
Intel® Virtualization Technology
for Directed I/O

 Architecture Specification

February 2006

Order Number: D51397-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EX-
PRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RE-
LATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FIT-
NESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium III processors) may contain design defects or errors
known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/technology/hyperthread/ for more information including
details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary de-
pending on hardware and software configurations. Intel® Virtualization Technology-enabled BIOS and VMM applications are
currently in development.

Intel® Extended Memory 64 Technology (Intel® EM64T) requires a computer system with a processor, chipset, BIOS, OS,
device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) with-
out an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel
EM64T-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more
information.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 2006 Intel Corporation

Version 1.0

CONTENTS
PAGE
CHAPTER 1
INTRODUCTION
1.1 AUDIENCE. 1-2
1.2 ORGANIZATION . 1-2
1.3 GLOSSARY . 1-3
1.4 REFERENCES. 1-4

CHAPTER 2
OVERVIEW
2.1 INTEL® VIRTUALIZATION TECHNOLOGY OVERVIEW . 2-1
2.2 VMM AND VIRTUAL MACHINES . 2-1
2.3 HARDWARE SUPPORT FOR PROCESSOR VIRTUALIZATION. 2-2
2.4 I/O VIRTUALIZATION . 2-2
2.5 INTEL® VIRTUALIZATION TECHNOLOGY FOR DIRECTED I/O OVERVIEW . . . 2-3
2.5.1 Hardware Support for DMA Remapping .2-3
2.5.2 OS Usages of DMA Remapping .2-4
2.5.3 VMM Usages of DMA Remapping. .2-5
2.5.3.1 DMA Remapping Usages by Guests .2-6
2.5.4 Interaction with Processor Virtualization .2-7

CHAPTER 3
DMA REMAPPING
3.1 DOMAINS AND ADDRESS TRANSLATION . 3-1
3.2 MAPPING DEVICES TO DOMAINS . 3-2
3.2.1 Source Identifier .3-2
3.2.2 Root-Entry .3-3
3.2.3 Context-Entry. .3-4
3.2.3.1 Context Caching .3-5
3.3 ADDRESS TRANSLATION . 3-6
3.3.1 Multi-Level Page Table .3-6
3.3.1.1 Adjusted Guest Address Width (AGAW) .3-8
3.3.1.2 Multi-level Page Table Translation .3-9
3.3.1.3 I/O Translation Lookaside Buffer (IOTLB) .3-9
3.4 DMA REMAPPING FAULTS . 3-10
3.4.1 Fault Logging. .3-11
3.4.1.1 Primary Fault Logging. .3-12
3.4.1.2 Advanced Fault Logging. .3-12
3.4.1.3 Fault Priority .3-13
3.4.2 Fault Reporting .3-13
3.4.3 Hardware Handling of Faulting DMA Requests. .3-13

CHAPTER 4
HARDWARE CONSIDERATIONS
4.1 HANDLING INTERRUPT MESSAGES . 4-1
4.2 ASSIGNING DEVICES BEHIND PCI EXPRESS TO PCI/PCI-X BRIDGES 4-1
4.3 ASSIGNING PCI EXPRESS DEVICES USING PHANTOM FUNCTIONS 4-2
4.4 HANDLING DMA REQUESTS CROSSING PAGE BOUNDARY 4-2
4.5 HANDLING OF ZERO-LENGTH DMA. 4-2
Intel® Virtualization Technology for Directed I/O Architecture Specification iii

4.6 DMA REMAPPING - SOFTWARE VIEW. 4-3
4.7 HANDLING DMA TO RESERVED SYSTEM MEMORY . 4-3
4.8 PEER TO PEER CONSIDERATIONS . 4-4
4.9 HANDLING OF ISOCHRONOUS DMA . 4-4

CHAPTER 5
BIOS CONSIDERATIONS
5.1 DMA REMAPPING REPORTING STRUCTURE . 5-1
5.2 DMA REMAPPING STRUCTURE TYPES. 5-2
5.3 DMA REMAPPING HARDWARE UNIT DEFINITION STRUCTURE. 5-3
5.3.1 Device Scope Structure. .5-4
5.3.2 Device Scope Example .5-5
5.4 RESERVED MEMORY REGION REPORTING STRUCTURE 5-7

CHAPTER 6
TRANSLATION STRUCTURE FORMATS
6.1 ROOT-ENTRY . 6-1
6.2 CONTEXT-ENTRY. 6-3
6.3 PAGE-TABLE ENTRY . 6-6
6.4 FAULT RECORD . 6-8

CHAPTER 7
DMA REMAPPING REGISTERS
7.1 REGISTER LOCATION . 7-1
7.2 SOFTWARE ACCESS TO HARDWARE REGISTERS . 7-1
7.3 REGISTER ATTRIBUTES . 7-2
7.4 REGISTER DESCRIPTIONS. 7-3
7.4.1 Version Register .7-4
7.4.2 Capability Register .7-5
7.4.3 Extended Capability Register .7-10
7.4.4 Global Command Register .7-12
7.4.5 Global Status Register. .7-16
7.4.6 Root-Entry Table Address Register. .7-17
7.4.7 Context Command Register .7-18
7.4.8 IOTLB Invalidation Unit Registers .7-21
7.4.8.1 IOTLB Invalidate Register .7-22
7.4.8.2 Invalidate Address Register .7-25
7.4.9 Hardware Caching Details. .7-26
7.4.9.1 Caching Mode Behavior .7-26
7.4.9.2 Context Caching .7-27
7.4.9.3 IOTLB .7-27
7.4.9.4 Page Directory Entry (PDE) Caching .7-28
7.4.9.5 PDE Cache Invalidation .7-28
7.4.10 Fault Status Register .7-29
7.4.11 Fault Event Control Register .7-31
7.4.12 Hardware Handling of Fault Events. .7-32
7.4.12.1 Fault Event Generation with Primary Fault Logging .7-33
7.4.12.2 Fault Event Generation with Advanced Fault Logging7-33
7.4.13 Fault Event Data Register .7-34
7.4.14 Fault Event Address Register .7-34
7.4.15 Fault Event Upper Address Register .7-35
iv Intel® Virtualization Technology for Directed I/O Architecture Specification

7.4.16 Fault Recording Registers [n] . 7-36
7.4.17 Advanced Fault Log Register . 7-38
7.4.18 Hardware Handling of Fault Logging . 7-39
7.4.18.1 Hardware Handling of Primary Fault Logging . 7-39
7.4.18.2 Hardware Handling of Advanced Fault Logging . 7-40
7.4.19 Protected Memory Enable Register . 7-41
7.4.20 Protected Low-Memory Base Register . 7-43
7.4.21 Protected Low-Memory Limit Register . 7-44
7.4.22 Protected High-Memory Base Register . 7-45
7.4.23 Protected High-Memory Limit Register . 7-46

CHAPTER 8
EXTENDED DMA REMAPPING FEATURES
8.1 ON-DEVICE IOTLBS . 8-1
8.2 DMA REMAPPING - EXTENDED FEATURES . 8-1

APPENDIX A
FAULT REASON ENCODINGS

FIGURES

Figure 1-1. General Platform Topology . 1-1
Figure 2-1. Example OS Usage of DMA Remapping . 2-4
Figure 2-2. Example Virtualization Usage of DMA Remapping. 2-5
Figure 2-3. Interaction Between I/O and Processor Virtualization. 2-7
Figure 3-1. DMA Address Translation . 3-2
Figure 3-2. Requester Identifier Format . 3-3
Figure 3-3. Device to Domain Mapping Structures . 3-4
Figure 3-4. Example Multi-level Page Table . 3-7
Figure 3-5. Example Multi-level Page Table (with 2MB Super Pages) 3-8
Figure 5-1. Hypothetical Platform Configuration . 5-6
Figure 6-1. Root-Entry Format . 6-1
Figure 6-2. Context-Entry Format . 6-3
Figure 6-3. Page-Table-Entry Format . 6-6
Figure 6-4. Fault-Record Format . 6-8

TABLES

Table 1-1. Document Organization . 1-2
Table 1-2. Glossary . 1-3
Table 1-3. References . 1-4
Table 3-1. DMA Remapping Fault Conditions . 3-10
Table 5-1. DMA Remapping Reporting (DMAR) Table . 5-1
Table 5-2. DMA Remapping Structure Types . 5-2
Table 5-3. DMA Remapping Hardware Unit Definition (DRHD) Structure 5-3
Table 5-4. Device Scope Entry Structure. 5-4
Table 5-5. Reserved Memory Region Reporting (RMRR) Structure 5-8
Table 6-1. Root-Entry Contents . 6-2
Table 6-2. Context-Entry Contents. 6-4
Table 6-3. Page-Table-Entry Contents . 6-7
Intel® Virtualization Technology for Directed I/O Architecture Specification v

Table 6-4. Fault-Record Entry Contents .6-9
Table 7-1. Attribute Definitions for DMA Remapping Registers. .7-2
Table 7-2. DMA Remapping Register .7-3
Table 7-3. Version Register .7-4
Table 7-4. Capability Register .7-5
Table 7-5. Extended Capability Register .7-10
Table 7-6. Global Command Register .7-12
Table 7-7. Global Status Register .7-16
Table 7-8. Root-Entry Table Address Register .7-17
Table 7-9. Context Command Register .7-18
Table 7-10. IOTLB Invalidation Unit Registers. .7-21
Table 7-11. IOTLB Invalidate Register. .7-22
Table 7-12. Invalidate Address Register .7-25
Table 7-13. Fault Status Register .7-29
Table 7-14. Fault Event Control Register. .7-31
Table 7-15. Fault Event Data Register. .7-34
Table 7-16. Fault Event Address Register .7-34
Table 7-17. Fault Event Upper Address Register .7-35
Table 7-18. Fault Recording Register .7-36
Table 7-19. Advanced Fault Log Register .7-38
Table 7-20. Protected Memory Enable Register .7-41
Table 7-21. Protected Low-Memory Base Register .7-43
Table 7-22. Protected Low-Memory Limit Register .7-44
Table 7-23. Protected High-Memory Base Register .7-45
Table 7-24. Protected High-Memory Limit Register. .7-46
Table A-1. Fault Reason Encodings. A-1
vi Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 1
INTRODUCTION

This document describes the Intel® Virtualization Technology for Directed I/O (VT-d); specifi-
cally, it describes the components supporting I/O virtualization as it applies to platforms that use
Intel® processors and core logic chipsets complying with Intel® platform specifications.

Figure 1-1 illustrates the general platform topology.

The document includes the following topics:

• An overview of I/O subsystem hardware functions for virtualization support

• A brief overview of expected usages of the generalized hardware functions

• The theory of operation of hardware, including the programming interface

The following topics are not covered (or are covered in a limited context):

• Intel® Virtualization Technology for IA-32 Intel® Architecture. For more information,
refer to the “IA-32 Intel® Architecture Software Developer’s Manual”.

• Intel® Virtualization Technology for Intel® Itanium® Architecture. For more information,
refer to the “Intel® Virtualization Technology Specification for the Intel® Itanium® Archi-
tecture”.

Figure 1-1. General Platform Topology

P rocessor

S ystem B us

N orth B ridge

S outh
B ridge

D R A M

P rocessor

P C I E xpress
D evices

P C I, LP C ,
Legacy dev ices

In tegra ted
D ev ices

D M A R em app ing
Intel® Virtualization Technology for Directed I/O Architecture Specification 1-1

INTRODUCTION
• This specification is based on the PCI Express* 1.1 base specification. Any additional
features added to PCI Express that are relevant to I/O virtualization and DMA remapping
will be accommodated in future versions of this specification.

1.1 AUDIENCE
This document is aimed at hardware designers developing Intel platforms or core-logic
providing hardware support for virtualization. The document is also expected to be used by
operating system and virtual machine monitor (VMM) developers utilizing the I/O virtualiza-
tion hardware capabilities.

1.2 ORGANIZATION
The document is organized as shown in the following table.

Table 1-1. Document Organization

Chapter/
Appendix

Description

1 Introduction

2 I/O Device Assignment

3 DMA Remapping

4 Other Hardware Considerations

5 BIOS Considerations

6 Translation Structure Formats

7 DMA Remapping Registers

8 Extended DMA Remapping Features

A Fault Reason Encodings
1-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

INTRODUCTION
1.3 GLOSSARY
The document uses the terms listed in the following table.

Table 1-2. Glossary

Term Definition

Chipset / Root-
Complex

Used in this specification to refer to one or more hardware components that connect
processor complexes to the I/O and memory subsystems. The chipset may include a
variety of integrated devices.

Context A hardware representation of state that identifies a device and the domain to which
the device is assigned.

Device ID A 16-bit device identification number consisting of the PCI Bus number, Device
number and Function number. It is also referred to as Source-ID in this document.

DMA Remapping Translating the address in a DMA request (DVA) to a host physical address (HPA).

Domain A collection of physical, logical, or virtual resources that are allocated to work
together. Domain is used as a generic term for virtual machines, partitions, etc.

DVA DMA Virtual Address: a virtual address in a DMA request. One example usage of
DVA in virtualization is for it to be the same as the Guest physical address (GPA).

GAW Guest Address Width. GAW refers to the DMA virtual addressability limit.

GPA Guest Physical Address is the view of physical memory from software running in a
partition. GPA is also used in this document as an example usage for DMA virtual
addresses (DVA).

Guest Software running within a virtual machine environment (partition).

HAW Host Address Width. HAW refers to the DMA physical addressability limit for a
platform.

HPA Host Physical Address.

IOTLB I/O Translation Lookaside Buffer. IOTLB refers to an address translation cache in a
DMA remapping hardware unit that caches effective translations from DVA (GPA) to
HPA.

MGAW Maximum Guest Address Width. MGAW refers to the maximum DMA virtual
addressability supported by a DMA remapping hardware implementation.

MSI Message Signalled Interrupts.

PDE Cache Page Directory Entry cache. This refers to address translation caches in a DMA
remapping hardware unit that caches page directory entries at the various page-
directory levels. These are also referred to as non-leaf caches in this document.

VMM Virtual Machine Monitor - A software layer that controls virtualization.
Intel® Virtualization Technology for Directed I/O Architecture Specification 1-3

INTRODUCTION
1.4 REFERENCES
For related information, see the documents listed in the following table.

Table 1-3. References

Document Description

IA32-SDM IA-32 Intel® Architecture Software Developer's Manual

PCI-EXP PCI Express* Base Specification - Revision 1.1

ACPI ACPI Specification - Rev 3.0
1-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 2
OVERVIEW

This chapter provides an overview of Intel® Virtualization Technology for processor virtualiza-
tion, and describes additional hardware support for I/O virtualization.

2.1 INTEL® VIRTUALIZATION TECHNOLOGY OVERVIEW
Intel® Virtualization Technology consists of technology components that support virtualization
of platforms based on Intel processors, thereby enabling the running of multiple operating
systems and applications in independent partitions. Each partition behaves like a virtual
machine (VM) and provides isolation and protection across partitions. This hardware-based
virtualization solution, along with the virtualization software, enables multiple usages such as
server consolidation, activity partitioning, workload isolation, embedded IT management,
legacy software migration, and disaster recovery.

2.2 VMM AND VIRTUAL MACHINES
Intel® Virtualization Technology supports virtual machine architectures comprised of two prin-
cipal classes of software:

• Virtual-machine Monitor (VMM): A VMM acts as a host and has full control of the
processor(s) and other platform hardware. VMM presents guest software (see below) with
an abstraction of a virtual processor and allows it to execute directly on a logical processor.
A VMM is able to retain selective control of processor resources, physical memory,
interrupt management, and I/O.

• Guest Software: Each virtual machine is a guest software environment that supports a
stack consisting of an operating system (OS) and application software. Each operates
independently of other virtual machines and uses the same interface to processor(s),
memory, storage, graphics, and I/O provided by a physical platform. The software stack
acts as if it were running on a platform with no VMM. Software executing in a virtual
machine must operate with reduced privilege so that the VMM can retain control of
platform resources.

The VMM is a key component of the platform infrastructure in virtualization usages. Intel®
Virtualization Technology can improve the reliability and supportability of virtualization infra-
structure software with programming interfaces to virtualize processor hardware. It also
provides a foundation for additional virtualization support for other hardware components in the
platform.
Intel® Virtualization Technology for Directed I/O Architecture Specification 2-1

OVERVIEW
2.3 HARDWARE SUPPORT FOR PROCESSOR VIRTUALIZATION
Hardware support for processor virtualization enables system vendors to provide simple, robust
and reliable virtual machine monitor software. VMM relies on hardware support to set policy
and operational details for the handling of events, exceptions, and resources allocated to virtual
machines.

Intel® Virtualization Technology provides hardware support for processor virtualization. Intel®
Virtualization Technology for IA-32 processors is referred to as VT-x. VT-x constitutes a set of
virtual-machine extensions (VMX) that support virtualization of processor hardware for
multiple software environments by using virtual machines. An equivalent architecture for
processor virtualization of the Itanium architecture is defined and is referred to as VT-i.

2.4 I/O VIRTUALIZATION
A VMM must support virtualization of I/O requests from guest software. I/O virtualization may
be supported by a VMM through any of the following models:

• Emulation: A VMM may expose a virtual device to guest software by emulating an
existing (legacy) I/O device. This enables the same device drivers for the legacy device to
be run within the guest, and the VMM emulates the functionality of the I/O device in
software over whatever physical devices are available on the physical platform. I/O virtu-
alization through emulation provides good compatibility (by allowing existing device
drivers to run within a guest), but introduces limitations with respect to performance and
functionality.

• New Software Interfaces: This model is similar to I/O emulation, except that instead of
emulating legacy devices, VMM software exposes a synthetic (new) interface/device to
guest software. The synthetic device interface is often defined to be virtualization-friendly
to enable efficient virtualization compared to the overhead associated with I/O emulation.
This model provides improved performance over emulation, but has reduced compatibility
(due to the need for specialized guest software or drivers utilizing the new software inter-
faces).

• Assignment: As part of virtualizing the platform to guests, a VMM may directly assign the
physical I/O devices to VMs. With direct assignment of devices, the driver for an assigned
I/O device runs in the VM to which it is assigned and is allowed to interact directly with
the device hardware without invoking the VMM. Robust I/O assignment requires
additional hardware support to ensure the assigned device accesses are isolated and
restricted to resources owned by the assigned partition. The I/O assignment model may
also be used to create one or more I/O container partitions that support emulation or
software interfaces for virtualizing I/O requests from other guests. The I/O-container based
approach removes the need for running the physical device drivers as part of VMM
privileged software.

• Device-assisted I/O Sharing: In this model, which is an extension to the I/O assignment
model, an I/O device supports multiple functional interfaces, each of which may be
independently assigned to a VM. The device hardware itself is capable of accepting
2-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

OVERVIEW
multiple I/O requests through any of these functional interfaces and processing them
utilizing the device's hardware resources.

Depending on the usage requirements, a VMM may support any of the above models for I/O
virtualization. For example, I/O emulation may be best suited for virtualizing legacy devices.
I/O assignment may provide the best performance when hosting I/O-intensive workloads in a
guest. I/O virtualization through new software interfaces makes a trade-off between compati-
bility and performance, and native I/O sharing provides more virtual devices than the number of
physical devices in the platform.

2.5 INTEL® VIRTUALIZATION TECHNOLOGY FOR DIRECTED I/O
OVERVIEW

A general requirement for all of the above I/O virtualization models is the ability to isolate and
contain device accesses only to resources owned by the domain managing the device. Intel®
Virtualization Technology for Directed I/O provides VMM software with the following capabil-
ities:

• Assign I/O devices across VMs: Flexibly assign I/O devices to VMs and extend the
protection and isolation properties of VMs for I/O accesses.

• DMA remapping: Direct Memory Accesses (DMA) from devices can be independently
address-translated.

• Reliability: Record and report DMA errors that may otherwise corrupt memory to system
software.

For simplicity, the address translation functionality for I/O device DMA requests is referred to
as DMA remapping in this document.

2.5.1 Hardware Support for DMA Remapping
To generalize I/O virtualization and make it applicable to different processor architectures and
operating systems, this document refers to domains as abstract isolated environments in the plat-
form to which a subset of host physical memory is allocated.

DMA remapping provides hardware support for isolation of device accesses to memory, and
enables each device in the system to be assigned to a specific domain through a distinct set of
I/O page tables. When the device attempts to access system memory, the DMA remapping hard-
ware intercepts the access and utilizes the I/O page tables to determine whether the access can
be permitted; it also determines the actual location to access. Frequently used I/O page table
structures can be cached in hardware; the caches are referred to as I/O translation look-aside
buffers (IOTLBs). The DMA remapping can be configured flexibly and independently for each
device, or across multiple devices.
Intel® Virtualization Technology for Directed I/O Architecture Specification 2-3

OVERVIEW
2.5.2 OS Usages of DMA Remapping
There are several ways in which operating systems can use DMA remapping:

• OS Protection: An OS may define a domain containing its critical code and data
structures, and restrict access to that domain for all I/O devices in the system. This allows
the OS to limit erroneous or unintended corruption of its data and code through incorrect
programming of devices by device drivers, thereby improving its robustness and
reliability.

• Feature Support: An OS may use domains to better manage DMA from legacy 32-bit PCI
devices to high memory (above 4GB). This is achieved by allocating 32-bit devices to one
or more domains and programming the platform’s DMA remapping mechanism to remap
DMA from these devices to high memory. Without such support, software must resort to
data copying through OS “bounce buffers”.

• DMA Isolation: An OS may manage I/O by creating multiple domains and assigning one
or more I/O devices to each domain. Each device-driver explicitly registers its I/O buffers
with the OS, and the OS assigns these I/O buffers to specific domains, using hardware to
enforce DMA domain protection. See Figure 2-1.

Figure 2-1. Example OS Usage of DMA Remapping

Device A

Driver A
I/O Buffers

System Memory

Device B

Driver B
I/O Buffers

Driver B
I/O Buffers

Driver A
I/O Buffers

DMA-Remapping Hardware

System Memory

Device DMA isolated using DMA remapping hardware

Domain 1 Domain 2

I/O Devices
Device DMA without isolation

OS Code &
Data

I/O BuffersI/O Buffers
2-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

OVERVIEW
2.5.3 VMM Usages of DMA Remapping
The limitations of software-only methods for I/O virtualization can be improved through direct
assignment of I/O devices to partitions. With this approach, the driver for an assigned I/O device
runs only in the partition to which it is assigned and is allowed to interact directly with the device
hardware without invoking the VMM. The hardware support for DMA remapping enables this
direct device assignment without device-specific knowledge in the VMM. See Figure 2-2.

In this model, the VMM restricts itself to a controlling function for enabling direct assignment
of devices to its partitions. Rather than invoking the VMM for all (or most) I/O requests from a
partition, the VMM is invoked only when guest software accesses protected resources (such as
I/O configuration accesses, interrupt management, etc.) that impact system functionality and
isolation.

To support direct assignment of I/O devices, a VMM must enforce isolation of DMA requests.
I/O devices can be assigned to domains, and the DMA remapping hardware can be used to
restrict DMA from an I/O device to the physical memory presently owned by its domain. For
domains that may be relocated in physical memory (i.e., GPA not identical to HPA), the DMA
remapping hardware can be programmed to perform the necessary translation.

Figure 2-2. Example Virtualization Usage of DMA Remapping

VM

0

App App

Virtual Machine Monitor (VMM) or Hosting OS

Physical Host Hardware

Virtual Machine (0)

Guest OS

App App

Device A

Device A
Driver

Device B
Driver

Virtual Devices Emulation

Driver for
Virtual Devices

Device B

VM

0

App App

Virtual Machine (n)

Guest OS

App App

Driver for
Virtual Devices

VM

0

App App

Virtual Machine Monitor (VMM) or Hosting OS

Virtual Machine (0)

Guest OS

App App

Device A Device B

VM

0

App App

Virtual Machine (n)

Guest OS

App App

Device A
Driver

Device B
Driver

Example Software-based
I/O Virtualization Direct Assignment of I/O Devices

DMA-Remapping Hardware
Intel® Virtualization Technology for Directed I/O Architecture Specification 2-5

OVERVIEW
I/O device assignment allows other I/O sharing usages — for example, assigning an I/O device
to an I/O partition that provides I/O services to other user partitions. DMA remapping hardware
enables virtualization software to choose the right combination of device assignment and soft-
ware-based methods for I/O virtualization.

2.5.3.1 DMA Remapping Usages by Guests

A guest OS running in a VM may benefit from the availability of DMA remapping hardware to
support the usages described in Section 2.5.2. To support such usages, the VMM may virtualize
the DMA remapping hardware to its guests. For example, the VMM may intercept guest
accesses to the virtual DMA remapping hardware registers, and manage a shadow copy of the
guest DMA remapping structures that is provided to the physical DMA remapping hardware.
On updates to the guest I/O page tables, the guest software performs appropriate virtual IOTLB
invalidation operations. The virtual IOTLB invalidations may be intercepted by the VMM, the
respective shadow page tables updated, and the physical IOTLBs flushed. Due to the non-
restartability of faulting DMA transactions (unlike CPU memory management virtualization), a
VMM cannot perform lazy updates to its shadow DMA remapping structures. To keep the
shadow structures consistent with the guest structures, the VMM may expose virtual IOTLB
with eager pre-fetching behavior (including caching of not-present entries) or write-protect the
guest DMA remapping structures.
2-6 Intel® Virtualization Technology for Directed I/O Architecture Specification

OVERVIEW
2.5.4 Interaction with Processor Virtualization
Figure 2-3 depicts the interaction between system software, and hardware support for processor
level virtualization (VT-x) and Intel® Virtualization Technology for Directed I/O virtualization
(VT-d).

The VMM manages processor requests to access physical memory via the processor’s memory
management hardware. DMA requests to access physical memory use DMA remapping hard-
ware. Both the processor memory management and DMA memory management are under the
control of VMM.

Figure 2-3. Interaction Between I/O and Processor Virtualization

Virtual Machine Monitor (VMM)

Guest
OS

App App

Guest
OS

App App

Guest
OS

App App

Physical Memory

CPU Accesses

Logical
Processors

DMA

I/O
Devices

Virtual Machines

DMA
Remapping

CPU Memory
Virtualization
Intel® Virtualization Technology for Directed I/O Architecture Specification 2-7

OVERVIEW
2-8 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 3
DMA REMAPPING

This chapter describes the hardware architecture for DMA remapping. The architecture envi-
sions DMA remapping hardware to be implemented in core root-complex components, such as
the memory controller hub (MCH) or the I/O (IOH) controller hub.

3.1 DOMAINS AND ADDRESS TRANSLATION
A domain is abstractly defined as an isolated environment in the platform, to which a subset of
the host physical memory is allocated. I/O devices that are allowed to access physical memory
directly are allocated to a domain and are referred to as the domain’s assigned devices.

The isolation property of a domain is achieved by blocking access to its physical memory from
resources not assigned to it. Multiple isolated domains are supported in a system by ensuring all
I/O devices are assigned to some domain (possibly a null domain), and by restricting access
from each assigned device only to the physical resources allocated to its domain.

The DMA remapping architecture facilitates flexible assignment of I/O devices to an arbitrary
number of domains. As described in Section 2.5, each domain has a view of physical address
space that may be different than the host physical address space. DMA remapping treats the
address specified in a DMA request as a DMA virtual address (DVA). Depending on the soft-
ware usage model, the DMA virtual address space may be the same as the guest-physical
address (GPA) space of the domain to which the I/O device is assigned, or a purely virtual
address space defined by software. In either case, DMA remapping transforms the address in a
DMA request issued by an I/O device to its corresponding host-physical address (HPA).

For simplicity, this document refers to an address in a DMA request as a GPA and the translated
address as an HPA.

Figure 3-1 illustrates DMA address translation. I/O devices 1 and 2 are assigned to domains 1
and 2, respectively. The software responsible for creating and managing the domains allocates
system physical memory for both domains and sets up the DMA address translation function.
GPAs in DMA requests initiated by devices 1 & 2 are translated to appropriate HPAs by the
DMA remapping hardware.
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-1

DMA REMAPPING
The host platform may support one or more DMA remapping hardware units. Each hardware
unit supports remapping DMA requests originating within its hardware scope. For example, a
desktop chipset implementation may expose a single DMA remapping hardware unit that trans-
lates all DMA transactions at the memory controller hub (MCH) component. A server platform
with one or more core chipset components may support independent translation hardware units
in each component, each translating DMA requests originating within its I/O hierarchy (such as
a PCI Express root port). The architecture supports configurations in which these hardware units
may either share the same translation data structures (in system memory) or use independent
structures, depending on software programming.

The DMA remapping hardware applies the address translation function to the address in a DMA
request to convert it to a host physical address (HPA) before further hardware processing (such
as address decoding, snooping of processor caches, and/or forwarding to the memory control-
lers).

3.2 MAPPING DEVICES TO DOMAINS
The following sub-sections describe the DMA remapping architecture and data structures used
to map I/O devices to domains.

3.2.1 Source Identifier
The identity of the originator of a DMA request appearing at the address-translation hardware
(the “requestor identifier”) is required to identify the device originating the DMA. The attribute
identifying the originator of an I/O transaction is referred to as the “source-id” in this document.
The DMA remapping hardware may determine the source-id of a transaction in implementation-

Figure 3-1. DMA Address Translation

HPA =
8000h HPA =

6000h

Assigned to
Domain 1

HPA =
2000h

Domain 2

Domain 1

0h

10000h

Assigned to
Domain 2

DVA/GPA
= 4000h

Physical
Memory

HPA =
3000h

CPU
Memory

Management

Device 2

Device 1

DMA
Memory

Management

GPA =
1000h

DVA/GPA
= 4000h

GPA =
1000h
3-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING
specific ways. For example, some I/O bus protocols may provide the originating device identity
as part of each I/O transaction. In other cases (for root-complex integrated devices, for example),
the source-id may be derived based on the root-complex internal implementation.

For PCI Express devices, the source-id is mapped to the requester identifier in the PCI express
transaction layer header. The requester identifier of a device, which is composed of its PCI
Bus/Device/Function number, is assigned by configuration software and uniquely identifies the
hardware function that initiated the request. Figure 3-2 illustrates the requester-id as defined by
the PCI Express Specification.

The following sections describe the data structures for mapping I/O devices to domains.

3.2.2 Root-Entry
The root-entry functions as the top level structure to map devices on a specific PCI bus to their
respective domains. Each root-entry structure contains the following fields:

• Present flag: The present field is used by software to indicate to hardware whether the
root-entry is present and initialized. Software may clear the present field for root entries
corresponding to bus numbers that are either not present in the platform, or don’t yet have
any downstream devices attached. If the present field of a root-entry used to process a
DMA request is clear, the DMA request is blocked, resulting in a translation fault.

• Context-entry table pointer: The context-entry table pointer references the context-entry
table for devices on the bus identified by the root-entry. Section 3.2.3 describes context
entries in further detail.

Figure 3-3 illustrates the root-entry format. The root entries are programmed through the root-
entry table. The location of the root-entry table in system memory is programmed through the
Root-entry Table Address register (described in Section 7.4.6). The root-entry table is 4KB in
size and accommodates 256 root entries to cover the PCI bus number space (0-255). In the case
of a PCI device, the bus number (upper 8-bits) encoded in a DMA transaction’s source-id field
is used to index into the root-entry structure. Figure 3-3 illustrates how these tables are used to
map devices to domains.

Figure 3-2. Requester Identifier Format

02378
1
5

Bus # Device # Function #
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-3

DMA REMAPPING
3.2.3 Context-Entry
A context-entry maps a specific I/O device on a bus to the domain to which it is assigned, and,
in turn, to the address translation structures for the domain. The context entries are programmed
through the memory-resident context-entry tables. Each root-entry in the root-entry table
contains the pointer to the context-entry table for the corresponding bus number. Each context-
entry table contains 256 entries, with each entry representing a unique PCI device function on
the bus. For a PCI device, the device and function numbers (lower 8-bits) of a source-id are used
to index into the context-entry table.

Each context-entry contains the following attributes:

• Domain Identifier: The domain identifier is a software-assigned field in a context entry
that identifies the domain to which a device with the given source-id is assigned. Hardware
may use this field to tag its caching structures. Context entries programmed with the same
domain identifier must always reference the same address translation structure, and vice
versa.

• Present Flag: The present field is used by software to indicate to hardware whether the
context-entry is present and initialized. Software may clear the present field for context
entries corresponding to device functions that are not present in the platform. If the present

Figure 3-3. Device to Domain Mapping Structures

Root-entry Table

Context-entry Table
for Bus N

Context-entry Table
for Bus 0

Root entry 0

Root entry N

Root entry 255
Address Translation

Structures for Domain A

Address Translation
Structures for Domain B

Context entry 0

Context entry 255

(Dev 0, Func 0)

(Dev 31, Func 7)

(Dev 0, Func 1)

Context entry 255

Context entry 0

(Bus 0)

(Bus 255)

(Bus N)
3-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING
field of a context-entry used to process a DMA request is clear, the DMA request is
blocked, resulting in a translation fault.

• Translation Type: The translation-type field indicates the type of the address translation
structure that must be used to address-translate a DMA request processed through the
context-entry.

• Address Width: The address-width field indicates the address width of the domain to
which the device corresponding to the context-entry is assigned.

• Address Space Root: The address-space-root field provides the host physical address of
the address translation structure in memory to be used for address-translating DMA
requests processed through the context-entry.

• Fault Processing Disable Flag: The fault-processing-disable field enables software to
selectively disable recording and reporting of DMA remapping faults detected for DMA
requests processed through the context-entry.

Section 6.2 illustrates the exact context-entry format. Multiple devices may be assigned to the
same domain by programming the context entries for the devices to reference the same transla-
tion structures, and programming them with the same domain identifier.

3.2.3.1 Context Caching

The DMA remapping architecture enables hardware to cache root-entries and context-entries to
minimize the overhead incurred for fetching them from memory. Hardware manages the
context-cache and supports context-cache invalidation requests by software.

When modifying device-to-domain mapping structures referenced by multiple DMA remapping
hardware units in a platform, software is responsible for explicitly invalidating the caches at
each of the hardware units. For more detailed information, see Section 7.4.9.

The architecture defines the following types of context-cache invalidation requests:

1. Global Invalidation: All context-cache entries cached at a DMA remapping hardware unit
are invalidated through a global invalidate.

2. Domain-Selective Invalidation: Context-cache entries corresponding to a specific
domain are invalidated through a domain-selective invalidate.

3. Device-Selective Invalidation: Context-cache entries corresponding to a specific device
within a domain are invalidated through a device-selective invalidate.

Hardware implementations must allow software to specify any of the above three types of inval-
idation requests, but may perform the actual invalidation at a coarser granularity if the requested
invalidation granularity cannot be supported. For example, hardware may perform a domain-
selective invalidation on a device-selective invalidation request. Hardware reports to software
the granularity at which the actual invalidation was performed. Section 7.4.9 describes the hard-
ware registers for context-cache invalidation.
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-5

DMA REMAPPING
3.3 ADDRESS TRANSLATION
The translation-type field in a context-entry specifies the translation structure type used to remap
DMA requests from an I/O device. The architecture currently defines only a multi-level, page-
table-based, address-translation structure type.

3.3.1 Multi-Level Page Table
The multi-level page tables allow software to manage host physical memory at page (4KB)
granularity and set up a hierarchical structure with page directories and page tables. Hardware
implements the page-walk logic and traverses these structures using the address from the DMA
request. The maximum number of page-table levels that need to be traversed is a function of the
address width of the domain (specified in the corresponding context entry).

The architecture defines the following features for the multi-level page table structure:

• Super Pages

• The super-page field in page-table entries enables larger page allocations. When a
page-table entry with the super-page field set is encountered by hardware on a
page-table walk, the translated address is formed immediately by combining the
page base address in the page-table entry with the GPA bits not yet used for the
page-walk.

• The architecture currently defines super-pages of size 221, 239, 248, and 257. Imple-
mentations indicate support for specific super-page sizes through the Capability
register. Hardware implementations may optionally support these super-page
sizes.

• DMA Access Controls

• DMA access controls make it possible to control DMA accesses to specific
regions within a domain’s address space. These controls are defined through the
read and the write permission fields.

• If hardware encounters a page-table entry with the read field clear as part of
address-translating a DMA read request, the request is blocked.

• If hardware encounters a page-table entry with the write field clear as part of
address translating a DMA write request, the request is blocked.

Figure 3-4 shows a multi-level (3-level) page-table structure with 4KB page mappings and 4KB
page tables. Figure 3-5 shows the same thing with 2MB super pages.
3-6 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING
Figure 3-4. Example Multi-level Page Table

DMA with address bits
63:39 validated to be 0s

3
8

1
2

1
1 0

SP = 0

Context
Entry

ASR

3
0

,

+

<< 3 +

+

+

2
0

2
1

2
9

9-
bi

ts

9-
bi

ts

9-
bi

ts

4KB page table
,4KB page table

4KB page table

4KB page

12
-b

its

1
2
7

1
2

6
3 0

<< 3

<< 3

0s

6
3

3
9

SP = 0

SP = 0
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-7

DMA REMAPPING
3.3.1.1 Adjusted Guest Address Width (AGAW)

To allow page-table walks with 9-bit stride, the Adjusted Guest Address Width (AGAW) value
for a domain is defined as its Guest Address Width (GAW) value adjusted, such that (AGAW-
12) is a multiple of 9. For example, a domain to which 2GB of memory is allocated has a GAW
of 31, and an AGAW of 39. AGAW is calculated as follows:

R = (GAW - 12) MOD 9;
if (R == 0) {

AGAW = GAW;
} else {

AGAW = GAW + 9 - R;
}
if (AGAW > 64)

AGAW = 64;

The AGAW indicates the number of levels of page-walk. Hardware implementations report the
supported AGAWs through the Capability register. Software must ensure that it uses an AGAW
supported by the underlying hardware implementation when setting up page tables for a domain.

Figure 3-5. Example Multi-level Page Table (with 2MB Super Pages)

3
8

1
2

1
1 0

Context
Entry

ASR

3
0

,

+

<< 3

<< 3

+

+

2
0

2
1

2
9

9-
bi

ts

9-
bi

ts

4KB page table
,4KB page table

2MB page
21

-b
its

1
2
7

1
2

6
3 0

0s

6
3

3
9 DMA with address bits

63:39 validated to be 0s

SP = 0

SP = 1
3-8 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING
3.3.1.2 Multi-level Page Table Translation

Address translation of DMA requests processed through a context-entry specifying use of multi-
level page table is handled by DMA remapping hardware as follows:

1. If the GPA in the DMA request is to an address above the maximum guest address width
supported by the remapping hardware (as reported through the MGAW field in the
Capability register), the DMA request is blocked.

2. If the address-width (AW) field programmed in the context-entry is not one of the AGAWs
supported by hardware (as reported through the SGAW field in the Capability register), the
DMA request is blocked.

3. The address of the DMA request is validated to be within the adjusted address width of the
domain to which the device is assigned. DMA requests attempting to access memory
locations above address (2X - 1) are blocked, where X is the AGAW corresponding to the
address-width (AW) programmed in the context-entry used to process this DMA request.

4. If the above checks are successful, the address in the DMA request is adjusted (zero-
extended) to X bits, where X is the address width (AW) programmed in the context-entry
used to process this DMA request.

5. The adjusted address and length specified in the DMA request is used to address translate
the DMA request through the multi-level page table referenced by the context entry. Based
on the programming of the page-table entries (super-page, read, write attributes), either the
adjusted address is successfully translated to a host physical address (HPA), or the DMA
request is blocked.

6. For successful address translations, hardware performs the normal processing (address
decoding, etc.) of the DMA request as if it was targeting the translated HPA.

3.3.1.3 I/O Translation Lookaside Buffer (IOTLB)

The DMA remapping architecture defines support for caching effective translations1 for
improved address translation performance. The cache of effective translations is referred to as
the I/O translation look-aside buffer (IOTLB). Similar to the context-cache, hardware manages
the IOTLB, and supports IOTLB invalidation requests by software. Details of the hardware
caching and invalidation behavior are described in Section 7.4.9.

When modifying page-table entries referenced by more than one DMA remapping hardware
unit in a platform, software is responsible for explicitly invalidating the IOTLB at each of these
DMA remapping hardware units.

1. When inserting a leaf page-table entry into the IOTLB, hardware caches the Read (R) and Write (W)
attributes as the logical AND of all the respective R and W fields encountered in the page walk reaching
up to this leaf entry.
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-9

DMA REMAPPING
The architecture defines the following types of IOTLB invalidation requests to support the
various software usage models:

1. Global Invalidation: All address translations cached at a DMA remapping hardware unit
are invalidated through a global invalidate.

2. Domain-Selective Invalidation: Cached translations belonging to a specific domain are
invalidated through a domain-selective invalidate.

3. Domain Page-Selective Invalidation: Cached translations corresponding to the specified
DMA address(es) of a domain are invalidated through a domain-page-selective invalidate.

Hardware implementations must allow software to specify any of the above types of IOTLB
invalidation requests, but may perform the actual invalidation at a coarser granularity if the
requested invalidation granularity cannot be supported. Hardware to reports to software the
granularity at which the actual invalidation was performed.

3.4 DMA REMAPPING FAULTS
The following table enumerates the various conditions resulting in DMA remapping faults.

Table 3-1. DMA Remapping Fault Conditions

DMA Remapping Fault Conditions Qualified

The present (P) field in the root-entry used to process the DMA request is clear. No

The present (P) field in the context-entry used to process the DMA request is clear. Yes

Hardware detected invalid programming of a context-entry. For example:
• The address-width (AW) field was programmed with an SAGAW value not supported by

the hardware implementation.
• The translation-type (T) field was programmed to indicate a translation type not

supported by the hardware implementation. Currently, only the multi-level page-table
translation type is defined.

• A hardware attempt to access the page-table base through the Address Space Root
(ASR) field of the context-entry resulted in error.

Yes

The DMA request attempted to access an address beyond (2X - 1), where X is1:
• For multiple level page-table based translation, the minimum of the MGAW reported in

the Capability register and the AGAW corresponding to the address-width field in the
context-entry used to process the DMA request.

Yes

The Write (W) field in a page-table entry used for address translation of the DMA write
request is clear.

Yes

The Read (R) field in a page-table entry used for address translation of the DMA read request
is clear.

Yes

A hardware attempt to access the next level page table through the Address (ADDR) field of
the page-table entry resulted in error.

Yes
3-10 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING
NOTES
1. DMA requests to addresses beyond the maximum guest address width (MGAW) supported by hardware

may be reported through other means such as through PCI Express Advanced error reporting (AER) at a
PCI Express root port.

2. To ensure compatibility with future extensions of this architecture, software must zero reserved fields in
all present structures. Hardware behavior is undefined on reserved field violation. Hardware implementa-
tions capable of reserved field checking reports reserved field violation as DMA remapping faults.

When a DMA remapping fault is detected:

• The faulting DMA request is always blocked.

• The unqualified fault conditions in Table 3-1 are always logged and reported.

• The qualifying fault conditions in Table 3-1, are logged and reported conditionally.
Hardware checks the fault-processing-disable (FPD) field in the context-entry used to
process the faulting DMA request to determine if a qualifying fault must be processed. If
the FPD field is set, the qualifying fault is not reported. If the FPD field is clear, the
qualifying fault is logged and reported.

The following sections provide detailed information about fault logging and reporting.

3.4.1 Fault Logging
DMA remapping faults are processed by logging the fault information and reporting the faults
to software through a fault event (interrupt). The architecture defines two types of fault logging
facilities: (a) Primary Fault Logging, and (b) Advanced Fault Logging. The primary fault
logging method must be supported by all implementations of this architecture. Support for
advanced fault logging is optional. Software must not change the fault logging method while
hardware is enabled.

A hardware attempt to access the root-entry table through the root-table address (RTA) field
in the Root-entry Table Address register resulted in error.

No

A hardware attempt to access context-entry table through context-entry table pointer (CTP)
field resulted in error.

No

Hardware detected reserved field(s) that are not initialized to zero in a root-entry with the
present (P) field set.2

No

Hardware detected reserved field(s) that are not initialized to zero in a context-entry with the
present (P) field set.2

Yes

Hardware detected reserved field(s) that are not initialized to zero in a page-table entry with
at least one of the read (R) and write (W) fields set.2

Yes

Table 3-1. DMA Remapping Fault Conditions (Contd.)

DMA Remapping Fault Conditions Qualified
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-11

DMA REMAPPING
3.4.1.1 Primary Fault Logging

The primary method for logging DMA remapping faults is through Fault Recording registers.
The number of fault recording registers supported by a DMA remapping hardware unit is
reported through the Capability register. The following information is recorded in the Fault
Recording registers:

• Fault Reason: The fault reason indicates the specific condition that caused the translation
fault. Fault reason encodings are enumerated in Appendix A.

• Access Type: This field provides the type (write or read request) of the DMA request that
faulted.

• Source ID: The source-id indicates the originator of the faulted DMA request.

• Faulting Address: The address field provides the page address in the faulted DMA
request.

Hardware indicates a pending fault in a fault recording register by setting its Fault (F) field.
Additional faults detected from the same requestor may be collapsed by hardware if there is
already a pending fault from the same requester. Any fault overflow condition is handled by
hardware by not recording the fault and indicating the overflow condition to software through
the Primary Fault Overflow (PFO) field in the Fault Status register. Future faults are not
recorded or reported until software handles the already reported faults in the fault recording
registers, and clears the overflow condition. Section 7.4.18.1 describes the hardware handling
of primary fault logging in detail.

3.4.1.2 Advanced Fault Logging

Advanced fault logging is an optional hardware feature. Hardware implementations supporting
advanced fault logging report the feature through the Capability register.

Advanced fault logging uses a memory-resident fault log to record fault information. The base
and size of the memory-resident fault log region is programmed by software through the
Advanced Fault Log register. Advanced fault logging must be enabled by software through the
Global Command register before enabling the DMA remapping hardware. Each fault record
contains the same information (fault reason, access type, source-id and faulting address fields)
as with primary fault logging. Section 6.4 illustrates the format of the fault record.

When advanced fault logging is enabled, hardware manages a pointer to the next writable entry
in the size-aligned fault log region. Whenever a new fault log region is programmed by software,
the internal pointer is initialized to the base of the new fault log. The pointer is advanced when-
ever a fault record is written, for up to the maximum number of entries allowed by the fault log
size. If hardware is not able to record a fault because the fault log is full, the fault is not recorded,
and the overflow condition is indicated through the Advanced Fault Overflow (AFO) status field
in the Advanced Fault Log register. Future faults are not recorded or reported until software
clears the overflow condition and re-programs the fault log pointer in hardware. See Section
7.4.18.2 for more detailed information.
3-12 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING
3.4.1.3 Fault Priority

The priorities for hardware handling and reporting of fault conditions detected while remapping
a DMA request are:

1. Fault conditions encountered on hardware attempt to access the various memory-resident
DMA remapping structures.

2. Fault condition due to hardware detecting the target entry being not present.

3. Fault conditions due to erroneous programming of one or more fields in an entry.

4. For hardware implementations validating reserved fields, fault conditions due to one or
more non-zero reserved fields.

3.4.2 Fault Reporting
Fault events are reported to software using a message signalled interrupt (MSI), and controlled
through the Fault Event Control register. The fault event information (such as interrupt vector,
delivery mode, address, etc.) is programmed through the Fault Event Data and Fault Event
Address registers.

With both primary and advanced fault logging, hardware can be programmed to generate a fault
event when the first fault is detected/recorded. Further fault events are auto-disabled in hardware
until software explicitly re-arms fault-event generation. provides further details on hardware
fault-event generation behavior with primary and advanced fault logging.

3.4.3 Hardware Handling of Faulting DMA Requests
A DMA request that results in a DMA remapping fault must be blocked by hardware. The exact
method of DMA blocking is implementation-specific. For example:

• Faulting DMA write requests may be handled in much the same way as hardware handles
write requests to non-existent memory. For example, the DMA request must be discarded
in a manner convenient for implementations (such as by dropping the cycle, completing
the write request to memory with all byte enables masked off, re-directed to a dummy
memory location etc.).

• Faulting DMA read requests may be handled in much the same way as hardware handles
read requests to non-existent memory. For example, the request may be redirected to a
dummy memory location, returned as all 0’s or 1’s in a manner convenient to the imple-
mentation, or the request may be completed with an explicit error indication (preferred).
For faulting DMA read requests from PCI Express devices, hardware must indicate either
“Completer Abort” (CA) or “Unsupported Request” (UR) in the completion status field of
the PCI Express read completion.1

1. For PCI Express, a DMA read completion with an error status may cause hardware to generate a PCI
Express un-correctable, non-fatal (ERR_NONFATAL) error message.
Intel® Virtualization Technology for Directed I/O Architecture Specification 3-13

DMA REMAPPING
3-14 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 4
HARDWARE CONSIDERATIONS

This chapter discusses hardware considerations for DMA remapping that are not covered in
other chapters.

4.1 HANDLING INTERRUPT MESSAGES
On Intel platforms, interrupt requests from IOAPICs and MSI-capable devices appear to the
root-complex as upstream memory write requests to the address range 0xFEE0_0000h to
0xFEEF_FFFFh. Since this interrupt message address range is architectural and identical
between the guest and the host, upstream DMA requests to addresses in the MSI address range
are not subject to DMA remapping as described in Chapter 3. Hardware decodes the address in
a DMA request to check if it falls in the interrupt address range and bypasses DMA remapping
for such transactions. DMA write requests to this range are validated and interpreted as interrupt
messages, and DMA read requests to this range are treated as errors.

Software must ensure that the DMA remapping page tables are programmed not to remap
regular DMA requests to the above interrupt address range. Hardware behavior is undefined for
DMA requests remapped to the interrupt address range through the DMA remapping structures.

Future versions of this specification may define additional behavior for handling interrupt
messages.

4.2 ASSIGNING DEVICES BEHIND PCI EXPRESS TO PCI/PCI-X
BRIDGES

For PCI Express-to-PCI/PCI-X bridges, the bridge may generate a different requester-id and tag
combination in some instances for transactions forwarded to the bridge’s PCI Express interface.
The action of replacing the original transaction’s requester-id with one assigned by the bridge is
generally referred to as taking “ownership” of the transaction. If the bridge generates a new
requester-id for a transaction forwarded from the secondary interface to the primary interface,
the bridge assigns the PCI Express requester-id using the secondary interface’s bus number, and
sets both the device number and function number fields to zero. Refer to the PCI Express-to-
PCI/PCI-X bridge specifications for more details.

When assigning devices behind PCI Express-to-PCI/PCI-X bridges, software must consider the
possibility of DMA requests arriving with the requester-id in the original PCI-X transaction or
the requester-id provided by the bridge. Since devices behind these bridges can only be collec-
tively assigned to a single domain, software must program multiple context entries, each corre-
sponding to the possible set of requester-ids. Each of these context-entries must be programmed
identically to ensure the DMA requests with any of these requester-ids are processed identically.
Intel® Virtualization Technology for Directed I/O Architecture Specification 4-1

HARDWARE CONSIDERATIONS
4.3 ASSIGNING PCI EXPRESS DEVICES USING PHANTOM
FUNCTIONS

To increase the maximum possible number of outstanding requests requiring completion, PCI
Express allows a device to use function numbers not assigned to implemented functions to logi-
cally extend the Tag identifier. Unclaimed function numbers are referred to as Phantom Function
Numbers (PhFN). A device reports its support for phantom functions through the Device Capa-
bility configuration register, and requires software to explicitly enable use of phantom functions
through the Device Control configuration register.

Since function number is part of the requester-id used to locate the context-entry for processing
a DMA request, when assigning PCI Express devices with phantom functions enabled, software
must program multiple context entries, each corresponding to the PhFN enabled for use by the
device function. Each of these context-entries must be programmed identically to ensure the
DMA requests with any of these requester-ids are processed identically.

4.4 HANDLING DMA REQUESTS CROSSING PAGE BOUNDARY
PCI Express memory requests are specified to disallow Address/Length combinations which
cause a memory space access to cross a 4KB boundary. However, the PCI Express Specification
defines checking for violations of this rule at the receivers as optional. If checked, violations are
treated as malformed transaction layer packets and reported as PCI Express errors. Checking of
DMA requests crossing 4KB boundary from root-complex integrated devices is typically plat-
form-dependent.

Platforms supporting DMA remapping are expected to handle DMA requests that cross 4KB
boundary in one of the following ways:

• The platform hardware checks for DMA requests that cross a 4KB boundary and explicitly
blocks them. For PCI Express memory requests, this may be implemented by hardware
strictly checking for the condition at the PCI Express receivers and handling it as PCI
Express error. DMA requests from other devices (such as root-complex integrated devices)
violating this rule (and hence blocked by hardware) may be handled in platform-specific
ways. In this model, the DMA remapping hardware units never receive DMA requests that
cross page boundaries.

• If the platform hardware cannot check for the 4KB crossing condition in DMA requests,
the DMA remapping hardware units must detect this condition and re-map the requests as
if they were multiple independent DMA requests.

4.5 HANDLING OF ZERO-LENGTH DMA
A memory read request of one double-word with no bytes enabled (“zero-length read”) is typi-
cally used by devices as a type of flush request. For a requestor, the semantics of the flush
request allow a device to ensure that previously issued posted writes in the same traffic class
have been completed at their destination.
4-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

HARDWARE CONSIDERATIONS
When DMA remapping hardware is enabled, zero-length DMA requests are not processed
differently than other DMA requests. Specifically, zero-length DMA requests are address-trans-
lated based on the programming of the DMA remapping structures. For successful translations,
the transaction is completed in much the same way as it is completed without DMA remapping
(for example, the transaction is completed in the coherency domain with all byte enables off).
Unsuccessful translations result in DMA remapping faults.

4.6 DMA REMAPPING - SOFTWARE VIEW
The DMA remapping architecture allows hardware implementations supporting a single PCI
segment group to expose (to software) the DMA remapping function either as a single hardware
unit covering the entire PCI segment group, or as multiple hardware units, each supporting a
mutually exclusive subset of devices in the PCI segment group hierarchy. For example, an
implementation may expose a DMA remapping hardware unit that supports one or more inte-
grated devices on the root bus, and additional DMA remapping hardware units for devices
behind one or a set of PCI Express root ports. The platform firmware (BIOS) reports each DMA
remapping hardware unit in the platform to software. Chapter 5 describes a proposed reporting
structure through ACPI constructs.

For hardware implementations supporting multiple PCI segment groups, the DMA remapping
architecture requires hardware to expose independent DMA remapping hardware units (at least
one per PCI segment group) for processing DMA requests originating within the I/O hierarchy
of each segment group.

4.7 HANDLING DMA TO RESERVED SYSTEM MEMORY
PC platforms commonly use reserved memory for platform-specific usages. These memory
regions are typically marked as reserved by BIOS in the system memory map provided to soft-
ware. Memory exposed to system software for operating system use through the system memory
map is commonly referred to as “OS-visible memory”.Usages of system reserved memory are
platform-specific. Some common examples of private memory usages include: integrated UMA
graphics controllers using reserved system memory to host the graphics translation table (GTT)
and blitting, management controllers using reserved memory to store/run management firm-
ware, and BIOS/SMM code utilizing reserved memory for USB legacy keyboard emulation.

Platform implementations supporting private memory must carefully consider the system soft-
ware and security implications of its usages. These usages are beyond the scope of this specifi-
cation. Platform hardware may use implementation-specific means to distinguish accesses to
system reserved memory. These means must not depend on simple address-based decoding
since DMA virtual addresses can indeed overlap with the host physical addresses of reserved
system memory.

For platforms that cannot distinguish between DMA to OS-visible system memory and DMA to
reserved system memory, the architecture defines a standard reporting method to inform system
software about the reserved system memory address ranges and the specific devices that require
DMA access to these ranges for proper operation. For legacy reasons, system software is
expected to provide unity mapping for these address ranges, and to provide both read and write
Intel® Virtualization Technology for Directed I/O Architecture Specification 4-3

HARDWARE CONSIDERATIONS
access privileges to at least the identified devices. For these devices, the system software is also
responsible for ensuring that the DMA virtual addresses generated by the system software do
not overlap with the reserved system memory address ranges. Refer to Section 5.4 for details on
the reporting of reserved memory regions.

4.8 PEER TO PEER CONSIDERATIONS
When DMA remapping hardware is enabled, peer-to-peer requests through the root complex
must be handled as follows:

• The address in the DMA request must be treated as a DMA virtual address and address-
translated to an HPA. The address decoding for peer addresses must be done only on the
translated HPA. Hardware implementations are free to further limit peer-to-peer accesses
to specific host physical address regions (or to completely disallow peer-forwarding of
translated requests).

• Since address translation of PCI Express peer-to-peer requests changes the contents
(address field) of the PCI Express transaction layer packet (TLP), for peer-to-peer requests
with ECRC, the root-complex hardware must use the new ECRC (re-computed with the
translated address) if it decides to forward the TLP as a peer request.

Existing PCI Express specifications do not provide the capability to restrict peer-to-peer
accesses between functions of a multi-function endpoint, or across PCI Express switch-ports.
Due to this limitation, to prevent address aliasing, system software must avoid using all or rele-
vant peer address ranges as valid DMA virtual addresses on such configurations.

4.9 HANDLING OF ISOCHRONOUS DMA
PC platforms support varying classes of isochronous DMA traffic to support different real-time
usages and devices. Examples of Isochronous traffic supported by current PC platforms include:

• Legacy Isochrony: Legacy isochronous traffic refers to the support typically provided to
applications that use legacy audio and USB controllers.

• PCI Express Isochrony: PCI Express specification defines support for isochronous traffic
to support real-time and QoS usages. An example of this class of isochrony is applications
that use high-definition audio controllers.

• Integrated Graphics Isochrony: This applies to traffic generated by integrated graphics
subsystems which typically have multiple real-time DMA streams for display, overlay,
cursor, and legacy VGA usages.

There may be other classes of differentiated DMA streams in the platform to support future
usages. Different classes of isochrony are typically implemented through traffic classification,
virtual channels (VC), and priority mechanisms. DMA remapping of isochronous traffic
requires special handling since the remapping process potentially adds additional latency to the
isochronous paths.
4-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

HARDWARE CONSIDERATIONS
Hardware recommendations and software requirements for efficient remapping of isochronous
traffic are described below. The classes of isochrony that needs to be subject to these require-
ments are platform-specific.

• Root-complex hardware may utilize dedicated resources to support remapping of DMA
accesses from isochronous devices. This may be in the form of dedicated DMA remapping
hardware units for remapping isochronous devices, or through reservation of hardware
resources (such as entries in various DMA remapping caching structures) for remapping
isochronous DMA.

• Since snooping platform caches typically introduces varying amounts of latency, DMA
remapping units that support isochronous DMA may not snoop platform caches when
accessing the various remapping structures in memory. This hardware behavior for the
mappings used by DMA remapping units is reported to software through the remapping
unit’s capability registers. This implies that software managing these DMA remap units
must explicitly ensure any software updates to remapping structures are visible in memory
for hardware to utilize the updated structures.

• DMA remapping units supporting isochronous traffic may pre-fetch and cache address
translations. Under normal operation, to maintain isochronous guarantees, software must
specify page-selective granular invalidations to ensure the invalidation operations do not
impact isochronous DMA requests that may be active at the time of invalidation. The
Capability register of each DMA remapping unit indicates to software if the remapping
unit manages the DMA with such QoS requirements.

• In order to limit dependencies on isochronous flows, the root-complex hardware may
require the DMA remapping structures to be un-shared across DMA remapping units
handling isochronous devices (thereby ensuring that the addresses hosting DMA
remapping structures used for remapping isochronous and non-isochronous traffic do not
overlap). The Capability register of each DMA remapping unit indicates to software
whether hardware requires such spatial separation of remapping structures. If specified, to
achieve isochronous guarantees, software must avoid sharing the remapping structures
with other remapping units.
Intel® Virtualization Technology for Directed I/O Architecture Specification 4-5

HARDWARE CONSIDERATIONS
4-6 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 5
BIOS CONSIDERATIONS

The system BIOS is responsible for detecting the DMA remapping hardware functions in the
platform and for locating the memory-mapped DMA remapping hardware registers in the host
system address space. The BIOS reports the DMA remapping hardware units in a platform to
system software through the DMA Remapping Reporting (DMAR) ACPI table described below.

5.1 DMA REMAPPING REPORTING STRUCTURE

Table 5-1. DMA Remapping Reporting (DMAR) Table

Field Byte
Length

Byte
Offset

Description

Signature 4 0 “DMAR”. Signature for the DMA Remapping
Description table.

Length 4 4 Length, in bytes, of the description table including
the length of the associated DMA remapping
structures.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For DMAR description table, the Table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM Revision of DMAR Table for OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Host Address Width 1 36 This field indicates the maximum DMA physical
addressability supported by this platform. The
system address map reported by the BIOS
indicates what portions of this addresses are
populated.

The Host Address Width (HAW) of the platform is
computed as (N+1), where N is the value
reported in this field. For example, for a platform
supporting 40 bits of physical addressability, the
value of 100111b is reported in this field.
Intel® Virtualization Technology for Directed I/O Architecture Specification 5-1

BIOS CONSIDERATIONS
5.2 DMA REMAPPING STRUCTURE TYPES
The following types of DMA remapping structures are defined. All DMA remapping structures
starts with a Type field followed by a Length field indicating the size in bytes of the structure.

Reserved 11 37 Reserved.

DMA Remapping
Structures[]

- 48 A list of structures. The list will contain one or
more DMA Remapping Hardware Unit Definition
(DRHD) structures, and zero or more Reserved
Memory Region Reporting (RMRR) structures.
These structures are described below.

Table 5-2. DMA Remapping Structure Types

Value Description

0 DMA Remapping Hardware Unit Definition (DRHD) Structure

1 Reserved Memory Region Reporting (RMRR) Structure

>1 Reserved for future use. Software may skip structures it does not understand by skipping the
appropriate number of bytes indicated by the Length field.

Table 5-1. DMA Remapping Reporting (DMAR) Table (Contd.)

Field Byte
Length

Byte
Offset

Description
5-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

BIOS CONSIDERATIONS
5.3 DMA REMAPPING HARDWARE UNIT DEFINITION
STRUCTURE

A DMA remapping hardware unit definition structure uniquely represents a DMA remapping
hardware unit present in the platform. There must exactly be one instance of this structure for
each DMA remapping hardware unit supported by the platform. There must be at least one
DMA remapping hardware unit definition structure in a platform support DMA remapping.

Table 5-3. DMA Remapping Hardware Unit Definition (DRHD) Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 0 - DMA Remapping Hardware Unit Definition
structure

Length 2 2 Varies (16 + size of Device Scope Structure)

Flags 1 4 • Bit 0: INCLUDE_ALL: If set, this DMA
remapping hardware unit handles DMA from all
sources except those that are covered under
the scope of other DMA remapping hardware
units. Such a remapping unit definition structure
entry has no Device Scope field and must
appear after all other DMA remapping hardware
unit definition structure entries. If clear, this
DMA remapping hardware unit handles DMA
only from the sources identified through the
Device Scope field.

• Bits 1-7: Reserved.

Reserved 3 5 Reserved.

Register Base Address 8 8 Base address of DMA remapping hardware register
set for this unit.

Device Scope [] - 16 If the INCLUDE_ALL flag is set, the Device Scope
structure is omitted.

If the INCLUDE_ALL flag is clear, the Device Scope
structure contains one or more Device Scope Entries
that identify devices under the scope of this DMA
remapping hardware unit.

The Device Scope structure is described below.
Intel® Virtualization Technology for Directed I/O Architecture Specification 5-3

BIOS CONSIDERATIONS
5.3.1 Device Scope Structure
The Device Scope Structure is expected to describe one or more PCI or PCI Express devices.
Therefore, it is made up of one or more Device Scope Entries. Each entry points to a specific
device. In the following definition, the generic term PCI is used to describe conventional PCI,
PCI-X, and PCI-Express. Similarly, the term PCI-PCI bridge is used to refer to conventional PCI
bridges, PCI-X bridges, PCI Express root ports, or downstream ports of a PCI Express switch.

A Device Scope Entry itself is a variable length structure that uniquely identifies a PCI sub-hier-
archy or a specific endpoint in the system. A PCI sub-hierarchy is defined as the collection of
PCI controllers that are downstream to a specific PCI-PCI bridge. To identify a PCI sub-hier-
archy, the Device Scope Entry needs to identify only the parent PCI-PCI bridge of the sub-hier-
archy. The Device Scope Entry Type defines whether the entry refers to an endpoint or a sub-
hierarchy. The data formats of both types of entries are identical, and the Device Scope Entry
Type field is used only to interpret the data.

Table 5-4. Device Scope Entry Structure

Field Byte
Length

Byte
Offset

Description

Device Scope Entry Type 1 0 The following enumerations are defined for this field.
• 0x01: PCI Endpoint Device - This Device Scope

Entry identified by the PCI Path field is a PCI
endpoint device.

• 0x02: PCI Sub-hierarchy - This Device Scope
Entry identified by the PCI Path field is a PCI-
PCI bridge. In this case, the specified bridge
device and all its downstream devices are
included in the scope.

Other Values are reserved for future use.

Length 1 1 Length of this Entry in Bytes. (4 + X), where X is the
size in bytes of the “PCI Path” field.

Segment Number 1 2 The PCI Segment Number of the device(s) identified
by this Device Scope Entry

Starting Bus Number 1 3 A Device Scope Entry describes a device under a
specific PCI Host Bridge.This field describes the bus
number of the first PCI Bus produced by the PCI
Host Bridge.
5-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

BIOS CONSIDERATIONS
The following pseudocode describes how to identify the endpoint or PCI-PCI device specified
through a Device Scope Entry:

n = (DeviceScopeEntry[1] - 4) / 2); // number of entries in the ‘PCI Path’ field
seg = DeviceScopeEntry[2]; // segment number at offset 2
bus = DeviceScopeEntry[3]; // starting bus number at offset 3
dev = DeviceScopeEntry[4]; // starting device number at offset 4
func = DeviceScopeEntry[5]; // starting function number at offset 5
i = 0;
while (--n) {

bus = read_secondary_bus_reg(seg, bus, dev, func); // secondary bus# from config reg.

dev = DeviceScopeEntry[6+i]; // read next device number

func = DeviceScopeEntry[7+i]; // read next function number

i = i + 2;
}
target_device = {segment, bus, dev, func}; // Type field in DeviceScopeEntry identifies

// if target device is endpoint or PCI-PCI bridge

5.3.2 Device Scope Example
This section provides an example platform configuration with multiple DMA remapping hard-
ware units. The configurations described are hypothetical examples only intended to illustrate
the Device Scope structures.

PCI Path 2 * N 4 Describes the path from the Host Bridge to a specific
PCI device in hierarchal fashion.

For example, a device in a N-deep hierarchy is
identified by N {PCI Device Number, PCI Function
Number} pairs, where N is a positive integer. Even
offsets contain the Device numbers, and odd offsets
contain the Function numbers.

The first {Device, Function} pair resides on the bus
identified by the Starting Bus Number field. Each
subsequent pair resides on the bus directly behind
the bus of the device identified by the previous pair.
The identity (Bus, Device, Function) of the Endpoint
or PCI-PCI Bridge is obtained by recursively walking
down these N {Device, Function} pairs.

Table 5-4. Device Scope Entry Structure (Contd.)

Field Byte
Length

Byte
Offset

Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 5-5

BIOS CONSIDERATIONS
Figure 5-1 illustrates a platform configuration with a single PCI segment and host bridge (with
a starting bus number of 0), and supporting four DMA remapping hardware units as follows:

1. DMA remapping hardware unit #1 has under its scope all devices downstream to the PCI
Express root port located at (dev:func) of (14:0).

2. DMA remapping hardware unit #2 has under its scope all devices downstream to the PCI
Express root port located at (dev:func) of (14:1).

3. DMA remapping hardware unit #3 has under its scope a root-complex integrated endpoint
device located at (dev:func) of (29:0).

4. DMA remapping hardware unit #4 has under its scope all other DMA sources not
explicitly under the scope of the other DMA remapping hardware units. In this example,
this includes the integrated device at (dev:func) at (30:0), and all the devices attached to
the south bridge component.

Figure 5-1. Hypothetical Platform Configuration

Processor

System Bus

South
Bridge

DRAM

Processor

PCI Express Devices

DMA
Remapping

Unit #1
Integrated

Device
Dev [30:0]

PCIe Root
Port

Dev [14:0]

PCI, LPC,
Legacy devices

DMA
Remapping

Unit #2
PCIe Root

Port
Dev [14:1]

DMA
Remapping

Unit #3
Integrated

Device
Dev [29:0]

DMA Remapping
Unit #4

Host Bridge [Bus #0]
5-6 Intel® Virtualization Technology for Directed I/O Architecture Specification

BIOS CONSIDERATIONS
This platform requires 4 DRHD structures. The Device Scope fields in each DRHD structures
are described as below.

• Device Scope for DMA Remapping hardware unit #1:

• The Device Scope for DMA remapping hardware unit #1 contains only one
Device Scope Entry identified as [2, 6, 0, 0, 14, 0].

• System Software use the Entry Type field value of 2 to conclude that all devices
downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14,
and Function 0 are within the scope of this DMA remapping hardware unit.

• Device Scope for DMA Remapping hardware unit #2:

• The Device Scope for DMA remapping hardware unit #1 contains only one
Device Scope Entry identified as [2, 6, 0, 0, 14, 1].

• System Software use the Entry Type field value of 2 to conclude that all devices
downstream of the PCI-PCI bridge device at PCI Segment 0, Bus 0, Device 14,
and Function 1 are within the scope of this DMA remapping hardware unit.

• Device Scope for DMA Remapping hardware unit #3:

• The Device Scope for DMA remapping hardware unit #3 contains only one
Device Scope Entry identified as [1, 6, 0, 0, 29, 0].

• System software uses the Type field value of 1 to conclude that the scope of DMA
remapping hardware unit #2 includes only the endpoint device at PCI Segment 0,
Bus 0, Device 29 and Function 0.

• Device Scope for DMA Remapping hardware unit #4:

• The DHRD structure for DMA remapping hardware unit #4 indicates the
INCLUDE_ALL flag and hence does not contain any Device Scope Entries. This
hardware unit must be the last in the list of hardware unit definition structures
reported.

5.4 RESERVED MEMORY REGION REPORTING STRUCTURE
Reserved memory regions indicate system memory regions reserved by the BIOS that may be a
target of DMA requests from one or more devices while the system software is active. These
reserved memory regions are typically allocated by the BIOS at boot time and reported to the
OS as either reserved or unavailable address ranges in the system memory map. BIOS imple-
mentations may report each such reserved memory region through the RMRR structures and the
devices that requires access to the specified reserved memory region. For proper functioning of
the platform, when DMA from these devices is enabled, system software must ensure that the
DMA remapping page tables for the respective devices are set up to provide unity mapping for
the specified reserved memory regions with both read and write privileges. The platform
designer must avoid or limit such regions since they require system software to create gaps in
the DMA virtual address range available to system software and its drivers.
Intel® Virtualization Technology for Directed I/O Architecture Specification 5-7

BIOS CONSIDERATIONS
DMA to these reserved regions may either occur as a result of some operation performed by the
system software driver (for example, DMA from UMA graphics controllers to graphics-
reserved memory), or may be initiated by non-system software such as the BIOS (for example,
in case of DMA performed by a USB controller under BIOS SMM control for legacy keyboard
emulation).

Reserved memory ranges that are either not DMA targets, or memory ranges that may be the
target of BIOS-initiated DMA only during pre-boot (for example, from a boot disk drive) are not
included in the reserved memory region reporting. The reserved memory region reporting struc-
tures are optional. If there are no RMRR structures, the system software concludes that the plat-
form does not have any reserved memory ranges that require DMA accesses.

Table 5-5. Reserved Memory Region Reporting (RMRR) Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 1 - Reserved Memory Region Reporting Structure

Length 2 2 Varies (16 + size of Device Scope structure)

Flag 1 4 • Bit 0: ALLOW_ALL: If set, the Reserved Memory
Region applies to devices under the scope of all
DMA remapping hardware units. If clear, the
Reserved Memory Region is accessed only by
devices identified in the Device Scope structure.

• Bits 1-7: Reserved

Reserved 3 5 Reserved.

Reserved Memory
RegionBase Address

8 8 4KB-aligned base address of the reserved memory
region.

Reserved Memory
Region Limit Address

8 16 4KB-aligned limit address of the reserved memory
region.

Device Scope[] - 24 • If the ALLOW_ALL flag is set, the Device Scope
structure is omitted.

• If the ALLOW_ALL flag is clear, the Device Scope
structure contains one or more Device Scope
entries that identify devices requiring access to the
specified reserved memory region. The devices
identified in this structure must be devices under the
scope of the corresponding DMA remapping
hardware unit.
5-8 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 6
TRANSLATION STRUCTURE FORMATS

This chapter describes the DMA remapping memory-resident structures.

6.1 ROOT-ENTRY
The following figure and table describe root-entry.

Figure 6-1. Root-Entry Format

2
7

Reserved (0)

6
4

1

01
6
3

1
2

1
1

Reserved (0)

CTP

P

HAW HAW -1

Reserved (0)
Intel® Virtualization Technology for Directed I/O Architecture Specification 6-1

TRANSLATION STRUCTURE FORMATS
Table 6-1. Root-Entry Contents

Bits Field Description

127:64 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the present (P) field is set.

63:12 CTP: Context-entry Table
Pointer

Pointer to context-entry table for this bus. The context-entry table
is 4KB in size and size-aligned.

This field is evaluated by hardware only when the present (P)
field is set. When evaluated, hardware treats bits 63:HAW as
reserved (0), where HAW is the host address width of the
platform.

11:1 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the present (P) field is set.

0 P: Present This field indicates whether the root-entry is present.
• 0: Indicates the root-entry is not present. Hardware blocks

DMA requests processed through root entries with the
present field cleared.

• 1: Indicates the root-entry is present. Hardware processes
DMA requests per the context-entries referenced by the
CTP field.
6-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

TRANSLATION STRUCTURE FORMATS
6.2 CONTEXT-ENTRY
The following figure and table describe the context-entry.

Figure 6-2. Context-Entry Format

2
7

8
8

AW

Reserved (0)

DID

T

6
7

6
4

1
8
7

7
0

6
6

0123
6
3

1
2

1
1

FPD

Reserved (0)

ASR

P

Reserved (0)

4HAW HAW -1

Reserved (0)

1
7

AVAIL

2
7

Intel® Virtualization Technology for Directed I/O Architecture Specification 6-3

TRANSLATION STRUCTURE FORMATS
Table 6-2. Context-Entry Contents

Bits Field Description

127:88 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the present (P) field is set.

87:72 DID: Domain Identifier Identifier for the domain to which this context-entry maps.
Hardware may use the domain identifier to tag its internal
caches.

The Capability register reports the domain-id width supported by
hardware. For implementations supporting less than 16-bit
domain-ids, unused bits of this field are treated as reserved by
hardware. For example, for an implementation supporting 8-bit
domain-ids, bits 87:80 of this field are treated as reserved.

Context-entries programmed with the same domain identifier
must always reference the same address translation structure
(through the ASR field). Similarly, context-entries referencing
the same address translation structure must be programmed
with the same domain id.

This field is evaluated by hardware only when the present (P)
field is set.

71 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the present (P) field is set.

70:67 AVAIL: Available This field is available to software. Hardware always ignores the
programming of this field.

66:64 AW: Address Width When the translation-type (T) field indicates multi-level page
tables, this field indicates the adjusted guest-address-width
(AGAW) to be used by hardware for the page-table walk. The
following encodings are defined for this field:
• 000b: 30-bit AGAW (2-level page table)
• 001b: 39-bit AGAW (3-level page table)
• 010b: 48-bit AGAW (4-level page table)
• 011b: 57-bit AGAW (5-level page table)
• 100b: 64-bit AGAW (6-level page table)
• 101b-111b: Reserved

The value specified in this field must match an AGAW value
supported by hardware (as reported in the SAGAW field in the
Capability register).

DMA requests processed through this context-entry and
accessing DMA virtual addresses above 2X-1 (where X is the
AGAW value indicated by this field) are blocked1.

This field is evaluated by hardware only when the present (P)
field is set.
6-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

TRANSLATION STRUCTURE FORMATS
63:12 ASR: Address Space
Root

Host physical address of the address space root as described
below.

When the translation-type (T) field indicates multi-level page
tables, this field points to the base of page-table root.

This field is evaluated by hardware only when the present (P)
field is set. When evaluated, hardware treats bits 63:HAW as
reserved, where HAW is the host address width of the platform.

11:4 R: Reserved Reserved. Must be 0. This field is evaluated by hardware only
when the present (P) field is set.

3:2 T: Translation Type This field is evaluated by hardware only when the present (P)
field is set.
• 00: Indicates ASR field points to a multi-level page table.
• 01 - 11: Reserved.

1 FPD: Fault Processing
Disable

Enables or disables recording/reporting of faults caused by DMA
requests processed through this context-entry:
• 0: Indicates fault recording/reporting is enabled for DMA

requests processed through this context-entry.
• 1: Indicates fault recording/reporting is disabled for DMA

requests processed through this context-entry.

This field is evaluated by hardware irrespective of the setting of
the present (P) field.

0 P: Present • 0: Block DMA requests processed through this context-
entry.

• 1: Process DMA requests through this context-entry based
on the programming of other fields.

NOTES
1. DMA requests to addresses beyond the Maximum Guest Address Width (MGAW) supported by hardware

may be blocked and reported through other means such as PCI Express Advanced Error Reporting
(AER). Such errors (referred to as platform errors) may not be reported as DMA remapping faults and are
outside the scope of this specification.

Table 6-2. Context-Entry Contents (Contd.)

Bits Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 6-5

TRANSLATION STRUCTURE FORMATS
6.3 PAGE-TABLE ENTRY
The following figure and table describe the page-table entry.

Figure 6-3. Page-Table-Entry Format

0126
6
3

1
2

1
1

R
W

SP

ADDR

Reserved (0)

AVAL

78HAW HAW -1

Reserved (0)
6-6 Intel® Virtualization Technology for Directed I/O Architecture Specification

TRANSLATION STRUCTURE FORMATS
Table 6-3. Page-Table-Entry Contents

Bits Field Description

63:12 ADDR:
Address

Host physical address of the page frame if this is a leaf node. Otherwise a pointer to
the next level page table.

This field is evaluated by hardware only when at least one of the Read (R) and Write
(W) fields is set. When evaluated, hardware treats bits 63:HAW as reserved (0),
where HAW is the host address width of the platform.

11:8 AVAIL:
Available

This field is available to software. Hardware always ignores the
programming of this field.

7 SP:
Super
Page

This field tells hardware whether to stop the page-walk before reaching a leaf node
mapping to a 4KB page:
• 0: Continue with the page walk and use the next level table.
• 1: Stop the table walk and form the host physical address using the unused bits

in the input address for the page walk (N-1):0 along with bits (HAW-1):N of the
page base address provided in the address (ADDR) field.

Hardware treats the SP field as reserved (0) in:
• Leaf page-table entries corresponding to 4KB pages.
• Page-directory entries corresponding to super-page sizes not defined in the

architecture.
• Page-directory entries corresponding to super-page sizes not supported by

hardware implementation. (Hardware reports the supported super-page sizes
through the Capability register.)

This field is evaluated by hardware only when at least one of Read (R) and Write
(W) fields is set.

6:2 R:
Reserved

Reserved. Must be 0. This field is evaluated by hardware only when at least one of
the Read (R) and Write (W) fields is set.

1 W:
Writable1

Indicates whether the page is writable for DMA:
• 0: Indicates the page is not accessible to DMA write requests.DMA write

requests processed through this page-table entry are blocked.
• 1: Indicates the page is accessible to DMA write requests.

0 R:
Readable

Indicates whether the page is readable for DMA:
• 0: Indicates the page is not accessible to DMA read requests. DMA read

requests processed through this page-table entry are blocked
• 1: Indicates the page is accessible to DMA read requests.

NOTES
1. Software may mark a page as not present for all DMA requests by clearing the R and W fields in the corre-

sponding page-table entry.
Intel® Virtualization Technology for Directed I/O Architecture Specification 6-7

TRANSLATION STRUCTURE FORMATS
6.4 FAULT RECORD

Figure 6-4. Fault-Record Format

2
7

PADDR

6
4

1

0
6
3

FR

SID

T

Reserved (0)

7
9

8
0

1
1

1
2

9
5

9
6

0
3

0
4

1
2
5

1
2
6

1

Reserved (0)

Reserved (0)

Reserved (0)

1

6-8 Intel® Virtualization Technology for Directed I/O Architecture Specification

TRANSLATION STRUCTURE FORMATS
Table 6-4. Fault-Record Entry Contents

Bits Field Description

127 R: Reserved Reserved (0).

126 T: Type Memory access type of faulted DMA request:
• 0: DMA Write
• 1: DMA Read request

125:104 R: Reserved Reserved (0).

103:96 FR: Fault Reason Reason for DMA remapping fault.

95: 80 R: Reserved Reserved (0).

79:64 SID: Source Identifier Requester-id in the faulted DMA request.

63:12 PADDR: Page
Address

Address (page-granular) in the faulted DMA request.

11:0 R: Reserved Reserved (0).
Intel® Virtualization Technology for Directed I/O Architecture Specification 6-9

TRANSLATION STRUCTURE FORMATS
6-10 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 7
DMA REMAPPING REGISTERS

This chapter describes the structure and use of the DMA Remapping Registers.

7.1 REGISTER LOCATION
The register set for each DMA remapping hardware unit in the platform is placed at a 4Kbyte-
aligned memory-mapped location. The exact location of the register region is implementation-
dependent, and is communicated to system software by BIOS through the DMA remapping
hardware reporting structures.

7.2 SOFTWARE ACCESS TO HARDWARE REGISTERS
Software interacts with the DMA remapping hardware by reading and writing its memory-
mapped registers. The following requirements are defined for software access to these registers.

• Software is expected to access 32-bit registers as aligned doublewords. For example, to
modify a field (e.g., bit or byte) in a 32-bit register, the entire doubleword is read, the
appropriate field(s) are modified, and the entire doubleword is written back.

• Software must access 64-bit and 128-bit registers as either aligned quadwords or aligned
doublewords. Hardware may disassemble a quadword register access as two double-word
accesses. In such cases, hardware is required to complete the quad-word read or write
request in a single clock in the order of lower doubleword first and then the upper
double-word.

• When updating registers through multiple accesses (be it in software or due to hardware
disassembly), certain registers may have specific requirements on how these accesses must
be ordered for proper behavior. These are documented as part of the respective register
descriptions.

• For compatibility with future extensions or enhancements, software must assign the last
read value to all RsvdP fields when written. In other words, any updates to a register must
be read so that the appropriate merge between the RsvdP and updated fields will occur.
Also, software must assign a value of zero for RsvdZ fields when written.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-1

DMA REMAPPING REGISTERS
7.3 REGISTER ATTRIBUTES
The following table defines the attributes used in the DMA remapping Registers. Those registers
are discussed in Section 7.4.

Table 7-1. Attribute Definitions for DMA Remapping Registers

Attribute Description

RW Read-Write field that may be either set or cleared by software to the desired state.

RW1C Read-only status, Write-1-to-clear status field. Read of the field indicates status. A set
bit indicating a status may be cleared by writing a 1. Writing a 0 to RW1C fields has no
effect.

RW1CS Sticky Read-only status, Write-1-to-clear status field. Read of the field indicates status.
A set bit indicating a status may be cleared by writing a 1. Writing a 0 to RW1C fields
has no effect. Not initialized or modified by hardware except on powergood reset.

RO Read-only field that cannot be directly altered by software.

ROS Sticky Read-only field that cannot be directly altered by software, and is not initialized
or modified by hardware except on powergood reset.

WO Write-only field. The value returned by hardware on read is undefined.

RsvdP Reserved and Preserved field that is reserved for future RW implementations.
Registers are read-only and must return 0 when read. Software must preserve the
value read for writes.

RsvdZ Reserved and Zero field that is reserved for future RW1C implementations. Registers
are read-only and must return 0 when read. Software must use 0 for writes.
7-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4 REGISTER DESCRIPTIONS
The following table summarizes the memory-mapped registers used for DMA remapping.

Table 7-2. DMA Remapping Register

Offset Register Name Size Description

000h Version Register 32 Architecture version supported by the
implementation.

004h Reserved 32 Reserved

008h Capability Register 64 Hardware reporting of capabilities.

010h Extended Capability Register 64 Hardware reporting of extended capabilities.

018h Global Command Register 32 Register controlling general functions.

01Ch Global Status Register 32 Register reporting general status.

020h Root-Entry Table Address Register 64 Register to set up location of root-entry table.

028h Context Command Register 64 Register to manage context-entry cache.

030h Reserved 32 Reserved

034h Fault Status Register 32 Register to report primary fault logging status.

038h Fault Event Control Register 32 Interrupt control register for fault events.

03Ch Fault Event Data Register 32 Interrupt message data register for fault events.

040h Fault Event Address Register 32 Interrupt message address register for fault
event messages.

044h Fault Event Upper Address
Register

32 Interrupt message upper address register for
fault event messages.

048h Reserved 64 Reserved

050h Reserved 64 Reserved

058h Advanced Fault Log
Register

64 Register to configure and manage advanced
fault logging.

060h Reserved 32 Reserved

064h Protected Memory Enable Register 32 Register to enable DMA protected memory
region(s).

068h Protected Low Memory Base
Register

32 Register pointing to base of DMA protected low
memory region.

06Ch Protected Low Memory Limit
Register

32 Register pointing to last address (limit) of the
DMA protected low memory region.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-3

DMA REMAPPING REGISTERS
7.4.1 Version Register

070h Protected High Memory Base
Register

64 Register pointing to base of DMA protected high
memory region.

078h Protected High Memory Limit
Register

64 Register pointing to last address (limit) of the
DMA protected high memory region.

080h-
FFFh

Reserved - Reserved register space for future extensions.

XXXh IOTLB Invalidation Units [m]1 64 Each IOTLB invalidation unit consists of two
64-bit registers: Table 7-10 describes the format
of each IOTLB invalidation unit registers.

XXXh Fault Recording Registers [n]1 128 Registers to record the translation faults. The
starting offset of the fault recording registers is
reported through the Capability register.

NOTES
1. Hardware implementations may place IOTLB invalidation unit registers and fault recording registers in any

reserved addresses above 4KB register region, or place them in subsequent 4KB regions. If one or more
subsequent 4KB regions are used, unused addresses in those pages must be treated as reserved by
hardware.

Table 7-3. Version Register

Abbreviation VER_REG

General
Description

Register to report the architecture version supported. Backward compatibility for
the architecture is maintained with new revision numbers, allowing software to load
DMA remapping driver written for prior architecture versions.

Register Offset 000h

Bits Access Default Field Description

31:8 RO 0h R: Reserved Reserved.

7:4 RO 1h MAX: Major Version
number

Indicates supported architecture version.

3:0 RO 0h MIN: Minor Version
number

Indicates supported architecture minor
version.

Table 7-2. DMA Remapping Register (Contd.)

Offset Register Name Size Description
7-4 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.2 Capability Register

Table 7-4. Capability Register

Abbreviation CAP_REG

General
Description

Register to report general DMA remapping hardware capabilities

Register Offset 008h

Bits Access Default Field Description

63:56 RO 0h R: Reserved Reserved.

55 RO X DRD: DMA Read
Draining

• 0: On IOTLB invalidations, hardware does
not support draining of translated DMA
read requests queued within the root
complex.

• 1: On IOTLB invalidations, hardware
supports draining of translated DMA read
requests queued within the root complex.

54 RO X DWD: DMA Write
Draining

• 0: On IOTLB invalidations, hardware does
not support draining of translated DMA
writes queued within the root complex.

• 1: On IOTLB invalidations, hardware
supports draining of translated DMA writes
queued within the root complex.

53:48 RO X MAMV: Maximum
Address Mask Value

The value in this field indicates the maximum
supported value for the Address Mask (AM) field
in the Invalidation Address (IVA_REG) register.

47:40 RO X NFR: Number of
Fault- recording
Registers

This field contains the value N-1, where N is the
number of fault recording registers supported by
hardware.

Implementations must support at least one fault
recording register (NFR = 0) for each DMA
remapping hardware unit in the platform.

The maximum number of fault recording
registers per DMA remapping hardware unit is
256.

39:38 RO 0h R: Reserved Reserved.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-5

DMA REMAPPING REGISTERS
37:34 RO X SPS: Super-Page
support

This field indicates the super page sizes
supported by hardware.

A value of 1 in any of these bits indicates the
corresponding super-page size is supported.
The super-page sizes corresponding to various
bit positions within this field are:
• 0: 21-bit offset to page frame
• 1: 30-bit offset to page frame
• 2: 39-bit offset to page frame
• 3: 48-bit offset to page frame

33:24 RO X FRO: Fault-recording
Register offset

This field specifies the offset of the first fault
recording register relative to the register base
address of this DMA remapping hardware unit.

If the register base address is X, and the value
reported in this field is Y, the address for the first
fault recording register is calculated as
X+(16*Y).

23 RO X SS: Spatial
Separation

• 0: Indicates no spatial separation require-
ments for this DMA remapping hardware
unit. The memory-resident structures used
by this DMA remapping unit may be
partially or fully shared with other DMA
remapping units.

• 1: Indicates spatial separation require-
ments for this DMA remapping hardware
unit. The memory-resident structures used
by this DMA remapping unit must not be
shared with other DMA remapping units.
This may be required by specific implemen-
tations for remapping isochronous DMA.

22 RO X QoS: Quality of
Service

• 0: Indicates this DMA remapping hardware
unit has no additional quality of service
requirements.

• 1: Indicates this DMA remapping hardware
unit remaps DMA with specific quality of
service requirements (such as with
isochrony). To guarantee isochronous
performance, software must ensure invali-
dation operations do not impact active
DMA streams. This implies that when
DMA is active, software performs page-
selective invalidations (instead of coarser
invalidations).

Bits Access Default Field Description
7-6 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
21:16 RO X MGAW: Maximum
Guest Address Width

This field indicates the maximum DMA virtual
addressability supported by remapping
hardware. The Maximum Guest Address Width
(MGAW) is computed as (N+1), where N is the
valued reported in this field. For example, a
hardware implementation supporting 48-bit
MGAW reports a value of 47 (101111b) in this
field.

If the value in this field is X, DMA requests to
addresses above 2(X+1)-1 are always blocked
by hardware.

Guest addressability for a given DMA request is
limited to the minimum of the value reported
through this field and the adjusted guest
address width of the corresponding page-table
structure. (Adjusted guest address widths
supported by hardware are reported through the
SAGAW field).

15:13 RO 0h R: Reserved Reserved.

12:8 RO X SAGAW: Supported
Adjusted Guest
Address Widths

This 5-bit field indicates the supported adjusted
guest address widths (which in turn represents
the levels of page-table walks) supported by the
hardware implementation.

A value of 1 in any of these bits indicates the
corresponding adjusted guest address width is
supported. The adjusted guest address widths
corresponding to various bit positions within this
field are:
• 0: 30-bit AGAW(2-level page table)
• 1: 39-bit AGAW(3-level page table)
• 2: 48-bit AGAW(4-level page table)
• 3: 57-bit AGAW (5-level page table)
• 4: 64-bit AGAW (6-level page table)

Software must ensure that the adjusted guest
address width used to setup the page tables is
one of the supported guest address widths
reported in this field.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-7

DMA REMAPPING REGISTERS
7 RO X CM: Caching Mode • 0: Hardware does not cache not present
and erroneous entries in the context-cache
and IOTLB. Invalidations are not required
for modifications to individual not present or
invalid entries. However, any modifications
that result in decreasing the effective
permissions or partial permission increases
require invalidations for them to be
effective.

• 1: Hardware may cache not present and
erroneous mappings in the context-cache
or IOTLB. Any software updates to the
DMA remapping structures (including
updates to not-present or erroneous
entries) require explicit invalidation.

Refer to Section 7.4.9 for more details on
caching mode.

Hardware implementations are recommended
to support operation corresponding to CM=0.

6 RO X PHMR: Protected
High-Memory Region

• 0: Indicates protected high-memory region
is not supported.

• 1: Indicates protected high-memory region
is supported.

5 RO X PLMR: Protected
Low-Memory
Region

• 0: Indicates protected low-memory region
is not supported.

• 1: Indicates protected low-memory region
is supported.

4 RO X RWBF: Required
Write-Buffer Flushing

• 0: Indicates no write-buffer flushing is
needed to ensure changes to memory-
resident structures are visible to hardware.

• 1: Indicates software must explicitly flush
the write buffers (through the Global
Command register) to ensure updates
made to memory-resident DMA remapping
structures are visible to hardware.

3 RO X AFL: Advanced Fault
Logging

• 0: Indicates advanced fault logging is not
supported. Only primary fault logging is
supported.

• 1: Indicates advanced fault logging is
supported.

Bits Access Default Field Description
7-8 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
2:0 RO X ND: Number of
domains supported

• 000b: Hardware supports 4-bit domain-ids
with support for up to 16 domains.

• 001b: Hardware supports 6-bit domain-ids
with support for up to 64 domains.

• 010b: Hardware supports 8-bit domain-ids
with support for up to 256 domains.

• 011b: Hardware supports 10-bit domain-ids
with support for up to 1024 domains.

• 100b: Hardware supports 12-bit domain-ids
with support for up to 4K domains.

• 100b: Hardware supports 14-bit domain-ids
with support for up to 16K domains.

• 110b: Hardware supports 16-bit domain-ids
with support for up to 64K domains.

• 111b: Reserved.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-9

DMA REMAPPING REGISTERS
7.4.3 Extended Capability Register

Table 7-5. Extended Capability Register

Abbreviation ECAP_REG

General
Description

Register to report DMA remapping hardware extended capabilities

Register Offset 010h

Bits Access Default Field Description

63:32 RO 0h R: Reserved Reserved.

31:24 RO X NIU: Number of IOTLB
Invalidation Units

This field contains the value N-1, where N is
the number of IOTLB invalidation units
supported by hardware.

Each IOTLB invalidation unit consists of two
registers: A 64-bit IOTLB Invalidation
Register (IOTLB_REG), followed by a 64-bit
Invalidation Address Register (IVA_REG).

Implementations must support at least one
IOTLB invalidation unit (NIVU = 0) for each
DMA remapping hardware unit in the
platform.

The maximum number of IOTLB invalidation
register units per DMA remapping hardware
unit is 256.

23:18 RO 0h R: Reserved Reserved.

17:8 RO X IVO: Invalidation Unit
Offset

This field specifies the offset to the first
IOTLB invalidation unit relative to the
register base address of this DMA
remapping hardware unit.

If the register base address is X, and the
value reported in this field is Y, the address
for the first IOTLB invalidation unit is
calculated as X+(16*Y).

If N is the value reported in NIU field, the
address for the last IOTLB invalidation unit
is calculated as X+(16*Y)+(16*N).

7:4 RO 0h R: Reserved Reserved.
7-10 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
3 RO X FMT: Fault log memory
type

• 0: Indicates hardware accesses to fault
log memory region are non-coherent.

• 1: Indicates hardware accesses to fault
log memory region are coherent.

This field is valid only for implementations
supporting advanced fault logging.

2 RO X PMT: Page-table memory
type

• 0: Indicates hardware accesses to
page tables are non-coherent.

• 1: Indicates hardware accesses to
page-tables are coherent.

1 RO X CMT: Context-entry table
memory type

• 0: Indicates hardware accesses to
context-entry tables are non-coherent.

• 1: Indicates hardware accesses to
context-entry tables are coherent.

0 RO X RMT: Root-entry table
memory type

• 0: Indicates hardware accesses to root-
entry table are non-coherent.

• 1: Indicates hardware accesses to root-
entry table are coherent.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-11

DMA REMAPPING REGISTERS
7.4.4 Global Command Register

Table 7-6. Global Command Register

Abbreviation GCMD_REG

General
Description

Register to control DMA remapping hardware. If multiple control fields in this
register need to be modified, software must serialize through multiple writes to this
register.

Register Offset 018h

Bits Access Default Field Description

31 WO 0 TE: Translation
Enable

Software writes to this field to request hardware to
enable/disable DMA remapping hardware:
• 0: Disable DMA remapping hardware
• 1: Enable DMA remapping hardware

Hardware reports the status of the translation enable
operation through the TES field in the Global Status
register. Before enabling (or re-enabling) DMA
remapping hardware through this field, software
must:
• Setup the DMA remapping structures in

memory
• Flush the write buffers (through WBF field), if

write buffer flushing is reported as required.
• Set the root-entry table pointer in hardware

(through the SRTP field).
• Perform global invalidation of the context-cache

and global invalidation of IOTLB
• If advanced fault logging supported, setup fault

log pointer (through SFL field) and enable
advanced fault logging (through the EAFL
field).

There may be active DMA requests in the platform
when software updates this field. Hardware must
enable or disable remapping logic only at
deterministic transaction boundaries, so that any in-
flight transaction is either subject to remapping or
not at all.

Hardware implementations supporting DMA draining
must drain any in-flight translated DMA read/write
requests queued within the root complex before
completing the translation enable command and
reflecting the status of the command through the
TES field in the GSTS_REG.

Value returned on read of this field is undefined.
7-12 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
30 WO 0 SRTP: Set Root
Table Pointer

Software sets this field to set/update the root-entry
table pointer used by hardware. The root-entry table
pointer is specified through the Root-entry Table
Address register.

Hardware reports the status of the root table pointer
set operation through the RTPS field in the Global
Status register.

The root table pointer set operation must be
performed before enabling or re-enabling (after
disabling) DMA remapping hardware.

After a root table pointer set operation, software
must globally invalidate the context cache followed
by global invalidate of IOTLB. This is required to
ensure hardware uses only the remapping
structures referenced by the new root table pointer,
and not any stale cached entries.

While DMA remapping hardware is active, software
may update the root table pointer through this field.
However, to ensure valid in-flight DMA requests are
deterministically remapped, software must ensure
that the structures referenced by the new root table
pointer are programmed to provide the same
remapping results as the structures referenced by
the previous root table pointer.

Clearing this bit has no effect.

Value returned on read of this field is undefined.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-13

DMA REMAPPING REGISTERS
29 WO 0 SFL: Set Fault
Log

This field is valid only for implementations
supporting advanced fault logging. If advanced fault
logging is not supported, writes to this field are
ignored.

Software sets this field to request hardware to
set/update the fault-log pointer used by hardware.
The fault-log pointer is specified through Advanced
Fault Log register.

Hardware reports the status of the fault log set
operation through the FLS field in the Global Status
register.

The fault log pointer must be set before enabling
advanced fault logging (through EAFL field). Once
advanced fault logging is enabled, the fault log
pointer may be updated through this field while DMA
remapping hardware is active.

Clearing this bit has no effect.

Value returned on read of this field is undefined.

28 WO 0 EAFL: Enable
Advanced Fault
Logging

This field is valid only for implementations
supporting advanced fault logging. If advanced fault
logging is not supported, writes to this field are
ignored.

Software writes to this field to request hardware to
enable or disable advanced fault logging:
• 0: Disable advanced fault logging. In this case,

translation faults are reported through the Fault
Recording registers.

• 1: Enable use of memory-resident fault log.
When enabled, translation faults are recorded
in the memory-resident log. The fault log
pointer must be set in hardware (through SFL
field) before enabling advanced fault logging.
Hardware reports the status of the advanced
fault logging enable operation through the
AFLS field in the Global Status register.

Value returned on read of this field is undefined.

Bits Access Default Field Description
7-14 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
27 WO 0 WBF: Write
Buffer Flush

This bit is valid only for implementations requiring
write buffer flushing. If write buffer flushing is not
required, writes to this field are ignored.

Software sets this field to request hardware to flush
the root-complex internal write buffers. This is done
to ensure any updates to the memory-resident DMA
remapping structures are not held in any internal
write posting buffers.

Hardware reports the status of the write buffer
flushing operation through the WBFS field in the
Global Status register.

Clearing this bit has no effect.

Value returned on read of this field is undefined.

26:0 RsvdP 0h R: Reserved Reserved.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-15

DMA REMAPPING REGISTERS
7.4.5 Global Status Register

Table 7-7. Global Status Register

Abbreviation GSTS_REG

General
Description

Register to report general DMA remapping hardware status.

Register Offset 01Ch

Bits Access Default Field Description

31 RO 0 TES: Translation
Enable Status

This field indicates the status of DMA remapping
hardware.
• 0: DMA remapping hardware is not enabled
• 1: DMA remapping hardware is enabled

30 RO 0 RTPS: Root
Table Pointer
Status

This field indicates the status of the root-table
pointer in hardware.

This field is cleared by hardware when software sets
the SRTP field in the Global Command register. This
field is set by hardware when hardware completes
the set root-table pointer operation using the value
provided in the Root-Entry Table Address register.

29 RO 0 FLS: Fault Log
Status

This field:
• Is cleared by hardware when software sets the

SFL field in the Global Command register.
• Is set by hardware when hardware completes

the set fault-log pointer operation using the
value provided in the Advanced Fault Log
register.

28 RO 0 AFLS: Advanced
Fault Logging
Status

This field is valid only for implementations
supporting advanced fault logging; it indicates the
advanced fault logging status:
• 0: Advanced Fault Logging is not enabled
• 1: Advanced Fault Logging is enabled

27 RO 0 WBFS: Write
Buffer Flush
Status

This bit is valid only for implementations requiring
write buffer flushing. This field:
• Indicates the status of the write buffer flush

operation.
• Is set by hardware when software sets the WBF

field in the Global Command register.
• Is cleared by hardware when hardware

completes the write buffer flushing operation.

26:0 RO 0h R: Reserved Reserved.
7-16 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.6 Root-Entry Table Address Register

Table 7-8. Root-Entry Table Address Register

Abbreviation RTADDR_REG

General
Description

Register providing the base address of root-entry table.

Register Offset 020h

Bits Access Default Field Description

63:12 RW 0h RTA: Root Table
Address

This register points to base of the page-aligned,
4KB-sized root-entry table in system memory.
Hardware may ignore and not implement bits
63:HAW, where HAW is the host address width.

Software specifies the base address of the root-
entry table through this register, and programs it
in hardware through the SRTP field in the Global
Command register.

Reads of this register return the value that was
last programmed to it.

11:0 RsvdP 0h R: Reserved Reserved.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-17

DMA REMAPPING REGISTERS
7.4.7 Context Command Register

Table 7-9. Context Command Register

Abbreviation CCMD_REG

General
Description

Register to manage context cache.The act of writing the uppermost byte of the
CCMD_REG with ICC field set causes the hardware to perform the context-cache
invalidation.

Register Offset 028h

Bits Access Default Field Description

63 RW 0 ICC: Invalidate
Context-Cache

Software requests invalidation of context-cache by
setting this field. Software must also set the
requested invalidation granularity by programming
the CIRG field. Software must read back and check
the ICC field to be clear to confirm the invalidation is
complete. Software must not update this register
when this field is set.

Hardware clears the ICC field to indicate the
invalidation request is complete.Hardware also
indicates the granularity at which the invalidation
operation was performed through the CAIG field.
Software must not submit another invalidation
request through this register while the ICC field is
set.

Software must submit a context cache invalidation
request through this field only when there are no
invalidation requests pending at this DMA remapping
hardware unit.

Since information from the context-cache may be
used by hardware to tag IOTLB entries, software
must perform domain-selective (or global)
invalidation of IOTLB after the context cache
invalidation has completed.

Hardware implementations reporting write-buffer
flushing requirement (RWBF=1 in the Capability
register) must implicitly perform a write buffer
flushing before reporting invalidation complete to
software through the ICC field.
7-18 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
62:61 RW 0h CIRG: Context
Invalidation
Request
Granularity

Software provides the requested invalidation
granularity through this field when setting the ICC
field:
• 00: Reserved.
• 01: Global Invalidation request.
• 10: Domain-selective invalidation request. The

target domain-id must be specified in the DID
field.

• 11: Device-selective invalidation request. The
target source-id(s) must be specified through
the SID and FM fields, and the domain-id (that
was programmed in the context-entry for these
device(s)) must be provided in the DID field.

Hardware implementations may process an
invalidation request by performing invalidation at a
coarser granularity than requested. Hardware
indicates completion of the invalidation request by
clearing the ICC field. At this time, hardware also
indicates the granularity at which the actual
invalidation was performed through the CAIG field.

60:59 RO 0h CAIG: Context
Actual
Invalidation
Granularity

Hardware reports the granularity at which an
invalidation request was processed through the
CAIG field at the time of reporting invalidation
completion (by clearing the ICC field).

The following are the encodings for the CAIG field:
• 00: Reserved.
• 01: Global Invalidation performed. This could be

in response to a global, domain-selective or
device-selective invalidation request.

• 10: Domain-selective invalidation performed
using the domain-id specified by software in the
DID field. This could be in response to a
domain-selective or device-selective invali-
dation request.

• 11: Device-selective invalidation performed
using the source-id and domain-id specified by
software in the SID and FM fields. This can only
be in response to a device-selective invalidation
request.

58:34 RsvdP 0h R: Reserved Reserved.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-19

DMA REMAPPING REGISTERS
33:32 WO 0h FM: Function
Mask

This field specifies which bits of the function number
portion (least significant three bits) of the SID field to
mask when performing device-selective
invalidations.The following encodings are defined for
this field:
• 00: No bits in the SID field masked.
• 01: Mask most significant bit of function number

in the SID field.
• 10: Mask two most significant bits of function

number in the SID field.
• 11: Mask all three bits of function number in the

SID field.

The device(s) specified through the FM and SID
fields must correspond to the domain-id specified in
the DID field.

Value returned on read of this field is undefined.

31:16 WO 0h SID: Source-ID Indicates the source-id of the device whose
corresponding context-entry needs to be selectively
invalidated.This field along with the FM field must be
programmed by software for device-selective
invalidation requests.

Value returned on read of this field is undefined.

15:0 RW 0h DID: Domain-ID Indicates the id of the domain whose context-entries
needs to be selectively invalidated. This field must be
programmed by software for both domain-selective
and device-selective invalidation requests.

The Capability register reports the domain-id width
supported by hardware. Software must ensure that
the value written to this field is within this limit.
Hardware may ignore and not implement bits 15:N,
where N is the supported domain-id width reported in
the Capability register.

Bits Access Default Field Description
7-20 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.8 IOTLB Invalidation Unit Registers
Hardware implementations report the number of IOTLB invalidation units through the
extending capability register. Each IOTLB invalidation unit consists of two adjacently placed
64-bit registers: (a) IOTLB Invalidate Register (IOTLB_REG); and (b) Invalidate Address
Register (IVA_REG). These registers are described below.

Each IOTLB Invalidation Unit is composed of two 64-bit registers as shown in the following
table.

Table 7-10. IOTLB Invalidation Unit Registers

Offset Register Name Size Description

XXXh Invalidate Address Register 64 Register to provide the target address for
page-selective IOTLB invalidation.

XXXh + 008h IOTLB Invalidate Register 64 Register for IOTLB invalidation command
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-21

DMA REMAPPING REGISTERS
7.4.8.1 IOTLB Invalidate Register

Table 7-11. IOTLB Invalidate Register

Abbreviation IOTLB_REG

General
Description

Register to control page-table entry caching. The act of writing the upper byte of
the IOTLB_REG with IVT field set causes the hardware to perform the IOTLB
invalidation. There is an IOTLB_REG for each IOTLB Invalidation unit supported by
hardware.

Register Offset XXXh + 0008h (where XXXh is where the corresponding IVA_REG is located)

Bits Access Default Field Description

63 RW 0 IVT: Invalidate
IOTLB

Software requests IOTLB invalidation by setting this
field. Software must also set the requested invalidation
granularity by programming the IIRG field.

Hardware clears the IVT field to indicate the
invalidation request is complete.Hardware also
indicates the granularity at which the invalidation
operation was performed through the IAIG field.
Software must not submit another invalidation request
through this register while the IVT field is set, nor
update the associated Invalidate Address register.

Software must not submit IOTLB invalidation requests
through any of the IOTLB invalidation units when there
is a context-cache invalidation request pending at this
DMA remapping hardware unit. When more than one
IOTLB invalidation units are supported by a DMA
remapping hardware unit, software may submit IOTLB
invalidation request through any of the currently free
units while there are pending requests on other units.

Hardware implementations reporting write-buffer
flushing requirement (RWBF=1 in Capability register)
must implicitly perform a write buffer flushing before
reporting invalidation complete to software through the
IVT field.
7-22 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
62:60 RW 0h IIRG: IOTLB
Invalidation
Request
Granularity

When requesting hardware to invalidate the IOTLB (by
setting the IVT field), software writes the requested
invalidation granularity through this IIRG field.
Following are the encodings for the IIRG field.
• 000: Reserved.
• 001: Global invalidation request.
• 010: Domain-selective invalidation request. The

target domain-id must be specified in the DID field.
• 011: Domain-page-selective invalidation request.

The target address, mask and invalidation hint
must be specified in the Invalidate Address
register, and the domain-id must be provided in the
DID field.

• 101 - 111: Reserved.

Hardware implementations may process an invalidation
request by performing invalidation at a coarser
granularity than requested. Hardware indicates
completion of the invalidation request by clearing the
IVT field. At this time, the granularity at which actual
invalidation was performed is reported through the IAIG
field.

59:57 RO 0h IAIG: IOTLB
Actual
Invalidation
Granularity

Hardware reports the granularity at which an
invalidation request was processed through this field at
the time of reporting invalidation completion (by
clearing the IVT field). The following are the encodings
for the IAIG field.
• 000: Reserved. This indicates hardware detected

an incorrect invalidation request and hence
ignored the request.

• 001: Global Invalidation performed. This could be
in response to a global, domain-selective, or
domain-page-selective invalidation request.

• 010: Domain-selective invalidation performed
using the domain-id specified by software in the
DID field. This could be in response to a domain-
selective or domain-page-selective invalidation
request.

• 011: Domain-page-selective invalidation
performed using the address, mask and hint
specified by software in the Invalidate Address
register and domain-id specified in DID field. This
can be in response to a domain-page-selective
invalidation request.

• 100 - 111: Reserved.

56:50 RsvdP 0h R: Reserved Reserved.

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-23

DMA REMAPPING REGISTERS
49 RW 0h DR: Drain
Reads

This field is ignored by hardware if the DRD field is
reported as clear in the Capability register. When the
DRD field is reported as set in the Capability register,
the following encodings are supported for this field:
• 0: Hardware may complete the IOTLB invalidation

without draining any translated DMA reads that
are queued in the root-complex and yet to be
processed.

• 1: Hardware must drain all/relevant translated
DMA reads that are queued in the root-complex
before indicating IOTLB invalidation completion to
software.

A DMA read request to system memory is defined as
drained when root-complex has finished fetching all of
its read response data from memory.

48 RW 0h DW: Drain
Writes

This field is ignored by hardware if the DWD field is
reported as clear in the Capability register. When DWD
field is reported as set in the Capability register, the
following encodings are supported for this field:
• 0: Hardware may complete the IOTLB invalidation

without draining any translated DMA writes that
are queued in the root-complex for processing.

• 1: Hardware must drain all/relevant translated
DMA writes that are queued in the root-complex
before indicating IOTLB invalidation completion to
software.

A DMA write request to system memory is defined as
drained when the effects of the write is visible to
processor accesses to all addresses targeted by the
DMA write.

47:32 RW 0h DID: Domain-
ID

Indicates the ID of the domain whose IOTLB entries
needs to be selectively invalidated. This field must be
programmed by software for domain-selective, domain-
page-selective, and device-page-selective invalidation
requests.

The Capability register reports the domain-id width
supported by hardware. Software must ensure that the
value written to this field is within this limit. Hardware
may ignore and not implement bits 47:(32+N), where N
is the supported domain-id width reported in the
Capability register.

31:0 RsvdP 0h R: Reserved Reserved.

Bits Access Default Field Description
7-24 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.8.2 Invalidate Address Register

Table 7-12. Invalidate Address Register

Abbreviation IVA_REG

General
Description

Register to provide the DMA address whose corresponding IOTLB entry needs to
be invalidated through the corresponding IOTLB Invalidate register. This register is
a write-only register. Value returned on reads of this register is undefined. There is
an IVA_REG for each IOTLB Invalidation unit supported by hardware.

Register Offset XXXh (XXXh must be QWORD aligned)

Bits Access Default Field Description

63:12 WO 0h ADDR: Address Software provides the DMA address that needs to
be page-selectively invalidated. To request a
page-selective invalidation request to hardware,
software must first write the appropriate fields in
this register, and then issue appropriate page-
selective invalidate command through the
IOTLB_REG. Hardware ignores bits 63:N, where
N is the maximum guest address width (MGAW)
supported.

Value returned on read of this field is undefined.

11:7 RsvdP 0 R: Reserved Reserved.

6 WO 0 IH: Invalidation
Hint

The field provides hints to hardware to preserve or
flush the non-leaf (page-directory) entries that
may be cached in hardware:
• 0: Software may have modified both leaf and

non-leaf page-table entries corresponding to
mappings specified in the ADDR and AM
fields. On a page-selective invalidation
request, hardware must flush both the
cached leaf and non-leaf page-table entries
corresponding to mappings specified by
ADDR and AM fields.

• 1: Software has not modified any non-leaf
page-table entries corresponding to
mappings specified in the ADDR and AM
fields. On a page-selective invalidation
request, hardware may preserve the cached
non-leaf page-table entries corresponding to
mappings specified by ADDR and AM fields.

Value returned on read of this field is undefined.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-25

DMA REMAPPING REGISTERS
7.4.9 Hardware Caching Details
This section describes the architectural behavior associated with the context-cache, IOTLB, and
non-leaf (page-directory) caches.

7.4.9.1 Caching Mode Behavior

The Caching Mode (CM) field in Capability register indicates if the underlying implementation
may cache not-present and erroneous DMA remapping structure entries. When the CM field is
reported as set, any software updates to the DMA remapping structures (including updates to
not-present entries) requires explicit invalidation of the caches.

Hardware implementations are highly recommended to not cache not-present and erroneous
entries (i.e., report CM field as 0).

Software implementations that may be virtualizing the DMA remapping architecture to other
software layers (such as to an operating system running within a guest partition), may report the
Caching Mode (CM) of the virtual hardware as set to efficiently virtualize the DMA remapping
hardware. For example, software virtualization of DMA remapping architecture typically

5:0 WO 0 AM: Address
Mask

The value in this field specifies the number of low
order bits of the ADDR field that must be masked
for the invalidation operation. Mask field enables
software to request invalidation of contiguous
mappings for size-aligned regions. For example:

Hardware implementations report the maximum
supported mask value through the Capability
register.

Value returned on read of this field is undefined.

Bits Access Default Field Description

Mask
Value

ADDR
bits

masked

Pages
invalidated

0 None 1

1 12 2

2 13:12 4

3 14:12 8

4 15:12 16

...
7-26 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
requires the DMA remapping structures to be shadowed in software. Reporting the Caching
Mode as set for the virtual hardware requires the guest software to explicitly issue invalidation
operations on the virtual hardware for any/all updates to the guest remapping structures. The
virtualizing software may utilize these virtual invalidation operations to keep the shadow tables
consistent to any guest structure modifications, without resorting to other less efficient tech-
niques (such as write-protecting the guest structures through CPU page tables).

7.4.9.2 Context Caching

For implementations reporting Caching Mode (CM) as clear in the Capability register, if hard-
ware encounters any of the following fault conditions as part of accessing a root-entry or a
context-entry, the resulting entry is not cached in the context-cache.

• Hardware attempt to access the root table through the RTA field in the Root-entry Table
Address register resulted in error.

• Present (P) field of the root-entry is clear.
• Hardware detected invalid programming of one or more fields in the present root-entry.
• Hardware attempt to access a context-entry table through the Context Table Pointer (CTP)

field in the present root-entry resulted in error.
• Present (P) field of the context-entry is clear.

• Hardware detected invalid programming of one or more fields in the present context-entry.

• Hardware checks reserved fields, and detected one or more non-zero reserved fields in the
present root-entry or context-entry.

For implementations reporting Caching Mode (CM) as set in the Capability register, above
conditions may cause hardware to cache the resulting entry.

Since information from the present context-entries (such as domain-id) may be utilized to tag
the IOTLB and/or the non-leaf (page-directory) caches, on root-entry and context-entry modifi-
cations that require context-cache invalidation, software must also domain-selectively (or
globally) invalidate the IOTLB after the context-cache invalidation is completed.

7.4.9.3 IOTLB

IOTLB caches effective translations for a given DMA address, including the cumulative Read
and Write permissions from the page-walk leading to this translation.

For implementations reporting Caching Mode (CM) as clear in the Capability register, IOTLB
caches only valid mappings (i.e. results of successful page-walks with effective translations that
has at least one of the cumulative Read and Write permissions from the page-walk being set).
Specifically, if hardware encounters any of the following conditions, the results are not cached
in the IOTLB:

• Conditions listed in Section 7.4.9.2 and Section 7.4.9.3.

• Hardware attempt to access the page table through the ADDR field of the previous page-
directory entry in the page walk resulted in error.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-27

DMA REMAPPING REGISTERS
• Read (R) and Write (W) fields of the page table entry is clear (not-present entry).

• Hardware detected invalid programming of one or more fields in the present page table
entry.

• Hardware checks reserved fields, and detected one or more non-zero reserved fields in the
present page table entry.

• The cumulative read and write permissions from the page-walk was both clear (effectively
not-present entry).

For implementations reporting Caching Mode (CM) as set in the Capability register, above
conditions may cause hardware to cache erroneous or not-present mappings in the IOTLB.

7.4.9.4 Page Directory Entry (PDE) Caching

Support for non-leaf (page-directory entry) caching is hardware implementation dependent, and
is transparent to software.

For implementations reporting Caching Mode (CM) as clear in the Capability register, if hard-
ware encounters any of the following fault conditions as part of accessing a page-directory entry,
the resulting entry is not cached in the non-leaf caches.

• Hardware attempt to access the page-directory through either the ASR field of context-
entry (in case of root page directory), or the ADDR field of the previous page directory
entry in the page-walk resulted in error.

• Read (R) and Write (W) fields of the page-directory entry is clear (not present entry).

• Hardware detected invalid programming of one ore more fields in the present page
directory entry.

• Hardware checks reserved fields, and detected one or more non-zero reserved fields in the
present page directory entry.

For implementations reporting Caching Mode (CM) as set in the Capability register, above
conditions may cause hardware to cache the corresponding page-directory entries.

7.4.9.5 PDE Cache Invalidation

Hardware implementations supporting non-leaf (PDE) caching functions as follows:

• Globally invalidate the non-leaf caches on IOTLB global invalidations.

• Domain-selective (or global) invalidation of non-leaf caches on IOTLB domain-selective
invalidations.

• For IOTLB page-selective invalidations with Invalidation Hint (IH) field set to 1, hardware
is recommended to preserve the non-leaf cache entries.

• For IOTLB page-selective invalidations with IH field clear, hardware must invalidate the
appropriate non-leaf cache entries. This may be achieved by invalidating only the cached
non-leaf entries corresponding to the mappings specified in the Invalidation Address
7-28 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
registers (IVA_REG), or through a domain-selective (or global) invalidation of the non-
leaf caches.

• The results reported by hardware in the IAIG field of the IOTLB Invalidation registers
(IOTLB_REG) is always the granularity at which the invalidation was performed on the
IOTLB.

7.4.10 Fault Status Register

Table 7-13. Fault Status Register

Abbreviation FSTS_REG

General
Description

Register indicating the primary fault logging status. Section 7.4.18.1 describes
hardware behavior for primary fault logging.

Register Offset 034h

Bits Access Default Field Description

31:16 RO 0h R: Reserved Reserved.

15:8 ROS 0 FRI: Fault
Record Index

This field is valid only when the PPF field is set.

The FRI field indicates the index (from base) of
the fault recording register to which the first
pending fault was recorded when the PPF field
was set by hardware.

The value read from this field is undefined when
the PPF field is clear.

7:2 RO 0h R: Reserved Reserved.

1 ROS 0 PPF: Primary
Pending Fault

This field indicates if there are one or more
pending faults logged in the fault recording
registers.Hardware computes this field as the
logical OR of Fault (F) fields across all the fault
recording registers of this DMA remapping
hardware unit.
• 0: No pending faults in any of the fault

recording registers
• 1: One or more fault recording registers

has pending faults. The FRI field is updated
by hardware whenever the PPF field is set
by hardware. Also, depending on the
programming of Fault Event Control
register, a fault event is generated when
hardware sets this field.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-29

DMA REMAPPING REGISTERS
0 RW1CS 0 PFO: Primary
Fault Overflow

Hardware sets this field to indicate overflow of
fault recording registers. Software writing 1
clears this field.

Bits Access Default Field Description
7-30 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.11 Fault Event Control Register

Table 7-14. Fault Event Control Register

Abbreviation FECTL_REG

General
Description

Register specifying the fault event interrupt message control bits. Section 7.4.12
describes hardware handling of fault events.

Register Offset 038h

Bits Access Default Field Description

31 RW 1 IM: Interrupt
Mask

• 0: No masking of interrupt. When a interrupt
condition is detected, hardware issues an
interrupt message (using the Fault Event Data
& Fault Event Address register values).

• 1: This is the value on reset. Software may
mask interrupt message generation by setting
this field.Hardware is prohibited from sending
the interrupt message when this field is set.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-31

DMA REMAPPING REGISTERS
7.4.12 Hardware Handling of Fault Events
The following sub-sections describe the hardware fault event generation behavior when primary
or advanced fault logging is active. In both cases, read completions due to software reading the
DMA remapping hardware registers must push (commit) any in-flight interrupt messages gener-
ated by the respective DMA remapping hardware unit.

30 RO 0 IP: Interrupt
Pending

Hardware sets the IP field whenever it detects an
interrupt condition. Interrupt condition is defined as:
• When primary fault logging is active, an

interrupt condition occurs when hardware
records a fault through one of the Fault
Recording registers and sets the PPF field in
Fault Status register. If the PPF field was
already set at the time of recording a fault, it is
not treated as a new interrupt condition.

• When advanced fault logging is active, an
interrupt condition occurs when hardware
records a fault in the first fault record (at index
0) of the current fault log and sets the APF field
in the Advanced Fault Log register. If the APF
field was already set at the time of
detecting/recording a fault, it is not treated as a
new interrupt condition.

The IP field is kept set by hardware while the
interrupt message is held pending. The interrupt
message could be held pending due to interrupt
mask (IM field) being set, or due to other transient
hardware conditions. The IP field is cleared by
hardware as soon as the interrupt message pending
condition is serviced. This could be due to either:
• Hardware issuing the interrupt message due to

either change in the transient hardware
condition that caused interrupt message to be
held pending or due to software clearing the IM
field.

• Software servicing the interrupting condition
through one of the following ways:
• When primary fault logging is active,

software clearing the Fault (F) field in all
the Fault Recording registers with faults,
causing the PPF field in Fault Status
register to be evaluated as clear.

• When advanced fault logging is active,
software clearing the APF field in
Advanced Fault Log register.

29:0 RsvdP 0h R: Reserved Reserved.

Bits Access Default Field Description
7-32 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.12.1 Fault Event Generation with Primary Fault Logging

When primary fault recording is active, the hardware interrupt generation logic functions as
follows:

• If there are pending faults to be processed by software, the fault event is not generated.
Hardware checks for pending faults condition through the Primary Pending Faults (PPF)
field of the Fault Status register. (The PPF field is computed by hardware as the logical OR
of Fault (F) fields across all the Fault Recording registers of the DMA remapping hardware
unit.)

• If the above check indicates no pending faults, the Interrupt Pending (IP) field in the Fault
Event Control register is set at the time of recording the fault. The Interrupt Mask (IM)
field of the Fault Event Control register is then checked, and one of the following
conditions applied:

• If IM field is clear, the fault event is generated along with clearing the IP field.
• If IM field is set, the interrupt is not generated.

If the IP field was set when software clears the IM field, the fault event is generated along with
clearing the IP field.

If the IP field was set when a software update to the fault recording registers causes a ‘no
pending faults’ condition (i.e., the Fault [F] fields in all the fault recording registers are clear,
causing the PPF field to be evaluated as clear), the IP field is cleared.

7.4.12.2 Fault Event Generation with Advanced Fault Logging

When advanced fault recording is active, the hardware interrupt generation logic functions as
follows:

• If there are pending faults to be processed by software, the fault event is not generated.
Hardware checks for a pending fault condition by checking if the Advanced Pending
Faults (APF) field in the Advanced Fault Log register.

• If the above check indicates no pending faults, and the current fault is being recorded to the
first fault record (at index 0) of the fault log, the Interrupt Pending (IP) field in the Fault
Event Control register is set when the fault is recorded. The Interrupt Mask (IM) field of
the Fault Event Control register is then checked, and one of the following conditions
applied:

• If the IM field is clear, the fault event is generated, and the IP field is cleared.

• If the IM field is set, the interrupt is not generated.

If the IP field is set when software clears the IM field, the fault event is generated, and the IP
field is cleared.

If the IP field is set when software clears the APF field in the Advanced Fault Log register
(causing a “no pending faults” condition), the IP field is cleared.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-33

DMA REMAPPING REGISTERS
7.4.13 Fault Event Data Register

7.4.14 Fault Event Address Register

Table 7-15. Fault Event Data Register

Abbreviation FEDATA_REG

General
Description

Register specifying the interrupt message data

Register Offset 03Ch

Bits Access Default Field Description

31:16 RW / RO 0h EID: Extended
Interrupt Message
Data

This field is valid only for implementations
supporting 32-bit MSI data fields.

Hardware implementations supporting only
16-bit MSI data may treat this field as read-
only (0).

15:0 RW 0h ID: Interrupt
message data

Data value in the fault-event interrupt
message.

Table 7-16. Fault Event Address Register

Abbreviation FEADDR_REG

General
Description

Register specifying the interrupt message address.

Register Offset 040h

Bits Access Default Field Description

31:2 RW 0h MA: Message
address

When fault events are enabled, the contents of this
register specify the DWORD aligned address (bits
31:2) for the MSI memory write transaction.

1:0 RO 0h R: Reserved Reserved.
7-34 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.15 Fault Event Upper Address Register

Table 7-17. Fault Event Upper Address Register

Abbreviation FEUADDR_REG

General
Description

Register specifying the interrupt message address. For platforms supporting only
interrupt messages in the 32-bit address range, this register is treated as read-only
(0).

Register Offset 044h

Bits Access Default Field Description

31:0 RW/RO 0h MUA: Message upper
address

This register needs to be implemented only
if hardware supports 64-bit message
addresses. If implemented, the contents of
this register specify the upper 32-bits of a
64-bit MSI write transaction.

If hardware does not support 64-bit
messages, the register is treated as read-
only (0).
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-35

DMA REMAPPING REGISTERS
7.4.16 Fault Recording Registers [n]

Table 7-18. Fault Recording Register

Abbreviation FRCD_REG [n]

General
Description

Registers to record DMA remapping fault information when primary fault logging is
active.Hardware reports the number and location of fault recording registers
through the Capability register. This register is relevant only for primary fault
logging.

These registers are sticky and can be cleared only through power good reset or via
software clearing the RW1C fields by writing a 1.

Register Offset XXXh (XXXh must be 128-bit aligned)

Bits Access Default Field Description

127 RW1CS 0 F: Fault1 Hardware sets this field to indicate a fault is logged
in this Fault Recording register. The F field is set by
hardware after the details of the fault is recorded in
the PADDR, SID, FR and T fields.

When this field is set, hardware may collapse
additional faults from the same requestor (SID).

Software writes the value read from this field to
clear it.

Refer to Section 7.4.18.1 for hardware details of
primary fault logging.

126 ROS 0 T: Type Type of the faulted DMA request:
• 0: DMA write
• 1: DMA read request

This field is relevant only when the F field is set.

125:104 RO 0h R: Reserved Reserved.

103:96 ROS 0h FR: Fault
Reason

Reason for the fault. Appendix A enumerates the
various translation fault reason encodings.

This field is relevant only when the F field is set.

95:80 RO 0h R: Reserved Reserved.

79:64 ROS 0h SID: Source
Identifier

Requester-id of the faulted DMA request.

This field is relevant only when the F field is set.
7-36 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
63:12 ROS 0h PADDR:
Page
Address

This field contains the address (page-granular) in
the faulted DMA request. Hardware may treat bits
63:N as reserved (0), where N is the maximum
guest address width (MGAW) supported.

This field is relevant only when the F field is set.

11:0 RO 0h R: Reserved Reserved.

NOTES
1. Hardware updates to this register may be disassembled as multiple doubleword writes. To ensure consis-

tent data is read from this register, software must first check the Primary Pending Fault (PPF) field in the
FSTS_REG as set before reading the fault reporting register at offset as indicated in the FRI field of
FSTS_REG. Alternatively, software may read the highest doubleword in a fault recording register and
check if the Fault (F) field as set before reading the rest of the data fields in that register

Bits Access Default Field Description
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-37

DMA REMAPPING REGISTERS
7.4.17 Advanced Fault Log Register

Table 7-19. Advanced Fault Log Register

Abbreviation AFLOG_REG

General
Description

Register to specify the base address of memory-resident fault-log region. This
register is treated as read-only (0) for implementations not supporting advanced
translation fault logging (AFL field reported as 0 in the Capability register).

This register is sticky and can be cleared only through powergood reset or via
software clearing the RW1C fields by writing a 1.

Register Offset 058h

Bits Access Default Field Description

63:12 RW 0h FLA: Fault Log
Address

This field specifies the base of size-aligned
fault-log region in system memory. Hardware
may ignore bits 63:HAW, where HAW is the host
address width.

Software specifies the base address and size of
the fault log region through this register, and
programs it in hardware through the SFL field in
the Global Command register. When
implemented, reads of this field return the value
that was last programmed to it.

11:9 RW 0h FLS: Fault Log
Size

This field specifies the size of the fault log
region pointed by the FLA field. The size of the
fault log region is 2X * 4KB, where X is the value
programmed in this register.

When implemented, reads of this field return the
value that was last programmed to it.

8:2 RsvdP 0h R: Reserved Reserved.

1 RW1CS 0h APF: Advanced
Pending Fault

When this field is clear, hardware sets this field
when the first fault record (at index 0) is written
to a fault log. At this time, a fault event is
generated based on the programming of the
Fault Event Control register. Software writing 1
to this field clears it.

0 RW1CS 0h AFO: Advanced
Fault Overflow

Hardware sets this field to indicate an advanced
fault log overflow condition. Software writing 1 to
this field clears it.
7-38 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.18 Hardware Handling of Fault Logging
For both primary and advanced fault logging, hardware logs fault information following a
circular first-in-first-out (FIFO) model. The following sub-sections describe the hardware fault
logging behavior when primary or advanced fault logging is active.

7.4.18.1 Hardware Handling of Primary Fault Logging

Hardware maintains an internal index to reference the Fault Recording register to which the next
fault can be recorded. The index is reset to zero when the DMA remapping hardware is
enabled/disabled through the Global Command register, and increments whenever a fault is
recorded to a Fault Recording register. The index wraps around from N-1 to 0, where N is the
number of fault recording registers supported by the DMA remapping hardware unit.

Hardware maintains the Primary Pending Fault (PPF) field as the logical ‘OR’ of the Fault (F)
fields across all the Fault Recording registers. The PPF field is re-computed by hardware when-
ever hardware or software updates the F field in any of the Fault Recording registers.

When primary fault recording is active, hardware functions as follows upon detecting a DMA
remapping fault:

• If hardware supports compressing1 of multiple faults from the same requestor, it compares
the SID field of each Fault Recording register with Fault (F) field set to the source-id of the
currently faulted DMA request. If the check yields a match, the fault information is not
recorded.

• If the above check does not yield a match (or if hardware does not support compression of
faults), hardware checks the Fault (F) field of the Fault Recording register referenced by
the internal index. If the F field in this register is already set, hardware sets the Primary
Fault Overflow (PFO) field in the Fault Status register, and the fault information is not
recorded.

• If the above check indicates no overflow condition, hardware records the current fault
information in the Fault Recording register (FR, T, SID, PADDR, fields) referenced by the
internal index. Depending on the current value of the PPF field in the Fault Status register,
hardware performs one of the following steps:

• If the PPF field is currently set (implying there are one or more pending faults),
hardware sets the F field of the current Fault Recording register and increments
the internal index.

• Else, hardware records the internal index in the Fault Register Index (FRI) field of
the Fault Status register and sets the F field of the current Fault Recording register
(causing PPF field also to be set). The internal index is incremented, and a fault
event is generated based on the programming of the Fault Event Control register.
Section 7.4.12.1 describes hardware behavior for fault event generation for
primary fault logging.

1. Hardware implementations supporting only a limited number of fault recording registers per DMA remap-
ping hardware unit are recommended to collapse multiple pending faults from the same requestor.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-39

DMA REMAPPING REGISTERS
Software is expected to process the faults reported through the fault recording registers in a
circular FIFO fashion starting from the Fault Recording register referenced by the FRI field,
until it finds a fault recording register with no faults (F field clear).

To recover from a primary fault overflow condition, software must first process the pending
faults in each of the Fault Recording registers, clear the Fault (F) field in all these registers, and
clear the overflow status by writing a 1 to the PFO field. Once the PFO field is cleared by soft-
ware, hardware continues to record new faults starting from the Fault Recording register refer-
enced by the current internal index.

7.4.18.2 Hardware Handling of Advanced Fault Logging

When advanced fault recording is active, hardware maintains an internal index into the memory-
resident fault log where the next fault can be recorded. The index is reset to zero whenever soft-
ware programs hardware with a new fault log region through the Global Command register, and
increments whenever a fault is logged in the fault log. Whenever the internal index increments,
hardware checks for internal index wrap-around condition based on the size of the current fault
log. Any internal state used to track index wrap condition is reset whenever software programs
hardware with a new fault log region.

Hardware may compress multiple back-to-back faults from the same DMA requestor by main-
taining internally the source-id of the last fault record written to the fault log. This internal
“source-id from previous fault” state is reset whenever software programs hardware with a new
fault log region.

Read completions due to software reading the DMA remapping hardware registers must push
(commit) any in-flight fault record writes to the fault log by the respective DMA remapping
hardware unit.

When a DMA remapping fault is detected, hardware advanced fault logging functions as
follows:

• If hardware supports compressing multiple back-to-back faults from same requestor, it
compares the source-id of the currently faulted DMA request to the internally maintained
‘source-id from previous fault’. If a match is detected, the fault information is not
recorded.

• Else if the internal index wrap-around condition is set (implying fault log is full), hardware
sets the Advanced Fault Overflow (AFO) field in the Advanced Fault Log register, and the
fault information is not recorded.

• If the above step indicates no overflow condition, hardware records the current fault
information to the fault record referenced by the internal index. Depending on the current
value of the APF field in the Advanced Fault Log register and value of the internal index,
hardware performs one of the following steps:

• If APF field is currently set or if the current internal index value is not zero
(implying there are one or more pending faults in the current fault log), hardware
simply increments the internal index (along with the wrap-around condition
check).
7-40 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
• Else, hardware sets the APF field and increments the internal index. A fault event
is generated based on the programming of the Fault Event Control register.
Section 7.4.12.2 describes hardware behavior for fault event generation for
advanced fault logging.

7.4.19 Protected Memory Enable Register

Table 7-20. Protected Memory Enable Register

Abbreviation PMEN_REG

General
Description

Register to enable the DMA protected memory regions setup through the
PLMBASE, PLMLIMT, PHMBASE, PHMLIMIT registers. This register is always
treated as RO (0) for implementations not supporting protected memory regions
(PLMR and PHMR fields reported as 0 in the Capability register).

Protected memory regions may be used by software to securely initialize DMA
remapping structures in memory.

Register Offset 064h
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-41

DMA REMAPPING REGISTERS
Bits Access Default Field Description

31 RW 0h EPM: Enable
Protected
Memory

This field controls DMA accesses to the
protected low-memory and protected high-
memory regions.
• 0: DMA accesses to protected memory

regions are handled as follows:
• If DMA remapping hardware is not

enabled, DMA requests (including
those to protected regions) are not
blocked.

• If DMA remapping hardware is
enabled, DMA requests are
translated per the programming of
the DMA remapping structures.
Software may program the DMA
remapping structures to allow or
block DMA to the protected memory
regions.

• 1: DMA accesses to protected memory
regions are handled as follows:
• If DMA remapping hardware is not

enabled, DMA requests to protected
memory regions are blocked. These
DMA requests are not recorded or
reported as DMA remapping faults.

• If DMA remapping hardware is
enabled, hardware may or may not
block DMA to the protected memory
region(s). Software must not depend
on hardware protection of the
protected memory regions, and must
ensure the DMA remapping
structures are properly programmed
to not allow DMA to the protected
memory regions.

Hardware reports the status of the protected
memory enable/disable operation through the
PRS field in this register. Hardware
implementations supporting DMA draining must
drain any in-flight translated DMA requests
queued within the root complex before
indicating the protected memory region as
enabled through the PRS field.

30:1 RsvdP 0h R: Reserved Reserved.

0 RO 0h PRS: Protected
Region
Status

This field indicates the status of protected
memory region:
• 0: Protected memory region(s) not

enabled.
• 1: Protected memory region(s) enabled.
7-42 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.20 Protected Low-Memory Base Register

Table 7-21. Protected Low-Memory Base Register

Abbreviation PLMBASE_REG

General
Description

Register to setup the base address of DMA protected low-memory region. This
register must be setup before enabling protected memory through PMEN_REG, and
must not be updated when protected memory regions are enabled.

When CMD.LOCK.PMRC command is invoked, this register is locked (treated RO).
When CMD.UNLOCK.PMRC command is invoked, this register is unlocked (treated
RW).

This register is always treated as RO for implementations not supporting protected
low memory region (PLMR field reported as 0 in the Capability register).

The alignment of the protected low memory region base depends on the number of
reserved bits (N) of this register. Software may determine the value of N by writing
all 1’s to this register, and finding most significant zero bit position with 0 in the value
read back from the register. Bits N:0 of this register is decoded by hardware as all
0s.

Register Offset 068h

Bits Access Default Field Description

31:(N+1) RW 0h PLMB: Protected
Low-Memory
Base

This register specifies the base of protected
low-memory region in system memory.

N:0 RsvdP 0h R: Reserved Reserved.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-43

DMA REMAPPING REGISTERS
7.4.21 Protected Low-Memory Limit Register

Table 7-22. Protected Low-Memory Limit Register

Abbreviation PLMLIMIT_REG

General
Description

Register to setup the limit address of DMA protected low-memory region. This
register must be setup before enabling protected memory through PMEN_REG,
and must not be updated when protected memory regions are enabled.

When CMD.LOCK.PMRC command is invoked, this register is locked (treated RO).
When CMD.UNLOCK.PMRC command is invoked, this register is unlocked (treated
RW).

This register is always treated as RO for implementations not supporting protected
low memory region (PLMR field reported as 0 in the Capability register).

The alignment of the protected low memory region limit depends on the number of
reserved bits (N) of this register. Software may determine the value of N by writing
all 1’s to this register, and finding most significant zero bit position with 0 in the
value read back from the register. Bits N:0 of the limit register is decoded by
hardware as all 1s.

The Protected low-memory base & limit registers functions as follows:
• Programming the protected low-memory base and limit registers with the same

value in bits 31:(N+1) specifies a protected low-memory region of size 2(N+1)
bytes.

• Programming the protected low-memory limit register with a value less than
the protected low-memory base register disables the protected low-memory
region.

Register Offset 06Ch

Bits Access Default Field Description

31:(N+1) RW 0h PLML: Protected
Low-Memory
Limit

This register specifies the last host physical
address of the DMA protected low-memory
region in system memory.

N:0 RsvdP 0h R: Reserved Reserved.
7-44 Intel® Virtualization Technology for Directed I/O Architecture Specification

DMA REMAPPING REGISTERS
7.4.22 Protected High-Memory Base Register

Table 7-23. Protected High-Memory Base Register

Abbreviation PHMBASE_REG

General
Description

Register to setup the base address of DMA protected high-memory region. This
register must be setup before enabling protected memory through PMEN_REG,
and must not be updated when protected memory regions are enabled.

When CMD.LOCK.PMRC command is invoked, this register is locked (treated RO).
When CMD.UNLOCK.PMRC command is invoked, this register is unlocked
(treated RW).

This register is always treated as RO for implementations not supporting protected
high memory region (PHMR field reported as 0 in the Capability register).

The alignment of the protected high memory region base depends on the number
of reserved bits (N) of this register. Software may determine the value of N by
writing all 1’s to this register, and finding most significant zero bit position below
host address width (HAW) in the value read back from the register. Bits N:0 of the
limit register is decoded by hardware as all 0s.

Register Offset 070h

Bits Access Default Field Description

63:(N+1) RW 0h PHMB: Protected
High-Memory
Base

This register specifies the base of size
aligned, protected memory region in system
memory. Hardware may ignore and not
implement bits 63:HAW, where HAW is the
host address width.

N:0 RsvdP 0h R: Reserved Reserved.
Intel® Virtualization Technology for Directed I/O Architecture Specification 7-45

DMA REMAPPING REGISTERS
7.4.23 Protected High-Memory Limit Register

Table 7-24. Protected High-Memory Limit Register

Abbreviation PHMLIMIT_REG

General
Description

Register to setup the limit address of DMA protected high-memory region. This register
must be setup before enabling protected memory through PMEN_REG, and must not
be updated when protected memory regions are enabled.

When CMD.LOCK.PMRC command is invoked, this register is locked (treated RO).
When CMD.UNLOCK.PMRC command is invoked, this register is unlocked (treated
RW).

This register is always treated as RO for implementations not supporting protected high
memory region (PHMR field reported as 0 in the Capability register).

The alignment of the protected high memory region limit depends on the number of
reserved bits (N) of this register. Software may determine the value of N by writing all
1’s to this register, and finding most significant zero bit position below host address
width (HAW) in the value read back from the register. Bits N:0 of the limit register is
decoded by hardware as all 1s.

The protected high-memory base & limit registers functions as follows.
• Programming the protected low-memory base and limit registers with the same

value in bits HAW:(N+1) specifies a protected low-memory region of size 2(N+1)
bytes.

• Programming the protected high-memory limit register with a value less than the
protected high-memory base register disables the protected high-memory region.

Register
Offset

078h

Bits Access Default Field Description

63:(N+1) RW 0h PHML: Protected
High-Memory Limit

This register specifies the last host physical
address of the DMA protected high-memory
region in system memory.

Hardware may ignore and not implement
bits 63:HAW, where HAW is the host
address width.

N:0 RsvdP 0h R: Reserved Reserved.
7-46 Intel® Virtualization Technology for Directed I/O Architecture Specification

CHAPTER 8
EXTENDED DMA REMAPPING FEATURES

This chapter summarizes extended I/O virtualization features being considered to support future
extensions to the PCI Express specification that are relevant to DMA remapping.

8.1 ON-DEVICE IOTLBS
The DMA remapping architecture described in Section 3 supports address translation of DMA
requests received by a platform's core logic chipset components. Section 3.3.1.3 describes the
use of IOTLBs in these core logic chipset components to cache frequently used I/O page tables
to improve the DMA address translation performance. IOTLBs improve DMA remapping
performance by avoiding the multiple memory accesses required to access the I/O page tables
for DMA address translation. However, the efficiency of IOTLBs in the core logic is directly
proportional to the hit rates of IOTLB lookups, which indirectly depends on the number of DMA
virtual address localities and the number of simultaneously active DMA streams in the platform.

One approach to scaling IOTLBs is to allow I/O devices to participate in the DMA remapping
process with IOTLBs implemented at these devices. IOTLBs at the devices alleviate pressure
for IOTLB resources in the chipset, and provide opportunities for devices to improve perfor-
mance by pre-fetching address translations before issuing DMA requests.

IOTLB support in I/O devices requires standardized mechanisms for:

• I/O devices to request and receive translations from the chipset

• I/O devices to indicate if a DMA request has translated or un-translated addresses

• Translations cached at the on-device IOTLBs to be invalidated

Extensions to PCI Express to support these mechanisms are being defined in the PCISIG and
are expected to be presented in future PCI Express specifications.

8.2 DMA REMAPPING - EXTENDED FEATURES
The extended features in Intel® Virtualization Technology for Directed I/O enable these
upcoming extensions to PCI Express by providing support for remote IOTLBs. Specifically, the
following extended features are considered:

• Capability for software to control which devices are allowed to participate in DMA
remapping

• Ability to respond to address translation requests from enabled devices
Intel® Virtualization Technology for Directed I/O Architecture Specification 8-1

EXTENDED DMA REMAPPING FEATURES
• Ability to bypass DMA address translation for DMA requests with translated addresses
from enabled devices

• Extended methods for supporting on-device IOTLB invalidations

As the PCI Express extensions are standardized and defined, future versions of this specification
will include more details of these extended capabilities.
8-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

APPENDIX A
FAULT REASON ENCODINGS

The following table describes the meaning of the codes assigned to various faults.

Table A-1. Fault Reason Encodings

Encoding Fault Reason Description

0x00 Reserved. Used by software when initializing fault records (for advanced fault logging)

0x01 The present (P) field in the root-entry used to process the DMA request is clear.

0x02 The present (P) field in the context-entry used to process the DMA request is clear.

0x03 Hardware detected invalid programming of a context-entry. For example:
• The address width (AW) field was programmed with a SAGAW value not

supported by the hardware implementation.
• The translation-type (T) field was programmed to indicate a translation type not

supported by the hardware implementation.
• A hardware attempt to access the page table base through the Address Space

Root (ASR) field of the context-entry resulted in error.

0x04 The DMA request attempted to access an address beyond (2X - 1), where X is:
• For multi-level page-table based translation, the minimum of the maximum guest

address width (MGAW) reported through the Capability register and the value in
the address-width (AW) field of the context-entry used to process the DMA
request.

0x05 The Write (W) field in a page-table entry used for address translation of the DMA write
request is clear.

0x06 The Read (R) field in a page-table entry used for address translation of the DMA read
request is clear.

0x07 A hardware attempt to access the next level page table through the Address (ADDR)
field of the page-table entry resulted in error.

0x08 A hardware attempt to access the root-entry table through the root-table address
(RTA) field in the Root-entry Table Address register resulted in error.

0x09 A hardware attempt to access context-entry table through context-entry table pointer
(CTP) field resulted in error.

0x0A Hardware detected reserved field(s) that are not initialized to zero in a root-entry with
present (P) field set.

0x0B Hardware detected reserved field(s) that are not initialized to zero in a context-entry
with present (P) field set.
Intel® Virtualization Technology for Directed I/O Architecture Specification A-1

FAULT REASON ENCODINGS
0x0C Hardware detected reserved field(s) that are not initialized to zero in a page-table entry
with at least one of read (R) and write (W) field set.

 0x0D - 0xFF Reserved.

Table A-1. Fault Reason Encodings (Contd.)

Encoding Fault Reason Description
A-2 Intel® Virtualization Technology for Directed I/O Architecture Specification

	Intel® Virtualization Technology for Directed I/O
	CHAPTER 1 Introduction
	1.1 Audience
	1.2 Organization
	1.3 Glossary
	1.4 References

	CHAPTER 2 Overview
	2.1 Intel® Virtualization Technology Overview
	2.2 VMM and Virtual Machines
	2.3 Hardware Support for Processor Virtualization
	2.4 I/O Virtualization
	2.5 Intel® Virtualization Technology For Directed I/O Overview
	2.5.1 Hardware Support for DMA Remapping
	2.5.2 OS Usages of DMA Remapping
	2.5.3 VMM Usages of DMA Remapping
	2.5.3.1 DMA Remapping Usages by Guests

	2.5.4 Interaction with Processor Virtualization

	CHAPTER 3 DMA Remapping
	3.1 Domains and Address Translation
	3.2 Mapping Devices to Domains
	3.2.1 Source Identifier
	3.2.2 Root-Entry
	3.2.3 Context-Entry
	3.2.3.1 Context Caching

	3.3 Address Translation
	3.3.1 Multi-Level Page Table
	3.3.1.1 Adjusted Guest Address Width (AGAW)
	3.3.1.2 Multi-level Page Table Translation
	3.3.1.3 I/O Translation Lookaside Buffer (IOTLB)

	3.4 DMA Remapping Faults
	3.4.1 Fault Logging
	3.4.1.1 Primary Fault Logging
	3.4.1.2 Advanced Fault Logging
	3.4.1.3 Fault Priority

	3.4.2 Fault Reporting
	3.4.3 Hardware Handling of Faulting DMA Requests

	CHAPTER 4 Hardware Considerations
	4.1 Handling Interrupt Messages
	4.2 Assigning Devices Behind PCI Express to PCI/PCI-X Bridges
	4.3 Assigning PCI Express Devices Using Phantom Functions
	4.4 Handling DMA Requests Crossing Page Boundary
	4.5 Handling of Zero-Length DMA
	4.6 DMA Remapping - Software View
	4.7 Handling DMA to Reserved System Memory
	4.8 Peer to Peer Considerations
	4.9 Handling of Isochronous DMA

	CHAPTER 5 BIOS considerations
	5.1 DMA Remapping Reporting Structure
	5.2 DMA Remapping Structure Types
	5.3 DMA Remapping Hardware Unit Definition Structure
	5.3.1 Device Scope Structure
	5.3.2 Device Scope Example

	5.4 Reserved Memory Region Reporting Structure

	CHAPTER 6 Translation Structure Formats
	6.1 root-entry
	6.2 context-entry
	6.3 Page-Table Entry
	6.4 Fault Record

	CHAPTER 7 DMA Remapping Registers
	7.1 Register Location
	7.2 Software Access to Hardware Registers
	7.3 Register Attributes
	7.4 Register Descriptions
	7.4.1 Version Register
	7.4.2 Capability Register
	7.4.3 Extended Capability Register
	7.4.4 Global Command Register
	7.4.5 Global Status Register
	7.4.6 Root-Entry Table Address Register
	7.4.7 Context Command Register
	7.4.8 IOTLB Invalidation Unit Registers
	7.4.8.1 IOTLB Invalidate Register
	7.4.8.2 Invalidate Address Register

	7.4.9 Hardware Caching Details
	7.4.9.1 Caching Mode Behavior
	7.4.9.2 Context Caching
	7.4.9.3 IOTLB
	7.4.9.4 Page Directory Entry (PDE) Caching
	7.4.9.5 PDE Cache Invalidation

	7.4.10 Fault Status Register
	7.4.11 Fault Event Control Register
	7.4.12 Hardware Handling of Fault Events
	7.4.12.1 Fault Event Generation with Primary Fault Logging
	7.4.12.2 Fault Event Generation with Advanced Fault Logging

	7.4.13 Fault Event Data Register
	7.4.14 Fault Event Address Register
	7.4.15 Fault Event Upper Address Register
	7.4.16 Fault Recording Registers [n]
	7.4.17 Advanced Fault Log Register
	7.4.18 Hardware Handling of Fault Logging
	7.4.18.1 Hardware Handling of Primary Fault Logging
	7.4.18.2 Hardware Handling of Advanced Fault Logging

	7.4.19 Protected Memory Enable Register
	7.4.20 Protected Low-Memory Base Register
	7.4.21 Protected Low-Memory Limit Register
	7.4.22 Protected High-Memory Base Register
	7.4.23 Protected High-Memory Limit Register

	CHAPTER 8 Extended DMA Remapping Features
	8.1 On-Device IOTLBs
	8.2 DMA Remapping - Extended Features

	APPENDIX A Fault Reason Encodings

