 2
2 1:0 4
3 2:0 8
4 3:0 16

As part of IEC invalidation, hardware must drain interrupt requests that are already processed by the
remapping hardware, but queued within the Root-Complex to be delivered to the processor.
Section 6.5.5 describes hardware support for interrupt draining.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the Interrupt Entry Cache.

6.5.2.8 Invalidation Wait Descriptor

The Invalidation Wait Descriptor (inv_wait_dsc) descriptor allows software to synchronize with
hardware for the invalidation request descriptors submitted before the wait descriptor. The
invalidation wait descriptor is a 128-bit descriptor. It must be padded with 128-bits of Os in the upper
bytes to create a 256-bit descriptor when the invalidation queue is configured for 256-bit descriptors
(IQA_REG.DW=1). If a 128-bit version of this descriptor is submitted into an 1Q that is setup to
provide hardware with 256-bit descriptors or vice-versa it will result in an invalid descriptor error.
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3 2 1 21 9 8 7 6 5 43 0
Rs |P|F|S]!I
Status Data Rsvd Oh vd lolnlw e 05h

Figure 6-27. Invalidation Wait Descriptor (128-bit version)

6-30 Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010



"] ®
l n tel Intel® Virtualization Technology for Directed 1/0—Caching Translation Information

The descriptor includes the following parameters:

« Status Write (SW): Indicate the invalidation wait descriptor completion by performing a coherent
DWORD write of the value in the Status Data field to the address specified in the Status Address
field.

« Status Address and Data: Status address and data is used by hardware to perform wait descriptor
completion status write when the SW field is Set. Hardware behavior is undefined if the Status
Address specified is not an address route-able to memory (such as peer address, interrupt
address range of OXFEEX_XXXX etc.). The Status Address and Data fields are ignored by
hardware when the Status Write (SW) field is Clear.

< Interrupt Flag (IF): Indicate the invalidation wait descriptor completion by generating an
invalidation completion event per the programming of the Invalidation Completion Event
Registers. Section 6.5.2.9 describes details on invalidation event generation.

= Fence Flag (FN): When Set, indicates descriptors following the invalidation wait descriptor must
be processed by hardware only after the invalidation wait descriptor completes.

= Page-request Drain (PD): Remapping hardware implementations reporting Page-request draining
as not supported (PDS = 0 in ECAP_REG) treats this field as reserved. For implementations
reporting Page-request draining as supported (PDS=1 in ECAP_REG), value of 1 in this field
specifies the Invalidation wait completion status write (if SW=1) and Invalidation wait completion
interrupt (if IF=1) must be ordered (visible to software) behind page-request descriptor
(page_req_dsc) writes for all page requests received by remapping hardware before invalidation
wait descriptor completion. For optimal performance, software must Set this field only if Page
Request draining is required. Refer to Section 7.8 for remapping hardware behavior for page
request draining.

Section 6.5.2.11 describes queued invalidation ordering considerations. Hardware completes an
invalidation wait command as follows:

- If a status write is specified in the wait descriptor (SW=1), hardware performs a coherent write of
the status data to the status address.

< If an interrupt is requested in the wait descriptor (IF=1), hardware sets the IWC field in the
Invalidation Completion Status Register. An invalidation completion interrupt may be generated as
described in the following section.

6.5.2.9 Hardware Generation of Invalidation Completion Events

The invalidation event interrupt generation logic functions as follows:

= At the time hardware sets the IWC field, it checks if the IWC field is already Set to determine if
there is a previously reported invalidation completion interrupt condition that is yet to be serviced
by software. If IWC field is already Set, the invalidation event interrupt is not generated.

- If the IWC field is not already Set, the Interrupt Pending (IP) field in the Invalidation Event
Control Register is Set. The Interrupt Mask (IM) field is then checked and one of the following
conditions is applied:

— If IM field is Clear, invalidation completion event interrupt is generated along with clearing the
IP field.

— If IM field is Set, the invalidation completion event interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

- If IP field was Set when software clears the IM field, the invalidation completion event interrupt is
generated along with clearing the IP field.

- If IP field was Set when software services the pending interrupt condition (indicated by IWC field
in the Invalidation Completion Status Register being Clear), the IP field is cleared.

At the time an invalidation wait descriptor is completed by remapping hardware, if PD=1 in the wait
descriptor, the invalidation completion status write (and/or invalidation completion event interrupt)
that signal wait descriptor completion to software must push page_req_desc writes for all page
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requests already received by the remapping hardware. Refer to Section 7.8 for details on page
request draining.

The invalidation completion event interrupt must push any in-flight invalidation completion status
writes, including status writes that may have originated from the same inv_wait_dsc for which the
interrupt was generated. Similarly, read completions due to software reading the Invalidation
Completion Status Register (ICS_REG) or Invalidation Event Control Register (IECTL_REG) must push
(commit) any in-flight invalidation completion event interrupts and status writes generated by the
respective hardware unit.

The invalidation completion event interrupts are never subject to interrupt remapping.

6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors

Hardware handles the various queued invalidation interface error conditions as follows:

= Invalidation Queue Errors: If hardware detects an invalid Tail pointer at the time of fetching a
descriptor, or detects an error when fetching a descriptor from the invalidation queue, or detects
that the fetched descriptor is invalid (Table 21 lists valid descriptors), or hardware detects that
Tail-pointer is not 256-bit aligned when descriptor width is set to be 256-bit, hardware sets the
IQE (Invalidation Queue Error) field in the Fault Status Register.

Table 21. List of Valid Descriptor Types for Each Mode

Translation Table Mode Descriptor Width = O Descriptor Width = 1

(RTADDR_REG.TTM Value) (128-bit Descriptors) (256-bit Descriptors)
legacy mode (00b) 0x1...0x5 0x1...0x5
scalable mode (01b) none 0x1...0xA

A fault event may be generated based on the programming of the Fault Event Control Register.
The Head pointer Register is not incremented, and references the descriptor associated with the
queue error. No new descriptors are fetched from the Invalidation Queue until software clears the
IQE field in the Fault Status Register. Tail pointer Register updates by software while the IQE field
is Set does not cause descriptor fetches by hardware. Any invalidation commands ahead of the
invalid descriptor that are already fetched and pending in hardware at the time of detecting the
invalid descriptor error are completed by hardware as normal.

« Invalid Device-TLB Invalidation Response: If hardware receives an invalid Device-TLB invalidation
response, hardware sets the Invalidation Completion Error (ICE) field in the Fault Status Register.
A fault event may be generated based on the programming of the Fault Event Control Register.
Hardware continues with processing of descriptors from the Invalidation Queue as normal.

« Device-TLB Invalidation Response Time-out: If hardware detects a Device-TLB invalidation
response time-out, hardware frees the corresponding ITag and sets the ITE (Invalidation Time-out
Error) field in the Fault Status Register. A fault event may be generated based on the
programming of the Fault Event Control Register. No new descriptors are fetched from the
Invalidation Queue until software clears the ITE field in the Fault Status Register. Tail pointer
Register updates by software while the ITE field is Set does not cause descriptor fetches by
hardware. At the time ITE field is Set, hardware aborts any inv_wait_dsc commands pending in
hardware. Any invalidation responses received while ITE field is Set are processed as normal (as
described in Section 4.3). Since the time-out could be for any (one or more) of the pending
dev_tlb_inv_dsc commands, execution of all descriptors including and behind the oldest pending
dev_tlb_inv_dsc is not guaranteed.

6.5.2.11 Queued Invalidation Ordering Considerations

Hardware must support the following ordering considerations when processing descriptors fetched
from the invalidation queue:
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 Hardware must execute an IOTLB invalidation descriptor (iotlb_inv_dsc) or PASID-based-10TLB
invalidation descriptor (p_iotlb_inv_dsc) only after all Context-cache invalidation descriptors
(cc_inv_dsc) and PASID-cache invalidation descriptors (pc_inv_dsc) ahead of it in the Invalidation
Queue are completed.

 Hardware must execute a PASID-cache invalidation descriptors (pc_inv_dsc) only after all
Context-cache invalidation descriptors (cc_inv_dsc) ahead of it in the Invalidation Queue are
completed.

« Hardware must execute a Device-TLB invalidation descriptor (dev_tlb_inv_dsc) only after all
IOTLB invalidation descriptors (iotlb_inv_dsc) and Interrupt Entry Cache invalidation descriptors
(iec_inv_dsc) ahead of it in the Invalidation Queue are completed.

« Hardware must execute an PASID-based-Device-TLB Invalidation descriptor (p_dev_tlb_inv_dsc)
only after all IOTLB invalidation descriptors (iotlb_inv_dsc), PASID-based-10TLB invalidation
descriptors (p_iotlb_inv_dsc) and Interrupt Entry Cache invalidation descriptors (iec_inv_dsc)
ahead of it in the Invalidation Queue are completed.

 Hardware must report completion of an Invalidation Wait Descriptor (inv_wait_dsc) only after at
least all the descriptors ahead of it in the Invalidation Queue and behind the previous
inv_wait_dsc are completed.

- If the Fence (FN) flag is O in a inv_wait_dsc, hardware may execute descriptors following the
inv_wait_dsc before the wait command is completed. If the Fence (FN) flag is 1 in a inv_wait_dsc,
hardware must execute descriptors following the inv_wait_dsc only after the wait command is
completed.

< When a Device-TLB invalidation or PASID-based-Device-TLB invalidation time-out is detected,
hardware must not complete any pending inv_wait_dsc commands.

6.5.3 I10TLB Invalidation Considerations

The following subsections describes additional details and considerations on IOTLB invalidations with
use of first-level translations.

6.5.3.1 Implicit Invalidation on Page Requests

In addition to the explicit invalidation through invalidation commands (see Section 6.5.1 and
Section 6.5.2) identified above, page requests from endpoint devices invalidate entries in the IOTLBs
and paging-structure caches.

When Scalable Mode Translation is enabled (RTADDR_REG.TTM=01b), page requests will traverse the
translation tables to obtain the value of the PGTT and DID fields in the scalable-mode PASID-table
entry. Page requests without PASID will additionally obtain the PASID value from the RID_PASID field
of the scalable-mode context-entry. After this, hardware will internally generate appropriate I0TLB
invalidation based on the value of the PGTT field as shown in table below.

Table 22. Implicit Invalidation on Page Request
PGTT Invalidation Operand Values
DID, PASID, Address[63:12
first-level (001b) Page-selective-within-PASID P_IOTLB invalidation ’ ’ [ 1
AM=0, IH=0
DID, Address[63:12
second-level (010b) Page-selective-within-Domain 10TLB invalidation ’ L 1
AM=0, IH=0
. . . N DID, Address[63:12],
nested (011b) Domain-selective 10TLB invalidation AM=0, IH=0
DID, Address[63:12
pass-through (100b) Page-selective-within-Domain 10TLB invalidation ‘AM—O II-[l—O 1
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If a page request is unable to traverse the translation tables and obtain necessary information for TLB
invalidation, hardware will not generate any implicit invalidation and will manufacture a successful
Page Group Response back to the device without writing a page request in the Page Request Queue.

These invalidations ensure that this recoverable translation fault will not recur (if the faulting
operation is re-executed at the device) if it will not be caused by the contents of the paging structures
in memory (and if, therefore, it resulted from cached entries that were not invalidated after the
paging structures were modified in memory).

6.5.3.2 Caching Fractured Translations

Some implementations may choose to cache multiple smaller-page IOTLB entries (fractured
translations) for a translation specified by the paging structures to use a page larger than 4 KBytes.
There is no way for software to be aware that multiple translations for smaller pages have been used
for a large page. Since software is required to always specify the appropriate Address Mask value to
cover the address range to be invalidated (Address Mask value of O for invalidating a 4-KByte page, 9
for invalidating a 2-MByte page, and 18 for invalidating a 1-GByte page) in the IOTLB invalidation
commands, these commands naturally invalidate all IOTLB entries corresponding a large-page
translation.

6.5.3.3 Guidance to Software for Invalidations

Table 23 below summarizes recommended invalidation for typical software usage model with
additional details in the section.

Table 23. Guidance to Software for Invalidations
Translation Ch{:mge(s) to Change(s) to Change(s) to PASID-table Re-use
Table Mode First-level Second-level OR Domain-1D
Page-tables Page-tables Re-use PASID
domain-selective
page-selective-within- context-cache invalidation
Legacy NA domain 10TLB NA +
invalidation domain-selective
IOTLB invalidation
) o PASID-selective domain-selective
page-selective-within- pag%fgzicrf“l’g}"lgh'”' PASID-cache invalidation PASID-cache invalidation
Scalable PASID _P_IQTLB invalidation + +
invalidation PASID-selective P_IOTLB domain-selective
invalidation IOTLB invalidation

The following recommendations provide details on the invalidation that software should perform when
modifying first-level or second-level paging entries. Software should generally use page-selective-
within-PASID P_IOTLB invalidation when modifying first-level table paging entries, and page-
selective-within-domain 10TLB invalidation when modifying second-level table paging entries.

- If software modifies a paging-structure entry that identifies the final page frame for a page
number (either a PTE or a paging-structure entry in which the PS flag is 1), it should execute the
page-selective type of IOTLB invalidation command for any address with a page number whose
translation uses that paging-structure entry, with an address-mask matching the page frame size.
(Address Mask value of O for 4-KByte page, 9 for 2-Mbyte page, and 18 for 1-GByte page). If no
intermediate paging-structures entries with PS=0 are modified, the invalidation command can
specify an Invalidation Hint (IH) as 1.

If the same paging-structure entry may be used in the translation of different page numbers (see
Section 6.2.7), software should perform the page-selective type of IOTLB invalidation for
addresses with each of those page numbers, with an Invalidation Hint (IH) value of O.
Alternatively, software could use a coarser-grained IOTLB invalidation command (see Invalidation
Granularity description in Section 6.5.2.4).
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- |If software modifies a paging-structure entry that references another paging structure, it may use
one of the following approaches depending upon the type and number of translations controlled
by the modified entry:

— Execute page-selective type of IOTLB invalidation command for any addresses with each of
the page numbers with translations that will use the entry. These invalidations must specify
an Invalidation Hint (IH) value of O (so that it invalidates the paging-structure caches).
However, if no page numbers that will use the entry have translations (e.g., because the P
flags are O in all entries in the paging structure referenced by the modified entry), it remains
necessary to execute the page-selective type of IOTLB invalidation command at least once.

— If software modifies many first-level page table entries it may be more performant to execute
a PASID-selective P_IOTLB invalidation command or even a Domain-selective 10TLB
invalidation command.

— If software modifies many second-level page table entries it may be more performant to
execute a Domain-selective 10TLB invalidation command.

< If the nature of the paging structures is such that a single entry may be used for multiple
purposes (see Section 6.2.7), software should perform invalidations for all of these purposes. For
example, if a single entry might serve as both a PDE and PTE, it may be necessary to execute the
page-selective type of IOTLB invalidation command with two (or more) input-addresses; one that
uses the entry as a PDE, and one that uses it as a PTE. Alternatively, software could use a PASID-
selective P_IOTLB invalidation or a Domain-selective 10TLB invalidation.

« As noted in Section 6.2.4, the IOTLB may subsequently contain multiple translations for the
address range if software modifies the paging structures so that the page size used for a 4-KByte
range of input-addresses changes. A reference to an input-address in the address range may use
any of these translations.

Software wishing to prevent this uncertainty should not write to a paging structure entry in a way
that would change, for any input-address, both the page size and either the page frame, access
rights, or other attributes. It can instead use the following algorithm: first clear the P flag in the
relevant paging-structure entry (e.g., PDE); then invalidate any translations for the affected
input-addresses (see above); and lastly, modify the relevant paging-structure entry to set the P
flag and establish modified translation(s) for the new page size.

The following recommendations provide details on the type of invalidation that software should
perform when modifying PASID-table entries.

< When establishing a previously used PASID value for a different process address space, software
must execute a PASID-selective-within-domain PASID-cache invalidation and follow it up with a
PASID-selective P_IOTLB invalidation command (with an Invalidation Hint (IH) value of 0). This
ensures invalidation of any information that may have been cached in the IOTLB and paging-
structure caches for the previous address space that was associated with the PASID value.

- If software is modifying multiple PASID-table entries that share the same domain-id, it may be
more performant for software to issue a single domain-selective PASID-cache invalidation
followed by a single domain-selective I0OTLB invalidation instead of multiple PASID-selective-
within-domain PASID-cache invalidations (followed by multiple PASID-selective P_IOTLB
invalidations).

The following recommendations provide details on the type of invalidation that software should
perform when re-using a previously established Domain-ID.

= When establishing a previously used Domain-ID value for a new guest VM, software must execute
the following invalidations depending on the translation table mode:

— Legacy Mode: domain-selective context-cache invalidation followed by a domain-selective
I0TLB invalidation.

— Scalable Mode: domain-selective PASID-cache invalidation followed by a domain-selective
IOTLB invalidation.
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6.5.3.4 Optional Invalidation

The following items describe cases in which software may choose not to invalidate the I0OTLB when
modifying first-level paging entries, and the potential consequences of that choice:

= If a paging-structure entry is modified to change the P flag from O to 1, no invalidation is
necessary. This is because no IOTLB entry or paging-structure cache entry is created with
information from a paging-structure entry in which the P flag is 0.

= If a paging-structure entry is modified to change the accessed flag from O to 1, no invalidation is
necessary (assuming that an invalidation was performed the last time the accessed flag was
changed from 1 to 0). This is because no IOTLB entry or paging-structure cache entry is created
with information from a paging-structure entry in which the accessed flag is O.

< If a paging-structure entry is modified to change the R/W flag from O to 1, and the entry is used
only by requests that can tolerate recoverable translation faults (see Section 7.5), failure to
perform an invalidation may result in a recoverable address translation fault detected at the
Device-TLB (e.g., in response to an attempted write access), generating a “spurious” Page
Request (see Section 7.7). If requests that does not support recoverable page-faults (see
Section 7.3) is using such translation, the result is a non-recoverable translation fault (and hence
software cannot consider such paging-structure entry modification for optional 10TLB
invalidation).

= If SMEP=0 in the scalable-mode PASID-table entry, and a paging-structure entry is modified to
change the U/S flag from O to 1, and the entry is used only by requests that can tolerate
recoverable translation faults (see Section 7.5), failure to perform an invalidation may result in a
recoverable address translation fault detected at the Device-TLB (e.g., in response to an
attempted user-mode access), generating a “spurious” Page Request (see Section 7.7). If
requests that does not support recoverable page-faults (see Section 7.3) is using such
translation, the result is a non-recoverable translation fault (and hence software cannot consider
such paging-structure entry modification for optional IOTLB invalidation).

= If a paging-structure entry is modified to change the XD flag from 1 to O, and the entry is used
only by requests that can tolerate recoverable translation faults (see Section 7.5), failure to
perform an invalidation may result in a recoverable address translation fault detected at the
Device-TLB (e.g., in response to an attempted instruction fetch), generating a “spurious” Page
Request (see Section 7.7). If requests that does not support recoverable page-faults (see
Section 7.3) is using such translation, the result is a non-recoverable translation fault (and hence
software cannot consider such paging-structure entry modification for optional 10TLB
invalidation).

= If a paging-structure entry is modified to change the accessed flag from 1 to O, failure to perform
an invalidation may result in the hardware not setting that bit in response to a subsequent access
to a address whose translation uses the entry. Software cannot interpret the bit being clear as an
indication that such an access has not occurred.

< If software modifies a PTE or a paging-structure entry in which the PS flag is 1, to change the
dirty flag from 1 to O, failure to perform an invalidation may result in the hardware not setting
that bit in response to a subsequent write to a input-address whose translation uses the entry.
Software cannot interpret the bit being clear as an indication that such a write has not occurred.

6.5.3.5 Delayed Invalidation

Required invalidations may be delayed under some circumstances with first-level paging. Software
developers should understand that, between the modification of a paging-structure entry and
execution of the I0TLB invalidation command, the hardware may use translations based on either the
old value or the new value of the paging-structure entry. The following items describe some of the
potential consequences of delayed invalidation:

1. If it is also the case that no IOTLB invalidation was performed the last time the P flag was
changed from 1 to O, hardware may use a IOTLB entry or paging-structure cache entry that was
created when the P flag had earlier been 1.
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If a paging-structure entry is modified to change the P flag from 1 to O, an access to an input-
address whose translation is controlled by this entry may or may not cause a translation fault.

- If a paging-structure entry is modified to change the R/W flag from O to 1, write accesses to
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

< If a paging-structure entry is modified to change the U/S flag from O to 1, user-mode accesses to
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

< If a paging-structure entry is modified to change the XD flag from 1 to O, instruction fetches from
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For
example, when freeing a portion of the process address space (by marking paging-structure entries
“not present”), IOTLB invalidation command may be delayed if software does not re-allocate that
portion of the process address space or the memory that had been associated with it. However,
because of speculative execution by devices (or errant software), there may be accesses to the freed
portion of the process address space before the invalidations occur. In this case, the following can

happen:

= Reads can occur to the freed portion of the process address space. Therefore, invalidation should
not be delayed for an address range that has side effects for reads from devices (e.g., mapped to
MMIO).

< The hardware may retain entries in the I0OTLBs and paging-structure caches for an extended
period of time. Software should not assume that the hardware will not use entries associated with
a input-address simply because time has passed.

« As noted in Section 6.2.5, the hardware may create an entry in a paging-structure cache even if
there are no translations for any input-address that might use that entry. Thus, if software has
marked “not present” all entries in the page table, the hardware may subsequently create a PDE-
cache entry for the PDE that references that page table (assuming that the PDE itself is marked
“present”).

- If software attempts to write to the freed portion of the input-address space, the hardware might
not generate a translation fault. (Such an attempt would likely be the result of a software error.)
For that reason, the page frames previously associated with the freed portion of the process
address space should not be reallocated for another purpose until the appropriate invalidations
have been performed.

6.5.4 Draining of Requests to Memory

Requests from devices that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed to memory are referred as non-committed requests. Draining refers to
hardware pushing (committing) these requests to the global ordering point. Hardware
implementations report support for draining through the Capability Registers.

A write request to system memory is considered drained when the effects of the write are visible to
processor accesses to addresses targeted by the write request. A read request to system memory is
considered drained when the Root-Complex has finished fetching all of its read response data from
memory.

Requirements for draining are described below:

= Draining applies only to requests to memory and do not guarantee draining of requests to peer
destinations.

= Draining applies only for untranslated requests (AT=00b), including those processed as pass-
through by the remapping hardware.

< Draining of translated requests (AT=10b) requires issuing a Device-TLB invalidation command to
the endpoint device. Endpoint devices supporting Address Translation Services (ATS) are required
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to wait for pending translated read responses (or keep track of pending translated read requests
and discard their read responses when they arrive) before issuing the ATS invalidation completion
message. This effectively guarantees draining of translated read requests. The ATS invalidation
completion message is issued on the posted channel and pushes all writes from the device
(including any translated writes) ahead of it. To ensure proper write draining of translated
requests, remapping hardware must process ATS invalidation completion messages per the PCI
Express ordering rules (i.e., after processing all posted requests ahead of it).

= Read and write draining of untranslated requests are required when remapping hardware status
changes from disabled to enabled. The draining must be completed before hardware sets the TES
field in Global Status Register (which indicates remapping hardware is enabled). Hardware
implementations may perform draining of untranslated requests when remapping hardware status
changes from enabled to disabled.

« Read and write draining of untranslated requests are performed on IOTLB invalidation requests
specifying Drain Read (DR) and Drain Write (DW) flags respectively. For IOTLB invalidations
submitted through the IOTLB Invalidate Register (I0OTLB_REG), draining must be completed
before hardware clears the IVT field in the register (which indicates invalidation completed). For
I0TLB invalidations submitted through the queued invalidation interface, draining must be
completed before the next Invalidation Wait Descriptor (inv_wait_dsc) is completed by hardware.

— For global 10TLB invalidation requests specifying DMA read/write draining, all non-committed
DMA read/write requests queued within the Root-Complex are drained.

— For domain-selective 10TLB invalidation requests specifying read/write draining, hardware
only guarantees draining of non-committed read/write requests to the domain specified in the
invalidation request.

— For page-selective IOTLB invalidation requests specifying read/write draining, hardware only
guarantees draining of non-committed read/write requests with untranslated address
overlapping the address range specified in the invalidation request and to the specified
domain.

= Read and write draining of untranslated requests are performed on all PASID based I0TLB
invalidation requests, where draining is completed before the next Invalidation Wait Descriptor
(inv_wait_dsc) is completed by hardware.

6.5.5 Interrupt Draining

Interrupt requests that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed are referred as non-committed interrupt requests. Interrupt draining
refers to hardware pushing (committing) these interrupt requests to the appropriate processor’s
interrupt controller (Local XAPIC). An interrupt request is considered drained when the interrupt is
accepted by the processor Local XAPIC (for fixed and lowest priority delivery mode interrupts this
means the interrupt is at least recorded in the Local XAPIC Interrupt Request Register (IRR)).

Requirements for interrupt draining are described below:

« Interrupt draining applies to all non-committed interrupt requests, except Compatibility format
interrupt requests processed as pass-through on Intel™ 64 platforms.

= Interrupt draining is required when interrupt-remapping hardware status changes from disabled
to enabled. The draining must be completed before hardware sets the IES field in Global Status
Register (indicating interrupt-remapping hardware is enabled). Hardware implementations may
perform interrupt draining when interrupt-remapping hardware status changes from enabled to
disabled.

= Interrupt draining is performed on Interrupt Entry Cache (IEC) invalidation requests. For IEC
invalidations submitted through the queued invalidation interface, interrupt draining must be
completed before the next Invalidation Wait Descriptor is completed by hardware.

— For global IEC invalidation requests, all non-committed interrupt requests queued within the
Root-Complex are drained.
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— For index-selective IEC invalidation requests, hardware only guarantees draining of non-
committed interrupt requests referencing interrupt indexes specified in the invalidation
request.

< The Root-Complex considers an interrupt request as drained when it receives acknowledgement
from the processor complex. Interrupt draining requires processor complex to ensure the
interrupt request received is accepted by the Local XAPIC (for fixed interrupts, at least recorded in
the IRR) before acknowledging the request to the Root-Complex.

6.6 Set Root Table Pointer Operation

Software must always perform a Set Root-Table Pointer operation before enabling or re-enabling
(after disabling) remapping hardware.

On a root-table pointer set operation, software must perform an ordered global invalidate of the
context-cache, PASID-cache (if applicable), and IOTLB to ensure hardware references only the new
structures for further remapping.

If software sets the root-table pointer while remapping hardware is active (TES=1 in Global Status
register), software must ensure the structures referenced by the new root-table pointer provide
identical remapping results as the structures referenced by the previous root-table pointer so that in-
flight requests are properly translated. This is required since hardware may utilize the cached old
paging structure entries or the new paging structure entries in memory to translate in-flight requests,
until the Context -cache, PASID-cache, and IOTLB invalidations are completed. Software must not
modify the Translation Table Mode (TTM) field in the Root-table Address register (i.e., switch from
using legacy-mode root/context entries to scalable-mode root/context entries), while remapping
hardware is active (TES=1 in Global Status register).

6.7 Set Interrupt Remapping Table Pointer Operation

Software must always set the interrupt-remapping table pointer before enabling or re-enabling (after
disabling) interrupt-remapping hardware.

Software must always follow the interrupt-remapping table pointer set operation with a global
invalidate of the IEC to ensure hardware references the new structures before enabling interrupt
remapping.

If software updates the interrupt-remapping table pointer while interrupt-remap hardware is active,
software must ensure the structures referenced by the new interrupt-remapping table pointer provide
identical remapping results as the structures referenced by the previous interrupt-remapping table
pointer to ensure any valid in-flight interrupt requests are properly remapped. This is required since
hardware may utilize the old structures or the new structures to remap in-flight interrupt requests,
until the IEC invalidation is completed.

6.8 Write Buffer Flushing

On remapping hardware page-table walk, earlier implementations of this architecture did not flush or
snoop the write buffers at the memory controller that buffers writes to DRAM, and required explicit
software flushing of these write buffers on paging structure modifications. These earlier hardware
implementations reported this restriction to software by reporting the Required Write Buffer Flushing
(RWBF) field in the Capability Register to 1.

For such hardware implementations requiring write buffer flushing (RWBF=1 in the Capability
register), software updates to memory-resident remapping structures may be held in Root-Complex
internal hardware write-buffers, and not implicitly visible to remapping hardware. For such
implementations, software must explicitly make these updates visible to hardware through one of two
methods below:
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= For updates to remapping hardware structures that require context-cache, PASID-cache, IOTLB or
IEC invalidation operations to flush stale entries from the hardware caches, no additional action is
required to make the modifications visible to hardware. This is because, hardware performs an
implicit write-buffer-flushing as a pre-condition to context-cache, PASID-cache, IOTLB and IEC
invalidation operations.

= For updates to remapping hardware structures (such as modifying a currently not-present entry)
that do not require context-cache, PASID-cache, IOTLB or IEC invalidations, software must
explicitly perform write-buffer-flushing to ensure the updated structures are visible to hardware.

Newer hardware implementations are expected to NOT require explicit software flushing of write
buffers and report RWBF=0 in the Capability register.

6.9 Hardware Register Programming Considerations

A register used to submit a command to a remapping unit is owned by hardware while the command
is pending in hardware. Software must not update the associated register until hardware indicates the
command processing is complete through appropriate status registers.

For each remapping hardware unit, software must serialize commands submitted through the Global
Command register, Context Command register, IOTLB registers and Protected Memory Enable
register.

For platforms supporting more than one remapping hardware unit, there are no hardware serialization
requirements for operations across remapping hardware units.

6.10 Sharing Remapping Structures Across Hardware Units

Software may share? (fully or partially) the various remapping structures across multiple remapping
hardware units. When the remapping structures are shared across hardware units, software must
explicitly perform the invalidation operations on each remapping hardware unit sharing the modified
entries. The software requirements described in this section must be individually applied for each
such invalidation operation.

1. Sharing of scalable-mode root tables and scalable-mode context tables across remapping
hardware units are possible only across remapping hardware units that report Scalable Mode
Translation Support (SMTS) field as Set in the Extended Capability register.
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7 Translation Faults

This chapter describes the hardware handling of translation faults. Translation faults are broadly
categorized as follows:

- Interrupt Translation Faults: Faults detected when remapping interrupt requests are
categorized as Interrupt translation faults. Interrupt translation faults are non-recoverable.
Section 7.1 describes interrupt translation fault conditions in detail.

 Address Translation Faults: Faults detected when remapping memory requests (or translation
requests from Device-TLBs) are referred to as address translation faults. Section 7.2 describes
address translation fault conditions in detail.

7.1 Interrupt Translation Faults

The following table enumerates the various interrupt translation fault conditions. An interrupt
translation fault condition is treated as ‘qualified’ if the fault is reported to software only when the
Fault Processing Disable (FPD) field is O in the Interrupt-Remap-Table-Entry (IRTE) used to process
the faulting interrupt request. Interrupt translation faults are non-recoverable and faulting interrupt
request is treated as Unsupported Request by the remapping hardware.

Table 24. Interrupt Remapping Fault Conditions
Interrupt Remapping Fault Conditions Fault Qualified | Behavior
P pping Reason

Decoding of the interrupt request per the Remappable request format detected one or

. 20h No
more reserved fields as Set.
The interrupt_index value computed for the Remappable interrupt request is greater
than the maximum allowed for the interrupt-remapping table size configured by 21h No
software.
The Present (P) field in the IRTE corresponding to the interrupt_index of the interrupt 29h Yes

request is Clear.

Hardware attempt to access the interrupt-remapping table through the Interrupt-
Remapping Table Address (IRTA) field in the Interrupt Remap Table Address Register 23h No

resulted in error. Unsupported
Request

Hardware detected one ore more reserved fields that are not initialized to zero in an 24h Yes

IRTE with Present (P) field Set.

on Intel® 64 platforms, hardware blocked an interrupt request in Compatibility

format either due to Extended Interrupt Mode Enabled (EIME field Set in Interrupt 25h No

Remapping Table Address Register) or Compatibility format interrupts disabled (CFIS
field Clear in Global Status Register).

Hardware blocked a Remappable interrupt request due to verification failure of the
interrupt requester’s source-id per the programming of SID, SVT and SQ fields in the 26h Yes
corresponding IRTE with Present (P) field Set.
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7.2 Address Translation Faults

Address translation faults are classified as follows:

< Non-recoverable Faults: Requests that encounter non-recoverable address translation faults
are aborted by the remapping hardware, and typically require a reset of the device (such as
through a function-level-reset) to recover and re-initialize the device to put it back into service.
Section 7.2.1 describe the non-recoverable fault conditions in detail.

< Recoverable Faults: Requests that encounter recoverable address translation faults can be
retried by the requesting device after the condition causing the recoverable fault is handled by
software. Recoverable translation faults are detected at the Device-TLB on the device and require
the device to support Address Translation Services (ATS) capability. Refer to Address Translation
Services in PCI Express Base Specification Revision 4.0 or later for details. Section 7.2.2 describe
recoverable fault conditions in detail.

7.2.1 Non-Recoverable Address Translation Faults

Non-recoverable address translation faults can be detected by remapping hardware for requests-
without-PASID or for requests-with-PASID. A non-recoverable fault condition is considered ‘qualified’
if it is reported to software only if the Fault Processing Disable (FPD) field in the context-entry,
scalable-mode context-entry, scalable-mode PASID-directory entry, or scalable-mode PASID-table
entry used to process the faulting request is 0. Memory requests that result in non-recoverable
address translation faults are blocked by hardware. The exact method for blocking such requests are
implementation-specific. For example:

= Faulting write requests may be handled in much the same way as hardware handles write
requests to non-existent memory. For example, the write request is discarded in a manner
convenient for implementations (such as by dropping the cycle, completing the write request to
memory with all byte enables masked off, re-directing to a catch-all memory location, etc.).

« Faulting read requests may be handled in much the same way as hardware handles read requests
to non-existent memory. For example, the request may be redirected to a catch-all memory
location, returned as all 0’s or 1’s in a manner convenient to the implementation, or the request
may be completed with an explicit error indication (recommended). For faulting read requests
from PCI Express devices, hardware indicates “Unsupported Request” (UR) or “Completer Abort”
(CA) in the completion status field of the PCI Express read completion.

7.2.2 Recoverable Address Translation Faults

Devices supporting Device-TLBs can support recoverable address translation faults for translations
obtained by the Device-TLB (by issuing a Translation request to the remapping hardware, and
receiving a Translation Completion with Successful response code). What device accesses can tolerate
and recover from Device-TLB detected faults and what device accesses cannot tolerate Device-TLB
detected faults is specific to the device. Device-specific software (e.g., driver) is expected to make
sure translations with appropriate permissions and privileges are present before initiating device
accesses that cannot tolerate faults. Device operations that can recover from such Device-TLB faults
typically involves two steps:

= Report the recoverable fault to host software; This may be done in a device-specific manner (e.g.,
through the device-specific driver), or if the device supports PCl Express Page Request Services
(PRS) Capability, by issuing a page-request message to the remapping hardware. Section 7.5
describe the page-request interface through the remapping hardware.

= After the recoverable fault is serviced by software, the device operation that originally resulted in
the recoverable fault may be replayed, in a device-specific manner.

Table 26 enumerates the recoverable address translation fault conditions (success with some value for
R,W,U,S) detected by the remapping hardware when processing translation-requests. These fault
conditions are not reported by the remapping hardware as non-recoverable faults, and instead, result
in sending a successful translation completion for the faulting translation request with limited or no
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permission/privileges. When such a translation completion is received by the Device-TLB, a translation
fault is detected at the Device-TLB, and handled as either recoverable or non-recoverable, depending
on the device operation using the returned translation.

Device-TLB implementations are required (per Address Translation Services (ATS) in PCI Express
specification) to implicitly invalidate faulting translations from the Device-TLB. Also, the IOTLB and
paging-structure caches at the remapping hardware are invalidated when a recoverable page-fault is
reported through the remapping hardware (see Section 7.5.1 for details). Thus, when replaying the
faulted device operation after the recoverable fault is serviced, the old translation that caused the
fault is no longer cached in the Device-TLB or IOTLB, and the resulting translation request from the
device obtains the up to date translation.

7.2.3 Translation Fault conditions and DMA Remapping hardware
behavior
Table 25. Condition Codes and associated Fault Reason
Fault
Condition Condition Reason
Code (If faultis
reported)
Legacy Root-Table Faults
A hardware attempt to access a root-entry referenced through the Root-Table Address (RTA) field in LRT.1 8h
the Root-entry Table Address Register resulted in an error. '
The Present (P) field in root-entry used to process a request is O. LRT.2 1h
Non-zero reserved field in a root-entry with Present (P) field set. LRT.3 Ah
Legacy Context-Table Faults

A hardware attempt to access a context-entry referenced through the CTP field in a root-entry LCT 1 oh
resulted in an error. ’
The Present (P) field in context-entry used to process a request is O. LCT.2 2h
Non-zero reserved field in a context-entry with Present (P) field set. LCT.3 Bh
Invalid programming of a context-entry used to process a request. LCT.4.0 3h

* The Address-Width (AW) field is programmed with a value not supported by hardware. LCT.4.1 3h

= The Translation-Type (TT) field is programmed to indicate a translation type not supported by LCT4.2 3h

the hardware implementation. T
* A hardware attempt to access the second-level paging entry referenced through the SLPTPTR LCT.4.3 3h
field of the context-entry resulted in an error. o
Translation Type (TT) field in present context-entry, specifies blocking of translation request LCT5 Dh
(without PASID) and translated request. ’
Legacy Second-Level Table Faults

When legacy mode (RTADDR_REG.TTM=00b) is enabled, a hardware attempt to access a second-
level paging entry (SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE) referenced through the address LSL.1 7h
(ADDR) field in a preceding second-level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE) .
resulted in an error.
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Table 25. Condition Codes and associated Fault Reason (Contd.)
Fault
Condition Condition Reason
Code (If faultis
reported)
When legacy mode (RTADDR_REG.TTM=00b) is enabled, a non-zero reserved field in a second-
level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE) with at least one of the
Read (R), Execute (X), or Write (W) fields set. LSL.2 Cch
Execute (X) field in second-level paging entries are applicable only when supported by hardware
and enabled by software.
Legacy General Faults
Address overflow in second-level translation. For example: LGN.1.0 4h
= When legacy mode (RTADDR_REG.TTM=00b) is enabled, the address in the request is above
(2¥ - 1), where X is the minimum of MGAW reported in the capability register and the value in LGN.1.1 4h
the Address-Width (AW) field of the context-entry used to process a request.
= When scalable mode (RTADDR_REG.TTM=01b) is enabled, hardware detected an untranslated
request without PASID to the interrupt address range (OXFEEXx_xxxx) but does not meet LGN.1.2 4h
additional requirements to be considered a valid interrupt.
When legacy mode (RTADDR_REG.TTM=00b) is enabled, a Write or AtomicOp request encountered LGN.2 5h
lack of write permission. .
When legacy mode (RTADDR_REG.TTM=00Db) is enabled, a Read or AtomicOp request encountered
lack of read permission. LGN.3 6h
For implementations reporting the ZLR field as 1 in the capability register, this fault condition is not ’
applicable for zero-length read requests to write-only mapped pages in second-level translation.
Scalable-Mode Root-Table Address Register Faults
Invalid programming of Root Table Address (RTADDR_REG) registers. For example: SRTA.1.0 30h
= The TTM field is programmed to value of 11b. SRTA.1.1 30h
= The TTM field is programmed to value of 10b. SRTA.1.2 30h
= The TTM field is programmed to value of 01b for hardware implementation not supporting SRTA.1.3 30h
Scalable Translation Mode (SMTS=0 in Extended Capability Register). o
Translation Table Mode (TTM) field with value 00b in Root-table Address register (RTADDR_REG) SRTA.2 31h
used to process untranslated/translation request-with-PASID. .
Translation Table Mode (TTM) field with value 00b in Root-table Address register (RTADDR_REG)
: N SRTA.3 32h
used to process a page group request (with or without PASID).
Scalable-Mode Root-Table Faults
A hardware attempt to access a scalable-mode root-entry referenced through the Root-Table SRT1 38h
Address (RTA) field in the Root-entry Table Address Register resulted in an error. ’
The Present (P) field in UP/LP fields in scalable-mode root-entry used to process a request is O. SRT.2 39h
Non-zero reserved field in lower 64-bits of the scalable-mode root-entry with LP field set, or non- SRT3 3Ah
zero reserved fields in the upper 64-bits of the scalable-mode root-entry with UP field set. ’
Scalable-Mode Context-Table Faults
A hardware attempt to access a scalable-mode context-entry referenced through UCTP/LCTP field
. . SCT.1 40h
in the scalable-mode root-entry resulted in an error.
The Present (P) field in the scalable-mode context-entry used to process a request is O. SCT.2 41h
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Table 25. Condition Codes and associated Fault Reason (Contd.)
Fault
Condition Condition Reason
Code (If faultis
reported)
Non-zero reserved field in a scalable-mode context-entry with Present (P) field set. SCT.3 42h
Invalid programming of a scalable-mode context-entry used to process a request. SCT.4.0 43h
* For scalable-mode context-entry, the Device-TLB Enable (DTE) field and Page Request Enable SCT.4.1 43h
(PRE) field are inconsistently programmed. (DTE=0 and PRE=1 is an illegal combination.)
« The value in the RID_PASID field of a scalable-mode context-entry (with P=1) used to process SCT.4.2 43h
untranslated/translation request without PASID is larger than the maximum PASID-value
supported by PDTS field in the scalable-mode context-entry.
The Device-TLB Enable (DTE) field in a scalable-mode context-entry used to process the translation SCT.5 44h
request (with or without PASID) or translated request is O.
The PASID Enable (PASIDE) field in a present scalable-mode context-entry used to process the SCT.6 45h
untranslated request with PASID, translation request with PASID or page group request with PASID
is O.
The PASID value in the untranslated/translation request with PASID or page group request with SCT.7 46h
PASID is larger than the maximum PASID-value supported by the PDTS field in the scalable-mode
context-entry used to process the request.
The Page Request Enable (PRE) field in a present scalable-mode context-entry used to process a SCT.8 47h
Page Group Request is 0.
Scalable-Mode PASID-Directory Faults
A hardware attempt to access the scalable-mode PASID-directory entry referenced through the SPD.1 50h
PASIDDIRPTR field in scalable-mode context-entry resulted in an error.
The Present (P) field in the scalable-mode PASID-directory entry used to process the SPD.2 51h
untranslated/translation request (with or without PASID) is O. .
Non-zero reserved field in a present scalable-mode PASID-directory entry used to process the SPD.3 52h
untranslated/translation request (with or without PASID). :
Scalable-Mode PASID-Table Faults
A hardware attempt to access a scalable-mode PASID-table entry referenced through the SMPTPTR SPT.1 58h
field in a scalable-mode PASID-directory entry resulted in an error.
The Present (P) field in the scalable-mode PASID-table entry used to process the SPT.2 59h
untranslated/translation request (with or without PASID) is 0.
Non-zero reserved field in a present scalable-mode PASID-table entry used to process the SPT.3 5Ah
untranslated/translation request (with or without PASID).
Invalid programming of the scalable-mode PASID-table entry used to process a request. For SPT.4.0 5Bh
example:
* The Address-Width (AW) field is programmed with a value not supported by hardware. SPT.4.1 5Bh
= The PASID Granular Translation-Type (PGTT) field is programmed to indicate a translation type SPT.4.2 5Bh
not supported by the hardware implementation.
= PGTT= 000b, 101b, 110b, 111b
e PGTT=001b, when ECAP_REG.FLTS is Clear
= PGTT=010b, when ECAP_REG.SLTS is Clear
= PGTT=011b, when ECAP_REG.NEST is Clear
e PGTT=100b, when ECAP_REG.PT is Clear
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Table 25. Condition Codes and associated Fault Reason (Contd.)

Fault

Condition Reason
Code (If faultis

reported)

Condition

= The First Level Paging Mode (FLPM) field is programmed with a value not supported by SPT.4.3 5Bh
hardware.

= The Extended Memory Type (EMT) field is programmed with a value not supported by SPT.4.4 5Bh
hardware.

The Execute Requests Enable (ERE) field is O in the present scalable-mode PASID-table entry used SPT.5 5Ch
to process a request with Execute-Requested (ER) field set.

The Supervisor Requests Enable (SRE) field is O in the present scalable-mode PASID-table entry SPT.6 5Dh
used to process a request with Privileged-mode-Requested (PR) field Set. (PR value may come
from RID_PRIV field in scalable-mode context entry.)

Scalable-Mode First-Level Table Faults

A hardware attempt to access a first-level paging entry (FL-PML4E, FL-PDPE, FL-PDE, or FL-PTE) SFL.1 70h
referenced through the Address (ADDR) field in a preceding first-level paging entry (FL-PML5E, FL-
PMLA4E, FL-PDPE, or FL-PDE) resulted in an error.

(For nested translations, second-level nested translation faults encountered when accessing first-
level paging entries are treated as fault conditions 4h, 5h or 6h. See description of these fault
conditions above.)

The Present (P) field in first-level paging entry (FL-PML5E, FL-PML4E, FL-PDPE, FL-PDE, or FL-PTE) SFL.2 71h
is O.

Non-zero reserved field in first-level paging entry (FL-PML5E, FL-PML4E, FL-PDPE, FL-PDE, or FL- SFL.3 72h
PTE) with Present (P) field set.

A hardware attempt to access the FL-PML4 (FL-PML5 with 5-level paging) entry referenced through SFL.4 73h
the FLPTPTR field in the scalable-mode PASID-table entry resulted in an error.

When first-level tables are nested with second-level table, intermediate-address of a first-level SFL.5 74h
paging entry (FL-PML5E, FL-PML4E, FL-PDPE, FL-PDE, or FL-PTE), or intermediate-address of the
page frame is above (2% - 1), where X is the minimum of MGAW reported in the capability register
and value in the Address-Width (AW) field of a scalable-mode PASID-table entry used to process a
request.

Scalable-Mode Second-Level Table Faults

When scalable mode (RTADDR_REG.TTM=01b) is enabled, a hardware attempt to access a second- SSL.1 78h
level paging entry (SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE) referenced through the address
(ADDR) field in a preceding second-level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE)
resulted in an error.

When scalable mode (RTADDR_REG.TTM=01b) is enabled, hardware encountered a second-level SSL.2 79h
paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE) with R=W=0 or hardware
detected that the logical-AND of the Read (R) permission bits and logical-AND of Write (W)
permission bits from the result of the second-level page-walk to be both 0.

When scalable mode (RTADDR_REG.TTM=01Db) is enabled, a non-zero reserved field in a second- SSL.3 7Ah
level paging entry (SL-PML5E, SL-PML4E, SL-PDPE, SL-PDE, or SL-PTE) with at least one of the
Read (R), Execute (X), or Write (W) fields set.

Execute (X) field in second-level paging entries are applicable only when supported by hardware
and enabled by software.

When scalable mode (RTADDR_REG.TTM=01b) is enabled, a hardware attempt to access the SSL.4 7Bh
second-level paging entry referenced through the SLPTPTR field in scalable-mode PASID-table
entry resulted in an error.
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Table 25. Condition Codes and associated Fault Reason (Contd.)

Fault

Condition Reason
Code (If faultis

reported)

Condition

When remapping hardware is setup to not snoop processor caches on access to second-level SSL.5 7Ch
paging structure (ECAP_REG.SMPWC=0 or PWSNP field in PASID-table entry is 0), hardware
encountered a need to update the A/D bit (SLADE field in PASID-table entry is 1 and A/D bit in a
second-level paging structure entry is 0) in a second-level paging structure entry.

Scalable-Mode General Faults

Input-address in the request subjected to first-level translation is not canonical (i.e., address bits SGN.1 80h
63:N are not same value as address bits [N-1], where N is 48 bits with 4-level paging and 57 bits
with 5-level paging).

When performing first-level translation for request with user privilege (value of O in the Privilege- SGN.2 81h
mode-requested (PR) field), hardware encountered a present first-level-paging-entry with U/S field
value of O (supervisor), causing a privilege violation.

An untranslated request-with-PASID with Execute-Requested (ER) field set is blocked due to lack of SGN.3 82h
execute permission. For nested translations, the lack of execute permission can be at first-level
translation, or at the second-level translation for the final page.

Reserved. SGN.4 83h

Address overflow in second-level translation. For example: SGN.5.0 84h

When scalable mode (RTADDR_REG.TTM=01b) is enabled, an address in the request using second- SGN.5.1 84h
level only translation is above (2>< - 1), where X is the minimum of MGAW reported in the capability
register and value in the Address-Width (AW) field of context-entry or scalable-mode PASID-table
entry used to process a request.

When scalable mode (RTADDR_REG.TTM=01b) is enabled, hardware detected an untranslated SGN.5.2 84h
request without PASID to the interrupt address range (OXFEEx_xxxx) but does not meet additional
requirements to be considered a valid interrupt.

When scalable mode (RTADDR_REG.TTM=01b) is enabled, a Write or AtomicOp request SGN.6 85h
encountered lack of write permission.

For nested translations, the lack of write permission can be at first-level translation or at the nested
second-level translation. Also, for nested translations, this fault condition can be encountered on
nested second-level translation performed for setting the Accessed/Dirty flag of a first-level paging
entry.

Refer to Section 3.6.1 for access rights checking with first-level translation, Section 3.7.1 for
access rights checking with second-level translation, and Section 3.8.1 for access rights checking
with nested translation.

When scalable mode (RTADDR_REG.TTM=01b) is enabled, a Read or AtomicOp request SGN.7 86h
encountered lack of read permission.

For nested translations, the lack of read permission can be at first-level translation or at the nested
second-level translation. Also, for nested translations, this fault condition can be encountered on
the nested second-level translation performed on intermediate addresses.

Refer to Section 3.6.1 for access rights checking with first-level translation, Section 3.7.1 for
access rights checking with second-level translation, and Section 3.8.1 for access rights checking
with nested translation

For implementations reporting the ZLR field as 1 in the capability register, this fault condition is not
applicable for zero-length read requests to write-only mapped pages in second-level translation.

Special Conditions

Hardware detected address in the translation request without PASID to the interrupt address range
(OXFEEXx_xxxx). The special handling to interrupt address range is to comprehend potential
endpoint device behavior of issuing translation requests to all of its memory transactions including
its message signaled interrupt (MSI) posted writes.

S.1 Not a fault
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Table 26. Fault Conditions and DMA Remapping Hardware Behavior
Page
U . . Page Request
Condition o ntran_slated Untrans!ated Trans_latlon Transla_tlon Translated Request that does
Code Qualified Reqg-without- Reqg-with- Reqg-without- Req-with- Re that not
PASID PASID PASID PASID a Requires Reguire
Response R aul
esponse
Legacy Root-Table Faults
LRT.1 No UR UR CA CA UR NA NA
LRT.2 No UR UR UR UR UR NA NA
LRT.3 No UR UR CA CA UR NA NA
Legacy Context-Table Faults
LCT.1 No UR UR CA CA UR NA NA
LCT.2 Yes UR UR UR UR UR NA NA
LCT.3 Yes UR UR CA CA UR NA NA
LCT.4.0
LCT.4.1 Yes UR UR CA CA UR NA NA
LCT.4.2 Yes UR UR CA CA UR NA NA
LCT.4.3 Yes UR UR CA CA UR NA NA
LCT.5 Yes NA NA UR UR UR NA NA
Legacy Second-Level Table Faults
LSL.1 Yes UR UR CA CA NA NA NA
LSL.2 Yes UR UR CA CA NA NA NA
Legacy General Faults
LGN.1.0
Success with Success with
LGN.1.1 Yes UR UR R=W=U=S=0 R=W=U=S=0 NA NA NA
LGN.1.2 Yes UR NA NA NA NA NA NA
Success with Success with
LGN.2 Yes UR UR effective effective NA NA NA
permission permission
Success with Success with
LGN.3 Yes UR UR effective effective NA NA NA
permission permission
Scalable-Mode Root-Table Address Register Faults
SRTA.1.0
SRTA.1.1 No UR UR CA CA UR IR drop
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Table 26. Fault Conditions and DMA Remapping Hardware Behavior (Contd.)

_ . Page | plite:

Condition N Untran_slated Untrans!ated Trans_latlon Transla_tlon Translated Request that does
Code Qualified Reqg-without- Req-with- Reqg-without- Req-with- Req that not

PASID PASID PASID PASID Requires Require

Response Response
SRTA.1.2 No UR UR CA CA UR IR drop
SRTA.1.3 No UR UR CA CA UR IR drop
SRTA.2 No NA UR NA UR NA NA NA
SRTA.3 No NA NA NA NA NA IR drop

Scalable-Mode Root-Table Faults
SRT.1 No UR UR CA CA UR IR drop
SRT.2 No UR UR UR UR UR IR drop
SRT.3 No UR UR CA CA UR IR drop
Scalable-Mode Context-Table Faults
SCT.1 No UR UR CA CA UR IR drop
SCT.2 Yes UR UR UR UR UR IR drop
SCT.3 Yes UR UR CA CA UR IR drop
SCT.4.0
SCT.4.1 Yes UR UR CA CA UR IR drop
SCT.4.2 Yes UR NA CA NA NA NA NA
SCT.5 Yes NA NA UR UR UR NA NA
SCT.6 Yes NA UR NA UR NA IR drop
SCT.7 Yes NA UR NA UR NA IR drop
SCT.8 Yes NA NA NA NA NA IR drop
Scalable-Mode PASID-Directory Faults
SPD.1 No UR UR CA CA NA IR drop
SPD.2 JE= UR UR 52\%’2%5:";';% 5:&‘;2%5:";';% NA IR drop
SPD.3 Yes UR UR CA CA NA IR drop
Scalable-Mode PASID-Table Faults
SPT.1 No UR UR CA CA NA IR drop
SPT.2 jC= UR UR S;‘s\‘;izsz"‘s";% sg\‘ﬁiﬁ:"‘éﬁ% NA IR drop
SPT.3 Yes UR UR CA CA NA IR drop
SPT.4.0
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Table 26. Fault Conditions and DMA Remapping Hardware Behavior (Contd.)
Page Page
U . . g Request
Condition o ntrar‘_nslated Untrans!ated Trans]atlon Translgtlon Translated Request that does
Code Qualified Reqg-without- Reqg-with- Reqg-without- Req-with- Re that not
PASID PASID PASID PASID a Requires R i
Response equire
Response
SPT.4.1 Yes UR UR CA CA NA NA NA
SPT.4.2 Yes UR UR CA CA NA IR drop
SPT.4.3 Yes UR UR CA CA NA NA NA
SPT.4.4 Yes UR UR CA CA NA NA NA
Yes Success with
SPT.5 NA UR NA R=W=U=S=0 NA NA NA
Yes UR UR Success with Success with
SPT.6 R=W=U=S=0 | R=W=U=S=0 NA NA NA
Scalable-Mode First-Level Table Faults
Yes UR UR Success with Success with
SFL.1 R=W=U=S=0 | R=W=U=S=0 NA NA NA
Yes UR UR Success with Success with
SFL.2 R=W=U=S=0 R=W=U=S=0 NA NA NA
Yes UR UR Success with Success with
SFL.3 R=W=U=S=0 R=W=U=S=0 NA NA NA
Yes UR UR Success with Success with
SFL.4 R=W=U=S=0 R=W=U=S=0 NA NA NA
Yes UR UR Success with Success with
SFL.5 R=W=U=S=0 R=W=U=S=0 NA NA NA
Scalable-Mode Second-Level Table Faults
SSL.1 Yes UR UR CA CA NA NA NA
Yes UR UR Success with Success with
SSL.2 R=W=U=S=0 R=W=U=S=0 NA NA NA
SSL.3 Yes UR UR CA CA NA NA NA
SSL.4 Yes UR UR CA CA NA NA NA
SSL.5 Yes UR UR CA CA NA NA NA
Scalable-Mode General Faults
Yes UR UR Success with Success with
SGN.1 R=W=U=S=0 R=W=U=S=0 NA NA NA
Yes UR UR Success with Success with
SGN.2 R=W=U=S=0 R=W=U=S=0 NA NA NA
Yes NA UR NA Success with NA
SGN.3 effective NA NA
permission
SGN.4 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
SGN.5.0
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Table 26. Fault Conditions and DMA Remapping Hardware Behavior (Contd.)
Page Page
Condition Untranslated Untranslated Translation Translation Translated Request tﬁg??jiits
Code Qualified Reqg-without- Req-with- Reqg-without- Req-with- Req that not
PASID PASID PASID PASID Requires Require
Response Response
Yes Success with Success with
SGN.5.1 UR UR ReW=U=5=0 | ReW=U=8=0 NA NA NA
SGN.5.2 Yes UR NA NA NA NA NA NA
Yes Success with Success with
SGN.6 UR UR effective effective NA NA NA
permission permission
Yes Success with Success with
SGN.7 UR UR effective effective NA NA NA
permission permission
Special Conditions
Success with
S.1 NA NA NA R=S=0, NA NA NA NA
w=u=1

Note: Translation requests that are blocked by valid page tables (e.g., no reserved violation)
get a response of ‘Unsupported Requested’ (UR) which results in disabling of ATS at the
function. This is reasonable because for an SRIOV device, each PF/VF can
independently enable/disable ATS, and disabling of ATS on a VF does not affect other
VF/PF.

Note: Page requests that are blocked by valid or invalid page tables get a response of ‘Invalid
Request’ (IR). Such page requests don’t get a ‘Response Failure’ (RF) because a
response of RF will result in a device disabling the Page Request Interface (PRI) for the
entire device. For an SRIOV device, PRI cannot be enabled independently for PF/VF and
an RF response on a page request from a VF will result in disabling PRI for all VF/PF.

7.3 Non-Recoverable Fault Reporting

Processing of non-recoverable address translation faults (and interrupt translation faults) involves
logging the fault information and reporting to software through a fault event (interrupt). The
remapping architecture defines two types of fault logging facilities: (a) Primary Fault Logging; and (b)
Advanced Fault Logging. The primary fault logging method must be supported by all implementations
of this architecture. Support for advanced fault logging is optional. Software must not change the
fault logging method while hardware is enabled (i.e., when TES or IRES fields are Set in the Global
Status Register).

7.3.1 Primary Fault Logging

The primary method for logging non-recoverable faults is through Fault Recording Registers. The
number of Fault Recording Registers supported is reported through the Capability Register (see
Section 10.4.2). Section 10.4.14 describes the Fault Recording Registers.

Hardware maintains an internal index to reference the Fault Recording Register in which the next non-
recoverable fault can be recorded. The index is reset to zero when both address and interrupt
translations are disabled (i.e., TES and IES fields Clear in Global Status Register), and increments
whenever a fault is recorded in a Fault Recording Register. The index wraps around from N-1 to O,
where N is the number of fault recording registers supported by the remapping hardware unit.
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Hardware maintains the Primary Pending Fault (PPF) field in the Fault Status Register as the logical
“OR” of the Fault (F) fields across all the Fault Recording Registers. The PPF field is re-computed by
hardware whenever hardware or software updates the F field in any of the Fault Recording Registers.

When primary fault recording is active, hardware functions as follows upon detecting a non-
recoverable address translation or interrupt translation fault:

« Hardware checks the current value of the Primary Fault Overflow (PFO) field in the Fault Status
Register. If it is already Set, the new fault is not recorded.

= If hardware supports compression® of multiple faults from the same requester, it compares the
source-id (SID) field of each Fault Recording Register with Fault (F) field Set, to the source-id of
the currently faulted request. If the check yields a match, the fault information is not recorded.

- If the above check does not yield a match (or if hardware does not support compression of
faults), hardware checks the Fault (F) field of the Fault Recording Register referenced by the
internal index. If that field is already Set, hardware sets the Primary Fault Overflow (PFO) field in
the Fault Status Register, and the fault information is not recorded.

< If the above check indicates there is no overflow condition, hardware records the current fault
information in the Fault Recording Register referenced by the internal index. Depending on the
current value of the PPF field in the Fault Status Register, hardware performs one of the following
steps:

— If the PPF field is currently Set (implying there are one or more pending faults), hardware sets
the F field of the current Fault Recording Register and increments the internal index.

— Else, hardware records the internal index in the Fault Register Index (FRI) field of the Fault
Status Register and sets the F field of the current Fault Recording Register (causing the PPF
field also to be Set). Hardware increments the internal index, and an interrupt may be
generated based on the hardware interrupt generation logic described in Section 7.4.

Software is expected to process the non-recoverable faults reported through the Fault Recording
Registers in a circular FIFO fashion starting from the Fault Recording Register referenced by the Fault
Recording Index (FRI) field, until it finds a Fault Recording Register with no faults (F field Clear).

To recover from a primary fault overflow condition, software must first process the pending faults in
each of the Fault Recording Registers, Clear the Fault (F) field in all those registers, and Clear the
overflow status by writing a 1 to the Primary Fault Overflow (PFO) field. Once the PFO field is cleared
by software, hardware continues to record new faults starting from the Fault Recording Register
referenced by the current internal index.

7.3.2 Advanced Fault Logging

Advanced fault logging is an optional hardware feature. Hardware implementations supporting
advanced fault logging report the feature through the Capability Register (see Section 10.4.2).

Advanced fault logging uses a memory-resident fault log to record non-recoverable fault information.
The base and size of the memory-resident fault log region is programmed by software through the
Advanced Fault Log Register. Advanced fault logging must be enabled by software through the Global
Command Register before enabling the remapping hardware. Section 9.2 illustrates the format of the
fault record.

When advanced fault recording is active, hardware maintains an internal index into the memory-
resident fault log where the next non-recoverable fault can be recorded. The index is reset to zero
whenever software programs hardware with a new fault log region through the Global Command
Register, and increments whenever a non-recoverable fault is logged in the fault log. Whenever the
internal index increments, hardware checks for internal index wrap-around condition based on the
size of the current fault log. Any internal state used to track the index wrap condition is reset
whenever software programs hardware with a new fault log region.

1. Hardware implementations supporting only a limited number of fault recording registers are
recommended to collapse multiple pending faults from the same requester.
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Hardware may compress multiple back-to-back faults from the same requester by maintaining
internally the source-id of the last fault record written to the fault log. This internal “source-id from
previous fault” state is reset whenever software programs hardware with a new fault log region.

Read completions due to software reading the remapping hardware registers must push (commit) any
in-flight fault record writes to the fault log by the respective remapping hardware unit.

When a non-recoverable fault is detected, advanced fault logging functions in hardware as follows:

« Hardware checks the current value of the Advanced Fault Overflow (AFO) field in the Fault Status
Register. If it is already Set, the new fault is not recorded.

« If hardware supports compressing multiple back-to-back faults from same requester, it compares
the source-id of the currently faulted request to the internally maintained “source-id from
previous fault”. If a match is detected, the fault information is not recorded.

« Otherwise, if the internal index wrap-around condition is Set (implying the fault log is full),
hardware sets the AFO field in the Advanced Fault Log Register, and the fault information is not
recorded.

- If the above step indicates no overflow condition, hardware records the current fault information
to the fault record referenced by the internal index. Depending on the current value of the
Advanced Pending Fault (APF) field in the Fault Status Register and the value of the internal index,
hardware performs one of the following steps:

— If APF field is currently Set, or if the current internal index value is not zero (implying there
are one or more pending faults in the current fault log), hardware simply increments the
internal index (along with the wrap-around condition check).

— Otherwise, hardware sets the APF field and increments the internal index. An interrupt may
be generated based on the hardware interrupt generation logic described in Section 7.4.

7.4 Non-Recoverable Fault Event

Non-recoverable faults are reported to software using a message-signalled interrupt controlled
through the Fault Event Control Register. The non-recoverable fault event information (such as
interrupt vector, delivery mode, address, etc.) is programmed through the Fault Event Data and Fault
Event Address Registers.

A Fault Event may be generated under the following conditions:

< When primary fault logging is active, recording a non-recoverable fault to a Fault Recording
Register causing the Primary Pending Fault (PPF) field in Fault Status Register to be Set.

< When advanced fault logging is active, logging a non-recoverable fault in the advanced fault log
that causes the Advanced Pending Fault (APF) field in the Fault Status Register to be Set.

< When queued invalidation interface is active, an invalidation queue error causing the Invalidation
Queue Error (IQE) field in the Fault Status Register to be Set.

< Invalid Device-TLB invalidation completion response received causing the Invalidation Completion
Error (ICE) field in the Fault Status Register to be Set.

« Device-TLB invalidation completion time-out detected causing the Invalidation Time-out Error
(ITE) field in the Fault Status Register to be Set.

For these conditions, the Fault Event interrupt generation hardware logic functions as follows:

« Hardware checks if there are any previously reported interrupt conditions that are yet to be
serviced by software. Hardware performs this check by evaluating if any of the PPF, PFO, (APF,
AFO if advanced fault logging is active), IQE, ICE, ITE and PRO fields in the Fault Status Register
is Set. If hardware detects any interrupt condition yet to be serviced by software, the Fault Event
interrupt is not generated.

1. The PPF field is computed by hardware as the logical OR of Fault (F) fields across all the Fault
Recording Registers of a hardware unit.
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= If the above check indicates no interrupt condition yet to be serviced by software, the Interrupt
Pending (IP) field in the Fault Event Control Register is Set. The Interrupt Mask (IM) field is then
checked and one of the following conditions is applied:

— If IM field is Clear, the fault event is generated along with clearing the IP field.

— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

« If IP field was Set when software clears the IM field, the fault event interrupt is generated along
with clearing the IP field.

« If IP field was Set when software services all the pending interrupt conditions (indicated by all
status fields in the Fault Status Register being Clear), the IP field is cleared.

Read completions due to software reading the Fault Status Register (FSTS_REG) or Fault Event
Control Register (FECTL_REG) must push (commit) any in-flight Fault Event interrupt messages
generated by the respective hardware unit.

The fault event interrupts are never subject to interrupt remapping.

7.5 Recoverable Fault Reporting

Recoverable faults are detected at the Device-TLB on the endpoint device. Devices supporting Page
Request Services (PRS) Capability reports the recoverable faults as Page Request messages to
software through the remapping hardware. Software informs the servicing of the page requests by
sending Page Group Response messages to the device through the remapping hardware. Refer to
Address Translation Services (ATS) in PCl Express Base Specification Revision 4.0 or later for details
on the Page Request and Page Group Response messages.

This specification defines an additional feature for Page Request Service (PRS) that is outside the PCI
Express specification and available only to Root-Complex-integrated devices.

= Page Request message with data: Root-Complex integrated devices may send 128-bits of data
along with a Page Request message. Software is expected to return this data unmodified back to
device along with the Page Group Response message.

The following sections describe the remapping hardware processing of page requests from endpoint
devices and page group response from software. Remapping hardware indicates support for page
requests through the Extended Capability Register (see Section 10.4.3).

7.5.1 Handling of Page Requests

When PRS Capability is enabled at an endpoint device, recoverable faults detected at its Device-TLB
cause the device to issue page-request messages to the remapping hardware.

Remapping hardware supports a Page Request Queue, as a circular buffer in system memory to
record Page Request messages received. The following registers are defined to configure and manage
the Page Request Queue:

= Page Request Queue Address Register: Software programs this register to configure the base
physical address and size of the contiguous memory region in system memory hosting the Page
Request Queue.

« Page Request Queue Head Register: This register points to the Page Request Descriptor in the
Page Request Queue that software will process next. Software increments this register after
processing one or more Page Request Descriptors in the Page Request Queue.

« Page Request Queue Tail Register: This register points to the Page Request Descriptor in the Page
Request Queue to be written next by hardware. The Page Request Queue Head Register is
incremented by hardware after writing a Page Request Queue Descriptor to the Page Request
Queue.
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Hardware interprets the Page Request Queue as empty when the Head and Tail Registers are equal.
Hardware interprets the Page Request Queue as full when the Head Register is one behind the Tail
Register (i.e., when all entries but one in the queue are used). This way, hardware will write at most
only N-1 page requests in a N entry Page Request Queue.

To enable page requests from an endpoint device, software must:

< Initialize the Page Request Queue Head and Tail Registers (see Section 10.4.30 and
Section 10.4.31) to zero.

= Configure the scalable-mode context-entry used to process requests from the device, such that
the Present (P), Device-TLB Enable (DTE), and Page Request Enable (PRE) fields are Set.

- Set up the Page Request Queue address and size through the Page Request Queue Address
Register (see Section 10.4.32).

= Configure and enable page requests at the device through the PRS Capability Registers. (Refer to
Address Translation Services (ATS) in PCI Express Base Specification Revision 4.0 or later for PRS
Capability Register details).

A page request may encounter one of the three error conditions:

< Remapping Table Error: A remapping table error that prevents page request from successfully
traversing all the way to the PASID-table entry. This includes conditions such as the Page Request
Enable (PRE) field in the scalable-mode context-entry used to process the request is 0. For a
complete list of conditions that affect page requests, see Table 26. For each of the conditions
affecting page requests, hardware will report a non-recoverable fault with an associated fault
code (see Table 25) and if needed, provide a response as described in Table 26.

» Page Request Queue Overflow (PRQ Overflow): The Page Request Overflow (PRO) field in the
Page Request Status Register is 1. No action is taken by hardware to report a fault or generate an
event.

« Page Request Queue Full (PRQ full): The Page Request Queue is full (i.e., the current value of the
Head Register is one behind the value of the Tail Register), causing hardware to set the Page
Request Overflow (PRO) field in the Page Request Status Register (see Section 10.4.33). Setting
the PRO field can cause a fault event to be generated depending on the programming of the Page
Request Event Registers (see Section 7.6).

When a page request encounters one of the error conditions described above, it is not written into
Page Request Queue. Additionally, hardware will generate a page group response for page requests
that have the Last Page In Group (LPIG) field set, or the Private Data Present (PDP) field set, as
described by Table 27 below.

Table 27. Page Request Error Conditions

LPIG PDP Remapping Table Fault PRQ Overflow PRQ Full
(6] (o] Hardware does not generate any Page Group Response for the dropped Page Request.
0 1 Hardware generates Page Group Hardware generates Page Group | Hardware generates Page Group

Response with code of Invalid Request! | Response with code of Success Response with code of Success

1 Ignored Hardware generates Page Group Hardware generates Page Groug Hardware generates Page Group

Response with code of Invalid RequesfL Response with code of Success Response with code of Success?

1. For page requests that detect a remapping table fault, hardware generates a response of ‘Invalid Request’ instead of ‘Response
Failure’ to prevent a bad PASID or VF from disabling a page request service for the entire device.

2. Hardware generating a successful Page Group Response message for the last page request in a group that encounters a PRQ
full/overflow condition can result in a page group response for one of the older page requests in this group to be generated later
(by software). Receiving a non-LPIG Page Group Response message at the endpoint, after the LPIG Page Group Response
message of the same group is received, must not affect functioning of the endpoint device.
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If a page request does not encounter any of the error conditions described above, the remapping
hardware:

= Performs an implicit invalidation (see Section 6.5.3.1) to invalidate any translations cached in the
I0TLB and paging structure caches that control the address specified in the page request.

= Writes a Page Request Descriptor to the Page Request Queue entry at the offset specified by the
Tail Register, and increments the value in the Tail Register. Depending on the type of the Page
Request Descriptor written to the Page Request Queue and programming of the Page Request
Event Registers, a recoverable fault event may be generated (see Section 7.6).

The following sections describe the Page Request Descriptor types written by hardware to the Page

Request Queue. All descriptors are 256-bit in size. The Type field (bits 7:0) of each Page Request
Descriptor identifies the descriptor type.

7.5.1.1 Page Request Descriptor

w
o

Private Data[127:64]

o
N

Private Data[63:0]

N

77 6 6 6 6
7 6 5 7 6 5 4
Page Request | LP | Wr | Rd
Group Index | IG |Req|Req

Address[63:12]

N W
= W

a =
v -

Revd | PM | Bxe 1 pacip RID Rsvd PDP PASID | 11
Req | Req Present

Figure 7-28. Page Request Descriptor

A Page Request Descriptor (page_req_dsc) is used to report page request messages received by the
remapping hardware.

Page Request Messages: Page request messages’ are sent by endpoint devices to report one or more
page requests that are part of a page group (i.e., with same value in Page Request Group Index field).
A page group is composed of one or more individual page request. Page requests with a PASID

1. Refer to the PCI Express Address Translation Services (ATS) specification for details on page
request and response messages.
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Present field value of 1 are considered to be page-requests-with-PASID. Page requests with a PASID
Present field value of O are considered to be page-requests-without-PASID. Page Request messages
from Root-Complex integrated devices may additionally have 128 bits of data attached to it. A Page
Requests message with data device is expecting a Page Group Response message with data.

The Page Request Descriptor (page_req_dsc) includes the following fields:

« Requester-1D: The Requester-ID field identifies the endpoint device function targeted by the Page
Request Group Response. The upper 8 bits of the Requester-ID field specify the bus number and
the lower 8 bits specify the device number and function number. Software copies the bus number,
device number, and function number fields from the respective Page Request Descriptor to form
the Requester-ID field in the Page Group Response Descriptor. Refer to Section 3.4.1 for the
format of this field.

= PASID Present: If the PASID Present field is 1, the page request is due to a recoverable fault by a
request-with-PASID. If the PASID Present field is 0, the page request is due to a recoverable fault
by a request-without-PASID.

« PASID: If the PASID Present field is 1, this field provides the PASID value of the request-with-
PASID that encountered the recoverable fault that resulted in this page request. If the PASID
Present field is O, this field is undefined.

- Address (ADDR): If both the Read Requested and Write Requested fields are O, this field is
reserved. Else, this field indicates the faulted page address.

= Page Request Group Index (PRGI): The 9-bit Page Request Group Index field identifies the page
group to which this request is part of. Software is expected to return the Page Request Group
Index in the respective page group response. This field is undefined if both the Read Requested
and Write Requested fields are O.

— Multiple page-requests-with-PASID (PASID Present field value of 1) from a device with the
same PASID value can contain any Page Request Group Index value (0-511). However, for a
given PASID value, there can at most be one page-request-with-PASID outstanding from a
device, with the Last Page in Group (LPIG) field set and the same Page Request Group Index
value.

— Multiple page-requests-without-PASID (PASID Present field value of 0) from a device can
contain any Page Request Group Index value (0-511). However, there can at most be one
page-request-without-PASID outstanding from a device, with the Last Page in Group field set
and the same Page Request Group Index value.

« Last Page in Group (LPIG): If the Last Page in Group field is 1, this is the last request in the page
group identified by the value in the Page Request Group Index field.

< Read Requested: If the Read Requested field is 1, the request that encountered the recoverable
fault (that resulted in this page request), requires read access to the page.

= Write Requested: If the Write Requested field is 1, the request that encountered the recoverable
fault (that resulted in this page request), requires write access to the page.

« Execute Requested: If the PASID Present, Read Requested and Execute Requested fields are all 1,
the request-with-PASID that encountered the recoverable fault that resulted in this page request
requires execute access to the page.

« Privilege Mode Requested: If the PASID Present field is 1, and at least one of the Read Requested
or the Write Requested field is 1, the Privilege Mode Requested field indicates the privilege of the
request-with-PASID that encountered the recoverable fault (that resulted in this page request). A
value of 1 for this field indicates supervisor privilege, and a value of O indicates user privilege.

« Private Data Present (PDP): If the Private Data Present field is 1, the page request has 128 bits of
data attached to it. When processing a page request with data, the remapping hardware will set
this field to 1. When processing a page request without data, the remapping hardware will set this
field to O.

= Private Data: The Private Data field can be used by Root-Complex integrated endpoints to
uniquely identify device-specific private information associated with an individual page request.
Software is expected to return the Private Data (if present) in the respective page group
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response. When processing a page request without data, the remapping hardware will ignore this
field.

See Section 7.7 for how software is expected to service page requests and respond with page group
responses which are described in Section 7.7.1.

7.6 Recoverable Fault Event

Remapping hardware supports notifying pending recoverable faults to software through a Page
Request Event interrupt.

« When a Page Request Descriptor (page_req_dsc) is written to the Page Request Queue, hardware
Sets the Pending Page Request (PPR) field in the Page Request Status Register (see
Section 10.4.33).

= When attempting to write a page request into the Page Request Queue, hardware encounters
queue full condition (i.e., the current value of the Head Register is one behind the value of the Tail
Register), causing hardware to Set the Page Request Overflow (PRO) field in the Page Request
Status Register

The Page Request Event generation hardware logic functions as follows:

 Hardware evaluates PPR and PRO fields in the Page Request Status Register and if any of them is
set, Page Request Event is not generated.

= If above evaluation indicates that none of the bits are set, the Interrupt Pending (IP) field in the
Page Request Event Control Register (see Section 10.4.34) is Set. The Interrupt Mask (IM) field in
this register is then checked and one of the following conditions is applied:

— If IM field is Clear, the fault event is generated along with clearing the IP field.
— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field in the Page Request
Event Control Register:

« If IP field was 1 when software clears the IM field, the Page Request Event interrupt is generated
along with clearing the IP field.

- If IP field was 1 when software services all the pending interrupt conditions (indicated by PPR and
PRO fields being Clear) in the Page Request Status Register, the IP field is cleared

A page request from an endpoint is considered ‘received’ by remapping hardware when it arrives at
the remapping hardware ingress. A received page request is considered ‘accepted’ to the page
request queue by remapping hardware when the corresponding page request descriptor write
(page_req_dsc) is issued. An ‘accepted’ page request is considered ‘delivered’ by remapping
hardware when the respective Page Request Descriptor write (page_req_dsc) to Page Request Queue
becomes visible to software followed by increment of the Page Request Queue Tail register.

For producer consumer ordering of page request processing, the following ordering requirements
must be met by remapping hardware:

= A Page Request Event interrupt must ensure all ‘accepted’ page requests (including the accepted
page request that led to generation of this interrupt) are ‘delivered’ (become software visible),
before the Page Request Event interrupt is delivered to software.

= Read completions due to software reading Page Request Queue Tail Register (PQT_REG) must
ensure all ‘accepted’ page requests are ‘delivered’.

» Read completions due to software reading Page Request Status Register (PRS_REG), Page
Request Queue Tail Register (PQT_REG) or Page Request Event Control Register (PECTL_REG)
must push (commit) any in-flight Page Request Event interrupt generated by the respective
remapping hardware unit.

The Page Request Event interrupts are never subject to interrupt remapping.
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7.7 Servicing Recoverable Faults

Software processes Page Request Descriptors written to the Page Request Queue by remapping
hardware. Processing the descriptor involves resolving the page-fault condition, creating the
translation with appropriate permission and privilege (if the page requested is legitimate), and issuing
a response back to the device through the remapping hardware when required.

For a page request with data (PDP=1), software must respond with a page group response with data
(PDP=1). For a page request (with or without data) indicating last request in group (LPIG = 1),
software must respond with a page group response (with or without data) after servicing all page
requests that are part of that page group. For a page request with data not indicating last request in
group (LPIG = 0), software should respond with a page group response with data after servicing the
page request (with data). For a page request without data not indicating last request in group (LPIG =
0), software must not send any page group response. The response is sent by software to the
remapping hardware by submitting Page Group Response Descriptor through the Invalidation Queue
(1Q). The remapping hardware processes each Page Group Response Descriptor by formatting and
sending an appropriate Page Request Group Response message to the endpoint device. Refer to
Section 6.5.2 for details on Invalidation Queue operation.

While servicing of a page request software may determine that the request is spurious. i.e., the page
reported in the page request already has a translation with the requested permissions and privilege in
the page tables. Spurious page requests can result if software upgraded a paging entry (e.g., not
present to present, read-only to read-write, etc.), and the faulting request used the translation before
the upgrade that was cached in the IOTLB or Device-TLB. Irrespective of how a page request was
serviced by software (i.e., successfully processed by creating the translation, identified as a spurious
page request that did not require any update to translation, identified as invalid request due to invalid
page/permission/privilege requested), software must send a page group response with appropriate
Response Code if a response is required for the page request.

The following sections describe the Page Group Response Descriptor written by software to the
Invalidation Queue. The Type field (bits 11:9 and bits 3:0) of each page group response descriptor
identifies the descriptor type (similar to other invalidation descriptors submitted through the
Invalidation Queue). This descriptor is a 256-bit descriptor and will result in an invalid descriptor error
if submitted in an 1Q that is setup to provide hardware with 128-bit descriptors (IQA_REG.DW=0).
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7.7.1 Page Group Response Descriptor
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Figure 7-29. Page Group Response Descriptor

A Page Group Response Descriptor is issued by software in response to a page request with data or a
page request (with or without data) that indicated that it was the last request in a group. The page
group response for last request in a group must be issued after servicing all page requests with the
same Page Request Group Index value.

The Page Group Response Descriptor (page_grp_resp_dsc) includes the following fields:

7-20

Requester-1D: The Requester-ID field identifies the endpoint device function targeted by the Page
Group Response message. The upper 8 bits of the Requester-ID field specify the bus humber and
the lower 8 bits specify the device number and function number. Software copies the bus number,
device number, and function number fields from the respective Page Request Descriptor to form
the Requester-ID field in the Page Group Response Descriptor. Refer to Section 3.4.1 for the
format of this field.

PASID Present: If the PASID Present field is 1, the page group response carries a PASID. The
value in this field must match the value in the PASID Present field of the respective Page Request
Descriptor.

PASID: If the PASID Present field is 1, this field provides the PASID value for the page group
response. The value in this field must match the value in the PASID field of the respective Page
Request Descriptor.

Page Request Group Index: The Page Request Group Index identifies the page group of this page
group response. The value in this field must match the value in the Page Request Group Index
field of the respective Page Request Descriptor.

Response Code: The Response Code indicates the page group response status. The field follows
the Response Code (see Table 28) in the Page Group Response message as specified in Address
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Translation Services (ATS) in the PCI Express Base Specification, Revision 4.0 or later. Refer to the
PCI Express specification for endpoint device behavior with these Response Codes. If all page
requests that are part of a Page Group were serviced successfully, a Response Status code of
‘Success’ is returned.

« Private Data Present (PDP): If the Private Data Present field is 1, the page group response carries
Private Data. The value in this field must match the value in the PDP field of the respective Page
Request Descriptor.

= Private Data: The Private Data field is used to convey device-specific private information
associated with the page request and response for a Root-Complex integrated endpoint. The
value in this field must match the value in the Private Data field of the respective Page Request
Descriptor. When processing page group responses without private data (PDP=0), the remapping
hardware will ignore this field.

Table 28. Response Codes

Value Status Description
Oh Success All Page Requests in the Page Request Group were successfully serviced.
1h Invalid Request One ore more Page Requests within the Page Request Group was not successfully
serviced.
2h - Eh Reserved Not used.
Fh Response Failure Servicing of one or more Page Requests within the Page Request Group encountered
a non-recoverable error.

7.8 Page Request Ordering and Draining

This section describes the expected endpoint device behavior and remapping hardware behavior on
ordering and draining of page-requests.

= A recoverable fault encountered by an endpoint device is considered ‘dispatched’ when the
corresponding Page Request message is posted to its egress to the interconnect. On a Device-TLB
invalidation, the endpoint device must ensure the respective Device-TLB invalidation completion
message is posted to its egress to the interconnect, ordered behind ‘dispatched’ page requests.

« Page requests and Device-TLB invalidation completion messages follow strict posted ordering on
the interconnect fabric.

= A Page request is considered ‘received’ by remapping hardware when it arrives at the remapping
hardware ingress. A ‘received’ page request is considered ‘accepted’ to the Page Request Queue
by remapping hardware when the corresponding Page Request Descriptor write (page_req_dsc) is
issued. An ‘accepted’ page request is considered ‘delivered’ by remapping hardware when the
respective Page Request Descriptor write (page_req_dsc) to Page Request Queue becomes visible
to software followed by increment of the Page Request Queue Tail register.

= Remapping hardware must ensure that, page requests and Device-TLB invalidation completion
messages received in its ingress are processed in order.

« If remapping hardware processing of a Device-TLB invalidation completion message results in a
pending Invalidation Wait Descriptor (inv_wait_dsc) to complete, and if the Page-request Drain
(PD=1) flag is Set in the inv_wait_dsc, the respective invalidation wait completion status write (if
SW=1) and invalidation wait completion interrupt (if IF=1) must be ordered (made visible to
software) behind page-request descriptor (page_req_dsc) writes for all page requests ‘received’
ahead of the Device-TLB invalidation completion message.

With above ordering, to drain in-flight page requests from an endpoint device, software can issue a

dev_tlb_inv_dsc (or p_dev_tlb_inv_dsc) of any invalidation granularity targeting the device, followed
by an inv_wait_dsc with PD flag Set and SW/IF flag Set, and wait for the inv_wait_dsc to complete.
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7.9 Page Group Response Ordering and Draining

This section describes the remapping hardware behavior and expected endpoint device behavior on
ordering and draining of page-request responses.

< Remapping hardware must ensure that page group responses (page_grp_resp_dsc) and Device-
TLB invalidation requests (dev_tlb_inv_dsc or p_dev_tlb_inv_dsc) submitted by software through
the Invalidation Queue are processed in order and respective messages are posted in order to the
interconnect.

= Page Group Response messages and Device-TLB invalidation requests follow strict posted
ordering on the interconnect fabric.

« An endpoint device is expected to ‘accept’ valid page group responses and Device-TLB invalidation
requests in the order they are received. This implies that, before a valid Device-TLB invalidation
request is acted on by the endpoint device (leading to posting an invalidation response message),
the endpoint device has ‘accepted’ all valid page group responses received ahead of the Device-
TLB invalidation request.

With above ordering, to drain in-flight page group responses issued by software to an endpoint
device, software can issue a dev_tlb_inv_dsc (or p_dev_tlb_inv_dsc) of any invalidation granularity
targeting the device, followed by an inv_wait_dsc with SW/IF flag Set, and wait for the inv_wait_dsc
to complete.

7.10 Pending Page Request Handling on Terminal Conditions

This section describes the expected endpoint device behavior for handling pending page requests on
terminal conditions. A page request is considered pending at an endpoint device, if the devices has
issued the page request and have not yet received the respective page group response.

Terminal conditions are defined as software initiated conditions that can result in an endpoint device
resetting its internal state used to match page group responses to pending page requests. Examples
of terminal conditions encountered by a device while it has pending page requests may include:

« Device specific software stack/driver detecting a unresponsive device and performing any form of
partial device reset (E.g., GPU Engine Reset) leading to termination of one or more work-items
(that may have pending page requests).

« Device specific software stack detecting a unresponsive device and performing a full device reset
(E.g., GPU Timeout Detection and Recovery Reset) leading to termination of all work-items (some
or all with pending page requests) active on that device.

= System software performingg@Function Level Reset (FLR) of a Physical Function or SR-10V Virtual
Function (or reset of a Intel™ Scalable 10V Assignable Device Interface (ADI)), leading to
termination of all work-items (some or all with pending page requests) submitted through
respective function/interface.

On above terminal conditions?, the endpoint device is expected to handle pending page requests as
follows:

= Ensure that recoverable faults encountered by the device before the terminal event are
‘dispatched’ (i.e., corresponding page requests are posted to device egress to the interconnect),
so that any subsequent Device-TLB invalidation request completions from the device are ordered
behind such page requests (i.e., follow same ordering described in Section 7.8 as with normal
operation if there was no terminal condition).

1. For devices that may be subject to device specific software stack/driver initiated terminal
conditions while in operation, such devices are expected to normally receive, process and respond
to Device-TLB invalidation requests during such terminal conditions. This is required as these
device specific terminal conditions may be initiated transparent to system software operation that
can be issuing Device-TLB invalidations as part of TLB shootdown operations.

7-22 Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010



"] ®
l n tel > Intel® Virtualization Technology for Directed I/0—Translation Faults

= Cancel tracking of pending page requests affected by the terminal condition and replenish page
request credits consumed by such page requests.

= Continue normal behavior of discarding any page group responses (without adverse side effects)
received that has no matching pending page request.

To handle in-flight page requests affected by terminal conditions, software initiating the terminal
condition must follow below steps:

- After completing the terminal condition and before putting the device function back in service,
request system software to drain (and discard) in-flight page requests/responses from the
endpoint device (as described in Section 7.11), and only after completion of such page
request/response draining resume normal operation of the device. For terminal conditions (such
as partial device reset) where only a subset of PASIDs active on the device are affected, the drain
and discard request may specify the affected PASID(s), in which case, only page requests from
the device with specified PASID(s) are discarded after draining (and page requests from other
PASIDs are handled normally with page group responses).

The following section describes the steps system software may follow to drain all in-flight and pending
page requests and page group responses from/to an endpoint device.

7.11 Software Steps to Drain Page Requests & Responses

System Software may follow below steps to drain in-flight page requests and page group responses
between remapping hardware queues (Page Request Queue for page requests and Invalidation Queue
for page group responses) and an endpoint device.

a. Submit Invalidation Wait Descriptor (inv_wait_dsc) with Fence flag (FN=1) Set to Invalidation
Queue. This ensures that all requests submitted to the Invalidation Queue ahead of this wait
descriptor are processed and completed by remapping hardware before processing requests
after the Invalidation Wait Descriptor. It is not required to specify SW flag (or IF flag) in this
descriptor or for software to wait on its completion, as its function is to only act as a barrier.

b. Submit an IOTLB invalidate descriptor (iotlb_inv_dsc or p_iotlb_inv_dsc) followed by Device-
TLB invalidation descriptor (dev_tlb_inv_dsc or p_dev_tlb_inv_dsc) targeting the endpoint
device. These invalidation requests can be of any granularity. Per the ordering requirements
described in Section 7.9, older page group responses issued by software to the endpoint
device before step (a) are guaranteed to be received by the endpoint before the endpoint
receives this Device-TLB invalidation request.

c. Submit Invalidation Wait Descriptor (inv_wait_dsc) with Page-request Drain (PD=1) flag Set,
along with Invalidation Wait Completion status write flag (SW=1), and wait on Invalidation
Wait Descriptor completion. Per the ordering requirements described in Section 7.8, the
Device-TLB invalidation completion from the device is guaranteed to be ordered behind
already issued page requests from the device. Also, per the ordering requirements in Section
7.8, the remapping hardware ensures that the Invalidation Wait Descriptor status write (that
signals completion of invalidation descriptors submitted in step (b)) is ordered (with respect to
software visibility) behind the Page Request Descriptor (page_req_dsc) writes for page
requests received before the Device-TLB invalidation completion.

d. If there are no Page Request Queue overflow condition encountered by remapping hardware
during above steps, software can be guaranteed that all page requests and page group
responses are drained between the remapping hardware and the target endpoint device.
However, if a page-request queue full condition was detected by remapping hardware when
processing a page request with Last Page In Group (LPIG) field Set or with Private Data
Present (PDP) field Set during steps (a) through (c) above, the remapping hardware generates
a successful auto page group response (see Section 7.5.1 for remapping hardware auto page
group response behavior). To drain such potential auto page group responses generated by
remapping hardware, software must repeat steps (b) and (c).
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7.12 Revoking PASIDs with Pending Page Faults

At any time of operation, system software resource management actions (E.g., on host application
process termination) can result in system software requesting the endpoint device specific driver to
revoke the PASID that it has previously allocated and is actively being used by the endpoint device. To
service such system software request, it is the responsibility of the endpoint device and the driver to
revoke use of this PASID by the device and ensure all outstanding page-requests for this PASID are
serviced by system software and page-request responses received, before returning success to
system software for the PASID revocation request.

After de-allocating a PASID, system software may follow the same steps for in-flight page

request/response draining described in Section 7.11 to ensure any in-flight page requests/responses
for the de-allocated PASID are drained before re-allocating that PASID to a new client.
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8 BI1OS Considerations

The system BIOS is responsible for detecting the remapping hardware functions in the platform and
for locating the memory-mapped remapping hardware registers in the host system address space.
The BIOS reports the remapping hardware units in a platform to system software through the DMA
Remapping Reporting (DMAR) ACPI table described below?.

8.1 DMA Remapping Reporting Structure
Field Lgr{;h ;ﬁgt Description

Signature 4 o] “DMAR?”. Signature for the DMA Remapping Description table.

Length 4 4 Lengt_h, in bytes, o_f the description table including the length of the
associated remapping structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table 1D 8 16 For DMAR description table, the Table ID is the manufacturer model ID.

OEM Revision 4 24 OEM Revision of DMAR Table for OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.
This field indicates the maximum DMA physical addressability supported by
this platform. The system address map reported by the BIOS indicates what
portions of this addresses are populated.

Host Address Width 1 36

The Host Address Width (HAW) of the platform is computed as (N+1), where
N is the value reported in this field. For example, for a platform supporting
40 bits of physical addressability, the value of 100111b is reported in this
field.

1. All Reserved fields in DMAR remapping structures must be initialized to O.
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Byte Byte

Field Length Offset

Description

* Bit 0: INTR_REMAP - If Clear, the platform does not support interrupt
remapping. If Set, the platform supports interrupt remapping.

* Bit 1: X2APIC_OPT_OUT - For firmware compatibility reasons, platform
firmware may Set this field to request system software to opt out of
enabling Extended xAPIC (X2APIC) mode. This field is valid only when
the INTR_REMARP field (bit 0) is Set. Since firmware is permitted to hand
off platform to system software in legacy xAPIC mode, system software
is required to check this field as Clear as part of detecting X2APIC mode

Flags 1 37 support in the platform.

« Bit 2: DMA_CTRL_PLATFORM_OPT_IN_FLAG: Platform firmware is
recommended to Set this field to report any platform initiated DMA is
restricted to only reserved memory regions (reported in RMRR
structures) when transferring control to system software such as on
ExitBootServices(). System software may program DMA remapping
hardware to block DMA outside of RMRR, except for memory explicitly
registered by device drivers with system software.

* Bits 3-7: Reserved (0).

Reserved 10 38 Reserved (0).

A list of structures. The list will contain one or more DMA Remapping
Hardware Unit Definition (DRHD) structures, and zero or more Reserved

Remapping Structures(] B 48 Memory Region Reporting (RMRR) and Root Port ATS Capability Reporting
(ATSR) structures. These structures are described below.
8.2 Remapping Structure Types

The following types of remapping structures are defined. All remapping structures start with a ‘Type’
field followed by a ‘Length’ field indicating the size in bytes of the structure.

Value Description
(6] DMA Remapping Hardware Unit Definition (DRHD) Structure
1 Reserved Memory Region Reporting (RMRR) Structure
2 Root Port ATS Capability Reporting (ATSR) Structure
3 Remapping Hardware Static Affinity (RHSA) Structure
4 ACPI Name-space Device Declaration (ANDD) Structure
-4 Reservgd for future use. For f_orv_vard compatibility, soﬁware skips structures it does not comprehend by skipping the
appropriate number of bytes indicated by the Length field.

BIOS implementations must report these remapping structure types in numerical order. i.e., All
remapping structures of type 0 (DRHD) enumerated before remapping structures of type 1 (RMRR),
and so forth.
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8.3 DMA Remapping Hardware Unit Definition Structure

A DMA-remapping hardware unit definition (DRHD) structure uniquely represents a remapping
hardware unit present in the platform. There must be at least one instance of this structure for each
PCI segment in the platform.

. Byte Byte -
Field Length Offset Description
Type 2 (o] 0 - DMA Remapping Hardware Unit Definition (DRHD) structure
Length 2 2 Varies (16 + size of Device Scope Structure)
Bit 0: INCLUDE_PCI_ALL

« |If Set, this remapping hardware unit has under its scope all PCI
compatible devices in the specified Segment, except devices reported
under the scope of other remapping hardware units for the same
Segment. If a DRHD structure with INCLUDE_PCI_ALL flag Set is
reported for a Segment, it must be enumerated by BIOS after all

Flags 1 4 other DRHD structures for the same Segmentl. A DRHD structure with
INCLUDE_PCI_ALL flag Set may use the ‘Device Scope’ field to
enumerate 1I/OxAPIC and HPET devices under its scope.

« If Clear, this remapping hardware unit has under its scope only
devices in the specified Segment that are explicitly identified through
the ‘Device Scope’ field.

Bits 1-7: Reserved.
Reserved 1 5 Reserved (0).
Segment Number 2 6 The PCI Segment associated with this unit.
Register Base Address 8 8 Base address of remapping hardware register-set for this unit.
The Device Scope structure contains zero or more Device Scope Entries
that identify devices in the specified segment and under the scope of this
Device Scope [] - 16 remapping hardware unit.

The Device Scope structure is described below.

1. On platforms with multiple PCI segments, any of the segments can have a DRHD structure with INCLUDE_PCI_ALL flag Set.
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8.3.1 Device Scope Structure

The Device Scope Structure is made up of Device Scope Entries. Each Device Scope Entry may be
used to indicate a PCI endpoint device, a PCI sub-hierarchy, or devices such as I/OxAPICs or HPET
(High Precision Event Timer).

In this section, the generic term ‘PCI’ is used to describe conventional PCI, PCI-X, and PCIl Express
devices. Similarly, the term ‘PCI-PCI bridge’ is used to refer to conventional PCI bridges, PCI-X
bridges, PCl Express root ports, or downstream ports of a PCl Express switch.

A PCI sub-hierarchy is defined as the collection of PCI controllers that are downstream to a specific
PCI-PCI bridge. To identify a PCI sub-hierarchy, the Device Scope Entry needs to identify only the
parent PCI-PCI bridge of the sub-hierarchy.

. Byte Byte A
Field Length Offset Description

The following values are defined for this field.

= 0x01: PCI Endpoint Device - The device identified by the ‘Path’ field is
a PCI endpoint device. This type must not be used in Device Scope of
DRHD structures with INCLUDE_PCI_ALL flag Set.

= 0x02: PCI Sub-hierarchy - The device identified by the ‘Path’ field is a
PCI-PCI bridge. In this case, the specified bridge device and all its
downstream devices are included in the scope. This type must not be
in Device Scope of DRHD structures with INCLUDE_PCI_ALL flag Set.

Tvpe 1 0 = 0x03: I0OAPIC - The device identified by the ‘Path’ field is an 1/0 APIC

yp (or 1/0 SAPIC) device, enumerated through the ACPI MADT 1/0 APIC

(or 1/0 SAPIC) structure.

= 0x04: MSI_CAPABLE_HPETl - The device identified by the ‘Path’ field
is an HPET Timer Block capable of generating MSI (Message Signaled
interrupts). HPET hardware is reported through ACPI HPET structure.

= 0x05: ACPI_NAMESPACE_DEVICE - The device identified by the ‘Path’
field is an ACPI name-space enumerated device capable of generating
DMA requests.

Other values for this field are reserved for future use.

Length 1 1 !:engt’b pf this Entry in Bytes. (6 + X), where X is the size in bytes of the
Path” field.
Reserved 2 2 Reserved (0).

When the ‘Type’ field indicates ‘IOAPIC’, this field provides the 1/0 APICID
as provided in the 1/0 APIC (or 1/0 SAPIC) structure in the ACPI MADT
(Multiple APIC Descriptor Table).

When the ‘Type’ field indicates ‘MSI_CAPABLE_HPET’, this field provides
the ‘HPET Number’ as provided in the ACPI HPET structure for the
corresponding Timer Block.

When the ‘Type’ field indicates ‘ACPI_NAMESPACE_DEVICE’, this field
provides the “ACPI Device Number” as provided in the ACPI Name-space
Device Declaration (ANDD) structure for the corresponding ACPI device.
This field is treated reserved (0) for all other ‘Type’ fields.

Enumeration ID 1 4

This field describes the bus number (bus number of the first PCI Bus
Start Bus Number 1 5 produced by the PCI Host Bridge) under which the device identified by this
Device Scope resides.
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Byte Byte

Field Length Offset

Description

Describes the hierarchical path from the Host Bridge to the device
specified by the Device Scope Entry.

For example, a device in a N-deep hierarchy is identified by N {PCI Device
Number, PCI Function Number} pairs, where N is a positive integer. Even
offsets contain the Device numbers, and odd offsets contain the Function
numbers.

The first {Device, Function} pair resides on the bus identified by the ‘Start
Bus Number’ field. Each subsequent pair resides on the bus directly
behind the bus of the device identified by the previous pair. The identity
(Bus, Device, Function) of the target device is obtained by recursively

*
Path 2*N 6 walking down these N {Device, Function} pairs.

If the ‘Path’ field length is 2 bytes (N=1), the Device Scope Entry identifies
a ‘Root-Complex Integrated Device’. The requester-id of ‘Root-Complex
Integrated Devices’ are static and not impacted by system software bus
rebalancing actions.

If the ‘Path’ field length is more than 2 bytes (N > 1), the Device Scope
Entry identifies a device behind one or more system software visible PCI-
PCI bridges. Bus rebalancing actions by system software modifying bus
assignments of the device’s parent bridge impacts the bus number portion
of device’s requester-id.

1. An HPTE Timer Block is capable of MSI interrupt generation if any of the Timers in the Timer Block reports
FSB_INTERRUPT_DELIVERY capability in the Timer Configuration and Capability Registers. HPET Timer Blocks not capable of
MSI interrupt generation (and instead have their interrupts routed through 1I/OxAPIC) are not reported in the Device Scope.

The following pseudocode describes how to identify the device specified through a Device Scope
structure:

n = (DevScope.Length - 6) / 2; // number of entries in the ‘Path’ field
type = DevScope.Type; // type of device
bus = DevScope.StartBusNum; // starting bus number
dev = DevScope.Path[0].Device; // starting device number
func = DevScope.Path[0].Function; // starting function number
i=1;
while (--n) {
bus = read_secondary_bus_reg(bus, dev, func);// secondary bus# from config reg.
dev = DevScope.Path[i].Device; // read next device number
func = DevScope.Path[i].Function; // read next function number
i++;
}
source_id = {bus, dev, func};
target_device = {type, source_id}; // if ‘type’ indicates TOAPIC’, DevScope.EnumID

// provides the I/O APICID as reported in the ACPI MADT

8.3.1.1 Reporting Scope for I/O0xAPICs

Interrupts from devices that only support (or are only enabled for) legacy interrupts are routed
through the 1/0xAPICs in the platform. Each I/OxAPIC in the platform is reported to system software
through ACPI MADT (Multiple APIC Descriptor Tables). Some platforms may also expose I/OXAPICs as
PCl-discoverable devices.
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For platforms reporting interrupt remapping capability (INTR_REMAP flag Set in the DMAR structure),
each I/OxAPIC in the platform reported through ACPI MADT must be explicitly enumerated under the
Device Scope of the appropriate remapping hardware units (even for remapping hardware unit
reported with INCLUDE_PCI_ALL flag Set in DRHD structure).

« For I/OxAPICs that are PCl-discoverable, the source-id for such 1I/0xAPICs (computed using the
above pseudocode from its Device Scope structure) must match its PCI requester-id effective at
the time of boot.

e For I/OXAPICs that are not PCl-discoverable:

— If the ‘Path’ field in Device Scope has a size of 2 bytes, the corresponding I/OXAPIC is a Root-
Complex integrated device. The ‘Start Bus Number’ and ‘Path’ field in the Device Scope
structure together provides the unique 16-bit source-id allocated by the platform for the
1/OxAPIC. Examples are I/OXAPICs integrated to the IOH and south bridge (ICH)
components.

— If the ‘Path’ field in Device Scope has a size greater than 2 bytes, the corresponding I/OxAPIC
is behind some software visible PCI-PCI bridge. In this case, the ‘Start Bus Number’ and ‘Path’
field in the Device Scope structure together identifies the PCl-path to the 1/OXAPIC device.
Bus rebalancing actions by system software modifying bus assignments of the device’s parent
bridge impacts the bus number portion of device’s source-id. Examples are 1/OxAPICs in PCI
Express-to-PCI-X bridge components in the platform.

8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block

High Precision Event Timer (HPET) Timer Block supporting Message Signaled Interrupt (MSI)
interrupts may generate interrupt requests directly to the Root-Complex (instead of routing through
1/0xAPIC). Platforms supporting interrupt remapping must explicitly enumerate any MSl-capable
HPET Timer Block in the platform through the Device Scope of the appropriate remapping hardware
unit. In this case, the ‘Start Bus Number’ and ‘Path’ field in the Device Scope structure together
provides the unique 16-bit source-id allocated by the platform for the MSI-capable HPET Timer Block.

8.3.1.3 Reporting Scope for ACPI Name-space Devices

Some platforms may support ACPl name-space enumerated devices that are capable of generating
DMA requests. Platforms supporting DMA remapping must explicitly declare any such DMA-capable
ACPI name-space devices in the platform through ACPlI Name-space Device Declaration (ANDD)
structure and enumerate them through the Device Scope of the appropriate remapping hardware
unit. In this case, the ‘Start Bus Number’ and ‘Path’ field in the Device Scope structure together
provides the unique 16-bit source-id allocated by the platform for the ACPI name-space device.
Multiple ACPI name-space devices that share common bus-mastering hardware resources may share
a common source-id. For example, some Intel® SoC platforms supports a Low Power Sub System
(LPSS) in the southbridge, that shares a common DMA resource across multiple ACPlI name-space
devices such as 12C, SPI, UART, and SDIO.

8.3.1.4 Device Scope Example

This section provides an example platform configuration with multiple remapping hardware units. The
configurations described are hypothetical examples, only intended to illustrate the Device Scope
structures.

Figure 8-30 illustrates a platform configuration with a single PCl segment and host bridge (with a
starting bus number of 0), and supporting four remapping hardware units as follows:

1. Remapping hardware unit #1 has under its scope all devices downstream to the PCl Express root
port located at (dev:func) of (14:0).

2. Remapping hardware unit #2 has under its scope all devices downstream to the PCI Express root
port located at (dev:func) of (14:1).

3. Remapping hardware unit #3 has under its scope a Root-Complex integrated endpoint device
located at (dev:func) of (29:0).
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4. Remapping hardware unit #4 has under its scope all other PCI compatible devices in the platform
not explicitly under the scope of the other remapping hardware units. In this example, this
includes the integrated device at (dev:func) at (30:0), and all the devices attached to the south
bridge component. The I/OxAPIC in the platform (1/0 APICID = 0) is under the scope of this
remapping hardware unit, and has a BIOS assigned bus/dev/function number of (0,12,0).

Processor Processor

System Bus

Host Bridge [Bus #0] |
DMA DMA DMA DMA R . DRAM
Remapping || Remapping || Remapping emapping

Unit #1 Unit #2 Unit #3 Unit #4
PCle Root PCle Root Integrated Integrated
Port Port Device Device
Dev [14:0] Dev [14:1] Dev [29:0] Dev [30:0]

PCI Express Devices —
South  je== PCI.LPC
Bridge Legacy devices

Figure 8-30. Hypothetical Platform Configuration

This platform requires 4 DRHD structures. The Device Scope fields in each DRHD structure are
described as below.

« Device Scope for remapping hardware unit #1 contains only one Device Scope Entry, identified as
[2, 8, 0, 0, O, 14, 0].

— System Software uses the Entry Type field value of 0x02 to conclude that all devices
downstream of the PCI-PCI bridge device at PClI Segment O, Bus 0, Device 14, and Function O
are within the scope of this remapping hardware unit.

« Device Scope for remapping hardware unit #2 contains only one Device Scope Entry, identified as
[2, 8, 0, 0, O, 14, 1].

— System Software uses the Entry Type field value of 0x02 to conclude that all devices
downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14, and Function 1
are within the scope of this remapping hardware unit.

« Device Scope for remapping hardware unit #3 contains only one Device Scope Entry, identified as
[1, 8, 0, 0, O, 29, 0].

— System software uses the Type field value of 0x1 to conclude that the scope of remapping
hardware unit #3 includes only the endpoint device at PClI Segment 0, Bus 0, Device 29 and
Function 0.

« Device Scope for remapping hardware unit #4 contains only one Device Scope Entry, identified as
[3, 8,0, 1,0, 12, O]. Also, the DHRD structure for remapping hardware unit #4 indicates the
INCLUDE_PCI_ALL flag. This hardware unit must be the last in the list of hardware unit definition
structures reported.
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— System software uses the INCLUDE_PCI_ALL flag to conclude that all PCI compatible devices
that are not explicitly enumerated under other remapping hardware units are in the scope of
remapping unit #4. Also, the Device Scope Entry with Type field value of 0x3 is used to
conclude that the I/OxAPIC (with 1/0 APICID=0 and source-id of [0,12,0]) is under the scope
of remapping hardware unit #4.

8.3.2 Implications for ARI

The PCI Express Alternate Routing-ID Interpretation (ARI) Extended Capability enables endpoint
devices behind ARI-capable PCI Express Root/Switch ports to support ‘Extended Functions’, beyond
the limit of 8 ‘Traditional Functions’. When ARI is enabled, ‘Extended Functions’ on an endpoint are
under the scope of the same remapping unit as the ‘Traditional Functions’ on the endpoint.

8.3.3 Implications for SR-10V

The PCI Express Single-Root 1/0 Virtualization (SR-10V) Capability enables a ‘Physical Function’ on an
endpoint device to support multiple ‘Virtual Functions’ (VFs). A ‘Physical Function’ can be a ‘Traditional
Function’ or an ARI ‘Extended Function’. When SR-10V is enabled, ‘Virtual Functions’ of a ‘Physical
Function’ are under the scope of the same remapping unit as the ‘Physical Function’.

8.3.4 Implications for PCI/PCI Express” Hot Plug

Conventional PCI and PCI Express defines support for hot plug. Devices hot plugged behind a parent
device (PCI* bridge or PCI Express root/switch port) are under the scope of the same remapping unit
as the parent device.

8.3.5 Implications with PCI Resource Rebalancing

System software may perform PCI resource rebalancing to dynamically reconfigure the PCI sub-
system (such as on PCI or PCI Express hot-plug). Resource rebalancing can result in system software
changing the bus number allocated for a device. Such rebalancing only changes the device’s identity
(Source-1D). The device will continue to be under the scope of the same remapping unit as it was
before rebalancing. System software is responsible for tracking device identity changes and resultant
impact to Device Scope.

8.3.6 Implications with Provisioning PCl BAR Resources

System BIOS typically provisions the initial PCl BAR resources for devices present at time of boot. To
conserve physical address space (especially below 4GB) consumed by PCI BAR resources, BIOS
implementations traditionally use compact allocation policies resulting in BARs of multiple
devices/functions residing within the same system-base-page-sized region (4KB for Intel® 64
platforms). However, allocating BARs of multiple devices in the same system-page-size region
imposes challenges to system software using remapping hardware to assign these devices to isolated
domains.

For platforms supporting remapping hardware, BIOS implementations should avoid allocating BARs of
otherwise independent devices/functions in the same system-base-page-sized region.
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8.4 Reserved Memory Region Reporting Structure

Section 3.15 described the details of BIOS allocated reserved memory ranges that may be DMA
targets. BIOS may report each such reserved memory region through the RMRR structures, along
with the devices that requires access to the specified reserved memory region. Reserved memory
ranges that are either not DMA targets, or memory ranges that may be target of BIOS initiated DMA
only during pre-boot phase (such as from a boot disk drive) must not be included in the reserved
memory region reporting. The base address of each RMRR region must be 4KB aligned and the size
must be an integer multiple of 4KB.

BIOS must report the RMRR reported memory addresses as reserved (or as EFI runtime) in the
system memory map returned through methods such as INT15, EFlI GetMemoryMap etc. The reserved
memory region reporting structures are optional. If there are no RMRR structures, the system
software concludes that the platform does not have any reserved memory ranges that are DMA
targets.

The RMRR regions are expected to be used for legacy usages (such as USB, UMA Graphics, etc.)
requiring reserved memory. Platform designers should avoid or limit use of reserved memory regions
since these require system software to create holes in the DMA virtual address range available to
system software and its drivers.

. Byte Byte -

Field Length Offset Description
Type 2 (o] 1 - Reserved Memory Region Reporting Structure
Length 2 2 Varies (24 + size of Device Scope structure)
Reserved 2 4 Reserved (0).
Segment Number > 6 PCI Seg_ment Number associated with devices identified through the Device

Scope field.

Reserved Memory 8 8 Base address of 4KB-aligned reserved memory region.

Region Base Address

Last address of the reserved memory region.

Value in this field must be greater than the value in Reserved Memory Region
8 16 Base Address field.

The reserved memory region size (Limit - Base + 1) must be an integer
multiple of 4KB.

Reserved Memory
Region Limit Address

The Device Scope structure contains one or more Device Scope entries that
identify devices requiring access to the specified reserved memory region.
The devices identified in this structure must be devices under the scope of
one of the remapping hardware units reported in DRHD.

Device Scope[] - 24

Intel® Virtualization Technology for Directed 1/0 Architecture Specification, Rev. 3.0, Order Number: D51397-010 8-9



[ ] ®
B10S Considerations—Intel® Virtualization Technology for Directed 1/0 l n tel

8.5 Root Port ATS Capability Reporting Structure

This structure is applicable only for platforms supporting Device-TLBs as reported through the
Extended Capability Register. For each PCI Segment in the platform that supports Device-TLBs, BIOS
provides an ATSR structure. The ATSR structures identifies PCI Express Root-Ports supporting Address
Translation Services (ATS) transactions. Software must enable ATS on endpoint devices behind a Root
Port only if the Root Port is reported as supporting ATS transactions.

. Byte Byte P
Field Length Offset Description
Type 2 0 2 - Root Port ATS Capability Reporting Structure
Length 2 2 Varies (8 + size of Device Scope Structure)

= Bit 0: ALL_PORTS: If Set, indicates all PCI Express Root Ports in the

specified PCI Segment supports ATS transactions. If Clear, indicates
Flags 1 4 ATS transactions are supported only on Root Ports identified through
the Device Scope field.

« Bits 1-7: Reserved.

Reserved 1 5 Reserved (0).

Segment Number 2 6 The PCI Segment associated with this ATSR structure.

If the ALL_PORTS flag is Set, the Device Scope structure is omitted.

If ALL_PORTS flag is Clear, the Device Scope structure contains Device
Device Scope [] - 8 Scope Entries that identifies Root Ports supporting ATS transactions.

The Device Scope structure is described in Section 8.3.1. All Device Scope
Entries in this structure must have a Device Scope Entry Type of 02h.
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8.6 Remapping Hardware Static Affinity Structure

Remapping Hardware Status Affinity (RHSA) structure is applicable for platforms supporting non-
uniform memory (NUMA), where Remapping hardware units spans across nodes. This optional
structure provides the association between each Remapping hardware unit (identified by its
respective Base Address) and the proximity domain to which that hardware unit belongs. Such
platforms, report the proximity of processor and memory resources using ACPI Static Resource
Affinity (SRAT) structure. To optimize remapping hardware performance, software may allocate
translation structures referenced by a remapping hardware unit from memory in the same proximity
domain. Similar to SRAT, the information in the RHSA structure is expected to be used by system
software during early initialization, when evaluation of objects in the ACPI name-space is not yet
possible.

. Byte Byte A
Field Length Offset Description
3 - Remapping Hardware Static Affinity Structure.
This is an optional structure and intended to be used only on NUMA
Tvpe > 0 platforms with Remapping hardware units and memory spanned across
yp multiple nodes.
When used, there must be a Remapping Hardware Static Affinity structure
for each Remapping hardware unit reported through DRHD structure.
Length 2 2 Length is 20 bytes
Reserved 4 4 Reserved (0).
. Register Base Address of this Remap hardware unit reported in the
Register Base Address 8 8 corresponding DRHD structure.
Lo . . Proximity Domain to which the Remap hardware unit identified by the
Proximity Domain [31:0] 4 16 Register Base Address field belongs.
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8.7 ACPI Name-space Device Declaration Structure

An ACPI Name-space Device Declaration (ANDD) structure uniquely represents an ACPl name-space
enumerated device capable of issuing DMA requests in the platform. ANDD structures are used in
conjunction with Device-Scope entries of type ‘ACPI_NAMESPACE_DEVICE'. Refer to Section 8.3.1 for
details on Device-Scope entries.

Field Lgr}:;ih Ol?;‘¥;gt Description
Type 2 (6] 4 - ACPI Name-space Device Declaration (ANDD) structure
Length > > !:ength of_ this Entry"in Bytes. (8 + N), where N is the size in bytes of the
‘ACPI Object Name” field.
Reserved 3 4 Reserved (0).

Each ACPI device enumerated through an ANDD structure must have a
unique value for this field.

To report an ACPI device with ‘ACPI Device Number’ value of X, under the
ACPI Device Numb 1 7 scope of a DRHD unit, a Device-Scope entry of type

evice Rumber ‘ACPI_NAMESPACE_DEVICE' is used with value of X in the Enumeration 1D
field. The ‘Start Bus Number’ and ‘Path’ fields in the Device-Scope
together provides the 16-bit source-id allocated by the platform for the
ACPI device.

ASCII, null terminated, string that contains a fully qualified reference to
the ACPI name-space object that is this device. (For example,
“\\_SB.12CO0” represents the ACPI object name for an embedded 12C

ACPI Object Name N 8 controller in southbridge; Quotes are omitted in the data field). Refer to
ACPI specification for fully qualified references for ACPI name-space
objects.

8.8 Remapping Hardware Unit Hot Plug

Remapping hardware units are implemented in Root-Complex components such as the 1/0 Hub (I0OH).
Such Root-Complex components may support hot-plug capabilities within the context of the
interconnect technology supported by the platform. These hot-pluggable entities consist of an 1/0
subsystem rooted in a ACPI host bridge. The 1/0 subsystem may include Remapping hardware units,
in addition to 1/0 devices directly attached to the host bridge, PCI/PCI Express sub-hierarchies, and
1/OXAPICs.

The ACPI DMAR static tables and sub-tables defined in previous sections enumerate the remapping
hardware units present at platform boot-time. Following sections illustrates the ACPI methods for
dynamic updates to remapping hardware resources, such as on 1/0 hub hot-plug. Following sections
assume familiarity with ACPI 3.0 specification and system software support for host-bridge hot-plug.

8.8.1 ACPIl Name Space Mapping

ACPI defines Device Specific Method (_DSM) as a method that enables ACPI devices to provide device
specific functions without name-space conflicts. A Device Specific Method (_DSM) with the following
GUID is used for dynamic enumeration of remapping hardware units.

GUID

D8C1A3A6-BE9B-4C9B-91BF-C3CB81FC5DAF
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The _DSM method would be located under the ACPI device scope where the platform wants to expose
the remapping hardware units. For example, ACPl name-space includes representation for hot-
pluggable 1/0 hubs in the system as a ACPI host bridges. For Remapping hardware units implemented
in 1/0 hub component, the _DSM method would be under the respective ACPI host bri