
Order Number: D51397-006, Rev. 2.2

Intel® Virtualization Technology for
Directed I/O
Architecture Specification

September 2013

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
2 Order Number: D51397-006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm
This document contains information on products in the design phase of development.
Intel® 64 architecture requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the specific
hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.intel.com/info/em64t
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Functionality,
performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all
operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization
Legal Lines and DisclaimersCopyright © 2011-2013, Intel Corporation. All Rights Reserved.
Intel and Itanium are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://www.intel.com/info/em64t
http://www.intel.com/go/virtualization

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3

Contents—Intel® Virtualization Technology for Directed I/O

Contents

1 Introduction
1.1 Audience.. 1-1
1.2 Glossary .. 1-2
1.3 References ... 1-3

2 Overview
2.1 Intel® Virtualization Technology Overview .. 2-1
2.2 VMM and Virtual Machines .. 2-1
2.3 Hardware Support for Processor Virtualization ... 2-1
2.4 I/O Virtualization... 2-2
2.5 Intel® Virtualization Technology For Directed I/O Overview................................... 2-2

2.5.1 Hardware Support for DMA Remapping...2-3
2.5.1.1 OS Usages of DMA Remapping...2-3
2.5.1.2 VMM Usages of DMA Remapping ..2-4
2.5.1.3 DMA Remapping Usages by Guests...2-4
2.5.1.4 Interaction with Processor Virtualization......................................2-5

2.5.2 Hardware Support for Interrupt Remapping ..2-6
2.5.2.1 Interrupt Isolation ...2-6
2.5.2.2 Interrupt Migration...2-6
2.5.2.3 x2APIC Support ...2-6

3 DMA Remapping
3.1 Types of DMA requests... 3-1
3.2 Domains and Address Translation .. 3-1
3.3 Remapping Hardware - Software View.. 3-2
3.4 Mapping Devices to Domains .. 3-2

3.4.1 Source Identifier ...3-3
3.4.2 Root-Entry & Extended-Root-Entry ..3-3
3.4.3 Context-Entry ...3-4
3.4.4 Extended-Context-Entry...3-5

3.5 Hierarchical Translation Structures .. 3-7
3.6 First-Level Translation.. 3-9

3.6.1 Translation Faults.. 3-11
3.6.2 Access Rights ... 3-11
3.6.3 Accessed, Extended Accessed, and Dirty Flags .. 3-12
3.6.4 Snoop Behavior... 3-13
3.6.5 Memory Typing ... 3-13

3.6.5.1 Selecting Memory Type from Page Attribute Table 3-14
3.6.5.2 Selecting Memory Type from Memory Type Range Registers 3-14
3.6.5.3 Selecting Effective Memory Type.. 3-15

3.7 Second-Level Translation.. 3-16
3.7.1 Translation Faults.. 3-19
3.7.2 Access Rights ... 3-19
3.7.3 Snoop Behavior... 3-20
3.7.4 Memory Typing ... 3-20

3.8 Nested Translation .. 3-21
3.8.1 Translation Faults.. 3-22
3.8.2 Access Rights ... 3-22
3.8.3 Snoop Behavior... 3-23
3.8.4 Memory Typing ... 3-24

3.9 Identifying Origination of DMA Requests... 3-25
3.9.1 Devices Behind PCI-Express to PCI/PCI-X Bridges.................................... 3-25
3.9.2 Devices Behind Conventional PCI Bridges ... 3-25

Intel® Virtualization Technology for Directed I/O—Contents

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4 Order Number: D51397-006

3.9.3 Root-Complex Integrated Devices ..3-25
3.9.4 PCI-Express Devices Using Phantom Functions...3-25

3.10 Handling Requests from Processor Graphics Device .. 3-26
3.11 Handling Requests Crossing Page Boundaries .. 3-26
3.12 Handling of Zero-Length Reads.. 3-26
3.13 Handling Requests to Interrupt Address Range .. 3-27
3.14 Handling Requests to Reserved System Memory .. 3-27
3.15 Root-Complex Peer to Peer Considerations .. 3-28

4 Support For Device-TLBs
4.1 Device-TLB Operation.. 4-1

4.1.1 Translation Request .. 4-2
4.1.2 Translation Completion.. 4-2
4.1.3 Translated Request ... 4-3
4.1.4 Invalidation Request & Completion.. 4-3

4.2 Remapping Hardware Handling of Device-TLBs ... 4-4
4.2.1 Handling of ATS Protocol Errors .. 4-4
4.2.2 Root-Port Control of ATS Address Types... 4-4
4.2.3 Handling of Translation Requests .. 4-4

4.2.3.1 Accessed, Extended Accessed, and Dirty Flags 4-9
4.2.3.2 Translation Requests for Multiple Translations 4-9

4.2.4 Handling of Translated Requests ... 4-9
4.3 Handling of Device-TLB Invalidations.. 4-10

5 Interrupt Remapping
5.1 Overview... 5-1
5.2 Identifying Origination of Interrupt Requests .. 5-1
5.3 Interrupt Processing On Intel® 64 Platforms .. 5-3

5.3.1 Interrupt Requests in Intel® 64 Compatibility Format................................ 5-3
5.3.2 Interrupt Requests in Remappable Format ... 5-4

5.3.2.1 Interrupt Remapping Table ... 5-5
5.3.3 Overview of Interrupt Remapping On Intel® 64 Platforms 5-5

5.3.3.1 Interrupt Remapping Fault Conditions .. 5-7
5.4 Interrupt Requests on Itanium® Platforms... 5-8
5.5 Programming Interrupt Sources To Generate Remappable Interrupts 5-9

5.5.1 I/OxAPIC Programming ... 5-9
5.5.2 MSI and MSI-X Register Programming ..5-10

5.6 Remapping Hardware - Interrupt Programming.. 5-11
5.6.1 Programming in Intel® 64 xAPIC Mode ...5-11
5.6.2 Programming in Intel® 64 x2APIC Mode..5-12
5.6.3 Programming on Itanium® Platforms ...5-13

5.7 Handling of Platform Events .. 5-13

6 Caching Translation Information
6.1 Caching Mode... 6-1
6.2 Address Translation Caches.. 6-1

6.2.1 Tagging of Cached Translations .. 6-2
6.2.2 Context-cache.. 6-2

6.2.2.1 Context-Entry Programming Considerations 6-4
6.2.3 PASID-cache .. 6-4
6.2.4 IOTLB ... 6-5

6.2.4.1 Details of IOTLB Use.. 6-6
6.2.4.2 Global Pages... 6-7

6.2.5 Caches for Paging Structures.. 6-7
6.2.5.1 PML4-cache .. 6-8
6.2.5.2 PDPE-cache .. 6-9

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5

Contents—Intel® Virtualization Technology for Directed I/O

6.2.5.3 PDE-cache .. 6-10
6.2.5.4 Details of Paging-Structure Cache Use 6-12

6.2.6 Using the Paging-Structure Caches to Translate Requests 6-12
6.2.7 Multiple Cached Entries for a Single Paging-Structure Entry 6-14

6.3 Translation Caching at Endpoint Device .. 6-14
6.4 Interrupt Entry Cache .. 6-15
6.5 Invalidation of Translation Caches ... 6-15

6.5.1 Register-based Invalidation Interface ... 6-15
6.5.1.1 Context Command Register... 6-16
6.5.1.2 IOTLB Registers... 6-16

6.5.2 Queued Invalidation Interface ... 6-17
6.5.2.1 Context-cache Invalidate Descriptor ... 6-18
6.5.2.2 PASID-cache Invalidate Descriptor ... 6-19
6.5.2.3 IOTLB Invalidate Descriptor... 6-20
6.5.2.4 Extended IOTLB Invalidate Descriptor....................................... 6-21
6.5.2.5 Device-TLB Invalidate Descriptor ... 6-23
6.5.2.6 Extended Device-TLB Invalidate Descriptor................................ 6-24
6.5.2.7 Interrupt Entry Cache Invalidate Descriptor............................... 6-25
6.5.2.8 Invalidation Wait Descriptor .. 6-26
6.5.2.9 Hardware Generation of Invalidation Completion Events.............. 6-26
6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors 6-27
6.5.2.11 Queued Invalidation Ordering Considerations............................. 6-27

6.5.3 IOTLB Invalidation Considerations ... 6-28
6.5.3.1 Implicit Invalidation on Page Requests...................................... 6-28
6.5.3.2 Caching Fractured Translations .. 6-28
6.5.3.3 Recommended Invalidation ... 6-28
6.5.3.4 Optional Invalidation .. 6-29
6.5.3.5 Delayed Invalidation .. 6-30

6.5.4 TLB Shootdown Optimization for Root-Complex Integrated Devices 6-31
6.5.4.1 Deferred Invalidation.. 6-32
6.5.4.2 PASID-State Table ... 6-33
6.5.4.3 Remapping Hardware Handling of PASID State-Update Requests.. 6-33
6.5.4.4 Root-Complex Integrated Device Handling of PASID State-Update

Responses .. 6-34
6.5.4.5 Ordering of PASID State-Update Requests and Responses 6-34
6.5.4.6 Example TLB Shootdown using Deferred Invalidations................. 6-35

6.5.5 Draining of Requests to Memory.. 6-35
6.5.6 Interrupt Draining ... 6-36

6.6 Set Root Table Pointer Operation... 6-37
6.7 Set Interrupt Remapping Table Pointer Operation .. 6-37
6.8 Write Buffer Flushing ... 6-37
6.9 Hardware Register Programming Considerations.. 6-38
6.10 Sharing Remapping Structures Across Hardware Units.. 6-38

7 Translation Faults
7.1 Interrupt Translation Faults .. 7-1
7.2 Address Translation Faults.. 7-2

7.2.1 Non-Recoverable Address Translation Faults ...7-2
7.2.1.1 Non-Recoverable Faults for Untranslated Requests Without PASID..7-2
7.2.1.2 Non-Recoverable Faults for Untranslated Requests With PASID7-3
7.2.1.3 Non-Recoverable Faults for Translation Requests Without PASID7-6
7.2.1.4 Non-Recoverable Faults for Translation Requests With PASID.........7-6
7.2.1.5 Non-Recoverable Faults for Translated Requests7-8

7.2.2 Recoverable Address Translation Faults ..7-9
7.3 Non-Recoverable Fault Reporting... 7-10

7.3.1 Primary Fault Logging .. 7-11
7.3.2 Advanced Fault Logging ... 7-11

Intel® Virtualization Technology for Directed I/O—Contents

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6 Order Number: D51397-006

7.4 Non-Recoverable Fault Event... 7-12
7.5 Recoverable Fault Reporting.. 7-13

7.5.1 Handling of Page Requests ..7-13
7.5.1.1 Page Request Descriptor ...7-15

7.6 Recoverable Fault Event ... 7-17
7.7 Servicing Recoverable Faults ... 7-18

7.7.1 Page Group Response Descriptor ...7-18
7.7.2 Page Stream Response Descriptor..7-19

7.8 Revoking PASIDs with Pending Page Faults ... 7-20

8 BIOS Considerations
8.1 DMA Remapping Reporting Structure... 8-1
8.2 Remapping Structure Types ... 8-2
8.3 DMA Remapping Hardware Unit Definition Structure .. 8-3

8.3.1 Device Scope Structure ... 8-4
8.3.1.1 Reporting Scope for I/OxAPICs.. 8-6
8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block 8-6
8.3.1.3 Reporting Scope for ACPI Name-space Devices............................ 8-6
8.3.1.4 Device Scope Example ... 8-6

8.3.2 Implications for ARI .. 8-8
8.3.3 Implications for SR-IOV ... 8-8
8.3.4 Implications for PCI/PCI-Express Hot Plug .. 8-8
8.3.5 Implications with PCI Resource Rebalancing ... 8-8
8.3.6 Implications with Provisioning PCI BAR Resources 8-8

8.4 Reserved Memory Region Reporting Structure .. 8-9
8.5 Root Port ATS Capability Reporting Structure... 8-10
8.6 Remapping Hardware Static Affinity Structure.. 8-11
8.7 ACPI Name-space Device Declaration Structure ... 8-12
8.8 Remapping Hardware Unit Hot Plug.. 8-12

8.8.1 ACPI Name Space Mapping ...8-12
8.8.2 ACPI Sample Code ...8-13
8.8.3 Example Remapping Hardware Reporting Sequence8-14

9 Translation Structure Formats
9.1 Root Entry ... 9-1
9.2 Extended Root Entry ... 9-3
9.3 Context Entry... 9-5
9.4 Extended-Context-Entry .. 9-8
9.5 PASID Entry.. 9-15
9.6 PASID-State Entry ... 9-17
9.7 First-Level Paging Entries.. 9-18
9.8 Second-Level Paging Entries.. 9-25
9.9 Fault Record ... 9-32
9.10 Interrupt Remapping Table Entry (IRTE) ... 9-34

10 Register Descriptions
10.1 Register Location ... 10-1
10.2 Software Access to Registers... 10-1
10.3 Register Attributes ... 10-2
10.4 Register Descriptions.. 10-3

10.4.1 Version Register ..10-7
10.4.2 Capability Register ...10-8
10.4.3 Extended Capability Register ...10-13
10.4.4 Global Command Register...10-17
10.4.5 Global Status Register ..10-22
10.4.6 Root Table Address Register..10-24

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7

Contents—Intel® Virtualization Technology for Directed I/O

10.4.7 Context Command Register .. 10-25
10.4.8 IOTLB Registers .. 10-28

10.4.8.1 IOTLB Invalidate Register ... 10-29
10.4.8.2 Invalidate Address Register ... 10-32

10.4.9 Fault Status Register ... 10-34
10.4.10Fault Event Control Register ... 10-36
10.4.11Fault Event Data Register ... 10-38
10.4.12Fault Event Address Register .. 10-39
10.4.13Fault Event Upper Address Register ... 10-40
10.4.14Fault Recording Registers [n] .. 10-41
10.4.15Advanced Fault Log Register ... 10-44
10.4.16Protected Memory Enable Register... 10-45
10.4.17Protected Low-Memory Base Register... 10-47
10.4.18Protected Low-Memory Limit Register .. 10-48
10.4.19Protected High-Memory Base Register.. 10-49
10.4.20Protected High-Memory Limit Register.. 10-50
10.4.21Invalidation Queue Head Register.. 10-51
10.4.22Invalidation Queue Tail Register .. 10-52
10.4.23Invalidation Queue Address Register .. 10-53
10.4.24Invalidation Completion Status Register ... 10-54
10.4.25Invalidation Event Control Register .. 10-55
10.4.26Invalidation Event Data Register ... 10-56
10.4.27Invalidation Event Address Register ... 10-57
10.4.28Invalidation Event Upper Address Register.. 10-58
10.4.29Interrupt Remapping Table Address Register... 10-59
10.4.30Page Request Queue Head Register ... 10-60
10.4.31Page Request Queue Tail Register.. 10-61
10.4.32Page Request Queue Address Register ... 10-62
10.4.33Page Request Status Register ... 10-63
10.4.34Page Request Event Control Register ... 10-64
10.4.35Page Request Event Data Register ... 10-65
10.4.36Page Request Event Address Register... 10-66
10.4.37Page Request Event Upper Address Register ... 10-67
10.4.38MTRR Capability Register.. 10-68
10.4.39MTRR Default Type Register.. 10-69
10.4.40Fixed-Range MTRRs... 10-70
10.4.41Variable-Range MTRRs ... 10-72

A Non-Recoverable Fault Reason Encodings ...1

Figures
Figure 1-1. General Platform Topology..1-1
Figure 2-2. Example OS Usage of DMA Remapping ...2-3
Figure 2-3. Example Virtualization Usage of DMA Remapping ...2-4
Figure 2-4. Interaction Between I/O and Processor Virtualization......................................2-5
Figure 3-5. DMA Address Translation ..3-2
Figure 3-6. Requester Identifier Format ..3-3
Figure 3-7. Device to Domain Mapping Structures using Root-Table3-4
Figure 3-8. Device to Domain Mapping Structures using Extended-Root-Table....................3-6
Figure 3-9. Address Translation to a 4-KByte Page ...3-7
Figure 3-10. Address Translation to a 2-MByte Large Page ..3-8
Figure 3-11. Address Translation to a 1-GByte Large Page ..3-8
Figure 3-12. Nested Translation with 4-KByte pages... 3-21
Figure 4-13. Device-TLB Operation ..4-1

Intel® Virtualization Technology for Directed I/O—Contents

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8 Order Number: D51397-006

Figure 5-14. Compatibility Format Interrupt Request.. 5-3
Figure 5-15. Remappable Format Interrupt Request... 5-4
Figure 5-16. Interrupt Requests on Itanium® Platforms ... 5-8
Figure 5-17. I/OxAPIC RTE Programming ... 5-9
Figure 5-18. MSI-X Programming ...5-10
Figure 5-19. Remapping Hardware Interrupt Programming in Intel® 64 xAPIC Mode...........5-11
Figure 5-20. Remapping Hardware Interrupt Programming in Intel® 64 x2APIC Mode5-12
Figure 5-21. Remapping Hardware Interrupt Programming on Itanium®5-13
Figure 6-22. Context-cache Invalidate Descriptor ...6-18
Figure 6-23. PASID-cache Invalidate Descriptor ...6-19
Figure 6-24. IOTLB Invalidate Descriptor...6-20
Figure 6-25. Extended IOTLB Invalidate Descriptor ...6-21
Figure 6-26. Device-TLB Invalidate Descriptor..6-23
Figure 6-27. Extended Device-TLB Invalidate Descriptor..6-24
Figure 6-28. Interrupt Entry Cache Invalidate Descriptor ...6-25
Figure 6-29. Invalidation Wait Descriptor ..6-26
Figure 7-30. Page Request Descriptor ...7-15
Figure 7-31. Page Group Response Descriptor..7-18
Figure 7-32. Page Stream Response Descriptor ..7-19
Figure 8-33. Hypothetical Platform Configuration... 8-7
Figure 9-34. Root-Entry Format .. 9-1
Figure 9-35. Extended-Root-Entry Format .. 9-3
Figure 9-36. Context-Entry Format .. 9-5
Figure 9-37. Extended-Context-Entry Format.. 9-8
Figure 9-38. PASID Entry Format ...9-15
Figure 9-39. PASID-State Entry Format...9-17
Figure 9-40. Format for First-Level Paging Entries ..9-18
Figure 9-41. Format for Second-Level Paging Entries ..9-25
Figure 9-42. Fault-Record Format...9-32
Figure 9-43. Interrupt Remapping Table Entry Format...9-34
Figure 10-44. Version Register ..10-7
Figure 10-45. Capability Register ...10-8
Figure 10-46. Extended Capability Register ...10-13
Figure 10-47. Global Command Register ...10-17
Figure 10-48. Global Status Register ..10-22
Figure 10-49. Root Table Address Register ..10-24
Figure 10-50. Context Command Register ...10-25
Figure 10-51. IOTLB Invalidate Register..10-29
Figure 10-52. Invalidate Address Register ...10-32
Figure 10-53. Fault Status Register ..10-34
Figure 10-54. Fault Event Control Register ..10-36
Figure 10-55. Fault Event Data Register..10-38
Figure 10-56. Fault Event Address Register ...10-39
Figure 10-57. Fault Event Upper Address Register ..10-40
Figure 10-58. Fault Recording Register ...10-41
Figure 10-59. Advanced Fault Log Register..10-44
Figure 10-60. Protected Memory Enable Register ...10-45
Figure 10-61. Protected Low-Memory Base Register ...10-47
Figure 10-62. Protected Low-Memory Limit Register ...10-48
Figure 10-63. Protected High-Memory Base Register...10-49
Figure 10-64. Protected High-Memory Limit Register ..10-50
Figure 10-65. Invalidation Queue Head Register...10-51
Figure 10-66. Invalidation Queue Tail Register...10-52
Figure 10-67. Invalidation Queue Address Register...10-53
Figure 10-68. Invalidation Completion Status Register ..10-54

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9

Contents—Intel® Virtualization Technology for Directed I/O

Figure 10-69. Invalidation Event Control Register .. 10-55
Figure 10-70. Invalidation Event Data Register.. 10-56
Figure 10-71. Invalidation Event Address Register ... 10-57
Figure 10-72. Invalidation Event Upper Address Register .. 10-58
Figure 10-73. Interrupt Remapping Table Address Register ... 10-59
Figure 10-74. Page Request Queue Head Register.. 10-60
Figure 10-75. Page Request Queue Tail Register.. 10-61
Figure 10-76. Page Request Queue Address Register.. 10-62
Figure 10-77. Page Request Status Register.. 10-63
Figure 10-78. Page Request Event Control Register.. 10-64
Figure 10-79. Page Request Event Data Register ... 10-65
Figure 10-80. Page Request Event Address Register... 10-66
Figure 10-81. Page Request Event Upper Address Register.. 10-67
Figure 10-82. MTRR Capability Register .. 10-68
Figure 10-83. MTRR Default Type Register .. 10-69
Figure 10-84. Fixed-Range MTRR Format.. 10-70
Figure 10-85. Variable-Range MTRR Format .. 10-72

Tables
Table 1. Glossary...1-2
Table 2. References ...1-3
Table 3. First-level Paging Structures ...3-9
Table 4. Effective Memory Types.. 3-15
Table 5. Second-level Paging Structures ... 3-17
Table 6. Address Fields in Remappable Interrupt Request Format5-4
Table 7. Data Fields in Remappable Interrupt Request Format5-5
Table 8. Interrupt Remapping Fault Conditions ..5-7
Table 9. Index Mask Programming ... 6-25
Table 10. Interrupt Remapping Fault Conditions ..7-1
Table 11. Non-Recoverable Faults for Untranslated Requests Without PASID7-2
Table 12. Non-Recoverable Faults for Untranslated Requests With PASID7-3
Table 13. Non-Recoverable Faults For Translation Requests Without PASID7-6
Table 14. Non-Recoverable Faults For Translation Requests With PASID..........................7-7
Table 15. Non-Recoverable Faults For Translated Requests ...7-9
Table 16. Recoverable Fault Conditions For Translation Requests 7-10
Table 17. Response Codes .. 7-19
Table 18. Format of PML4E that references a Page-Directory-Pointer Table.................... 9-19
Table 19. Format of PDPE that maps a 1-GByte Page... 9-20
Table 20. Format of PDPE that references a Page-Directory Table................................. 9-21
Table 21. Format of PDE that maps a 2-MByte Page .. 9-22
Table 22. Format of PDE that references a Page Table .. 9-23
Table 23. Format of PTE that maps a 4-KByte Page... 9-24
Table 24. Format of SL-PML4E referencing a Second-Level-Page-Directory-Pointer Table. 9-26
Table 25. Format of SL-PDPE that maps a 1-GByte Page... 9-27
Table 26. Format of SL-PDPE that references a Second-Level-Page-Directory................. 9-28
Table 27. Format of SL-PDE that maps to a 2-MByte Page... 9-29
Table 28. Format of SL-PDE that references a Second-Level-Page Table........................ 9-30
Table 29. Format of SL-PTE that maps 4-KByte Page.. 9-31
Table 30. Address Mapping for Fixed-Range MTRRs .. 10-71

Intel® Virtualization Technology for Directed I/O—Revision History

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10 Order Number: D51397-006

Revision History

Date Revision Description

March 2006 Draft Preliminary Draft Specification

May 2007 1.0 1.0 Specification

September 2007 1.1 Specification update for x2APIC support

September 2008 1.2 Miscellaneous documentation fixes/clarifications, including BIOS support for NUMA, hot-plug

February 2011 1.3 Fixed documentation errors; Added BIOS support to report X2APIC_OPT_OUT

January 2012 2.0 Updated chapter 8 (BIOS requirements) to comprehend platforms with ACPI devices capable
of generating DMA requests (such as Low Power Subsystem (LPSS) on client platforms).

August 2013 2.1

Extended page group request with a stream response requested flag to request stream
responses for page requests except the last request in group.
Added an Blocked-On-Fault field to page requests requesting stream response as a hint to
indicate the respective fault caused a blocking condition on the endpoint device.
Clarified hardware behavior on page requests received when page request queue is full.

September 2013 2.2

Public release with Shared Virtual Memory (SVM) support.
Fixed ANDD structure definition in DMAR ACPI table to support 2-byte length field.
Fixed invalidation granularity encoding for extended IOTLB invalidation descriptor.
Updated bit positions of fields in PASID-State table entry.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 1-1

Introduction—Intel® Virtualization Technology for Directed I/O

1 Introduction

This document describes the Intel® Virtualization Technology for Directed I/O (“Intel® VT for Directed
I/O”); specifically, it describes the components supporting I/O virtualization as it applies to platforms
that use Intel® processors and core logic chipsets complying with Intel® platform specifications.

Figure 1-1 illustrates the general platform topology.

The document includes the following topics:
• An overview of I/O subsystem hardware functions for virtualization support
• A brief overview of expected usages of the generalized hardware functions
• The theory of operation of hardware, including the programming interface

The following topics are not covered (or are covered in a limited context):
• Intel® Virtualization Technology for Intel® 64 Architecture. For more information, refer to the

“Intel® 64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide”.
• Intel® Virtualization Technology for Intel® Itanium® Architecture. For more information, refer to

the “Intel® Itanium® Architecture software developer's manuals”.

1.1 Audience
This document is aimed at hardware designers developing Intel platforms or core-logic providing
hardware support for virtualization. The document is also expected to be used by Operating System
(OS) and Virtual Machine Monitor (VMM) developers utilizing the I/O virtualization hardware
functions.

Figure 1-1. General Platform Topology

P rocessor

S ystem B us

N orth B ridge

S ou th
B ridge

D R A M

P rocessor

P C I E xpress
D evices

P C I, LP C ,
Legacy dev ices

In teg ra ted
D ev ices

D M A & In te rrup t R em app ing

Intel® Virtualization Technology for Directed I/O—Introduction

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
1-2 Order Number: D51397-006

1.2 Glossary
The document uses the terms listed in the following table.

Table 1. Glossary

Term Definition

Context A hardware representation of state that identifies a device and the domain to which the
device is assigned.

Context-
cache Remapping hardware cache that stores device to domain mappings

Device-TLB A translation cache at the endpoint device (as opposed to in the platform).

DMA Direct Memory Access: Address routed in-bound requests from I/O devices

DMA
Remapping The act of translating the address in a DMA request to a host physical address (HPA).

Domain A collection of physical, logical, or virtual resources that are allocated to work together.
Used as a generic term for virtual machines, partitions, etc.

DMA
Address

Address in a DMA request: Depending on the software usage and hardware capabilities,
DMA address can be Guest Physical Address (GPA), Guest Virtual Address (GVA), Virtual
Address (VA), or I/O Virtual Address (IOVA).

First-Level
Paging

Paging structures used for address translation of DMA requests with Process Address
Space ID (PASID)

First-Level
Caches

Translation caches used by remapping hardware units to cache intermediate (non-leaf)
entries of the first-level paging structures. These include PML4 cache, PDP cache, and
PDE cache.

GAW Guest Address Width: Physical addressability limit within a partition (virtual machine)

GPA Guest Physical Address: the view of physical memory from software running in a
partition (virtual machine).

Guest Software running within a virtual machine environment (partition).

GVA Guest Virtual Address: Processor virtual address used by software running in a partition
(virtual machine).

HAW Host Address Width: the DMA physical addressability limit for a platform.

HPA Host Physical Address: Physical address used by hardware to access memory and
memory-mapped resources.

IEC Interrupt Entry Cache: A translation cache in remapping hardware unit that caches
frequently used interrupt-remapping table entries.

IOTLB I/O Translation Lookaside Buffer: an address translation cache in remapping hardware
unit that caches effective translations from DVA (GPA) to HPA.

I/OxAPIC I/O Advanced Programmable Interrupt Controller

IOVA I/O Virtual Address: Virtual address created by software for use in I/O requests.

Interrupt
Remapping The act of translating an interrupt request before it is delivered to the CPU complex.

MGAW Maximum Guest Address Width: the maximum DMA virtual addressability supported by a
remapping hardware implementation.

MSI Message Signalled Interrupts.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 1-3

Introduction—Intel® Virtualization Technology for Directed I/O

1.3 References

Second-
Level
Caches

Translation caches used by remapping hardware units to cache intermediate (non-leaf)
entries of the second-level (SL) paging structures. For hardware supporting 48-bit Guest
Address Width, these include SL-PML4 cache, SL-PDP cache, and SL-PDE cache.

PASID
Process Address Space Identifier: DMA requests with virtual address (or guest virtual
address) are tagged with a PASID value that identifies the targeted virtual address
space.

PASID-
cache

Remapping hardware cache that caches frequently accessed PASID-table entries used to
translate DMA requests with PASID.

PASID State
Table

Data structure used by hardware to report to software if a given PASID is active at a
endpoint device or not. PASID state is used by software to implement optimizations for
IOTLB invalidations.

Second-
Level
Paging

Paging Structures used for address translation of DMA requests without Process Address
Space ID (PASID).

Source ID
A 16-bit identification number to identify the source of a DMA or interrupt request. For
PCI family devices this is the ‘Requester ID’ which consists of PCI Bus number, Device
number, and Function number.

Root-
Complex

Refers to one or more hardware components that connect processor complexes to the
I/O and memory subsystems. The chipset may include a variety of integrated devices.

VA Virtual Address: Virtual address used by software on a host processor.

VMM Virtual Machine Monitor: a software layer that controls virtualization. Also referred to as
hypervisor in this document.

x2APIC The extension of xAPIC architecture to support 32-bit APIC addressability of processors
and associated enhancements.

Table 2. References

Description

Intel® 64 Architecture Software Developer's Manuals
http://developer.intel.com/products/processor/manuals/index.htm

PCI-Express* Base Specifications
http://www.pcisig.com/specifications/pciexpress

PCI-Express Address Translation Services Specification, Revision 1.1
http://www.pcisig.com/specifications/iov

PCI-Express Process Address Space ID, and PASID Translation ECNs

PCI-Express Alternative Routing-ID Interpretation (ARI) ECN

PCI-Express Single-Root I/O Virtualization and Sharing (SR-IOV) Specification, Revision 1.0
http://www.pcisig.com/specifications/iov

ACPI Specification
http://www.acpi.info/

PCI-Express to PCI/PCI-X Bridge Specification, Revision 1.0
http://www.pcisig.com/specifications/pciexpress/bridge

Table 1. Glossary

Term Definition

http://www.intel.com/products/processor/manuals/index.htm

Intel® Virtualization Technology for Directed I/O—Overview

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
2-1 Order Number: D51397-006

2 Overview

This chapter provides a brief overview of Intel® VT, the virtualization software ecosystem it enables,
and hardware support offered for processor and I/O virtualization.

2.1 Intel® Virtualization Technology Overview
Intel® VT consists of technology components that support virtualization of platforms based on Intel
processors, thereby enabling the running of multiple operating systems and applications in
independent partitions. Each partition behaves like a virtual machine (VM) and provides isolation and
protection across partitions. This hardware-based virtualization solution, along with virtualization
software, enables multiple usages such as server consolidation, activity partitioning, workload
isolation, embedded management, legacy software migration, and disaster recovery.

2.2 VMM and Virtual Machines
Intel® VT supports virtual machine architectures comprised of two principal classes of software:

• Virtual-Machine Monitor (VMM): A VMM acts as a host and has full control of the processor(s)
and other platform hardware. VMM presents guest software (see below) with an abstraction of a
virtual processor and allows it to execute directly on a logical processor. A VMM is able to retain
selective control of processor resources, physical memory, interrupt management, and I/O.

• Guest Software: Each virtual machine is a guest software environment that supports a stack
consisting of an operating system (OS) and application software. Each operates independently of
other virtual machines and uses the same interface to processor(s), memory, storage, graphics,
and I/O provided by a physical platform. The software stack acts as if it were running on a
platform with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

The VMM is a key component of the platform infrastructure in virtualization usages. Intel® VT can
improve the reliability and supportability of virtualization infrastructure software with programming
interfaces to virtualize processor hardware. It also provides a foundation for additional virtualization
support for other hardware components in the platform.

2.3 Hardware Support for Processor Virtualization
Hardware support for processor virtualization enables simple, robust and reliable VMM software. VMM
software relies on hardware support on operational details for the handling of events, exceptions, and
resources allocated to virtual machines.

Intel® VT provides hardware support for processor virtualization. For Intel® 64 processors, this
support consists of a set of virtual-machine extensions (VMX) that support virtualization of processor
hardware for multiple software environments by using virtual machines. An equivalent architecture is
defined for processor virtualization of the Intel® Itanium® architecture.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 2-2

Overview—Intel® Virtualization Technology for Directed I/O

2.4 I/O Virtualization
A VMM must support virtualization of I/O requests from guest software. I/O virtualization may be
supported by a VMM through any of the following models:

• Emulation: A VMM may expose a virtual device to guest software by emulating an existing
(legacy) I/O device. VMM emulates the functionality of the I/O device in software over whatever
physical devices are available on the physical platform. I/O virtualization through emulation
provides good compatibility (by allowing existing device drivers to run within a guest), but pose
limitations with performance and functionality.

• New Software Interfaces: This model is similar to I/O emulation, but instead of emulating legacy
devices, VMM software exposes a synthetic device interface to guest software. The synthetic
device interface is defined to be virtualization-friendly to enable efficient virtualization compared
to the overhead associated with I/O emulation. This model provides improved performance over
emulation, but has reduced compatibility (due to the need for specialized guest software or
drivers utilizing the new software interfaces).

• Assignment: A VMM may directly assign the physical I/O devices to VMs. In this model, the driver
for an assigned I/O device runs in the VM to which it is assigned and is allowed to interact directly
with the device hardware with minimal or no VMM involvement. Robust I/O assignment requires
additional hardware support to ensure the assigned device accesses are isolated and restricted to
resources owned by the assigned partition. The I/O assignment model may also be used to create
one or more I/O container partitions that support emulation or software interfaces for virtualizing
I/O requests from other guests. The I/O-container-based approach removes the need for running
the physical device drivers as part of VMM privileged software.

• I/O Device Sharing: In this model, which is an extension to the I/O assignment model, an I/O
device supports multiple functional interfaces, each of which may be independently assigned to a
VM. The device hardware itself is capable of accepting multiple I/O requests through any of these
functional interfaces and processing them utilizing the device's hardware resources.

Depending on the usage requirements, a VMM may support any of the above models for I/O
virtualization. For example, I/O emulation may be best suited for virtualizing legacy devices. I/O
assignment may provide the best performance when hosting I/O-intensive workloads in a guest.
Using new software interfaces makes a trade-off between compatibility and performance, and device
I/O sharing provides more virtual devices than the number of physical devices in the platform.

2.5 Intel® Virtualization Technology For Directed I/O
Overview

A general requirement for all of above I/O virtualization models is the ability to isolate and restrict
device accesses to the resources owned by the partition managing the device. Intel® VT for Directed
I/O provides VMM software with the following capabilities:

• I/O device assignment: for flexibly assigning I/O devices to VMs and extending the protection and
isolation properties of VMs for I/O operations.

• DMA remapping: for supporting address translations for Direct Memory Accesses (DMA) from
devices.

• Interrupt remapping: for supporting isolation and routing of interrupts from devices and external
interrupt controllers to appropriate VMs.

• Reliability: for recording and reporting of DMA and interrupt errors to system software that may
otherwise corrupt memory or impact VM isolation.

Intel® Virtualization Technology for Directed I/O—Overview

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
2-3 Order Number: D51397-006

2.5.1 Hardware Support for DMA Remapping

To generalize I/O virtualization and make it applicable to different processor architectures and
operating systems, this document refers to domains as abstract isolated environments in the platform
to which a subset of host physical memory is allocated.

DMA remapping provides hardware support for isolation of device accesses to memory, and enables
each device in the system to be assigned to a specific domain through a distinct set of paging
structures. When the device attempts to access system memory, the DMA-remapping hardware
intercepts the access and utilizes the page tables to determine whether the access can be permitted;
it also determines the actual location to access. Frequently used paging structures can be cached in
hardware. DMA remapping can be configured independently for each device, or collectively across
multiple devices.

2.5.1.1 OS Usages of DMA Remapping

There are several ways in which operating systems can use DMA remapping:
• OS Protection: An OS may define a domain containing its critical code and data structures, and

restrict access to this domain from all I/O devices in the system. This allows the OS to limit
erroneous or unintended corruption of its data and code through incorrect programming of
devices by device drivers, thereby improving OS robustness and reliability.

• Feature Support: An OS may use domains to better manage DMA from legacy devices to high
memory (For example, 32-bit PCI devices accessing memory above 4GB). This is achieved by
programming the I/O page-tables to remap DMA from these devices to high memory. Without
such support, software must resort to data copying through OS “bounce buffers”.

• DMA Isolation: An OS may manage I/O by creating multiple domains and assigning one or more
I/O devices to each domain. Each device-driver explicitly registers its I/O buffers with the OS, and
the OS assigns these I/O buffers to specific domains, using hardware to enforce DMA domain
protection. See Figure 2-2.

• Shared Virtual Memory: For devices supporting appropriate PCI-Express1 capabilities, OS may
use the DMA remapping hardware capabilities to share virtual address space of application
processes with I/O devices. Shared virtual memory along with support for I/O page-faults enable
application programs to freely pass arbitrary data-structures to devices such as graphics
processors or accelerators, without the overheads of pinning and marshalling of data.

1. Refer to Process Address Space ID (PASID) capability in PCI-Express* base specification.

Figure 2-2. Example OS Usage of DMA Remapping

Device A

Driver A
I/O Buffers

System Memory

Device B

Driver B
I/O Buffers

Driver B
I/O Buffers

Driver A
I/O Buffers

DMA-Remapping Hardware

System Memory

Device DMA isolated using DMA remapping hardware

Domain 1 Domain 2

I/O Devices
Device DMA without isolation

OS Code &
Data

I/O BuffersI/O Buffers

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 2-4

Overview—Intel® Virtualization Technology for Directed I/O

2.5.1.2 VMM Usages of DMA Remapping

The limitations of software-only methods for I/O virtualization can be improved through direct
assignment of I/O devices to partitions. With this approach, the driver for an assigned I/O device runs
only in the partition to which it is assigned and is allowed to interact directly with the device hardware
with minimal or no VMM involvement. The hardware support for DMA remapping enables this direct
device assignment without device-specific knowledge in the VMM. See Figure 2-3.

In this model, the VMM restricts itself to enabling direct assignment of devices to their partitions.
Rather than invoking the VMM for all I/O requests from a partition, the VMM is invoked only when
guest software accesses protected resources (such as configuration accesses, interrupt management,
etc.) that impact system functionality and isolation.

To support direct assignment of I/O devices, a VMM must enforce isolation of DMA requests. I/O
devices can be assigned to domains, and the remapping hardware can be used to restrict DMA from
an I/O device to the physical memory presently owned by its domain. For domains that may be
relocated in physical memory, the remapping hardware can be programmed to perform the necessary
translation.

I/O device assignment allows other I/O sharing usages — for example, assigning an I/O device to an
I/O partition that provides I/O services to other user partitions. Remapping hardware enables
virtualization software to choose the right combination of device assignment and software-based
methods for I/O virtualization.

2.5.1.3 DMA Remapping Usages by Guests

A guest OS running in a VM may benefit from the availability of remapping hardware to support the
usages described in Section 2.5.1.1. To support such usages, the VMM may virtualize the remapping
hardware to its guests. For example, the VMM may intercept guest accesses to the virtual remapping
hardware registers, and manage a shadow copy of the guest remapping structures that is provided to
the physical remapping hardware. On updates to the guest I/O page tables, the guest software
performs appropriate virtual invalidation operations. The virtual invalidation requests may be
intercepted by the VMM, to update the respective shadow page tables and perform invalidations of

Figure 2-3. Example Virtualization Usage of DMA Remapping

VM

0

App App

Virtual Machine Monitor (VMM) or Hosting OS

Physical Host Hardware

Virtual Machine (0)

Guest OS

App App

Device A

Device A
Driver

Device B
Driver

Virtual Devices Emulation

Driver for
Virtual Devices

Device B

VM

0

App App

Virtual Machine (n)

Guest OS

App App

Driver for
Virtual Devices

VM

0

App App

Virtual Machine Monitor (VMM) or Hosting OS

Virtual Machine (0)

Guest OS

App App

Device A Device B

VM

0

App App

Virtual Machine (n)

Guest OS

App App

Device A
Driver

Device B
Driver

Example Software-based
I/O Virtualization Direct Assignment of I/O Devices

DMA-Remapping Hardware

Intel® Virtualization Technology for Directed I/O—Overview

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
2-5 Order Number: D51397-006

remapping hardware. Due to the non-restartability of faulting DMA transactions (unlike CPU memory
management virtualization), a VMM cannot perform lazy updates to its shadow remapping structures.
To keep the shadow structures consistent with the guest structures, the VMM may expose virtual
remapping hardware with eager pre-fetching behavior (including caching of not-present entries) or
use processor memory management mechanisms to write-protect the guest remapping structures.

On hardware implementations supporting two levels of address translations (first-level translation to
remap a virtual address to intermediate (guest) physical address, and second-level translations to
remap a intermediate physical address to machine (host) physical address), a VMM may virtualize
guest OS use of first-level translations (such as for Shared Virtual Memory usages) without shadowing
page-tables, but by configuring hardware to perform nested translation of first and second-levels.

2.5.1.4 Interaction with Processor Virtualization

Figure 2-4 depicts how system software interacts with hardware support for both processor-level
virtualization and Intel® VT for Directed I/O.

The VMM manages processor requests to access physical memory via the processor’s memory
management hardware. DMA requests to access physical memory use remapping hardware. Both
processor memory management and DMA memory management are under the control of the VMM.

Figure 2-4. Interaction Between I/O and Processor Virtualization

Virtual Machine Monitor (VMM)

Guest
OS

App App

Guest
OS

App App

Guest
OS

App App

Physical Memory

CPU Accesses

Logical
Processors

DMA

I/O
Devices

Virtual Machines

DMA
Remapping

CPU Memory
Virtualization

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 2-6

Overview—Intel® Virtualization Technology for Directed I/O

2.5.2 Hardware Support for Interrupt Remapping

Interrupt remapping provides hardware support for remapping and routing of interrupt requests from
I/O devices (generated directly or through I/O interrupt controllers). The indirection achieved through
remapping enables isolation of interrupts across partitions.

The following usages are envisioned for the interrupt-remapping hardware.

2.5.2.1 Interrupt Isolation

On Intel architecture platforms, interrupt requests are identified by the Root-Complex as write
transactions targeting an architectural address range (0xFEEx_xxxxh). The interrupt requests are
self-describing (i.e., attributes of the interrupt request are encoded in the request address and data),
allowing any DMA initiator to generate interrupt messages with arbitrary attributes.

The interrupt-remapping hardware may be utilized by a Virtual Machine Monitor (VMM) to improve the
isolation of external interrupt requests across domains. For example, the VMM may utilize the
interrupt-remapping hardware to distinguish interrupt requests from specific devices and route them
to the appropriate VMs to which the respective devices are assigned. The VMM may also utilize the
interrupt-remapping hardware to control the attributes of these interrupt requests (such as
destination CPU, interrupt vector, delivery mode etc.).

Another example usage is for the VMM to use the interrupt-remapping hardware to disambiguate
external interrupts from the VMM owned inter-processor interrupts (IPIs). Software may enforce this
by ensuring none of the remapped external interrupts have attributes (such as vector number) that
matches the attributes of the VMM IPIs.

2.5.2.2 Interrupt Migration

The interrupt-remapping architecture may be used to support dynamic re-direction of interrupts when
the target for an interrupt request is migrated from one logical processor to another logical processor.
Without interrupt-remapping hardware support, re-balancing of interrupts require software to re-
program the interrupt sources. However re-programming of these resources are non-atomic (requires
multiple registers to be re-programmed), often complex (may require temporary masking of interrupt
source), and dependent on interrupt source characteristics (e.g. no masking capability for some
interrupt sources; edge interrupts may be lost when masked on some sources, etc.)

Interrupt-remapping enables software to efficiently re-direct interrupts without re-programming the
interrupt configuration at the sources. Interrupt migration may be used by OS software for balancing
load across processors (such as when running I/O intensive workloads), or by the VMM when it
migrates virtual CPUs of a partition with assigned devices across physical processors to improve CPU
utilization.

2.5.2.3 x2APIC Support

Intel® 64 x2APIC architecture extends the APIC addressability to 32-bits (from 8-bits). Refer to Intel®
64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide for details.

Interrupt remapping enables x2APICs to support the expanded APIC addressability for external
interrupts without requiring hardware changes to interrupt sources (such as I/OxAPICs and MSI/MSI-
X devices).

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-1 Order Number: D51397-006

3 DMA Remapping

This chapter describes the hardware architecture for DMA remapping. The architecture envisions
remapping hardware to be implemented in Root-Complex components, such as the memory controller
hub (MCH) or I/O hub (IOH).

3.1 Types of DMA requests
Remapping hardware treats inbound memory requests from root-complex integrated devices and PCI-
Express attached discrete devices into two categories:

• Requests without address-space-identifier: These are the normal memory requests from endpoint
devices. These requests typically specify the type of access (read/write/atomics), targeted DMA
address/size, and identity of the device originating the request.

• Requests with address-space-identifier: These are memory requests with additional information
identifying the targeted process address space from endpoint devices supporting virtual memory
capabilities. Beyond attributes in normal requests, these requests specify the targeted process
address space identifier (PASID), and extended attributes such as Execute-Requested (ER) flag
(to indicate reads that are instruction fetches), and Privileged-mode-Requested (PR) flag (to
distinguish user versus supervisor access). For details, refer to the Process Address Space ID
(PASID) Capability in the PCI-Express specifications.

For simplicity, this document refers to these categories as Requests-without-PASID, and
Requests-with-PASID. Previous versions of this specification supported only remapping of
requests-without-PASID.

3.2 Domains and Address Translation
A domain is abstractly defined as an isolated environment in the platform, to which a subset of the
host physical memory is allocated. I/O devices that are allowed to access physical memory directly
are allocated to a domain and are referred to as the domain’s assigned devices. For virtualization
usages, software may treat each virtual machine as a separate domain.

The isolation property of a domain is achieved by blocking access to its physical memory from
resources not assigned to it. Multiple isolated domains are supported in a system by ensuring that all
I/O devices are assigned to some domain (possibly a null domain), and that they can only access the
physical resources allocated to their domain. The DMA remapping architecture facilitates flexible
assignment of I/O devices to an arbitrary number of domains. Each domain has a view of physical
address space that may be different than the host physical address space. Remapping hardware
treats the address in inbound requests as DMA Address. Depending on the software usage model, the
DMA address space may be the Guest-Physical Address (GPA) space of the virtual machine to which
the device is assigned, or application Virtual Address (VA) space defined by the PASID assigned to an
application, or some abstract I/O virtual address (IOVA) space defined by software. In all cases, DMA
remapping transforms the address in a DMA request issued by an I/O device to its corresponding
Host-Physical Address (HPA).

For simplicity, this document refers to address in requests-without-PASID as GPA, and address in
requests-with-PASID as Virtual Address (VA) (or Guest Virtual Address (GVA), if such request is from
a device assigned to a virtual machine). The translated address is referred to as HPA.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-2

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Figure 3-5 illustrates DMA address translation. I/O devices 1 and 2 are assigned to domains 1 and 2,
respectively. The software responsible for creating and managing the domains allocates system
physical memory for both domains and sets up the DMA address translation function. DMA address in
requests initiated by devices 1 & 2 are translated to appropriate HPAs by the remapping hardware.

The host platform may support one or more remapping hardware units. Each hardware unit supports
remapping DMA requests originating within its hardware scope. For example, a desktop platform may
expose a single remapping hardware unit that translates all DMA transactions at the memory
controller hub (MCH) component. A server platform with one or more core components may support
independent translation hardware units in each component, each translating DMA requests originating
within its I/O hierarchy (such as a PCI-Express root port). The architecture supports configurations in
which these hardware units may either share the same translation data structures (in system
memory) or use independent structures, depending on software programming.

The remapping hardware translates the address in a request to host physical address (HPA) before
further hardware processing (such as address decoding, snooping of processor caches, and/or
forwarding to the memory controllers).

3.3 Remapping Hardware - Software View
The remapping architecture allows hardware implementations supporting a single PCI segment group
to expose (to software) the remapping function either as a single hardware unit covering the entire
PCI segment group, or as multiple hardware units, each supporting a mutually exclusive subset of
devices in the PCI segment group hierarchy. For example, an implementation may expose a
remapping hardware unit that supports one or more integrated devices on the root bus, and
additional remapping hardware units for devices behind one or a set of PCI-Express root ports. The
platform firmware (BIOS) reports each remapping hardware unit in the platform to software. Chapter
8 describes a proposed reporting structure through ACPI constructs.

For hardware implementations supporting multiple PCI segment groups, the remapping architecture
requires hardware to expose independent remapping hardware units (at least one per PCI segment
group) for processing requests originating within the I/O hierarchy of each segment group.

3.4 Mapping Devices to Domains
The following sub-sections describe the DMA remapping architecture and data structures used to map
I/O devices to domains.

Figure 3-5. DMA Address Translation

HPA =
6000h HPA =

6000h

Assigned to
Domain 1

HPA =
3000h

Domain 2

Domain 1

0h

10000h

Assigned to
Domain 2

(G)VA/GPA
= 4000h

Physical
Memory

HPA =
3000h

CPU
Memory

Management

Device 2

Device 1

DMA
Memory

Management

4000h

(G)VA/GPA
= 4000h4000h

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-3 Order Number: D51397-006

3.4.1 Source Identifier

Each inbound request appearing at the address-translation hardware is required to identify the device
originating the request. The attribute identifying the originator of an I/O transaction is referred to as
the “source-id” in this document. The remapping hardware may determine the source-id of a
transaction in implementation-specific ways. For example, some I/O bus protocols may provide the
originating device identity as part of each I/O transaction. In other cases (for Root-Complex
integrated devices, for example), the source-id may be derived based on the Root-Complex internal
implementation.

For PCI-Express devices, the source-id is the requester identifier in the PCI-Express transaction layer
header. The requester identifier of a device, which is composed of its PCI Bus/Device/Function
number, is assigned by configuration software and uniquely identifies the hardware function that
initiated the request. Figure 3-6 illustrates the requester-id1 as defined by the PCI-Express
Specification.

The following sections describe the data structures for mapping I/O devices to domains.

3.4.2 Root-Entry & Extended-Root-Entry

The root-table functions as the top level structure to map devices to their respective domains. The
location of the root-table in system memory is programmed through the Root Table Address Register
described in Section 10.4.6. The root-table is 4-KByte in size and contains 256 root-entries to cover
the PCI bus number space (0-255). The bus number (upper 8-bits) encoded in a request’s source-id
field is used to index into the root-entry structure.

Each root-entry contains the following fields:
• Present flag: The present field indicates the root-entry is present and the context-table pointer

(CTP) field is initialized. Software may Clear the present field for root entries corresponding to bus
numbers that are either not present in the platform, or don’t have any downstream devices
attached. DMA requests processed through root-entries with present field Clear result in
translation-fault.

• Context-table pointer: The context-table pointer references the context-table for devices on
the bus identified by the root-entry. Section 3.4.3 describes context-entries in the context-table.

Section 9.1 provides the exact root-table entry format.

For implementations supporting Extended-Context-Support (ECS=1 in Extended Capability Register),
the Root Table Address Register (RTADDR_REG) points to an extended-root-table when Root-Table-
Type field in the Register is Set (RTT=1). The extended-root-table is similar to the root-table (4KB in
size and containing 256 extended-root-entries to cover the 0-255 PCI bus number space), but has an
extended format to reference extended-context-tables.

Each extended-root-entry contains the following fields:

1. For PCI-Express devices supporting Alternative Routing-ID Interpretation (ARI), bits traditionally
used for the Device Number field in the Requester-id are used instead to expand the Function
Number field.

Figure 3-6. Requester Identifier Format

02378
1
5

Bus # Device # Function #

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-4

DMA Remapping—Intel® Virtualization Technology for Directed I/O

• Lower Present flag: The lower-present field indicates the lower 64-bits of the extended-root-
entry is present and the lower-context-table pointer (LCTP) field is initialized. Software may Clear
the lower-present field for extended-root-entries corresponding to bus numbers that are either
not present in the platform, or don’t have downstream devices with device numbers 0-15
attached. DMA requests processed through the lower part of an extended-root-entry with the
lower-present field Clear result in translation-fault.

• Lower Context-table pointer: The lower-context-table pointer references the lower-context-
table for devices with device number 0-15, on the bus identified by the referencing extended-
root-entry. Section 3.4.4 describes extended-context-entries in the lower-context-table.

• Upper Present flag: The upper-present field indicates the upper 64-bits of the extended-root-
entry is present and the upper-context-table pointer (UCTP) field is initialized. Software may Clear
the upper-present field for extended-root-entries corresponding to bus numbers that are either
not present in the platform, or don’t have downstream devices with device numbers 16-31
attached. DMA requests processed through the upper part of an extended-root-entry with the
upper-present field Clear result in translation-fault.

• Upper Context-table pointer: The upper-context-table pointer references the upper-context-
table for devices with device number 16-31, on the bus identified by the referencing extended-
root-entry. Section 3.4.4 describes extended-context-entries in the upper-context-table.

Section 9.2 provides the exact extended-root-table entry format.

3.4.3 Context-Entry

A context-entry maps a specific I/O device on a bus to the domain to which it is assigned, and, in
turn, to the address translation structures for the domain. The context entries are programmed
through memory-resident context-tables. Each root-entry in the root-table contains the pointer to the
context-table for the corresponding bus number. Each context-table contains 256 entries, with each
entry corresponding to a PCI device function on the bus. For a PCI device, the device and function
numbers (lower 8-bits) of source-id are used to index into the context-table. Figure 3-7 illustrates
device to domain mapping through root-table.

Figure 3-7. Device to Domain Mapping Structures using Root-Table

Context-table for
Bus N

Address Translation
Structures for Domain A

Address Translation
Structures for Domain B

Context-entry 0

Context-entry 255

(Dev 0, Func 0)

(Dev 31, Func 7)

(Dev 0, Func 1)

Context-entry 255

Context-entry 0

Context-table for
Bus 0

Root-table

Root-entry 0

Root-entry N

Root-entry 255

(Bus 0)

(Bus 255)

(Bus N)

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-5 Order Number: D51397-006

Context-entries support only requests-without-PASID, and contains the following fields:
• Present Flag: The present field is used by software to indicate to hardware whether the context-

entry is present and initialized. Software may Clear the present field for context entries
corresponding to device functions that are not present in the platform. If the present field of a
context-entry used to process a request is Clear, the request is blocked, resulting in a translation-
fault.

• Translation Type: The translation-type field indicates what types of requests are allowed
through the context-entry, and the type of the address translation that must be used for such
requests.

• Address Width: The address-width field indicates the address-width of the domain to which the
device corresponding to the context-entry is assigned.

• Second-level Page-table Pointer: The second-level page-table pointer field provides the host
physical address of the address translation structure in system memory to be used for remapping
requests-without-PASID processed through the context-entry.

• Domain Identifier: The domain-identifier is a software-assigned field in a context-entry that
identifies the domain to which a device with the given source-id is assigned. Hardware may use
this field to tag its caching structures. Context entries programmed with the same domain
identifier must reference the same address translation structure. Context entries referencing the
same address translation structures are recommended to use the same domain-identifier for best
hardware efficiency.

• Fault Processing Disable Flag: The fault-processing-disable field enables software to
selectively disable recording and reporting of remapping faults detected for requests processed
through the context-entry.

Multiple devices may be assigned to the same domain by programming the context-entries for the
devices to reference the same translation structures, and programming them with the same domain
identifier. Section 9.3 provides the exact context-entry format.

3.4.4 Extended-Context-Entry

For implementations supporting Extended-Context-Support (ECS=1 in Extended Capability Register),
when using extended-root-table, each extended-root-entry references a lower-context-table and a
upper-context-table. The Lower-context-table is 4-KByte in size and contains 128 extended-context-
entries corresponding to PCI functions in device range 0-15 on the bus. The Upper-context-table is
also 4-KByte in size and contains 128 extended-context-entries corresponding to PCI functions in
device range 16-31 on the bus. Figure 3-8 illustrates device to domain mapping through extended-
root-table.

Extended-context-entries are capable of supporting both requests-without-PASID and requests-with-
PASID. For requests-without-PASID, it supports the same fields as in the regular context-entry
(described above). Section 9.4 provides the exact extended-context-entry format. For requests-with-
PASID, extended-context-entries contain the following additional fields:

• Extended Translation Type: The translation-type field is extended to provide additional
controls to specify how requests with and without PASID should be processed. Extended-context-
entries supports two levels of translation, referred to as first-level translation and second-level
translation. First-level translation applies to requests-with-PASID. Second-level translation applies
to requests-without-PASID. When nested translation is specified in the extended-context-entry,
requests-with-PASID are subject to nested first-level and second-level translation.

• Translation Structure Pointers: For first-level translation, the extended-context-entry contains
a pointer to a PASID-table. Each 8-byte PASID-table-entry corresponds to a PASID value, and
contains the root of first-level translation structures used to translate requests-with-PASID tagged
with the respective PASID. For second-level translation, extended-context-entry contains a
pointer to the second-level page-table, which is the same as the second-level page-table pointer
field in the regular context-entry (described in Section 3.4.3).

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-6

DMA Remapping—Intel® Virtualization Technology for Directed I/O

• Translation Controls: These include additional controls such as Page-Global-Enable, Write-
Protect-Enable, No-Execute-Enable, Supervisor-Mode-Execute-Protection, etc. that are applied
when processing requests-with-PASID.

• Memory-type Attributes: Extended-context-entries support fields such as Page-Attribute-Table,
Extended-memory-type etc., that are used to compute the effective memory-type for requests-
with-PASID from devices operating in the processor coherency domain.

• Page Request Enable: The page-request-enable field in the extended-context-entry allows
software to selectively enable or disable page-fault requests from the device. When enabled,
page-requests from the device are reported to software through a memory-resident page-
request-queue. Chapter 7 provides details on page request processing.

• Deferred Invalidation Controls: The PASID-state table pointer field enables devices to
communicate whether a given address-space (PASID) is active or not at the device. Software can
utilize the PASID-state tables for deferred invalidation of cached mappings for inactive PASIDs in
translation caches (TLBs). Chapter 6 describes the various translation caching structures and
invalidation operations, including deferred invalidation support.

Figure 3-8 illustrates device to domain mapping using extended-root-table.

Figure 3-8. Device to Domain Mapping Structures using Extended-Root-Table

(Dev 31, Func 7)

Upper-context-table
for Bus N

Ext-context-entry 0

Ext-context-entry 127

(Dev 16, Func 0)

(Dev 16, Func 1)

Lower-context-table
for Bus N

Ext-context-entry 0

Ext-context-entry 127(Dev 15, Func 7)

(Dev 0, Func 1)

(Dev 0, Func 0)

Extended-root-table

(Bus 0)

(Bus 255)

(Bus N)

Upper-context-table
for Bus 0

Ext-context-entry 0

Ext-context-entry 127

Lower-context-table
for Bus 0

Ext-context-entry 0

Ext-context-entry 127

Ext-root-entry 0

Ext-root-entry N

Ext-root-entry 255

Second-level Paging
Structures for Domain A

Second-level Paging
Structures for Dom ain B

PASID-entry 0

PASID -entry P1

PASID-entry P2

PASID-Table for
Dom ain B

First-level Paging
Structures for
Process P1

First-level Paging
Structures for
Process P2

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-7 Order Number: D51397-006

3.5 Hierarchical Translation Structures
DMA remapping uses hierarchical translation structures for both first-level translation (for requests-
with-PASID) and second-level translation (for requests-without-PASID and for nested translation of
requests-with-PASID).

For first-level translation, and second-level translation of requests-without-PASID, the DMA-address
in the request is used as the input address. For nested translation of requests-with-PASID, any
address generated by first-level translation (both addresses to access first-level translation structures
and the output address from first-level translation) is used as the input address for nesting with
second-level translation. Section 3.6, Section 3.7 and Section 3.8 provides more details on first-level,
second-level, and nested translation respectively.

Every paging structure in the hierarchy is 4-KBytes in size, with 512 8-Byte entries. Remapping
hardware uses the upper portion of input address to identify a series of paging-structure entries. The
last of these entries identifies the physical address of the region to which the input address translates
(called the page frame). The lower portion of the input address (called the page offset) identifies the
specific offset within that region to which the input address translates. Each paging-structure entry
contains a physical address, which is either the address of another paging structure or the address of
a page frame. First-level translation supports 4-level structure. Second-level translation supports a N-
level structure, where the value of N depends on the Guest Address Width (GAW) supported by an
implementation as enumerated in the Capability Register.

The paging structures support a base page-size of 4-KBytes. The page-size field in paging entries
enable larger page allocations. When a paging entry with the page-size field Set is encountered by
hardware on a page-table walk, the translated address is formed immediately by combining the page-
base-address in the paging-entry with the unused input address bits. Remapping architecture defines
support for 2-MByte and 1-GByte large-page sizes. Implementations report support for large-pages
and intermediate-pages through the Capability Register.

Figure 3-9 illustrates the paging structure for translating a 48-bit address to a 4-KByte page.

Figure 3-9. Address Translation to a 4-KByte Page

3
8

1
2

1
1 0

3
0

+

+

+

2
0

2
1

2
9

9-
bi

ts

,Page Directory

Page Table

4KB Page

4
8

3
9

6
3

,

+

<< 3

Page Directory
Pointer Table

PS = 0

,

+

<< 3

PML4 Table

<< 3

<< 3

9-
bi

ts

9-
bi

ts

9-
bi

ts

Paging Structure
Pointer

PS = 0

PS = 0

12
-b

its

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-8

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Figure 3-10 illustrates the paging structure for translating a 48-bit address to a 2-MByte large-page.

Figure 3-11 illustrates the paging structure for translating a 48-bit address to a 1-GByte large-page.

Figure 3-10. Address Translation to a 2-MByte Large Page

Figure 3-11. Address Translation to a 1-GByte Large Page

3
8 0

3
0

+

+

2
0

2
1

2
9

9-
b

its

,Page Directory

2MB Page

4
8

3
9

6
3

,

+

<< 3

Page Directory
Pointer Table

,

+

<< 3

PML4 Table

<< 3

9-
b

its

9-
b

its

2
1-

b
its

Paging Structure
Pointer

PS = 0

PS = 1

PS = 0

3
8 0

3
0

+

2
9

9-
bi

ts

,

1GB Page

4
8

3
9

6
3

,

+

<< 3

Page Directory
Pointer Table

,

+

<< 3

PML4 Table

9-
bi

ts

3
0-

bi
ts

Paging Structure
Pointer

PS = 1PS = 0

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-9 Order Number: D51397-006

3.6 First-Level Translation
Extended-context-entries can be configured to translate requests-with-PASID through first-level
translation. Extended-context-entries contain the PASID-table pointer and size fields used to
reference the PASID-table. The PASID-number in a request-with-PASID is used to offset into the
PASID-table. Each present PASID-entry contains a pointer to the base of the first-level translation
structure for the respective process address space. Section 9.5 describes the exact format of the
PASID-entry.

First-level translation restricts the input-address to a 48-bit canonical addresses (i.e., address bits
63:48 has the same value as the address bit 47). A device may perform local check for canonical
address before it issues a request-with-PASID, and handle a violation in a device specific manner.
Requests-with-PASID arriving at the remapping hardware are subject to canonical address checking,
and a violation is treated as a translation-fault. Chapter 7 provides details of translation-fault
conditions and how they are reported to software.

First-level translation supports the same paging structures as Intel® 64 processors when operating in
64-bit mode. Table 3 gives the different names of the first-level translation structures, that are given
based on their use in the translation process. It also provides, for each structure, the source of the
physical-address used to locate it, the bits in the input-address used to select an entry from the
structure, and details of whether and how such an entry can map a page. Section 9.7 describes
format of each of these paging structures in detail.

First-level translation may map input addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.
Support for 4-KByte pages and 2-MBytes pages are mandatory for first-level translation.
Implementations supporting 1-GByte pages report it through the FL1GP field in the Capability
Register (see Section 10.4.2). Figure 3-9 illustrates the translation process when it produces a 4-
KByte page; Figure 3-10 covers the case of a 2-MByte page; Figure 3-11 covers the case of a 1-GByte
page.

The following describe the first-level translation in more detail and how the page size is determined:
• A 4-KByte naturally aligned PML4 table is located at the physical address specified in First-level-

page-table-pointer (FLPTPTR) field in the PASID-entry (see Section 9.5). A PML4 table comprises
512 64-bit entries (PML4Es). A PML4E is selected using the physical address defined as follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 47:39 of the input address.
— Bits 12 and higher are from FLPTPTR field in the PASID-entry.

Because a PML4E is identified using bits 47:39 of the input address, it controls access to a 512-
GByte region of the input-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address
specified in address (ADDR) field in the PML4E (see Table 18). A page-directory-pointer table
comprises 512 64-bit entries (PDPEs). A PDPE is selected using the physical address defined as
follows:

Table 3. First-level Paging Structures

Paging
Structure

Entry
Name

Physical
Address of
Structure

Bits
Selecting

Entry
Page Mapping

PML4 table PML4E PASID-entry 47:39 N/A

Page-directory-
pointer table

PDPE PML4E 38:30 1-GByte page (if Page-Size (PS) field is Set)

Page directory PDE PDPE 29:21 2-MByte page (if Page-Size (PS) field is Set)

Page table PTE PDE 20:12 4-KByte page

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-10

DMA Remapping—Intel® Virtualization Technology for Directed I/O

— Bits 2:0 are all 0.
— Bits 11:3 are bits 38:30 of the input address.
— Bits 12 and higher are from the ADDR field in the PML4E.

Because a PDPE is identified using bits 47:30 of the input address, it controls access to a 1-GByte
region of the input-address space. Use of the PDPE depends on its page-size (PS) field:

• If the PDPE’s PS field is 1, the PDPE maps a 1-GByte page (see Table 19). The final physical
address is computed as follows:
— Bits 29:0 are from the input address.
— Bits 30 and higher are from the ADDR field in the PDPE.

• If the PDPE’s PS field is 0, a 4-KByte naturally aligned page directory is located at the physical
address specified in the address (ADDR) field in the PDPE (see Table 20). A page directory
comprises 512 64-bit entries (PDEs). A PDE is selected using the physical address defined as
follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 29:21 of the input address.
— Bits 12 and higher are from the ADDR field in the PDPE.

Because a PDE is identified using bits 47:21 of the input address, it controls access to a 2-MByte
region of the input-address space. Use of the PDPE depends on its page-size (PS) field:

• If the PDE’s PS field is 1, the PDE maps a 2-MByte page (see Table 21). The final physical address
is computed as follows:
— Bits 20:0 are from the input address.
— Bits 21 and higher are from the ADDR field in the PDE.

• If the PDE’s PS field is 0, a 4-KByte naturally aligned page table is located at the physical address
specified in the address (ADDR) field in the PDE (see Table 22). A page table comprises 512 64-bit
entries (PTEs). A PTE is selected using the physical address defined as follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 20:12 of the input address.
— Bits 12 and higher are from the ADDR field in the PDE.

Because a PTE referenced by a PDE is identified using bits 47:12 of the input address, every such
PTE maps a 4-KByte page (Table 23). The final page address is translated as follows:
— Bits 11:0 are from the input address.
— Bits 12 and higher are from the ADDR field in the PTE.

If a paging-structure entry’s Present (P) field (bit 0) is 0 or if the entry sets any reserved field, the
entry is used neither to reference another paging-structure entry nor to map a page. A reference
using a input address whose translation would use such a paging-structure entry causes a translation
fault (see Chapter 7).

The following bits are reserved with first-level translation:
• If the P field of a paging-structure entry is 1, bits 51:HAW (Host Address Width) are reserved.
• If the P field of a PML4E is 1, the PS field is reserved.
• If 1-GByte pages are not supported and the P field of a PDPE is 1, the PS field is reserved.
• If the P field and PS field of a PDPE are both 1, bits 29:13 are reserved.
• If the P field and PS field of a PDE are both 1, bits 20:13 are reserved.
• If Extended-Accessed flag is not supported, the EA field in the paging entries are ignored.
• If No-Execute-Enable (NXE) field is 0 in the extended-context-entry and the P field of a paging-

structure entry is 1, the Execute-Disable (XD) field is reserved.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-11 Order Number: D51397-006

3.6.1 Translation Faults

Requests-with-PASID can result in first-level translation faults for either of two reasons: (1) there is
no valid translation for the input address; or (2) there is a valid translation for the input address, but
its access rights do not permit the access. There is no valid translation if any of the following are true:

• The Root Table Type (RTT) field in Root-table Address register (RTADDR_REG) is 0.
• The input address in the request is not canonical (i.e., address bits 63:48 not same value as

address bit 47).
• Hardware attempt to access a translation entry (extended-root-entry, extended-context-entry,

PASID-table entry, or a first-level paging-structure entry) resulted in error.
• The extended-root-entry used to process the request (as noted in Section 3.4.2) has the relevant

present field as 0, has invalid programming, or has a reserved bit set.
• The extended-context-entry used to process the request (as noted in Section 3.4.3) has the P

field as 0, PASIDE field as 0, ERE field as 0 (for requests with Execute-Requested (ER) field Set),
SRE field as 0 (for requests with Privileged-mode-Requested (PR) field Set), has invalid
programming, T field is programmed to block requests-with-PASID, or has a reserved bit set.

• The PASID-entry used to process the request (as noted in Section 3.6) has the P field as 0.
• The translation process for that address (as noted in Section 3.6) used a paging-structure entry in

which the P field is 0 or one that sets a reserved bit.

If there is a valid translation for an input address, its access rights are determined as described in
Section 3.6.2.

Depending on the capabilities supported by remapping hardware units and the endpoint device,
translations faults may be treated as non-recoverable errors or recoverable page faults. Chapter 7
provides detailed hardware behavior on translation faults and reporting to software.

3.6.2 Access Rights

The accesses permitted for a request-with-PASID whose input address that is successfully translated
through first-level translation is determined by the attributes of the request and the access rights
specified by the paging-structure entries controlling the translation.

Devices report support for requests-with-PASID through the PCI-Express PASID Capability structure.
PASID Capability allows software to query and control if the endpoint can issue requests-with-PASID
that request execute permission (such as for instruction fetches) and requests with supervisor-
privilege. Remapping hardware implementations report support for requests seeking execute
permission and requests seeking supervisor privilege through the Extended Capability Register (see
ERS and SRS fields in Section 10.4.3).

The following describes how first-level translation determines access rights:
• For requests-with-PASID with supervisor privilege (value of 1 in Privilege-mode-Requested (PR)

field):
— Data reads (Read requests with value of 0 in Execute-Requested (ER) field)

• Data reads are allowed from any input address with a valid translation.
— Instruction Fetches (Read requests with value of 1 in Execute-Requested (ER) field)

• If No-Execute-Enable (NXE) field in extended-context-entry used to translate request is 0
— If Supervisor-Mode-Execute-Protection (SMEP) field in extended-context-entry used to

translate request is 0, instruction may be fetched from any input address with a valid
translation.

— If Supervisor-Mode-Execute-Protection (SMEP) field in extended-context-entry used to
translate request is 1, instruction may be fetched from any input address with a valid

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-12

DMA Remapping—Intel® Virtualization Technology for Directed I/O

translation for which the U/S field (bit 2) is 0 in at least one of the paging-structure
entries controlling the translation.

• If No-Execute-Enable (NXE) field in extended-context-entry used to translate request is 1
— If Supervisor-Mode-Execute-Protection (SMEP) field in extended-context-entry used to

translate request is 0, instruction may be fetched from any input address with a valid
translation for which the XD field (bit 63) is 0 in every paging-structure entry controlling
the translation.

— If Supervisor-Mode-Execute-Protection (SMEP) field in extended-context-entry used to
translate request is 1, instruction may be fetched from any input address with a valid
translation for which, the U/S field is 0 in at least one of the paging-structure entries
controlling the translation, and the XD field is 0 in every paging-structure entry
controlling the translation.

— Write requests and Atomics requests
• If Write-Protect-Enable (WPE) field in extended-context-entry used to translate request is

0, writes are allowed to any input address with a valid translation.
• If WPE=1, writes are allowed to any input address with a valid translation for which the R/W

field (bit 1) is 1 in every paging-structure entry controlling the translation.
• For requests-with-PASID with user privilege (value of 0 in Privilege-mode-Requested (PR) field):

— Data reads (Read requests with value of 0 in Execute-Requested (ER) field)
• Data reads are allowed from any input address with a valid translation for which the U/S

field is 1 in every paging-structure entry controlling the translation.
— Instruction fetches (Read requests with value of 1 in Execute-Requested (ER) field)

• If No-Execute-Enable (NXE) field in extended-context-entry used to translate request is 0,
instructions may be fetched from any input address with a valid translation for which the
U/S field is 1 in every paging structure entry controlling the translation.

• If No-Execute-Enable (NXE) field in extended-context-entry used to translate request is 1,
instructions may be fetched from any input address with a valid translation for which the
U/S field is 1 and XD field is 0 in every paging-structure entry controlling the translation.

— Write requests and Atomics requests
• Writes are allowed to any input address with a valid translation for which the R/W field and

the U/S field are 1 in every paging-structure entry controlling the translation.

Remapping hardware may cache information from the paging-structure entries in translation caches.
These caches may include information about access rights. Remapping hardware may enforce access
rights based on these caches instead of on the paging structures in memory. This fact implies that, if
software modifies a paging-structure entry to change access rights, the hardware might not use that
change for a subsequent access to an affected input address. Refer to Chapter 6 for details on
hardware translation caching and how software can enforce consistency with translation caches when
modifying paging structures in memory.

3.6.3 Accessed, Extended Accessed, and Dirty Flags

For any paging-structure entry that is used during first-level translation, bit 5 is the Accessed (A) flag.
For first-level paging-structure entries referenced through a PASID-entry with EAFE=1, bit 10 is the
Extended-Accessed flag. For paging-structure entries that map a page (as opposed to referencing
another paging structure), bit 6 is the Dirty (D) flag. These flags are provided for use by memory-
management software to manage the transfer of pages and paging structures into and out of physical
memory.

• Whenever the remapping hardware uses a first-level paging-structure entry as part of input-
address translation, it atomically sets the A field in that entry (if it is not already set).

• If the Extended-Accessed-Flag-Enable (EAFE) is 1 in a PASID-entry that references a first-level
paging-structure entry used by hardware, it atomically sets the EA field in that entry. Whenever

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-13 Order Number: D51397-006

EA field is atomically set, the A field is also set in the same atomic operation. For software usages
where the first-level paging structures are shared across heterogeneous agents (e.g., CPUs and
accelerator devices such as GPUs), EA flag may be used by software to identify pages accessed by
non-CPU agent(s) (as opposed to the A flag which indicates access by any agent sharing the
paging structures).

• Whenever there is a write to a input address, the remapping hardware atomically sets the D field
(if it is not already set) in the paging-structure entry that identifies the final translated address for
the input address (either a PTE or a paging-structure entry in which the PS field is 1). The atomic
operation that sets the D field also sets the A field (and the EA field, if EAFE=1 as described
above).

Memory-management software may clear these flags when a page or a paging structure is initially
loaded into physical memory. These flags are “sticky”, meaning that, once set, the remapping
hardware does not clear them; only software can clear them.

Remapping hardware may cache information from the first-level paging-structure entries in
translation caches (see Chapter 6). These caches may include information about accessed, extended-
accessed, and dirty flags. This fact implies that, if software modifies an accessed flag, extended-
accessed flag, or a dirty flag from 1 to 0, the hardware might not set the corresponding bit in memory
on a subsequent access using an affected input address. Refer to Chapter 6 for details on hardware
translation caching and how software can enforce consistency with translation caches when modifying
paging structures in memory.

3.6.4 Snoop Behavior

Snoop behavior for a memory access (to a translation structure entry or access to the mapped page)
specifies if the access is coherent (snoops the processor caches) or not. The snoop behavior is
independent of the memory typing described in Section 3.6.5. When processing requests-with-PASID
through first-level translation, the snoop behavior for various accesses is specified as follows:

• Access to extended-root and extended-context-entries are snooped if the Coherency (C) field in
Extended Capability Register (see Section 10.4.3) is reported as 1. These accesses are not
required to be snooped if the field is reported as 0.

• Access to PASID-table entries are always snooped.
• Accesses to first-level paging-entries (PML4E, PDPE, PDE, PTE) are always snooped.
• Access to the page mapped through first-level translation is always snooped (independent of the

value of the No-Snoop (NS) attribute in the request).

3.6.5 Memory Typing

The memory type of a memory access (to a translation structure entry or access to the mapped page)
refers to the type of caching used for that access. Refer to Intel® 64 processor specifications for
definition and properties of each supported memory-type (UC, UC-, WC, WT, WB, WP). Support for
memory typing in remapping hardware is reported through the Memory-Type-Support (MTS) field in
the Extended Capability Register (see Section 10.4.3). This section describes how first-level
translation contributes to determination of memory typing.

• Memory-type has no meaning (and hence ignored) for memory accesses from devices operating
outside the processor coherency domain.

• Memory-type applies for memory accesses from devices (such as Intel® Processor Graphics
device) operating inside the processor coherency domain.

When processing requests-with-PASID from devices operating in the processor coherency domain,
the memory type for any access through first-level translation is computed as follows:

• If cache-disable (CD) field in the extended-context-entry used to process the request is 1, all
accesses use memory-type of uncacheable (UC).

• If CD field is 0, the memory-type for accesses is computed as follows:

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-14

DMA Remapping—Intel® Virtualization Technology for Directed I/O

— Access to extended-root & extended-context-entries use memory-type of uncacheable (UC).
— Access to PASID-table entries use memory-type from MTRR (described in Section 3.6.5.2).
— Memory-type for access to first-level translation-structure entries (PML4E, PDPE, PDE, and

PTE), and for access to the page itself is computed as follows:
• First, the memory-type specified by the Page Attribute Table (PAT) is computed. PAT is a 32-

bit field in the extended-context-entry, comprising eight 4-bit entries (entry i comprises bits
4i+3:4i). Refer to Section 9.4 for the exact format of the PAT field in the extended-context-
entry.

• Second, the memory-type for the target physical address as specified by the Memory Type
Range Registers (MTRRs) is computed. MTRRs provide a mechanism for associating the
memory types with physical-address ranges in system memory. MTRR Registers are
described in detail in Section 10.4.38, Section 10.4.39, Section 10.4.40, and
Section 10.4.41. For details on MTRR usage and configuration requirements refer to Intel®

64 processor specifications.
• Finally, the effective memory-type is computed by combining the memory-types computed

from PAT and MTRR.

The following sub-sections describe details of computing memory-type from PAT, memory type from
MTRR, and how to combine them to form the effective memory type.

3.6.5.1 Selecting Memory Type from Page Attribute Table

Memory-type selection from Page Attribute Table requires hardware to form a 3-bit index made up of
the PAT, PCD and PWT bits from the respective paging-structure entries. The PAT bit is bit 7 in page-
table entries that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure entries that point to
pages of any size.

The PAT memory-type comes from entry i of the Page Attribute Table in the extended-context-entry
controlling the request, where i is defined as follows:

• For access to PML4E, i = 2*PCD+PWT, where the PCD and PWT values come from the PASID-table
entry.

• For access to a paging-structure entry X whose address is in another paging structure entry Y
(i.e., PDPE, PDE and PTE), i = 2*PCD+PWT, where the PCD and PWT values come from Y.

• For access to the physical address that is the translation of an input address, i =
4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the relevant PTE (if the
translation uses a 4-KByte page), the relevant PDE (if the translation uses a 2-MByte page), or
the relevant PDPE (if the translation uses a 1-GByte page).

3.6.5.2 Selecting Memory Type from Memory Type Range Registers

Remapping hardware implementations reporting Memory-Type-Support (MTS) field as Set in the
Extended Capability Register support the Memory Type Range Registers (MTRRs). These include the
MTRR Capability Register (see Section 10.4.38), MTRR Default Type Register (see Section 10.4.39),
fixed-range MTRRs (see Section 10.4.40), and variable-range MTRRs (see Section 10.4.41).

Selection of memory-type from the MTRR registers function as follows:
• If the MTRRs are not enabled (Enable (E) field is 0 in the MTRR Default Type Register), then MTRR

memory-type is uncacheable (UC).
• If the MTRRs are enabled (E=1 in MTRR Default Type Register), then the MTRR memory-type is

determined as follows:
— If the physical address falls within the first 1-MByte and fixed MTRRs are enabled, the MTRR

memory-type is the memory-type stored for the appropriate fixed-range MTRR (see
Section 10.4.40).

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-15 Order Number: D51397-006

— Otherwise, hardware attempts to match the physical address with a memory type set by the
variable-range MTRRs ((see Section 10.4.41):
• If one variable memory range matches, the MTRR memory-type is the memory type stored

in the MTRR_PHYSBASEn_REG Register for that range.
• If two or more variable memory ranges match and the memory-types are identical, then

MTRR memory-type is that memory-type.
• If two or more variable memory ranges match and one of the memory types is UC, then

MTRR memory-type is UC.
• If two or more variable memory ranges match and the memory types are WT and WB, then

MTRR memory-type is WT.
• For overlaps not defined by above rules, hardware behavior is undefined.

— If no fixed or variable memory range matches, then the MTRR memory-type is the default
memory-type from the MTRR Default Type Register (see Section 10.4.39).

3.6.5.3 Selecting Effective Memory Type

When the cache-disable (CD) field in extended-context-entry is 0, the effective memory-type for an
access is computed from the PAT memory-type and the MTRR memory-type as illustrated in Table 4
below.

Table 4. Effective Memory Types

MTRR
Memory Type

PAT
Memory Type

Effective
Memory Type

UC

UC UC

UC- UC

WC WC

WT UC

WB UC

WP UC

WC

UC UC

UC- WC

WC WC

WT UC

WB WC

WP UC

WT

UC UC

UC- UC

WC WC

WT WT

WB WT

WP WP

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-16

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Remapping hardware may cache information from the first-level paging-structure entries in
translation caches (see Chapter 6). These caches may include information about memory typing.
Hardware may use memory-typing information from these caches instead of from the paging
structures in memory. This fact implies that, if software modifies a paging-structure entry to change
the memory-typing bits, hardware might not use that change for a subsequent translation using that
entry or for access to an affected input-address. Refer to Chapter 6 for details on hardware
translation caching and how software can enforce consistency with translation caches when modifying
paging structures in memory.

3.7 Second-Level Translation
Context and extended-context-entries can be configured to support second-level translation. Second-
level translation applies to requests-without-PASID, but can also be applied (nested) with first-level
translation for requests-with-PASID. This section describes the use of second-level translation for
requests-without-PASID. Section 3.8 describes the nested use of second-level translation for
requests-with-PASID.

Context and extended-context-entries contain a pointer to the base of the second-level translation
structure. Section 9.3 and Section 9.4 describe the exact format of the context and extended-
context-entries. Second-level translation restricts input-address to an implementation specific
address-width reported through the Maximum Guest Address Width (MGAW) field in the Capability
Register. Requests-without-PASID arriving at the remapping hardware are subject to MGAW address
checking, and any violations are treated as translation-fault. Chapter 7 provides details of fault
conditions and its reporting to software.

Second-level translation uses a hierarchical paging structure as described in Section 3.5. To allow
page-table walks with 9-bit stride, the Adjusted Guest Address Width (AGAW) value for a domain is
defined as its Guest Address Width (GAW) value adjusted, such that (AGAW-12) is a multiple of 9.
The AGAW indicates the number of levels of page-walk. Hardware implementations report the
supported AGAWs through the Capability Register. Second-level translation may map input addresses
to 4-KByte pages, 2-MByte pages, or 1-GByte pages. Implementations report support in second-level
translation for 2-MByte and 1-GByte large-pages through the Capability Register. Figure 3-9

WB

UC UC

UC- UC

WC WC

WT WT

WB WB

WP WP

WP

UC UC

UC- WC

WC WC

WT WT

WB WP

WP WP

Table 4. Effective Memory Types

MTRR
Memory Type

PAT
Memory Type

Effective
Memory Type

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-17 Order Number: D51397-006

illustrates the translation process for a 4-level paging structure when it produces a 4-KByte page;
Figure 3-10 illustrates mapping to a 2-MByte page; Figure 3-11 illustrates mapping to a 1-GByte
page.

Table 5 gives the different names of the second-level translation structures, that are given based on
their use in the translation process. It also provides, for each structure, the source of the physical-
address used to locate it, the bits in the input-address used to select an entry from the structure, and
details of whether and how such an entry can map a page. Section 9.8 describes format of each of
these paging structures in detail.

The following describe the second-level translation in more detail and how the page size is
determined:

• For implementations supporting a 4-level paging structure for second-level paging, a 4-KByte
naturally aligned second-level-PML4 table is located at the physical address specified in the
SLPTPTR field in the extended-context-entry (or context-entry). A second-level-PML4 table
comprises 512 64-bit entries (SL-PML4Es). A SL-PML4E is selected using the physical address
defines as follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 47:39 of the input address.
— Bits 12 and higher are from SLPTPTR field in the extended-context-entry (or context-entry).

Because a SL-PML4E is identified using bits 47:39 of the input address, it controls access to a
512-GByte region of the input-address space.

• For implementations supporting a 4-level paging structure for second-level paging, a 4-KByte
naturally aligned page-directory-pointer table is located at the physical address specified in the
address (ADDR) field in the SL-PML4E (see Table 24). For implementations supporting 3-level
paging structure, the 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in the SLPTPTR field in the extended-context-entry (or context-entry).
A page-directory-pointer table comprises of 512 64-bit entries (SL-PDPEs). A SL-PDPE is selected
using the physical address defined as follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 38:30 of the input address.
— Bits 12 and higher are from the ADDR field in the SL-PML4E (or from the SLPTPTR field in the

extended-context-entry (or context-entry) for implementations supporting 3-level paging
structure).

Because a SL-PDPE is identified using bits 47:30 of the input address, it controls access to a 1-
GByte region of the input-address space. Use of the SL-PDPE depends on its page-size (PS) field:

Table 5. Second-level Paging Structures

Paging
Structure

Entry
Name

Physical
Address of
Structure

Bits
Selecting

Entry
Page Mapping

Second-level
PML4 table SL-PML4E

Context-entry (or
Extended-
Context-entry)

47:39 N/A

Second-level
Page-directory-
pointer table

SL-PDPE SL-PML4E1

1. For implementations supporting only 3-level paging structures for second-level translation, there is no SL-PML4E,
and the physical address to locate the SL-PDPE is provided by the context-entry (or extended-context-entry).

38:30 1-GByte page (if Page Size (PS) field is Set)

Second-level
Page directory SL-PDE SL-PDPE 29:21 2-MByte page (if Page-Size (PS) field is Set)

Second-level
Page table SL-PTE SL-PDE 20:12 4-KByte page

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-18

DMA Remapping—Intel® Virtualization Technology for Directed I/O

• If the SL-PDPE’s PS field is 1, the SL-PDPE maps a 1-GByte page (see Table 25). The final physical
address is computed as follows:
— Bits 29:0 are from the input address.
— Bits 30 and higher are from the ADDR field in the SL-PDPE.

• If the SL-PDPE’s PS field is 0, a 4-KByte naturally aligned second-level page directory is located at
the physical address specified in the address (ADDR) field in the SL-PDPE (see Table 26). A
second-level page directory comprises 512 64-bit entries (SL-PDEs). A PDE is selected using the
physical address defined as follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 29:21 of the input address.
— Bits 12 and higher are from the ADDR field in the SL-PDPE.

Because a SL-PDE is identified using bits 47:21 of the input address, it controls access to a 2-
MByte region of the input-address space. Use of the SL-PDPE depends on its page-size (PS) field:

• If the SL-PDE’s PS field is 1, the SL-PDE maps a 2-MByte page (see Table 27). The final physical
address is computed as follows:
— Bits 20:0 are from the input address.
— Bits 21 and higher are from the ADDR field in the SL-PDE.

• If the SL-PDE’s PS field is 0, a 4-KByte naturally aligned second-level page-table is located at the
physical address specified in the address (ADDR) field in the SL-PDE (see Table 28). Such a
second-level page-table comprises 512 64-bit entries (SL-PTEs). A SL-PTE is selected using the
physical address defined as follows:
— Bits 2:0 are all 0.
— Bits 11:3 are bits 20:12 of the input address.
— Bits 12 and higher are from ADDR field in the SL-PDE.

Because a SL-PTE referenced by a SL-PDE is identified using bits 47:12 of the input address,
every such SL-PTE maps a 4-KByte page (Table 29). The final page address is translated as
follows:
— Bits 11:0 are from the input address.
— Bits 12 and higher are from the ADDR field in the SL-PTE.

If a second-level paging-structure entry’s Read (R) and Write (W) fields1 are both 0 or if the entry
sets any reserved field, the entry is used neither to reference another paging-structure entry nor to
map a page. A reference using an input address whose translation would use such a paging-structure
entry causes a translation error (see Chapter 7).

The following bits are reserved with second-level translation:
• If either the R or W field of a paging-structure entry is 1, bits 51: HAW are reserved.
• If either the R or W field of a SL-PML4E is 1, the PS field is reserved.
• If 1-GByte pages are not supported and the R or W fields of a SL-PDPE is 1, the PS field is

reserved.
• If the R or W fields of a SL-PDPE is 1, and PS field in that SL-PDPE is 1, bits 29:12 are reserved.
• If 2-MByte pages are not supported and the R or W fields of a SL-PDE is 1, the PS field is

reserved.
• If either the R or W field of a SL-PDE is 1, and the PS field in that SL-PDE is 1, bits 20:12 are

reserved.

1. Execute (X) field in second-level paging-structure entries is ignored when translating requests-
without-PASID. Refer to Section 3.8 for Execute (X) field usage with nested translation of
requests-with-PASID.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-19 Order Number: D51397-006

• If either the R or W field of a non-leaf paging-structure entry (i.e. SL-PML4E, SL-PDPE, or SL-PDE
with PS=0) is 1, the SNP (Snoop) field and the TM (Transient Mapping) field are reserved.

• If either the R or W field of a SL-PTE is 1, and Snoop Control (SC) is reported as 0 in Extended
Capability Register, the SNP field is reserved.

• If either the R or W field of a SL-PTE is 1, and Device-TLBs (DT) is reported as 0 in Extended
Capability Register, the TM field is reserved.

3.7.1 Translation Faults

Requests-without-PASID can result in second-level translation faults for either of two reasons: (1)
there is no valid translation for the input address; or (2) there is a valid translation for the input
address, but its access rights do not permit the access. There is no valid translation if any of the
following are true:

• A hardware attempt to access a translation entry (root/extended-root entry, context/extended-
context entry, or a second-level paging-structure entry) resulted in error.

• The root-entry or extended-root-entry used to process the request (as described in Section 3.4.2)
has the relevant present field as 0, has invalid programming, or has a reserved bit set.

• The context-entry or extended-context-entry used to process the request (as described in
Section 3.4.3) has the present (P) field as 0, has invalid programming, is programmed to block
requests-without-PASID, or has a reserved bit set.

• The input address in the request-without-PASID is above (2X - 1), where X is the minimum of
MGAW and AGAW corresponding to address-width programmed in the context-entry or extended-
context-entry.

• The translation process for that address (as described in Section 3.6) used a second-level paging-
structure entry in which the R and W fields are both 0 or one that sets a reserved bit.

If there is a valid translation for an input address, its access rights are determined as described in
Section 3.7.2.

Depending on capabilities supported by remapping hardware and endpoint device, translations faults
can be treated as non-recoverable errors or recoverable faults (see Chapter 7 for details).

3.7.2 Access Rights

The accesses permitted for a request-without-PASID whose input address is successfully translated
through second-level translation is determined by the attributes of the request and the access rights
specified by the second-level paging-structure entries controlling the translation.

Devices can issue requests-without-PASID for reads, writes, or atomics. The following describes how
second-level translation determines access rights for such requests:

• Read request without PASID:
— Reads are allowed from any input address with a valid translation for which the Read (R) field

is 1 in every paging-structure entry controlling the translation.
• Write request without PASID:

— Writes are allowed to any input address with a valid translation for which the Write (W) field is
1 in every paging-structure entry controlling the translation.

• Atomics request without PASID:
— Atomics requests are allowed from any input address with a valid translation for which the

Read (R) and Write (W) fields are both 1 in every paging-structure entry controlling the
translation.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-20

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Remapping hardware may cache information from the second-level paging-structure entries in
translation caches. These caches may include information about access rights. Remapping hardware
may enforce access rights based on these caches instead of on the paging structures in memory. This
fact implies that, if software modifies a paging-structure entry to change access rights, the hardware
might not use that change for a subsequent access to an affected input address. Refer to Chapter 6
for details on hardware translation caching and how software can enforce consistency with translation
caches when modifying paging structures in memory.

3.7.3 Snoop Behavior

When processing requests-without-PASID through second-level translation, the snoop behavior for
various accesses are specified as follows:

• Access to extended-root and extended-context-entries are snooped if the Coherency (C) field in
Extended Capability Register (see Section 10.4.3) is reported as 1. These accesses are not
required to be snooped if the field is reported as 0.

• Accesses to second-level paging-entries (SL-PML4E, SL-PDPE, SL-PDE, SL-PTE) are snooped if the
Coherency (C) field in Extended Capability Register (see Section 10.4.3) is reported as 1. These
accesses are not required to be snooped if the field is reported as 0.

• Accesses to a page mapped through second-level translation has snoop behavior as follows:
— If the Snoop Control (SC) field in extended capability Register is reported as 0, snoop

behavior for access to the page mapped through second-level translation is determined by the
no-snoop attribute in the request.

— If the SC field in Extended Capability Register is reported as 1, the snoop behavior for access
to the translated address is controlled by the value of the Snoop (SNP) field in the leaf
paging-structure entry controlling the second-level translation. If the SNP field in the paging-
structure entry is 1, the processor caches are snooped independent of the no-snoop attribute
in the request. If the SNP field in the paging-structure entry is 0, the snoop behavior follows
the no-snoop attribute in the request.

3.7.4 Memory Typing

This section describes how second-level translation contributes to determination of memory typing for
requests-without-PASID.

• Memory-type is ignored for memory accesses from remapping requests from devices operating
outside the processor coherency domain.

• Memory-type applies for memory accesses from remapping requests from devices operating
inside the processor coherency domain.

When processing requests-without-PASID from devices operating in the processor coherency domain,
the memory type for any access through second-level translation is computed as follows:

• If cache-disable (CD) field in the extended-context-entry used to process the request is 1, all
accesses use memory-type of uncacheable (UC).

• If cache-disable (CD) is 0 in the extended-context-entry, or if the context-entry is used, the
memory-type for accesses is computed as follows:
— Access to root/extended-root entries and context/extended-context-entries use memory-type

of uncacheable (UC).
— Access to second-level translation entries (SL-PML4E, SL-PDPE, SL-PDE, SL-PTE) and the final

page use memory-type of write-back (WB).

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-21 Order Number: D51397-006

3.8 Nested Translation
When Nesting Enable (NESTE) field is 1 in extended-context-entries, requests-with-PASID translated
through first-level translation are also subjected to nested second-level translation. Such extended-
context-entries contain both the pointer to the PASID-table (which contains the pointer to the first-
level translation structures), and the pointer to the second-level translation structures. Figure 3-12
illustrates the nested translation for a request-with-PASID mapped to a 4-KByte page through first-
level translation, and interleaved through 4-KByte mappings in second-level paging structures.

With nesting, all memory accesses generated when processing a request-with-PASID through first-
level translation are subjected to second-level translation. This includes access to PASID-table entry,
access to first-level paging structure entries (PML4E, PDPE, PDE, PTE), and access to the output
address from first-level translation. With nested translation, a guest operating system running within
a virtual machine may utilize first-level translation as described in Section 2.5.1.3, while the virtual
machine monitor may virtualize memory by enabling nested second-level translations.

The first-level translation follows the same process as described in Section 3.6 to map input
addresses to 4-KByte, 2-MByte or 1-GByte pages. The second-level translation is interleaved at each
step, and follows the process described in Section 3.7 to map input addresses to 4-KByte, 2-MByte or
1-GByte pages.

Figure 3-12. Nested Translation with 4-KByte pages

P D P E

F irst-leve l p a g in g
stru ctu re p o in ter

P M L4E

P D E

P TE

S L-P M L4 E

S L-P M L4 E

S L-P M L4 E

S L-P M L4 E

S L-P M L4 E

SL-P D P E

SL-P D P E

SL-P D P E

SL-P D P E

SL-P D P E

SL-P D E

SL-P D E

SL-P D E

SL-P D E

SL-P D E

SL-P TE

SL-P TE

SL-P TE

SL-P TE

SL-P TE

Se co n d-leve l
p a g in g stru ctu re

p o in ter

F in a l P age

P A SID T ab le
p o in te r SL-P D P E SL-P D E SL-P TES L-P M L4 E

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-22

DMA Remapping—Intel® Virtualization Technology for Directed I/O

3.8.1 Translation Faults

Requests-with-PASID subjected to nested translation can result in fault at the first-level translation or
any of the second-level translation stages. Translation faults at a level can result from either of two
reasons: (1) there is no valid translation for the respective input address; or (2) there is a valid
translation for the respective input address, but its access rights do not permit the access.

There is no valid translation if any of the following are true:
• The Root Table Type (RTT) field in Root-table Address register (RTADDR_REG) is 0
• The input address in the request-with-PASID is not canonical (i.e., address bits 63:48 not same

value as address bit 47).
• A hardware attempt to access a translation entry (extended-root-entry, extended-context-entry,

PASID-table entry, first-level paging-structure entry, second-level paging-structure entry)
resulted in error.

• The extended-root-entry used to process the request (as noted in Section 3.4.2) has the relevant
present field as 0, has invalid programming, or has a reserved bit set.

• The extended-context-entry used to process the request (as noted in Section 3.4.3) has the P
field as 0, PASIDE field as 0, ERE field as 0 (for requests with Execute-Requested (ER) field Set),
SRE field as 0 (for requests with Privileged-mode-Requested (PR) field Set), has invalid
programming, T field is programmed to block requests-with-PASID, or has a reserved bit set.

• The PASID-entry used to process the request (as noted in Section 3.6) has the P field as 0.
• The first-level translation process for the address in the request-with-PASID (as noted in

Section 3.6) used a first-level paging-structure entry in which the P field is 0 or one that sets a
reserved bit.

• Input address for any of the second-level translation stages is above (2X - 1), where X is the
minimum of MGAW and AGAW corresponding to the address-width programmed in the extended-
context-entry used.

• The second-level translation (as noted in Section 3.6) for address of a paging-structure entry
(PASID-entry, PML4E, PDPE, PDE, PTE) used a second-level paging-structure entry in which both
the R and W field is 0, or one that sets a reserved bit.

• The second-level translation (as noted in Section 3.6) for output address from first-level
translation (address of final page) used a second-level paging-structure entry in which both the R
and W field is 0, or has a reserved field set.

If there is a valid second-level translation for output address from first-level translation (address of
final page), its access rights are determined as described in Section 3.8.2.

Depending on the capabilities supported by remapping hardware units and the endpoint device,
translations faults may be treated as non-recoverable errors or recoverable page faults. Chapter 7
provides detailed hardware behavior on translation faults and reporting to software.

3.8.2 Access Rights

For requests-with-PASID subjected to nested translation, access rights are checked at both first and
second levels of translation.

Access rights checking for first-level translation follows the behavior described in Section 3.6.2.

Access rights for second-level translations function as follows:
• Access to paging structures (First-level paging structure pointer, PML4E, PDPE, PDE, PTE) are

treated as requests-without-PASID.
— Reads of paging structures

• Read of paging structures are allowed from any input address with a valid translation for
which the Read (R) field is 1 in every second-level paging-entry controlling the translation.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-23 Order Number: D51397-006

— Accessed (A), Extended-Accessed (EA), Dirty (D) flag update of first-level paging-structure
entries
• Atomic A/EA/D flag update of first-level paging-entries are allowed from any input address

with a valid translation for which the Read (R) and Write (W) fields are 1 in every second-
level paging-entry controlling the translation to the respective first-level paging-entry.

• Access to the final page is treated as request-with-PASID. Access rights checking for the final
page access functions as follows:
— Data reads (Read requests with value of 0 in Execute-Requested (ER) field)

• Data reads are allowed from any input address with a valid translation for which the Read
(R) field is 1 in every second-level paging-structure entry controlling the translation.

— Instruction Fetches (Read requests with value of 1 in Execute-Requested (ER) field)
• If Second-level Execute-Enable (SLEE) field in extended-context-entry used to translate

request is 0
— Instruction fetches are allowed from any input address with a valid translation for which

the Read (R) field is 1 in every second-level paging-entry controlling the translation.
• If Second-level Execute-Enable (SLEE) field in extended-context-entry used to translate

request is 1
— Instruction fetches are allowed from any input address with a valid translation for which

the Read (R) and Execute (X) fields are both 1 in every second-level paging-entry
controlling the translation.

— Write requests
• Writes are allowed from any input address with a valid translation for which the Write (W)

field is 1 in every second-level paging-entry controlling the translation.
— Atomics requests

• Atomics requests are allowed from any input address with a valid translation for which both
the Read (R) and Write (W) fields are 1 in every second-level paging-entry controlling the
translation.

With nested translations, remapping hardware may cache information from both first-level and
second-level paging-structure entries in translation caches. These caches may include information
about access rights. Remapping hardware may enforce access rights based on these caches instead of
on the paging structures in memory. This fact implies that, if software modifies a paging-structure
entry to change access rights, the hardware might not use that change for a subsequent access to an
affected input address. Refer to Chapter 6 for details on hardware translation caching and how
software can enforce consistency with translation caches when modifying paging structures in
memory.

3.8.3 Snoop Behavior

When processing requests-with-PASID through nested translation, the snoop behavior for various
accesses are specified as follows:

• Access to extended-root and extended-context-entries are snooped if the Coherency (C) field in
Extended Capability Register (see Section 10.4.3) is reported as 1. These accesses are not
required to be snooped if the field is reported as 0.

• Accesses to second-level paging-entries (SL-PML4E, SL-PDPE, SL-PDE, SL-PTE) are snooped if the
Coherency (C) field in Extended Capability Register (see Section 10.4.3) is reported as 1. These
accesses are not required to be snooped if the field is reported as 0.

• Access to PASID-table entries are always snooped.
• Accesses to first-level paging-entries (PML4E, PDPE, PDE, PTE) are always snooped.
• Access to the page mapped through nested (first-level and second-level) translation is always

snooped.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-24

DMA Remapping—Intel® Virtualization Technology for Directed I/O

3.8.4 Memory Typing

This section describes how nested translation contributes to determination of memory typing for
requests-with-PASID.

• Memory-type is ignored for memory accesses from remapping requests from devices operating
outside the processor coherency domain.

• Memory-type applies for memory accesses from remapping requests from devices operating
inside the processor coherency domain.

When processing requests-with-PASID from devices operating in the processor coherency domain,
the memory type for any access through nested translation is computed as follows:

• If cache-disable (CD) field in the extended-context-entry used to process the request is 1, all
accesses use memory-type of uncacheable (UC).

• If CD field is 0, the memory-type for accesses is computed as follows:
— Access to extended-root-entries & extended-context-entries use memory-type of uncacheable

(UC).
— Memory-type for access to second-level translation-structure entries (SL-PML4E, SL-PDPE, SL-

PDE, and SL-PTE) used to translate access to PASID-table entry, PML4, PDPE, PDE and PTE
entries is computed as follows:
• If extended memory-type enable (EMTE) field in the extended-context-entry used is 0,

memory-type of write-back (WB) is used.
• If EMTE field in extended-context-entry used is 1, memory-type specified in the extended

memory-type (EMT) field in the extended-context-entry is used.
— Memory-type for access to PASID-table entries is computed as follows:

• If extended memory type enable (EMTE) field in the extended-context-entry used is 0,
memory-type from MTRR (as described in Section 3.6.5.2) is used.

• If EMTE field in extended-context-entry used is 1, memory-type specified in the EMT field in
the last (leaf) second-level paging-structure entry used to translate the PASIDPTR field is
used.

— Memory-type for access to first-level translation-structure entries (PML4E, PDPE, PDE, and
PTE), and memory-type for access to the final page, is computed as follows:
• First, the first-level memory-type specified by the Page Attribute Table (PAT) is computed.

This is identical to the PAT memory-type computation with first-level only translation as
described in Section 3.6.5.1.

• If extended memory-type enable (EMTE) field in the extended-context-entry used is 0,
memory-type used is the first-level PAT memory-type computed above.

• If EMTE field in extended-context-entry used is 1, memory-type is computed as follows:
— During the second-level translation to access the respective first-level paging entry, the

ignore-PAT (IGPT) and extended memory-type (EMT) fields from the last (leaf) second-
level translation-structure entry used is fetched.

— If IGPT field is 1, the PAT memory-type computed from first-level translation is ignored,
and memory-type specified by the EMT field is used as the memory-type for the access.

— If IGPT field is 0, the effective memory-type for the access is computed by combining the
first-level PAT memory-type above with the EMT field. The effective memory-type
computation follows the same rules described in Table 4 in Section 3.6.5.3, except
memory-type specified by the EMT field is used instead of the MTRR memory-type.

With nesting, remapping hardware may cache information from the first-level and second-level
paging-structure entries in translation caches (see Chapter 6). These caches may include information
about memory typing. Hardware may use memory-typing information from these caches instead of
from the paging structures in memory. flags. This fact implies that, if software modifies a paging-

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-25 Order Number: D51397-006

structure entry to change the memory-typing bits, hardware might not use that change for a
subsequent translation using that entry or for access to an affected input-address. Refer to Chapter 6
for details on hardware translation caching and how software can enforce consistency with translation
caches when modifying paging structures in memory.

3.9 Identifying Origination of DMA Requests
In order to support usages requiring isolation, the platform must be capable of uniquely identifying
the requestor (Source-Id) for each DMA request. The DMA sources in a platform and use of source-id
in these requests may be categorized as below.

3.9.1 Devices Behind PCI-Express to PCI/PCI-X Bridges

The PCI-Express-to-PCI/PCI-X bridges may generate a different requester-id and tag combination in
some instances for transactions forwarded to the bridge’s PCI-Express interface. The action of
replacing the original transaction’s requester-id with one assigned by the bridge is generally referred
to as taking ‘ownership’ of the transaction. If the bridge generates a new requester-id for a
transaction forwarded from the secondary interface to the primary interface, the bridge assigns the
PCI-Express requester-id using the secondary interface’s bus number, and sets both the device
number and function number fields to zero. Refer to the PCI-Express-to-PCI/PCI-X bridge
specifications for more details.

For remapping requests from devices behind PCI-Express-to-PCI/PCI-X bridges, software must
consider the possibility of requests arriving with the source-id in the original PCI-X transaction or the
source-id provided by the bridge. Devices behind these bridges can only be collectively assigned to a
single domain. When setting up remapping structures for these devices, software must program
multiple context entries, each corresponding to the possible set of source-ids. Each of these context-
entries must be programmed identically to ensure the DMA requests with any of these source-ids are
processed identically.

3.9.2 Devices Behind Conventional PCI Bridges

For devices behind conventional PCI bridges, the source-id in the DMA requests is the requester-id of
the bridge device. For remapping requests from devices behind conventional PCI bridges, software
must program the context-entry corresponding to the bridge device. Devices behind these bridges
can only be collectively assigned to a single domain.

3.9.3 Root-Complex Integrated Devices

Transactions generated by all root-complex integrated devices must be uniquely identifiable through
its source-id (PCI requester-id). This enables any root-complex integrated endpoint device (PCI or
PCI-Express) to be independently assigned to a domain.

3.9.4 PCI-Express Devices Using Phantom Functions

To increase the maximum possible number of outstanding requests requiring completion, PCI-Express
allows a device to use function numbers not assigned to implemented functions to logically extend the
Tag identifier. Unclaimed function numbers are referred to as Phantom Function Numbers (PhFN). A
device reports its support for phantom functions through the Device Capability configuration register,
and requires software to explicitly enable use of phantom functions through the Device Control
configuration register.

Since the function number is part of the requester-id used to locate the context-entry for processing a
DMA request, when assigning PCI-Express devices with phantom functions enabled, software must
program multiple context entries, each corresponding to the PhFN enabled for use by the device
function. Each of these context-entries must be programmed identically to ensure the DMA requests
with any of these requester-ids are processed identically.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-26

DMA Remapping—Intel® Virtualization Technology for Directed I/O

3.10 Handling Requests from Processor Graphics Device
Processor graphics device on Intel platforms is a root-complex integrated PCI-Express device, that is
integrated to the processor or chipset package. Processor graphics device may support multiple
agents behind it such as the display agent, graphics aperture agent, and the render agents supporting
programmable graphics and media pipelines. The render agents support operating within the
processor coherency domain, and support two types of GPU contexts: (a) Legacy contexts; and (b)
Advanced contexts1.

• For legacy GPU contexts, all accesses are treated as requests-without-PASID, and input addresses
are translated through device specific graphics translation (e.g., through a graphics translation
table). If second-level translation is enabled at the remapping hardware, these accesses (access
to fetch graphics translation table entries, and access to the pages) are subject to second-level
translation.

• For advanced GPU contexts, accesses can be targeted to a physical or virtual address. Accesses to
physical address are treated as requests-without-PASID, and can be translated through second-
level translation by the remapping hardware. Accesses to virtual address are treated as requests-
with-PASID, and are translated through first-level translation (or nested translation) by the
remapping hardware. When the GPU is configured to use advanced contexts, the remapping
hardware must be configured to allow both requests-with-PASID and requests-without-PASID.

3.11 Handling Requests Crossing Page Boundaries
PCI-Express memory requests are specified to disallow address/length combinations which cause a
memory space access to cross a page (4KB) boundary. However, the PCI-Express Specification
defines checking for violations of this rule at the receivers as optional. If checked, violations are
treated as malformed transaction layer packets and reported as PCI-Express errors. Checking for
violations from Root-Complex integrated devices is typically platform-dependent.

Platforms supporting DMA remapping are expected to check for violations of the rule in one of the
following ways:

• The platform hardware checks for violations and explicitly blocks them. For PCI-Express memory
requests, this may be implemented by hardware that checks for the condition at the PCI-Express
receivers and handles violations as PCI-Express errors. DMA requests from other devices (such as
Root-Complex integrated devices) that violate the rule (and hence are blocked by hardware) may
be handled in platform-specific ways. In this model, the remapping hardware units never receive
DMA requests that cross page boundaries.

• If the platform hardware cannot check for violations, the remapping hardware units must perform
these checks and re-map the requests as if they were multiple independent DMA requests.

3.12 Handling of Zero-Length Reads
A memory read request of one double-word with no bytes enabled (“zero-length read”) is typically
used by devices as a type of flush request. For a requester, the semantics of the flush request allow a
device to ensure that previously issued posted writes in the same traffic class have been completed at
its destination.

Zero-length read requests are handled as follows by remapping hardware:
• Implementations reporting ZLR field as Clear in the Capability Register process zero-length read

requests like any other read requests. Specifically, zero-length read requests are address-
translated based on the programming of the remapping structures. Zero-length reads translated
to memory are completed in the coherency domain with all byte enables off. Unsuccessful
translations result in translation faults. For example, zero-length read requests to write-only
pages in second-level translation are blocked due to read permission violation.

1. For details on Processor Graphics device handling of legacy and advanced GPU contexts, refer to
the Programmer’s Reference Manual for Intel® Processor HD graphics.

Intel® Virtualization Technology for Directed I/O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
3-27 Order Number: D51397-006

• Implementations reporting ZLR field as Set in the Capability Register handles zero-length read
requests same as above, except if it is to a write-only page. Zero-length read requests to write-
only pages that do not encounter any faulting conditions other than read permission violation are
successfully remapped and completed. Zero-length reads translated to memory complete in the
coherency domain with all byte enables off. Data returned in the read completion is obfuscated.

DMA remapping hardware implementations are recommended to report ZLR field as Set and support
the associated hardware behavior.

3.13 Handling Requests to Interrupt Address Range
On Intel® architecture platforms, physical address range 0xFEEx_xxxx is designated as the interrupt
address range. Write requests without PASID of DWORD length to this range are interpreted by the
platform as interrupt requests. For details refer to message signalled interrupts in Intel® 64
Architecture Software Developer's Manual, Volume 3B.

Hardware treats following requests to the interrupt address range as illegal requests and handles
them as error:

• Read requests without PASID.
• Atomics requests without PASID.
• Non-DWORD length write requests without PASID.

Write requests without PASID of DWORD length are treated as interrupt requests. Interrupt requests
are not subjected to DMA remapping (even if second-level translation structures specify a mapping
for this range). Instead, remapping hardware can be enabled to subject such interrupt requests to
interrupt remapping. Chapter 5 provides details on the interrupt remapping architecture.

Software must ensure the second-level paging-structure entries are programmed not to remap input
addresses to the interrupt address range. Hardware behavior is undefined for memory requests
remapped to the interrupt address range.

Requests-with-PASID with input address in range 0xFEEx_xxxx are translated normally like any other
request-with-PASID through first-level translation (or nested translation).

3.14 Handling Requests to Reserved System Memory
Reserved system memory regions are typically allocated by BIOS at boot time and reported to OS as
reserved address ranges in the system memory map. Requests-without-PASID to these reserved
regions may either occur as a result of operations performed by the system software driver (for
example in the case of DMA from unified memory access (UMA) graphics controllers to graphics
reserved memory), or may be initiated by non system software (for example in case of DMA
performed by a USB controller under BIOS SMM control for legacy keyboard emulation). For proper
functioning of these legacy reserved memory usages, when system software enables DMA remapping,
the second-level translation structures for the respective devices are expected to be set up to provide
identity mapping for the specified reserved memory regions with read and write permissions.

Platform implementations supporting reserved memory must carefully consider the system software
and security implications of its usages. These usages are beyond the scope of this specification.
Platform hardware may use implementation-specific methods to distinguish accesses to system
reserved memory. These methods must not depend on simple address-based decoding since DMA
virtual addresses can indeed overlap with the host physical addresses of reserved system memory.

For platforms that cannot distinguish between device accesses to OS-visible system memory and
device accesses to reserved system memory, the architecture defines a standard reporting method to
inform system software about the reserved system memory address ranges and the specific devices
that require device access to these ranges for proper operation. Refer to Section 8.4 for details on the
reporting of reserved memory regions.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 3-28

DMA Remapping—Intel® Virtualization Technology for Directed I/O

For legacy compatibility, system software is expected to setup identity mapping in second-level
translation (with read and write privileges) for these reserved address ranges, for the specified
devices. For these devices, the system software is also responsible for ensuring that any input
addresses used for device accesses to OS-visible memory do not overlap with the reserved system
memory address ranges.

3.15 Root-Complex Peer to Peer Considerations
When DMA remapping is enabled, peer-to-peer requests through the Root-Complex must be handled
as follows:

• The input address in the request is translated (through first-level, second-level or nested
translation) to a host physical address (HPA). The address decoding for peer addresses must be
done only on the translated HPA. Hardware implementations are free to further limit peer-to-peer
accesses to specific host physical address regions (or to completely disallow peer-forwarding of
translated requests).

• Since address translation changes the contents (address field) of the PCI-Express Transaction
Layer Packet (TLP), for PCI-Express peer-to-peer requests with ECRC, the Root-Complex
hardware must use the new ECRC (re-computed with the translated address) if it decides to
forward the TLP as a peer request.

• Root-ports, and multi-function root-complex integrated endpoints, may support additional peer-
to-peer control features by supporting PCI-Express Access Control Services (ACS) capability.
Refer to ACS capability in PCI-Express specifications for details.

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4-1 Order Number: D51397-006

4 Support For Device-TLBs

The DMA remapping architecture described in Chapter 3 supports address translation of DMA requests
received by the Root-Complex. Hardware may accelerate the address-translation process by caching
data from the translation structures. Chapter 6 describes details of these translation caches
supported by remapping hardware. Translation caches at the remapping hardware is a finite resource
that supports requests from multiple endpoint devices. As a result, efficiency of these translation
caches in the platform can depend on number of simultaneously active DMA streams in the platform,
and address locality of DMA accesses.

One approach to scaling translation caches is to enable endpoint devices to participate in the
remapping process with translation caches implemented at the devices. These translation caches on
the device is referred to as Device-TLBs (Device Translation lookaside buffers). Device-TLBs alleviate
pressure for translation caches in the Root-Complex, and provide opportunities for devices to improve
performance by pre-fetching address translations before issuing DMA requests. Device-TLBs can be
useful for devices with strict access latency requirements (such as isochronous devices), and for
devices that have large DMA working set or multiple active DMA streams. Remapping hardware units
report support for Device-TLBs through the Extended Capability Register (see Section 10.4.3).
Additionally, Device-TLBs may be utilized by devices to support recoverable I/O page faults. This
chapter describes the basic operation of Device-TLBs. Chapter 7 covers use of Device-TLBs to support
recoverable I/O page faults.

4.1 Device-TLB Operation
Device-TLB support in endpoint devices requires standardized mechanisms to:

• Request and receive translations from the Root-Complex
• Indicate if a memory request (with or without PASID) has translated or un-translated address
• Invalidate translations cached at Device-TLBs.

Figure 4-13 illustrates the basic interaction between the Device-TLB in an endpoint and remapping
hardware in the Root-Complex, as defined by the PCI-Express Address Translation Services (ATS)
specification.

Figure 4-13. Device-TLB Operation

Translation Completion

De
vi

ce
-T

LB

Endpoint
Device Root-Complex

Remapping
Hardware

with
Translation

Caches

Translation Request

Translated Request

Paging Structures
& Pages in Memory

Invalidation Request

Invalidation Completion

Invalidation
Requests from

Software

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 4-2

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/O

ATS defines the ‘Address Type’ (AT) field in the PCI-Express transaction header for memory requests.
The AT field indicates if transaction is a memory request with ‘Untranslated’ address (AT=00b),
‘Translation Request’ (AT=01b), or memory request with ‘Translated’ address (AT=10b). ATS also
define Device-TLB invalidation messages. Following sections describe details of these transactions.

4.1.1 Translation Request

Translation-requests-without-PASID specify the following attributes that are used by remapping
hardware to process the request:

• Address Type (AT):
— AT field has value of 01b to identify it as a translation-request.

• Address:
— Address field indicates the starting input address for which the translation is requested.

• Length:
— Length field indicates how many sequential translations may be returned in response to this

request. Each translation is 8 bytes in length. If the length field has a value greater than two,
then the additional translations (if returned in the translation response) are for sequentially
increasing equal-sized pages starting at the requested input address. Refer to PCI-Express
ATS specification for more details.

• No Write (NW) flag:
— The NW flag, when Set, indicates if the endpoint is requesting read-only access for this

translation.

Translation-requests-with-PASID specify the same attributes as above, and also specify the additional
attributes (PASID value, Execute-Requested (ER) flag, and Privileged-mode-Requested (PR) flag) in
the PASID prefix.

4.1.2 Translation Completion

If the remapping hardware was not able to successfully process the translation-request (with or
without PASID), a translation-completion without data is returned.

• A status code of UR (Unsupported Request) is returned in the completion if the remapping
hardware is configured to not support translation requests from this endpoint.

• A status code of CR (Completer Abort) is returned if the remapping hardware encountered errors
when processing the translation-request. If the remapping hardware was able to successfully
process a translation-request, a translation-completion with data is returned.

For successful translation-requests-without-PASID, each translation returned in the translation-
completion data specifies the following attributes:

• Size (S):
— Value of 0b in Size field indicates the translation is for a 4-KByte page. If Size field is 1b, the

size of the translation is determined by the lowest bit in the Translated Address field (bits
63:12) with a value of 0. For example, if bit 12 is 0, the translation applies to a 8-KByte page.
If bit 12 is 1 and bit 13 is 0, the translation applies to a 16-KByte page, and so on. Refer to
PCI-Express ATS specification for details on translation size encoding.

• Non-Snooped access flag (N):
— When Set, the Non-Snooped access field indicates that the translated-requests that use this

translation must clear the No Snoop Attribute in the request.
• Untranslated access only flag (U):

— When Set, the input address range for the translation can only be accessed by the endpoint
using untranslated-request.

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4-3 Order Number: D51397-006

• Read permission (R):
— If Set, read permission is granted for the input address range of this translation. If Clear, read

permission is not granted for the input address range of this translation.
• Write permission (W):

— If Set, write permission is granted for the input address range of this translation. If Clear,
write permission is not granted for the input address range of this translation.

• Translated Address:
— If either the R or W field is Set, and the U field is Clear, the translated address field contains

the result of the translation for the respective input address. Endpoints can access the page
through Translated-requests with this address.

For successful translation-requests-with-PASID, each translation returned in the translation-
completion data specifies the same attributes as above, along with following extended attributes:

• Execute permission (EXE):
— If EXE=R=1, execute permission is granted for the input address range of this translation.

Else, execute permission is not granted for the input address range of this translation.
• Privilege Mode Access (PRIV):

— If Set, R, W and EXE refer to permissions associated with privileged mode access, requiring
translated-requests with PASID using this translation to Set the privileged-mode-requested
flag in the PASID TLP prefix. If Clear, R, W, and EXE refer to permissions associated with non-
privileged access, requiring translated-requests with PASID using this translation to Clear the
privileged-mode-requested flag in the PASID TLP prefix.

• Global Mapping (G):
— If Set, the translation is common across all PASIDs at this endpoint. If Clear, the translation is

specific to the PASID value specified in the PASID prefix in the associated Translation-request.

4.1.3 Translated Request

Translated-requests are regular memory read/write/atomics requests with Address Type (AT) field
value of 10b. When generating requests to a given input (untranslated) address, the endpoint may
lookup the local Device-TLB for cached translation (result of previous translation-requests) for the
input address. If a cached translation is found with appropriate permissions and privilege, the
endpoint may generate a translated-request (AT=10b) specifying the Translated address obtained
from the Device-TLB lookup. Translation-requests are always without PASID, as they reference
translated (host physical) address.

4.1.4 Invalidation Request & Completion

Invalidation requests are issued by software through remapping hardware to invalidate translations
cached at endpoint Device-TLBs.

Invalidation-requests-without-PASID specify the following attributes:
• Device ID

— Identity of the device (bus/device/function) whose Device-TLB is the target of invalidation.
• Size (S):

— Value of 0b in Size field indicates the target of invalidation is a 4-KByte input address range.
If Size field is 1b, the input address range to be invalidated is determined by the lowest bit in
the Untranslated Address field (bits 63:12) with a value of 0. Refer to the PCI-Express ATS
Specification for details on invalidation address size encoding.

• Untranslated Address
— Specifies the base of the input (untranslated) address range to be invalidated.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 4-4

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/O

The invalidation-requests-with-PASID specify the same attributes as above, along with a global-
invalidate flag. If the global-invalidate flag is 1, the invalidation affects across all PASID values. If the
global-invalidate flag is 0, the invalidation is required to affect only the PASID value specified in the
PASID TLP prefix.

Invalidation requests and completions carry additional tags (ITags) managed by hardware to uniquely
identify invalidation requests and completions. Refer to the PCI-Express ATS specification for more
details on use of ITags.

4.2 Remapping Hardware Handling of Device-TLBs
Remapping hardware report support for Device-TLBs through the Extended Capability Register (see
Section 10.4.3). The translation-type (T) field in the context entries and extended-context-entries can
be programmed to enable or disable processing of translation-requests and translated-requests from
specific endpoints by remapping hardware. The following sections describe the remapping hardware
handling of ATS requests.

4.2.1 Handling of ATS Protocol Errors

The following upstream requests are always handled as Unsupported Request (UR) by hardware:
• Memory read or write request (with or without PASID) with AT field value of ‘Reserved’ (11b).
• Memory write request (with or without PASID) with AT field value of ‘Translation Request’ (01b).
• Requests-with-PASID with AT field value of ‘Translated’ (10b).

The following upstream requests (with or without PASID) are always handled as malformed packets:
• Memory read request with AT field value of ‘Translation Request’ with any of the following:

— Length specifying odd number of DWORDs (i.e. least significant bit of length field is non-zero)
— Length greater than N/4 DWORDs where N is the Read Completion Boundary (RCB) value (in

bytes) supported by the Root-Complex.
— First and last DWORD byte enable (BE) fields not equal to 1111b.

• ‘Invalidation Request’ message.

When remapping hardware is disabled (TES=0 in Global Status Register), following upstream
requests are treated as Unsupported Request (UR).

• Memory requests with non-zero AT field (i.e. AT field is not ‘Untranslated’).
• ATS ‘Invalidation Completion’ messages.

4.2.2 Root-Port Control of ATS Address Types

Root-ports supporting Access Control Services (ACS) capability can support ‘Translation Blocking’
control to block upstream memory requests with non-zero value in the AT field. When enabled, such
requests are reported as ACS violation by the receiving root-port. Refer to the ACS Capability in PCI-
Express Specifications for more details. Upstream requests that cause ACS violations are blocked at
the root-port as error and are not presented to remapping hardware.

4.2.3 Handling of Translation Requests

This section describes the handling of translation-requests when remapping hardware is enabled.
• The requester-id in the translation-request is used to parse the respective root/extended-root and

context/extended-context as described in Section 3.4.

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4-5 Order Number: D51397-006

• If hardware detects any conditions below that explicitly blocks the translation-requests from this
endpoint, a translation-completion is returned with status code of Unsupported Request (UR), and
treats it as a translation-fault (see Chapter 7 for translation-fault behavior).
— Present (P) field in the root-entry (or extended-root-entry) used to process the translation-

request is 0.
— Present (P) field in the context-entry (or extended-context-entry) used to process the

translation-request is 0.
— The translation-type (T) field in the present context-entry (or extended-context-entry)

specifies blocking of translation requests (see Section 9.3 and Section 9.4 for description of
translation-type field in context-entries and extended-context-entries).

— The Root Table Type (RTT) field in the Root-table Address register (RTADDR_REG) used to
process the translation-request-with-PASID is 0.

— The Execute-Requests-Enable (ERE) field in the extended-context-entry used to process the
translation-request-with-PASID with Execute-Requested (ER) field Set, is zero.

— The Supervisor-Requests-Enable (SRE) field in the extended-context-entry used to process
the translation-request-with-PASID with Privileged-mode-Requested (PR) field Set, is zero.

• For translation-requests-without-PASID, if hardware detects any error conditions below, a
translation-completion is returned with status code of Completer Abort (CA), and hardware treats
it as a translation-fault (see Chapter 7 for translation-fault behavior).
— Hardware attempt to access the root-entry (or extended-root-entry) through the Root Table

Address (RTA) field in the Root Table Address Register resulted in error.
— Hardware attempt to access context-entry (or extended-context-entry) through the Context

Table Pointer (CTP) fields in the root-entry (or extended-root-entry) resulted in error.
— Hardware detected reserved fields not initialized to zero in a present root-entry (or extended-

root-entry).
— Hardware detected reserved fields not initialized to zero in a present context-entry (or

extended-context-entry).
— Hardware detected invalid programming of a present context-entry (or extended-context-

entry). For example:
• The Address Width (AW) field programmed with a value not supported by the hardware

implementation.
• The translation-type (T) field programmed to indicate a translation type not supported by

the hardware implementation.
• Hardware attempt to access the second-level page table base through the second-level

page-table pointer (SLPTPTR) field of the context-entry (or extended-context-entry)
resulted in error.

— Hardware attempt to access a second-level paging entry (SL-PDPE, SL-PDE, or SL-PTE)
through the Address (ADDR) field in another paging entry (SL-PML4E, SL-PDPE or SL-PDE)
resulted in error.

— Hardware detected reserved fields not initialized to zero in a second-level paging entry with at
least one of Read (R) and Write (W) field Set.

• For translation-requests-with-PASID, if hardware detects any error conditions below, a
translation-completion is returned with status code of Completer Abort (CA), and hardware treats
it as a translation-fault (see Chapter 7 for translation-fault behavior).
— Hardware attempt to access the extended-root-entry through the Root Table Address (RTA)

field in the Root Table Address Register resulted in error.
— Hardware attempt to access extended-context-entry through the context-table-pointer fields

in the extended-root-entry resulted in error.
— Hardware detected reserved fields not initialized to zero in a present extended-root-entry.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 4-6

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/O

— Hardware detected reserved fields not initialized to zero in a present extended-context-entry.
— Hardware detected invalid programming of a present extended-context-entry. For example:

• When nested translation is enabled, the Address Width (AW) field programmed with a value
not supported by the hardware implementation.

• Invalid or unsupported programming of any of the first-level translation or nested
translation control fields in the extended-context-entry.

• The translation-type (T) field is programmed to a type not supported by the hardware
implementation.

• Hardware attempt to access the PASID-entry through the PASID-table pointer (PASIDPTR)
field of the extended-context-entry resulted in error.

• When nested translation is enabled, hardware attempt to access the second-level page
table base through the second-level page-table pointer (SLPTPTR) field of the extended-
context-entry resulted in error.

— Hardware attempt to access a FL-PML4E through the Address (ADDR) field in a PASID-entry,
PML4E resulted in error.

— Hardware attempt to access a first-level paging entry (FL-PDPE, FL-PDE, or FL-PTE)
referenced through the Address (ADDR) field in a preceding first-level paging entry (FL-
PML4E, FL-PDPE or FL-PDE) resulted in error.

— Hardware detected reserved fields not initialized to zero in a present PASID-entry or present
first-level paging entry.

— When nested translation is enabled, hardware attempt to access a second-level paging entry
(SL-PDPE, SL-PDE, or SL-PTE) referenced through the Address (ADDR) field in a preceding
second-level paging entry (SL-PML4E, SL-PDPE or SL-PDE) resulted in error.

— When nested translation is enabled, hardware detected reserved fields not initialized to zero
in a second-level paging entry with at least one of Read (R), Execute (X), and Write (W) field
Set. Execute (X) field is applicable only if supported by hardware, and enabled by software.

• If none of the error conditions above are detected, hardware handles the translation-request as
below:
— If the input address in the translation-request-without-PASID is within the interrupt address

range (0xFEEx_xxxx)1, a successful translation-completion is issued with R=0, W=1, U=1,
and S=0 in the Translation-Completion data. This special handling for translation-requests-
without-PASID to interrupt address range is provided to comprehend potential endpoint
Device-TLB behavior of issuing translation requests to all of its memory transactions including
its message signalled interrupt (MSI) posted writes.

— If remapping hardware encountered any of the conditions below that resulted in either not
finding translation for the address specified in the translation-request, or detecting the
requested translation lacked both read and write permissions, a translation-completion with
status code of Success is returned with R=W=U=S=0 in the translation-completion-data.
• When performing first-level translation for translation-request-with-PASID, hardware

detected input address is not canonical (i.e., address bits 63:48 not same value as address
bit 47).

• When performing first-level translation for translation-request-with-PASID, hardware
encountered not-present (P=0) PASID-entry.

• When performing first-level translation for translation-request-with-PASID, hardware
encountered a not-present (P=0) first-level-paging-entry along the page-walk, and hence
could not complete the page-walk.

1. Translation-requests-with-PASID with input address in the range 0xFEEx_xxxxx is processed
normally through the first-level (or nested) translation, like any other translation-request-with-
PASID.

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4-7 Order Number: D51397-006

• When performing first-level translation for translation-request-with-PASID with user
privilege (value of 0 in Privilege-mode-requested (PR) field), hardware encountered a
present first-level-paging-entry with U/S field value of 0, causing a privilege violation.

• When performing second-level translation for translation-request-without-PASID, or when
performing any second-level step of nested translation for translation-request-with-PASID,
hardware detected input address above the minimum of MGAW (reported in Capability
Register) and (2X - 1), where X is the AGAW corresponding to address-width programmed
in context-entry or extended-context-entry used to process the request.

• When performing second-level translation for translation-request-without-PASID, or when
performing any second-level step of nested translation for translation-request-with-PASID,
hardware found a not-present (R=W=0) second-level-paging-entry along the page-walk,
and hence could not complete the page-walk.

• Hardware detected that the logical-AND of the Read (R) permission bits and logical-AND of
Write (W) permission bits of second-level page-walk to be both Clear.

— If remapping hardware successfully fetched the translation requested, and the translation has
at least one of Read and Write permissions, a translation-completion with status code of
Success is returned with translation-completion-data as follows:
• Read (R) bit: The R bit in the translation-completion data is the effective read permission

for this translation.
— For translation-requests-without-PASID with NW=0, R bit is 1 if the access rights

checking described in Section 3.7.2 allow read access to the page. Else, R bit is 0.
— For translation-request-with-PASID, R bit is 1 if the access rights checking (described in

Section 3.6.2 for first-level translation, or Section 3.8.2 for nested translation) allow
read access to the page. Else, R bit is 0.

• Write (W) bit: The W bit in the translation-completion data is the effective write
permission for this translation.
— For translation-requests with NW=1 (i.e., requests indicating translation is for read-only

accesses), remapping hardware reporting no-write-flag support (NWFS=1 in the
Extended Capability Register) returns the W bit as always 0. Remapping hardware not
supporting no-write-flag (NWFS=0) ignores value of NW field in translation-requests
and functions as if NW is 0 (see below).

— For translation-requests-without-PASID with NW=0, W bit is 1 if the access rights
checking described in Section 3.7.2 allow write access to the page. Else, W bit is 0.

— For translation-request-with-PASID with NW=0, W bit is 1 if the access rights checking
(described in Section 3.6.2 for first-level translation, or Section 3.8.2 for nested
translation) allow write access to the page. Else, W bit is 0.

• Execute (EXE) bit: The EXE bit in the translation-completion data is the effective execute
permission for this translation.
— For translation-requests-without-PASID, this bit is always 0.
— For translation-requests-with-PASID with ER=0 (i.e., requests indicating translation is

not for instruction fetch), this bit is always 0.
— For translation-requests-with-PASID with ER=1 (i.e., requests indicating translation is

for instruction fetch), remapping hardware reporting Execute-Requests as not
supported (ERS=0 in the Extended Capability Register) returns the EXE bit as always 0.
Remapping hardware supporting Execute-Requests (ERS=1) return EXE bit as 1 if the
access rights checking (described in Section 3.6.2 for first-level translation, or
Section 3.8.2 for nested translation) allow instruction fetch from the page. Else, EXE bit
is 0.

• Privilege Mode (PRIV) bit: The PRIV bit in the translation-completion data is the
effective privilege for this translation.
— For translation-requests-without-PASID, this bit is always 0.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 4-8

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/O

— For translation-requests-with-PASID with PR=0 (i.e., requests indicating translation is
not for privileged/supervisor mode access), this bit is always 0.

— For translation-requests-with-PASID with PR=1 (i.e., requests indicating translation is
for privileged/supervisor mode access), remapping hardware reporting supervisor-
request-support as not supported (SRS=0 in the Extended Capability Register) returns
the PRIV bit as always 0. Remapping hardware supporting supervisor-requests (SRS=1)
return PRIV bit as 1 if the U/S field is 0 in at least one of the first-level paging-structure
entries controlling the translation. Else, PRIV bit is 0.

• Global Mapping (G) bit: The G bit in the translation-completion data is the effective
privilege for this translation.
— For translation-requests-without-PASID, this bit is always 0.
— For translation-requests-with-PASID, this bit is the G bit from the leaf first-level paging-

structure entry (PTE for 4-KByte page, PDE for 2-MByte page, PDPE for 1-GByte page)
used to translate the request.

• Non-snooped access (N) bit: The N bit in the translation-completion data indicates the
use of No-Snoop (NS) flag in accesses that use this translation.
— For translation-requests-without-PASID, remapping hardware reporting snoop-control

as not supported (SC=0 in the Extended Capability Register) always return the N bit as
0. Remapping hardware supporting snoop-control (SC=1) return the SNP bit in the
second-level paging-structure entry controlling the translation as the N bit (SL-PTE or
second-level paging-structure entry with PS=1).

— For translation-requests-with-PASID, this bit is always 1.
• Untranslated access only (U) bit: The U bit in the translation-completion data indicates

the address range for the translation can only be accessed using untranslated-requests.
— For translation-requests-without-PASID, this bit is the TM (transient-mapping) bit from

the second-level paging-structure entry controlling the translation (SL-PTE or second-
level paging-structure entry with PS=1).

— For translation-requests-with-PASID that are subject to only first-level translation, this
bit is always 0.

— For translation-requests-with-PASID that are subject to nested translation, this bit is
the TM (transient-mapping) bit from the second-level paging-structure entry used to
translate the page (SL-PTE or second-level paging-structure entry with PS=1).

• Size (S) bit: The S bit in the translation-completion data indicates the page size for the
translation.
— This bit is 0 if translation returned is for 4-KByte page.
— This bit is 1 if translation returned if for page larger than 4-KByte. In this case, the size

of the translation is determined by the lowest bit in the Translated Address field (bits
63:12) with a value of 0. For example, if bit 12 is 0, the translation applies to a 8-KByte
page. If bit 12 is 1 and bit 13 is 0, the translation applies to a 16-KByte page, and so
on. Refer to PCI-Express ATS specification for details on translation size encoding.

• Translated Address (ADDR): If either R or W bit is 1, and U bit is 0, the ADDR field in
the translation-completion data contains the result of the translation.
— For translation-requests-without-PASID, this is the translated address from the second-

level translation.
— For translation-requests-with-PASID that are subject to first-level translation only, this

is the output address from the first-level translation.
— For translation-requests-with-PASID that are subject to nested translation, this is the

output address from the nested translation.

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4-9 Order Number: D51397-006

4.2.3.1 Accessed, Extended Accessed, and Dirty Flags

While processing a translation-request-with-PASID, remapping hardware manages the accessed,
extended-accessed, and dirty flags in the first-level paging-structure entries as follows:

• For translation-requests-with-PASID, remapping hardware atomically sets the A field (if it is not
already set) in each first-level paging-structure entry used to successfully translate the request.

• For translation-requests-with-PASID, remapping hardware atomically sets the EA field (if it is not
already set) in each first-level paging-structure entry used to successfully translate the request, if
the PASID-entry used to process the request has a value of 1 for the Extended-Accessed-Flag-
Enable (EAFE) field.

• For translation-requests-with-PASID with NW=0, remapping hardware reporting No-Write-Flag
Support (NWFS=1 in Extended Capability Register) atomically sets the D field (if it is not already
set) in the first-level paging-structure entry that identifies the final translated address for the
input address (i.e., either a PTE or a paging-structure entry in which the PS field is 1). Remapping
hardware not supporting No-Write-Flag (NWFS=0) atomically sets the D field, ignoring the value
of the NW field in the translation-request-with-PASID.

As described above, the accessed, extended accessed, and dirty flags are set early at the time of
processing a translation-request, and before the endpoint access the page using the translation
returned in the translation-completion.

Setting of Accessed, Extended Accessed, and Dirty flags in the first level paging-structure entries are
subject to the access rights checking described in Section 3.6.2 (or Section 3.8.2, when nested
translations are enabled).

4.2.3.2 Translation Requests for Multiple Translations

Translation-requests for multiple mappings indicate a length field greater than 2 DWORDs. Hardware
implementations may handle these requests in any one of the following ways:

• Always return single translation
— Hardware fetches translation only for the starting address specified in the translation-request,

and a translation-completion is returned depending on the result of this processing. In this
case, the translation-completion has a Length of 2 DWORDs, Byte Count of 8, and the Lower
Address indicates a value of Read Completion Boundary (RCB) minus 8.

• Return multiple translations
— Hardware fetches translations starting with the address specified in the translation-request,

until a Completer Abort (CA) or Unsupported Request (UR) condition as described in
Section 4.2.3 is detected, or until a translation with different page-size than the previous
translation in this request is detected. Remapping hardware is also allowed to limit fetching of
translations to those that are resident within a cache line. When returning multiple
translations (which may be less than the number of translations requested), hardware must
ensure that successive translations must apply to the untranslated address range that abuts
the previous translation in the same completion. Refer to the PCI-Express ATS specification
for requirements on translation-completions returning multiple mappings in one or two
packets.

4.2.4 Handling of Translated Requests

This section describes the handling of Translated-requests when remapping hardware is enabled.
• If translated-request has a PASID prefix, it is treated as malformed request.
• If translated-request is a write or atomics request to the interrupt address range (0xFEEx_xxxx),

it is treated as Unsupported Requests (UR). Also, all translated (and untranslated) requests that
are reads to interrupt address range always return UR.

• If hardware detects any conditions below, the translated-request is blocked (handled as UR) and
is treated as translation fault (see Chapter 7 for translation-fault behavior).

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 4-10

Support For Device-TLBs—Intel® Virtualization Technology for Directed I/O

— Hardware attempt to access the root-entry (or extended-root-entry) through the Root Table
Address (RTA) field in the Root Table Address Register resulted in error.

— Present (P) field in the root-entry (or extended-root-entry) used to process the translated-
request is 0.

— Hardware detected reserved fields not initialized to zero in a present root-entry (or extended-
root-entry).

— Hardware attempt to access context-entry (or extended-context-entry) through the Context
Table Pointer fields in the root-entry (or extended-root-entry) resulted in error.

— Present (P) field in the context-entry (or extended-context-entry) used to process the
translated-request is 0.

— Hardware detected reserved fields not initialized to zero in a present context-entry (or
extended-context-entry).

— Hardware detected invalid programming of a present context-entry (or extended-context-
entry). For example:
• The Address Width (AW) field programmed with a value not supported by the hardware

implementation.
• The translation-type (T) field programmed to indicate a translation type not supported by

the hardware implementation.
— The translation-type (T) field in the present context-entry (or extended-context-entry)

specifies blocking of translated-requests (see Section 9.3 and Section 9.4 for description of
translation-type field in context-entries and extended-context-entries).

• If none of the error conditions above are detected, the translated-request is processed as pass-
through (i.e., bypasses address translation).

4.3 Handling of Device-TLB Invalidations
The Address Translation Services (ATS) extensions to PCI-Express defines the wire protocol for the
Root-Complex to issue a Device-TLB invalidation request to an endpoint and to receive the Device-TLB
invalidation completion responses from the endpoint.

For remapping hardware supporting Device-TLBs, software submits the Device-TLB invalidation
requests through the invalidation queue interface of remapping hardware. Section 6.5.2 describes the
queued invalidation interface details.

Hardware processes a Device-TLB invalidation request as follows:
• Hardware allocates a free invalidation tag (ITag). ITags are used to uniquely identify an

invalidation request issued to an endpoint. If there are no free ITags in hardware, the Device-TLB
invalidation request is deferred until a free ITag is available. For each allocated ITag, hardware
stores a counter (InvCmpCnt) to track the number of invalidation completions received with this
ITag.

• Hardware starts an invalidation completion timer for this ITag, and issues the invalidation request
message to the specified endpoint. If the invalidation command from software is for a first-level
mapping, the invalidation request message is generated with the appropriate PASID prefix to
identify the target PASID. The invalidation completion time-out value is recommended to be
sufficiently larger than the PCI-Express read completion time-outs.

Hardware processes a Device-TLB invalidation response received as follows:
• ITag-vector in the invalidation completion response indicates the ITags corresponding to

completed Device-TLB invalidation requests. The completion count in the invalidation response
indicates the number of invalidation completion messages expected with the same ITag-vector
and completion count.

• For each ITag Set in the ITag-vector, hardware checks if it is a valid (currently allocated) ITag for
the source-id in the invalidation completion response. If hardware detects an invalid ITag, the

Intel® Virtualization Technology for Directed I/O—Support For Device-TLBs

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
4-11 Order Number: D51397-006

invalidation completion message is dropped by hardware. The error condition is reported by
setting the Invalidation Completion Error (ICE) field in the Fault Status Register (see
Section 10.4.9), and depending on the programming of the Fault Control Register a fault event
may be generated.

• If above checks are completed successfully, for each ITag in the ITag-vector, the corresponding
InvCmpCnt counter is incremented and compared with the ‘completion count’ value in the
invalidation response (‘completion count’ value of 0 indicates 8 invalidation completions). If the
comparison matches, the Device-TLB invalidation request corresponding to the ITag is considered
completed, and the ITag is freed.

• If the invalidation completion time-out expires for an ITag before the invalidation response is
received, hardware frees the ITag and reports it through the ITE field in the Fault Status Register.
Depending on the programming of the Fault Control Register a fault event may be generated.
Section 6.5.2.10 describes hardware behavior on invalidation completion time-outs.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-1

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5 Interrupt Remapping

This chapter discuss architecture and hardware details for interrupt remapping. The interrupt-
remapping architecture defined in this chapter is common for both Intel® 64 and Itanium®
architectures.

5.1 Overview
The interrupt-remapping architecture enables system software to control and censor external
interrupt requests generated by all sources including those from interrupt controllers (I/OxAPICs),
MSI/MSI-X capable devices including endpoints, root-ports and Root-Complex integrated end-points.

Interrupts generated by the remapping hardware itself (Fault Event and Invalidation Completion
Events) are not subject to interrupt remapping.

Interrupt requests appear to the Root-Complex as upstream memory write requests to the interrupt-
address-range 0xFEEX_XXXXh. Since interrupt requests arrive at the Root-Complex as write requests,
interrupt-remapping is co-located with the remapping hardware units. The interrupt-remapping
capability is reported through the Extended Capability Register.

5.2 Identifying Origination of Interrupt Requests
To support domain-isolation usages, the platform hardware must be capable of uniquely identifying
the requestor (Source-Id) for each interrupt message. The interrupt sources in a platform and use of
source-id in these requests may be categorized as follows:

• Message Signaled Interrupts from PCI-Express Devices
— For message-signaled interrupt requests from PCI-Express devices, the source-id is the

requester identifier in the PCI-Express transaction header. The requester-id of a device is
composed of its PCI Bus/Device/Function number assigned by configuration software and
uniquely identifies the hardware function that initiated the I/O request. Section 3.4.1
illustrates the requester-id as defined by the PCI-Express specification. Section 3.9.4
describes use of source-id field by PCI-Express devices using phantom functions.

• Message Signaled Interrupts from Root-Complex Integrated Devices
— For message-signaled interrupt requests from root-complex integrated PCI or PCI-Express

devices, the source-id is its PCI requester-id.
• Message Signaled Interrupts from Devices behind PCI-Express to PCI/PCI-X Bridges

— For message-signaled interrupt requests from devices behind PCI-Express-to-PCI/PCI-X
bridges, the requester identifier in those interrupt requests may be that of the interrupting
device or the requester-id with the bus number field equal to the bridge’s secondary
interface’s bus number and device and function number fields value of zero. Section 3.9.1
describes legacy behavior of these bridges. Due to this aliasing, interrupt-remapping
hardware does not isolate interrupts from individual devices behind such bridges.

• Message Signaled Interrupts from Devices behind Conventional PCI bridges
— For message-signaled interrupt requests from devices behind conventional PCI bridges, the

source-id in those interrupt requests is the requestor-id of the legacy bridge device.
Section 3.9.2 describes legacy behavior of these bridges. Due to this, interrupt-remapping

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-2 Order Number: D51397-006

hardware does not isolate message-signaled interrupt requests from individual devices behind
such bridges.

• Legacy pin interrupts
— For devices that use legacy methods for interrupt routing (such as either through direct wiring

to the I/OxAPIC input pins, or through INTx messages), the I/OxAPIC hardware generates the
interrupt-request transaction. To identify the source of interrupt requests generated by
I/OxAPICs, the interrupt-remapping hardware requires each I/OxAPIC in the platform
(enumerated through the ACPI Multiple APIC Descriptor Tables (MADT)) to include a unique
16-bit source-id in its requests. BIOS reports the source-id for these I/OxAPICs via ACPI
structures to system software. Refer to Section 8.3.1.1 for more details on I/OxAPIC identity
reporting.

• Other Message Signaled Interrupts
— For any other platform devices that are not PCI discoverable and yet capable of generating

message-signaled interrupt requests (such as the integrated High Precision Event Timer -
HPET devices), the platform must assign unique source-ids that do not conflict with any other
source-ids on the platform. BIOS must report the 16-bit source-id for these via ACPI
structures described in Section 8.3.1.2.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-3

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.3 Interrupt Processing On Intel® 64 Platforms
Interrupt-remapping on Intel® 64 platforms support two interrupt request formats. These are
described in the following sub-sections.

5.3.1 Interrupt Requests in Intel® 64 Compatibility Format

Figure 5-14 illustrates the interrupt request in Compatibility format for Intel® 64 platforms. The
Interrupt Format field (Address bit 4) is Clear in Compatibility format requests. Refer to the Intel® 64
Architecture software developer’s manuals for details on other fields in the Compatibility format
interrupt requests. Intel® 64 platforms without the interrupt-remapping capability support interrupt
requests only in the Compatibility format.

Figure 5-14. Compatibility Format Interrupt Request

012
1
9

2
0

XX

4 3

Redirection Hint
Destination Mode
Don’t Care

Destination ID

0
3

Address

Data

Vector
Delivery Mode

1
1

Reserved

FEEh

1
1

1
2

78
1
0

Reserved
Trigger Mode Level
Trigger Mode

1
3

1
4

1
5

1
6

Reserved

5

0

Interrupt Format (0b)

1

1
3

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-4 Order Number: D51397-006

5.3.2 Interrupt Requests in Remappable Format

Figure 5-15 illustrates the Remappable interrupt request format. The Interrupt Format field (Address
bit 4) is Set for Remappable format interrupt requests. Remappable interrupt requests are applicable
only on platforms with interrupt-remapping support.

Table 6 describes the various address fields in the Remappable interrupt request format.

Table 7 describes the various data fields in the Remappable interrupt request format.

Figure 5-15. Remappable Format Interrupt Request

Table 6. Address Fields in Remappable Interrupt Request Format

Address
Bits Field Description

31: 20 Interrupt
Identifier

DWORD DMA write request with value of FEEh in these bits are
decoded as interrupt requests by the Root-Complex.

19: 5 Handle[14:0]

This field along with bit 2 provides a 16-bit Handle. The Handle is used
by interrupt-remapping hardware to identify the interrupt request. 16-
bit Handle provides 64K unique interrupt requests per interrupt-
remapping hardware unit.

4 Interrupt Format This field must have a value of 1b for Remappable format interrupts.

3 SubHandle Valid
(SHV)

This field specifies if the interrupt request payload (data) contains a
valid Subhandle. Use of Subhandle enables MSI constructs that
supports only a single address and multiple data values.

2 Handle[15] This field carries the most significant bit of the 16-bit Handle.

1:0 Don’t Care These bits are ignored by interrupt-remapping hardware.

012
1
9

2
0

XX

4 3

SHV
HANDLE[15]
Don’t Care

FEEh

31

031

0h

Address

Data

Reserved (0)

1
5

1

HANDLE [14:0]

1
6

SUBHANDLE (if SHV==1)

Interrupt Format

5

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-5

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.3.2.1 Interrupt Remapping Table

Interrupt-remapping hardware utilizes a memory-resident single-level table, called the Interrupt
Remapping Table. The interrupt remapping table is expected to be setup by system software, and its
base address and size is specified through the Interrupt Remap Table Address Register. Each entry in
the table is 128-bits in size and is referred to as Interrupt Remapping Table Entry (IRTE).Section 9.10
illustrates the IRTE format.

For interrupt requests in Remappable format, the interrupt-remapping hardware computes the
‘interrupt_index’ as below. The Handle, SHV and Subhandle are respective fields from the interrupt
address and data per the Remappable interrupt format.

if (address.SHV == 0) {
interrupt_index = address.handle;

} else {
interrupt_index = (address.handle + data.subhandle);

}

The Interrupt Remap Table Address Register is programmed by software to specify the number of
IRTEs in the Interrupt Remapping Table (maximum number of IRTEs in an Interrupt Remapping Table
is 64K). Remapping hardware units in the platform may be configured to share interrupt-remapping
table or use independent tables. The interrupt_index is used to index the appropriate IRTE in the
interrupt-remapping table. If the interrupt_index value computed is equal to or larger than the
number of IRTEs in the remapping table, hardware treats the interrupt request as error.

Unlike the Compatibility interrupt format where all the interrupt attributes are encoded in the
interrupt request address/data, the Remappable interrupt format specifies only the fields needed to
compute the interrupt_index. The attributes of the remapped interrupt request is specified through
the IRTE referenced by the interrupt_index.The interrupt-remapping architecture defines support for
hardware to cache frequently used IRTEs for improved performance. For usages where software may
need to dynamically update the IRTE, architecture defines commands to invalidate the IEC. Chapter 6
describes the caching constructs and associated invalidation commands.

5.3.3 Overview of Interrupt Remapping On Intel® 64 Platforms

The following provides a functional overview of the interrupt-remapping hardware:
• An interrupt request is identified by hardware as a write request to interrupt address ranges

0xFEEx_xxxx.
• When interrupt-remapping is not enabled (IRES field Clear in Global Status Register), all interrupt

requests are processed per the Compatibility interrupt request format described in Section 5.3.1.
• When interrupt-remapping is enabled (IRES field Set in Global Status Register), interrupt

requests are processed as follows:
— Interrupt requests in the Compatibility format (i.e requests with Interrupt Format field Clear)

are processed as follows:

Table 7. Data Fields in Remappable Interrupt Request Format

Data Bits Field Description

31:16 Reserved

When SHV field in the interrupt request address is Set, this field treated
as reserved (0) by hardware.
When SHV field in the interrupt request address is Clear, this field is
ignored by hardware.

15:0 Subhandle

When SHV field in the interrupt request address is Set, this field contains
the 16-bit Subhandle.
When SHV field in the interrupt request address is Clear, this field is
ignored by hardware.

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-6 Order Number: D51397-006

• If Extended Interrupt Mode is enabled (EIME field in Interrupt Remapping Table Address
Register is Set), or if the Compatibility format interrupts are disabled (CFIS field in the
Global Status Register is Clear), the Compatibility format interrupts are blocked.

• Else, Compatibility format interrupts are processed as pass-through (bypasses interrupt-
remapping).

— Interrupt requests in the Remappable format (i.e. request with Interrupt Format field Set) are
subject to interrupt-remapping as follows:
• The reserved fields in the Remappable interrupt requests are checked to be zero. If the

reserved field checking fails, the interrupt request is blocked. Else, the Source-id, Handle,
SHV, and Subhandle fields are retrieved from the interrupt request.

• Hardware computes the interrupt_index per the algorithm described in Section 5.3.2.1.
The computed interrupt_index is validated to be less than the interrupt-remapping table
size configured in the Interrupt Remap Table Address Register. If the bounds check fails,
the interrupt request is blocked.

• If the above bounds check succeeds, the IRTE corresponding to the interrupt_index value
is either retrieved from the Interrupt Entry Cache, or fetched from the interrupt-
remapping table. If the Coherent (C) field is reported as Clear in the Extended Capability
Register, the IRTE fetch from memory will not snoop the processor caches. If the Present
(P) field in the IRTE is Clear, the interrupt request is blocked and treated as fault. If the
IRTE is present, hardware checks if the IRTE is programmed correctly. If an invalid
programming of IRTE is detected, the interrupt request is blocked.

• If the above checks are successful, hardware performs verification of the interrupt
requester per the programming of the SVT, SID and SQ fields in the IRTE as described in
Section 9.10. If the source-id checking fails, the interrupt request is blocked.

• If all of the above checks succeed, a remapped interrupt request is generated per the
programming of the IRTE fields1.

• Any of the above checks that result in interrupt request to be blocked is treated as a interrupt-
remapping fault condition. The interrupt-remapping fault conditions are enumerated in the
following section.

1. When forwarding the remapped interrupt request to the system bus, the ‘Trigger Mode Level’ field
in the interrupt request on the system bus is always set to “asserted” (1b).

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-7

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.3.3.1 Interrupt Remapping Fault Conditions

The following table enumerates the various conditions resulting in faults when processing interrupt
requests. A fault conditions is treated as ‘qualified’ if the fault is reported to software only when the
Fault Processing Disable (FPD) field is Clear in the IRTE used to process the faulting interrupt request.

Table 8. Interrupt Remapping Fault Conditions

Interrupt Remapping Fault Conditions Fault
Reason Qualified Behavior

Decoding of the interrupt request per the Remappable request format
detected one or more reserved fields as Set. 20h No

Unsupported
Request

The interrupt_index value computed for the Remappable interrupt request is
greater than the maximum allowed for the interrupt-remapping table size
configured by software.

21h No

The Present (P) field in the IRTE entry corresponding to the interrupt_index
of the interrupt request is Clear. 22h Yes

Hardware attempt to access the interrupt-remapping table through the
Interrupt-Remapping Table Address (IRTA) field in the Interrupt Remap Table
Address Register resulted in error.

23h No

Hardware detected one ore more reserved fields that are not initialized to
zero in an IRTE with Present (P) field Set. This also includes cases where
software programmed various conditional reserved fields wrongly.

24h Yes

On Intel® 64 platforms, hardware blocked an interrupt request in
Compatibility format either due to Extended Interrupt Mode Enabled (EIME
field Set in Interrupt Remapping Table Address Register) or Compatibility
format interrupts disabled (CFIS field Clear in Global Status Register).
On Itanium® platforms, hardware blocked an interrupt request in
Compatibility format.

25h No

Hardware blocked a Remappable interrupt request due to verification failure
of the interrupt requester’s source-id per the programming of SID, SVT and
SQ fields in the corresponding IRTE with Present (P) field Set.

26h Yes

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-8 Order Number: D51397-006

5.4 Interrupt Requests on Itanium® Platforms
On Itanium® platforms, interrupt requests are handled as follows:

• When interrupt-remapping hardware is disabled (IRES field Clear in Global Status Register), all
interrupt requests are processed per the format illustrated in Figure 5-16. Refer to the Itanium®
Architecture software developer’s manuals for details on the fields.

• When interrupt-remapping hardware is enabled (IRES field Set in Global Status Register), all
interrupt requests are remapped per the Remappable interrupt request format described in
Section 5.3.2.

Figure 5-16. Interrupt Requests on Itanium® Platforms

012
1
9

2
0

XX

4 3

Redirection Hint
Destination Mode
Don’t Care

Destination ID

3
1

0
3
1

Address

Data

Vector
Delivery Mode

1
1

Extended
Destination ID

FEEh

1
1

1
2

78
1
0

Reserved
Trigger Mode Level
Trigger Mode

1
3

1
4

1
5

1
6

Reserved

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-9

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.5 Programming Interrupt Sources To Generate Remappable
Interrupts

Software performs the following general steps to configure an interrupt source to generate
remappable interrupts:

• Allocate a free interrupt remap table entry (IRTE) and program the remapped interrupt attributes
per the IRTE format described in Section 9.10.

• Program the interrupt source to generate interrupts in remappable format with appropriate
handle, subhandle and SHV fields that effectively encodes the index of the allocated IRTE as the
interrupt_index defined in Section 5.3.2.1. The interrupt_index may be encoded using the handle,
subhandle and SHV fields in one of the following ways:
— SHV = 0; handle = interrupt_index;
— SHV = 1; handle = interrupt_index; subhandle = 0;
— SHV = 1; handle = 0; subhandle = interrupt_index;
— SHV = 1; handle = interrupt_index - subhandle;

The following sub-sections describes example programming for I/OxAPIC, MSI and MSI-X interrupt
sources to generate interrupts per the Remappable interrupt request format.

5.5.1 I/OxAPIC Programming

Software programs the Redirection Table Entries (RTEs) in I/OxAPICs as illustrated in Figure 5-17.

• The Interrupt_Index[14:0] is programmed in bits 63:49 of the I/OxAPIC RTE. The most
significant bit of the Interrupt_Index (Interrupt_Index[15]) is programmed in bit 11 of the
I/OxAPIC RTE.

• Bit 48 in the I/OxAPIC RTE is Set to indicate the Interrupt is in Remappable format.
• RTE bits 10:8 is programmed to 000b (Fixed) to force the SHV (SubHandle Valid) field as Clear in

the interrupt address generated.

Figure 5-17. I/OxAPIC RTE Programming

Delivery Status

0

Interrupt_Index [15]

Trigger Mode

Vector

Mask

4
8

Remote IRR

6
3

Interrupt Polarity

78
1
6

Reserved (0)

1
7

Interrupt_Index [14:0]

4
7

1
5

1
4

1
3

1
2

000

1
1

1
0

4
9

1

Interrupt Format (1b)

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-10 Order Number: D51397-006

• The Trigger Mode field (bit 15) in the I/OxAPIC RTE must match the Trigger Mode in the IRTE
referenced by the I/OxAPIC RTE. This is required for proper functioning of level-triggered
interrupts.

• For platforms using End-of-Interrupt (EOI) broadcasts, Vector field in the I/OxAPIC RTEs for level-
triggered interrupts (i.e. Trigger Mode field in I/OxAPIC RTE is Set, and Trigger Mode field in the
IRTE referenced by the I/OxAPIC RTE is Set), must match the Vector field programmed in the
referenced IRTE. This is required for proper processing of End-Of-Interrupt (EOI) broadcast by the
I/OxAPIC.

• Programing of all other fields in the I/OxAPIC RTE are not impacted by interrupt remapping.

5.5.2 MSI and MSI-X Register Programming

Figure 5-18 illustrates the programming of MSI/MSI-X address and data registers to support
remapping of the message signalled interrupt.

Specifically, each address and data registers must be programmed as follows:
• Address register bits 63/31: 20 must be programmed with the interrupt address identifier value of

0FEEh.
• Address register bits 19:5 is programmed with Interrupt_Index[14:0] and address register bit 2

must be programmed with Interrupt_Index[15]. The Interrupt_Index is the index of the Interrupt
Remapping Table Entry (IRTE) that remaps the corresponding interrupt requests.
— Devices supporting MSI allows software to enable multiple vectors (up to 32) in powers of 2.

For such multiple-vector MSI usages, software must allocate N contiguous IRTE entries
(where N is the number of vectors enabled on the MSI device) and the interrupt_index value
programmed to the Handle field must be the index of the first IRTE out of the N contiguous
IRTEs allocated. The device owns the least significant log-N bits of the data register, and
encodes the relative interrupt number (0 to N-1) in these bits of the interrupt request
payload.

• Address register bit 4 must be Set to indicate the interrupt is in Remappable format.
• Address register bit 3 is Set so as to set the SubHandle Valid (SHV) field in the generated

interrupt request.
• Data register is programmed to 0h.

Figure 5-18. MSI-X Programming

012
1
9

2
0

XX

4 3

Don’t Care

0FEEh

63 /
31

31/
15

Address

Data

1

Interrupt Format (1)

0h

Interrupt_Index [15]
SHV (1)

0
Interrupt_index[14:0]

1

5

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-11

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.6 Remapping Hardware - Interrupt Programming
Interrupts generated by the remapping hardware itself (Fault Event and Invalidation Completion
Events) are not subject to interrupt remapping. The following sections describe the programming of
the Fault Event and Invalidation Completion Event data/address registers on Intel® 64 platforms and
on Itanium® platforms.

5.6.1 Programming in Intel® 64 xAPIC Mode

Figure 5-19. Remapping Hardware Interrupt Programming in Intel® 64
xAPIC Mode

012
1
9

2
0

XX

4 3

Red irec tion H in t
D estina tion M ode
D on ’t Ca re

D estina tion ID
(AP IC ID 7 :0)

3
1

Reserved (0)

FEEh

1
1

1
2

0
3
1

0 h

Vecto r
D e live ry M ode
0: F ixed
1: Low est P rio rity

78

Reserved (0)

0
3
1

Reserved (0)

D a ta R eg iste r

Add ress R eg iste r

U pper Add ress R eg iste r

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-12 Order Number: D51397-006

5.6.2 Programming in Intel® 64 x2APIC Mode1

1. Hardware support for x2APIC mode is reported through the EIM field in the Extended Capability
Register. x2APIC mode is enabled through the Interrupt Remapping Table Address Register.

Figure 5-20. Remapping Hardware Interrupt Programming in Intel® 64
x2APIC Mode

012
1
9

2
0

XX

4 3

Red irec tion H in t
D estina tion M ode
D on ’t Ca re

D estina tion ID
(AP IC ID 7 :0)

3
1

Reserved (0)

FEEh

1
1

1
2

0
3
1

0 h

Vecto r
D e live ry M ode
0: F ixed
1: Low est P rio rity

78

Reserved (0)

0
3
1

Reserved (0)

D a ta R eg iste r

Add ress R eg iste r

U pper Add ress R eg iste r

78

D estina tion ID
(A PIC ID 31 :8)

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 5-13

Interrupt Remapping—Intel® Virtualization Technology for Directed I/O

5.6.3 Programming on Itanium® Platforms

5.7 Handling of Platform Events
Platforms supporting interrupt remapping are highly recommended to use side-band mechanisms
(such as dedicated pins between chipset/board-logic and CPU), or in-band methods (such as
platform/vendor defined messages) to deliver platforms events such as SMI/PMI/NMI/INIT/MCA. This
is to avoid the dependence on system software to deliver these critical platform events.

Some existing platforms are known to use I/OxAPIC RTEs (Redirection Table Entries) to deliver SMI,
PMI and NMI events. There are at least two existing initialization approaches for such platform events
delivered through I/OxAPIC RTEs.

• Some existing platforms report to system software the I/OxAPIC RTEs connected to platform
event sources through ACPI, enabling system software to explicitly program/enable these RTEs.
Examples for this include, the 'NMI Source Reporting' structure in ACPI MADT (for reporting NMI
source), and 'Platform Interrupt Source' structure in ACPI MADT (for reporting PMI source in
Itanium® platforms).

• Alternatively, some existing platforms program the I/OxAPIC RTEs connected to specific platform
event sources during BIOS initialization, and depend on system software to explicitly preserve
these RTEs in the BIOS initialized state. (For example, some platforms are known to program
specific I/OxAPIC RTE for SMI generation through BIOS before handing control to system

Figure 5-21. Remapping Hardware Interrupt Programming on Itanium®

012
1
9

2
0

XX

4 3

Red irection H in t
D estina tion M ode
D on ’t Care

D est. ID

3
1

Ext. D est. ID

FEEh

1
1

1
2

0
3
1

0 h

Vecto r
D e live ry M ode

78

Reserved (0)

0
3
1

Reserved (0)

D a ta Reg iste r

Add ress Reg iste r

U pper Address Reg iste r

Intel® Virtualization Technology for Directed I/O—Interrupt Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
5-14 Order Number: D51397-006

software, and depend on system software preserving the RTEs pre-programmed with SMI delivery
mode).

On platforms supporting interrupt-remapping, delivery of SMI, PMI and NMI events through I/OxAPIC
RTEs require system software programming the respective RTEs to be properly remapped through the
Interrupt Remapping Table. To avoid this management burden on system software, platforms
supporting interrupt remapping are highly recommended to avoid delivering platform events through
I/OxAPIC RTEs, and instead deliver them through dedicated pins (such as the processor’s xAPIC
LINTn input) or through alternative platform-specific messages.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-1

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

6 Caching Translation Information

Remapping hardware may accelerate the address-translation process by caching data from the
memory-resident paging structures. Because the hardware does not ensure that the data that it
caches are always consistent with the structures in memory, it is important for software to
comprehend how and when the hardware may cache such data, what actions can be taken to remove
cached data that may be inconsistent, and when it should do so.

6.1 Caching Mode
The Caching Mode (CM) field in Capability Register indicates if the hardware implementation caches
not-present or erroneous translation-structure entries. When the CM field is reported as Set, any
software updates to any remapping structures (including updates to not-present entries or present
entries whose programming resulted in translation faults) requires explicit invalidation of the caches.

Hardware implementations of this architecture must support operation corresponding to CM=0.
Operation corresponding to CM=1 may be supported by software implementations (emulation) of this
architecture for efficient virtualization of remapping hardware. Software managing remapping
hardware should be written to handle both caching modes.

Software implementations virtualizing the remapping architecture (such as a VMM emulating
remapping hardware to an operating system running within a guest partition) may report CM=1 to
efficiently virtualize the hardware. Software virtualization typically requires the guest remapping
structures to be shadowed in the host. Reporting the Caching Mode as Set for the virtual hardware
requires the guest software to explicitly issue invalidation operations on the virtual hardware for
any/all updates to the guest remapping structures. The virtualizing software may trap these guest
invalidation operations to keep the shadow translation structures consistent to guest translation
structure modifications, without resorting to other less efficient techniques (such as write-protecting
the guest translation structures through the processor’s paging facility).

6.2 Address Translation Caches
This section provides architectural behavior of following remapping hardware address translation
caches:

• Context-cache
— Caches context-entry (or extended-context-entry) encountered on a page-walk.

• PASID-cache
— Caches PASID entries used for processing requests-with-PASID.

• I/O Translation Look-aside Buffer (IOTLB)
— Caches the effective translation for a request. This is the result of the second-level page-walk

for requests-without-PASID, and result of first-level page-walk (or nested page-walk, if
nesting is enabled) for requests-with-PASID.

• Paging-structure Caches
— Caches the intermediate paging-structure entries (i.e., entries referencing a paging-structure

entry) encountered on a first-level or second-level page-walk.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-2 Order Number: D51397-006

6.2.1 Tagging of Cached Translations

Remapping architecture supports tagging of various translation caches as follows:
• Source-ID tagging:

— Context-cache, IOTLB, and interrupt-entry-cache are architecturally tagged by the Source-id
of the request that resulted in allocation of the respective cache entry.

• Domain-ID tagging:
— Context-entries (and extended-context-entries) allow software to specify a domain-identifier

that can be used by hardware to allocate or look-up cached information when processing DMA
requests targeting a domain. Paging-structure caches and PASID-cache are architecturally
tagged by domain-id. Context-cache and IOTLB can also be tagged by domain-ID to facilitate
batch invalidation of cached entries associated with a given domain.

• Request-type tagging:
— Since IOTLB caches effective translations for both requests-without-PASID and requests-with-

PASID (possibly from the same endpoint device), hardware may either tag IOTLB entries with
a bit to indicate if a translation is for request-without-PASID or for request-with-PASID, or
manage them in separate dedicated caches. Similar treatment may be applied to paging-
structure caches to differentiate first-level and second-level cached entries.

• Address tagging:
— IOTLB entries are tagged by the upper bits of the input-address (called the page number) in

the request that resulted in allocation of the respective cache entry. For first-level translation,
if the translation does not use a PDE (because the PS flag is 1 in the PDPE used), the page
size is 1-GBytes and the page number comprise of bits 47:30 of the input-address; If the
translation does use a PDE but does not use a PTE (because the PS flag is 1 in the PDE used),
the page size is 2-MBytes and the page number comprise of bits 47:21 of the input-address;
If the translation does use a PTE, the page size is 4-KBytes and the page number comprise of
bits 47:12 of the input-address. For second-level translation, similar address-bit tagging
applies, based on the last second-level paging-structure entry used to form the translation
(MGAW:30 for 1-GByte page, MGAW:21 for 2-MByte page, and MGAW:12 for 4-KByte page).

— Paging-structure caches are tagged by the respective bits of the input-address. For first-level
translation, input-address bits 47:39 are used to tag cached PML4E, bits 47:30 are used to
tag cached PDPE, and bits 47:21 are used to tag cached PDE. Similarly, for second-level
translation, input-address bits MGAW:39 are used to tag cached SL-PML4E, bits MGAW:30 are
used to tag cached SL-PDPE, and bits MGAW:21 are used to tag cached SL-PDE.

• PASID tagging:
— IOTLB, paging-structure cache, and PASID-cache are architecturally tagged by the PASID

value in the request-with-PASID that resulted in allocation of the respective cache entry.
• Interrupt-index tagging:

— Interrupt-remapping cache is architecturally tagged by the interrupt-index of remappable-
format interrupt requests that resulted in allocation of the interrupt-entry-cache entry.

Tagging of cached translations enable remapping hardware to cache information to process requests
from multiple endpoint devices targeting multiple address-spaces. Tagging also enable software to
efficiently invalidate groups of cached translations that are associated with the same tag value.

6.2.2 Context-cache

Context-cache is used to cache context-entries (or extended-context entries) used to address
translate requests. Each entry in the context-cache is an individual context-entry (or extended-
context-entry). Each cached entry is referenced by the source-id in the request. Each context-cache
entry architecturally contains the following information:

• Context-cache entries hosting context-entries (see Section 9.3):

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-3

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

— The physical address of the SL-PML4 table (SLPTPTR) from the context-entry.
— Attributes from the context-entry:

• The Translation Type
• The Fault Processing Disable flag.
• The Domain-ID
• The Address Width of the domain

• Context-cache entries hosting extended-context-entries (see Section 9.4):
— The physical address of the SL-PML4 table (SLPTPTR) from the extended-context-entry.
— Attributes from the extended-context-entry:

• The Translation Type
• The Fault Processing Disable flag.
• The Domain-ID
• The Address Width of the domain

— Additional attributes from the extended-context-entry:
• The physical address of the PASID-table (PASIDPTR) from extended-context-entry
• The physical address of the PASID-state-table (PASIDSTPTR) from extended-context-entry
• The size of the PASID-table/PASID-state-table (PTS) from the extended-context-entry
• The PASID Enable flag
• The Nesting Enable flag
• The Page Request Enable flag
• The Deferred Invalidate Enable flag
• The request-with-PASID control flags (SRE, ERE, SLEE)
• The first-level translation control flags (PGE, NXE, WPE, SMEP)
• The memory-type attributes and flags (CD, PAT, EMTE, EMT)

When nesting-enable is 1 in an extended-context-entry, instead of caching the PASIDPTR and
PASIDSTPTR fields from the extended-context-entry, hardware may cache the physical address from
the second-level translation of the guest-physical address in the PASIDPTR and PASIDSTPTR fields.

For implementations reporting Caching Mode (CM) as 0 in the Capability Register, if any of the
following fault conditions are encountered as part of accessing a context-entry (or extended-context-
entry), the resulting entry is not cached in the context-cache (and hence do not require software to
invalidate the context-cache on modifications to such entries).

• Hardware attempt to access a root-entry (extended-root-entry), or context-entry (extended-
context-entry) resulted in error.

• Present (P) field of the root-entry (extended-root-entry) is 0.
• Invalid programming of one or more fields in the present root-entry (extended-root-entry).
• Present (P) field of the context-entry (extended-context-entry) is 0.
• Invalid programming of one or more fields in present context-entry (extended-context-entry).
• One or more non-zero reserved fields in the present root-entry (extended-root-entry), or context-

entry (extended-context-entry).
• When nesting is enabled, second-level translation of the PASIDPTR, or second-level translation of

the PASIDSTPTR (if Deferred Invalidate Enable is 1), in PASID-entry, resulted in a translation
fault.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-4 Order Number: D51397-006

For implementations reporting Caching Mode (CM) as 1 in the Capability Register, above conditions
may cause caching of the entry that resulted in the fault, and require explicit invalidation by software
to invalidate such cached entries. When CM=1, if the fault was detected without a present context-
entry (extended-context-entry), the reserved domain-id value of 0 is used to tag the cached entry
that caused the fault.

6.2.2.1 Context-Entry Programming Considerations

Software must ensure that, if multiple context-entries (or extended-context-entries) are programmed
with the same Domain-id (DID), such entries must be programmed with same value for the second-
level page-table pointer (SLPTPTR) field, and same value for the PASID Table Pointer (PASIDTPTR)
field. This is required since hardware implementations tag the various translation caches with DID
(see Chapter 6). Context-entries (or extended-context-entries) with the same value in these table
address pointer fields are recommended to use the same DID value for best hardware efficiency.

When modifying root-entries (extended-root-entries) or context-entries (extended-context-entries):
• Software must not modify fields other than the Present (P) field of currently present root-entries

(extended-root-entries) or context-entries (extended-context-entries). If modifications to other
fields are required, software must first make these entries not-present (P=0),and then transition
them to present (P=1) state with the modifications.

• Software must serially invalidate the context-cache, PASID-cache (if applicable), and the IOTLB
when modifying present root-entries (extended-root-entries) or context-entries (extended-
context-entries). The serialization is required since hardware may utilize information from the
context-caches (e.g., Domain-ID) to tag new entries inserted to the PASID-cache and IOTLB for
processing in-flight requests. Section 6.5 describe the invalidation operations.

Software must not use domain-id value of 0 on when programming context-entries (or extended-
context-entries) on implementations reporting CM=1 in the Capability register.

6.2.3 PASID-cache

PASID-cache is used to cache PASID-entries that are used to translate requests-with-PASID. Each
entry in a PASID-cache is an individual PASID-entry. Each cached entry is referenced by the PASID
number in the request and the Domain-ID from the extended-context-entry used to process the
request. Each PASID-cache entry architecturally contains the following information (see Section 9.5):

• The physical address of the first-level translation structure (FLPTPTR) from the PASID-entry.
• The values of PCD and PWT flags of the PASID-entry.

When nesting-enable is 1 in the extended-context-entry used to process a request-with-PASID,
instead of caching the FLPTPTR from the PASID-entry, hardware may cache the physical address from
the second-level translation of the guest-physical address in the FLPTPTR field.

For implementations reporting Caching Mode (CM) as 0 in the Capability Register, if any of the
following translation fault conditions are encountered leading up to or as part of accessing a PASID-
entry, the entry is not cached in the PASID-cache.

• Translation fault conditions described in Section 6.2.2.
• Present (P) field of the PASID-entry is 0.
• Invalid programming of one or more fields in the present PASID-entry.
• One or more non-zero reserved fields in the present PASID-entry.
• When nesting is enabled, second-level translation of the FLPTPTR in PASID-entry resulted in a

translation fault.

For implementations reporting Caching Mode (CM) as 1 in the Capability Register, above conditions
may cause caching of the PASID-entry that resulted in the fault, and require explicit invalidation by
software to invalidate such cached entries. When CM=1, if the fault was detected without a present

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-5

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

PASID-entry, the reserved domain-id value of 0 and reserved PASID value of 0 is used to tag the
cached entry. Software must not use PASID value of 0 on implementations reporting CM=1 in the
Capability register.

Since information from the present PASID-entries (e.g., PML4 pointer) can be utilized to fill other
caches (e.g., IOTLB, Paging-structure caches), to ensure updates to PASID-entries are visible to
hardware, software must invalidate the PASID-cache followed by invalidation of IOTLB and paging-
structure caches, in that order. Section 6.5 describe the invalidation operations.

6.2.4 IOTLB

Remapping hardware caches information about the translation of input-addresses in the IOTLB. IOTLB
may cache information with different functionality as below:

• First-level mappings:
— Each of these is a mapping from a input page number in a request-with-PASID to the physical

page frame to which it translates (derived from first-level translation), along with information
about access privileges and memory typing (if applicable).

• Second-level mappings:
— Each of these is a mapping from a input page number in a request-without-PASID to the

physical page frame to which it translates (derived from second-level translation), along with
information about access privileges and memory typing (if applicable).

• Combined mappings:
— Each of these is a mapping from a input page number in a request-with-PASID to the physical

page frame to which it translates (derived from both first-level and second-level translation),
along with information about access privileges and memory typing (if applicable).

Each entry in a IOTLB is an individual translation. Each translation is referenced by a page number.
Each entry architecturally contains the following information:

• IOTLB entries hosting first-level mappings:
— The physical address corresponding to the page number (the page frame).
— The access rights from the first-level paging-structure entries used to translate input-

addresses with the page number (see Section 3.6.2)
• The logical-AND of the R/W flags.
• The logical-AND of the U/S flags.
• The logical-OR of the XD flags (necessary only if NXE=1 in extended-context-entry).

— Attributes from a first-level paging-structure entry that identifies the final page frame for the
page number (either a PTE or a first-level paging-structure entry with PS=1):
• The dirty flag (see Section 3.6.3).
• The memory type (see Section 3.6.5).

• IOTLB entries hosting second-level mappings:
— The physical address corresponding to the page number (the page frame).
— The access rights from the second-level paging-structure entries used to translate input-

addresses with the page number (see Section 3.7.2)
• The logical-AND of the R flags.
• The logical-AND of the W flags.

— Attributes from a second-level paging-structure entry that identifies the final page frame for
the page number (either a SL-PTE or a second-level paging-structure entry with PS=1):
• The memory type (see Section 3.7.4 and Section 3.8.4).

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-6 Order Number: D51397-006

• The snoop (SNP) bit (see Section 3.7.3 and Section 4.2.3).
• The Transient-Mapping (TM) bit (see Section 4.2.3).

• IOTLB entries hosting nested mappings:
— The physical address corresponding to the page number (the page frame).
— The combined access rights from the first-level paging-structure and second-level paging-

structure entries used to translate input-addresses with the page number (see Section 3.8.2)
• The logical-AND of the R/W flags (from first-level translation) and W flags (from second-

level translation of the result of first-level translation).
• The logical-AND of the U/S flags (from first-level translation).
• The logical-OR of the XD flags from first-level translation (necessary only if NXE=1 in

extended-context-entry) with the logical-NAND of the X flags from second-level translation
(necessary only if SLEE=1 in extended-context-entry).

— Attributes from a first-level paging-structure entry that identifies the final page frame for the
page number (either a PTE or a paging-structure entry with PS=1):
• The dirty flag (see Section 3.6.3).

— Combined attributes from first-level and second-level paging-structure entries that identifies
the final page frame for the page number (either a page-table-entry or a paging-structure
entry with PS=1):
• The memory type (see Section 3.8.4).
• The Transient-Mapping (TM) bit from second-level paging-entry that identifies the final

page frame for the page number (see Section 4.2.3).

IOTLB entries may contain other information as well. A remapping hardware may implement multiple
IOTLBs, and some of these may be for special purposes, e.g., only for instruction fetches. Such
special-purpose IOTLBs may not contain some of this information if it is not necessary. For example, a
IOTLB used only for instruction fetches need not contain information about the R/W and dirty flags.)

As noted in Section 6.2.1, any IOTLB entries created by hardware are associated with appropriate
tags (e.g., source-id of request that allocated the entry, PASID value if request had a PASID, etc.).

Remapping hardware need not implement any IOTLBs. Remapping hardware that do implement
IOTLBs may evict or invalidate any IOTLB entry at any time. Software should not rely on the existence
of IOTLBs or on the retention of IOTLB entries.

6.2.4.1 Details of IOTLB Use

For implementations reporting Caching Mode (CM) as 0 in the Capability Register, IOTLB caches only
valid mappings (i.e. results of successful page-walks that did not result in a translation fault).
Specifically, if any of the translation fault conditions described in Section 3.6.1 (for first-level
translation), Section 3.7.1 (for second-level translation), Section 3.8.1 (for nested translation), and
Section 4.2.3 (for Device-TLB translation requests) are encountered, the results are not cached in the
IOTLB.

For implementations reporting Caching Mode (CM) as Set in the Capability Register, these translation
fault conditions may cause caching of the faulted translation in the IOTLB. If the fault was detected
without a present mapping, a reserved domain-id value of 0 (and reserved PASID value of 0 for first-
level/nested translations) is used to tag the cached entry.

With first-level translation, hardware does not cache a translation for a page number unless the
accessed flag is 1 (and extended-accessed flag is 1, if the PASID-entry used specifies EAFE=1) in
each of the first-level paging-structure entries used during translation; before caching a translation,
the hardware sets any of these accessed and extended-accessed flags that is not already 1; with
nested translation, setting of accessed and extended-accessed flags are subject to write permission
checks at second-level translation.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-7

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

If the page number of a input-address corresponds to a IOTLB entry tagged with the right source-id
(and PASID for requests-with-PASID), the hardware may use that IOTLB entry to determine the page
frame, access rights, and other attributes for accesses to that input-address. In this case, the
hardware may not actually consult the paging structures in memory. The hardware may retain a
IOTLB entry unmodified even if software subsequently modifies the relevant paging-structure entries
in memory. See Section 6.5 for how software can ensure that the hardware uses the modified paging-
structure entries.

If the paging structures specify a translation using a page larger than 4-KBytes, some hardware
implementations may choose to cache multiple smaller-page IOTLB entries for that translation. Each
such IOTLB entry would be associated with a page number corresponding to the smaller page size
(e.g., bits 47:12 of a input-address with first-level translation), even though part of that page number
(e.g., bits 20:12) is part of the offset with respect to the page specified by the paging structures. The
upper bits of the physical address in such a IOTLB entry are derived from the physical address in the
PDE used to create the translation, while the lower bits come from the input-address of the access for
which the translation is created.

There is no way for software to be aware that multiple translations for smaller pages have been used
for a large page. If software modifies the paging structures so that the page size used for a 4-KByte
range of input-addresses changes, the IOTLBs may subsequently contain multiple translations for the
address range (one for each page size). A reference to a input- address in the address range may use
any of these translations. Which translation is used may vary from one execution to another, and the
choice may be implementation-specific.

6.2.4.2 Global Pages

The first-level translation allow for global pages. If the G flag (bit 8) is 1 in a first-level paging-
structure entry that maps a page (either a PTE or a first-level paging-structure entry in which the PS
flag is 1), any IOTLB entry cached for a input-address using that paging-structure entry is considered
to be global. Because the G flag is used only in first-level paging-structure entries that map a page,
and because information from such entries are not cached in the paging-structure caches, the global-
page feature does not affect the behavior of the paging-structure caches.

Hardware may use a global IOTLB entry to translate input-address in a request-with-PASID, even if
the IOTLB entry is associated with a PASID different from the PASID value in the request, as long as
IOTLB entry is associated with the right source-id.

6.2.5 Caches for Paging Structures

Remapping hardware may cache frequently used paging-structure entries that reference other
paging-structure entries (as opposed to page frames). Depending on the type of the paging-structure
entry cached, the paging-structure caches may be classified as PML4-cache, PDPE-cache, and PDE-
cache. These may cache information with different functionality as below:

• First-level-paging-structure entries:
— Each of these is a mapping from the upper portion of a input-address in a request-with-PASID

to the physical address of the first-level paging structure used to translate the corresponding
region of the input-address space, along with information about access privileges. For
example, bits 47:39 of the input-address would map to the address of the relevant first-level
page-directory-pointer table.

• Second-level-paging-structure entries:
— Each of these is a mapping from the upper portion of a guest-physical address to the physical

address of the second-level paging structure used to translate the corresponding region of the
guest-physical address space, along with information about access privileges. The guest-
physical address can be the input-address in a request-without-PASID, or can be the second-
level address of a first-level paging-structure entry or PASID-table entry (accessed as part of
a nested translation). For example, bits MGAW:39 of the input-address would map to the
address of the relevant second-level page-directory-pointer table.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-8 Order Number: D51397-006

• Combined-paging-structure entries:
— Each of these is a mapping from the upper portion of a input-address in a request-with-PASID

to the physical address of the first-level paging structure (after nesting through second-level
translation) used to translate the corresponding region of the input-address space, along with
information about access privileges.

Hardware implementations may implement none or any of these paging-structure-caches, and may
use separate caches in implementation specific ways to manage different types of cached mappings
(e.g., first-level and nested mappings may be held in one cache and second-level in a different cache,
or any other formations).

6.2.5.1 PML4-cache

Each entry in a PML4-cache holds the following information:
• PML4-cache entries hosting first-level PML4Es:

— Each PML4-cache entry caching a first-level PML4E is referenced by a 9-bit value and is used
for input-addresses for which bits 47:39 have that value.

— The entry contains information from the PML4E used to translated such input-addresses:
• The physical address from the PML4E (address of first-level page-directory-pointer table).

(No PML4E-cache entry is created for a PML4E that maps a page.)
• The value of R/W flag of the PML4E.
• The value of U/S flag of the PML4E.
• The value of XD flag of the PML4E (necessary only if NXE=1 in extended-context-entry).
• The values of PCD and PWT flags of the PML4E.

• PML4-cache entries hosting SL-PML4Es:
— Each PML4-cache entry caching a second-level mapping is referenced by a N-bit value and is

used for input-addresses for which bits MGAW:39 have that value.
— The entry contains information from the SL-PML4E used to translated such input-addresses:

• The physical address from the SL-PML4E (address of second-level page-directory-pointer
table). (No PML4E-cache entry is created for a SL-PML4E that maps a page.)

• The value of R flag of the SL-PML4E.
• The value of W flag of the SL-PML4E.
• The value of X flag of the SL-PML4E (necessary only if SLEE=1 in extended-context-entry).

• PML4-cache entries hosting nested PML4Es:
— Each PML4-cache entry caching a nested mapping is referenced by a 9-bit value and is used

for input-addresses for which bits 49:39 have that value.
— The entry contains information from the first-level PML4E used to translated such input-

addresses, combined with information from the nested second-level translation of the
physical address from that PML4E:
• The physical address from the second-level translation of the address in the PML4E

(physical-address of first-level page-directory-pointer table). (No PML4E-cache entry is
created for a PML4E that maps a page.)

• The logical-AND of the R/W flag from the PML4E with the W flags (from second-level
translation of the address in PML4E).

• The value of U/S flag of the PML4E.
• The logical-OR of the XD flag of the PML4E (necessary only if NXE=1 in extended-context-

entry) with the logical-NAND of the X flags from second-level translation of the address in
PML4E (necessary only if SLEE=1 in extended-context-entry).

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-9

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

The following items detail how a hardware implementation may use the PML4-cache:
• If the hardware has a PML4-cache entry for a input-address, it may use that entry when

translating the input-address (instead of the PML4E in memory).
• For first-level mappings, hardware does not create a PML4-cache entry unless the P flag is 1 and

all reserved bits are 0 in the PML4E in memory. For nested mappings, hardware also does not
create a PML4-cache entry unless there is a second-level translation with read permission for the
address in PML4E. For second-level mappings, hardware does not create a PML4E-cache entry
unless at least one of R and W flags is 1 and all reserved bits are 0 in the SL-PML4E in memory1.

• For first-level mappings, hardware does not create a PML4-cache entry unless the accessed flag is
1 (and extended-accessed flag is 1, if EAFE=1 in the relevant PASID-entry) in the PML4E in
memory; before caching a translation, the hardware sets the accessed (and extended-accessed)
flag if it is not already 1; with nested translation, setting of accessed (and extended-accessed)
flags are subject to write permission checks at second-level translation1.

• The hardware may create a PML4-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-directory-pointer table).

• If the hardware creates a PML4-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML4E (SL-PML4E) in memory.

6.2.5.2 PDPE-cache

Each entry in a PDPE-cache holds the following information:
• PDPE-cache entries hosting first-level PDPEs:

— Each PDPE-cache entry caching a first-level PDPE is referenced by an 18-bit value and is used
for input-addresses for which bits 47:30 have that value.

— The entry contains information from the PML4E and PDPE used to translate such input-
addresses:
• The physical address from the PDPE (address of first-level page-directory). (No PDPE-

cache entry is created for a PDPE that maps a page.)
• The logical-AND of the R/W flags in the PML4E and PDPE.
• The logical-AND of the U/S flags in the PML4E and PDPE.
• The logical-OR of the XD flags in the PML4E and PDPE (necessary only if NXE=1 in

extended-context-entry).
• The values of PCD and PWT flags of the PDPE.

• PDPE-cache entries hosting SL-PDPEs:
— Each PDPE-cache entry caching a SL-PDPE is referenced by a N-bit value and is used for

input-addresses for which bits MGAW:30 have that value.
— The entry contains information from the SL-PML4E and SL-PDPE used to translated such

input-addresses:
• The physical address from the SL-PDPE (address of second-level page-directory). (No

PDPE-cache entry is created for a SL-PDPE that maps a page.)
• The logical-AND of the R flags in the SL-PML4E and SL-PDPE.
• The logical-AND of the W flags in the SL-PML4E and SL-PDPE.
• The logical-NAND of the X flag in the SL-PML4E and SL-PDPE (necessary only if SLEE=1 in

extended-context-entry).
• PDPE-cache entries hosting nested PDPEs:

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-10 Order Number: D51397-006

— Each PDPE-cache entry caching a nested mapping is referenced by a 18-bit value and is used
for input-addresses for which bits 47:30 have that value.

— The entry contains information from the PML4E and PDPE used to translated such input-
addresses, combined with information from the nested second-level translation of the
physical address from that PDPE:
• The physical address from the second-level translation of the address in the PDPE

(physical-address of first-level page-directory). (No PDPE-cache entry is created for a
PDPE that maps a page.)

• The logical-AND of the R/W flags in the PML4E and PDPE, with the W flags (from second-
level translation of the address in the PDPE).

• The logical-AND of the U/S flags in the PML4E and PDPE.
• The logical-OR of the XD flags in the PML4E and PDPE (necessary only if NXE=1 in

extended-context-entry) with the logical-NAND of the X flags from second-level translation
of the address in PDPE (necessary only if SLEE=1 in extended-context-entry).

The following items detail how a hardware implementation may use the PDPE-cache:
• If the hardware has a PDPE-cache entry for a input-address, it may use that entry when

translating the input-address (instead of the PML4E and PDPE in memory).
• For first-level mappings, hardware does not create a PDPE-cache entry unless the P flag is 1 and

all reserved bits are 0 in the PML4E and the PDPE in memory. For nested mappings, hardware also
does not create a PDPE-cache entry unless there is a second-level translation with read
permission for the address in the PML4E and the PDPE. For second-level mappings, hardware
does not create a PDPE-cache entry unless at least one of R and W flags is 1 and all reserved bits
are 0 in the SL-PML4E and the SL-PDPE in memory1.

• For first-level mappings, hardware does not create a PDPE-cache entry unless the accessed flag is
1 (and extended-accessed flag is 1, if EAFE=1 in the relevant PASID-entry) in the PML4E and the
PDPE in memory; before caching a translation, the hardware sets these accessed (and extended-
accessed) flags if it is not already 1; with nested translation, setting of accessed (and extended-
accessed) flags are subject to write permission checks at second-level translation1.

• The hardware may create a PDPE-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-directory)

• If the hardware creates a PDPE-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML4E (SL-PML4E) or PDPE (SL-PDPE) in
memory.

6.2.5.3 PDE-cache

Each entry in a PDE-cache holds the following information:
• PDE-cache entries hosting first-level PDEs:

— Each PDE-cache entry caching a first-level PDE is referenced by an 27-bit value and is used
for input-addresses for which bits 47:21 have that value.

— The entry contains information from the PML4E, PDPE and PDE used to translate such input-
addresses:
• The physical address from the PDE (address of first-level page-table). (No PDE-cache

entry is created for a PDE that maps a page.)
• The logical-AND of the R/W flags in the PML4E, PDPE and PDE.
• The logical-AND of the U/S flags in the PML4E, PDPE and PDE.

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-11

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

• The logical-OR of the XD flags in the PML4E, PDPE and PDE (necessary only if NXE=1 in
extended-context-entry).

• The values of PCD and PWT flags of the PDE.
• PDE-cache entries hosting SL-PDEs:

— Each PDE-cache entry caching a SL-PDE is referenced by a N-bit value and is used for input-
addresses for which bits MGAW:21 have that value.

— The entry contains information from the SL-PML4E, SL-PDPE and SL-PDE used to translated
such input-addresses:
• The physical address from the SL-PDE (address of second-level page-table). (No PDE-

cache entry is created for a SL-PDE that maps a page.)
• The logical-AND of the R flags in the SL-PML4E, SL-PDPE and SL-PDE.
• The logical-AND of the W flags in the SL-PML4E, SL-PDPE and SL-PDE.
• The logical-NAND of the X flag in the SL-PML4E, SL-PDPE and SL-PDE (necessary only if

SLEE=1 in extended-context-entry).
• PDE-cache entries hosting nested PDEs:

— Each PDE-cache entry caching a nested mapping is referenced by a 27-bit value and is used
for input-addresses for which bits 47:21 have that value.

— The entry contains information from the PML4E, PDPE and PDE used to translated such input-
addresses, combined with information from the nested second-level translation of the
physical address from that PDE:
• The physical address from the second-level translation of the address in the PDE (physical-

address of first-level page-table). (No PDE-cache entry is created for a PDE that maps a
page.)

• The logical-AND of the R/W flags in the PML4E, PDPE and PDE, with the W flags (from
second-level translation of the address in the PDE).

• The logical-AND of the U/S flags in the PML4E, PDPE and PDE.
• The logical-OR of the XD flags in the PML4E, PDPE and PDE (necessary only if NXE=1 in

extended-context-entry) with the logical-NAND of the X flags from second-level translation
of the address in PDE (necessary only if SLEE=1 in extended-context-entry).

The following items detail how a hardware implementation may use the PDE-cache:
• If the hardware has a PDE-cache entry for a input-address, it may use that entry when translating

the input-address (instead of the PML4E, the PDPE, and the PDE in memory).
• For first-level mappings, hardware does not create a PDE-cache entry unless the P flag is 1 and all

reserved bits are 0 in the PML4E, the PDPTE, and the PDE in memory. For nested mappings,
hardware also does not create a PDE-cache entry unless there is a second-level translation with
read permission for the address in the PML4E, the PDPE, and the PDE. For second-level mappings,
hardware does not create a PDE-cache entry unless at least one of R and W flags is 1 and all
reserved bits are 0 in the SL-PML4E, the SL-PDPE, and the SL-PDE in memory1.

• For first-level mappings, hardware does not create a PDE-cache entry unless the accessed flag is
1 (and extended-accessed flag is 1, if EAFE=1 in the relevant PASID-entry) in the PML4E, the
PDPE, and the PDE in memory; before caching a translation, the hardware sets these accessed
(and extended-accessed) flags if it is not already 1; with nested translation, setting of accessed
(and extended-accessed) flags are subject to write permission checks at second-level
translation1.

1. This behavior applies for implementations reporting Caching Mode (CM) as 0 in the Capability
register. See Section 6.1 for caching behavior on implementations reporting CM=1.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-12 Order Number: D51397-006

• The hardware may create a PDE-cache entry even if there are no translations for any input-
address that might use that entry (e.g., because the P flags are 0 in all entries in the referenced
page-table)

• If the hardware creates a PDE-cache entry, the hardware may retain it unmodified even if
software subsequently modifies the corresponding PML4E (SL-PML4E), PDPE (SL-PDPE), or PDE
(SL-PDE) in memory.

6.2.5.4 Details of Paging-Structure Cache Use

For implementations reporting Caching Mode (CM) as Clear in the Capability Register, paging-
structure-caches host only valid mappings (i.e. results of successful page-walks up to the cached
paging-structure entry that did not result in a translation fault). Specifically, if any of the translation
fault conditions described in Section 3.6.1 (for first-level translation), Section 3.7.1 (for second-level
translation), Section 3.8.1 (for nested translation), and Section 4.2.3 (for Device-TLB translation
requests) are encountered, the results are not cached in the paging-structure caches.

For implementations reporting Caching Mode (CM) as Set in the Capability Register, these translation
fault conditions may cause caching of the faulted translation in the paging-structure cache. If the fault
was detected without the present paging-structure entry, a reserved domain-id value of 0 (and
reserved PASID value of 0 for first-level/nested paging-structure entries) is used to tag the cached
entry.

Information from a paging-structure entry can be included in entries in the paging-structure-caches
for other paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in
a PML4E, then the R/W flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-
pointer table referenced by that PML4E. This is because the R/W flag of each such PDPTE-cache entry
is the logical-AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference
other paging structures (and not those that map pages). For first-level-paging-structure cache
entries, because the G flag is not used in such paging-structure entries, the global-page feature does
not affect the behavior of the paging-structure caches.

As noted in Section 6.2.1, any entries created in paging-structure caches are associated with the
target domain-ID (and PASID for entries hosting first-level and nested entries).

A remapping hardware implementation may or may not implement any of the paging-structure
caches. Software should rely on neither their presence nor their absence. The hardware may
invalidate entries in these caches at any time. Because the hardware may create the cache entries at
the time of translation and not update them following subsequent modifications to the paging
structures in memory, software should take care to invalidate the cache entries appropriately when
causing such modifications. The invalidation of IOTLBs and the paging-structure caches is described in
Section 6.5.

6.2.6 Using the Paging-Structure Caches to Translate Requests

When a input-address is accessed, the remapping hardware uses a procedure such as the following to
determine the physical address to which it translates and whether the access should be allowed:

• For requests-with-PASID:
— If the hardware finds an IOTLB entry that is for the page number of the input-address and

that is associated with both the Source-ID in the request and the PASID value in the request
(or which is global), it may use the physical address, access rights, and other attributes from
that entry.

— Hardware may use the source-ID of the request to select a context-cache entry. It can use
that entry to qualify the request based on the attributes in the entry, and obtain the Domain-
ID specified by software. If the hardware does not find a matching context-cache entry, it can
traverse the extended-root-table and extended-context-table to obtain and cache the
extended-context-entry. Hardware may use the PASID value in the request and the Domain-

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-13

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

ID from the context-cache entry to select a PASID-cache entry. If the hardware does not find
a matching PASID-cache entry, it can traverse the PASID-table to obtain the PASID-entry.

— If the hardware does not find a relevant IOTLB entry, it may use the bits 47:21 of the input-
address to select an entry from the PDE-cache that is associated with the PASID in the
request and the Domain-ID from the context-cache entry. It can then use that entry to
complete the translation process (locating a PTE, etc., as described in Section 3.6 for first-
level translation, or Section 3.8 for nested translation) as if it had traversed the PDE, PDPE
and PML4E corresponding to the PDE-cache entry.

— If the hardware does not find a relevant IOTLB entry or a relevant PDE-cache entry, it may
use bits 47:30 of the input-address to select an entry from the PDPE cache that is associated
with the PASID in the request and the Domain-ID from the context-cache entry. It can then
use that entry to complete the translation process (locating a PDE, etc., as described in
Section 3.6 for first-level translation, or Section 3.8 for nested translation) as if it had
traversed the PDPE and the PML4E corresponding to the PDPE-cache entry.

— If the hardware does not find a relevant IOTLB entry, a relevant PDE-cache entry, or a
relevant PDPE-cache entry, it may use bits 47:39 of the input-address to select an entry from
the PML4E-cache that is associated with the PASID in the request and the Domain-ID from
the context-cache entry. It can then use that entry to complete the translation process
(locating a PDPE, etc., as described in Section 3.6 for first-level translation, or Section 3.8 for
nested translation) as if it had traversed the corresponding PML4E.

— If the hardware does not find an IOTLB or paging-structure-cache entry for the input-address,
it uses the PASID in the request and the Domain-ID from the context-cache entry to select a
PASID-cache entry. It can use that entry to complete the translation process (locating a
PML4E, etc., as described in Section 3.6 for first-level translation, or Section 3.8 for nested
translation) as if it has traversed the corresponding PASID-entry.
(Any of the above steps would be skipped if the hardware does not support the cache in
question.)

• For requests-without-PASID:
— If the hardware finds an IOTLB entry that is for the page number of the input-address and

that is associated with the Source-ID in the request, it may use the physical address, access
rights, and other attributes from that entry.

— Hardware may use the source-ID of the request to select a context-cache entry. It can use
that entry to qualify the request based on the attributes in the entry, and obtain the Domain-
ID specified by software. If the hardware does not find a matching context-cache entry, it can
traverse the root/extended-root tables and context/extended-context tables to obtain and
cache the context/extended-context entry. If the context-cache entry indicates pass-through
access, the request is processed as if it found a IOTLB entry with a matching unity translation.
Else, it continues the translation process as follows.

— If the hardware does not find a relevant IOTLB entry, it may use the bits MGAW:21 of the
input-address to select an entry from the PDE-cache that is associated with the Domain-ID
from the context-cache entry. It can then use that entry to complete the translation process
(locating a SL-PTE, etc., as described in Section 3.7 for second-level translation) as if it had
traversed the SL-PDE, SL-PDPE and SL-PML4E corresponding to the PDE-cache entry.

— If the hardware does not find a relevant IOTLB entry or a relevant PDE-cache entry, it may
use bits MGAW:30 of the input-address to select an entry from the PDPE cache that is
associated with the Domain-ID from the context-cache entry. It can then use that entry to
complete the translation process (locating a SL-PDE, etc., as described in Section 3.7 for
second-level translation) as if it had traversed the SL-PDPE and the SL-PML4E corresponding
to the PDPE-cache entry.

— If the hardware does not find a relevant IOTLB entry, a relevant PDE-cache entry, or a
relevant PDPE-cache entry, it may use bits MGAW:39 of the input-address to select an entry
from the PML4E-cache that is associated with the Domain-ID from the context-cache entry. It
can then use that entry to complete the translation process (locating a SL-PDPE, etc., as
described in Section 3.7 for second-level translation) as if it had traversed the corresponding
SL-PML4E.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-14 Order Number: D51397-006

— If the hardware does not find an IOTLB, or paging-structure-cache entry for the input-address
in the request-without-PASID, it uses the source-ID, and input-address in the request to
traverse the entire second-level paging-structure hierarchy.

(Any of above steps would be skipped if hardware does not support the cache in question.)

6.2.7 Multiple Cached Entries for a Single Paging-Structure Entry

The paging-structure caches and IOTLBs and paging-structure caches may contain multiple entries
associated with a single PASID and domain-ID) and with information derived from a single paging-
structure entry. The following items give some examples for first-level translation:

• Suppose that two PML4Es contain the same physical address and thus reference the same page-
directory-pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each
associated with a different set of input-addresses. Specifically, suppose that the n1th and n2th
entries in the PML4 table contain the same physical address. This implies that the physical
address in the mth PDPTE in the page-directory-pointer table would appear in the PDPTE-cache
entries associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (p1 & 1FFH) =
(p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one resulting
from a reference from the n1th PML4E and one from the n2th PML4E.

• Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in
PASID-entry (the physical address of the PML4 table). This implies the following:
— Any PML4-cache entry associated with input-address with 0 in bits 47:39 contains address X.
— Any PDPTE-cache entry associated with input-addresses with 0 in bits 47:30 contains address

X. This is because the translation for a input-address for which the value of bits 47:30 is 0
uses the value of bits 47:39 (0) to locate a page-directory-pointer table at address X (the
address of the PML4 table). It then uses the value of bits 38:30 (also 0) to find address X
again and to store that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with input-addresses with 0 in bits 47:21 contains address X
for similar reasons.

— Any IOTLB entry for page number 0 (associated with input-addresses with 0 in bits 47:12)
translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing
nature of the entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

Similar examples of multiple cached entries for a single paging-structure entry are possible with
second-level translation (involving SL-PML4Es, SL-PDPEs, SL-PDEs, and SL-PTEs).

6.3 Translation Caching at Endpoint Device
Chapter 4 described support for endpoint devices to request translations from remapping hardware
and cache on Device-TLBs that are local to the endpoint device. Device-TLBs may be utilized to
improve address-translation performance and/or to support recoverable translation faults (see
Chapter 7). Translation requests from endpoint devices are address translated by the remapping
hardware using its translation caches as described in previous sections, and the resulting translation
is returned to the endpoint device in a Translation Completion. Refer to Section 4.1.2 for attributes
returned in the Translation-Completion. The endpoint device may cache the information returned in
the Translation-Completion locally in its Device-TLBs.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-15

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

6.4 Interrupt Entry Cache
Remapping hardware supporting interrupt remapping may cache frequently used interrupt remapping
table entries in the interrupt-entry-cache (IEC). Each entry in a interrupt-entry-cache is an individual
interrupt-remap-table-entry. Each cached entry is referenced by the interrupt_index number
computed from attributes in the interrupt request (see Section 5.3.2.1). Each interrupt-entry-cache
entry architecturally contains the following information (see Section 9.10):

• Attributes of the remapped interrupt from the IRTE:
— Interrupt Vector
— Destination ID
— Delivery Mode
— Trigger Mode
— Redirection Hint

• The Fault Processing Disable (FPD) flag from the IRTE
• The interrupt source validation attributes (SID, SQ, SVT fields) from the IRTE.

For implementations reporting Caching Mode (CM) as Clear in the Capability Register, if any of the
interrupt-remapping fault conditions described in Section 5.3.3.1 is encountered, the resulting entry
is not cached in the IEC. For implementations reporting Caching Mode (CM) as Set in the Capability
Register, interrupt-remapping fault conditions may cause caching of the corresponding interrupt
remapping entries.

Remapping hardware utilize the interrupt-entry cache as follows:
• If the hardware finds an IEC entry that is for the interrupt_index number of the request, it may

use the interrupt attributes from the IEC entry (subject to the interrupt-source validation checks
as described in Section 9.10).

• If the hardware does not find a matching IEC entry, it uses the interrupt_index computed for the
request to fetch the interrupt-remap-table-entry from the interrupt-remap-table.

6.5 Invalidation of Translation Caches
As noted in Section 6.2, the remapping hardware may create entries in the various translation caches
when requests are translated, and it may retain these entries even after the translation structures
used to create them have been modified by software. To ensure that address translation uses the
modified translation structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

For software to invalidate the various caching structures, the architecture supports the following two
types of invalidation interfaces:

• Register-based invalidation interface: A legacy invalidation interface with limited capabilities,
supported by all implementations of this architecture.

• Queued invalidation interface: An expanded invalidation interface with extended capabilities,
supported by later implementations of this architecture. Hardware implementations report
support for queued invalidation interface through the Extended Capability Register (see
Section 10.4.3).

The following sections provides more details on these hardware interfaces.

6.5.1 Register-based Invalidation Interface

The register-based invalidations provides a synchronous hardware interface for invalidations.
Software writes to the invalidation command registers to submit invalidation command and may poll
on these registers to check for invalidation completion.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-16 Order Number: D51397-006

Hardware implementations must process commands submitted through the invalidation registers
irrespective of the remapping hardware enable status (i.e irrespective of TES and IES status in the
Global Status Register. See Section 10.4.5).

Register-based invalidation has the following limitations:
• Register-based invalidation can be used only when queued-invalidations are not enabled.
• Register-based invalidation can target only invalidation of second-level translations. Invalidation

of first-level and nested translations are not supported (which are supported only through
queued-invalidations).

• Register-based invalidation cannot invalidate Device-TLBs on endpoint devices.

The following sub-sections describe the register-based invalidation command registers.

6.5.1.1 Context Command Register

Context Command Register (see Section 10.4.7) supports invalidating the context-cache. The
architecture defines the following types of context-cache invalidation requests. Hardware
implementations may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity is not supported.

• Global Invalidation: All context-cache entries cached at the remapping hardware are invalidated.
• Domain-Selective Invalidation: Context-cache entries associated with the specified domain-id are

invalidated.
• Device-Selective Invalidation: Context-cache entries associated with the specified device source-

id and domain-id are invalidated.

When modifying root-entries or context-entries referenced by more than one remapping hardware
units in a platform, software is responsible to explicitly invalidate the context-cache at each of these
hardware units.

6.5.1.2 IOTLB Registers

IOTLB invalidation is supported through two 64-bit registers; (a) IOTLB Invalidate Register (see
Section 10.4.8.1) and (b) Invalidation Address Register (see Section 10.4.8.2).

The architecture defines the following types of IOTLB invalidation requests. Hardware
implementations may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity is not supported.

• Global Invalidation:
— All IOTLB entries are invalidated.
— All PASID-cache entries are invalidated.
— All paging-structure-cache entries are invalidated.

• Domain-Selective Invalidation:
— IOTLB entries caching mappings (first-level, second-level, and nested) associated with the

specified domain-id are invalidated.
— PASID-cache entries associated with the specified domain-id are invalidated.
— Paging-structure-cache entries caching mappings (first-level, second-level and nested)

associated with the specified domain-id are invalidated.
• Page-Selective-within-Domain Invalidation:

— IOTLB entries caching second-level mappings associated with the specified domain-id and the
second-level-input-address range are invalidated.

— IOTLB entries caching first-level and nested mappings associated with the specified domain-id
are invalidated.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-17

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

— PASID-cache entries associated with the specified domain-id are invalidated.
— Paging-structure-cache entries caching first-level and nested mappings associated with the

specified domain-id tare invalidated.
— Paging-structure-cache entries caching second-level mappings associated with the specified

domain-id and the second-level-input-address range are invalidated, if the Invalidation Hint
(IH) field is Clear. Else, the paging-structure-cache entries caching second-level mappings are
preserved.

For any of the above operations, hardware may perform coarser invalidation. The actual invalidation
granularity reported by hardware in the IOTLB Invalidate Register is always the granularity at which
the invalidation was performed on the IOTLB.

When modifying page-table entries referenced by more than one remapping hardware units in a
platform, software is responsible to explicitly invalidate the IOTLB at each of these hardware units.

6.5.2 Queued Invalidation Interface

The queued invalidation provides an advanced interface for software to submit invalidation requests
to hardware and to synchronize invalidation completions with hardware. Hardware implementations
report queued invalidation support through the Extended Capability Register.

Queued-invalidation supports invalidation of first-level, second-level and nested translations. Queued
invalidations may be beneficial for the following software usages:

• Usages that frequently map and un-map pages in the translation structures (causing frequent
invalidations).

• Usages where page-selective invalidation requests frequently span pages that are not virtually
contiguous.

• Usages where software can do useful work without while an invalidation operation is pending in
hardware.

• Invalidation operations that are latency prone (such as invalidating Device-TLBs on a endpoint
device across an I/O interconnect).

• Usages of VMM virtualizing remapping hardware, where VMM may improve the virtualization
performance by allowing guests to queue invalidation requests (instead of intercepting guest
MMIO accesses for each invalidation request as required by the register based interface).

The queued invalidation interface uses a Invalidation Queue (IQ), which is a circular buffer in system
memory. Software submits commands by writing Invalidation Descriptors to the IQ. The following
registers are defined to configure and manage the IQ:

• Invalidation Queue Address Register: Software programs this register to configure the base
physical address and size of the contiguous memory region in system memory hosting the
Invalidation Queue.

• Invalidation Queue Head Register: This register points to the invalidation descriptor in the IQ that
hardware will process next. The Invalidation Queue Head register is incremented by hardware
after fetching a valid descriptor from the IQ. Hardware interprets the IQ as empty when the head
and tail registers are equal.

• Invalidation Queue Tail Register: This register points to the invalidation descriptor in the IQ to be
written next by software. Software increments this register after writing one or more invalidation
descriptors to the IQ.

To enable queued invalidations, software must:
• Ensure all invalidation requests submitted to hardware through the register-based invalidation

registers are completed. (i.e. no pending invalidation requests in hardware).
• Initialize the Invalidation Queue Tail Register (see Section 10.4.22) to zero.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-18 Order Number: D51397-006

• Setup the IQ address and size through the Invalidation Queue Address Register (see
Section 10.4.23).

• Enable the queued invalidation interface through the Global Command Register (see
Section 10.4.4). When enabled, hardware sets the QIES field in the Global Status Register (see
Section 10.4.5).

When the queued invalidation is enabled, software must submit invalidation commands only through
the IQ (and not through any register-based invalidation command registers).

Hardware fetches descriptors from the IQ in FIFO order starting from the Head Register if all of the
following conditions are true. This is independent of the remapping hardware enable status (state of
TES and IES fields in Global Status Register).

• QIES field in the Global Status Register is Set (indicating queued invalidation is enabled)
• IQ is not empty (i.e. Head and Tail pointer Registers are not equal)
• There is no pending Invalidation Queue Error or Invalidation Time-out Error (IQE and ITE fields in

the Fault Status Register are both Clear)

Hardware implementations may fetch one or more descriptors together. However, hardware must
increment the Invalidation Queue Head Register only after verifying the fetched descriptor to be valid.
Hardware handling of invalidation queue errors are described in Section 6.5.2.10.

Once enabled, to disable the queued invalidation interface, software must:
• Quiesce the invalidation queue. The invalidation queue is considered quiesced when the queue is

empty (head and tail registers equal) and the last descriptor completed is an Invalidation Wait
Descriptor (which indicates no invalidation requests are pending in hardware).

• Disable queued invalidation. The queued invalidation interface is disabled through the Global
Command Register. When disabled, hardware resets the Invalidation Queue Head Register to
zero, and clears the QIES field in the Global Status Register.

The following subsections describe the various Invalidation Descriptors. All descriptors are 128-bit
sized. Type field (bits 3:0) of each descriptor identifies the descriptor type. Software must program
the reserved fields in the descriptors as zero.

6.5.2.1 Context-cache Invalidate Descriptor

The Context-cache Invalidate Descriptor (cc_inv_dsc) allows software to invalidate the context-cache,
there by forcing hardware to use the entries from root (extended-root) and context (extended-
context) tables in system memory. The context-cache invalidate descriptor includes the following
parameters:

• Granularity (G): The G field indicates the requested invalidation granularity. The encoding of the
G field is same as the CIRG field in the Context Command Register (described in Section 10.4.7).
Hardware implementations may perform coarser invalidation than the granularity requested.

Figure 6-22. Context-cache Invalidate Descriptor

01hSource-ID Domain-ID
F
M

0

G

Rsvd

RsvdRsvd

3
1 456

1
5

1
6

4
7

4
8

4
9

5
0

6
3

3
2

1
2
7

6
4

3

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-19

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

— Global Invalidation (01b): All context-cache entries cached at the remapping hardware are
invalidated.

— Domain-Selective Invalidation (10b): Context-cache entries associated with the specified
domain-id are invalidated.

— Device-Selective Invalidation (11b): Context-cache entries associated with the specified
device source-id and domain-id are invalidated.Domain-ID (DID): For domain-selective and
device-selective invalidations, the DID field indicates the target domain-id.

• Source-ID (SID): For device-selective invalidations, the SID field indicates the device source-id.
• Function Mask (FM): The Function Mask field indicates the bits of the SID field to be masked for

device-selective invalidations. The usage and encoding of the FM field is same as the FM field
encoding in the Context Command Register (see Section 10.4.7).

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the context-cache. Refer
to Section 6.8 for write buffer flushing requirements.

Since information from the context-cache may be used to tag entries in the PASID-cache, IOTLB and
paging-structure caches, software must always follow a context-cache invalidation with a PASID-
cache invalidation (if context-cache entry supports requests-with-PASID), followed by an IOTLB
invalidation. The granularity of the PASID-cache and IOTLB invalidation must be equal or greater than
the preceding context-cache invalidation (e.g., A global context-cache invalidation must be followed
by all-PASIDs PASID-cache invalidation and global IOTLB invalidation; A domain/device selective
context-cache invalidation must be followed by all-PASIDs PASID-cache invalidation and domain-
selective or global IOTLB invalidation).

6.5.2.2 PASID-cache Invalidate Descriptor

The PASID-cache Invalidate Descriptor (pc_inv_dsc) allows software to invalidate the PASID-cache,
there by forcing hardware to use entries from the PASID table in system memory for translating
requests-with-PASID. The PASID-cache invalidate descriptor includes the following parameters:

• Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is as follows:
— All-PASIDs Invalidation (00b): All PASID-cache entries associated with the specified domain-

id are invalidated.
— PASID-Selective Invalidation (01b): PASID-cache entries associated with the specified PASID

value and the domain-id are invalidated.
• Domain-ID (DID): The DID field indicates the target domain-id. Hardware ignores bits

31:(16+N), where N is the domain-id width reported in the Capability Register.
• PASID: The PASID value indicates the target process-address-space to be invalidated. This field is

ignored by hardware for all-PASIDs invalidation granularity.

Figure 6-23. PASID-cache Invalidate Descriptor

07hPASID Domain-ID

0

G

Rsvd

RsvdRsvd

3
1 456

1
5

1
6

5
1

5
2

6
3

3
2

1
2
7

6
4

3

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-20 Order Number: D51397-006

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the PASID-cache. Refer to
Section 6.8 for write buffer flushing requirements.

Since information from the PASID-cache may be used to tag the IOTLB and paging-structure caches,
software must always follow a PASID-cache invalidation with a IOTLB invalidation. All-PASIDs
granularity PASID-cache invalidation must be followed by All-mappings-within-all-PASIDs extended
IOTLB invalidation; A PASIDs-selective granularity PASID-cache invalidation must be followed by Non-
globals-within-PASID extended IOTLB invalidation).

6.5.2.3 IOTLB Invalidate Descriptor

The IOTLB Invalidate Descriptor (iotlb_inv_dsc) allows software to invalidate the IOTLB, paging-
structure-caches, and PASID-cache. This descriptor is expected to be used when invalidating cached
entries that utilized second-level translations. The descriptor includes the following parameters:

• Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is same as the IIRG field in the IOTLB Invalidate Register (see Section 10.4.8):
— Global Invalidation (01b):

• All IOTLB entries are invalidated.
• All paging-structure-cache entries are invalidated.
• All PASID-cache entries are invalidated.

— Domain-Selective Invalidation (10b):
• IOTLB entries caching mappings (first-level, second-level, and nested) associated with the

specified domain-id are invalidated.
• Paging-structure-cache entries caching mappings (first-level, second-level and nested)

associated with the specified domain-id are invalidated.
• PASID-cache entries associated with the specified domain-id are invalidated.

— Page-Selective-within-Domain Invalidation (11b):
• IOTLB entries caching second-level mappings associated with the specified domain-id and

the second-level-input-address range are invalidated.
• IOTLB entries caching first-level and nested mappings associated with the specified

domain-id are invalidated.
• Paging-structure-cache entries caching first-level and nested mappings associated with the

specified domain-id are invalidated.

Figure 6-24. IOTLB Invalidate Descriptor

02hDID

0

GRsvdRsvd

3
1 456

1
5

1
6

6
3

3
2

1
2
7

6
4

3

ADDR [63:12] IH AM

6
9

7
0

7
1

Rsvd

7
5

7
6

78

D
R

D
W

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-21

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

• Paging-structure-cache entries caching second-level mappings associated with the
specified domain-id and the second-level-input-address range are invalidated, if the
Invalidation Hint (IH) field has value of 0. If the IH value is 1, the paging-structure-cache
entries caching second-level mappings are preserved.

• PASID-cache entries associated with the specified domain-id are invalidated.
• Drain Reads (DR): Software sets this flag to indicate hardware must drain read requests that are

already processed by the remapping hardware, but queued within the Root-Complex to be
completed. When the value of this flag is 1, hardware must perform the read drain before the
next Invalidation Wait Descriptor (see Section 6.5.2.8) is completed. Section 6.5.5 describes
hardware support for draining.

• Drain Writes (DW): Software sets this flag to indicate hardware must drain relevant write
requests that are already processed by the remapping hardware, but queued within the Root-
Complex to be completed. When the value of this flag is 1, hardware must drain the relevant
writes before the next Invalidation Wait Descriptor is completed. Section 6.5.5 describes
hardware support for draining.

• Domain-ID (DID): For domain-selective and page-selective invalidations, the DID field indicates
the target domain-id. Hardware ignores bits 31:(16+N), where N is the domain-id width reported
in the Capability Register. This field is ignored by hardware for global invalidations.

• Invalidation Hint (IH): For page-selective-within-domain invalidations, the Invalidation Hint
specifies if the second-level mappings cached in the paging-structure-caches that controls the
specified address/mask range needs to be invalidated or not. For software usages that updates
only the leaf SL-PTEs, the second-level mappings in the paging-structure-caches can be
preserved by specifying the Invalidation Hint field value of 1. This field is ignored by hardware for
global and domain-selective invalidations.

• Address (ADDR): For page-selective-within-domain invalidations, the Address field indicates the
starting second-level page address of the mappings that needs to be invalidated. Hardware
ignores bits 127:(64+N), where N is the maximum guest address width (MGAW) supported. This
field is ignored by hardware for global and domain-selective invalidations.

• Address Mask (AM): For page-selective-within-domain invalidations, the Address Mask specifies
the number of contiguous second-level pages that needs to be invalidated. The encoding for the
AM field is same as the AM field encoding in the Invalidate Address Register (see
Section 10.4.8.2). When invalidating a large-page translation, software must use the appropriate
Address Mask value (0 for 4KByte page, 9 for 2-MByte page, and 18 for 1-GByte page).

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the IOTLB.

6.5.2.4 Extended IOTLB Invalidate Descriptor

The Extended IOTLB Invalidate Descriptor (ext_iotlb_inv_dsc) allows software to invalidate first-level
and nested mappings from the IOTLB and the paging-structure-caches. The descriptor includes the
following parameters:

Figure 6-25. Extended IOTLB Invalidate Descriptor

06hDID

0

GRsvdRsvd

3
1 456

1
5

1
6

6
3

3
2

1
2
7

6
4

3

ADDR [63:12] IH AM

6
9

7
0

7
1

Rsvd

7
5

7
6

PASID

5
1

5
2

7
2

GL

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-22 Order Number: D51397-006

• Granularity (G): The G field indicates the requested invalidation granularity. Hardware
implementations may perform coarser invalidation than the granularity requested. The encoding
of the G field is as follows:
— All-mappings-within-all-PASIDs (00b):

• IOTLB entries caching first-level and nested mappings (including mappings to global
pages) that are associated with the specified domain-id are invalidated. The global pages
are invalidated, independent of the programming of the GL field.

• Paging-structure-cache entries caching first-level and nested mappings that are associated
with the specified domain-id are invalidated.

— Non-globals-within-all-PASIDs (01b):
• IOTLB entries caching first-level and nested mappings to non-global pages (i.e. pages that

are translated by first-level paging entries with the Global field value of 0) that are
associated with the specified domain-id are invalidated.

• Paging-structure-cache entries caching first-level and nested mappings that are associated
with the specified domain-id are invalidated.

— Non-globals-within-PASID (10b):
• IOTLB entries caching first-level and nested mappings to non-global pages (i.e. pages that

are translated by first-level paging entries with the Global field value of 0) that are
associated with the specified PASID and domain-id are invalidated.

• Paging-structure-cache entries caching first-level and nested mappings that are associated
with the specified PASID and domain-id are invalidated.

— Page-Selective-within-PASID (11b):
• IOTLB entries caching first-level and nested mappings that are associated with the

specified PASID, domain-id, and the first-level-input-address range are invalidated. If the
Global Hint (GL) field has value of 1, the mappings specified by the first-level-input-
address range are invalidated even if any of these mappings are global pages (and hence
not private to the specified PASID). If the GL field has value of 0, any of the specified
mappings that are cached as global pages may be preserved.

• Paging-structure-cache entries caching first-level and nested mappings that are associated
with the specified PASID, domain-id, and the first-level-input-address range are
invalidated, if the Invalidation Hint (IH) field has value of 0. If the IH value is 1, the
paging-structure-cache entries are preserved.

• Domain-ID (DID): The DID field indicates the target domain-id. Hardware ignores bits
31:(16+N), where N is the domain-id width reported in the Capability Register.

• PASID: The PASID value indicates the target process-address-space to be invalidated. This field is
ignored by hardware for all-mappings-within-all-PASIDs and non-globals-within-all-PASIDs
invalidations.

• Invalidation Hint (IH): For page-selective-within-PASID invalidations, the Invalidation Hint
specifies if the first-level and nested mappings cached in the paging-structure-caches that
controls the specified address/mask range needs to be invalidated or not. For software usages
that updates only the leaf PTEs, the first-level and nested mappings in the paging-structure-
caches can be preserved by specifying the Invalidation Hint field value of 1. This field is ignored
by hardware for other invalidation granularities.

• Global Hint (GL): For page-selective-within-PASID invalidations, the Global Hint (GL) field
specifies if mappings to global pages needs to be invalidated or not. For software usages that
updates only non-global mappings, the global mappings in the IOTLB can be preserved by
specifying the Global Hint field value of 0. This field is ignored by hardware for other invalidation
granularities.

• Address (ADDR): For page-selective-within-PASID invalidations, the Address field indicates the
starting first-level page address of the mappings that needs to be invalidated. This field is ignored
by hardware for all-mappings-within-all-PASIDs and non-globals-within-all-PASIDs invalidations.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-23

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

• Address Mask (AM): For page-selective-within-PASID invalidations, the Address Mask specifies
the number of contiguous first-level 4-KByte pages that needs to be invalidated. The encoding for
the AM field is same as the AM field encoding in the Invalidate Address Register (see
Section 10.4.8.2). When invalidating a large-page translation, software must use the appropriate
Address Mask value (0 for 4KByte page, 9 for 2-MByte page, and 18 for 1-GByte page).

Extended IOTLB invalidations are not required to invalidate PASID-cache entries, and second-level
mappings cached in paging-structure-caches.

Extended IOTLB invalidations must always drain read and write requests that are already processed
by the remapping hardware, but queued within the Root-Complex to be completed. Hardware must
drain such outstanding read and write requests (to make them globally observable) before the next
Invalidation Wait Descriptor (see Section 6.5.2.8) is completed. Section 6.5.5 further describes
hardware support for draining.

6.5.2.5 Device-TLB Invalidate Descriptor

The Device-TLB Invalidate Descriptor (dev_tlb_inv_dsc) allows software to invalidate cached
mappings used by requests-without-PASID from the Device-TLB on a endpoint device. The descriptor
includes the following parameters:

• Source-ID (SID): The SID field indicates the source-id of the endpoint device whose Device-TLB
needs to be invalidated.

• Address (ADDR): The address field indicates the starting second-level-input-address for the
mappings that needs to be invalidated. The Address field is qualified by the S field.

• Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If S field is zero, a single page at page address specified by Address [63:12] is requested
to be invalidated. If S field is Set, the least significant bit in the Address field with value 0b
indicates the invalidation address range. For example, if S field is Set and Address[12] is Clear, it
indicates an 8KB invalidation address range with base address in Address [63:13]. If S field and
Address[12] is Set and bit 13 is Clear, it indicates a 16KB invalidation address range with base
address in Address [63:14], etc.

• Max Invalidations Pending (MaxInvsPend): This field is a hint to hardware to indicate the
maximum number of pending invalidation requests the specified PCI-Express endpoint device can
handle optimally. All devices are required to support up to 32 pending invalidation requests, but
the device may put back pressure on the I/O interconnect (PCI-Express link) for multiple pending
invalidations beyond MaxInvsPend. A value of 0h in MaxInvsPend field indicates the device is
capable of handling maximum (32) pending invalidation requests without throttling the link.
Hardware implementations may utilize this field to throttle the number of pending invalidation
requests issued to the specified device.

Since translation requests from a device may be serviced by hardware from the IOTLB, software must
always request IOTLB invalidation (iotlb_inv_dsc) before requesting corresponding Device-TLB
(dev_tlb_inv_dsc) invalidation.

Figure 6-26. Device-TLB Invalidate Descriptor

03hSID

0

Rsvd

3
1 4

1
5

1
6

4
7

6
3

3
2

1
2
7

6
4

3

ADDR [63:12] S

6
5

7
5

Rsvd

7
6

MaxInvs
Pend

2
0

Rsvd

2
1

Rsvd

4
8

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-24 Order Number: D51397-006

6.5.2.6 Extended Device-TLB Invalidate Descriptor

The Extended Device-TLB Invalidate Descriptor (ext_dev_tlb_inv_dsc) allows software to invalidate
cached mappings used by requests-with-PASID from the Device-TLB on an endpoint device. The
descriptor includes the following parameters:

• Source-ID (SID): The SID field indicates the source-id of the endpoint device whose Device-TLB
needs to be invalidated.

• Global (G): The G field value is 1, the extended device-TLB invalidation request applies across all
PASIDs at the endpoint device-TLB. If G field value is 0, the invalidated is targeted to a specific
PASID specified by the PASID value field.

• PASID: The PASID value indicates the target process-address-space to be invalidated. This field is
ignored by hardware if the value of G field is 1.

• Address (ADDR): The address field indicates the starting first-level-input-address for the
mappings that needs to be invalidated. The Address field is qualified by the S field.

• Size (S): The size field indicates the number of consecutive pages targeted by this invalidation
request. If S field is zero, a single page at page address specified by Address [63:12] is requested
to be invalidated. If S field is Set, the least significant bit in the Address field with value 0b
indicates the invalidation address range. For example, if S field is Set and Address[12] is Clear, it
indicates an 8KB invalidation address range with base address in Address [63:13]. If S field and
Address[12] is Set and bit 13 is Clear, it indicates a 16KB invalidation address range with base
address in Address [63:14], etc.

• Max Invalidations Pending (MaxInvsPend): This field is a hint to hardware to indicate the
maximum number of pending invalidation requests the specified PCI-Express endpoint device can
handle optimally. All devices are required to support up to 32 pending invalidation requests, but
the device may put back pressure on the I/O interconnect (PCI-Express link) for multiple pending
invalidations beyond MaxInvsPend. A value of 0h in MaxInvsPend field indicates the device is
capable of handling maximum (32) pending invalidation requests without throttling the link.
Hardware implementations may utilize this field to throttle the number of pending invalidation
requests issued to the specified device.

Since translation requests from a device may be serviced by hardware from the IOTLB, software must
always request an extended IOTLB invalidation (ext_iotlb_inv_dsc) before requesting corresponding
Device-TLB (ext_dev_tlb_inv_dsc) invalidation.

Figure 6-27. Extended Device-TLB Invalidate Descriptor

08hPASID

0

MaxInvs
Pend

3
1 489

5
1

6
3

3
2

1
2
7

6
4

3

ADDR [63:12] G

6
5

7
5

Rsvd

7
6

Rsvd

1
5

SID

1
6

Rsvd

5
2

S

7
4

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-25

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

6.5.2.7 Interrupt Entry Cache Invalidate Descriptor

The Interrupt Entry Cache Invalidate Descriptor (iec_inv_dsc) allows software to invalidate the
Interrupt Entry Cache. The descriptor includes the following parameters:

• Granularity (G): This field indicates the granularity of the invalidation request. If Clear, a global
invalidation of the interrupt-remapping cache is requested. If Set, a index-selective invalidation is
requested.

• Interrupt Index (IIDX): This field specifies the index of the interrupt remapping entry that needs
to be invalidated through a index-selective invalidation.

• Index Mask (IM): For index-selective invalidations, the index-mask specifies the number of
contiguous interrupt indexes that needs to be invalidated. The encoding for the IM field is
described below in Table 9).

As part of IEC invalidation, hardware must drain interrupt requests that are already processed by the
remapping hardware, but queued within the Root-Complex to be delivered to the processor.
Section 6.5.6 describes hardware support for interrupt draining.

Hardware implementations reporting a write-buffer flushing requirement (RWBF=1 in Capability
Register) must implicitly perform a write buffer flushing before invalidating the Interrupt Entry Cache.

Figure 6-28. Interrupt Entry Cache Invalidate Descriptor

Table 9. Index Mask Programming

Index Mask
Value

Index bits
Masked

Mappings
Invalidated

0 None 1

1 0 2

2 1:0 4

3 2:0 8

4 3:0 16

...

04hIIDX

0

G

Rsvd

RsvdRsvd

3
1 45

6
3

3
2

1
2
7

6
4

3
4
7

4
8

IM

2
7

2
6

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-26 Order Number: D51397-006

6.5.2.8 Invalidation Wait Descriptor

The Invalidation Wait Descriptor (inv_wait_dsc) descriptor allows software to synchronize with
hardware for the invalidation request descriptors submitted before the wait descriptor. The descriptor
includes the following parameters:

• Status Write (SW): Indicate the invalidation wait descriptor completion by performing a coherent
DWORD write of the value in the Status Data field to the address specified in the Status Address
field.

• Status Address and Data: Status address and data is used by hardware to perform wait descriptor
completion status write when the SW field is Set. Hardware behavior is undefined if the Status
Address specified is not an address route-able to memory (such as peer address, interrupt
address range of 0xFEEX_XXXX etc.). The Status Address and Data fields are ignored by
hardware when the Status Write (SW) field is Clear.

• Interrupt Flag (IF): Indicate the invalidation wait descriptor completion by generating an
invalidation completion event per the programming of the Invalidation Completion Event
Registers. Section 6.5.2.9 describes details on invalidation event generation.

• Fence Flag (FN): Indicate descriptors following the invalidation wait descriptor must be processed
by hardware only after the invalidation wait descriptor completes.

Section 6.5.2.11 describes queued invalidation ordering considerations. Hardware completes an
invalidation wait command as follows:

• If a status write is specified in the wait descriptor (SW=1), hardware performs a coherent write of
the status data to the status address.

• If an interrupt is requested in the wait descriptor (IF=1), hardware sets the IWC field in the
Invalidation Completion Status Register. An invalidation completion interrupt may be generated as
described in the following section.

6.5.2.9 Hardware Generation of Invalidation Completion Events

The invalidation event interrupt generation logic functions as follows:
• At the time hardware sets the IWC field, it checks if the IWC field is already Set to determine if

there is a previously reported invalidation completion interrupt condition that is yet to be serviced
by software. If IWC field is already Set, the invalidation event interrupt is not generated.

• If the IWC field is not already Set, the Interrupt Pending (IP) field in the Invalidation Event
Control Register is Set. The Interrupt Mask (IM) field is then checked and one of the following
conditions is applied:
— If IM field is Clear, the fault event is generated along with clearing the IP field.
— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:

Figure 6-29. Invalidation Wait Descriptor

05h

0

Status Address [63:2]

I
F

3
1 45

6
3

3
2

1
2
7

6
4

3

Status Data
S
W

6

6
5

6
6

Rsvd

Rsvd

7

F
N

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-27

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

• If IP field was Set when software clears the IM field, the fault event interrupt is generated along
with clearing the IP field.

• If IP field was Set when software services the pending interrupt condition (indicated by IWC field
in the Invalidation Completion Status Register being Clear), the IP field is cleared.

The invalidation completion event interrupt must push any in-flight invalidation completion status
writes, including status writes that may have originated from the same inv_wait_dsc for which the
interrupt was generated. Similarly, read completions due to software reading any of the remapping
hardware registers must push (commit) any in-flight invalidation completion event interrupts and
status writes generated by the respective hardware unit.

The invalidation completion event interrupts are never subject to interrupt remapping.

6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors

Hardware handles the various queued invalidation interface error conditions as follows:
• Invalidation Queue Errors: If hardware detects an invalid Tail pointer at the time of fetching a

descriptor, or detects an error when fetching a descriptor from the invalidation queue, or detects
that the fetched descriptor fetched is invalid, hardware sets the IQE (Invalidation Queue Error)
field in the Fault Status Register. A fault event may be generated based on the programming of
the Fault Event Control Register. The Head pointer Register is not incremented, and references the
descriptor associated with the queue error. No new descriptors are fetched from the Invalidation
Queue until software clears the IQE field in the Fault Status Register. Tail pointer Register updates
by software while the IQE field is Set does not cause descriptor fetches by hardware. Any
invalidation commands ahead of the invalid descriptor that are already fetched and pending in
hardware at the time of detecting the invalid descriptor error are completed by hardware as
normal.

• Invalid Device-TLB Invalidation Response: If hardware receives an invalid Device-TLB invalidation
response, hardware sets the Invalidation Completion Error (ICE) field in the Fault Status Register.
A fault event may be generated based on the programming of the Fault Event Control Register.
Hardware continues with processing of descriptors from the Invalidation Queue as normal.

• Device-TLB Invalidation Response Time-out: If hardware detects a Device-TLB invalidation
response time-out, hardware frees the corresponding ITag and sets the ITE (Invalidation Time-
out Error) field in the Fault Status Register. A fault event may be generated based on the
programming of the Fault Event Control Register. No new descriptors are fetched from the
Invalidation Queue until software clears the ITE field in the Fault Status Register. Tail pointer
Register updates by software while the ITE field is Set does not cause descriptor fetches by
hardware. At the time ITE field is Set, hardware aborts any inv_wait_dsc commands pending in
hardware. Any invalidation responses received while ITE field is Set are processed as normal (as
described in Section 4.3). Since the time-out could be for any (one or more) of the pending
dev_iotlb_inv_dsc commands, execution of all descriptors including and behind the oldest
pending dev_iotlb_inv_dsc is not guaranteed.

6.5.2.11 Queued Invalidation Ordering Considerations

Hardware must support the following ordering considerations when processing descriptors fetched
from the invalidation queue:

• Hardware must execute an IOTLB invalidation descriptor (iotlb_inv_dsc) or extended IOTLB
invalidation descriptor (ext_iotlb_inv_dsc) only after all Context-cache invalidation descriptors
(cc_inv_dsc) and PASID-cache invalidation descriptors (pc_inv_dsc) ahead of it in the Invalidation
Queue are completed.

• Hardware must execute a PASID-cache invalidation descriptors (pc_inv_dsc) only after all
Context-cache invalidation descriptors (cc_inv_dsc) (pc_inv_dsc) ahead of it in the Invalidation
Queue are completed.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-28 Order Number: D51397-006

• Hardware must execute a Device-TLB invalidation descriptor (dev_tlb_inv_dsc) only after all
IOTLB invalidation descriptors (iotlb_inv_dsc) and Interrupt Entry Cache invalidation descriptors
(iec_inv_dsc) ahead of it in the Invalidation Queue are completed.

• Hardware must execute an extended Device-TLB Invalidation descriptor (ext_dev_tlb_inv_dsc)
only after all extended IOTLB invalidation descriptors (ext_iotlb_inv_dsc) and Interrupt Entry
Cache invalidation descriptors (iec_inv_dsc) ahead of it in the Invalidation Queue are completed.

• Hardware must report completion of an Invalidation Wait Descriptor (inv_wait_dsc) only after at
least all the descriptors ahead of it in the Invalidation Queue and behind the previous
inv_wait_dsc are completed.

• If the Fence (FN) flag is 0 in a inv_wait_dsc, hardware may execute descriptors following the
inv_wait_dsc before the wait command is completed. If the Fence (FN) flag is 1 in a inv_wait_dsc,
hardware must execute descriptors following the inv_wait_dsc only after the wait command is
completed.

• When a Device-TLB invalidation or extended Device-TLB invalidation time-out is detected,
hardware must not complete any pending inv_wait_dsc commands.

6.5.3 IOTLB Invalidation Considerations

The following subsections describes additional details and considerations on IOTLB invalidations with
use of first-level translations.

6.5.3.1 Implicit Invalidation on Page Requests

In addition to the explicit invalidation through invalidation commands (see Section 6.5.1 and
Section 6.5.2) or through deferred invalidation messages (see Section 6.5.4), identified above, Page
Requests from endpoint devices invalidate entries in the IOTLBs and paging-structure caches.

In particular, as part of reporting a Page Request from a endpoint device (to report a recoverable fault
detected at the Device-TLB), the remapping hardware will invalidate any IOTLB entries that are for a
page number corresponding to the address (and PASID, if present) in the Page Request. It also
invalidates all entries in the paging-structure caches that would be used for that address (and that are
associated with the PASID, if PASID present in the Page Request). These invalidations ensure that this
recoverable translation fault will not recur (if the faulting operation is re-executed at the device) if it
would not be caused by the contents of the paging structures in memory (and if, therefore, it resulted
from cached entries that were not invalidated after the paging structures were modified in memory).

6.5.3.2 Caching Fractured Translations

Some implementations may choose to cache multiple smaller-page IOTLB entries (fractured
translations) for a translation specified by the paging structures to use a page larger than 4 KBytes.
There is no way for software to be aware that multiple translations for smaller pages have been used
for a large page. Since software is required to always specify the appropriate Address Mask value to
cover the address range to be invalidated (Address Mask value of 0 for invalidating a 4-KByte page, 9
for invalidating a 2-MByte page, and 18 for invalidating a 1-GByte page) in the IOTLB invalidation
commands, these commands naturally invalidate all IOTLB entries corresponding a large-page
translation.

6.5.3.3 Recommended Invalidation

The following items provide some recommendations regarding when software should perform IOTLB
invalidations when modifying first-level paging entries.

• If software modifies a paging-structure entry that identifies the final page frame for a page
number (either a PTE or a paging-structure entry in which the PS flag is 1), it should execute
page-selective-within-PASID IOTLB invalidation command for any address with a page number
whose translation uses that paging-structure entry, with an address-mask matching the page
frame size. (Address Mask value of 0 for 4-KByte page, 9 for 2-Mbyte page, and 18 for 1-GByte
page). If no intermediate paging-structures entries with PS=0 is modified, the invalidation

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-29

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

command can specify Invalidation Hint (IH) as 1, if software chooses to not invalidate the paging-
structure caches.
If the same paging-structure entry may be used in the translation of different page numbers —
see Section 6.2.7 — software should perform page-selective-within-PASID IOTLB invalidation for
addresses with each of those page numbers, with Invalidation Hint (IH) value of 0; alternatively,
software could use a coarser-grained IOTLB invalidation command (see Invalidation Granularity
description in Section 6.5.2.4).

• If software modifies a paging-structure entry that references another paging structure, it may use
one of the following approaches depending upon the types and number of translations controlled
by the modified entry:
— Execute page-selective-within-PASID IOTLB invalidation command for any addresses with

each of the page numbers with translations that would use the entry. These invalidations
must specify Invalidation Hint (IH) value of 0 (so that it invalidates the paging-structure
caches). However, if no page numbers that would use the entry have translations (e.g.,
because the P flags are 0 in all entries in the paging structure referenced by the modified
entry), it remains necessary to execute the page-selective-within-PASID IOTLB invalidation
command at least once.

— Execute non-globals-within-PASID (or non-globals-within-all-PASIDs) IOTLB invalidation
command, if the modified entry controls no global pages.

— Execute all-mappings-within-all-PASIDs IOTLB invalidation command
• If the nature of the paging structures is such that a single entry may be used for multiple

purposes (see Section 6.2.7), software should perform invalidations for all of these purposes. For
example, if a single entry might serve as both a PDE and PTE, it may be necessary to execute
page-selective-within-PASID IOTLB invalidation command with two (or more) input-addresses,
one that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use
non-globals-within-PASID or all-mappings-within-all-PASIDs IOTLB invalidation granularities)

• As noted in Section 6.2.4, the IOTLB may subsequently contain multiple translations for the
address range if software modifies the paging structures so that the page size used for a 4-KByte
range of input-addresses changes. A reference to an input-address in the address range may use
any of these translations.
Software wishing to prevent this uncertainty should not write to a paging structure entry in a way
that would change, for any input-address, both the page size and either the page frame, access
rights, or other attributes. It can instead use the following algorithm: first clear the P flag in the
relevant paging-structure entry (e.g., PDE); then invalidate any translations for the affected
input-addresses (see above); and then modify the relevant paging-structure entry to set the P
flag and establish modified translation(s) for the new page size.

• When establishing a previously used PASID value for a different process address space, software
must execute a non-globals-within-PASID IOTLB invalidation command (with Invalidation Hint
(IH) value of 0). This ensures invalidation of any information that may have been cached in the
IOTLB and paging-structure caches for the previous address space that was associated with the
PASID value.
The use of non-globals-within-PASID IOTLB invalidation command assumes that both address
spaces use the same global pages and that it is thus not necessary to invalidate any global
mapping cached in the IOTLB. If that is not the case, software must include those entries in the
invalidation by execution invalidate those entries by executing all-mappings-within-all-PASIDs
IOTLB Invalidation Command.

6.5.3.4 Optional Invalidation

The following items describe cases in which software may choose not to invalidate the IOTLB when
modifying first-level paging entries, and the potential consequences of that choice:

• If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is
necessary. This is because no IOTLB entry or paging-structure cache entry is created with
information from a paging-structure entry in which the P flag is 01.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-30 Order Number: D51397-006

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is
necessary (assuming that an invalidation was performed the last time the accessed flag was
changed from 1 to 0). This is because no IOTLB entry or paging-structure cache entry is created
with information from a paging-structure entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, and the entry is used
only by requests that can tolerate recoverable translation faults (see Section 7.5), failure to
perform an invalidation may result in a recoverable address translation fault detected at the
Device-TLB (e.g., in response to an attempted write access), generating a “spurious” Page
Request (see Section 7.7). If requests that does not support recoverable page-faults (see
Section 7.3) is using such translation, the result is a non-recoverable translation fault (and hence
software cannot consider such paging-structure entry modification for optional IOTLB
invalidation).

• If SMEP=0 in the extended-context-entry, and a paging-structure entry is modified to change the
U/S flag from 0 to 1, and the entry is used only by requests that can tolerate recoverable
translation faults (see Section 7.5), failure to perform an invalidation may result in a recoverable
address translation fault detected at the Device-TLB (e.g., in response to an attempted user-mode
access), generating a “spurious” Page Request (see Section 7.7). If requests that does not
support recoverable page-faults (see Section 7.3) is using such translation, the result is a non-
recoverable translation fault (and hence software cannot consider such paging-structure entry
modification for optional IOTLB invalidation).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, and the entry is used
only by requests that can tolerate recoverable translation faults (see Section 7.5), failure to
perform an invalidation may result in a recoverable address translation fault detected at the
Device-TLB (e.g., in response to an attempted instruction fetch), generating a “spurious” Page
Request (see Section 7.7). If requests that does not support recoverable page-faults (see
Section 7.3) is using such translation, the result is a non-recoverable translation fault (and hence
software cannot consider such paging-structure entry modification for optional IOTLB
invalidation).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform
an invalidation may result in the hardware not setting that bit in response to a subsequent access
to a address whose translation uses the entry. Software cannot interpret the bit being clear as an
indication that such an access has not occurred.

• If software modifies a PTE or a paging-structure entry in which the PS flag is 1, to change the
dirty flag from 1 to 0, failure to perform an invalidation may result in the hardware not setting
that bit in response to a subsequent write to a input-address whose translation uses the entry.
Software cannot interpret the bit being clear as an indication that such a write has not occurred.

6.5.3.5 Delayed Invalidation

Required invalidations may be delayed under some circumstances with first-level paging. Software
developers should understand that, between the modification of a paging-structure entry and
execution of the IOTLB invalidation command, the hardware may use translations based on either the
old value or the new value of the paging-structure entry. The following items describe some of the
potential consequences of delayed invalidation:

• If a paging-structure entry is modified to change the P flag from 1 to 0, an access to an input-
address whose translation is controlled by this entry may or may not cause a translation fault.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

1. If it is also the case that no IOTLB invalidation was performed the last time the P flag was
changed from 1 to 0, hardware may use a IOTLB entry or paging-structure cache entry that was
created when the P flag had earlier been 1.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-31

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

• If a paging-structure entry is modified to change the XD flag from 1 to 0, instruction fetches from
input-addresses whose translation is controlled by this entry may or may not cause a translation
fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For
example, when freeing a portion of the process address space (by marking paging-structure entries
“not present”), IOTLB invalidation command may be delayed if software does not re-allocate that
portion of the process address space or the memory that had been associated with it. However,
because of speculative execution by devices (or errant software), there may be accesses to the freed
portion of the process address space before the invalidations occur. In this case, the following can
happen:

• Reads can occur to the freed portion of the process address space. Therefore, invalidation should
not be delayed for an address range that has side effects for reads from devices (e.g., mapped to
MMIO).

• The hardware may retain entries in the IOTLBs and paging-structure caches for an extended
period of time. Software should not assume that the hardware will not use entries associated with
a input-address simply because time has passed.

• As noted in Section 6.2.5, the hardware may create an entry in a paging-structure cache even if
there are no translations for any input-address that might use that entry. Thus, if software has
marked “not present” all entries in the page table, the hardware may subsequently create a PDE-
cache entry for the PDE that references that page table (assuming that the PDE itself is marked
“present”).

• If software attempts to write to the freed portion of the input-address space, the hardware might
not generate a translation fault. (Such an attempt would likely be the result of a software error.)
For that reason, the page frames previously associated with the freed portion of the process
address space should not be reallocated for another purpose until the appropriate invalidations
have been performed.

6.5.4 TLB Shootdown Optimization for Root-Complex Integrated
Devices

The process of propagating the changes to a paging-structure entry across multiple agents is common
referred to as “TLB shootdown”. In a multi-processor system, Operating Systems (OSs) typically
implement optimized algorithms to minimize overhead of TLB shootdowns across processors. With
one such optimization, OS tracks what all processors are active in a given virtual address space at any
given point of time. When modifying present paging-entries for a given virtual address space, OS may
use the tracking information to optimize shootdown of processors that are not active in that virtual-
address space.

For example, if the processor-TLBs are not tagged (i.e., Processor-TLBs cache mappings for at most
one virtual-address space at any time), OS may skip shootdown of processors where the virtual
address space is currently not active. If the processor-TLBs are tagged (i.e., Processor-TLB may cache
mappings for recently run, but currently in-active, virtual address spaces), OS can defer the TLB
invalidation on processors where the address-space is not active, until the target virtual address
space is scheduled on that processor. These optimizations improve the overheads that are otherwise
incurred by always shooting down TLBs on all processors.

With Shared Virtual Memory (SVM) usage (see Section 2.5.1.1), OSs may share first-level translation
structures across processors and remapping hardware so as to share an application’s virtual address
space across CPUs and accelerator devices (such as Intel Processor-Graphics). For performance
reasons, such accelerator devices may support an operating mode where applications are allowed to
queue work to the device, and a programmable scheduler on the device schedules such queued work,
time sharing the device resources across multiple applications. Since the OS is not directly involved in
task scheduling on such devices, OS cannot track if a virtual address space is active on the device or
not. Therefore, the OS TLB shootdown optimizations that depend on virtual address space tracking
cannot be applied for IOTLB and Device-TLB shootdown.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-32 Order Number: D51397-006

The following section describes extension to remapping hardware to track active virtual address
spaces on Root-Complex integrated devices (such as Intel processor-graphics device) that supports
SVM, and how OSs may use this tracking information to support the TLB shootdown optimizations.

6.5.4.1 Deferred Invalidation

Tracking of active virtual address spaces on Root-Complex integrated endpoint devices are supported
through a PASID state-update request and response protocol between the accelerator device and the
remapping hardware. The protocol consists of the following transactions:

• PASID State-update Request
— PASID state-update request for a virtual address space (PASID) is issued by the endpoint

device whenever a task associated with a PASID is scheduled or preempted on the device.
The device performs the scheduling or pre-emption operation only after it receives the PASID
state-update response from the remapping hardware.

— PASID State-update requests specify the following attributes:
• Source-ID:

— Identify (bus/device/function) of the device sending the request
• PASID Value:

— Identity of the virtual address space (PASID) whose state is updated
• Type:

— Indicates the type of the state-update request; If the state-update request is due to
scheduling of a task associated with the PASID on the device, the type field indicates
value of 1 (active). If the state-update request is due to pre-emption of task
associated with the PASID on the device, the type field indicates value of 0 (inactive).

• PASID State-update Response
— PASID state-update response is issued by the remapping hardware in response to a PASID

state-update request.
— PASID state-update responses specify the following attributes:

• Device-ID:
— Identity of the device (bus/device/function) for which the PASID state-update

response is targeted. This field contains the value of Source-ID field from the
corresponding PASID state-update request.

• PASID Value:
— Identity of the virtual address space (PASID) for this response. This field contains the

PASID Value field from the corresponding PASID state-update request.
• Type:

— Indicates the type of the state-update response; This field contains the value of the
Type field from the corresponding PASID state-update request.

• Synchronize Flag:
— The Synchronize-flag is derived by the remapping hardware processing of the PASID

state-update request. When the Type flag is 1 (active), the Synchronize-flag indicates
if the IOTLB and Device-TLB needs to be invalidated (to be consistent with any
modifications made to translations structures in memory), before the PASID can
transition to active state on the device.

— If the Synchronize-flag is 1 and the Type field is 1 (active) in a PASID state-update
response with Response Code of 0 (Success), an extended IOTLB invalidation with
granularity of Non-globals-within-PASID (011b) is performed by the remapping
hardware before sending the state-update response to the device. When the device
receives a successful PASID state-update response with both Synchronize-flag and

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-33

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

Type field as 1, device invalidates all entries in the Device-TLB tagged with the PASID
value in the response, before activating the task that led to the PASID state-update
response.

• Response Code:
— Value of 0 (Success) in the response code indicates the PASID state-update request

was successfully processed by the remapping hardware.
— Value of 1 (Invalid Request) indicates PASID state-update request processing failed at

the remapping hardware. This can be either due to the programming of the extended-
context-entry used to process the request (e.g., PASIDE=0, or DINVE=0), or due to
invalid PASID value in the request (e.g., PASID value in the request is out of bound for
the PASID-table-size specified in the extended-context-entry), or other errors (e.g.,
hardware access to PASID-state entry resulted in error).

6.5.4.2 PASID-State Table

The PASID state-update requests are processed by the remapping hardware through entries in a
PASID-state table. Extended-context-entries enabled to support deferred invalidation (DINVE=1 in
the extended-context-entry), hosts the pointer to the PASID-state table (PASIDSTPTR). The size of
the PASID-state table matches the side of the PASID-table, and is specified through the PASID table
size (PTS) field in the extended-context-entry. Section 9.4 describes the extended-context-entry
fields in detail.

The PASID value in the PASID state-update requests are used to index the respective PASID-state-
entry in the PASID-state table. Each PASID-state table entry contains an active-reference-count field
and a Deferred-Invalidate flag. A non-zero active-reference-count value in a PASID-state entry
indicates one or more agents on the device are actively executing tasks on the respective PASID. The
Deferred-Invalidate (DINV) flag in a PASID-state entry is used by software to indicate pending
invalidation operation for that PASID, and is used by hardware to compose the Synchronize-Flag in
the PASID state-update responses. Section 9.6 describes the PASID-state entry field in detail.

6.5.4.3 Remapping Hardware Handling of PASID State-Update Requests

Remapping hardware implementations report support for deferred invalidations through the Deferred-
Invalidation-Support field (DIS) in the Extended Capability Register (see Section 10.4.3). When
supported, software enables deferred invalidations for a device through the Deferred Invalidation
Enable (DINVE) field in the respective extended-context-entry.

PASID state-update requests are processed by remapping hardware as follows:
• The Source-ID field in the request is used to identify the extended-context-entry controlling

requests from the device that issued the request.
• If any errors are detected at the extended-context-entry used to process the request, or if

deferred invalidations are explicitly disabled (DINVE=0 in the extended-context-entry), or, if the
PASID value in the request is out-of-bound for the PASID table size in the extended-context-
entry, a PASID state-update response is returned with Response Code of Invalid Request.

• If above errors are not detected, the PASID value in the request is used to locate the PASID-state
entry in the PASID-state table.

• Perform an atomic read-modify-write of the PASID-state entry as follows:
— Read the PASID-state entry, locking the cache-line hosting the PASID-state entry
— If the Type field in the request is 1 (Active), increment the Active-Refcount field and clear the

Deferred-Invalidate field.
— Else if the Type field in the request is 0 (Inactive), decrement the Active-Refcount field.
— Unlock the cache-line

• If the Type field in the request is 1 (Active), and, the Deferred-Invalidate field read as part of
above read-modify-write operation is 1 (i.e., there is a pending invalidate operation for this

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-34 Order Number: D51397-006

PASID), perform an extended IOTLB invalidation with granularity of non-globals-within-PASID
(see Section 6.5.2.4) and set the Synchronize-flag in the PASID state-update response to 1.

• Else if the Type field in the request is 0 (Inactive), or, if the Deferred-Invalidate field read as part
of above read-modify-write operation is 0, clear the Synchronize-flag in the PASID state-update
response to 0.

• Send the PASID state-update response to the device with Response Code of Success (0), and the
Synchronize-flag computed as above.

6.5.4.4 Root-Complex Integrated Device Handling of PASID State-Update
Responses

Root-Complex integrated endpoint device support for deferred invalidations are reported by
respective endpoint device driver through OS specific software interfaces. One example of such Root-
Complex integrated device is Intel® Processor Graphics device.

A PASID state-update request for a PASID is sent by the endpoint device whenever a task that
operates within the PASID is scheduled or preempted on any agent on the device. The scheduling or
pre-emption operation is completed only after the respective PASID state-response is received.

If the PASID state-response is received with a non-successful Response Code, the tasks operating
within that PASID are terminated by the device and the associated device context is reported as in
error through the device-specific driver.

If the PASID state-update response received has Response Code of Success (0), Type field value of 1
(Active), and Synchronize-flag value of 1, the device performs an extended Device-TLB invalidation
for all translations cached for this PASID (i.e., an invalidation operation equivalent to receiving an
extended Device-TLB invalidation request with Global (G) field value of 0, Size (S) field value of 1, and
Address (ADDR) bits 62:12 are all 1’s and address bit 63 is 0; See Section 6.5.2.6 for extended
Device-TLB invalidations). The scheduling operation on the device that resulted in the PASID state-
update request/response that led to the Device-TLB invalidation, is completed only after the Device-
TLB invalidation is completed.

6.5.4.5 Ordering of PASID State-Update Requests and Responses

The PASID state-update request and response messages follow PCI-Express posted ordering rules.
Specifically, it cannot pass other posted requests (such as memory writes, Device-TLB invalidation
messages, and PASID state-update messages) ahead or it.

The Root-Complex integrated devices follows the below ordering rules at the device:
• Any time a scheduling or pre-emption operation is initiated for tasks within a PASID on any agent

on the device, a PASID state-update request must be issued, and the scheduling or pre-emption
operation can be completed only after receiving the PASID state-update response.

• PASID state-update requests received by the device are processed in the order at which they are
received.

• On pre-emption operation on an agent on the device, the device ensures there are no pending
non-posted requests for that agent (i.e., it has received completions for all pending non-posted
requests from that agent - including memory read requests, or translation-requests) before
issuing the PASID state-update request.

• If the device supports non-centralized Device-TLBs (i.e., independent Device-TLB for each
processing element on the device), any extended Device-TLB invalidations (explicitly requested
through extended Device-TLB invalidation requests, or performed implicitly on PASID state-
update response as described in Section 6.5.4.5), must apply to all Device-TLBs on the device.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-35

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

6.5.4.6 Example TLB Shootdown using Deferred Invalidations

Software usages such as Shared Virtual Memory (SVM) described in Section 2.5.1.1, may require
sharing of the first-level translation structures across CPUs and SVM-capable devices. For such
usages, when software modifies the shared paging entries, any resulting TLB shootdown (that
currently only invalidates TLBs on CPU agents) needs to also invalidate IOTLB in the remapping
hardware and Device-TLBs on the device.

This section provides an example TLB shootdown software flow using the Deferred Invalidation
support. The example flow is simplified for clarity, and is provided for illustration purposes only.

• If paging entries modified maps to global pages (i.e., not specific to a PASID), software explicitly
invalidates TLBs on CPU agents (using TLB shootdown IPIs), and IOTLB and Device-TLBs (using
extended IOTLB invalidate and extended Device-TLB invalidate commands through the remapping
hardware invalidation-queue).

• Else if the paging entries modified maps to non-global pages, software may perform the steps:
— Read the PASID-state entry (quad-word) for the PASID whose non-global page mappings

were modified.
— If the Active-Refcount field in the PASID-state entry is non-zero (indicating PASID is active on

one or more agents on the device), explicitly invalidate the IOTLB and Device-TLB (using
extended IOTLB invalidate and extended Device-TLB invalidate commands through the
remapping hardware invalidation-queue).

— Else, if the Active-Refcount field in the PASID-state entry is 0 (indicating PASID is not active
on any agents on the device), perform an atomic compare-exchange (LOCK CMPXCHG8) to
set the Deferred-Invalidate field in the PASID-state entry to 1. If the compare-exchange fails
(indicating the PASID-state entry was modified by remapping hardware as part of processing
a PASID state-update request, between the time software read the PASID-state entry and
performed the locked compare-exchange), redo the above steps.

6.5.5 Draining of Requests to Memory

Requests from devices that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed to memory are referred as non-committed requests. Draining refers to
hardware pushing (committing) these requests to the global ordering point. Hardware
implementations report support for draining through the Capability Registers.

A write request to system memory is considered drained when the effects of the write are visible to
processor accesses to addresses targeted by the write request. A read request to system memory is
considered drained when the Root-Complex has finished fetching all of its read response data from
memory.

Requirements for draining are described below:
• Draining applies only to requests to memory and do not guarantee draining of requests to peer

destinations.
• Draining applies only for untranslated requests (AT=00b), including those processed as pass-

through by the remapping hardware.
• Draining of translated requests (AT=10b) requires issuing a Device-TLB invalidation command to

the endpoint device. Endpoint devices supporting Address Translation Services (ATS) are required
to wait for pending translated read responses (or keep track of pending translated read requests
and discard their read responses when they arrive) before issuing the ATS invalidation completion
message. This effectively guarantees draining of translated read requests. The ATS invalidation
completion message is issued on the posted channel and pushes all writes from the device
(including any translated writes) ahead of it. To ensure proper write draining of translated
requests, remapping hardware must process ATS invalidation completion messages per the PCI-
Express ordering rules (i.e., after processing all posted requests ahead of it).

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-36 Order Number: D51397-006

• Read and write draining of untranslated requests are required when remapping hardware status
changes from disabled to enabled. The draining must be completed before hardware sets the TES
field in Global Status Register (which indicates remapping hardware is enabled). Hardware
implementations may perform draining of untranslated requests when remapping hardware
status changes from enabled to disabled.

• Read and write draining of untranslated requests are performed on IOTLB invalidation requests
specifying Drain Read (DR) and Drain Write (DW) flags respectively. For IOTLB invalidations
submitted through the IOTLB Invalidate Register (IOTLB_REG), draining must be completed
before hardware clears the IVT field in the register (which indicates invalidation completed). For
IOTLB invalidations submitted through the queued invalidation interface, draining must be
completed before the next Invalidation Wait Descriptor (inv_wait_dsc) is completed by hardware.
— For global IOTLB invalidation requests specifying DMA read/write draining, all non-committed

DMA read/write requests queued within the Root-Complex are drained.
— For domain-selective IOTLB invalidation requests specifying read/write draining, hardware

only guarantees draining of non-committed read/write requests to the domain specified in the
invalidation request.

— For page-selective IOTLB invalidation requests specifying read/write draining, hardware only
guarantees draining of non-committed read/write requests with untranslated address
overlapping the address range specified in the invalidation request and to the specified
domain.

• Read and write draining of untranslated requests are performed on all extended IOTLB
invalidation requests, where draining is completed before the next Invalidation Wait Descriptor
(inv_wait_dsc) is completed by hardware.

6.5.6 Interrupt Draining

Interrupt requests that are already processed by the remapping hardware, but queued within the
Root-Complex to be completed are referred as non-committed interrupt requests. Interrupt draining
refers to hardware pushing (committing) these interrupt requests to the appropriate processor’s
interrupt controller (Local xAPIC). An interrupt request is considered drained when the interrupt is
accepted by the processor Local xAPIC (for fixed and lowest priority delivery mode interrupts this
means the interrupt is at least recorded in the Local xAPIC Interrupt Request Register (IRR)).

Requirements for interrupt draining are described below:
• Interrupt draining applies to all non-committed interrupt requests, except Compatibility format

interrupt requests processed as pass-through on Intel® 64 platforms.
• Interrupt draining is required when interrupt-remapping hardware status changes from disabled

to enabled. The draining must be completed before hardware sets the IES field in Global Status
Register (indicating interrupt-remapping hardware is enabled). Hardware implementations may
perform interrupt draining when interrupt-remapping hardware status changes from enabled to
disabled.

• Interrupt draining is performed on Interrupt Entry Cache (IEC) invalidation requests. For IEC
invalidations submitted through the queued invalidation interface, interrupt draining must be
completed before the next Invalidation Wait Descriptor is completed by hardware.
— For global IEC invalidation requests, all non-committed interrupt requests queued within the

Root-Complex are drained.
— For index-selective IEC invalidation requests, hardware only guarantees draining of non-

committed interrupt requests referencing interrupt indexes specified in the invalidation
request.

• The Root-Complex considers an interrupt request as drained when it receives acknowledgement
from the processor complex. Interrupt draining requires processor complex to ensure the
interrupt request received is accepted by the Local xAPIC (for fixed interrupts, at least recorded in
the IRR) before acknowledging the request to the Root-Complex.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 6-37

Caching Translation Information—Intel® Virtualization Technology for Directed I/O

6.6 Set Root Table Pointer Operation
Software must always perform a Set Root-Table Pointer operation before enabling or re-enabling
(after disabling) remapping hardware.

On a root-table pointer set operation, software must perform an ordered global invalidate of the
context-cache, PASID-cache (if applicable), and IOTLB to ensure hardware references only the new
structures for further remapping.

If software sets the root-table pointer while remapping hardware is active (TES=1 in Global Status
register), software must ensure the structures referenced by the new root-table pointer provide
identical remapping results as the structures referenced by the previous root-table pointer so that in-
flight requests are properly translated. This is required since hardware may utilize the cached old
paging structure entries or the new paging structure entries in memory to translate in-flight requests,
until the Context -cache, PASID-cache, and IOTLB invalidations are completed. Software must not
modify the Root-Table-Type (RTT) field in the Root-table Address register (i.e., switch from using
root/context entries to extended root/context entries), while remapping hardware is active (TES=1 in
Global Status register).

6.7 Set Interrupt Remapping Table Pointer Operation
Software must always set the interrupt-remapping table pointer before enabling or re-enabling (after
disabling) interrupt-remapping hardware.

Software must always follow the interrupt-remapping table pointer set operation with a global
invalidate of the IEC to ensure hardware references the new structures before enabling interrupt
remapping.

If software updates the interrupt-remapping table pointer while interrupt-remap hardware is active,
software must ensure the structures referenced by the new interrupt-remapping table pointer provide
identical remapping results as the structures referenced by the previous interrupt-remapping table
pointer to ensure any valid in-flight interrupt requests are properly remapped. This is required since
hardware may utilize the old structures or the new structures to remap in-flight interrupt requests,
until the IEC invalidation is completed.

6.8 Write Buffer Flushing
On remapping hardware page-table walk, earlier implementations of this architecture did not flush or
snoop the write buffers at the memory controller that buffers writes to DRAM, and required explicit
software flushing of these write buffers on paging structure modifications. These earlier hardware
implementations reported this restriction to software by reporting the Required Write Buffer Flushing
(RWBF) field in the Capability Register to 1.

For such hardware implementations requiring write buffer flushing (RWBF=1 in the Capability
register), software updates to memory-resident remapping structures may be held in Root-Complex
internal hardware write-buffers, and not implicitly visible to remapping hardware. For such
implementations, software must explicitly make these updates visible to hardware through one of two
methods below:

• For updates to remapping hardware structures that require context-cache, PASID-cache, IOTLB or
IEC invalidation operations to flush stale entries from the hardware caches, no additional action is
required to make the modifications visible to hardware. This is because, hardware performs an
implicit write-buffer-flushing as a pre-condition to context-cache, PASID-cache, IOTLB and IEC
invalidation operations.

• For updates to remapping hardware structures (such as modifying a currently not-present entry)
that do not require context-cache, PASID-cache, IOTLB or IEC invalidations, software must
explicitly perform write-buffer-flushing to ensure the updated structures are visible to hardware.

Intel® Virtualization Technology for Directed I/O—Caching Translation Information

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
6-38 Order Number: D51397-006

Newer hardware implementations are expected to NOT require explicit software flushing of write
buffers and report RWBF=0 in the Capability register.

6.9 Hardware Register Programming Considerations
A register used to submit a command to a remapping unit is owned by hardware while the command
is pending in hardware. Software must not update the associated register until hardware indicates the
command processing is complete through appropriate status registers.

For each remapping hardware unit, software must serialize commands submitted through the Global
Command register, Context Command register, IOTLB registers and Protected Memory Enable
register.

For platforms supporting more than one remapping hardware unit, there are no hardware serialization
requirements for operations across remapping hardware units.

6.10 Sharing Remapping Structures Across Hardware Units
Software may share1 (fully or partially) the various remapping structures across multiple remapping
hardware units. When the remapping structures are shared across hardware units, software must
explicitly perform the invalidation operations on each remapping hardware unit sharing the modified
entries. The software requirements described in this section must be individually applied for each
such invalidation operation.

1. Sharing of Extended Root and Extended Context tables across remapping hardware units are
possible only across remapping hardware units that report Extended Context Support (ECS) field
as Set in the Extended Capability register.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-1

Translation Faults—Intel® Virtualization Technology for Directed I/O

7 Translation Faults

This chapter describes the hardware handling of translation faults. Translation faults are broadly
categorized as follows:

• Interrupt Translation Faults: Faults detected when remapping interrupt requests are
categorized as Interrupt translation faults. Interrupt translation faults are non-recoverable.
Section 7.1 describes interrupt translation fault conditions in detail.

• Address Translation Faults: Faults detected when remapping memory requests (or translation
requests from Device-TLBs) are referred to as address translation faults. Section 7.2 describes
address translation fault conditions in detail.

7.1 Interrupt Translation Faults
The following table enumerates the various interrupt translation fault conditions. An interrupt
translation fault condition is treated as ‘qualified’ if the fault is reported to software only when the
Fault Processing Disable (FPD) field is 0 in the Interrupt-Remap-Table-Entry (IRTE) used to process
the faulting interrupt request. Interrupt translation faults are non-recoverable and faulting interrupt
request is treated as Unsupported Request by the remapping hardware.

Table 10. Interrupt Remapping Fault Conditions

Interrupt Remapping Fault Conditions Fault
Reason Qualified Behavior

Decoding of the interrupt request per the Remappable request format
detected one or more reserved fields as Set. 20h No

Unsupported
Request

The interrupt_index value computed for the Remappable interrupt request is
greater than the maximum allowed for the interrupt-remapping table size
configured by software.

21h No

The Present (P) field in the IRTE corresponding to the interrupt_index of the
interrupt request is Clear. 22h Yes

Hardware attempt to access the interrupt-remapping table through the
Interrupt-Remapping Table Address (IRTA) field in the Interrupt Remap Table
Address Register resulted in error.

23h No

Hardware detected one ore more reserved fields that are not initialized to
zero in an IRTE with Present (P) field Set. 24h Yes

On Intel® 64 platforms, hardware blocked an interrupt request in
Compatibility format either due to Extended Interrupt Mode Enabled (EIME
field Set in Interrupt Remapping Table Address Register) or Compatibility
format interrupts disabled (CFIS field Clear in Global Status Register).
On Itanium® platforms, hardware blocked an interrupt request in
Compatibility format.

25h No

Hardware blocked a Remappable interrupt request due to verification failure
of the interrupt requester’s source-id per the programming of SID, SVT and
SQ fields in the corresponding IRTE with Present (P) field Set.

26h Yes

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-2 Order Number: D51397-006

7.2 Address Translation Faults
Address translation faults are classified as follows:

• Non-recoverable Faults: Requests that encounter non-recoverable address translation faults
are aborted by the remapping hardware, and typically require a reset of the device (such as
through a function-level-reset) to recover and re-initialize the device to put it back into service.
Section 7.2.1 describe the non-recoverable fault conditions in detail.

• Recoverable Faults: Requests that encounter recoverable address translation faults can be
retried by the requesting device after the condition causing the recoverable fault is handled by
software. Recoverable translation faults are detected at the Device-TLB on the device and require
the device to support Address Translation Services (ATS) capability. Refer to the PCI-Express ATS
specification for details. Section 7.2.2 describe recoverable fault conditions in detail.

7.2.1 Non-Recoverable Address Translation Faults

Non-recoverable address translation faults can be detected by remapping hardware for requests-
without-PASID or for requests-with-PASID. A non-recoverable fault condition is considered ‘qualified’
if it is reported to software only if the Fault Processing Disable (FPD) field in the context-entry (or
extended-context-entry) used to process the faulting request is 0. Memory requests that result in
non-recoverable address translation faults are blocked by hardware. The exact method for blocking
such requests are implementation-specific. For example:

• Faulting write requests may be handled in much the same way as hardware handles write
requests to non-existent memory. For example, the write request is discarded in a manner
convenient for implementations (such as by dropping the cycle, completing the write request to
memory with all byte enables masked off, re-directing to a catch-all memory location, etc.).

• Faulting read requests may be handled in much the same way as hardware handles read requests
to non-existent memory. For example, the request may be redirected to a catch-all memory
location, returned as all 0’s or 1’s in a manner convenient to the implementation, or the request
may be completed with an explicit error indication (recommended). For faulting read requests
from PCI-Express devices, hardware indicates “Unsupported Request” (UR) in the completion
status field of the PCI-Express read completion.

7.2.1.1 Non-Recoverable Faults for Untranslated Requests Without PASID

Table 11 enumerates the non-recoverable address translation fault conditions that can be
encountered when processing requests-without-PASID specifying an untranslated address (Address
Type (AT) field value of 00b in the transaction header).

Table 11. Non-Recoverable Faults for Untranslated Requests Without PASID

Fault Conditions Fault
Reason Qualified Behavior

The Present (P) field in root-entry (or UP/LP fields in extended-root-
entry) used to process the untranslated request without PASID is 0. 1h No

Unsupported
Request

The Present (P) field in the context-entry (or extended-context-
entry) used to process the untranslated request without PASID is 0. 2h

Yes

Invalid programming of a context-entry (or extended-context-entry)
used to process an untranslated request without PASID.
For example:
• The Address-Width (AW) field is programmed with an value not

supported by the hardware implementation.
• The Translation-Type (T) field is programmed to indicate a

translation type not supported by the hardware implementation.
• Hardware attempt to access the second-level paging entry

referenced through the SLPTPTR field resulted in error.

3h

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-3

Translation Faults—Intel® Virtualization Technology for Directed I/O

7.2.1.2 Non-Recoverable Faults for Untranslated Requests With PASID

Table 12 enumerates the non-recoverable address translation fault conditions that can be
encountered when processing requests-with-PASID specifying an untranslated address (Address Type
(AT) field value of 00b in the transaction header).

Input-address in the untranslated request without PASID is above
(2X - 1), where X is the minimum of MGAW reported in Capability
Register and value in the Address-Width (AW) field of context-entry
(or extended-context-entry) used to process the request.

4h

Yes

Unsupported
Request

An untranslated Write (or AtomicOp) request without PASID is
blocked due to lack of write permission. Refer to Section 3.7.2 for
access rights checking with second-level translation for requests-
without-PASID.

5h

An untranslated Read (or AtomicOp) request without PASID is
blocked due to lack of read permission. Refer to Section 3.7.2 for
access rights checking with second-level translation for requests-
without-PASID. For implementations reporting ZLR field as 1 in the
Capability Register, this fault condition is not applicable for zero-
length read requests without PASID to write-only mapped pages.

6h

Hardware attempt to access a second-level paging entry (SL-PDPE,
SL-PDE, or SL-PTE) referenced through the Address (ADDR) field in a
preceding second-level paging entry (SL-PML4E, SL-PDPE, SL-PDE)
resulted in error.

7h

Hardware attempt to access a root-entry (or extended-root-entry)
referenced through the Root-Table Address (RTA) field in the Root-
entry Table Address Register resulted in error.

8h

NoHardware attempt to access a context-entry (or extended-context-
entry) referenced through the CTP field in a root-entry (or
UCTP/LCTP field in an extended-root-entry) resulted in error.

9h

Non-zero reserved field in a root-entry with Present (P) field Set (or
an extended-root-entry with UP/LP field Set). Ah

Non-zero reserved field in a context-entry (or extended-context-
entry) with Present (P) field Set. Bh

YesNon-zero reserved field in a second-level paging entry (SL-PML4E,
SL-PDPE, SL-PDE, or SL-PTE) with at least one of the Read (R) or
Write (W) fields Set.

Ch

Table 12. Non-Recoverable Faults for Untranslated Requests With PASID

Fault Conditions Fault
Reason Qualified Behavior

The present (UP/LP) field in the extended root-entry used to process
the untranslated request with PASID is 0. 1h No

Unsupported
RequestThe Present (P) field in the extended-context-entry used to process

the untranslated request with PASID is 0. 2h Yes

Table 11. Non-Recoverable Faults for Untranslated Requests Without PASID

Fault Conditions Fault
Reason Qualified Behavior

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-4 Order Number: D51397-006

Invalid programming of the extended-context-entry used to process
an untranslated request with PASID.
For example:
• The Address-Width (AW) field is programmed with an value not

supported by the hardware implementation.
• The Translation-Type (T) field is programmed to indicate a

translation type not supported by the hardware implementation.
• When nested translation is enabled in the extended-context-

entry, hardware attempt to access the second-level paging entry
referenced through the SLPTPTR field resulted in error.

• Hardware attempt to access the PASID-entry referenced
through the PASIDTPTR field resulted in error.

3h

Yes

Unsupported
Request

When nested translation is enabled, the intermediate-address
presented to nested second-level translation is beyond (2X - 1),
where X is the minimum of the MGAW reported in the Capability
Register and the value in the Address-Width (AW) field of the
extended-context-entry used to process the request.
The intermediate-address can be the intermediate-address of a
PASID-entry, intermediate-address of a first-level paging entry (FL-
PML4E, FL-PDPE, FL-PDE, or FL-PTE), or intermediate-address of the
page frame.

4h

An untranslated Write (or AtomicOp) request with PASID is blocked
due to lack of write permission. For nested translations the lack of
write permission can be at first-level translation or at the nested
second-level translation. Also, for nested translations, this fault
condition can be encountered on nested second-level translation
performed for setting the Accessed/Dirty flag of a first-level paging
entry.
Refer to Section 3.6.2 for access rights checking with first-level
translation, and Section 3.8.2 for access rights checking with nested
translation.

5h

An untranslated Read (or AtomicOp) request with PASID is blocked
due to lack of read permission. For nested translations the lack of
read permission can be at first-level translation or at the nested
second-level translation. Also, for nested translations, this fault
condition can be encountered on the nested second-level translation
performed to access a first-level paging entry. Refer to Section 3.6.2
for access rights checking with first-level translation, and
Section 3.8.2 for access rights checking with nested translation.
For implementations reporting ZLR field as 1 in the Capability
Register, this fault condition is not applicable for zero-length read
requests with PASID to write-only mapped pages in second-level
translation.

6h

Hardware attempt to access a second-level paging entry (SL-PDPE,
SL-PDE, or SL-PTE) referenced through the Address (ADDR) field in a
preceding second-level paging entry (SL-PML4E, SL-PDPE, SL-PDE)
resulted in error.

7h

Hardware attempt to access an extended-root-entry referenced
through the Root-Table Address (RTA) field in the Root-entry Table
Address Register resulted in error.

8h

No
Hardware attempt to access an extended-context-entry referenced
through the UCTP/LCTP field in an extended-root-entry resulted in
error.

9h

Non-zero reserved field in lower 64-bits of the extended-root-entry
with LP field Set, and/or non-zero reserved fields in the upper 64-
bits of the extended-root-entry with UP field Set.

Ah

Table 12. Non-Recoverable Faults for Untranslated Requests With PASID

Fault Conditions Fault
Reason Qualified Behavior

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-5

Translation Faults—Intel® Virtualization Technology for Directed I/O

Non-zero reserved field in extended-context-entry with Present (P)
field Set. Bh

Yes
Unsupported

Request

Non-zero reserved field in a second-level paging entry (SL-PML4E,
SL-PDPE, SL-PDE, or SL-PTE) with at least one of the Read (R),
Execute (X), or Write (W) fields Set.
Execute (X) field in second-level paging entries are applicable only
when supported by hardware and enabled by software.

Ch

The PASID Enable (PASIDE) field in extended-context-entry (with
P=1) used to process the untranslated request with PASID is 0. 10h

The PASID value in the untranslated request with PASID is larger
than the maximum PASID-value supported by the PASID-Table-Size
(PTS) field in the extended-context-entry (with P=PASIDE=1) used
to process the request.

11h

The Present (P) field in the PASID-entry used to process the
untranslated request with PASID is 0. 12h

Non-zero reserved field in a PASID-entry with the Present (P) field
Set. 13h

Input-address in the request with PASID is not Canonical (i.e.,
address bits 63:48 not same value as address bit 47). 14h

Hardware attempt to access the FL-PML4 entry referenced through
the FLPTPTR field in the PASID-entry resulted in error. 15h

Non-zero reserved field in first-level paging entry (FL-PML4E, FL-
PDPE, FL-PDE, or FL-PTE) with Present (P) field Set. 16h

Hardware attempt to access a first-level paging entry (FL-PDPE, FL-
PDE, or FL-PTE) referenced through the Address (ADDR) field in a
preceding first-level paging entry (FL-PML4E, FL-PDPE, or FL-PDE)
resulted in error.
(For nested translations, second-level nested translation faults
encountered when accessing first-level paging entries are treated as
fault conditions 4h, 5h or 6h. See description of these fault
conditions above).

17h

An untranslated Read request with PASID with Execute-Requested
(ER) field Set is blocked due to lack of execute permission. For
nested translations, the lack of execute permission can be at first-
level translation, or at the second-level translation for the final page.
Refer to Section 3.6.2 for access rights checking with first-level
translation, and Section 3.8.2 for access rights checking with nested
translation.

18h

The Execute Requests Enable (ERE) field is 0 in extended-context-
entry (with P=1) used to process the request with PASID with
Execute-Requested (ER) field Set.

19h

The Supervisor Requests Enable (SRE) field is 0 in extended-
context-entry (with P=1) used to process the request with PASID
with Privileged-mode-Requested (PR) field Set.

1Ah

Root Table Type (RTT) field is 0 in Root-table Address register
(RTADDR_REG) used to process the request with PASID. 1Bh No

Table 12. Non-Recoverable Faults for Untranslated Requests With PASID

Fault Conditions Fault
Reason Qualified Behavior

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-6 Order Number: D51397-006

7.2.1.3 Non-Recoverable Faults for Translation Requests Without PASID

Table 13 enumerates the non-recoverable address translation fault conditions that can be
encountered when processing translation-requests (Address Type (AT) field value of 01b in the
transaction header) without PASID.

7.2.1.4 Non-Recoverable Faults for Translation Requests With PASID

Table 14 enumerates the non-recoverable address translation fault conditions that can be
encountered when processing translation-requests (Address Type (AT) field value of 01b in the
transaction header) with PASID.

Table 13. Non-Recoverable Faults For Translation Requests Without PASID

Fault Conditions Fault
Reason Qualified

Translation
Completion

Status

Conditions that explicitly block translation requests without PASID:

The Present (P) field in root-entry (or UP/LP fields in extended
root-entry) used to process the translation request without PASID
is 0.

1h No

Unsupported
Request

The Present (P) field in the context-entry (or extended-context-
entry) used to process the translation request without PASID is 0. 2h

YesThe present context-entry (or extended-context-entry) specifies
blocking of translation requests without PASID. (i.e., Translation
Type (T) field value not equal to 01b in context-entry, or
Translation Type (T) field value not equal to 001b in extended-
context-entry).

Dh

Hardware or programming error conditions that block translation requests without PASID:

Invalid programming of a context-entry (or extended-context-
entry) used to process an translation request without PASID.
For example:
• The Address-Width (AW) field is programmed with an value

not supported by the hardware implementation.
• The Translation-Type (T) field is programmed to indicate a

translation type not supported by the hardware
implementation.

• Hardware attempt to access the second-level paging entry
referenced through the SLPTPTR field resulted in error.

3h

Yes

Completer
Abort

Hardware attempt to access a second-level paging entry (SL-
PDPE, SL-PDE, or SL-PTE) referenced through the Address
(ADDR) field in a preceding second-level paging entry (SL-PML4E,
SL-PDPE, SL-PDE) resulted in error.

7h

Hardware attempt to access a root-entry (or extended-root-
entry) referenced through the Root-Table Address (RTA) field in
the Root-entry Table Address Register resulted in error.

8h

NoHardware attempt to access a context-entry (or extended-
context-entry) referenced through the CTP field in a root-entry
(or UCTP/LCTP field in an extended-root-entry) resulted in error.

9h

Non-zero reserved field in a root-entry with Present (P) field Set
(or an extended-root-entry with UP/LP field Set). Ah

Non-zero reserved field in a context-entry (or extended-context-
entry) with Present (P) field Set. Bh

YesNon-zero reserved field in a second-level paging entry (SL-PML4E,
SL-PDPE, SL-PDE, or SL-PTE) with at least one of the Read (R) or
Write (W) permission fields Set.

Ch

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-7

Translation Faults—Intel® Virtualization Technology for Directed I/O

Table 14. Non-Recoverable Faults For Translation Requests With PASID

Fault Conditions Fault
Reason Qualified

Translation
Completion

Status

Conditions that explicitly block translation requests with PASID:

The present (UP/LP) field in the extended root-entry used to
process the translation request with PASID is 0. 1h

No

Unsupported
Request

Root Table Type (RTT) field is 0 in Root-table Address register
(RTADDR_REG) used to process the request with PASID. 1Bh

The Present (P) field in the extended-context-entry used to
process the translation request with PASID is 0. 2h

Yes

The present extended-context-entry specifies blocking of
translation requests with PASID. i.e., Translation Type (T) field
value not equal to 001b, 101b or 111b in extended-context-entry.

Dh

The PASID-Enable (PASIDE) field in extended-context-entry (with
P=1) used to process the translation request with PASID is 0. 10h

The PASID value in the translation request with PASID is larger
than the maximum PASID-value supported by the PASID-Table-
Size (PTS) field in the extended-context-entry (with
P=PASIDE=1) used to process the request.

11h

The Execute Requests Enable (ERE) field is 0 in extended-
context-entry (with P=1) used to process the request with PASID
with Execute-Requested (ER) field Set.

19h

The Supervisor Requests Enable (SRE) field is 0 in extended-
context-entry (with P=1) used to process the request with PASID
with Privileged-mode-Requested (PR) field Set.

1Ah

Hardware or programming error conditions that block translation requests with PASID:

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-8 Order Number: D51397-006

7.2.1.5 Non-Recoverable Faults for Translated Requests

Table 15 enumerates the non-recoverable address translation fault conditions that can be
encountered when processing translated-requests (Address Type (AT) field value of 10b in the
transaction header). Translated requests specify the translated (host-physical) address and hence has
no PASID.

Invalid programming of the extended-context-entry used to
process a translation request with PASID. For example:
• The Address-Width (AW) field is programmed with an value

not supported by the hardware implementation.
• The Translation-Type (T) field is programmed to indicate a

translation type not supported by the hardware
implementation.

• When nested translation is enabled in the extended-context-
entry, hardware attempt to access the second-level paging
entry referenced through the SLPTPTR field resulted in error.

• Hardware attempt to access the PASID-entry referenced
through the PASIDTPTR field resulted in error.

3h

Yes

Completer
Abort

Hardware attempt to access a second-level paging entry (SL-
PDPE, SL-PDE, or SL-PTE) referenced through the Address
(ADDR) field in a preceding second-level paging entry resulted in
error.

7h

Hardware attempt to access an extended-root-entry referenced
through the Root-Table Address (RTA) field in the Root-entry Table
Address Register resulted in error.

8h

No
Hardware attempt to access an extended-context-entry
referenced through the UCTP/LCTP field in an extended-root-
entry resulted in error.

9h

Non-zero reserved field in lower 64-bits of the extended-root-
entry with LP field Set, and/or non-zero reserved fields in the
upper 64-bits of the extended-root-entry with UP field Set.

Ah

Non-zero reserved field in extended-context-entry with P=1 Bh

Yes

Non-zero reserved field in a second-level paging entry (SL-PML4E,
SL-PDPE, SL-PDE, or SL-PTE) with at least one of the Read (R),
Execute (X), or Write (W) permission fields Set.
Execute (X) field in second-level paging entries are applicable
only when supported by hardware and enabled by software.

Ch

Hardware attempt to access the FL-PML4 entry referenced
through the FLPTPTR field in the PASID-entry resulted in error. 15h

Hardware attempt to access a first-level paging entry (FL-PDPE,
FL-PDE, or FL-PTE) referenced through the Address (ADDR) field
in a preceding first-level paging entry resulted in error.

17h

Table 14. Non-Recoverable Faults For Translation Requests With PASID

Fault Conditions Fault
Reason Qualified

Translation
Completion

Status

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-9

Translation Faults—Intel® Virtualization Technology for Directed I/O

7.2.2 Recoverable Address Translation Faults

Devices supporting Device-TLBs can support recoverable address translation faults for translations
obtained by the Device-TLB (by issuing a Translation request to the remapping hardware, and
receiving a Translation Completion with Successful response code). What device accesses can tolerate
and recover from Device-TLB detected faults and what device accesses cannot tolerate Device-TLB
detected faults is specific to the device. Device-specific software (e.g., driver) is expected to make
sure translations with appropriate permissions and privileges are present before initiating device
accesses that cannot tolerate faults. Device operations that can recover from such Device-TLB faults
typically involves two steps:

• Report the recoverable fault to host software; This may be done in a device-specific manner (e.g.,
through the device-specific driver), or if the device supports PCI-Express Page Request Services
(PRS) Capability, by issuing a page-request message to the remapping hardware. Section 7.5
describe the page-request interface through the remapping hardware.

• After the recoverable fault is serviced by software, the device operation that originally resulted in
the recoverable fault may be replayed, in a device-specific manner.

Table 16 enumerates the recoverable address translation fault conditions detected by the remapping
hardware when processing translation-requests. These fault conditions are not reported by the
remapping hardware as non-recoverable faults, and instead, result in sending a successful translation
completion for the faulting translation request with limited or no permission/privileges. When such a
translation completion is received by the Device-TLB, a translation fault is detected at the Device-TLB,
and handled as either recoverable or non-recoverable, depending on the device operation using the
returned translation.

Table 15. Non-Recoverable Faults For Translated Requests

Unsuccessful Translated Request Conditions Fault
Reason Qualified Behavior

The Present (P) field in root-entry (or UP/LP fields in extended
root-entry) used to process the translated request is 0. 1h No

Unsupported
Request

The Present (P) field in the context-entry (or extended-context-
entry) used to process the translated request is 0. 2h

Yes

Invalid programming of a context-entry (or extended-context-
entry) used to process a translated request.
For example:
• The Address-Width (AW) field is programmed with an value

not supported by the hardware implementation.
• The Translation-Type (T) field is programmed to indicate a

translation type not supported by the hardware
implementation.

3h

Hardware attempt to access a root-entry (or extended-root-
entry) referenced through the Root-Table Address (RTA) field in
the Root-entry Table Address Register resulted in error.

8h

NoHardware attempt to access a context-entry (or extended-
context-entry) referenced through the CTP field in a root-entry
(or UCTP/LCTP field in an extended-root-entry) resulted in error.

9h

Non-zero reserved field in a root-entry with Present (P) field Set
(or an extended-root-entry with UP/LP field Set). Ah

Non-zero reserved field in a context-entry (or extended-context-
entry) with Present (P) field Set. Bh

Yes
The present context-entry (or extended-context-entry) specifies
blocking of translation requests without PASID. (i.e., Translation
Type (T) field value not equal to 01b in context-entry, or
Translation Type (T) field value not equal to 001b, 101b or 111b
in extended-context-entry).

Dh

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-10 Order Number: D51397-006

Device-TLB implementations are required (per PCI-Express ATS specification) to implicitly invalidate
faulting translations from the Device-TLB. Also, the IOTLB and paging-structure caches at the
remapping hardware are invalidated when a recoverable page-fault is reported through the
remapping hardware (see Section 7.5.1 for details). Thus, when replaying the faulted device
operation after the recoverable fault is serviced, the old translation that caused the fault is no longer
cached in the Device-TLB or IOTLB, and the resulting translation request from the device obtains the
up to date translation.

7.3 Non-Recoverable Fault Reporting
Processing of non-recoverable address translation faults (and interrupt translation faults) involve
logging the fault information, and reporting to software through a fault event (interrupt). Remapping
architecture defines two types of fault logging facilities: (a) Primary Fault Logging; and (b) Advanced
Fault Logging. The primary fault logging method must be supported by all implementations of this
architecture. Support for advanced fault logging is optional. Software must not change the fault
logging method while hardware is enabled (i.e., when TES or IRES fields are Set in the Global Status
Register).

Table 16. Recoverable Fault Conditions For Translation Requests

Successful Translation Request Conditions
Translation

Completion Data
Entry

Hardware detected address in the translation request is to the interrupt address range
(0xFEEx_xxxx). The special handling to interrupt address range is to comprehend
potential endpoint device behavior of issuing translation requests to all of its memory
transactions including its message signalled interrupt (MSI) posted writes.

R=0, W=1, U=1, S=0

Conditions where hardware could not find a translation for address specified in
translation request without PASID, or the requested translation lacked both read and
write permissions.
• When performing second-level translation for translation request without PASID, or

when performing any second-level step of nested translation for translation-request-
with-PASID, hardware detected input address above the minimum of MGAW
(reported in Capability Register) and (2X - 1), where X is the AGAW corresponding
to address-width programmed in context-entry or extended-context-entry used to
process the request.

• The address in the translation request with PASID is not canonical (i.e., address bits
63:48 not same value as address bit 47).

• When performing second-level translation for translation-request-without-PASID, or
when performing any second-level step of nested translation for translation-request-
with-PASID, hardware found a not-present (R=W=0) second-level-paging-entry (SL-
PML4E, SL-PDPE, SL-PDE, or SL-PTE), and hence could not complete the page-walk.

• Hardware detected that the logical-AND of the Read (R) permission bits and logical-
AND of Write (W) permission bits from the result of the second-level page-walk to be
both 0.

• When performing first-level translation for translation request with PASID, hardware
encountered not-present (P=0) PASID-entry.

• When performing first-level translation for translation request with PASID, hardware
encountered a not-present (P=0) first-level-paging-entry along the page-walk, and
hence could not complete the page-walk.

• When performing first-level translation for translation-request-with-PASID with user
privilege (value of 0 in Privilege-mode-requested (PR) field), hardware encountered
a present first-level-paging-entry with U/S field value of 0, causing a privilege
violation.

R=W=U=S=0

If hardware successfully fetched the requested translation and the translation has at
least one of Read and Write permissions, no further privilege or permissions violations
are reported (e.g., Translation request with user privilege accessing a supervisor page,
or translation request seeking execute permission to a no-execute page, etc.), and
instead, a successful translation completion with the applicable translation attributes is
returned.

See Section 4.2.3 for
attributes retuned in
translation completion

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-11

Translation Faults—Intel® Virtualization Technology for Directed I/O

7.3.1 Primary Fault Logging

The primary method for logging non-recoverable faults is through Fault Recording Registers. The
number of Fault Recording Registers supported is reported through the Capability Register (see
Section 10.4.2). Section 10.4.14 describes the Fault Recording Registers.

Hardware maintains an internal index to reference the Fault Recording Register in which the next non-
recoverable fault can be recorded. The index is reset to zero when both address and interrupt
translations are disabled (i.e., TES and IES fields Clear in Global Status Register), and increments
whenever a fault is recorded in a Fault Recording Register. The index wraps around from N-1 to 0,
where N is the number of fault recording registers supported by the remapping hardware unit.

Hardware maintains the Primary Pending Fault (PPF) field in the Fault Status Register as the logical
“OR” of the Fault (F) fields across all the Fault Recording Registers. The PPF field is re-computed by
hardware whenever hardware or software updates the F field in any of the Fault Recording Registers.

When primary fault recording is active, hardware functions as follows upon detecting a non-
recoverable address translation or interrupt translation fault:

• Hardware checks the current value of the Primary Fault Overflow (PFO) field in the Fault Status
Register. If it is already Set, the new fault is not recorded.

• If hardware supports compression1 of multiple faults from the same requester, it compares the
source-id (SID) field of each Fault Recording Register with Fault (F) field Set, to the source-id of
the currently faulted request. If the check yields a match, the fault information is not recorded.

• If the above check does not yield a match (or if hardware does not support compression of
faults), hardware checks the Fault (F) field of the Fault Recording Register referenced by the
internal index. If that field is already Set, hardware sets the Primary Fault Overflow (PFO) field in
the Fault Status Register, and the fault information is not recorded.

• If the above check indicates there is no overflow condition, hardware records the current fault
information in the Fault Recording Register referenced by the internal index. Depending on the
current value of the PPF field in the Fault Status Register, hardware performs one of the following
steps:
— If the PPF field is currently Set (implying there are one or more pending faults), hardware sets

the F field of the current Fault Recording Register and increments the internal index.
— Else, hardware records the internal index in the Fault Register Index (FRI) field of the Fault

Status Register and sets the F field of the current Fault Recording Register (causing the PPF
field also to be Set). Hardware increments the internal index, and an interrupt may be
generated based on the hardware interrupt generation logic described in Section 7.4.

Software is expected to process the non-recoverable faults reported through the Fault Recording
Registers in a circular FIFO fashion starting from the Fault Recording Register referenced by the Fault
Recording Index (FRI) field, until it finds a Fault Recording Register with no faults (F field Clear).

To recover from a primary fault overflow condition, software must first process the pending faults in
each of the Fault Recording Registers, Clear the Fault (F) field in all those registers, and Clear the
overflow status by writing a 1 to the Primary Fault Overflow (PFO) field. Once the PFO field is cleared
by software, hardware continues to record new faults starting from the Fault Recording Register
referenced by the current internal index.

7.3.2 Advanced Fault Logging

Advanced fault logging is an optional hardware feature. Hardware implementations supporting
advanced fault logging report the feature through the Capability Register (see Section 10.4.2).

1. Hardware implementations supporting only a limited number of fault recording registers are
recommended to collapse multiple pending faults from the same requester.

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-12 Order Number: D51397-006

Advanced fault logging uses a memory-resident fault log to record non-recoverable fault information.
The base and size of the memory-resident fault log region is programmed by software through the
Advanced Fault Log Register. Advanced fault logging must be enabled by software through the Global
Command Register before enabling the remapping hardware. Section 9.2 illustrates the format of the
fault record.

When advanced fault recording is active, hardware maintains an internal index into the memory-
resident fault log where the next non-recoverable fault can be recorded. The index is reset to zero
whenever software programs hardware with a new fault log region through the Global Command
Register, and increments whenever a non-recoverable fault is logged in the fault log. Whenever the
internal index increments, hardware checks for internal index wrap-around condition based on the
size of the current fault log. Any internal state used to track the index wrap condition is reset
whenever software programs hardware with a new fault log region.

Hardware may compress multiple back-to-back faults from the same requester by maintaining
internally the source-id of the last fault record written to the fault log. This internal “source-id from
previous fault” state is reset whenever software programs hardware with a new fault log region.

Read completions due to software reading the remapping hardware registers must push (commit) any
in-flight fault record writes to the fault log by the respective remapping hardware unit.

When a non-recoverable fault is detected, advanced fault logging functions in hardware as follows:
• Hardware checks the current value of the Advanced Fault Overflow (AFO) field in the Fault Status

Register. If it is already Set, the new fault is not recorded.
• If hardware supports compressing multiple back-to-back faults from same requester, it compares

the source-id of the currently faulted request to the internally maintained “source-id from
previous fault”. If a match is detected, the fault information is not recorded.

• Otherwise, if the internal index wrap-around condition is Set (implying the fault log is full),
hardware sets the AFO field in the Advanced Fault Log Register, and the fault information is not
recorded.

• If the above step indicates no overflow condition, hardware records the current fault information
to the fault record referenced by the internal index. Depending on the current value of the
Advanced Pending Fault (APF) field in the Fault Status Register and the value of the internal index,
hardware performs one of the following steps:
— If APF field is currently Set, or if the current internal index value is not zero (implying there

are one or more pending faults in the current fault log), hardware simply increments the
internal index (along with the wrap-around condition check).

— Otherwise, hardware sets the APF field and increments the internal index. An interrupt may
be generated based on the hardware interrupt generation logic described in Section 7.4.

7.4 Non-Recoverable Fault Event
Non-recoverable faults are reported to software using a message-signalled interrupt controlled
through the Fault Event Control Register. The non-recoverable fault event information (such as
interrupt vector, delivery mode, address, etc.) is programmed through the Fault Event Data and Fault
Event Address Registers.

A Fault Event may be generated under the following conditions:
• When primary fault logging is active, recording a non-recoverable fault to a Fault Recording

Register causing the Primary Pending Fault (PPF) field in Fault Status Register to be Set.
• When advanced fault logging is active, logging a non-recoverable fault in the advanced fault log

that causes the Advanced Pending Fault (APF) field in the Fault Status Register to be Set.
• When queued invalidation interface is active, an invalidation queue error causing the Invalidation

Queue Error (IQE) field in the Fault Status Register to be Set.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-13

Translation Faults—Intel® Virtualization Technology for Directed I/O

• Invalid Device-TLB invalidation completion response received causing the Invalidation Completion
Error (ICE) field in the Fault Status Register to be Set.

• Device-TLB invalidation completion time-out detected causing the Invalidation Time-out Error
(ITE) field in the Fault Status Register to be Set.

• Recording a recoverable fault in the Page Request Queue that cause the Page Request Overflow
(PRO) field in the Fault Status Register to be Set.

For these conditions, the Fault Event interrupt generation hardware logic functions as follows:
• Hardware checks if there are any previously reported interrupt conditions that are yet to be

serviced by software. Hardware performs this check by evaluating if any of the PPF1, PFO, (APF,
AFO if advanced fault logging is active), IQE, ICE, ITE and PRO fields in the Fault Status Register
is Set. If hardware detects any interrupt condition yet to be serviced by software, the Fault Event
interrupt is not generated.

• If the above check indicates no interrupt condition yet to be serviced by software, the Interrupt
Pending (IP) field in the Fault Event Control Register is Set. The Interrupt Mask (IM) field is then
checked and one of the following conditions is applied:
— If IM field is Clear, the fault event is generated along with clearing the IP field.
— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field:
• If IP field was Set when software clears the IM field, the fault event interrupt is generated along

with clearing the IP field.
• If IP field was Set when software services all the pending interrupt conditions (indicated by all

status fields in the Fault Status Register being Clear), the IP field is cleared.

Read completions due to software reading any of the remapping hardware registers must push
(commit) any in-flight interrupt messages generated by the respective hardware unit.

The fault event interrupts are never subject to interrupt remapping.

7.5 Recoverable Fault Reporting
Recoverable faults are detected at the Device-TLB on the endpoint device. Devices supporting Page
Request Services (PRS) Capability reports the recoverable faults as page-requests to software
through the remapping hardware. Software informs the servicing of the page-requests by sending
page-responses to the device through the remapping hardware. Refer to the PCI-Express Address
Translation Services (ATS) specification for details on the page-request and page-response messages.

The following sections describe the remapping hardware processing of page-requests from endpoint
devices and page-responses from software. Remapping hardware indicates support for page-requests
through the Extended Capability Register (see Section 10.4.3).

7.5.1 Handling of Page Requests

When PRS Capability is enabled at an endpoint device, recoverable faults detected at its Device-TLB
cause the device issuing page-request messages to the remapping hardware.

Remapping hardware supports a page-request queue, as a circular buffer in system memory to record
page request messages received. The following registers are defined to configure and manage the
page-request-queue:

1. The PPF field is computed by hardware as the logical OR of Fault (F) fields across all the Fault
Recording Registers of a hardware unit.

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-14 Order Number: D51397-006

• Page Request Queue Address Register: Software programs this register to configure the base
physical address and size of the contiguous memory region in system memory hosting the Page
Request Queue.

• Page Request Queue Head Register: This register points to the page-request descriptor in the
page request queue that software will process next. Software increments this register after
processing one or more page-request descriptors in the page request queue.

• Page Request Queue Tail Register: This register points to the page-request descriptor in the page
request queue to be written next by hardware. The Page Request Queue Head Register is
incremented by hardware after writing a page-request descriptor to the page request queue.

Hardware interprets the page request queue as empty when the Head and Tail Registers are equal.
Hardware interprets the page request queue as full when the Head Register is one behind the Tail
Register (i.e., when all entries but one in the queue are used). This way, hardware will write at most
only N-1 page-requests in a N entry page request queue.

To enable page requests from an endpoint device, software must:
• Initialize the Page Request Queue Head and Tail Registers (see Section 10.4.30 and

Section 10.4.31) to zero.
• Configure the extended-context-entry used to process requests from the device, such that both

the Present (P) and Page Request Enable (PRE) fields are Set.
• Setup the page request queue address and size through the Page Request Queue Address

Register (see Section 10.4.32).
• Configure and enable page requests at the device through the PRS Capability Registers. (Refer to

the PCI-Express ATS specification for PRS Capability Register details).

A page request message received by the remapping hardware is discarded if any of the following
conditions are true:

• The Present (P) field or the Page Request Enable (PRE) field in the extended-context-entry used
to process the page request is 0.

• The page request has value of 0 for both Last Page in Group (LPIG) and Stream Response
Requested (SRR) fields (indicates no response is required for this request), and one of the
following is true:
— The Page Request Overflow (PRO) field in the Fault Status Register is 1
— The Page Request Queue is already full (i.e., the current value of the Head Register is one

behind the value of the Tail Register), causing hardware to Set the Page Request Overflow
(PRO) field in the Fault Status Register (see Section 10.4.9). Setting the PRO field can cause a
fault event to be generated depending on the programming of the Fault Event Registers (see
Section 7.4).

A page request message with the Last Page In Group (LPIG) field clear and the Stream Response
Requested (SRR) field set received by the remapping hardware results in hardware returning a
successful Page Stream Response message, if one of the following is true:

— The Page Request Overflow (PRO) field in the Fault Status Register is 1
— The Page Request Queue is already full (i.e., the current value of the Head Register is one

behind the value of the Tail Register), causing hardware to Set the Page Request Overflow
(PRO) field in the Fault Status Register (see Section 10.4.9). Setting the PRO field can cause a
fault event to be generated depending on the programming of the Fault Event Registers (see
Section 7.4).

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-15

Translation Faults—Intel® Virtualization Technology for Directed I/O

A page request message with the Last Page In Group field set received by the remapping hardware
results in hardware returning a successful Page Group Response message1, if one of the following is
true:

— The Page Request Overflow (PRO) field in the Fault Status Register is 1
— The Page Request Queue is already full (i.e., the current value of the Head Register is one

behind the value of the Tail Register), causing hardware to Set the Page Request Overflow
(PRO) field in the Fault Status Register (see Section 10.4.9). Setting the PRO field can cause a
fault event to be generated depending on the programming of the Fault Event Registers (see
Section 7.4).

If none of above conditions are true on receiving a page request message, the remapping hardware:
• Performs an implicit invalidation to invalidate any translations cached in the IOTLB and Paging

Structure caches that controls the address specified in the Page Request.
• Writes a Page Request Descriptor to the Page Request Queue entry at offset specified by the Head

Register, and increments the value in the Head Register. Depending on the type of the Page
Request Descriptor written to Page Request Queue and programming of the Page Request Event
Registers, a recoverable fault event may be generated (see Section 7.6).

The implicit invalidation of IOTLB and Paging Structure caches by the remapping hardware before a
Page Request is reported to software, along with the endpoint device requirement to invalidate
faulting translation from its Device-TLB before sending the Page Request, enforces there are no
cached translations for a faulted page address before the Page Request is reported to software. This
allows software to service a recoverable fault by making necessary modifications to the paging entries
and send a Page Response to restart the faulted operation at the device, without performing any
explicit invalidation operations.

The following sections describe the Page Request Descriptor types written by hardware. All
descriptors are 128-bit sized. The Type field (bits 1:0) of each page request descriptor identifies the
descriptor type.

7.5.1.1 Page Request Descriptor

A Page Request Descriptor (page_req_dsc) is used to report Page Request messages received by the
remapping hardware.

1. Hardware generating a successful Page Group Response for last page request in a group that
encounters a page request queue full/overflow condition can result in a Page Stream Response for
one of the older page requests in this group to be generated later (by software). Receiving a page
stream response at the endpoint after the page group response for the same group is received
must not affect functioning of endpoint device.

Figure 7-30. Page Request Descriptor

Address [63:12]

Bus#

3
1 3

2
3

3
2

1
2
7

6
4

6
5

6
6

6
7

Page Request
Group Index

6
3

Execute
Requested

SRRPASID LPIG

012
2
4

PASID
Present

4

Write
Requested

Read
Requested

Privilege Mode
Requested

Dev#:
Func#

6
8

7
5

7
6

Private Data

5
4

5
5

BOF

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-16 Order Number: D51397-006

Page Request Messages: Page request messages1 are sent by endpoint devices to report one or more
page requests that are part of a page group (i.e., with same value in Page Request Group Index field),
for which a Page Group Response is expected by the device after software has serviced all requests
that are part of the page group. A page group can be composed of as small as single page request.
Page requests with PASID Present field value of 1 are considered as page-requests-with-PASID. Page
requests with PASID Present field value of 0 are considered as page-requests-without-PASID.

For Root-Complex integrated devices, any page-request-with-PASID in a page group, except the last
page request (i.e., requests with Last Page in Group (LPIG) field value of 0), can request a Page
Stream Response when that individual page request is serviced, by setting the Streaming Response
Requested (SRR) field. Intel® Processor Graphics device requires use of this page stream response
capability.

The Page Request Descriptor (page_req_dsc) includes the following fields:
• Bus Number: The bus number field contains the upper 8-bits of the source-id of the endpoint

device that sent the Page Request. Refer to Section 3.4.1 for format of source-id.
• Device and Function Numbers: The Dev#:Func# field contains the lower 8-bits of the source-id of

the endpoint device that sent the Page Request.
• PASID Present: If the PASID Present field is 1, the Page Request is due to a recoverable fault by a

request-with-PASID. If PASID Present field is 0, the page request is due to a recoverable fault by
a request-without-PASID.

• PASID: If the PASID Present field is 1, this field provides the PASID value of the request-with-
PASID that encountered the recoverable fault that resulted in this Page Request. If PASID Present
field is 0, this field is undefined.

• Address (ADDR): If both the Read Requested and Write Requested fields are 0, this field is
reserved. Else, this field indicates the faulted page address. If the PASID Present field is 1, the
address field specifies an input-address for first-level translation. If the PASID Present field is 0,
the address field specifies an input-address for second-level translation.

• Page Request Group Index (PRGI): The 9-bit Page Request Group Index field identifies the page
group to which this request is part of. Software is expected to return the Page Request Group
Index in the respective page response. This field is undefined if both the Read Requested and
Write Requested fields are 0.
— Multiple page-requests-with-PASID (PASID Present field value of 1) from a device with same

PASID value can contain any Page Request Group Index value (0-511). However, for a given
PASID value, there can at most be one page-request-with-PASID outstanding from a device,
with Last Page in Group (LPIG) field Set and same Page Request Group Index value.

— Multiple page-requests-without-PASID (PASID Present field value of 0) from a device can
contain any Page Request Group Index value (0-511). However, there can at most be one
page-request-without-PASID outstanding from a device, with Last Page in Group field Set and
same Page Request Group Index value.

• Last Page in Group (LPIG): If the Last Page in Group field is 1, this is the last request in the page
group identified by the value in the Page Request Group Index field.

• Streaming Response Requested (SRR): If the Last Page in Group (LPIG) field is 0, a value of 1 in
the Streaming Response Requested (SRR) field indicates a Page Stream Response is requested for
this individual page request after it is serviced. If Last Page in Group (LPIG) field is 1, this field is
reserved(0).

• Blocked on Fault (BOF): If the Last Page in Group (LPIG) field is 0 and Streaming Response
Requested (SRR) field is 1, a value of 1 in the Blocked on Fault (BOF) field indicates the fault that
resulted in this page request resulted in a blocking condition on the Root-Complex integrated
endpoint device. This field is informational and may be used by software to prioritize processing of
such blocking page requests over normal (non-blocking) page requests for improved endpoint

1. Refer to PCI Express Address Translation Services (ATS) specification for details on page request
and response messages.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-17

Translation Faults—Intel® Virtualization Technology for Directed I/O

device performance or quality of service. If Last Page in Group (LPIG) field is 1 or Streaming
Response Requested (SRR) field is 0, this field is reserved(0).

• Read Requested: If the Read Requested field is 1, the request that encountered the recoverable
fault (that resulted in this page request), requires read access to the page.

• Write Requested: If the Write Requested field is 1, the request that encountered the recoverable
fault (that resulted in this page request), requires write access to the page.

• Execute Requested: If the PASID Present, Read Requested and Execute Requested fields are all 1,
the request-with-PASID that encountered the recoverable fault that resulted in this page request,
requires execute access to the page.

• Privilege Mode Requested: If the PASID Present is 1, and at least one of the Read Requested or
the Write Requested field is 1, the Privilege Mode Requested field indicates the privilege of the
request-with-PASID that encountered the recoverable fault (that resulted in this page request). A
value of 1 for this field indicates supervisor privilege, and value of 0 indicates user privilege.

• Private Data: The Private Data field can be used by Root-Complex integrated endpoints to
uniquely identify device-specific private information associated with an individual page request.
For Intel® Processor Graphics device, the Private Data field specifies the identity of the GPU
advanced-context (see Section 3.10) sending the page request.
— For page requests requesting a page stream response (SRR=1 and LPIG =0), software is

expected to return the Private Data in the respective Page Stream Response.
— For page requests that identifies as the last request in a page group (LPIG=1), software is

expected to return the Private Data in the respective Page Group Response.

For page-requests-with-PASID indicating page stream response (SRR=1 and LPIG = 0), software
must respond with a Page Stream response after the respective page request is serviced. For page
requests indicating last request in group (LPIG = 1), software must respond with a Page Group
Response after servicing all page requests that are part of that page group. Section 7.7.1 describes
the Page Group Response. Section 7.7.2 describes the Page Stream Response.

7.6 Recoverable Fault Event
Remapping hardware supports notifying pending recoverable faults to software through a Page
Request Event interrupt.

When a page request descriptor (page_req_dsc) is written to the page request queue, hardware Sets
the Pending Page Request (PPR) field in the Page Request Status Register (see Section 10.4.33).
Setting of the PPR field can result in hardware generating a Page Request Event as follows:

• If hardware detects the PPR field in the Page Request Event was already 1, the Page Request
Event is not generated per the programming of the Page Request Event Registers.

• Else, the Interrupt Pending (IP) field in the Page Request Event Control Register (see
Section 10.4.34) is Set. The Interrupt Mask (IM) field in this register is then checked and one of
the following conditions is applied:
— If IM field is Clear, the fault event is generated along with clearing the IP field.
— If IM field is Set, the interrupt is not generated.

The following logic applies for interrupts held pending by hardware in the IP field in the Page Request
Event Control Register:

• If IP field was 1 when software clears the IM field, the page request event interrupt is generated
along with clearing the IP field.

• If IP field was 1 when software services (writes 1 to Clear) the PPR field in the Page Request
Status Register, the IP field is cleared

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-18 Order Number: D51397-006

Read completions due to software reading any of the remapping hardware registers must push
(commit) any in-flight Page Request Interrupt messages generated by the respective remapping
hardware unit.

The page request event interrupts are never subject to interrupt remapping.

7.7 Servicing Recoverable Faults
Software processes page request descriptors written to the Page Request Queue by remapping
hardware. Processing the descriptor involves, resolving the page-fault condition, creating the
translation with appropriate permission and privilege (if the Page requested is legitimate), and issuing
a response back to the device through the remapping hardware.

For page requests indicating last request in a group (LPIG=1), a single Page Group Response is sent
by software after servicing all page requests for respective Page Group. For page requests requesting
stream response, a Page Stream Response is sent by software after servicing the respective page
request. The responses are sent by software to the remapping hardware by submitting Page
Response Descriptors through the Invalidation Queue (IQ). The remapping hardware processes each
response descriptor by formatting and sending the appropriate Page Request Response to the
endpoint device specified in the response descriptor. Refer to Section 6.5.2 for details on Invalidation
Queue operation.

Servicing of a page request by software may determine that the request is spurious. i.e., the page
reported in the page request already has a translation with the requested permissions and privilege in
the page tables. Spurious page requests can result if software upgraded a paging entry (e.g., not
present to present, read-only to read-write, etc.), and the faulting request used the translation before
the upgrade that was cached in the IOTLB or Device-TLB. Irrespective of how a Page Request was
serviced by software (i.e., successfully processed by creating the translation, identified as a spurious
page request that did not require any update to translation, identified as invalid request due to invalid
page/permission/privilege requested), software must send page response with appropriate Response
Code (for page requests that are last in a group, a Page Group Response is sent; for other page
requests that requests a stream response, a Page Stream Response is sent).

The following sections describe the Page Response Descriptor types written by software to the
Invalidation Queue. All descriptors are 128-bit sized. The Type field (bits 3:0) of each page request
descriptor identifies the descriptor type (similar to other invalidation descriptors submitted through
the Invalidation Queue).

7.7.1 Page Group Response Descriptor

A Page Group Response Descriptor is issued by software in response to a page request indicating last
request in a group. The Page Group Response must be issued after servicing all page requests with
the same Page Request Group Index value.

The Page Group Request Descriptor (page_grp_resp_dsc) includes the following fields:

Figure 7-31. Page Group Response Descriptor

Page Request
Group Index

09hRequester-ID Rsvd

0
3
1

1
5

1
6

3
2 3

1
2
7

6
4

Response
Code

6
7

6
8

9
5

9
6

PASID

5
1

5
2

Rsvd

6
3

Rsvd

4

PASID
Present

5

Private Data

1
1
8

1
1
9

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 7-19

Translation Faults—Intel® Virtualization Technology for Directed I/O

• Requester-ID: The Requester-ID field identifies the endpoint device function targeted by the Page
Request Group Response. The upper 8-bits of the Requester-ID field specifies the Bus number and
the lower 8-bits specifies the Device number and Function number. Software copies the bus
number, device number, and function number fields from the respective Page Request Descriptor
to form the Requester-ID field in the Page Group Response Descriptor. Refer to Section 3.4.1 for
format of this field.

• PASID Present: If the PASID Present field is 1, the Page Group Response carries a PASID. The
value in this field must match the value in the PASID Present field of the respective Page Request
Descriptor.

• PASID: If the PASID Present field is 1, this field provides the PASID value for the Page Group
Response. The value in this field must match the value in the PASID field of the respective Page
Request Descriptor.

• Page Request Group Index: The Page Request Group Index identifies the page group of this Page
Group Response. The value in this field must match the value in the Page Request Group Index
field of the respective Page Request Descriptor.

• Response Code: The Response Code indicates the Page Group Response status. The field follows
the Response Code (see Table 17) in Page Group Response message as specified in the PCI
Express Address Translation Services (ATS) specification. Refer to the PCI Express ATS
specification for endpoint device behavior with these Response Codes. If all page Requests that
are part of a Page Group serviced successfully, Response Status code of Success is returned.

• Private Data: The Private Data field is used to convey device-specific private information
associated with the page request and response. The value in this field must match the value in
the Private Data field of the respective Page Request Descriptor.

7.7.2 Page Stream Response Descriptor

A Page Stream Response Descriptor is used to indicate servicing of an individual page-request-with-
PASID requesting a stream response (from Root-Complex integrated devices such as Intel® Processor
Graphics).

Table 17. Response Codes

Value Status Description

0h Success All Page Requests in the Page Request Group were
successfully serviced.

1h Invalid
Request

One ore more Page Requests within the Page Request
Group was not successfully serviced.

2h - Eh Reserved Not used.

Fh Response
Failure

Servicing of one or more Page Requests within the
Page Request Group encountered a non-recoverable
error.

Figure 7-32. Page Stream Response Descriptor

Address [63:12]

Bus#

3
1

2
3

2
4

3
2

1
2
7

6
4

Response
Code

6
7

6
8

7
5

7
6

Page Request
Group Index

6
3

Dev#:
Func#

0AhPASID

034

Private Data

5
4

5
5

Intel® Virtualization Technology for Directed I/O—Translation Faults

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
7-20 Order Number: D51397-006

The Page Stream Response Descriptor (page_strm_resp_dsc) includes the following fields:
• Requester-ID: The Requester-ID field identifies the endpoint device function targeted by the Page

Stream Response. The upper 8-bits of the Requester-ID field specifies the Bus number and the
lower 8-bits specifies the Device number and Function number. Software copies the bus number,
device number, and function number fields from the respective Page Request Descriptor to form
the Requester-ID field in the Page Stream Response Descriptor. Refer to Section 3.4.1 for format
of this field.

• PASID: This field provides the PASID value for the Page Stream Response. The value in this field
must match the value in the PASID field of the respective Page Request Descriptor.

• Address (ADDR): The address field indicates the page address serviced. The value in this field
must match the value in the Address field of the respective Page Request Descriptor.

• Page Request Group Index: The Page Request Group Index identifies the page group of the page
request for which this Page Stream Response is issued. The value in this field must match the
value in the Page Request Group Index field of the respective Page Request Descriptor.

• Private Data: The Private Data field is used to uniquely identify device-specific private information
associated with the Page request/response. The value in this field must match the value in the
Private Data field of the respective Page Request Descriptor.

• Response Code: The Response Code indicates the Page Stream Response status. The field
supports the same Response Code values as for the Page Group Response (see Table 17), except
applied to the individual page request.

7.8 Revoking PASIDs with Pending Page Faults
At any time of operation, system software (OS) resource management actions can result in system
software requesting the endpoint device specific driver to revoke the PASID that it has previously
allocated and is actively being used by the endpoint device. It is the responsibility of the endpoint
device and the driver to revoke use of this PASID for any new requests by the device, ensure all
outstanding page-requests for this PASID are serviced by system software and responses received,
before returning success to system software for the PASID revocation request.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-1

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8 BIOS Considerations

The system BIOS is responsible for detecting the remapping hardware functions in the platform and
for locating the memory-mapped remapping hardware registers in the host system address space.
The BIOS reports the remapping hardware units in a platform to system software through the DMA
Remapping Reporting (DMAR) ACPI table described below.

8.1 DMA Remapping Reporting Structure

Field Byte
Length

Byte
Offset Description

Signature 4 0 “DMAR”. Signature for the DMA Remapping
Description table.

Length 4 4
Length, in bytes, of the description table
including the length of the associated remapping
structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For DMAR description table, the Table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM Revision of DMAR Table for OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Host Address Width 1 36

This field indicates the maximum DMA physical
addressability supported by this platform. The
system address map reported by the BIOS
indicates what portions of this addresses are
populated.

The Host Address Width (HAW) of the platform is
computed as (N+1), where N is the value
reported in this field. For example, for a platform
supporting 40 bits of physical addressability, the
value of 100111b is reported in this field.

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-2 Order Number: D51397-006

8.2 Remapping Structure Types
The following types of remapping structures are defined. All remapping structures start with a ‘Type’
field followed by a ‘Length’ field indicating the size in bytes of the structure.

BIOS implementations must report these remapping structure types in numerical order. i.e., All
remapping structures of type 0 (DRHD) enumerated before remapping structures of type 1 (RMRR),
and so forth.

Flags 1 37

• Bit 0: INTR_REMAP - If Clear, the platform
does not support interrupt remapping. If Set,
the platform supports interrupt remapping.

• Bit 1: X2APIC_OPT_OUT - For firmware
compatibility reasons, platform firmware
may Set this field to request system
software to opt out of enabling Extended
xAPIC (X2APIC) mode. This field is valid only
when the INTR_REMAP field (bit 0) is Set.
Since firmware is permitted to hand off
platform to system software in legacy xAPIC
mode, system software is required to check
this field as Clear as part of detecting
X2APIC mode support in the platform.

• Bits 2-7: Reserved.

Reserved 10 38 Reserved (0).

Remapping Structures[] - 48

A list of structures. The list will contain one or
more DMA Remapping Hardware Unit Definition
(DRHD) structures, and zero or more Reserved
Memory Region Reporting (RMRR) and Root Port
ATS Capability Reporting (ATSR) structures.
These structures are described below.

Value Description

0 DMA Remapping Hardware Unit Definition (DRHD) Structure

1 Reserved Memory Region Reporting (RMRR) Structure

2 Root Port ATS Capability Reporting (ATSR) Structure

3 Remapping Hardware Static Affinity (RHSA) Structure

4 ACPI Name-space Device Declaration (ANDD) Structure

>4 Reserved for future use. For forward compatibility, software skips structures it does not
comprehend by skipping the appropriate number of bytes indicated by the Length field.

Field Byte
Length

Byte
Offset Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-3

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8.3 DMA Remapping Hardware Unit Definition Structure
A DMA-remapping hardware unit definition (DRHD) structure uniquely represents a remapping
hardware unit present in the platform. There must be at least one instance of this structure for each
PCI segment in the platform.

Field Byte
Length

Byte
Offset Description

Type 2 0 0 - DMA Remapping Hardware Unit Definition
(DRHD) structure

Length 2 2 Varies (16 + size of Device Scope Structure)

Flags 1 4

Bit 0: INCLUDE_PCI_ALL
• If Set, this remapping hardware unit has under

its scope all PCI compatible devices in the
specified Segment, except devices reported
under the scope of other remapping hardware
units for the same Segment. If a DRHD structure
with INCLUDE_PCI_ALL flag Set is reported for a
Segment, it must be enumerated by BIOS after
all other DRHD structures for the same
Segment1. A DRHD structure with
INCLUDE_PCI_ALL flag Set may use the ‘Device
Scope’ field to enumerate I/OxAPIC and HPET
devices under its scope.

• If Clear, this remapping hardware unit has under
its scope only devices in the specified Segment
that are explicitly identified through the ‘Device
Scope’ field.

Bits 1-7: Reserved.

1. On platforms with multiple PCI segments, any of the segments can have a DRHD structure with
INCLUDE_PCI_ALL flag Set.

Reserved 1 5 Reserved (0).

Segment Number 2 6 The PCI Segment associated with this unit.

Register Base Address 8 8 Base address of remapping hardware register-set for
this unit.

Device Scope [] - 16

The Device Scope structure contains zero or more
Device Scope Entries that identify devices in the
specified segment and under the scope of this
remapping hardware unit.

The Device Scope structure is described below.

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-4 Order Number: D51397-006

8.3.1 Device Scope Structure

The Device Scope Structure is made up of Device Scope Entries. Each Device Scope Entry may be
used to indicate a PCI endpoint device, a PCI sub-hierarchy, or devices such as I/OxAPICs or HPET
(High Precision Event Timer).

In this section, the generic term ‘PCI’ is used to describe conventional PCI, PCI-X, and PCI-Express
devices. Similarly, the term ‘PCI-PCI bridge’ is used to refer to conventional PCI bridges, PCI-X
bridges, PCI-Express root ports, or downstream ports of a PCI-Express switch.

A PCI sub-hierarchy is defined as the collection of PCI controllers that are downstream to a specific
PCI-PCI bridge. To identify a PCI sub-hierarchy, the Device Scope Entry needs to identify only the
parent PCI-PCI bridge of the sub-hierarchy.

Field Byte
Length

Byte
Offset Description

Type 1 0

The following values are defined for this field.
• 0x01: PCI Endpoint Device - The device

identified by the ‘Path’ field is a PCI endpoint
device. This type must not be used in Device
Scope of DRHD structures with
INCLUDE_PCI_ALL flag Set.

• 0x02: PCI Sub-hierarchy - The device identified
by the ‘Path’ field is a PCI-PCI bridge. In this
case, the specified bridge device and all its
downstream devices are included in the scope.
This type must not be in Device Scope of DRHD
structures with INCLUDE_PCI_ALL flag Set.

• 0x03: IOAPIC - The device identified by the
‘Path’ field is an I/O APIC (or I/O SAPIC) device,
enumerated through the ACPI MADT I/O APIC
(or I/O SAPIC) structure.

• 0x04: MSI_CAPABLE_HPET1 - The device
identified by the ‘Path’ field is an HPET Timer
Block capable of generating MSI (Message
Signaled interrupts). HPET hardware is reported
through ACPI HPET structure.

• 0x05: ACPI_NAMESPACE_DEVICE - The device
identified by the ‘Path’ field is an ACPI name-
space enumerated device capable of generating
DMA requests.

Other values for this field are reserved for future
use.

Length 1 1 Length of this Entry in Bytes. (6 + X), where X is the
size in bytes of the “Path” field.

Reserved 2 2 Reserved (0).

Enumeration ID 1 4

When the ‘Type’ field indicates ‘IOAPIC’, this field
provides the I/O APICID as provided in the I/O APIC
(or I/O SAPIC) structure in the ACPI MADT (Multiple
APIC Descriptor Table).
When the ‘Type’ field indicates ‘MSI_CAPABLE_HPET’,
this field provides the ‘HPET Number’ as provided in
the ACPI HPET structure for the corresponding Timer
Block.
When the ‘Type’ field indicates
‘ACPI_NAMESPACE_DEVICE’, this field provides the
“ACPI Device Number” as provided in the ACPI
Name-space Device Declaration (ANDD) structure for
the corresponding ACPI device.
This field is treated reserved (0) for all other ‘Type’
fields.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-5

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

The following pseudocode describes how to identify the device specified through a Device Scope
structure:

n = (DevScope.Length - 6) / 2; // number of entries in the ‘Path’ field
type = DevScope.Type; // type of device
bus = DevScope.StartBusNum; // starting bus number
dev = DevScope.Path[0].Device; // starting device number
func = DevScope.Path[0].Function; // starting function number
i = 1;
while (--n) {

bus = read_secondary_bus_reg(bus, dev, func);// secondary bus# from config reg.
dev = DevScope.Path[i].Device; // read next device number
func = DevScope.Path[i].Function; // read next function number
i++;

}
source_id = {bus, dev, func};

Start Bus Number 1 5

This field describes the bus number (bus number of
the first PCI Bus produced by the PCI Host Bridge)
under which the device identified by this Device
Scope resides.

Path 2 * N 6

Describes the hierarchical path from the Host Bridge
to the device specified by the Device Scope Entry.

For example, a device in a N-deep hierarchy is
identified by N {PCI Device Number, PCI Function
Number} pairs, where N is a positive integer. Even
offsets contain the Device numbers, and odd offsets
contain the Function numbers.

The first {Device, Function} pair resides on the bus
identified by the ‘Start Bus Number’ field. Each
subsequent pair resides on the bus directly behind
the bus of the device identified by the previous pair.
The identity (Bus, Device, Function) of the target
device is obtained by recursively walking down these
N {Device, Function} pairs.

If the ‘Path’ field length is 2 bytes (N=1), the Device
Scope Entry identifies a ‘Root-Complex Integrated
Device’. The requester-id of ‘Root-Complex
Integrated Devices’ are static and not impacted by
system software bus rebalancing actions.

If the ‘Path’ field length is more than 2 bytes (N >
1), the Device Scope Entry identifies a device behind
one or more system software visible PCI-PCI
bridges. Bus rebalancing actions by system software
modifying bus assignments of the device’s parent
bridge impacts the bus number portion of device’s
requester-id.

1. An HPTE Timer Block is capable of MSI interrupt generation if any of the Timers in the Timer Block reports
FSB_INTERRUPT_DELIVERY capability in the Timer Configuration and Capability Registers. HPET Timer
Blocks not capable of MSI interrupt generation (and instead have their interrupts routed through I/OxAPIC)
are not reported in the Device Scope.

Field Byte
Length

Byte
Offset Description

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-6 Order Number: D51397-006

target_device = {type, source_id}; // if ‘type’ indicates ‘IOAPIC’, DevScope.EnumID
// provides the I/O APICID as reported in the ACPI MADT

8.3.1.1 Reporting Scope for I/OxAPICs

Interrupts from devices that only support (or are only enabled for) legacy interrupts are routed
through the I/OxAPICs in the platform. Each I/OxAPIC in the platform is reported to system software
through ACPI MADT (Multiple APIC Descriptor Tables). Some platforms may also expose I/OxAPICs as
PCI-discoverable devices.

For platforms reporting interrupt remapping capability (INTR_REMAP flag Set in the DMAR structure),
each I/OxAPIC in the platform reported through ACPI MADT must be explicitly enumerated under the
Device Scope of the appropriate remapping hardware units (even for remapping hardware unit
reported with INCLUDE_PCI_ALL flag Set in DRHD structure).

• For I/OxAPICs that are PCI-discoverable, the source-id for such I/OxAPICs (computed using the
above pseudocode from its Device Scope structure) must match its PCI requester-id effective at
the time of boot.

• For I/OxAPICs that are not PCI-discoverable:
— If the ‘Path’ field in Device Scope has a size of 2 bytes, the corresponding I/OxAPIC is a Root-

Complex integrated device. The ‘Start Bus Number’ and ‘Path’ field in the Device Scope
structure together provides the unique 16-bit source-id allocated by the platform for the
I/OxAPIC. Examples are I/OxAPICs integrated to the IOH and south bridge (ICH)
components.

— If the ‘Path’ field in Device Scope has a size greater than 2 bytes, the corresponding I/OxAPIC
is behind some software visible PCI-PCI bridge. In this case, the ‘Start Bus Number’ and ‘Path’
field in the Device Scope structure together identifies the PCI-path to the I/OxAPIC device.
Bus rebalancing actions by system software modifying bus assignments of the device’s parent
bridge impacts the bus number portion of device’s source-id. Examples are I/OxAPICs in PCI-
Express-to-PCI-X bridge components in the platform.

8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block

High Precision Event Timer (HPET) Timer Block supporting Message Signaled Interrupt (MSI)
interrupts may generate interrupt requests directly to the Root-Complex (instead of routing through
I/OxAPIC). Platforms supporting interrupt remapping must explicitly enumerate any MSI-capable
HPET Timer Block in the platform through the Device Scope of the appropriate remapping hardware
unit. In this case, the ‘Start Bus Number’ and ‘Path’ field in the Device Scope structure together
provides the unique 16-bit source-id allocated by the platform for the MSI-capable HPET Timer Block.

8.3.1.3 Reporting Scope for ACPI Name-space Devices

Some platforms may support ACPI name-space enumerated devices that are capable of generating
DMA requests. Platforms supporting DMA remapping must explicitly declare any such DMA-capable
ACPI name-space devices in the platform through ACPI Name-space Device Declaration (ANDD)
structure and enumerate them through the Device Scope of the appropriate remapping hardware
unit. In this case, the ‘Start Bus Number’ and ‘Path’ field in the Device Scope structure together
provides the unique 16-bit source-id allocated by the platform for the ACPI name-space device.
Multiple ACPI name-space devices that share common bus-mastering hardware resources may share
a common source-id. For example, some Intel® SoC platforms supports a Low Power Sub System
(LPSS) in the southbridge, that shares a common DMA resource across multiple ACPI name-space
devices such as I2C, SPI, UART, and SDIO.

8.3.1.4 Device Scope Example

This section provides an example platform configuration with multiple remapping hardware units. The
configurations described are hypothetical examples, only intended to illustrate the Device Scope
structures.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-7

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

Figure 8-33 illustrates a platform configuration with a single PCI segment and host bridge (with a
starting bus number of 0), and supporting four remapping hardware units as follows:
1. Remapping hardware unit #1 has under its scope all devices downstream to the PCI-Express root

port located at (dev:func) of (14:0).
2. Remapping hardware unit #2 has under its scope all devices downstream to the PCI-Express root

port located at (dev:func) of (14:1).
3. Remapping hardware unit #3 has under its scope a Root-Complex integrated endpoint device

located at (dev:func) of (29:0).
4. Remapping hardware unit #4 has under its scope all other PCI compatible devices in the platform

not explicitly under the scope of the other remapping hardware units. In this example, this
includes the integrated device at (dev:func) at (30:0), and all the devices attached to the south
bridge component. The I/OxAPIC in the platform (I/O APICID = 0) is under the scope of this
remapping hardware unit, and has a BIOS assigned bus/dev/function number of (0,12,0).

This platform requires 4 DRHD structures. The Device Scope fields in each DRHD structure are
described as below.

• Device Scope for remapping hardware unit #1 contains only one Device Scope Entry, identified as
[2, 8, 0, 0, 0, 14, 0].
— System Software uses the Entry Type field value of 0x02 to conclude that all devices

downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14, and Function 0
are within the scope of this remapping hardware unit.

• Device Scope for remapping hardware unit #2 contains only one Device Scope Entry, identified as
[2, 8, 0, 0, 0, 14, 1].
— System Software uses the Entry Type field value of 0x02 to conclude that all devices

downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14, and Function 1
are within the scope of this remapping hardware unit.

Figure 8-33. Hypothetical Platform Configuration

Processor

System Bus

South
Bridge

DRAM

Processor

PCI Express Devices

DMA
Remapping

Unit #1

Integrated
Device

Dev [30:0]

PCIe Root
Port

Dev [14:0]

PCI, LPC,
Legacy devices

DMA
Remapping

Unit #2

PCIe Root
Port

Dev [14:1]

DMA
Remapping

Unit #3

Integrated
Device

Dev [29:0]

DMA Remapping
Unit #4

Host Bridge [Bus #0]

I/OxAPIC

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-8 Order Number: D51397-006

• Device Scope for remapping hardware unit #3 contains only one Device Scope Entry, identified as
[1, 8, 0, 0, 0, 29, 0].
— System software uses the Type field value of 0x1 to conclude that the scope of remapping

hardware unit #3 includes only the endpoint device at PCI Segment 0, Bus 0, Device 29 and
Function 0.

• Device Scope for remapping hardware unit #4 contains only one Device Scope Entry, identified as
[3, 8, 0, 1, 0, 12, 0]. Also, the DHRD structure for remapping hardware unit #4 indicates the
INCLUDE_PCI_ALL flag. This hardware unit must be the last in the list of hardware unit definition
structures reported.
— System software uses the INCLUDE_PCI_ALL flag to conclude that all PCI compatible devices

that are not explicitly enumerated under other remapping hardware units are in the scope of
remapping unit #4. Also, the Device Scope Entry with Type field value of 0x3 is used to
conclude that the I/OxAPIC (with I/O APICID=0 and source-id of [0,12,0]) is under the scope
of remapping hardware unit #4.

8.3.2 Implications for ARI

The PCI-Express Alternate Routing-ID Interpretation (ARI) Extended Capability enables endpoint
devices behind ARI-capable PCI-Express Root/Switch ports to support ‘Extended Functions’, beyond
the limit of 8 ‘Traditional Functions’. When ARI is enabled, ‘Extended Functions’ on an endpoint are
under the scope of the same remapping unit as the ‘Traditional Functions’ on the endpoint.

8.3.3 Implications for SR-IOV

The PCI-Express Single-Root I/O Virtualization (SR-IOV) Capability enables a ‘Physical Function’ on an
endpoint device to support multiple ‘Virtual Functions’ (VFs). A ‘Physical Function’ can be a ‘Traditional
Function’ or an ARI ‘Extended Function’. When SR-IOV is enabled, ‘Virtual Functions’ of a ‘Physical
Function’ are under the scope of the same remapping unit as the ‘Physical Function’.

8.3.4 Implications for PCI/PCI-Express Hot Plug

Conventional PCI and PCI-Express defines support for hot plug. Devices hot plugged behind a parent
device (PCI* bridge or PCI-Express root/switch port) are under the scope of the same remapping unit
as the parent device.

8.3.5 Implications with PCI Resource Rebalancing

System software may perform PCI resource rebalancing to dynamically reconfigure the PCI sub-
system (such as on PCI or PCI-Express hot-plug). Resource rebalancing can result in system software
changing the bus number allocated for a device. Such rebalancing only changes the device’s identity
(Source-ID). The device will continue to be under the scope of the same remapping unit as it was
before rebalancing. System software is responsible for tracking device identity changes and resultant
impact to Device Scope.

8.3.6 Implications with Provisioning PCI BAR Resources

System BIOS typically provisions the initial PCI BAR resources for devices present at time of boot. To
conserve physical address space (especially below 4GB) consumed by PCI BAR resources, BIOS
implementations traditionally use compact allocation policies resulting in BARs of multiple
devices/functions residing within the same system-base-page-sized region (4KB for Intel® 64
platforms). However, allocating BARs of multiple devices in the same system-page-size region
imposes challenges to system software using remapping hardware to assign these devices to isolated
domains.

For platforms supporting remapping hardware, BIOS implementations should avoid allocating BARs of
otherwise independent devices/functions in the same system-base-page-sized region.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-9

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8.4 Reserved Memory Region Reporting Structure
Section 3.14 described the details of BIOS allocated reserved memory ranges that may be DMA
targets. BIOS may report each such reserved memory region through the RMRR structures, along
with the devices that requires access to the specified reserved memory region. Reserved memory
ranges that are either not DMA targets, or memory ranges that may be target of BIOS initiated DMA
only during pre-boot phase (such as from a boot disk drive) must not be included in the reserved
memory region reporting. The base address of each RMRR region must be 4KB aligned and the size
must be an integer multiple of 4KB. BIOS must report the RMRR reported memory addresses as
reserved in the system memory map returned through methods such as INT15, EFI GetMemoryMap
etc. The reserved memory region reporting structures are optional. If there are no RMRR structures,
the system software concludes that the platform does not have any reserved memory ranges that are
DMA targets.

The RMRR regions are expected to be used for legacy usages (such as USB, UMA Graphics, etc.)
requiring reserved memory. Platform designers should avoid or limit use of reserved memory regions
since these require system software to create holes in the DMA virtual address range available to
system software and its drivers.

Field Byte
Length

Byte
Offset Description

Type 2 0 1 - Reserved Memory Region Reporting Structure

Length 2 2 Varies (24 + size of Device Scope structure)

Reserved 2 4 Reserved.

Segment Number 2 6 PCI Segment Number associated with devices
identified through the Device Scope field.

Reserved Memory
Region Base Address 8 8 Base address of 4KB-aligned reserved memory region.

Reserved Memory
Region Limit Address 8 16

Last address of the reserved memory region.
Value in this field must be greater than the value in
Reserved Memory Region Base Address field.
The reserved memory region size (Limit - Base + 1)
must be an integer multiple of 4KB.

Device Scope[] - 24

The Device Scope structure contains one or more
Device Scope entries that identify devices requiring
access to the specified reserved memory region. The
devices identified in this structure must be devices
under the scope of one of the remapping hardware
units reported in DRHD.

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-10 Order Number: D51397-006

8.5 Root Port ATS Capability Reporting Structure
This structure is applicable only for platforms supporting Device-TLBs as reported through the
Extended Capability Register. For each PCI Segment in the platform that supports Device-TLBs, BIOS
provides an ATSR structure. The ATSR structures identifies PCI-Express Root-Ports supporting
Address Translation Services (ATS) transactions. Software must enable ATS on endpoint devices
behind a Root Port only if the Root Port is reported as supporting ATS transactions.

Field Byte
Length

Byte
Offset Description

Type 2 0 2 - Root Port ATS Capability Reporting Structure

Length 2 2 Varies (8 + size of Device Scope Structure)

Flags 1 4

• Bit 0: ALL_PORTS: If Set, indicates all PCI-
Express Root Ports in the specified PCI
Segment supports ATS transactions. If Clear,
indicates ATS transactions are supported only
on Root Ports identified through the Device
Scope field.

• Bits 1-7: Reserved.

Reserved 1 5 Reserved (0).

Segment Number 2 6 The PCI Segment associated with this ATSR
structure.

Device Scope [] - 8

If the ALL_PORTS flag is Set, the Device Scope
structure is omitted.
If ALL_PORTS flag is Clear, the Device Scope
structure contains Device Scope Entries that
identifies Root Ports supporting ATS transactions.
The Device Scope structure is described in
Section 8.3.1. All Device Scope Entries in this
structure must have a Device Scope Entry Type of
02h.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-11

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

8.6 Remapping Hardware Static Affinity Structure
Remapping Hardware Status Affinity (RHSA) structure is applicable for platforms supporting non-
uniform memory (NUMA), where Remapping hardware units spans across nodes. This optional
structure provides the association between each Remapping hardware unit (identified by its
respective Base Address) and the proximity domain to which that hardware unit belongs. Such
platforms, report the proximity of processor and memory resources using ACPI Static Resource
Affinity (SRAT) structure. To optimize remapping hardware performance, software may allocate
translation structures referenced by a remapping hardware unit from memory in the same proximity
domain. Similar to SRAT, the information in the RHSA structure is expected to be used by system
software during early initialization, when evaluation of objects in the ACPI name-space is not yet
possible.

Field Byte
Length

Byte
Offset Description

Type 2 0

3 - Remapping Hardware Static Affinity Structure.
This is an optional structure and intended to be
used only on NUMA platforms with Remapping
hardware units and memory spanned across
multiple nodes.
When used, there must be a Remapping Hardware
Static Affinity structure for each Remapping
hardware unit reported through DRHD structure.

Length 2 2 Length is 20 bytes

Reserved 4 4 Reserved (0).

Register Base Address 8 8 Register Base Address of this Remap hardware unit
reported in the corresponding DRHD structure.

Proximity Domain [31:0] 4 16
Proximity Domain to which the Remap hardware
unit identified by the Register Base Address field
belongs.

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-12 Order Number: D51397-006

8.7 ACPI Name-space Device Declaration Structure
An ACPI Name-space Device Declaration (ANDD) structure uniquely represents an ACPI name-space
enumerated device capable of issuing DMA requests in the platform. ANDD structures are used in
conjunction with Device-Scope entries of type ‘ACPI_NAMESPACE_DEVICE’. Refer to Section 8.3.1 for
details on Device-Scope entries.

8.8 Remapping Hardware Unit Hot Plug
Remapping hardware units are implemented in Root-Complex components such as the I/O Hub (IOH).
Such Root-Complex components may support hot-plug capabilities within the context of the
interconnect technology supported by the platform. These hot-pluggable entities consist of an I/O
subsystem rooted in a ACPI host bridge. The I/O subsystem may include Remapping hardware units,
in addition to I/O devices directly attached to the host bridge, PCI/PCI-Express sub-hierarchies, and
I/OxAPICs.

The ACPI DMAR static tables and sub-tables defined in previous sections enumerate the remapping
hardware units present at platform boot-time. Following sections illustrates the ACPI methods for
dynamic updates to remapping hardware resources, such as on I/O hub hot-plug. Following sections
assume familiarity with ACPI 3.0 specification and system software support for host-bridge hot-plug.

8.8.1 ACPI Name Space Mapping

ACPI defines Device Specific Method (_DSM) as a method that enables ACPI devices to provide device
specific functions without name-space conflicts. A Device Specific Method (_DSM) with the following
GUID is used for dynamic enumeration of remapping hardware units.

Field Byte
Length

Byte
Offset Description

Type 2 0 4 - ACPI Name-space Device Declaration (ANDD)
structure

Length 2 2 Length of this Entry in Bytes. (8 + N), where N is the
size in bytes of the “ACPI Object Name” field.

Reserved 3 4 Reserved(0).

ACPI Device Number 1 7

Each ACPI device enumerated through an ANDD
structure must have a unique value for this field.
To report an ACPI device with ‘ACPI Device Number’
value of X, under the scope of a DRHD unit, a
Device-Scope entry of type
‘ACPI_NAMESPACE_DEVICE’ is used with value of X
in the Enumeration ID field. The ‘Start Bus Number’
and ‘Path’ fields in the Device-Scope together
provides the 16-bit source-id allocated by the
platform for the ACPI device.

ACPI Object Name N 8

ASCII, null terminated, string that contains a fully
qualified reference to the ACPI name-space object
that is this device. (For example, “_SB.I2C0”
represents the ACPI object name for an embedded
I2C controller in southbridge; Quotes are omitted in
the data field). Refer to ACPI specification for fully
qualified references for ACPI name-space objects.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 8-13

BIOS Considerations—Intel® Virtualization Technology for Directed I/O

The _DSM method would be located under the ACPI device scope where the platform wants to expose
the remapping hardware units. For example, ACPI name-space includes representation for hot-
pluggable I/O hubs in the system as a ACPI host bridges. For Remapping hardware units implemented
in I/O hub component, the _DSM method would be under the respective ACPI host bridge device.

The _DSM method supports the following function indexes.

8.8.2 ACPI Sample Code

This section illustrates sample ASL code for enumerating remapping resources in an I/O hub.
Scope _SB {

....

Device (IOHn) { // host bridge representation for I/O Hub n

Name (_HID, EISAID(“PNP0A08”))

Name (_CID, EISAID(“PNP0A03”))

...

Method (_DSM, 0, NotSerialized) { // Device specific method

Switch(Arg0) {

case (ToUUID(“D8C1A3A6-BE9B-4C9B-91BF-C3CB81FC5DAF”)) {

Switch (Arg2) { // No switch for Arg1, since only one version of this method is supported

case(0): {Return (Buffer() {0x1F})} // function indexes 1-4 supported

case(1): {Return DRHDT} // DRHDT is a buffer containing relavent DRHD structures for I/O Hub n

case(2): {Return ATSRT} // ATSRT is a buffer containing relavent ATSR structure for I/O Hub n

case(3): {Return RHSAT} // RHSAT is a buffer containing relavent RHSAT structure for I/O Hub n

}

}

}

}

...

}

} // end of Scope SB

GUID

D8C1A3A6-BE9B-4C9B-91BF-C3CB81FC5DAF

Function
Index Description

0
Query function as specified in ACPI 3.0 specification.
Returns which of the below function indexes are supported.

1 Return DMA Remapping Hardware Definition (DRHD) Structures1

1. Reserved Memory Region Reporting (RMRR) structures are not reported via _DSM, since use of reserved
memory regions are limited to legacy devices (USB, iGFX etc.) that are not applicable for hot-plug.

2 Return Root Port ATS Capability Reporting (ATSR) Structure

3 Return Remapping Hardware Static Affinity (RHSA) Structure

Intel® Virtualization Technology for Directed I/O—BIOS Considerations

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
8-14 Order Number: D51397-006

8.8.3 Example Remapping Hardware Reporting Sequence

The following sequence may be practiced for enumerating remapping hardware resources at boot
time.

• Platform prepares name space and populates the ACPI DMAR static reporting tables to be
reported to system software. These DMAR static tables report only the remapping hardware units
that are present at time of boot, and accessible by system software.

The following sequence may be practiced on I/O hub hot-add:
• Platform notifies system software via ACPI the presence of new resources.
• System software evaluates the handle to identify the object of the notify as ACPI host bridge (I/O

hub)
• If System software is able to support the hot-add of host bridge, it calls _OST to indicate success.
• System software evaluates _DSM method to obtain the remapping hardware resources associated

with this host bridge (I/O hub)1.
• System software initializes and prepares the remapping hardware for use.
• System software continues with host-bridge hot-add processing, including discovery and

configuration of I/O hierarchy below the hot-added host-bridge.

1. Invoking the _DSM method does not modify the static DMAR tables. System software must
maintain the effective DMAR information comprehending the initial DMAR table reported by the
platform, and any remapping hardware units added or removed via _DSM upon host bridge hot-
add or hot-remove.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-1

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9 Translation Structure Formats

This chapter describes the memory-resident structures for DMA and interrupt remapping.

9.1 Root Entry
The following figure and table describe the root-entry. The Root Table Address Register points to table
of root-entries, when Root-table-type (RTT) field in the register is Clear.

.

Figure 9-34. Root-Entry Format

2
7

Reserved (0)

6
4

1

01
6
3

1
2

1
1

Reserved (0)

CTP

P

HAW HAW -1

Reserved (0)

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-2 Order Number: D51397-006

Bits Field Description

127:64 R: Reserved Reserved. Must be 0.

63:12 CTP: Context-table
Pointer

Pointer to Context-table for this bus. The Context-table is 4KB in
size and size-aligned.
Hardware treats bits 63:HAW as reserved (0), where HAW is the
host address width of the platform.

11:1 R: Reserved Reserved. Must be 0.

0 P: Present

This field indicates whether the root-entry is present.
• 0: Indicates the root-entry is not present. All other fields are

ignored by hardware.
• 1: Indicates the root-entry is present.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-3

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9.2 Extended Root Entry
The following figure and table describe the extended-root-entry. The Root Table Address Register
points to table of extended-root-entries, when Root-table-type (RTT) field in the register is Set.

Figure 9-35. Extended-Root-Entry Format

2
7

6
4

1

01
6
3

1
2

1
1

Reserved (0)
LP

HAW HAW-1

Reserved (0)
UCTP

UP

LCTP

7
6

7
5HAW+64 HAW+63

Reserved (0)

Reserved (0)

5
6

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-4 Order Number: D51397-006

Bits Field Description

127:76 UCTP: Upper Context
Table Pointer

Pointer to upper extended-context-table for this bus. The upper
extended-context-table is 4KB in size and size-aligned.
Hardware treats bits 127:(HAW+64) as reserved (0), where
HAW is the host address width of the platform.

75:65 R: Reserved Reserved. Must be 0.

64 UP: Upper Present

This field indicates whether the upper-half of the extended root-
entry is present.
• 0: Indicates upper half of the extended-root-entry is not

present. Bits 127:65 are ignored by hardware.
• 1: Indicates the upper-half of the extended root-entry is

present.

63:12 LCTP: Lower Context
Table Pointer

Pointer to lower extended-context-table for this bus. The lower
extended-context-table is 4KB in size and size-aligned.
Hardware treats bits 63:HAW as reserved (0), where HAW is the
host address width of the platform.

11:1 R: Reserved Reserved. Must be 0.

0 LP: Lower Present

This field indicates whether the lower-half of the extended-root-
entry is present.
• 0: Indicates lower half of the extended root-entry is not

present. Bits 63:1 are ignored by hardware.
• 1: Indicates the lower-half of the extended root-entry is

present.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-5

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9.3 Context Entry
The following figure and table describe the context-entry. Context-entries support translation of
requests-without-PASID. Context-entries are referenced through root-entries described in Section
9.1.

Figure 9-36. Context-Entry Format

2
7

8
8

A W

R e se rv e d (0)

D ID

6
7

6
4

1
8
7

7
0

6
6

R e se rv e d (0)

1
7

A V A IL

2
7

0123
6
3

1
2

1
1

F P D
T

S L P T P T R

P

4H A W H A W -1

R e s e rv e d (0)

R e s e rv e d (0)

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-6 Order Number: D51397-006

Bits Field Description

127:88 R: Reserved Reserved. Must be 0.

87:72 DID: Domain
Identifier

Identifier for the domain to which this context-entry maps. Hardware
may use the domain identifier to tag its internal caches.

The Capability Register reports the domain-id width supported by
hardware. For implementations supporting less than 16-bit domain-
ids, unused bits of this field are treated as reserved by hardware. For
example, for implementation supporting 8-bit domain-ids, bits 87:80
of this field are treated as reserved.

Context-entries programmed with the same domain identifier must
always reference the same address translation structure (through the
SLPTPTR field). Similarly, context-entries referencing the same
address translation structure must be programmed with the same
domain id.

When Caching Mode (CM) field in Capability Register is reported as
Set, the domain-id value of zero is architecturally reserved. Software
must not use domain-id value of zero when CM is Set.

71 R: Reserved Reserved. Must be 0.

70:67 IGN: Ignored Hardware ignores the programming of this field.

66:64 AW: Address
Width

When the Translation-type (T) field is 00b or 01b, this field indicates
the adjusted guest-address-width (AGAW) to be used by hardware for
the second-level page-table walk. The following encodings are defined
for this field:
• 000b: 30-bit AGAW (2-level page table)
• 001b: 39-bit AGAW (3-level page table)
• 010b: 48-bit AGAW (4-level page table)
• 011b: 57-bit AGAW (5-level page table)
• 100b: 64-bit AGAW (6-level page table)
• 101b-111b: Reserved

The value specified in this field must match an AGAW value supported
by hardware (as reported in the SAGAW field in the Capability
Register).

When the Translation-type (T) field indicates pass-through processing
(10b), this field must be programmed to indicate the largest AGAW
value supported by hardware.

Untranslated requests-without-PASID processed through this context-
entry and accessing addresses above 2X-1 (where X is the AGAW value
indicated by this field) are blocked and treated as translation faults.

63:12
SLPTPTR: Second
Level Page
Translation Pointer

When the Translation-Type (T) field is 00b or 01b, this field points to
the base of second-level paging entries (described in Section 9.8).

Hardware treats bits 63:HAW as reserved, where HAW is the host
address width of the platform.

This field is ignored by hardware when Translation-Type (T) field is 10b
(pass-through).

11:4 R: Reserved Reserved. Must be 0.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-7

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

3:2 T: Translation Type

• 00b: Untranslated requests are translated using second-level
paging structures referenced through SLPTPTR field. Translated
requests and Translation Requests are blocked.

• 01b: Untranslated, Translated and Translation Requests are
supported. This encoding is treated as reserved by hardware
implementations not supporting Device-TLBs (DT=0 in Extended
Capability Register).

• 10b: Untranslated requests are processed as pass-through.
SLPTPTR field is ignored by hardware. Translated and Translation
Requests are blocked. This encoding is treated by hardware as
reserved for hardware implementations not supporting Pass
Through (PT=0 in Extended Capability Register).

• 11b: Reserved.
This field is applicable only for requests-without-PASID.
Refer to Translation Type (T) field in extended-context-entry in Section
9.4 for handling of requests-with-PASID.

1
FPD: Fault
Processing
Disable

Enables or disables recording/reporting of faults caused by DMA
requests processed through this context-entry:
• 0: Indicates fault recording/reporting is enabled for DMA requests

processed through this context-entry.
• 1: Indicates fault recording/reporting is disabled for DMA requests

processed through this context-entry.
This field is evaluated by hardware irrespective of the setting of the
present (P) field.

0 P: Present

• 0: Indicates the context-entry is not present. All other fields
except Fault Processing Disable (FPD) field are ignored by
hardware.

• 1: Indicates the context-entry is present.

Bits Field Description

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-8 Order Number: D51397-006

9.4 Extended-Context-Entry
The following figure and table describe the extended-context-entry. Extended-context-entries support
translation of requests without and with PASID. Extended-context-entries are referenced through
extended-root-entries described in Section 9.2.

Figure 9-37. Extended-Context-Entry Format

Reserved (0)

1
4

PTS

2
8
1

3
9
1

0
3
1
1

3
2
1

PASIDTPTR

01234
6
3

1
2

1
1

FPD
P

HAW (HAW-1)
1
0 9 8 5

PASIDE
SLPTPTR

5
5

2
0

Reserved (0)

9
2
1

0
3
2

4

2

PASIDSTPTR

9
1

1

PRE

7 6

DINVE

2
7

8
8

7
2

DID

6
4

1
7
1

8
7

SRE

6
6

6
7

AW

(HAW
+127)

(HAW
+128)

(HAW
+191)

(HAW
+192)

PGE
NXE
WPE
CD

Reserved (0)

6
8

6
9

7
0

9
5

9
6

EMTE NESTE

EMT

9
8

SMEP

TT

0
9

SLEE
ERE

1
99

2

PAT

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-9

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

255:204
PASIDSTPTR:
PASID State Table
Pointer

This field is ignored when Deferred Invalidate Enable (DINVE) field is
Clear.

This field points to the base of the PASID-state table. When Nested
Translation Enable (NESTE) field is Set, this field is treated as Guest
Physical Address (GPA) and translated through the second-level
translation.
Section 9.6 describes format of entries in PASID-state table.

203:192 R: Reserved Reserved. Must be 0.

191:140 PASIDPTR: PASID
Table Pointer

This field is ignored when PASID Enable (PASIDE) field is Clear.

This field points to the base of the PASID-table. When Nested
Translation Enable (NESTE) field is Set, this field is treated as Guest
Physical Address (GPA) and translated through the second-level
translation.
Section 9.5 describes format of entries in PASID-table.

139:132 R: Reserved Reserved. Must be 0.

131:128 PTS: PASID Table
Size

This field is ignored when PASID Enable (PASIDE) field is Clear.

Value of X in this field indicates PASID-table with 2(X+5) entries.
When Deferred Invalidate Enable (DINVE) field is Set, this field also
specifies size of the PASID-state table.

127:96 PAT: Page
Attribute Table

This field is treated as Reserved(0) for implementations not supporting
Memory Type (MTS=0 in Extended Capability Register).

This field is ignored when PASID Enable (PASIDE) field is Clear. When
PASIDE is Set, this field is used to compute memory-type for requests-
with-PASID from devices that operate in processor coherency domain.
Refer to Section 3.6.5, and Section 3.8.4 for hardware handling of
memory-type for requests-with-PAID with first-level and nested
translation respectively.

The format of this field is specified below.

Following encodings are specified for the value programmed in sub-
fields PA0 through PA7.

PA0

023

PA1

467

PA2

81011

PA3

121415

PA4

161819

PA5

202223

PA6

242627

PA7

283031

00h Uncacheable (UC)

01h Write Combining (WC)

02h Reserved

03h Reserved

04h Write Through (WT)

05h Write Protected (WP)

06h Write Back (WB)

07h Uncached (UC-)

08h-0Fh Reserved

Encoding Mnemonic

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-10 Order Number: D51397-006

95:92 R: Reserved Reserved. Must be 0.

91
SLEE: Second-
Level Execute
Enable

This field is ignored when Nested Translation Enable (NESTE) or
Execute Requests Enable (ERE) field is Clear.
• 0: Instruction fetch allowed from any guest-physical-address with

read permissions.
• 1: Instruction fetch can be prevented from specified guest-

physical-addresses through the X flag, bit 2, in second-level
paging entries (even if data reads from such addresses are
allowed).

90 ERE: Execute
Requests Enable

This field is treated as Reserved(0) for implementations not supporting
Execute Requests (ERS=0 in the Extended Capability Register).
This field is ignored when PASID Enable (PASIDE) is Clear.
If Clear, requests-with-PASID requesting execute permission are
blocked and treated as DMA remapping faults.

89 SRE: Supervisor
Requests Enable

This field is treated as Reserved(0) for implementations not supporting
supervisor-mode privilege (SRS=0 in the Extended Capability
Register).
This field is ignored when PASID Enable (PASIDE) is Clear.
If Clear, requests-with-PASID requesting supervisor-level privilege
level are blocked and treated as DMA remapping faults.

88
SMEP: Supervisor
Mode Execute
Protection

This field is ignored when PASID Enable (PASIDE), Supervisor
Requests Enable (SRE), or Execute Requests Enable (ERE) field is
Clear.
If Set, prevents supervisor-level execute requests from a user-mode
page (a page that has every first-level translation entry leading up to
the page has the U/S flag Set).

87:72 DID: Domain
Identifier

Identifier for the domain to which this extended-context-entry maps.
Hardware may use the domain identifier to tag its internal caches.

The Capability Register reports the domain-id width supported by
hardware. For implementations supporting less than 16-bit domain-
ids, unused bits of this field are treated as reserved by hardware. For
example, for an implementation supporting 8-bit domain-ids, bits
87:80 of this field are treated as reserved.

Context-entries programmed with the same domain identifier must
always reference the same second-level translation structure (through
the SLPTPTR field). Similarly, context-entries referencing the same
second-level translation structure must be programmed with the same
domain id.

When Caching Mode (CM) field in Capability Register is reported as
Set, the domain-id value of zero is architecturally reserved. Software
must not use domain-id value of zero when CM is Set.

71
EMTE: Extended
Memory Type
Enable

This field is treated as Reserved(0) for implementations not supporting
Nested Translations or Memory Type (NEST=0 or MTS=0 in Extended
Capability Register).
This field is ignored when Nested Translation Enable (NESTE) field is
Clear.
• 0: Extended Memory Type (EMT) field in extended-context-entry

and in second-level leaf paging-entries are ignored.
• 1: Extended Memory Type (EMT) field in extended-context-entry

and in second-level leaf paging-entries are used for memory type
determination for requests-with-PASID from devices operating in
processor coherency domain.

Refer to Section 3.8.4 for hardware handling of memory-type for
requests-with-PAID with nested translation.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-11

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

70 CD: Cache Disable

This field is treated as Reserved(0) for implementations not supporting
Memory Type (MTS=0 in Extended Capability Register).
This field is only applicable for requests from devices that operate in
processor coherency domain.
• 0: Normal Cache Mode.

• Read hits access cache; Read misses may cause
replacement.

• Write hits update cache; Write misses cause cache line fill.
• Writes to shared lined and write misses update system

memory.
• Write hits can change shared lines to modified under control

of MTRR registers or EMT field, with associated read invali-
dation cycle.

• 1: Cache is disabled.
• Effective memory-type forced to Uncacheabe (UC),

irrespective of programming of MTRR registers and PAT/EMT
fields.

• Cache continues to respond to snoop traffic.

69 WPE: Write
Protect Enable

This field is ignored when PASID Enable (PASIDE) or Supervisor
Requests Enable (SRE) field is Clear.
• 0: Allows supervisor-level accesses to write into read-only pages,

regardless of the U/S flag setting in the first-level paging entries.
• 1: Inhibits supervisor-level accesses from writing into read-only

pages.

68 NXE: No Execute
Enable

This field is ignored when PASID Enable (PASIDE) or Execute Requests
Enable (ERE) field is Clear.
• 0: Instruction fetch allowed from any linear address with read

permissions.
• 1: Instruction fetch can be prevented from specified linear

addresses through the XD flag, bit 63, in first-level paging entries
(even if data reads from such addresses are allowed).

67 PGE: Page Global
Enable

This field is ignored when PASID Enable (PASIDE) is Clear.
• 0: Disable global page feature.
• 1: Enable global page feature. Global page feature allows

frequently used or shared pages to be marked as global across
PASIDs (done with setting Global (G) flag, bit 8, in first-level leaf
paging-entries).

66:64 AW: Address
Width

This field indicates the adjusted guest-address-width (AGAW) to be
used by hardware for the second-level page-table walk. The following
encodings are defined for this field:
• 000b: 30-bit AGAW (2-level page table)
• 001b: 39-bit AGAW (3-level page table)
• 010b: 48-bit AGAW (4-level page table)
• 011b: 57-bit AGAW (5-level page table)
• 100b: 64-bit AGAW (6-level page table)
• 101b-111b: Reserved

The value specified in this field must match an AGAW value supported
by hardware (as reported in the SAGAW field in the Capability
Register).
When the Translation-type (T) field indicates pass-through (010b) or
guest-mode (100b or 101b), this field must be programmed to
indicate the largest AGAW value supported by hardware.
Untranslated requests-without-PASID to addresses above 2X-1 (where
X is the AGAW value indicated by this field) are blocked and treated as
translation faults.

63:12
SLPTPTR: Second-
Level Page
Translation Pointer

This field points to the base of the second-level page-tables (described
in Section 9.8).
Hardware treats bits 63:HAW as reserved, where HAW is the host
address width of the platform.

Bits Field Description

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-12 Order Number: D51397-006

11 PASIDE: PASID
Enable

This field is treated as Reserved(0) for implementations not supporting
PASID (PASID=0 in Extended Capability Register).
• 0: Requests with PASID are blocked.
• 1: Requests with PASID are processed per programming of

Translation Type (T) and Nested Translation Enable (NESTE) fields.

10 NESTE: Nested
Translation Enable

This field is treated as Reserved(0) for implementations not supporting
Nested Translations (NEST=0 in Extended Capability Register).
This field is ignored when PASID Enable (PASIDE) is Clear.
• 0: Requests remapped through PASID table (referenced through

PASIDPTPTR field) are subject to first-level translation only. First-
level page-tables are referenced through PML4PTR field in the
PASID-table.

• 1: Requests remapped through PASID table referenced through
PASIDPTPTR field) are subject to nested first-level and second-
level translation. first-level page-tables are referenced through
PML4PTR field in the PASID-table, and second-level page-tables
are referenced through SLPTPTR field in the extended-context-
entry.

Refer to Section 3.8 for hardware behavior for nested translations.

9 PRE: Page
Request Enable

This field is treated as Reserved(0) for implementations not supporting
Page Requests (PRS=0 in Extended Capability Register) and when the
Translation-Type (T) field value does not support Device-TLBs (000b,
010b, 100b, or 110b).
• 0: Page Requests to report recoverable address translations faults

are not enabled.
• 1: Page Requests to report recoverable address translation faults

are enabled.

8 DINVE: Deferred
Invalidate Enable

This field is treated as Reserved(0) for implementations not supporting
Deferred Invalidations (DIS=0 in Extended Capability Register).
This field is ignored when PASID Enable (PASIDE) is Clear.
• 0: PASID-state update messages are blocked.
• 1: PASID-state update messages are processed through the

PASID-state table referenced through the PASIDSTPTR field.

7:5 EMT: Extended
Memory Type

This field is ignored when Extended Memory Type Enable (EMTE) field
is Clear.

When EMTE field is Set, this field is used to compute effective
memory-type for nested translation of requests-with-PASID from
devices operating in the processor coherency domain. Refer to
Section 3.8.4 for hardware handling of memory-type with nested
translations.

The encodings defined for this field are 0h for Uncacheable (UC), and
6h for Write Back (WB). All other values are Reserved.

(contd.)

Bits Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-13

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

4:2 T: Translation Type

• 000b: Host mode with Device-TLBs disabled
• Untranslated requests-without-PASID are remapped using

the second-level page-table referenced through SLPTPTR
field.

• If PASIDE field is Set, Untranslated requests-with-PASID are
remapped using the PASID Table referenced through
PASIDPTPTR field. If PASIDE field is Clear, Untranslated
requests-with-PASID are blocked.

• Translation requests (with or without PASID), and Translated
Requests are blocked.

• 001b: Host mode with Device-TLBs enabled
• Untranslated requests-without-PASID and Translation

requests-without-PASID are remapped using the second-
level page-table referenced through SLPTPTR field.

• If PASIDE field is Set, Untranslated requests-with-PASID
and Translation requests-with-PASID are remapped using
the PASID Table referenced through PASIDPTPTR field. If
PASIDE field is Clear, Untranslated requests-with-PASID,
and Translation requests-with-PASID, are blocked.

• Translated requests bypass address translation.

• 010b: Pass-through mode
• This encoding is treated by hardware as Reserved for

hardware implementations not supporting Pass-through
(PT=0 in the Extended Capability Register).

• Untranslated requests-without-PASID bypass address
translation and are processed as passthrough. SLPTPTR field
is ignored by hardware.

• Untranslated requests-with-PASID, Translation requests
(with or without PASID), and Translated requests are
blocked.

• 011b: Reserved

• 100b: Guest mode with Device-TLBs disabled
• This encoding is treated by hardware as Reserved for

hardware implementations not supporting PASID (PASID=0
in Extended Capability Register), or when PASID Enable
(PASIDE) field in this extended-context-entry is Clear.

• Untranslated requests-without-PASID bypass address
translation and are processed as passthrough. SLPTPTR field
is ignored by hardware.

• Untranslated requests-with-PASID are remapped using the
PASID Table referenced through PASIDPTPTR field.

• Translation requests (with or without PASID) and Translated
requests are blocked.

• 101b: Guest mode with Device-TLBs enabled
• This encoding is treated by hardware as Reserved for

hardware implementations not supporting PASID (PASID=0
in Extended Capability Register), or when PASID Enable
(PASIDE) field in this extended-context-entry is Clear.

• Untranslated requests-without-PASID bypass address
translation and are processed as passthrough. SLPTPTR field
is ignored by hardware.

• Translation requests-without-PASID are responded with
Untranslated access only bit Set (U=1) along with read and
write permissions (R=W=1). SLPTPTR field is ignored by
hardware.

• Untranslated requests-with-PASID, and Translation
requests-with-PASID are remapped using the PASID Table
referenced through PASIDPTPTR field.

• Translated requests bypass address translation.

(contd.)

Bits Field Description

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-14 Order Number: D51397-006

4:2 T: Translation Type

• 110b: PASID-only mode with Device-TLBs disabled
• This encoding is treated by hardware as Reserved for

hardware implementations not supporting PASID-only mode
(POT=0 in the Extended Capability Register), or when
PASID Enable (PASIDE) field in this extended-context-entry
is Clear.

• Untranslated requests-without-PASID are blocked.
• Untranslated requests-with-PASID are remapped using the

PASID Table referenced through PASIDPTPTR field.
• Translation requests (with or without PASID) and Translated

requests are blocked.

• 111b: PASID-only mode with Device-TLBs enabled
• This encoding is treated by hardware as Reserved for

hardware implementations not supporting PASID-only mode
(POT=0 in the Extended Capability Register), or when
PASID Enable (PASIDE) field in this extended-context-entry
is Clear.

• Untranslated requests-without-PASID, and Translation
requests-without-PASID are blocked.

• Untranslated requests-with-PASID and Translation requests-
with-PASID are remapped using the PASID Table referenced
through PASIDPTPTR field.

• Translated requests bypass address translation.

1
FPD: Fault
Processing
Disable

Enables or disables recording/reporting of non-recoverable faults
caused by requests processed through this extended-context-entry:
• 0: Non-recoverable faults are recorded/reported for requests

processed through this extended-context-entry.
• 1: Non-recoverable faults are not recorded/reported for requests

processed through this extended-context-entry.

This field is evaluated by hardware irrespective of the setting of the
present (P) field.

0 P: Present

• 0: Indicates the extended-context-entry is not present. All other
fields except Fault Processing Disable (FPD) field are ignored by
hardware.

• 1: Indicates the extended-context-entry is present.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-15

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9.5 PASID Entry
The following figure and table describe entries in PASID-table used to translate requests-with-PASID.

Figure 9-38. PASID Entry Format

01
6
3

1
2

1
1

Reserved (0)

EAFE

P

23

PWT

PCD

Reserved (0)

45

Reserved(0)

FLPTPTR

1
0 9

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-16 Order Number: D51397-006

Bits Field Description

 63:12 FLPTPTR: First Level Page
Translation Pointer

Pointer to root of first-level paging structures (base of
PML4 table). Refer to Section 9.7 for first-level paging
structure details.

This field is treated as Guest Physical Address (GPA)
when Nested translations are enabled (NESTE=1) in
the relevant extended-context-entry.

11 R: Reserved Reserved (0).

10 EAFE: Extended Accessed
Flag Enable

This field is treated as Reserved(0) for implementations
not supporting Extended Accessed flag (EAFS=0 in the
Extended Capability Register).
If 1, Extended-Accessed (EA) flag is atomically set in
any first-level paging-entries referenced through this
PASID-entry and accessed by hardware.

9:5 R: Reserved Reserved (0).

4 PCD: Page-level Cache
Disable

This field is treated as Reserved(0) for implementations
reporting Memory Type Support (MTS) as Clear in
Extended Capability Register.

This field is used along with PWT field to determine the
memory-type for accessing PML4 entries of first-level
paging structures, when processing requests-with-
PASID from devices operating in the processor
coherency domain.

3 PWT: Page-level Write
Through

This field is treated as Reserved(0) for implementations
reporting Memory Type Support (MTS) as Clear in
Extended Capability Register.

This field is used along with PCD field to determine the
memory-type for accessing PML4 entries of first-level
paging structures, when processing requests-with-
PASID from devices operating in the processor
coherency domain.

2:1 R: Reserved Reserved (0).

0 P: Present
• 0: Indicates this PASID-entry is not valid. H/W

ignores programming of other fields.
• 1: Indicates PASID-entry is valid.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-17

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9.6 PASID-State Entry
The following figure and table describe the PASID-state entry structures used to process PASID-state
update requests. PASID-state entries enable software to implement IOTLB and Device-TLB
invalidation optimizations. Refer Section Section 6.5.4 for details on deferred TLB invalidation
support.

Figure 9-39. PASID-State Entry Format

Bits Field Description

63 DINV: Deferred Invalidate

Software Sets this field to request Deferred invalidation
of IOTLB and Device-TLB entries for the corresponding
PASID.
Hardware atomically reads and Clears this field when
processing PASID-state update requests for respective
PASID activation, and returns the value read as the
‘Synchronize-Flag’ in the PASID-state update response.

62:48 R: Reserved Reserved (0).

47:32 AREFCNT: Active Reference
Count

Non-zero value in this field indicates one or more
agents at the endpoint device are actively accessing
the address space of PASID corresponding to this
PASID-state entry.
Hardware atomically increments this field when
processing PASID-state update requests for respective
PASID activation. Hardware atomically decrements this
field when processing PASID-state update requests for
respective PASID de-activation.

31:0 R: Reserved Reserved (0).

0
6
3

3
2

3
1

AREFCNT

DINV

Reserved (0)

6
2

4
8

4
7

Reserved (0)

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-18 Order Number: D51397-006

9.7 First-Level Paging Entries
The following figure and table describe the first-level paging structures used to process requests-with-
PASID. First-level paging entries follows Intel® 64 processor’s 64-bit paging entry format, with the
following additions:

• Extended-Accessed flag: First-level translation supports an Extended-Accessed (EA) flag in the
paging entries. The EA flag works similar to the Accessed (A) flag in the paging entries. EA flags
can be enabled for a process address space through the Extended-Accessed-Flag-Enable (EAFE)
field in the PASID-entry (see Section 9.4). When enabled, bit 10 in the first-level paging entries
are treated by hardware as the EA flag, and are atomically set whenever a paging-entry is
accessed by hardware. For software usages where the first-level paging structures are shared
across heterogeneous agents (e.g., CPUs and GPUs), EA flag may be used by software to identify
pages accessed by non-CPU agent(s) (as opposed to the A flag which indicates access by any
agent sharing the paging structures).

Figure 9-40. Format for First-Level Paging Entries

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

HAW HAW
-1

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

X
D

Ignored Rsvd. Address of page-directory-pointer table
I
g
n

1

E
A

1. EA field is ignored by hardware if EAFS is reported as Clear in the Extended Capability Register of if EAFE=0 in the PASID-
entry referencing the first-level paging entries.

Ign

R
s
v
d

I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1 PML4E

X
D

Ignored Rsvd.
Address of
1GB page

frame
Reserved

P
A
T

I
g
n

E
A

I
g
n

G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDPE:
1GB

page2

2. 1-GByte page support is reported through First-level 1-GByte Page Support (FL1GPS) field in the Capability Register.

X
D

Ignored Rsvd. Address of page directory
I
g
n

E
A Ign 0

I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDPE:
page

directory

X
D

Ignored Rsvd. Address of
2MB page frame Reserved

P
A
T

I
g
n

E
A

I
g
n

G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table

I
g
n

E
A Ign 0

I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

X
D

Ignored Rsvd. Address of 4KB page frame
I
g
n

E
A

I
g
n

G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-19

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Table 18. Format of PML4E that references a Page-Directory-Pointer Table

Bits Field Description

 63 XD: Execute
Disable

If NXE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 512-GByte region controlled by this
entry when XD=1.

62:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1) :12 ADDR: Address

Physical address of 4-KByte aligned page-directory-pointer table
referenced by this entry.
This field is treated as Guest Physical Address (GPA) when Nested
translations are enabled (NESTE=1) in the relevant extended-context-
entry.

11 IGN: Ignored Ignored by hardware.

10 EA: Extended
Accessed

If EAFE=1 in the relevant PASID-entry, this bit indicates whether this
entry has been used for address translation. Refer to Section 3.6.3 for
extended-accessed bit handling.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

9:8 IGN: Ignored Ignored by hardware.

7 R: Reserved Reserved (0).

6 IGN: Ignored Ignored by hardware.

5 A: Accessed Indicates whether this entry has been used for address translation.
Refer to Section 3.6.3 for accessed bit handling.

4 PCD: Page-level
Cache Disable

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the page-
directory-pointer table referenced by this entry. For other devices, this
field is ignored. Refer to Section 3.6.5 for memory-type handling.

3 PWT: Page-level
Write Through

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the page-
directory-pointer table referenced by this entry. For other devices, this
field is ignored. Refer to Section 3.6.5 for memory-type handling.

2 U/S:
User/Supervisor

If 0, requests with user-level privilege are not allowed to the 512-
GByte region controlled by this entry. Refer to Section 3.6.2 for access
rights.

1 R/W: Read/Write

If 0, write permission not granted for requests with user-level privilege
(and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the 512-GByte region controlled by this
entry. Refer to Section 3.6.2 for access rights.

0 P: Present Must be 1 to reference a page-directory-pointer table.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-20 Order Number: D51397-006

Table 19. Format of PDPE that maps a 1-GByte Page

Bits Field Description

 63 XD: Execute
Disable

If NXE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 1-GByte page referenced by this
entry when XD=1.

62:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):30 ADDR: Address

Physical address of 1-GByte page referenced by this entry.
This field is treated as Guest Physical Address (GPA) when nested
translations are enabled (NESTE=1) in the relevant extended-context-
entry.

29:13 R: Reserved Reserved (0).

12 PAT: Page
Attribute

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 1-GByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

11 IGN: Ignored Ignored by hardware.

10 EA: Extended
Accessed

If EAFE=1 in the relevant PASID-entry, this bit indicates whether this
entry has been used for address translation. Refer to Section 3.6.3 for
extended-accessed bit handling.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

9 IGN: Ignored Ignored by hardware.

8 G: Global If PGE=1 in the relevant extended-context-entry, this field can be Set
by software to indicate the 1-GByte page translation is global.

7 PS: Page Size Must be 1 (otherwise this entry references a page directory. Refer to
Table 20).

6 D: Dirty If 1, indicates one or more requests seeking write permission was
successfully translated to the 1-GByte page referenced by this entry.

5 A: Accessed Indicates whether this entry has been used for address translation.
Refer to Section 3.6.3 for accessed bit handling.

4 PCD: Page-level
Cache Disable

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 1-GByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

3 PWT: Page-level
Write Through

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 1-GByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

2 U/S:
User/Supervisor

If 0, requests with user-level privilege are not allowed to the 1-GByte
page referenced by this entry. Refer to Section 3.6.5 for access rights.

1 R/W: Read/Write

If 0, write permission not granted for requests with user-level privilege
(and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the 1-GByte page referenced by this entry.
Refer to Section 3.6.5 for access rights.

0 P: Present Must be 1 to map a 1-GByte page.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-21

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Table 20. Format of PDPE that references a Page-Directory Table

Bits Field Description

 63 XD: Execute
Disable

If NXE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 1-GByte region controlled by this
entry when XD=1.

62:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address

Physical address of 4-KByte aligned page directory referenced by this
entry.
This field is treated as Guest Physical Address (GPA) when Nested
translations are enabled (NESTE=1) in the relevant extended-context-
entry.

11 IGN: Ignored Ignored by hardware.

10 EA: Extended
Accessed

If EAFE=1 in the relevant PASID-entry, this bit indicates whether this
entry has been used for address translation. Refer to Section 3.6.3 for
extended-accessed bit handling.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

9:8 IGN: Ignored Ignored by hardware.

7 PS: Page Size Must be 0 (otherwise this entry maps to a 1-GByte page. Refer to Table
19).

6 IGN: Ignored Ignored by hardware.

5 A: Accessed Indicates whether this entry has been used for address translation.
Refer to Section 3.6.3 for accessed bit handling.

4 PCD: Page-level
Cache Disable

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the page
directory referenced by this entry. For other devices, this field is
ignored. Refer to Section 3.6.5 for memory-type handling.

3 PWT: Page-level
Write Through

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the page
directory referenced by this entry. For other devices, this field is
ignored. Refer to Section 3.6.5 for memory-type handling.

2 U/S:
User/Supervisor

If 0, requests with user-level privilege are not allowed to the 1-GByte
region controlled by this entry. Refer to Section 3.6.2 for access rights.

1 R/W: Read/Write

If 0, write permission not granted for requests with user-level privilege
(and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the 1-GByte region controlled by this
entry. Refer to Section 3.6.2 for access rights. for access rights.

0 P: Present Must be 1 to reference a page directory.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-22 Order Number: D51397-006

Table 21. Format of PDE that maps a 2-MByte Page

Bits Field Description

 63 XD: Execute
Disable

If NXE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 2-MByte page referenced by this
entry when XD=1.

62:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):21 ADDR: Address

Physical address of 2-MByte page referenced by this entry.
This field is treated as Guest Physical Address (GPA) when nested
translations are enabled (NESTE=1) in the relevant extended-context-
entry.

20:13 R: Reserved Reserved (0).

12 PAT: Page
Attribute

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 2-MByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for access rights. for memory-type handling.

11 IGN: Ignored Ignored by hardware.

10 EA: Extended
Accessed

If EAFE=1 in the relevant PASID-entry, this bit indicates whether this
entry has been used for address translation. Refer to Section 3.6.3 for
access rights. for extended-accessed bit handling.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

9 IGN: Ignored Ignored by hardware.

8 G: Global If PGE=1 in the relevant extended-context-entry, this field can be Set
by software to indicate the 2-MByte page translation is global.

7 PS: Page Size Must be 1 (otherwise this entry references a page table. Refer to Table
22).

6 D: Dirty
If 1, indicates one or more requests seeking write permission was
successfully translated to the 2-MByte page referenced by this entry.
Refer to Section 3.6.3 for dirty bit handling.

5 A: Accessed Indicates whether this entry has been used for address translation.
Refer to Section 3.6.3 for accessed bit handling.

4 PCD: Page-level
Cache Disable

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 2-MByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

3 PWT: Page-level
Write Through

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 2-MByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

2 U/S:
User/Supervisor

If 0, requests with user-level privilege are not allowed to the 2-MByte
page referenced by this entry. Refer to Section 3.6.2 for access rights.

1 R/W: Read/Write

If 0, write permission not granted for requests with user-level privilege
(and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the 2-MByte page referenced by this entry.
Refer to Section 3.6.2 for access rights.

0 P: Present Must be 1 to map a 2-MByte page.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-23

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Table 22. Format of PDE that references a Page Table

Bits Field Description

 63 XD: Execute
Disable

If NXE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 2-MByte region controlled by this
entry when XD=1.

62:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address

Physical address of 4-KByte aligned page table referenced by this
entry.
This field is treated as Guest Physical Address (GPA) when Nested
translations are enabled (NESTE=1) in the relevant extended-context-
entry.

11 IGN: Ignored Ignored by hardware.

10 EA: Extended
Accessed

If EAFE=1 in the relevant PASID-entry, this bit indicates whether this
entry has been used for address translation. Refer to Section 3.6.3 for
extended-accessed bit handling.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

9:8 IGN: Ignored Ignored by hardware.

7 PS: Page Size Must be 0 (otherwise this entry maps to a 2-MByte page. Refer to
Table 21).

6 IGN: Ignored Ignored by hardware.

5 A: Accessed Indicates whether this entry has been used for address translation.
Refer to Section 3.6.3 for accessed bit handling.

4 PCD: Page-level
Cache Disable

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the page table
referenced by this entry. For other devices, this field is ignored. Refer
to Section 3.6.5 for memory-type handling.

3 PWT: Page-level
Write Through

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the page table
referenced by this entry. For other devices, this field is ignored. Refer
to Section 3.6.5 for memory-type handling.

2 U/S:
User/Supervisor

If 0, requests with user-level privilege are not allowed to the 2-MByte
region controlled by this entry. Refer to Section 3.6.2 for access rights.

1 R/W: Read/Write

If 0, write permission not granted for requests with user-level privilege
(and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the 2-MByte region controlled by this
entry. Refer to Section 3.6.2 for access rights.

0 P: Present Must be 1 to reference a page table.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-24 Order Number: D51397-006

Table 23. Format of PTE that maps a 4-KByte Page

Bits Field Description

 63 XD: Execute
Disable

If NXE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 4-KByte page referenced by this
entry when XD=1.

62:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address

Physical address of 4-KByte page referenced by this entry.
This field is treated as Guest Physical Address (GPA) when nested
translations are enabled (NESTE=1) in the relevant extended-context-
entry.

11 IGN: Ignored Ignored by hardware.

10 EA: Extended
Accessed

If EAFE=1 in the relevant PASID-entry, this bit indicates whether this
entry has been used for address translation. Refer to Section 3.6.3 for
extended-accessed bit handling.
If EAFE=0 in the relevant PASID-entry, this bit is ignored.

9 IGN: Ignored Ignored by hardware.

8 G: Global If PGE=1 in the relevant extended-context-entry, this field can be Set
by software to indicate the 4-KByte page translation is global.

7 PAT: Page
Attribute

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 4-KByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

6 D: Dirty
If 1, indicates one or more requests seeking write permission was
successfully translated to the 4-KByte page referenced by this entry.
Refer to Section 3.6.3 for dirty bit handling

5 A: Accessed Indicates whether this entry has been used for address translation.
Refer to Section 3.6.3 for accessed bit handling.

4 PCD: Page-level
Cache Disable

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 4-KByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

3 PWT: Page-level
Write Through

For devices operating in the processor coherency domain, this field
indirectly determines the memory type used to access the 4-KByte
page referenced by this entry. For other devices, this field is ignored.
Refer to Section 3.6.5 for memory-type handling.

2 U/S:
User/Supervisor

If 0, requests with user-level privilege are not allowed to the 4-KByte
page referenced by this entry. Refer to Section 3.6.2 for access rights.

1 R/W: Read/Write

If 0, write permission not granted for requests with user-level privilege
(and requests with supervisor-level privilege, if WPE=1 in the relevant
extended-context-entry) to the 4-KByte page referenced by this entry.
Refer to Section 3.6.2 for access rights.

0 P: Present Must be 1 to map a 4-KByte page.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-25

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

9.8 Second-Level Paging Entries
The following figure and table describe the page-table entry.

Figure 9-41. Format for Second-Level Paging Entries

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

HAW HAW
-1

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

I
g
n

R
s
v
d

Ignored Rsvd. Address of Second-level-page-directory-pointer table

R
s
v
d

Ign

R
s
v
d

Ign X1

1. X field is ignored by hardware if Execute Request Support (ERS) is reported as Clear in the Extended Capability Register or if
SLEE=0 in the extended-context-entry referencing the second-level paging entries.

W R SL-PML4E

I
g
n

T
M Ignored Rsvd.

Address of
1GB page

frame
Reserved

S
N
P

Ign 1

I3
P
A
T

EMT2

2. EMT and IPAT fields are ignored by hardware if Memory Type Support (MTS) is reported as Clear in the Extended Capability
Register or if EMTE=0 in the extended-context-entry referencing the second-level paging entries.

X W R
SL-PDPE:

1GB
page3

3. 1-GByte page and 2-MByte page support is reported through Second-level Large Page Support (SLLPS) in the Capability
Register.

I
g
n

R
s
v
d

Ignored Rsvd. Address of second-level-page-directory table

R
s
v
d

Ign 0 Ign X W R
SL-PDPE:

page
directory

I
g
n

T
M Ignored Rsvd. Address of

2MB page frame Reserved
S
N
P

Ign. 1

I
P
A
T

EMT X W R
SL-PDE:

2MB
page5

I
g
n

R
s
v
d

Ignored Rsvd. Address of second-level-page table

R
s
v
d

Ign 0 Ign X W R
SL-PDE:

page
table

I
g
n

T
M Ignored Rsvd. Address of 4KB page frame

S
N
P

Ign

I
P
A
T

EMT X W R
SL-PTE:

4KB
page

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-26 Order Number: D51397-006

Table 24. Format of SL-PML4E referencing a Second-Level-Page-Directory-
Pointer Table

Bits Field Description

63 IGN: Ignored Ignored by hardware.

62 R: Reserved Reserved (0).

61:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address Host physical address of 4-KByte aligned second-level-page-directory-
pointer table referenced by this entry.

11 R: Reserved Reserved (0).

10:8 IGN: Ignored Ignored by hardware.

7 R: Reserved Reserved (0).

6:3 IGN: Ignored Ignored by hardware.

2 X: Execute
If SLEE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 512-GByte region referenced by this
entry, when X=0.

1 W: Write If 0, write permission not granted for requests to the 512-GByte region
controlled by this entry.

0 R: Read

If 0, read permission not granted for requests to the 512-GByte region
controlled by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in
the Capability Register, read permission is not applicable to zero-length
read requests if Execute (X) or Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-27

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Table 25. Format of SL-PDPE that maps a 1-GByte Page

Bits Field Description

63 IGN: Ignored Ignored by hardware.

62 TM: Transient
Mapping

This field is treated as reserved(0) by hardware implementations not
supporting Device-TLBs (DT=0 in Extended Capability Register).
Translation requests processed through this entry returns this field as
the U-field (Untranslated access only) in the Translation-Completion
Data in the response.

61:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):30 ADDR: Address Host physical address of 1-GByte page referenced by this entry.

29:12 R: Reserved Reserved (0).

11 SNP: Snoop

This field is treated as reserved(0) by hardware implementations not
supporting Snoop Control (SC=0 in Extended Capability Register).
If 1, Untranslated requests-without-PASID processed through this
entry always snoop processor caches irrespective of attributes (such as
Non-Snoop (NS) attribute) in the request.
Translation requests-without-PASID processed through this entry
returns this field as the ‘N’ (Non-snooped accesses) field in Translation-
Completion Data in the response.
This field is ignored for requests-with-PASID. Untranslated requests-
with-PASID always snoop processor caches. Translation requests-with-
PASID always return N=1 (i.e., Non-snooped accesses not allowed) in
the Translation-completion Data in the response.

10:8 IGN: Ignored Ignored by hardware.

7 PS: Page Size Must be 1 (Otherwise this entry references a second-level-page-
directory. Refer to Table 26).

6 IPAT: Ignore PAT

This field is ignored by hardware when Extended Memory Type Enable
(EMTE) field is Clear in the relevant extended-context-entry.
This field is applicable only for nested translation of requests-with-
PASID from devices operating in the processor coherency domain.
• 0: Page Attribute Table (PAT) in extended-context-entry is used for

effective memory-type determination
• 1: Page Attribute Table (PAT) in extended-context-entry is not

used for effective memory-type determination.
Refer to Section 3.8.4 for memory type handling.

5:3 EMT: Extended
Memory Type

This field is ignored by hardware when Extended Memory Type Enable
(EMTE) field is Clear in the relevant extended-context-entry.
This field is applicable only for nested translation of requests-with-
PASID from devices operating in the processor coherency domain.
The encodings defined for this field are 0h for Uncacheable (UC), 1h for
Write Combining (WC), 4h for Write Through (WT), 5h for Write
Protected (WP), and 6h for Write Back (WB). All other values are
Reserved.
Refer to Section 3.8.4 for memory type handling.

2 X: Execute
If SLEE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 1-GByte page referenced by this
entry, when X=0.

1 W: Write If 0, write permission not granted for requests to the 1-GByte page
referenced by this entry.

0 R: Read

If 0, read permission not granted for requests to the 1-GByte page
referenced by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in
the Capability Register, read permission is not applicable to zero-length
read requests if Execute (X) or Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-28 Order Number: D51397-006

Table 26. Format of SL-PDPE that references a Second-Level-Page-Directory

Bits Field Description

63 IGN: Ignored Ignored by hardware.

62 R: Reserved Reserved (0).

61:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address Host physical address of 4-KByte aligned second-level-page-directory
referenced by this entry.

11 R: Reserved Reserved (0).

10:8 IGN: Ignored Ignored by hardware.

7 PS: Page Size Must be 0 (Otherwise this entry references a 1-GByte page. Refer to
Table 25).

6:3 IGN: Ignored Ignored by hardware.

2 X: Execute
If SLEE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 1-GByte region referenced by this
entry, when X=0.

1 W: Write If 0, write permission not granted for requests to the 1-GByte region
controlled by this entry.

0 R: Read

If 0, read permission not granted for requests to the 1-GByte region
controlled by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in
the Capability Register, read permission is not applicable to zero-length
read requests if Execute (X) or Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-29

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Table 27. Format of SL-PDE that maps to a 2-MByte Page

Bits Field Description

63 IGN: Ignored Ignored by hardware.

62 TM: Transient
Mapping

This field is treated as reserved(0) by hardware implementations not
supporting Device-TLBs (DT=0 in Extended Capability Register).
Translation requests processed through this entry returns this field as
the U-field (Untranslated access only) in the Translation-Completion
Data in the response.

61:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):21 ADDR: Address Host physical address of 2-MByte page referenced by this entry.

20:12 R: Reserved Reserved (0).

11 SNP: Snoop

This field is treated as reserved(0) by hardware implementations not
supporting Snoop Control (SC=0 in Extended Capability Register).
If 1, Untranslated requests-without-PASID processed through this
entry always snoop processor caches irrespective of attributes (such as
Non-Snoop (NS) attribute) in the request.
Translation requests-without-PASID processed through this entry
returns this field as the ‘N’ (Non-snooped accesses) field in Translation-
Completion Data in the response.
This field is ignored for requests-with-PASID. Untranslated requests-
with-PASID always snoop processor caches. Translation requests-with-
PASID always return N=1 (i.e., Non-snooped accesses not allowed) in
the Translation-Completion Data in the response.

10:8 IGN: Ignored Ignored by hardware.

7 PS: Page Size Must be 1 (Otherwise this entry references a second-level-page table.
Refer to Table 28).

6 IPAT: Ignore PAT

This field is ignored by hardware when Extended Memory Type Enable
(EMTE) field is Clear in the relevant extended-context-entry.
This field is applicable only for nested translation of requests-with-
PASID from devices operating in the processor coherency domain.
• 0: Page Attribute Table (PAT) in extended-context-entry is used for

effective memory-type determination
• 1: Page Attribute Table (PAT) in extended-context-entry is not

used for effective memory-type determination.
Refer to Section 3.8.4 for memory type handling.

5:3 EMT: Extended
Memory Type

This field is ignored by hardware when Extended Memory Type Enable
(EMTE) field is Clear in the relevant extended-context-entry.
This field is applicable only for nested translation of requests-with-
PASID from devices operating in the processor coherency domain.
The encodings defined for this field are 0h for Uncacheable (UC), 1h for
Write Combining (WC), 4h for Write Through (WT), 5h for Write
Protected (WP), and 6h for Write Back (WB). All other values are
Reserved.
Refer to Section 3.8.4 for memory type handling.

2 X: Execute
If SLEE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 2-MByte page referenced by this
entry, when X=0.

1 W: Write If 0, write permission not granted for requests to the 2-MByte page
referenced by this entry.

0 R: Read

If 0, read permission not granted for requests to the 2-MByte page
referenced by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in
the Capability Register, read permission is not applicable to zero-length
read requests if Execute (X) or Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-30 Order Number: D51397-006

Table 28. Format of SL-PDE that references a Second-Level-Page Table

Bits Field Description

63 IGN: Ignored Ignored by hardware.

62 R: Reserved Reserved (0).

61:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address Host physical address of 4-KByte aligned second-level-page-table
referenced by this entry.

11 R: Reserved Reserved (0).

10:8 IGN: Ignored Ignored by hardware.

7 PS: Page Size Must be 0 (Otherwise this entry references a 2-MByte page. Refer to
Table 27).

6:3 IGN: Ignored Ignored by hardware.

2 X: Execute
If SLEE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 2-MByte region referenced by this
entry, when X=0.

1 W: Write If 0, write permission not granted for requests to the 2-MByte region
controlled by this entry.

0 R: Read

If 0, read permission not granted for requests to the 2-MByte region
controlled by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in
the Capability Register, read permission is not applicable to zero-length
read requests if Execute (X) or Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-31

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Table 29. Format of SL-PTE that maps 4-KByte Page

Bits Field Description

63 IGN: Ignored Ignored by hardware.

62 TM: Transient
Mapping

This field is treated as reserved(0) by hardware implementations not
supporting Device-TLBs (DT=0 in Extended Capability Register).
Translation requests processed through this entry returns this field as
the U-field (Untranslated access only) in the Translation-Completion
Data in the response.

61:52 IGN: Ignored Ignored by hardware.

51:HAW R: Reserved Reserved (0).

(HAW-1):12 ADDR: Address Host physical address of 4-KByte page referenced by this entry.

11 SNP: Snoop

This field is treated as reserved(0) by hardware implementations not
supporting Snoop Control (SC=0 in Extended Capability Register).
If 1, Untranslated requests-without-PASID processed through this
entry always snoop processor caches irrespective of attributes (such as
Non-Snoop (NS) attribute) in the request.
Translation requests-without-PASID processed through this entry
returns this field as the ‘N’ (Non-snooped accesses) field in Translation-
Completion Data in the response.
This field is ignored for requests-with-PASID. Untranslated requests-
with-PASID always snoop processor caches. Translation requests-with-
PASID always return N=1 (i.e., Non-snooped accesses not allowed) in
the Translation-Completion Data in the response.

10:7 IGN: Ignored Ignored by hardware.

6 IPAT: Ignore PAT

This field is ignored by hardware when Extended Memory Type Enable
(EMTE) field is Clear in the relevant extended-context-entry.
This field is applicable only for nested translation of requests-with-
PASID from devices operating in the processor coherency domain.
• 0: Page Attribute Table (PAT) in extended-context-entry is used for

effective memory-type determination
• 1: Page Attribute Table (PAT) in extended-context-entry is not

used for effective memory-type determination.
Refer to Section 3.8.4 for memory type handling.

5:3 EMT: Extended
Memory Type

This field is ignored by hardware when Extended Memory Type Enable
(EMTE) field is Clear in the relevant extended-context-entry.
This field is applicable only for nested translation of requests-with-
PASID from devices operating in the processor coherency domain.
The encodings defined for this field are 0h for Uncacheable (UC), 1h for
Write Combining (WC), 4h for Write Through (WT), 5h for Write
Protected (WP), and 6h for Write Back (WB). All other values are
Reserved.
Refer to Section 3.8.4 for memory type handling.

2 X: Execute
If SLEE=1 in the relevant extended-context-entry, execute permission
is not granted for requests to the 4-KByte page referenced by this
entry, when X=0.

1 W: Write If 0, write permission not granted for requests to the 4-KByte page
referenced by this entry.

0 R: Read

If 0, read permission not granted for requests to the 4-KByte page
referenced by this entry.
For implementations reporting Zero-Length-Read (ZLR) field as Set in
the Capability Register, read permission is not applicable to zero-length
read requests if Execute (X) or Write (W) permission fields are 1.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-32 Order Number: D51397-006

9.9 Fault Record
The following figure and table describe the fault record format for advanced fault logging.

Figure 9-42. Fault-Record Format

0
6
3

1
2

1
1

FI
Rsvd (0)

2
7

9
4

PRIV

6
4

1
9
3

EXE

Rsvd (0)

7
9

8
0

SID

9
2

PP

FR

PV

AT

T

Rsvd(0)

9
50

3

1
9
60

4

1
2

3

1
2

4

1
2

5

1
2

6

1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-33

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

127 R: Reserved Reserved (0).

126 T: Type

Memory access type of faulted request. This field is valid only
when the Fault Reason (FR) indicates one of the non-recoverable
address translation fault conditions.
• 0: Write request
• 1: Read request or AtomicOp request

This field is valid only when Fault Reason (FR) indicates one of
the non-recoverable address translation fault conditions.

 125:124 AT: Address Type

Address Type (AT) field in the faulted DMA request.
This field is valid only when Fault Reason (FR) indicates one of
the non-recoverable address translation fault conditions.
Hardware implementations not suporting Device-TLBs (DT=0 in
Extended Capability Register) treat this field as Reserved (0).

123:104 PV: PASID Value

PASID Value in the faulted request.
This field is relevant only when the PASID Present (PP) field is
Set.
Hardware implementations not suporting PASID (PASID=0 in
Extended Capability Register) treat this field as Reserved (0).

103:96 FR: Fault Reason Reason for the non-recoverable fault.

95 PP: PASID Present

When Set, indicates faulted request has a PASID. The value of
the PASID is reported in the PASID Value (PV) field.
This field is relevant only when Fault Reason (FR) indicates one of
the non-recoverable address translation fault conditions.
Hardware implementations not suporting PASID (PASID=0 in
Extended Capability Register) treat this field as Reserved (0).

94 EXE: Execute
Permission Requested

When Set, indicates Execute permission was requested by the
faulted read request.
This field is relevant only when the PASID Present (PP) and Type
(T) fields are both Set.
Hardware implementations not suporting PASID (PASID=0 in
Extended Capability Register) treat this field as Reserved (0).

93 PRIV: Privilege Mode
Requested

When Set, indicates Supervisory privilege was requested by the
faulted request.
This field is relevant only when the PASID Present (PP) field is
Set.
Hardware implementations not suporting PASID (PASID=0 in
Extended Capability Register) treat this field as Reserved (0).

92:80 R: Reserved Reserved (0).

79:64 SID: Source Identifier Requester-id associated with the fault condition.

 63:12 FI: Fault Information

When the Fault Reason (FR) field indicates one of the non-
recoverable address translation fault conditions, bits 63:12 of this
field contains the page address in the faulted DMA request.
When the Fault Reason (FR) field indicates one of the interrupt-
remapping fault conditions, bits 63:48 of this field contains the
interrupt_index computed for the faulted interrupt request, and
bits 48:12 are cleared.

11:0 R: Reserved Reserved (0).

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-34 Order Number: D51397-006

9.10 Interrupt Remapping Table Entry (IRTE)
The following figure and table describe the interrupt remapping table entry.

Figure 9-43. Interrupt Remapping Table Entry Format

2
7

Redirection Hint

6
4

1

01 23

FPD
Destination Mode

AVAIL

P

Vector

4
3
1

3
2

Delivery Mode

6
3

Trigger Mode

578
1
1

Reserved (0)

SID

SVT
Reserved (0)

SQ

1
6

1
5

2
3

Destination ID

7
9

8
0

8
1

8
2

8
3

8
4

2
4

1
2

Reserved (0)

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-35

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

Bits Field Description

 127:84 R: Reserved Reserved. Software must program these bits to 0. This field is evaluated
by hardware only when the Present (P) field is Set.

 83:82
SVT: Source
Validation
Type

This field specifies the type of validation that must be performed by the
interrupt-remapping hardware on the source-id of the interrupt requests
referencing this IRTE.
• 00b: No requester-id verification is required.
• 01b: Verify requester-id in interrupt request using SID and SQ fields

in the IRTE.
• 10b: Verify the most significant 8-bits of the requester-id (Bus#) in

the interrupt request is equal to or within the Startbus# and
EndBus# specified through the upper and lower 8-bits of the SID
field respectively. This encoding may be used to verify interrupts
originated behind PCI-Express-to-PCI/PCI-X bridges. Refer
Section 5.2 for more details.

• 11b: Reserved.
This field is evaluated by hardware only when the Present (P) field is
Set.

 81:80 SQ: Source-id
Qualifier

The SVT field may be used to verify origination of interrupt requests
generated by devices supporting phantom functions. If the SVT field is
01b, the following encodings are defined for the SQ field.
• 00b: Verify the interrupt request by comparing all 16-bits of SID

field with the 16-bit requester-id of the interrupt request.
• 01b: Verify the interrupt request by comparing most significant 13

bits of the SID and requester-id of interrupt request, and comparing
least significant two bits of the SID field and requester-id of
interrupt request. (i.e., ignore the third least significant field of the
SID field and requestor-id).

• 10b: Verify the interrupt request by comparing most significant 13
bits of the SID and requester-id of interrupt request, and comparing
least significant bit of the SID field and requester-id of interrupt
request. (i.e., ignore the second and third least significant fields of
the SID field and requestor-id).

• 11b: Verify the interrupt request by comparing most significant 13
bits of the SID and requester-id of interrupt request. (i.e., ignore
the least three significant fields of the SID field and requestor-id).

This field is evaluated by hardware only when the Present (P) field is Set
and SVT field is 01b.

 79:64 SID: Source
Identifier

This field specifies the originator (source) of the interrupt request that
references this IRTE. The format of the SID field is determined by the
programming of the SVT field.
If the SVT field is:
• 01b: The SID field contains the 16-bit requestor-id (Bus/Dev/Func

#) of the device that is allowed to originate interrupt requests
referencing this IRTE. The SQ field is used by hardware to
determine which bits of the SID field must be considered for the
interrupt request verification.

• 10b: The most significant 8-bits of the SID field contains the
startbus#, and the least significant 8-bits of the SID field contains
the endbus#. Interrupt requests that reference this IRTE must have
a requester-id whose bus# (most significant 8-bits of requester-id)
has a value equal to or within the startbus# to endbus# range.

This field is evaluated by hardware only when the Present (P) field is Set
and SVT field is 01b or 10b.

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-36 Order Number: D51397-006

 63:32 DST:
Destination ID

This field identifies the remapped interrupt request’s target
processor(s). It is evaluated by hardware only when the Present (P) field
is Set.

The format of this field in various processor and platform modes1 is as
follows:
• Intel® 64 xAPIC Mode (Cluster):

• 63:48 - Reserved (0)
• 47:44 - APIC DestinationID[7:4]
• 43:40 - APIC DestinationID[3:0]
• 39:32 - Reserved (0)

• Intel® 64 xAPIC Mode (Flat):
• 63:48 - Reserved (0)
• 47:40 - APIC DestinationID[7:0]
• 39:32 - Reserved (0)

• Intel® 64 xAPIC Mode (Physical):
• 63:48 - Reserved (0)
• 47:40 - APIC DestinationID[7:0]
• 39:32 - Reserved (0)

• Intel® 64 x2APIC Mode (Cluster):
• 63:32 - APIC DestinationID[31:0]

• Intel® 64 x2APIC Mode (Physical):
• 63:32 - APIC DestinationID[31:0]

• Itanium® Processor Family:
• 63:48 - Reserved (0)
• 47:40 - APIC DestinationID[15:8]
• 39:32 - APIC DestinationID[7:0] (EDID[7:0])

 31:24 R: Reserved Reserved. Software must program these bits to 0. This field is evaluated
by hardware only when the Present (P) field is Set.

 23:16 V: Vector
This 8-bit field contains the interrupt vector associated with the
remapped interrupt request. This field is evaluated by hardware only
when the Present (P) field is Set.

 15:12 R: Reserved Reserved. Software must program these bits to 0. This field is evaluated
by hardware only when the Present (P) field is Set.

11:8 AVAIL:
Available

This field is available to software. Hardware always ignores the
programming of this field.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 9-37

Translation Structure Formats—Intel® Virtualization Technology for Directed I/O

 7:5 DLM: Delivery
Mode

This 3-bit field specifies how the remapped interrupt is handled. Delivery
Modes operate only in conjunction with specified Trigger Modes (TM).
Correct Trigger Modes must be guaranteed by software. Restrictions are
indicated below:
• 000b (Fixed Mode) – Deliver the interrupt to all the agents indicated

by the Destination ID field. The Trigger Mode for fixed delivery
mode can be edge or level.

• 001b (Lowest Priority) – Deliver the interrupt to one (and only one)
of the agents indicated by the Destination ID field (the algorithm to
pick the target agent is component specific and could include
priority based algorithm). The Trigger Mode can be edge or level.

• 010b (System Management Interrupt or SMI): SMI is an edge
triggered interrupt regardless of the setting of the Trigger Mode
(TM) field. For systems that rely on SMI semantics, the vector field
is ignored, but must be programmed to all zeroes for future
compatibility. (Support for this delivery mode is implementation
specific. Platforms supporting interrupt remapping are expected to
generate SMI through dedicated pin or platform-specific special
messages)2

• 100b (NMI) – Deliver the signal to all the agents listed in the
destination field. The vector information is ignored. NMI is an edge
triggered interrupt regardless of the Trigger Mode (TM) setting.
(Platforms supporting interrupt remapping are recommended to
generate NMI through dedicated pin or platform-specific special
messages)2

• 101b (INIT) – Deliver this signal to all the agents indicated by the
Destination ID field. The vector information is ignored. INIT is an
edge triggered interrupt regardless of the Trigger Mode (TM)
setting. (Support for this delivery mode is implementation specific.
Platforms supporting interrupt remapping are expected to generate
INIT through dedicated pin or platform-specific special messages)2

• 111b (ExtINT) – Deliver the signal to the INTR signal of all agents
indicated by the Destination ID field (as an interrupt that originated
from an 8259A compatible interrupt controller). The vector is
supplied by the INTA cycle issued by the activation of the ExtINT.
ExtINT is an edge triggered interrupt regardless of the Trigger Mode
(TM) setting.

This field is evaluated by hardware only when the Present (P) field is
Set.

 4 TM: Trigger
Mode

This field indicates the signal type of the interrupt that uses the IRTE.
• 0: Indicates edge sensitive.
• 1: Indicates level sensitive.

This field is evaluated by hardware only when the Present (P) field is
Set.

 3
RH:
Redirection
Hint

This bit indicates whether the remapped interrupt request should be
directed to one among N processors specified in Destination ID field,
under hardware control.
• 0: When RH is 0, the remapped interrupt is directed to the

processor listed in the Destination ID field.
• 1: When RH is 1, the remapped interrupt is directed to 1 of N

processors specified in the Destination ID field.
This field is evaluated by hardware only when the present (P) field is
Set.

 2
DM:
Destination
Mode

This field indicates whether the Destination ID field in an IRTE should be
interpreted as logical or physical APIC ID.
• 0: Physical
• 1: Logical

This field is evaluated by hardware only when the present (P) field is
Set.

Bits Field Description

Intel® Virtualization Technology for Directed I/O—Translation Structure Formats

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
9-38 Order Number: D51397-006

 1
FPD: Fault
Processing
Disable

Enables or disables recording/reporting of faults caused by interrupt
messages requests processed through this entry.
• 0: Indicates fault recording/reporting is enabled for interrupt

requests processed through this entry.
• 1: Indicates fault recording/reporting is disabled for interrupt

requests processed through this entry.
This field is evaluated by hardware irrespective of the setting of the
Present (P) field.

 0 P: Present

The P field is used by software to indicate to hardware if the
corresponding IRTE is present and initialized.
• 0: Indicates the IRTE is not currently allocated to any interrupt

sources. Block interrupt requests referencing this IRTE.
• 1: Process interrupt requests referencing this IRTE per the

programming of other fields in this IRTE.

1. The various processor and platform interrupt modes (like Intel® 64 xAPIC mode, Intel® 64 x2APIC mode
and Itanium® processor mode) are determined by platform/processor specific mechanisms and are
outside the scope of this specification.

2. Refer Section 5.7 for hardware considerations for handling platform events.

Bits Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-1

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10 Register Descriptions

This chapter describes the structure and use of the remapping registers.

10.1 Register Location
The register set for each remapping hardware unit in the platform is placed at a 4KB-aligned memory-
mapped location. The exact location of the register region is implementation-dependent, and is
communicated to system software by BIOS through the ACPI DMA-remapping hardware reporting
structures (described in Chapter 8). For security, hardware implementations that support relocating
these registers in the system address map must provide ability to lock its location by hardware
specific secure initialization software.

10.2 Software Access to Registers
Software interacts with the remapping hardware by reading and writing its memory-mapped
registers. The following requirements are defined for software access to these registers.

• Software is expected to access 32-bit registers as aligned doublewords. For example, to modify a
field (e.g., bit or byte) in a 32-bit register, the entire doubleword is read, the appropriate field(s)
are modified, and the entire doubleword is written back.

• Software must access 64-bit and 128-bit registers as either aligned quadwords or aligned
doublewords. Hardware may disassemble a quadword register access as two double-word
accesses. In such cases, hardware is required to complete the quad-word read or write request in
a single clock in order (lower doubleword first, upper double-word second).

• When updating registers through multiple accesses (whether in software or due to hardware
disassembly), certain registers may have specific requirements on how the accesses must be
ordered for proper behavior. These are documented as part of the respective register descriptions.

• For compatibility with future extensions or enhancements, software must assign the last read
value to all “Reserved and Preserved” (RsvdP) fields when written. In other words, any updates to
a register must be read so that the appropriate merge between the RsvdP and updated fields will
occur. Also, software must assign a value of zero for “Reserved and Zero” (RsvdZ) fields when
written.

• Locked operations to remapping hardware registers are not supported. Software must not issue
locked operations to access remapping hardware registers.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-2 Order Number: D51397-006

10.3 Register Attributes
The following table defines the attributes used in the remapping Registers. The registers are
discussed in Section 10.4.

Attribute Description

RW Read-Write field that may be either set or cleared by software to the desired state.

RW1C
“Read-only status, Write-1-to-clear status” field. A read of the field indicates status. A
set bit indicating a status may be cleared by writing a 1. Writing a 0 to an RW1C field
has no effect.

RW1CS

“Sticky Read-only status, Write-1-to-clear status” field. A read of the field indicates
status. A set bit indicating a status may be cleared by writing a 1. Writing a 0 to an
RW1CS field has no effect. Not initialized or modified by hardware except on
powergood reset.

RO Read-only field that cannot be directly altered by software.

ROS “Sticky Read-only” field that cannot be directly altered by software, and is not
initialized or modified by hardware except on powergood reset.

WO Write-only field. The value returned by hardware on read is undefined.

RsvdP
“Reserved and Preserved” field that is reserved for future RW implementations.
Registers are read-only and must return 0 when read. Software must preserve the
value read for writes.

RsvdZ “Reserved and Zero” field that is reserved for future RW1C implementations. Registers
are read-only and must return 0 when read. Software must use 0 for writes.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-3

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4 Register Descriptions
The following table summarizes the remapping hardware memory-mapped registers.

Offset Register Name Size Description

000h Version Register 32 Architecture version supported by the
implementation.

004h Reserved 32 Reserved

008h Capability Register 64 Hardware reporting of capabilities.

010h Extended Capability Register 64 Hardware reporting of extended capabilities.

018h Global Command Register 32 Register controlling general functions.

01Ch Global Status Register 32 Register reporting general status.

020h Root Table Address Register 64 Register to set up location of root table.

028h Context Command Register 64 Register to manage context-entry cache.

030h Reserved 32 Reserved

 034h Fault Status Register 32 Register to report Fault/Error status

038h Fault Event Control Register 32 Interrupt control register for fault events.

03Ch Fault Event Data Register 32 Interrupt message data register for fault
events.

040h Fault Event Address Register 32 Interrupt message address register for fault
event messages.

044h
Fault Event Upper Address
Register

32 Interrupt message upper address register for
fault event messages.

048h Reserved 64 Reserved

050h Reserved 64 Reserved

058h
Advanced Fault Log
Register

64 Register to configure and manage advanced
fault logging.

060h Reserved 32 Reserved

064h Protected Memory Enable Register 32 Register to enable DMA-protected memory
region(s).

068h Protected Low Memory Base
Register 32 Register pointing to base of DMA-protected low

memory region.

06Ch Protected Low Memory Limit
Register 32 Register pointing to last address (limit) of the

DMA-protected low memory region.

070h Protected High Memory Base
Register 64 Register pointing to base of DMA-protected high

memory region.

078h Protected High Memory Limit
Register 64 Register pointing to last address (limit) of the

DMA-protected high memory region.

080h Invalidation Queue Head 64 Offset to the invalidation queue entry that will
be read next by hardware.

088h Invalidation Queue Tail 64 Offset to the invalidation queue entry that will
be written next by software.

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-4 Order Number: D51397-006

090h Invalidation Queue Address
Register 64 Base address of memory-resident invalidation

queue.

098h Reserved 32 Reserved

09Ch Invalidation Completion Status
Register 32 Register to indicate the completion of an

Invalidation Wait Descriptor with IF=1.

0A0h Invalidation Completion Event
Control Register 32 Register to control Invalidation Queue Events

0A4h Invalidation Completion Event Data
Register 32 Invalidation Queue Event message data register

for Invalidation Queue events.

0A8h Invalidation Completion Event
Address Register 32 Invalidation Queue Event message address

register for Invalidation Queue events.

0ACh Invalidation Completion Event
Upper Address Register 32 Invalidation Queue Event message upper

address register for Invalidation Queue events.

0B0h Reserved 64 Reserved.

0B8h Interrupt Remapping Table Address
Register 64 Register indicating Base Address of Interrupt

Remapping Table.

0C0h Page Request Queue Head Register 64 Offset to the page request queue entry that will
be processed next by software.

0C8h Page Request Queue Tail Register 64 Offset to the page request queue entry that will
be written next by hardware.

0D0h Page Request Queue Address
Register 64 Base address of memory-resident page request

queue.

0D8h Reserved 32 Reserved

0DCh Page Request Status Register 32 Register to indicate one or more pending page
requests in page request queue.

0E0h Page Request Event Control
Register 32 Register to control page request events.

0E4h Page Request Event Data Register 32 Page request event message data register.

0E8h Page Request Event Address
Register 32 Page request event message address register

0ECh Page Request Event Upper Address
Register 32 Page request event message upper address

register.

100h MTRR Capability Register 64 Register for MTRR capability reporting.

108h MTRR Default Type Register 64 Register to configure MTRR default type.

120h Fixed-range MTRR Register for
64K_00000 64 Fixed-range memory type range register for

64K range starting at 00000h.

128h Fixed-range MTRR Register for
16K_80000 64 Fixed-range memory type range register for

16K range starting at 80000h.

130h Fixed-range MTRR Register for
16K_A0000 64 Fixed-range memory type range register for

16K range starting at A0000h.

138h Fixed-range MTRR Register for
4K_C0000 64 Fixed-range memory type range register for 4K

range starting at C0000h.

140h Fixed-range MTRR Register for
4K_C8000 64 Fixed-range memory type range register for 4K

range starting at C8000h.

Offset Register Name Size Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-5

Register Descriptions—Intel® Virtualization Technology for Directed I/O

148h Fixed-range MTRR Register for
4K_D0000 64 Fixed-range memory type range register for 4K

range starting at D0000h.

150h Fixed-range MTRR Register for
4K_D8000 64 Fixed-range memory type range register for 4K

range starting at D8000h.

158h Fixed-range MTRR Register for
4K_E0000 64 Fixed-range memory type range register for 4K

range starting at E0000h.

160h Fixed-range MTRR Register for
4K_E8000 64 Fixed-range memory type range register for 4K

range starting at E8000h.

168h Fixed-range MTRR Register for
4K_F0000 64 Fixed-range memory type range register for 4K

range starting at F0000h.

170h Fixed-range MTRR Register for
4K_F8000 64 Fixed-range memory type range register for 4K

range starting at F8000h.

180h Variable-range MTRR Base0 64 Variable-range memory type range0 base
register.

188h Variable-range MTRR Mask0 64 Variable-range memory type range0 mask
register.

190h Variable-range MTRR Base1 64 Variable-range memory type range1 base
register.

198h Variable-range MTRR Mask1 64 Variable-range memory type range1 mask
register.

1A0h Variable-range MTRR Base2 64 Variable-range memory type range2 base
register.

1A8h Variable-range MTRR Mask2 64 Variable-range memory type range2 mask
register.

1B0h Variable-range MTRR Base3 64 Variable-range memory type range3 base
register.

1B8h Variable-range MTRR Mask3 64 Variable-range memory type range3 mask
register.

1C0h Variable-range MTRR Base4 64 Variable-range memory type range4 base
register.

1C8h Variable-range MTRR Mask4 64 Variable-range memory type range4 mask
register.

1D0h Variable-range MTRR Base5 64 Variable-range memory type range5 base
register.

1D8h Variable-range MTRR Mask5 64 Variable-range memory type range5 mask
register.

1E0h Variable-range MTRR Base6 64 Variable-range memory type range6 base
register.

1E8h Variable-range MTRR Mask6 64 Variable-range memory type range6 mask
register.

1F0h Variable-range MTRR Base7 64 Variable-range memory type range7 base
register.

1F8h Variable-range MTRR Mask7 64 Variable-range memory type range7 mask
register.

200h Variable-range MTRR Base8 64 Variable-range memory type range8 base
register.

Offset Register Name Size Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-6 Order Number: D51397-006

208h Variable-range MTRR Mask8 64 Variable-range memory type range8 mask
register.

210h Variable-range MTRR Base9 64 Variable-range memory type range9 base
register.

218h Variable-range MTRR Mask9 64 Variable-range memory type range9 mask
register.

XXXh IOTLB Registers1 64
IOTLB registers consists of two 64-bit registers.
Section 10.4.8 describes the format of the
registers.

YYYh Fault Recording Registers [n]1 128
Registers to record the translation faults. The
starting offset of the fault recording registers is
reported through the Capability Register.

1. Hardware implementations may place IOTLB registers and fault recording registers in any unused or
reserved addresses in the 4KB register space, or place them in adjoined 4KB regions. If one or more
adjunct 4KB regions are used, unused addresses in those pages must be treated as reserved by hardware.
Location of these registers is implementation dependent, and software must read the Capability Register
to determine their offset location.

Offset Register Name Size Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-7

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.1 Version Register

Figure 10-44. Version Register

Abbreviation VER_REG

General
Description

Register to report the architecture version supported. Backward compatibility for
the architecture is maintained with new revision numbers, allowing software to load
remapping hardware drivers written for prior architecture versions.

Register Offset 000h

Bits Access Default Field Description

31:8 RsvdZ 0h R: Reserved Reserved.

7:4 RO 1h MAX: Major Version
number Indicates supported architecture version.

3:0 RO 0h MIN: Minor Version
number

Indicates supported architecture minor
version.

M inM a xR svd

1 8 7 4 3 0
3

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-8 Order Number: D51397-006

10.4.2 Capability Register

Figure 10-45. Capability Register

Abbreviation CAP_REG

General
Description Register to report general remapping hardware capabilities

Register Offset 008h

Bits Access Default Field Description

63:57 RsvdZ 0h R: Reserved Reserved.

56 RO X
FL1GP: First Level
1-GByte Page
Support

A value of 1 in this field indicates 1-GByte page
size is supported for first-level translation.

55 RO X DRD: Read Draining

• 0: Hardware does not support draining of
read requests.

• 1: Hardware supports draining of read
requests.

Refer Section 6.5.5 for description of read
draining.
Hardware implementations reporting support for
process-address-spaces (PASID=1 in Extended
Capability Register) must report this field as 1.

54 RO X DWD: Write Draining

• 0: Hardware does not support draining of
write requests.

• 1: Hardware supports draining of write
requests.

Refer Section 6.5.5 for description of DMA write
draining.
Hardware implementations reporting support for
process-address-spaces (PASID=1 in Extended
Capability Register) must report this field as 1.

R
W
B
F

A
F
L

P
M
H
R

P
M
L
R

ND

S
A
G
A
W

C
M

R
S
V
D

M
G
A
W

R
S
V
D

Z
L
R

F
R
O

S
L
L
P
S

R
S
V
D

P
S
I

N
F
R

M
A
M
V

D
R
D

D
W
D

F
L
1
G
P

R
S
V
D

02345678
1
2

1
3

1
5

1
6

2
1

2
2

2
3

2
4

3
3

3
4

3
7

3
8

3
9

4
0

4
7

4
8

5
3

5
4

5
5

5
6

5
7

6
3

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-9

Register Descriptions—Intel® Virtualization Technology for Directed I/O

53:48 RO X MAMV: Maximum
Address Mask Value

The value in this field indicates the maximum
supported value for the Address Mask (AM) field
in the Invalidation Address register (IVA_REG),
and IOTLB Invalidation Descriptor
(iotlb_inv_dsc) used for invalidations of second-
level translation.

This field is valid when the PSI field in Capability
register is reported as Set.

Independent of value reported in this field,
implementations supporting PASID must
support address-selective extended IOTLB
invalidations (ext_iotlb_inv_dsc) with any
defined address mask.

47:40 RO X
NFR: Number of
Fault- recording
Registers

Number of fault recording registers is computed
as N+1, where N is the value reported in this
field.

Implementations must support at least one fault
recording register (NFR = 0) for each remapping
hardware unit in the platform.

The maximum number of fault recording
registers per remapping hardware unit is 256.

39 RO X PSI: Page Selective
Invalidation

• 0: Hardware supports only global and
domain-selective invalidates for IOTLB.

• 1: Hardware supports page-selective,
domain-selective, and global invalidates for
IOTLB.

Hardware implementations reporting this field
as Set are recommended to support a Maximum
Address Mask Value (MAMV) value of at least 9
(or 18 if supporting 1GB pages with second level
translation).

This field is applicable only for IOTLB
invalidations for second-level translation.
Irrespective of value reported in this field,
implementations supporting PASID must
support page/address selective IOTLB
invalidation for first-level translation.

38 RsvdZ 0h R: Reserved Reserved.

37:34 RO X SLLPS: Second Level
Large Page Support

This field indicates the large page sizes
supported by hardware.

A value of 1 in any of these bits indicates the
corresponding large-page size is supported. The
large-page sizes corresponding to various bit
positions within this field are:
• 0: 21-bit offset to page frame (2MB)
• 1: 30-bit offset to page frame (1GB)
• 2: Reserved
• 3: Reserved

Hardware implementations supporting a specific
large-page size must support all smaller large-
page sizes. i.e., only valid values for this field
are 0000b, 0001b, 0011b.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-10 Order Number: D51397-006

33:24 RO X FRO: Fault-recording
Register offset

This field specifies the offset of the first fault
recording register relative to the register base
address of this remapping hardware unit.

If the register base address is X, and the value
reported in this field is Y, the address for the
first fault recording register is calculated as
X+(16*Y).

23 R0 X R: Reserved Reserved.

22 RO X ZLR: Zero Length
Read

• 0: Indicates the remapping hardware unit
blocks (and treats as fault) zero length DMA
read requests to write-only pages.

• 1: Indicates the remapping hardware unit
supports zero length DMA read requests to
write-only pages.

DMA remapping hardware implementations are
recommended to report ZLR field as Set.

21:16 RO X MGAW: Maximum
Guest Address Width

This field indicates the maximum DMA virtual
addressability supported by remapping
hardware. The Maximum Guest Address Width
(MGAW) is computed as (N+1), where N is the
valued reported in this field. For example, a
hardware implementation supporting 48-bit
MGAW reports a value of 47 (101111b) in this
field.

If the value in this field is X, untranslated and
translated DMA requests to addresses above
2(X+1)-1 are always blocked by hardware.
Device-TLB translation requests to address
above 2(X+1)-1 from allowed devices return a
null Translation-Completion Data with R=W=0.

Guest addressability for a given DMA request is
limited to the minimum of the value reported
through this field and the adjusted guest
address width of the corresponding page-table
structure. (Adjusted guest address widths
supported by hardware are reported through
the SAGAW field).

Implementations must support MGAW at least
equal to the physical addressability (host
address width) of the platform.

15:13 RsvdZ 0h R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-11

Register Descriptions—Intel® Virtualization Technology for Directed I/O

12:8 RO X
SAGAW: Supported
Adjusted Guest
Address Widths

This 5-bit field indicates the supported adjusted
guest address widths (which in turn represents
the levels of page-table walks for the 4KB base
page size) supported by the hardware
implementation.

A value of 1 in any of these bits indicates the
corresponding adjusted guest address width is
supported. The adjusted guest address widths
corresponding to various bit positions within this
field are:
• 0: Reserved
• 1: 39-bit AGAW (3-level page-table)
• 2: 48-bit AGAW (4-level page-table)
• 3: Reserved
• 4: Reserved

Software must ensure that the adjusted guest
address width used to set up the page tables is
one of the supported guest address widths
reported in this field.

7 RO X CM: Caching Mode

• 0: Not-present and erroneous entries are
not cached in any of the remapping caches.
Invalidations are not required for
modifications to individual not present or
invalid entries. However, any modifications
that result in decreasing the effective
permissions or partial permission increases
require invalidations for them to be
effective.

• 1: Not-present and erroneous mappings
may be cached in the remapping caches.
Any software updates to the remapping
structures (including updates to “not-
present” or erroneous entries) require
explicit invalidation.

Hardware implementations of this architecture
must support a value of 0 in this field. Refer to
Section 6.1 for more details on Caching Mode.

6 RO X PHMR: Protected
High-Memory Region

• 0: Indicates protected high-memory region
is not supported.

• 1: Indicates protected high-memory region
is supported.

5 RO X
PLMR: Protected
Low-Memory
Region

• 0: Indicates protected low-memory region
is not supported.

• 1: Indicates protected low-memory region
is supported.

4 RO X RWBF: Required
Write-Buffer Flushing

• 0: Indicates no write-buffer flushing is
needed to ensure changes to memory-
resident structures are visible to hardware.

• 1: Indicates software must explicitly flush
the write buffers to ensure updates made to
memory-resident remapping structures are
visible to hardware. Refer to Section 6.8 for
more details on write buffer flushing
requirements.

3 RO X AFL: Advanced Fault
Logging

• 0: Indicates advanced fault logging is not
supported. Only primary fault logging is
supported.

• 1: Indicates advanced fault logging is
supported.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-12 Order Number: D51397-006

2:0 RO X ND: Number of
domains supported1

• 000b: Hardware supports 4-bit domain-ids
with support for up to 16 domains.

• 001b: Hardware supports 6-bit domain-ids
with support for up to 64 domains.

• 010b: Hardware supports 8-bit domain-ids
with support for up to 256 domains.

• 011b: Hardware supports 10-bit domain-ids
with support for up to 1024 domains.

• 100b: Hardware supports 12-bit domain-ids
with support for up to 4K domains.

• 101b: Hardware supports 14-bit domain-ids
with support for up to 16K domains.

• 110b: Hardware supports 16-bit domain-ids
with support for up to 64K domains.

• 111b: Reserved.

1. Each remapping unit in the platform should support as many number of domains as the maximum number
of independently DMA-remappable devices expected to be attached behind it.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-13

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.3 Extended Capability Register

Figure 10-46. Extended Capability Register

Abbreviation ECAP_REG

General
Description Register to report remapping hardware extended capabilities

Register Offset 010h

Bits Access Default Field Description

63:40 RsvdZ 0h R: Reserved Reserved.

39:35 RO X PSS: PASID Size
Supported

This field reports the PASID size supported
by the remapping hardware for requests-
with-PASID. A value of N in this field
indicates hardware supports PASID field of
N+1 bits (For example, value of 7 in this
field, indicates 8-bit PASIDs are supported).
Requests-with-PASID with PASID value
beyond the limit specified by this field are
treated as error by the remapping
hardware.
This field is valid only when PASID field is
reported as Set.

34 RO X EAFS: Extended Accessed
Flag Support

• 0: Hardware does not support the
extended-accessed (EA) bit in first-level
paging-structure entries.

• 1: Hardware supports the extended-
accessed (EA) bit in first-level paging-
structure entries.

This field is valid only when PASID field is
reported as Set.

33 RO X NWFS: No Write Flag
Support

• 0: Hardware ignores the ‘No Write’
(NW) flag in Device-TLB translation-
requests, and behaves as if NW is
always 0.

• 1: Hardware supports the ‘No Write’
(NW) flag in Device-TLB translation-
requests.

This field is valid only when Device-TLB
support (DT) field is reported as Set.

CI
R

D
T

E
I

M

012345

Q
I

R
S
V
D

P
T

67

S
C

I
R
O

8
1
7

R
S
V
D

1
8

1
9

M
H
M
V

2
0

2
3

E
C
S

D
I
S

N
W
F
S

M
T
S

P
A
S
I
D

S
R
S

E
R
S

P
R
S

P
O
T

N
E
S
T

E
A
F
S

R
S
V
D

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

6
3

P
S
S

4
0

3
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-14 Order Number: D51397-006

32 RO X POT: PASID-Only
Translations

• 0: Hardware does not support PASID-
only Translation-type in extended-
context-entries.

• 1: Hardware supports PASID-only
Translation-type in extended-context-
entries.

This field is valid only when PASID field is
reported as Set.

31 RO X SRS: Supervisor Request
Support

• 0: Hardware does not support requests-
with-PASID seeking supervisor
privilege.

• 1: Hardware supports requests-with-
PASID seeking supervisor privilege.

This field is valid only when PASID field is
reported as Set.

30 RO X ERS: Execute Request
Support

• 0: Hardware does not support requests-
with-PASID seeking execute permission.

• 1: Hardware supports requests-with-
PASID seeking execute permission.

This field is valid only when PASID field is
reported as Set.

29 RO X PRS: Page Request
Support

• 0: Hardware does not support page
requests.

• 1: Hardware supports page requests.
This field is valid only when Device-TLB (DT)
field is reported as Set.

28 RO X PASID: Process Address
Space ID Support

• 0: Hardware does not support requests
tagged with Process Address Space IDs.

• 1: Hardware supports requests tagged
with Process Address Space IDs.

27 RO X DIS: Deferred Invalidate
Support

• 0: Hardware does not support deferred
invalidations of IOTLB & Device-TLB.

• 1: Hardware supports deferred
invalidations of IOTLB & Device-TLB.

This field is valid only when PASID field is
reported as Set.

26 RO X NEST: Nested Translation
Support

• 0: Hardware does not support nested
translations.

• 1: Hardware supports nested
translations.

This field is valid only when PASID field is
reported as Set.

25 RO X MTS: Memory Type
Support

• 0: Hardware does not support Memory
Type in first-level translation and
Extended Memory type in second-level
translation.

• 1: Hardware supports Memory Type in
first-level translation and Extended
Memory type in second-level
translation.

This field is valid only when PASID and ECS
fields are reported as Set.
Remapping hardware units with, one or
more devices that operate in processor
coherency domain, under its scope must
report this field as Set.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-15

Register Descriptions—Intel® Virtualization Technology for Directed I/O

24 RO X ECS: Extended Context
Support

• 0: Hardware does not support
extended-root-entries and extended-
context-entries.

• 1: Hardware supports extended-root-
entries and extended-context-entries.

Implementations reporting PASID or PRS
fields as Set, must report this field as Set.

23:20 RO X MHMV: Maximum Handle
Mask Value

The value in this field indicates the
maximum supported value for the Interrupt
Mask (IM) field in the Interrupt Entry Cache
Invalidation Descriptor (iec_inv_dsc).
This field is valid only when the IR field in
Extended Capability register is reported as
Set.

19:18 RsvdZ 0h R: Reserved Reserved.

17:8 RO X IRO: IOTLB Register
Offset

This field specifies the offset to the IOTLB
registers relative to the register base
address of this remapping hardware unit.

If the register base address is X, and the
value reported in this field is Y, the address
for the IOTLB registers is calculated as
X+(16*Y).

7 R0 X SC: Snoop Control

• 0: Hardware does not support 1-setting
of the SNP field in the page-table
entries.

• 1: Hardware supports the 1-setting of
the SNP field in the page-table entries.

Implementations are recommended to
support Snoop Control to support software
usages that require Snoop Control for
assignment of devices behind a remapping
hardware unit.

6 R0 X PT: Pass Through

• 0: Hardware does not support pass-
through translation type in context-
entries and extended-context-entries.

• 1: Hardware supports pass-through
translation type in context and
extended-context-entries.

Pass-through translation is specified through
Translation-Type (T) field value of 10b in
context-entries, or T field value of 010b in
extended-context-entries.
Hardware implementation supporting PASID
must report a value of 1b in this field.

5 R0 X R: Reserved Reserved.

4 RO 0 EIM: Extended Interrupt
Mode

• 0: On Intel® 64 platforms, hardware
supports only 8-bit APIC-IDs (xAPIC
Mode).

• 1: On Intel® 64 platforms, hardware
supports 32-bit APIC-IDs (x2APIC
mode).

This field is valid only on Intel® 64 platforms
reporting Interrupt Remapping support (IR
field Set).
Itanium® platforms support 16-bit APIC-
IDs. This field has no meaning on such
platforms.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-16 Order Number: D51397-006

3 RO X IR: Interrupt Remapping
support

• 0: Hardware does not support interrupt
remapping.

• 1: Hardware supports interrupt
remapping.

Implementations reporting this field as Set
must also support Queued Invalidation (QI)

2 RO X DT: Device-TLB support

• 0: Hardware does not support Device-
TLBs.

• 1: Hardware supports Device-TLBs.
Implementations reporting this field as Set
must also support Queued Invalidation (QI)
Hardware implementations supporting I/O
Page Requests (PRS field Set in Extended
Capability register) must report a value of
1b in this field.

1 RO X QI: Queued Invalidation
support

• 0: Hardware does not support queued
invalidations.

• 1: Hardware supports queued
invalidations.

0 RO X C: Page-walk Coherency

This field indicates if hardware access to the
root, context, extended-context and
interrupt-remap tables, and second-level
paging structures for requests-without-
PASID, are coherent (snooped) or not.
• 0:Indicates hardware accesses to

remapping structures are non-coherent.
• 1:Indicates hardware accesses to

remapping structures are coherent.
Hardware access to advanced fault log,
invalidation queue, invalidation semaphore,
page-request queue, PASID-table, PASID-
state table, and first-level page-tables are
always coherent.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-17

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.4 Global Command Register

Figure 10-47. Global Command Register

Abbreviation GCMD_REG

General
Description

Register to control remapping hardware. If multiple control fields in this register
need to be modified, software must serialize the modifications through multiple
writes to this register.

Register Offset 018h

Bits Access Default Field Description

31 WO 0 TE: Translation
Enable

Software writes to this field to request hardware to
enable/disable DMA remapping:
• 0: Disable DMA remapping
• 1: Enable DMA remapping

Hardware reports the status of the translation
enable operation through the TES field in the Global
Status register.

There may be active DMA requests in the platform
when software updates this field. Hardware must
enable or disable remapping logic only at
deterministic transaction boundaries, so that any in-
flight transaction is either subject to remapping or
not at all.

Hardware implementations supporting DMA draining
must drain any in-flight DMA read/write requests
queued within the Root-Complex before completing
the translation enable command and reflecting the
status of the command through the TES field in the
Global Status register.

The value returned on a read of this field is
undefined.

Rsvd

0
2
3

SIRTPIREQIEWBFEAFLSFLSRTPTE

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

CFI

2
2

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-18 Order Number: D51397-006

30 WO 0 SRTP: Set Root
Table Pointer

Software sets this field to set/update the root-table
pointer used by hardware. The root-table pointer is
specified through the Root Table Address
(RTADDR_REG) register.

Hardware reports the status of the ‘Set Root Table
Pointer’ operation through the RTPS field in the
Global Status register.

The ‘Set Root Table Pointer’ operation must be
performed before enabling or re-enabling (after
disabling) DMA remapping through the TE field.

After a ‘Set Root Table Pointer’ operation, software
must globally invalidate the context-cache and then
globally invalidate the IOTLB. This is required to
ensure hardware uses only the remapping
structures referenced by the new root-table pointer,
and not stale cached entries.

While DMA remapping is active, software may
update the root table pointer through this field.
However, to ensure valid in-flight DMA requests are
deterministically remapped, software must ensure
that the structures referenced by the new root table
pointer are programmed to provide the same
remapping results as the structures referenced by
the previous root-table pointer.

Clearing this bit has no effect. The value returned on
a read of this field is undefined.

29 WO 0 SFL: Set Fault
Log

This field is valid only for implementations
supporting advanced fault logging.

Software sets this field to request hardware to
set/update the fault-log pointer used by hardware.
The fault-log pointer is specified through Advanced
Fault Log register.

Hardware reports the status of the ‘Set Fault Log’
operation through the FLS field in the Global Status
register.

The fault log pointer must be set before enabling
advanced fault logging (through EAFL field). Once
advanced fault logging is enabled, the fault log
pointer may be updated through this field while DMA
remapping is active.

Clearing this bit has no effect. The value returned on
read of this field is undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-19

Register Descriptions—Intel® Virtualization Technology for Directed I/O

28 WO 0
EAFL: Enable
Advanced Fault
Logging

This field is valid only for implementations
supporting advanced fault logging.

Software writes to this field to request hardware to
enable or disable advanced fault logging:
• 0: Disable advanced fault logging. In this case,

translation faults are reported through the Fault
Recording registers.

• 1: Enable use of memory-resident fault log.
When enabled, translation faults are recorded in
the memory-resident log. The fault log pointer
must be set in hardware (through the SFL field)
before enabling advanced fault logging.
Hardware reports the status of the advanced
fault logging enable operation through the AFLS
field in the Global Status register.

The value returned on read of this field is undefined.

27 WO 0 WBF: Write
Buffer Flush1

This bit is valid only for implementations requiring
write buffer flushing.
Software sets this field to request that hardware
flush the Root-Complex internal write buffers. This is
done to ensure any updates to the memory-resident
remapping structures are not held in any internal
write posting buffers.
Refer to Section 6.8 for details on write-buffer
flushing requirements.
Hardware reports the status of the write buffer
flushing operation through the WBFS field in the
Global Status register.
Clearing this bit has no effect. The value returned on
a read of this field is undefined.

 26 WO 0
QIE: Queued
Invalidation
Enable

This field is valid only for implementations
supporting queued invalidations.
Software writes to this field to enable or disable
queued invalidations.
• 0: Disable queued invalidations.
• 1: Enable use of queued invalidations.

Hardware reports the status of queued invalidation
enable operation through QIES field in the Global
Status register.
Refer to Section 6.5.2 for software requirements for
enabling/disabling queued invalidations.
The value returned on a read of this field is
undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-20 Order Number: D51397-006

 25 WO 0h
IRE: Interrupt
Remapping
Enable

This field is valid only for implementations
supporting interrupt remapping.
• 0: Disable interrupt-remapping hardware
• 1: Enable interrupt-remapping hardware

Hardware reports the status of the interrupt
remapping enable operation through the IRES field
in the Global Status register.
There may be active interrupt requests in the
platform when software updates this field. Hardware
must enable or disable interrupt-remapping logic
only at deterministic transaction boundaries, so that
any in-flight interrupts are either subject to
remapping or not at all.
Hardware implementations must drain any in-flight
interrupts requests queued in the Root-Complex
before completing the interrupt-remapping enable
command and reflecting the status of the command
through the IRES field in the Global Status register.
The value returned on a read of this field is
undefined.

24 WO 0
SIRTP: Set
Interrupt Remap
Table Pointer

This field is valid only for implementations
supporting interrupt-remapping.

Software sets this field to set/update the interrupt
remapping table pointer used by hardware. The
interrupt remapping table pointer is specified
through the Interrupt Remapping Table Address
(IRTA_REG) register.

Hardware reports the status of the ‘Set Interrupt
Remap Table Pointer’ operation through the IRTPS
field in the Global Status register.

The ‘Set Interrupt Remap Table Pointer’ operation
must be performed before enabling or re-enabling
(after disabling) interrupt-remapping hardware
through the IRE field.

After an ‘Set Interrupt Remap Table Pointer’
operation, software must globally invalidate the
interrupt entry cache. This is required to ensure
hardware uses only the interrupt-remapping entries
referenced by the new interrupt remap table pointer,
and not stale cached entries.

While interrupt remapping is active, software may
update the interrupt remapping table pointer
through this field. However, to ensure valid in-flight
interrupt requests are deterministically remapped,
software must ensure that the structures referenced
by the new interrupt remap table pointer are
programmed to provide the same remapping results
as the structures referenced by the previous
interrupt remap table pointer.

Clearing this bit has no effect. The value returned on
a read of this field is undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-21

Register Descriptions—Intel® Virtualization Technology for Directed I/O

 23 WO 0
CFI:
Compatibility
Format Interrupt

This field is valid only for Intel® 64 implementations
supporting interrupt-remapping.

Software writes to this field to enable or disable
Compatibility Format interrupts on Intel® 64
platforms. The value in this field is effective only
when interrupt-remapping is enabled and Extended
Interrupt Mode (x2APIC mode) is not enabled.
• 0: Block Compatibility format interrupts.
• 1: Process Compatibility format interrupts as

pass-through (bypass interrupt remapping).

Hardware reports the status of updating this field
through the CFIS field in the Global Status register.

Refer to Section 5.3.1 for details on Compatibility
Format interrupt requests.

The value returned on a read of this field is
undefined.

This field is not implemented on Itanium®
implementations.

 22:0 RsvdZ 0h R: Reserved Reserved.

1. Implementations reporting write-buffer flushing as required in Capability register must perform implicit
write buffer flushing as a pre-condition to all context-cache and IOTLB invalidation operations.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-22 Order Number: D51397-006

10.4.5 Global Status Register

Figure 10-48. Global Status Register

Abbreviation GSTS_REG

General
Description Register to report general remapping hardware status.

Register Offset 01Ch

Bits Access Default Field Description

31 RO 0 TES: Translation
Enable Status

This field indicates the status of DMA-remapping
hardware.
• 0: DMA remapping is not enabled
• 1: DMA remapping is enabled

30 RO 0 RTPS: Root Table
Pointer Status

This field indicates the status of the root-table
pointer in hardware.

This field is cleared by hardware when software sets
the SRTP field in the Global Command register. This
field is set by hardware when hardware completes
the ‘Set Root Table Pointer’ operation using the value
provided in the Root Table Address register.

29 RO 0 FLS: Fault Log
Status

This field:
• Is cleared by hardware when software Sets the

SFL field in the Global Command register.
• Is Set by hardware when hardware completes

the ‘Set Fault Log Pointer’ operation using the
value provided in the Advanced Fault Log
register.

28 RO 0
AFLS: Advanced
Fault Logging
Status

This field is valid only for implementations
supporting advanced fault logging. It indicates the
advanced fault logging status:
• 0: Advanced Fault Logging is not enabled
• 1: Advanced Fault Logging is enabled

27 RO 0
WBFS: Write
Buffer Flush
Status

This field is valid only for implementations requiring
write buffer flushing. This field indicates the status of
the write buffer flush command. It is
• Set by hardware when software sets the WBF

field in the Global Command register.
• Cleared by hardware when hardware completes

the write buffer flushing operation.

 26 RO 0
QIES: Queued
Invalidation
Enable Status

This field indicates queued invalidation enable
status.
• 0: queued invalidation is not enabled
• 1: queued invalidation is enabled

Rsvd

0
2
3

IRTPSIRESQIESWBFSAFLSFLSRTPSTES

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

CFIS

2
2

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-23

Register Descriptions—Intel® Virtualization Technology for Directed I/O

 25 RO 0
IRES: Interrupt
Remapping
Enable Status

This field indicates the status of Interrupt-remapping
hardware.
• 0: Interrupt-remapping hardware is not enabled
• 1:Interrupt-remapping hardware is enabled

24
RO

0
IRTPS: Interrupt
Remapping Table
Pointer Status

This field indicates the status of the interrupt
remapping table pointer in hardware.

This field is cleared by hardware when software sets
the SIRTP field in the Global Command register. This
field is Set by hardware when hardware completes
the ‘Set Interrupt Remap Table Pointer’ operation
using the value provided in the Interrupt Remapping
Table Address register.

 23 RO 0

CFIS:
Compatibility
Format Interrupt
Status

This field indicates the status of Compatibility format
interrupts on Intel® 64 implementations supporting
interrupt-remapping. The value reported in this field
is applicable only when interrupt-remapping is
enabled and extended interrupt mode (x2APIC
mode) is not enabled.
• 0: Compatibility format interrupts are blocked.
• 1: Compatibility format interrupts are processed

as pass-through (bypassing interrupt
remapping).

22:0 RsvdZ 0h R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-24 Order Number: D51397-006

10.4.6 Root Table Address Register

Figure 10-49. Root Table Address Register

Abbreviation RTADDR_REG

General
Description Register providing the base address of root-table.

Register Offset 020h

Bits Access Default Field Description

63:12 RW 0h RTA: Root Table
Address

This register points to the base of the page-aligned,
4KB-sized root-table in system memory. Hardware
may ignore and not implement bits 63:HAW, where
HAW is the host address width.

Software specifies the base address of the root table
through this register, and programs it in hardware
through the SRTP field in the Global Command
register.

Reads of this register return the value that was last
programmed to it.

11 RW 0 RTT: Root Table
Type

This field specifies the type of root-table referenced
by the Root Table Address (RTA) field.
• 0: Root Table
• 1: Extended Root Table

Root Table entry and Extended-Root Table entry
formats are specified in Section 9.1 and Section 9.2
respectively. Software must not modify this field
while remapping is active (TES=1 in Global Status
register).

Hardware implementations reporting extended
capabilities as not supported (ECS field Clear in
Extended Capability register), treats this field as
RsvdZ.

11:0 RsvdZ 0h R: Reserved Reserved.

RTA

0
6
3

1
2

1
1

RsvdRTT

1
0

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-25

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.7 Context Command Register

Figure 10-50. Context Command Register

Abbreviation CCMD_REG

General
Description

Register to manage context-cache.The act of writing the uppermost byte of the
CCMD_REG with the ICC field Set causes the hardware to perform the context-cache
invalidation.

Register Offset 028h

Bits Access Default Field Description

63 RW 0
ICC: Invalidate
Context-Cache

Software requests invalidation of context-cache by
setting this field. Software must also set the
requested invalidation granularity by programming
the CIRG field. Software must read back and check
the ICC field is Clear to confirm the invalidation is
complete. Software must not update this register
when this field is Set.

Hardware clears the ICC field to indicate the
invalidation request is complete.Hardware also
indicates the granularity at which the invalidation
operation was performed through the CAIG field.

Software must submit a context-cache invalidation
request through this field only when there are no
invalidation requests pending at this remapping
hardware unit.

Since information from the context-cache may be
used by hardware to tag IOTLB entries, software must
perform domain-selective (or global) invalidation of
IOTLB after the context-cache invalidation has
completed.

Hardware implementations reporting a write-buffer
flushing requirement (RWBF=1 in the Capability
register) must implicitly perform a write buffer flush
before invalidating the context-cache. Refer to
Section 6.8 for write buffer flushing requirements.

0

FM DID

1
6

1
5

SIDRsvdCAIGCIRGICC

3
1

3
2

3
3

3
4

6
3

6
2

6
1

6
0

5
9

5
8

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-26 Order Number: D51397-006

62:61 RW 0h

CIRG: Context
Invalidation
Request
Granularity

Software provides the requested invalidation
granularity through this field when setting the ICC
field:
• 00: Reserved.
• 01: Global Invalidation request.
• 10: Domain-selective invalidation request. The

target domain-id must be specified in the DID
field.

• 11: Device-selective invalidation request. The
target source-id(s) must be specified through the
SID and FM fields, and the domain-id [that was
programmed in the context-entry for these
device(s)] must be provided in the DID field.

Hardware implementations may process an
invalidation request by performing invalidation at a
coarser granularity than requested. Hardware
indicates completion of the invalidation request by
clearing the ICC field. At this time, hardware also
indicates the granularity at which the actual
invalidation was performed through the CAIG field.

60:59 RO Xh

CAIG: Context
Actual
Invalidation
Granularity

Hardware reports the granularity at which an
invalidation request was processed through the CAIG
field at the time of reporting invalidation completion
(by clearing the ICC field).

The following are the encodings for this field:
• 00: Reserved.
• 01: Global Invalidation performed. This could be

in response to a global, domain-selective, or
device-selective invalidation request.

• 10: Domain-selective invalidation performed
using the domain-id specified by software in the
DID field. This could be in response to a domain-
selective or device-selective invalidation request.

• 11: Device-selective invalidation performed using
the source-id and domain-id specified by software
in the SID and FM fields. This can only be in
response to a device-selective invalidation
request.

58:34 RsvdZ 0h R: Reserved Reserved.

33:32 WO 0h FM: Function
Mask

Software may use the Function Mask to perform
device-selective invalidations on behalf of devices
supporting PCI-Express Phantom Functions.
This field specifies which bits of the function number
portion (least significant three bits) of the SID field to
mask when performing device-selective
invalidations.The following encodings are defined for
this field:
• 00: No bits in the SID field masked
• 01: Mask bit 2 in the SID field
• 10: Mask bits 2:1 in the SID field
• 11: Mask bits 2:0 in the SID field

The context-entries corresponding to the source-ids
specified through the SID and FM fields must have the
domain-id specified in the DID field.

The value returned on a read of this field is undefined.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-27

Register Descriptions—Intel® Virtualization Technology for Directed I/O

31:16 WO 0h SID: Source-ID

Indicates the source-id of the device whose
corresponding context-entry needs to be selectively
invalidated.This field along with the FM field must be
programmed by software for device-selective
invalidation requests.

The value returned on a read of this field is undefined.

15:0 RW 0h DID: Domain-ID

Indicates the id of the domain whose context-entries
need to be selectively invalidated. This field must be
programmed by software for both domain-selective
and device-selective invalidation requests.

The Capability register reports the domain-id width
supported by hardware. Software must ensure that
the value written to this field is within this limit.
Hardware ignores (and may not implement) bits 15:N,
where N is the supported domain-id width reported in
the Capability register.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-28 Order Number: D51397-006

10.4.8 IOTLB Registers

IOTLB registers consists of two adjacently placed 64-bit registers:
• IOTLB Invalidate Register (IOTLB_REG)

• Invalidate Address Register (IVA_REG)

These registers are described in the following sub-sections.

Offset Register Name Size Description

XXXh Invalidate Address Register 64

Register to provide the target address for
page-selective IOTLB invalidation. The
offset of this register is reported through
the IRO field in Extended Capability
register.

XXXh + 008h IOTLB Invalidate Register 64 Register for IOTLB invalidation command

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-29

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.8.1 IOTLB Invalidate Register

Figure 10-51. IOTLB Invalidate Register

Abbreviation IOTLB_REG

General
Description

Register to invalidate IOTLB. The act of writing the upper byte of the IOTLB_REG
with the IVT field Set causes the hardware to perform the IOTLB invalidation.

Register Offset XXXh + 0008h (where XXXh is the location of the IVA_REG)

Bits Access Default Field Description

63 RW 0 IVT: Invalidate
IOTLB

Software requests IOTLB invalidation by setting this
field. Software must also set the requested
invalidation granularity by programming the IIRG
field.

Hardware clears the IVT field to indicate the
invalidation request is complete. Hardware also
indicates the granularity at which the invalidation
operation was performed through the IAIG field.
Software must not submit another invalidation
request through this register while the IVT field is
Set, nor update the associated Invalidate Address
register.

Software must not submit IOTLB invalidation
requests when there is a context-cache invalidation
request pending at this remapping hardware unit.

Hardware implementations reporting a write-buffer
flushing requirement (RWBF=1 in Capability register)
must implicitly perform a write buffer flushing before
invalidating the IOTLB. Refer to Section 6.8 for write
buffer flushing requirements.

62 RsvdZ 0 R: Reserved Reserved.

0

DR Rsvd

3
1

DIDRsvdIAIGIIRGIVT

3
2

4
7

4
8

4
9

6
3

6
2

6
1

6
0

5
9

5
8

DW

5
0

R
s
v
d

R
s
v
d

5
7

5
6

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-30 Order Number: D51397-006

61:60 RW 0h

IIRG: IOTLB
Invalidation
Request
Granularity

When requesting hardware to invalidate the IOTLB
(by setting the IVT field), software writes the
requested invalidation granularity through this field.
The following are the encodings for the field.
• 00: Reserved.
• 01: Global invalidation request.
• 10: Domain-selective invalidation request. The

target domain-id must be specified in the DID
field.

• 11: Page-selective-within-domain invalidation
request. The target address, mask, and
invalidation hint must be specified in the
Invalidate Address register, and the domain-id
must be provided in the DID field.

Hardware implementations may process an
invalidation request by performing invalidation at a
coarser granularity than requested. Hardware
indicates completion of the invalidation request by
clearing the IVT field. At that time, the granularity at
which actual invalidation was performed is reported
through the IAIG field.

59 RsvdZ 0 R: Reserved Reserved.

58:57 RO Xh

IAIG: IOTLB
Actual
Invalidation
Granularity

Hardware reports the granularity at which an
invalidation request was processed through this field
when reporting invalidation completion (by clearing
the IVT field).

The following are the encodings for this field.
• 00: Reserved. This indicates hardware detected

an incorrect invalidation request and ignored the
request. Examples of incorrect invalidation
requests include detecting an unsupported
address mask value in Invalidate Address
register for page-selective invalidation requests.

• 01: Global Invalidation performed. This could be
in response to a global, domain-selective, or
page-selective invalidation request.

• 10: Domain-selective invalidation performed
using the domain-id specified by software in the
DID field. This could be in response to a domain-
selective or a page-selective invalidation request.

• 11: Page-selective-within-domain invalidation
performed using the address, mask and hint
specified by software in the Invalidate Address
register and domain-id specified in DID field. This
can be in response to a page-selective-within-
domain invalidation request.

56:50 RsvdZ 0h R: Reserved Reserved.

49 RW 0h DR: Drain Reads

This field is ignored by hardware if the DRD field is
reported as Clear in the Capability register. When the
DRD field is reported as Set in the Capability register,
the following encodings are supported for this field:
• 0: Hardware may complete the IOTLB

invalidation without draining DMA read requests.
• 1: Hardware must drain DMA read requests.

Refer Section 6.5.5 for description of DMA draining.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-31

Register Descriptions—Intel® Virtualization Technology for Directed I/O

48 RW 0h DW: Drain Writes

This field is ignored by hardware if the DWD field is
reported as Clear in the Capability register. When the
DWD field is reported as Set in the Capability register,
the following encodings are supported for this field:
• 0: Hardware may complete the IOTLB

invalidation without draining DMA write requests.
• 1: Hardware must drain relevant translated DMA

write requests.
Refer Section 6.5.5 for description of DMA draining.

47:32 RW 0h DID: Domain-ID

Indicates the ID of the domain whose IOTLB entries
need to be selectively invalidated. This field must be
programmed by software for domain-selective and
page-selective invalidation requests.
The Capability register reports the domain-id width
supported by hardware. Software must ensure that
the value written to this field is within this limit.
Hardware may ignore and not implement bits
47:(32+N), where N is the supported domain-id
width reported in the Capability register.

31:0 RsvdP Xh R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-32 Order Number: D51397-006

10.4.8.2 Invalidate Address Register

Figure 10-52. Invalidate Address Register

Abbreviation IVA_REG

General
Description

Register to provide the DMA address whose corresponding IOTLB entry needs to be
invalidated through the corresponding IOTLB Invalidate register. This register is a
write-only register. A value returned on a read of this register is undefined.

Register Offset XXXh (XXXh is QWORD aligned and reported through the IRO field in the Extended
Capability register)

Bits Access Default Field Description

63:12 WO 0h ADDR: Address

Software provides the second-level-input-address
that needs to be page-selectively invalidated. To
make a page-selective-within-domain invalidation
request to hardware, software must first write the
appropriate fields in this register, and then issue the
page-selective-within-domain invalidate command
through the IOTLB_REG. Hardware ignores bits 63:N,
where N is the maximum guest address width
(MGAW) supported.

A value returned on a read of this field is undefined.

11:7 RsvdZ 0 R: Reserved Reserved.

6 WO 0 IH: Invalidation
Hint

The field provides hints to hardware about preserving
or flushing the non-leaf (context-entry) entries that
may be cached in hardware:
• 0: Software may have modified both leaf and

non-leaf second-level paging-structure entries
corresponding to mappings specified in the ADDR
and AM fields. On a page-selective-within-
domain invalidation request, hardware must
invalidate the cached entries associated with the
mappings specified by DID, ADDR and AM fields,
in both IOTLB and paging-structure caches. Refer
to Section 6.5.1.2 for exact invalidation
requirements when IH=0.

• 1: Software has not modified any second-level
non-leaf paging entries associated with the
mappings specified by the ADDR and AM fields.
On a page-selective-within-domain invalidation
request, hardware may preserve the cached
second-level mappings in paging-structure-
caches. Refer to Section 6.5.1.2 for exact
invalidation requirements when IH=1.

A value returned on a read of this field is undefined.

0

ADDR Rsvd

6
3

1
2

1
1

IH AM

567

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-33

Register Descriptions—Intel® Virtualization Technology for Directed I/O

5:0 WO 0 AM: Address
Mask

The value in this field specifies the number of low
order bits of the ADDR field that must be masked for
the invalidation operation. This field enables software
to request invalidation of contiguous mappings for
size-aligned regions. For example:

When invalidating mappings for large-pages,
software must specify the appropriate mask value.
For example, when invalidating mapping for a 2MB
page, software must specify an address mask value
of at least 9.

Hardware implementations report the maximum
supported address mask value through the Capability
register.

A value returned on a read of this field is undefined.

Bits Access Default Field Description

Mask
Value

ADDR
bits

masked

Pages
invalidated

0 None 1

1 12 2

2 13:12 4

3 14:12 8

4 15:12 16

...

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-34 Order Number: D51397-006

10.4.9 Fault Status Register

Figure 10-53. Fault Status Register

Abbreviation FSTS_REG

General
Description Register indicating the various error status.

Register Offset 034h

Bits Access Default Field Description

31:16 RsvdZ 0h R: Reserved Reserved.

15:8 ROS 0 FRI: Fault Record
Index

This field is valid only when the PPF field is Set.

The FRI field indicates the index (from base) of the
fault recording register to which the first pending
fault was recorded when the PPF field was Set by
hardware.

The value read from this field is undefined when the
PPF field is Clear.

7 RW1CS 0 PRO: Page
Request Overflow

Hardware sets this field to indicate Page Request
Queue overflow condition. Fault event is generated
based on programming of the Fault Event Control
register. Page request message that led to setting
this bit and subsequent messages received while this
field is already Set are discarded or responded by
hardware as described in Section 7.5.1.
Software writing a 1 to this field clears it.
Hardware implementations not supporting Page
Requests (PRS field reported as Clear in Capability
register) implement this field as RsvdZ.

6 RW1CS 0h ITE: Invalidation
Time-out Error

Hardware detected a Device-TLB invalidation
completion time-out. At this time, a fault event may
be generated based on the programming of the Fault
Event Control register.

Hardware implementations not supporting Device-
TLBs implement this bit as RsvdZ.

5 RW1CS 0h ICE: Invalidation
Completion Error

Hardware received an unexpected or invalid Device-
TLB invalidation completion. This could be due to
either an invalid ITag or invalid source-id in an
invalidation completion response. At this time, a fault
event may be generated based on the programming
of the Fault Event Control register.

Hardware implementations not supporting Device-
TLBs implement this bit as RsvdZ.

012347 6 5

PFOPPFAFOAPFIQEICEITEFRIRsvd PRO

8
1
5

1
6

3
1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-35

Register Descriptions—Intel® Virtualization Technology for Directed I/O

 4 RW1CS 0 IQE: Invalidation
Queue Error

Hardware detected an error associated with the
invalidation queue. This could be due to either a
hardware error while fetching a descriptor from the
invalidation queue, or hardware detecting an
erroneous or invalid descriptor in the invalidation
queue. At this time, a fault event may be generated
based on the programming of the Fault Event Control
register.

Hardware implementations not supporting queued
invalidations implement this bit as RsvdZ.

 3 RW1CS 0 APF: Advanced
Pending Fault

When this field is Clear, hardware sets this field when
the first fault record (at index 0) is written to a fault
log. At this time, a fault event is generated based on
the programming of the Fault Event Control register.

Software writing 1 to this field clears it. Hardware
implementations not supporting advanced fault
logging implement this bit as RsvdZ.

 2 RW1CS 0 AFO: Advanced
Fault Overflow

Hardware sets this field to indicate advanced fault log
overflow condition. At this time, a fault event is
generated based on the programming of the Fault
Event Control register.

Software writing 1 to this field clears it.
Hardware implementations not supporting advanced
fault logging implement this bit as RsvdZ.

1 ROS 0 PPF: Primary
Pending Fault

This field indicates if there are one or more pending
faults logged in the fault recording
registers. Hardware computes this field as the logical
OR of Fault (F) fields across all the fault recording
registers of this remapping hardware unit.
• 0: No pending faults in any of the fault recording

registers
• 1: One or more fault recording registers has

pending faults. The FRI field is updated by
hardware whenever the PPF field is Set by
hardware. Also, depending on the programming
of Fault Event Control register, a fault event is
generated when hardware sets this field.

0 RW1CS 0 PFO: Primary
Fault Overflow

Hardware sets this field to indicate overflow of the
fault recording registers. Software writing 1 clears
this field. When this field is Set, hardware does not
record any new faults until software clears this field.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-36 Order Number: D51397-006

10.4.10 Fault Event Control Register

Figure 10-54. Fault Event Control Register

Abbreviation FECTL_REG

General
Description

Register specifying the fault event interrupt message control bits. Section 7.4
describes hardware handling of fault events.

Register Offset 038h

Bits Access Default Field Description

31 RW 1 IM: Interrupt
Mask

• 0: No masking of interrupts. When a interrupt
condition is detected, hardware issues an
interrupt message (using the Fault Event Data
and Fault Event Address register values).

• 1: This is the value on reset. Software may mask
interrupt message generation by setting this
field.Hardware is prohibited from sending the
interrupt message when this field is Set.

IM

0

IP Rsvd

3
1

3
0

2
9

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-37

Register Descriptions—Intel® Virtualization Technology for Directed I/O

30 RO 0 IP: Interrupt
Pending

Hardware sets the IP field whenever it detects an
interrupt condition, which is defined as:
• When primary fault logging is active, an

interrupt condition occurs when hardware
records a fault through one of the Fault
Recording registers and sets the PPF field in the
Fault Status register.

• When advanced fault logging is active, an
interrupt condition occurs when hardware
records a fault in the first fault record (at index
0) of the current fault log and sets the APF field
in the Fault Status register.

• Hardware detected error associated with the
Invalidation Queue, setting the IQE field in the
Fault Status register.

• Hardware detected invalid Device-TLB
invalidation completion, setting the ICE field in
the Fault Status register.

• Hardware detected Device-TLB invalidation
completion time-out, setting the ITE field in the
Fault Status register.

• Hardware detected Page Request Queue
overflow condition, setting the PRO field in the
Fault Status register.

If any of the status fields in the Fault Status register
was already Set at the time of setting any of these
fields, it is not treated as a new interrupt condition.

The IP field is kept Set by hardware while the
interrupt message is held pending. The interrupt
message could be held pending due to the interrupt
mask (IM field) being Set or other transient
hardware conditions.

The IP field is cleared by hardware as soon as the
interrupt message pending condition is serviced. This
could be due to either:
• Hardware issuing the interrupt message due to

either a change in the transient hardware
condition that caused the interrupt message to
be held pending, or due to software clearing the
IM field.

• Software servicing all the pending interrupt
status fields in the Fault Status register as
follows.
• When primary fault logging is active,

software clearing the Fault (F) field in all the
Fault Recording registers with faults,
causing the PPF field in the Fault Status
register to be evaluated as Clear.

• Software clearing other status fields in the
Fault Status register by writing back the
value read from the respective fields.

29:0 RsvdP Xh R: Reserved Reserved.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-38 Order Number: D51397-006

10.4.11 Fault Event Data Register

Figure 10-55. Fault Event Data Register

Abbreviation FEDATA_REG

General
Description Register specifying the interrupt message data.

Register Offset 03Ch

Bits Access Default Field Description

31:16 RW 0h
EIMD: Extended
Interrupt
Message Data

This field is valid only for implementations supporting
32-bit interrupt data fields.

Hardware implementations supporting only 16-bit
interrupt data treat this field as RsvdZ.

15:0 RW 0h IMD: Interrupt
Message data

Data value in the interrupt request. Software
requirements for programming this register are
described in Section 5.6.

EIMD

0

IMD

3
1

1
6

1
5

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-39

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.12 Fault Event Address Register

Figure 10-56. Fault Event Address Register

Abbreviation FEADDR_REG

General
Description Register specifying the interrupt message address.

Register Offset 040h

Bits Access Default Field Description

31:2 RW 0h MA: Message
address

When fault events are enabled, the contents of this
register specify the DWORD-aligned address (bits
31:2) for the interrupt request.

Software requirements for programming this register
are described in Section 5.6.

1:0 RsvdZ 0h R: Reserved Reserved.

0

RsvdMA

3
1 12

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-40 Order Number: D51397-006

10.4.13 Fault Event Upper Address Register

Figure 10-57. Fault Event Upper Address Register

Abbreviation FEUADDR_REG

General
Description Register specifying the interrupt message upper address.

Register Offset 044h

Bits Access Default Field Description

31:0 RW 0h MUA: Message
upper address

Hardware implementations supporting Extended
Interrupt Mode are required to implement this
register.

Software requirements for programming this register
are described in Section 5.6.

Hardware implementations not supporting Extended
Interrupt Mode may treat this field as RsvdZ.

0

MUA

3
1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-41

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.14 Fault Recording Registers [n]

Figure 10-58. Fault Recording Register

Abbreviation FRCD_REG [n]

General
Description

Registers to record fault information when primary fault logging is active.Hardware
reports the number and location of fault recording registers through the Capability
register. This register is relevant only for primary fault logging.

These registers are sticky and can be cleared only through power good reset or by
software clearing the RW1C fields by writing a 1.

Register Offset YYYh (YYYh must be 128-bit aligned)

Bits Access Default Field Description

127 RW1CS 0 F: Fault1

Hardware sets this field to indicate a fault is
logged in this Fault Recording register. The F
field is Set by hardware after the details of the
fault is recorded in other fields.

When this field is Set, hardware may collapse
additional faults from the same source-id
(SID).

Software writes the value read from this field to
Clear it.

Refer to Section 7.3.1 for hardware details of
primary fault logging.

126 ROS X T: Type

Type of the faulted request:
• 0: Write request
• 1: Read request or AtomicOp request

This field is relevant only when the F field is
Set, and when the fault reason (FR) indicates
one of the address translation fault conditions.

SIDEXEFRPV

7
9

9
2

9
5

9
6

1
0
4

ATT

1
2
4

F

1
2
7

Rsvd

8
0

PP

9
4

0

Rsvd

1
1

1
2

FI

6
3

6
4

PRIV

9
3

1
0
3

1
2
3

1
2
5

1
2
6

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-42 Order Number: D51397-006

125:124 ROS Xh AT: Address Type

This field captures the AT field from the faulted
request.

Hardware implementations not supporting
Device-TLBs (DT field Clear in Extended
Capability register) treat this field as RsvdZ.

When supported, this field is valid only when
the F field is Set, and when the fault reason
(FR) indicates one of the non-recoverable
address translation fault conditions.

123:104 ROS Xh PV: PASID Value

PASID value in the faulted request.

This field is relevant only when the PP field is
Set.

Hardware implementations not supporting
PASID (PASID field Clear in Extended Capability
register) implement this field as RsvdZ.

103:96 ROS Xh FR: Fault Reason

Reason for the fault. Appendix A enumerates
the various translation fault reason encodings.

This field is relevant only when the F field is
Set.

95 ROS X PP: PASID Present

When Set, indicates the faulted request has a
PASID tag. The value of the PASID field is
reported in the PASID Value (PV) field.

This field is relevant only when the F field is
Set, and when the fault reason (FR) indicates
one of the non-recoverable address translation
fault conditions.

Hardware implementations not supporting
PASID (PASID field Clear in Extended Capability
register) implement this field as RsvdZ.

94 ROS X EXE: Execute
Permission Requested

When Set, indicates Execute permission was
requested by the faulted read request.
This field is relevant only when the PP field and
T field are both Set.
Hardware implementations not supporting
PASID (PASID field Clear in Extended Capability
register) implement this field as RsvdZ.

93 ROS X PRIV: Privilege Mode
Requested

When Set, indicates Supervisor privilege was
requested by the faulted request.
This field is relevant only when the PP field is
Set.
Hardware implementations not supporting
PASID (PASID field Clear in Extended Capability
register) implement this field as RsvdZ.

92:80 RsvdZ 0h R: Reserved Reserved.

79:64 ROS Xh SID: Source Identifier

Requester-id associated with the fault
condition.
This field is relevant only when the F field is
Set.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-43

Register Descriptions—Intel® Virtualization Technology for Directed I/O

63:12 ROS Xh FI: Fault Info

When the Fault Reason (FR) field indicates one
of the address translation fault conditions, bits
63:12 of this field contains the page address in
the faulted request. When PASID Present field
is 0 (i.e, faulted request is a request without
PASID), hardware treat bits 63:N as reserved
(0), where N is the maximum guest address
width (MGAW) supported. For requests-with-
PASID (PASID Present field = 1), hardware
treats bits 63:48 as reserved (0).

When the Fault Reason (FR) field indicates
interrupt-remapping fault conditions other than
Fault Reason 25h, bits 63:48 of this field
indicate the interrupt_index computed for the
faulted interrupt request, and bits 47:12 are
cleared. When the Fault Reason (FR) field
indicates interrupt-remapping fault condition of
blocked Compatibility mode interrupt (Fault
Reason 25h), contents of this field is undefined.

This field is relevant only when the F field is
Set.

11:0 RsvdZ 0h R: Reserved Reserved.

1. Hardware updates to this register may be disassembled as multiple doubleword writes. To ensure consistent
data is read from this register, software must first check the Primary Pending Fault (PPF) field in the
FSTS_REG is Set before reading the fault reporting register at offset as indicated in the FRI field of
FSTS_REG. Alternatively, software may read the highest doubleword in a fault recording register and check
if the Fault (F) field is Set before reading the rest of the data fields in that register.

Bits Access Default Field Description

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-44 Order Number: D51397-006

10.4.15 Advanced Fault Log Register

Figure 10-59. Advanced Fault Log Register

Abbreviation AFLOG_REG

General
Description

Register to specify the base address of the memory-resident fault-log region. This
register is treated as RsvdZ for implementations not supporting advanced
translation-fault logging (AFL field reported as 0 in the Capability register).

Register Offset 058h

Bits Access Default Field Description

63:12 RW 0h FLA: Fault Log
Address

This field specifies the base of 4KB aligned fault-log
region in system memory. Hardware may ignore and
not implement bits 63:HAW, where HAW is the host
address width.

Software specifies the base address and size of the
fault log region through this register, and programs it
in hardware through the SFL field in the Global
Command register. When implemented, reads of this
field return the value that was last programmed to it.

11:9 RW 0h FLS: Fault Log
Size

This field specifies the size of the fault log region
pointed by the FLA field. The size of the fault log
region is 2X * 4KB, where X is the value programmed
in this register.

When implemented, reads of this field return the
value that was last programmed to it.

 8:0 RsvdZ 0h R: Reserved Reserved.

0

FLA Rsvd

6
3

1
2 8

FLS

9
1
1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-45

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.16 Protected Memory Enable Register

Figure 10-60. Protected Memory Enable Register

Abbreviation PMEN_REG

General
Description

Register to enable the DMA-protected memory regions set up through the PLMBASE,
PLMLIMT, PHMBASE, PHMLIMIT registers. This register is always treated as RO for
implementations not supporting protected memory regions (PLMR and PHMR fields
reported as Clear in the Capability register).

Protected memory regions may be used by software to securely initialize remapping
structures in memory. To avoid impact to legacy BIOS usage of memory, software is
recommended to not overlap protected memory regions with any reserved memory
regions of the platform reported through the Reserved Memory Region Reporting
(RMRR) structures described in Chapter 8.

Register Offset 064h

Rsvd

0

PRSEPM

3
1

3
0 1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-46 Order Number: D51397-006

Bits Access Default Field Description

31 RW 0h
EPM: Enable
Protected
Memory

This field controls DMA accesses to the protected
low-memory and protected high-memory
regions.
• 0: Protected memory regions are disabled.
• 1: Protected memory regions are enabled.

DMA requests accessing protected memory
regions are handled as follows:
• When DMA remapping is not enabled, all

DMA requests accessing protected
memory regions are blocked.

• When DMA remapping is enabled:
• DMA requests processed as pass-

through (Translation Type value of 10b
in Context-Entry) and accessing the
protected memory regions are
blocked.

• DMA requests with translated address
(AT=10b) and accessing the protected
memory regions are blocked.

• DMA requests that are subject to
address remapping, and accessing the
protected memory regions may or
may not be blocked by hardware. For
such requests, software must not
depend on hardware protection of the
protected memory regions, and
instead program the remapping
structures to block requests to
protected memory regions.

Remapping hardware access to the remapping
structures are not subject to protected memory
region checks.

DMA requests blocked due to protected memory
region violation are not recorded or reported as
remapping faults.

Hardware reports the status of the protected
memory enable/disable operation through the
PRS field in this register. Hardware
implementations supporting DMA draining must
drain any in-flight translated DMA requests
queued within the Root-Complex before
indicating the protected memory region as
enabled through the PRS field.

30:1 RsvdP Xh R: Reserved Reserved.

0 RO 0h PRS: Protected
Region Status

This field indicates the status of protected
memory region(s):
• 0: Protected memory region(s) disabled.
• 1: Protected memory region(s) enabled.

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-47

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.17 Protected Low-Memory Base Register

Figure 10-61. Protected Low-Memory Base Register

Abbreviation PLMBASE_REG

General
Description

Register to set up the base address of DMA-protected low-memory region below
4GB. This register must be set up before enabling protected memory through
PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
low memory region (PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region base depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1s to
this register, and finding the most significant bit position with 0 in the value read
back from the register. Bits N:0 of this register are decoded by hardware as all 0s.

Software must setup the protected low memory region below 4GB. Section 10.4.18
describes the Protected Low-Memory Limit register and hardware decoding of these
registers.

Software must not modify this register when protected memory regions are enabled
(PRS field Set in PMEN_REG)

Register Offset 068h

Bits Access Default Field Description

31:(N+1) RW 0h
PLMB: Protected
Low-Memory
Base

This register specifies the base of protected low-
memory region in system memory.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

3
1 N

PLMB

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-48 Order Number: D51397-006

10.4.18 Protected Low-Memory Limit Register

Figure 10-62. Protected Low-Memory Limit Register

Abbreviation PLMLIMIT_REG

General
Description

Register to set up the limit address of DMA-protected low-memory region below
4GB. This register must be set up before enabling protected memory through
PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
low memory region (PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region limit depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1’s to
this register, and finding most significant zero bit position with 0 in the value read
back from the register. Bits N:0 of the limit register are decoded by hardware as all
1s.

The Protected low-memory base and limit registers function as follows:
• Programming the protected low-memory base and limit registers the same

value in bits 31:(N+1) specifies a protected low-memory region of size 2(N+1)
bytes.

• Programming the protected low-memory limit register with a value less than the
protected low-memory base register disables the protected low-memory region.

Software must not modify this register when protected memory regions are enabled
(PRS field Set in PMEN_REG)

Register Offset 06Ch

Bits Access Default Field Description

31:(N+1) RW 0h
PLML: Protected
Low-Memory
Limit

This register specifies the last host physical
address of the DMA-protected low-memory
region in system memory.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

3
1 N

PLML

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-49

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.19 Protected High-Memory Base Register

Figure 10-63. Protected High-Memory Base Register

Abbreviation PHMBASE_REG

General
Description

Register to set up the base address of DMA-protected high-memory region. This
register must be set up before enabling protected memory through PMEN_REG, and
must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
high memory region (PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region base depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1’s to
this register, and finding most significant zero bit position below host address width
(HAW) in the value read back from the register. Bits N:0 of this register are decoded
by hardware as all 0s.

Software may setup the protected high memory region either above or below 4GB.
Section 10.4.20 describes the Protected High-Memory Limit register and hardware
decoding of these registers.

Software must not modify this register when protected memory regions are enabled
(PRS field Set in PMEN_REG)

Register Offset 070h

Bits Access Default Field Description

63:(N+1) RW 0h
PHMB: Protected
High-Memory
Base

This register specifies the base of protected
(high) memory region in system memory.

Hardware may ignore and not implement bits
63:HAW, where HAW is the host address width.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

6
3 N

PHMB

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-50 Order Number: D51397-006

10.4.20 Protected High-Memory Limit Register

Figure 10-64. Protected High-Memory Limit Register

Abbreviation PHMLIMIT_REG

General
Description

Register to set up the limit address of DMA-protected high-memory region. This
register must be set up before enabling protected memory through PMEN_REG, and
must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected
high memory region (PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region limit depends on the number of
reserved bits (N:0) of this register. Software may determine N by writing all 1’s to
this register, and finding most significant zero bit position below host address width
(HAW) in the value read back from the register. Bits N:0 of the limit register are
decoded by hardware as all 1s.

The protected high-memory base & limit registers function as follows.
• Programming the protected low-memory base and limit registers with the same

value in bits HAW:(N+1) specifies a protected low-memory region of size 2(N+1)
bytes.

• Programming the protected high-memory limit register with a value less than
the protected high-memory base register disables the protected high-memory
region.

Software must not modify this register when protected memory regions are enabled
(PRS field Set in PMEN_REG)

Register Offset 078h

Bits Access Default Field Description

63:(N+1) RW 0h
PHML: Protected
High-Memory
Limit

This register specifies the last host physical
address of the DMA-protected high-memory
region in system memory.

Hardware may ignore and not implement bits
63:HAW, where HAW is the host address width.

N:0 RsvdZ 0h R: Reserved Reserved.

0

Rsvd

6
3 N

PHML

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-51

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.21 Invalidation Queue Head Register

Figure 10-65. Invalidation Queue Head Register

Abbreviation IQH_REG

General
Description

Register indicating the invalidation queue head. This register is treated as RsvdZ by
implementations reporting Queued Invalidation (QI) as not supported in the
Extended Capability register.

Register Offset 080h

Bits Access Default Field Description

 63:19 RsvdZ 0h R: Reserved Reserved.

 18:4 RO 0h QH: Queue Head

Specifies the offset (128-bit aligned) to the
invalidation queue for the command that will be
fetched next by hardware.
Hardware resets this field to 0 whenever the
queued invalidation is disabled (QIES field Clear
in the Global Status register).

 3:0 RsvdZ 0h R: Reserved Reserved.

Rsvd

0

RsvdQH

6
3 34

1
8

1
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-52 Order Number: D51397-006

10.4.22 Invalidation Queue Tail Register

Figure 10-66. Invalidation Queue Tail Register

Abbreviation IQT_REG

General
Description

Register indicating the invalidation tail. This register is treated as RsvdZ by
implementations reporting Queued Invalidation (QI) as not supported in the
Extended Capability register.

Register Offset 088h

Bits Access Default Field Description

 63:19 RsvdZ 0h R: Reserved Reserved.

 18:4 RW 0h QT: Queue Tail
Specifies the offset (128-bit aligned) to the
invalidation queue for the command that will be
written next by software.

 3:0 RsvdZ 0h R: Reserved Reserved.

Rsvd

0

RsvdQT

6
3 34

1
8

1
9

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-53

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.23 Invalidation Queue Address Register

Figure 10-67. Invalidation Queue Address Register

Abbreviation IQA_REG

General
Description

Register to configure the base address and size of the invalidation queue. This
register is treated as RsvdZ by implementations reporting Queued Invalidation (QI)
as not supported in the Extended Capability register.

Register Offset 090h

Bits Access Default Field Description

 63:12 RW 0h
IQA: Invalidation
Queue Base
Address

This field points to the base of 4KB aligned
invalidation request queue. Hardware may
ignore and not implement bits 63:HAW, where
HAW is the host address width.

Reads of this field return the value that was last
programmed to it.

 11:3 RsvdZ 0h R: Reserved Reserved.

 2:0 RW 0h QS: Queue Size

This field specifies the size of the invalidation
request queue. A value of X in this field indicates
an invalidation request queue of (2X) 4KB pages.
The number of entries in the invalidation queue
is 2(X + 8).

0

IQA Rsvd

6
3

1
2 2

QS

3
1
1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-54 Order Number: D51397-006

10.4.24 Invalidation Completion Status Register

Figure 10-68. Invalidation Completion Status Register

Abbreviation ICS_REG

General
Description

Register to report completion status of invalidation wait descriptor with Interrupt
Flag (IF) Set. This register is treated as RsvdZ by implementations reporting
Queued Invalidation (QI) as not supported in the Extended Capability register.

Register Offset 09Ch

Bits Access Default Field Description

 31:1 RsvdZ 0h R: Reserved Reserved.

 0 RW1CS 0
IWC: Invalidation
Wait Descriptor
Complete

Indicates completion of Invalidation Wait
Descriptor with Interrupt Flag (IF) field Set.
Hardware implementations not supporting
queued invalidations implement this field as
RsvdZ.

IWC

0

Rsvd

3
1 1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-55

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.25 Invalidation Event Control Register

Figure 10-69. Invalidation Event Control Register

Abbreviation IECTL_REG

General
Description

Register specifying the invalidation event interrupt control bits. This register is
treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not
supported in the Extended Capability register.

Register Offset 0A0h

Bits Access Default Field Description

 31 RW 1 IM: Interrupt
Mask

• 0: No masking of interrupt. When a
invalidation event condition is detected,
hardware issues an interrupt message
(using the Invalidation Event Data &
Invalidation Event Address register values).

• 1: This is the value on reset. Software may
mask interrupt message generation by
setting this field. Hardware is prohibited
from sending the interrupt message when
this field is Set.

 30 RO 0 IP: Interrupt
Pending

Hardware sets the IP field whenever it detects
an interrupt condition. Interrupt condition is
defined as:
• An Invalidation Wait Descriptor with

Interrupt Flag (IF) field Set completed,
setting the IWC field in the Invalidation
Completion Status register.

• If the IWC field in the Invalidation
Completion Status register was already Set
at the time of setting this field, it is not
treated as a new interrupt condition.

The IP field is kept Set by hardware while the
interrupt message is held pending. The interrupt
message could be held pending due to interrupt
mask (IM field) being Set, or due to other
transient hardware conditions. The IP field is
cleared by hardware as soon as the interrupt
message pending condition is serviced. This
could be due to either:
• Hardware issuing the interrupt message due

to either change in the transient hardware
condition that caused interrupt message to
be held pending or due to software clearing
the IM field.

• Software servicing the IWC field in the
Invalidation Completion Status register.

 29:0 RsvdP Xh R: Reserved Reserved.

IM

0

IP Rsvd

3
1

3
0

2
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-56 Order Number: D51397-006

10.4.26 Invalidation Event Data Register

Figure 10-70. Invalidation Event Data Register

Abbreviation IEDATA_REG

General
Description

Register specifying the Invalidation Event interrupt message data. This register is
treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not
supported in the Extended Capability register.

Register Offset 0A4h

Bits Access Default Field Description

31:16 RW 0h
EIMD: Extended
Interrupt
Message Data

This field is valid only for implementations
supporting 32-bit interrupt data fields.

Hardware implementations supporting only 16-
bit interrupt data treat this field as RsvdZ.

15:0 RW 0h IMD: Interrupt
Message data

Data value in the interrupt request. Software
requirements for programming this register are
described in Section 5.6.

EIMD

0

IMD

3
1

1
6

1
5

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-57

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.27 Invalidation Event Address Register

Figure 10-71. Invalidation Event Address Register

Abbreviation IEADDR_REG

General
Description

Register specifying the Invalidation Event Interrupt message address.This register is
treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not
supported in the Extended Capability register.

Register Offset 0A8h

Bits Access Default Field Description

31:2 RW 0h MA: Message
address

When fault events are enabled, the contents of
this register specify the DWORD-aligned address
(bits 31:2) for the interrupt request.

Software requirements for programming this
register are described in Section 5.6.

1:0 RsvdZ 0h R: Reserved Reserved.

0

RsvdMA

3
1 12

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-58 Order Number: D51397-006

10.4.28 Invalidation Event Upper Address Register

Figure 10-72. Invalidation Event Upper Address Register

Abbreviation IEUADDR_REG

General
Description Register specifying the Invalidation Event interrupt message upper address.

Register Offset 0ACh

Bits Access Default Field Description

31:0 RW 0h MUA: Message
upper address

Hardware implementations supporting Queued
Invalidations and Extended Interrupt Mode are
required to implement this register.

Software requirements for programming this
register are described in Section 5.6.

Hardware implementations not supporting
Queued Invalidations or Extended Interrupt
Mode may treat this field as RsvdZ.

0

MUA

3
1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-59

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.29 Interrupt Remapping Table Address Register

Figure 10-73. Interrupt Remapping Table Address Register

Abbreviation IRTA_REG

General
Description

Register providing the base address of Interrupt remapping table. This register is
treated as RsvdZ by implementations reporting Interrupt Remapping (IR) as not
supported in the Extended Capability register.

Register Offset 0B8h

Bits Access Default Field Description

63:12 RW 0h
IRTA: Interrupt
Remapping Table
Address

This field points to the base of 4KB aligned
interrupt remapping table.

Hardware may ignore and not implement bits
63:HAW, where HAW is the host address width.

Reads of this field returns value that was last
programmed to it.

 11 RW 0
EIME: Extended
Interrupt Mode
Enable

This field is used by hardware on Intel® 64
platforms as follows:
• 0: xAPIC mode is active. Hardware

interprets only 8-bits ([15:8]) of
Destination-ID field in the IRTEs. The high
16-bits and low 8-bits of the Destination-ID
field are treated as reserved.

• 1: x2APIC mode is active. Hardware
interprets all 32-bits of Destination-ID field
in the IRTEs.

This field is implemented as RsvdZ on
implementations reporting Extended Interrupt
Mode (EIM) field as Clear in Extended Capability
register.

 10:4 RsvdZ 0h R: Reserved Reserved.

 3:0 RW 0h S: Size

This field specifies the size of the interrupt
remapping table. The number of entries in the
interrupt remapping table is 2X+1, where X is the
value programmed in this field.

0

IRTA Rsvd

6
3

1
2 3

S

4
1
1

EIME

1
0

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-60 Order Number: D51397-006

10.4.30 Page Request Queue Head Register

Figure 10-74. Page Request Queue Head Register

Abbreviation PQH_REG

General
Description

Register indicating the page request queue head. This register is treated as RsvdZ
by implementations reporting Page Request Support (PRS) as not supported in the
Extended Capability register.

Register Offset 0C0h

Bits Access Default Field Description

 63:19 RsvdZ 0h R: Reserved Reserved.

 18:4 RW 0h PQH: Page Queue
Head

Specifies the offset (16-bytes aligned) to the
page request queue for the request that will be
processed next by software.

 3:0 RsvdZ 0h R: Reserved Reserved.

Rsvd

0

RsvdPQH

6
3 34

1
8

1
9

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-61

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.31 Page Request Queue Tail Register

Figure 10-75. Page Request Queue Tail Register

Abbreviation PQT_REG

General
Description

Register indicating the page request queue tail. This register is treated as RsvdZ by
implementations reporting Page Request Support (PRS) as not supported in the
Extended Capability register.

Register Offset 0C8h

Bits Access Default Field Description

 63:19 RsvdZ 0h R: Reserved Reserved.

 18:4 RW 0h PQT: Page Queue
Tail

Specifies the offset (16-bytes aligned) to the
page request queue for the request that will be
written next by hardware.

 3:0 RsvdZ 0h R: Reserved Reserved.

Rsvd

0

RsvdPQT

6
3 34

1
8

1
9

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-62 Order Number: D51397-006

10.4.32 Page Request Queue Address Register

Figure 10-76. Page Request Queue Address Register

Abbreviation PQA_REG

General
Description

Register to configure the base address and size of the page request queue. This
register is treated as RsvdZ by implementations reporting Page Request Support
(PRS) as not supported in the Extended Capability register.

Register Offset 0D0h

Bits Access Default Field Description

 63:12 RW 0h
PQA: Page
Request Queue
Base Address

This field points to the base of 4KB aligned page
request queue. Hardware may ignore and not
implement bits 63:HAW, where HAW is the host
address width.
Software must configure this register before
enabling page requests in any extended-
context-entries.

 11:3 RsvdZ 0h R: Reserved Reserved.

2:0 RW 0h PQS: Page Queue
Size

This field specifies the size of the page request
queue. A value of X in this field indicates an
invalidation request queue of (2X) 4KB pages.
The number of entries in the page request queue
is 2(X + 8).

0

PQA Rsvd

6
3

1
2 2

PQS

3
1
1

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-63

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.33 Page Request Status Register

Figure 10-77. Page Request Status Register

Abbreviation PRS_REG

General
Description

Register to report pending page request in page request queue. This register is
treated as RsvdZ by implementations reporting Page Request Support (PRS) as not
supported in the Extended Capability register.

Register Offset 0DCh

Bits Access Default Field Description

 31:1 RsvdZ 0h R: Reserved Reserved.

 0 RW1CS 0 PPR: Pending
Page Request

Indicates pending page requests to be serviced
by software in the page request queue.
This field is Set by hardware when a page
request entry (page_req_dsc) with either
Streaming Response Requested (SRR) field or
Last Page in Group (LPIG) field Set, is added to
the page request queue.

PPR

0

Rsvd

3
1 1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-64 Order Number: D51397-006

10.4.34 Page Request Event Control Register

Figure 10-78. Page Request Event Control Register

Abbreviation PECTL_REG

General
Description

Register specifying the page request event interrupt control bits. This register is
treated as RsvdZ by implementations reporting Page Request Support (PRS) as not
supported in the Extended Capability register.

Register Offset 0E0h

Bits Access Default Field Description

 31 RW 1 IM: Interrupt
Mask

• 0: No masking of interrupt. When a page
request event condition is detected,
hardware issues an interrupt message
(using the Page Request Event Data & Page
Request Event Address register values).

• 1: This is the value on reset. Software may
mask interrupt message generation by
setting this field. Hardware is prohibited
from sending the interrupt message when
this field is Set.

 30 RO 0 IP: Interrupt
Pending

Hardware sets the IP field whenever it detects
an interrupt condition. Interrupt condition is
defined as:
• A page request entry (page_req_dsc) with

either Streaming Response Requested (SRR)
field or Last Page in Group (LPIG) field Set,
was added to page request queue, resulting
in hardware setting the Pending Page
Request (PPR) field in Page Request Status
register.

• If the PPR field in the Page Request Event
Status register was already Set at the time
of setting this field, it is not treated as a new
interrupt condition.

The IP field is kept Set by hardware while the
interrupt message is held pending. The interrupt
message could be held pending due to interrupt
mask (IM field) being Set, or due to other
transient hardware conditions. The IP field is
cleared by hardware as soon as the interrupt
message pending condition is serviced. This
could be due to either:
• Hardware issuing the interrupt message due

to either change in the transient hardware
condition that caused interrupt message to
be held pending or due to software clearing
the IM field.

• Software servicing the PPR field in the Page
Request Event Status register.

 29:0 RsvdP Xh R: Reserved Reserved.

IM

0

IP Rsvd

3
1

3
0

2
9

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-65

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.35 Page Request Event Data Register

Figure 10-79. Page Request Event Data Register

Abbreviation PEDATA_REG

General
Description

Register specifying the Page Request Event interrupt message data. This register is
treated as RsvdZ by implementations reporting Page Request Support (PRS) as not
supported in the Extended Capability register.

Register Offset 0E4h

Bits Access Default Field Description

31:16 RW 0h
EIMD: Extended
Interrupt
Message Data

This field is valid only for implementations
supporting 32-bit interrupt data fields.

Hardware implementations supporting only 16-
bit interrupt data treat this field as RsvdZ.

15:0 RW 0h IMD: Interrupt
Message data

Data value in the interrupt request. Software
requirements for programming this register are
described in Section 5.6.

EIMD

0

IMD

3
1

1
6

1
5

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-66 Order Number: D51397-006

10.4.36 Page Request Event Address Register

Figure 10-80. Page Request Event Address Register

Abbreviation PEADDR_REG

General
Description

Register specifying the Page Request Event Interrupt message address.This register
is treated as RsvdZ by implementations reporting Page Request Support (PRS) as
not supported in the Extended Capability register.

Register Offset 0E8h

Bits Access Default Field Description

31:2 RW 0h MA: Message
address

When fault events are enabled, the contents of
this register specify the DWORD-aligned address
(bits 31:2) for the interrupt request.

Software requirements for programming this
register are described in Section 5.6.

1:0 RsvdZ 0h R: Reserved Reserved.

0

RsvdMA

3
1 12

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-67

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.37 Page Request Event Upper Address Register

Figure 10-81. Page Request Event Upper Address Register

Abbreviation PEUADDR_REG

General
Description Register specifying the Page Request Event interrupt message upper address.

Register Offset 0ECh

Bits Access Default Field Description

31:0 RW 0h MUA: Message
upper address

This field specifies the upper address (bits
63:32) for the page request event interrupt.

Software requirements for programming this
register are described in Section 5.6.

Hardware implementations not supporting
Extended Interrupt Mode may treat this field as
RsvdZ.

0

MUA

3
1

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-68 Order Number: D51397-006

10.4.38 MTRR Capability Register

Figure 10-82. MTRR Capability Register

Abbreviation MTRRCAP_REG

General
Description

Register reporting the Memory Type Range Register Capability. This register is
treated as RsvdZ by implementations reporting Memory Type Support (MTS) as not
supported in the Extended Capability register.
When implemented, value reported in this register must match IA32_MTRRCAP
Model Specific Register (MSR) value reported by the host IA-32 processor(s).

Register Offset 100h

Bits Access Default Field Description

 63:11 RsvdZ 0h R: Reserved Reserved.

 10 RO X WC: Write
Combining

• 0: Write-combining (WC) memory type is
not supported.

• 1: Write-combining (WC) memory type is
supported.

9 RsvdZ 0 R: Reserved Reserved.

 8 RO X FIX: Fixed Range
MTRRs Supported

• 0: No fixed range MTRRs are supported
• 1: Fixed range MTRRs

(MTRR_FIX64K_00000 through
MTRR_FIX4K_0F8000) are supported

 7:0 RO X VCNT: Variable
MTRR Count

Indicates number of variable range MTRRs
supported

0789
6
3

1
1

1
0

Rsvd WC Rsvd Fix VCNT

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-69

Register Descriptions—Intel® Virtualization Technology for Directed I/O

10.4.39 MTRR Default Type Register

Figure 10-83. MTRR Default Type Register

Abbreviation MTRRDEF_REG

General
Description

Register for enabling/configuring Memory Type Range Registers. This register is
treated as RsvdZ by implementations reporting Memory Type Support (MTS) as not
supported in the Extended Capability register.

Register Offset 108h

Bits Access Default Field Description

 63:12 RsvdZ 0h R: Reserved Reserved.

 11 RW 0 E: MTRR Enable

• 0: Disable MTRRs; UC memory type is
applied. FE field has no effect.

• 1: Enable MTRRs. FE field can disable the
fixed-range MTRRs. Type specified in the
default memory type field is used for areas
of memory not already mapped by either
fixed or variable MTRR.

10 RW 0 FE: Fixed Range
MTRR Enable

• 0: Disable fixed range MTRRs.
• 1: Enable fixed range MTRRs.

When fixed range MTRRs are enabled, they take
priority over the variable range MTRRs when
overlaps in ranges occur. If the fixed-range
MTRRs are disabled, the variable range MTRRs
can still be used and can map the range
ordinarily covered by the fixed range MTRRs.

 9:8 RsvdZ 0h R: Reserved Reserved.

 7:0 RW 0h TYPE: Default
Memory Type

Indicates default memory type used for physical
memory address ranges that do not have a
memory type specified for them by an MTRR.
Legal values for this field are 0,1,4, 5 and 6.

0789
6
3

1
1

1
0

Rsvd WC Rsvd Fix VCNT

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-70 Order Number: D51397-006

10.4.40 Fixed-Range MTRRs

Figure 10-84. Fixed-Range MTRR Format

Abbreviation MTRR_FIX64_00000_REG
MTRR_FIX16K_80000_REG
MTRR_FIX16K_A0000_REG
MTRR_FIX4K_C0000_REG
MTRR_FIX4K_C8000_REG
MTRR_FIX4K_D0000_REG
MTRR_FIX4K_D8000_REG
MTRR_FIX_4K_E0000_REG
MTRR_FIX_4K_E8000REG
MTRR_FIX4K_F0000_REG
MTRR_FIX_4K_F8000_REG

General
Description

Fixed-range Memory Type Range Registers. These include 11 registers as illustrated
in Table 30.
These registers are treated as RsvdZ by implementations reporting Memory Type
Support (MTS) as not supported in the Extended Capability register.

Register Offsets 120h, 128h, 130h, 138h, 140h, 148h, 150h, 158h, 160h, 168h, 170h

Bits Access Default Field Description

63:56 RW 0h R7 Register Field 7

55:48 RW 0h R6 Register Field 6

47:40 RW 0h R5 Register Field 5

39:32 RW 0h R4 Register Field 4

31:24 RW 0h R3 Register Field 3

23:16 RW 0h R2 Register Field 2

15:8 RW 0h R1 Register Field 1

7:0 RW 0h R0 Register Field 0

0
6
3

2
4 7

R0

8
2
3

R1R2R3R4R5R6R7

5
6

5
5

4
8

4
7

4
0

3
9

3
2

3
1

1
6

1
5

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 10-71

Register Descriptions—Intel® Virtualization Technology for Directed I/O

Table 30. Address Mapping for Fixed-Range MTRRs

Address Range (hexadecimal)
MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000 -
7FFFF

60000 -
6FFFF

50000 -
5FFFF

40000 -
4FFFF

30000 -
3FFFF

20000 -
2FFFF

10000 -
1FFFF

00000 -
0FFFF

MTRR_FIX64K_
00000_REG

9C000-
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

MTRR_FIX16K_
80000_REG

BC000-
BFFFF

B8000-
B8FFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

MTRR_FIX16K_
A0000_REG

C7000-
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

MTRR_FIX4K_
C0000_REG

CF000-
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

MTRR_FIX4K_
C8000_REG

D7000-
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

MTRR_FIX4K_
D0000_REG

DF000-
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

MTRR_FIX4K_
D8000_REG

E7000-
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

MTRR_FIX4K_
E0000_REG

EF000-
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

MTRR_FIX4K_
E8000_REG

F7000-
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

MTRR_FIX4K_
F0000_REG

FF000-
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

MTRR_FIX4K_
F8000_REG

Intel® Virtualization Technology for Directed I/O—Register Descriptions

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
10-72 Order Number: D51397-006

10.4.41 Variable-Range MTRRs

Figure 10-85. Variable-Range MTRR Format

Abbreviation MTRR_PHYSBASE0_REG, MTRR_PHYSMASK0_REG
MTRR_PHYSBASE1_REG, MTRR_PHYSMASK1_REG
MTRR_PHYSBASE2_REG, MTRR_PHYSMASK2_REG
MTRR_PHYSBASE3_REG, MTRR_PHYSMASK3_REG
MTRR_PHYSBASE4_REG, MTRR_PHYSMASK4_REG
MTRR_PHYSBASE5_REG, MTRR_PHYSMASK5_REG
MTRR_PHYSBASE6_REG, MTRR_PHYSMASK6_REG
MTRR_PHYSBASE7_REG, MTRR_PHYSMASK7_REG
MTRR_PHYSBASE8_REG, MTRR_PHYSMASK8_REG
MTRR_PHYSBASE9_REG, MTRR_PHYSMASK9_REG

General
Description

Variable-range Memory Type Range Registers. Each Variable-range MTRR register
includes a low 64-bit Base register and a high 64-bit Mask register. VCNT field in
MTRRCAP_REG reports number of Variable-range MTRRs supported by hardware.
These registers are treated as RsvdZ by implementations reporting Memory Type
Support (MTS) as not supported in the Extended Capability register.

Register Offsets 180h, 188h, 190h, 198h, A0h, 1A8h, 1B0h, 1B8h, 1C0h, 1C8h, 1D0h, 1D8h, 1E0h,
1E8h, 1F0h, 1F8h, 200h, 208h, 210h, 218h

Bits Access Default Field Description

63:HAW RsvdZ 0h R: Reserved Reserved

HAW-1:12 RW 0h PHYSMASK:
Physical Mask Mask for range

11 RW 0 V: Valid
• 0: Not Valid
• 1: Valid

10:0 RsvdZ 0h R: Reserved Reserved

Bits Access Default Field Description

63:HAW RsvdZ 0h R: Reserved Reserved

HAW-1:12 RW 0h PHYSBASE:
Physical Base Base address of range

11:8 RsvdZ 0h R: Reserved Reserved

7:0 RW 0h TYPE: Type Memory type for range

0

TYPERSVD

7
1
1HAW-1

RSVD

6
3

PHYSBASE

1
2 8HAW

0

RSVDV

1
1HAW-1

RSVD

6
3

PHYSMASK

1
2

1
0HAW

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 A-1

Non-Recoverable Fault Reason Encodings—Intel® Virtualization Technology for Directed I/O

Appendix A Non-Recoverable Fault Reason Encodings

The following table describes the summary of fault reason codes assigned to various non-recoverable
faults. Refer to Chapter 7 for details on how the fault reasons codes map to different request types.

Encoding Fault Reason Description

0h Reserved. Used by software when initializing fault records (for advanced fault logging)

DMA Remapping Fault Conditions

1h The Present (P) field in the root-entry (or UP/LP fields in the extended-root-entry) used
to process a request is 0.

2h The Present (P) field in the context-entry (or extended-context-entry) used to process
a request is 0.

3h

Invalid programming of a context-entry or extended-context-entry. For example:
• The Address width (AW) field is programmed with a value not supported by the

hardware implementation.
• The Translation-Type (T) field is programmed to indicate a translation type not

supported by the hardware implementation.
• Hardware attempt to access the second-level paging entry referenced through the

SLPTPTR field resulted in error.
• Hardware attempt to access the PASID-entry referenced through the PASIDTPTR

field resulted in error.

4h

Input-address to second-level translation is above (2X - 1), where X is the minimum of
the maximum guest address width (MGAW) reported through the Capability register
and the value in the Address-Width (AW) field of the context-entry (or extended-
context-entry) used to process the request.

5h A non-recoverable address translation fault resulted due to lack of write permission.

6h
A non-recoverable address translation fault resulted due to lack of read permission. For
implementations reporting ZLR field as set in the Capability register, this fault condition
is not applicable for zero-length read requests to write-only pages.

7h
Hardware attempt to access a second-level paging entry (SL-PDPE, SL-PDE, or SL-PTE)
referenced through the Address (ADDR) field in a preceding second-level paging entry
(SL-PML4E, SL-PDPE, SL-PDE) resulted in error.

8h Hardware attempt to access a root-entry (or extended-root-entry) referenced through
the Root-Table Address (RTA) field in the root-table Address Register resulted in error.

9h
Hardware attempt to access a context-entry (or extended-context-entry) referenced
through the Context Table Pointer (CTP) field (or UCTP/LCTP fields in an extended-root-
entry) resulted in error.

Ah Non-zero reserved field in a root-entry with Present (P) field Set (or extended-root-
entry with UP/LP field Set).

Bh Non-zero reserved field in a context-entry or extended-context-entry with Present (P)
field Set.

Ch
Non-zero reserved field in a second-level paging entry (SL-PML4E, SL-PDPE, SL-PDE, or
SL-PTE) with at least one of Read (R) and Write (W) fields (and Execute (E) field, if it is
enabled and is applicable for the type of request) is Set.

Intel® Virtualization Technology for Directed I/O—Non-Recoverable Fault Reason Encodings

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
A-2 Order Number: D51397-006

Dh Translation request or translated request explicitly blocked due to the programming of
the Translation Type (T) field in the present context-entry or extended-context-entry.

Eh - Fh Reserved.

10h The PASID Enable (PASIDE) field in extended-context-entry (with P=1) used to process
the untranslated request with PASID is 0.

11h
The PASID value in the untranslated request with PASID is larger than the maximum
PASID-value supported by the PASID-Table-Size (PTS) field in the extended-context-
entry (with P=PASIDE=1) used to process the request.

12h The Present (P) field in the PASID-entry used to process the untranslated request with
PASID is 0.

13h Non-zero reserved field in a PASID-entry with the Present (P) field Set.

14h Input-address in the request with PASID is not Canonical (i.e., address bits 63:48 not
same value as address bit 47).

15h Hardware attempt to access the FL-PML4 entry referenced through the FLPTPTR field in
the PASID-entry resulted in error.

16h Non-zero reserved field in first-level paging entry (FL-PML4E, FL-PDPE, FL-PDE, or FL-
PTE) with Present (P) field Set.

17h
Hardware attempt to access a first-level paging entry (FL-PDPE, FL-PDE, or FL-PTE)
referenced through the Address (ADDR) field in a preceding first-level paging entry
(FL-PML4E, FL-PDPE, or FL-PDE) resulted in error.

18h A non-recoverable address translation fault resulted for untranslated request with
PASID with Execute-Requested (ER) field Set, due to lack of execute permission.

19h The Execute Requests Enable (ERE) field is 0 in extended-context-entry (with P=1)
used to process the request with PASID with Execute-Requested (ER) field Set.

1Ah The Supervisor Requests Enable (SRE) field is 0 in extended-context-entry (with P=1)
used to process the request with PASID with Privileged-mode-Requested (PR) field Set.

1Bh Root Table Type (RTT) field is 0 in Root-table Address register (RTADDR_REG) used to
process the request with PASID.

1Ch - 1Fh Reserved.

Encoding Fault Reason Description

Intel® Virtualization Technology for Directed I/O
September 2013 Architecture Specification, Rev. 2.2
Order Number: D51397-006 A-3

Non-Recoverable Fault Reason Encodings—Intel® Virtualization Technology for Directed I/O

Interrupt Remapping Fault Conditions

 20h Decoding of the interrupt request per the Remappable request format detected one or
more reserved fields as Set.

 21h The interrupt_index value computed for the interrupt request is greater than the
maximum allowed for the interrupt Remapping table-size configured by software.

 22h The Present (P) field in the IRTE corresponding to the interrupt_index of the interrupt
request is Clear.

 23h
Hardware attempt to access the interrupt Remapping table through the Interrupt
Remapping Table Address (IRTA) field in the Interrupt Remap Table Address Register
resulted in error.

 24h Hardware detected one ore more reserved fields that are not initialized to zero in an
IRTE with Present (P) field Set.

 25h

On Intel® 64 platforms, hardware blocked an interrupt request in Compatibility format
either due to Extended Interrupt Mode Enabled (EIME field Set in Interrupt Remapping
Table Address Register) or Compatibility format interrupts disabled (CFIS field Clear in
Global Status Register).
On Itanium® platforms, hardware blocked an interrupt request in Compatibility format.

 26h
Hardware blocked a Remappable interrupt request due to verification failure of the
interrupt requester’s source-id per the programming of SID, SVT and SQ fields in the
corresponding IRTE with Present (P) field Set.

27h - FFh Reserved.

Encoding Fault Reason Description

Intel® Virtualization Technology for Directed I/O—Non-Recoverable Fault Reason Encodings

Intel® Virtualization Technology for Directed I/O
Architecture Specification, Rev. 2.2 September 2013
A-4 Order Number: D51397-006

This P
age I

s L
eft

Inten
tion

ally
 Blan

k

	Intel® Virtualization Technology for Directed I/O
	1 Introduction
	1.1 Audience
	1.2 Glossary
	1.3 References

	2 Overview
	2.1 Intel® Virtualization Technology Overview
	2.2 VMM and Virtual Machines
	2.3 Hardware Support for Processor Virtualization
	2.4 I/O Virtualization
	2.5 Intel® Virtualization Technology For Directed I/O Overview
	2.5.1 Hardware Support for DMA Remapping
	2.5.1.1 OS Usages of DMA Remapping
	2.5.1.2 VMM Usages of DMA Remapping
	2.5.1.3 DMA Remapping Usages by Guests
	2.5.1.4 Interaction with Processor Virtualization

	2.5.2 Hardware Support for Interrupt Remapping
	2.5.2.1 Interrupt Isolation
	2.5.2.2 Interrupt Migration
	2.5.2.3 x2APIC Support

	3 DMA Remapping
	3.1 Types of DMA requests
	3.2 Domains and Address Translation
	3.3 Remapping Hardware - Software View
	3.4 Mapping Devices to Domains
	3.4.1 Source Identifier
	3.4.2 Root-Entry & Extended-Root-Entry
	3.4.3 Context-Entry
	3.4.4 Extended-Context-Entry

	3.5 Hierarchical Translation Structures
	3.6 First-Level Translation
	3.6.1 Translation Faults
	3.6.2 Access Rights
	3.6.3 Accessed, Extended Accessed, and Dirty Flags
	3.6.4 Snoop Behavior
	3.6.5 Memory Typing
	3.6.5.1 Selecting Memory Type from Page Attribute Table
	3.6.5.2 Selecting Memory Type from Memory Type Range Registers
	3.6.5.3 Selecting Effective Memory Type

	3.7 Second-Level Translation
	3.7.1 Translation Faults
	3.7.2 Access Rights
	3.7.3 Snoop Behavior
	3.7.4 Memory Typing

	3.8 Nested Translation
	3.8.1 Translation Faults
	3.8.2 Access Rights
	3.8.3 Snoop Behavior
	3.8.4 Memory Typing

	3.9 Identifying Origination of DMA Requests
	3.9.1 Devices Behind PCI-Express to PCI/PCI-X Bridges
	3.9.2 Devices Behind Conventional PCI Bridges
	3.9.3 Root-Complex Integrated Devices
	3.9.4 PCI-Express Devices Using Phantom Functions

	3.10 Handling Requests from Processor Graphics Device
	3.11 Handling Requests Crossing Page Boundaries
	3.12 Handling of Zero-Length Reads
	3.13 Handling Requests to Interrupt Address Range
	3.14 Handling Requests to Reserved System Memory
	3.15 Root-Complex Peer to Peer Considerations

	4 Support For Device-TLBs
	4.1 Device-TLB Operation
	4.1.1 Translation Request
	4.1.2 Translation Completion
	4.1.3 Translated Request
	4.1.4 Invalidation Request & Completion

	4.2 Remapping Hardware Handling of Device-TLBs
	4.2.1 Handling of ATS Protocol Errors
	4.2.2 Root-Port Control of ATS Address Types
	4.2.3 Handling of Translation Requests
	4.2.3.1 Accessed, Extended Accessed, and Dirty Flags
	4.2.3.2 Translation Requests for Multiple Translations

	4.2.4 Handling of Translated Requests

	4.3 Handling of Device-TLB Invalidations

	5 Interrupt Remapping
	5.1 Overview
	5.2 Identifying Origination of Interrupt Requests
	5.3 Interrupt Processing On Intel® 64 Platforms
	5.3.1 Interrupt Requests in Intel® 64 Compatibility Format
	5.3.2 Interrupt Requests in Remappable Format
	5.3.2.1 Interrupt Remapping Table

	5.3.3 Overview of Interrupt Remapping On Intel® 64 Platforms
	5.3.3.1 Interrupt Remapping Fault Conditions

	5.4 Interrupt Requests on Itanium® Platforms
	5.5 Programming Interrupt Sources To Generate Remappable Interrupts
	5.5.1 I/OxAPIC Programming
	5.5.2 MSI and MSI-X Register Programming

	5.6 Remapping Hardware - Interrupt Programming
	5.6.1 Programming in Intel® 64 xAPIC Mode
	5.6.2 Programming in Intel® 64 x2APIC Mode
	5.6.3 Programming on Itanium® Platforms

	5.7 Handling of Platform Events

	6 Caching Translation Information
	6.1 Caching Mode
	6.2 Address Translation Caches
	6.2.1 Tagging of Cached Translations
	6.2.2 Context-cache
	6.2.2.1 Context-Entry Programming Considerations

	6.2.3 PASID-cache
	6.2.4 IOTLB
	6.2.4.1 Details of IOTLB Use
	6.2.4.2 Global Pages

	6.2.5 Caches for Paging Structures
	6.2.5.1 PML4-cache
	6.2.5.2 PDPE-cache
	6.2.5.3 PDE-cache
	6.2.5.4 Details of Paging-Structure Cache Use

	6.2.6 Using the Paging-Structure Caches to Translate Requests
	6.2.7 Multiple Cached Entries for a Single Paging-Structure Entry

	6.3 Translation Caching at Endpoint Device
	6.4 Interrupt Entry Cache
	6.5 Invalidation of Translation Caches
	6.5.1 Register-based Invalidation Interface
	6.5.1.1 Context Command Register
	6.5.1.2 IOTLB Registers

	6.5.2 Queued Invalidation Interface
	6.5.2.1 Context-cache Invalidate Descriptor
	6.5.2.2 PASID-cache Invalidate Descriptor
	6.5.2.3 IOTLB Invalidate Descriptor
	6.5.2.4 Extended IOTLB Invalidate Descriptor
	6.5.2.5 Device-TLB Invalidate Descriptor
	6.5.2.6 Extended Device-TLB Invalidate Descriptor
	6.5.2.7 Interrupt Entry Cache Invalidate Descriptor
	6.5.2.8 Invalidation Wait Descriptor
	6.5.2.9 Hardware Generation of Invalidation Completion Events
	6.5.2.10 Hardware Handling of Queued Invalidation Interface Errors
	6.5.2.11 Queued Invalidation Ordering Considerations

	6.5.3 IOTLB Invalidation Considerations
	6.5.3.1 Implicit Invalidation on Page Requests
	6.5.3.2 Caching Fractured Translations
	6.5.3.3 Recommended Invalidation
	6.5.3.4 Optional Invalidation
	6.5.3.5 Delayed Invalidation

	6.5.4 TLB Shootdown Optimization for Root-Complex Integrated Devices
	6.5.4.1 Deferred Invalidation
	6.5.4.2 PASID-State Table
	6.5.4.3 Remapping Hardware Handling of PASID State-Update Requests
	6.5.4.4 Root-Complex Integrated Device Handling of PASID State-Update Responses
	6.5.4.5 Ordering of PASID State-Update Requests and Responses
	6.5.4.6 Example TLB Shootdown using Deferred Invalidations

	6.5.5 Draining of Requests to Memory
	6.5.6 Interrupt Draining

	6.6 Set Root Table Pointer Operation
	6.7 Set Interrupt Remapping Table Pointer Operation
	6.8 Write Buffer Flushing
	6.9 Hardware Register Programming Considerations
	6.10 Sharing Remapping Structures Across Hardware Units

	7 Translation Faults
	7.1 Interrupt Translation Faults
	7.2 Address Translation Faults
	7.2.1 Non-Recoverable Address Translation Faults
	7.2.1.1 Non-Recoverable Faults for Untranslated Requests Without PASID
	7.2.1.2 Non-Recoverable Faults for Untranslated Requests With PASID
	7.2.1.3 Non-Recoverable Faults for Translation Requests Without PASID
	7.2.1.4 Non-Recoverable Faults for Translation Requests With PASID
	7.2.1.5 Non-Recoverable Faults for Translated Requests

	7.2.2 Recoverable Address Translation Faults

	7.3 Non-Recoverable Fault Reporting
	7.3.1 Primary Fault Logging
	7.3.2 Advanced Fault Logging

	7.4 Non-Recoverable Fault Event
	7.5 Recoverable Fault Reporting
	7.5.1 Handling of Page Requests
	7.5.1.1 Page Request Descriptor

	7.6 Recoverable Fault Event
	7.7 Servicing Recoverable Faults
	7.7.1 Page Group Response Descriptor
	7.7.2 Page Stream Response Descriptor

	7.8 Revoking PASIDs with Pending Page Faults

	8 BIOS Considerations
	8.1 DMA Remapping Reporting Structure
	8.2 Remapping Structure Types
	8.3 DMA Remapping Hardware Unit Definition Structure
	8.3.1 Device Scope Structure
	8.3.1.1 Reporting Scope for I/OxAPICs
	8.3.1.2 Reporting Scope for MSI Capable HPET Timer Block
	8.3.1.3 Reporting Scope for ACPI Name-space Devices
	8.3.1.4 Device Scope Example

	8.3.2 Implications for ARI
	8.3.3 Implications for SR-IOV
	8.3.4 Implications for PCI/PCI-Express Hot Plug
	8.3.5 Implications with PCI Resource Rebalancing
	8.3.6 Implications with Provisioning PCI BAR Resources

	8.4 Reserved Memory Region Reporting Structure
	8.5 Root Port ATS Capability Reporting Structure
	8.6 Remapping Hardware Static Affinity Structure
	8.7 ACPI Name-space Device Declaration Structure
	8.8 Remapping Hardware Unit Hot Plug
	8.8.1 ACPI Name Space Mapping
	8.8.2 ACPI Sample Code
	8.8.3 Example Remapping Hardware Reporting Sequence

	9 Translation Structure Formats
	9.1 Root Entry
	9.2 Extended Root Entry
	9.3 Context Entry
	9.4 Extended-Context-Entry
	9.5 PASID Entry
	9.6 PASID-State Entry
	9.7 First-Level Paging Entries
	9.8 Second-Level Paging Entries
	9.9 Fault Record
	9.10 Interrupt Remapping Table Entry (IRTE)

	10 Register Descriptions
	10.1 Register Location
	10.2 Software Access to Registers
	10.3 Register Attributes
	10.4 Register Descriptions
	10.4.1 Version Register
	10.4.2 Capability Register
	10.4.3 Extended Capability Register
	10.4.4 Global Command Register
	10.4.5 Global Status Register
	10.4.6 Root Table Address Register
	10.4.7 Context Command Register
	10.4.8 IOTLB Registers
	10.4.8.1 IOTLB Invalidate Register
	10.4.8.2 Invalidate Address Register

	10.4.9 Fault Status Register
	10.4.10 Fault Event Control Register
	10.4.11 Fault Event Data Register
	10.4.12 Fault Event Address Register
	10.4.13 Fault Event Upper Address Register
	10.4.14 Fault Recording Registers [n]
	10.4.15 Advanced Fault Log Register
	10.4.16 Protected Memory Enable Register
	10.4.17 Protected Low-Memory Base Register
	10.4.18 Protected Low-Memory Limit Register
	10.4.19 Protected High-Memory Base Register
	10.4.20 Protected High-Memory Limit Register
	10.4.21 Invalidation Queue Head Register
	10.4.22 Invalidation Queue Tail Register
	10.4.23 Invalidation Queue Address Register
	10.4.24 Invalidation Completion Status Register
	10.4.25 Invalidation Event Control Register
	10.4.26 Invalidation Event Data Register
	10.4.27 Invalidation Event Address Register
	10.4.28 Invalidation Event Upper Address Register
	10.4.29 Interrupt Remapping Table Address Register
	10.4.30 Page Request Queue Head Register
	10.4.31 Page Request Queue Tail Register
	10.4.32 Page Request Queue Address Register
	10.4.33 Page Request Status Register
	10.4.34 Page Request Event Control Register
	10.4.35 Page Request Event Data Register
	10.4.36 Page Request Event Address Register
	10.4.37 Page Request Event Upper Address Register
	10.4.38 MTRR Capability Register
	10.4.39 MTRR Default Type Register
	10.4.40 Fixed-Range MTRRs
	10.4.41 Variable-Range MTRRs

	Appendix A Non-Recoverable Fault Reason Encodings

