(intel.

Intel® Software Guard Extensions Programming
Reference

329298-002US
OCTOBER 2014

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PAR-
TICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application™ is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY,
ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT
OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or char-
acteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no respon-
sibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice.
Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products in the design phase of development.

Intel® 64 architecture requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the
specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.intel.com/in-
fo/em64t.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*QOther names and brands may be claimed as the property of others.

Copyright © 2010-2014 Intel Corporation. All rights reserved. Intel Corporation

ii Ref. # 329298-002

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t

CHAPTER 1
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

1.1 L1 1-1
1.2 ENclave INteraction and ProteCtioN uu ettt et e 1-1
13 BNCIAVE LT QY I ettt e e e e e e e 1-2
1.4 Data Structures and ENCIaVe OPErationot i e e e e 1-2
1.5 ENCIAVE Page Ca0NE ..o ittt et e e e e 1-2
1.5.1 ENCIave Page Cache Map (EPCM). ... v ittt e e e et e e e e e 1-3
1.6 ENclave INStructions and INTEI® SO . .. v e e ettt e e e e 1-3
1.7 Discovering Support for Intel® SGX and enabling Enclave INStructions. ...t e 1-4
1.7.1 INtel® SGX Opt-In ConfigUIATION. . ..\ttt e e e e e 1-4
1.7.2 Intel® SGX Resource ENUMEration LBAVESttt e 1-5
CHAPTER 2

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

2.1 Overview of Enclave EXeCUtion ENVITONMIENT. .. .o\ttt et e 2-1
2.2 L= 3111070 2-1
2.3 ACCESS-CONTTOl REQUINEMIEIES .« ittt e e e e e e e e e e e 2-1
24 Segment-Dased ACCESS COMEIOl.ttt ittt e e e e 2-2
2.5 Page-based ACCESS COMIIOl\ttt ettt et e e ettt et e e e e e 2-2
2.5.1 Access-control for Accesses that Originate from non-SGX INSTrUCtIONSt e 2-2
25.2 Memory Accesses that Split across ELRANGE ot e 2-2
253 a0 ol VRS o q o o AV L3y = 2-2
2.5.3.1 (] Yool == 2-2
2532 I Dl It A GBS S ES . v vttt ettt ettt ettt et e e e e e e e 2-3
2.6 INtel® SGX Data SITUCTUNES OVEIVIEWttt ettt e et e e et e e et e e e et aenss 2-4
2.7 SGX ENclave Control STrUCTUTE (SECS). . v vttt e e e e e e e e 2-4
2.7.1 AT RIBUT ES ..ottt e e e e e e e e e e e e e e e 2-5
272 SECS.IMISCSELECT FIld . vttt ettt et e e e et et e e e et e e e e e e 2-5
28 Thread Control STTUCTUTE (TCS). . vttt et e e e e e e e 2-5
2.8.1 LI L 2-6
282 S1ate SAVE AT OFf ST (DS S A . v ettt ettt ettt et et e e e e 2-6
283 Number of State Save Area FrameEs (NS S A)ttt e e e 2-6
284 Current State SaVe Area FramE (CSS A) . vttt et e e e e e 2-6
29 STAtE SAVE AT (SSA) FramMIE vttt ettt e e e e e e e e e 2-7
2.9.1 (O S, G (= (o 2-7
29.1.1 EXITINF O ottt e e e e e e e e e e e e e 2-8
29.1.2 VECTOR Field Definition ...ttt e e e e e e e e et e s 2-8
29.2 1 Y (=T P 2-9
29.2.1 EXINF O StrUCTUNE . ettt et ettt e ettt e e ettt e e e e e e e 2-9
29.2.2 Page FaUIt ErTOr COQBS v ittt ettt e e e e et e e e e 2-9
2.10 Page Information (PAGEINFO)ot e e e e 2-10
2.11 Security INfOrmation (SECINFO). v vttt e e e e e e 2-10
2111 SECINF O F LA G S, . ettt ettt e e e e e e e e 2-10
2.11.2 PAGE_TYPE Field Definmition v ettt et ettt e e e 2-11
212 Paging Crypto MetaData (PCMD).ttt ettt et e e e e e 2-11
213 Enclave Signature STrUCtUre (SIGSTRUCT . .. vttt e e e et eaens 2-11
2.14 EINIT Token Structure (EINITTOKEN) ...ttt e s e e e et aaas 2-12
2.15 R ST0 Lo A (R =0 1) 2-13
2.15.1 REP O R T D AT A . ittt ettt et e e e e e e e e e 2-14
2.16 Report Target INfo (TARGETINFO)\ttt sttt ettt et e e et et e et e e eeees 2-14
2.17 Key ReqUEST (KEY REQUEST) .ttt ittt ettt e e s ettt et e e e e e e et aaas 2-14
2.17.1 KEY REQUEST KBYNMIES . . v ottt ettt ettt et e e et et e et et e e et et e et e eees 2-14
217.2 KeY ReQUEST PoliCY StTUCTUNE . ..ottt i e et ettt ettt ettt it i eans 2-15
2.18 VETSION ATTAY (V) vttt ettt e ettt et e et e e e e et e e e e e e 2-15
2.19 ENCIave Page Cache Map (EPCM). .. v vttt et e e e e e e e e e e e 2-15
CHAPTER 3

ENCLAVE OPERATION

3.1 000 1y g 0T T = = o = V7= 3-1

Ref. #329298-002 iii

3.1.1 EADD and EEXTEND INBrattion « v vttt ettt ettt ettt e ettt e et e e 3-2

3.1.2 (S| T =T r= T o 3-2
3.2 ENClave ENTrY and EXITiNg ..o vttt e e e e 3-3
3.2.1 SYNCATONOUS BTy And EXit . ..ot i e et et e et et e 3-3
3.2.2 AsyNChronous ENCIAVE EXIT (AEX). ... v v vttt ettt e et et 3-3
3.2.3 ReSUMING EXECUTION 1B A X . .ottt it e e e e e ettt e e 3-4
3.2.3.1 ERESUME INTEraCtioN & . vttt ittt ettt e et e e ettt e e e e 3-4
33 CalliNg ENCIAVE PrOCEAUIESttt e et ettt et e e e et et e et 3-4
3.3.1 {06 11T o 0 =T o 3-4
33.2 RIS T PrES I atiON. . .o\ttt e e et e 3-4
333 RETUTMING 10 CallET. . o\ttt e e e e e e e e e e e e e e 3-5
34 INtel® SGX Ky and AtTESTation .. v vttt e s e e e e e e 3-5
35 EPC and Management Of EPC Pages. ittt e et e e e 3-6
3.5.1 L O 132 T0] =111 1=T) = 1T P 3-6
3.5.2 0S ManNagemeEnt Of EPC Pages. . .o\ v vttt it ettt et e e e e e 3-6
3.5.2.1 Enhancement t0 Managing EPC Pages vvitii it e 3-7
353 BVICTION OF ENCIAVE PagBS . .. oo ottt i e e et e e 3-7
354 L0ading an ENCIaVE Pageot e e 3-7
355 BVICTION OF @N SECS PagB. . ..ot ittt ittt e e ettt e et e e e 3-8
3.5.6 EVICTIoN OF @ VErSiON ATy Page . ..ottt e e e e e 3-8
3.5.7 AlloCatiNg @ REGUIAT Page . ..ottt e e e e 3-8
358 AlIOCATING @ TCS PaAgE . . oottt ettt e ettt e e e e 3-9
359 TrMMING @ Pa0E. .ot i e e 3-9
3.5.10 Restricting the EPCM Permissions 0f @ Page.vu it i e it ettt ieaaas 3-9
3.5.11 Extending the EPCM Permissions 0f @ Pageoviriii it e e 3-10
3.6 Changes to Instruction Behavior Inside an ENCIaVe.ot e 3-10
3.6.1 1= = N L oo 3-10
3.6.2 RDRAND and RDSEED INStrUCHIONSottt ettt et e et et et e e e et et e e e et e e n e eanaes 3-11
36.3 o I Y 0 TSy 0 on o 3-11
364 INT 3 Behavior INSide @n ENCIBVE v ettt ettt et e et e et et et e eeees 3-12
36.5 INVD Handling when Enclaves Are ENabled.ov o e 3-12
CHAPTER 4
ENCLAVE EXITING EVENTS
4.1 Compatible Switch to the EXIting STack Of AEXo s 4-1
4.2 StatE SAVING DY A X . .o i e e e 4-2
43 Synthetic State on ASYNChronous ENCIAVE EXit e e e e e 4-3
4.3.1 Processor Synthetic State on Asynchronous Enclave EXit.o 4-3
432 Synthetic State for EXTENAEd FEATUMESottt ittt e e ettt 4-3
433 VMCS Synthetic State on ASynchronous ENCIave EXit. e et e e 4-3
44 =) 4-4
441 AEX OPerational DETail. . .. oo ettt e e 4-5
CHAPTER 5
INSTRUCTION REFERENCES
5.1 Intel® SGX INStructlon SYNtaX and OPeration. ... v ettt ittt e e e 5-1
511 ENCLS RegQiSTEr USa08 SUMMIA Y. .« ettt ittt ettt ettt ettt ettt e e e et ettt e e e et ettt e e n e nananas 5-1
5.1.2 ENCLU RegiSter USagB SUMIMIAIY .« v vt ittt ittt ittt te ettt ettt e et et e et e e e ettt n e aaas 5-1
513 INfOrMation @Nd EITOr COQES. . ..ttt ettt ettt et ettt et et e et e e et 5-2
514 L (=T T O = PP 5-3
515 Concurrent Operation ReS I iCTiONS.ttt e i i e e e e et e i 5-3
5.1.51 Concurrency Table of Intel® SGX INStrUCTIONSttt e et et aeens 5-4
5.2 LN = A O [g W on o (=) =] 1= o= P 5-4
ENCLS—Execute an Enclave System Function of Specified Leaf Number...............coiiiiii i, 5-5
ENCLU—Execute an Enclave User Function of Specified Leaf Number. ... 5-7
53 Intel® SGX System Leaf FUNCHION ReTEIENCE i et ettt eae s 5-10
EADD—Add a Page to an Uninitialized ENClaveooiiiiii i e e 5-11
EAUG—Add a Page to an Initialized ENCIAVEttt e 5-15
EBLOCK—Mark @ page in EPC as BIOCKEdovu i e 5-18

iv Ref. #329298-002

ECREATE—Create an SECS page inthe Enclave Page Cachet e 5-21

EDBGRD—Read From @ DebuUg ENCIaVe. . ..ottt e e e 5-25
EDBGWR—Write t0 @ DebUG ENCIaVE. . . . ot 5-28
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes. ..o 5-31
EINIT—Initialize an ENCIaVE fOr EXECUTION . . v\ttt ettt e e e e e e 5-34
ELDB/ELDU—Load an EPC page and Marked itS Statecovirir it e e e 5-41
EMODPR—Restrict the Permissions of an EPC Pageoviiiiiiii i e et 5-46
EMODT—Change the Type 0f an EPC Pageoviiiitti i e e e 5-49
[V [a A= Fo 2 o= 5-52
EREMOVE—Remove a page from the EPC.o i 5-54
ETRACK—ACtivates EBLOCK CheCKSottt e e et 5-57
EWB—Invalidate an EPC Page and Write out 1o Main MemOrYoiv ittt e it eeas 5-59
54 Intel® SGX User Leaf FUNCHION REFEMENCE ...\ttt e 5-64
54.1 Instruction Column in the Instruction SUMMaAry Table.c.vvii it e e 5-64
EACCEPT—Accept Changes 10 an EPC PAgeovii it e 5-65
EACCEPTCOPY—Initialize @ Pending Pageo it i i i e e et e i et i eaas 5-69
EENTER—ENTEIS @n ENCIAVE. . . .ot e e e e e e 5-73
BEXIT—EXITS AN ENCIAVE ..ttt e e e e e e 5-81
EGETKEY—Retrieves a CryptographiC KeYouiiii i e e e 5-84
EMODPE—Extend an EPC Page PermiSSiONS ... vttt ettt e 5-91
EREPORT—Create a Cryptographic Report of the ENCIave. 5-94
ERESUME—RE-ENTErS AN ENCIaVEottt et e e e e e e r i 5-98
CHAPTER 6
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
6.1 Intel® SGX Availability in Various Processor MOGES. ovvutiiii ittt 6-1
6.2 IAB2_FEATURE _CONTROL . . vttt ettt ettt e e et e e e e e et e e et e e et et e e et e e e e e e e 6-1
6.3 INteractions With SEgMEN A Oot i e e e 6-1
6.3.1 I elo] L=) [=1 = (ot 1o I 6-1
6.3.2 Interactions of Intel® SGX Instructions with Instruction Prefixes and Addressing.........cccovviiiiiiiiiiiiiiiinnnnn, 6-1
6.3.3 Interaction of Intel® SGX Instructions with Segmentationt e e 6-2
6.3.4 Interactions of Enclave Execution with SEgmentationvuiiii i e 6-2
6.4 INtEractions With Pagingo .ot i i i it e e e e 6-2
6.5 La Y =T Ton o ST TV G P 6-2
6.5.1 VMM Controls to Configure Guest Support of INtel® SGXo e 6-3
6.5.1.1 Guest State Area - Guest NON-Register State ... ou it e s 6-3
6.5.1.2 VM-EXECUTION CONTIOIS ...ttt e e et e e e ettt 6-4
6.5.1.3 Basic VM-EXIt INfOrmMationouii et e e e e 6-4
6.5.2 VM EXits While INSIde an ENCIAVE . ..ot e e e e e e e 6-4
6.53 VM Entry Consistency Checks and Intel® SOXot i e it e it ittt i ieaeas 6-5
6.5.4 VM Execution Control SEttiNg CReCKS. .. oot i i e ettt e e 6-5
6.5.5 Guest Interruptibility State CheCKSo e e e 6-5
6.5.6 Interaction of Intel® SGX With Various VMMSot i 6-6
6.5.7 INEEraCtiONS With B TS, .ttt e e e e e e s 6-6
6.5.8 Interactions With APIC VirtUalization. ov vt e e e e 6-6
6.5.9 Interactions With MoNItOr Trap FlIagovi i i i et ettt eaaas 6-6
6.5.10 Interactions with Interrupt-Virtualization Features and EVeNtS. ...t i e e i e i e 6-6
6.6 Intel® SGX Interactions with Architecturally-visible EVENTSo e e 6-6
6.7 Interactions with the XSAVE/XRSTOR Processor Extended Statesvvvvirviiiiii i 6-7
6.7.1 Requirements and ArChiteCtUrE VeIV IBWttt ittt et ittt ettt et et 6-7
6.7.2 Relevant Fields in Various Data STrUCTUNES.ottt et e e e e eees 6-7
6.7.2.1 SECS AT TRIBUT ES XFRM. . sttt ettt et et e e e e e e e e e e et et e e et et e e 6-7
6.7.2.2 SECS SSARRAMESIZE . ..t e 6-8
6.7.2.3 XS AV E AT N S A ittt ettt e e e e e 6-8
6.7.3 Processor Extended States and ENCLS ECREATE]\ttt ettt ettt e e 6-8
6.74 Processor Extended States and ENCLU[EENT ER]ttt e e e et eeaas 6-9
6.7.4.1 FAUE CRECKING .+ vttt e e e e e e e 6-9
6.7.4.2 1) | =N W0 =T o 6-9
6.7.5 Processor Extended STates and AEX. ... v .ttt e 6-9
6.7.5.1 SHATE VNG . .ttt e e e 6-9

Ref. #329298-002 v

6.7.5.2 ST S YNNI SIS . ittt e 6-9

6.7.6 Processor Extended States and ENCLU[ERESUMEL.oe ittt e eens 6-9
6.7.6.1 o 10 O =l 6-9
6.7.6.2 STATE LOAMING .« ottt ettt e e e e e e 6-10
6.7.7 Processor Extended States and ENCLU EEXIT] ... v ittt e e e 6-10
6.8 INtEractioNS WIth SMM L. e e e e 6-10
6.8.1 Availability of Intel® SGX INStructions iN SMM i i e e 6-10
6.8.2 SMIWhIlE INSIE AN ENCIAVE. . . ottt et e e e 6-10
6.8.3 SMRAM Synthetic State of AEX Triggered by SMI.ot e e 6-11
6.9 Interactions of INIT, SIPI, and Wait-for-SIPI with INtel® SGX e 6-11
6.10 INTEraCtioNS WIth DM A . e e e e e e e e 6-11
6.11 Interactions with Memory Configuration and Various Memory Rangesco.vviiiiii i 6-12
6.11.1 Memory Type Considerations for PRMRRottt e 6-12
6.11.2 Interactions of PRMRR with Various Memory REGIONS ..ottt e 6-12
6.11.2.1 Interactions of PRMRR With SMRR e e e e 6-12
6.11.2.2 Interactions 0f PRMRR With MTRRS.\ttt et et e 6-12
6.11.23 Interactions of PRMRR WIth MMIO e e e e e 6-12
6.11.24 Interactions of PRMRR With IA32_APIC _BASE ittt e 6-12
6.11.3 Interactions of PRMRR with Virtual APIC Page.c.ivie it et ettt aenaes 6-12
6.11.3.1 Interactions of PRMRR with Physical MEMOrY ACCESSES. ... v ittt ettt eaens 6-12
6.11.4 Interactions of Intel® SGX with APIC ACCESS AQAIrESS . . .o\ttt e aees 6-13
6.12 1N (== Tt o R I G 6-14
6.12.1 Enclaves Created Prior to EXecUtion Of GETSECttt aees 6-14
6.12.2 Interaction of GETSEC With INtel® SOX .. e e e e e 6-14
6.12.3 Interactions with Authenticated Code Modules (ACMS)o ittt e 6-14
6.13 Interactions with Caching of Linear-address Translationsovii i e e e 6-15
6.14 Interactions with Intel® Transactional Synchronization Extensions (INtel® TSX) ... 6-15
6.14.1 [o o = T 6-15
6.15 Intel® SGX INteractions With S States.t e 6-15
6.16 Intel® SGX Interactions with Machine Check Architecture (MCA).ovirii e e 6-15
6.16.1 INteractions WIth MCA BVENES e e et e e 6-15
6.16.2 Machine Check ENADIES (A2 M _CT). ot vttt ettt e e e e e et et e et aees 6-16
6.16.3 CRAIMCE .t e e 6-16
6.17 Intel® SGX INTERACTIONS WITH PROTECTED MODE VIRTUALINTERRUPTS ..o 6-16
CHAPTER 7

ENCLAVE CODE DEBUG AND PROFILING

7.1 Configuration @Nd CONTrOISo\ttt ettt e et ettt et et e e e e e e e e 7-1
7.1.1 Debug Enclave vs. Production ENCIaveo .ot e e s 7-1
7.1.2 o Yo ol T] 1 Y 7-1
7.2 SINGIE STEP DEDUG . .. e e e e 7-1
7.2.1 Single STEPPING REQUINEMIENTS. . . oottt ittt et ettt e ettt e et e e e et e 7-1
7.2.2 Single Stepping ENCLS INSTruCtion LEatso vttt e et 7-2
7.2.3 Single Stepping ENCLU INSTrUCtion LEats . ..o vttt e e e e e aaes 7-2
724 Single-stepping Enclave Entry with Opt-0Ut ENtrY . ..o e e 7-2
7.24.1 Single STepPINg WIthOUT AEX e e e e e 7-2
7242 Single Step Preempted by AEX due to Non-SMI Vet i i e it 7-3
7.25 RELAGS. TF Treatment 0N AEX. . vttt ettt ettt et et e et et et et e e et et e e eens 7-3
7.26 Restriction on Setting of TF after an Opt-0UT BNy, vv et i 7-3
727 Trampoline Code CoNSIEIAtIONS. v ettt ettt e e e e e et et e et e e a e aens 7-4
73 Code and Data BreaKpoints. . ..o oottt e e e e 7-4
7.3.1 3T 1010 Y070 0= (o P 7-4
73.2 Breakpoint Match Reporting during ENclave EXECUTION v .t u ittt e 7-4
733 Reporting of Code Breakpoint on Next Instruction onaDebug Trapovvviiiii i 7-4
734 RELAGS. RF Traatment 0N A X, .ottt ittt ettt e e e et e e e e et 7-4
735 Breakpoint Matching in Intel® SGX INStruction FIOWSo e 7-4
74 1AV LS 2880 [T= = 4T 7-5
741 Behavior of INT3NSIe an ENCIAVE v e e e e 7-5
74.2 =] T8 Taa =T O T Ty [a T o PP 7-5
743 RV 0o T F= =1 (o L 7-5

vi Ref. #329298-002

7.5 2= o o 0= o 1 7-5

7.5.1 o I I == 100 T=T o 7-5
7.5.2 2 I =T 1113 T=T o | 7-5
7.5.2.1 LBR Stack 0N Opt-in BNty . . oot e e e e e e e 7-5
7522 LIS Y =Tl o T ' o TN A 7-6
7523 Mispredict Bit, Record Type, and Filteringovnoe i e 7-7
76 Interaction with Performance MoniToringo.vuiri i e e e e e s 7-7
7.6.1 IA32_PERF_GLOBAL_STATUS ENN@nCemMENt . . vttt ettt ettt ettt et et e et e eens 7-7
76.2 Performance Monitoring With Opt-in ENtry . ..o u e e e 7-7
763 Performance Monitoring With Opt-0Ut ENtrY ... u e e i e e 7-8
764 Enclave Exit and Performance MONItOMiNG. oo . vu it e 7-8
765 PEBS Record Generation on INtel® SGX INSTIUCTIONSottt i 7-8
76.6 Exception-Handling on PEBS/BTS Loads/Stores after AEXc.iuiiii ittt ettt aeaens 7-9
7.6.6.1 Other Interactions with Performance Monitoringvuiuitn i e e 7-9

Ref. #329298-002 vii

viii Ref. # 329298-002

TABLES

[T) J Y N S G
[
N—_O0OuUThwWN =

[NSE NIV
D)

Ny
'

NN
LoNOOULbhWw

n
P

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
3-1

4-1

4-2

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19

Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGXT.............cooviviiiinnn. 1-3
Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2..............c.ocovviiint. 1-4
Intel® SGX Opt-in and ENabling Benavior. 1-4
CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities ... 1-5
CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities ... 1-5
CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources...........coovvviiiiininnnnns 1-6
List of Implicit and Explicit Memory Access by Intel® SGX Enclave INStructions.coovvviiiiii i 2-3
Layout of SGX Enclave Control Structure (SECS). vv vt e 2-4
Layout Of ATTRIBUTES StrUCTUM.ttt e e ettt e et e e ettt e i n e aees 2-5
Bit Vector Layout of MISCSELECT Field of Extended Information ...t 2-5
Layout of Thread Control STrUCTUNE (TCS) . ..o vttt ettt ettt e e e e e e ees 2-5
LayoUT OF TCSFLAGS FIld . oottt et e e e e e e e e a e 2-6
Top-to-Bottom Layout 0f an SSA Framettt e 2-7
Layout of GPRSGX Portion of the STate SaVe ArBa v it ii it e 2-7
Layout of EXITINFO Field.ot e e e et et e ettt e 2-8
(=T T TV = oy (o 3 2-8
Layout of MISC region of the State Saue ArBa. e e e 2-9
LaYOUT OF EXINFO StTUCTUN . . oottt e e e et e e e e et a e 2-9
Page FaUIt ErmOr COMES. . . vttt e e e e e e e 2-10
Layout of PAGEINFO Data StrUCTUNEottt ettt e et et 2-10
Layout of SECINFO Data STrUCTUME. . ..ottt e e ettt et e e e ettt aeae e aanas 2-10
Layout of SECINFO.FLAGS Field. . ..o v ettt e e e e e e 2-10
SUPPOTEA PAGE T P, .ttt it e e et e et e e e s 2-11
LayoUT OF PCMD Data StrUCTUNE vttt ettt e e e e e et aaas 2-11
Layout of Enclave Signature Structure (SIGSTRUCT). . ..o e i e 2-12
Layout of EINIT Token (EINITTOKEN) ouit et e et 2-13
LI 1Y 0T 0) S 0] 2-13
Layout of TARGETINFO Data StrUCTUNE v vttt ettt e ettt ettt n e enanas 2-14
Layout of KEYREQUEST Data StrUCTUMEttt e ettt et et ettt et e et et e 2-14
SUPPOrted KEYNGME ValUeS. . . vttt ettt e e e i 2-14
Layout Of KEYPOLICY FIeld. ..o e ettt et e e e e e e e e e 2-15
Layout of Version Array Data StrUCTUTE. e e e e e e 2-15
Content of an Enclave Page Cache Map BNtrYvv ettt e ettt a e eaeas 2-15
lllegal Instructions INSide @an ENCIAVEt e e e s 3-10
GPR, x87 Synthetic States on Asynchronous ENCIave EXit.........c.ovii it 4-3
VMCS Synthetic States on Asynchronous ENCIaVe EXIit.vuir it e 4-4
Register Usage of Privileged Enclave Instruction Leaf FUNCLIONSovviiii i e 5-1
Register Usage of Unprivileged Enclave Instruction Leaf FUNCLIONSvvve i 5-2
€rror or Information Codes for INtel® SGX INSTIUCTIONS ...\ v vttt e 5-2
LSt Of INTEMNal CREG . .. ittt e e e e e e e e e e e 5-3
Concurrency Restrictions of EADD with Other Intel® SGX Operations Tof2........ccoiiiiiiii i, 5-11
Concurrency Restrictions of EADD with Other Intel® SGX Operations 20f 2coviiii i 5-12
Concurrency Restrictions of EAUG with Other Intel® SGX Operations 1Tof2.......coviiiiiiii i 5-15
Concurrency Restrictions of EAUG with Other Intel® SGX Operations 20f 2. 5-16
Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 1 of 2.......ovvivi i 5-18
Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 2 0f 2........coovvi i 5-19
Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 1of 2.........ccoviiiiiiiiii i, 5-21
Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 20f 2.......coovv i 5-21
Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations Tof2coviiiiiiiiiii i, 5-25
Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 20f2 ... 5-26
Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations Tof 2., 5-28
Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 20f 2., 5-28
Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations Tof2 ..., 5-31
Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 20f 2 ..o, 5-31
Concurrency Restrictions of EINIT with Other Intel® SGX Operations 10f 2ot 5-35

Ref. #329298-002 ix

5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
6-1

6-3

6-4

6-5

6-7

Concurrency Restrictions of EINIT with Other Intel® SGX Operations 20f 2covviiiiiiiiii i 5-35
Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 1of 2.......ccoviiiiiii i, 5-41
Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions-20f2ooiiiiiii i, 5-42
Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 1of 2. 5-46
Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 20f 2........coviiiiiiiiiiiii e 5-46
Concurrency Restrictions of EMODT with Other Intel® SGX Operations 1of 2ccviiiiiiiiiii i 5-49
Concurrency Restrictions of EMODT with Other Intel® SGX Operations 20f 2 ... 5-49
Concurrency Restrictions of EPA with Other Intel® SGX Operations 1 0f 2......covvi i 5-52
Concurrency Restrictions of EPA with Other Intel® SGX Operations 2 0f 2.....ovvvi i 5-52
Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 1of 2.t 5-55
Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 20f 2........ooviiiiiiiii i, 5-55
Concurrency Restrictions of ETRACK with Other Intel® SGX Operations Tof 2., 5-57
Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 20 2.........coviiiiiiiiiii i, 5-57
Concurrency Restrictions of EWB with Intel® SGX Instructions - 10f 2., e 5-59
Concurrency Restrictions of EWB with Intel® SGX Instructions - 2 0f 2. e 5-59
Concurrency Restrictions of EACCEPT with Intel® SGX Instructions-1of 2 ... 5-65
Concurrency Restrictions of EACCEPT with Intel® SGX Instructions -2 0f 2. 5-65
Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 1of 2......c.ooviii i, 5-69
Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions-20f2ooviiiiiiii i, 5-70
Concurrency Restrictions of EENTER with Intel® SGX Instructions - Tof 2 ... 5-74
Concurrency Restrictions of EENTER with Intel® SGX Instructions - 2 0f 2., 5-74
Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 1of 2 ... 5-81
Concurrency Restrictions of EEXIT with Intel® SGX Instructions -2 0f 2........cc i 5-81
[NV =T AV o 5-85
Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 1of 2., 5-85
Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 20f 2.ccovvviiiiiiiii i 5-86
Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 10f 2ovviiiiiiiii i 5-91
Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 20f 2ooviiviiii i 5-91
Concurrency Restrictions of EREPORT with Other Intel® SGX Operations Tof2 ..., 5-95
Concurrency Restrictions of EREPORT with Other Intel® SGX Operations20f2 ..., 5-95
Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 1Tof 2........coiiiiiii i 5-99
Concurrency Restrictions of ERESUME with Intel® SGX Instructions -2 0f 2 ... 5-99
Summary of VMX Capability Enumeration MSRS for Processors Supporting Intel® SCXooovviiiinines. 6-3
GUEST INTErmUPTIDIlI Y STate. ..ot e 6-3
Secondary Processor Based VM EXecution ControlS.v vttt i i e it 6-4
0 =) g =T Lo 6-4
2=] ol o A =T T o 1 6-4
SMRAM Synthetic States on Asynchronous ENClave EXitoov i e 6-11
Layout of the IA32_SGX_SVN _STATUS MSRttt e e 6-14

Ref. # 329298-002

FIGURES

Figure 1-1. An Enclave Within the Application’s Virtual Address SPacevuiiii it 1-1
Figure 3-1. ENCIAVE MEMOTY LaVOUL. . . ettt e e e e e e e 3-1
Figure 3-2. 1) =] Y)G (1Y 01V 7=T Y =11 3-5
Figure 3-3. Conceptual Layout of Processor Reserved Memory and EPC ... i 3-6
Figure 4-1. Exit Stack Just After Interrupt with Stack Switch. 4-1
Figure 4-2. TRE S A STaCK. .ottt e 4-2
Figure 5-1. Relationships Between SECS, SIGSTRUCT and EINITTOKEN.ovniei e 5-34
Figure 7-1. Single Stepping With Opt-0Ut ENTrY - NO AEXottt 7-2
Figure 7-2. Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary 7-3
Figure 7-3. LBR Stack Interaction With Opt=-in ENErY. . ..o .ot e e e e e 7-6
Figure 7-4. LBR Stack Interaction With Opt-0Ut ENErYo u e e e et e 7-7
Ref. # 329298-002

xii Ref. #329298-002

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

CHAPTER 1
INTRODUCTION TO INTEL®* SOFTWARE GUARD EXTENSIONS

1.1 OVERVIEW

This document describes the Intel® Software Guard Extensions (Intel® SGX), a set of instructions and mecha-

nisms for memory accesses added to future Intel® Architecture processors. Intel SGX can encompass two col-
lections of instruction extensions, referred to as SGX1 and SGX2, see Table 1-4. The SGX1 extensions allow an
application to instantiate a protected container, referred to as an enclave. An enclave is a protected area in the
application’s address space (see Figure 1-1), which provides confidentiality and integrity even in the presence of
privileged malware. Accesses to the enclave memory area from any software not resident in the enclave are pre-
vented. The SGX2 extensions allow additional flexibility in runtime management of enclave resources and thread
execution within an enclave.

Chapter 2 covers main concepts, objects and data structure formats that interact within the Intel SGX architec-
ture. Chapter 3 covers operational aspects ranging from preparing an enclave, transferring control to enclave
code, and programming considerations for the enclave code and system software providing support for enclave
execution. Chapter 4 describes the behavior of Asynchronous Enclave Exit (AEX) caused by events while execut-
ing enclave code. Chapter 5 covers the syntax and operational details of the instruction and associated leaf func-
tions available in Intel SGX. Chapter 6 describes interaction of various aspects of 1A32 and Intel® 64

architectures with Intel SGX. Chapter 7 covers Intel SGX support for application debug, profiling and perfor-
mance monitoring.

c 3

> Entry Table

Enclave

Enclave Heap

[App Code] Enclave Stack
Enclave Code
[App Code] \)

G J

Figure 1-1. An Enclave Within the Application’s Virtual Address Space

1.2 ENCLAVE INTERACTION AND PROTECTION

Intel SGX allows the protected portion of an application to be distributed in the clear. Before the enclave is built, the
enclave code and data are free for inspection and analysis. The protected portion is loaded into an enclave where
its code and data is measured. Once the application’s protected portion of the code and data are loaded into an
enclave, it is protected against external software access. An enclave can prove its identity to a remote party and
provide the necessary building-blocks for secure provisioning of keys and credentials. The application can also
request an enclave-specific and platform-specific key that it can use to protect keys and data that it wishes to store
outside the enclave.!

1. For additional information, see white papers on Intel SGX at http://software.intel.com/en-ug/intel-isa-extensions.

Ref. # 329298-002 1

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

Intel SGX introduces two significant capabilities to the Intel Architecture. First is the change in enclave memory
access semantics. The second is protection of the address mappings of the application.

1.3 ENCLAVE LIFE CYCLE

Enclave memory management is divided into two parts: address space allocation and memory commitment.
Address space allocation is the specification of the range of logical addresses that the enclave may use. This range
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flexi-
bility for enclaves to control their memory usage and adjust dynamically without overusing memory resources
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support
separate allocate and commit operations.

Proper memory management procedure for enclave memory access or non-enclave memory access are required
throughout the life cycle of an enclave: from creation, use, to destruction.

During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e. from non-enclave
memory.

Un-trusted application code starts using an initialized enclave typically by using the Intel SGX EENTER instruction
to transfer control to the enclave code residing in protected enclave page cache (EPC). The enclave code returns to
the caller via the EEXIT instruction. Upon enclave entry, control is transferred by hardware to software inside the

enclave. the software inside the enclave switches the stack pointer to one inside the enclave. When returning back
from the enclave, the software swaps the stack pointer then executes the EEXIT instruction.

On processors that supports the SGX2 extensions, an enclave writer may add memory to an enclave using the
SGX2 instruction set, after the enclave is built and running. These instructions allow adding additional memory
resources to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add
new threads to the enclave. The SGX2 features provide additional capabilities to the software model without
changing the security properties of the Intel SGX architecture.

Calling an external procedure from an enclave could also be done using the EEXIT instruction. EEXIT and a software
convention between the trusted section and the un-trusted section.

An active enclave consumes available resource from the EPC. Intel SGX provides the EREMOVE instruction that an
EPC manager can use to reclaim resources committed to an enclave no longer in use. The EPC manager uses
EREMOVE on every page. After execution of EREMOVE the page is available for allocation to another enclave.

1.4 DATA STRUCTURES AND ENCLAVE OPERATION

There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS)
and the Thread Control Structure (TCS).

There is one SECS for each enclave. The SECS contains meta-data which is used by the hardware to protect the
enclave. Included in the SECS is a field which stores the enclave build measurement value. This field, MRENCLAVE,
is initialized by the ECREATE instruction and updated by every EADD and EEXTEND. It is locked by EINIT. The SECS
cannot be accessed by software.

Every enclave contains one or more TCSs. The TCS contains meta-data used by the hardware to save and restore
thread specific information when entering/exiting the enclave. There is one field, FLAGS, which may be accessed
by software.

The SECS is created at the time ECREATE (see Table 1-1) is executed. The TCS can be created using the EADD
instruction or the SGX2 instructions (see Table 1-2).

1.5 ENCLAVE PAGE CACHE

The Enclave Page Cache (EPC) is a secure storage used by the processor to store enclave pages when they are a
part of an executing enclave.

The EPC is divided into chunks of 4KB pages. An EPC page is always aligned on a 4KB boundary.

2 Ref. # 329298-002

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

EPC is used to hold pages belonging to instance of enclaves. Pages in the EPC can either be valid or invalid. Every
valid page in the EPC belongs to one enclave instance. Each enclave instance has one EPC page holding its SECS.
The security metadata for each EPC page are held in an internal micro-architecture structure called Enclave Page
Cache Map (EPCM).

The EPC is a platform asset and as such must be managed by privileged software. Intel SGX provides a set of
instructions for adding and removing content to and from the EPC. The EPC is typically configured by BIOS at boot
time. On implementations in which EPC is part of system DRAM, the contents of the EPC are protected by an
encryption engine.

1.5.1 Enclave Page Cache Map (EPCM)

The EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds one entry
for each page in the EPC. The format of the EPCM is micro-architectural, and consequently is implementation
dependent. However, the EPCM contains the following architectural information to hardware:

® The status of EPC page with respect to validity and accessibility.

® The enclave instance that owns the page. SECS identifier of the enclave to which the page belongs.
® The type of page: regular, SECS, TCS or VA.

® The linear address through which the enclave is allowed to access the page.

® The specified read/write/execute permissions on that page.

The EPCM structure is used by the CPU in the address-translation flow to enforce access-control on the enclave
pages loaded into the EPC. The EPCM structure is described in Table 2-27, and the conceptual access-control flow
is described in Section 2.5.

The EPCM entries are managed by the processor as part of various instruction flows.

1.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX

The enclave instructions available with Intel SGX are organized as leaf functions under two instruction mnemonics:
ENCLS (ring 0) and ENCLU (ring 3). Each leaf function uses EAX to specify the leaf function index, and may require
additional implicit input registers as parameters. The use of EAX is implied implicitly by the ENCLS and ENCLU
instructions, ModR/M byte encoding is not used with ENCLS and ENCLU. The use of additional registers does not
use ModR/M encoding and is implied implicitly by respective leaf function index.

Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel
SGX instruction takes the form of ENCLX[LEAF_MNEMONIC], where ‘X’ is either ‘S’ or ‘U’. The long-form expression
provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity, the unique
“Leaf_Mnemonic” name is also used interchangeably in this document for brevity.

Table 1-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1

Supervisor Instruction Description User Instruction Description
ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave
ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave
ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key
ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report
ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave
ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

Ref. # 329298-002 3

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

Table 1-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1

Supervisor Instruction Description User Instruction Description
ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

Table 1-2. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2

Supervisor Instruction Description User Instruction Description
ENCLS[EAUC] Allocate page to an existing enclave ENCLU[EACCEPT] Accept changes to a page
ENCLS[EMODPR] Restrict page permissions ENCLU[EMODPE] Enhance access rights
ENCLS[EMODT] Make page TCS ENCLU[EACCEPTCOPY] | Copy page to a new location

1.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE
INSTRUCTIONS

Detection of support of Intel SGX and enumeration of available and enabled Intel SGX resources are queried using

the CPUID instruction. The enumeration interface comprises the following:

® Processor support of Intel SGX is enumerated by a feature flag in CPUID leaf 07H: CPUID.(EAX=07H,
ECX=0H):EBX.SGX[bit 2]. If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor has support for Intel
SGX, and requires opt-in enabling by BIOS via 1A32_FEATURE_CONTROL MSR.
If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, CPUID will report via the available sub-leaves of
CPUID.(EAX=12H) on available and/or configured Intel SGX resources.

® The available and configured Intel SGX resources enumerated by the sub-leaves of CPUID.(EAX=12H) depend
on the state of opt-in configuration by BIOS.

1.7.1 Intel® SGX Opt-In Configuration

On processors that support Intel SGX, 1A32_FEATURE_CONTROL provides the SGX_ENABLE field (bit 18). Before
system software can configure and enable Intel SGX resources, BIOS is required to set
IA32_FEATURE_CONTROL.SGX_ENABLE = 1 to opt-in the use of Intel SGX by system software.

The semantics of setting SGX_ENABLE follows the rules of IA32_FEATURE_CONTROL.LOCK (bit 0). Software is
considered to have opted into Intel SGX if and only if IA32_FEATURE_CONTROL.SGX_ENABLE and
IA32_FEATURE_CONTROL.LOCK are set to 1. The setting of IA32_FEATURE_CONTROL.SGX_ENABLE (bit 18) is not

reflected by CPUID.

Table 1-3. Intel® SGX Opt-in and Enabling Behavior

CPUID.(OS7£I),(0H):EBX. CPUID.(12H) FEATURI%((:ZSNTROL. FEA;I’EJ)I(?_EEﬁggIEOL Enclave Instruction

0 Invalid X X #UD

1 Valid* X X #UD

1 Valid* 0 X #GP

1 Valid* 1 0 #GP

1 Valid* 1 1 Available (see Table 1-4 for details
of SGX1 and SGX2),

* Leaf 12H enumeration results are dependent on enablement.

Ref. # 329298-002

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

1.7.2 Intel® SGX Resource Enumeration Leaves

If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel
SGX resource capability and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in
and system software configuration. Information returned by CPUID.12H is thread specific; software should not

assume that if Intel SGX instructions are supported on one hardware thread, they are also supported elsewhere.

A properly configured processor exposes Intel SGX functionality with CPUID.EAX=12H reporting valid information

(non-zero content) in three or more sub-leaves, see Table 1-4:

® CPUID.(EAX=12H, ECX=0H) enumerates Intel SGX capability, including enclave instruction opcode support.

® CPUID.(EAX=12H, ECX=1H) enumerates Intel SGX capability of processor state configuration and enclave
configuration in the SECS structure (see Table 2-3).

® CPUID.(EAX=12H, ECX =>1) enumerates available EPC resources.

Table 1-4. CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior
Register Bits

EAX 0 SGX1: If 1, indicates opcodes of SGX1 instruction listed in Table 1-1 are supported.
1 SGX2: If 1, indicates opcodes of SGX2 instruction listed in Table 1-2 are supported.
31:2 Reserved (0)

EBX 31:.0 MISlCSELECT: Reports the bit vector of supported extended features that can be written to the MISC

region of the SSA.

ECX 31:.0 Reserved (0)
7:0 MaxEnclaveSize_Not64: the maximum enclave size is 2" (EDX[7:0]) byes when not in 64-bit mode.

EDX 15:8 MaxEnclaveSize_64: the maximum enclave size is 27 (EDX[15:8]) byes when operating in 64-bit mode.
31:16 Reserved (0)

Table 1-5. CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior
Register Bits
EAX 31:.0 Report the valid bit fields of bits [31:0] of SECS.ATTRIBUTES that software can set with ECREATE
EBX 31:.0 Report the valid bit fields of bits [63:32] of SECS.ATTRIBUTES that software can set with ECREATE
ECX 31:.0 Report the valid bit fields of bits [95:64] of SECS.ATTRIBUTES that software can set with ECREATE
EDX 31:.0 Report the valid bit fields of bits [127:96] of SECS.ATTRIBUTES that software can set with ECREATE

CPUID leaf 12H sub-leaves 2 and higher report physical memory resources available for use with Intel SGX. These
physical memory sections are typically configured by BIOS as Processor Reserved Memory, and available to the
OS to manage as EPC.

To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID leaf 12H
with sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-
leaf type is invalid. All invalid sub-leaves of CPUID leaf 12H return EAX/EBX/ECX/EDX with O.

Ref. # 329298-002 5

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

Table 1-6. CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior
Register Bits
EAX 3.0 0000b: This sub-leaf is invalid, EBX:EAX and EDX:ECX report O.
0001b: This sub-leaf provides information on the Enclave Page Cache (EPC) in EBX:EAX and EDX:ECX.
All other encoding are reserved.
11:4 Reserved (0)
31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.
EBX 19.0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.
31:20 Reserved (0)
3:0 0000b: Not valid
0001b: The EPC section is confidentiality, integrity and replay protected.
Ecx All other encoding are reserved.
11:4 Reserved (0)
31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the
Processor Reserved Memory.
EDX 19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the
Processor Reserved Memory.
31:20 Reserved (0)

6 Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

CHAPTER 2
ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

2.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT

An enclave comprises a contiguous range in the linear address space. An enclave must run from a special area of
physical memory called Enclave Page Cache (EPC), which is protected from “non-enclave” memory accesses. An
enclave need not be physically contiguous within the EPC. It is up to the EPC manager to allocate EPC pages to
various enclaves. Enclaves abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page
tables and extended page tables provide address translation for the enclave pages, and the hardware guarantees
that these pages will be mapped to EPC (any failure generates an exception).

2.2 TERMINOLOGY

A memory access that is initiated by internal enclave code to a linear address inside that enclave is called a Direct
Enclave Access (Direct EA).

Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD,
EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME that need to access EPC data by a non-enclave,
managing context are called Indirect Enclave Accesses (Indirect EA). Table 2-1 lists additional details of the indirect
EA of SGX1 and SGX2 extensions.

Direct EAs and Indirect EAs together are called Enclave Accesses (EAs). Intel SGX instruction leaves with indirect
EA are listed in Table 2-1.

Any memory access that is not an Enclave Access is called a non-enclave access.

2.3 ACCESS-CONTROL REQUIREMENTS

Enclave accesses have the following access-control requirements:
® All memory accesses must conform to segmentation and paging policies set by the OS/VMM.
® Enclave entry/exit must happen through specific enclave instructions or events:

— ENCLU[EENTER], ENCLU[ERESUME]

— ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).

® Direct jumps from outside an enclave to any linear address that maps to an enclave page do not enable enclave
mode and result in abort page semantics and undefined behavior.

® Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception.
® Non-enclave accesses to EPC memory result in abort page semantics.

® Hardware detects and prevents enclave accesses using logical-to-linear address translations which are
different than the original direct EA used to allocate the page. Detection of modified translation results in
#GP(0).

® Direct EAs to any EPC pages must conform to the currently defined security attributes for that page. These
attributes may be defined at enclave creation time (EADD) or when the enclave redefines them using SGX2
instructions:

— Target must belong to the same enclave,

— RWX attributes of the access must be compatible with the current RWX permissions,
— Target must not have a restricted page type (PT_SECS, PT_TCS or PT_VA, PT_TRIM),
— The EPC page must not be BLOCKED.

— The EPC page must not be PENDING.

Ref. # 329298-002 1

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

— The EPC page must not be MODIFIED.

NOTE

For read accesses with abort-page semantics, see Section 6.5, “Exception Classifications,” in the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A. Write accesses with
abort-page semantics are ignored.

2.4 SEGMENT-BASED ACCESS CONTROL

Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory accesses
arising from a logical processor in protected mode (including one that is inside an enclave) are subject to segmen-
tation checks with the appropriate segment register.

To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected
fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have
segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).

On enclave entry either via EENTER or ERESUME, the processor saves the contents of the FS and GS registers, and
modifies these registers to enable the enclave's use of these registers for accessing the thread-local storage inside
the enclave. FS and GS are loaded from values stored in the TCS at build time. On enclave exit, the contents at time
of entry are restored. The details of these modifications can be found in the descriptions of EENTER, ERESUME,
EEXIT, and AEX flows.

2.5 PAGE-BASED ACCESS CONTROL

2.5.1 Access-control for Accesses that Originate from non-SGX Instructions

Intel SGX builds on the processor's paging mechanism to afford enclaves a protected execution environment. Intel
SGX provides page-granular access-control for enclave pages that are loaded into an EPC. Enclave pages loaded
into an EPC are only accessible from inside the same enclave, or through certain Intel SGX instructions.

2.5.2 Memory Accesses that Split across ELRANGE

Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a part
of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across ELRANGE, the
processor splits the access into two sub-accesses (one inside ELRANGE and the other outside ELRANGE), and each
access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due to the portion that lies
outside of the ELRANGE.

2.5.3 Implicit vs. Explicit Accesses

Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses or
implicit accesses. Table 2-1 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

2.5.3.1 Explicit Accesses

Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their linked
data structures are called explicit accesses.

Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging,
extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when the
access is made.

2 Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

The interaction of explicit memory accesses with data breakpoints is leaf-function-specific, and is documented in
Section 7.3.5.

2.53.2 Implicit Accesses

Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses.
These accesses are not passed as operands of the instruction but are implied by use of the instruction.

Implicit accesses are made using physical addresses that are cached by the processor. These accesses do not
trigger any access-control faults/exits or data breakpoints. Table 2-1 lists memory objects that Intel SGX instruc-
tion leaf functions access either by explicit access or implicit access. The addresses of explicit access objects are
passed via register operands with the second through fourth column of Table 2-1 matching implicitly encoded
registers RBX, RCX, RDX.

Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the
enclave via ENCLS[EADD]. This binding is severed when the corresponding page is removed from the EPC via
ENCLS[EREMOVE]. Physical addresses of TCS and SSA memory are cached at the time of most-recent enclave
entry. Exit from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is
described in Chapter 4.

The physical addresses that are used for implicit accesses are derived from logical (or linear) addresses using ordi-
nary address translation. Before caching such a physical address the original logical (or linear) address is subject
to ordinary checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger
exceptions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is
cached and used for an implicit access.

Table 2-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions

Instr. Leaf Explicit 1 Explicit 2 Explicit 3 Implicit
ECREATE PAGEINFO and linked structures EPCPAGE
EADD PAGEINFO and linked structures EPCPAGE
EEXTEND EPCPAGE SECS
EINIT SIGSTRUCT SECS EINITTOKEN
EBLOCK EPCPAGE SECS
ETRACK EPCPAGE
ELDB/ELDU PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE
EWB PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS
EREMOVE EPCPAGE SECS
EDBGRD EPCADDR Destination SECS
EDBGWR EPCADDR Source SECS
EENTER TCS and linked SSA SECS
ERESUME TCS and linked SSA SECS
EGETKEY KEYREQUEST KEY SECS
EREPORT TARGETINFO REPORTDATA OUTPUTDATA SECS
EEXIT SECS, TCS
EPA EPCADDR
EAUG PAGEINFO and linked structures EPCPAGE SECS
EMODPE SECINFO EPCPAGE
EMODPR SECINFO EPCPAGE SECS
EMODT SECINFO EPCPAGE SECS
EACCEPT SECINFO EPCPAGE SECS

Ref. # 329298-002 3

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions

Instr. Leaf

Explicit 1

Explicit 2

Explicit 3

Implicit

EACCEPTCOPY

SECINFO

EPCPAGE (Src)

EPCPAGE (Dst)

Asynchronous Enclave Exit*

SECS, TGS, SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 4.4

2.6 INTEL® SGX DATA STRUCTURES OVERVIEW

Enclave operation is managed via a collection of data structures, many of the top-level data structures contain sub-
structures. The top-level data structures relate to parameters that may be used in enclave setup/maintenance, by
Intel SGX instructions, or AEX event. The top-level data structures are:

® SGX Enclave Control Structure (SECS)
® Thread Control Structure (TCS)

® State Save Area (SSA)

® Page Information (Pagelnfo)
® Security Information (SECINFO)

® Paging Crypto MetaData (PCMD)

® Enclave Signature Structure (SIGSTRUCT)
® EINIT Token Structure (EINITTOKEN)

® Report Structure (REPORT)
® Report Target Info (TARGETINFO)
® Key Request (KEYREQUEST)
® Version Array (VA)

® Enclave Page Cache Map (EPCM)
Details of the top-level data structures and associated sub-structures are listed in Section 2.7 through Section

2.19.

2.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)

The SECS data structure requires 4K-Bytes alignment.

Table 2-2. Layout of SGX Enclave Control Structure (SECS)

Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size

SSAFRAMESIZE |16 4 Size of one SSA frame in pages (including XSAVE, pad, GPR, and condition-
ally MISC).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region
of the SSA frame when an AEX occurs

RESERVED 24 24

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 2-3

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for proper
format.

RESERVED 96 32

4 Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-2. Layout of SGX Enclave Control Structure (SECS)

Field OFFSET (Bytes) Size (Bytes) Description
MRSIGNER 128 32 Measurement Register extended with the public key that verified the
enclave. See SIGSTRUCT for proper format.
RESERVED 160 96
ISVPRODID 256 2 Product ID of enclave
ISVSVN 258 2 Security version number (SVN) of the enclave
EID Implementation 8 Enclave Identifier
dependent
PADDING Implementation 352 Padding pattern from the Signature (used for key derivation strings)
dependent
RESERVED 260 3836 Includes EID, other non-zero reserved field and must-be-zero fields
2.7.1 ATTRIBUTES

The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, CPUID enumeration,
the REPORT and the KEYREQUEST structures.

Table 2-3. Layout of ATTRIBUTES Structure

Field Bit Position Description
RESERVED 0
DEBUG 1 If 1, the enclave permit debugger to read and write data to enclave
MODEG4BIT 2 Enclave runs in 64-bit mode
RESERVED 3 Must be Zero
PROVISIONKEY 4 Provisioning Key is available from EGETKEY
EINITTOKENKEY 5 EINIT token key is available from EGETKEY
RESERVED 63:6
XFRM 127:64 XSAVE Feature Request Mask. See Section 6.7.
2.7.2 SECS.MISCSELECT Field

If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the processor can save extended information into the MISC region
of SSA when an AEX occurs. An enclave writer can specify in the SECS.MISCSELECT field with the bit vector repre-
senting which extended information are to be saved in the MISC region of the SSA frame when an AEX is gener-
ated. The bit vector definition of extended information is listed in Table 2-4.

If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 2.9.2.

Table 2-4. Bit Vector Layout of MISCSELECT Field of Extended Information

Field Bit Position Description
EXINFO 0 Report page fault and general protection exception info inside an enclave
Reserved 31:1 Reserved (0).

Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

2.8

THREAD CONTROL STRUCTURE (TCS)

Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes alignment.

Table 2-5. Layout of Thread Control Structure (TCS)

Field OFFSET (Bytes) | Size (Bytes) Description

RESERVED 0 8

FLAGS 8 8 The thread'’s execution flags.

0SSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base.
Must be page aligned

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the
beginning of the enclave.

RESERVED 40

OFSBASGX 48 When added to the base address of the enclave, produces the base address FS
segment inside the enclave. Must be page aligned.

OGSBASGX 56 8 When added to the base address of the enclave, produces the base address GS
segment inside the enclave. Must be page aligned.

FSUIMIT 64 4 Size to become the new FS limit in 32-bit mode

GSuUMIT 68 4 Size to become the new GS limit in 32-bit mode

RESERVED 72 4024 Must-be-zero

2.8.1 TCS.FLAGS
Table 2-6. Layout of TCS.FLAGS Field
Field Bit Position Description
DBGOPTIN 0 If set, enables debugging features (TF, breakpoints, etc.) while executing in the enclave on this
TCS. Hardware clears this bit. A debugger may later modify it.
RESERVED 63:1
2.8.2 State Save Area Offset (OSSA)

The OSSA points to a stack of state save area frames used to save the processor state when an interrupt or excep-
tion occurs while executing in the enclave. Each frame in the stack consists of the XSAVE region starting at the base
of a state save area frame. The GPRSGX region is top-aligned to the end of the frame. Each frame must be 4KBytes
aligned and multiples of 4KBytes in size. Enclave writer can choose the pad size between the XSAVE region and the
MISC region. A MISC region contains additional information written by the processor is next below the GPRSGX

region inside the frame.

2.8.3

Number of State Save Area Frames (NSSA)

NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame
when EENTER-ing the enclave or the EENTER will fail.

Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

2.8.4 Current State Save Area Frame (CSSA)

CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the
processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the array
of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

2.9 STATE SAVE AREA (SSA) FRAME

When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA frame,
which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:

® The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in
an XSAVE/FXSAVE-compatible non-compacted format.

® The GPRSGX region. This is used to hold the processor general purpose registers (RAX ... R15), the RIP, the
outside RSP and RBP, RFLAGS and the AEX information. The GPRSGX region is flush-aligned within the end of
an SSA frame.

® The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX
region, and may contain zero or more components of extended information that would be saved when an AEX
occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions are pads that
software can use. If the MISC region is present, the region between the MISC and XSAVE regions are pads that
software can use.

One or more components of extended information may be written to the MISC region if one or more bits in
CPUID.(EAX=12H, ECX=0):EBX[31:0] are set. The component written to the MISC region is determined by the
set bits in SECS.MISCSELECT.

Table 2-7. Top-to-Bottom Layout of an SSA Frame

Region | Offset (Byte) Size (Bytes) Description
GPRSGX | SSAFRAMESIZE (176 See Table 2-8 for layout of the GPRSGX region
-177

MISC base of GPRSGX | Calculate from high- | see Section 2.9.2
-sizeof(MISC) est set bit of

SECS.MISCSELECT
Pad €nd of XSAVE | Chosen by enclave Ensure the end of GPRSGX region is aligned to the end of a 4KB page.
region writer
XSAVE 0 Calculate using CPUID | The size of XSAVE region in SSA is derived from the enclave’s support of the col-

leaf ODH information | lection of processor extended states that would be managed by XSAVE. The
enablement of those processor extended state components in conjunction with
CPUID leaf ODH information determines the XSAVE region size in SSA.

2.9.1 GPRSGX Region
The layout of the GPRSGX region is shown in Table 2-8.

Table 2-8. Layout of GPRSGX Portion of the State Save Area

Field OFFSET (Bytes) | Size (Bytes) Description
RAX 0 8
RCX 8 8
RDX 16 8
RBX 24 8
RSP 32 8
RBP 40 8

Ref. # 329298-002 7

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-8. Layout of GPRSGX Portion of the State Save Area

Field OFFSET (Bytes) | Size (Bytes) Description
RSI 48 8
RDI 56 8
R8 64 8
R9 72 8
R10 80 8
R11 88 8
R12 96 8
R13 104 8
R14 112 8
R15 120 8
RFLAGS 128 8 Flag register
RIP 136 8 Instruction pointer
URSP 144 8 Untrusted (outside) stack pointer. Saved by EENTER, restored on AEX
URBP 152 8 Untrusted (outside) RBP pointer. Saved by EENTER, restored on AEX
EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be
needed by enclave software
RESERVED 164 4 Padding to 8-byte alignment
FSBASE 168 8 FS BASE
GSBASE 176 8 GS BASE
2.9.1.1 EXITINFO

EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field laid
out as in Table 2-9. The VALID bit is set only for the exceptions conditions which are reported inside an enclave. See
Table 2-10 for which exceptions are reported inside the enclave. If the exception condition is not one reported
inside the enclave then VECTOR and EXIT_TYPE are cleared.

Table 2-9. Layout of EXITINFO Field

Field Bit Position Description
VECTOR 7.0 Exception number of exceptions reported inside enclave
EXIT_TYPE 10:8 0711b: Hardware exceptions

110b: Software exceptions
Other values: Reserved
RESERVED 30:11 Reserved as zero
VALID 31 0: unsupported exceptions
1: Supported exceptions. Includes two categories:
® Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.
® Conditionally supported exception:
— #PF, #GP if SECS.MISCSELECT.EXINFO =1
2.9.1.2 VECTOR Field Definition

Table 2-10 contains the VECTOR field. This field contains information about some exceptions which occur inside the
enclave. These vector values are the same as the values that would be used when vectoring into regular exception
handlers. All values not shown are not reported inside an enclave.

Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-10. Exception Vectors

Name Vector # Description
#DE 0 DIV and IDIV instructions
#DB 1 For Intel use only
#BP 3 INT 3 instruction
#BR 5 BOUND instruction
#UD 6 UDZ2 instruction and reserved opcodes
#GP 13 General protection violation. Only reported if SECS.MISCSELECT.EXINFO = 1.
H#PF 14 Page fault. Only reported if SECS.MISCSELECT.EXINFO = 1.
#MF 16 x87 FPU floating-point or WAIT/FWAIT instruction
#AC 17 Any data reference in memory
#XM 19 Any SIMD floating-point exceptions

2.9.2 MISC Region

The layout of the MISC region is shown in Table 2-11. The number of components available in the MISC region
corresponds to the set bits of CPUID.(EAX=12H, ECX=0):EBX[31:0]. Each set bit in CPUID.(EAX=12H,
ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table 2-11. Enclave writers
must consult both CPUID.(EAX=12H, ECX=0):EBX[31:0], SECS.MISCSELECT, and Offset/Size information of Table
2-11 to determine the size of the MISC region. The first component, EXINFO, starts below the base of the GPRSGX
region. Additional components in the MISC region grow downward within the MISC region.

The size of the MISC region is calculated as follows:
® If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported.

® If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from the highest bit set in
SECS.MISCSELECT in conjunction with the offset and size information defined in Table 2-11. For example, if the
highest bit set in SECS.MISCSELECT is bit O, the MISC region size is OFFSET(EXINFO) + Sizeof(EXINFO).

Table 2-11. Layout of MISC region of the State Save Area

MISC Components | OFFSET (Bytes) | Size (Bytes) Description

EXINFO base(GPRSGX)-16 |16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information
on #GP or #PF that occurred inside an enclave can be written to
the EXINFO structure if specified by SECS.MISCSELECT[0] = 1.

Future Extension | Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0)

2.9.2.1 EXINFO Structure

Table 2-12 contains the layout of the EXINFO structure that provides additional information.

Table 2-12. Layout of EXINFO Structure

Field OFFSET (Bytes) | Size (Bytes) Description
MADDR 0 8 Page fault address (unused for #GP)
ERRCD 8 4 Exception error code for either #GP or #PF
RESERVED 12 4

Ref. # 329298-002 9

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

2.9.2.2 Page Fault Error Codes

Table 2-13 contains page fault error code that may be reported in EXINFO.ERRCD.

Table 2-13. Page Fault Error Codes

Name Bit Position
P 0 Same as non-SGX page fault exception P flag in Intel Architecture.
W/R 1 Same as non-SGX page fault exception W/R flag
u/S 2 Always set to 1 (user mode reference)
RSVD 3 Reserved
I/D 4 Same as non-SGX page fault exception I/D flag
RSVD 31:5 Reserved

2.10 PAGE INFORMATION (PAGEINFO)

PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It
requires 32-Byte alignment.

Table 2-14. Layout of PAGEINFO Data Structure

Field OFFSET (Bytes) | Size (Bytes)
LINADDR 0 8 Enclave linear address
SRCPGE 8 8 Effective address of the page where page contents are located
SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure for
the page
SECS 24 8 Effective address of EPC slot that currently contains a copy of the SECS

2.11 SECURITY INFORMATION (SECINFO)

The SECINFO data structure holds meta-data about an enclave page.

Table 2-15. Layout of SECINFO Data Structure

Field OFFSET (Bytes) | Size (Bytes)
FLAGS 0 8 Flags describing the state of the enclave page; R/W by software
RESERVED 8 56 Must be zero;

2.11.1 SECINFO.FLAGS

The SECINFO.FLAGS are a set of bits describing the properties of an enclave page.

Table 2-16. Layout of SECINFO.FLAGS Field

Field Bit Position
R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read
from inside the enclave
W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be writ-
ten from inside the enclave

Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-16. Layout of SECINFO.FLAGS Field

Field Bit Position Description
X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be
executed from inside the enclave
PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.
MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.
RESERVED 7:5 Must be zero
PAGE_TYPE |15:8 The type of page that the SECINFO is associated with
RESERVED 63:16 Must be zero
2.11.2 PAGE_TYPE Field Definition

The SECINFO flags and EPC flags contain bits indicating the type of page.

Table 2-17. Supported PAGE_TYPE

TYPE Value Description
PT_SECS 0 Page is an SECS
PT_TCS 1 Pageisa TCS
PT_REG 2 Page is a normal page
PT_VA 3 Page is a Version Array
PT_TRIM 4 Page is in trimmed state
All other Reserved

2.12

PAGING CRYPTO METADATA (PCMD)

The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page.
The size of the PCMD structure (128 bytes) is architectural. EWB writes out the reserved field and MAC values.
ELDB/U reads the fields and checks the MAC.

The format of PCMD is as follows:

Table 2-18. Layout of PCMD Data Structure

Field OFFSET (Bytes) | Size (Bytes) Description
SECINFO 0 64 Flags describing the state of the enclave page; R/W by software
ENCLAVEID 64 8 ENCLAVEID
RESERVED 72 40 Must be zero
MAC 112 16 MAC for the page, page meta-data and reserved field
2.13 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)

SIGSTRUCT contains information about the enclave from the enclave signer, and must be 4K-Bytes aligned.

SIGSTRUCT includes ENCLAVEHASH as SHA256 digests as defined in FIPS PUB 180-4. The digests are byte strings
of length 32 with the most significant byte of each of the 8 HASH dwords at the left most byte position.

SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented as
a byte strings of length 384, with the most significant byte at the position “offset + 383", and the least significant
byte at position “offset”.

Ref. # 329298-002 11

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a 3072-
bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format with DER
encoding of the “Digestinfo” value as specified in of PKCS#1 v2.1/RFC 3447.

The 3072-bit integers Q1 and Q2 are defined by:

ql = floor(Signature”™2 / Modulus);

g2 = floor((Signature”™3 - q1 * Signature * Modulus) / Modulus);
SIGSTRUCT must be page aligned

In column 5 of Table 2-19, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

Table 2-19. Layout of Enclave Signature Structure (SIGSTRUCT)

Field OFFSET (Bytes) | Size (Bytes) Description Signed
HEADER 0 16 Must be byte stream Y
06000000E10000000000010000000000H
VENDOR 16 4 Intel Enclave: 00008086H Y
Non-Intel Enclave: 00000000H
DATE 20 4 Build date is yyyymmdd in hex: Y
yyyy=4 digit year, nm=1-12, dd=1-31
HEADERZ2 24 16 Must be byte stream Y
01010000600000006000000001000000H
SWDEFINED 40 4 Available for software use Y
RESERVED 44 84 Must be zero Y
MODULUS 128 384 Module Public Key (keylength=3072 bits) N
EXPONENT 512 4 RSA Exponent = 3 N
SIGNATURE 516 384 Signature over Header and Body N
MISCSELECT* 900 4 Bit vector specifying Extended SSA frame feature settobe |Y
used
MISCMASK* 904 4 Bit vector mask of MISCSELECT to enforce Y
RESERVED 908 20 Must be zero Y
ATTRIBUTES 928 16 Enclave Attributes that must be set Y
ATTRIBUTEMASK | 944 16 Mask of Attributes to enforce Y
ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to Y
RESERVED 992 32 Must be zero Y
ISVPRODID 1024 2 ISV assigned Product ID Y
ISVSVN 1026 2 ISV assigned SVN (security version number) Y
RESERVED 1028 12 Must be zero N
Q1 1040 384 Q1 value for RSA Signature Verification N
Q2 1424 384 Q2 value for RSA Signature Verification N
* If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISCSELECT must be 0.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] !=0, enclave writers must specify MISCSELECT such that each cleared
bit in MISCMASK must also specify the corresponding bit as O in MISCSELECT.

2.14 EINIT TOKEN STRUCTURE (EINITTOKEN)

The EINIT token is used by EINIT to verify that the enclave is permitted to launch.
EINIT token must be 512-Byte aligned.

12 Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-20. Layout of EINIT Token (EINITTOKEN)

Field OFFSET (Bytes) | Size (Bytes) | MACed Description
VALID 0 4 Y Bits O: 1: Valid; 0: Debug. All other bits reserved.
RESERVED 4 44 Y Must be zero
ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave
MRENCLAVE 64 32 Y MRENCLAVE of the Enclave
RESERVED 96 32 Y Reserved
MRSICGNER 128 32 Y MRSICNER of the Enclave
RESERVED 160 32 Y Reserved
CPUSVNLE 192 16 N Launch Enclave’s CPUSVN
ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID
ISVSVNLE 210 02 N Launch Enclave’s ISVSVN
RESERVED 212 24 N Reserved
MASKEDMISCSEL | 236 4 MASKEDMISCSELECT of Launch Enclave. This should be set to the LE's
ECTLE MASKEDMISCSELECT masked with MISCMASK of the LE's KEYRE-
QUEST.
MASKEDATTRIBU | 240 16 N MASKEDATTRIBUTES of Launch Enclave. This should be set to the LE's
TESLE ATTRIBUTES masked with ATTRIBUTEMASK of the LE's KEYREQUEST.
KEYID 256 32 N Value for key wear-out protection
MAC 288 16 N A cryptographic MAC on EINITTOKEN using Launch key
2.15 REPORT (REPORT)

The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

Table 2-21. Layout of REPORT

Field OFFSET (Bytes) | Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 SSA Frame specified extended feature set bit vector

RESERVED 20 28 Must be zero

ATTRIBUTES 48 16 The values of the attributes flags for the enclave. See Section 2.7.1 (ATTRIBUTES
Bits) for the definitions of these flags.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE

RESERVED 96 32 Reserved

MRSIGNER 128 32 The value of SECS.MRSIGNER

RESERVED 160 96 Zero

ISVPRODID 256 02 Enclave PRODUCT ID

ISVSVN 258 02 The security version number of the Enclave

RESERVED 260 60 Zero

REPORTDATA |320 64 A set of data used for communication between the enclave and the target
enclave.This value is provided by the EREPORT call in RCX.

KEYID 384 32 Value for key wear-out protection

MAC 416 16 The CMAC on the report using report key

Ref. # 329298-002

13

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

2.15.1 REPORTDATA

The REPORTDATA structure is specifies the address of a 64-Byte input buffer that the EREPORT instruction will use
to generate cryptographic report. It requires 128-Byte alignment.

2.16 REPORT TARGET INFO (TARGETINFO)

This structure is an input parameter to the EREPORT instruction leaf. The address of TARGETINFO is specified as an
effective address in RBX. It is used to identify the enclave which will be able to cryptographically verify the REPORT
structure returned by EREPORT. A TARGETINFO requires 512-Byte alignment.

Table 2-22. Layout of TARGETINFO Data Structure

Field OFFSET (Bytes) | Size (Bytes) Description
MEASUREMENT |0 32 The MRENCLAVE of the target enclave
ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave
RESERVED 48 4
MISCSELECT 52 4 SSA Frame extended feature set bit vector
RESERVED 56 456

2.17 KEY REQUEST (KEYREQUEST)

This structure is an input parameter to the EGETKEY instruction. It is passed in as an effective address in RBX and
requires 512-Byte alignment. It is used for selecting the appropriate key and any additional parameters required in
the derivation of that key.

Table 2-23. Layout of KEYREQUEST Data Structure

Field OFFSET (Bytes) | Size (Bytes) Description

KEYNAME 0 02 Identifies the Key Required

KEYPOLICY 02 02 Identifies which inputs are required to be used in the key derivation

ISVSVN 04 02 The ISV security version number used in the key derivation

RESERVED 06 02 Must be zero

CPUSVN 08 16 The security version number of the processor used in the key derivation

ATTRIBUTEMASK | 24 16 A mask defining which ATTRIBUTES bits will be included in the derivation of
the Seal Key

KEYID 40 32 Value for key wear-out protection

MISCMASK 72 4 A mask defining which MISCSELECT bits will be included in the derivation of
the Seal Key

RESERVED 76 436

2.17.1 KEY REQUEST KeyNames

Table 2-24. Supported KEYName Values
Key Name Value Description

LAUNCH_KEY 0 Launch key
PROVISION_KEY

—_

Provisioning Key

14 Ref. # 329298-002

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-24. Supported KEYName Values

Key Name Value Description
PROVISION_SEAL_KEY |2 Provisioning Seal Key
REPORT_KEY 3 Report Key
SEAL_KEY 4 Report Key
All other Reserved
2.17.2 Key Request Policy Structure

Table 2-25. Layout of KEYPOLICY Field

Field Bit Position Description
MRENCLAVE 0 If 1, derive key using the enclave’s MRENCLAVE measurement register
MRSIGNER 1 If 1, derive key using the enclave’s MRSIGNER measurement register
RESERVED 15:2 Must be zero
2.18 VERSION ARRAY (VA)

In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a
Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a
page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot
receives the unique version number of the page being evicted. When the EPC page is reloaded, a VA slot must hold
the version of the page. If the page is successfully reloaded, the version in the VA slot is cleared.

VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA
page must be used to receive the version for the VA being evicted. A Version Array Page must be 4K-Bytes aligned.

Table 2-26. Layout of Version Array Data Structure

Field OFFSET (Bytes) | Size (Bytes) Description
Slot 0 0 08 Version Slot O
Slot 1 8 08 Version Slot 1
Slot 511 4088 08 Version Slot 511
2.19 ENCLAVE PAGE CACHE MAP (EPCM)

EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of
EPCM fields is implementation specific.

Table 2-27. Content of an Enclave Page Cache Map Entry

Field Description
VALID Indicates whether the EPCM entry is valid
R Read access; indicates whether enclave accesses are allowed for the EPC page
W Write access; indicates whether enclave accesses are allowed for the EPC page
X Execute access; indicates whether enclave accesses are allowed for the EPC page
PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM)

Ref. # 329298-002 15

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

Table 2-27. Content of an Enclave Page Cache Map Entry

Field Description
ENCLAVESECS SECS identifier of the enclave to which the page belongs
ENCLAVEADDRESS Linear enclave address of the page
BLOCKED Indicates whether the page is in the blocked state
PENDING Indicates whether the page is in the pending state
MODIFIED Indicates whether the page is in the modified state
16 Ref. # 329298-002

ENCLAVE OPERATION

CHAPTER 3
ENCLAVE OPERATION

The following aspects of enclave operation are described in this chapter:

Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the
enclave entity

Adding pages and measuring the enclave

Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing
identity.

Enclave entry and exiting including
— Synchronous entry and exit

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX

3.1 CONSTRUCTING AN ENCLAVE

Figure 3-1 illustrates a typical Enclave memory layout.

SECS -~
~ OS Context
Base + Size ——> N
Enclave Memory
) P Thread Data
Replicated once
erthread ~
P - TCS
- Application Context
—
Global Data “
Code
Base 5 \ J
Enclave {Base, Size}

Figure 3-1. Enclave Memory Layout

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement
comprises multiple phases. This process can be illustrated by the following exemplary steps:

1.

The application hands over the enclave content along with additional information required by the enclave
creation API to the enclave creation service running at ring-0.

Use the ECREATE leaf to set up the initial environment, specifying base address and size of the enclave. This
address range, the ELRANGE, is part of the application's address space. This reserves the memory range. The
enclave will now reside in this address region. ECREATE also allocates an Enclave Page Cache (EPC) page for

Ref. # 329298-002 1

ENCLAVE OPERATION

the SGX Enclave Control Structure (SECS). Note that this page is not required to be a part of the enclave linear
address space and is not required to be mapped into the process.

3. Use the EADD instruction leaf to commit EPC pages to the enclave, and use EEXTEND to measure the
committed memory content of the enclave. For each additional page to be added to the enclave:

— Use EADD to add the new page to the enclave.

— If the enclave developer requires measurement, use EEXTEND to add a measurement for 256 bytes of the
page. Repeat this operation until the entire page is measured.

4. Use the EINIT instruction leaf to complete the enclave creation process and finalize the enclave measurement
to establish the enclave identity. Until an EINIT is executed, the enclave is not permitted to execute any enclave
code (i.e. entering the enclave by executing EENTER).

3.1.1 EADD and EEXTEND Interaction

Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting a
free EPC page into either a PT_REG or a PT_TCS page.

When EADD is invoked, the processor will initialize the EPCM entry to add the type of page (PT_REG or PT_TCS),
the linear address used by the enclave to access the page, and the enclave RWX permissions for the page. It asso-
ciates the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access
control to the page. EADD records EPCM information in a cryptographic log stored in the SECS and copy 4 KBytes
of data from unprotected memory outside the EPC to the allocated EPC page.

System software is responsible for selecting a free EPC page. System software is also responsible for providing the
type of page to be added, the attributes the page, the contents of the page, and the SECS (enclave) to which the
page is to be added as requested by the application.

After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire page, system software must execute EEXTEND 16 times.
Each invocation of EEXTEND adds to the cryptographic log information about which region is being measured and
the measurement of the section.

Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that
the enclave was correctly constructed by the un-trusted system software.

Examples of incorrect construction includes adding multiple pages with the same enclave linear address resulting
in an alias, loading modified contents into an enclave page, or not measuring all of the enclave.

3.1.2 EINIT Interaction

Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT instruction. Initializing an enclave prevents the addition or measurement of enclave pages and
enables enclave entry. The initialization process finalizes the cryptographic log and establishes the enclave identity
and sealing identity used by EGETKEY and EREPORT.

A cryptographic hash of the log is stored. Correct construction results in the cryptographic log matching the one
built by the enclave owner in SIGSTRUCT. It can be verified by a remote party.

The enclave is initialized by the EINIT instruction. The EINIT instruction checks the ENIT token to validate that the
enclave has been enabled on this platform. If the enclave is not correctly constructed or the EINIT token is not valid
for the platform then EINIT will fail. See the EINIT instruction for details on the error reporting.

The enclave identity is a cryptographic hash that reflects the content of the enclave, the order in which it was built,
the addresses it occupies in memory, and the security attributes of each page. The Enclave ldentity is established
by EINIT.

The sealing identity is managed by a sealing authority represented by the hash of a public key used to sign a struc-
ture processed by EINIT. The sealing authority assigns a product ID and security version number to a particular
enclave identity comprising the attributes of the enclave and the measurement of the enclave.

EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is signed using the public key enclosed in the SIGSTRUCT

2 Ref. # 329298-002

ENCLAVE OPERATION

2. Checks that the measurement of the enclave matches the measurement of the enclave specified in SIGSTRUCT
3. Checks that the enclave’s attributes are compatible with those specified in SIGSTRUCT

4. Finalizes the measurement of the enclave and records the sealing identity and enclave identity (the sealing
authority, product id and security version number) in the SECS

3.2 ENCLAVE ENTRY AND EXITING

3.2.1 Synchronous Entry and Exit

The EENTER instruction is the method to enter the enclave under program control. To execute EENTER, software
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the
enclave to transfer control to and a pointer to the area inside the enclave an AEX should store the register state.

When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the
enclave. Intel® SGX allows an enclave builder to define multiple TCSs, thereby providing support for multithreaded
enclaves.

EENTER also defines the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external to the enclave
which is used to transition back into the enclave after an AEX. The AEP is the address an exception handler will
return to using IRET. Typically the location would contain the ERESUME instruction. ERESUME transfers control
back to the enclave, to the address retrieved from the enclave thread’s saved state.

EENTER performs the following operations:

Check that TCS is not busy and flush TLB entries for enclave linear addresses in the enclave’s ELRANGE.
Change the mode of operation to be in enclave mode.

Save the RSP, RBP for later restore on AEX.

Save XCRO and replace it with the XFRM value for the enclave.

a bk N

Check if the enclave is debuggable and the software wishes to debug. If not then set hardware so the enclave
appears as a single instruction.

6. If the enclave is debuggable and the software wishes to debug, then set hardware to allow traps, breakpoints,
and single steps inside the enclave.

7. Set the TCS as busy.
8. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.

The EEXIT instruction is the method of leaving the enclave under program control, it performs the following oper-
ations:

1. Clear enclave mode and TLB entries for enclave addresses.

2. Mark TCS as not busy.

3. Transfer control from inside the enclave to a location on the outside specified by the register, RBX.
It is the responsibility of enclave software to erase any secret from the registers prior to invoking EEXIT.

3.2.2 Asynchronous Enclave Exit (AEX)

Asynchronous and synchronous events, such as exceptions, interrupts, SMIs, and VM exits may occur while
executing inside an enclave. These events are referred to as Enclave Exiting Events (EEE). Upon an EEE, the
processor state is securely saved inside the enclave (in the thread’s current SSA frame) and then replaced by a
synthetic state to prevent leakage of secrets. The process of securely saving state and establishing the synthetic
state is called an Asynchronous Enclave Exit (AEX).

As part of most EEEs, the AEP is pushed onto the stack as the location of the eventing address. This is the location
where control will return to after executing the IRET. The ERESUME can be executed from that point to reenter the
enclave and resume execution from the interrupted point.

Ref. # 329298-002 3

ENCLAVE OPERATION

After AEX has completed, the logical processor is no longer in enclave mode and the exiting event is processed
normally. Any new events that occur after the AEX has completed are treated as having occurred outside the
enclave (e.g. a #PF in dispatching to an interrupt handler).

3.2.3 Resuming Execution after AEX

After system software has serviced the event that caused the logical processor to exit an enclave, the logical
processor can re-start execution using ERESUME. ERESUME restores registers and returns control to where execu-
tion was interrupted.

If the cause of the exit was an exception or a fault and was not resolved, the event will be triggered again if the
enclave is re-entered using ERESUME. For example, if an enclave performs a divide by O operation, executing
ERESUME will cause the enclave to attempt to re-execute the faulting instruction and result in another divide by O
exception. In order to handle an exception that occurred inside the enclave, software can enter the enclave at a
different location and invoke the exception handler within the enclave by executing the EENTER instruction. The
exception handler within the enclave can attempt to resolve the faulting condition or simply return and indicate to
software that the enclave should be terminated (e.g. using EEXIT).

3.2.3.1 ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).

® In 32-bit mode (1IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX, EDX,
ESP, EBP, ESI, EDI, EIP and EFLAGS) are restored from the thread’s GPR area of the current SSA frame. Neither
the upper 32 bits of the legacy registers nor the 64-bit registers (R8 ... R15) are loaded.

® In 64-bit mode (IA32_EFER.LMA =1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 ... R15, RIP and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:

® JA32_EFER.LMA=0|]|CS.L=0
— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
® |IA32_EFER.LMA=1&&CS.L=1
— 64-bit load in the same format that XSAVE/FXSAVE uses with these values plus REX.W =1

3.3 CALLING ENCLAVE PROCEDURES

3.3.1 Calling Convention

In standard call conventions subroutine parameters are generally pushed onto the stack. The called routine, being
aware of its own stack layout, knows how to find parameters based on compile-time-computable offsets from the
SP or BP register (depending on runtime conventions used by the compiler).

Because of the stack switch when calling an enclave, stack-located parameters cannot be found in this manner.
Entering the enclave requires a modified parameter passing convention.

For example, the caller might push parameters onto the untrusted stack and then pass a pointer to those parame-
ters in RAX to the enclave software. The exact choice of calling conventions is up to the writer of the edge routines;
be those routines hand-coded or compiler generated.

3.3.2 Register Preservation

As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning a
value. This is consistent with conventional usage and tends to optimize the number of register save/restore opera-

4 Ref. # 329298-002

ENCLAVE OPERATION

tions that need be performed. It has the additional security result that it ensures that data is scrubbed from any
registers that were used to temporarily contain secrets.

3.3.3 Returning to Caller

No registers are modified during EEXIT. It is the responsibility of software to remove secrets in registers before
executing EEXIT.

3.4 INTEL® SGX KEY AND ATTESTATION

To provide cryptographic separation between platforms, Intel SGX provides individual keys to each platform.

Each processor is provisioned with a unique key as the root of the key hierarchy. This is done at manufacturing
time. This key is the basis for all keys derived in the EGETKEY instruction. Figure 3-2 shows the hierarchy used to
generate keys on the platform.

Each enclave requests keys using the EGETKEY instruction. The key is based on enclave parameters such as
measurement or the enclave signing key plus the key derived from the device key and various security version
numbers (SVNs). See the EGETKEY instruction for more details.

In order for a remote party to understand the security level of a remote platform, security version numbers are
designed into the Intel SGX architecture. Some of the version numbers indicate the patch level of the relevant
phases of the processor boot up and system operations that affect the identity of the Intel SGX instructions.

Device Key

(128 bits) Owner Epoch

Intel SGX SVNs 128 bits)

Y

> Key Derivation B —

[Seal Key, Report Key, etc]

Figure 3-2. Intel® SGX Key Overview

Ref. # 329298-002 5

ENCLAVE OPERATION

The SVN values are reported to the remote user as part of the attestation process. They are part of the EREPORT
instruction output.

Owner Epoch is a 128 bit value which is loaded into the SGXOWNEREPOCHO and SGXOWNEREPOCH1 MSRs when
Intel SGX is booted. These registers provide a user with the ability to add personal entropy into the key derivation
process.

NOTE: Owner Epoch must be kept the same in order to decrypt data using the EGETKEY instruction. A different
Owner Epoch will result in the failure to decrypt files sealed by EGETKEY in a previous boot.

3.5 EPC AND MANAGEMENT OF EPC PAGES

EPC layout is implementation specific, and is enumerated through CPUID (see Table 1-6 for EPC layout). EPC is
typically configured by BIOS at system boot time.

A processor that supports Intel SGX (CPUID.(EAX=07H, ECX=0):EBX.SGX= 1) supports the ability for the BIOS to
reserve a range of memory called Processor Reserved Memory (PRM). PRM must have a size that is integer power
of two, and must be naturally aligned. The BIOS allocates the PRM by setting a pair of MSRs, collectively known as
the PRMRR. The exact layout of the PRM and EPC are model-specific, and depend on BIOS settings. Figure 3-3
depicts a conceptual example of the layout of the PRM and available EPC section(s).

Processor Reserved Memory

\ I Reserved for HW use

Hardware Reserved

Implementation Specific

EPC

Reserved for HW use

_>

Figure 3-3. Conceptual Layout of Processor Reserved Memory and EPC

3.5.1 EPC Implementation

One example of EPC implementation is a Memory Encryption Engine (MEE). An MEE provides a cost-effective mech-
anism of creating cryptographically protected volatile storage using platform DRAM. These units provide integrity,
replay, and confidentiality protection. Details are implementation specific.

3.5.2 0S Management of EPC Pages

The EPC is a finite resource. To oversubscribe the EPC the EPC manager must keep track of all EPC entries, type and
state, context affiliation, SECS affiliation, so that it could manage this resource and properly swap pages out of and
into the EPC.

6 Ref. # 329298-002

ENCLAVE OPERATION

On processors that support Intel SGX with Intel SGX instruction opcode support of SGX1 (i.e. CPUID.(EAX=12H,
ECX=0):EAX.SGX1 = 1 but CPUID.(EAX=12H, ECX=0):EAX.SGX2 = 0), Intel SGX instructions provide a number of
primitives for managing memory resources used by an enclave.

Intel SGX includes the EWB instruction for securely evicting pages out of the EPC. EWB encrypts a page in the EPC
and writes it to unprotected memory. In addition, EWB also creates a cryptographic MAC of the page and stores it
in unprotected memory. A page can be reloaded back to the processor only if the data and MAC match.

Intel SGX includes two instructions for reloading pages that have been evicted by system software: ELDU and
ELDB. The difference between the two instructions is the value of the paging state at the end of the instruction.
ELDU results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a
BLOCKED state.

ELDB is intended for use by a VMM. When a VMM reloads an evicted page, it needs to restore the correct state of
the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was evicted. Based on the state of the page
at eviction, the VMM chooses either ELDB or ELDU.

3.5.2.1 Enhancement to Managing EPC Pages

On processors with Intel SGX instruction opcode supporting SGX2 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX2 = 1),
the EPC manager can manage EPC resources (while enclave is running) with more flexibility provided by the SGX2
instructions. The additional flexibility is described in Section 3.5.7 through Section 3.5.11

3.53 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the OS to page out multiple EPC pages under a single synchronization.
1. For each enclave page to be evicted:
a. Select a slot in a Version Array page.
* If no VA page exists with an empty slot, create a new PT_VA page using the EPA instruction.
b. Remove mapping from the page table (OS removes from system page table, VMM removes from EPT).

c. Execute EBLOCK for the target page. This sets the target page state to BLOCKED. At this point no new
mappings of the page will be created. Accesses which do not have mapping cached in the TLB will generate
a #PF

2. For each enclave containing pages selected in step 1:
— Execute an ETRACK on that enclave.

3. For all hardware threads executing in processes (OS) or guests (VMM) that contain the enclaves selected in
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those hardware threads to exit any
enclaves they might be in, and as a result flush all TLB entries that might hold stale translations to blocked
pages.

After enclaves exit, allow h/w threads to execute normally.

For each page to be evicted:

— Evict the page using the EWB command. Parameters include the EPC page linear address (the OS or VMM
needs to use its own, private page mapping for this because of step 1.c), the VA slot, a 4k byte buffer to
hold the encrypted page contents, and a buffer to hold page metadata. The last three elements are tied
together cryptographically and must be used to later reload the page.

At this point, system software has an encrypted copy of each page data and page metadata, both in main memory.

3.5.4 Loading an Enclave Page

To reload a previously evicted page, system software needs four elements: the VA slot used when the page was
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent
SECS. If the VA page or the parent SECS are not already in the EPC, they must be reloaded first.

Ref. # 329298-002 7

ENCLAVE OPERATION

1. Execute ELDB/ELDU, passing as parameters: the EPC page linear address (again, using a private mapping), the
VA slot, the encrypted page, and the page metadata.

2. Create a mapping in the page table to allow the application to access that page (OS: system page table; VMM:
EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

3.5.5 Eviction of an SECS Page

The eviction of an SECS page is similar to the eviction of an enclave page. The only difference is that an SECS page
cannot be evicted until all other pages belonging to the enclave have been evicted. Since all other pages have been
evicted, there will be no threads executing inside the enclave. When reloading an enclave, the SECS page must be
reloaded before all other constituent pages.

1. Ensure all pages are evicted from enclave.
2. Select a slot in a Version Array page.
— If no VA page exists with an empty slot, create a new one using EPA.

3. Evict the page using the EWB command. Parameters include the EPC page effective address, the VA slot, a 4k
byte buffer to hold the encrypted page contents and a buffer to hold page metadata. The last three elements
are tied together cryptographically and must be used to later reload the page.

3.5.6 Eviction of a Version Array Page

VA pages do not belong to any enclave. When evicting the VA page, a slot in a different VA page must be specified
in order to provide versioning of the evicted VA page.

1. Select a slot in a Version Array page other than the page being evicted.
— If no VA page exists with an empty slot, create a new one using EPA.

2. Evict the page using the EWB command. Parameters include the EPC page linear address, the VA slot, a 4k byte
buffer to hold the encrypted page contents, and a buffer to hold page metadata. The last three elements are
tied together cryptographically and must be used to later reload the page.

3.5.7 Allocating a Regular Page

On processors that support SGX2, allocating a new page is accomplished by invoking the EAUG instruction. Typi-
cally, the enclave requests that the OS allocate a new page at a particular location within the enclave’s address
space. Once allocated, the page remains in a pending state until the enclave executes the corresponding EACCEPT
instruction to accept the new page into the enclave. Page allocation operations may be batched to improve effi-
ciency.

The typical process for allocating a page is as follows:

1. Enclave requests additional memory from OS when the current allocation becomes insufficient.

2. The OS calls EAUG to add a new memory page to the enclave.
a. EAUG may only be called on an invalid page.
b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.
c. All dynamically created pages have the type PT_REG.

3. The enclave issues an EACCEPT instruction, which clears the pending bit. At that point the page becomes ac-
cessible for normal enclave use.

8 Ref. # 329298-002

ENCLAVE OPERATION

3.5.8 Allocating a TCS Page

On processors that support SGX2, allocating a new TCS page is a two-step process. First the OS allocates a regular
page with a call to EAUG. This page must then be accepted and initialized by the enclave to which it belongs. Once
the page has been initialized with appropriate values for a TCS page, the OS may change the page’s type to
PT_TCS. This change must also be accepted. As with allocating a regular page, TCS allocation operations may be
batched.

The procedure for allocating a TCS page is as follows:
1. Enclave requests an additional page from the OS.
2. The OS calls EAUG to add a new regular memory page to the enclave.
a. EAUG may only be called on an invalid page.
b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

3. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave
use.

The enclave initializes the contents of the new page.

The enclave requests that the OS convert the page from type PT_REG to PT_TCS.

OS issues an EMODT instruction on the page.

a. The parameters to EMODT indicate that the regular page should be converted into a TCS.

b. EMODT forces the RWX bits to 000 because TCS pages may not be accessed by enclave code.

7. The enclave issues an EACCEPT instruction to confirm the requested modification.

3.5.9 Trimming a Page

On processors that support SGX2, Intel SGX supports the removal of an enclave page as a special case of EMODT.
The page type PT_TRIM indicates that a page has been trimmed from the enclave’s address space and that the
page is no longer accessible. Modifications to a page in the PT_TRIM state are not permitted; the page must be
removed and then reallocated by the OS before the enclave may use the page again. Page deallocation operations
may be batched to improve efficiency.

The protocol for trimming a page from an enclave is as follows:
1. Enclave signals OS that a particular page is no longer in use.
2. OS calls EMODT on the page, requesting that the page’s type be changed to PT_TRIM.

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or
PT_TCS

b. EMODT may only be called on VALID pages
3. 0OS performs an ETRACK instruction to remove the TLB addresses from all the processors
Enclave issues an EACCEPT instruction.

The OS may now permanently remove it (by calling EREMOVE).

3.5.10 Restricting the EPCM Permissions of a Page

On processors that support SGX2, restricting the EPCM permissions associated with a page is accomplished using
the EMODPR instruction. This operation requires the cooperation of the OS to flush stale entries to the page and to
update the page-table permissions of the page to match. Permissions restriction operations may be batched.

The protocol for restricting the permissions of a page is as follows:
1. Enclave requests that the OS restrict the permissions of an EPC page.
2. 0OS performs permission restriction, TLB flushing, and page-table modifications

a. Invokes EMODPR to restrict permissions

Ref. # 329298-002 9

ENCLAVE OPERATION

b. Performs ETRACK

c. Updates page tables to match the new EPCM permissions

d. Sends IPIs to trigger enclave thread exit and TLB shootdown
3. Enclave calls EACCEPT

a. Enclave may access page throughout the entire process

b. Successful call to EACCEPT guarantees that no stale TLB mappings are present

3.5.11 Extending the EPCM Permissions of a Page

On processors that support SGX2, extending the EPCM permissions associated with a page is performed directly be
the enclave using EMODPE. After performing the EPCM permission extension, the enclave requests that the OS
update the page table permissions to match. Permission extension does not require enclave threads to leave the
enclave---TLBs with stale references to the more restrictive permissions will be flushed on demand.

1. Enclave invokes EMODPE to extend the EPCM permissions associated with am EPC page
2. Enclave requests that OS update the page tables to match the new EPCM permissions
3. Enclave code resumes

a. If TLB mappings are present to the more restrictive permissions, the enclave thread will page fault. The OS
sees that the page tables permit the access and resume the thread, which can now successfully access the
page because exiting cleared the TLB.

b. If TLB mappings are not present, access to the page with the new permissions will succeed without an
enclave exit.

3.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE

This section covers instructions whose behavior changes when executed in enclave mode.

3.6.1 lllegal Instructions

The instructions listed in Table 3-1 are ring 3 instructions which become illegal when executed inside an enclave.
Executing these instructions inside an enclave will generate a #UD fault.

The first row of Table 3-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM
cannot emulate enclave execution, execution of any these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.

The second row of Table 3-1 enumerates 1/0 instructions that may cause a fault or a VM exit for emulation. Again,
enclave execution cannot be emulated, so execution of any these instructions inside an enclave results in #UD.

The third row of Table 3-1 enumerates instructions that load descriptors from the GDT or the LDT or that change
privilege level. The former class is disallowed because enclave software should not depend on the contents of the
descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any
these instructions inside an enclave results in #UD.

The fourth row of Table 3-1 enumerates instructions that provide access to kernel information from user mode and
can be used to aid kernel exploits from within enclave. Execution of any these instructions inside an enclave results
in #UD

Table 3-1. lllegal Instructions Inside an Enclave

Instructions Result Comment
CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC | #UD Might cause VM exit.
IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/0 fault may not safely recover. May require emulation.

10 Ref. # 329298-002

ENCLAVE OPERATION

Table 3-1. lllegal Instructions Inside an Enclave

Instructions Result Comment

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS, | #UD Access segment register could change privilege level.
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL,

SYSENTER
LAR, VERR, VERW #UD Might provide access to kernel information.
ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.

RDTSC and RDTSCP instructions are legal instructions inside an enclave.
RDTSC and RDTSCP instructions can be disabled by setting CR4. TSD when inside an enclave.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.

NOTE

Some early processor implementation of Intel SGX will generate a #UD when RDTSC and RDTSCP
are executed inside an enclave. See the model-specific processor errata for details of which
processors treat execution of RDTSC and RDTSCP inside an enclave as illegal.

Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by other
software, e.g. the TSC can be manipulated by software outside the enclave.

3.6.2 RDRAND and RDSEED Instructions

These instructions may cause a VM exit if the “RDRAND exiting” VM-execution control is 1. Unlike other instructions
that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 6.5.5, any VM exit orig-
inating on an instruction boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a VMM
receives a VM exit due to an attempt to execute either of these instructions determines (by that bit) that the execu-
tion was inside an enclave, it can do either of two things. It can clear the “RDRAND exiting” VM-execution control
and execute VMRESUME; this will result in the enclave executing RDRAND or RDSEED again, and this time a VM
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “RDRAND exiting” to 1.

3.6.3 PAUSE Instruction

The PAUSE instruction may cause a VM exit if either of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution
controls is 1. Unlike other instructions that can cause VM exits, the PAUSE instruction is legal inside an enclave.

If a VMM receives a VM exit due to the 1-setting of “PAUSE-loop exiting”, it may take action to prevent recurrence
of the PAUSE loop (e.g., by scheduling another virtual CPU of this virtual machine) and then execute VMRESUME;
this will result in the enclave executing PAUSE again, but this time the PAUSE loop (and resulting VM exit) will not
occur.

If a VMM receives a VM exit due to the 1-setting of “PAUSE exiting”, it can do either of two things. It can clear the
“PAUSE exiting” VM-execution control and execute VMRESUME; this will result in the enclave executing PAUSE
again, but this time a VM exit will not occur. Alternatively, the VMM might choose to discontinue execution of this
virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “PAUSE exiting” to 1.

Ref. # 329298-002 11

ENCLAVE OPERATION

3.6.4 INT 3 Behavior Inside an Enclave

INT3 is legal inside an enclave, however, the behavior inside an enclave is different from its behavior outside an
enclave. See Section 7.4.1 for details

3.6.5 INVD Handling when Enclaves Are Enabled

Once processor reserved memory protections are activated (see Section 3.5), any execution of INVD will result in
a #GP(0).

12 Ref. # 329298-002

ENCLAVE EXITING EVENTS

CHAPTER 4
ENCLAVE EXITING EVENTS

Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may
cause control to transition to an address outside the enclave. (Most of these also cause a change of privilege level.)
To protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode) before
invoking the handler for such an event. For that reason, such events are called an enclave-exiting events (EEE);
EEEs include external interrupts, non-maskable interrupts, system-management interrupts, exceptions, and VM
exits.

The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To protect
the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then loads those
registers with fixed values called synthetic state.

4.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX

Asynchronous enclave exits push information onto the appropriate stack in a form expected by the operating
system. To accomplish this, an address to trampoline code is pushed onto the exiting stack as the RIP. This tram-
poline code eventually returns to the enclave by means of an ENCLU(ERESUME) instruction.

The stack to be used is chosen using the same rules as for non-SGX mode:

® If there is a privilege level change, the stack will be the one associated with the new ring.
® If there is no privilege level change, the current application stack is used.

® If the IA-32e IST mechanism is used, the exit stack is chosen using that method.

In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation.
Figure 4-1 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack switch
uses the Application Stack. The ERESUME leaf index is placed into RAX, the TCS pointer is placed in RBX and the
AEP (see below) is placed into RCX for later use when resuming the enclave after the exit.

Next SSA Frame TCS
< €SSA
Current SSA Frame AEP

URSP Per-Thread
: Trampoline in URTS
Exit Stack P
URSP —F ENCLU[ERESUME]
SS
ENCLU[ERESUME] | RAX > RSP
TCS LA RBX RFLAGS
AEP RCX CS
RIP

% Error Code (optional)| «——— RSP after pushes

RSP 4‘7

Figure 4-1. Exit Stack Just After Interrupt with Stack Switch

Ref. # 329298-002 1

ENCLAVE EXITING EVENTS

Upon an AEX, the AEP (Asynchronous Exit Pointer) is pushed onto the exit stack as the return RIP. The AEP points
to a trampoline code sequence which includes the ERESUME instruction that is later used to reenter the enclave.

The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF, RF. The
remaining bits are left unchanged.

4.2 STATE SAVING BY AEX

The State Save Area holds the processor state at the time of an AEX. To allow handling events within the enclave
and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 4-2.

SSA Stack TCS
-
GRP_N-1
NSSA
MISC_N-1
CSSA
XSAVE N-1
= OSSA
GPR 1
MISC_1 Current
XSAVE 1 SSA Fram
— -
SECS.SSAFRAMESIZE GRP_0
(in pages) \
“~a MISC_0
XAVE_0

Figure 4-2. The SSA Stack

The location of the SSA frames to be used is controlled by three variables in the TCS:
Number of State Save Area Slots (NSSA). Defines the total number of slots (frames) in the State Save Area stack.
Current State Save Area Slot (CSSA). Defines the current slot to use on the next exit.

State Save Area (OSSA). Address of a set of save area slots large enough to hold the GPR state and the XSAVE
state.

When an AEX occurs while executing on a thread inside the enclave, hardware selects the SSA frame to use by
examining TCS.CSSA. Processor state (as described in Section 4.3.1) is saved and loaded with a synthetic state (to
avoid leaking secrets) and TCS.CSSA is incremented. As will be described later, if an exception takes the last slot,
it will not be possible to reenter the enclave to handle the exception inside the enclave.

The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions.
Note: On EENTER, CSSA must be less than NSSA, ensuring that there is at least one Save Area available for exits.

Multiple SSA frames are defined to allow for a variety of behavior. When an AEX occurs the SSA frame is loaded and
the pointer incremented. An ERESUME restores the processor state and frees the SSA frame. If after the AEX an
EENTER is executed then the next SSA frame is reserved to hold state for another AEX. If there is no free SSA frame
when executing EENTER, the entry will fail.

2 Ref. # 329298-002

ENCLAVE EXITING EVENTS

4.3 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT

4.3.1 Processor Synthetic State on Asynchronous Enclave Exit

Table 4-1 shows the synthetic state loaded on AEX. The values written are the lower 32 bits when the processor is
in 32 bit mode and 64 bits when the processor is in 64 bit mode.

Table 4-1. GPR, x87 Synthetic States on Asynchronous Enclave Exit

Register Value
RAX 3 (ENCLU[3] is ERESUME)
RBX TCS pointer of interrupted enclave thread.
RCX AEP of interrupted enclave thread.
RDX, RSI, RDI 0
RSP Loaded from SSA.URSP
RBP Loaded from SSA.URBP
R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.
RIP AEP of interrupted enclave thread.
RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. Remaining bits are left unchanged.
x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state

that would be loaded by the XRSTOR instruction with bits 1:0 both set in the instruction mask and
XCRO, and both clear in XSTATE_BV the XSAVE header.

FCwW On #MF exception: 037€H. On all other exits: 037FH.

FSW On #MF exception: 8081H. On all other exits: OH.

MXCSR On #XM exception:1FOTH. On all other exits: OH.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low

12 bits are cleared.

If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).

Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that caused
the AEX. This is because it is the AEX that clears those bits, and EEE delivery occurs after AEX. Also, the
address of an access causing a #PF during EEE delivery reveals no enclave secrets.

FS, GS Including hidden portion. Restored to values as of most recent EENTER/ERESUME.

43.2 Synthetic State for Extended Features

When CR4.0SXSAVE = 1, extended features (those controlled by XCRO[63:2]) are set to their respective INIT
states when this corresponding bit of SECS.XFRM is set. The INIT state is the state that would be loaded by the
XRSTOR instruction had the instruction mask and the XSTATE_BYV field of the XSAVE header each contained the
value XFRM. (When the AEX occurs in 32-bit mode, those features that do not exist in 32-bit mode are unchanged.)

43.3 VMCS Synthetic State on Asynchronous Enclave Exit

All processor registers saved in the VMCS have the same synthetic values listed above. Additional VMCS fields that
are treated specially on VM exit are listed in Table 4-2

Ref. # 329298-002 3

ENCLAVE EXITING EVENTS

Table 4-2. VMCS Synthetic States on Asynchronous Enclave Exit

Field Value

ENCLAVE_INTERRUPTION | A new configuration bit (bit 4 in the “Guest Interruptibility State” field) and an indicator (bit 27 in Basic

VM-exit information field) for exit reasons. Set to 1 if exit occurred in enclave mode.

Guest-linear address If the event that caused the AEX is an EPT violation that sets bit 7 of the Exit-Qualification field, the low

12 bits are cleared.
Note: If the EPT violation occurs during delivery of an event that caused the AEX (e.g., an EPT violation
that occurs during IDT vectoring), then the low 12 bits are NOT cleared.

Guest-physical address If the event that caused the AEX is an EPT violation or mis-configured EPT, then the low 12 bits are

cleared.

Note: If the EPT violation or misconfiguration occurs during delivery of an event that caused the AEX
(e.g., an EPT violation or misconfiguration that occurs during IDT vectoring), then the low 12 bits are
NOT cleared.

Exit-Qualification On page-fault that causes an AEX: low 12 bits are cleared.

On APIC-access that causes an AEX: low 12 bits are cleared .
Note: If either the page-fault or APIC-access occurs during delivery of an event that caused the AEX, the
low 12 bits are NOT cleared.

VM-exit instruction length | Cleared

VVM-exit instruction This field is defined only for VM exits due to or during the execution of specific instructions (i.e. should
information be reported properly). Most of these instructions do not cause VM exits when executed inside an

enclave. Exceptions are MOV DR, INVEPT, INVVPID, RDTSC, RDTSCP, VMCLEAR, VMLAUNCH, VMPTRLD,
VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON. Normally, this field is defined for VM
exits due to INT3 (or exceptions encountered while delivering INT3). This is not true for INT3 in an
enclave, as the instruction becomes fault-like.

INT3 Interruption types are reported as hardware exception when invoked inside enclave instead of 6
respectively when invoked outside enclave.

This field is cleared for all other VM exits.

I/0 RCX Cleared
I/ORSI Cleared
I/0 RDI Cleared
I/0 RIP Cleared

4.4 AEX FLOW

On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved inside
the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-defined
fashion. The following sections describes the details of an AEX:

1.

The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a 64-
bit enclave. In 32-bit mode (IA32_EFER.LMA =0 || CS.L = 0), the low 32 bits of the legacy registers (EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are stored. The upper 32 bits of the legacy registers and the
64-bit registers (R8 ... R15) are not stored.

In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 ... R15, RIP and RFLAGS) are stored.

The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area of
the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the current
values of 1A32_EFER.LMA and CS.L:

If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.

If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values
when REX.W = 1

The state of those miscellaneous features specified by SECS.MISCSELECT are stored into the MISC area of the
current SSA frame

Ref. # 329298-002

ENCLAVE EXITING EVENTS

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave state.
Table 4-1 shows the values for GPRs, x87, SSE, FS, GS, Debug and performance monitoring on AEX. The
synthetic state for other extended features (those controlled by XCRO[62:2]) is set to their respective INIT
states when the corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as defined by
the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is O. In addition, on VM exit the VMCS or
SMRAM state is initialized as described in Table 4-2.

3. In the current SSA frame, the cause of the AEX is saved in the EXITINFO field. See Table 2-9 for details and
values of the various fields.

4. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when
exiting the enclave.

5. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (an exception is made if
that entry was opt-in; see Section 7.2). In the SSA, RFLAGS.TF is set to 0. However, due to the way TF is
handled on enclave entry, this value is irrelevant (see EENTER and ERESUME instructions).

6. RFLAGS.RF is set to O in the synthetic state. In the SSA, the value saved is the same as what would have been
saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps, and code
breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA.

If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is
saved on SSA, irrespective of its priority.

7. Any performance monitoring activity (including PEBS) on the exiting thread that was suppressed due to the
enclave entry on that thread is unsuppressed. Any counting that had been demoted to MyThread (on other
threads) is promoted back to AnyThread.

4.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME
TMP_MODEG4 binary 1 ((1A32_EFER.LMA = 1) && (CS.L = 1))
TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in enclave
mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)

TMP_RIP = Linear Address of Resume RIP

(* Is the processor in 64-bit mode? *)

TMP_MODE64 ¢ ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and
the RF bit is set to what would have been saved on stack in the non-SGX case *)

IF (TMP_MODEG64 = 0)
THEN
Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using
CR_GPR_PA, see Table 5-4
SSA.RFLAGS.TF € 0;
ELSE (* TMP_MODE64 = 1 *)
Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into SSA using CR_GPR_PA
SSA.RFLAGS.TF € 0;

Ref. # 329298-002 5

ENCLAVE EXITING EVENTS

FI;
Save FS and GS BASE into SSA using CR_GPR_PA;

(* Use a special version of XSAVE that takes a list of physical addresses of logically sequential pages to
perform the save. TMP_MODEG4 specifies whether to use the 32-bit or 64-bit layout.
SECS.ATTRIBUTES.XFRM selects the features to be saved.

CR_XSAVE_PAGE_n specifies a list of 1 or more physical addresses of pages that contain the XSAVE area. *)

XSAVE(TMP_MODEG64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e. the next 16 bytes after XHEADER_BV *)
CR_XSAVE_PAGE_O0.XHEADER_BV[191:64] < O;
(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_O0.XHEADER_BV[63:0] <
CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;
Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the outside RSP and RBP from the current SSA frame.
This is where they had been stored on most recent EENTER *)

RSP < CR_GPR_PA.URSP;

RBP < CR_GPR_PA.URBP;

(* Restore the FS and GS *)

FS.selector €« CR_SAVE_FS.selector;

FS.base € CR_SAVE_FS.base;

FS.limit € CR_SAVE_FS.limit;

FS.access_rights €< CR_SAVE_FS.access_rights;
GS.selector €< CR_SAVE_GS.selector;

GS.base €< CR_SAVE_GS.base;

GS.limit € CR_SAVE_GS.limit;

GS.access_rights € CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)
exception_code € Exception or interrupt vector;

(* Indicate the exit reason in SSA *)
IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM))
THEN
CR_GPR_PA.EXITINFO.VECTOR € exception_code;
IF (exception code = #BP)
THEN CR_GPR_PA.EXITINFO.EXIT_TYPE < 6;
ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE & 3;
Fl;
CR_GPR_PA.EXITINFO.VALID < 1;
ELSE IF (exception_code is #PF or #GP)
THEN
(* Check SECS.MISCSELECT using CR_ACTIVE_SECS *)
IF (SECS.MISCSELECT[O] is set)
THEN
CR_GPR_PA.EXITINFO.VECTOR < exception_code;
CR_GPR_PA.EXITINFO.EXIT_TYPE < 3;
IF (exception_code is #PF)

6 Ref. # 329298-002

THEN
SSA.MISC.EXINFO. MADDR <« CR2;
SSA.MISC.EXINFO.ERRCD < PFEC;
SSA.MISC.EXINFO.RESERVED < O;
ELSE
SSA.MISC.EXINFO. MADDR < 0;
SSA.MISC.EXINFO.ERRCD € GPEC;
SSA.MISC.EXINFO.RESERVED < O;
FI;
CR_GPR_PA.EXITINFO.VALID <« 1;
FI;
ELSE
CR_GPR_PA.EXITINFO.VECTOR < O;
CR_GPR_PA.EXITINFO.EXIT_TYPE €« O
CR_GPR_PA.REASON.VALID < 0;
FI;

(* Execution will resume at the AEP *)
RIP €« CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)
EAX & 3;

(* Put the TCS LA into RBX for later use by ERESUME *)
RBX ¢« CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)
RCX € CR_TCS_PA.AEP;

(* Update the SSA frame # *)
CR_TCS_PA.CSSA ¢« CR_TCS PA.CSSA + 1;

(* Restore XCRO if needed *)
IF (CR4.0SXSAVE = 1)
THEN XCRO ¢ CR_SAVE_XCRO; FlI;

Un-suppress all code breakpoints that are outside ELRANGE

(* Update the thread context to show not in enclave mode *)
CR_ENCLAVE_MODE ¢ 0;

(* Assure consistent translations. *)
Flush linear context including TLBs and paging-structure caches

IF (CR_DBGOPTIN = 0)
THEN

Un-suppress all breakpoints that overlap ELRANGE
(* Clear suppressed breakpoint matches *)
Restore suppressed breakpoint matches
(* Restore TF *)
RFLAGS.TF € CR_SAVE_TF;
Un-suppress monitor trap flag;
Un-suppress branch recording facilities;
Un-suppress all suppressed performance monitoring activity;

Ref. # 329298-002

ENCLAVE EXITING EVENTS

ENCLAVE EXITING EVENTS

Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave
entry back to AnyThread;
FI;

IF (VMCS.MTF = 1)
THEN Pend MTF VM EXxit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)
IF (Exception is #PF)
THEN CR2 ¢« CR2 & ~OxFFF; FI;

(* end_of_flow *)

(* Execution continues with normal event processing. *)

8 Ref. # 329298-002

INSTRUCTION REFERENCES

CHAPTER 5
INSTRUCTION REFERENCES

Supervisor and user level instructions provided by Intel® Software Guard Extensions are described in this chapter.
In general, a various functionalities are encoded as leaf functions within the ENCLS (supervisor) and ENCLU (user)
instruction mnemonics. Different leaf functions are encoded by specifying an input value in the EAX register of the
respective instruction mnemonic.

5.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION

ENCLS and ENCLU instruction mnemonics for all leaf functions are covered in this section.

For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one
or more of the general purpose registers.

5.1.1 ENCLS Register Usage Summary

Table 5-1 summarizes the implicit register usage of supervisor mode enclave instructions.

Table 5-1. Register Usage of Privileged Enclave Instruction Leaf Functions

Instr. Leaf EAX RBX RCX RDX
ECREATE OO0H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)
EADD 0TH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)
EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)
EREMOVE 03H (In) EPCPAGE (In, EA)
EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)
EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)
EEXTEND 06H (In) EPCPAGE (In, EA)
ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)
ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)
EBLOCK 09H (In) EPCPAGE (In, EA)
EPA OAH (In) PT_VA (In) EPCPAGE (In, EA)
EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)
ETRACK OCH (In) EPCPAGE (In, EA)
EAUG ODH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) LINADDR
EMODPR OEH (In) SECINFO (In, EA) EPCPAGE (In, EA)
EMODT OFH (In) SECINFO (In, EA) EPCPAGE (In, EA)
EA: Effective Address

5.1.2 ENCLU Register Usage Summary

Table 5-2 Summarized the implicit register usage of user mode enclave instructions.

Ref. # 329298-002 1

INSTRUCTION REFERENCES

Table 5-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions

Instr. Leaf EAX RBX RCX RDX
EREPORT OOH (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)
EGETKEY OTH (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)
RBX.CSSA (Out) Return (Out, EA)
ERESUME 03H (In) TCS (In, EA) AEP (In, EA)
EEXIT 04H (In) Target (In, EA) Current AEP (Out)
EACCEPT O5H (In) SECINFO (In, EA) EPCPAGE (In, EA)
EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)
EACCEPTCOPY | O7H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)
EA: Effective Address
5.1.3 Information and Error Codes

Information and error codes are reported by various instruction leaf functions to show an abnormal termination of
the instruction or provide information which may be useful to the developer. Table 5-3 shows the various codes and
the instruction which generated the code. Details of the meaning of the code is provided in the individual instruc-

tion.
Table 5-3. Error or Information Codes for Intel® SGX Instructions

Name Value Returned By
No Error 0
SGX_INVALID_SIG_STRUCT 1 EINIT
SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY
SGX_BLSTATE 3 EBLOCK
SGX_INVALID_MEASUREMENT 4 EINIT
SGX_NOTBLOCKABLE 5 EBLOCK
SGX_PG_INVLD 6 EBLOCK
SGX_LOCKFAIL 7 EBLOCK, EMODPR, EMODT
SGX_INVALID_SIGNATURE 8 EINIT
SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU
SGX_PAGE_NOT_BLOCKED 10 EWB
SGX_NOT_TRACKED 11 EWB, EACCEPT
SGX_VA_SLOT_OCCUPIED 12 EWB
SGX_CHILD_PRESENT 13 EWB, EREMOVE
SGX_ENCLAVE_ACT 14 EREMOVE
SGX_ENTRYEPOCH_LOCKED 15 EBLOCK
SGX_INVALID_EINIT_TOKEN 16 EINIT
SGX_PREV_TRK_INCMPL 17 ETRACK
SGX_PG_IS_SECS 18 EBLOCK
SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY
SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT
SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

Ref. # 329298-002

INSTRUCTION REFERENCES

Table 5-3. Error or Information Codes for Intel® SGX Instructions

Name Value Returned By
SGX_INVALID_ISVSVN 64 EGETKEY
SGX_UNMASKED_EVENT 128 EINIT
SGX_INVALID_KEYNAME 256 EGETKEY

5.1.4 Internal CREGs

The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction.
These registers are not software visible and are implementation specific. The values in Table 5-4 appear at various
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

Table 5-4. List of Internal CREG

Name Size (Bits) Scope
CR_ENCLAVE_MODE 1 LP
CR_DBGOPTIN 1 LP
CR_TCS_LA 64 LP
CR_TCS_PH 64 LP
CR_ACTIVE_SECS 64 LP
CR_ELRANGE 128 LP
CR_SAVE_TF 1 LP
CR_SAVE_FS 64 LP
CR_GPR_PA 64 LP
CR_XSAVE_PAGE_n 64 LP
CR_SAVE_DR7 64 LP
CR_SAVE_PERF_GLOBAL_CTRL 64 LP
CR_SAVE_DEBUGCTL 64 LP
CR_SAVE_PEBS_ENABLE 64 LP
CR_CPUSVN 128 PACKAGE
CSR_SGX_OWNEREPOCH 128 PACKAGE
CSR_INTELPUBKEYHASH 32 PACKAGE
CR_SAVE_XCRO 64 LP
CR_SGX_ATTRIBUTES_MASK 128 LP
CR_PAGING_VERSION 64 PACKAGE
CR_VERSION_THRESHOLD 64 PACKAGE
CR_NEXT_EID 64 PACKAGE
CR_BASE_PK 128 PACKAGE
CR_SEAL_FUSES 128 PACKAGE

5.1.5 Concurrent Operation Restrictions

To protect the integrity of Intel SGX data structures, under certain conditions, Intel SGX disallows certain leaf func-
tions from operating concurrently. Listed below are some examples of concurrency that are not allowed.

® For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

Ref. # 329298-002 3

INSTRUCTION REFERENCES

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with
themselves or any other Intel SGX leaf function.

— EADD, EEXTEND, and EINIT leafs are not allowed to operate on the same SECS concurrently.
® Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.

® Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being
removed.

When disallowed operation is detected, a leaf function causes an exception. To prevent such exceptions, software
must serialize leaf functions or prevent these leaf functions from accessing the same resource.

5.1.5.1 Concurrency Table of Intel® SGX Instructions

Summary tables of concurrency describing whether a given Intel SGX instruction leaf is allowed to execute while
another leaf function is executing or owns common resource. Concurrent restriction of an individual leaf function
(ENCLS or ENCLU) with another Intel SGX instruction leaf functions is listed under the Concurrency Restriction
paragraph of the respective reference pages of the leaf function.

The concurrency restriction depends on the type of EPC page and the parameter of the two concurrent instructions
each Intel SGX instruction leaf attempts to operate on. The spectrum concurrency behavior of the instruction leaf
shown in a given row is denoted by the following:

® ‘N’: The instructions listed in a given row heading may not execute concurrently with the instruction leaf shown
in the respective column. Software should serialize them.

® 'Y’: The instruction leaf listed in a given row may execute concurrently with the instruction leaf shown in the
respective column.

® ‘C’: The instruction leaf listed in a given row heading may return an error code when executed concurrently with
the instruction leaf shown in the respective column.

® ‘U’: These two instruction leaves may complete, but the occurrence these two simultaneous flows are
considered a user program error for which the processor does not enforce any restriction.

® A grey cell indicates concurrent execution of two leaf functions that is architecturally impossible or restricted,
e.g. executing an ENCLU and an ENCLS leaf on the same logical processor, or executing two leaves with incom-
patible EPCM state requirements. Concurrent execution of two such leaf instructions may result in a page fault
in one of the leaf instructions.

For instance, multiple ELDB/ELDUs are allowed to execute as long as the selected EPC page is not the same page.
Multiple ETRACK operations are not allowed to execute concurrently.

5.2 INTEL® SGX INSTRUCTION REFERENCE

4 Ref. # 329298-002

INSTRUCTION REFERENCES

ENCLS—Execute an Enclave System Function of Specified Leaf Number

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
OF 01 CF NP VIV SGX1 This instruction is used to execute privileged Intel SGX leaf func-
ENCLS tions that are used for managing and debugging the enclaves.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands
NP NA NA NA See Section 5.3
Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.

The instruction also results in a #UD if CRO.PE is O or RFLAGS.VM is 1, or if it is executed from inside SMM. Addi-
tionally, any attempt to execute this instruction when current privilege level is not O results in #UD.

Any attempt to invoke an undefined leaf function results in #GP(0).
If CRO.PG is 0, any attempt to execute ENCLS results in #GP(0).

In VMX non-root operation, execution of ENCLS is unconditionally allowed if the “Enable ENCLS exiting” VM-execu-
tion control is cleared. If the “Enable ENCLS exiting” VM-execution control is set, execution of individual leaf func-
tion of ENCLS is governed by the “ENCLS-exiting bitmap”. Each bit position of “ENCLS-exiting bitmap” corresponds
to the index (EAX) of an ENCLS leaf function.

Software in VMX root mode of operation can intercept the invocation of various ENCLS leaf functions from VMX
non-root mode by setting the Enable_ ENCLS_EXITING control and writing the desired bit patterns into the “ENCLS-
exiting bitmap” (accessed via encoding pair 0202EH/0202FH). A processor implements the
Enable_ENCLS_EXITING VM-execution control field if IA32_VMX_PROCBASED_CTLS2[15] is read as 1.

The DS segment is used to create linear addresses.

Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA =0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA =1 || CS.L = 1). CS.D value has no impact on address calculation.

Segment prefix override is ignored. Address size prefix (67H) override is ignored.
REX prefix is ignored in 64-bit mode.

Operation

IN_64BIT_MODE< 0;
IF TSX_ACTIVE
Then GOTO TSX_ABORT_PROCESSING; FI;

IF (CRO.PE = 0 or RFLAGS.VM = 1 or IN_SMM or CPUID.SGX_LEAF.0:EAX.SET1 =0)
Then #UD; FI;

IF (CPL > 0)
Then #UD; FI;

IF ((in VMX non-root operation) and (Enable_ENCLS_EXITING = 1))
Then
IF (((EAX < 63) and (ENCLS_EXITING_Bitmap[EAX] = 1)) or (EAX> 62 and ENCLS_EXITING_Bitmap[63] = 1))
Then
Set VMCS.EXIT_REASON = ENCLS;

Ref. # 329298-002 5

INSTRUCTION REFERENCES

Deliver VM exit;
Fl;
Fl;

IF (IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0)

Then #GP(0); FI;

IF (EAX is invalid leaf number)
Then #GP(0); FI;

IF (CRO.PG = 0)
Then #GP(0); FI;

IN_64BIT_MODE < IA32_EFER.ILMAAND CS.L?1:0;

IF (IN_64BIT_MODE = 0 and (DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1)
Then #GP(0); FI;

Jump to leaf specific flow

Flags Affected
See individual leaf functions

Protected Mode Exceptions
#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not O.

If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = O.

If logical processor is in SMM.
#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CRO.PG=0.

Real-Address Mode Exceptions
#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions
#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not O.

If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = O.

If logical processor is in SMM.
#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

Ref. # 329298-002

INSTRUCTION REFERENCES

ENCLU—Execute an Enclave User Function of Specified Leaf Number

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
OF 01 D7 NP VIV SGX1 This instruction is used to execute non-privileged Intel SGX leaf
ENCLU functions that are used for operating the enclaves.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands
NP NA NA NA See Section 5.4
Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper
32 bits of the RAX register.

The instruction also results in a #UD if CRO.PE is O or RFLAGS.VM is 1, or if it is executed from inside SMM. Addi-
tionally, any attempt to execute this instruction when current privilege level is not 3 results in #UD.

Any attempt to invoke an undefined leaf function results in #GP(0).
Any attempt to execute ENCLU instruction when paging is disabled or in MS-DOS compatible mode results in #GP.
The DS segment is used to create linear addresses.

Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA =0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA =1 || CS.L = 1). CS.D value has no impact on address calculation.

Segment prefix override is ignored. Address size prefix (67H) override is ignored.
REX prefix is ignored in 64-bit mode.

Operation

IN_64BIT_MODE< 0;
IF TSX_ACTIVE
Then GOTO TSX_ABORT_PROCESSING; FI;

IF (CRO.PE= 0 or RFLAGS.VM = 1 or IN_SMM or CPUID.SGX_LEAF.0:EAX.SET =0)
Then #UD; FI;

IF(CRO.TS=1)
Then #NM; FI;

IF (CPL!=3)
Then #UD; FI;

IF (IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0)
Then #GP(0); FI;

IF (EAX is invalid leaf number)
Then #GP(0); FI;

IF (CRO.PG = 0 or CRO.NE = 0)
Then #GP(0); FI;

IN_64BIT_MODE < IA32_EFERLMAANDCS.L?1:0;

Ref. # 329298-002 7

INSTRUCTION REFERENCES

(*Check not in 16-bit mode and DS is not a 16-bit segment*)
IF (IN_64BIT_MODE = 0 and ((CS.D = 0) or (DS.B=0))

Then #GP(0); FI;

IF (CR_ENCLAVE_MODE = 1 and ((EAX = EENTER) or (EAX = ERESUME)))

Then #GP(0); FI;

IF (CR_ENCLAVE_MODE = 0 and ((EAX = EGETKEY) or (EAX = EREPORT) or (EAX = EEXIT) or (EAX = EACCEPT) or

(EAX = EACCEPTCOPY) or (EAX = EMODPE)))

Then #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD

#GP(0)

#NM

If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.

If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = O.

If logical processor is in SMM.

If IA32_FEATURE_CONTROL.LOCK = 0.

If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

If input value in EAX encodes an unsupported leaf.

If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.

If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE

and ENCLAVE_MODE = 0.

If operating in 16-bit mode.

If data segment is in 16-bit mode.
If CRO.PG = 0 or CRO.NE= 0.

If CRO.TS = 1.

Real-Address Mode Exceptions

#UD

ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD

ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD

#GP(0)

If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.

If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = O.

If logical processor is in SMM.

If IA32_FEATURE_CONTROL.LOCK = 0.

If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

If input value in EAX encodes an unsupported leaf.

If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.

Ref. # 329298-002

INSTRUCTION REFERENCES

If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.

If CRO.NE= 0.
#NM If CRO.TS = 1.

Ref. # 329298-002 9

INSTRUCTION REFERENCES

53 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE

Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.

In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

10 Ref. # 329298-002

INSTRUCTION REFERENCES

EADD—AAdd a Page to an Uninitialized Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX =01H IR VIV SGX1 This leaf function adds a page to an uninitialized enclave.
ENCLS[EADD]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)
Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This
instruction can only be executed when current privilege level is 0.

RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE
Read access permitted Read/Write access permit- Read access permitted Read access permitted Write access permitted
by Non Enclave ted by Enclave by Non Enclave by Non Enclave by Enclave

The instruction faults if any of the following:

EADD Faulting Conditions

The operands are not properly aligned Unsupported security attributes are set

Refers to an invalid SECS Reference is made to an SECS that is locked by another thread

The EPC page is locked by another thread RCX does not contain an effective address of an EPC page

The EPC page is already valid If security attributes specifies a TCS and the source page specifies unsupported
TCS values or fields

The SECS has been initialized The specified enclave offset is outside of the enclave address space

Concurrency Restrictions

Table 5-5. Concurrency Restrictions of EADD with Other Intel® SGX Operations 1 of 2

Operation EEXIT eaD | eBlock | G | EPBORD/ | EENTER! | EEXTEND | EGETKEY |EINIT| ELDB/ELDU | EPA
Type | TCS [SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EADD | Targ N N N N N N N [N [N |N
SECS N N Y |Y |N Y N N N [N Y

Ref. # 329298-002 11

INSTRUCTION REFERENCES

Table 5-6. Concurrency Restrictions of EADD with Other Intel® SGX Operations 2 of 2

Operation EREMOVE | EREPORT | ETRACK EWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Para | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
m NFO S S NFO C |NFO
EADD Targ [N N N N N N N
SECS | N Y N Y N Y N N N N N N
Operation

Temp Variables in EADD Operational Flow

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE < DS:RBX.SRCPGE;
TMP_SECS < DS:RBX.SECS;
TMP_SECINFO < DS:RBX.SECINFO;
TMP_LINADDR < DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
Then #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
Then #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO < DS:TMP_SECINFO;
(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or

I (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS))
Then #GP(0); FI;

12 Ref. # 329298-002

INSTRUCTION REFERENCES

(* Check the EPC page for concurrency *)
IF (EPC page in use)
Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID I= 0)
Then #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD)
Then #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT I= PT_SECS)
Then #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] € DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)
{
PT_TCS:
IF (DS:RCX.RESERVED != 0) #GP(0); F;
IF ((DS:TMP_SECS.ATTIBUTES.MODEG4BIT = 0) and
((DS:TCS.FSLIMIT & OFFFH != OFFFH) or (DS:TCS.GSUIMIT & OFFFH != OFFFH))) #GP(0); FI;
BREAK;
PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGSR = 0) #GP(0); FI;
BREAK;
ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR >= DS:TMP_SECS.BASEADDR + DS:TMP_SECS SIZE)
Then #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated)
Then #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized)
Then #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)
THEN

SCRATCH_SECINFO.FLAGSR € O;
SCRATCH_SECINFO.FLAGS.W <« O;
SCRATCH_SECINFO.FLAGS.X €« O;
(DS:RCX).FLAGS.DBGOPTIN < O; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA <« 0;
DS:RCX.AEP < O;
DS:RCX.STATE <« 0;

Fl;

(* Add enclave offset and security attributes to MRENCLAVE *)

Ref. # 329298-002 13

INSTRUCTION REFERENCES

TMP_ENCLAVEOFFSET € TMP_LINADDR - DS:TMP_SECS.BASEADDR;

TMPUPDATEFIELD[63:0] € 0000000044444145H; // "EADD"

TMPUPDATEFIELD[127:64] ¢ TMP_ENCLAVEOFFSET;

TMPUPDATEFIELD[511:128] ¢ SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE € SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’'s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R € SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W € SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X € SCRATCH_SECINFO.FLAGS X;
EPCM(DS:RCX).PT €« SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS < TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS;:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED < O;
EPCM(DS:RCX).PENDING < O;
EPCM(DS:RCX).MODIFIED < O;
EPCM(DS:RCX).VALID €« 1;

—_—_—— =

Flags Affected
None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

Ref. # 329298-002

INSTRUCTION REFERENCES

EAUG—Add a Page to an Initialized Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = ODH IR VIV SGX2 This leaf function adds a page to an initialized enclave.
ENCLS[EAUG]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EAUCG (In) Address of a SECINFO (In) Address of the destination EPC page (In)
Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC,
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when
current privilege level is 0.

RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics
PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit- Read/Write access permit- Read access permitted by Write access permitted by
Must be zero
ted by Non Enclave ted by Enclave Non Enclave Enclave

The instruction faults if any of the following:

EAUG Faulting Conditions

The operands are not properly aligned Unsupported security attributes are set

Refers to an invalid SECS Reference is made to an SECS that is locked by another thread

The EPC page is locked by another thread RCX does not contain an effective address of an EPC page

The EPC page is already valid The specified enclave offset is outside of the enclave address space
The SECS has been initialized

Concurrency Restrictions

Table 5-7. Concurrency Restrictions of EAUG with Other Intel® SGX Operations 1 of 2

Operation EEXIT eADD | eslock | EoRE | EDBORD/) EENTER! | eexten | eceTkey |emim| eweewu |
Type | TCS [SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EAUG | Targ N [N [N N N N N N [N [N |N
SECS Y [N [N Y [N Y Y N Y IN [N Y

Ref. # 329298-002 15

INSTRUCTION REFERENCES

Table 5-8. Concurrency Restrictions of EAUG with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EwB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO
EAUG Targ [N N N N
SECS | N Y Y Y Y Y Y Y
Operation

Temp Variables in EAUG Operational Flow

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to

calculate TMP_ENCLAVEOFFSET

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SECS < DS:RBX.SECS;
TMP_LINADDR < DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)

Then #GP(0); FI;

IF ((DS:RBX.SRCPAGE is not 0) or (DS:RBX:SECINFO is not 0))

Then #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)

Then #PF(DS:SECS); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use)
Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 0)
Then #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG)
Then #GP(0); FI;

Ref. # 329298-002

INSTRUCTION REFERENCES

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT I= PT_SECS)
Then #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized)
Then #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR >= DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))
Then #GP(0); FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] €< O;

(* Set EPCM security attributes *)

EPCM(DS:RCX).R < 1;

EPCM(DS:RCX).W <« 1;

EPCM(DS:RCX).X € O;

EPCM(DS:RCX).PT €« PT_REG;
EPCM(DS:RCX).ENCLAVEADDRESS ¢ TMP_LINADDR;
EPCM(DS:RCX).BLOCKED < O;
EPCM(DS:RCX).PENDING < 1;
EPCM(DS:RCX).MODIFIED < O;

P ——

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID <« 1;

Flags Affected
None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.
#PF(fault code) If a page fault occurs in accessing memory operands.

Ref. # 329298-002 17

INSTRUCTION REFERENCES

EBLOCK—Mark a page in EPC as Blocked

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = 09H IR VIV SGX1 This leaf function marks a page in the EPC as blocked.
ENCLS[EBLOCK]

Instruction Operand Encoding

Op/En EAX RCX
IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)
Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when
current privilege level is O.

The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.

An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics
EPCPAGE

Read/Write access permitted by Enclave

The error codes are:

EBLOCK Error Codes

0 (No Error) EBLOCK successful

SGX_BLKSTATE Page already blocked. This value is used to indicate that the page was already EBLOCKed and thus will need
to be restored to this state when it is eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LO | This value indicates that an ETRACK is currently executing on the SECS. The EBLOCK should be re-attempted.
CKED

SGX_NOTBLOCKABLE | Page type is not one which can be blocked
SGX_PG_INVLD Page is not valid and cannot be blocked
SGX_LOCKFAIL Page is being written by ECREATE, ELDU/ELDB, or EWB

Concurrency Restrictions

Table 5-9. Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 1 of 2

ECRE | EDBGRD/ EENTER/

Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY | EINIT ELDB/ELDU EPA
Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EBLOCK |Targ |Y Y Y N C C C N Y C C Y C C Y N C N
SECS Y C Y Y Y Y Y Y Y Y Y

18 Ref. # 329298-002

INSTRUCTION REFERENCES

Table 5-10. Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO
EBLOCK |[Targ [N C C N c |C N Y C N C C
SECS |Y Y Y C Y Y Y Y Y Y
Operation

Temp Variables in EBLOCK Operational Flow

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF SF < O;
RAX < O;

(* Check concurrency with other Intel SGX instructions *)
IF (ETRACK executed concurrently)
Then
RAX<€ SGX_ENTRYEPOCH_LOCKED;
RFLAGS.ZF < 1;
goto Done;
ELSIF (Other Intel SGX instructions reading or writing EPCM)
RAX <& SGX_LOCKFAIL;
RFLAGS.ZF < 1;
goto Done;
Fl;
Fl;

IF (EPCM(DS:RCX). VALID = 0)
Then
RFLAGS.ZF < 1;
RAX<€ SGX_PG_INVLD;
goto Done;
Fl;

IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT I= PT_TCS) and (EPCM(DS:RCX).PT = PT_TRIM))
Then
RFLAGS.CF < 1;
IF (EPCM(DS:RCX).PT = PT_SECS)
THEN RAX < SGX_PG_IS_SECS;
ELSE RAX < SGX_NOTBLOCKABLE;
Fl;
goto Done;
Fl;

Ref. # 329298-002 19

INSTRUCTION REFERENCES

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE <« EPCM(DS:RCX).BLOCKED;

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1))
Then
RFLAGS.CF « 1;
RAX < SGX_BLKSTATE;
ELSE
EPCM(DS:RCX).BLOCKED <« 1
Fl;

Done:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise
cleared. Clears PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

20 Ref. # 329298-002

INSTRUCTION REFERENCES

ECREATE—Create an SECS page in the Enclave Page Cache

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = 00H IR VIV SGX1 This leaf function begins an enclave build by creating an SECS
ENCLS[ECREATE] page in EPC.

Instruction Operand Encoding

Op/En EAX RBX RCX
IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)
Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.

ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or
checks unused fields.

Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, and ATTRIBUTES.
SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE must be at least 2 pages
(8192).

The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.

The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE
Read access permitted by Read access permitted by Read access permitted by Non Write access permitted by
Non Enclave Non Enclave Enclave Enclave

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are
not aligned; unused PAGEINFO fields are not zero.

If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 6.7.

Concurrency Restrictions

Table 5-11. Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 1 of 2

. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY | EINIT ELDB/ELDU EPA
Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
ECREATE | SECS N N N N N N N N N N [N N

Table 5-12. Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EwB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Tar |[SECS |Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SR | SECI
g NFO NFO C NFO

ECREATE |SECS |N N N N N N N N

Ref. # 329298-002 21

INSTRUCTION REFERENCES

Operation
Temp Variables in ECREATE Operational Flow
Name Type Size (Bits) Description
TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page
TMP_SECS Effective Address 32/64 Effective address of the SECS destination page
TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the SECS page to be added
TMP_XSIZE SSA Size 64 The size calculation of SSA frame
TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components
TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE < DS:RBX.SRCPGE;
TMP_SECINFO < DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
Then #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS != 0)
Then #GP(0); FI;

(* Check for misconfigured SECINFO flags*)

IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT = PT_SECS))
Then #GP(0); FI;

TMP_SECS €« RCX;

IF (EPC entry in use)
Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1)
Then #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] € DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) |= 03H)
Then #GP(0); FI;

IF (XFRM is illegal)

22 Ref. # 329298-002

Then #GP(0); FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF ({(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISSELECT[31:0]))
THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);
Fl;

(* Compute size of MISC area *)
TMP_MISC_SIZE € compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 6.7.2.2%)
TMP_XSIZE € compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ((DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODEG4BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))
Then #GP(0); FI;

INSTRUCTION REFERENCES

IF ((DS:TMP_SECS.ATTRIBUTES.MODEG4BIT = 0) and (DS:TMP_SECS.BASEADDR and OFFFFFFFFO0000000H))

Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODEG4BIT = 0) and (DS:TMP_SECS.SIZE and OFFFFFFFFO0000000H))

Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODEG4BIT = 1) and (DS:TMP_SECS.SIZE and OFFFFFFEOO000000CH))

Then #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)
Then #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1))
Then #GP(0); FI;

* Ensure the SECS does not have any unsupported attributes*®)
IF ((DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))
Then #GP(0); FI;

IF ((DS:TMP_SECS reserved fields are not zero)
Then #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;

DS:TMP_SECS.MRENCLAVE € SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN <« 0;

DS:TMP_SECS.ISVPRODID < O;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

Ref. # 329298-002

23

INSTRUCTION REFERENCES

(* Add “ECREATE" string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] € 0045544145524345H; // "ECREATE"
TMPUPDATEFIELD[95:64] < DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] < DS:TMP_SECS.SIZE;
TMPUPDATEFIELD[511:160] €< O;

SHA256UPDATE(DS: TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’'s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID < LockedXAdd(CR_NEXT_EID, 1);

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT <« PT_SECS;

EPCM(DS:TMP_SECS).ENCLAVEADDRESS < 0;

EPCM(DS:TMP_SECS).R < 0;

EPCM(DS:TMP_SECS).W <« O;

EPCM(DS:TMP_SECS).X €« O;

— — — ~—

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED < O;
EPCM(DS:RCX).PENDING < O;
EPCM(DS:RCX).MODIFIED < O;
EPCM(DS:RCX).VALID <« 1;

P

Flags Affected
None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions
#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

24

Ref. # 329298-002

INSTRUCTION REFERENCES

EDBGRD—Read From a Debug Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = 04H IR VIV SGX1 This leaf function reads a dword/quadword from a debug enclave.
ENCLS[EDBGRD]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EDBGRD (In) Data read from a debug enclave (Out) | Address of source memory in the EPC (In)
Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot
be overridden.

The effective address of the source location inside the EPC is provided in the register RCX

EDBGRD Memory Parameter Semantics
EPCQW

Read access permitted by Enclave

The instruction faults if any of the following:

EDBGRD Faulting Conditions

RCX points into a page that is an SECS RCX does not resolve to a naturally aligned linear address

RCX points to a page that does not belong to an RCX points to a location inside a TCS that is beyond the architectural size of the
enclave that is in debug mode TCS (SGX_TCS_LIMIT)

An operand causing any segment violation May page fault

CPL!=0

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Table 5-13. Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 1 of 2

Operation EEXIT eaoD | eslock | SR | EDBCRD/ | EENTER! | EEXTEND | EGETKEY |ENIT| ELDB/ELDU | €PA

Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA

EDBGRD |Targ |Y |V N Y N Y Y|y Y Y NN Y N
SECS Y Y |y |y Y Y Y Yy v Y

Ref. # 329298-002 25

INSTRUCTION REFERENCES

Table 5-14. Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EWB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO
EDBGRD |Targ |N Y N N Y N Y Y Y N Y Y |Y
SECS |V Y Y Y Y Y Y Y Y Y
Operation

Temp Variables in EDBGRD Operational Flow

Name Type Size (Bits) Description
TMP_MODEG4 Binary 1 ((IA32_EFER.LMA = 1) & (CS.L=1))
TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs

TMP_MODEG4 < ((IA32_EFERLMA = 1) && (CS.L = 1));

IF ((TMP_MODEG4 = 1) and (DS:RCX is not 8Byte Aligned))
Then #GP(0); FI;

IF ((TMP_MODEG4 = 0) and (DS:RCX is not 4Byte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)
Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to @ PT_REG or PT_TCS or PT_VA *)
IF ((EPCM(DS:RCX).PT I= PT_REG) and (EPCM(DS:RCX).PT |= PT_TCS) and (EPCM(DS:RCX).PT != PT_VA))
Then #PF(DS:RCX); FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & OxFFF >= SGX_TCS_LIMIT))
Then #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))
Then
TMP_SECS < GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)
Then #GP(0); FI;
IF ((TMP_MODEG4 = 1))
Then RBX[63:0] € (DS:RCX)[63:0];
ELSE EBX[31:0] € (DS:RCX)[31:0];

26 Ref. # 329298-002

INSTRUCTION REFERENCES

Fl;
ELSE
TMP_64BIT_VAL[63:0] < (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODEG4 = 1)
THEN
IF (TMP_64BIT_VAL != OH)
THEN RBX[63:0] € OFFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] < OH;
FI;
ELSE
IF (TMP_64BIT_VAL != OH)
THEN EBX[31:0] € OFFFFFFFFH;
ELSE EBX[31:0] < OH;
FI;
Fl;

Flags Affected
None

Protected Mode Exceptions
#GP(0) If the address in RCS violates DS limit or access rights.

If DS segment is unusable.

If RCX points to a memory location not 4Byte-aligned.

If the address in RCX points to a page belonging to a non-debug enclave.

If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.

If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.
#PF(fault code) If a page fault occurs in accessing memory operands.

If the address in RCX points to a non-EPC page.

If the address in RCX points to an invalid EPC page

64-Bit Mode Exceptions
#GP(0) If RCX is non-canonical form.

If RCX points to a memory location not 8Byte-aligned.

If the address in RCX points to a page belonging to a non-debug enclave.

If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.

If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.
#PF(fault code) If a page fault occurs in accessing memory operands.

If the address in RCX points to a non-EPC page.

If the address in RCX points to an invalid EPC page

Ref. # 329298-002 27

INSTRUCTION REFERENCES

EDBGWR—Write to a Debug Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = 05H IR VIV SGX1 This leaf function writes a dword/quadword to a debug enclave.
ENCLS[EDBGWR]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EDBGWR (In) Data to be written to a debug enclave (In) | Address of Target memory in the EPC (In)
Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.

The effective address of the source location inside the EPC is provided in the register RCX

EDBGWR Memory Parameter Semantics
EPCQW

Write access permitted by Enclave

The instruction faults if any of the following:

EDBGWR Faulting Conditions
RCX points into a page that is an SECS RCX does not resolve to a naturally aligned linear address

RCX points to a page that does not belong to an RCX points to a location inside a TCS that is not the FLAGS word
enclave that is in debug mode

An operand causing any segment violation May page fault
CPLI=0

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Table 5-15. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 1 of 2

ECRE | EDBGRD/ EENTER/

Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY | EINIT ELDB/ELDU EPA
Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EDBGWR |Targ |Y Y N Y N Y Y Y Y Y N N Y N
SECS Y Y Y Y Y Y Y Y Y Y

Table 5-16. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EwWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO

28 Ref. # 329298-002

INSTRUCTION REFERENCES

Table 5-16. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 2 of 2

Operation EREMOVE | EREPORT | ETRACK EwB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
EDBGWR |Targ [N Y N N[y N y |y |y N Y Y |y
secs |y |y Y Y Y Y Y Y Y Y
Operation

Temp Variables in EDBGWR Operational Flow

Name Type Size (Bits) Description
TMP_MODEG4 Binary 1 ((IA32_EFERLMA = 1) && (CSL=1))
TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs

TMP_MODEG4 < ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODEG4 = 1) and (DS:RCX is not 8Byte Aligned))
Then #GP(0); FI;

IF ((TMP_MODEG4 = 0) and (DS:RCX is not 4Byte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)
Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT I= PT_TCS))
Then #PF(DS:RCX); FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & OxFF8H I= offset_of_FLAGS & OFF8H))
Then #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)
TMP_SECS <« GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESCES);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)
Then #GP(0); FI;

IF ((TMP_MODEG4 = 1))
Then (DS:RCX)[63:0] € RBX[63:0];
ELSE (DS:RCX)[31:0] < EBX[31:0];
Fl;

Flags Affected
None

Ref. # 329298-002 29

INSTRUCTION REFERENCES

Protected Mode Exceptions
#GP(0) If the address in RCS violates DS limit or access rights.

If DS segment is unusable.

If RCX points to a memory location not 4Byte-aligned.

If the address in RCX points to a page belonging to a non-debug enclave.

If the address in RCX points to a page which is not PT_TCS or PT_REG.

If the address in RCX points to a location inside TCS that is not the FLAGS word.
#PF(fault code) If a page fault occurs in accessing memory operands.

If the address in RCX points to a non-EPC page.

If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions
#GP(0) If RCX is non-canonical form.

If RCX points to a memory location not 8Byte-aligned.

If the address in RCX points to a page belonging to a non-debug enclave.

If the address in RCX points to a page which is not PT_TCS or PT_REG.

If the address in RCX points to a location inside TCS that is not the FLAGS word.
#PF(fault code) If a page fault occurs in accessing memory operands.

If the address in RCX points to a non-EPC page.

If the address in RCX points to an invalid EPC page.

30 Ref. # 329298-002

INSTRUCTION REFERENCES

EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = 06H IR VIV SGX1 This leaf function measures 256 bytes of an uninitialized enclave
ENCLS[EEXTEND] page

Instruction Operand Encoding

Op/En EAX RCX
IR EEXTEND (In) Effective address of a 256-byte chunk in the EPC (In)
Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is O and the enclave is uninitialized.

RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics
EPC[RCX]

Read access by Enclave

The instruction faults if any of the following:

EEXTEND Faulting Conditions

RCX points and address not 256B aligned RCX points to an unused page or a SECS
RCX does not resolve in an EPC page If SECS is locked

If the SECS is already initialized May page fault

CPL!=0

Concurrency Restrictions

Table 5-17. Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 1 of 2

Operation EEXIT €aDD | eBlock | GRE | EDBCRD/ | EERTER! | eexvenp | eceTKey |emIT| elDB/ELDU | €PA
Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EEXTEND |Targ [N | N N Y N[V v NN N
SECS N [Y Y Y N N N Y

Table 5-18. Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C NFO
EEXTEND |Targ |N N N N N
SECS |Y Y Y Y Y N N N

Ref. # 329298-002 31

INSTRUCTION REFERENCES

Operation
Temp Variables in EEXTEND Operational Flow
Name Type Size (Bits) ~ Description
TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs
TMP_ENCLAVEOFFS Enclave Offset 64 The page displacement from the enclave base address
ET
TMPUPDATEFIELD SHAZ256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE

TMP_MODEG4 < ((IA32_EFERLMA = 1) && (CS.L = 1));

IF (DS:RCX is not 256Byte Aligned)
Then GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM)
Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT = PT_REG) and (EPCM(DS:RCX).PT I= PT_TCS))
Then #PF(DS:RCX); FI;

TMP_SECS < Get_SECS_ADDRESS();

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))
Then #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET € EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET € TMP_ENCLAVEOFFSET + (DS:RCX & OFFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)

TMPUPDATEFIELD[63:0] € 00444€4554584545H; // "EEXTEND"
TMPUPDATEFIELD[127:64] € TMP_ENCLAVEOFFSET;

TMPUPDATEFIELD[511:128] € 0; // 48 bytes

TMP_SECS.MRENCLAVE €« SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)

TMP_SECS.MRENCLAVE ¢« SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:07);
TMP_SECS.MRENCLAVE € SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);
TMP_SECS.MRENCLAVE €« SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);
TMP_SECS.MRENCLAVE €« SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);
INC enclave’'s MRENCLAVE update counter by 4;

32 Ref. # 329298-002

INSTRUCTION REFERENCES

Flags Affected
None

Protected Mode Exceptions
#GP(0) If the address in RCS is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions
#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Ref. # 329298-002 33

INSTRUCTION REFERENCES

EINIT—Initialize an Enclave for Execution

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = 02H IR VIV SGX1 This leaf function initializes the enclave and makes it ready to
ENCLSIEINIT] execute enclave code.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX
IR EINIT (In) Error code (Out) | Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)
Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.

EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key.
SIGSTRUCT must be populated with two values, g1 and g2. These are calculated using the formulas shown below:

g1 = floor(Signature? / Modulus);
q2 = roor((Signature3 - g1 * Signature * Modulus) / Modulus);

The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in
debug mode as well.

> Signature
Verify | — — — — =
e PubKey Hashed
[ATTRIBUTES |
ATTRIBUTEMASK Check
MRENCLAVE
SIGSTRUCT MRSIGNER If VALID=1,|Check ——pp»]
—————— MRSIGNER
S:RBX [ATTRIBUTES |
MRENCLAVE If VALID=1,
DS:RDX | e — — —] Check
EINIT <*—— EINITTOKEN 4‘
‘ + Copy
(secs | ATTRIBUTES
DS:RCX | — = — — - Check MRENCLAVE
" ENCLAVE | | A
EPC

Figure 5-1. Relationships Between SECS, SIGSTRUCT and EINITTOKEN

34 Ref. # 329298-002

INSTRUCTION REFERENCES

EINIT Memory Parameter Semantics
SIGSTRUCT SECS EINITTOKEN

Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

EINIT performs the following steps, which can be seen in Figure 5-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.

Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to O.

Checks that no Intel-only bits are set in SIGSTRUCT.ATTRIBUTES unless SIGSTRUCT was signed by Intel.

Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with
SECS.ATTRIBUTES.

If EINITTOKEN.VALID is 0, checks that SIGSTRUCT is signed by Intel.

If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.

If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.

If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.

Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on
SIGSTRUCT.

Update the SECS as Initialized.

Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure
code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These
events are INTR, NMI, SMI, INIT, VMX_TIMER, MCAKIND, MCE_SMI, and CMCI_SMI. EINIT does not fail if the
pending event is inhibited (e.g., INTR could be inhibited due to MOV/POP SS blocking and STI blocking).

RFLAGS.{CF,PF,AF,OF,SF} are set to 0. When the instruction completes with an error, RFLAGS.ZF is set to 1, and
the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and RAX is set to O.

Concurrency Restrictions

Table 5-19. Concurrency Restrictions of EINIT with Other Intel® SGX Operations 1 of 2

. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY | EINIT ELDB/ELDU EPA
Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EINIT SECS N N N Y Y N N Y N N N N N N Y N

Table 5-20. Concurrency Restrictions of EINIT with Other Intel®* SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SR | SECI
NFO NFO C NFO

EINIT SECS |N Y N Y N Y N N N N N N

Ref. # 329298-002 35

INSTRUCTION REFERENCES

Operation
Temp Variables in EINIT Operational Flow

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER

INTEL_ONLY_MASK ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for Intel enclaves
CSR_INTELPUBKEYHA 32Bytes Constant with the SHA256 of the Intel Public key used to sign Architectural
SH Enclaves

TMP_KEYDEPENDENC Buffer 224Bytes Temp space for key derivation

IES

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key

TMP_SIG_PADDING PKCS Padding 352Bytes

Buffer

The value of the top 352 bytes from the computation of Signature3 modulo
MRSIGNER

(* make sure SIGSTRUCT and SECS are aligned *)
IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

Then #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned)

Then #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC)

Then #PF(DS:RCX); FI;

TMP_SIG[14463:0] < DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] < DS:RDX[2423:0]; // 304 bytes

(* Verify SIGSTRUCT Header. *)
IF ((TMP_SIG.HEADER = 06000000E10000000000010000000000h) or
((TMP_SIG.VENDOR != 0) and (TMP_SIG.VENDOR != 00008086h)) or
(TMP_SIG HEADERZ = 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT != 00000003h) or (Reserved space is not 0's))

Fl;

THEN
RFLAGS.ZF €« 1;
RAX €« SGX_INVALID_SIG_STRUCT;
goto EXIT;

(* Open "Event Window" Check for Interrupts. Verify signature using embedded public key, q1, and g2. Save upper 352 bytes of the

PKCS1.5 encoded message into the TMP_SIG_PADDING*)

IF (interrupt was pending) {

36

RFLAG.ZF < 1;
RAX € SGX_UNMASKED_EVENT;
goto EXIT;

Ref. # 329298-002

INSTRUCTION REFERENCES

Fl

IF (signature failed to verify) {
RFLAG.ZF €« 1;
RAX €« SGX_INVALID_SIGNATURE;
goto EXIT;

Fl;

(*Close “Event Window" *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS)
Then #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT != PT_SECS))
Then #PF(DS:RCX); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))
Then #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE €« SHA256FINAL((DS:RCX).MRENCLAVE, enclave’'s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)

IF (TMP_SIG.ENCLAVEHASH != TMP_MRENCLAVE)
RFLAG.ZF €« 1;
RAX & SGX_INVALID_MEASUREMENT;
goto EXIT;

Fl;

TMP_MRSIGNER < SHA256(TMP_SIG.MODULUS)

(* if INTEL_ONLY ATTRIBUTES are set, SIGSTRUCT must be signed using the Intel Key *)
INTEL_ONLY_MASK < 0000000000000020H;
IF (((DS:RCX.ATTRIBUTES & INTEL_ONLY_MASK) = 0) and (TMP_MRSIGNER != CSR_INTELPUBKEYHASH))
RFLAG.ZF €« 1;
RAX & SGX_INVALID_ATTRIBUTE;
goto EXIT;
Fl;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)

IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) != (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))
RFLAG.ZF € 1;
RAX € SGX_INVALID_ATTRIBUTE;
goto EXIT;

Fl;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) != (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))
THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_ATTRIBUTE;
goto EXIT
Fl;

Ref. # 329298-002 37

INSTRUCTION REFERENCES

(* if EINITTOKEN.VALID[O] is O, verify the enclave is signed by Intel *)
IF (TMP_TOKEN.VALID[O] = 0)
IF (TMP_MRSIGNER != CSR_INTELPUBKEYHASH)

RFLAG.ZF < 1;
RAX €« SGX_INVALID_EINITTOKEN;
goto EXIT;

Fl;

goto COMMIT;

Fl;

(* Debug Launch Enclave cannot launch Production Enclaves *)

IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))
RFLAG.ZF < 1;
RAX € SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAG.ZF < 1;

RAX € SGX_INVALID_EINITTOKEN;

goto EXIT;
Fl;

(* EINIT token must be <= CR_CPUSVN *)
IF (TMP_TOKEN.CPUSVN > CR_CPUSVN)
RFLAG.ZF €« 1;
RAX € SGX_INVALID_CPUSVN;
goto EXIT;
Fl;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)

HARDCODED_PKCS1_5_PADDING[15:0] < 0100H;

HARDCODED_PKCS1_5_PADDING[2655:16] < SignExtend330Byte(-1); // 330 bytes of OFFH
HARDCODED_PKCS1_5_PADDING[2815:2656] < 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME < LAUNCH_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID < TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN « TMP_TOKEN.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH < CSR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES < TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK < 0;
TMP_KEYDEPENDENCIES.MRENCLAVE < O;
TMP_KEYDEPENDENCIES.MRSIGNER < O;

TMP_KEYDEPENDENCIES.KEYID < TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES <« CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN < TMP_TOKEN.CPUSVN;
TMP_KEYDEPENDENCIES.MISCSELECT < TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK < O;

TMP_KEYDEPENDENCIES.PADDING < HARDCODED_PKCS1_5_PADDING;

(* Calculate the derived key*)
TMP_EINITTOKENKEY < derivekey(TMP_KEYDEPENDENCIES);

38

Ref. # 329298-002

INSTRUCTION REFERENCES

(* Verify EINITTOKEN was generated using this CPU’s Launch key and that it has not been modified since issuing by the Launch
Enclave. Only 192 bytes of EINITOKEN are CMACed *)
IF (TMP_TOKEN.MAC != CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))
RFLAG.ZF €« 1;
RAX € SGX_INVALID_EINIT_TOKEN;
goto EXIT;
Fl;

(* Verify EINITTOKEN (RDX) is for this enclave *)

IF (TMP_TOKEN.MRENCLAVE != TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER != TMP_MRSIGNER))
RFLAG.ZF €« 1;
RAX € SGX_INVALID_MEASUREMENT;
goto EXIT;

Fl;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave's *)
IF (TMP_TOKEN.ATTRIBUTES != DS:RCX.ATTRIBUTES)

RFLAG.ZF €« 1;

RAX € SGX_INVALID_EINIT_ATTRIBUTE;

goto EXIT;
Fl;

COMMIT:

(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)
DS:RCX.MRENCLAVE ¢« TMP_MRENCLAVE;

(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)

DS:RCX.MRSIGNER € TMP_MRSIGNER;

DS:RCX.ISVPRODID < TMP_SIG.ISVPRODID;

DS:RCX.ISVSVN < TMP_SIG.ISVSVN;

DS:RCX.PADDING ¢ TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*)
RFLAG.ZF €« O;
RAX € 0;

eXIT:

RFLAGS.CF,PF,AF,OF SF < O;

Flags Affected
ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions
#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.
#PF(fault code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

Ref. # 329298-002 39

INSTRUCTION REFERENCES

64-Bit Mode Exceptions

#GP(0)

#PF(fault code)

40

If a memory operand is not properly aligned.

If another instruction is modifying the SECS.

If the enclave is already initialized.

If the SECS.MRENCLAVE is in use

If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.

If the memory address is not a valid, uninitialized SECS.

Ref. # 329298-002

INSTRUCTION REFERENCES

ELDB/ELDU—Load an EPC page and Marked its State

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX =07H IR VIV SGX1 This leaf function loads, verifies an EPC page and marks the page
ENCLS[ELDB] as blocked.
EAX =08H IR VIV SGX1 This leaf function loads, verifies an EPC page and marks the page
ENCLS[ELDU] as unblocked.
Instruction Operand Encoding
Op/En EAX RBX RCX RDX
ELDB/ELDU Return error Address of the PAGEINFO | Address of the EPC page Address of the version-
IR
(In) code (Out) (In) (In) array slot (In)
Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level
is 0.

The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.

RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.

The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

EBLDB/ELDBU Memory Parameter Semantics

PAGEINFO PAGEINFO.SRCPGE | PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot
Non-enclave Non-enclave read Non-enclave read | Enclave read/write Read/Write access Read/Write access per-
read access access access access permitted by Enclave mitted by Enclave

The error codes are:

ELDB/ELDU Error Codes
ELDB/ELDU successful

If the MAC check fails

0 (No Error)
SGX_MAC_COMPARE_FAIL

Concurrency Restrictions

Table 5-21. Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 1of 2

Operation EEXIT eapD | eslock | ECRE | EDBERD/ | EEMER! | EEXTEND | EGETKEY |ENIT| ELDB/ELDU | EPA
Type |Targ | VA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ [VA | SECS | VA
ELDB/E | Targ N N N N N N N [N [N [N
LU e N N Y N
SECS Yy N Y Y [N Y Y Y Yy vy [N Y

Ref. # 329298-002

41

INSTRUCTION REFERENCES

Table 5-22. Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 2 of 2

Operation | EREMOVE | EREPORT EEEA EWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO
EBBB/E Targ |N N N [N N [N N
VA [N N[y
secs [N |y Yy |y Yy [N v Y Y
Operation
Temp Variables in ELDB/ELDU Operational Flow
Name Type Size (Bits) Description
TMP_SRCPGE Memory page 4KBytes
TMP_SECS Memory page 4KBytes
TMP_PCMD PCMD 128 Bytes
TMP_HEADER MACHEADER 128 Bytes
TMP_VER UINT64 64
TMP_MAC UINT128 128
TMP_PK UINT128 128 Page encryption/MAC key
SCRATCH_PCMD PCMD 128 Bytes

(* Check PAGEINFO and EPCPAGE alignment *)
IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)
Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

TMP_SRCPGE < DS:RBX.SRCPGE;
TMP_SECS < DS:RBX.SECS;
TMP_PCMD < DS:RBXPCMD;

(* Check alignment of PAGEINFO (RBX)linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))
Then #GP(0); FI;
(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF ((other instructions accessing EPC) or (Other instructions modifying VA slot))
Then #GP(0); FI;
(* Verify EPCM attributes of EPC page, VA, and SECS *)

42 Ref. # 329298-002

INSTRUCTION REFERENCES

IF (EPCM(DS:RCX).VALID = 1)
Then #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~OFFFH).VALID = 0) or (EPCM(DS:RDX & ~OFFFH).PT I= PT_VA))
Then #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0]« DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER?)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0]€¢ O;

TMP_HEADER.SECINFO <« SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD <« SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR < DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or
(TMP_HEADER SECINFO.FLAGS.PT = PT_TRIM))
Then
IF (DS:TMP_SECS is not 4KByte aligned)
THEN #GP(O) FI;
IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS) FI;
IF (Other instructions modifying SECS)
THEN #GP(O) FI;
IF ((EPCM(DS:TMP_SECS).VALID = 0) or (EPCM(DS:TMP_SECS).PT I= PT_SECS))
THEN #PF(DS:TMP_SECS) FI;
ELSIF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_SECS) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_VA))
IF ((TMP_SECS = 0))
THEN #GP(O) FI;
ELSE
#GP(0)
Fl;

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or
(TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
Then
TMP_HEADER.EID < DS:TMP_SECS.EID;
ELSE
(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID < O;
Fl;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0]¢ DS:TMP_SRCPGE[32767: 0];
TMP_VER € DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} ¢ AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ((TMP_MAC != DS:TMP_PCMD.MAC))
Then

Ref. # 329298-002 43

INSTRUCTION REFERENCES

RFLAGS.ZF €« 1;
RAX< SGX_MAC_COMPARE_FAIL;
goto ERROR_EXIT;

Fl;

(* Check version before committing *)
IF (DS:RDX I= 0)
Then #GP(0);
ELSE
DS:RDX< TMP_VER;
FI;

(* Commit EPCM changes *)

EPCM(DS:RCX).PT € TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX € TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING € TMP_HEADER SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED < TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).ENCLAVEADDRESS ¢ TMP_HEADER.LINADDR;

oo

IF ((EAX = 07H) and (TMP_HEADER SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
Then
EPCM(DS:RCX).BLOCKED <« 1;
ELSE
EPCM(DS:RCX).BLOCKED < O;
Fl;

EPCM(DS:RCX). VALID < 1;

RAX< O;
RFLAGS.ZF < 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF < O;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.

44 Ref. # 329298-002

INSTRUCTION REFERENCES

If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

Ref. # 329298-002 45

INSTRUCTION REFERENCES

EMODPR—Restrict the Permissions of an EPC Page

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = OEH IR VIV SGX2 This leaf function restricts the access rights associated with a
ENCLS[EMODPR] EPC page in an initialized enclave.
Instruction Operand Encoding
Op/En EAX RBX RCX
IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)
Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page
permissions will have no effect. This instruction can only be executed when current privilege level is 0.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

EPCPAGE

Read access permitted by Enclave

SECINFO

Read access permitted by Non Enclave

The instruction faults if any of the following:

EMODPR Faulting Conditions

The Enclave is not initialized

The EPC page is not valid

The operands are not properly aligned

The EPC page is locked by another thread

If unsupported security attributes are set
SECS is locked by another thread

RCX does not contain an effective address of an EPC page in the running enclave

Concurrency Restrictions

Table 5-23. Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 1 of 2

Operation EEXIT eaoD | eslock | G- | EPBCRD/ | EERTERT | eextenp | eceTkev |emim| eweewu | 5
Type | TCS]SSA | SECS | Targ [SECS | Targ [SECS | SECS | Targ [SECS | TCS | SSA | SECS | Targ [SECS | Param [SECS [SECS | Targ [VA [SECS [VA
EMODPR | Targ Y N Y N Y N N N
SECS Y N Y Y Y N Y N Y
Table 5-24. Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE | EREPORT | ETRACK EwWB EAUG | EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO
EMODP [Targ |N N N C C C C c |y Jv
R secs v |v Y N Y Y Y Y Y Y

46

Ref. # 329298-002

INSTRUCTION REFERENCES

Operation
Temp Variables in EMODPR Operational Flow
Name Type Size (bits) Description
TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs
SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

SCRATCH_SECINFO < DS:RBX;

(* Check for mis-configured SECINFO flags*)

IF ((SCRATCH_SECINFO reserved fields are not zero) or
I(SCRATCH_SECINFO.FLAGS.R is 0 or SCRATCH_SECINFO.FLAGS.W is not 0))
Then #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX?2 instructions accessing EPC page)
Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX?2 instruction)
Then
RFLAGS <« 1;
RAX € SGX_LOCKFAIL;
goto Done;
Fl;

IF ((EPCM(DS:RCX).PENDING is not O or (EPCM(DS:RCX).MODIFIED is not 0))
Then
RFLAGS <« 1;
RAX €« SGX_PAGE_NOT_MODIFIABLE;
goto Done;
Fl;

IF (EPCM(DS:RCX).PT is not PT_REG)
Then #PF(DS:RCX); FI;

TMP_SECS < GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)

Ref. # 329298-002

47

INSTRUCTION REFERENCES

Then #GP(0); FI;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)
Then #GP(0); FI;

(* Update EPCM permissions *)

EPCM(DS:RCX).R € EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W € EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X € EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF < 0;
RAX € O;

Done:
RFLAGS.CF,PF,AF,OF,SF < O;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears

CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

48

Ref. # 329298-002

INSTRUCTION REFERENCES

EMODT—Change the Type of an EPC Page

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = OFH IR VIV SGX2 This leaf function changes the type of an existing EPC page.
ENCLS[EMODT]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)
Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This
instruction can only be executed when current privilege level is O.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The instruction faults if any of the following:

EMODT Faulting Conditions
The operands are not properly aligned If unsupported security attributes are set
The Enclave is not initialized SECS is locked by another thread
The EPC page is locked by another thread RCX does not contain an effective address of an EPC page in the running enclave
The EPC page is not valid

Concurrency Restrictions

Table 5-25. Concurrency Restrictions of EMODT with Other Intel® SGX Operations 1 of 2

Operation EEXIT eaDD | eslock | onc | EDDORD/ | EENTERT | eexten | eceTkev |emim| eweewu |
Type | TCS[SSA [SECS | Targ [SECS | Targ | SECS | SECS | Targ | SECS | TCS [SSA | SECS | Targ [SECS | Param [SECS | SECS | Targ | VA [SECS | VA
EMODT Targ Y Y N N N N N C N N N N N
SECS Y N Y Y Y Y N Y N Y
Table 5-26. Concurrency Restrictions of EMODT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE | EREPORT | ETRACK EWB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO
EMODT | Targ N N N N N C C C C C Y Y
secs v |y Y C Y Y Y Y Y Y

Ref. # 329298-002 49

INSTRUCTION REFERENCES

Operation
Temp Variables in EMODT Operational Flow
Name Type Size (bits) Description
TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs
SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

SCRATCH_SECINFO < DS:RBX;

(* Check for mis-configured SECINFO flags*)

IF ((SCRATCH_SECINFO reserved fields are not zero) or
I(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))
Then #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page)
Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID is O or
I(EPCM(DS:RCX).PT is PT_REG or EPCM(DS:RCX).PT is PT_TCS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX?2 instruction)
Then #GP(0); FI;

(* Check for mis-configured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W I= 0)))
Then
RFLAGS < 1;
RAX € SGX_LOCKFAIL;
goto Done;
Fl;

IF ((EPCM(DS:RCX).PENDING is not O or (EPCM(DS:RCX).MODIFIED is not Q))
Then
RFLAGS < 1;
RAX €« SGX_PAGE_NOT_MODIFIABLE;
goto Done;
Fl;

TMP_SECS < GET_SECS_ADDRESS

50 Ref. # 329298-002

IF (TMP_SECS.ATTRIBUTES.INIT = 0)

Then #GP(0); FI;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)

Then #GP(0); FI;

(* Update EPCM fields *)

EPCM(DS:RCX).MODIFIED < 1;

EPCM(DS:RCX)R € O;
()W € 0;
EPCM(DS:RCX).X € O;
().

EPCM(DS:RCX

EPCM(DS:RCX).PT < SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF < 0;
RAX €« C;

Done:

RFLAGS.CF,PF,AF,OF,SF < O;

Flags Affected

INSTRUCTION REFERENCES

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears

CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0)

#PF(fault code)

If a memory operand effective address is outside the DS segment limit.

If a memory operand is not properly aligned.
If a memory operand is locked.

If a page fault occurs in accessing memory operands.

If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0)

#PF(fault code)

Ref. # 329298-002

If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

If a page fault occurs in accessing memory operands.

If a memory operand is not an EPC page.

51

INSTRUCTION REFERENCES

EPA—Add Version Array

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = OAH IR VIV SGX1 This leaf function adds a Version Array to the EPC.
ENCLS[EPA]
Instruction Operand Encoding
Op/En EAX RBX RCX
IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)
Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to

PT_VA.

The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

EPCPAGE

Write access permitted by Enclave

Concurrency Restrictions

Table 5-27. Concurrency Restrictions of EPA with Other Intel® SGX Operations 1 of 2

. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA
Type | TCS | SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EPA VA N N N N N N N N N N N
Table 5-28. Concurrency Restrictions of EPA with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT | ETRACK EwWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SR | SECI
NFO NFO C NFO
EPA VA N N N N N N N N
Operation

IF (RBX = PT_VA or DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page)
THEN #GP(0); FI;

52

Ref. # 329298-002

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] €< O;

EPCM(DS:RCX).PT <« PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS < O;
EPCM(DS:RCX).BLOCKED <« 0;

EPCM(DS:RCX).MODIFIED < O;

EPCM(DS:RCX).RWX < O;

()

()

()
EPCM(DS:RCX).PENDING € O;

()

()

()

EPCM(DS:RCX).VALID < 1;

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#PF(fault code)

INSTRUCTION REFERENCES

If a memory operand effective address is outside the DS segment limit.

If a memory operand is not properly aligned.

If another Intel SGX instruction is accessing the EPC page.

If RBX is not set to PT_VA.

If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0)

#PF(fault code)

Ref. # 329298-002

If a memory operand is non-canonical form.
If a memory operand is not properly aligned.

If another Intel SGX instruction is accessing the EPC page.

If RBX is not set to PT_VA.

If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

If the EPC page is valid.

53

INSTRUCTION REFERENCES

EREMOVE—Remove a page from the EPC

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX =03H IR VIV SGX1 This leaf function removes a page from the EPC.
ENCLS[EREMOVE]

Instruction Operand Encoding

Op/En EAX RCX
IR EREMOVE (In) Effective address of the EPC page (In)
Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction
leaf can only be executed when the current privilege level is O.

The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.

The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics
EPCPAGE

Write access permitted by Enclave

The instruction faults if any of the following:

EREMOVE Faulting Conditions

The memory operand is not properly aligned The memory operand does not resolve in an EPC page
Refers to an invalid SECS Refers to an EPC page that is locked by another thread
Another Intel SGX instruction is accessing the EPC page RCX does not contain an effective address of an EPC page
the EPC page refers to an SECS with associations

The error codes are:

EREMOVE Error Codes

0 (No Error) EREMOVE successful
SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC
SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave

54 Ref. # 329298-002

Concurrency Restrictions

Table 5-29. Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 1 of 2

INSTRUCTION REFERENCES

Operation

EEXIT

EADD

EBLOCK

ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME

EEXTEND

EGETKEY

EINIT

ELDB/ELDU

EPA

Type

TCS | SSA

SECS

Targ

SECS

Targ | SECS

SECS

Targ | SECS

TCS

SSA

SECS

Targ

SECS

Param | SECS

SECS | Targ

VA | SECS | VA

EREMOVE | Targ

C C

C

N N

N C

N

N C N

C

N C

C C

N N

N [N N

SECS

C

Y

Y Y

Y

C

Y

C

Y

Y

Table 5-30. Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 2 of 2

Operation

EREMOVE

EREPORT

ETRACK

EWB

EAUG

EMODPE

EMODPR

EMODT

EACCEPT

EACCEPTCOPY

Type

Targ | SECS

Param | SECS

SECS SRC

VA

SECS

Targ | SECS

SECI
NFO

Targ

SEC
S

Targ

SEC
S

Targ Targ

SECI | SECS
NFO

SR | SECI
C |NFO

Targ

EREMOVE | Targ

N C

C

N

N

N C

N C

C

SECS

Y Y

Y C

Y

Y

C

Operation

Temp Variables in EREMOVE Operational Flow

Name

Type

Size (Bits)

Description

TMP_SECS

Effective Address

32/64

Effective address of the SECS destination page

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

Then #PF(

DS:RCX); Fl;

TMP_SRCPGE < DS:RBX.SRCPGE;

TMP_SECS < DS:RBX.SECS;

TMP_SECINFO < DS:RBX.SECINFO;
TMP_LINADDR < DS:RBX.LINADDR;

SCRATCH_SECINFO < DS:RBX.TMP_SECINFO;

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction)
Then #GP(0); FI;

(* if DS:RCX is already unused, nothing to do*)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

Then goto
Fl;

DONE;

IF (EPCM(DS:RCX).PT = PT_VA)

Then

EPCM(DS:RCX).VALID <« O;
goto DONE;

Fl;

Ref. # 329298-002

55

INSTRUCTION REFERENCES

IF (EPCM(DS:RCX).PT = PT_SECS)
Then
IF (DS:RCX has an EPC page associated with it)
Then
RFLAGS.ZF € 1;
RAX <& SGX_CHILD_PRESENT;
goto ERROR_EXIT;
Fl;
EPCM(DS:RCX).VALID < O;
goto DONE;
Fl;

TEMP_SECS < Get_SECS_ADDRESS();

IF (Other threads active using SECS)
Then
RFLAGS.ZF € 1;
RAX <& SGX_ENCLAVE_ACT;
goto ERROR_EXIT;
Fl;

DONE:
RAX< O;
RFLAGS.ZF < 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF < 0O;

Flags Affected
Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions
#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.
#PF(fault code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

56

Ref. # 329298-002

ETRACK—Activates EBLOCK Checks

INSTRUCTION REFERENCES

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = OCH IR VIV SGX1 This leaf function activates EBLOCK checks.
ENCLS[ETRACK]
Instruction Operand Encoding
Op/En EAX RCX
IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)
Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB

address clears successfully. The instruction can only be executed when the current privilege level is 0.

The content of RCX is an effective address of an EPC page.

The table below provides additional information on the memory parameter of EBLOCK leaf function.

ETRACK Memory Parameter Semantics

EPCPAGE
Read/Write access permitted by Enclave

The error codes are:

ETRACK Error Codes

0 (No Error)

SGX_PREV_TRK_INCMPL

ETRACK successful

All logical processors on the platform did not complete the previous tracking cycle.

Concurrency Restrictions

Table 5-31. Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 1 of 2

. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK | “pre WR ERESUME EEXTEND | EGETKEY |EINIT| ELDB/ELDU | EPA
Type |TCS [SSA |SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS |Targ [VA |SECS | VA
ETRACK | SECS Y [N |V N N No[Y Y Y Y Y N Y [N
Table 5-32. Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE | EREPORT | ETRACK EWB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SR | SECI
NFO NFO C |[NFO
ETRACK [SECS [N |V Y N N Y [N |Y N N Y
Operation
IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;
IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;
Ref. # 329298-002 57

INSTRUCTION REFERENCES

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS)
Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT I= PT_SECS)
Then #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ((DS:RCX).TRACKING = 0))
Then
RFLAGS.ZF < 1;
RAX <& SGX_PREV_TRK_INCMPL;

goto Done;
ELSE
RAX< 0;
RFLAGS.ZF €< O;
Fl;
Done:

RFLAGS.ZF,CF,PF,AF,OF,SF < O;

Flags Affected
Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.

If another thread is concurrently using the tracking facility on this SECS.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

58

Ref. # 329298-002

EWB—Invalidate an EPC Page and Write out to Main Memory

INSTRUCTION REFERENCES

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = 0BH IR VIV SGX1 This leaf function invalidates an EPC page and writes it out to
ENCLS[EWB] main memory.
Instruction Operand Encoding
Op/En EAX RBX RCX RDX
IR EWB (In) | Error code (Out) | Address of an PAGEINFO (In) | Address of the EPC page (In) | Address of a VA slot (In)
Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.

The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT
Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access
Concurrency Restrictions
Table 5-33. Concurrency Restrictions of EWB with Intel® SGX Instructions - 1of 2
. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK | “pre WR ERESUME EEXTEND | EGETKEY |EINIT| ELDB/ELDU | EPA
Type |Targ | VA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ [VA | SECS | VA
EWB | Src c |c Jc N [N N |C N N |C N C N |cC C C N N
VA N N Y N
SECS Y Y vy |y Y Y Y Y Y Y
Table 5-34. Concurrency Restrictions of EWB with Intel® SGX Instructions - 2 of 2
Operation EREMOVE | EREPORT EEEA EwB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO
EwWB | Src C C C N C N [N N |cC N |cC C
VA N N
SECS |Y |V Y Y Y Y Y Y Y

Ref. # 329298-002

59

INSTRUCTION REFERENCES

Operation
Temp Variables in EWB Operational Flow
Name Type Size (Bytes) Description
TMP_SRCPGE Memory page 4096
TMP_PCMD PCMD 128
TMP_SECS SECS 4096
TMP_BPEPOCH UINT64 8
TMP_BPREFCOUNT UINT64 8
TMP_HEADER MAC Header 128
TMP_PCMD_ENCLAVEID UINT64 8
TMP_VER UINT64 8
TMP_PK UINT128 16

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #P(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)
Then GP(0); FI;

TMP_SRCPGE <« DS:RBX.SRCPCE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD < DS:RBX.PCMD;

If (DS:RBX.LINADDR != 0) OR (DS:RBX.SECS != Q)
Then #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DSTMP_SRCPGE is not 4KByte Aligned))
Then GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page)
THEN #GP(0); FI;
(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)
THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)

60

Ref. # 329298-002

INSTRUCTION REFERENCES

IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~OFFFH).VALID = 0) or (EPCM(DS:RDX & ~OxFFF).PT is not PT_VA))
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))
THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)
(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)
THEN #GP(0); FI;
Fl;

RFLAGS.ZF,CF,PF,AF,OF,SF < O;
RAX €« C;

(* Perform page-type-specific checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))
THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0)
THEN
RAX € SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF < 1;
GOTO ERROR_EXIT;
Fl;
(* Check if tracking done correctly *)
IF (Tracking not correct)
THEN
RAX € SGX_NOT_TRACKED;
RFLAGS.ZF < 1;
GOTO ERROR_EXIT;
Fl;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
TMP_HEADER.EID < TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID ¢« TMP_SECS.EID;
ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)
THEN
RAX € SGX_CHILD_PRESENT;
RFLAGS.ZF < 1;
GOTO ERROR_EXIT;
Fl:
TMP_HEADEREID €« O;
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID < (DS:RCX).EID;
ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID €« 0; // Zero is not a special value

Ref. # 329298-002 61

INSTRUCTION REFERENCES

(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID <« 0;
FI;

(* Zero out TMP_HEADER?)
TMP_HEADER] sizeof(TMP_HEADER)-1 : 0] € O;

TMP_HEADER.LINADDR € EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT €& EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX < EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING < EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED < EPCM(DS:RCX).MODIFIED;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)

(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)

{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} €< AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),
TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)

Zero out DS:TMP_PCMD.SECINFO

DS:TMP_PCMD.SECINFO.FLAGS.PT €& EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX € EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING <« EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED < EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.RESERVED < 0;

DS:TMP_PCMD.ENCLAVEID < TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR < EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
IF ([DS.RDX])
THEN
RAX ¢« SGX_VA_SLOT_OCCUPIED
RFLAGS.CF < 1;
Fl;

(* Write version to Version Array slot *)
[DS.RDX] € TMP_VER;

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID < 0;
EXIT:

Flags Affected
ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.

If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.

62 Ref. # 329298-002

INSTRUCTION REFERENCES

If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

Ref. # 329298-002 63

INSTRUCTION REFERENCES

54 INTEL® SGX USER LEAF FUNCTION REFERENCE

5.4.1 Instruction Column in the Instruction Summary Table

Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and
associated input/output semantics.

In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.

64 Ref. # 329298-002

INSTRUCTION REFERENCES

EACCEPT—Accept Changes to an EPC Page

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = 05H IR VIV SGX2 This leaf function accepts changes made by system software to
ENCLU[EACCEPT] an EPC page in the running enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EACCEPT (In) Return Error Code (Out) | Address of a SECINFO (In) Address of the destination EPC page (In)
Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be
executed when inside the enclave.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics
SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The instruction faults if any of the following:

EACCEPT Faulting Conditions

The operands are not properly aligned If security attributes of the SECINFO page make the page inaccessible
The EPC page is locked by another thread RBX does not contain an effective address in an EPC page in the running enclave
The EPC page is not valid RCX does not contain an effective address of an EPC page in the running enclave
SECINFO contains an invalid request Page type is PT_REG and MODIFIED bit is O

Page type is PT_TCS or PT_TRIM and PENDING bit is O and MODIFIED bit is 1

Concurrency Restrictions

Table 5-35. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 10f 2

Operation EEXIT eaoD | eplock | ECRE | EDBORD/ | EEMTER! | EexTEND | EGETKEY |EINIT| ELDB/ELDU | EPA
Type Targ | VA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
Targ C Y Y C Y Y
EACFE [SEaNFo u v u U
SECS Y Y |y Y Y Y Y

Table 5-36. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE | EREPORT EEEA EwWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO

Ref. # 329298-002 65

INSTRUCTION REFERENCES

Table 5-36. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 2 of 2

Operation | EREMOVE | EREPORT EEEA EwB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Targ Y N[y [N N N[y N[y
EACCE | SECIN U vy |y vy |y U
PT |FO
Secs |y |y Yy v Y Y Y Y Y Y
Operation
Temp Variables in EACCEPT Operational Flow
Name Type Size (bits) Description
TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs
SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED != 0) or
(EPCM(DS:RBX).BLOCKED = 0) or (EPCM(DS:RBX).PT I= PT_REG) or (EPCM(DS:RBX).ENCLAVESECS I= CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS = DS:RBX))

Then #PF(DS:RBX); FI;

SCRATCH_SECINFO < DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero))
Then #GP(0); FI;

IF (DS:RCX is not 512Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not within CR_ELRANGE)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and (SCRATCH_SECINFO.FLAGS.PENDING is 0) and
(SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

Then #GP(0); FI

(* Check security attributes of the destination EPC page *)
If ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or

66 Ref. # 329298-002

INSTRUCTION REFERENCES

((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)) or
(EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF (EPC page in use)
Then #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)

IF ((EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX) or (EPCM(DS:RCX).PENDING != SCRATCH_SECINFO.FLAGS.PENDING) or
(EPCM(DS:RCX).MODIFIED != SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R = SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W != SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X I= SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT = SCRATCH_SECINFO.FLAGS.PT))

Then
RFLAGS <« 1;
RAX & SGX_PAGE_ATTRIBUTES_MISMATCH;
goto DONE;

Fl;

(* Check that all required threads have left enclave *)

IF (Tracking not correct)

THEN
RFLAGS.ZF < 1;
RAX & SGX_NOT_TRACKED;
goto DONE;

Fl;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)
Then
IF (DS:RCX.RESERVED != 0) #GP(0); FI;
Fl;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA >= (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0)
Then #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ((TMP_SECS.ATTRIBUTES.MODEG4BIT is 0) and ((DS:RCX.FSLIMIT & OxFFF = OxFFF) or (DS:RCX.GSLIMIT & OxFFF = OxFFF)))
Then #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING < O;
EPCM(DS:RCX).MODIFIED < O;

(* Clear EAX and ZF to indicate successful completion *)

RFLAGS.ZF < 0;
RAX €« C;

Ref. # 329298-002 67

INSTRUCTION REFERENCES

Done:
RFLAGS.CF,PF,AF,OF,SF < O;

Flags Affected
Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

68 Ref. # 329298-002

INSTRUCTION REFERENCES

EACCEPTCOPY—Initialize a Pending Page

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX =07H IR VIV SGX2 This leaf function initializes a dynamically allocated EPC page
ENCLU[EACCEPTCOPY] from another page in the EPC.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX

Return Error Code Address of the destina- Address of the

IR EACCEPTCOPY (In) (Out) Address of a SECINFO (In) tion EPC page (In) source EPC page (In)

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This
instruction leaf can only be executed when inside the enclave.

RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY
leaf function.

EACCEPTCOPY Memory Parameter Semantics
SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The instruction faults if any of the following:

EACCEPTCOPY Faulting Conditions

The operands are not properly aligned If security attributes of the SECINFO page make the page inaccessible

The EPC page is locked by another thread If security attributes of the source EPC page make the page inaccessible

The EPC page is not valid RBX does not contain an effective address in an EPC page in the running enclave

SECINFO contains an invalid request RCX/RDX does not contain an effective address of an EPC page in the running
enclave

Concurrency Restrictions

Table 5-37. Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 1of 2

. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA
Type |Targ |VA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ [VA | SECS | VA
Targ
EACCE
pTCOP |5
Y SECIN
FO

Ref. # 329298-002 69

INSTRUCTION REFERENCES

Table 5-38. Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 2 of 2

Operation EREMOVE | EREPORT EEEA EWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO
Targ N N
EACCE
pTCOP | ST Y Y |Y Y |u Y
Y |SECN u Y |Y Y |y Y
FO
Operation
Temp Variables in EACCEPTCOPY Operational Flow
Name Type Size (bits) Description
SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))
Then #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED = 0) or
(EPCM(DS:RBX).BLOCKED = 0) or (EPCM(DS:RBX).PT I= PT_REG) or (EPCM(DS:RBX).ENCLAVESECS I= CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS = DS:RBX))

Then #PF(DS:RBX); FI;

SCRATCH_SECINFO < DS:RBX;

(* Check for mis-configured SECINFO flags*)

IF ((SCRATCH_SECINFO reserved fields are not zero) or ((SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W!=0) or
(SCRATCH_SECINFO.FLAGS.PT is not PT_REG))
Then #GP(0); FI;

(* Check security attributes of the source EPC page *)

IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RDX).PENDING != 0) or (EPCM(DS:RDX).MODIFIED != 0) or
(EPCM(DS:RDX).BLOCKED != 0) or (EPCM(DS:RDX).PT != PT_REG) or (EPCM(DS:RDX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS != DS:RDX))

Then #PF(DS:RDX); FI;

70 Ref. # 329298-002

INSTRUCTION REFERENCES

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 1) or (EPCM(DS:RCX).MODIFIED != 0) or
(EPCM(DS:RCX).PT I= PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then
RFLAGS <« 1;
RAX & SGX_PAGE_ATTRIBUTE_MISMATCH;
goto Done;
Fl;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use)
Then #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 1) or (EPCM(DS:RCX).MODIFIED != 0) or
(EPCM(DS:RCX).R = 1) or (EPCM(DS:RCX).W != 1) or (EPCM(DS:RCX).X != 0) or
(EPCM(DS:RCX).PT != SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX))
Then #PF(DS:RCX); FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] €< DS:RDX[32767:0];

(* Update EPCM permissions *)

EPCM(DS:RCX).R €« EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W € EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X € EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING < 0;

RFLAGS.ZF < 0;
RAX € 0;

Done:
RFLAGS.CF,PF,AF,OF,SF €< O;

Flags Affected
Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
#PF(fault code) If a page fault occurs in accessing memory operands.

Ref. # 329298-002 71

INSTRUCTION REFERENCES

If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

72 Ref. # 329298-002

INSTRUCTION REFERENCES

EENTER—EnNters an Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX =02H IR VIV SGX1 This leaf function is used to enter an enclave.
ENCLU[EENTER]

Instruction Operand Encoding
Op/En EAX RBX RCX

Content of RBX.CSSA Address of IP following
(Out) Address of a TCS (In) Address of AEP (In) EENTER (Out)

IR EENTER (In)

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics
TCS

Enclave access

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

Address in RBX is not properly aligned Any TCS.FLAGS's must-be-zero bit is not zero

TCS pointed to by RBX is not valid or available or Current 32/64 mode does not match the enclave mode in

locked SECS.ATTRIBUTES.MODEG4

The SECS is in use Either of TCS-specified FS and GS segment is not a subsets of the current DS
segment

Any one of DS, €S, CS, SS is not zero If XSAVE available, CR4.0SXSAVE = 0, but SECS.ATTRIBUTES.XFRM != 0x3

CR4.0SFXSR =1 If CR4.0SXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCRO

The following operations are performed by EENTER:

® RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or
interrupt.

® The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are
saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

® If CR4.0SXSAVE == 1, XCRO is saved and replaced by SECS.ATTRIBUTES.XFRM.The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 7.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 7.2.6).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 7.2.3).

® All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

® On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 7.2.4):

Ref. # 329298-002 73

INSTRUCTION REFERENCES

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and I1A32_PERF_GLOBAL_STATUS[60]
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Table 5-39. Concurrency Restrictions of EENTER with Intel® SGX Instructions - 1of 2

Operation EEXIT eaoD | eslock | ECRE | EDBORD/ | EEMTER! | eexTenD | EGETKeY |ENIT| ELDB/ELDU | EPA
Type |Targ | VA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS |Targ | VA | SECS | VA
EENTE |TCS [N N N Y N N N
R SSA U Y u u
SECS Y N Y Y Y Y N Y [N Y

Table 5-40. Concurrency Restrictions of EENTER with Intel® SGX Instructions - 2 of 2

Operation | EREMOVE | EREPORT EEEA EWB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC [VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO
EENTE TS [N N N N
SSA u Yy |u Y [u u |u
secs |y [y v Yy |v Y Y Y Y Y Y
Operation
Temp Variables in EENTER Operational Flow
Name Type Size (Bits) Description
TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment
TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment
TMP_FSULIMIT Effective Address 32/64 Highest legal address in proposed FS segment
TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment
TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM
TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame
TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame

TMP_MODEG4 < ((IA32_EFERLMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODEG4 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10]=1))))
Then #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODEG4 = 0)
Then
IF(CS.base != 0 or DS.base |= 0) #GP(0); FI;

74 Ref. # 329298-002

INSTRUCTION REFERENCES

IF(ES usable and ES.base |= 0) #GP(0); FI;
IF(SS usable and SS.base != 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

Fl;

IF (DS:RBX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); Fl;

(* Check AEP is canonical*)
IF (TMP_MODEG4 = 1 and (DS:RCX is not canonical))
Then #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)
Then #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)
Then #PF(DS:RBX); Fl;

IF (EPCM(DS:RBX).BLOCKED = 1)
Then #PF(DS:RBX); Fl;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX) or (EPCM(DS:RBX).PT I= PT_TCS))
Then #PF(DS:RBX); Fl;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
Then #PF(DS:RBX); Fl;

IF ((DS:RBX).0SSA is not 4KByte Aligned)
Then #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).0FSBASE is not 4KByte Aligned) or ((DS:RBX).0GSBASE is not 4KByte Aligned))
Then #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS < Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODEG4 = 0)
Then
TMP_FSBASE < (DS:RBX).0FSBASE + TMP_SECS.BASEADDR;
TMP_FSUIMIT € (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE < (DS:RBX).0GSBASE + TMP_SECS.BASEADDR;
TMP_GSUIMIT < (DS:RBX).0GSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSUIMIT < TMP_FSBASE)
THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

Ref. # 329298-002 75

INSTRUCTION REFERENCES

IF (TMP_FSLIMIT > DS.limit) THEN #GP(O); FI;
Fl;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)
THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE
IF (TMP_GSUIMIT > DS.limit) THEN #GP(0); FI;
Fl;
ELSE
TMP_FSBASE < (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE < (DS:RBX).0GSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))
THEN #GP(0); FI;
Fl;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & & OxFFFFFFFFFFFFFFFE) 1= 0)
Then #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)
Then #GP(0); FI;

(* make sure the logical processor's operating mode matches the enclave *)
IF ((TMP_MODEG4 != TMP_SECS.ATTRIBUTES.MODEG4BIT))
Then #GP(0); FI;

IF (CR4.0SFXSR = 0)
Then #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.0SXSAVE = 0)
Then
IF (TMP_SECS.ATTRIBUES.XFRM != 03H) THEN #GP(0); FI;
ELSE
IF ((TMP_SECS.ATTRIBUES.XFRM & XCRO) I= TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;
Fl;

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA >= (DS:RBX).NSSA)
Then #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA < (DS:RBX).0SSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE < compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
Then #PF(DS:TMP_SSA_PAGE); FI;

76

Ref. # 329298-002

INSTRUCTION REFERENCES

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
Then #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS != DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT != PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0))

Then #PF(DS:TMP_SSA_PAGE); FI;
CR_XSAVE_PAGE_n <« Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR € TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
Then #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)

Then #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
Then #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS != DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT != PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

Then #PF(DS:TMP_GPR); FI;

IF (TMP_MODEG4 = 0)
Then
IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) Then #GP(0); FI;
Fl;

CR_GPR_PA & Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET < (DS:RBX).0ENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODEG4 = 1)
Then
IF (TMP_TARGET is not canonical) Then #GP(0); FI;
ELSE
IF (TMP_TARGET > CS limit) Then #GP(O); FI;
Fl;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))
Then #GP(0); FI;

CR_ENCALVE_MODE <« 1;

CR_ACTIVE_SECS < TMP_SECS;
CR_ELRANGE < (TMPSECS.BASEADDR, TMP_SECS.SIZE);

Ref. # 329298-002 77

INSTRUCTION REFERENCES

(* Save state for possible AEXs *)
CR_TCS_PA < Physical_Address (DS:RBX);
CR_TCS_LA €< RBX;

CR_TCS_LA.AEP & RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector < FS.selector;
CR_SAVE_FS_base < FS.base;
CR_SAVE_FS_limit <« FS.limit;
CR_SAVE_FS_access_rights < FS.access_rights;
CR_SAVE_GS_selector < GS.selector;
CR_SAVE_GS_base < GS.base;
CR_SAVE_GS_limit € GS.limit;
CR_SAVE_GS_access_rights € GS.access_rights;

(* If XSAVE is enabled, save XCRO and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.0SXSAVE = 1)

CR_SAVE_XCRO < XCRO;

XCRO ¢« TMP_SECS.ATTRIBUTES.XFRM;
FI;

(* Set CR_ENCLAVE_ENTRY_IP *)

CR_ENCLAVE_ENTRY_IP < CRIP”

RIP € NRIP;

RAX & (DS:RBX).CSSA;

(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP < RSP;

DS:TMP_SSA.U_RBP <« RBP;

(* Do the FS/GS swap *)
FS.base € TMP_FSBASE;
FS.limit € DS:RBX.FSLIMIT;
FS.type € 0001b;

FS.W €< DS.W;

FSS €« 1;

FS.DPL < DS.DPL;

FS.G € 1;

FSB « 1;

FSP &« 1;

FS.AVL < DS.AVL,;

FS.L € DS.L;

FS.unusable < O;
FS.selector < 0OBH;

GS.base €< TMP_GSBASE;
GS.limit € DS:RBX.GSLIMIT;
GS.type < 0001b;

GS.W € DS.\Ww;

GSS €« 1;

GS.DPL < DS.DPL;

GSG &« T;

GSB <« 1;

GSP<«1;

GS.AVL € DS.AVL;

78

Ref. # 329298-002

INSTRUCTION REFERENCES

GS.L €« DS.L;
GS.unusable € 0;
GS.selector € 0BH;

CR_DBGOPTIN € TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ ELRANGE;

IF (CR_DBGOPTIN = 0)

THEN
Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF & RFLAGS.TF;

RFLAGS.TF < O;

Suppress_monitor_trap_flag for the source of the execution of the enclave;
Clear_all_pending_debug_exceptions;

Clear_pending_MTF_VM_exit;

ELSE
IF (RFLAGS.TF = 1)

Then Pend_Single-Step_#DB_at_the_end_of_ENTER; FI;
IF (VMCSMTF = 1)
Then Pend_MTF_VM_exit_at_the_end_of_ENTER; FI;
Fl;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected
RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.

If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-

erly aligned.

If the thread is not in the INACTIVE state.

If CS, DS, ES or SS bases are not all zero.

If executed in enclave mode.

If any reserved field in the TCS FLAG is set.

If the target address is not within the CS segment.

If CR4.0SFXSR = 0.

If CR4.0SXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.

If CR4.0SXSAVE = land SECS.ATTRIBUTES.XFRM is not a subset of XCRO.
#PF(fault code) If a page fault occurs in accessing memory.

If DS:RBX does not point to a valid TCS.

If one or more pages of the current SSA frame are not readable/writable, or do not resolve to

a valid PT_REG EPC page.
#NM If CRO.TS is set.

64-Bit Mode Exceptions
#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.

Ref. # 329298-002

INSTRUCTION REFERENCES

If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.

If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.

If the target address is not canonical.

If CR4.0SFXSR = 0.

If CR4.0SXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.

If CR4.0SXSAVE = land SECS.ATTRIBUTES.XFRM is not a subset of XCRO.
#PF(fault code) If a page fault occurs in accessing memory operands.

If DS:RBX does not point to a valid TCS.

If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CRO.TS is set.

80 Ref. # 329298-002

INSTRUCTION REFERENCES

EEXIT—EXxits an Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = 04H IR VIV SGX1 This leaf function is used to exit an enclave.
ENCLU[EEXIT]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (In)
Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX.
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0)
results.

EEXIT Memory Parameter Semantics
Target Address

non-Enclave read and execute access

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This has the effect of
abort page semantics on the next destination.

If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.

If XCRO was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or
ERESUME.

If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.
Code and data breakpoints are unsuppressed.

Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Table 5-41. Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 1of 2

Operation EEXIT eapD | eplock | ECRE | EDBORD/ | EEMTER! | eexTenD | EGETKeY |ENIT| ELDB/ELDU | EPA
Type |Targ | VA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS |Targ | VA | SECS | VA
EEXIT |TCs [N [N [N Y [N Y N[N N [N [N N
SSA u_|N Y [N Y N U IN [N [N |u [N
SECS Y NOY Y Y Y N Y N N Y

Table 5-42. Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT EEEA EwB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO
EEXIT |TCS |Y N N Y
SSA |Y N u N Y N Y u Y N Y N Y u N u u
SECS |Y Y Y Y Y Y Y Y

Ref. # 329298-002 81

INSTRUCTION REFERENCES

Operation
Temp Variables in EEXIT Operational Flow
Name Type Size (Bits) Description
TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR

TMP_MODEG4 < ((IA32_EFERLMA = 1) && (CS.L = 1));

IF (TMP_MODEG4 = 1)
Then
IF (RBX is not canonical) Then #GP(0); FI;
ELSE
IF (RBX > CS limit) Then #GP(0); FI;
Fl;

TMP_RIP < CRIP;
RIP € RBX;

(* Return current AEP in RCX *)
RCX € CR_TCS_PA.AEP;

(* Do the FS/GS swap *)

FS.selector < CR_SAVE_FS.selector;

FS.base €< CR_SAVE_FS.base;

FS.limit € CR_SAVE_FS.limit;

FS.access_rights € CR_SAVE_FS.access_rights;
GS.selector € CR_SAVE_GS.selector;

GS.base € CR_SAVE_GS.base;

GS.limit € CR_SAVE_GS.limit;

GS.access_rights €< CR_SAVE_GS.access_rights;

(* Restore XCRO if needed *)
IF (CR4.0SXSAVE = 1)

XCRO ¢ CR_SAVE__XCRO;
Fl;

Unsuppress_all_code_breakpoints_that_are_outside_ ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN
UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF € CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread
Fl;

IF (RFLAGS.TF=1)
Pend Single-Step #DB at the end of EEXIT;
Fl;

82 Ref. # 329298-002

IF (VMCSMTF =1)
Pend MTF VM exit at the end of EEXIT;
Fl;

CR_ENCLAVE_MODE < C;
CR_TCS_PA.STATE < INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.
#PF(fault code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions
#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(fault code) If a page fault occurs in accessing memory operands.

Ref. # 329298-002

INSTRUCTION REFERENCES

83

INSTRUCTION REFERENCES

EGETKEY—Retrieves a Cryptographic Key

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = 04H IR VIV SGX1 This leaf function retrieves a cryptographic key.
ENCLU[EGETKEY]

Instruction Operand Encoding

Op/En EAX RBX RCX
IR EGETKEY (In) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)
Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in
RBX & RCX should be locations inside the enclave.

EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible
inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics
KEYREQUEST OUTPUTDATA

Enclave read access Enclave write access

After validating the operands, the instruction determines which key is to be produced and performs the following
actions:

® The instruction assembles the derivation data for the key based on the Table 5-43
® Computes derived key using the derivation data and package specific value
® OQutputs the calculated key to the address in RCX

The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key
for which it has not been granted the attribute to request, or requests a key that is not supported by the hardware.
These checks may be performed in any order. Thus, an indication by error number of one cause (for example,
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the
address specified by RCX is unmodified.

Requesting Keys

The KEYREQUEST structure (see Section 2.17.1) identifies the key to be provided. The Keyrequest.KeyName field
identifies which type of key is requested.

Deriving Keys

Key derivation is based on a combination of the enclave specific values (see Table 5-43) and a processor key.
Depending on the key being requested a field may either be included by definition or the value may be included
from the KeyRequest. A “yes” in Table 5-43 indicates the value for the field is included from its default location,

identified in the source row, and a “request” indicates the values for the field is included from its corresponding
KeyRequest field.

84 Ref. # 329298-002

Table 5-43. Key Derivation

INSTRUCTION REFERENCES

Owner ISV MRENCLA
Key Name | Attributes Epoch [CPUSVN ISV SUN PRODID |VE MRSIGNER | RAND
Key Y& CSR_SEQ | Y& CPUSVN [R€ SECS. SECS. SECS. Req
Dependent | SECS.ATTRIBUTE |WNEREP | Register; Req.ISVSVN; | ISVID MRENCLAV | MRSIGNER |.KEYID
Constant |Sand OCH E
SECS.MISCSELECT;
Source y
R<&AttribMask & R&
SECS.ATTRIBUTE Req.CPUSVN;
Sand
SECS.MISCSELECT;
Launch |Yes Request Yes Request Request Yes No No Request
Report Yes Yes Yes Yes No No Yes No Request
Seal Yes Request Yes Request Request Yes Request Request Request
Provisioni | Yes Request Yes Request Request Yes No Yes Yes
ng
Provisioni | Yes Request Yes Request Request Yes No Yes Yes
ng Seal

Keys that permit the specification of a CPU or ISV's code's SVNs have additional requirements. The caller may not
request a key for an SVN beyond the current CPU or ISV SVN, respectively.

Some keys are derived based on a hardcode PKCS padding constant (352 byte string):
HARDCODED_PKCS1_5_PADDING[15:0] B 0100H;

HARDCODED_PKCS1_5_PADDING[2655:16] B SignExtend330Byte(-1); // 330 bytes of OFFH

HARDCODED_PKCS1_5_PADDING[2815:2656] 3 2004000501020403650148866009060D30313000H;

The error codes are:

EGETKEY Error Codes

0 (No Er

ror)

SGX_INVALID_ATTRIBUTE
SGX_INVALID_CPUSVN
SGX_INVALID_ISVSVN

SGX_INVALID_KEYNAME

EGETKEY successful

If KEYREQUEST.CPUSVN is beyond platforms CPUSVN value
If KEYREQUEST.ISVSVN is greater than the enclave's ISV_SVN

If KEYREQUEST.KEYNAME is an unsupported value.

The KEYREQUEST contains a KEYNAME for which the enclave is not authorized

Concurrency Restrictions

Table 5-44. Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 1 of 2

. ECRE | EDBGRD/ EENTER/
Operation EEXIT EADD EBLOCK ATE WR ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA
Type | TCS [SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EGETKEY | Param U Y u U
SECS Y Y Y Y Y Y Y
Ref. # 329298-002 85

INSTRUCTION REFERENCES

Table 5-45. Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 2 of 2

Operation EREMOVE EREPORT | ETRACK EWB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO S S NFO C |NFO
EGETKEY | Param U Y U Y u Y (U
SECS |V Y Y Y Y Y Y Y Y Y
Operation

Temp Variables in EGETKEY Operational Flow

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave
TMP_KEYDEPENDENCIES Temp space for key derivation

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes
TMP_OUTPUTKEY 128 Temp Space for the calculation of the key

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ((DS:RBX is not 128Byte aligned) or (DS:RBX is within CR_ELRANGE))
THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ((DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0))
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RBX).PT = PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or
(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS != (DS:RBX & ~OFFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

Fl;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ((DS:RCX is not 16Byte aligned) or (DS:RCX is within CR_ELRANGE))
THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ((DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0))
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RCX).PT I= PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or
(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS != (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))
THEN #PF(DS:RCX);

Fl;

86 Ref. # 329298-002

INSTRUCTION REFERENCES

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ((DS:RBX).RESERVED != 0) or (DS:RBX.KEYPOLICY.RESERVED I= 0))
THEN #GP(0); FI;

TMP_CURRENTSECS < CR_ACTIVE_SECS;

(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] < 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES < (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT < DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

CASE (DS:RBX.KEYNAME)
SEAL_KEY:
IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN
RFLAGS.ZF €« 1;
RAX € SGX_INVALID_CPUSVN;

goto EXIT;
Fl;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)
THEN
RFLAGS.ZF < 1;
RAX €« SGX_INVALID_ISVSVN;
goto EXIT;
Fl;

// Include enclave identity?
TMP_MRENCLAVE < 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE < TMP_CURRENTSECS.MRENCLAVE;
Fl;
/! Include enclave author?
TMP_MRSIGNER < O;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER ¢ TMP_CURRENTSECS.MRSIGNER;
Fl;
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME < SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID ¢« TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN < DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH < CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES <« TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES. ATTRIBUTESMASK < DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE < TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER < TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID < DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES < CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN < DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING € TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT < TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK & ~DS:RBX.MISCMASK;
BREAK;

REPORT_KEY:

Ref. # 329298-002 87

INSTRUCTION REFERENCES

//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME < REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID < 0;
TMP_KEYDEPENDENCIES.ISVSVN < 0;
TMP_KEYDEPENDENCIES.OWNEREPOCH <« CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES € TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK € 0;
TMP_KEYDEPENDENCIES.MRENCLAVE < TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER < O;
TMP_KEYDEPENDENCIES.KEYID € DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES < CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN € CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING ¢ HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT ¢ TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK < O;
BREAK;
EINITTOKEN_KEY:
(* Check ENCLAVE has LAUNCH capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.LAUNCHKEY = 0)
THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_ATTRIBUTE;

goto EXIT;
Fl;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN
RFLAGS.ZF € 1;
RAX € SGX_INVALID_CPUSVN;
goto EXIT;
Fl;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)
THEN
RFLAGS.ZF ¢ 1;
RAX € SGX_INVALID_ISVSVN;
goto EXIT;
Fl;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME < EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID € TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN & DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH < CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES ¢« TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK < 0;
TMP_KEYDEPENDENCIES.MRENCLAVE < 0;
TMP_KEYDEPENDENCIES.MRSIGNER < 0;
TMP_KEYDEPENDENCIES.KEYID < DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES < CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN < DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING ¢ TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT ¢« TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK < 0;
BREAK;

PROVISION_KEY: // Check ENCLAVE has PROVISIONING capability
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

88 Ref. # 329298-002

INSTRUCTION REFERENCES

THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_ATTRIBUTE;

goto EXIT;
Fl;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_CPUSVN;
goto EXIT;
Fl;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)
THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_ISVSVN;
goto EXIT;
Fl;

(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME < PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID € TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN € DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH < O;
TMP_KEYDEPENDENCIES.ATTRIBUTES ¢« TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK < DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE < O;
TMP_KEYDEPENDENCIES.MRSIGNER €< TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIESKEYID < O;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES < 0;
TMP_KEYDEPENDENCIES.CPUSVN < DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING ¢ TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT < TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK € ~DS:RBX.MISCMASK;
BREAK;
PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)
THEN
RFLAGS.ZF €« 1;
RAX € SGX_INVALID_ATTRIBUTE;

goto EXIT;
Fl;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_CPUSVN;
goto EXIT;
Fl;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)
THEN
RFLAGS.ZF < 1;
RAX € SGX_INVALID_ISVSVN;
goto EXIT;
Fl;

(* Determine values key is based on *)

Ref. # 329298-002 89

INSTRUCTION REFERENCES

TMP_KEYDEPENDENCIES.KEYNAME < PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID < TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN < DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH < O;
TMP_KEYDEPENDENCIES.ATTRIBUTES <« TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK < DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE < O;
TMP_KEYDEPENDENCIES.MRSIGNER ¢ TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID < O;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES <« CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN < DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING ¢ TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT <« TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK € ~DS:RBX.MISCMASK;
BREAK;
DEFAULT:

(* The value of KEYNAME is invalid *)
RFLAGS.ZF ¢ 1;
RAX € SGX_INVALID_KEYNAME;
goto EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY < derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] € TMP_OUTPUTKEY;

RAX € 0;

RFLAGS.ZF € O;

EXIT:

RFLAGS.CF <« O;
RFLAGS.PF < 0;
RFLAGS.AF < O;
RFLAGS.OF < O;
RFLAGS.SF < O;

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(fault code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(fault code) If a page fault occurs in accessing memory operands.

90

Ref. # 329298-002

EMODPE—Extend an EPC Page Permissions

INSTRUCTION REFERENCES

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX = 06H IR VIV SGX2 This leaf function extends the access rights of an existing EPC
ENCLU[EMODPE] page.
Instruction Operand Encoding
Op/En EAX RBX RCX
IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)
Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page
permissions will have no effect. This instruction leaf can only be executed when inside the enclave.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

EPCPAGE

Read access permitted by Enclave

SECINFO

Read access permitted by Non Enclave

The instruction faults if any of the following:

EMODPE Faulting Conditions
If security attributes of the SECINFO page make the page inaccessible

The operands are not properly aligned
The EPC page is locked by another thread RBX does not contain an effective address in an EPC page in the running enclave

The EPC page is not valid RCX does not contain an effective address of an EPC page in the running enclave

SECINFO contains an invalid request

Concurrency Restrictions

Table 5-46. Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 1 of 2

Operation EEXIT eaDD | eslock | onc | EDDORD/ | EENTERT | eexten | eceTkev |emim| eweewu |
Type | TCS[SSA [SECS | Targ [SECS | Targ [SECS | SECS | Targ [SECS | TCS [SSA [SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EMODPE | Targ Y Y Y Y
SECIN U Y U U
FO
Table 5-47. Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE | EREPORT | ETRACK EWB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO s S NFO C |NFO
EMODP | Targ Yy [N N Y vy |v
€ SECIN Y Y y |v
FO
Ref. # 329298-002 91

INSTRUCTION REFERENCES

Operation
Temp Variables in EMODPE Operational Flow
Name Type Size (bits) Description
SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED != 0) or
(EPCM(DS:RBX).BLOCKED = 0) or (EPCM(DS:RBX).PT I= PT_REG) or (EPCM(DS:RBX).ENCLAVESECS I= CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS = DS:RBX))

Then #PF(DS:RBX); FI;

SCRATCH_SECINFO < DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)
Then #GP(0); FI;

(* Check security attributes of the EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or
(EPCM(DS:RCX).BLOCKED != 0) or (EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX?2 instruction)
Then #GP(0); FI;

(* Re-Check security attributes of the EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or
(EPCM(DS:RCX).BLOCKED = 0) or (EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX))

Then #PF(DS:RCX); FI;

(* Check for mis-configured SECINFO flags*)

IF ((EPCM(DS:RCX)R = 0) and (SCRATCH_SECINFO.FLAGSR = 0) and (SCRATCH_SECINFO.FLAGS.W = 0)))
Then #GP(0); FI;

92 Ref. # 329298-002

INSTRUCTION REFERENCES

(* Update EPCM permissions *)

EPCM(DS:RCX).R € EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W € EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X € EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected
None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions
#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
#PF(fault code) If a page fault occurs in accessing memory operands.

Ref. # 329298-002 93

INSTRUCTION REFERENCES

EREPORT—Create a Cryptographic Report of the Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bit Mode Feature
Support Flag
EAX = 00H IR VIV SGX1 This leaf function creates a cryptographic report of the enclave.
ENCLU[EREPORT]

Instruction Operand Encoding

Op/En EAX RBX RCX RDX
R EREPORT (In) Address of TARGETINFO | Address of REPORTDATA Address where the REPORT is
(In) (In) written to in an OUTPUTDATA (In)
Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.

RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics
TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Write access by Enclave

This instruction leaf perform the following:
1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave;
2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO);

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX
(REPORTDATA) operand);

4. Computes a crytpographic hash over REPORT structure;

5. Add the computed hash to the REPORT structure;

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA);
The instruction fails if the operands are not properly aligned

CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following:

94 Ref. # 329298-002

INSTRUCTION REFERENCES

EREPORT Faulting Conditions

An effective address not properly aligned an memory address does not resolve in an EPC page

If accessing an invalid EPC page If the EPC page is blocked

May page fault

Concurrency Restrictions

Table 5-48. Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 1 of 2

Operation EEXIT €A | eslock | GRE | EDBCRD/ | EERTER! | eexvenp | eceTKey |emiT| elDB/ELDU | €pA
Type | TCS [SSA | SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
EREPORT | Param U Y U U
SECS Y Y |y Y Y Y Y
Table 5-49. Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE | EREPORT | ETRACK EwB EAUG EMODPE | EMODPR | EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SEC | Targ | SEC | Targ | SECI | SECS | Targ | SR | SECI
NFO s S NFO C |NFO
EREPORT | Param U Yy |u Yy |[u Y |u
secs |y |v Y Y Y Y Y Y Y Y
Operation
Temp Variables in EREPORT Operational Flow
Name Type Size (bits) Description
TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs
TMP_CURRENTSECS Address of the SECS for the currently executing enclave
TMP_KEYDEPENDENCIES Temp space for key derivation
TMP_REPORTKEY 128 REPORTKEY generated by the instruction
TMP_REPORT 3712

TMP_MODEG4 < ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)

IF ((DS:RBX is not 128Byte Aligned) or (DS:RBX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); Fl;

IF (EPCM(DS:RBX). VALID = 0)
Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RBX).PT I= PT_REG) or (EPCM(DS:RBX).ENCLAVESECS I= CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS I= (DS:RBX & ~OFFFH)) or (EPCM(DS:RBX)R = 0))

Ref. # 329298-002

95

INSTRUCTION REFERENCES

THEN #PF(DS:RBX);
Fl;

(* Address verification for REPORTDATA (RCX) *)
IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #P(DS:RCX); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RCX).PT I= PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or
(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS != (DS:RCX & ~OFFFH)) or (EPCM(DS:RCX).R = 0))
THEN #PF(DS:RCX);

Fl;

(* Address verification for OUTPUTDATA (RDX) *)
IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

IF (EPCM(DS:RDX). VALID = 0)
Then #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1))
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RDX).PT I= PT_REG) or (EPCM(DS:RDX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS = (DS:RDX & ~OFFFH)) or (EPCM(DS:RDX).W = 0))
THEN #PF(DS:RDX);

Fl;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN € CR_CPUSVN;
TMP_REPORT.ISVPRODID ¢ TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN € TMP_CURRENTSECS..ISVSVN;
TMP_REPORT.ATTRIBUTES ¢ TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA &« DS:RCX[511:0];
TMP_REPORT.MRENCLAVE ¢« TMP_CURRENTSECS.MRENCLAVE;
TMP_REPORT.MRSIGNER ¢ TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED < 0;

TMP_REPORT.KEYID[255:0] €< CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT ¢ TMP_CURRENTSECS.MISCSELECT;

96 Ref. # 329298-002

(* Derive the report key *)

TMP_KEYDEPENDENCIES.KEYNAME < REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID < O;
TMP_KEYDEPENDENCIES.ISVSVN < O;
TMP_KEYDEPENDENCIES.OWNEREPOCH ¢ CSR_SGX_OWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES < DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK < O;
TMP_KEYDEPENDENCIES.MRENCLAVE < DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER < O;
TMP_KEYDEPENDENCIES.KEYID €< TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES < CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN < CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING ¢ TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT € DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK < 0;

(* Calculate the derived key*)
TMP_REPORTKEY < derive_key(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MACRKEYID *)
TMP_REPORT.MAC € cmac(TMP_REPORTKEY, TMP_REPORTKEY[3071:0]);
DS:RDX[3455: 0] € TMP_REPORT;

Flags Affected
None

Protected Mode Exceptions
#GP(0) If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.
#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions
#GP(0) If RCX is non-canonical form.

If a memory operand is not properly aligned.

If a memory operand is not in the current enclave.
#PF(fault code) If a page fault occurs in accessing memory operands.

Ref. # 329298-002

INSTRUCTION REFERENCES

97

INSTRUCTION REFERENCES

ERESUME—Re-Enters an Enclave

Opcode/ Op/En 64/32 CPUID Description
Instruction bitMode Feature
Support Flag
EAX =03H IR VIV SGX1 This leaf function is used to re-enter an enclave after an inter-
ENCLU[ERESUME] rupt.

Instruction Operand Encoding

Op/En RAX RBX RCX
IR ERESUME (In) Address of a TCS (In) Address of AEP (In)
Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics
TCS

Enclave read/write access

The instruction faults if any of the following:

Address in RBX is not properly aligned Any TCS.FLAGS's must-be-zero bit is not zero

TCS pointed to by RBX is not valid or available or Current 32/64 mode does not match the enclave mode in

locked SECS.ATTRIBUTES.MODEG4

The SECS is in use by another enclave Either of TCS-specified FS and GS segment is not a subset of the current DS
segment

Any one of DS, ES, CS, SS is not zero If XSAVE available, CR4.0SXSAVE = 0, but SECS.ATTRIBUTES.XFRM I= 0x3

CR4.0SFXSR =1 If CR4.0SXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCRO

Offsets 520-535 of the XSAVE area not O The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM

The SSA frame is not valid or in use

If CRO.TS is set, ERESUME generates a #NM exception.
The following operations are performed by EENTER:

® RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an
asynchronous exit due to any Interrupt event.

® The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are
saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

® If CR4.0SXSAVE == 1, XCRO is saved and replaced by SECS.ATTRIBUTES.XFRM.The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 7.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 7.2.6).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 7.2.4).

® All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

98 Ref. # 329298-002

INSTRUCTION REFERENCES

® On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 7.2.4):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and 1IA32_PERF_GLOBAL_STATUS[60]
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets 1A32_PERF_GLOBAL_STATUS[60] and 1A32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Table 5-50. Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 1of 2

ECRE

EDBGRD/

EENTER/

Operation EEXIT EADD EBLOCK | “pre WR ERESUME EEXTEND | EGETKEY |EINIT| ELDB/ELDU | EPA
Type |Targ [VA |SECS | Targ | SECS | Targ | SECS | SECS | Targ | SECS | TCS | SSA | SECS | Targ | SECS | Param | SECS | SECS | Targ | VA | SECS | VA
liséESU TS [N N N Y N N N
SSA u Y u u
SECS Y NOY Y Y Y N Y N Y
Table 5-51. Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 2 of 2
Operation | EREMOVE | EREPORT EEEA EwB EAUG EMODPE | EMODPR EMODT EACCEPT EACCEPTCOPY
Type | Targ | SECS | Param | SECS | SECS | SRC | VA | SECS | Targ | SECS | Targ | SECI | Targ | SECS | Targ | SECS | Targ | SECI | SECS | Targ | SRC | SECI
NFO NFO NFO
Eq%ESU TS [N N N N
SSA Yy (U Yy |[u u [u
Secs |y |y Yy |y Y Y Y Y Y Y
Operation
Temp Variables in ERESUME Operational Flow
Name Type Size Description
TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment
TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment
TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment
TMP_GSUIMIT Effective Address 32/64 Highest legal address in proposed GS segment
TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume
TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave
TMP_SSA Effective Address 32/64 Address of current SSA frame
TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM
TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame
TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame
TMP_BRANCH_REC LBR Record From/to addresses to be pushed onto the LBR stack
ORD

TMP_MODEG4 < ((IA32_EFERLMA = 1) 8& (CS.L = 1));

Ref. # 329298-002

99

INSTRUCTION REFERENCES

(* Make sure DS is usable, expand up *)

IF (TMP_MODEG4 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10]=1))))

Then #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODEG4 = 0)
Then
IF
IF
IF
IF

CS.base I= 0 or DS.base != 0) GP(0); FI;
€S usable and ES.base != 0) GP(0); FI;
SS usable and SS.base |= 0) GP(0); FI;
SS usable and SS.B = 0) GP(0); FI;

)
)i

—~ o~ o~ —

Fl;

IF (DS:RBX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODEG4 = 1 and (DS:RCX is not canonical))
Then #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)
Then #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)
Then #PF(DS:RBX); Fl;

IF (EPCM(DS:RBX).BLOCKED = 1)
Then #PF(DS:RBX); Fl;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
Then #PF(DS:RBX); Fl;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX) or (EPCM(DS:RBX).PT != PT_TCS))
Then #PF(DS:RBX); Fl;

IF ((DS:RBX).0SSA is not 4KByte Aligned)
Then #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).0GSBASE is not 4KByte Aligned))
Then #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS < Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)

IF (((DS:RBX).FLAGS & & OxFFFFFFFFFFFFFFFE) I= 0)
Then #GP(0); FI;

100

Ref. # 329298-002

INSTRUCTION REFERENCES

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)
Then #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODEG4 != TMP_SECS.ATTRIBUTES.MODEG4BIT))
Then #GP(0); FI;

IF (CR4.0SFXSR = 0)
Then #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.0SXSAVE = 0)
Then
IF (TMP_SECS.ATTRIBUES.XFRM != 03H) THEN #GP(0); FI;
ELSE
IF ((TMP_SECS.ATTRIBUES.XFRM & XCRO) I= TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;
Fl;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)
Then #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA & (DS:RBX).0SSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE € compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE

(* Check page is read/write accessible *)

Check that DS:TMP_SSA_PAGE is read/write accessible;

If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))
THEN #PF(DS:TMP_SSA_PAGE); Fl;

IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS != DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT != PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0))

Then #PF(DS:TMP_SSA_PAGE); FI;
CR_XSAVE_PAGE_n <« Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR €< TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)
Then #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

Ref. # 329298-002 101

INSTRUCTION REFERENCES

Then #PF(DS:TMP_GPRY); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
Then #PF(DS:TMP_GPRY); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPRY); FI;
IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS != DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT != PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS I= EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
Then #PF(DS:TMP_GPRY); FI;

IF (TMP_MODEG4 = 0)
Then
IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) Then #GP(0); Fl;
Fl;

CR_GPR_PA < Physical_Address (DS: TMP_GPR);

TMP_TARGET < (DS:TMP_GPR)RIP;
IF (TMP_MODEG4 = 1)
Then
IF (TMP_TARGET is not canonical) Then #GP(0); FI;
ELSE
IF (TMP_TARGET > CS limit) Then #GP(0); Fl;
Fl;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODEG4 = 0)
Then
TMP_FSBASE < (DS:RBX).0FSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT € (DS:RBX).0FSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE < (DS:RBX).0GSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT € (DS:RBX).0GSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)
THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

)
)

Fl;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)
THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE
IF (TMP_GSUIMIT > DS.limit) THEN #GP(0); FI;
Fl;
ELSE
TMP_FSBASE < (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE < (DS:RBX).0GSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))
THEN #GP(0); FI;
Fl;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)

102 Ref. # 329298-002

INSTRUCTION REFERENCES

IF (DS:RBX.STATE = ACTIVE))
Then #GP(0); FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODEG4, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN
DS:RBX.STATE < INACTIVE;
#GP(0);
Fl;

CR_ENCALVE_MODE <« 1;
CR_ACTIVE_SECS < TMP_SECS;
CR_ELRANGE < (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA < Physical_Address (DS:RBX);
CR_TCS_LA € RBX;

CR_TCS_LA.AEP & RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector < FS.selector;
CR_SAVE_FS_base < FSbase;
CR_SAVE_FS_limit <« FS.limit;
CR_SAVE_FS_access_rights € FS.access_rights;
CR_SAVE_GS_selector < GS.selector;
CR_SAVE_GS_base < GS.base;
CR_SAVE_GS_limit €« GS.limit;
CR_SAVE_GS_access_rights €« GS.access_rights;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP < CRIP”
RIP < TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF € DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF € DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF < DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF € DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF € DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF €< DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF € DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT € DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC € DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID € DS:TMP_GPR.RFLAGS.ID;
RFLAGSRF €& DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM € 0;
IF (RFLAGS.IOPL = 3)

Then RFLAGS.IF = DS:TMP_GPR.IF; Fl;

Ref. # 329298-002 103

INSTRUCTION REFERENCES

IF (TCS.FLAGS.OPTIN = 0)
Then RFLAGS.TF = 0; FI;

(* If XSAVE is enabled, save XCRO and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.0SXSAVE = 1)

CR_SAVE_XCRO < XCRO;

XCRO ¢« TMP_SECS.ATTRIBUTES.XFRM;
Fl;

(* Pop the SSA stack*)
(DS:RBX).CSSA & (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base € TMP_FSBASE;
FS.limit € DS:RBX.FSLIMIT;
FS.type € 0001b;

FS.W € DS.W;

FSS €« 1;

FS.DPL < DS.DPL;

FS.G < 1;

FSB « 1;

FSP &« 1;

FS.AVL < DS.AVL,;

FS.L € DS.L;

FS.unusable < O;
FS.selector < 0OBH;

GS.base < TMP_GSBASE;
GS.limit €< DS:RBX.GSLIMIT;
GS.type € 0001b;

GS.W < DS.w;

GSS €« 1;

GS.DPL < DS.DPL;

GSG €« 1;

GSB ¢« 1;

GSP ¢« 1;

GS.AVL € DS.AVL;

GSL < DSL

GS.unusable < O;
GS.selector € 0BH;

CR_DBGOPTIN « TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ ELRANGE;

IF (CR_DBGOPTIN = 0)

THEN
Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF €« RFLAGS.TF;
RFLAGS.TF < 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Clear_all_pending_debug_exceptions;
Clear_pending_MTF_VM_exit;

ELSE
Clear all pending debug exceptions;

104

Ref. # 329298-002

INSTRUCTION REFERENCES

Clear pending MTF VM exits;
Fl;

(* Assure consistent translations *)
Flush_linear_context;

Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected
RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions
#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.0SFXSR = 0.
If CR4.0SXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.0SXSAVE = land SECS.ATTRIBUTES.XFRM is not a subset of XCRO.
#PF(fault code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.

If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CRO.TS is set.

64-Bit Mode Exceptions
#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.0SFXSR = 0.
If CR4.0SXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.0SXSAVE = land SECS.ATTRIBUTES.XFRM is not a subset of XCRO.
#PF(fault code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.

If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CRO.TS is set.

Ref. # 329298-002 105

INSTRUCTION REFERENCES

106 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

CHAPTER 6
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution
environments on processors supporting 1A32 and Intel® 64 architectures. These Intel SGX instructions are
designed to work with legacy software and the various 1A32 and Intel 64 modes of operation.

6.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES

The Intel SGX extensions (see Table 1-1) are available only when the processor is executing in protected mode of
operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CRO.PG enabled.

The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of
ENCLS and ENCLU.

6.2 IA32_FEATURE_CONTROL

A new bit in IA32_FEATURE_CONTROL MSR (bit 18) is provided to BIOS to control the availability of Intel SGX
extensions. For Intel SGX extensions to be available on a logical processor, bit 18 in the 1A32_FEATURE_CONTROL
MSR on that logical processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be
locked (bit O must be set). See Section 1.7.1 for additional details. OS is expected to examine the value of bit 18
prior to enabling Intel SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

6.3 INTERACTIONS WITH SEGMENTATION

6.3.1 Scope of Interaction

Intel SGX extensions are available only when the processor is executing in a protected mode operation (see
Section 6.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation policies
set up by the OS.

Intel SGX interacts with segmentation at two levels:
® The Intel SGX instruction (see the enclave instruction in Table 1-1), and

® logical-processor execution inside an enclave (legacy instructions and enclave instructions permitted inside an
enclave).

6.3.2 Interactions of Intel® SGX Instructions with Instruction Prefixes and Addressing

All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment
(DS). The segment-override prefix on Intel SGX instructions is ignored.

Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD excep-
tion.

All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing,
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.

Ref. # 329298-002 1

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

6.3.3 Interaction of Intel® SGX Instructions with Segmentation

The Intel SGX instructions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) ensure that all
usable segment registers (i.e., the segment registers that have “Segment Unusable” bit in “Access Rights” field,
a.k.a., “null” bit, set to 0) except for FS and GS have a zero base.

Additionally they save the existing contents of the FS/GS segment registers (including the hidden portion) in the
processor, and load those registers with new values. The instructions also ensure that the linear ranges and access
rights available under the newly-loaded FS and GS are subsets of the linear-address range/access rights available
under DS. See EENTER Leaf and ERESUME Leaf in Chapter 5 for exact details of this computation.

Any exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment
registers.

The enclave-entry instructions also ensure that the CS segment mode (64-bit vs 32 bit) is consistent with the

segment mode for which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODEG64 bit, and that the
CPL of the logical processor is 3.

Finally, all leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an
expand-up segment. Failing this check results in generation of a #GP(0) exception.

6.3.4 Interactions of Enclave Execution with Segmentation

During the course of execution, enclave code abides by all sesgmentation policies as dictated by legacy 1A32 and
Intel 64 Architectures, and generates appropriate exceptions on violations.

Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state
(via MOV seg register, POP seg register, LDS, far jump, etc.) results in the generation of a #UD.

Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave does not generate the #UD exception. If the
software running inside an enclave modifies the segment-base values for these registers using the WRFSBASE and
WRGSBASE instructions, the new values are saved into the current SSA frame on an asynchronous enclave exit
(AEX) and restored back on enclave entry via ENCLU[ERESUME] instruction.

6.4 INTERACTIONS WITH PAGING

Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only in paged mode of opera-

tion. Any attempt to execute these leaf functions in non-paged mode of operation results in delivery of #UD to the
system software (OS or VMM).

All the memory operands passed into Intel SGX instructions are interpreted as offsets within the data segments,
and the linear addresses generated by combining these offsets with DS segment register are subject to paging-
based access control, if paging is enabled at the time of the execution of the leaf function.

Since the ENCLU[EENTER] and ENCLU[EEXIT] can only be executed when paging is enabled, and since paging
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL of 3), enclave
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as
an extension to the traditional 1A-32 and Intel 64 paging state machine. See Section 2.5 for details.

It should be noted that Intel SGX instructions may set the A and D bit on non-faulting EPC pages, even if the
instruction may eventually fault due to some other reason.

6.5 INTERACTIONS WITH VMX

Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX-root or
VMX-non-root mode, as long as

® The software is not running in SMM mode of operation,
® The software is using a legal mode of operation (see Section 6.1).

2 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

A VMM has the flexibility to configure the VMCS to permit a guest to use the entirety of the ENCLS leaf functions or
any sub-set of the ENCLS leaf functions at the granularity of individual leaf function. Availability of the ENCLU leaf
functions in VMX non-root operation has the same requirement as ENCLU leaf functions outside of a virtualized
environment.

Enhancement in the VMCS to allow configurability for Intel SGX in a guest is enumerated by VMX capability MSRs.
A summary of the enumerated capability is listed in Table 6-1.

Table 6-1. Summary of VMX Capability Enumeration MSRS for Processors Supporting Intel® SGX

Interface Description
IA32_VMX_PROCBASED_CTLSZ[bit 15] Mirrors the value of CPUID.(EAX=07H, ECX=0).EBX.SGX
IA32_VMX_MISC[bit 30] If 1, VM entry checks that the VM-entry instruction length is in the range
0-15. See Section 6.5.3.

Details of the VMCS control to allow VMM to configure support of Intel SGX in guest operation is described in Section
6.5.1

6.5.1 VMM Controls to Configure Guest Support of Intel® SGX

The Intel SGX capability is primarily exposed to the software via CPUID instruction. VMMs can virtualize CPUID
instruction to expose/hide this capability to/from guests.

Next, the various parameters related to Intel SGX resources (such as EPC size, EPC location, etc.) are
exposed/controlled via model-specific registers. VMMs can virtualize these MSRs for the guests using standard
RDMSR/WRMSR hooks.

The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the
usual memory-virtualization techniques such as EPTs or shadow page tables.

The VMM can hook into the ENCLS instruction by setting the new VM-exiting control called “enable ENCLS exiting”
(bit 15 in the secondary processor-based VM-execution controls). Support for the 1-setting of this control will be
enumerated in the VMX capability MSRs (see Section 6.5.1.1).

If the “enable ENCLS exiting” control is O on a VM entry, all of the ENCLS leaf functions are permitted in VMX non-
root operation.

If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions in VMX non-root operation is governed
by consulting the bits in a new 64-bit VM-execution control called “ENCLS-exiting bitmap” (encoding pair
0202EH/0202FH).

When bits in the “ENCLS-exiting bitmap” are set, execution of the corresponding ENCLS leaf functions in the guest
results in a VM exit.

The priority of “ENCLS-exiting bitmap” check is immediately below the CPL check. This field exists only on proces-
sors that support the 1-setting of “enable ENCLS exiting”.

Processors that do not support Intel SGX, i.e. CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, the following items hold:
® VMX capability MSRS enumerate the 1-setting of “enable ENCLS exiting” is not supported,

® VM entries with “enable ENCLS exiting” field set to 1 will fail,

¢* VMREAD/VMWRITE of the “ENCLS-exiting bitmap” will fail due to access to an unsupported VMCS field.

6.5.1.1 Guest State Area - Guest Non-Register State

Table 6-2. Guest Interruptibility State

Position Field Value
0 Blocking by STI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 3C
1 Blocking by MOV SS See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C

Ref. # 329298-002 3

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Table 6-2. Guest Interruptibility State

Position Field Value

3 Blocking by SMI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, olume 3C
4 Blocking by NMI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer's Manual, \folume 3C
5 ENCLAVE_INTERRUPTION | See Section 6.5.5

6.5.1.2 VM-Execution Controls

VM-Execution controls related to Intel SGX include a ENCLS-exiting bitmap (accessed via VMCS encoding pair
0202EH/0202FH) and the “Enable ENCLS exiting” control at bit 15 of the secondary processor based VM execution
controls. The ENCLS-exiting bitmap provides bit fields for VMM to permit individual ENCLS leaf functions to execute
without causing a VM exit in a guest, see “ENCLS—Execute an Enclave System Function of Specified Leaf Number”.
If bit 31 of the primary processor-based VM execution controls is O, the processor functions as if the Enable ENCLS
Exiting bit was set to O.

Table 6-3. Secondary Processor Based VM Execution Controls

Position Field ‘ Value
14:.0 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer's Manual, lolume 3C
15 Enable ENCLS exiting ‘ Enable ENCLS-exiting bitmap for ENCLS leaf functions
31:16 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer's Manual, lolume 3C

6.5.1.3 Basic VM-Exit Information

The VM-exit information fields adds bit 27 to provide information on VM exits due to the interaction between
enclave and asynchronous events.

Table 6-4. Format of Exit Reason

Bit Position Value
15:.0 Basic exit reason: See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C
26:16 Reserved: See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer's Manual, Vlolume 3C
27 ENCLAVE_INTERRUPTION: see Section 6.5.2
31:28 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C

The encodings of Basic Exit Reason can indicate if the VM exit is related to executing ENCLS leaf functions.

Table 6-5. Basic Exit Reasons

Basic Exit Reason Value
0 through 59 See Appendix C of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C
60 ENCLS

6.5.2 VM Exits While Inside an Enclave

All VM exits that originate on an instruction boundary inside an enclave set a new bit called the “Enclave Interrup-
tion” bit (bit position 4) in the VMCS Guest Interruptibility State field (field encoding 4824H, Table 6-2) and in the
EXIT_REASON field (bit 27) of the VMCS before delivering the VM exit to the VMM. Any VM exit (except for failed
VM-entry VM exit) that sets the ENCLAVE_INTERRUPTION bit in GUEST_INTERRUPTIBILITY state, also sets Bit 27
in the EXIT_REASON field. These VM exit conditions include:

4 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

® Direct VM exits caused by exceptions, interrupts, and NMIs that happen while the logical processor is executing
inside an enclave.

® Indirect VM exits triggered by interrupts, exceptions, and NMIs that happen while the logical processor is
executing inside an enclave.

— This includes VM exits encountered during vectoring due to EPT violations, task switch, etc.
® Parallel VM exits caused by SMI that is received while the logical processor is executing inside an enclave.
® All other VM exits that happen on an instruction boundary that is inside an enclave.

1A32/Intel 64 Architectures define very strict priority ordering between classes of events that are received on the
same instruction boundary, and such ordering requires careful attention to cross-interactions between events. See
Section 6.6 for details of interactions of architecturally visible events with Intel SGX architecture.

All processor states saved in the VMCS on VM exits from an enclave contain synthetic state. See Table 4-2 for
details of the state saved into the VMCS.

A failed VM-entry VM exit will not set the ENCLAVE_INTERRUPTION bit in EXIT_REASON but since it will not save

the GUEST_INTERRUPTIBILITY_STATE, the original value of the ENCLAVE_INTERRUPTION bit will remain
untouched in GUEST_INTERRUPTIBILITY_STATE.

6.5.3 VM entry Consistency Checks and Intel® SGX

A VM entry will perform consistency checks according to those described in Chapter 26 of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3C.

Additionally, VM entry may allow the VM-entry instruction-length field having a value 0 if the following items all
hold true:

® 1A32_VMX_MISC[30] as 1,
® The valid bit (bit 31) of the VM-entry interruption-information field in the current VMCS is 1,

® the interruption type (bits 10:8)of the VM-entry interruption-information field has value 4 (software interrupt),
5 (privileged software exception), or 6 (software exception).

6.5.4 VM Execution Control Setting Checks

A VM entry will perform consistency checks according to those described in Chapter 26 of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3C. Additional consistency check on VM-execution control
fields includes:

® If CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, and if the “ENCLS Exiting” control (bit 15 in the secondary
processor-based VM-execution controls) is set, then the VM entry fails, which sets RFLAGS.ZF=1 and error
code=7 (VM entry with invalid control field).

6.5.5 Guest Interruptibility State Checks

If the ENCLAVE_INTERRUPTION bit in VM-entry control field is set and if CPUID.(EAX=07H, ECX=0):EBX.SGX = 0,
VM entry will fail.

If both the MOV-SS blocking and ENCLAVE__INTERRUPTION bits are set in the interruptibility-state field in the
guest-state area of the VMCS, VM entry leads to a Failed VMENTRY/VMEXIT, error code 33. Note that, since the
MOV SS and POP SS instructions are illegal inside an enclave, no VM exit will set the interruptibility-state field with
both bits set.

If the ENCLAVE_INTERRUPTION bit is set in the interruptibility-state field of the VMCS, and a VM entry leads to a
VMEXIT during event injection, then the VM exit sets the ENCLAVE_INTERRUPTION bit. Such a transition does not
include an asynchronous enclave exit and consequently, neither the processor's architectural state, nor the state
saved in the guest-state area of the VMCS is synthesized as is done during asynchronous enclave exits (for
example: there is no clearing of the GPRs or of VMCS fields such as the VM-exit instruction length or the low 12 bits
in certain address fields in the VMCS).

Ref. # 329298-002 5

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

6.5.6 Interaction of Intel® SGX with Various VMMs

If IA32_VMX_MISC.[bit 30] = 0, permitted VM entry instruction lengths are 1-15 bytes. If IA32_VMX_MISC.[bit
30] = 1, permitted VM entry instruction lengths allow 0 as a legal value for interruption type 4(software interrupt),
5 (privileged software exception), or 6 (software exception).

6.5.7 Interactions with EPTs

Intel SGX instructions are fully compatible with Extended Page Tables.

All the memory operands passed into Intel SGX instructions are interpreted as offsets within the data segments,
and the linear addresses generated by combining these offsets with DS segment register are subject to paging and
EPT-based access control.

The Intel SGX access control itself is implemented as an extension to the traditional 1A-32 paging/EPT state
machine. See Section 2.5 for details of this extension.

Intel SGX instructions may set A and D bit on non-faulting EPC pages, even if the instruction may eventually fault
due to some other reason, in IA page tables and EPT page tables when enabled.

6.5.8 Interactions with APIC Virtualization

The Intel SGX architecture interacts with APIC virtualization due to its interactions with the APIC access page as
well as Virtual APIC Page. See Section 6.11.2 for interactions of the Intel SGX architecture with the Virtual APIC
Page, and to Section 6.11.4 for the interactions of Intel SGX architecture with the APIC Access Page.

6.5.9 Interactions with Monitor Trap Flag

The interactions of Intel SGX with the Monitor Trap Flag are documented in Section 7.2.

6.5.10 Interactions with Interrupt-Virtualization Features and Events

If software is executing in an enclave and a VM exit would occur that would report “interrupt window” as basic exit
reason (due to the 1-setting of the “interrupt window exiting” VM-execution control), an AEX occurs before the VM
exit is delivered.

If software is executing in an enclave and a virtual interrupt would be delivered through the IDT (due to the 1-
setting of the “virtual interrupt delivery” VM-execution control), an AEX occurs before delivery of the virtual inter-
rupt.

If software is executing in an enclave and an external interrupt arrives that would cause a VM exit (due to the 1-
setting of the “external interrupt exiting” VM-execution control), an AEX occurs before the VM exit is delivered.

If software is executing in an enclave and an external interrupt arrives that would cause virtual interrupts to be
posted to the virtual-IRR field in the virtual-APIC page (due to the 1-setting of the “process posted interrupts” VM-
execution control), an AEX may or may not occur before the posting of the virtual interrupts. This behavior is imple-
mentation specific.

6.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS

All architecturally visible vectored events (IA32 exceptions, interrupts, SMI, NMI, INIT, VM exit) that are detected
while inside an enclave cause an asynchronous enclave exit. Additionally, INT3, entry/redirection, and the
SighalTXTMsg[SENTER] events also cause asynchronous enclave exits. Note that SignalTXTMsg[SEXIT] does not
cause an AEX.

On an AEX, information about the event causing the AEX is stored in the SSA (see Section 4.4 for details of AEX).
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the

first event results in detection of further events (e.g. VM exit, double fault, etc.), then the event information in the
SSA is not updated to reflect these subsequently detected events.

6 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

6.7 INTERACTIONS WITH THE XSAVE/XRSTOR PROCESSOR EXTENDED
STATES

6.7.1 Requirements and Architecture Overview

Processor extended states are the ISA features that are enabled by the settings of CR4.0SXSAVE and the XCRO
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions.
Details of discovery of processor extended states and management of these states are described in CHAPTER 13 of
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.

Additionally, the following requirements apply to Intel SGX:

® On an AEX, the Intel SGX architecture must protect the processor extended state in the state-save area (SSA),
and clear the secrets in the processor extended state, if the extended state is being used by an enclave.

® Intel SGX architecture must ensure that erroneous XCRO and/or XBV_HEADER settings by system software do
not result in SSA overflow.

® Enclave software should be able to discover only those processor extended states for which such protection is
enabled.

® The processor extended states that are enabled inside the enclave must form an integral part of the enclave's
identity. This requirement has two implications:

— Certain processor extended state (e.g., Memory Protection Extensions, see Chapter 9 of Intel® Archi-
tecture Instruction Set Extensions Programming Reference) modify the behavior of the legacy ISA
software. If such features are enabled for enclaves that do not understand those features, then such a
configuration could lead to a compromise of the enclave's security.

— Service providers may decide to assign different trust level to the same enclave depending on the ISA
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-feature Request Mask (XFRM)
in the ATTRIBUTES field of the SECS. On enclave entry, after certain consistency checks, the value in the XCRO is
saved in a micro-architectural location, and is replaced by the XFRM. On enclave exit, the original value of XCRO is
restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in enabled
state, and those that are disabled in XFRM are in disabled state. The entire ATTRIBUTES field, including the XFRM
subfield is integral part of enclave's identity (i.e., its value is included in reports generated by ENCLU[EREPORT],
and select bits from this field can be included in key-derivation for keys obtained via ENCLU[EGETKEY]).

On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA
frame, and overwritten by synthetic state (see Section 4.3 for the definition of the synthetic state). When the inter-
rupted enclave is resumed via ENCLU[ERESUME], the saved state for processor extended states enabled by XFRM
is restored.

6.7.2 Relevant Fields in Various Data Structures

6.7.2.1 SECS.ATTRIBUTES.XFRM

The ATTRIBUTES field of the SECS data structure (see Section 2.7) contains a sub-field called X-Feature Request
Mask (XFRM). Software populates this field at the time of enclave creation indicating the processor extended state
configuration required by the enclave.

Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of the
processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in XFRM
are saved on AEX from the enclave and restored on ERESUME.

The XFRM sub-field has the same layout as XCRO, and has consistency requirements that are similar to those for
XCRO. Specifically, the consistency requirements on XFRM values depend on the processor implementation and the
set of features enabled in CR4.

Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:

Ref. # 329298-002 7

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

¢ XFRM[1:0] must be set to 0x3.

® If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2]
must be zero.

® If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCRO.

The various consistency requirements are enforced at different times in the enclave’s life cycle, and the exact
enforcement mechanisms are elaborated in Section 6.7.3 through Section 6.7.6.

On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE,
software should initialize XFRM to be a subset of XCRO that would be present at the time of enclave execution.
Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled (CR4.0SFXSR
=1).

6.7.2.2 SECS.SSAFRAMESIZE

The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated? for
each SSA frame, including both the GPRSGX area and the XSAVE area (x87 and XMM states are stored in the latter
area). The specified size must be large enough to hold all the general-purpose registers, additional Intel SGX
specific information, plus the state size of set of processor extended states specified by SECS.ATTRIBUTES.XFRM
(see Section 2.9 for the layout of SSA). The SSA is always in non-compacted format.

If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be
set to 0x3) is saved at offset 512 on an AEX.

If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX returns if XCRO were set to XFRM. The following
pseudo code illustrates how software can calculate this length using XFRM as the input parameter without modi-
fying XCRO:
offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] !'= 0) Then
tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then
offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];
FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the Enclave
Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCRO.

6.7.2.3 XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset O of the frame.

6.7.3 Processor Extended States and ENCLS[ECREATE]

The ECREATE leaf of the ENCLS instruction enforces a number of consistency checks described earlier. The execu-
tion of ENCLS[ECREATE] instruction results in a #GP(0) exception in any of the following cases:

® SECS.ATTRIBUTES.XFRM[1:0] is not 3.

® The processor does not support XSAVE and any of the following is true:
— SECS.ATTRIBUTES.XFRM[63:2] is not O,
— SECS.SSAFRAMESIZE is 0.

1. It is the responsibility of the enclave to actually allocate this memory.

8 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

® The processor supports XSAVE and any of the following is true:
— XSETBV would fault on an attempt to load XFRM into XCRO.
— XFRM[63]=1.

— SSAFRAMESIZE*4096 < 168 + X, where X is the value that would be returned in EBX if CPUID were
executed with EAX=0DH, ECX=0, and XCRO was loaded with the value of XFRM.

6.74 Processor Extended States and ENCLU[EENTER]

6.7.4.1 Fault Checking

The EENTER leaf of ENCLU instruction enforces a number of consistency requirements described earlier. Specifi-
cally, the ENCLU[EENTER] instruction results in a #GP(0) exception in any of the following cases:

® CR4.0SFXSR=0.
® The processor supports XSAVE and either of the following is true
— CR4.0SXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.
— (SECS.ATTRIBUTES.XFRM & XCRO) != SECS.ATTRIBUTES.XFRM

6.74.2 State Loading

If ENCLU[EENTERY] is successful, it saves the current value of XCRO in a micro-architectural location and sets XCRO
to SECS.ATTRIBUTES.XFRM.

6.7.5 Processor Extended States and AEX

6.7.5.1 State Saving

On an AEX, processor extended states are saved into the XSAVE area of the SSA frame as if the XSAVE instruction
was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE area, and (for
64-bit enclaves) as if REX.W=1. The XSTATE_BYV part of the XSAVE header is saved with O for every bit that is O in
XFRM. Other bits may be saved as O if the state saved is initialized.

Note that enclave entry ensures that if CR4.0OSXSAVE is set to O, then SECS.ATTRIBUTES.XFRM is set to 3. It
should also be noted that it is not possible to enter an enclave with FXSAVE disabled. While AEX is defined to save
data as XSAVE would, implementations may use FXSAVE flows if CR4.0SXSAVE=0. In this case, the implementa-
tion ensures that the non-state data is consistent with the XSAVE format, and not the FXSAVE format (e.g., the
XSAVE header).

6.7.5.2 State Synthesis
After saving state, AEXs restore XCRO to the value it held at the time of the most recent enclave entry.

The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized.
Details of state synthesis on AEX are documented in Section 4.3.1.

6.7.6 Processor Extended States and ENCLU[ERESUME]

6.7.6.1 Fault Checking

The ERESUME leaf of ENCLU instruction enforces a number of consistency requirements described earlier. Specifi-
cally, the ENCLU[ERESUME] instruction results in a #GP(0) exception in any of the following cases:

® CR4.0SFXSR=0.

Ref. # 329298-002 9

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

® The processor supports XSAVE and either of the following is true
— CR4.0SXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.
— (SECS.ATTRIBUTES.XFRM & XCRO) != SECS.ATTRIBUTES.XFRM.

A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault
will cause the ENCLU[ERESUME] instruction to fault. Examples include the following:

® A bitis setin the XSTATE_BYV field and clear in XFRM.
® The required bytes in the header are not clear.
® Loading data would set a reserved bit in MXCSR.

Any of these conditions will cause ERESUME to fault, even if CR4.0SXSAVE=O0. In this case, it is the responsibility
of the processor to generate faults that are caused by XRSTOR and not by FXRSTOR.

6.7.6.2 State Loading
If ENCLU[ERESUME] is successful, it saves the current value of XCRO microarchitecturally and sets XCRO to XFRM.

State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with
XCRO=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if
REX.W=1. The XSTATE_BV part of the XSAVE header is saved with O for every bit that is O in XFRM, as a non-
compacted buffer. Other bits may be saved as 0O if the state saved is initialized.

ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly (e.g.,
by marking all state as modified).

6.7.7 Processor Extended States and ENCLU[EEXIT]

The ENCLU[EEXIT] instruction does not perform any X-feature specific consistency checks. However, successful
execution of the ENCLU[EEXIT] instruction restores XCRO to the value it held at the time of the most recent enclave
entry.

6.8 INTERACTIONS WITH SMM

6.8.1 Availability of Intel® SGX instructions in SMM

Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside SMM
results in a #UD exception.

6.8.2 SMI while Inside an Enclave

The response to an SMI received while executing inside an enclave depends on whether the dual-monitor treat-
ment is enabled. For detailed discussion of transfer to SMM, see Chapter 34, “System Management Mode” of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C.

If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled,
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition to
saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EEOH).

If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the

logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit.
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 6-4) and in the Guest Interrupt-
ibility State field (see Table 6-2) of the SMM transfer VMCS.

10 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

An SMI received immediately after ERESUME results in an asynchronous exit. The asynchronous exit does not set
a pending MTF indication, and consequently, no pending MTF indication is saved inside the SMRAM. After RSM the
processor will re-establish the MTF VMCS execution control.

6.8.3 SMRAM Synthetic State of AEX Triggered by SMI

All processor registers saved in the SMRAM have the same synthetic values listed in Section 4.3. Additional SMRAM
fields that are treated specially on SMI are:

Table 6-6. SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value

SMRAM Offset 07EEOH.Bit 1 ENCLAVE_INTERRUPTION | Set to 1 if exit occurred in enclave mode

6.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX

INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor to
exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” state
(Table 9.1 in Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A). If the logical processor
is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters Wait-for-
SIPI (WFS) state.

INIT received inside an enclave, while the logical processor (LP) is in VMX-root operation, is blocked until either the
LP exits VMX operation (via VMXOFF) or enters VMX-non-root operation (via VMLAUNCH or VMRESUME). Since
VMXOFF, VMLAUNCH, and VMRESUME cause a CPL-based #GP inside an enclave, such an INIT remains blocked at
least until the LP exits the enclave.

INIT received inside an enclave, while the logical processor is in VMX-non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT is delivered to the VMM via appropriate VM exit with INSIDE_ENCLAVE bit in the
VMCS.EXIT_REASON set.

A processor cannot be inside an enclave in WFS state. Consequently, a SIPI received while inside an enclave is lost.

If a processor is in WFS state outside VMX operation, receipt of SIPI vectors the processor to 000VVOOOH to run
BlOS-initialization code. If a processor is in WFS state in VMX-non-root operation, receipt of SIPI causes the LP to
deliver appropriate VM exit. A processor cannot be in WFS state in VMX-root operation. In either case, the behavior
of the LP on SIPI while in WFS state does not change for Intel SGX.

INIT is considered a warm reset, which keeps all the cache state, RR state, and feature-configuration state unmod-
ified. Consequently, subsequently to INIT, CPUID enumeration of Intel SGX feature remains intact.

The SGX-related processor states after INIT-SIPI-SIPI is as follows:
® PRMRR: Unchanged

¢ EPCM: Unchanged

® CPUID.LEAF_12H.*: Unchanged

® ENCLAVE_MODE: 0 (LP exits enclave asynchronously)

® MEE state: Unchanged

OSes that use INIT-SIPI-SIPI only during initial boot (i.e., only after reset) can blindly assume that the entire EPC
is empty, and every entry in the EPCM is marked invalid. These OSes do not need to use EREMOVE after INIT-SIPI-
SIPI.

OSes that use INIT-SIPI-SIPI for dynamic offlining of a processor should use software conventions for communi-
cating the EPCM and other state with the processors that are offlined/onlined dynamically.

6.10 INTERACTIONS WITH DMA

DMA is not allowed to access any Processor Reserved Memory.

Ref. # 329298-002 11

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

6.11 INTERACTIONS WITH MEMORY CONFIGURATION AND VARIOUS MEMORY
RANGES

6.11.1 Memory Type Considerations for PRMRR

All enclave accesses to the PRMRR region always use the memory type specified by the PRMRR, unless the CR0.CD
bit on one of the logical processors on the core running the enclave is set. In other words, PRMRR memory type
overrides memory types coming from overlapping MTRRs and all other architectural range registers, and those
coming from PAT and EPTs. All non-enclave accesses to PRMRR region result in abort-page semantics, while all
enclave code fetch access to non-PRMRR region result in a #GP(0) exception (see Section 2.3 for description of
Access Control).

The TYPE field in the PRMRR_BASE register can only be programmed with values UC(0x0) and WB (0x6). Any
attempt to write a value other than these two to the TYPE field of the PRMRR_BASE MSR results in #GP.

At power-on, all bits in PRMRR_BASE are initialized to O and mask.

6.11.2 Interactions of PRMRR with Various Memory Regions

6.11.2.1 Interactions of PRMRR with SMRR

SMRR and PRMRR are not allowed to overlap, if SMRR is valid and PRMRR is configured (locked). If either SMRR or
PRMRR is written such that the SMRR pair will be valid and the range of SMRR overlaps with the configured (locked)
value of PRMRR, then a #GP(0) is signaled. Programming non-contiguous SMRR or PRMRR will cause #GP.

6.11.2.2 Interactions of PRMRR with MTRRs

MTRRs are allowed to overlap with PRMRR. However, for all legal memory accesses to PRMRR region, PRMRR
memory type overrides the MTRR memory type.

6.11.2.3 Interactions of PRMRR with MMIO

The MMIO region is not allowed to overlap with PRMRR. If MMIO region overlaps with PRMRR it results in
CPUID.(EAX=12H, ECX=0):EAX[bit 0] = O (i.e. enclave instructions not available).

6.11.2.4 Interactions of PRMRR with IA32_APIC_BASE

IA32_APIC_BASE and PRMRR are not allowed to overlap if PRMRR is configured (locked). On a write to either
IA32_APIC_BASE or PRMRR, if the page defined by 1A32_APIC_BASE overlaps with the configured (locked) value
of PRMRR, then a #GP(0) is signaled.

6.11.3 Interactions of PRMRR with Virtual APIC Page

Virtual-APIC Page is allowed to overlap with PRMRR. However, if PRMRR overlaps with the Virtual APIC page, then
all accesses to Virtual APIC page result in abort-page semantics. See the discussion on PRMRR interactions with
Physical Memory Accesses for more details.

6.11.3.1 Interactions of PRMRR with Physical Memory Accesses

Physical memory accesses can be classified into enclave physical accesses and non-enclave physical accesses. All
enclave physical memory accesses to an EPC section within PRMRR region are guaranteed to go to the EPC
memory, while all non-enclave physical memory accesses result in abort-page behavior.

12 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Enclave physical accesses consist of the implicit memory accesses performed by certain Intel SGX instructions to
the enclave SECS, TCS, or SSA by following the physical addresses cached by the processor at various times. See
Section 2.3 for the discussion of explicit vs. implicit accesses.

A memory access is called a non-enclave physical access if

1. either (a) the access is generated from software that is not running as a VMX guest; or (b) the “enable EPT”
VM-execution control is O; or (c) the access's physical address is not the result of a translation through the EPT
paging structures; and

2. either (a) the access is not generated by a linear address; or (b) the access's physical address is not the
translation of its linear address.

Non-enclave physical accesses include the following:

® If VMX is disabled, or if the logical processor is executing in VMX-root mode of operation, or if the “enable EPT”
VM-execution control is O
— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that
causes the logical processor to use) PAE paging.

— Updates to the accessed and dirty bits in the paging structures.

® If VMX is enabled, logical processor is executing in VMX-non-root mode of operation, and the “enable EPT” VM-
execution control is 1, accesses to the EPT paging structures.

® Any of the following accesses made by the processor to support VMX non-root operation:
— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical addresses in VM-execution
control fields in the VMCS. These include the 1/0 bitmaps, the MSR bitmaps, VE info area, VMFUNC list and
the virtual-APIC page.

® Accesses that effect transitions into and out of SMM. These include the following:
— Accesses to SMRAM during SMI delivery and during execution of RSM.
— Accesses during SMM VM exits (including accesses to MSEG) and during VM entries that return from SMM.

6.11.4 Interactions of Intel® SGX with APIC Access Address

A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave
(see Section 2.3). Consequently, all implicit accesses are always targeted at a page inside an EPC.

For all other memory accesses, physical-address matches against the APIC-access address occur before checking
for other range register matches.

An Enclave Access (a linear memory access which is either done by from within an enclave into it ELRANGE, or an
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page
causes a #PF exception (APIC page is expected to be outside of EPC).

Non-Enclave accesses made either by an Intel SGX instruction (either SGX1 or SGX2) or by a logical processor
inside an enclave that would have caused redirection to the virtual-APIC page instead cause an APIC-access VM
exit.

Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses results in abort-page semantics if these accesses eventually
reach PRMRR range. This applies to any physical accesses that are redirected to the virtual-APIC page.

While a logical processor inside an enclave, the checking of the instruction pointer’s linear address against the
enclave's linear-address range (ELRANGE) is done before checking the physical address to which the linear address
translates against the APIC-access page. Thus, an attempt to execute an instruction outside ELRANGE, the instruc-
tion fetch results in a #GP(0), even if the linear address would translate to a physical address overlaps the APIC-
access page.

Ref. # 329298-002 13

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

6.12 INTERACTIONS WITH TXT

6.12.1 Enclaves Created Prior to Execution of GETSEC

Enclaves which have been created before the GETSEC[SENTER] instruction are available for execution after the
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Intel SGX will need to be re-enabled
by the software launched by GETSEC[SENTER], in addition to any other actions a TXT launched environment
performs when preparing to execute code which was running previously to GETSEC[SENTER].

6.12.2 Interaction of GETSEC with Intel® SGX

All leaf functions of the GETSEC instruction are illegal inside an enclave, and result in #UD.

Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state.

RLP threads executing an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.

The execution of a TXT launch does not affect Intel SGX configuration or security parameters.

Processors supporting Intel SGX also require that the ACM-verification key be located on die, and that such ACMs
contain a new header field.

6.12.3 Interactions with Authenticated Code Modules (ACMs)

After execution of any non-faulting Intel SGX instructions, the Intel SGX architecture forbids the launching of ACMs
with Intel SGX SVN that is lower than the expected Intel SGX SVN threshold that was specified by BIOS. The non-
faulting Intel SGX instructions refer to Intel SGX instruction leaves that do not return error code and executed
successfully without causing an exception. Intel SGX provides interfaces for system software to discover whether a
non faulting Intel SGX instruction has been executed, and evaluate the suitability of the Intel SGX SVN value of any
ACM that is expected to be launched by the OS or the VMM.

These interfaces are provided through a read-only MSR called the 1A32_SGX_SVN_STATUS MSR (MSR address
500h). The 1IA32_SGX_SVN_STATUS MSR has the format shown in Table 6-7:

Table 6-7. Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. < If 1, indicates that a non-faulting Intel SGX instruction
has been executed, consequently, launching a properly
signed ACM but with Intel SGX SVN value less than the
BIOS specified Intel SGX SVN threshold would lead to an
TXT shutdown.

= If O, indicates that the processor will allow a properly
signed ACM to launch irrespective of the Intel SGX SVN
value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT | SINIT ACM e If CPUID.01H:ECX.SMX =1, this field reflects the
expected threshold of Intel SGX SVN for the SINIT ACM.
e If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the 1A32_SGX_SVN_STATUS
MSR. If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is
greater than the Intel SGX SVN value in the ACM's header, and if bit O of IA32_SGX_SVN_STATUS is 1, then the
0OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either from the
BIOS or from an external resource. If either the Intel SGX SVN of the ACM is greater than the value reported by

14 Ref. # 329298-002

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

IA32_SGX_SVN_STATUS, or the lock bit in the 1A32_SGX_SVN_STATUS is not set, then the OS/VMM can safely
launch the ACM. However, OSVs/VMMs are strongly advised to update their version of the ACM any time they
detect that the Intel SGX SVN of the ACM carried by the OS/VMM is lower than that reported by
IA32_SGX_SVN_STATUS MSR, irrespective of the setting of the lock bit.

6.13 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS

Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well as
the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

6.14 INTERACTIONS WITH INTEL®* TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to
the fallback handler.

2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback
handler is within the enclave.

3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.

4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and
control is transferred to the fallback handler. No #GP is delivered.

5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

6.14.1 HLE and RTM Debug

RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if

IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no
exception delivered. After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP
detected inside an RTM transaction region will just cause an abort with no exception delivered. After opt-in entry,
if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM translation will terminate
speculative execution, set RIP to the address of the XBEGIN instruction, and be delivered as #DB (any #BP is
converted to #DB) - imply an Intel SGX AEX. DR6[16] will be cleared, indicating RTM debug (if the #DB causes a
VM exit, DR6 is not modified but bit 16 of the pending debug exceptions field in the VMCS will be set).

6.15 INTEL® SGX INTERACTIONS WITH S STATES

Whenever an Intel SGX enabled processor leaves the SO or S1 state for S2-S5 state, enclaves are destroyed. This
is due to the EPC being destroyed when power down occurs.

6.16 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

6.16.1 Interactions with MCA Events

All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause
an asynchronous enclave exit.

Ref. # 329298-002 15

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled,
(CPUID.SGX_Leaf.0:EAX[SGX1] == 0). It cannot be enabled until after the next reset.

6.16.2 Machine Check Enables (IA32_MCi_CTL)

All supported 1A32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to 'O in any of the IA32_MCi_CTL register
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SE1] to 0) until the next reset.

If Intel SGX instructions are disabled, PRMRR memory protections remain intact and threads in enclave mode may
be forced to exit (e.g. when attempting to execute an SE instruction).

6.16.3 CR4.MCE

CR4.MCE can be set or cleared with no interactions with Intel SGX.

6.17 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.

ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA
frame.

AEX saves EFLAGS.VIP and EFLAGS.VIF unmaodified into the EFLAGS image in the SSA frame. AEX modifies neither
EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS.

If CR4.PVI =1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI causes
a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without change

within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without fault;
CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case.

16 Ref. # 329298-002

ENCLAVE CODE DEBUG AND PROFILING

CHAPTER 7
ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave
instructions.

7.1 CONFIGURATION AND CONTROLS

7.1.1 Debug Enclave vs. Production Enclave

The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use
EDBGRD/EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measure-
ment of the enclave and therefore doesn't require a special SIGSTRUCT to be generated for this matter.

The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation for
the enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave
will not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be
required for a debug enclave to run in a meaningful way.

EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section
5.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

7.1.2 Tool-chain Opt-in

The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, including
code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, and performance monitoring. This bit is
forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR to the TCS of a debug
enclave.

An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to O is called an opt-out entry. Conversely, an
enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

7.2 SINGLE STEP DEBUG

7.2.1 Single Stepping Requirements
The following requirements are identified for the single-stepping architecture:
® The privileged Intel SGX instruction ENCLS must exhibit legacy single-stepping behavior.

® If a debugger is not debugging an enclave, then the enclave should appear as a “giant instruction” to the
debugger.

® The architecture must allow an SGX-capable debugger and a debug enclave to single-step within an enclave
that it wants to debug in a fashion that is consistent with the 1A32/Intel 64 legacy prior to the introduction of
Intel SGX.

Ref. # 329298-002 1

ENCLAVE CODE DEBUG AND PROFILING

7.2.2 Single Stepping ENCLS Instruction Leafs

If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending on the instruc-
tion boundary immediately after the ENCLS instruction. Additionally, if the instruction is invoked from a VMX guest,
and if the monitor trap flag is asserted at the time of the time of invocation, then an MTF VM exit is pending on the
instruction boundary immediately after the instruction.

7.2.3 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.

An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may clear the RFLAGS.TF bit,
and suppress the monitor trap flag. In such situations, an exit from the enclave, either via the EEXIT leaf function
or via an AEX restores the RFLAGS.TF bit and effectiveness of the monitor trap flag. The details of this
clearing/suppression and the exact pending of single stepping events across EENTER/ERESUME/EEXIT/AEX are
covered in detail in Section 7.2.4.

If the RFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, then a single-step debug exception is
pending on the instruction boundary immediately after the ENCLU instruction. Additionally, if the instruction is
invoked from a VMX guest, and if the monitor trap flag is asserted at the time of invocation, and if the monitor trap
flag is not suppressed by the preceding enclave entry, then an MTF VM exit is pending on the instruction boundary
immediately after the instruction.

Consistent with the 1A32 and Intel® 64 architectures, a pending MTF VM exit takes priority over a pending debug
exception. Additionally, if an SMI, an INIT, or an #MC is received on the same instruction boundary, then that event
takes priority over both the pending MTF VM exit and the pending debug exception. In such a situation, the pending
MTF VM exit and/or pending debug exception are handled in a manner consistent with the 1A32 and Intel 64 archi-
tectures.

If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no
single-step debug exception is asserted. In such a situation, if the instruction is executed from a VMX guest, and if
the VMM has asserted the monitor trap flag, then an MTF VM exit is pending after the delivery of the fault through
the IDT (i.e., before the first instruction of the OS handler). If a VM exit occurs before reaching that boundary, then
the MTF VM exit is lost.

7.2.4 Single-stepping Enclave Entry with Opt-out Entry

7.2.4.1 Single Stepping without AEX

Figure 7-1 shows the most common case for single-stepping after an opt-out entry.

} EENTER } 0e
ERESUME
D L‘ st || sz | ms@ | EEXT :
D |
| —® trmTF
| Handler
|
sMi,
INIT
} RFLAGS.TF . Single-Step #DB Pending #MC|
| Higher Priority
DVMCS.MTF O MTF VM Exit Pending 5 — — P Handeer

Figure 7-1. Single Stepping with Opt-out Entry - No AEX

2 Ref. # 329298-002

ENCLAVE CODE DEBUG AND PROFILING

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in a VMX guest, and if the
monitor trap flag is asserted at the time of the enclave entry, then an MTF VM exit is pending on the instruction
boundary after EEXIT.

The value of the RFLAGS.TF bit at the end of EEXIT is same as the value of RFLAGS.TF at the time of the enclave
entry. Similarly, if the enclave is executing inside a VMX guest, then the value of the monitor trap flag after EEXIT
is same as the value of that control at the time of the enclave entry.

Consistent with the 1A32 and Intel 64 architectures, MTF VM exit, if pending, takes priority over a pending debug
exception. If an SMI, an INIT, or an MC# is received on the same instruction boundary, then that event takes
priority over both the pending MTF VM exit and the pending debug exception. In such a situation, the pending MTF
VM exit and/or pending debug exception are handled in a manner consistent with the 1A32 and Intel 64 architec-
ture.

7.2.4.2 Single Step Preempted by AEX due to Non-SMI Event

Figure 7-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

} EENTER
ERESUME
D L‘ Inst1 | mse || s || EEXT
Event Inside Enclave } O TFIMTF
AEX Handler
D Higher Priority
} RFLAGS.TF . Single-Step #DB Pending Handler
AEX
DVMCSMTF O MTF VM Exit Pending — Handler

Figure 7-2. Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary

In this scenario, if the enclave is executing in a VMX guest, and if the monitor trap flag is asserted at the time of
the enclave entry, then an MTF VM exit is pending on the instruction boundary after the delivery of the AEX. Consis-
tent with the 1A32 and Intel 64 architectures, if another VM exit happens before reaching that instruction boundary,
the MTF VM exit is lost.

The value of the RFLAGS.TF bit at the end of AEX is same as the value of RFLAGS.TF at the time of the enclave
entry. Also, if the enclave is executing inside a VMX guest, then the value of the monitor trap flag after AEX is the
same as the value of that control at the time of the enclave entry.

7.2.5 RFLAGS.TF Treatment on AEX

When an opt-in enclave takes an AEX, RFLAGS.TF passes unmodified into synthetic state, and is saved as
RFLAGS.TF=0 in the GPR portion of the SSA. For opt-out entry, the external value of TF is saved in CR_SAVE_TF,
and TF is then cleared. For more detail see EENTER and ERESUME in Chapter 5.

7.2.6 Restriction on Setting of TF after an Opt-out Entry

From an opt-out EENTER or ERESUME until the next enclave exit, enclave is not allowed to set RFLAGS.TF. In such
a situation, the POPF instruction forces RFLAGS.TF to O if the enclave was entered through TCS with DBGOPTIN=0.

Ref. # 329298-002 3

ENCLAVE CODE DEBUG AND PROFILING

7.2.7 Trampoline Code Considerations

Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step #DB
after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

7.3 CODE AND DATA BREAKPOINTS

7.3.1 Breakpoint Suppression

On an opt-out entry into an enclave, all code and data breakpoints that overlap with the ELRANGE are suppressed.
On any entry (either opt-in or opt-out) into an enclave, all code breakpoints that do not overlap with ELRANGE are
also suppressed.

7.3.2 Breakpoint Match Reporting during Enclave Execution

The processor does not report any new matches on debug breakpoints that are suppressed on enclave entry.
However, the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.

Intel SGX architecture specifically forbids reporting of silent matches on any debug breakpoints that overlap with
ELRANGE after an opt-out entry.

7.3.3 Reporting of Code Breakpoint on Next Instruction on a Debug Trap

If execution in an enclave encounters a single-step trap or an enabled data breakpoint, the logical processor
performs an AEX. Following the AEX, the logical processor checks the new instruction pointer (the AEP address)
against any code breakpoints programmed in DRO-DR3. Any matches are reported to software.

If execution in an enclave encounters an enabled code breakpoint, the logical processor checks the current instruc-
tion pointer (within the enclave) against any code breakpoints programmed in DRO-DR3. This checking for code
breakpoints occurs before the AEX, the Intel SGX breakpoint-suppression architecture applies. Following this, the
logical processor performs an AEX, after which any breakpoints matched earlier are reported to software.

734 RFLAGS.RF Treatment on AEX

RF is always set to O in synthetic state. This is because ERESUME after AEX is a new execution attempt.

RF value saved on SSA is the same as what would have been saved on stack in the non-SGX case. AEXs due to
interrupts, traps, and code breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1
in the SSA.

7.3.5 Breakpoint Matching in Intel® SGX Instruction Flows

None of the implicit accesses made by Intel SGX instructions to EPC regions generate data breakpoints. Explicit
accesses made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE],
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], ENCLS[EDBGWR],
ENCLU[EENTER], and ENCLU[ERESUME] to the EPC parameters do not fire any data breakpoints.

Explicit accesses made by the remaining Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]), trigger
precise data breakpoints for their EPC operands. It should also be noted that all Intel SGX instructions trigger
precise data breakpoints for their non-EPC operands.

After an opt-out entry, ENCLU[EGETKEY] and ENCLU[EREPORT] do not fire any of the data breakpoints that were
suppressed as a part of the enclave entry.

4 Ref. # 329298-002

ENCLAVE CODE DEBUG AND PROFILING

7.4 INT3 CONSIDERATION

7.4.1 Behavior of INT3 inside an Enclave

Inside an enclave, INT3 delivers a fault-class exception. However, the vector delivered as a result of executing the
instruction depends on the manner in which the enclave was entered. Following opt-out entry, the instruction
delivers #UD. Following opt-in entry, INT3 delivers #BP.

Since the event is a fault-class exception, the delivery flow of the exception does not check CPL against the DPL in
the IDT gate. (Normally, delivery of INT3 generates a #GP if CPL is greater than the DPL field in IDT gate 3.) Addi-
tionally, the RIP saved in the SSA is always that of the INT3 instruction. The RIP saved on the stack/VMCS is that

of the trampoline code as specified by the AEX architecture.

If execution of INT3 in an enclave causes a VM exit, the event type in the VM-exit interruption information field
indicates a hardware exception (type 3; not a software exception with type 6) and the VM-exit instruction length
field is saved as zero.

74.2 Debugger Considerations

The INT3 is always fault-like inside an enclave. Consequently, the debugger must not decrement SSA.RIP for #BP
coming from an enclave. INT3 will result in #UD, if the debugger is not attached to the enclave.

7.4.3 VMM Considerations

As described above, INT3 executed by enclave delivers #BP with “interruption type” of 3. This behavior will not
cause any problems for VMMs that obtain VM-entry interruption information from appropriate VMCS field (as
recommended in Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 3C), and those VMMs
will continue to work seamlessly.

VMMs that fabricate the VM-entry interruption information based on the interruption vector need additional
enabling. Specifically, such VMMs should be modified to use injection type of 3 (instead of 6) when they see inter-
ruption vector 3 along with the VMCS “Enclave Interruption” bit set.

7.5 BRANCH TRACING

7.5.1 BTF Treatment

Any single-step traps pending after EENTER trigger BTF exception, as EENTER is considered a branch instruction.
Additionally, any single-step traps pending after EEXIT trigger BTF exception, as EEXIT is also considered a branch
instruction. ERESUME does not trigger BTF traps. An AEX does not trigger BTF or TF traps.

7.5.2 LBR Treatment

7.5.2.1 LBR Stack on Opt-in Entry

An opt-in enclave entry does not change the behavior of IA32_DEBUGCTL.LBR bit. Both enclave entry and enclave
exit push a record on LBR stack. EENTER/ERESUME with TCS.FLAGS.DBGOPTIN=1, inserts a new LBR record on
the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds linear address of the EENTER/ERESUME
instruction, while MSR_LASTBRANCH_n_TO_IP of this record holds linear address of EENTER/ERESUME destina-
tion.

On EEXIT a new LBR record is pushed on the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds
linear address of the EEXIT instruction, while MSR_LASTBRANCH_n_TO__IP of this record holds the linear address
of EEXIT destination.

Ref. # 329298-002 5

ENCLAVE CODE DEBUG AND PROFILING

On AEX a new LBR record is pushed on the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds RIP
saved in the SSA, while MSR_LASTBRANCH_n_TO_IP of this record holds RIP of the linear address of the AEP.

Additionally, for every branch inside the enclave, one record each is pushed on LBR stack.

Figure 7-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indicates
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of the
instruction at the end of the arrow.

BR2 >@
X

IRET » AEP

:

» Inst4

m
Py
m
wn
[
<

BR5 » Inst6

EEXIT » Inst7

E
gt

Figure 7-3. LBR Stack Interaction with Opt-in Entry

75.2.2 LBR Stack on Opt-out Entry

An opt-out entry into an enclave suppresses I1A32_DEBUGCTL.LBR bit, and enclave exit after an opt-out entry un-
suppresses the 1A32_DEBUGCTL.LBR bit.

Opt-out entry into an enclave does not push any record on LBR stack.

If IA32_DEBUGCTL.LBR is set at the time of enclave entry, then EEXIT following such an enclave entry pushes one
record on LBR stack. The MSR_LASTBRANCH_n_FROM__IP of such record holds the linear address of the instruction
that took the logical processor into the enclave, while the MSR_LASTBRANCH_n_TO__IP of such record holds linear
address of the destination of EEXIT. Additionally, if IA32_DEBUGCTL.LBR is set at the time of enclave entry, then an
AEX after such an entry pushes one record on LBR stack, before pushing record for the event causing the AEX. The
MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction that took the LP into the
enclave, while MSR_LASTBRANCH_n_TO_IP of the new record holds linear address of the AEP. If the event causing
AEX pushes a record on LBR stack, then the MSR_LASTBRANCH_n_FROM__IP for that record holds linear address of
the AEP.

Figure 7-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indicates
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of the
instruction at the end of the arrow.

6 Ref. # 329298-002

ENCLAVE CODE DEBUG AND PROFILING

EENTER Instl

BR2 Inst3

wi |

AEP » OS

¢

IRET » AEP

ERESUME
EEXIT

Figure 7-4. LBR Stack Interaction with Opt-out Entry

i

7.5.2.3 Mispredict Bit, Record Type, and Filtering

All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX
operations are always non-HLE/non-RTM records.

For LBR filtering, EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in
MSR_LBR_SELECT controls filtering of the new records introduced by Intel SGX.

7.6 INTERACTION WITH PERFORMANCE MONITORING

7.6.1 IA32_PERF_GLOBAL_STATUS Enhancement

On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as “Anti
Side-channel Interference” (ASCI) at bit position 60. If this bit is O, the performance monitoring data in various
performance monitoring counters are accumulated normally as defined by relevant architectural/microarchitec-
tural conditions associated with the eventing logic. If the ASCI bit is set, the contents in various performance moni-
toring counters can be affected by the direct or indirect consequence of Intel SGX protection of enclave code
executing in the processor.

7.6.2 Performance Monitoring with Opt-in Entry

An opt-in enclave entry allow performance monitoring eventing logic to observe the contribution of enclave code
executing in the processor. Thus the contents of performance monitoring counters does not distinguish between
contribution originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work
as defined in the 1A32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS
MSR is always cleared.

Ref. # 329298-002 7

ENCLAVE CODE DEBUG AND PROFILING

7.6.3 Performance Monitoring with Opt-out Entry

In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to all
thread-specific, configured performance monitoring, except for the cycle-counting fixed counter,
1IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, 1A32_FIXED_CTRO, 1A32_PMCx will
stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS record
generation will also be suppressed.

Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count
only MyThread while an opt-out enclave is executing on the other thread.

7.6.4 Enclave Exit and Performance Monitoring

When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring activity
(including PEBS) on that logical processor that was suppressed is unsuppressed.

Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to
AnyThread.

7.6.5 PEBS Record Generation on Intel® SGX Instructions

All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction
execution.

The behavior of EENTER and ERESUME leaf functions of the ENCLU instruction depends on whether these leaf func-
tions are performing an opt-in entry or an opt-out entry. If these leaf functions are performing an opt-in entry
report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction execution.
On the other hand, if these leaf functions are performing an opt-out entry, then these leaf functions result in PEBS
being suppressed, and no PEBS record is generated at the end of these instructions.

The behavior of the EEXIT leaf function is as follows. A PEBS record is generated if there is a PEBS event pending
at the end of EEXIT (due to a counter overflowing during enclave execution or during EEXIT execution). This PEBS
record contains the architectural state of the logical processor at the end of EEXIT. If the enclave was entered via
an opt-in entry, then this record reports the “Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction
(which is inside ELRANGE of the enclave just exited). If the enclave was entered via an opt-out entry, then the
record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruction that
performed the last enclave entry.

A PEBS record is generated immediately after the AEX if there is a PEBS event pending at the end of AEX (due to a
counter overflowing during enclave execution or during AEX execution). This PEBS record contains the synthetic
state of the logical processor that is established at the end of AEX. For opt-in entry, this record has the
EVENTING_RIP set to the eventing LIP in the enclave. For opt-out entry, the record has the EVENTING_RIP set to
EENTER/ERESUME LIP.

If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.

It should be noted that a second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS
event is taken at the end of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the
AEP.

8 Ref. # 329298-002

ENCLAVE CODE DEBUG AND PROFILING

7.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX

The OS/VMM is expected to pin the DS area in virtual memory. If the OS does not pin this area in memory,
loads/stores to the PEBS or BTS buffer may incur faults (or other events such as APIC-access VM exit). Usually,
such events are reported to the OS/VMM immediately, and generation of the PEBS/BTS record is skipped.

However, any events that are detected during PEBS/BTS record generation cannot be reported immediately to the
OS/VMM, as an event window is not open at the end of AEX. Consequently, fault-like events such as page faults,
EPT faults, EPT mis-configuration, and accesses to APIC-access page detected on stores to the PEBS/BTS buffer are
not reported, and generation of the PEBS and/or BTS record is aborted (this may leave the buffers in a state where
they have partial PEBS or BTS records), while trap-like events (such as debug traps) are pended until the next
instruction boundary, where they are handled according to the architecturally defined priority. The processor
continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery, VM exit, etc.) after
aborting the PEBS/BTS record generation.

7.6.6.1 Other Interactions with Performance Monitoring

For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted branches, and any counters that
are counting such branches are incremented by 1 as a part of execution of these instructions. All of these flows are
also counted as instructions, and any counters configured appropriately are incremented by 1.

For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.

Enclave entry does not affect any performance monitoring counters shared between cores.
EENTER, ERESUME, EEXIT and AEX are classified as far branches.

Ref. # 329298-002 9

ENCLAVE CODE DEBUG AND PROFILING

10 Ref. # 329298-002

	Chapter 1 Introduction to Intel® Software Guard Extensions
	1.1 Overview
	1.2 Enclave Interaction and Protection
	1.3 Enclave Life Cycle
	1.4 Data Structures and Enclave Operation
	1.5 Enclave Page Cache
	1.5.1 Enclave Page Cache Map (EPCM)

	1.6 Enclave Instructions and Intel® SGX
	1.7 Discovering Support for Intel® SGX and enabling Enclave Instructions
	1.7.1 Intel® SGX Opt-In Configuration
	1.7.2 Intel® SGX Resource Enumeration Leaves

	Chapter 2 Enclave Access Control and Data Structures
	2.1 Overview of Enclave Execution Environment
	2.2 Terminology
	2.3 Access-control Requirements
	2.4 Segment-based Access Control
	2.5 Page-based Access Control
	2.5.1 Access-control for Accesses that Originate from non-SGX Instructions
	2.5.2 Memory Accesses that Split across ELRANGE
	2.5.3 Implicit vs. Explicit Accesses
	2.5.3.1 Explicit Accesses
	2.5.3.2 Implicit Accesses

	2.6 Intel® SGX Data Structures Overview
	2.7 SGX Enclave Control Structure (SECS)
	2.7.1 ATTRIBUTES
	2.7.2 SECS.MISCSELECT Field

	2.8 Thread Control Structure (TCS)
	2.8.1 TCS.FLAGS
	2.8.2 State Save Area Offset (OSSA)
	2.8.3 Number of State Save Area Frames (NSSA)
	2.8.4 Current State Save Area Frame (CSSA)

	2.9 State Save Area (SSA) Frame
	2.9.1 GPRSGX Region
	2.9.1.1 EXITINFO
	2.9.1.2 VECTOR Field Definition

	2.9.2 MISC Region
	2.9.2.1 EXINFO Structure
	2.9.2.2 Page Fault Error Codes

	2.10 Page Information (PAGEINFO)
	2.11 Security Information (SECINFO)
	2.11.1 SECINFO.FLAGS
	2.11.2 PAGE_TYPE Field Definition

	2.12 Paging Crypto MetaData (PCMD)
	2.13 Enclave Signature Structure (SIGSTRUCT)
	2.14 EINIT Token Structure (EINITTOKEN)
	2.15 Report (REPORT)
	2.15.1 REPORTDATA

	2.16 Report Target Info (TARGETINFO)
	2.17 Key Request (KEYREQUEST)
	2.17.1 KEY REQUEST KeyNames
	2.17.2 Key Request Policy Structure

	2.18 Version Array (VA)
	2.19 Enclave Page Cache Map (EPCM)

	Chapter 3 Enclave Operation
	3.1 Constructing an Enclave
	3.1.1 EADD and EEXTEND Interaction
	3.1.2 EINIT Interaction

	3.2 Enclave Entry and Exiting
	3.2.1 Synchronous Entry and Exit
	3.2.2 Asynchronous Enclave Exit (AEX)
	3.2.3 Resuming Execution after AEX
	3.2.3.1 ERESUME Interaction

	3.3 Calling Enclave Procedures
	3.3.1 Calling Convention
	3.3.2 Register Preservation
	3.3.3 Returning to Caller

	3.4 Intel® SGX Key and Attestation
	3.5 EPC and Management of EPC Pages
	3.5.1 EPC Implementation
	3.5.2 OS Management of EPC Pages
	3.5.2.1 Enhancement to Managing EPC Pages

	3.5.3 Eviction of Enclave Pages
	3.5.4 Loading an Enclave Page
	3.5.5 Eviction of an SECS Page
	3.5.6 Eviction of a Version Array Page
	3.5.7 Allocating a Regular Page
	3.5.8 Allocating a TCS Page
	3.5.9 Trimming a Page
	3.5.10 Restricting the EPCM Permissions of a Page
	3.5.11 Extending the EPCM Permissions of a Page

	3.6 Changes to Instruction Behavior Inside an Enclave
	3.6.1 Illegal Instructions
	3.6.2 RDRAND and RDSEED Instructions
	3.6.3 PAUSE Instruction
	3.6.4 INT 3 Behavior Inside an Enclave
	3.6.5 INVD Handling when Enclaves Are Enabled

	Chapter 4 Enclave Exiting Events
	4.1 Compatible Switch to the Exiting Stack of AEX
	4.2 State Saving by AEX
	4.3 Synthetic State on Asynchronous Enclave Exit
	4.3.1 Processor Synthetic State on Asynchronous Enclave Exit
	4.3.2 Synthetic State for Extended Features
	4.3.3 VMCS Synthetic State on Asynchronous Enclave Exit

	4.4 AEX Flow
	4.4.1 AEX Operational Detail

	Chapter 5 Instruction References
	5.1 Intel® SGX InstructIon Syntax and Operation
	5.1.1 ENCLS Register Usage Summary
	5.1.2 ENCLU Register Usage Summary
	5.1.3 Information and Error Codes
	5.1.4 Internal CREGs
	5.1.5 Concurrent Operation Restrictions
	5.1.5.1 Concurrency Table of Intel® SGX Instructions

	5.2 Intel® SGX InstructIon Reference
	ENCLS—Execute an Enclave System Function of Specified Leaf Number
	ENCLU—Execute an Enclave User Function of Specified Leaf Number

	5.3 Intel® SGX System Leaf Function Reference
	EADD—Add a Page to an Uninitialized Enclave
	EAUG—Add a Page to an Initialized Enclave
	EBLOCK—Mark a page in EPC as Blocked
	ECREATE—Create an SECS page in the Enclave Page Cache
	EDBGRD—Read From a Debug Enclave
	EDBGWR—Write to a Debug Enclave
	EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes
	EINIT—Initialize an Enclave for Execution
	ELDB/ELDU—Load an EPC page and Marked its State
	EMODPR—Restrict the Permissions of an EPC Page
	EMODT—Change the Type of an EPC Page
	EPA—Add Version Array
	EREMOVE—Remove a page from the EPC
	ETRACK—Activates EBLOCK Checks
	EWB—Invalidate an EPC Page and Write out to Main Memory

	5.4 Intel® SGX User Leaf Function Reference
	5.4.1 Instruction Column in the Instruction Summary Table
	EACCEPT—Accept Changes to an EPC Page
	EACCEPTCOPY—Initialize a Pending Page
	EENTER—Enters an Enclave
	EEXIT—Exits an Enclave
	EGETKEY—Retrieves a Cryptographic Key
	EMODPE—Extend an EPC Page Permissions
	EREPORT—Create a Cryptographic Report of the Enclave
	ERESUME—Re-Enters an Enclave

	Chapter 6 Intel® SGX Interactions with IA32 and Intel® 64 Architecture
	6.1 Intel® SGX Availability in Various Processor Modes
	6.2 IA32_FEATURE_CONTROL
	6.3 Interactions with Segmentation
	6.3.1 Scope of Interaction
	6.3.2 Interactions of Intel® SGX Instructions with Instruction Prefixes and Addressing
	6.3.3 Interaction of Intel® SGX Instructions with Segmentation
	6.3.4 Interactions of Enclave Execution with Segmentation

	6.4 Interactions with Paging
	6.5 Interactions with VMX
	6.5.1 VMM Controls to Configure Guest Support of Intel® SGX
	6.5.1.1 Guest State Area - Guest Non-Register State
	6.5.1.2 VM-Execution Controls
	6.5.1.3 Basic VM-Exit Information

	6.5.2 VM Exits While Inside an Enclave
	6.5.3 VM Entry Consistency Checks and Intel® SGX
	6.5.4 VM Execution Control Setting Checks
	6.5.5 Guest Interruptibility State Checks
	6.5.6 Interaction of Intel® SGX with Various VMMs
	6.5.7 Interactions with EPTs
	6.5.8 Interactions with APIC Virtualization
	6.5.9 Interactions with Monitor Trap Flag
	6.5.10 Interactions with Interrupt-Virtualization Features and Events

	6.6 Intel® SGX Interactions with Architecturally-visible Events
	6.7 Interactions with the XSAVE/XRSTOR Processor Extended States
	6.7.1 Requirements and Architecture Overview
	6.7.2 Relevant Fields in Various Data Structures
	6.7.2.1 SECS.ATTRIBUTES.XFRM
	6.7.2.2 SECS.SSAFRAMESIZE
	6.7.2.3 XSAVE Area in SSA

	6.7.3 Processor Extended States and ENCLS[ECREATE]
	6.7.4 Processor Extended States and ENCLU[EENTER]
	6.7.4.1 Fault Checking
	6.7.4.2 State Loading

	6.7.5 Processor Extended States and AEX
	6.7.5.1 State Saving
	6.7.5.2 State Synthesis

	6.7.6 Processor Extended States and ENCLU[ERESUME]
	6.7.6.1 Fault Checking
	6.7.6.2 State Loading

	6.7.7 Processor Extended States and ENCLU[EEXIT]

	6.8 Interactions with SMM
	6.8.1 Availability of Intel® SGX instructions in SMM
	6.8.2 SMI while Inside an Enclave
	6.8.3 SMRAM Synthetic State of AEX Triggered by SMI

	6.9 Interactions of INIT, SIPI, and Wait-for-SIPI with Intel® SGX
	6.10 Interactions with DMA
	6.11 Interactions with Memory Configuration and Various Memory Ranges
	6.11.1 Memory Type Considerations for PRMRR
	6.11.2 Interactions of PRMRR with Various Memory Regions
	6.11.2.1 Interactions of PRMRR with SMRR
	6.11.2.2 Interactions of PRMRR with MTRRs
	6.11.2.3 Interactions of PRMRR with MMIO
	6.11.2.4 Interactions of PRMRR with IA32_APIC_BASE

	6.11.3 Interactions of PRMRR with Virtual APIC Page
	6.11.3.1 Interactions of PRMRR with Physical Memory Accesses

	6.11.4 Interactions of Intel® SGX with APIC Access Address

	6.12 Interactions with TXT
	6.12.1 Enclaves Created Prior to Execution of GETSEC
	6.12.2 Interaction of GETSEC with Intel® SGX
	6.12.3 Interactions with Authenticated Code Modules (ACMs)

	6.13 Interactions with Caching of Linear-address Translations
	6.14 Interactions with Intel® Transactional Synchronization Extensions (Intel® TSX)
	6.14.1 HLE and RTM Debug

	6.15 Intel® SGX Interactions with S states
	6.16 Intel® SGX Interactions with Machine Check Architecture (MCA)
	6.16.1 Interactions with MCA Events
	6.16.2 Machine Check Enables (IA32_MCi_CTL)
	6.16.3 CR4.MCE

	6.17 Intel® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS

	Chapter 7 Enclave Code Debug and Profiling
	7.1 Configuration and Controls
	7.1.1 Debug Enclave vs. Production Enclave
	7.1.2 Tool-chain Opt-in

	7.2 Single Step Debug
	7.2.1 Single Stepping Requirements
	7.2.2 Single Stepping ENCLS Instruction Leafs
	7.2.3 Single Stepping ENCLU Instruction Leafs
	7.2.4 Single-stepping Enclave Entry with Opt-out Entry
	7.2.4.1 Single Stepping without AEX
	7.2.4.2 Single Step Preempted by AEX due to Non-SMI Event

	7.2.5 RFLAGS.TF Treatment on AEX
	7.2.6 Restriction on Setting of TF after an Opt-out Entry
	7.2.7 Trampoline Code Considerations

	7.3 Code and Data Breakpoints
	7.3.1 Breakpoint Suppression
	7.3.2 Breakpoint Match Reporting during Enclave Execution
	7.3.3 Reporting of Code Breakpoint on Next Instruction on a Debug Trap
	7.3.4 RFLAGS.RF Treatment on AEX
	7.3.5 Breakpoint Matching in Intel® SGX Instruction Flows

	7.4 INT3 Consideration
	7.4.1 Behavior of INT3 inside an Enclave
	7.4.2 Debugger Considerations
	7.4.3 VMM Considerations

	7.5 Branch Tracing
	7.5.1 BTF Treatment
	7.5.2 LBR Treatment
	7.5.2.1 LBR Stack on Opt-in Entry
	7.5.2.2 LBR Stack on Opt-out Entry
	7.5.2.3 Mispredict Bit, Record Type, and Filtering

	7.6 Interaction with Performance Monitoring
	7.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
	7.6.2 Performance Monitoring with Opt-in Entry
	7.6.3 Performance Monitoring with Opt-out Entry
	7.6.4 Enclave Exit and Performance Monitoring
	7.6.5 PEBS Record Generation on Intel® SGX Instructions
	7.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
	7.6.6.1 Other Interactions with Performance Monitoring

