
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3D:
System Programming Guide, Part 4

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual consists of eight volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; Instruction Set Reference, Order Number
326018; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part
2, Order Number 253669; System Programming Guide, Part 3, Order Number 326019; System
Programming Guide, Part 4, Order Number 332831. Refer to all eight volumes when evaluating your
design needs.

Order Number: 332831-057US
December 2015

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
CHAPTER 37
INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

37.1 OVERVIEW
Intel® Software Guard Extensions (Intel® SGX) is a set of instructions and mechanisms for memory accesses
added to Intel® Architecture processors. Intel SGX can encompass two collections of instruction extensions,
referred to as SGX1 and SGX2, see Table 37-4. The SGX1 extensions allow an application to instantiate a protected
container, referred to as an enclave. An enclave is a protected area in the application’s address space (see
Figure 37-1), which provides confidentiality and integrity even in the presence of privileged malware. Accesses to
the enclave memory area from any software not resident in the enclave are prevented. The SGX2 extensions allow
additional flexibility in runtime management of enclave resources and thread execution within an enclave.
Chapter 38 covers main concepts, objects and data structure formats that interact within the Intel SGX architec-
ture. Chapter 39 covers operational aspects ranging from preparing an enclave, transferring control to enclave
code, and programming considerations for the enclave code and system software providing support for enclave
execution. Chapter 40 describes the behavior of Asynchronous Enclave Exit (AEX) caused by events while
executing enclave code. Chapter 41 covers the syntax and operational details of the instruction and associated leaf
functions available in Intel SGX. Chapter 42 describes interaction of various aspects of IA32 and Intel® 64 archi-
tectures with Intel SGX. Chapter 43 covers Intel SGX support for application debug, profiling and performance
monitoring.

37.2 ENCLAVE INTERACTION AND PROTECTION
Intel SGX allows the protected portion of an application to be distributed in the clear. Before the enclave is built, the
enclave code and data are free for inspection and analysis. The protected portion is loaded into an enclave where
its code and data is measured. Once the application’s protected portion of the code and data are loaded into an
enclave, it is protected against external software access. An enclave can prove its identity to a remote party and
provide the necessary building-blocks for secure provisioning of keys and credentials. The application can also
request an enclave-specific and platform-specific key that it can use to protect keys and data that it wishes to store
outside the enclave.1

Figure 37-1. An Enclave Within the Application’s Virtual Address Space

1. For additional information, see white papers on Intel SGX at http://software.intel.com/en-us/intel-isa-extensions.

OS

App Code

App Code

Entry Table
Enclave

Enclave Heap

Enclave Stack

Enclave Code
Vol. 3D 37-1

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
Intel SGX introduces two significant capabilities to the Intel Architecture. First is the change in enclave memory
access semantics. The second is protection of the address mappings of the application.

37.3 ENCLAVE LIFE CYCLE
Enclave memory management is divided into two parts: address space allocation and memory commitment.
Address space allocation is the specification of the range of logical addresses that the enclave may use. This range
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flexi-
bility for enclaves to control their memory usage and to adjust dynamically without overusing memory resources
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support
separate allocate and commit operations.
During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e. from non-enclave
memory.
Un-trusted application code starts using an initialized enclave typically by using the Intel SGX EENTER instruction
to transfer control to the enclave code residing in the protected Enclave Page Cache (EPC). The enclave code
returns to the caller via the EEXIT instruction. Upon enclave entry, control is transferred by hardware to software
inside the enclave. The software inside the enclave switches the stack pointer to one inside the enclave. When
returning back from the enclave, the software swaps back the stack pointer then executes the EEXIT instruction.
On processors that supports the SGX2 extensions, an enclave writer may add memory to an enclave using the
SGX2 instruction set, after the enclave is built and running. These instructions allow adding additional memory
resources to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add
new threads to the enclave. The SGX2 features provide additional capabilities to the software model without
changing the security properties of the Intel SGX architecture.
Calling an external procedure from an enclave could be done using the EEXIT instruction. Software would use
EEXIT and a software convention between the trusted section and the un-trusted section.
An active enclave consumes resource from the Enclave Page Cache (EPC, see Section 37.5). Intel SGX provides the
EREMOVE instruction that an EPC manager can use to reclaim EPC pages committed to an enclave. The EPC
manager uses EREMOVE on every enclave page when the enclave is torn down. After successful execution of
EREMOVE the EPC page is available for allocation to another enclave.

37.4 DATA STRUCTURES AND ENCLAVE OPERATION
There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS)
and the Thread Control Structure (TCS).
There is one SECS for each enclave. The SECS contains meta-data about the enclave which is used by the hardware
and cannot be directly accessed by software. Included in the SECS is a field that stores the enclave build measure-
ment value. This field, MRENCLAVE, is initialized by the ECREATE instruction and updated by every EADD and
EEXTEND. It is locked by EINIT.
Every enclave contains one or more TCS structures. The TCS contains meta-data used by the hardware to save and
restore thread specific information when entering/exiting the enclave. There is one field, FLAGS, that may be
accessed by software.
The SECS is created when ECREATE (see Table 37-1) is executed. The TCS can be created using the EADD instruc-
tion or the SGX2 instructions (see Table 37-2).

37.5 ENCLAVE PAGE CACHE
The Enclave Page Cache (EPC) is the secure storage used to store enclave pages when they are a part of an
executing enclave.
The EPC is divided into EPC pages. An EPC page is 4KB in size and always aligned on a 4KB boundary.
37-2 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
Pages in the EPC can either be valid or invalid. Every valid page in the EPC belongs to one enclave instance. Each
enclave instance has an EPC page that holds its SECS. The security metadata for each EPC page is held in an
internal micro-architectural structure called Enclave Page Cache Map (EPCM, see Section 37.5.1).
The EPC is managed by privileged software. Intel SGX provides a set of instructions for adding and removing
content to and from the EPC. The EPC may be configured by BIOS at boot time. On implementations in which EPC
memory is part of system DRAM, the contents of the EPC are protected by an encryption engine.

37.5.1 Enclave Page Cache Map (EPCM)
The EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds one entry
for each page in the EPC. The format of the EPCM is micro-architectural, and consequently is implementation
dependent. However, the EPCM contains the following architectural information:
• The status of EPC page with respect to validity and accessibility.
• An SECS identifier (see Section 38.19) of the enclave to which the page belongs.
• The type of page: regular, SECS, TCS or VA.
• The linear address through which the enclave is allowed to access the page.
• The specified read/write/execute permissions on that page.
The EPCM structure is used by the CPU in the address-translation flow to enforce access-control on the EPC pages.
The EPCM structure is described in Table 38-27, and the conceptual access-control flow is described in Section
38.5.
The EPCM entries are managed by the processor as part of various instruction flows.

37.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX
The enclave instructions available with Intel SGX are organized as leaf functions under two instruction mnemonics:
ENCLS (ring 0) and ENCLU (ring 3). Each leaf function uses EAX to specify the leaf function index, and may require
additional implicit input registers as parameters. The use of EAX is implied implicitly by the ENCLS and ENCLU
instructions, ModR/M byte encoding is not used with ENCLS and ENCLU. The use of additional registers does not
use ModR/M encoding and is implied implicitly by the respective leaf function index.
Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel
SGX instruction takes the form of ENCLx[LEAF_MNEMONIC], where ‘x’ is either ‘S’ or ‘U’. The long-form expression
provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity, the unique
“Leaf_Mnemonic” name is used (omitting the ENCLx for convenience) throughout in this document.
Details of Individual SGX leaf functions are described in Chapter 41. Table 37-1 provides a summary of the instruction leaves that are
available in the initial implementation of Intel SGX, which is introduced in the 6th generation Intel Core processors. Table 37-1 summarizes
enhancement of Intel SGX for future Intel processors.

Table 37-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add an EPC page to an enclave. ENCLU[EENTER] Enter an enclave.

ENCLS[EBLOCK] Block an EPC page. ENCLU[EEXIT] Exit an enclave.

ENCLS[ECREATE] Create an enclave. ENCLU[EGETKEY] Create a cryptographic key.

ENCLS[EDBGRD] Read data by debugger. ENCLU[EREPORT] Create a cryptographic report.

ENCLS[EDBGWR] Write data by debugger. ENCLU[ERESUME] Re-enter an enclave.

ENCLS[EEXTEND] Extend EPC page measurement.

ENCLS[EINIT] Initialize an enclave.

ENCLS[ELDB] Load an EPC page in blocked state.

ENCLS[ELDU] Load an EPC page in unblocked state.
Vol. 3D 37-3

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
37.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE
INSTRUCTIONS

Detection of support of Intel SGX and enumeration of available and enabled Intel SGX resources are queried using
the CPUID instruction. The enumeration interface comprises the following:
• Processor support of Intel SGX is enumerated by a feature flag in CPUID leaf 07H: CPUID.(EAX=07H,

ECX=0H):EBX.SGX[bit 2]. If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor has support for Intel
SGX, and requires opt-in enabling by BIOS via IA32_FEATURE_CONTROL MSR.

If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, CPUID will report via the available sub-leaves of
CPUID.(EAX=12H) on available and/or configured Intel SGX resources.

• The available and configured Intel SGX resources enumerated by the sub-leaves of CPUID.(EAX=12H) depend
on the state of BIOS configuration.

37.7.1 Intel® SGX Opt-In Configuration
On processors that support Intel SGX, IA32_FEATURE_CONTROL provides the SGX_ENABLE field (bit 18). Before
system software can configure and enable Intel SGX resources, BIOS is required to set
IA32_FEATURE_CONTROL.SGX_ENABLE = 1 to opt-in the use of Intel SGX by system software.
The semantics of setting SGX_ENABLE follows the rules of IA32_FEATURE_CONTROL.LOCK (bit 0). Software is
considered to have opted into Intel SGX if and only if IA32_FEATURE_CONTROL.SGX_ENABLE and
IA32_FEATURE_CONTROL.LOCK are set to 1. The setting of IA32_FEATURE_CONTROL.SGX_ENABLE (bit 18) is not
reflected by CPUID.

ENCLS[EPA] Add an EPC page to create a version array.

ENCLS[EREMOVE] Remove an EPC page from an enclave.

ENCLS[ETRACK] Activate EBLOCK checks.

ENCLS[EWB] Write back/invalidate an EPC page.

Table 37-2. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2
Supervisor Instruction Description User Instruction Description

ENCLS[EAUG] Allocate EPC page to an existing enclave. ENCLU[EACCEPT] Accept EPC page into the enclave.

ENCLS[EMODPR] Restrict page permissions. ENCLU[EMODPE] Enhance page permissions.

ENCLS[EMODT] Modify EPC page type. ENCLU[EACCEPTCOPY] Copy contents to an augmented EPC
page and accept the EPC page into
the enclave.

Table 37-3. Intel® SGX Opt-in and Enabling Behavior
CPUID.(07H,0H):EBX.

SGX
CPUID.(12H)

FEATURE_CONTROL.
LOCK

FEATURE_CONTROL.
SGX_ENABLE

Enclave Instruction

0 Invalid X X #UD

1 Valid* X X #UD**

1 Valid* 0 X #GP

1 Valid* 1 0 #GP

Table 37-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description
37-4 Vol. 3D

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
37.7.2 Intel® SGX Resource Enumeration Leaves
If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel
SGX resource capability and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in
and system software configuration. Information returned by CPUID.12H is thread specific; software should not
assume that if Intel SGX instructions are supported on one hardware thread, they are also supported elsewhere.
A properly configured processor exposes Intel SGX functionality with CPUID.EAX=12H reporting valid information
(non-zero content) in three or more sub-leaves, see Table 37-4.
• CPUID.(EAX=12H, ECX=0H) enumerates Intel SGX capability, including enclave instruction opcode support.
• CPUID.(EAX=12H, ECX=1H) enumerates Intel SGX capability of processor state configuration and enclave

configuration in the SECS structure (see Table 38-3).
• CPUID.(EAX=12H, ECX >1) enumerates available EPC resources.

1 Valid* 1 1 Available (see Table 37-4 for details
of SGX1 and SGX2).

* Leaf 12H enumeration results are dependent on enablement.

** See list of conditions in the #UD section of the reference pages of ENCLS and ENCLU

Table 37-4. CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits

EAX 0 SGX1: If 1, indicates leaf functions of SGX1 instruction listed in Table 37-1 are supported.

1 SGX2: If 1, indicates leaf functions of SGX2 instruction listed in Table 37-2 are supported.

31:2 Reserved (0)

EBX
31:0 MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC

region of the SSA.

ECX 31:0 Reserved (0).

EDX

7:0 MaxEnclaveSize_Not64: the maximum supported enclave size is 2^(EDX[7:0]) bytes when not in 64-bit
mode.

15:8 MaxEnclaveSize_64: the maximum supported enclave size is 2^(EDX[15:8]) bytes when operating in 64-
bit mode.

31:16 Reserved (0).

Table 37-5. CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior

Register Bits

EAX 31:0 Report the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.
SECS.ATTRIBUTES[n] can be set to 1 using ECREATE only if EAX[n] is 1, where n < 32.

EBX 31:0 Report the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.
SECS.ATTRIBUTES[n+32] can be set to 1 using ECREATE only if EBX[n] is 1, where n < 32.

ECX 31:0 Report the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.
SECS.ATTRIBUTES[n+64] can be set to 1 using ECREATE only if ECX[n] is 1, where n < 32.

Table 37-3. Intel® SGX Opt-in and Enabling Behavior
CPUID.(07H,0H):EBX.

SGX CPUID.(12H)
FEATURE_CONTROL.

LOCK
FEATURE_CONTROL.

SGX_ENABLE Enclave Instruction
Vol. 3D 37-5

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS
On processors that support Intel SGX1 and SGX2, CPUID leaf 12H sub-leaf 2 report physical memory resources
available for use with Intel SGX. These physical memory sections are typically allocated by BIOS as Processor
Reserved Memory, and available to the OS to manage as EPC.
To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID leaf 12H
with sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-
leaf type is invalid. All invalid sub-leaves of CPUID leaf 12H return EAX/EBX/ECX/EDX with 0.

EDX 31:0 Report the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.
SECS.ATTRIBUTES[n+96] can be set to 1 using ECREATE only if EDX[n] is 1, where n < 32.

Table 37-6. CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits

EAX 3:0 0000b: This sub-leaf is invalid, EBX:EAX and EDX:ECX report 0.

0001b: This sub-leaf provides information on the Enclave Page Cache (EPC) in EBX:EAX and EDX:ECX.

All other encoding are reserved.

11:4 Reserved (0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.

EBX
19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.

31:20 Reserved (0).

ECX

3: 0 0000b: Not valid.

0001b: The EPC section is confidentiality, integrity and replay protected.

All other encoding are reserved.

11:4 Reserved (0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the
Processor Reserved Memory.

EDX 19: 0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the
Processor Reserved Memory.

31:20 Reserved (0).

Table 37-5. CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior

Register Bits
37-6 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
CHAPTER 38
ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

38.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT
Enclave code, data and associated data structures are mapped to the ELRANGE (see Section 37.3). The linear
addresses in ELRANGE, if committed, must map to a page allocated to the enclave fro the EPC (see Section 37.5).
The EPC pages need not be physically contiguous. System software allocates EPC pages to various enclaves.
Enclaves must abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page tables and
extended page tables provide address translation for the enclave pages. Hardware requires that these pages are
properly mapped to EPC (any failure generates an exception).
Additionally, Enclave entry/exit must happen through specific enclave instructions or events:
• ENCLU[EENTER], ENCLU[ERESUME].
• ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).
Attempt to execute, read or write to linear addresses mapped to EPC pages when not inside an enclave will result
in undefined behavior. The processor will provide the protections as described in Section 38.4 and Section 38.5 on
such accesses.

38.2 TERMINOLOGY
A memory access to the ELRANGE and initiated by an instruction executed by an enclave is called a Direct Enclave
Access (Direct EA).
Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD,
EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME to EPC pages are called Indirect Enclave Accesses
(Indirect EA). Table 38-1 lists additional details of the indirect EA of SGX1 and SGX2 extensions.
Direct EAs and Indirect EAs together are called Enclave Accesses (EAs).
Any memory access that is not an Enclave Access is called a non-enclave access.

38.3 ACCESS-CONTROL REQUIREMENTS
Enclave accesses have the following access-control attributes:
• All memory accesses must conform to segmentation and paging protection mechanisms.
• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception.
• Non-enclave accesses to EPC memory result in undefined behavior. EPC memory is protected as described in

Section 38.4 and Section 38.5 on such accesses.
• EPC pages must be mapped to ELRANGE at the linear address specified when the EPC page was allocated to the

enclave using ENCLS[EADD] or ENCLS[EAUG] leaf functions. Enclave accesses through other linear address
result in a #PF with the PFEC.SGX bit set.

• Direct EAs to any EPC pages must conform to the currently defined security attributes for that EPC page in the
EPCM. These attributes may be defined at enclave creation time (EADD) or when the enclave redefines them
using SGX2 instructions. The failure of these checks results in a #PF with the PFEC.SGX bit set.

— Target page must belong to the same enclave.

— Data may be written to an EPC page if the EPCM allow write access.

— Data may be read from an EPC page if the EPCM allow read access.

— Instruction fetches from an EPC page are allowed if the EPCM allows execute access.

— Target page must not have a restricted page type (PT_SECS, PT_TCS, PT_VA, or PT_TRIM).
Vol. 3D 38-1

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
— The EPC page must not be BLOCKED.

— The EPC page must not be PENDING.

— The EPC page must not be MODIFIED.

38.4 SEGMENT-BASED ACCESS CONTROL
Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory accesses
arising from a logical processor in protected mode (including enclave access) are subject to segmentation checks
with the applicable segment register.
To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected
fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have
segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).
On enclave entry either via EENTER or ERESUME, the processor saves the contents of the external FS and GS regis-
ters, and loads these registers with values stored in the TCS at build time to enable the enclave’s use of these regis-
ters for accessing the thread-local storage inside the enclave. On EEXIT and AEX, the contents at time of entry are
restored. On AEX, the values of FS and GS are saved in the SSA frame. On ERESUME, FS and GS are restored from
the SSA frame. The details of these operations can be found in the descriptions of EENTER, ERESUME, EEXIT, and
AEX flows.

38.5 PAGE-BASED ACCESS CONTROL

38.5.1 Access-control for Accesses that Originate from non-SGX Instructions
Intel SGX builds on the processor's paging mechanism to provide enclaves a protected execution environment.
Intel SGX provides page-granular access-control for enclave pages. Enclave pages are only accessible from inside
the same enclave, or through certain Intel SGX instructions.

38.5.2 Memory Accesses that Split across ELRANGE
Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a part
of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across ELRANGE, the
processor splits the access into two sub-accesses (one inside ELRANGE and the other outside ELRANGE), and each
access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due to the portion that lies
outside of the ELRANGE.

38.5.3 Implicit vs. Explicit Accesses
Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses or
implicit accesses. Table 38-1 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

38.5.3.1 Explicit Accesses
Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their linked
data structures are called explicit accesses.
Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging,
extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when the
access is made.
The interaction of explicit memory accesses with data breakpoints is leaf-function-specific, and is documented in
Section 43.3.5.
38-2 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.5.3.2 Implicit Accesses
Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses.
These addresses are not passed as operands of the instruction but are implied by use of the instruction.
These accesses do not trigger any access-control faults/exits or data breakpoints. Table 38-1 lists memory objects
that Intel SGX instruction leaf functions access either by explicit access or implicit access. The addresses of explicit
access objects are passed via register operands with the second through fourth column of Table 38-1 matching
implicitly encoded registers RBX, RCX, RDX.
Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the
enclave via ENCLS[EADD]. This binding is severed when the corresponding page is removed from the EPC via
ENCLS[EREMOVE]. Physical addresses of TCS and SSA pages are cached at the time of most-recent enclave entry.
Exit from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is described
in Chapter 40.
The physical addresses that are cached for use by implicit accesses are derived from logical (or linear) addresses
after checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger excep-
tions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is cached
and used for an implicit access.

Table 38-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Explicit 1 Explicit 2 Explicit 3 Implicit

EADD PAGEINFO and linked structures EPCPAGE

EBLOCK EPCPAGE SECS

ECREATE PAGEINFO and linked structures EPCPAGE

EDBGRD EPCADDR Destination SECS

EDBGWR EPCADDR Source SECS

EENTER TCS and linked SSA SECS

EEXIT SECS, TCS

EEXTEND SECS EPCPAGE

EGETKEY KEYREQUEST KEY SECS

EINIT SIGSTRUCT SECS EINITTOKEN

ELDB/ELDU PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

EPA EPCADDR

EREMOVE EPCPAGE SECS

EREPORT TARGETINFO REPORTDATA OUTPUTDATA SECS

ERESUME TCS and linked SSA SECS

ETRACK EPCPAGE

EWB PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

EACCEPT SECINFO EPCPAGE SECS

EACCEPTCOPY SECINFO EPCPAGE (Src) EPCPAGE (Dst)

EAUG PAGEINFO and linked structures EPCPAGE SECS

EMODPE SECINFO EPCPAGE

EMODPR SECINFO EPCPAGE SECS

EMODT SECINFO EPCPAGE SECS

Asynchronous Enclave Exit* SECS, TCS, SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 40.4
Vol. 3D 38-3

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.6 INTEL® SGX DATA STRUCTURES OVERVIEW
Enclave operation is managed via a collection of data structures. Many of the top-level data structures contain sub-
structures. The top-level data structures relate to parameters that may be used in enclave setup/maintenance, by
Intel SGX instructions, or AEX event. The top-level data structures are:
• SGX Enclave Control Structure (SECS)
• Thread Control Structure (TCS)
• State Save Area (SSA)
• Page Information (PAGEINFO)
• Security Information (SECINFO)
• Paging Crypto MetaData (PCMD)
• Enclave Signature Structure (SIGSTRUCT)
• EINIT Token Structure (EINITTOKEN)
• Report Structure (REPORT)
• Report Target Info (TARGETINFO)
• Key Request (KEYREQUEST)
• Version Array (VA)
• Enclave Page Cache Map (EPCM)
Details of the top-level data structures and associated sub-structures are listed in Section 38.7 through Section
38.19.

38.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)
The SECS data structure requires 4K-Bytes alignment.

Table 38-2. Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages (including XSAVE, pad, GPR, and condition-
ally MISC).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region
of the SSA frame when an AEX occurs.

RESERVED 24 24

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 38-3.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for proper
format.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the
enclave. See SIGSTRUCT for format.

RESERVED 160 96

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.
38-4 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.7.1 ATTRIBUTES
The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, the REPORT and the
KEYREQUEST structures. CPUID.(EAX=12H, ECX=1) enumerates a bitmap of permitted 1-setting of bits in ATTRI-
BUTES.

38.7.2 SECS.MISCSELECT Field
If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the processor can save extended information into the MISC region
of SSA when an AEX occurs. An enclave writer can specify via SIGSTRUCT how to set the SECS.MISCSELECT field.
The bit vector of MISCSELECT selects which extended information are to be saved in the MISC region of the SSA
frame when an AEX is generated. The bit vector definition of extended information is listed in Table 38-4.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 38.9.2.

38.8 THREAD CONTROL STRUCTURE (TCS)
Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes alignment.

RESERVED 260 3836 The RESERVED field consists of the following:
• EID: An 8 byte Enclave Identifier,.It’s location is implementation specific.
• PAD: A 352 bytes padding pattern from the Signature (used for key

derivation strings). It’s location is implementation specific.
• The remaining 3476 bytes are reserved area.
The entire 3836 byte field must be cleared prior to executing ECREATE or
EREPORT.

Table 38-3. Layout of ATTRIBUTES Structure
Field Bit Position Description

INIT 0 This bit indicates if the enclave has been initialized by EINIT. It must be cleared when loaded as
part of ECREATE. For EREPORT instruction, TARGET_INFO.ATTRIBUTES[ENIT] must always be 1 to
match the state after EINIT has initialized the enclave.

DEBUG 1 If 1, the enclave permit debugger to read and write enclave data.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

EINITTOKENKEY 5 EINIT token key is available from EGETKEY.

RESERVED 63:6

XFRM 127:64 XSAVE Feature Request Mask. See Section 42.7.

Table 38-4. Bit Vector Layout of MISCSELECT Field of Extended Information
Field Bit Position Description

EXINFO 0 Report information about page fault and general protection exception that occurred inside an
enclave.

Reserved 31:1 Reserved (0).

Table 38-2. Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description
Vol. 3D 38-5

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.8.1 TCS.FLAGS

38.8.2 State Save Area Offset (OSSA)
The OSSA points to a stack of State Save Area (SSA) frames (see Section 38.9) used to save the processor state
when an interrupt or exception occurs while executing in the enclave. Each frame in the stack consists of the XSAVE
region starting at the base of a state save area frame. The GPRSGX region is top-aligned to the end of the frame.
Each frame must be 4KBytes aligned and multiples of 4KBytes in size. A MISC region contains additional informa-
tion written by the processor is next below the GPRSGX region inside the frame. Enclave writer can choose the pad
size between the XSAVE region and the MISC region.

38.8.3 Current State Save Area Frame (CSSA)
CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the
processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the array
of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

Table 38-5. Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

RESERVED 0 8

FLAGS 8 8 The thread’s execution flags (see Section 38.8.1).

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base.
Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD and EACCEPT.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the
base of the enclave.

AEP 40 8 The value of the Asynchronous Exit Pointer that was saved at EENTER time
and is visible to EDBGRD.

OFSBASGX 48 8 Offset to add to the base address of the enclave for producing the base
address of FS segment inside the enclave. Must be page aligned.

OGSBASGX 56 8 Offset to add to the base address of the enclave for producing the base
address of GS segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

RESERVED 72 4024 Must-be-zero.

Table 38-6. Layout of TCS.FLAGS Field
Field Bit Position Description

DBGOPTIN 0 If set, allows debugging features (single-stepping, breakpoints, etc.) to be enabled and active while
executing in the enclave on this TCS. Hardware clears this bit on EADD. A debugger may later mod-
ify it if the enclave’s ATTRIBUTES.DEBUG is set.

RESERVED 63:1
38-6 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.8.4 Number of State Save Area Frames (NSSA)
NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame
when EENTER-ing the enclave or the EENTER will fail.

38.9 STATE SAVE AREA (SSA) FRAME
When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA frame,
which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:
• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in

an XSAVE/FXSAVE-compatible non-compacted format.
• A Pad region: software may choose to maintain a pad region separating the XSAVE region and the MISC region.

Software choose the size of the pad region according to the sizes of the MISC and GPRSGX regions.
• The GPRSGX region. The GPRSGX region is the last region of an SSA frame (see Table 38-7). This is used to

hold the processor general purpose registers (RAX … R15), the RIP, the outside RSP and RBP, RFLAGS and the
AEX information.

• The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX
region, and may contain zero or more components of extended information that would be saved when an AEX
occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions are pads that
software can use. If the MISC region is present, the region between the MISC and XSAVE regions are pads that
software can use. See additional details in Table 38.9.2.

38.9.1 GPRSGX Region
The layout of the GPRSGX region is shown in Table 38-8.

Table 38-7. Top-to-Bottom Layout of an SSA Frame
Region Offset (Byte) Size (Bytes) Description

XSAVE 0 Calculate using CPUID
leaf 0DH information

The size of XSAVE region in SSA is derived from the enclave’s support of the col-
lection of processor extended states that would be managed by XSAVE. The
enablement of those processor extended state components in conjunction with
CPUID leaf 0DH information determines the XSAVE region size in SSA.

Pad End of XSAVE
region

Chosen by enclave
writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

MISC base of GPRSGX
-sizeof(MISC)

Calculate from high-
est set bit of
SECS.MISCSELECT

See Section 38.9.2.

GPRSGX SSAFRAMESIZE
-1 77

176 See Table 38-8 for layout of the GPRSGX region.

Table 38-8. Layout of GPRSGX Portion of the State Save Area
Field OFFSET (Bytes) Size (Bytes) Description

RAX 0 8

RCX 8 8

RDX 16 8

RBX 24 8

RSP 32 8

RBP 40 8

RSI 48 8
Vol. 3D 38-7

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.9.1.1 EXITINFO
EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field laid
out as in Table 38-9. The VALID bit is set only for the exceptions conditions which are reported inside an enclave.
See Table 38-10 for which exceptions are reported inside the enclave. If the exception condition is not one reported
inside the enclave then VECTOR and EXIT_TYPE are cleared.

38.9.1.2 VECTOR Field Definition
Table 38-10 contains the VECTOR field. This field contains information about some exceptions which occur inside
the enclave. These vector values are the same as the values that would be used when vectoring into regular excep-
tion handlers. All values not shown are not reported inside an enclave.

RDI 56 8

R8 64 8

R9 72 8

R10 80 8

R11 88 8

R12 96 8

R13 104 8

R14 112 8

R15 120 8

RFLAGS 128 8 Flag register.

RIP 136 8 Instruction pointer.

URSP 144 8 Non-Enclave (outside) stack pointer. Saved by EENTER, restored on AEX.

URBP 152 8 Non-Enclave (outside) RBP pointer. Saved by EENTER, restored on AEX.

EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be
needed by enclave software.

RESERVED 164 4

FSBASE 168 8 FS BASE.

GSBASE 176 8 GS BASE.

Table 38-9. Layout of EXITINFO Field
Field Bit Position Description

VECTOR 7:0 Exception number of exceptions reported inside enclave.

EXIT_TYPE 10:8 011b: Hardware exceptions.
110b: Software exceptions.
Other values: Reserved.

RESERVED 30:11 Reserved as zero.

VALID 31 0: unsupported exceptions.
1: Supported exceptions. Includes two categories:

• Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.

• Conditionally supported exception:

— #PF, #GP if SECS.MISCSELECT.EXINFO = 1.

Table 38-8. Layout of GPRSGX Portion of the State Save Area
Field OFFSET (Bytes) Size (Bytes) Description
38-8 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.9.2 MISC Region
The layout of the MISC region is shown in Table 38-11. The number of components that the processor supports in
the MISC region corresponds to the set bits of CPUID.(EAX=12H, ECX=0):EBX[31:0]. Each set bit in
CPUID.(EAX=12H, ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table
38-11. Enclave writers needs to do the following:
• Decide which component available in the bitmap of CPUID.(EAX=12H, ECX=0):EBX[31:0] will be supported for

the enclave.
• Allocate an SSA frame large enough to hold the components chosen above.
• Instruct each enclave builder software to set the appropriate bits in SECS.MISCSELECT.
The first component, EXINFO, starts next to the GPRSGX region. Additional components in the MISC region grow
in ascending order within the MISC region towards the XSAVE region.
The size of the MISC region is calculated as follows:
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported.
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from the highest bit set in

SECS.MISCSELECT in conjunction with the offset and size information defined in Table 38-11. For example, if
the highest bit set in SECS.MISCSELECT is bit 0, the MISC region size is OFFSET(EXINFO) + Sizeof(EXINFO).

38.9.2.1 EXINFO Structure
Table 38-12 contains the layout of the EXINFO structure that provides additional information.

Table 38-10. Exception Vectors
Name Vector # Description

#DE 0 Divider exception.

#DB 1 Debug exception.

#BP 3 Breakpoint exception.

#BR 5 Bound range exceeded exception.

#UD 6 Invalid opcode exception.

#GP 13 General protection exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#PF 14 Page fault exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#MF 16 x87 FPU floating-point error.

#AC 17 Alignment check exceptions.

#XM 19 SIMD floating-point exceptions.

Table 38-11. Layout of MISC region of the State Save Area
MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO base(GPRSGX)-16 16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or
#PF that occurred inside an enclave can be written to the EXINFO structure
if specified by SECS.MISCSELECT[0] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0).
Vol. 3D 38-9

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.9.2.2 Page Fault Error Codes
Table 38-13 contains page fault error code that may be reported in EXINFO.ERRCD.

38.10 PAGE INFORMATION (PAGEINFO)
PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It
requires 32-Byte alignment.

38.11 SECURITY INFORMATION (SECINFO)
The SECINFO data structure holds meta-data about an enclave page.

Table 38-12. Layout of EXINFO Structure
Field OFFSET (Bytes) Size (Bytes) Description

MADDR 0 8 If #PF: contains the page fault linear address that caused a page fault.
If #GP: the field is cleared.

ERRCD 8 4 Exception error code for either #GP or #PF.

RESERVED 12 4

Table 38-13. Page Fault Error Codes
Name Bit Position Description

P 0 Same as non-SGX page fault exception P flag in Intel Architecture.

W/R 1 Same as non-SGX page fault exception W/R flag.

U/S 2 Always set to 1 (user mode reference).

RSVD 3 Same as non-SGX page fault exception RSVD flag.

I/D 4 Same as non-SGX page fault exception I/D flag.

PK 5 Protection Key induced fault.

RSVD 14:6 Reserved.

SGX 15 EPCM induced fault.

RSVD 31:16 Reserved.

Table 38-14. Layout of PAGEINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

LINADDR 0 8 Enclave linear address.

SRCPGE 8 8 Effective address of the page where contents are located.

SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure for
the page.

SECS 24 8 Effective address of EPC slot that currently contains the SECS.

Table 38-15. Layout of SECINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

FLAGS 0 8 Flags describing the state of the enclave page; R/W by software.

RESERVED 8 56 Must be zero.
38-10 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.11.1 SECINFO.FLAGS
The SECINFO.FLAGS are a set of fields describing the properties of an enclave page.

38.11.2 PAGE_TYPE Field Definition
The SECINFO flags and EPC flags contain bits indicating the type of page.

38.12 PAGING CRYPTO METADATA (PCMD)
The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page.
The size of the PCMD structure (128 bytes) is architectural.
EWB calculates the MAC value and writes out the PCMD. ELDB/U reads the fields and checks the MAC.
The format of PCMD is as follows:

Table 38-16. Layout of SECINFO.FLAGS Field
Field Bit Position Description

R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read
from inside the enclave.

W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be writ-
ten from inside the enclave.

X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be
executed from inside the enclave.

PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.

MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.

PR 5 If 1 indicates that a permission restriction operation on the page is in progress, otherwise a permission
restriction operation is not in progress.

RESERVED 7:6 Must be zero.

PAGE_TYPE 15:8 The type of page that the SECINFO is associated with.

RESERVED 63:16 Must be zero.

Table 38-17. Supported PAGE_TYPE
TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.

PT_REG 2 Page is a normal page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

All other Reserved.

Table 38-18. Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 Enclave Identifier used to establish a cryptographic binding between paged-out
page and the enclave.
Vol. 3D 38-11

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.13 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)
SIGSTRUCT is a structure created and signed by the enclave developer that contains information about the
enclave. SIGSTRUCT is processed by the EINIT leaf function to verify that the enclave was properly built.
SIGSTRUCT includes ENCLAVEHASH as SHA256 digests as defined in FIPS PUB 180-4. The digests are byte strings
of length 32 with the most significant byte of each of the 8 HASH dwords at the left most byte position.
SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented as
a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least significant
byte at position “offset”.
The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a 3072-
bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format with DER
encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.
The 3072-bit integers Q1 and Q2 are defined by:
q1 = floor(Signature^2 / Modulus);
q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);
SIGSTRUCT must be page aligned
In column 5 of Table 38-19, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

RESERVED 72 40 Must be zero.

MAC 112 16 MAC for the page, page meta-data and reserved field.

Table 38-19. Layout of Enclave Signature Structure (SIGSTRUCT)
Field OFFSET (Bytes) Size (Bytes) Description Signed

HEADER 0 16 Must be byte stream
06000000E10000000000010000000000H

Y

VENDOR 16 4 Intel Enclave: 00008086H
Non-Intel Enclave: 00000000H

Y

DATE 20 4 Build date is yyyymmdd in hex:
yyyy=4 digit year, mm=1-12, dd=1-31

Y

HEADER2 24 16 Must be byte stream
01010000600000006000000001000000H

Y

SWDEFINED 40 4 Available for software use. Y

RESERVED 44 84 Must be zero. Y

MODULUS 128 384 Module Public Key (keylength=3072 bits). N

EXPONENT 512 4 RSA Exponent = 3. N

SIGNATURE 516 384 Signature over Header and Body. N

MISCSELECT* 900 4 Bit vector specifying Extended SSA frame feature set to be
used.

Y

MISCMASK* 904 4 Bit vector mask of MISCSELECT to enforce. Y

RESERVED 908 20 Must be zero. Y

ATTRIBUTES 928 16 Enclave Attributes that must be set. Y

ATTRIBUTEMASK 944 16 Mask of Attributes to enforce. Y

ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to. Y

Table 38-18. Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description
38-12 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.14 EINIT TOKEN STRUCTURE (EINITTOKEN)
The EINIT token is used by EINIT to verify that the enclave is permitted to launch. EINIT token is generated by an
enclave in possession of the EINITTOKEN key (the Launch Enclave).
EINIT token must be 512-Byte aligned.

38.15 REPORT (REPORT)
The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

RESERVED 992 32 Must be zero. Y

ISVPRODID 1024 2 ISV assigned Product ID. Y

ISVSVN 1026 2 ISV assigned SVN (security version number). Y

RESERVED 1028 12 Must be zero. N

Q1 1040 384 Q1 value for RSA Signature Verification. N

Q2 1424 384 Q2 value for RSA Signature Verification. N

* If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISCSELECT must be 0.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] !=0, enclave writers must specify MISCSELECT such that each cleared
bit in MISCMASK must also specify the corresponding bit as 0 in MISCSELECT.

Table 38-20. Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

DEBUG 0 4 Y Bits 0: 1: Valid; 0: Debug.
All other bits reserved.

RESERVED 4 44 Y Must be zero.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

RESERVED 212 24 N Reserved.

MASKEDMISCSEL
ECTLE

236 4 Launch Enclave’s MASKEDMISCSELECT: set by the LE to the resolved
MISCSELECT value, used by EGETKEY (after applying KEYREQUEST’s
masking).

MASKEDATTRIBU
TESLE

240 16 N Launch Enclave’s MASKEDATTRIBUTES: This should be set to the LE’s
ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYREQUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N A cryptographic MAC on EINITTOKEN using Launch key.

Table 38-19. Layout of Enclave Signature Structure (SIGSTRUCT)
Field OFFSET (Bytes) Size (Bytes) Description Signed
Vol. 3D 38-13

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.15.1 REPORTDATA
REPORTDATA is a 64-Byte data structure that is provided by the enclave and included in the REPORT. It can be used
to securely pass information from the enclave to the target enclave. REPORTDATA must be 128-Byte aligned.

38.16 REPORT TARGET INFO (TARGETINFO)
This structure is an input parameter to the EREPORT leaf function. The address of TARGETINFO is specified as an
effective address in RBX. It is used to identify the target enclave which will be able to cryptographically verify the
REPORT structure returned by EREPORT. TARGETINFO must be 512-Byte aligned.

38.17 KEY REQUEST (KEYREQUEST)
This structure is an input parameter to the EGETKEY leaf function. It is passed in as an effective address in RBX and
must be 512-Byte alignment. It is used for selecting the appropriate key and any additional parameters required in
the derivation of that key.

Table 38-21. Layout of REPORT
Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 Bit vector specifying which extended features are saved to the MISC region of the
SSA frame when an AEX occurs.

RESERVED 20 28 Must be zero.

ATTRIBUTES 48 16 ATTRIBUTES of the Enclave. See Section 38.7.1.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.

RESERVED 96 32 Reserved.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 96 Zero.

ISVPRODID 256 02 Product ID of enclave.

ISVSVN 258 02 Security version number (SVN) of the enclave.

RESERVED 260 60 Zero.

REPORTDATA 320 64 Data provided by the user and protected by the REPORT's MAC, and elaborate in
Section 38.15.1.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 The CMAC on the report using report key.

Table 38-22. Layout of TARGETINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

MEASUREMENT 0 32 The MRENCLAVE of the target enclave.

ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave.

RESERVED 48 4

MISCSELECT 52 4 The MISCSELECT of the target enclave.

RESERVED 56 456
38-14 Vol. 3D

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.17.1 KEY REQUEST KeyNames

38.17.2 Key Request Policy Structure

38.18 VERSION ARRAY (VA)
In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a
Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a
page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot
receives the unique version number of the page being evicted. When the EPC page is reloaded, there must be a VA
slot that must hold the version of the page. If the page is successfully reloaded, the version in the VA slot is
cleared.
VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA
page must be used to hold the version for the VA being evicted. A Version Array Page must be 4K-Bytes aligned.

Table 38-23. Layout of KEYREQUEST Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

KEYNAME 0 02 Identifies the Key Required.

KEYPOLICY 02 02 Identifies which inputs are required to be used in the key derivation.

ISVSVN 04 02 The ISV security version number that will be used in the key derivation.

RESERVED 06 02 Must be zero.

CPUSVN 08 16 The security version number of the processor used in the key derivation.

ATTRIBUTEMASK 24 16 A mask defining which ATTRIBUTES bits will be included in key derivation.

KEYID 40 32 Value for key wear-out protection.

MISCMASK 72 4 A mask defining which MISCSELECT bits will be included in key derivation.

RESERVED 76 436

Table 38-24. Supported KEYName Values
Key Name Value Description

EINIT_TOKEN_KEY 0 EINIT_TOKEN key

PROVISION_KEY 1 Provisioning Key

PROVISION_SEAL_KEY 2 Provisioning Seal Key

REPORT_KEY 3 Report Key

SEAL_KEY 4 Report Key

All other Reserved

Table 38-25. Layout of KEYPOLICY Field
Field Bit Position Description

MRENCLAVE 0 If 1, derive key using the enclave's MRENCLAVE measurement register.

MRSIGNER 1 If 1, derive key using the enclave's MRSIGNER measurement register.

RESERVED 15:2 Must be zero.
Vol. 3D 38-15

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES
38.19 ENCLAVE PAGE CACHE MAP (EPCM)
EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of
EPCM fields is implementation specific.

Table 38-26. Layout of Version Array Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

Slot 0 0 08 Version Slot 0

Slot 1 8 08 Version Slot 1

...

Slot 511 4088 08 Version Slot 511

Table 38-27. Content of an Enclave Page Cache Map Entry
Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses for reads are allowed from the EPC page referenced by this
entry.

W Write access; indicates whether enclave accesses for writes are allowed to the EPC page referenced by this
entry.

X Execute access; indicates whether enclave accesses for instruction fetches are allowed from the EPC page
referenced by this entry.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM).

ENCLAVESECS SECS identifier of the enclave to which the EPC page belongs.

ENCLAVEADDRESS Linear enclave address of the EPC page.

BLOCKED Indicates whether the EPC page is in the blocked state.

PENDING Indicates whether the EPC page is in the pending state.

MODIFIED Indicates whether the EPC page is in the modified state.
38-16 Vol. 3D

ENCLAVE OPERATION
CHAPTER 39
ENCLAVE OPERATION

The following aspects of enclave operation are described in this chapter:
• Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the

enclave entity.
• Adding pages and measuring the enclave.
• Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing

identity.
• Enclave entry and exiting including:

— Synchronous entry and exit.

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX.

39.1 CONSTRUCTING AN ENCLAVE
Figure 39-1 illustrates a typical Enclave memory layout.

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement
comprises multiple phases. This process can be illustrated by the following exemplary steps:

1. The application hands over the enclave content along with additional information required by the enclave
creation API to the enclave creation service running at ring-0.

2. The enclave creation service running at ring-0 uses the ECREATE leaf function to set up the initial environment,
specifying base address and size of the enclave. This address range, the ELRANGE, is part of the application's
address space. This reserves the memory range. The enclave will now reside in this address region. ECREATE

Figure 39-1. Enclave Memory Layout

Thread Data

Global Data

Code

Enclave Memory

SECS

TCS

Base + Size

Base

Replicated once
per thread

Enclave {Base, Size}

Application Context

OS Context
Vol. 3D 39-1

ENCLAVE OPERATION
also allocates an Enclave Page Cache (EPC) page for the SGX Enclave Control Structure (SECS). Note that this
page is not required to be a part of the enclave linear address space and is not required to be mapped into the
process.

3. The enclave creation service uses the EADD leaf function to commit EPC pages to the enclave, and use
EEXTEND to measure the committed memory content of the enclave. For each additional page to be added to
the enclave:

— Use EADD to add the new page to the enclave.

— If the enclave developer requires measurement of the page as a proof for the content, use EEXTEND to add
a measurement for 256 bytes of the page. Repeat this operation until the entire page is measured.

4. The enclave creation service uses the EINIT leaf function to complete the enclave creation process and finalize
the enclave measurement to establish the enclave identity. Until an EINIT is executed, the enclave is not
permitted to execute any enclave code (i.e. entering the enclave by executing EENTER would result in a fault).

39.1.1 ECREATE
The ECREATE leaf function sets up the initial environment for the enclave by reading an SGX Enclave Control Struc-
ture (SECS) that contains the enclave's address range (ELRANGE) as defined by BASEADDR and SIZE, the ATTRI-
BUTES and MISCSELECT bitmaps, and the SSAFRAMESIZE. It then securely stores this information in an Enclave
Page Cache (EPC) page. ELRANGE is part of the application's address space. ECREATE also initializes a crypto-
graphic log of the enclave's build process.

39.1.2 EADD and EEXTEND Interaction
Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting a
free EPC page into either a PT_REG or a PT_TCS page.
When EADD is invoked, the processor will update the EPCM entry with the type of page (PT_REG or PT_TCS), the
linear address used by the enclave to access the page, and the enclave RWX permissions for the page. It associates
the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access control
to the page. EADD records EPCM information in the cryptographic log stored in the SECS and copies 4 KBytes of
data from unprotected memory outside the EPC to the allocated EPC page.
System software is responsible for selecting a free EPC page. System software is also responsible for providing the
type of page to be added, the attributes the page, the contents of the page, and the SECS (enclave) to which the
page is to be added as requested by the application. Incorrect data would lead to a failure of EADD or to an incor-
rect cryptographic log and a failure at EINIT time.
After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire 4KB page, system software must execute EEXTEND 16
times. Each invocation of EEXTEND adds to the cryptographic log information about which region is being
measured and the measurement of the section.
Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that
the enclave was correctly constructed by the un-trusted system software.

39.1.3 EINIT Interaction
Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT leaf function. After an enclave is initialized, EADD and EEXTEND are disabled for that enclave (An
attempt to execute EADD/EEXTEND to enclave initialization will result in a fault). The initialization process finalizes
the cryptographic log and establishes the enclave identity and sealing identity used by EGETKEY and EREPORT.
A cryptographic hash of the log is stored as the enclave identity. Correct construction of the enclave results in the
cryptographic hash matching the one built by the enclave owner and included as the ENCLAVEHASH field of
SIGSTRUCT. The enclave identity provided by EREPORT can be verified by a remote party.
39-2 Vol. 3D

ENCLAVE OPERATION
The EINIT leaf function checks the EINIT token to validate that the enclave has been enabled on this platform. If
the enclave is not correctly constructed, or the EINIT token is not valid for the platform, or SIGSTRUCT isn't prop-
erly signed, then EINIT will fail. See the EINIT leaf function for details on the error reporting.
The enclave identity is a cryptographic hash that reflects the content of the enclave, the order in which it was
built, the addresses it occupies in memory, the security attributes, and the MISCSELECT value of each page. The
enclave identity is established by EINIT.
The sealing identity is managed by a sealing authority represented by the hash of the public key used to sign the
SIGSTRUCT structure processed by EINIT. The sealing authority assigns a product ID (ISVPRODID) and security
version number (ISVSVN) to a particular enclave identity.
EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is properly signed using the public key enclosed in the SIGSTRUCT.
2. Checks that the measurement of the enclave matches the measurement of the enclave specified in SIGSTRUCT.
3. Checks that the enclave’s attributes and MISCSELECT values are compatible with those specified in SIGSTRUCT.
4. Finalizes the measurement of the enclave and records the sealing identity (the sealing authority, product id
and security version number) and enclave identity in the SECS.
5. Sets the ATTRIBUTES.INIT bit for the enclave.

39.2 ENCLAVE ENTRY AND EXITING

39.2.1 Synchronous Entry and Exit
The EENTER leaf function is the method to enter the enclave under program control. To execute EENTER, software
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the
enclave to transfer control to and a pointer to the SSA frame inside the enclave that an AEX should store the
register state to.
When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the
enclave. An attempt to enter an enclave through a busy TCS results in a fault. Intel® SGX allows an enclave builder
to define multiple TCSs, thereby providing support for multithreaded enclaves.
Software must also supply to EENTER the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external
to the enclave which an exception handler will return to using IRET. Typically the location would contain the
ERESUME instruction. ERESUME transfers control back to the enclave, to the address retrieved from the enclave
thread’s saved state.
EENTER performs the following operations:

1. Check that TCS is not busy and flush all caching forms of linear-to-physical mappings.

2. Change the mode of operation to be in enclave mode.

3. Save the old RSP, RBP for later restore on AEX (Software is responsible for setting up the new RSP, RBP).

4. Save XCR0 and replace it with the XFRM value for the enclave.

5. Check if software wishes to debug (applicable to a debuggable enclave):

— If not debugging, then set hardware so the enclave appears as a single instruction.

— If debugging, then set hardware to allow traps, breakpoints, and single steps inside the enclave.

6. Set the TCS as busy.

7. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.
The EEXIT leaf function is the method of leaving the enclave under program control. EEXIT receives the target
address outside of the enclave that the enclave wishes to transfer control to. It is the responsibility of enclave soft-
ware to erase any secret from the registers prior to invoking EEXIT. To allow enclave software to easily perform an
external function call and re-enter the enclave (using EEXIT and EENTER leaf functions), EEXIT returns the value
of the AEP that was used when the enclave was entered.
Vol. 3D 39-3

ENCLAVE OPERATION
EEXIT performs the following operations:

1. Clear enclave mode and TLB entries for enclave addresses.

2. Mark TCS as not busy.

3. Transfer control from inside the enclave to a location on the outside specified by the register, RBX.

39.2.2 Asynchronous Enclave Exit (AEX)
Asynchronous and synchronous events, such as exceptions, interrupts, traps, SMIs, and VM exits may occur while
executing inside an enclave. These events are referred to as Enclave Exiting Events (EEE). Upon an EEE, the
processor state is securely saved inside the enclave (in the thread’s current SSA frame) and then replaced by a
synthetic state to prevent leakage of secrets. The process of securely saving state and establishing the synthetic
state is called an Asynchronous Enclave Exit (AEX). Details of AEX is described in Chapter 40, “Enclave Exiting
Events”.
As part of most EEEs, the AEP is pushed onto the stack as the location of the eventing address. This is the location
where control will return to after executing the IRET. The ERESUME leaf function can be executed from that point
to reenter the enclave and resume execution from the interrupted point.
After AEX has completed, the logical processor is no longer in enclave mode and the exiting event is processed
normally. Any new events that occur after the AEX has completed are treated as having occurred outside the
enclave (e.g. a #PF in dispatching to an interrupt handler).

39.2.3 Resuming Execution after AEX
After system software has serviced the event that caused the logical processor to exit an enclave, the logical
processor can continue enclave execution using ERESUME. ERESUME restores processor state and returns control
to where execution was interrupted.
If the cause of the exit was an exception or a fault and was not resolved, the event will be triggered again if the
enclave is re-entered using ERESUME. For example, if an enclave performs a divide by 0 operation, executing
ERESUME will cause the enclave to attempt to re-execute the faulting instruction and result in another divide by 0
exception. Intel® SGX provides the means for an enclave developer to handle enclave exceptions from within the
enclave. Software can enter the enclave at a different location and invoke the exception handler within the enclave
by executing the EENTER leaf function. The exception handler within the enclave can read the fault information
from the SSA frame and attempt to resolve the faulting condition or simply return and indicate to software that the
enclave should be terminated (e.g. using EEXIT).

39.2.3.1 ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).
• In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX, EDX,

ESP, EBP, ESI, EDI, EIP and EFLAGS) are restored from the thread’s GPR area of the current SSA frame. Neither
the upper 32 bits of the legacy registers nor the 64-bit registers (R8 … R15) are loaded.

• In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:
• IA32_EFER.LMA = 0 || CS.L = 0

— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
• IA32_EFER.LMA = 1 && CS.L = 1

— 64-bit load in the same format that XSAVE/FXSAVE uses with these values plus REX.W = 1.
39-4 Vol. 3D

ENCLAVE OPERATION
39.3 CALLING ENCLAVE PROCEDURES

39.3.1 Calling Convention
In standard call conventions subroutine parameters are generally pushed onto the stack. The called routine, being
aware of its own stack layout, knows how to find parameters based on compile-time-computable offsets from the
SP or BP register (depending on runtime conventions used by the compiler).
Because of the stack switch when calling an enclave, stack-located parameters cannot be found in this manner.
Entering the enclave requires a modified parameter passing convention.
For example, the caller might push parameters onto the untrusted stack and then pass a pointer to those parame-
ters in RAX to the enclave software. The exact choice of calling conventions is up to the writer of the edge routines;
be those routines hand-coded or compiler generated.

39.3.2 Register Preservation
As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning a
value. This is consistent with conventional usage and tends to optimize the number of register save/restore oper-
ations that need be performed. It has the additional security result that it ensures that data is scrubbed from any
registers that were used to temporarily contain secrets.

39.3.3 Returning to Caller
No registers are modified during EEXIT. It is the responsibility of software to remove secrets in registers before
executing EEXIT.

39.4 INTEL® SGX KEY AND ATTESTATION

39.4.1 Enclave Measurement
During the enclave build process, two “measurements” are taken of each enclave and are stored in two 256-bit
Measurement Registers (MR): MRENCLAVE and MRSIGNER. MRENCLAVE represents the enclave's contents and
build process. MRSIGNER represents the entity that signed the enclave's SIGSTRUCT.
The values of the Measurement Registers are included in attestations to identify the enclave to remote parties. The
MRs are also included in most keys, binding keys to enclaves with specific MRs.

39.4.1.1 MRENCLAVE
MRENCLAVE is a unique 256 bit value that identifies the code and data that was loaded into the enclave during the
initial launch. It is computed as a SHA256 hash that is initialized by the ECREATE leaf function. EADD and EEXTEND
leaf functions record information about each page and the content of those pages. The EINIT leaf function finalizes
the hash, which is stored in SECS.MRENCLAVE. Any tampering with the build process, contents of a page, page
permissions, etc will result in a different MRENCLAVE value.
Figure 39-2 illustrates a simplified flow of changes to the MRENCLAVE register when building an enclave:
• Enclave creation with ECREATE.
• Copying a non-enclave source page into the EPC of an un-initialized enclave with EADD.
• Updating twice of the MRENCLAVE after modifying the enclave’s page content, i.e. EEXTEND twice.
• Finalizing the enclave build with EINIT.
Details on specific values inserted in the hash are available in the individual instruction definitions.
Vol. 3D 39-5

ENCLAVE OPERATION
39.4.1.2 MRSIGNER
Each enclave is signed using a 3072 bit RSA key. The signature is stored in the SIGSTRUCT. In the SIGSTRUCT, the
enclave's signer also assigns a product ID (ISVPRODID) and a security version (ISVSVN) to the enclave.
MRSIGNER is the SHA-256 hash of the signer's public key.
In attestation, MRSIGNER can be used to allow software to approve of an enclave based on the author rather than
maintaining a list of MRENCLAVEs. It is used in key derivation to allow software to create a lineage of an applica-
tion. By signing multiple enclaves with the same key, the enclaves will share the same keys and data. Combined
with security version numbering, the author can release multiple versions of an application which can access keys
for previous versions, but not future versions of that application.

39.4.2 Security Version Numbers (SVN)
Intel® SGX supports a versioning system that allows the signer to identify different versions of the same software
released by an author. The security version is independent of the functional version an author uses and is intended
to specify security equivalence. Multiple releases with functional enhancements may all share the same SVN if they
all have the same security properties or posture. Each enclave has an SVN and the underlying hardware has an
SVN.
The SVNs are attested to in EREPORT and are included in the derivation of most keys, thus providing separation
between data for older/newer versions.

39.4.2.1 Enclave Security Version
In the SIGSTRUCT, the MRSIGNER assigns a 16-bit Product ID (ISVPRODID) and a 16 bit integer SVN (ISVSVN).
Together they define a specific group of versions of a specific product. Most keys, including the Seal Key, can be
bound to this pair.
To support upgrading from one release to another, EGETKEY will return keys corresponding to any value less than
or equal to the software's ISVSVN.

Figure 39-2. Measurement Flow of Enclave Build Process

SHA_INIT

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_UPDATE

MRENCLAVE

SHA_FINAL

MRENCLAVE

Page
Metadata

Data
Chunk 1

Data
Chunk 2

Chunk 1
Metadata

Chunk 2
Metadata

ECREATE EADD EEXTEND EEXTEND EINIT
39-6 Vol. 3D

ENCLAVE OPERATION
39.4.2.2 Hardware Security Version
CPUSVN is a 128 bit value that reflects the microcode update version and authenticated code modules supported
by the processor. Unlike ISVSVN, CPUSVN is not an integer and cannot be compared mathematically. Not all values
are valid CPUSVNs.
Software must ensure that the CPUSVN provided to EGETKEY is valid. EREPORT will return the CPUSVN of the
current environment. If a local attestation is not in progress, software can execute EREPORT with TARGETINFO set
to zeros to retrieve a REPORT. Software can access keys for a CPUSVN recorded previously, provided that each of
the elements reflected in CPUSVN are the same or have been upgraded.

39.4.3 Keys
Intel® SGX provides software with access to keys unique to each processor and rooted in HW keys inserted into
the processor during manufacturing.
Each enclave requests keys using the EGETKEY leaf function. The key is based on enclave parameters such as
measurement, the enclave signing key, security attributes of the enclave, and the TCB of the processor itself. A full
list of parameter options is specified in the KEYREQUEST structure, see details in Section 38.17.
By deriving keys using enclave properties, SGX guarantees that if two enclaves call EGETKEY, they will receive a
unique key only accessible by the respective enclave. It also guarantees that the enclave will receive the same key
on every future execution of EGETKEY. Some parameters are optional or configurable by software. For example, a
Seal key can be based on the signer of the enclave, resulting in a key available to multiple enclaves signed by the
same party.
The EGETKEY leaf function provides several key types. Each key is specific to the processor, CPUSVN, and the
enclave that executed EGETKEY. The EGETKEY instruction definition details how each of these keys is derived, see
Table 41-43. Additionally,
• SEAL Key: The Seal key is a general purpose key for the enclave to use to protect secrets. Typical uses of the

Seal key are encrypting and calculating MAC of secrets on disk. There are 2 types of Seal Key described in
Section 39.4.3.1.

• REPORT Key: This key is used to compute the MAC on the REPORT structure. The EREPORT leaf function is used
to compute this MAC, and destination enclave uses the Report key to verify the MAC. The software usage flow
is detailed in Section 39.4.3.2.

• LAUNCH Key: This key is used by Launch Enclaves to compute the MAC on EINITTOKENs. These tokens are
then verified in the EINIT leaf function. The key is only available to enclaves with ATTRIBUTE.EINITTOKENKEY set
to 1.

• PROVISIONING Key and PROVISIONING SEAL Key: These keys are used by attestation key provisioning
software to prove to remote parties that the processor is genuine and identify the currently executing TCB.
These keys are only available to enclaves with ATTRIB-UTE.PROVISIONKEY set to 1.

39.4.3.1 Sealing Enclave Data
Enclaves can protect persistent data using Seal keys to provide encryption and/or integrity protection. EGETKEY
provides two types of Seal keys specified in KEYREQUEST.KEYPOLICY field: MRENCLAVE-based key and
MRSIGNER-based key.
The MRENCLAVE-based keys are available only to enclave instances sharing the same MRENCLAVE. If a new
version of the enclave is released, the Seal keys will be different. Retrieving previous data requires additional soft-
ware support.
The MRSIGNER-based keys are bound to the 3 tuple (MRSIGNER, ISVPRODID, ISVSVN). These keys are available
to any enclave with the same MRSIGNER and ISVPRODID and an ISVSVN equal to or greater than the key in ques-
tions. This is valuable for allowing new versions of the same software to retrieve keys created before an upgrade.
Vol. 3D 39-7

ENCLAVE OPERATION
39.4.3.2 Using REPORTs for Local Attestation
SGX provides a means for enclaves to securely identify one another, this is referred to as “Local Attestation”. SGX
provides a hardware assertion, REPORT that contains calling enclaves Attributes, Measurements and User supplied
data (described in detail in Section 38.15). Figure 39-3 shows the basic flow of information.

1. The source enclave determines the identity of the target enclave to populate TARGETINFO.

2. The source enclave calls EREPORT instruction to generate a REPORT structure. The EREPORT instruction
conducts the following:

— Populates the REPORT with identify information about the calling enclave.

— Derives the Report Key that is returned when the target enclave executes the EGETKEY. TARGETINFO
provides information about the target.

— Computes a MAC over the REPORT.

3. Non-enclave software provides copies the REPORT from source to destination.

4. The target enclave executes the EGETKEY instruction to request its REPORT key, which is the same key used by
EREPORT at the source.

5. The target enclave verifies the MAC and can then inspect the REPORT to identify the source.

39.5 EPC AND MANAGEMENT OF EPC PAGES
EPC layout is implementation specific, and is enumerated through CPUID (see Table 37-6 for EPC layout). EPC is
typically configured by BIOS at system boot time.

39.5.1 EPC Implementation
EPC must be properly protected against attacks. One example of EPC implementation could use a Memory Encryp-
tion Engine (MEE). An MEE provides a cost-effective mechanism of creating cryptographically protected volatile
storage using platform DRAM. These units provide integrity, replay, and confidentiality protection. Details are
implementation specific.

Figure 39-3. SGX Local Attestation

EREPORT

REPORT

Software

Verify REPORT

(Symmetric Key)

Source Enclave

Destination Enclave

EGETKEY
REPORT KEY

(Symmetric Key)
Hardware

Legend:

TARGETINFO
39-8 Vol. 3D

ENCLAVE OPERATION
39.5.2 OS Management of EPC Pages
The EPC is a finite resource. SGX1 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX1 = 1 but CPUID.(EAX=12H,
ECX=0):EAX.SGX2 = 0) provides the EPC manager with leaf functions to manage this resource and properly swap
pages out of and into the EPC. For that, the EPC manager would need to keep track of all EPC entries, type and
state, context affiliation, and SECS affiliation.
SGX1 includes the EWB leaf function for securely evicting pages out of the EPC. EWB encrypts a page in the EPC,
writes it to unprotected memory, and invalidates the copy in EPC. In addition, EWB also creates a cryptographic
MAC (PCMD.MAC) of the page and stores it in unprotected memory. A page can be reloaded back to the processor
only if the data and MAC match. The version of the evicted page is stored securely in a Version Array (VA) in EPC.
SGX1 includes two instructions for reloading pages that have been evicted by system software: ELDU and ELDB.
The difference between the two instructions is the value of the paging state at the end of the instruction. ELDU
results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a
BLOCKED state.
ELDB is intended for use by a Virtual Machine Monitor (VMM). When a VMM reloads an evicted page, it needs to
restore it to the correct state of the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was
evicted. Based on the state of the page at eviction, the VMM chooses either ELDB or ELDU.

39.5.2.1 Enhancement to Managing EPC Pages
On processors supporting SGX2 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX2 = 1), the EPC manager can manage
EPC resources (while enclave is running) with more flexibility provided by the SGX2 leaf functions. The additional
flexibility is described in Section 39.5.7 through Section 39.5.11.

39.5.3 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the Operating System (OS) to evict multiple pages out of the EPC under a
single synchronization.
The suggested flow for evicting a list of pages from the EPC is:

1. For each page to be evicted from the EPC:

a. Select an empty slot in a Version Array (VA) page.

• If no empty VA page slots exist, create a new VA page using the EPA leaf function.

b. Remove linear-address to physical-address mapping from the enclave contexts’s mapping tables (page
table and EPT tables).

c. Execute the EBLOCK leaf function for the target page. This sets the target page state to BLOCKED. At this
point no new mappings of the page will be created. So any access which does not have the mapping cached
in the TLB will generate a #PF.

2. For each enclave containing pages selected in step 1:

— Execute an ETRACK leaf function pointing to that enclave’s SECS. This initiates the tracking process that
ensures that all caching of linear-address to physical-address translations for the blocked pages is cleared.

3. For all logical processors executing in processes (OS) or guests (VMM) that contain the enclaves selected in
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those logical processors to exit any
enclaves they might be in, and as a result flush all TLB entries that might hold stale translations to blocked
pages. There is no need for additional measures such as performing a “TLB shootdown”.

4. After enclaves exit, allow logical processors can resume normal operation, including enclave re-entry as the
tracking logic keeps track of the activity.

5. For each page to be evicted:

— Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page
Vol. 3D 39-9

ENCLAVE OPERATION
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

At this point, system software has the only copy of each page data encrypted with its page metadata in main
memory.

39.5.4 Loading an Enclave Page
To reload a previously evicted page, system software needs four elements: the VA slot used when the page was
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent
SECS to associate this page with. If the VA page or the parent SECS are not already in the EPC, they must be
reloaded first.

1. Execute ELDB/ELDU (depending on the desired BLOCKED state for the page)), passing as parameters: the EPC
page linear address, the VA slot, the encrypted page, and the page metadata.

2. Create a mapping in the enclave context’s mapping tables (page tables and EPT tables) to allow the application
to access that page (OS: system page table; VMM: EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

39.5.5 Eviction of an SECS Page
The eviction of an SECS page is similar to the eviction of an enclave page. The only difference is that an SECS page
cannot be evicted until all other pages belonging to the enclave have been evicted. Since all other pages have been
evicted, there will be no threads executing inside the enclave and tracking with ETRACK isn’t necessary. When
reloading an enclave, the SECS page must be reloaded before all other constituent pages.

1. Ensure all pages are evicted from enclave.

2. Select an empty slot in a Version Array page.

— If no VA page exists with an empty slot, create a new one using the EPA function leaf.

3. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

39.5.6 Eviction of a Version Array Page
VA pages do not belong to any enclave and tracking with ETRACK isn’t necessary. When evicting the VA page, a slot
in a different VA page must be specified in order to provide versioning of the evicted VA page.

1. Select a slot in a Version Array page other than the page being evicted.

— If no VA page exists with an empty slot, create a new one using the EPA leaf function.

2. Evict the page using the EWB leaf function with parameters include the effective-address pointer to the EPC
page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold page
metadata. The last three elements are tied together cryptographically and must be used to later reload the
page.

39.5.7 Allocating a Regular Page
On processors that support SGX2, allocating a new page to an already initialized enclave is accomplished by
invoking the EAUG leaf function. Typically, the enclave requests that the OS allocate a new page at a particular
location within the enclave’s address space. Once allocated, the page remains in a pending state until the enclave
executes the corresponding EACCEPT leaf function to accept the new page into the enclave. Page allocation opera-
tions may be batched to improve efficiency.
The typical process for allocating a regular page is as follows:
39-10 Vol. 3D

ENCLAVE OPERATION
1. Enclave requests additional memory from OS when the current allocation becomes insufficient.

2. The OS invokes the EAUG leaf function to add a new memory page to the enclave.

a. EAUG may only be called on an invalid page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

c. All dynamically created pages have the type PT_REG and content of all zeros.

3. The enclave issues an EACCEPT instruction, which verifies the page’s attributes and clears the PENDING state.
At that point the page becomes ac-cessible for normal enclave use.

39.5.8 Allocating a TCS Page
On processors that support SGX2, allocating a new TCS page to an already initialized enclave is a two-step process.
First the OS allocates a regular page with a call to EAUG. This page must then be accepted and initialized by the
enclave to which it belongs. Once the page has been initialized with appropriate values for a TCS page, the enclave
requests the OS to change the page’s type to PT_TCS. This change must also be accepted. As with allocating a
regular page, TCS allocation operations may be batched.
A typical process for allocating a TCS page is as follows:

1. Enclave requests an additional page from the OS.

2. The OS invokes EAUG to add a new regular memory page to the enclave.

a. EAUG may only be called on an invalid page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave
use.

5. The enclave initializes the contents of the new page.

6. The enclave requests that the OS convert the page from type PT_REG to PT_TCS.

7. OS issues an EMODT instruction on the page.

a. The parameters to EMODT indicate that the regular page should be converted into a TCS.

b. EMODT forces the RWX bits to 000 because TCS pages may not be accessed by enclave code.

8. The enclave issues an EACCEPT instruction to confirm the requested modification.

39.5.9 Trimming a Page
On processors that support SGX2, Intel SGX supports the trimming of an enclave page as a special case of EMODT.
Trimming allows an enclave to actively participate in the process of removing a page from the enclave (dealloca-
tion) by splitting the process into first removing it from the enclave's access and then removing it from the EPC
using the EREMOVE leaf function. The page type PT_TRIM indicates that a page has been trimmed from the
enclave’s address space and that the page is no longer accessible to enclave software. Modifications to a page in
the PT_TRIM state are not permitted; the page must be removed and then reallocated by the OS before the enclave
may use the page again. Page deallocation operations may be batched to improve efficiency.
The typical process for trimming a page from an enclave is as follows:

1. Enclave signals OS that a particular page is no longer in use.

2. OS invokes the EMODT leaf function on the page, requesting that the page’s type be changed to PT_TRIM.

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or
PT_TCS.

b. EMODT may only be called on VALID pages.
Vol. 3D 39-11

ENCLAVE OPERATION
3. OS invokes the ETRACK leaf function on the enclave containing the page to track removal the TLB addresses
from all the processors.

4. Issue an IPI (inter-processor interrupt) to flush the stale TLB addresses for all logical processors executing in
processes (OS) or guests (VMM) that contain the enclave.

5. Enclave issues an EACCEPT leaf function.

6. The OS may now permanently remove the page from the EPC (by issuing EREMOVE).

39.5.10 Restricting the EPCM Permissions of a Page
On processors that support SGX2, restricting the EPCM permissions associated with an enclave page is accom-
plished using the EMODPR leaf function. This operation requires the cooperation of the OS to flush stale entries to
the page and to update the page-table permissions of the page to match. Permissions restriction operations may
be batched.
The typical process for restricting the permissions of an enclave page is as follows:

1. Enclave requests that the OS to restrict the permissions of an EPC page.

2. OS performs permission restriction, TLB flushing, and page-table modifications.

a. Invokes the EMODPR leaf function to restrict permissions (EMODPR may only be called on VALID pages).

b. Invokes the ETRACK leaf function on the enclave containing the page to track removal of the TLB addresses
from all the processor.

c. Issue an IPI (inter-processor interrupt) to flush the stale TLB addresses for all logical processors executing
in processes (OS) or guests (VMM) that contain the enclave.

d. Sends IPIs to trigger enclave thread exit and TLB shootdown.

e. OS informs the Enclave that all logical processors should now see the new restricted permissions.

3. Enclave invokes the EACCEPT leaf function.

a. Enclave may access the page throughout the entire process.

b. Successful call to EACCEPT guarantees that no stale TLB mappings are present.

39.5.11 Extending the EPCM Permissions of a Page
On processors that support SGX2, extending the EPCM permissions associated with an enclave page is accom-
plished directly be the enclave using the EMODPE leaf function. After performing the EPCM permission extension,
the enclave requests the OS to update the page table permissions to match the extended permission. Security
wise, permission extension does not require enclave threads to leave the enclave as TLBs with stale references to
the more restrictive permissions will be flushed on demand, but to allow forward progress, an OS needs to be
aware that an application might signal a page fault.
The typical process for extending the permissions of an enclave page is as follows:

1. Enclave invokes EMODPE to extend the EPCM permissions associated with an EPC page (EMODPE may only be
called on VALID pages).

2. Enclave requests that OS update the page tables to match the new EPCM permissions.

3. Enclave code resumes.

a. If TLB mappings are present to the more restrictive permissions, the enclave thread will page fault. The
SGX2-aware OS will see that the page tables permit the access and resume the thread, which can now
successfully access the page because exiting cleared the TLB.

b. If TLB mappings are not present, access to the page with the new permissions will succeed without an
enclave exit.
39-12 Vol. 3D

ENCLAVE OPERATION
39.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE
This section covers instructions whose behavior changes when executed in enclave mode.

39.6.1 Illegal Instructions
The instructions listed in Table 39-1 are ring 3 instructions which become illegal when executed inside an enclave.
Executing these instructions inside an enclave will generate a #UD fault.
The first row of Table 39-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM
cannot emulate enclave execution, execution of any these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.
The second row of Table 39-1 enumerates I/O instructions that may cause a fault or a VM exit for emulation. Again,
enclave execution cannot be emulated, so execution of any these instructions inside an enclave results in #UD.
The third row of Table 39-1 enumerates instructions that load descriptors from the GDT or the LDT or that change
privilege level. The former class is disallowed because enclave software should not depend on the contents of the
descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any
these instructions inside an enclave results in #UD.
The fourth row of Table 39-1 enumerates instructions that provide access to kernel information from user mode
and can be used to aid kernel exploits from within enclave. Execution of any these instructions inside an enclave
results in #UD

RDTSC and RDTSCP instructions are legal instructions inside an enclave.
RDTSC and RDTSCP instructions are legal instructions inside an enclave subject to the value of CR4. TSD.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.
Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by other
software, e.g. the TSC can be manipulated by software outside the enclave.

NOTE
Some early processor implementation of Intel SGX will generate a #UD when RDTSC and RDTSCP
are executed inside an enclave. See the model-specific processor errata for details of which
processors treat execution of RDTSC and RDTSCP inside an enclave as illegal.

39.6.2 RDRAND and RDSEED Instructions
These instructions may cause a VM exit if the “RDRAND exiting” VM-execution control is 1. Unlike other instructions
that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 6.5.5, any VM exit orig-
inating on an instruction boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a VMM
receives a VM exit due to an attempt to execute either of these instructions determines (by that bit) that the execu-
tion was inside an enclave, it can do either of two things. It can clear the “RDRAND exiting” VM-execution control
and execute VMRESUME; this will result in the enclave executing RDRAND or RDSEED again, and this time a VM
exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.

Table 39-1. Illegal Instructions Inside an Enclave
 Instructions Result Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC #UD Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/O fault may not safely recover. May require emulation.

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS,
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL,
SYSENTER

#UD Access segment register could change privilege level.

LAR, VERR, VERW, SMSW #UD Might provide access to kernel information.

ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.
Vol. 3D 39-13

ENCLAVE OPERATION
NOTE
It is expected that VMMs that virtualize Intel SGX will not set “RDRAND exiting” to 1.

39.6.3 PAUSE Instruction
The PAUSE instruction may cause a VM exit if either of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution
controls is 1. Unlike other instructions that can cause VM exits, the PAUSE instruction is legal inside an enclave.
If a VMM receives a VM exit due to the 1-setting of “PAUSE-loop exiting”, it may take action to prevent recurrence
of the PAUSE loop (e.g., by scheduling another virtual CPU of this virtual machine) and then execute VMRESUME;
this will result in the enclave executing PAUSE again, but this time the PAUSE loop (and resulting VM exit) will not
occur.
If a VMM receives a VM exit due to the 1-setting of “PAUSE exiting”, it can do either of two things. It can clear the
“PAUSE exiting” VM-execution control and execute VMRESUME; this will result in the enclave executing PAUSE
again, but this time a VM exit will not occur. Alternatively, the VMM might choose to discontinue execution of this
virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “PAUSE exiting” to 1.

39.6.4 INT 3 Behavior Inside an Enclave
INT3 is legal inside an enclave, however, the behavior inside an enclave is different from its behavior outside an
enclave. See Section 43.4.1 for details.

39.6.5 INVD Handling when Enclaves Are Enabled
Once processor reserved memory protections are activated (see Section 39.5), any execution of INVD will result in
a #GP(0).
39-14 Vol. 3D

ENCLAVE EXITING EVENTS
CHAPTER 40
ENCLAVE EXITING EVENTS

Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may
cause control to transition to an address outside the enclave. (Most of these also cause a change of privilege level.)
To protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode) before
invoking the handler for such an event. For that reason, such events are called an enclave-exiting events (EEE);
EEEs include external interrupts, non-maskable interrupts, system-management interrupts, exceptions, and VM
exits.
The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To protect
the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then loads those
registers with fixed values called synthetic state.

40.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX
Asynchronous enclave exits push information onto the appropriate stack in a form expected by the operating
system. To accomplish this, an address to trampoline code outside of the enclave is pushed onto the exiting stack
as the returning RIP. This trampoline code eventually returns to the enclave by means of an ENCLU(ERESUME) leaf
function. Prior to exiting the enclave the RSP and RBP registers are restored to their values prior to enclave entry.
The stack to be used is chosen using the same rules as for non-SGX mode:
• If there is a privilege level change, the stack will be the one associated with the new ring.
• If there is no privilege level change, the current application stack is used.
• If the IA-32e IST mechanism is used, the exit stack is chosen using that method.
In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation.
Figure 40-1 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack
switch uses the Application Stack. The ERESUME leaf index value is placed into RAX, the TCS pointer is placed in
RBX and the AEP (see below) is placed into RCX to facilitate resuming the enclave after the exit.

Figure 40-1. Exit Stack Just After Interrupt with Stack Switch

ENCLU[ERESUME]

RAX

Current SSA Frame
Per-Thread
Trampoline in uRTS

RSP after pushes

CSSA

AEP

TCS

Exit Stack

SS

RSP

RFLAGS

CS

RIP

Error Code (optional)

uRSP

AEP

RSP

TCS LA

ENCLU[ERESUME]

RCX

RBX

Next SSA Frame

uRSP
Vol. 3D 40-1

ENCLAVE EXITING EVENTS
Upon an AEX, the AEP (Asynchronous Exit Pointer) is pushed onto the exit stack as the return RIP. The AEP points
to a trampoline code sequence which includes the ERESUME instruction that is later used to reenter the enclave.
The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF, RF. The
remaining bits are left unchanged.

40.2 STATE SAVING BY AEX
The State Save Area holds the processor state at the time of an AEX. To allow handling events within the enclave
and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 40-2.

The location of the SSA frames to be used is controlled by the following variables in the TCS and the SECS:
• Size of a frame in the State Save Area (SECS.SSAFRAMESIZE). Defines the number of 4K byte pages in a single

frame in the State Save Area. Must be large enough to hold the GPR state, the XSAVE state, and the MISC
state.

• Base address of the enclave (SECS.BASEADDR). Defines the enclave's base linear address from which the
offset to the base of the SSA stack is calculated.

• Number of State Save Area Slots (TCS.NSSA). Defines the total number of slots (frames) in the State Save Area
stack.

• Current State Save Area Slot (TCS.CSSA). Defines the current slot to use on the next exit.
• State Save Area (TCS.OSSA). Defines the offset of the base address of a set of State Save Area slots from the

enclave’s base address.
When an AEX occurs while executing on a thread inside the enclave, hardware selects the SSA frame to use by
examining TCS.CSSA. Processor state (as described in Section 40.3.1) is saved into the SSA frame and loaded with
a synthetic state (to avoid leaking secrets), RSP and RP are restored to their values prior to enclave entry, and
TCS.CSSA is incremented. As will be described later, if an exception takes the last slot, it will not be possible to
reenter the enclave to handle the exception from within the enclave.
The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions. On
EENTER, CSSA must be less than NSSA, ensuring that there is at least one State Save Area slot available for exits.
Multiple SSA frames allow for handling a variety of situations. For example,
• When an AEX occurs the SSA frame is loaded and the pointer incremented.

Figure 40-2. The SSA Stack

Current

SECS.SSAFRAMESIZE

TCS

NSSA

CSSA

OSSA

(in pages)

MISC_N-1

GRP_N-1

GPR_1

XSAVE_N-1

XSAVE_1

MISC_1

XAVE_0

MISC_0

GRP_0

SSA Stack

SSA Fram
40-2 Vol. 3D

ENCLAVE EXITING EVENTS
• An ERESUME restores the processor state and frees the SSA frame.
• If after the AEX an EENTER is executed then the next SSA frame is reserved to hold state for another AEX.
If there is no free SSA frame when executing EENTER, the entry will fail.

40.3 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT

40.3.1 Processor Synthetic State on Asynchronous Enclave Exit
Table 40-1 shows the synthetic state loaded on AEX. The values shown are the lower 32 bits when the processor is
in 32 bit mode and 64 bits when the processor is in 64 bit mode.

40.3.2 Synthetic State for Extended Features
When CR4.OSXSAVE = 1, extended features (those controlled by XCR0[63:2]) are set to their respective INIT
states when this corresponding bit of SECS.XFRM is set. The INIT state is the state that would be loaded by the
XRSTOR instruction had the instruction mask and the XSTATE_BV field of the XSAVE header each contained the
value XFRM. (When the AEX occurs in 32-bit mode, those features that do not exist in 32-bit mode are unchanged.)

40.3.3 Synthetic State for MISC Features
State represented by SECS.MISCSELECT might also be overridden by synthetic state after it has been saved into
the SSA. State represented by MISCSELECT[0] doesn't need to be overridden as it isn't accessible to software.

Table 40-1. GPR, x87 Synthetic States on Asynchronous Enclave Exit
Register Value

RAX 3 (ENCLU[3] is ERESUME).

RBX Pointer to TCS of interrupted enclave thread.

RCX AEP of interrupted enclave thread.

RDX, RSI, RDI 0.

RSP Restored from SSA.uRSP.

RBP Restored from SSA.uRBP.

R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.

RIP AEP of interrupted enclave thread.

RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. All other bits are left unchanged.

x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state
that would be loaded by the XRSTOR instruction with bits 1:0 both set in the requested feature bitmask
(RFBM), and both clear in XSTATE_BV the XSAVE header.

FCW On #MF exception: set to 037EH. On all other exits: set to 037FH.

FSW On #MF exception: set to 8081H. On all other exits: set to 0H.

MXCSR On #XM exception: set to 1F01H. On all other exits: set to 1FB0H.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low
12 bits are cleared.
If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).
Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that caused
the AEX. This is because it is the AEX that clears those bits, and EEE delivery occurs after AEX.

FS, GS Restored to values as of most recent EENTER/ERESUME.
Vol. 3D 40-3

ENCLAVE EXITING EVENTS
40.3.4 VMCS Synthetic State on Asynchronous Enclave Exit
All processor registers saved in the VMCS have the same synthetic values listed above. Additional VMCS fields that
are treated specially on VM exit are listed in Table 40-2

40.4 AEX FLOW
On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved inside
the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-defined
fashion. The following sections describes the details of an AEX:

1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a 64-
bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers (EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are stored. The upper 32 bits of the legacy registers and the
64-bit registers (R8 … R15) are not stored.

In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are stored.

Table 40-2. VMCS Synthetic States on Asynchronous Enclave Exit
VMCS Field Position Value

ENCLAVE_INTERRUPTION in
“Guest Interruptibility
State”

4 Set to 1 to enable Guest Interruptibility State in enclave mode.

ENCLAVE_INTERRUPTION in
“Basic VM-exit information”

27 Set to 1 if VM exit occurred in enclave mode.

Guest-linear address If the event that caused the AEX is an EPT violation that sets bit 7 of the Exit-Qualification
field, the low 12 bits of Guest-linear address field is cleared.
Note: If the EPT violation occurs during delivery of an event that caused the AEX (e.g., an EPT
violation that occurs during IDT-vectoring), then the low 12 bits are NOT cleared.

Guest-physical address If the event that caused the AEX is an EPT violation or mis-configured EPT, then the low 12
bits of Guest-physical address field is cleared.
Note: If the EPT violation or misconfiguration occurs during delivery of an event that caused
the AEX (e.g., an EPT violation or misconfiguration that occurs during IDT-vectoring), then the
low 12 bits are NOT cleared.

Exit-Qualification On page-fault that causes an AEX: low 12 bits are cleared.
On APIC-access that causes an AEX: low 12 bits are cleared.
Note: If either the page-fault or APIC-access occurs during delivery of an event that caused
the AEX, the low 12 bits are NOT cleared.

VM-exit instruction length Cleared.

VM-exit instruction
information

This field is defined only for VM exits due to the execution of specific instructions.
The instructions that cause VM exits when executed inside an enclave include:
MOV DR, INVEPT, INVVPID, RDTSC, RDTSCP, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST,
VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON. Normally, this field is defined for VM
exits due to INT3 (or exceptions encountered while delivering INT3). This is not true for INT3
in an enclave, as the instruction becomes fault-like.
INT3 Interruption types are reported as hardware exception when invoked inside enclave
instead of 6 respectively when invoked outside enclave.
This field is cleared for all other VM exits.

I/O RCX Cleared.

I/O RSI Cleared.

I/O RDI Cleared.

I/O RIP Cleared.
40-4 Vol. 3D

ENCLAVE EXITING EVENTS
The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area of
the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the current
values of IA32_EFER.LMA and CS.L:
If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.
If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values
when REX.W = 1.
The state of those miscellaneous features specified by SECS.MISCSELECT are stored into the MISC area of the
current SSA frame.

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave state.
Table 40-1 shows the values for GPRs, x87, SSE, FS, GS, Debug and performance monitoring on AEX. The
synthetic state for other extended features (those controlled by XCR0[62:2]) is set to their respective INIT
states when their corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as defined
by the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is 0. In addition, on VM exit the VMCS
or SMRAM state is initialized as described in Table 40-2. Synthetic state of those miscellaneous features
specified by SECS.MISCSELECT depends on the miscellaneous feature. There is no synthetic state required for
the miscellaneous state controlled by SECS.MISCSELECT[0].

3. In the current SSA frame, the cause of the AEX is saved in the EXITINFO field. See Table 38-9 for details and
values of the various fields.

4. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when
exiting the enclave.

5. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (except for the situation
that the entry was opt-in for debug; see Section 43.2). In the SSA, RFLAGS.TF is set to 0.

6. RFLAGS.RF is set to 0 in the synthetic state. In the SSA, the value saved is the same as what would have been
saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps, and code
breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA.

If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is
saved on SSA, irrespective of its priority.

7. Any performance monitoring activity (including PEBS) or profiling activity (LBR, Tracing using Intel PT) on the
exiting thread that was suppressed due to the enclave entry on that thread is unsuppressed. Any counting that
had been demoted from AnyThread counting to MyThread counting (on one logical processor) is promoted back
to AnyThread counting.

40.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in enclave
mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)
TMP_RIP = Linear Address of Resume RIP
(* Is the processor in 64-bit mode? *)
TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME.

TMP_MODE64 binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack.
Vol. 3D 40-5

ENCLAVE EXITING EVENTS
the RF bit is set to what would have been saved on stack in the non-SGX case *)

 IF (TMP_MODE64 = 0)
THEN

Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using
CR_GPR_PA; (* see Table 41-4 for list of CREGs used to describe internal operation within Intel SGX *)

SSA.RFLAGS.TF 0;
ELSE (* TMP_MODE64 = 1 *)
 Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into the current SSA frame using

CR_GPR_PA;
SSA.RFLAGS.TF 0;

FI;
Save FS and GS BASE into SSA using CR_GPR_PA;

(* store XSAVE state into the current SSA frame's XSAVE area using the physical addresses
that were determined and cached at enclave entry time with CR_XSAVE_PAGE_i. *)

For each XSAVE state i defined by (SECS.ATTRIBUTES.XFRM[i] = 1, destination address cached in
CR_XSAVE_PAGE_i)
 SSA.XSAVE.i XSAVE_STATE_i;

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e. the next 16 bytes after XHEADER_BV *)

CR_XSAVE_PAGE_0.XHEADER_BV[191:64] 0;

(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_0.XHEADER_BV[63:0]
CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;
Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the RSP and RBP from the current SSA frame's GPR area using the physical address
that was determined and cached at enclave entry time with CR_GPR_PA. *)

RSP CR_GPR_PA.URSP;
RBP CR_GPR_PA.URBP;

(* Restore the FS and GS *)
FS.selector CR_SAVE_FS.selector;
FS.base CR_SAVE_FS.base;
FS.limit CR_SAVE_FS.limit;
FS.access_rights CR_SAVE_FS.access_rights;
GS.selector CR_SAVE_GS.selector;
GS.base CR_SAVE_GS.base;
GS.limit CR_SAVE_GS.limit;
GS.access_rights CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)
exception_code Exception or interrupt vector;

(* Indicate the exit reason in SSA *)
IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM))

THEN
CR_GPR_PA.EXITINFO.VECTOR exception_code;
IF (exception code = #BP)

THEN CR_GPR_PA.EXITINFO.EXIT_TYPE 6;
40-6 Vol. 3D

ENCLAVE EXITING EVENTS
ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE 3;
FI;
CR_GPR_PA.EXITINFO.VALID 1;

ELSE IF (exception_code is #PF or #GP)
THEN
(* Check SECS.MISCSELECT using CR_ACTIVE_SECS *)
IF (SECS.MISCSELECT[0] is set)

THEN
CR_GPR_PA.EXITINFO.VECTOR exception_code;
CR_GPR_PA.EXITINFO.EXIT_TYPE 3;
IF (exception_code is #PF)

THEN
SSA.MISC.EXINFO. MADDR CR2;
SSA.MISC.EXINFO.ERRCD PFEC;
SSA.MISC.EXINFO.RESERVED 0;

ELSE
SSA.MISC.EXINFO. MADDR 0;
SSA.MISC.EXINFO.ERRCD GPEC;
SSA.MISC.EXINFO.RESERVED 0;

FI;
CR_GPR_PA.EXITINFO.VALID 1;

FI;
ELSE

CR_GPR_PA.EXITINFO.VECTOR 0;
CR_GPR_PA.EXITINFO.EXIT_TYPE 0
CR_GPR_PA.REASON.VALID 0;

FI;

(* Execution will resume at the AEP *)
RIP CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)
EAX 3;

(* Put the TCS LA into RBX for later use by ERESUME *)
RBX CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)
RCX CR_TCS_PA.AEP;

(* Increment the SSA frame # *)
CR_TCS_PA.CSSA CR_TCS_PA.CSSA + 1;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

THEN XCR0 CR_SAVE_XCR0; FI;

Un-suppress all code breakpoints that are outside ELRANGE

(* Update the thread context to show not in enclave mode *)
CR_ENCLAVE_MODE 0;

(* Assure consistent translations. *)
Flush linear context including TLBs and paging-structure caches
Vol. 3D 40-7

ENCLAVE EXITING EVENTS
IF (CR_DBGOPTIN = 0)
THEN

Un-suppress all breakpoints that overlap ELRANGE
(* Clear suppressed breakpoint matches *)
Restore suppressed breakpoint matches
(* Restore TF *)
RFLAGS.TF CR_SAVE_TF;
Un-suppress monitor trap flag;
Un-suppress branch recording facilities;
Un-suppress all suppressed performance monitoring activity;
Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave

entry back to AnyThread;
FI;

IF (VMCS.MTF = 1)
THEN Pend MTF VM Exit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)
IF (Exception code is #PF)

THEN CR2 CR2 & ~0xFFF; FI;

(* end_of_flow *)
(* Execution continues with normal event processing. *)
40-8 Vol. 3D

SGX INSTRUCTION REFERENCES
CHAPTER 41
SGX INSTRUCTION REFERENCES

This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions
(Intel® SGX). In general, a various functionality is encoded as leaf functions within the ENCLS (supervisor) and
ENCLU (user) instruction mnemonics. Different leaf functions are encoded by specifying an input value in the EAX
register of the respective instruction mnemonic.

41.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS and ENCLU instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are other-
wise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or some
subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status information in one
or more of the general purpose registers.

41.1.1 ENCLS Register Usage Summary
Table 41-1 summarizes the implicit register usage of supervisor mode enclave instructions.

41.1.2 ENCLU Register Usage Summary
Table 41-2 Summarized the implicit register usage of user mode enclave instructions.

Table 41-1. Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) LINADDR

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EA: Effective Address
Vol. 3D 41-1

SGX INSTRUCTION REFERENCES
41.1.3 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of
the instruction or provide information which may be useful to the developer. Table 41-3 shows the various codes
and the instruction which generated the code. Details of the meaning of the code is provided in the individual
instruction.

Table 41-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EA: Effective Address

Table 41-3. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK

SGX_LOCKFAIL 7 EBLOCK, EMODPR, EMODT

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINIT_TOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_PAGE_NOT_DEBUGGABLE 21 EDEGRD, EDBGWR
41-2 Vol. 3D

SGX INSTRUCTION REFERENCES
41.1.4 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction.
These registers are not software visible and are implementation specific. The values in Table 41-4 appear at various
places in the pseudo-code of this document. They are used to enhance understanding of the operations.

41.1.5 Concurrent Operation Restrictions
To protect the integrity of Intel SGX data structures, under certain conditions, Intel SGX disallows certain leaf func-
tions from operating concurrently. Listed below are some examples of concurrency that are not allowed.

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 41-4. List of Internal CREG
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PH 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CSR_SGX_OWNEREPOCH 128 PACKAGE

CSR_INTELPUBKEYHASH 32 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

Table 41-3. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By
Vol. 3D 41-3

SGX INSTRUCTION REFERENCES
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with
themselves.

— EADD, EEXTEND, and EINIT leafs are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being

removed.
When disallowed operation is detected, a leaf function causes an exception. To prevent such exceptions, software
must serialize leaf functions or prevent these leaf functions from accessing the same resource.

41.1.5.1 Concurrency Table of Intel® SGX Instructions
Concurrent restriction of an individual leaf function (ENCLS or ENCLU) with another Intel SGX instruction leaf func-
tions is listed under the Concurrency Restriction paragraph of the respective reference pages of the leaf func-
tion.
The concurrency restriction depends on the type of EPC page and the parameter of the two concurrent instructions
each Intel SGX instruction leaf attempts to operate on. The spectrum concurrency behavior of the instruction leaf
shown in a given row is denoted by the following:
• ‘N’: The instructions listed in a given row heading may not execute concurrently with the instruction leaf shown

in the respective column. Software should serialize them.
• ‘Y’: The instruction leaf listed in a given row may execute concurrently with the instruction leaf shown in the

respective column.
• ‘C’: The instruction leaf listed in a given row heading may return an error code when executed concurrently with

the instruction leaf shown in the respective column.
• ‘U’: These two instruction leaves may complete, but the occurrence these two simultaneous flows are

considered a user program error for which the processor does not enforce any restriction.
• A grey cell indicates concurrent execution of two leaf functions that is architecturally impossible or restricted,

e.g. executing an ENCLU and an ENCLS leaf on the same logical processor, or executing two leaves with incom-
patible EPCM state requirements. Concurrent execution of two such leaf instructions may result in a page fault
in one of the leaf instructions.

For instance, multiple ELDB/ELDUs are allowed to execute as long as the selected EPC page is not the same page.
Multiple ETRACK operations are not allowed to execute concurrently.

41.2 INTEL® SGX INSTRUCTION REFERENCE
41-4 Vol. 3D

SGX INSTRUCTION REFERENCES
ENCLS—Execute an Enclave System Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 64-
bit mode, the instruction ignores upper 32 bits of the RAX register.
The instruction also results in a #UD if CR0.PE is 0 or RFLAGS.VM is 1, or if it is executed from in SMM mode. Addi-
tionally, any attempt to execute this instruction when current privilege level is not 0 results in #UD.
Any attempt to invoke an undefined leaf function results in #GP(0).
If CR0.PG is 0, any attempt to execute ENCLS results in #GP(0).
In VMX non-root operation, execution of ENCLS is unconditionally allowed if the “Enable ENCLS exiting” VM-execu-
tion control is cleared. If the “Enable ENCLS exiting” VM-execution control is set, execution of individual leaf func-
tion of ENCLS is governed by the “ENCLS-exiting bitmap”. Each bit position of “ENCLS-exiting bitmap” corresponds
to the index (EAX) of an ENCLS leaf function.
Software in VMX root mode of operation can intercept the invocation of various ENCLS leaf functions from VMX
non-root mode by setting the Enable_ENCLS_EXITING control and writing the desired bit patterns into the “ENCLS-
exiting bitmap” (accessed via encoding pair 0202EH/0202FH). A processor implements the
Enable_ENCLS_EXITING VM-execution control field if IA32_VMX_PROCBASED_CTLS2[15] is read as 1.
The DS segment is used to create linear addresses.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation.
Segment prefix override is ignored. Address size prefix (67H) override is ignored.
REX prefix is ignored in 64-bit mode.

Operation

IN_64BIT_MODE 0;
IF TSX_ACTIVE

Then GOTO TSX_ABORT_PROCESSING; FI;

IF (CR0.PE = 0 or RFLAGS.VM = 1 or IN_SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0)
Then #UD; FI;

IF (CPL > 0)
Then #UD; FI;

IF ((in VMX non-root operation) and (Enable_ENCLS_EXITING = 1))
Then

IF (((EAX < 63) and (ENCLS_EXITING_Bitmap[EAX] = 1)) or (EAX> 62 and ENCLS_EXITING_Bitmap[63] = 1))
Then
Set VMCS.EXIT_REASON = ENCLS;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 0F 01 CF NP V/V SGX1 This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.ENCLS

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 41.3
Vol. 3D 41-5

SGX INSTRUCTION REFERENCES
Deliver VM exit;
FI;

FI;
IF (IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0)

Then #GP(0); FI;

IF (EAX is invalid leaf number)
Then #GP(0); FI;

IF (CR0.PG = 0)
Then #GP(0); FI;

IN_64BIT_MODE IA32_EFER.LMA AND CS.L ? 1 : 0;

(* DS must not be an expanded down segment *)
IF (IN_64BIT_MODE = 0 and (DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1)

Then #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
41-6 Vol. 3D

SGX INSTRUCTION REFERENCES
ENCLU—Execute an Enclave User Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores upper
32 bits of the RAX register.
The instruction also results in a #UD if CR0.PE is 0 or RFLAGS.VM is 1, or if it is executed from inside SMM. Addi-
tionally, any attempt to execute this instruction when current privilege level is not 3 results in #UD.
Any attempt to invoke an undefined leaf function results in #GP(0).
Any attempt to execute ENCLU instruction when paging is disabled or in MS-DOS compatible mode results in #GP.
The DS segment is used to create linear addresses.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation.
Segment prefix override is ignored. Address size prefix (67H) override is ignored.
REX prefix is ignored in 64-bit mode.

Operation

IN_64BIT_MODE 0;
IF TSX_ACTIVE

Then GOTO TSX_ABORT_PROCESSING; FI;

IF (CR0.PE= 0 or RFLAGS.VM = 1 or IN_SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0)
Then #UD; FI;

IF (CR0.TS = 1)
Then #NM; FI;

IF (CPL != 3)
Then #UD; FI;

IF (IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0)
Then #GP(0); FI;

IF (EAX is invalid leaf number)
Then #GP(0); FI;

IF (CR0.PG = 0 or CR0.NE = 0)
Then #GP(0); FI;

IN_64BIT_MODE IA32_EFER.LMA AND CS.L ? 1 : 0;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 0F 01 D7 NP V/V SGX1 This instruction is used to execute non-privileged Intel SGX leaf
functions.ENCLU

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 41.4
Vol. 3D 41-7

SGX INSTRUCTION REFERENCES
(*Check not in 16-bit mode and DS is not a 16-bit segment*)
IF (IN_64BIT_MODE = 0 and ((CS.D = 0) or (DS.B = 0))

Then #GP(0); FI;

IF (CR_ENCLAVE_MODE = 1 and ((EAX = EENTER) or (EAX = ERESUME)))
Then #GP(0); FI;

IF (CR_ENCLAVE_MODE = 0 and ((EAX = EGETKEY) or (EAX = EREPORT) or (EAX = EEXIT) or (EAX = EACCEPT) or
(EAX = EACCEPTCOPY) or (EAX = EMODPE)))
Then #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
41-8 Vol. 3D

SGX INSTRUCTION REFERENCES
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.
Vol. 3D 41-9

SGX INSTRUCTION REFERENCES
41.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of each implicit register usage and asso-
ciated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.
41-10 Vol. 3D

SGX INSTRUCTION REFERENCES
EADD—Add a Page to an Uninitialized Enclave

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following:

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 01H IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.
ENCLS[EADD]

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted
by Non Enclave

Read/Write access permit-
ted by Enclave

Read access permitted
by Non Enclave

Read access permitted
by Non Enclave

Write access permitted
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 41-5. Concurrency Restrictions of EADD with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EADD Targ N N N N N N N N N N N

SECS N N Y Y N Y N N N N Y N
Vol. 3D 41-11

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_SECINFO DS:RBX.SECINFO;
TMP_LINADDR DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
Then #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
Then #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO DS:TMP_SECINFO;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero or

! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS))
Then #GP(0); FI;

Table 41-6. Concurrency Restrictions of EADD with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Para
m

SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EADD Targ N N N N N N N N

SECS N Y N Y N Y N N N N N N

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
41-12 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Check the EPC page for concurrency *)
IF (EPC page in use)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID != 0)
Then #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD)

Then #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT != PT_SECS)
Then #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)
{

PT_TCS:
IF (DS:RCX.RESERVED != 0) #GP(0); FI;
IF ((DS:TMP_SECS.ATTIBUTES.MODE64BIT = 0) and

((DS:TCS.FSLIMIT & 0FFFH != 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH != 0FFFH))) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR >= DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE)

Then #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated)

Then #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized)

Then #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
SCRATCH_SECINFO.FLAGS.R 0;
SCRATCH_SECINFO.FLAGS.W 0;
SCRATCH_SECINFO.FLAGS.X 0;
(DS:RCX).FLAGS.DBGOPTIN 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA 0;
DS:RCX.AEP 0;
DS:RCX.STATE 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
Vol. 3D 41-13

SGX INSTRUCTION REFERENCES
TMP_ENCLAVEOFFSET TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.
41-14 Vol. 3D

SGX INSTRUCTION REFERENCES
EAUG—Add a Page to an Initialized Enclave

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC,
and stores the linear address and security attributes in the EPCM. As part of the association, the security attributes
are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or EACCEPT-
COPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed when
current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following:

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0DH IR V/V SGX2 This leaf function adds a page to an initialized enclave.
ENCLS[EAUG]

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave

Read/Write access permit-
ted by Enclave

Must be zero
Read access permitted by

Non Enclave
Write access permitted by

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 41-7. Concurrency Restrictions of EAUG with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EAUG Targ N N N N N N N N N N N N

SECS Y N N Y N Y Y N Y N N Y N
Vol. 3D 41-15

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SECS DS:RBX.SECS;
TMP_LINADDR DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)
Then #GP(0); FI;

IF ((DS:RBX.SRCPAGE is not 0) or (DS:RBX:SECINFO is not 0))
Then #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
Then #PF(DS:SECS); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID != 0)
Then #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG)

Then #GP(0); FI;

Table 41-8. Concurrency Restrictions of EAUG with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EAUG Targ N N N N N N N N

SECS N Y Y Y N Y N Y Y N Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.
41-16 Vol. 3D

SGX INSTRUCTION REFERENCES
IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT != PT_SECS)
Then #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized)

Then #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR >= DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))

Then #GP(0); FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] 0;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R 1;
EPCM(DS:RCX).W 1;
EPCM(DS:RCX).X 0;
EPCM(DS:RCX).PT PT_REG;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_LINADDR;
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 1;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.
Vol. 3D 41-17

SGX INSTRUCTION REFERENCES
EBLOCK—Mark a page in EPC as Blocked

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are:

EBLOCK Error Codes

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 09H IR V/V SGX1 This leaf function marks a page in the EPC as blocked.
ENCLS[EBLOCK]

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

0 (No Error) EBLOCK successful

SGX_BLKSTATE Page already blocked. This value is used to indicate that the page was already EBLOCKed and thus will need
to be restored to this state when it is eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LO
CKED

This value indicates that an ETRACK is currently executing on the SECS. The EBLOCK should be re-attempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_LOCKFAIL Page is being written by ECREATE, ELDU/ELDB, or EWB.

Table 41-9. Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EBLOCK Targ Y Y Y N C C C N Y C C Y C C Y N C N

SECS Y C Y Y Y Y Y Y Y Y Y
41-18 Vol. 3D

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF 0;
RAX 0;

(* Check concurrency with other Intel SGX instructions *)
IF (ETRACK executed concurrently)

Then
RAX SGX_ENTRYEPOCH_LOCKED;
RFLAGS.ZF 1;
goto Done;

ELSIF (Other Intel SGX instructions reading or writing EPCM)
RAX SGX_LOCKFAIL;
RFLAGS.ZF 1;
goto Done;

FI;
FI;

IF (EPCM(DS:RCX). VALID = 0)
Then

RFLAGS.ZF 1;
RAX SGX_PG_INVLD;
goto Done;

FI;

IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS) and (EPCM(DS:RCX).PT != PT_TRIM))
Then

RFLAGS.CF 1;
IF (EPCM(DS:RCX).PT = PT_SECS)

THEN RAX SGX_PG_IS_SECS;
ELSE RAX SGX_NOTBLOCKABLE;

FI;
goto Done;

FI;

Table 41-10. Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EBLOCK Targ N C C N C C N Y C N C C

SECS Y Y Y C Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.
Vol. 3D 41-19

SGX INSTRUCTION REFERENCES
(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE EPCM(DS:RCX).BLOCKED;

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1))

Then
RFLAGS.CF 1;
RAX SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED 1

FI;

Done:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
41-20 Vol. 3D

SGX INSTRUCTION REFERENCES
ECREATE—Create an SECS page in the Enclave Page Cache

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, and ATTRIBUTES.
SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE must be at least 2 pages
(8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses are
not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 42.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 00H IR V/V SGX1 This leaf function begins an enclave build by creating an SECS
page in EPC.ENCLS[ECREATE]

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by
Non Enclave

Read access permitted by
Non Enclave

Read access permitted by Non
Enclave

Write access permitted by
Enclave

Table 41-11. Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ECREATE SECS N N N N N N N N N N N N

Table 41-12. Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Tar
g

SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

ECREATE SECS N N N N N N N N
Vol. 3D 41-21

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECINFO DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
Then #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS != 0)
Then #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT != PT_SECS))

Then #GP(0); FI;

TMP_SECS RCX;

IF (EPC entry in use)
Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1)
Then #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) != 03H)

Then #GP(0); FI;

IF (XFRM is illegal)

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
41-22 Vol. 3D

SGX INSTRUCTION REFERENCES
Then #GP(0); FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF (!(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISSELECT[31:0]))

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

(* Compute size of MISC area *)
TMP_MISC_SIZE compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 42.7.2.2*)
TMP_XSIZE compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ((DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)

Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H))
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE >= 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0])))
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE >= 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8])))
Then #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)

Then #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1))

Then #GP(0); FI;

* Ensure the SECS does not have any unsupported attributes*)
IF ((DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))

Then #GP(0); FI;

IF ((DS:TMP_SECS reserved fields are not zero)
Then #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN 0;
DS:TMP_SECS.ISVPRODID 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;
Vol. 3D 41-23

SGX INSTRUCTION REFERENCES
(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] DS:TMP_SECS.SIZE;
TMPUPDATEFIELD[511:160] 0;
SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID LockedXAdd(CR_NEXT_EID, 1);

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS 0;
EPCM(DS:TMP_SECS).R 0;
EPCM(DS:TMP_SECS).W 0;
EPCM(DS:TMP_SECS).X 0;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.
41-24 Vol. 3D

SGX INSTRUCTION REFERENCES
EDBGRD—Read From a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read cannot
be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The instruction faults if any of the following:

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.
ENCLS[EDBGRD]

Op/En EAX RBX RCX

IR EDBGRD (In) Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL != 0.

Table 41-13. Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EDBGRD Targ Y Y N Y N Y Y Y Y Y N N Y N

SECS Y Y Y Y Y Y Y Y Y Y
Vol. 3D 41-25

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
Then #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS) and (EPCM(DS:RCX).PT != PT_VA))

Then #PF(DS:RCX); FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & 0xFFF >= SGX_TCS_LIMIT))

Then #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))

Then
TMP_SECS GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

Then #GP(0); FI;
IF ((TMP_MODE64 = 1))

Then RBX[63:0] (DS:RCX)[63:0];
ELSE EBX[31:0] (DS:RCX)[31:0];

Table 41-14. Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EDBGRD Targ N Y N N Y N Y Y Y N Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs
41-26 Vol. 3D

SGX INSTRUCTION REFERENCES
FI;
ELSE

TMP_64BIT_VAL[63:0] (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1)

THEN
IF (TMP_64BIT_VAL != 0H)

THEN RBX[63:0] 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] 0H;

FI;
ELSE

IF (TMP_64BIT_VAL != 0H)
THEN EBX[31:0] 0FFFFFFFFH;
ELSE EBX[31:0] 0H;

FI;
FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
Vol. 3D 41-27

SGX INSTRUCTION REFERENCES
EDBGWR—Write to a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the source location inside the EPC is provided in the register RCX

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following:

EDBGWR Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 05H IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.
ENCLS[EDBGWR]

Op/En EAX RBX RCX

IR EDBGWR (In) Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL != 0.

Table 41-15. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EDBGWR Targ Y Y N Y N Y Y Y Y Y N N Y N

SECS Y Y Y Y Y Y Y Y Y Y

Table 41-16. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO
41-28 Vol. 3D

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
Then #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS))

Then #PF(DS:RCX); FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & 0xFF8H != offset_of_FLAGS & 0FF8H))

Then #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)
TMP_SECS GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESCES);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

Then #GP(0); FI;

IF ((TMP_MODE64 = 1))
Then (DS:RCX)[63:0] RBX[63:0];
ELSE (DS:RCX)[31:0] EBX[31:0];

FI;

Flags Affected

None

EDBGWR Targ N Y N N Y N Y Y Y N Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Table 41-16. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
Vol. 3D 41-29

SGX INSTRUCTION REFERENCES
Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
41-30 Vol. 3D

SGX INSTRUCTION REFERENCES
EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EXTEND
string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This instruc-
tion can only be executed when current privilege level is 0 and the enclave is uninitialized.
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as the
one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is used
to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following:

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 06H IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave
page.ENCLS[EEXTEND]

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points and address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL != 0.

Table 41-17. Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EEXTEND Targ N N N Y N Y Y N N N

SECS N Y Y Y N N N Y
Vol. 3D 41-31

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX does resolve to an EPC page)
Then #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS))

Then #PF(DS:RCX); FI;

TMP_SECS Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
Then #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))

Then #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

Table 41-18. Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EEXTEND Targ N N N N N

SECS Y Y Y Y Y N N N

Name Type Size (Bits) Description

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
41-32 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] 00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64] TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] 0; // 48 bytes
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
Vol. 3D 41-33

SGX INSTRUCTION REFERENCES
EINIT—Initialize an Enclave for Execution

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key.
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below:
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in
debug mode as well.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 02H IR V/V SGX1 This leaf function initializes the enclave and makes it ready to
execute enclave code.ENCLS[EINIT]

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Figure 41-1. Relationships Between SECS, SIGSTRUCT and EINITTOKEN

MRSIGNER

ATTRIBUTES

MRENCLAVE

Hashed

Check

If VALID=1, Check

Signature

ATTRIBUTES

PubKey

ATTRIBUTEMASK
MRENCLAVE

SIGSTRUCT

Verify

DS:RBX

EINIT

SECS

ENCLAVE

EPC

ATTRIBUTES

MRENCLAVE

MRSIGNER

If VALID=1,
Check

Copy

DS:RCX
Check

DS:RDX

EINITTOKEN
41-34 Vol. 3D

SGX INSTRUCTION REFERENCES
EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 41-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.
Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to 0.
Checks that no Intel-only bits are set in SIGSTRUCT.ATTRIBUTES unless SIGSTRUCT was signed by Intel.
Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with
SECS.ATTRIBUTES.
If EINITTOKEN.VALID is 0, checks that SIGSTRUCT is signed by Intel.
If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.
If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.
If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.
Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on
SIGSTRUCT.
Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure
code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These
events are INTR, NMI, SMI, INIT, VMX_TIMER, MCAKIND, MCE_SMI, and CMCI_SMI. EINIT does not fail if the
pending event is inhibited (e.g., INTR could be inhibited due to MOV/POP SS blocking and STI blocking).
RFLAGS.{CF,PF,AF,OF,SF} are set to 0. When the instruction completes with an error, RFLAGS.ZF is set to 1, and
the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and RAX is set to 0.

Concurrency Restrictions

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

Table 41-19. Concurrency Restrictions of EINIT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EINIT SECS N N N Y Y N N Y N N N N N N Y N

Table 41-20. Concurrency Restrictions of EINIT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EINIT SECS N Y N Y N Y N N N N N N
Vol. 3D 41-35

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

Then #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned)

Then #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC)

Then #PF(DS:RCX); FI;

TMP_SIG[14463:0] DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] DS:RDX[2423:0]; // 304 bytes

(* Verify SIGSTRUCT Header. *)
IF ((TMP_SIG.HEADER != 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR != 0) and (TMP_SIG.VENDOR != 00008086h)) or
(TMP_SIG HEADER2 != 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT != 00000003h) or (Reserved space is not 0’s))
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_SIG_STRUCT;
goto EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) {

RFLAG.ZF 1;
RAX SGX_UNMASKED_EVENT;
goto EXIT;

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER.

INTEL_ONLY_MASK ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for Intel enclaves.

CSR_INTELPUBKEYHA
SH

32Bytes Constant with the SHA256 of the Intel Public key used to sign Architectural
Enclaves.

TMP_KEYDEPENDENC
IES

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3 modulo
MRSIGNER.
41-36 Vol. 3D

SGX INSTRUCTION REFERENCES
FI
IF (signature failed to verify) {

RFLAG.ZF 1;
RAX SGX_INVALID_SIGNATURE;
goto EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS)

Then #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT != PT_SECS))
Then #PF(DS:RCX); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))

Then #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE SHA256FINAL((DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH != TMP_MRENCLAVE)

RFLAG.ZF 1;
RAX SGX_INVALID_MEASUREMENT;
goto EXIT;

FI;

TMP_MRSIGNER SHA256(TMP_SIG.MODULUS)

(* if INTEL_ONLY ATTRIBUTES are set, SIGSTRUCT must be signed using the Intel Key *)
INTEL_ONLY_MASK 0000000000000020H;
IF (((DS:RCX.ATTRIBUTES & INTEL_ONLY_MASK) != 0) and (TMP_MRSIGNER != CSR_INTELPUBKEYHASH))

RFLAG.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) != (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))

RFLAG.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) != (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;

goto EXIT
FI;
Vol. 3D 41-37

SGX INSTRUCTION REFERENCES
(* if EINITTOKEN.VALID[0] is 0, verify the enclave is signed by Intel *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER != CSR_INTELPUBKEYHASH)
RFLAG.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;
goto COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))

RFLAG.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAG.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;

(* EINIT token must be <= CR_CPUSVN *)
IF (TMP_TOKEN.CPUSVN > CR_CPUSVN)

RFLAG.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME LAUNCH_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN TMP_TOKEN.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN TMP_TOKEN.CPUSVN;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK 0;
TMP_KEYDEPENDENCIES.PADDING HARDCODED_PKCS1_5_PADDING;

(* Calculate the derived key*)
TMP_EINITTOKENKEY derivekey(TMP_KEYDEPENDENCIES);
41-38 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch
Enclave. Only 192 bytes of EINITOKEN are CMACed *)
IF (TMP_TOKEN.MAC != CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))

RFLAG.ZF 1;
RAX SGX_INVALID_EINIT_TOKEN;
goto EXIT;

FI;

(* Verify EINITTOKEN (RDX) is for this enclave *)
IF (TMP_TOKEN.MRENCLAVE != TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER != TMP_MRSIGNER))

RFLAG.ZF 1;
RAX SGX_INVALID_MEASUREMENT;
goto EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES != DS:RCX.ATTRIBUTES)

RFLAG.ZF 1;
RAX SGX_INVALID_EINIT_ATTRIBUTE;
goto EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)
DS:RCX.MRENCLAVE TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)
DS:RCX.MRSIGNER TMP_MRSIGNER;
DS:RCX.ISVPRODID TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN TMP_SIG.ISVSVN;
DS:RCX.PADDING TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*)
RFLAG.ZF 0;
RAX 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.
Vol. 3D 41-39

SGX INSTRUCTION REFERENCES
64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.
41-40 Vol. 3D

SGX INSTRUCTION REFERENCES
ELDB/ELDU—Load an EPC page and Marked its State

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page is
cryptographically authenticated and decrypted. This instruction can only be executed when current privilege level
is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

EBLDB/ELDBU Memory Parameter Semantics

The error codes are:

ELDB/ELDU Error Codes

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 07H IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as blocked.ENCLS[ELDB]

 EAX = 08H IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as unblocked.ENCLS[ELDU]

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU

(In)
Return error
code (Out)

Address of the PAGEINFO
(In)

Address of the EPC page
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave
read access

Non-enclave read
access

Non-enclave read
access

Enclave read/write
access

Read/Write access
permitted by Enclave

Read/Write access per-
mitted by Enclave

0 (No Error) ELDB/ELDU successful

SGX_MAC_COMPARE_FAIL If the MAC check fails.

Table 41-21. Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ELDB/E
LDU

Targ N N N N N N N N N N N

VA N N Y N Y N

SECS Y N Y Y N Y Y Y Y Y N Y
Vol. 3D 41-41

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in ELDB/ELDU Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_PCMD DS:RBXPCMD;

(* Check alignment of PAGEINFO (RBX)linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))

Then #GP(0); FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF ((other instructions accessing EPC) or (Other instructions modifying VA slot))

Then #GP(0); FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)

Table 41-22. Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

ELDB/E
LDU

Targ N N N N N N N N

VA N N Y N N

SECS N Y Y Y Y N Y Y Y

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes
41-42 Vol. 3D

SGX INSTRUCTION REFERENCES
IF (EPCM(DS:RCX).VALID = 1)
Then #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT != PT_VA))
Then #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] 0;

TMP_HEADER.SECINFO SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
Then

IF (DS:TMP_SECS is not 4KByte aligned)
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS) FI;

IF (Other instructions modifying SECS)
THEN #GP(0) FI;

IF ((EPCM(DS:TMP_SECS).VALID = 0) or (EPCM(DS:TMP_SECS).PT != PT_SECS))
THEN #PF(DS:TMP_SECS) FI;

ELSIF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_SECS) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_VA))
IF ((TMP_SECS != 0))

THEN #GP(0) FI;
ELSE

#GP(0)
FI;

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
Then

TMP_HEADER.EID DS:TMP_SECS.EID;
ELSE

(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID 0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] DS:TMP_SRCPGE[32767: 0];
TMP_VER DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ((TMP_MAC != DS:TMP_PCMD.MAC))
Then
Vol. 3D 41-43

SGX INSTRUCTION REFERENCES
RFLAGS.ZF 1;
RAX SGX_MAC_COMPARE_FAIL;
goto ERROR_EXIT;

FI;

(* Check version before committing *)
IF (DS:RDX != 0)

Then #GP(0);
ELSE

DS:RDX TMP_VER;
FI;

(* Commit EPCM changes *)
EPCM(DS:RCX).PT TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_HEADER.LINADDR;

IF ((EAX = 07H) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
Then

EPCM(DS:RCX).BLOCKED 1;
ELSE

EPCM(DS:RCX).BLOCKED 0;
FI;

EPCM(DS:RCX). VALID 1;

RAX 0;
RFLAGS.ZF 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
41-44 Vol. 3D

SGX INSTRUCTION REFERENCES
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.
Vol. 3D 41-45

SGX INSTRUCTION REFERENCES
EMODPR—Restrict the Permissions of an EPC Page

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC page.
The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following:

EMODPR Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0EH IR V/V SGX2 This leaf function restricts the access rights associated with a
EPC page in an initialized enclave.ENCLS[EMODPR]

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 41-23. Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODPR Targ Y N Y N Y N N N

SECS Y N Y Y Y N Y N Y

Table 41-24. Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODP
R

Targ N N N C C C C C Y Y

SECS Y Y Y N Y Y Y Y Y Y
41-46 Vol. 3D

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.R is 0 or SCRATCH_SECINFO.FLAGS.W is not 0))
Then #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0)
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

Then
RFLAGS 1;
RAX SGX_LOCKFAIL;
goto Done;

FI;

IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
Then

RFLAGS 1;
RAX SGX_PAGE_NOT_MODIFIABLE;
goto Done;

FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
Then #PF(DS:RCX); FI;

TMP_SECS GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
Vol. 3D 41-47

SGX INSTRUCTION REFERENCES
 Then #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR 1;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)

Then #GP(0); FI;

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
41-48 Vol. 3D

SGX INSTRUCTION REFERENCES
EMODT—Change the Type of an EPC Page

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following:

EMODT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0FH IR V/V SGX2 This leaf function changes the type of an existing EPC page.
ENCLS[EMODT]

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 41-25. Concurrency Restrictions of EMODT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODT Targ Y Y N N N N N C N N N N N

SECS Y N Y Y Y Y N Y N Y

Table 41-26. Concurrency Restrictions of EMODT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODT Targ N N N N N C C C C C Y Y

SECS Y Y Y C Y Y Y Y Y Y
Vol. 3D 41-49

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))
Then #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0 or
!(EPCM(DS:RCX).PT is PT_REG or EPCM(DS:RCX).PT is PT_TCS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

Then #GP(0); FI;

(* Check for mis-configured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W != 0)))

Then
RFLAGS 1;
RAX SGX_LOCKFAIL;
goto Done;

FI;

IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
Then

RFLAGS 1;
RAX SGX_PAGE_NOT_MODIFIABLE;
goto Done;

FI;

TMP_SECS GET_SECS_ADDRESS

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
41-50 Vol. 3D

SGX INSTRUCTION REFERENCES
IF (TMP_SECS.ATTRIBUTES.INIT = 0)
 Then #GP(0); FI;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)

Then #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).PR 0;
EPCM(DS:RCX).MODIFIED 1;
EPCM(DS:RCX).R 0;
EPCM(DS:RCX).W 0;
EPCM(DS:RCX).X 0;
EPCM(DS:RCX).PT SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. Clears
CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
Vol. 3D 41-51

SGX INSTRUCTION REFERENCES
EPA—Add Version Array

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to
PT_VA.

The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX != PT_VA or DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page)

THEN #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0AH IR V/V SGX1 This leaf function adds a Version Array to the EPC.
ENCLS[EPA]

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 41-27. Concurrency Restrictions of EPA with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EPA VA N N N N N N N N N N N

Table 41-28. Concurrency Restrictions of EPA with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EPA VA N N N N N N N N
41-52 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID != 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] 0;

EPCM(DS:RCX).PT PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS 0;
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;
EPCM(DS:RCX).RWX 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.
Vol. 3D 41-53

SGX INSTRUCTION REFERENCES
EREMOVE—Remove a page from the EPC

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruction
leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use by
another thread, or other threads are running in the enclave to which the page belongs. In addition the instruction
fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following:

EREMOVE Faulting Conditions

The error codes are:

EREMOVE Error Codes

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 03H IR V/V SGX1 This leaf function removes a page from the EPC.
ENCLS[EREMOVE]

Op/En EAX RCX

IR EREMOVE (In) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

0 (No Error) EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.
41-54 Vol. 3D

SGX INSTRUCTION REFERENCES
Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
Then #PF(DS:RCX); FI;

TMP_SECS Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction)

Then #GP(0); FI;

(* if DS:RCX is already unused, nothing to do*)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

Then goto DONE;
FI;

IF (EPCM(DS:RCX).PT = PT_VA)
Then

EPCM(DS:RCX).VALID 0;
goto DONE;

FI;

IF (EPCM(DS:RCX).PT = PT_SECS)
Then

IF (DS:RCX has an EPC page associated with it)
Then

RFLAGS.ZF 1;

Table 41-29. Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EREMOVE Targ C C C N N N C N N C N C N C C C N N N N N

SECS C Y Y Y Y C Y C Y Y

Table 41-30. Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EREMOVE Targ N C C C N N N C N N N C N C C

SECS Y Y Y C Y Y Y Y Y Y C

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.
Vol. 3D 41-55

SGX INSTRUCTION REFERENCES
RAX SGX_CHILD_PRESENT;
goto ERROR_EXIT;

FI;
EPCM(DS:RCX).VALID 0;
goto DONE;

FI;

TEMP_SECS Get_SECS_ADDRESS();

IF (Other threads active using SECS)
Then

RFLAGS.ZF 1;
RAX SGX_ENCLAVE_ACT;
goto ERROR_EXIT;

FI;

DONE:
RAX 0;
RFLAGS.ZF 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.
41-56 Vol. 3D

SGX INSTRUCTION REFERENCES
ETRACK—Activates EBLOCK Checks

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

ETRACK Memory Parameter Semantics

The error codes are:

ETRACK Error Codes

Concurrency Restrictions

Operation

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0CH IR V/V SGX1 This leaf function activates EBLOCK checks.
ENCLS[ETRACK]

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

0 (No Error) ETRACK successful

SGX_PREV_TRK_INCMPL All logical processors on the platform did not complete the previous tracking cycle.

Table 41-31. Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ETRACK SECS Y N Y N N N Y Y Y Y Y N Y N

Table 41-32. Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

ETRACK SECS N Y Y N N Y N Y N N Y
Vol. 3D 41-57

SGX INSTRUCTION REFERENCES
(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT != PT_SECS)
Then #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ((DS:RCX).TRACKING != 0))

Then
RFLAGS.ZF 1;
RAX SGX_PREV_TRK_INCMPL;
goto Done;

ELSE
RAX 0;
RFLAGS.ZF 0;

FI;

Done:
RFLAGS.ZF,CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
41-58 Vol. 3D

SGX INSTRUCTION REFERENCES
EWB—Invalidate an EPC Page and Write out to Main Memory

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.

The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0BH IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to
main memory.ENCLS[EWB]

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access

Table 41-33. Concurrency Restrictions of EWB with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EWB Src C C C N N N C N N C N C N C C C N N N N

VA N N Y N Y N

SECS Y Y Y Y Y Y Y Y Y Y

Table 41-34. Concurrency Restrictions of EWB with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EWB Src N C C C N N N C N N N C N C C

VA N N Y N N

SECS Y Y Y Y Y Y Y Y Y Y
Vol. 3D 41-59

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EWB Operational Flow

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

Then #GP(0); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD DS:RBX.PCMD;

If (DS:RBX.LINADDR != 0) OR (DS:RBX.SECS != 0)
Then #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DSTMP_SRCPGE is not 4KByte Aligned))
Then #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page)

THEN #GP(0); FI;

(*Check if the VA Page is being removed or changed*)
IF (VA Page is being modified)

THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16
41-60 Vol. 3D

SGX INSTRUCTION REFERENCES
IF (EPCM(DS:RCX).VALID = 0)
THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0xFFF).PT is not PT_VA))
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF 0;
RAX 0;

(* Perform page-type-specific checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0)

THEN
RAX SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX SGX_NOT_TRACKED;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
TMP_HEADER.EID TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX SGX_CHILD_PRESENT;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI:
TMP_HEADER.EID 0;
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID 0; // Zero is not a special value
Vol. 3D 41-61

SGX INSTRUCTION REFERENCES
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID 0;

FI;

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1 : 0] 0;

TMP_HEADER.LINADDR EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO
DS:TMP_PCMD.SECINFO.FLAGS.PT EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED 0;
DS:TMP_PCMD.ENCLAVEID TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
IF ([DS.RDX])

THEN
RAX SGX_VA_SLOT_OCCUPIED
RFLAGS.CF 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] TMP_VER;

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID 0;
EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
41-62 Vol. 3D

SGX INSTRUCTION REFERENCES
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.
Vol. 3D 41-63

SGX INSTRUCTION REFERENCES
41.4 INTEL® SGX USER LEAF FUNCTION REFERENCE

41.4.1 Instruction Column in the Instruction Summary Table
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each instruc-
tion leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific input
parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage and
associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or outside
the EPC, the memory addressing semantics of these memory objects are also summarized in a separate table.
41-64 Vol. 3D

SGX INSTRUCTION REFERENCES
EACCEPT—Accept Changes to an EPC Page

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes speci-
fied in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be
executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 05H IR V/V SGX2 This leaf function accepts changes made by system software to
an EPC page in the running enclave.ENCLU[EACCEPT]

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request. Page type is PT_REG and MODIFIED bit is 0.

Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

Table 41-35. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EACCE
PT

Targ C Y Y C Y Y

SECINFO U Y U U

SECS Y Y Y Y Y Y Y

Table 41-36. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO
Vol. 3D 41-65

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX &~0xFFF).VALID = 0) or (EPCM(DS:RBX &~0xFFF).R = 0) or (EPCM(DS:RBX &~0xFFF).PENDING != 0) or
(EPCM(DS:RBX &~0xFFF).MODIFIED != 0) or (EPCM(DS:RBX &~0xFFF).BLOCKED != 0) or
(EPCM(DS:RBX &~0xFFF).PT != PT_REG) or (EPCM(DS:RBX &~0xFFF).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~0xFFF).ENCLAVEADDRESS != (DS:RBX & 0xFFF)))
Then #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero))

Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not within CR_ELRANGE)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)
IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or

((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and (SCRATCH_SECINFO.FLAGS.PENDING is 0) and
(SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

Then #GP(0); FI

EACCE
PT

Targ Y N Y N N N Y N Y Y

SECIN
FO

U Y Y Y Y U Y

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Table 41-36. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY
41-66 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Check security attributes of the destination EPC page *)
If ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or

((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)) or
(EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF (EPC page in use)

Then #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))

Then #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ((EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX) or (EPCM(DS:RCX).PENDING != SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED != SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R != SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W != SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X != SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT != SCRATCH_SECINFO.FLAGS.PT))
Then

RFLAGS 1;
RAX SGX_PAGE_ATTRIBUTES_MISMATCH;
goto DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF 1;
RAX SGX_NOT_TRACKED;
goto DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

Then
IF (DS:RCX.RESERVED != 0) #GP(0); FI;

FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA >= (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0)

Then #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ((TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & 0xFFF != 0xFFF) or (DS:RCX.GSLIMIT & 0xFFF != 0xFFF)))

Then #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).PR 0;

(* Clear EAX and ZF to indicate successful completion *)
Vol. 3D 41-67

SGX INSTRUCTION REFERENCES
RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
41-68 Vol. 3D

SGX INSTRUCTION REFERENCES
EACCEPTCOPY—Initialize a Pending Page

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).
After initialization, the instruction may also modify the access rights associated with the destination EPC page. This
instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPTCOPY Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 07H IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page
from another page in the EPC.ENCLU[EACCEPTCOPY]

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running
enclave.

Table 41-37. Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EACCE
PTCOP

Y

Targ

Src U Y U Y

SECIN
FO

U Y U U
Vol. 3D 41-69

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))
Then #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX &~0xFFF).VALID = 0) or (EPCM(DS:RBX &~0xFFF).R = 0) or (EPCM(DS:RBX &~0xFFF).PENDING != 0) or
(EPCM(DS:RBX &~0xFFF).MODIFIED != 0) or (EPCM(DS:RBX &~0xFFF).BLOCKED != 0) or (EPCM(DS:RBX &~0xFFF).PT != PT_REG) or
(EPCM(DS:RBX &~0xFFF).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~0xFFF).ENCLAVEADDRESS != DS:RBX))
Then #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or ((SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W!=0) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG))
Then #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RDX).PENDING != 0) or (EPCM(DS:RDX).MODIFIED != 0) or

(EPCM(DS:RDX).BLOCKED != 0) or (EPCM(DS:RDX).PT != PT_REG) or (EPCM(DS:RDX).ENCLAVESECS != CR_ACTIVE_SECS) or

Table 41-38. Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EACCE
PTCOP

Y

Targ N N

Src Y Y Y Y U Y Y

SECIN
FO

U Y Y Y Y Y Y

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
41-70 Vol. 3D

SGX INSTRUCTION REFERENCES
(EPCM(DS:RDX).ENCLAVEADDRESS != DS:RDX))
Then #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 1) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then

RFLAGS 1;
RAX SGX_PAGE_ATTRIBUTE_MISMATCH;
goto Done;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use)

Then #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 1) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).R != 1) or (EPCM(DS:RCX).W != 1) or (EPCM(DS:RCX).X != 0) or
(EPCM(DS:RCX).PT != SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX))
Then #PF(DS:RCX); FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING 0;

RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
Vol. 3D 41-71

SGX INSTRUCTION REFERENCES
If a memory operand is locked.
#PF(fault code) If a page fault occurs in accessing memory operands.

If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.
41-72 Vol. 3D

SGX INSTRUCTION REFERENCES
EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM.The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 43.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 43.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 43.2.2).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 43.2.3):

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 02H IR V/V SGX1 This leaf function is used to enter an enclave.
ENCLU[EENTER]

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM != 0x3.

CR4.OSFXSR != 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
Vol. 3D 41-73

SGX INSTRUCTION REFERENCES
— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

Then #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

Then
IF(CS.base != 0 or DS.base != 0) #GP(0); FI;

Table 41-39. Concurrency Restrictions of EENTER with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EENTE
R

TCS N N N Y N N N

SSA U Y U U

SECS Y N Y Y Y Y N Y N Y

Table 41-40. Concurrency Restrictions of EENTER with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EENTE
R

TCS N N N N

SSA U Y U Y U U U

SECS Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.
41-74 Vol. 3D

SGX INSTRUCTION REFERENCES
IF(ES usable and ES.base != 0) #GP(0); FI;
IF(SS usable and SS.base != 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (DS:RCX is not canonical))

Then #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

Then #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX) or (EPCM(DS:RBX).PT != PT_TCS))
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
Then #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
Then #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

Then #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

Then
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
Vol. 3D 41-75

SGX INSTRUCTION REFERENCES
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;
FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & & 0xFFFFFFFFFFFFFFFE) != 0)

Then #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

Then #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 != TMP_SECS.ATTRIBUTES.MODE64BIT))

Then #GP(0); FI;

IF (CR4.OSFXSR = 0)
Then #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

Then
IF (TMP_SECS.ATTRIBUES.XFRM != 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUES.XFRM & XCR0) != TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA >= (DS:RBX).NSSA)

Then #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
Then #PF(DS:TMP_SSA_PAGE); FI;
41-76 Vol. 3D

SGX INSTRUCTION REFERENCES
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
Then #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS != DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT != PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0))
Then #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
Then #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
Then #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS != DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT != PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
Then #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
Then

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) Then #GP(0); FI;
FI;

CR_GPR_PA Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

Then
IF (TMP_TARGET is not canonical) Then #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) Then #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

Then #GP(0); FI;

CR_ENCALVE_MODE 1;
CR_ACTIVE_SECS TMP_SECS;
CR_ELRANGE (TMPSECS.BASEADDR, TMP_SECS.SIZE);
Vol. 3D 41-77

SGX INSTRUCTION REFERENCES
(* Save state for possible AEXs *)
CR_TCS_PA Physical_Address (DS:RBX);
CR_TCS_LA RBX;
CR_TCS_LA.AEP RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector FS.selector;
CR_SAVE_FS_base FS.base;
CR_SAVE_FS_limit FS.limit;
CR_SAVE_FS_access_rights FS.access_rights;
CR_SAVE_GS_selector GS.selector;
CR_SAVE_GS_base GS.base;
CR_SAVE_GS_limit GS.limit;
CR_SAVE_GS_access_rights GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 XCR0;
XCR0 TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP CRIP”
RIP NRIP;
RAX (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP RSP;
DS:TMP_SSA.U_RBP RBP;

(* Do the FS/GS swap *)
FS.base TMP_FSBASE;
FS.limit DS:RBX.FSLIMIT;
FS.type 0001b;
FS.W DS.W;
FS.S 1;
FS.DPL DS.DPL;
FS.G 1;
FS.B 1;
FS.P 1;
FS.AVL DS.AVL;
FS.L DS.L;
FS.unusable 0;
FS.selector 0BH;

GS.base TMP_GSBASE;
GS.limit DS:RBX.GSLIMIT;
GS.type 0001b;
GS.W DS.W;
GS.S 1;
GS.DPL DS.DPL;
GS.G 1;
GS.B 1;
GS.P 1;
GS.AVL DS.AVL;
41-78 Vol. 3D

SGX INSTRUCTION REFERENCES
GS.L DS.L;
GS.unusable 0;
GS.selector 0BH;

CR_DBGOPTIN TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF RFLAGS.TF;
RFLAGS.TF 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Clear_all_pending_debug_exceptions;
Clear_pending_MTF_VM_exit;

ELSE
IF (RFLAGS.TF = 1)

Then Pend_Single-Step_#DB_at_the_end_of_ENTER; FI;
IF (VMCS.MTF = 1)

Then Pend_MTF_VM_exit_at_the_end_of_ENTER; FI;
FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
Vol. 3D 41-79

SGX INSTRUCTION REFERENCES
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.
41-80 Vol. 3D

SGX INSTRUCTION REFERENCES
EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX.
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0)
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This has the effect of
abort page semantics on the next destination.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function is used to exit an enclave.
ENCLU[EEXIT]

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (In)

Target Address

 Non-Enclave read and execute access

Table 41-41. Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EEXIT TCS N N N Y N Y N N N N N N

SSA U N Y N Y N U N N N U N

SECS Y N Y Y Y Y N Y N N Y

Table 41-42. Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EEXIT TCS Y N N Y N N Y N Y N

SSA Y N U N Y N Y U Y N Y N Y U N U U

SECS Y Y Y Y Y Y Y Y Y N Y
Vol. 3D 41-81

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
Then

IF (RBX is not canonical) Then #GP(0); FI;
ELSE

IF (RBX > CS limit) Then #GP(0); FI;
FI;

TMP_RIP CRIP;
RIP RBX;

(* Return current AEP in RCX *)
RCX CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector CR_SAVE_FS.selector;
FS.base CR_SAVE_FS.base;
FS.limit CR_SAVE_FS.limit;
FS.access_rights CR_SAVE_FS.access_rights;
GS.selector CR_SAVE_GS.selector;
GS.base CR_SAVE_GS.base;
GS.limit CR_SAVE_GS.limit;
GS.access_rights CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

XCR0 CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF (RFLAGS.TF = 1)
Pend Single-Step #DB at the end of EEXIT;

FI;

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.
41-82 Vol. 3D

SGX INSTRUCTION REFERENCES
IF (VMCS.MTF = 1)
Pend MTF VM exit at the end of EEXIT;

FI;

CR_ENCLAVE_MODE 0;
CR_TCS_PA.STATE INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(fault code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(fault code) If a page fault occurs in accessing memory operands.
Vol. 3D 41-83

SGX INSTRUCTION REFERENCES
EGETKEY—Retrieves a Cryptographic Key

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in
RBX & RCX should be locations inside the enclave.
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible
inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following
actions:
• The instruction assembles the derivation data for the key based on the Table 41-43
• Computes derived key using the derivation data and package specific value
• Outputs the calculated key to the address in RCX
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key
for which it has not been granted the attribute to request, or requests a key that is not supported by the hardware.
These checks may be performed in any order. Thus, an indication by error number of one cause (for example,
invalid attribute) does not imply that there are not also other errors. Different processors may thus give different
error numbers for the same Enclave. The correctness of software should not rely on the order resulting from the
checks documented in this section. In such cases the ZF flag is set and the corresponding error bit
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the
address specified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 38.17.1) identifies the key to be provided. The Keyrequest.KeyName field
identifies which type of key is requested.
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 41-43) and a processor key.
Depending on the key being requested a field may either be included by definition or the value may be included
from the KeyRequest. A “yes” in Table 41-43 indicates the value for the field is included from its default location,
identified in the source row, and a “request” indicates the values for the field is included from its corresponding
KeyRequest field.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function retrieves a cryptographic key.
ENCLU[EGETKEY]

Op/En EAX RBX RCX

IR EGETKEY (In) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access Enclave write access
41-84 Vol. 3D

SGX INSTRUCTION REFERENCES
Keys that permit the specification of a CPU or ISV's code's SVNs have additional requirements. The caller may not
request a key for an SVN beyond the current CPU or ISV SVN, respectively.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string):
HARDCODED_PKCS1_5_PADDING[15:0] ß 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] ß SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] ß 2004000501020403650148866009060D30313000H;

The error codes are:

EGETKEY Error Codes

Concurrency Restrictions

Table 41-43. Key Derivation

Key Name Attributes
Owner
Epoch CPU SVN ISV SVN

ISV
PRODID MRENCLAVE MRSIGNER RAND

Source

Key
Dependent
Constant

Y
SECS.ATTRIBUTE
S and
SECS.MISCSELECT;

CSR_SEO
WNEREP
OCH

Y CPUSVN
Register;

R
Req.ISVSVN;

SECS.
ISVID

SECS.
MRENCLAVE

SECS.
MRSIGNER

Req.
KEYID

RAttribMask &
SECS.ATTRIBUTE
S and
SECS.MISCSELECT;

R
Req.CPUSVN;

Launch Yes Request Yes Request Request Yes No No Request

Report Yes Yes Yes Yes No No Yes No Request

Seal Yes Request Yes Request Request Yes Request Request Request

Provisioni
ng

Yes Request No Request Request Yes No Yes Yes

Provisioni
ng Seal

Yes Request Yes Request Request Yes No Yes Yes

0 (No Error) EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is beyond platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST.ISVSVN is greater than the enclave's ISV_SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Table 41-44. Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EGETKEY Param U Y U U

SECS Y Y Y Y Y Y Y
Vol. 3D 41-85

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ((DS:RBX is not 128Byte aligned) or (DS:RBX is within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ((DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0))

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS != (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ((DS:RCX is not 16Byte aligned) or (DS:RCX is within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ((DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0))

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS != (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))
THEN #PF(DS:RCX);

FI;

Table 41-45. Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EGETKEY Param U Y U Y U Y U

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.
41-86 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ((DS:RBX).RESERVED != 0) or (DS:RBX.KEYPOLICY.RESERVED != 0))

THEN #GP(0); FI;

TMP_CURRENTSECS CR_ACTIVE_SECS;

(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
// Include enclave identity?
TMP_MRENCLAVE 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
FI;
// Include enclave author?
TMP_MRSIGNER 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER TMP_CURRENTSECS.MRSIGNER;
FI;
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
BREAK;

REPORT_KEY:
Vol. 3D 41-87

SGX INSTRUCTION REFERENCES
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID 0;
TMP_KEYDEPENDENCIES.ISVSVN 0;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has LAUNCH capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.LAUNCHKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
BREAK;

PROVISION_KEY: // Check ENCLAVE has PROVISIONING capability
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)
41-88 Vol. 3D

SGX INSTRUCTION REFERENCES
THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES 0;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
(* Determine values key is based on *)
Vol. 3D 41-89

SGX INSTRUCTION REFERENCES
TMP_KEYDEPENDENCIES.KEYNAME PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF 1;
RAX SGX_INVALID_KEYNAME;
goto EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0] TMP_OUTPUTKEY;
RAX 0;
RFLAGS.ZF 0;

EXIT:
RFLAGS.CF 0;
RFLAGS.PF 0;
RFLAGS.AF 0;
RFLAGS.OF 0;
RFLAGS.SF 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(fault code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(fault code) If a page fault occurs in accessing memory operands.
41-90 Vol. 3D

SGX INSTRUCTION REFERENCES
EMODPE—Extend an EPC Page Permissions

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the page
permissions will have no effect. This instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following:

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 06H IR V/V SGX2 This leaf function extends the access rights of an existing EPC
page.ENCLU[EMODPE]

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 41-46. Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODPE Targ Y Y Y Y

SECIN
FO

U Y U U

Table 41-47. Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODP
E

Targ Y N Y N N N Y Y Y

SECIN
FO

U Y Y Y Y Y Y
Vol. 3D 41-91

SGX INSTRUCTION REFERENCES
Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED != 0) or
(EPCM(DS:RBX).BLOCKED != 0) or (EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX))
Then #PF(DS:RBX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

Then #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).BLOCKED != 0) or (EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

Then #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).BLOCKED != 0) or (EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX))
Then #PF(DS:RCX); FI;

(* Check for mis-configured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W != 0)))

Then #GP(0); FI;

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
41-92 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
Vol. 3D 41-93

SGX INSTRUCTION REFERENCES
EREPORT—Create a Cryptographic Report of the Enclave

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective address
of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the enclave
from which the instruction is called. RDX contains the address where the REPORT will be output by the instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following:

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the RCX
(REPORTDATA) operand).

4. Computes a crytpographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA).
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot
of the platform by a trusted entity within the SGX TCB.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 00H IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.
ENCLU[EREPORT]

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO

(In)
Address of REPORTDATA

(In)
Address where the REPORT is

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave
41-94 Vol. 3D

SGX INSTRUCTION REFERENCES
The instruction faults if any of the following:

EREPORT Faulting Conditions

Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ((DS:RBX is not 128Byte Aligned) or (DS:RBX is not within CR_ELRANGE))

Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX). VALID = 0)
Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.

Table 41-48. Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EREPORT Param U Y U U

SECS Y Y Y Y Y Y Y

Table 41-49. Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EREPORT Param U Y U Y U Y U

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY 128 REPORTKEY generated by the instruction.

TMP_REPORT 3712
Vol. 3D 41-95

SGX INSTRUCTION REFERENCES
IF ((EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or
(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS != (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

FI;

(* Address verification for REPORTDATA (RCX) *)
IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))

Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #P(DS:RCX); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS != (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).R = 0))
THEN #PF(DS:RCX);

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))

Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

IF (EPCM(DS:RDX). VALID = 0)
Then #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1))
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RDX).PT != PT_REG) or (EPCM(DS:RDX).ENCLAVESECS != CR_ACTIVE_SECS) or

(EPCM(DS:RDX).ENCLAVEADDRESS != (DS:RDX & ~0FFFH)) or (EPCM(DS:RDX).W = 0))
THEN #PF(DS:RDX);

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN CR_CPUSVN;
TMP_REPORT.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN TMP_CURRENTSECS..ISVSVN;
TMP_REPORT.ATTRIBUTES TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA DS:RCX[511:0];
TMP_REPORT.MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
TMP_REPORT.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED 0;
TMP_REPORT.KEYID[255:0] CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT TMP_CURRENTSECS.MISCSELECT;
41-96 Vol. 3D

SGX INSTRUCTION REFERENCES
(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID 0;
TMP_KEYDEPENDENCIES.ISVSVN 0;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SGX_OWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;

(* Calculate the derived key*)
TMP_REPORTKEY derive_key(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC cmac(TMP_REPORTKEY, TMP_REPORT[3071:0]);
DS:RDX[3455: 0] TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(fault code) If a page fault occurs in accessing memory operands.
Vol. 3D 41-97

SGX INSTRUCTION REFERENCES
ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following:

If CR0.TS is set, ERESUME generates a #NM exception.
The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM.The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 43.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a POPF
instruction while inside the enclave clears TF (see Section 43.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 43.2.3).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, all
code and data breakpoints that overlap with the ELRANGE are suppressed.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 03H IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.ENCLU[ERESUME]

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM != 0x3.

CR4.OSFXSR != 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use.
41-98 Vol. 3D

SGX INSTRUCTION REFERENCES
• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 43.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STATUS[60]
on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

Table 41-50. Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ERESU
ME

TCS N N N Y N N N

SSA U Y U U

SECS Y N Y Y Y Y N Y N Y

Table 41-51. Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

ERESU
ME

TCS N N N N

SSA U Y U Y U U U

SECS Y Y Y Y Y Y Y Y Y Y Y

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.
Vol. 3D 41-99

SGX INSTRUCTION REFERENCES
(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

Then #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

Then
IF(CS.base != 0 or DS.base != 0) #GP(0); FI;
IF(ES usable and ES.base != 0) #GP(0); FI;
IF(SS usable and SS.base != 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (DS:RCX is not canonical))

Then #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

Then #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX) or (EPCM(DS:RBX).PT != PT_TCS))
Then #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
Then #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

Then #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & & 0xFFFFFFFFFFFFFFFE) != 0)

Then #GP(0); FI;
41-100 Vol. 3D

SGX INSTRUCTION REFERENCES
(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

Then #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 != TMP_SECS.ATTRIBUTES.MODE64BIT))

Then #GP(0); FI;

IF (CR4.OSFXSR = 0)
Then #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

Then
IF (TMP_SECS.ATTRIBUES.XFRM != 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUES.XFRM & XCR0) != TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)

Then #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

Then #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

Then #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

Then #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS != DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT != PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0))
Then #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

Then #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

Then #PF(DS:TMP_GPR); FI;
Vol. 3D 41-101

SGX INSTRUCTION REFERENCES
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS != DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT != PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
Then #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
Then

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) Then #GP(0); FI;
FI;

CR_GPR_PA Physical_Address (DS: TMP_GPR);

TMP_TARGET (DS:TMP_GPR).RIP;
IF (TMP_MODE64 = 1)

Then
IF (TMP_TARGET is not canonical) Then #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) Then #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

Then
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))
41-102 Vol. 3D

SGX INSTRUCTION REFERENCES
Then #GP(0); FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN

DS:RBX.STATE INACTIVE;
#GP(0);

FI;

CR_ENCALVE_MODE 1;
CR_ACTIVE_SECS TMP_SECS;
CR_ELRANGE (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA Physical_Address (DS:RBX);
CR_TCS_LA RBX;
CR_TCS_LA.AEP RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector FS.selector;
CR_SAVE_FS_base FS.base;
CR_SAVE_FS_limit FS.limit;
CR_SAVE_FS_access_rights FS.access_rights;
CR_SAVE_GS_selector GS.selector;
CR_SAVE_GS_base GS.base;
CR_SAVE_GS_limit GS.limit;
CR_SAVE_GS_access_rights GS.access_rights;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP CRIP”
RIP TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM 0;
IF (RFLAGS.IOPL = 3)

Then RFLAGS.IF = DS:TMP_GPR.IF; FI;

IF (TCS.FLAGS.OPTIN = 0)
Vol. 3D 41-103

SGX INSTRUCTION REFERENCES
Then RFLAGS.TF = 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 XCR0;
XCR0 TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base TMP_FSBASE;
FS.limit DS:RBX.FSLIMIT;
FS.type 0001b;
FS.W DS.W;
FS.S 1;
FS.DPL DS.DPL;
FS.G 1;
FS.B 1;
FS.P 1;
FS.AVL DS.AVL;
FS.L DS.L;
FS.unusable 0;
FS.selector 0BH;

GS.base TMP_GSBASE;
GS.limit DS:RBX.GSLIMIT;
GS.type 0001b;
GS.W DS.W;
GS.S 1;
GS.DPL DS.DPL;
GS.G 1;
GS.B 1;
GS.P 1;
GS.AVL DS.AVL;
GS.L DS.L;
GS.unusable 0;
GS.selector 0BH;

CR_DBGOPTIN TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF RFLAGS.TF;
RFLAGS.TF 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Clear_all_pending_debug_exceptions;
Clear_pending_MTF_VM_exit;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;
41-104 Vol. 3D

SGX INSTRUCTION REFERENCES
FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.
Vol. 3D 41-105

SGX INSTRUCTION REFERENCES
This page was

intentionally left

blank.
41-106 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
CHAPTER 42
INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution
environments on processors supporting IA32 and Intel® 64 architectures. These Intel SGX instructions are
designed to work with legacy software and the various IA32 and Intel 64 modes of operation.

42.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES
The Intel SGX extensions (see Table 37-1) are available only when the processor is executing in protected mode of
operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CR0.PG enabled.
The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of
ENCLS and ENCLU.

42.2 IA32_FEATURE_CONTROL
A new bit in IA32_FEATURE_CONTROL MSR (bit 18) is provided to BIOS to control the availability of Intel SGX
extensions. For Intel SGX extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL
MSR on that logical processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be
locked (bit 0 must be set). See Section 37.7.1 for additional details. OS is expected to examine the value of bit 18
prior to enabling Intel SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

42.3 INTERACTIONS WITH SEGMENTATION

42.3.1 Scope of Interaction
Intel SGX extensions are available only when the processor is executing in a protected mode operation (see
Section 42.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation policies
set up by the OS, but they can be more restrictive than the OS.
Intel SGX interacts with segmentation at two levels:
• The Intel SGX instruction (see the enclave instruction in Table 37-1).
• While executing inside an enclave (legacy instructions and enclave instructions permitted inside an enclave).

42.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing
Prefixes

All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment
(DS). The segment-override prefix on Intel SGX instructions is ignored.
Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD excep-
tion if used.
All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing,
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.
Vol. 3D 42-1

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
42.3.3 Interaction of Intel® SGX Instructions with Segmentation
The Intel SGX leaf functions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) ensure that all
usable segment registers except for FS and GS have a zero base.
Additionally they save the existing contents of the FS/GS segment registers (including the hidden portion) in the
processor, and load those registers with new values compatible with enclave security. The instructions also ensure
that the linear ranges and access rights available under the newly-loaded FS and GS abide to OS policies by
ensuring they are subsets of the linear-address range and access rights available for the DS segment. See EENTER
Leaf and ERESUME Leaf in Chapter 41 for exact details of this computation.
Any exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment
registers.
The enclave-entry leaf functions also ensure that the CS segment mode (64-bit, compatible, or 32 bit modes) is
consistent with the segment mode for which the enclave was created, as indicated by the SECS.ATTRI-
BUTES.MODE64 bit, and that the CPL of the logical processor is 3.
Finally, all leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an
expand-up segment. Failing this check results in generation of a #GP(0) exception.

42.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by IA32 and Intel 64
Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state
(e.g. via MOV seg register, POP seg register, LDS, far jump, etc.) results in the generation of a #UD. See Section
39.6.1 for more information.
Upon enclave entry via the EENTER leaf function, FS is loaded from the TCS.OFSBASGX and TCS.FSLIMIT fields and
GS is loaded from the TCS.OGSBASGX and TCS.GSLIMIT fields. An asynchronous exit saves FSBASE and GSBASE
into the current SSA frame. Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave does not
generate the #UD exception. If the software running inside an enclave modifies the segment-base values for these
registers using the WRFSBASE and WRGSBASE instructions, the new values are saved into the current SSA frame
on an asynchronous enclave exit (AEX) and restored back on enclave entry via ENCLU[ERESUME] instruction.

42.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only if paging is enabled. Any
attempt to execute these leaf functions with paging disabled results in delivery of #UD to the system software (OS
or VMM). As with segmentation, enclaves abide by all the paging policies set up by the OS, but they can be more
restrictive than the OS.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the data segments,
and the linear addresses generated by combining these offsets with DS segment register are subject to paging-
based access control, if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[EEXIT] can only be executed when paging is enabled, and since paging
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL of 3), enclave
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as
an extension to the three paging modes of Intel Architecture. See Section 38.5 for details.
It should be noted that Intel SGX instructions may set the Accessed and Dirty flags of the referenced page table
entries of non-faulting EPC pages, although the instruction may eventually fault due to some other reason.

42.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX-root or
VMX-non-root mode, as long as:
42-2 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
• The software is not running in SMM mode of operation.
• The software is using a legal mode of operation (see Section 42.1).
A VMM has the flexibility to configure the VMCS to permit a guest to use the entirety of the ENCLS leaf functions or
any sub-set of the ENCLS leaf functions at the granularity of individual leaf function. Availability of the ENCLU leaf
functions in VMX non-root operation has the same requirement as ENCLU leaf functions outside of a virtualized
environment.
Enhancement in the VMCS to allow configurability for Intel SGX in a guest is enumerated by VMX capability MSRs.
A summary of the enumerated capabilities is listed in Table 42-1.

Details of the VMCS control to allow VMM to configure support of Intel SGX in guest operation is described in Section
42.5.1

42.5.1 VMM Controls to Configure Guest Support of Intel® SGX
Intel SGX capabilities are primarily exposed to the software via the CPUID instruction. VMMs can virtualize CPUID
instruction to expose/hide this capability to/from guests.
Some of Intel SGX resources are exposed/controlled via model-specific registers (see Section 37.7). VMMs can
virtualize these MSRs for the guests using standard RDMSR/WRMSR hooks.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the
usual memory-virtualization techniques such as EPTs or shadow page tables.
The VMM can set the “enable ENCLS exiting” (bit 15 in the secondary processor-based VM-execution controls) to
cause a VM-Exit when the ENCLS instruction is executed in VMX non-root operation. Support for the 1-setting of
this control will be enumerated in the VMX capability MSRs (see Section 42.5.1.1).
If the “enable ENCLS exiting” control is 0 on a VM entry, all of the ENCLS leaf functions are permitted in VMX non-
root operation.
If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions in VMX non-root operation is governed
by consulting the bits in a new 64-bit VM-execution control called “ENCLS-exiting bitmap” (VMCS field encoding
0202EH).
When bits in the “ENCLS-exiting bitmap” are set, execution of the corresponding ENCLS leaf functions in VMX non-
root operation causes a VM exit.
The priority of “ENCLS-exiting bitmap” check is immediately below the CPL check. This field exists only on proces-
sors that support the 1-setting of “enable ENCLS exiting”.
Processors that do not support Intel SGX, i.e. CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, the following items hold:
• VMX capability MSRS enumerate the 1-setting of “enable ENCLS exiting” as not supported.
• VM entries with “enable ENCLS exiting” field set to 1 will fail.
• VMREAD/VMWRITE of the “ENCLS-exiting bitmap” will fail.

Table 42-1. Summary of VMX Capability Enumeration MSRS for Processors Supporting Intel® SGX
Interface Description

IA32_VMX_PROCBASED_CTLS2[bit 15] f 1, indicates that 1-setting “enable ENCLS exiting” in the secondary processor-based
VM-execution control is allowed. Mirrors the value of CPUID.(EAX=07H,
ECX=0).EBX.SGX

IA32_VMX_MISC[bit 30] If 1, VM entry checks that the VM-entry instruction length is in the range
0-15. See Section 42.5.3.
Vol. 3D 42-3

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
42.5.1.1 Guest State Area - Guest Non-Register State

42.5.1.2 VM-Execution Controls
VM-Execution controls related to Intel SGX include a 64-bit ENCLS-exiting bitmap (VMCS field encoding 0202EH)
and the “Enable ENCLS exiting” control at bit 15 of the secondary processor based VM execution controls. The
ENCLS-exiting bitmap provides bit fields for VMM to control whether individual ENCLS leaf functions cause a VM exit
when run in VMX non-root operation, see “ENCLS—Execute an Enclave System Function of Specified Leaf Number”
in Section 41.1.1. If bit 31 of the primary processor-based VM execution controls is 0, the processor functions as if
the Enable ENCLS Exiting bit was set to 0.

42.5.1.3 Basic VM-Exit Information
Bit 27 of the VM-exit information field provides information on VM exits due to the interaction between enclave and
asynchronous events.

The encodings of Basic Exit Reason can indicate if the VM exit is related to executing ENCLS leaf functions.

42.5.2 VM Exits While Inside an Enclave
VM exits that originate within an enclave set the following two bits before delivering the VM exit to the VMM:

Table 42-2. Guest Interruptibility State
Position Field Value

0 Blocking by STI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

1 Blocking by MOV SS See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

2 Blocking by SMI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

3 Blocking by NMI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

4 ENCLAVE_INTERRUPTION See Section 42.5.3.3.

Table 42-3. Secondary Processor Based VM Execution Controls
Position Field Value

14:0 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

15 Enable ENCLS exiting Enable ENCLS-exiting bitmap for ENCLS leaf functions.

31:16 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Table 42-4. Format of Exit Reason
Bit Position Value

15:0 Basic exit reason: See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

26:16 Reserved: See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

27 ENCLAVE_INTERRUPTION: see Section 42.5.2.

31:28 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Table 42-5. Basic Exit Reasons
Basic Exit Reason Value

0 through 59 See Appendix C of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

60 ENCLS.
42-4 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
• Bit 27(Enclave Interruption) in the Exit reason filed of Basic VM-exit information.
• Bit 4 (Enclave Interruption) in the Interruptibility State of Guest Non-Register State of VMCS (field encoding

4824H, Table 42-2).
Any VM exit (except for failed VM-entry VM exit) that sets ENCLAVE_INTERRUPTION in GUEST_INTERRUPTIBILITY
state, also sets Enclave Interruption in the EXIT_REASON field.
VM exit conditions include:
• Direct VM exits caused by exceptions, interrupts, and NMIs that happen while the logical processor is executing

inside an enclave.
• Indirect VM exits triggered by interrupts, exceptions, and NMIs that happen while the logical processor is

executing inside an enclave.

— This includes VM exits encountered during vectoring due to EPT violations, task switch, etc.
• Parallel VM exits caused by SMI that is received while the logical processor is executing inside an enclave.
• All other VM exits that happen on an instruction boundary that is inside an enclave.
IA32/Intel 64 Architectures define very strict priority ordering between classes of events that are received on the
same instruction boundary, and such ordering requires careful attention to cross-interactions between events. See
Section 42.6 for details of interactions of architecturally visible events with Intel SGX architecture.
All processor states saved in the VMCS on VM exits from an enclave contain synthetic state. See Table 40-1 and
Table 40-2 for details of the state saved into the VMCS.
A failed VM-entry VM exit will not set the ENCLAVE_INTERRUPTION bit in the EXIT_REASON field but since it does
not modify the guest state area, the original value of the ENCLAVE_INTERRUPTION bit remains untouched in the
guest’s Interruptibility State field.

42.5.3 VM Entry Consistency Checks and Intel® SGX
A VM entry performs consistency checks according to those described in Chapter 26 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C.

42.5.3.1 VM-Entry Instruction-Length Field
Additionally, to facilitate event injection following an AEX for which the instruction length field is cleared, VM entry
allows the VM-entry instruction-length field to hold the value 0 if the following items all hold true:
• IA32_VMX_MISC[30] is set to 1.
• The valid bit (bit 31) of the VM-entry interruption-information field in the current VMCS is 1.
• The interruption type (bits 10:8)of the VM-entry interruption-information field has value 4 (software interrupt),

5 (privileged software exception), or 6 (software exception).

42.5.3.2 VM Execution Control Setting Checks
VM-entry consistency check on VM-execution control fields includes:
• If CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, and if the “ENCLS Exiting” control (bit 15 in the secondary

processor-based VM-execution controls) is set, then the VM entry fails, which sets RFLAGS.ZF=1 and error
code=7 (VM entry with invalid control field).

42.5.3.3 Guest Interruptibility State Checks
If the Enclave Interruption bit in the guest non-register state’s interruptibility state field is set and
CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, VM entry fails with the “VM-entry failure due to invalid guest state” error
(error code 33).
If both the “Blocking by MOV SS” and Enclave Interruption bits are set in the Interruptibility-State field in the
guest-state area of the VMCS, VM entry fails with the “VM-entry failure due to invalid guest state” error (error code
Vol. 3D 42-5

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
33). Note that, since the MOV SS and POP SS instructions are illegal inside an enclave, no VM exit will set the inter-
ruptibility-state field with both bits set.
If the Enclave Interruption bit is set in the interruptibility-state field in the guest Non-Register state of the VMCS,
and a VM entry leads to a VMEXIT during event injection, then the VM exit sets the Enclave Interruption bit as
described in Section 42.5.2. Such a transition does not include an asynchronous enclave exit and consequently,
neither the processor's architectural state, nor the state saved in the guest-state area of the VMCS is synthesized
as is done during asynchronous enclave exits (for example: there is no clearing of the GPRs or of VMCS fields such
as the VM-exit instruction length or the low 12 bits in certain address fields in the VMCS).

42.5.4 Interaction of Intel® SGX with Various VMMs
If IA32_VMX_MISC.[bit 30] = 0, permitted VM entry instruction lengths are 1-15 bytes. If IA32_VMX_MISC.[bit
30] = 1, permitted VM entry instruction lengths allow 0 as a legal value for interruption type 4(software interrupt),
5 (privileged software exception), or 6 (software exception).
Support for an instruction length of 0 simplifies the work for a VMM that wishes to inject an event back to the guest
after an AEX occurred in the guest and the instruction length field has been cleared out.

42.5.5 Interactions with EPTs
Intel SGX instructions are fully compatible with Extended Page Tables.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the data segments,
and the linear addresses generated by combining these offsets with DS segment register are subject to paging and
EPT-based access control. As with paging, enclaves abide by all the EPT policies set up by the VMM, but they can be
more restrictive than the OS.
The Intel SGX access control itself is implemented as an extension to the IA paging and EPT mechanisms. See
Section 42.4 for details of this extension.
Intel SGX instructions may set Accessed and Dirty flags of the referenced extended page table entries (when
supported) on non-faulting EPC pages, although the instruction may eventually fault due to some other reason.

42.5.6 Interactions with APIC Virtualization
The Intel SGX architecture interacts with APIC virtualization due to its interactions with the APIC access page as
well as Virtual APIC Page. See Section 42.11.1 for the interactions of Intel SGX architecture with the APIC Access
Page.

42.5.7 Interactions with Monitor Trap Flag
The interactions of Intel SGX with the Monitor Trap Flag are documented in Section 43.2.

42.5.8 Interactions with Interrupt-Virtualization Features and Events
If software is executing in an enclave and a VM exit would occur that would report “interrupt window” as basic exit
reason (due to the 1-setting of the “interrupt window exiting” VM-execution control), an AEX occurs before the VM
exit is delivered.
If software is executing in an enclave and a virtual interrupt would be delivered through the IDT (due to the 1-
setting of the “virtual interrupt delivery” VM-execution control), an AEX occurs before delivery of the virtual inter-
rupt.
If software is executing in an enclave and an external interrupt arrives that would cause a VM exit (due to the 1-
setting of the “external interrupt exiting” VM-execution control), an AEX occurs before the VM exit is delivered.
If software is executing in an enclave and an external interrupt arrives that would cause virtual interrupts to be
posted to the virtual-IRR field in the virtual-APIC page (due to the 1-setting of the “process posted interrupts” VM-
42-6 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
execution control), an AEX may or may not occur before the posting of the virtual interrupts. This behavior is
implementation specific.

42.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible vectored events (IA32 exceptions, interrupts, SMI, NMI, INIT, VM exit) that are detected
while inside an enclave cause an asynchronous enclave exit. Additionally, INT3, and the SignalTXTMsg[SENTER]
(i.e. GETSEC[SENTER]’s rendezvous event message) events also cause asynchronous enclave exits. Note that
SignalTXTMsg[SEXIT] (i.e. GETSEC[SEXIT]’s teardown message) does not cause an AEX.
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 40.4 for details of AEX).
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the
first event results in detection of further events (e.g. VM exit, double fault, etc.), then the event information in the
SSA is not updated to reflect these subsequently detected events.

42.7 INTERACTIONS WITH THE PROCESSOR EXTENDED STATE AND
MISCELLANEOUS STATE

42.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions.
Details of discovery of processor extended states and management of these states are described in CHAPTER 13 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state and miscellaneous state in

the state-save area (SSA), and clear the secrets from the processor extended state that is used by an enclave.
• Intel SGX architecture must ensure that erroneous XCR0 and/or XBV_HEADER settings by system software do

not result in SSA overflow.
• Enclave software should be able to discover only those processor extended state and miscellaneous state for

which such protection is enabled.
• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's

identity. This requirement has two implications:

— Certain processor extended state (e.g., Memory Protection Extensions, see Chapter 9 of Intel® Archi-
tecture Instruction Set Extensions Programming Reference) modify the behavior of the legacy ISA
software. If such features are enabled for enclaves that do not understand those features, then such a
configuration could lead to a compromise of the enclave's security.

— Service providers may decide to assign different trust level to the same enclave depending on the ISA
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-Feature Request Mask (XFRM)
in the ATTRIBUTES field of the SECS. On enclave entry, after certain consistency checks, the value in the XCR0 is
saved internally by the processor, and is replaced by the XFRM. On enclave exit, the original value of XCR0 is
restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in enabled
state, and those that are disabled in XFRM are in disabled state. The entire ATTRIBUTES field, including the XFRM
subfield is integral part of enclave's identity (i.e., its value is included in reports generated by ENCLU[EREPORT],
and select bits from this field can be included in key-derivation for keys obtained via ENCLU[EGETKEY]).
Enclave developers can create their enclave to work with certain features and fallback to another code path in case
those features aren't available (e.g. optimize for AVX and fallback to SSE). For this purpose Intel SGX provides the
following fields in SIGSTRUCT: ATTRIBUTES, ATTRIBUTESMASK, MISCSELECT, and MISCMASK. EINIT ensures that
the final SECS.ATTRIBUTES and SECS.MISCSELECT comply with the enclave developer's requirements as follows:
SIGSTRUCT.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK = SECS.ATTRIBUTES & SIG-STRUCT.ATTRIBUTEMASK
Vol. 3D 42-7

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
SIGSTRUCT.MISCSELECT & SIGSTRUCT.MISCMASK = SECS.MISCSELECT & SIG-STRUCT.MISCMASK.
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA
frame, and overwritten by synthetic state (see Section 40.3 for the definition of the synthetic state). When the
interrupted enclave is resumed via ENCLU[ERESUME], the saved state for processor extended states enabled by
XFRM is restored.

42.7.2 Relevant Fields in Various Data Structures

42.7.2.1 SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 38.7) contains a sub-field called X-Feature Request
Mask (XFRM). Software populates this field at the time of enclave creation indicating the processor extended state
configuration required by the enclave.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of the
processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in XFRM
are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and the
set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3.
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2]

must be zero.
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.
The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact
enforcement mechanisms are elaborated in Section 42.7.3 through Section 42.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE,
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution.
Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled (CR4.OSFXSR
= 1).

42.7.2.2 SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for
each SSA frame, including both the GPRSGX area, MISC area, the XSAVE area (x87 and XMM states are stored in
the latter area), and optionally padding between the MISC and XSAVE area. The GPRSGX area must hold all the
general-purpose registers, additional Intel SGX specific information, the MISC area must hold the Miscellaneous
state as specified by SECS.MISCSELECT, the XSAVE area holds the set of processor extended states specified by
SECS.ATTRIBUTES.XFRM (see Section 38.9 for the layout of SSA and Section 42.7.3 for ECREATE's consistency
checks). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX returns if XCR0 were set to XFRM. The following
pseudo code illustrates how software can calculate this length using XFRM as the input parameter without modi-
fying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then

1. It is the responsibility of the enclave to actually allocate this memory.
42-8 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then

offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];

FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the Enclave
Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.

42.7.2.3 XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset 0 of the frame.

42.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf of the ENCLS instruction enforces a number of consistency checks described earlier. The execu-
tion of ENCLS[ECREATE] instruction results in a #GP(0) exception in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3.
• The processor does not support XSAVE and any of the following is true:

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0.

— XFRM[63]=1.

— The SSAFRAME is too small to hold required, enabled states (see Section 42.7.2.2).

42.7.4 Processor Extended States and ENCLU[EENTER]

42.7.4.1 Fault Checking
The EENTER leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. The execution of the ENCLU[EENTER] leaf function results in a #GP(0) exception in any of the following
cases:
• If CR4.OSFXSR=0.
• If The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM

42.7.4.2 State Loading
If ENCLU[EENTER] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.
Vol. 3D 42-9

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
42.7.5 Processor Extended States and AEX

42.7.5.1 State Saving
On an AEX, processor extended states are saved into the XSAVE area of the SSA frame in a compatible format with
XSAVE that was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE
area, and (for 64-bit enclaves) as if REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every
bit that is 0 in XFRM. Other bits may be saved as 0 if the state saved is initialized.
Note that enclave entry ensures that if CR4.OSXSAVE is set to 0, then SECS.ATTRIBUTES.XFRM is set to 3. It
should also be noted that it is not possible to enter an enclave with FXSAVE disabled.

42.7.5.2 State Synthesis
After saving the extended state, the processor restores XCR0 to the value it held at the time of the most recent
enclave entry.
The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized.
Details of state synthesis on AEX are documented in Section 40.3.1.

42.7.6 Processor Extended States and ENCLU[ERESUME]

42.7.6.1 Fault Checking
The ERESUME leaf function of the ENCLU instruction enforces a number of consistency requirements described
earlier. Specifically, the ENCLU[ERESUME] leaf function results in a #GP(0) exception in any of the following cases:
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.
A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault
will cause the ENCLU[ERESUME] leaf function to fault. Examples include, but are not restricted to the following:
• A bit is set in the XSTATE_BV field and clear in XFRM.
• The required bytes in the header are not clear.
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0.

42.7.6.2 State Loading
If ENCLU[ERESUME] is successful, the current value of XCR0 is saved internally by the processor and replaced by
SECS.ATTRIBUTES.XFRM.
State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with
XCR0=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if
REX.W=1.
ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly (e.g.,
by marking all state as modified).

42.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] leaf function does not perform any X-feature specific consistency checks, nor performs any
state synthesis. It is the responsibility of enclave software to clear any sensitive data from the registers before
42-10 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
executing EEXIT. However, successful execution of the ENCLU[EEXIT] leaf function restores XCR0 to the value it
held at the time of the most recent enclave entry.

42.8 INTERACTIONS WITH SMM

42.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside SMM
results in a #UD exception.

42.8.2 SMI while Inside an Enclave
The response to an SMI received while executing inside an enclave depends on whether the dual-monitor treat-
ment is enabled. For detailed discussion of transfer to SMM, see Chapter 34, “System Management Mode” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled,
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition to
saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H).
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit.
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 42-4) and in the Guest Interrupt-
ibility State field (see Table 42-2) of the SMM transfer VMCS.

42.8.3 SMRAM Synthetic State of AEX Triggered by SMI
All processor registers saved in the SMRAM have the same synthetic values listed in Section 40.3. Additional
SMRAM fields that are treated specially on SMI are:

42.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor to
exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” state
(Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical processor
is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters Wait-for-
SIPI (WFS) state.
INIT received inside an enclave, while the logical processor (LP) is in VMX-root operation, follows regular Intel
Architecture behavior and is blocked.
INIT received inside an enclave, while the logical processor is in VMX-non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT is delivered to the VMM via appropriate VM exit with the Enclave Interruption bit in the
VMCS.EXIT_REASON set.
A processor cannot be inside an enclave in the WFS state. Consequently, a SIPI received while inside an enclave is
lost.
Intel SGX does not change the behavior of the processor in the WFS state.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:

Table 42-6. SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value Writable

SMRAM Offset 07EE0H.Bit 1 ENCLAVE_INTERRUPTION Set to 1 if exit occurred in enclave mode No
Vol. 3D 42-11

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
• EPCM: Unchanged
• CPUID.LEAF_12H.*: Unchanged
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously)
• MEE state: Unchanged
Software should be aware that following INIT-SIPI-SIPI, the EPC might contain valid pages and should take appro-
priate measures such as initialize the EPC with the EREMOVE leaf function.

42.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

42.11 INTERACTIONS WITH MEMORY CONFIGURATION AND VARIOUS MEMORY
RANGES

42.11.1 Interactions of Intel® SGX with APIC Access Address
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave
(see Section 38.3).
An explicit Enclave Access (a linear memory access which is either from within an enclave into it ELRANGE, or an
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page
causes a #PF exception (APIC page is expected to be outside of EPC).
Non-Enclave accesses made either by an Intel SGX instruction or by a logical processor inside an enclave to an
address that without SGX would have caused redirection to the virtual-APIC page instead cause an APIC-access VM
exit.
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses results in abort-page semantics if these accesses eventually
reach EPC. This applies to any non-enclave physical accesses.
While a logical processor inside an enclave, the checking of the instruction pointer's linear address against the
enclave's linear-address range (ELRANGE) is done before checking the physical address to which the linear address
translates against the APIC-access page. Thus, an attempt to execute an instruction outside ELRANGE, the instruc-
tion fetch results in a #GP(0), even if the linear address would translate to a physical address overlaps the APIC-
access page.

42.12 INTERACTIONS WITH TXT

42.12.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] instruction are available for execution after the
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Actions that TXT launched environ-
ment performs in preparation to execute code which also applies to enclave code to run after GETSEC[SENTER].

42.12.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and result in #UD.
42-12 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state.
RLP executing inside an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.

42.12.3 Interactions with Authenticated Code Modules (ACMs)
After execution of any non-faulting Intel SGX instructions, the Intel SGX architecture forbids the launching of ACMs
with Intel SGX SVN that is lower than the expected Intel SGX SVN threshold that was specified by BIOS. The non-
faulting Intel SGX instructions refer to Intel SGX instruction leaves that do not return error code and executed
successfully without causing an exception. Intel SGX provides interfaces for system software to discover whether
a non faulting Intel SGX instruction has been executed, and evaluate the suitability of the Intel SGX SVN value of
any ACM that is expected to be launched by the OS or the VMM.
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 42-7.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the IA32_SGX_SVN_STATUS
MSR. If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is
greater than the Intel SGX SVN value in the ACM's header, and if bit 0 of IA32_SGX_SVN_STATUS is 1, then the
OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either from the
BIOS or from an external resource. If either the Intel SGX SVN of the ACM is greater than the value reported by
IA32_SGX_SVN_STATUS, or the lock bit in the IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely
launch the ACM. However, OSVs/VMMs are strongly advised to update their version of the ACM any time they
detect that the Intel SGX SVN of the ACM carried by the OS/VMM is lower than that reported by
IA32_SGX_SVN_STATUS MSR, irrespective of the setting of the lock bit.

42.13 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS
Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well as
the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

Table 42-7. Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction has been
executed, consequently, launching a properly signed ACM but with Intel
SGX SVN value less than the BIOS specified Intel SGX SVN threshold
would lead to an TXT shutdown.

• If 0, indicates that the processor will allow a properly signed ACM to
launch irrespective of the Intel SGX SVN value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the expected threshold of
Intel SGX SVN for the SINIT ACM.

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0
Vol. 3D 42-13

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
42.14 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to
the fallback handler.
2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback
handler is within the enclave.
3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.
4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and
control is transferred to the fallback handler. No #GP is delivered.
5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

42.14.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no
exception delivered. After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP
detected inside an RTM transaction region will just cause an abort with no exception delivered. After opt-in entry, if
DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM translation will terminate
speculative execution, set RIP to the address of the XBEGIN instruction, and be delivered as #DB (any #BP is
converted to #DB) - imply an Intel SGX AEX. DR6[16] will be cleared, indicating RTM debug (if the #DB causes a
VM exit, DR6 is not modified but bit 16 of the pending debug exceptions field in the VMCS will be set).

42.15 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor leaves the S0 or S1 state for S2-S5 state, enclaves are destroyed. This
is due to the EPC being destroyed when power down occurs.

42.16 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

42.16.1 Interactions with MCA Events
All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause an
asynchronous enclave exit.
Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled,
(CPUID.SGX_Leaf.0:EAX[SGX1] == 0). It cannot be enabled until after the next reset.

42.16.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SE1] to 0) until the next reset.
42-14 Vol. 3D

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
42.16.3 CR4.MCE
CR4.MCE can be set or cleared with no interactions with Intel SGX.

42.17 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL
INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.
ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA
frame.
AEX saves EFLAGS.VIP and EFLAGS.VIF unmodified into the EFLAGS image in the SSA frame. AEX modifies neither
EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS.
If CR4.PVI = 1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI causes
a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without change
within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without fault;
CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case.

42.18 INTEL SGX INTERACTION WITH PROTECTION KEYS
SGX interactions with PKRU are as follows:
• CPUID.(EAX=12H, ECX=1):ECX.PKRU indicates whether SECS.ATTRIBUTES.XFRM.PKRU can be set. If

SECS.ATTRIBUTES.XFRM.PKRU is set, then PKRU is saved and cleared as part of AEX and is restored as part of
ERESUME. If CR4.PKE is set, an enclave can execute RDPKRU and WRKRU independent of whetherSECS.ATTRI-
BUTES.XFRM.PKRU is set.

SGX interactions with domain permission checks are as follows:

1) If CR4.PKE is not set, then legacy and SGX permission checks are not effected.

2) If CR4.PKE is set, then domain permission checks are applied to all non-enclave access and
enclave accesses to user pages in addition to legacy and SGX permission checks at a higher
priority than SGX permission checks

Implicit accesses aren't subject to domain permission checks.
Vol. 3D 42-15

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE
42-16 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
CHAPTER 43
ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave
instructions.

43.1 CONFIGURATION AND CONTROLS

43.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use
EDBGRD/EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measure-
ment of the enclave and therefore doesn't require a special SIGSTRUCT to be generated for this matter.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation for
the enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave
will not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be
required for a debug enclave to run in a meaningful way.
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section
41.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

43.1.2 Tool-chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, including
code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, and performance monitoring. This bit is
forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR to the TCS of a debug
enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely, an
enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

43.2 SINGLE STEP DEBUG

43.2.1 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending on the instruc-
tion boundary immediately after the ENCLS instruction. Additionally, if the instruction is invoked from a VMX guest,
and if the monitor trap flag is asserted at the time of the time of invocation, then an MTF VM exit is pending on the
instruction boundary immediately after the instruction.

43.2.2 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may clear the RFLAGS.TF bit,
and suppress the monitor trap flag. In such situations, an exit from the enclave, either via the EEXIT leaf function
or via an AEX restores the RFLAGS.TF bit and effectiveness of the monitor trap flag. The details of this
Vol. 3D 43-1

ENCLAVE CODE DEBUG AND PROFILING
clearing/suppression and the exact pending of single stepping events across EENTER/ERESUME/EEXIT/AEX are
covered in detail in Section 43.2.3.
If the RFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, then a single-step debug exception is
pending on the instruction boundary immediately after the ENCLU instruction. Additionally, if the instruction is
invoked from a VMX guest, and if the monitor trap flag is asserted at the time of invocation, and if the monitor trap
flag is not suppressed by the preceding enclave entry, then an MTF VM exit is pending on the instruction boundary
immediately after the instruction.
Consistent with the IA32 and Intel® 64 architectures, a pending MTF VM exit takes priority over a pending debug
exception. Additionally, if an SMI, an INIT, or an #MC is received on the same instruction boundary, then that event
takes priority over both the pending MTF VM exit and the pending debug exception. In such a situation, the pending
MTF VM exit and/or pending debug exception are handled in a manner consistent with the IA32 and Intel 64 archi-
tectures.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no
single-step debug exception is asserted. In such a situation, if the instruction is executed from a VMX guest, and if
the VMM has asserted the monitor trap flag, then an MTF VM exit is pending after the delivery of the fault through
the IDT (i.e., before the first instruction of the OS handler). If a VM exit occurs before reaching that boundary, then
the MTF VM exit is lost.

43.2.3 Single-stepping Enclave Entry with Opt-out Entry

43.2.3.1 Single Stepping without AEX
Figure 43-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in a VMX guest, and if the
monitor trap flag is asserted at the time of the enclave entry, then an MTF VM exit is pending on the instruction
boundary after EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is same as the value of RFLAGS.TF at the time of the enclave
entry. Similarly, if the enclave is executing inside a VMX guest, then the value of the monitor trap flag after EEXIT
is same as the value of that control at the time of the enclave entry.
Consistent with the IA32 and Intel 64 architectures, MTF VM exit, if pending, takes priority over a pending debug
exception. If an SMI, an INIT, or an MC# is received on the same instruction boundary, then that event takes
priority over both the pending MTF VM exit and the pending debug exception. In such a situation, the pending MTF

Figure 43-1. Single Stepping with Opt-out Entry - No AEX

SMI

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF

Handler

Higher Priority

Handler

INIT
#MCSingle-Step #DB Pending

MTF VM Exit Pending
43-2 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
VM exit and/or pending debug exception are handled in a manner consistent with the IA32 and Intel 64 architec-
ture.

43.2.3.2 Single Step Preempted by AEX due to Non-SMI Event
Figure 43-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

In this scenario, if the enclave is executing in a VMX guest, and if the monitor trap flag is asserted at the time of
the enclave entry, then an MTF VM exit is pending on the instruction boundary after the delivery of the AEX. Consis-
tent with the IA32 and Intel 64 architectures, if another VM exit happens before reaching that instruction boundary,
the MTF VM exit is lost.
The value of the RFLAGS.TF bit at the end of AEX is same as the value of RFLAGS.TF at the time of the enclave
entry. Also, if the enclave is executing inside a VMX guest, then the value of the monitor trap flag after AEX is the
same as the value of that control at the time of the enclave entry.

43.2.4 RFLAGS.TF Treatment on AEX
When an opt-in enclave takes an AEX, RFLAGS.TF passes unmodified into synthetic state, and is saved as
RFLAGS.TF=0 in the GPR portion of the SSA. For opt-out entry, the external value of TF is saved in CR_SAVE_TF,
and TF is then cleared. For more detail see EENTER and ERESUME in Chapter 5.

43.2.5 Restriction on Setting of TF after an Opt-out Entry
From an opt-out EENTER or ERESUME until the next enclave exit, enclave is not allowed to set RFLAGS.TF. In such
a situation, the POPF instruction forces RFLAGS.TF to 0 if the enclave was entered through TCS with DBGOPTIN=0.

43.2.6 Trampoline Code Considerations
Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step #DB
after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

Figure 43-2. Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary

Event Inside Enclave

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF

Handler

AEX

Handler

Single-Step #DB Pending

MTF VM Exit Pending

AEX

Higher Priority

Handler
Vol. 3D 43-3

ENCLAVE CODE DEBUG AND PROFILING
43.3 CODE AND DATA BREAKPOINTS

43.3.1 Breakpoint Suppression
On an opt-out entry into an enclave, all code and data breakpoints that overlap with the ELRANGE are suppressed.
On any entry (either opt-in or opt-out) into an enclave, all code breakpoints that do not overlap with ELRANGE are
also suppressed.

43.3.2 Breakpoint Match Reporting during Enclave Execution
The processor does not report any new matches on debug breakpoints that are suppressed on enclave entry.
However, the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.
Intel SGX architecture specifically forbids reporting of silent matches on any debug breakpoints that overlap with
ELRANGE after an opt-out entry.

43.3.3 Reporting of Code Breakpoint on Next Instruction on a Debug Trap
If execution in an enclave encounters a single-step trap or an enabled data breakpoint, the logical processor
performs an AEX. Following the AEX, the logical processor checks the new instruction pointer (the AEP address)
against any code breakpoints programmed in DR0-DR3. Any matches are reported to software.
If execution in an enclave encounters an enabled code breakpoint, the logical processor checks the current instruc-
tion pointer (within the enclave) against any code breakpoints programmed in DR0-DR3. This checking for code
breakpoints occurs before the AEX, the Intel SGX breakpoint-suppression architecture applies. Following this, the
logical processor performs an AEX, after which any breakpoints matched earlier are reported to software.

43.3.4 RFLAGS.RF Treatment on AEX
RF is always set to 0 in synthetic state. This is because ERESUME after AEX is a new execution attempt.
RF value saved on SSA is the same as what would have been saved on stack in the non-SGX case. AEXs due to
interrupts, traps, and code breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1
in the SSA.

43.3.5 Breakpoint Matching in Intel® SGX Instruction Flows
None of the implicit accesses made by Intel SGX instructions to EPC regions generate data breakpoints. Explicit
accesses made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE],
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], ENCLS[EDBGWR],
ENCLU[EENTER], and ENCLU[ERESUME] to the EPC parameters do not fire any data breakpoints.
Explicit accesses made by the remaining Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]), trigger
precise data breakpoints for their EPC operands. It should also be noted that all Intel SGX instructions trigger
precise data breakpoints for their non-EPC operands.
After an opt-out entry, ENCLU[EGETKEY] and ENCLU[EREPORT] do not fire any of the data breakpoints that were
suppressed as a part of the enclave entry.
43-4 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
43.4 INT3 CONSIDERATION

43.4.1 Behavior of INT3 inside an Enclave
Inside an enclave, INT3 delivers a fault-class exception. However, the vector delivered as a result of executing the
instruction depends on the manner in which the enclave was entered. Following opt-out entry, the instruction
delivers #UD. Following opt-in entry, INT3 delivers #BP.
Since the event is a fault-class exception, the delivery flow of the exception does not check CPL against the DPL in
the IDT gate. (Normally, delivery of INT3 generates a #GP if CPL is greater than the DPL field in IDT gate 3.) Addi-
tionally, the RIP saved in the SSA is always that of the INT3 instruction. The RIP saved on the stack/VMCS is that
of the trampoline code as specified by the AEX architecture.
If execution of INT3 in an enclave causes a VM exit, the event type in the VM-exit interruption information field
indicates a hardware exception (type 3; not a software exception with type 6) and the VM-exit instruction length
field is saved as zero.

43.4.2 Debugger Considerations
The INT3 is always fault-like inside an enclave. Consequently, the debugger must not decrement SSA.RIP for #BP
coming from an enclave. INT3 will result in #UD, if the debugger is not attached to the enclave.

43.4.3 VMM Considerations
As described above, INT3 executed by enclave delivers #BP with “interruption type” of 3. This behavior will not
cause any problems for VMMs that obtain VM-entry interruption information from appropriate VMCS field (as
recommended in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C), and those VMMs
will continue to work seamlessly.
VMMs that fabricate the VM-entry interruption information based on the interruption vector need additional
enabling. Specifically, such VMMs should be modified to use injection type of 3 (instead of 6) when they see inter-
ruption vector 3 along with the VMCS “Enclave Interruption” bit set.

43.5 BRANCH TRACING

43.5.1 BTF Treatment
Any single-step traps pending after EENTER trigger BTF exception, as EENTER is considered a branch instruction.
Additionally, any single-step traps pending after EEXIT trigger BTF exception, as EEXIT is also considered a branch
instruction. ERESUME does not trigger BTF traps. An AEX does not trigger BTF or TF traps.

43.5.2 LBR Treatment

43.5.2.1 LBR Stack on Opt-in Entry
An opt-in enclave entry does not change the behavior of IA32_DEBUGCTL.LBR bit. Both enclave entry and enclave
exit push a record on LBR stack. EENTER/ERESUME with TCS.FLAGS.DBGOPTIN=1, inserts a new LBR record on
the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds linear address of the EENTER/ERESUME
instruction, while MSR_LASTBRANCH_n_TO_IP of this record holds linear address of EENTER/ERESUME destina-
tion.
On EEXIT a new LBR record is pushed on the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds
linear address of the EEXIT instruction, while MSR_LASTBRANCH_n_TO_IP of this record holds the linear address
of EEXIT destination.
Vol. 3D 43-5

ENCLAVE CODE DEBUG AND PROFILING
On AEX a new LBR record is pushed on the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds RIP
saved in the SSA, while MSR_LASTBRANCH_n_TO_IP of this record holds RIP of the linear address of the AEP.
Additionally, for every branch inside the enclave, one record each is pushed on LBR stack.
Figure 43-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indicates
a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of the
instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address of the
instruction at the end of the arrow.

43.5.2.2 LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses IA32_DEBUGCTL.LBR bit, and enclave exit after an opt-out entry un-
suppresses the IA32_DEBUGCTL.LBR bit.
Opt-out entry into an enclave does not push any record on LBR stack.
If IA32_DEBUGCTL.LBR is set at the time of enclave entry, then EEXIT following such an enclave entry pushes one
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear address of the instruction
that took the logical processor into the enclave, while the MSR_LASTBRANCH_n_TO_IP of such record holds linear
address of the destination of EEXIT. Additionally, if IA32_DEBUGCTL.LBR is set at the time of enclave entry, then an
AEX after such an entry pushes one record on LBR stack, before pushing record for the event causing the AEX. The
MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction that took the LP into the
enclave, while MSR_LASTBRANCH_n_TO_IP of the new record holds linear address of the AEP. If the event causing
AEX pushes a record on LBR stack, then the MSR_LASTBRANCH_n_FROM_IP for that record holds linear address of
the AEP.
Figure 43-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address
of the instruction at the end of the arrow.

Figure 43-3. LBR Stack Interaction with Opt-in Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

Inst4

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault
43-6 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
43.5.2.3 Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX
operations are always non-HLE/non-RTM records.
For LBR filtering, EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in
MSR_LBR_SELECT controls filtering of the new records introduced by Intel SGX.

43.6 INTERACTION WITH PERFORMANCE MONITORING

43.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as “Anti
Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in various
performance monitoring counters are accumulated normally as defined by relevant architectural/microarchitec-
tural conditions associated with the eventing logic. If the ASCI bit is set, the contents in various performance moni-
toring counters can be affected by the direct or indirect consequence of Intel SGX protection of enclave code
executing in the processor.

43.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring eventing logic to observe the contribution of enclave code
executing in the processor. Thus the contents of performance monitoring counters does not distinguish between
contribution originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work
as defined in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS
MSR is always cleared.

Figure 43-4. LBR Stack Interaction with Opt-out Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault
Vol. 3D 43-7

ENCLAVE CODE DEBUG AND PROFILING
43.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to all
thread-specific, configured performance monitoring, except for the cycle-counting fixed counter,
IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx will
stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS record
generation will also be suppressed.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count
only MyThread while an opt-out enclave is executing on the other thread.

43.6.4 Enclave Exit and Performance Monitoring
When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring activity
(including PEBS) on that logical processor that was suppressed is unsuppressed.
Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to
AnyThread.

43.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction
execution.
The behavior of EENTER and ERESUME leaf functions of the ENCLU instruction depends on whether these leaf func-
tions are performing an opt-in entry or an opt-out entry. If these leaf functions are performing an opt-in entry
report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction execution.
On the other hand, if these leaf functions are performing an opt-out entry, then these leaf functions result in PEBS
being suppressed, and no PEBS record is generated at the end of these instructions.
The behavior of the EEXIT leaf function is as follows. A PEBS record is generated if there is a PEBS event pending
at the end of EEXIT (due to a counter overflowing during enclave execution or during EEXIT execution). This PEBS
record contains the architectural state of the logical processor at the end of EEXIT. If the enclave was entered via
an opt-in entry, then this record reports the “Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction
(which is inside ELRANGE of the enclave just exited). If the enclave was entered via an opt-out entry, then the
record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruction that
performed the last enclave entry.
A PEBS record is generated immediately after the AEX if there is a PEBS event pending at the end of AEX (due to a
counter overflowing during enclave execution or during AEX execution). This PEBS record contains the synthetic
state of the logical processor that is established at the end of AEX. For opt-in entry, this record has the
EVENTING_RIP set to the eventing LIP in the enclave. For opt-out entry, the record has the EVENTING_RIP set to
EENTER/ERESUME LIP.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
It should be noted that a second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS
event is taken at the end of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the
AEP.

43.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
The OS/VMM is expected to pin the DS area in virtual memory. If the OS does not pin this area in memory,
loads/stores to the PEBS or BTS buffer may incur faults (or other events such as APIC-access VM exit). Usually,
such events are reported to the OS/VMM immediately, and generation of the PEBS/BTS record is skipped.
43-8 Vol. 3D

ENCLAVE CODE DEBUG AND PROFILING
However, any events that are detected during PEBS/BTS record generation cannot be reported immediately to the
OS/VMM, as an event window is not open at the end of AEX. Consequently, fault-like events such as page faults,
EPT faults, EPT mis-configuration, and accesses to APIC-access page detected on stores to the PEBS/BTS buffer are
not reported, and generation of the PEBS and/or BTS record is aborted (this may leave the buffers in a state where
they have partial PEBS or BTS records), while trap-like events (such as debug traps) are pended until the next
instruction boundary, where they are handled according to the architecturally defined priority. The processor
continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery, VM exit, etc.) after
aborting the PEBS/BTS record generation.

43.6.6.1 Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted branches, and any counters that
are counting such branches are incremented by 1 as a part of execution of these instructions. All of these flows are
also counted as instructions, and any counters configured appropriately are incremented by 1.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores.
EENTER, ERESUME, EEXIT and AEX are classified as far branches.
Vol. 3D 43-9

ENCLAVE CODE DEBUG AND PROFILING
43-10 Vol. 3D

APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indicated by
CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX features.

Support for specific features detailed in Chapter 26 and other VMX chapters is determined by reading values from
a set of capability MSRs. These MSRs are indexed starting at MSR address 480H. VMX capability MSRs are read-
only; an attempt to write them (with WRMSR) produces a general-protection exception (#GP(0)). They do not exist
on processors that do not support VMX operation; an attempt to read them (with RDMSR) on such processors
produces a general-protection exception (#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 30:0 contain the 31-bit VMCS revision identifier used by the processor. Processors that use the same VMCS

revision identifier use the same size for VMCS regions (see subsequent item on bits 44:32).1

• Bit 31 is always 0.
• Bits 44:32 report the number of bytes that software should allocate for the VMXON region and any VMCS

region. It is a value greater than 0 and at most 4096 (bit 44 is set if and only if bits 43:32 are clear).
• Bit 48 indicates the width of the physical addresses that may be used for the VMXON region, each VMCS, and

data structures referenced by pointers in a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transi-
tions). If the bit is 0, these addresses are limited to the processor’s physical-address width.2 If the bit is 1,
these addresses are limited to 32 bits. This bit is always 0 for processors that support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment of system-management
interrupts and system-management mode. See Section 34.15 for details of this treatment.

• Bits 53:50 report the memory type that should be used for the VMCS, for data structures referenced by
pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions), and for the MSEG
header. If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it
can configure the paging structures to map them into the linear-address space. If it does so, it should establish
mappings that use the memory type reported bits 53:50 in this MSR.3

As of this writing, all processors that support VMX operation indicate the write-back type. The values used are
given in Table A-1.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field in bits 31:0 of this MSR. For all proces-
sors produced prior to this change, bit 31 of this MSR was read as 0.

2. On processors that support Intel 64 architecture, the pointer must not set bits beyond the processor's physical address width.

3. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the MSEG
header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures to suf-
fer.

Table A-1. Memory Types Recommended for VMCS and Related Data Structures
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used
Vol. 3D A-1

VMX CAPABILITY REPORTING FACILITY
If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it can
configure the paging structures to map them into the linear-address space. If it does so, it should establish
mappings that use the memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit instruction-information field on
VM exits due to execution of the INS and OUTS instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See Appendix A.2 for details. It also
reports support for the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See
Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 26, “VM Entries”, certain VMX controls are reserved and must be set to a specific value (0 or 1)
determined by the processor. The specific value to which a reserved control must be set is its default setting.
Software can discover the default setting of a reserved control by consulting the appropriate VMX capability MSR
(see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. Such processors would allow
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality
should set the control to its default setting. For that reason, it is useful for software to know the default settings of
the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the IA32_VMX_BASIC MSR to indicate whether any of
the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are reserved and must be 1.

VM entry will fail if any of these controls are 0 (see Section 26.2.1).
• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls are reserved, and some (but

not necessarily all) may be 0. The CPU supports four (4) new VMX capability MSRs:
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for details. (These MSRs are not
supported if bit 55 of the IA32_VMX_BASIC MSR is read as 0.)

See Section 31.5.1 for recommended software algorithms for proper capability detection of the default1 controls.

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the primary processor-based VM-
execution controls, and the secondary processor-based VM-execution controls. These are described in Appendix
A.3.1, Appendix A.3.2, and Appendix A.3.3, respectively.

1. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the MSEG
header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures to suf-
fer. The processor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the exceptions
noted.
A-2 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
A.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings of most of the pin-based
VM-execution controls (see Section 24.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the pin-based

VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if
control X is 0.
Exceptions are made for the pin-based VM-execution controls in the default1 class (see Appendix A.2). These
are bits 1, 2, and 4; the corresponding bits of the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-based VM-execution control in
the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (see
below) reports which of the pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH)
reports on the allowed settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the pin-
based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the pin-based

VM-execution controls is contained in the IA32_VMX_PINBASED_CTLS MSR. (The
IA32_VMX_TRUE_PINBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the pin-based
VM-execution controls is contained in the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software
knows that the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, there is no need for
software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed settings of most of the primary
processor-based VM-execution controls (see Section 24.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary

processor-based VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to
1, VM entry fails if control X is 0.
Exceptions are made for the primary processor-based VM-execution controls in the default1 class (see
Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26; the corresponding bits of the
IA32_VMX_PROCBASED_CTLS MSR are always read as 1. The treatment of these controls by VM entry is
determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the primary processor-based VM-
execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (see
below) reports which of the primary processor-based VM-execution controls in the default1 class can be 0
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.
Vol. 3D A-3

VMX CAPABILITY REPORTING FACILITY
If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH)
reports on the allowed settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary

processor-based VM-execution controls is contained in the IA32_VMX_PROCBASED_CTLS MSR. (The
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the processor-
based VM-execution controls is contained in the IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that
software knows that the default1 class of processor-based VM-execution controls contains bits 1, 4–6, 8, 13–
16, and 26, there is no need for software to consult the IA32_VMX_PROCBASED_CTLS MSR.

A.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed settings of the secondary processor-
based VM-execution controls (see Section 24.6.2). VM entries perform the following checks:
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 0. This fact indicates that

VM entry allows each bit of the secondary processor-based VM-execution controls to be 0 (reserved bits must
be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not allowed for any reserved bit.
VM entry allows control X (bit X of the secondary processor-based VM-execution controls) to be 1 if bit 32+X in
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate secondary
controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 1-setting of the “activate
secondary controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of most of the VM-exit controls (see
Section 24.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-exit

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix A.2). These are bits 0–8, 10,
11, 13, 14, 16, and 17; the corresponding bits of the IA32_VMX_EXIT_CTLS MSR are always read as 1. The
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-exit control in the default1 class
is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (see below)
reports which of the VM-exit controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH) reports on
the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
A-4 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
VM-exit controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-exit

controls is contained in the IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-exit
controls is contained in the IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the default1
class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, there is no need for software to consult
the IA32_VMX_EXIT_CTLS MSR.

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of most of the VM-entry controls
(see Section 24.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-entry

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see Appendix A.2). These are bits 0–8 and
12; the corresponding bits of the IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-entry control in the default1
class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (see below)
reports which of the VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X is 1 in the VM-entry controls
and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports
on the allowed settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the
VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-entry

controls is contained in the IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-entry
controls is contained in the IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for software to consult the
IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and that

of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 every
time bit X in the TSC changes due to a TSC increment.
Vol. 3D A-5

VMX CAPABILITY REPORTING FACILITY
• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control;
see Section 27.2 for more details. This bit is read as 1 on any logical processor that supports the 1-setting of
the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish that
activity state. All implementations support VM entry to activity state 0 (active).

• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the
IA32_SMBASE MSR (MSR address 9EH). See Section 34.15.6.4.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the VM-exit
MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of
IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be included in
each list. If the limit is exceeded, undefined processor behavior may result (including a machine check during
the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise,
VMWRITE cannot be used to modify VM-exit information fields.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 14:9 and bits 31:30 are reserved and are read as 0.

A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR (index 487H) indicate how bits
in CR0 may be set in VMX operation. They report on bits in CR0 that are allowed to be 0 and to be 1, respectively,
in VMX operation. If bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 0 in VMX operation. It is always the case
that, if bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, each bit in CR0 is either fixed to
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in
IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR (index 489H) indicate how bits
in CR4 may be set in VMX operation. They report on bits in CR4 that are allowed to be 0 and 1, respectively, in VMX
operation. If bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Similarly, if
bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX operation. It is always the case that,
if bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in
IA32_VMX_CR4_FIXED1, then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed to
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR4_FIXED0 and 1 in
IA32_VMX_CR4_FIXED1).
A-6 Vol. 3D

VMX CAPABILITY REPORTING FACILITY
A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist software in enumerating fields in
the VMCS.

As noted in Section 24.11.2, each field in the VMCS is associated with a 32-bit encoding which is structured as
follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the encoding of any field supported
by the processor:
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical
processor with regard to virtual-processor identifiers (VPIDs, Section 28.1) and extended page tables (EPT, Section
28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT paging-structure entries in which

bits 2:0 have value 100b (indicating an execute-only translation).
• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by

setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page (by

setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 28.2.4).
• Support for the INVVPID instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:18, bits 24:22, bits 31:27, bits 39:33, and bits 63:44 are reserved

and are read as 0.
Vol. 3D A-7

VMX CAPABILITY REPORTING FACILITY
The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that support
either the 1-setting of the “enable EPT” VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2
MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if bit 37 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).

A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the VM-function controls (see
Section 24.6.15). VM entry allows bit X of the VM-function controls to be 1 if bit X in the MSR is set to 1; if bit X in
the MSR is cleared to 0, VM entry fails if bit X of the VM-function controls, the “activate secondary controls” primary
processor-based VM-execution control, and the “enable VM functions” secondary processor-based VM-execution
control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of the “activate secondary
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of
the “enable VM functions” secondary processor-based VM-execution control (only if bit 45 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).
A-8 Vol. 3D

APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by VMREAD and VMWRITE. Section
24.11.2 describes the structure of the encoding space (the meanings of the bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are grouped by width (16-bit, 32-bit,
etc.) and type (guest-state, host-state, etc.)

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state areas and the host-state area
contain 16-bit fields. As noted in Section 24.11.2, each 16-bit field allows only full access, meaning that bit 0 of its
encoding is 0. Each such encoding is thus an even number.

B.1.1 16-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-1 enumerates the 16-bit control fields.

B.1.2 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-2 enumerates 16-bit guest-state fields.

Table B-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution control.

000000000B 00000000H

Posted-interrupt notification vector2

2. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.

000000001B 00000002H

EPTP index3

3. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

000000010B 00000004H

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH
Vol. 3D B-1

FIELD ENCODING IN VMCS
B.1.3 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-3 enumerates the 16-bit host-state fields.

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit fields only for controls and for
guest state. As noted in Section 24.11.2, every 64-bit field has two encodings, which differ on bit 0, the access
type. Thus, each such field has an even encoding for full access and an odd encoding for high access.

B.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Guest interrupt status1 000001000B 00000810H

PML index2 000001001B 00000812H

NOTES:
1. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
2. This field exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

Table B-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
B-2 Vol. 3D

FIELD ENCODING IN VMCS
VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

PML address (full)2
000000111B

0000200EH

PML address (high)2 0000200FH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)3
000001001B

00002012H

Virtual-APIC address (high)3 00002013H

APIC-access address (full)4
000001010B

00002014H

APIC-access address (high)4 00002015H

Posted-interrupt descriptor address (full)5
000001011B

00002016H

Posted-interrupt descriptor address (high)5 00002017H

VM-function controls (full)6
000001100B

00002018H

VM-function controls (high)6 00002019H

EPT pointer (EPTP; full)7
000001101B

0000201AH

EPT pointer (EPTP; high)7 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)8
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)8 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)8
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)8 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)8
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)8 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)8
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)8 00002023H

EPTP-list address (full)9
000010010B

00002024H

EPTP-list address (high)9 00002025H

VMREAD-bitmap address (full)10

000010011B
00002026H

VMREAD-bitmap address (high)10 00002027H

VMWRITE-bitmap address (full)10

000010100B
00002028H

VMWRITE-bitmap address (high)10 00002029H

Virtualization-exception information address (full)11

000010101B
0000202AH

Virtualization-exception information address (high)11 0000202BH

XSS-exiting bitmap (full)12

000010110B
0000202CH

XSS-exiting bitmap (high)12 0000202DH

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
Vol. 3D B-3

FIELD ENCODING IN VMCS
B.2.2 64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. There is only one such 64-bit field as given in Table B-5.(As with other 64-bit fields, this one
has two encodings.)

B.2.3 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-6 enumerates the 64-bit guest-state fields.

TSC multiplier (full)13

000011001B
00002032H

TSC multiplier (high)13 00002033H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”

VM-execution control.
2. This field exists only on processors that support either the 1-setting of the “enable PML” VM-execution control.
3. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
9. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.
10. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
11. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
12. This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.
13. This field exists only on processors that support the 1-setting of the “use TSC scaling” VM-execution control.

Table B-5. Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution control.

000000000B
00002400H

Guest-physical address (high)1 00002401H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full)
000000000B

00002800H

VMCS link pointer (high) 00002801H

Guest IA32_DEBUGCTL (full)
000000001B

00002802H

Guest IA32_DEBUGCTL (high) 00002803H

Guest IA32_PAT (full)1
000000010B

00002804H

Guest IA32_PAT (high)1 00002805H

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
B-4 Vol. 3D

FIELD ENCODING IN VMCS
B.2.4 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-7 enumerates the 64-bit control fields.

B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 24.11.2, each 32-bit field
allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

Guest IA32_EFER (full)2
000000011B

00002806H

Guest IA32_EFER (high)2 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3
000000100B

00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 00002809H

Guest PDPTE0 (full)4
000000101B

0000280AH

Guest PDPTE0 (high)4 0000280BH

Guest PDPTE1 (full)4
000000110B

0000280CH

Guest PDPTE1 (high)4 0000280DH

Guest PDPTE2 (full)4
000000111B

0000280EH

Guest PDPTE2 (high)4 0000280FH

Guest PDPTE3 (full)4
000001000B

00002810H

Guest PDPTE3 (high)4 00002811H

NOTES:
1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-entry control or that of the "save

IA32_PAT" VM-exit control.
2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-entry control or that of the "save

IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution control.

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit control.

000000000B
00002C00H

Host IA32_PAT (high)1 00002C01H

Host IA32_EFER (full)2

2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit control.

000000001B
00002C02H

Host IA32_EFER (high)2 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3

3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-exit control.

000000010B
00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 00002C05H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
Vol. 3D B-5

FIELD ENCODING IN VMCS
B.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-8 enumerates the 32-bit control fields.

B.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. Table B-9 enumerates the 32-bit read-only data fields.

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution control.

000001110B 0000401CH

Secondary processor-based VM-execution controls2

2. This field exists only on processors that support the 1-setting of the “activate secondary controls” VM-execution control.

000001111b 0000401EH

PLE_Gap3

3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control.

000010000b 00004020H

PLE_Window3 000010001b 00004022H

Table B-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH
B-6 Vol. 3D

FIELD ENCODING IN VMCS
B.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-10 enumerates the 32-bit guest-state fields.

The limit fields for GDTR and IDTR are defined to be 32 bits in width even though these fields are only 16-bits wide
in the Intel 64 and IA-32 architectures. VM entry ensures that the high 16 bits of both these fields are cleared to 0.

VM-exit instruction information 000000111B 0000440EH

Table B-10. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1

NOTES:
1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption timer" VM-execution control.

000010111B 0000482EH

Table B-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
Vol. 3D B-7

FIELD ENCODING IN VMCS
B.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. There is only one such 32-bit field
as given in Table B-11.

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in Section 24.11.2, each of these
fields allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.4.1 Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value
in bits 9:1. Table B-12 enumerates the natural-width control fields.

B.4.2 Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their
index value in bits 9:1. Table B-13 enumerates the natural-width read-only data fields.

Table B-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table B-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consecutively following the 4 encodings

given here.

000000111B 0000600EH

Table B-13. Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B)
Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH
B-8 Vol. 3D

FIELD ENCODING IN VMCS
B.4.3 Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by
their index value in bits 9:1. Table B-14 enumerates the natural-width guest-state fields.

The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to be natural-width (with 64 bits
on processors supporting Intel 64 architecture) even though these fields are only 32-bits wide in the Intel 64 archi-
tecture. VM entry ensures that the high 32 bits of these fields are cleared to 0.

B.4.4 Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by
their index value in bits 9:1. Table B-15 enumerates the natural-width host-state fields.

Table B-14. Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table B-15. Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH
Vol. 3D B-9

FIELD ENCODING IN VMCS
Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Table B-15. Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
B-10 Vol. 3D

APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain VM-entry failures also do this
(see Section 26.7). The low 16 bits of the exit-reason field form the basic exit reason which provides basic informa-
tion about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless otherwise
noted.

Table C-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 1.
2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1. This case includes

executions of BOUND that cause #BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.
Vol. 3D C-1

VMX BASIC EXIT REASONS
24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use
TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1,

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap flag” VM-execution control and
injection of an MTF VM exit as part of VM entry. See Section 25.5.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section
26.8).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.6.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-2 Vol. 3D

VMX BASIC EXIT REASONS
46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting”
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not
enabled or generated a function-specific condition causing a VM exit.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

62 Page-modification log full. The processor attempted to create a page-modification log entry and the value of the
PML index was not in the range 0–511.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
Vol. 3D C-3

VMX BASIC EXIT REASONS
C-4 Vol. 3D

INDEX
Numerics
16-bit code, mixing with 32-bit code, 21-1
32-bit code, mixing with 16-bit code, 21-1
32-bit physical addressing

overview, 3-6
36-bit physical addressing

overview, 3-6
64-bit mode

call gates, 5-14
code segment descriptors, 5-3, 9-11
control registers, 2-13
CR8 register, 2-13
D flag, 5-4
debug registers, 2-7
descriptors, 5-3, 5-5
DPL field, 5-4
exception handling, 6-16
external interrupts, 10-31
fast system calls, 5-22
GDTR register, 2-12, 2-13
GP faults, causes of, 6-38
IDTR register, 2-12
initialization process, 2-8, 9-10
interrupt and trap gates, 6-16
interrupt controller, 10-31
interrupt descriptors, 2-5
interrupt handling, 6-16
interrupt stack table, 6-19
IRET instruction, 6-18
L flag, 3-12, 5-4
logical address translation, 3-7
MOV CRn, 2-13, 10-31
null segment checking, 5-6
paging, 2-6
reading counters, 2-24
reading & writing MSRs, 2-25
registers and mode changes, 9-12
RFLAGS register, 2-11
segment descriptor tables, 3-16, 5-3
segment loading instructions, 3-9
segments, 3-5
stack switching, 5-19, 6-18
SYSCALL and SYSRET, 2-7, 5-22
SYSENTER and SYSEXIT, 5-21
system registers, 2-7
task gate, 7-16
task priority, 2-18, 10-31
task register, 2-13
TSS

stack pointers, 7-17
See also: IA-32e mode, compatibility mode

8086
emulation, support for, 20-1
processor, exceptions and interrupts, 20-6

8086/8088 processor, 22-6
8087 math coprocessor, 22-7
82489DX, 22-26, 22-27

Local APIC and I/O APICs, 10-4

A
A20M# signal, 20-2, 22-33, 23-4
Aborts

description of, 6-5
restarting a program or task after, 6-5

AC (alignment check) flag, EFLAGS register, 2-11, 6-45, 22-6
Access rights

checking, 2-22

checking caller privileges, 5-26
description of, 5-24
invalid values, 22-18

ADC instruction, 8-3
ADD instruction, 8-3
Address

size prefix, 21-1
space, of task, 7-14

Address translation
in real-address mode, 20-2
logical to linear, 3-7
overview, 3-6

Addressing, segments, 1-7
Advanced power management

C-state and Sub C-state, 14-19
MWAIT extensions, 14-19
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O APIC or Local APIC)
Alignment

check exception, 2-11, 6-45, 22-11, 22-20
checking, 5-27

AM (alignment mask) flag
CR0 control register, 2-14, 22-17

AND instruction, 8-3
APIC, 10-40, 10-41
APIC bus

arbitration mechanism and protocol, 10-26, 10-33
bus message format, 10-34, 10-47
diagram of, 10-2, 10-3
EOI message format, 10-15, 10-47
nonfocused lowest priority message, 10-49
short message format, 10-48
SMI message, 34-2
status cycles, 10-50
structure of, 10-4
See also

local APIC
APIC flag, CPUID instruction, 10-7
APIC ID, 10-40, 10-44, 10-46
APIC (see I/O APIC or Local APIC)
ARPL instruction, 2-22, 5-27

not supported in 64-bit mode, 2-22
Atomic operations

automatic bus locking, 8-3
effects of a locked operation on internal processor caches, 8-5
guaranteed, description of, 8-2
overview of, 8-1, 8-3
software-controlled bus locking, 8-3

At-retirement
counting, 18-19, 18-20, 18-86
events, 18-19, 18-20, 18-76, 18-77, 18-86, 18-91

Auto HALT restart
field, SMM, 34-14
SMM, 34-13

Automatic bus locking, 8-3
Automatic thermal monitoring mechanism, 14-20

B
B (busy) flag

TSS descriptor, 7-5, 7-10, 7-13, 8-3
B (default stack size) flag

segment descriptor, 21-1, 22-32
B0-B3 (BP condition detected) flags

DR6 register, 17-3
Backlink (see Previous task link)
Base address fields, segment descriptor, 3-10
BD (debug register access detected) flag, DR6 register, 17-3, 17-9
Vol. 3D INDEX-1

INDEX
Binary numbers, 1-7
BINIT# signal, 2-23
BIOS role in microcode updates, 9-38
Bit order, 1-6
BOUND instruction, 2-5, 6-4, 6-25
BOUND range exceeded exception (#BR), 6-25
BP0#, BP1#, BP2#, and BP3# pins, 17-35, 17-37
Branch record

branch trace message, 17-13
IA-32e mode, 17-20
saving, 17-15, 17-24, 17-32
saving as a branch trace message, 17-13
structure, 17-33
structure of in BTS buffer, 17-19

Branch trace message (see BTM)
Branch trace store (see BTS)
Breakpoint exception (#BP), 6-4, 6-23, 17-10
Breakpoints

data breakpoint, 17-5
data breakpoint exception conditions, 17-9
description of, 17-1
DR0-DR3 debug registers, 17-3
example, 17-5
exception, 6-23
field recognition, 17-5, 17-6
general-detect exception condition, 17-9
instruction breakpoint, 17-5
instruction breakpoint exception condition, 17-8
I/O breakpoint exception conditions, 17-9
LEN0 - LEN3 (Length) fields

DR7 register, 17-5
R/W0-R/W3 (read/write) fields

DR7 register, 17-4
single-step exception condition, 17-9
task-switch exception condition, 17-10

BS (single step) flag, DR6 register, 17-3
BSP flag, IA32_APIC_BASE MSR, 10-8
BSWAP instruction, 22-4
BT (task switch) flag, DR6 register, 17-3, 17-10
BTC instruction, 8-3
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, 17-37
BTMs (branch trace messages)

description of, 17-13
enabling, 17-11, 17-22, 17-23, 17-32, 17-34, 17-35
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, 17-32
MSR_DEBUGCTLB MSR, 17-11, 17-34, 17-35

BTR instruction, 8-3
BTS buffer

description of, 17-17
introduction to, 17-11, 17-13
records in, 17-19
setting up, 17-22
structure of, 17-18, 17-20, 18-31

BTS instruction, 8-3
BTS (branch trace store) facilities

availability of, 17-31
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, 17-17, 35-250
introduction to, 17-11
setting up BTS buffer, 17-22
writing an interrupt service routine for, 17-23

BTS_UNAVAILABLE, 17-17
Built-in self-test (BIST)

description of, 9-1
performing, 9-2

Bus
errors detected with MCA, 15-26
hold, 22-34
locking, 8-3, 22-34

Byte order, 1-6

C
C (conforming) flag, segment descriptor, 5-11
C1 flag, x87 FPU status word, 22-7, 22-14
C2 flag, x87 FPU status word, 22-7
Cache control, 11-20

adaptive mode, L1 Data Cache, 11-18
cache management instructions, 11-17, 11-18
cache mechanisms in IA-32 processors, 22-29
caching terminology, 11-5
CD flag, CR0 control register, 11-10, 22-18
choosing a memory type, 11-8
CPUID feature flag, 11-18
flags and fields, 11-10
flushing TLBs, 11-19
G (global) flag

page-directory entries, 11-13
page-table entries, 11-13

internal caches, 11-1
MemTypeGet() function, 11-29
MemTypeSet() function, 11-31
MESI protocol, 11-5, 11-9
methods of caching available, 11-6
MTRR initialization, 11-29
MTRR precedences, 11-28
MTRRs, description of, 11-20
multiple-processor considerations, 11-32
NW flag, CR0 control register, 11-13, 22-18
operating modes, 11-12
overview of, 11-1
page attribute table (PAT), 11-33
PCD flag

CR3 control register, 11-13
page-directory entries, 11-13, 11-33
page-table entries, 11-13, 11-33

PGE (page global enable) flag, CR4 control register, 11-13
precedence of controls, 11-13
preventing caching, 11-16
protocol, 11-9
PWT flag

CR3 control register, 11-13
page-directory entries, 11-33
page-table entries, 11-33

remapping memory types, 11-29
setting up memory ranges with MTRRs, 11-22
shared mode, L1 Data Cache, 11-18
variable-range MTRRs, 11-23, 11-25

Caches, 2-7
cache hit, 11-5
cache line, 11-5
cache line fill, 11-5
cache write hit, 11-5
description of, 11-1
effects of a locked operation on internal processor caches, 8-5
enabling, 9-7
management, instructions, 2-23, 11-17

Caching
cache control protocol, 11-9
cache line, 11-5
cache management instructions, 11-17
cache mechanisms in IA-32 processors, 22-29
caching terminology, 11-5
choosing a memory type, 11-8
flushing TLBs, 11-19
implicit caching, 11-19
internal caches, 11-1
L1 (level 1) cache, 11-4
L2 (level 2) cache, 11-4
L3 (level 3) cache, 11-4
methods of caching available, 11-6
MTRRs, description of, 11-20
operating modes, 11-12
overview of, 11-1
INDEX-2 Vol. 3D

INDEX
self-modifying code, effect on, 11-18, 22-29
snooping, 11-6
store buffer, 11-20
TLBs, 11-5
UC (strong uncacheable) memory type, 11-6
UC- (uncacheable) memory type, 11-6
WB (write back) memory type, 11-7
WC (write combining) memory type, 11-7
WP (write protected) memory type, 11-7
write-back caching, 11-6
WT (write through) memory type, 11-7

Call gates
16-bit, interlevel return from, 22-32
accessing a code segment through, 5-15
description of, 5-13
for 16-bit and 32-bit code modules, 21-1
IA-32e mode, 5-14
introduction to, 2-4
mechanism, 5-15
privilege level checking rules, 5-16

CALL instruction, 2-5, 3-9, 5-10, 5-15, 5-20, 7-2, 7-9, 7-10, 21-5
Caller access privileges, checking, 5-26
Calls

16 and 32-bit code segments, 21-3
controlling operand-size attribute, 21-5
returning from, 5-20

Capability MSRs
See VMX capability MSRs

Catastrophic shutdown detector
Thermal monitoring

catastrophic shutdown detector, 14-21
catastrophic shutdown detector, 14-20
CC0 and CC1 (counter control) fields, CESR MSR (Pentium processor),

18-110
CD (cache disable) flag, CR0 control register, 2-14, 9-7, 11-10, 11-12,

11-13, 11-16, 11-32, 22-17, 22-18, 22-29
CESR (control and event select) MSR (Pentium processor), 18-109, 18-110
CLFLSH feature flag, CPUID instruction, 9-8
CLFLUSH instruction, 2-15, 9-8, 11-17
CLI instruction, 6-7
Clocks

counting processor clocks, 18-94
Hyper-Threading Technology, 18-94
nominal CPI, 18-94
non-halted clockticks, 18-94
non-halted CPI, 18-94
non-sleep Clockticks, 18-94
time stamp counter, 18-94

CLTS instruction, 2-22, 5-24, 25-2, 25-6
Cluster model, local APIC, 10-24
CMOVcc instructions, 22-4
CMPXCHG instruction, 8-3, 22-4
CMPXCHG8B instruction, 8-3, 22-4
Code modules

16 bit vs. 32 bit, 21-1
mixing 16-bit and 32-bit code, 21-1
sharing data, mixed-size code segs, 21-3
transferring control, mixed-size code segs, 21-3

Code segments
accessing data in, 5-9
accessing through a call gate, 5-15
description of, 3-12
descriptor format, 5-2
descriptor layout, 5-2
direct calls or jumps to, 5-10
paging of, 2-6
pointer size, 21-4
privilege level checks

transferring control between code segs, 5-10
Compatibility

IA-32 architecture, 22-1
software, 1-6

Compatibility mode
code segment descriptor, 5-3
code segment descriptors, 9-11
control registers, 2-13
CS.L and CS.D, 9-11
debug registers, 2-23
EFLAGS register, 2-11
exception handling, 2-5
gates, 2-4
GDTR register, 2-12, 2-13
global and local descriptor tables, 2-4
IDTR register, 2-12
interrupt handling, 2-5
L flag, 3-12, 5-4
memory management, 2-6
operation, 9-11
segment loading instructions, 3-9
segments, 3-5
switching to, 9-12
SYSCALL and SYSRET, 5-22
SYSENTER and SYSEXIT, 5-21
system flags, 2-11
system registers, 2-7
task register, 2-13
See also: 64-bit mode, IA-32e mode

Condition code flags, x87 FPU status word
compatibility information, 22-7

Conforming code segments
accessing, 5-12
C (conforming) flag, 5-11
description of, 3-13

Context, task (see Task state)
Control registers

64-bit mode, 2-13
CR0, 2-13
CR1 (reserved), 2-13
CR2, 2-13
CR3 (PDBR), 2-6, 2-13
CR4, 2-13
description of, 2-13
introduction to, 2-6
VMX operation, 31-17

Coprocessor segment
overrun exception, 6-30, 22-11

Counter mask field
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), 18-4,

18-108
CPL

description of, 5-7
field, CS segment selector, 5-2

CPUID instruction
availability, 22-4
control register flags, 2-19
detecting features, 22-2
serializing instructions, 8-17
syntax for data, 1-8

CR0 control register, 22-7
description of, 2-13
introduction to, 2-6
state following processor reset, 9-2

CR1 control register (reserved), 2-13
CR2 control register

description of, 2-13
introduction to, 2-6

CR3 control register (PDBR)
associated with a task, 7-1, 7-3
description of, 2-13
in TSS, 7-4, 7-14
introduction to, 2-6
loading during initialization, 9-10
memory management, 2-6
page directory base address, 2-6
Vol. 3D INDEX-3

INDEX
page table base address, 2-5
CR4 control register

description of, 2-13
enabling control functions, 22-2
inclusion in IA-32 architecture, 22-17
introduction to, 2-6
VMX usage of, 23-3

CR8 register, 2-7
64-bit mode, 2-13
compatibility mode, 2-13
description of, 2-13
task priority level bits, 2-18
when available, 2-13

CS register, 22-10
state following initialization, 9-5

C-state, 14-19
CTR0 and CTR1 (performance counters) MSRs (Pentium processor),

18-109, 18-111
Current privilege level (see CPL)

D
D (default operation size) flag

segment descriptor, 21-1, 22-32
Data breakpoint exception conditions, 17-9
Data segments

description of, 3-12
descriptor layout, 5-2
expand-down type, 3-11
paging of, 2-6
privilege level checking when accessing, 5-8

DE (debugging extensions) flag, CR4 control register, 2-17, 22-17, 22-19
Debug exception (#DB), 6-7, 6-21, 7-5, 17-6, 17-12, 17-38
Debug store (see DS)
DEBUGCTLMSR MSR, 17-36, 17-37, 17-38, 35-289
Debugging facilities

breakpoint exception (#BP), 17-1
debug exception (#DB), 17-1
DR6 debug status register, 17-1
DR7 debug control register, 17-1
exceptions, 17-6
INT3 instruction, 17-1
last branch, interrupt, and exception recording, 17-1, 17-10
masking debug exceptions, 6-7
overview of, 17-1
performance-monitoring counters, 18-1
registers

description of, 17-2
introduction to, 2-6
loading, 2-23

RF (resume) flag, EFLAGS, 17-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, 17-1
TF (trap) flag, EFLAGS, 17-1
virtualization, 32-1
VMX operation, 32-1

DEC instruction, 8-3
Denormal operand exception (#D), 22-9
Denormalized operand, 22-12
Device-not-available exception (#NM), 2-15, 2-22, 6-27, 9-6, 22-10,

22-11
DFR

Destination Format Register, 10-38, 10-41, 10-46
Digital readout bits, 14-28, 14-31
DIV instruction, 6-20
Divide configuration register, local APIC, 10-16
Divide-error exception (#DE), 6-20, 22-20
Double-fault exception (#DF), 6-28, 22-26
DPL (descriptor privilege level) field, segment descriptor, 3-11, 5-2, 5-4,

5-7
DR0-DR3 breakpoint-address registers, 17-1, 17-3, 17-35, 17-37, 17-38
DR4-DR5 debug registers, 17-3, 22-19

DR6 debug status register, 17-3
B0-B3 (BP detected) flags, 17-3
BD (debug register access detected) flag, 17-3
BS (single step) flag, 17-3
BT (task switch) flag, 17-3
debug exception (#DB), 6-21
reserved bits, 22-19

DR7 debug control register, 17-4
G0-G3 (global breakpoint enable) flags, 17-4
GD (general detect enable) flag, 17-4
GE (global exact breakpoint enable) flag, 17-4
L0-L3 (local breakpoint enable) flags, 17-4
LE local exact breakpoint enable) flag, 17-4
LEN0-LEN3 (Length) fields, 17-4
R/W0-R/W3 (read/write) fields, 17-4, 22-19

DS feature flag, CPUID instruction, 17-17, 17-31, 17-34, 17-36
DS save area, 17-18, 17-19, 17-20
DS (debug store) mechanism

availability of, 18-80
description of, 18-80
DS feature flag, CPUID instruction, 18-80
DS save area, 17-17, 17-19
IA-32e mode, 17-19
interrupt service routine (DS ISR), 17-23
setting up, 17-21

Dual-core technology
architecture, 8-31
logical processors supported, 8-24
MTRR memory map, 8-32
multi-threading feature flag, 8-24
performance monitoring, 18-97
specific features, 22-4

Dual-monitor treatment, 34-19
D/B (default operation size/default stack pointer size and/or upper bound)

flag, segment descriptor, 3-11, 5-4

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family), 18-4
E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 18-107
E (expansion direction) flag

segment descriptor, 5-2, 5-4
E (MTRRs enabled) flag

IA32_MTRR_DEF_TYPE MSR, 11-23
EFLAGS register

identifying 32-bit processors, 22-6
introduction to, 2-6
new flags, 22-5
saved in TSS, 7-4
system flags, 2-9
VMX operation, 31-2

EIP register, 22-10
saved in TSS, 7-4
state following initialization, 9-5

EM (emulation) flag
CR0 control register, 2-15, 2-16, 6-27, 9-5, 9-6, 12-1, 13-3

EMMS instruction, 12-3
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, 14-1
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
introduction, 14-1
multiple processor cores, 14-1
performance transitions, 14-1
P-state coordination, 14-1
See also: thermal monitoring

EOI
End Of Interrupt register, 10-38
INDEX-4 Vol. 3D

INDEX
Error code, 16-3, 16-7, 16-10, 16-13, 16-15
architectural MCA, 16-1, 16-3, 16-7, 16-10, 16-13, 16-15
decoding IA32_MCi_STATUS, 16-1, 16-3, 16-7, 16-10, 16-13, 16-15
exception, description of, 6-14
external bus, 16-1, 16-3, 16-7, 16-10, 16-13, 16-15
memory hierarchy, 16-3, 16-7, 16-10, 16-13, 16-15
pushing on stack, 22-31
watchdog timer, 16-1, 16-3, 16-7, 16-10, 16-13, 16-15

Error numbers
VM-instruction error field, 30-29

Error signals, 22-10
Error-reporting bank registers, 15-2
ERROR#

input, 22-15
output, 22-15

ES0 and ES1 (event select) fields, CESR MSR (Pentium processor), 18-110
ESR

Error Status Register, 10-39
ET (extension type) flag, CR0 control register, 2-15, 22-7
Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 18-3, 18-17, 18-107
Events

at-retirement, 18-86
at-retirement (Pentium 4 processor), 18-76
non-retirement (Pentium 4 processor), 18-76, 19-169
P6 family processors, 19-200
Pentium processor, 19-209

Exception handler
calling, 6-11
defined, 6-1
flag usage by handler procedure, 6-14
machine-check exception handler, 15-27
machine-check exceptions (#MC), 15-27
machine-error logging utility, 15-27
procedures, 6-11
protection of handler procedures, 6-13
task, 6-14, 7-2

Exceptions
alignment check, 22-11
classifications, 6-4
compound error codes, 15-20
conditions checked during a task switch, 7-11
coprocessor segment overrun, 22-11
description of, 2-5, 6-1
device not available, 22-11
double fault, 6-28
error code, 6-14
exception bitmap, 32-1
execute-disable bit, 5-32
floating-point error, 22-11
general protection, 22-11
handler mechanism, 6-11
handler procedures, 6-11
handling, 6-11
handling in real-address mode, 20-4
handling in SMM, 34-10
handling in virtual-8086 mode, 20-11
handling through a task gate in virtual-8086 mode, 20-14
handling through a trap or interrupt gate in virtual-8086 mode, 20-12
IA-32e mode, 2-5
IDT, 6-9
initializing for protected-mode operation, 9-10
invalid-opcode, 22-5
masking debug exceptions, 6-7
masking when switching stack segments, 6-7
MCA error codes, 15-20
MMX instructions, 12-1
notation, 1-9
overview of, 6-1
priorities among simultaneous exceptions and interrupts, 6-8
priority of, 22-21
priority of, x87 FPU exceptions, 22-10

reference information on all exceptions, 6-19
reference information, 64-bit mode, 6-16
restarting a task or program, 6-5
segment not present, 22-11
simple error codes, 15-20
sources of, 6-4
summary of, 6-2
vectors, 6-1

Executable, 3-11
Execute-disable bit capability

conditions for, 5-30
CPUID flag, 5-30
detecting and enabling, 5-30
exception handling, 5-32
page-fault exceptions, 6-40
protection matrix for IA-32e mode, 5-31
protection matrix for legacy modes, 5-31
reserved bit checking, 5-31

Execution events, 19-192
Exit-reason numbers

VM entries & exits, C-1
Expand-down data segment type, 3-11
Extended signature table, 9-31
extended signature table, 9-31
External bus errors, detected with machine-check architecture, 15-26

F
F2XM1 instruction, 22-13
Family 06H, 16-1
Family 0FH, 16-1

microcode update facilities, 9-28
Faults

description of, 6-5
restarting a program or task after, 6-5

FCMOVcc instructions, 22-4
FCOMI instruction, 22-4
FCOMIP instruction, 22-4
FCOS instruction, 22-12
FDISI instruction (obsolete), 22-14
FDIV instruction, 22-11, 22-12
FE (fixed MTRRs enabled) flag, IA32_MTRR_DEF_TYPE MSR, 11-23
Feature

determination, of processor, 22-2
information, processor, 22-2

FENI instruction (obsolete), 22-14
FINIT/FNINIT instructions, 22-7, 22-15
FIX (fixed range registers supported) flag, IA32_MTRRCAPMSR, 11-22
Fixed-range MTRRs

description of, 11-23
Flat segmentation model, 3-3
FLD instruction, 22-13
FLDENV instruction, 22-11
FLDL2E instruction, 22-13
FLDL2T instruction, 22-13
FLDLG2 instruction, 22-13
FLDLN2 instruction, 22-13
FLDPI instruction, 22-13
Floating-point error exception (#MF), 22-11
Floating-point exceptions

denormal operand exception (#D), 22-9
invalid operation (#I), 22-13
numeric overflow (#O), 22-9
numeric underflow (#U), 22-10
saved CS and EIP values, 22-10

FLUSH# pin, 6-3
FNSAVE instruction, 12-4
Focus processor, local APIC, 10-26
FORCEPR# log, 14-27, 14-30
FORCPR# interrupt enable bit, 14-28
FPATAN instruction, 22-13
FPREM instruction, 22-7, 22-11, 22-12
Vol. 3D INDEX-5

INDEX
FPREM1 instruction, 22-7, 22-12
FPTAN instruction, 22-7, 22-12
Front_end events, 19-192
FRSTOR instruction, 12-4, 22-11
FSAVE instruction, 12-3, 12-4
FSAVE/FNSAVE instructions, 22-11, 22-14
FSCALE instruction, 22-12
FSIN instruction, 22-12
FSINCOS instruction, 22-12
FSQRT instruction, 22-11, 22-12
FSTENV instruction, 12-3
FSTENV/FNSTENV instructions, 22-14
FTAN instruction, 22-7
FUCOM instruction, 22-12
FUCOMI instruction, 22-4
FUCOMIP instruction, 22-4
FUCOMP instruction, 22-12
FUCOMPP instruction, 22-12
FWAIT instruction, 6-27
FXAM instruction, 22-13, 22-14
FXRSTOR instruction, 2-17, 2-18, 9-8, 12-3, 12-4, 13-2, 13-6
FXSAVE instruction, 2-17, 2-18, 9-8, 12-3, 12-4, 13-2, 13-6
FXSR feature flag, CPUID instruction, 9-8
FXTRACT instruction, 22-9, 22-13

G
G (global) flag

page-directory entries, 11-13
page-table entries, 11-13

G (granularity) flag
segment descriptor, 3-10, 3-11, 5-2, 5-4

G0-G3 (global breakpoint enable) flags
DR7 register, 17-4

Gate descriptors
call gates, 5-13
description of, 5-13
IA-32e mode, 5-14

Gates, 2-4
IA-32e mode, 2-4

GD (general detect enable) flag
DR7 register, 17-4, 17-9

GDT
description of, 2-3, 3-15
IA-32e mode, 2-4
index field of segment selector, 3-7
initializing, 9-9
paging of, 2-6
pointers to exception/interrupt handlers, 6-11
segment descriptors in, 3-9
selecting with TI flag of segment selector, 3-7
task switching, 7-9
task-gate descriptor, 7-8
TSS descriptors, 7-5
use in address translation, 3-6

GDTR register
description of, 2-3, 2-6, 2-12, 3-15
IA-32e mode, 2-4, 2-12
limit, 5-5
loading during initialization, 9-9
storing, 3-15

GE (global exact breakpoint enable) flag
DR7 register, 17-4, 17-9

General-detect exception condition, 17-9
General-protection exception (#GP), 3-12, 5-6, 5-7, 5-11, 5-12, 6-9,

6-13, 6-37, 7-5, 17-3, 22-11, 22-20, 22-33, 22-34
General-purpose registers, saved in TSS, 7-4
Global control MSRs, 15-2
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)

H
HALT state

relationship to SMI interrupt, 34-3, 34-13
Hardware reset

description of, 9-1
processor state after reset, 9-2
state of MTRRs following, 11-20
value of SMBASE following, 34-4

Hexadecimal numbers, 1-7
high-temperature interrupt enable bit, 14-28, 14-31
HITM# line, 11-6
HLT instruction, 2-23, 5-24, 6-29, 25-2, 34-13, 34-14
Hyper-Threading Technology

architectural state of a logical processor, 8-32
architecture description, 8-26
caches, 8-30
counting clockticks, 18-95
debug registers, 8-29
description of, 8-24, 22-3, 22-4
detecting, 8-35, 8-39, 8-40
executing multiple threads, 8-26
execution-based timing loops, 8-52
external signal compatibility, 8-31
halting logical processors, 8-50
handling interrupts, 8-26
HLT instruction, 8-46
IA32_MISC_ENABLE MSR, 8-29, 8-32
initializing IA-32 processors with, 8-25
introduction of into the IA-32 architecture, 22-3, 22-4
local a, 8-27
local APIC

functionality in logical processor, 8-28
logical processors, identifying, 8-35
machine check architecture, 8-28
managing idle and blocked conditions, 8-46
mapping resources, 8-33
memory ordering, 8-29
microcode update resources, 8-29, 8-32, 9-35
MP systems, 8-26
MTRRs, 8-28, 8-32
multi-threading feature flag, 8-24
multi-threading support, 8-24
PAT, 8-28
PAUSE instruction, 8-46, 8-47
performance monitoring, 18-90, 18-97
performance monitoring counters, 8-29, 8-32
placement of locks and semaphores, 8-52
required operating system support, 8-48
scheduling multiple threads, 8-51
self modifying code, 8-30
serializing instructions, 8-29
spin-wait loops

PAUSE instructions in, 8-49, 8-51
thermal monitor, 8-31
TLBs, 8-30

I
IA-32 Intel architecture

compatibility, 22-1
processors, 22-1

IA32e mode
registers and mode changes, 9-12

IA-32e mode
call gates, 5-14
code segment descriptor, 5-3
D flag, 5-4
data structures and initialization, 9-11
debug registers, 2-7
debug store area
descriptors, 2-4
DPL field, 5-4
INDEX-6 Vol. 3D

INDEX
exceptions during initialization, 9-11
feature-enable register, 2-7
gates, 2-4
global and local descriptor tables, 2-4
IA32_EFER MSR, 2-7, 5-30
initialization process, 9-10
interrupt stack table, 6-19
interrupts and exceptions, 2-5
IRET instruction, 6-18
L flag, 3-12, 5-4
logical address, 3-7
MOV CRn, 9-10
MTRR calculations, 11-27
NXE bit, 5-30
page level protection, 5-30
paging, 2-6
PDE tables, 5-31
PDP tables, 5-31
PML4 tables, 5-31
PTE tables, 5-31
registers and data structures, 2-1
segment descriptor tables, 3-16, 5-3
segment descriptors, 3-9
segment loading instructions, 3-9
segmentation, 3-5
stack switching, 5-19, 6-18
SYSCALL and SYSRET, 5-22
SYSENTER and SYSEXIT, 5-21
system descriptors, 3-14
system registers, 2-7
task switching, 7-16
task-state segments, 2-5
terminating mode operation, 9-12
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, 14-2
IA32_APIC_BASE MSR, 8-18, 8-19, 10-6, 10-8, 35-242
IA32_BIOS_SIGN_ID MSR, 35-245
IA32_BIOS_UPDT_TRIG MSR, 32-9, 35-245
IA32_BISO_SIGN_ID MSR, 32-9
IA32_CLOCK_MODULATION MSR, 8-31, 14-8, 14-11, 14-12, 14-13,

14-15, 14-16, 14-17, 14-18, 14-19, 14-24, 14-25, 14-26,
14-27, 14-35, 14-36, 14-37, 14-38, 14-39, 35-47, 35-60,
35-72, 35-88, 35-125, 35-231, 35-249, 35-271, 35-280

IA32_CTL MSR, 35-245
IA32_DEBUGCTL MSR, 27-24, 35-253
IA32_DS_AREA MSR, 17-17, 17-21, 18-74, 18-89, 35-263
IA32_EFER MSR, 2-7, 2-8, 5-30, 27-25, 31-16
IA32_FEATURE_CONTROL MSR, 23-3
IA32_KernelGSbase MSR, 2-7
IA32_LSTAR MSR, 2-7, 5-22
IA32_MCG_CAP MSR, 15-2, 15-27, 35-245
IA32_MCG_CTL MSR, 15-2, 15-4
IA32_MCG_EAX MSR, 15-11
IA32_MCG_EBP MSR, 15-11
IA32_MCG_EBX MSR, 15-11
IA32_MCG_ECX MSR, 15-11
IA32_MCG_EDI MSR, 15-11
IA32_MCG_EDX MSR, 15-11
IA32_MCG_EFLAGS MSR, 15-11
IA32_MCG_EIP MSR, 15-11
IA32_MCG_ESI MSR, 15-11
IA32_MCG_ESP MSR, 15-11
IA32_MCG_MISC MSR, 15-11, 15-12, 35-247
IA32_MCG_R10 MSR, 15-12, 35-248
IA32_MCG_R11 MSR, 15-12, 35-248
IA32_MCG_R12 MSR, 15-12
IA32_MCG_R13 MSR, 15-12
IA32_MCG_R14 MSR, 15-12
IA32_MCG_R15 MSR, 15-12, 35-248
IA32_MCG_R8 MSR, 15-12
IA32_MCG_R9 MSR, 15-12
IA32_MCG_RAX MSR, 15-11, 35-246

IA32_MCG_RBP MSR, 15-12
IA32_MCG_RBX MSR, 15-11, 35-246
IA32_MCG_RCX MSR, 15-12
IA32_MCG_RDI MSR, 15-12
IA32_MCG_RDX MSR, 15-12
IA32_MCG_RESERVEDn, 35-247, 35-343
IA32_MCG_RESERVEDn MSR, 15-11
IA32_MCG_RFLAGS MSR, 15-12, 35-247, 35-343
IA32_MCG_RIP MSR, 15-12, 35-247, 35-343
IA32_MCG_RSI MSR, 15-12
IA32_MCG_RSP MSR, 15-12
IA32_MCG_STATUS MSR, 15-2, 15-4, 15-27, 15-29, 27-3
IA32_MCi_ADDR MSR, 15-9, 15-29, 35-260
IA32_MCi_CTL, 15-5
IA32_MCi_CTL MSR, 15-5, 35-259
IA32_MCi_MISC MSR, 15-9, 15-10, 15-11, 15-29, 35-260
IA32_MCi_STATUS MSR, 15-6, 15-27, 15-29, 35-259

decoding for Family 06H, 16-1
decoding for Family 0FH, 16-1, 16-3, 16-7, 16-10, 16-13, 16-15

IA32_MISC_ENABLE MSR, 14-1, 14-21, 17-17, 17-31, 18-73, 35-249
IA32_MPERF MSR, 14-1, 14-2
IA32_MTRRCAP MSR, 11-21, 11-22, 35-245
IA32_MTRR_DEF_TYPE MSR, 11-22
IA32_MTRR_FIXn, fixed ranger MTRRs, 11-23
IA32_MTRR_PHYS BASEn MTRR, 35-253
IA32_MTRR_PHYSBASEn MTRR, 35-254
IA32_MTRR_PHYSMASKn MTRR, 35-253
IA32_P5_MC_ADDR MSR, 35-241
IA32_P5_MC_TYPE MSR, 35-241
IA32_PAT_CR MSR, 11-34
IA32_PEBS_ENABLE MSR, 18-20, 18-74, 18-89, 19-193, 35-259
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
IA32_PLATFORM_ID, 35-42, 35-56, 35-66, 35-84, 35-120, 35-229,

35-241, 35-268, 35-276, 35-283
IA32_STAR MSR, 5-22
IA32_STAR_CS MSR, 2-7
IA32_STATUS MSR, 35-245
IA32_SYSCALL_FLAG_MASK MSR, 2-7
IA32_SYSENTER_CS MSR, 5-21, 5-22, 27-19, 35-245
IA32_SYSENTER_EIP MSR, 5-21, 27-24, 35-245
IA32_SYSENTER_ESP MSR, 5-21, 27-24, 35-245
IA32_TERM_CONTROL MSR, 35-47, 35-60, 35-72, 35-88, 35-125
IA32_THERM_INTERRUPT MSR, 14-23, 14-26, 14-28, 35-249

FORCPR# interrupt enable bit, 14-28
high-temperature interrupt enable bit, 14-28, 14-31
low-temperature interrupt enable bit, 14-28, 14-31
overheat interrupt enable bit, 14-28, 14-31
THERMTRIP# interrupt enable bit, 14-28, 14-31
threshold #1 interrupt enable bit, 14-29, 14-31
threshold #1 value, 14-28, 14-31
threshold #2 interrupt enable, 14-29, 14-32
threshold #2 value, 14-29, 14-31

IA32_THERM_STATUS MSR, 14-26, 35-249
digital readout bits, 14-28, 14-31
out-of-spec status bit, 14-27, 14-30
out-of-spec status log, 14-27, 14-30, 14-31
PROCHOT# or FORCEPR# event bit, 14-26, 14-30, 14-31
PROCHOT# or FORCEPR# log, 14-27, 14-30
resolution in degrees, 14-28
thermal status bit, 14-26, 14-30
thermal status log, 14-26, 14-30
thermal threshold #1 log, 14-27, 14-30, 14-31
thermal threshold #1 status, 14-27, 14-30
thermal threshold #2 log, 14-27, 14-30
thermal threshold #2 status, 14-27, 14-30, 14-31
validation bit, 14-28

IA32_TIME_STAMP_COUNTER MSR, 35-241
IA32_VMX_BASIC MSR, 24-3, 31-2, 31-5, 31-6, 31-11, 35-53, 35-64,

35-77, 35-96, 35-134, 35-237, 35-262, 35-275, A-1, A-2
IA32_VMX_CR0_FIXED0 MSR, 31-4, 35-54, 35-65, 35-77, 35-97,

35-134, 35-237, 35-262, 35-275, A-6
Vol. 3D INDEX-7

INDEX
IA32_VMX_CR0_FIXED1 MSR, 31-4, 35-54, 35-65, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275, A-6

IA32_VMX_CR4_FIXED0 MSR, 31-4, 35-54, 35-65, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275, A-6

IA32_VMX_CR4_FIXED1 MSR, 31-4, 35-54, 35-65, 35-78, 35-97,
35-134, 35-135, 35-237, 35-262, 35-276, A-6

IA32_VMX_ENTRY_CTLS MSR, 31-5, 31-6, 35-54, 35-64, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275, A-2, A-5

IA32_VMX_EXIT_CTLS MSR, 31-5, 31-6, 35-54, 35-64, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275, A-2, A-4, A-5

IA32_VMX_MISC MSR, 24-6, 26-3, 26-12, 34-25, 35-54, 35-64, 35-77,
35-97, 35-134, 35-237, 35-262, 35-275, A-5

IA32_VMX_PINBASED_CTLS MSR, 31-5, 31-6, 35-53, 35-64, 35-77,
35-96, 35-134, 35-237, 35-262, 35-275, A-2, A-3

IA32_VMX_PROCBASED_CTLS MSR, 24-9, 31-5, 31-6, 35-53, 35-54,
35-64, 35-65, 35-77, 35-78, 35-97, 35-134, 35-135, 35-167,
35-237, 35-238, 35-262, 35-275, 35-276, A-2, A-3, A-4, A-8

IA32_VMX_VMCS_ENUM MSR, 35-262, A-7
ICR

Interrupt Command Register, 10-38, 10-41, 10-47
ID (identification) flag

EFLAGS register, 2-11, 22-6
IDIV instruction, 6-20, 22-20
IDT

64-bit mode, 6-16
call interrupt & exception-handlers from, 6-11
change base & limit in real-address mode, 20-5
description of, 6-9
handling NMIs during initialization, 9-8
initializing protected-mode operation, 9-10
initializing real-address mode operation, 9-8
introduction to, 2-5
limit, 22-26
paging of, 2-6
structure in real-address mode, 20-5
task switching, 7-10
task-gate descriptor, 7-8
types of descriptors allowed, 6-10
use in real-address mode, 20-4

IDTR register
description of, 2-12, 6-9
IA-32e mode, 2-12
introduction to, 2-5
limit, 5-5
loading in real-address mode, 20-5
storing, 3-16

IE (invalid operation exception) flag
x87 FPU status word, 22-8

IEEE Standard 754 for Binary Floating-Point Arithmetic, 22-8, 22-9,
22-12, 22-13

IF (interrupt enable) flag
EFLAGS register, 2-10, 2-11, 6-6, 6-10, 6-14, 20-4, 20-19, 34-11

IN instruction, 8-15, 22-34, 25-2
INC instruction, 8-3
Index field, segment selector, 3-7
INIT interrupt, 10-3
Initial-count register, local APIC, 10-16, 10-17
Initialization

built-in self-test (BIST), 9-1, 9-2
CS register state following, 9-5
EIP register state following, 9-5
example, 9-14
first instruction executed, 9-5
hardware reset, 9-1
IA-32e mode, 9-10
IDT, protected mode, 9-10
IDT, real-address mode, 9-8
Intel486 SX processor and Intel 487 SX math coprocessor, 22-15
location of software-initialization code, 9-5
machine-check initialization, 15-18
model and stepping information, 9-4
multitasking environment, 9-10

overview, 9-1
paging, 9-10
processor state after reset, 9-2
protected mode, 9-9
real-address mode, 9-8
RESET# pin, 9-1
setting up exception- and interrupt-handling facilities, 9-10
x87 FPU, 9-5

INIT# pin, 6-3, 9-1
INIT# signal, 2-23, 23-4
INS instruction, 17-9
Instruction operands, 1-7
Instruction-breakpoint exception condition, 17-8
Instructions

new instructions, 22-4
obsolete instructions, 22-5
privileged, 5-23
serializing, 8-17, 8-29, 22-15
supported in real-address mode, 20-3
system, 2-7, 2-20

INS/INSB/INSW/INSD instruction, 25-2
INT 3 instruction, 2-5, 6-23
INT instruction, 2-5, 5-10
INT n instruction, 3-9, 6-1, 6-4, 17-9
INT (APIC interrupt enable) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6

family processors), 18-4, 18-108
INT15 and microcode updates, 9-42
INT3 instruction, 3-9, 6-4
Intel 287 math coprocessor, 22-7
Intel 387 math coprocessor system, 22-7
Intel 487 SX math coprocessor, 22-6, 22-15
Intel 64 architecture

definition of, 1-3
relation to IA-32, 1-3

Intel 8086 processor, 22-7
Intel Core Solo and Duo processors

model-specific registers, 35-267
Intel Core Solo and Intel Core Duo processors

event mask (Umask), 18-15, 18-16
last branch, interrupt, exception recording, 17-34
notes on P-state transitions, 14-1
performance monitoring, 18-15, 18-16
performance monitoring events, 19-21, 19-33, 19-43, 19-57,

19-118, 19-144, 19-150
sub-fields layouts, 18-15, 18-16
time stamp counters, 17-39

Intel NetBurst microarchitecture, 1-2
Intel software network link, 1-10
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, 1-9
Intel Xeon processor, 1-1

last branch, interrupt, and exception recording, 17-31
time-stamp counter, 17-39

Intel Xeon processor MP
with 8MB L3 cache, 18-98, 18-100

Intel286 processor, 22-7
Intel386 DX processor, 22-7
Intel386 SL processor, 2-7
Intel486 DX processor, 22-6
Intel486 SX processor, 22-6, 22-15
Interprivilege level calls

call mechanism, 5-15
stack switching, 5-17

Interprocessor interrupt (IPIs), 10-1
Interprocessor interrupt (IPI)

in MP systems, 10-1
interrupt, 6-12
Interrupt Command Register, 10-37
Interrupt command register (ICR), local APIC, 10-19
Interrupt gates
INDEX-8 Vol. 3D

INDEX
16-bit, interlevel return from, 22-32
clearing IF flag, 6-7, 6-14
difference between interrupt and trap gates, 6-14
for 16-bit and 32-bit code modules, 21-1
handling a virtual-8086 mode interrupt or exception through, 20-12
in IDT, 6-10
introduction to, 2-4, 2-5
layout of, 6-10

Interrupt handler
calling, 6-11
defined, 6-1
flag usage by handler procedure, 6-14
procedures, 6-11
protection of handler procedures, 6-13
task, 6-14, 7-2

Interrupts
automatic bus locking, 22-34
control transfers between 16- and 32-bit code modules, 21-6
description of, 2-5, 6-1
destination, 10-26
distribution mechanism, local APIC, 10-25
enabling and disabling, 6-6
handling, 6-11
handling in real-address mode, 20-4
handling in SMM, 34-10
handling in virtual-8086 mode, 20-11
handling multiple NMIs, 6-6
handling through a task gate in virtual-8086 mode, 20-14
handling through a trap or interrupt gate in virtual-8086 mode, 20-12
IA-32e mode, 2-5, 2-12
IDT, 6-9
IDTR, 2-12
initializing for protected-mode operation, 9-10
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, 6-2, 20-6
local APIC, 10-1
maskable hardware interrupts, 2-10
masking maskable hardware interrupts, 6-6
masking when switching stack segments, 6-7
message signalled interrupts, 10-34
on-die sensors for, 14-20
overview of, 6-1
priorities among simultaneous exceptions and interrupts, 6-8
priority, 10-28
propagation delay, 22-26
real-address mode, 20-6
restarting a task or program, 6-5
software, 6-51
sources of, 10-1
summary of, 6-2
thermal monitoring, 14-20
user defined, 6-1, 6-51
valid APIC interrupts, 10-14
vectors, 6-1
virtual-8086 mode, 20-6

INTO instruction, 2-5, 3-9, 6-4, 6-24, 17-9
INTR# pin, 6-2, 6-6
Invalid opcode exception (#UD), 2-16, 6-26, 6-48, 12-1, 17-3, 22-5,

22-10, 22-19, 22-20, 34-3
Invalid TSS exception (#TS), 6-31, 7-6
Invalid-operation exception, x87 FPU, 22-11, 22-13
INVD instruction, 2-23, 5-24, 11-17, 22-4
INVLPG instruction, 2-23, 5-24, 22-4, 25-2, 32-3, 32-4
IOPL (I/O privilege level) field, EFLAGS register

description of, 2-10
on return from exception, interrupt handler, 6-13
sensitive instructions in virtual-8086 mode, 20-10
virtual interrupt, 2-11

IPI (see interprocessor interrupt)
IRET instruction, 3-9, 6-7, 6-13, 6-14, 6-18, 7-10, 8-17, 20-5, 20-19,

25-7

IRETD instruction, 2-10, 8-17
IRR

Interrupt Request Register, 10-39, 10-41, 10-47
IRR (interrupt request register), local APIC, 10-30
ISR

In Service Register, 10-38, 10-41, 10-47
I/O

breakpoint exception conditions, 17-9
in virtual-8086 mode, 20-10
instruction restart flag

SMM revision identifier field, 34-15
instruction restart flag, SMM revision identifier field, 34-15
IO_SMI bit, 34-12
I/O permission bit map, TSS, 7-5
map base address field, TSS, 7-5
restarting following SMI interrupt, 34-15
saving I/O state, 34-12
SMM state save map, 34-12

I/O APIC, 10-26
bus arbitration, 10-26
description of, 10-1
external interrupts, 6-3
information about, 10-1
interrupt sources, 10-2
local APIC and I/O APIC, 10-2, 10-3
overview of, 10-1
valid interrupts, 10-14
See also: local APIC

J
JMP instruction, 2-5, 3-9, 5-10, 5-15, 7-2, 7-9, 7-10

K
KEN# pin, 11-13, 22-35

L
L0-L3 (local breakpoint enable) flags

DR7 register, 17-4
L1 (level 1) cache

caching methods, 11-6
CPUID feature flag, 11-18
description of, 11-4
effect of using write-through memory, 11-8
introduction of, 22-29
invalidating and flushing, 11-17
MESI cache protocol, 11-9
shared and adaptive mode, 11-18

L2 (level 2) cache
caching methods, 11-6
description of, 11-4
disabling, 11-17
effect of using write-through memory, 11-8
introduction of, 22-29
invalidating and flushing, 11-17
MESI cache protocol, 11-9

L3 (level 3) cache
caching methods, 11-6
description of, 11-4
disabling and enabling, 11-13, 11-17
effect of using write-through memory, 11-8
introduction of, 22-30
invalidating and flushing, 11-17
MESI cache protocol, 11-9

LAR instruction, 2-22, 5-24
Larger page sizes

introduction of, 22-30
support for, 22-18

Last branch
interrupt & exception recording
Vol. 3D INDEX-9

INDEX
description of, 17-10, 17-24, 17-25, 17-27, 17-28, 17-29, 17-32,
17-34, 17-35, 17-36

record stack, 17-16, 17-17, 17-24, 17-25, 17-31, 17-32, 17-35,
17-36, 35-253, 35-263

record top-of-stack pointer, 17-16, 17-24, 17-25, 17-31, 17-35,
17-36

LastBranchFromIP MSR, 17-37, 17-38
LastBranchToIP MSR, 17-37, 17-38
LastExceptionFromIP MSR, 17-25, 17-34, 17-35, 17-37, 17-38
LastExceptionToIP MSR, 17-25, 17-34, 17-35, 17-37, 17-38
LBR (last branch/interrupt/exception) flag, DEBUGCTLMSR MSR, 17-12,

17-31, 17-37, 17-38
LDR

Logical Destination Register, 10-41, 10-45, 10-46
LDS instruction, 3-8, 5-8
LDT

associated with a task, 7-3
description of, 2-3, 2-5, 3-15
index into with index field of segment selector, 3-7
pointer to in TSS, 7-4
pointers to exception and interrupt handlers, 6-11
segment descriptors in, 3-9
segment selector field, TSS, 7-14
selecting with TI (table indicator) flag of segment selector, 3-7
setting up during initialization, 9-9
task switching, 7-9
task-gate descriptor, 7-8
use in address translation, 3-6

LDTR register
description of, 2-3, 2-5, 2-6, 2-12, 3-15
IA-32e mode, 2-12
limit, 5-5
storing, 3-16

LE (local exact breakpoint enable) flag, DR7 register, 17-4, 17-9
LEN0-LEN3 (Length) fields, DR7 register, 17-4, 17-5
LES instruction, 3-8, 5-8, 6-26
LFENCE instruction, 2-15, 8-6, 8-15, 8-16, 8-17
LFS instruction, 3-8, 5-8
LGDT instruction, 2-22, 5-23, 8-17, 9-9, 22-19
LGS instruction, 3-8, 5-8
LIDT instruction, 2-22, 5-24, 6-9, 8-17, 9-8, 20-5, 22-26
Limit checking

description of, 5-4
pointer offsets are within limits, 5-25

Limit field, segment descriptor, 5-2, 5-4
Linear address

description of, 3-6
IA-32e mode, 3-7
introduction to, 2-6

Linear address space, 3-6
defined, 3-1
of task, 7-14

Link (to previous task) field, TSS, 6-14
Linking tasks

mechanism, 7-12
modifying task linkages, 7-13

LINT pins
function of, 6-2

LLDT instruction, 2-22, 5-23, 8-17
LMSW instruction, 2-22, 5-24, 25-2, 25-7
Local APIC, 10-38

64-bit mode, 10-32
APIC_ID value, 8-33
arbitration over the APIC bus, 10-26
arbitration over the system bus, 10-26
block diagram, 10-4
cluster model, 10-24
CR8 usage, 10-32
current-count register, 10-17
description of, 10-1
detecting with CPUID, 10-7
DFR (destination format register), 10-24

divide configuration register, 10-16
enabling and disabling, 10-8
external interrupts, 6-2
features

Pentium 4 and Intel Xeon, 22-27
Pentium and P6, 22-27

focus processor, 10-26
global enable flag, 10-8
IA32_APIC_BASE MSR, 10-8
initial-count register, 10-16, 10-17
internal error interrupts, 10-2
interrupt command register (ICR), 10-19
interrupt destination, 10-26
interrupt distribution mechanism, 10-25
interrupt sources, 10-2
IRR (interrupt request register), 10-30
I/O APIC, 10-1
local APIC and 82489DX, 22-27
local APIC and I/O APIC, 10-2, 10-3
local vector table (LVT), 10-12
logical destination mode, 10-23
LVT (local-APIC version register), 10-11
mapping of resources, 8-33
MDA (message destination address), 10-23
overview of, 10-1
performance-monitoring counter, 18-109
physical destination mode, 10-23
receiving external interrupts, 6-2
register address map, 10-6, 10-38
shared resources, 8-33
SMI interrupt, 34-2
spurious interrupt, 10-32
spurious-interrupt vector register, 10-8
state after a software (INIT) reset, 10-11
state after INIT-deassert message, 10-11
state after power-up reset, 10-10
state of, 10-33
SVR (spurious-interrupt vector register), 10-8
timer, 10-16
timer generated interrupts, 10-1
TMR (trigger mode register), 10-30
valid interrupts, 10-14
version register, 10-11

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, 10-12
thermal entry, 14-23

Local x2APIC, 10-31, 10-41, 10-46
Local xAPIC ID, 10-41
LOCK prefix, 2-23, 2-24, 6-26, 8-1, 8-3, 8-15, 22-34
Locked (atomic) operations

automatic bus locking, 8-3
bus locking, 8-3
effects on caches, 8-5
loading a segment descriptor, 22-19
on IA-32 processors, 22-34
overview of, 8-1
software-controlled bus locking, 8-3

LOCK# signal, 2-24, 8-1, 8-3, 8-4, 8-5
Logical address

description of, 3-6
IA-32e mode, 3-7

Logical address space, of task, 7-15
Logical destination mode, local APIC, 10-23
Logical processors

per physical package, 8-24
Logical x2APIC ID, 10-46
low-temperature interrupt enable bit, 14-28, 14-31
LSL instruction, 2-22, 5-25
LSS instruction, 3-8, 5-8
LTR instruction, 2-22, 5-24, 7-7, 8-17, 9-10
INDEX-10 Vol. 3D

INDEX
LVT (see Local vector table)

M
Machine check architecture

VMX considerations, 33-11
Machine-check architecture

availability of MCA and exception, 15-18
compatibility with Pentium processor, 15-1
compound error codes, 15-20
CPUID flags, 15-18
error codes, 15-20
error-reporting bank registers, 15-2
error-reporting MSRs, 15-5
extended machine check state MSRs, 15-11
external bus errors, 15-26
first introduced, 22-21
global MSRs, 15-2
initialization of, 15-18
introduction of in IA-32 processors, 22-35
logging correctable errors, 15-28, 15-30, 15-34
machine-check exception handler, 15-27
machine-check exception (#MC), 15-1
MSRs, 15-2
overview of MCA, 15-1
Pentium processor exception handling, 15-28
Pentium processor style error reporting, 15-12
simple error codes, 15-20
VMX considerations, 33-8, 33-9
writing machine-check software, 15-26

Machine-check exception (#MC), 6-47, 15-1, 15-18, 15-27, 22-20, 22-35
Mapping of shared resources, 8-33
Maskable hardware interrupts

description of, 6-3
handling with virtual interrupt mechanism, 20-15
masking, 2-10, 6-6

MCA flag, CPUID instruction, 15-18
MCE flag, CPUID instruction, 15-18
MCE (machine-check enable) flag

CR4 control register, 2-17, 22-17
MDA (message destination address)

local APIC, 10-23
Memory, 11-1
Memory management

introduction to, 2-6
overview, 3-1
paging, 3-1, 3-2
registers, 2-11
segments, 3-1, 3-2, 3-7
virtualization of, 32-2

Memory ordering
in IA-32 processors, 22-33
overview, 8-5
processor ordering, 8-5
strengthening or weakening, 8-15
write ordering, 8-5

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, 11-6
choosing, 11-8
MTRR types, 11-21
selecting for Pentium III and Pentium 4 processors, 11-15
selecting for Pentium Pro and Pentium II processors, 11-14
UC (strong uncacheable), 11-6
UC- (uncacheable), 11-6
WB (write back), 11-7
WC (write combining), 11-7
WP (write protected), 11-7
writing values across pages with different memory types, 11-16
WT (write through), 11-7

MemTypeGet() function, 11-29
MemTypeSet() function, 11-31

MESI cache protocol, 11-5, 11-9
Message address register, 10-34
Message data register format, 10-35
Message signalled interrupts

message address register, 10-34
message data register format, 10-34

MFENCE instruction, 2-15, 8-6, 8-15, 8-16, 8-17
Microcode update facilities

authenticating an update, 9-37
BIOS responsibilities, 9-38
calling program responsibilities, 9-39
checksum, 9-33
extended signature table, 9-31
family 0FH processors, 9-28
field definitions, 9-28
format of update, 9-28
function 00H presence test, 9-42
function 01H write microcode update data, 9-43
function 02H microcode update control, 9-46
function 03H read microcode update data, 9-47
general description, 9-28
HT Technology, 9-35
INT 15H-based interface, 9-42
overview, 9-27
process description, 9-28
processor identification, 9-32
processor signature, 9-32
return codes, 9-48
update loader, 9-34
update signature and verification, 9-36
update specifications, 9-37
VMX non-root operation, 25-9, 32-8
VMX support

early loading, 32-8
late loading, 32-8
virtualization issues, 32-8

Mixing 16-bit and 32-bit code
in IA-32 processors, 22-32
overview, 21-1

MMX technology
debugging MMX code, 12-5
effect of MMX instructions on pending x87 floating-point exceptions,

12-5
emulation of the MMX instruction set, 12-1
exceptions that can occur when executing MMX instructions, 12-1
introduction of into the IA-32 architecture, 22-2
register aliasing, 12-1
state, 12-1
state, saving and restoring, 12-3
system programming, 12-1
task or context switches, 12-4
using TS flag to control saving of MMX state, 13-7

Mode switching
example, 9-14
real-address and protected mode, 9-12
to SMM, 34-2

Model and stepping information, following processor initialization or reset
, 9-4

Model-specific registers (see MSRs)
Modes of operation (see Operating modes)
MONITOR instruction, 25-3
MOV instruction, 3-8, 5-8
MOV (control registers) instructions, 2-22, 5-24, 8-17, 9-12
MOV (debug registers) instructions, 2-23, 5-24, 8-17, 17-9
MOVNTDQ instruction, 8-6, 11-17
MOVNTI instruction, 2-15, 8-6, 11-17
MOVNTPD instruction, 8-6, 11-17
MOVNTPS instruction, 8-6, 11-17
MOVNTQ instruction, 8-6, 11-17
MP (monitor coprocessor) flag

CR0 control register, 2-15, 2-16, 6-27, 9-5, 9-6, 12-1, 22-7
MSR
Vol. 3D INDEX-11

INDEX
Model Specific Register, 10-37, 10-38
MSRs

architectural, 35-2
description of, 9-7
introduction of in IA-32 processors, 22-35
introduction to, 2-6
list of, 35-1
machine-check architecture, 15-2
P6 family processors, 35-283
Pentium 4 processor, 35-41, 35-55, 35-149, 35-165, 35-180,

35-241, 35-265
Pentium processors, 35-291, 35-365
reading and writing, 2-19, 2-20, 2-25
reading & writing in 64-bit mode, 2-25
virtualization support, 31-14
VMX support, 31-14

MSR_ TC_PRECISE_EVENT MSR, 19-192
MSR_DEBUBCTLB MSR, 17-12, 17-26, 17-34, 17-36
MSR_DEBUGCTLA MSR, 17-11, 17-17, 17-22, 17-23, 17-31, 18-4, 18-17,

18-20, 18-23, 18-47, 18-59, 18-69, 35-253
MSR_DEBUGCTLB MSR, 17-11, 17-34, 17-35, 35-50, 35-62, 35-74,

35-91, 35-128, 35-167, 35-234, 35-273, 35-281
MSR_EBC_FREQUENCY_ID MSR, 35-244
MSR_EBC_HARD_POWERON MSR, 35-242
MSR_EBC_SOFT_POWERON MSR, 35-243, 35-313
MSR_IFSB_CNTR7 MSR, 18-100
MSR_IFSB_CTRL6 MSR, 18-100
MSR_IFSB_DRDY0 MSR, 18-99
MSR_IFSB_DRDY1 MSR, 18-99
MSR_IFSB_IBUSQ0 MSR, 18-98
MSR_IFSB_IBUSQ1 MSR, 18-98
MSR_IFSB_ISNPQ0 MSR, 18-99
MSR_IFSB_ISNPQ1 MSR, 18-99
MSR_LASTBRANCH _TOS, 35-253
MSR_LASTBRANCH_0_TO_IP, 35-264
MSR_LASTBRANCH_n MSR, 17-16, 17-17, 17-32, 17-33, 35-253, 35-316
MSR_LASTBRANCH_n_FROM_IP MSR, 17-16, 17-17, 17-32, 17-33,

35-263
MSR_LASTBRANCH_n_TO_IP MSR, 17-16, 17-17, 17-32, 17-33
MSR_LASTBRANCH_n_TO_LIP MSR, 35-264
MSR_LASTBRANCH_TOS MSR, 17-32, 17-33
MSR_LER_FROM_LIP MSR, 17-25, 17-33, 17-35, 35-252
MSR_LER_TO_LIP MSR, 17-25, 17-33, 17-35, 35-252
MSR_PEBS_ MATRIX_VERT MSR, 19-193
MSR_PEBS_MATRIX_VERT MSR, 35-259, 35-345
MSR_PLATFORM_BRV, 35-252, 35-348
MTRR feature flag, CPUID instruction, 11-21
MTRRcap MSR, 11-21
MTRRfix MSR, 11-23
MTRRs, 8-15

base & mask calculations, 11-26, 11-27
cache control, 11-13
description of, 9-7, 11-20
dual-core processors, 8-32
enabling caching, 9-7
feature identification, 11-21
fixed-range registers, 11-23
IA32_MTRRCAP MSR, 11-21
IA32_MTRR_DEF_TYPE MSR, 11-22
initialization of, 11-29
introduction of in IA-32 processors, 22-35
introduction to, 2-6
large page size considerations, 11-33
logical processors, 8-32
mapping physical memory with, 11-21
memory types and their properties, 11-21
MemTypeGet() function, 11-29
MemTypeSet() function, 11-31
multiple-processor considerations, 11-32
precedence of cache controls, 11-13
precedences, 11-28
programming interface, 11-29

remapping memory types, 11-29
state of following a hardware reset, 11-20
variable-range registers, 11-23, 11-25

Multi-core technology
See multi-threading support

Multiple-processor management
bus locking, 8-3
guaranteed atomic operations, 8-2
initialization

MP protocol, 8-18
procedure, 8-53

local APIC, 10-1
memory ordering, 8-5
MP protocol, 8-18
overview of, 8-1
SMM considerations, 34-16
VMM design, 31-10

asymmetric, 31-10
CPUID emulation, 31-12
external data structures, 31-11
index-data registers, 31-11
initialization, 31-11
moving between processors, 31-11
symmetric, 31-10

Multiple-processor system
local APIC and I/O APICs, Pentium 4, 10-3
local APIC and I/O APIC, P6 family, 10-3

Multisegment model, 3-4
Multitasking

initialization for, 9-10
initializing IA-32e mode, 9-10
linking tasks, 7-12
mechanism, description of, 7-2
overview, 7-1
setting up TSS, 9-10
setting up TSS descriptor, 9-10

Multi-threading support
executing multiple threads, 8-26
handling interrupts, 8-26
logical processors per package, 8-24
mapping resources, 8-33
microcode updates, 8-32
performance monitoring counters, 8-32
programming considerations, 8-33
See also: Hyper-Threading Technology and dual-core technology

MWAIT instruction, 25-3
power management extensions, 14-19

MXCSR register, 6-48, 9-8, 13-6

N
NaN, compatibility, IA-32 processors, 22-8
NE (numeric error) flag

CR0 control register, 2-15, 6-43, 9-5, 9-6, 22-7, 22-17
NEG instruction, 8-3
NetBurst microarchitecture (see Intel NetBurst microarchitecture)
NMI interrupt, 2-23, 10-3

description of, 6-2
handling during initialization, 9-8
handling in SMM, 34-11
handling multiple NMIs, 6-6
masking, 22-26
receiving when processor is shutdown, 6-29
reference information, 6-22
vector, 6-2

NMI# pin, 6-2, 6-22
Nominal CPI method, 18-95
Nonconforming code segments

accessing, 5-11
C (conforming) flag, 5-11
description of, 3-13

Non-halted clockticks, 18-94
INDEX-12 Vol. 3D

INDEX
setting up counters, 18-95
Non-Halted CPI method, 18-95
Nonmaskable interrupt (see NMI)
Non-precise event-based sampling

defined, 18-76
used for at-retirement counting, 18-87
writing an interrupt service routine for, 17-23

Non-retirement events, 18-76, 19-169
Non-sleep clockticks, 18-94

setting up counters, 18-95
NOT instruction, 8-3
Notation

bit and byte order, 1-6
conventions, 1-6
exceptions, 1-9
hexadecimal and binary numbers, 1-7
Instructions

operands, 1-7
reserved bits, 1-6
segmented addressing, 1-7

NT (nested task) flag
EFLAGS register, 2-10, 7-10, 7-12

Null segment selector, checking for, 5-6
Numeric overflow exception (#O), 22-9
Numeric underflow exception (#U), 22-10
NV (invert) flag, PerfEvtSel0 MSR

(P6 family processors), 18-4, 18-108
NW (not write-through) flag

CR0 control register, 2-14, 9-7, 11-12, 11-13, 11-16, 11-32, 22-17,
22-18, 22-29

NXE bit, 5-30

O
Obsolete instructions, 22-5, 22-14
OF flag, EFLAGS register, 6-24
On die digital thermal sensor, 14-26

relevant MSRs, 14-26
sensor enumeration, 14-26

On-Demand
clock modulation enable bits, 14-24

On-demand
clock modulation duty cycle bits, 14-24

On-die sensors, 14-20
Opcodes

undefined, 22-5
Operands

instruction, 1-7
operand-size prefix, 21-1

Operating modes
64-bit mode, 2-7
compatibility mode, 2-7
IA-32e mode, 2-7, 2-8
introduction to, 2-7
protected mode, 2-7
SMM (system management mode), 2-7
transitions between, 2-8
virtual-8086 mode, 2-7
VMX operation

enabling and entering, 23-3
guest environments, 31-1

OR instruction, 8-3
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only), 18-4, 18-107
OSFXSR (FXSAVE/FXRSTOR support) flag

CR4 control register, 2-17, 9-8, 13-2
OSXMMEXCPT (SIMD floating-point exception support) flag, CR4 control

register, 2-18, 6-48, 9-8, 13-3
OUT instruction, 8-15, 25-2
Out-of-spec status bit, 14-27, 14-30
Out-of-spec status log, 14-27, 14-30, 14-31
OUTS/OUTSB/OUTSW/OUTSD instruction, 17-9, 25-2

Overflow exception (#OF), 6-24
Overheat interrupt enable bit, 14-28, 14-31

P
P (present) flag

page-directory entry, 6-40
page-table entry, 6-40
segment descriptor, 3-11

P5_MC_ADDR MSR, 15-12, 15-28, 35-42, 35-56, 35-66, 35-84, 35-120,
35-229, 35-267, 35-276, 35-283, 35-292

P5_MC_TYPE MSR, 15-12, 15-28, 35-42, 35-56, 35-66, 35-84, 35-120,
35-229, 35-267, 35-276, 35-283, 35-292

P6 family processors
compatibility with FP software, 22-6
description of, 1-1
last branch, interrupt, and exception recording, 17-36
list of performance-monitoring events, 19-200
MSR supported by, 35-283

PAE paging
feature flag, CR4 register, 2-17
flag, CR4 control register, 3-6, 22-17, 22-18

Page attribute table (PAT)
compatibility with earlier IA-32 processors, 11-36
detecting support for, 11-34
IA32_CR_PAT MSR, 11-34
introduction to, 11-33
memory types that can be encoded with, 11-34
MSR, 11-13
precedence of cache controls, 11-14
programming, 11-35
selecting a memory type with, 11-35

Page directories, 2-6
Page directory

base address (PDBR), 7-5
introduction to, 2-6
overview, 3-2
setting up during initialization, 9-10

Page directory pointers, 2-6
Page frame (see Page)
Page tables, 2-6

introduction to, 2-6
overview, 3-2
setting up during initialization, 9-10

Page-directory entries, 8-3, 11-5
Page-fault exception (#PF), 4-47, 6-40, 22-20
Pages

disabling protection of, 5-1
enabling protection of, 5-1
introduction to, 2-6
overview, 3-2
PG flag, CR0 control register, 5-1
split, 22-14

Page-table entries, 8-3, 11-5, 11-19
Paging

combining segment and page-level protection, 5-29
combining with segmentation, 3-5
defined, 3-1
IA-32e mode, 2-6
initializing, 9-10
introduction to, 2-6
large page size MTRR considerations, 11-33
mapping segments to pages, 4-47
page boundaries regarding TSS, 7-5
page-fault exception, 6-40, 6-50
page-level protection, 5-2, 5-3, 5-27
page-level protection flags, 5-28
virtual-8086 tasks, 20-7

Parameter
passing, between 16- and 32-bit call gates, 21-6
translation, between 16- and 32-bit code segments, 21-6

PAUSE instruction, 2-15, 25-3
Vol. 3D INDEX-13

INDEX
PBi (performance monitoring/breakpoint pins) flags, DEBUGCTLMSR MSR,
17-35, 17-37

PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors), 18-4, 18-108

PC0 and PC1 (pin control) fields, CESR MSR (Pentium processor), 18-110
PCD pin (Pentium processor), 11-13
PCD (page-level cache disable) flag

CR3 control register, 2-16, 11-13, 22-17, 22-29
page-directory entries, 9-7, 11-13, 11-33
page-table entries, 9-7, 11-13, 11-33, 22-30

PCE (performance monitoring counter enable) flag, CR4 control register,
2-17, 5-24, 18-78, 18-108

PCE (performance-monitoring counter enable) flag, CR4 control register,
22-17

PDBR (see CR3 control register)
PE (protection enable) flag, CR0 control register, 2-16, 5-1, 9-10, 9-12,

34-9
PEBS records, 17-20
PEBS (precise event-based sampling) facilities

availability of, 18-89
description of, 18-76, 18-88
DS save area, 17-17
IA-32e mode, 17-20
PEBS buffer, 17-17, 18-89
PEBS records, 17-17, 17-19
writing a PEBS interrupt service routine, 18-89
writing interrupt service routine, 17-23

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, 17-17, 35-251

Pentium 4 processor, 1-1
compatibility with FP software, 22-6
last branch, interrupt, and exception recording, 17-31
list of performance-monitoring events, 19-2, 19-169
MSRs supported, 35-41, 35-55, 35-66, 35-82, 35-241, 35-265
time-stamp counter, 17-39

Pentium II processor, 1-2
Pentium III processor, 1-2
Pentium M processor

last branch, interrupt, and exception recording, 17-35
MSRs supported by, 35-276
time-stamp counter, 17-38

Pentium Pro processor, 1-2
Pentium processor, 1-1, 22-6

compatibility with MCA, 15-1
list of performance-monitoring events, 19-209
MSR supported by, 35-291
performance-monitoring counters, 18-109

PerfCtr0 and PerfCtr1 MSRs
(P6 family processors), 18-107, 18-108

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 18-107

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), 18-107
Performance events

architectural, 18-1
Intel Core Solo and Intel Core Duo processors, 18-1
non-architectural, 18-1
non-retirement events (Pentium 4 processor), 19-169
P6 family processors, 19-200
Pentium 4 and Intel Xeon processors, 17-31
Pentium M processors, 17-35
Pentium processor, 19-209

Performance state, 14-1
Performance-monitoring counters

counted events (P6 family processors), 19-200
counted events (Pentium 4 processor), 19-2, 19-169
counted events (Pentium processors), 18-111
description of, 18-1, 18-2
events that can be counted (Pentium processors), 19-209
interrupt, 10-1
introduction of in IA-32 processors, 22-36
monitoring counter overflow (P6 family processors), 18-109
overflow, monitoring (P6 family processors), 18-109

overview of, 2-7
P6 family processors, 18-106
Pentium II processor, 18-106
Pentium Pro processor, 18-106
Pentium processor, 18-109
reading, 2-24, 18-108
setting up (P6 family processors), 18-107
software drivers for, 18-108
starting and stopping, 18-108

PG (paging) flag
CR0 control register, 2-14, 5-1

PG (paging) flag, CR0 control register, 9-10, 9-12, 22-31, 34-9
PGE (page global enable) flag, CR4 control register, 2-17, 11-13, 22-17,

22-18
PhysBase field, IA32_MTRR_PHYSBASEn MTRR, 11-24, 11-26
Physical address extension

introduction to, 3-6
Physical address space

4 GBytes, 3-6
64 GBytes, 3-6
addressing, 2-6
defined, 3-1
description of, 3-6
guest and host spaces, 32-2
IA-32e mode, 3-6
mapped to a task, 7-14
mapping with variable-range MTRRs, 11-23, 11-25
memory virtualization, 32-2
See also: VMM, VMX

Physical destination mode, local APIC, 10-23
PhysMask

IA32_MTRR_PHYSMASKn MTRR, 11-24, 11-26
PM0/BP0 and PM1/BP1 (performance-monitor) pins (Pentium processor),

18-109, 18-110, 18-111
PML4 tables, 2-6
Pointers

code-segment pointer size, 21-4
limit checking, 5-25
validation, 5-24

POP instruction, 3-8
POPF instruction, 6-7, 17-9
Power consumption

software controlled clock, 14-20, 14-24
Precise event-based sampling (see PEBS)
PREFETCHh instruction, 2-15, 11-17
Previous task link field, TSS, 7-4, 7-12, 7-13
Privilege levels

checking when accessing data segments, 5-8
checking, for call gates, 5-15
checking, when transferring program control between code segments,

5-10
description of, 5-6
protection rings, 5-8

Privileged instructions, 5-23
Processor families

06H, 16-1
0FH, 16-1

Processor management
initialization, 9-1
local APIC, 10-1
microcode update facilities, 9-27
overview of, 8-1
See also: multiple-processor management

Processor ordering, description of, 8-5
PROCHOT# log, 14-27, 14-30
PROCHOT# or FORCEPR# event bit, 14-26, 14-30, 14-31
Protected mode

IDT initialization, 9-10
initialization for, 9-9
mixing 16-bit and 32-bit code modules, 21-1
mode switching, 9-12
PE flag, CR0 register, 5-1
INDEX-14 Vol. 3D

INDEX
switching to, 5-1, 9-12
system data structures required during initialization, 9-9

Protection
combining segment & page-level, 5-29
disabling, 5-1
enabling, 5-1
flags used for page-level protection, 5-2, 5-3
flags used for segment-level protection, 5-2
IA-32e mode, 5-3
of exception, interrupt-handler procedures, 6-13
overview of, 5-1
page level, 5-1, 5-27, 5-28, 5-30
page level, overriding, 5-29
page-level protection flags, 5-28
read/write, page level, 5-28
segment level, 5-1
user/supervisor type, 5-28

Protection rings, 5-8
PSE (page size extension) flag

CR4 control register, 2-17, 11-20, 22-17, 22-18
PSE-36 page size extension, 3-6
Pseudo-functions

VMfail, 30-2
VMfailInvalid, 30-2
VMfailValid, 30-2
VMsucceed, 30-2

Pseudo-infinity, 22-9
Pseudo-NaN, 22-9
Pseudo-zero, 22-9
P-state, 14-1
PUSH instruction, 22-6
PUSHF instruction, 6-7, 22-6
PVI (protected-mode virtual interrupts) flag

CR4 control register, 2-11, 2-17, 22-17
PWT pin (Pentium processor), 11-13
PWT (page-level write-through) flag

CR3 control register, 2-16, 11-13, 22-17, 22-29
page-directory entries, 9-7, 11-13, 11-33
page-table entries, 9-7, 11-33, 22-30

Q
QNaN, compatibility, IA-32 processors, 22-8

R
RDMSR instruction, 2-19, 2-20, 2-25, 5-24, 17-33, 17-37, 17-39, 18-78,

18-107, 18-108, 18-109, 22-4, 22-35, 25-4, 25-8
RDPMC instruction, 2-24, 5-24, 18-78, 18-107, 18-108, 22-4, 22-17,

22-36, 25-4
in 64-bit mode, 2-24

RDTSC instruction, 2-24, 5-24, 17-39, 22-4, 25-4, 25-8, 25-9
in 64-bit mode, 2-24

reading sensors, 14-26
Read/write

protection, page level, 5-28
rights, checking, 5-25

Real-address mode
8086 emulation, 20-1
address translation in, 20-2
description of, 20-1
exceptions and interrupts, 20-6
IDT initialization, 9-8
IDT, changing base and limit of, 20-5
IDT, structure of, 20-5
IDT, use of, 20-4
initialization, 9-8
instructions supported, 20-3
interrupt and exception handling, 20-4
interrupts, 20-6
introduction to, 2-7
mode switching, 9-12

native 16-bit mode, 21-1
overview of, 20-1
registers supported, 20-3
switching to, 9-13

Recursive task switching, 7-13
Related literature, 1-9
Replay events, 19-193
Requested privilege level (see RPL)
Reserved bits, 1-6, 22-2
RESET# pin, 6-3, 22-15
RESET# signal, 2-23
Resolution in degrees, 14-28
Restarting program or task, following an exception or interrupt, 6-5
Restricting addressable domain, 5-28
RET instruction, 5-10, 5-20, 21-6
Returning

from a called procedure, 5-20
from an interrupt or exception handler, 6-13

RF (resume) flag
EFLAGS register, 2-10, 6-7

RPL
description of, 3-8, 5-8
field, segment selector, 5-2

RSM instruction, 2-23, 8-17, 22-5, 25-4, 34-1, 34-2, 34-3, 34-13, 34-15,
34-18

RsvdZ, 10-40
R/S# pin, 6-3
R/W (read/write) flag

page-directory entry, 5-1, 5-2, 5-28
page-table entry, 5-1, 5-2, 5-28

R/W0-R/W3 (read/write) fields
DR7 register, 17-4, 22-19

S
S (descriptor type) flag

segment descriptor, 3-11, 3-12, 5-2, 5-5
SBB instruction, 8-3
Segment descriptors

access rights, 5-24
access rights, invalid values, 22-18
automatic bus locking while updating, 8-3
base address fields, 3-10
code type, 5-2
data type, 5-2
description of, 2-4, 3-9
DPL (descriptor privilege level) field, 3-11, 5-2
D/B (default operation size/default stack pointer size and/or upper

bound) flag, 3-11, 5-4
E (expansion direction) flag, 5-2, 5-4
G (granularity) flag, 3-11, 5-2, 5-4
limit field, 5-2, 5-4
loading, 22-19
P (segment-present) flag, 3-11
S (descriptor type) flag, 3-11, 3-12, 5-2, 5-5
segment limit field, 3-10
system type, 5-2
tables, 3-14
TSS descriptor, 7-5, 7-6
type field, 3-10, 3-12, 5-2, 5-5
type field, encoding, 3-14
when P (segment-present) flag is clear, 3-11

Segment limit
checking, 2-22
field, segment descriptor, 3-10

Segment not present exception (#NP), 3-11
Segment registers

description of, 3-8
IA-32e mode, 3-9
saved in TSS, 7-4

Segment selectors
description of, 3-7
Vol. 3D INDEX-15

INDEX
index field, 3-7
null, 5-6
null in 64-bit mode, 5-6
RPL field, 3-8, 5-2
TI (table indicator) flag, 3-7

Segmented addressing, 1-7
Segment-not-present exception (#NP), 6-34
Segments

64-bit mode, 3-5
basic flat model, 3-3
code type, 3-12
combining segment, page-level protection, 5-29
combining with paging, 3-5
compatibility mode, 3-5
data type, 3-12
defined, 3-1
disabling protection of, 5-1
enabling protection of, 5-1
mapping to pages, 4-47
multisegment usage model, 3-4
protected flat model, 3-3
segment-level protection, 5-2, 5-3
segment-not-present exception, 6-34
system, 2-4
types, checking access rights, 5-24
typing, 5-5
using, 3-2
wraparound, 22-33

SELF IPI register, 10-38
Self-modifying code, effect on caches, 11-18
Serializing, 8-17
Serializing instructions

CPUID, 8-17
HT technology, 8-29
non-privileged, 8-17
privileged, 8-17

SF (stack fault) flag, x87 FPU status word, 22-8
SFENCE instruction, 2-15, 8-6, 8-15, 8-16, 8-17
SGDT instruction, 2-22, 3-15
Shared resources

mapping of, 8-33
Shutdown

resulting from double fault, 6-29
resulting from out of IDT limit condition, 6-29

SIDT instruction, 2-22, 3-16, 6-9
SIMD floating-point exception (#XM), 2-18, 6-48, 9-8
SIMD floating-point exceptions

description of, 6-48, 13-5
handler, 13-3
support for, 2-18

Single-stepping
breakpoint exception condition, 17-9
on branches, 17-13
on exceptions, 17-13
on interrupts, 17-13
TF (trap) flag, EFLAGS register, 17-9

SLDT instruction, 2-22
SLTR instruction, 3-16
SMBASE

default value, 34-4
relocation of, 34-14

SMI handler
description of, 34-1
execution environment for, 34-9
exiting from, 34-3
VMX treatment of, 34-16

SMI interrupt, 2-23, 10-3
description of, 34-1, 34-2
IO_SMI bit, 34-11
priority, 34-3
switching to SMM, 34-2
synchronous and asynchronous, 34-11

VMX treatment of, 34-16
SMI# pin, 6-3, 34-2, 34-15
SMM

asynchronous SMI, 34-11
auto halt restart, 34-13
executing the HLT instruction in, 34-14
exiting from, 34-3
handling exceptions and interrupts, 34-10
introduction to, 2-7
I/O instruction restart, 34-15
I/O state implementation, 34-12
native 16-bit mode, 21-1
overview of, 34-1
revision identifier, 34-13
revision identifier field, 34-13
switching to, 34-2
switching to from other operating modes, 34-2
synchronous SMI, 34-11
VMX operation

default RSM treatment, 34-17
default SMI delivery, 34-16
dual-monitor treatment, 34-19
overview, 34-1
protecting CR4.VMXE, 34-18
RSM instruction, 34-18
SMM monitor, 34-1
SMM VM exits, 27-1, 34-19
SMM-transfer VMCS, 34-19
SMM-transfer VMCS pointer, 34-19
VMCS pointer preservation, 34-17
VMX-critical state, 34-17

SMRAM
caching, 34-8
state save map, 34-4
structure of, 34-3

SMSW instruction, 2-22, 25-9
SNaN, compatibility, IA-32 processors, 22-8, 22-13
Snooping mechanism, 11-6
Software controlled clock

modulation control bits, 14-24
power consumption, 14-20, 14-24

Software interrupts, 6-4
Software-controlled bus locking, 8-3
Split pages, 22-14
Spurious interrupt, local APIC, 10-32
SSE extensions

checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-2
CPUID feature flag, 9-8
EM flag, 2-16
emulation of, 13-6
facilities for automatic saving of state, 13-6, 13-7
initialization, 9-8
introduction of into the IA-32 architecture, 22-3
providing exception handlers for, 13-4, 13-5
providing operating system support for, 13-1
saving and restoring state, 13-6
saving state on task, context switches, 13-6
SIMD Floating-point exception (#XM), 6-48
using TS flag to control saving of state, 13-7

SSE feature flag
CPUID instruction, 13-2

SSE2 extensions
checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-2
CPUID feature flag, 9-8
EM flag, 2-16
emulation of, 13-6
facilities for automatic saving of state, 13-6, 13-7
initialization, 9-8
introduction of into the IA-32 architecture, 22-3
providing exception handlers for, 13-4, 13-5
INDEX-16 Vol. 3D

INDEX
providing operating system support for, 13-1
saving and restoring state, 13-6
saving state on task, context switches, 13-6
SIMD Floating-point exception (#XM), 6-48
using TS flag to control saving state, 13-7

SSE2 feature flag
CPUID instruction, 13-2

SSE3 extensions
checking for with CPUID, 13-2
CPUID feature flag, 9-8
EM flag, 2-16
emulation of, 13-6
example verifying SS3 support, 8-43, 8-47, 14-2
facilities for automatic saving of state, 13-6, 13-7
initialization, 9-8
introduction of into the IA-32 architecture, 22-3
providing exception handlers for, 13-4, 13-5
providing operating system support for, 13-1
saving and restoring state, 13-6
saving state on task, context switches, 13-6
using TS flag to control saving of state, 13-7

SSE3 feature flag
CPUID instruction, 13-2

Stack fault exception (#SS), 6-36
Stack fault, x87 FPU, 22-8, 22-12
Stack pointers

privilege level 0, 1, and 2 stacks, 7-5
size of, 3-11

Stack segments
paging of, 2-6
privilege level check when loading SS register, 5-10
size of stack pointer, 3-11

Stack switching
exceptions/interrupts when switching stacks, 6-7
IA-32e mode, 6-18
inter-privilege level calls, 5-17

Stack-fault exception (#SS), 22-33
Stacks

error code pushes, 22-31
faults, 6-36
for privilege levels 0, 1, and 2, 5-17
interlevel RET/IRET

from a 16-bit interrupt or call gate, 22-32
interrupt stack table, 64-bit mode, 6-19
management of control transfers for

16- and 32-bit procedure calls, 21-4
operation on pushes and pops, 22-31
pointers to in TSS, 7-5
stack switching, 5-17, 6-18
usage on call to exception

or interrupt handler, 22-32
Stepping information, following processor initialization or reset, 9-4
STI instruction, 6-7
Store buffer

caching terminology, 11-5
characteristics of, 11-4
description of, 11-5, 11-20
in IA-32 processors, 22-33
location of, 11-1
operation of, 11-20

STPCLK# pin, 6-3
STR instruction, 2-22, 3-16, 7-7
Strong uncached (UC) memory type

description of, 11-6
effect on memory ordering, 8-16
use of, 9-7, 11-8

Sub C-state, 14-19
SUB instruction, 8-3
Supervisor mode

description of, 5-28
U/S (user/supervisor) flag, 5-28

SVR (spurious-interrupt vector register), local APIC, 10-8, 22-27

SWAPGS instruction, 2-7, 31-15
SYSCALL instruction, 2-7, 5-22, 31-15
SYSENTER instruction, 3-9, 5-10, 5-20, 5-21, 31-15, 31-16
SYSENTER_CS_MSR, 5-21
SYSENTER_EIP_MSR, 5-21
SYSENTER_ESP_MSR, 5-21
SYSEXIT instruction, 3-9, 5-10, 5-20, 5-21, 31-15, 31-16
SYSRET instruction, 2-7, 5-22, 31-15
System

architecture, 2-1, 2-2
data structures, 2-2
instructions, 2-7, 2-20
registers in IA-32e mode, 2-7
registers, introduction to, 2-6
segment descriptor, layout of, 5-2
segments, paging of, 2-6

System programming
MMX technology, 12-1
virtualization of resources, 32-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, 7-5
Task gates

descriptor, 7-8
executing a task, 7-2
handling a virtual-8086 mode interrupt or exception through, 20-14
IA-32e mode, 2-5
in IDT, 6-10
introduction for IA-32e, 2-4
introduction to, 2-4, 2-5
layout of, 6-10
referencing of TSS descriptor, 6-14

Task management, 7-1
data structures, 7-3
mechanism, description of, 7-2

Task register, 3-16
description of, 2-13, 7-1, 7-7
IA-32e mode, 2-13
initializing, 9-10
introduction to, 2-6

Task switching
description of, 7-3
exception condition, 17-10
operation, 7-10
preventing recursive task switching, 7-13
saving MMX state on, 12-4
saving SSE/SSE2/SSE3 state

on task or context switches, 13-6
T (debug trap) flag, 7-5

Tasks
address space, 7-14
description of, 7-1
exception-handler task, 6-11
executing, 7-2
Intel 286 processor tasks, 22-36
interrupt-handler task, 6-11
interrupts and exceptions, 6-14
linking, 7-12
logical address space, 7-15
management, 7-1
mapping linear and physical address space, 7-14
restart following an exception or interrupt, 6-5
state (context), 7-2, 7-3
structure, 7-1
switching, 7-3
task management data structures, 7-3

TF (trap) flag, EFLAGS register, 2-9, 6-14, 17-9, 17-11, 17-31, 17-34,
17-35, 17-37, 20-4, 20-19, 34-11

Thermal monitoring
advanced power management, 14-19
Vol. 3D INDEX-17

INDEX
automatic, 14-21
automatic thermal monitoring, 14-20
catastrophic shutdown detector, 14-20, 14-21
clock-modulation bits, 14-24
C-state, 14-19
detection of facilities, 14-26
Enhanced Intel SpeedStep Technology, 14-1
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-1
IA32_THERM_INTERRUPT MSR, 14-26
IA32_THERM_STATUS MSR, 14-26
interrupt enable/disable flags, 14-23
interrupt mechanisms, 14-20
MWAIT extensions for, 14-19
on die sensors, 14-20, 14-26
overview of, 14-1, 14-20
performance state transitions, 14-22
sensor interrupt, 10-1
setting thermal thresholds, 14-26
software controlled clock modulation, 14-20, 14-24
status flags, 14-23
status information, 14-23, 14-24
stop clock mechanism, 14-20
thermal monitor 1 (TM1), 14-21
thermal monitor 2 (TM2), 14-21
TM flag, CPUID instruction, 14-26

Thermal status bit, 14-26, 14-30
Thermal status log bit, 14-26, 14-30
Thermal threshold #1 log, 14-27, 14-30, 14-31
Thermal threshold #1 status, 14-27, 14-30
Thermal threshold #2 log, 14-27, 14-30
Thermal threshold #2 status, 14-27, 14-30, 14-31
THERMTRIP# interrupt enable bit, 14-28, 14-31
thread timeout indicator, 16-3, 16-7, 16-10, 16-13, 16-15
Threshold #1 interrupt enable bit, 14-29, 14-31
Threshold #1 value, 14-28, 14-31
Threshold #2 interrupt enable, 14-29, 14-32
Threshold #2 value, 14-29, 14-31
TI (table indicator) flag, segment selector, 3-7
Timer, local APIC, 10-16
Time-stamp counter

counting clockticks, 18-94
description of, 17-38
IA32_TIME_STAMP_COUNTER MSR, 17-38
RDTSC instruction, 17-38
reading, 2-24
software drivers for, 18-108
TSC flag, 17-38
TSD flag, 17-38

TLBs
description of, 11-1, 11-5
flushing, 11-19
invalidating (flushing), 2-23
relationship to PGE flag, 22-18
relationship to PSE flag, 11-20
virtual TLBs, 32-3

TM1 and TM2
See: thermal monitoring, 14-21

TMR
Trigger Mode Register, 10-31, 10-38, 10-41, 10-47

TMR (Trigger Mode Register), local APIC, 10-30
TPR

Task Priority Register, 10-38, 10-41
TR (trace message enable) flag

DEBUGCTLMSR MSR, 17-11, 17-32, 17-34, 17-35, 17-37
Trace cache, 11-4, 11-5
Transcendental instruction accuracy, 22-7, 22-14
Translation lookaside buffer (see TLB)
Trap gates

difference between interrupt and trap gates, 6-14
for 16-bit and 32-bit code modules, 21-1
handling a virtual-8086 mode interrupt or exception through, 20-12

in IDT, 6-10
introduction for IA-32e, 2-4
introduction to, 2-4, 2-5
layout of, 6-10

Traps
description of, 6-5
restarting a program or task after, 6-5

TS (task switched) flag
CR0 control register, 2-15, 2-22, 6-27, 12-1, 13-3, 13-7

TSD (time-stamp counter disable) flag
CR4 control register, 2-17, 5-24, 17-39, 22-17

TSS
16-bit TSS, structure of, 7-15
32-bit TSS, structure of, 7-3
64-bit mode, 7-16
CR3 control register (PDBR), 7-4, 7-14
description of, 2-4, 2-5, 7-1, 7-3
EFLAGS register, 7-4
EFLAGS.NT, 7-12
EIP, 7-4
executing a task, 7-2
floating-point save area, 22-11
format in 64-bit mode, 7-16
general-purpose registers, 7-4
IA-32e mode, 2-5
initialization for multitasking, 9-10
interrupt stack table, 7-17
invalid TSS exception, 6-31
IRET instruction, 7-12
I/O map base address field, 7-5, 22-28
I/O permission bit map, 7-5, 7-17
LDT segment selector field, 7-4, 7-14
link field, 6-14
order of reads/writes to, 22-28
pointed to by task-gate descriptor, 7-8
previous task link field, 7-4, 7-12, 7-13
privilege-level 0, 1, and 2 stacks, 5-17
referenced by task gate, 6-14
segment registers, 7-4
T (debug trap) flag, 7-5
task register, 7-7
using 16-bit TSSs in a 32-bit environment, 22-28
virtual-mode extensions, 22-28

TSS descriptor
B (busy) flag, 7-5
busy flag, 7-13
initialization for multitasking, 9-10
structure of, 7-5, 7-6

TSS segment selector
field, task-gate descriptor, 7-8
writes, 22-28

Type
checking, 5-5
field, IA32_MTRR_DEF_TYPE MSR, 11-22
field, IA32_MTRR_PHYSBASEn MTRR, 11-24, 11-26
field, segment descriptor, 3-10, 3-12, 3-14, 5-2, 5-5
of segment, 5-5

U
UC- (uncacheable) memory type, 11-6
UD2 instruction, 22-4
Uncached (UC-) memory type, 11-8
Uncached (UC) memory type (see Strong uncached (UC) memory type)
Undefined opcodes, 22-5
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors)

, 18-3, 18-7, 18-8, 18-9, 18-10, 18-12, 18-18, 18-19, 18-34,
18-36, 18-43, 18-44, 18-45, 18-62, 18-65, 18-107

Un-normal number, 22-9
User mode

description of, 5-28
U/S (user/supervisor) flag, 5-28
INDEX-18 Vol. 3D

INDEX
User-defined interrupts, 6-1, 6-51
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 18-3, 18-7, 18-8, 18-9, 18-10, 18-18, 18-19,
18-34, 18-36, 18-43, 18-44, 18-45, 18-62, 18-65, 18-107

U/S (user/supervisor) flag
page-directory entry, 5-1, 5-2, 5-28
page-table entries, 20-8
page-table entry, 5-1, 5-2, 5-28

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, 11-24, 11-26
Variable-range MTRRs, description of, 11-23, 11-25
VCNT (variable range registers count) field, IA32_MTRRCAP MSR, 11-22
Vectors

exceptions, 6-1
interrupts, 6-1

VERR instruction, 2-22, 5-25
VERW instruction, 2-22, 5-25
VIF (virtual interrupt) flag

EFLAGS register, 2-11, 22-5, 22-6
VIP (virtual interrupt pending) flag

EFLAGS register, 2-11, 22-5, 22-6
Virtual memory, 2-6, 3-1, 3-2
Virtual-8086 mode

8086 emulation, 20-1
description of, 20-5
emulating 8086 operating system calls, 20-18
enabling, 20-6
entering, 20-8
exception and interrupt handling overview, 20-11
exceptions and interrupts, handling through a task gate, 20-14
exceptions and interrupts, handling through a trap or interrupt gate,

20-12
handling exceptions and interrupts through a task gate, 20-14
interrupts, 20-6
introduction to, 2-7
IOPL sensitive instructions, 20-10
I/O-port-mapped I/O, 20-11
leaving, 20-9
memory mapped I/O, 20-11
native 16-bit mode, 21-1
overview of, 20-1
paging of virtual-8086 tasks, 20-7
protection within a virtual-8086 task, 20-8
special I/O buffers, 20-11
structure of a virtual-8086 task, 20-7
virtual I/O, 20-10
VM flag, EFLAGS register, 2-10

Virtual-8086 tasks
paging of, 20-7
protection within, 20-8
structure of, 20-7

Virtualization
debugging facilities, 32-1
interrupt vector space, 33-3
memory, 32-2
microcode update facilities, 32-8
operating modes, 32-2
page faults, 32-5
system resources, 32-1
TLBs, 32-3

VM
OSs and application software, 31-1
programming considerations, 31-1

VM entries
basic VM-entry checks, 26-2
checking guest state

control registers, 26-8
debug registers, 26-8
descriptor-table registers, 26-11

MSRs, 26-8
non-register state, 26-12
RIP and RFLAGS, 26-11
segment registers, 26-9

checks on controls, host-state area, 26-2
registers and MSRs, 26-6
segment and descriptor-table registers, 26-7
VMX control checks, 26-2

exit-reason numbers, C-1
loading guest state, 26-14

control and debug registers, MSRs, 26-14
RIP, RSP, RFLAGS, 26-16
segment & descriptor-table registers, 26-15

loading MSRs, 26-17
failure cases, 26-17
VM-entry MSR-load area, 26-17

overview of failure conditions, 26-1
overview of steps, 26-1
VMLAUNCH and VMRESUME, 26-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, 27-1
updating state before exit, 27-1

basic VM-exit information fields, 27-4
basic exit reasons, 27-4
exit qualification, 27-4

exception bitmap, 27-1
exceptions (faults, traps, and aborts), 25-5
exit-reason numbers, C-1
external interrupts, 25-5
handling of exits due to exceptions, 31-8
IA-32 faults and VM exits, 25-1
INITs, 25-5
instructions that cause:

conditional exits, 25-2
unconditional exits, 25-2

interrupt-window exiting, 25-6
non-maskable interrupts (NMIs), 25-5
page faults, 25-5
reflecting exceptions to guest, 31-8
resuming guest after exception handling, 31-9
start-up IPIs (SIPIs), 25-5
task switches, 25-5
See also: VMCS, VMM, VM entries

VM (virtual-8086 mode) flag
EFLAGS register, 2-8, 2-10

VMCALL instruction, 30-1
VMCLEAR instruction, 30-1, 31-7
VMCS

error numbers, 30-29
field encodings, 1-6, B-1

16-bit guest-state fields, B-1
16-bit host-state fields, B-2
32-bit control fields, B-1, B-6
32-bit guest-state fields, B-7
32-bit read-only data fields, B-6
64-bit control fields, B-2
64-bit guest-state fields, B-4, B-5
natural-width control fields, B-8
natural-width guest-state fields, B-9
natural-width host-state fields, B-9
natural-width read-only data fields, B-8

format of VMCS region, 24-2
guest-state area, 24-3, 24-4

guest non-register state, 24-5
guest register state, 24-4

host-state area, 24-3, 24-8
introduction, 24-1
migrating between processors, 24-24
software access to, 24-24
VMCS data, 24-2, 25-16
Vol. 3D INDEX-19

INDEX
VMCS pointer, 24-1, 31-2
VMCS region, 24-1, 31-2
VMCS revision identifier, 24-2, 25-16
VM-entry control fields, 24-3, 24-18

entry controls, 24-18
entry controls for event injection, 24-19
entry controls for MSRs, 24-19

VM-execution control fields, 24-3, 24-8
controls for CR8 accesses, 24-13
CR3-target controls, 24-12
exception bitmap, 24-11
I/O bitmaps, 24-12
masks & read shadows CR0 & CR4, 24-12
pin-based controls, 24-8
processor-based controls, 24-9
time-stamp counter offset, 24-12

VM-exit control fields, 24-3, 24-16
exit controls, 24-16
exit controls for MSRs, 24-17

VM-exit information fields, 24-3, 24-20
basic exit information, 24-20, C-1
basic VM-exit information, 24-20
exits due to instruction execution, 24-23
exits due to vectored events, 24-21
exits occurring during event delivery, 24-22
VM-instruction error field, 24-23

VM-instruction error field, 26-1, 30-29
VMREAD instruction, 31-2

field encodings, 1-6, B-1
VMWRITE instruction, 31-2

field encodings, 1-6, B-1
VMX-abort indicator, 24-2, 25-16
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control register, 2-11,
2-16, 22-17

VMLAUNCH instruction, 30-1, 31-7
VMM

asymmetric design, 31-10
control registers, 31-17
CPUID instruction emulation, 31-12
debug exceptions, 32-1
debugging facilities, 32-1
entering VMX root operation, 31-4
error handling, 31-2
exception bitmap, 32-1
external interrupts, 33-1
fast instruction set emulator, 31-1
index data pairs, usage of, 31-11
interrupt handling, 33-1
interrupt vectors, 33-3
leaving VMX operation, 31-4
machine checks, 33-8, 33-9, 33-11
memory virtualization, 32-2
microcode update facilities, 32-8
multi-processor considerations, 31-10
operating modes, 31-12
programming considerations, 31-1
response to page faults, 32-5
root VMCS, 31-2
SMI transfer monitor, 31-4
steps for launching VMs, 31-6
SWAPGS instruction, 31-15
symmetric design, 31-10
SYSCALL/SYSRET instructions, 31-15
SYSENTER/SYSEXIT instructions, 31-15
triple faults, 33-1
virtual TLBs, 32-3
virtual-8086 container, 31-1
virtualization of system resources, 32-1
VM exits, 27-1
VM exits, handling of, 31-7
VMCLEAR instruction, 31-7

VMCS field width, 31-12
VMCS pointer, 31-2
VMCS region, 31-2
VMCS revision identifier, 31-2
VMCS, writing/reading fields, 31-2
VM-exit failures, 33-8
VMLAUNCH instruction, 31-7
VMREAD instruction, 31-2
VMRESUME instruction, 31-7
VMWRITE instruction, 31-2, 31-7
VMXOFF instruction, 31-4
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, 33-1
VMPTRLD instruction, 30-1
VMPTRST instruction, 30-1
VMREAD instruction, 30-1, 31-2

field encodings, B-1
VMRESUME instruction, 30-1, 31-7
VMWRITE instruction, 30-1, 31-2, 31-7

field encodings, B-1
VMX

A20M# signal, 23-4
capability MSRs

overview, 23-2, A-1
IA32_VMX_BASIC MSR, 24-3, 31-2, 31-5, 31-6, 31-11, 35-53,

35-64, 35-77, 35-96, 35-134, 35-237, 35-262, 35-275, A-1,
A-2

IA32_VMX_CR0_FIXED0 MSR, 31-4, 35-54, 35-65, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275, A-6

IA32_VMX_CR0_FIXED1 MSR, 31-4, 35-54, 35-65, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275, A-6

IA32_VMX_CR4_FIXED0 MSR, 31-4, 35-54, 35-65, 35-77, 35-97,
35-134, 35-237, 35-262, 35-275

IA32_VMX_CR4_FIXED1 MSR, 31-4, 35-54, 35-65, 35-78, 35-97,
35-134, 35-135, 35-237, 35-262, 35-276

IA32_VMX_ENTRY_CTLS MSR, 31-5, 31-6, 35-54, 35-64, 35-77,
35-97, 35-134, 35-237, 35-262, 35-275, A-2, A-5

IA32_VMX_EXIT_CTLS MSR, 31-5, 31-6, 35-54, 35-64, 35-77,
35-97, 35-134, 35-237, 35-262, 35-275, A-2, A-4, A-5

IA32_VMX_MISC MSR, 24-6, 26-3, 26-12, 34-25, 35-54, 35-64,
35-77, 35-97, 35-134, 35-237, 35-262, 35-275, A-5

IA32_VMX_PINBASED_CTLS MSR, 31-5, 31-6, 35-53, 35-64,
35-77, 35-96, 35-134, 35-237, 35-262, 35-275, A-2, A-3

IA32_VMX_PROCBASED_CTLS MSR, 24-9, 31-5, 31-6, 35-53,
35-54, 35-64, 35-65, 35-77, 35-78, 35-97, 35-134, 35-135,
35-167, 35-237, 35-238, 35-262, 35-275, 35-276, A-2, A-3,
A-4, A-8

IA32_VMX_VMCS_ENUM MSR, 35-262
CPUID instruction, 23-2, A-1
CR4 control register, 23-3
CR4 fixed bits, A-6
debugging facilities, 32-1
EFLAGS, 31-2
entering operation, 23-3
entering root operation, 31-4
error handling, 31-2
guest software, 23-1
IA32_FEATURE_CONTROL MSR, 23-3
INIT# signal, 23-4
instruction set, 23-2
introduction, 23-1
memory virtualization, 32-2
microcode update facilities, 25-9, 32-8
non-root operation, 23-1

event blocking, 25-10
instruction changes, 25-6
overview, 25-1
task switches not allowed, 25-10
see VM exits

operation restrictions, 23-3
root operation, 23-1
SMM
INDEX-20 Vol. 3D

INDEX
CR4.VMXE reserved, 34-18
overview, 34-1
RSM instruction, 34-18
VMCS pointer, 34-17
VMX-critical state, 34-17

testing for support, 23-2
virtual TLBs, 32-3
virtual-machine control structure (VMCS), 23-2
virtual-machine monitor (VMM), 23-1
vitualization of system resources, 32-1
VM entries and exits, 23-1
VM exits, 27-1
VMCS pointer, 23-2
VMM life cycle, 23-2
VMXOFF instruction, 23-3
VMXON instruction, 23-3
VMXON pointer, 23-3
VMXON region, 23-3
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, 23-3, 30-1
VMXON instruction, 23-3, 30-1

W
WAIT/FWAIT instructions, 6-27, 22-7, 22-14, 22-15
WB (write back) memory type, 8-16, 11-7, 11-8
WB (write-back) pin (Pentium processor), 11-13
WBINVD instruction, 2-23, 5-24, 11-16, 11-17, 22-4
WB/WT# pins, 11-13
WC buffer (see Write combining (WC) buffer)
WC (write combining)

flag, IA32_MTRRCAP MSR, 11-22
memory type, 11-7, 11-8

WP (write protected) memory type, 11-7
WP (write protect) flag

CR0 control register, 2-15, 5-28, 22-17
Write

hit, 11-5
Write combining (WC) buffer, 11-4, 11-7
Write-back caching, 11-6
WRMSR instruction, 2-19, 2-20, 2-24, 2-25, 5-24, 8-17, 17-31, 17-37,

17-39, 18-78, 18-107, 18-108, 18-109, 22-4, 22-35, 25-9
WT (write through) memory type, 11-7, 11-8
WT# (write-through) pin (Pentium processor), 11-13

X
x2APIC ID, 10-40, 10-41, 10-44, 10-46
x2APIC Mode, 10-31, 10-37, 10-38, 10-40, 10-41, 10-44, 10-45, 10-46
x87 FPU

compatibility with IA-32 x87 FPUs and math coprocessors, 22-6
configuring the x87 FPU environment, 9-5
device-not-available exception, 6-27
effect of MMX instructions on pending x87 floating-point exceptions,

12-5
effects of MMX instructions on x87 FPU state, 12-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR instructions on x87

FPU tag word, 12-3
error signals, 22-10
initialization, 9-5
instruction synchronization, 22-15
register stack, aliasing with MMX registers, 12-2
setting up for software emulation of x87 FPU functions, 9-6
using TS flag to control saving of x87 FPU state, 13-7
x87 floating-point error exception (#MF), 6-43

x87 FPU control word
compatibility, IA-32 processors, 22-8

x87 FPU floating-point error exception (#MF), 6-43
x87 FPU status word

condition code flags, 22-7
x87 FPU tag word, 22-8
XADD instruction, 8-3, 22-4

xAPIC, 10-38, 10-40
determining lowest priority processor, 10-25
interrupt control register, 10-21
introduction to, 10-4
message passing protocol on system bus, 10-33
new features, 22-27
spurious vector, 10-32
using system bus, 10-4

xAPIC Mode, 10-31, 10-37, 10-41, 10-44, 10-46
XCHG instruction, 8-3, 8-16
XCR0, 2-18
XGETBV, 2-18, 2-21
XMM registers, saving, 13-6
XOR instruction, 8-3
XSAVE, 2-18, 13-7, 13-8, 13-9, 13-10
XSETBV, 2-18, 2-19, 2-21, 2-25

Z
ZF flag, EFLAGS register, 5-25
Vol. 3D INDEX-21

INDEX
INDEX-22 Vol. 3D

	Chapter 37 Introduction to Intel® Software Guard Extensions
	37.1 Overview
	37.2 Enclave Interaction and Protection
	37.3 Enclave Life Cycle
	37.4 Data Structures and Enclave Operation
	37.5 Enclave Page Cache
	37.5.1 Enclave Page Cache Map (EPCM)

	37.6 Enclave Instructions and Intel® SGX
	37.7 Discovering Support for Intel® SGX and enabling Enclave Instructions
	37.7.1 Intel® SGX Opt-In Configuration
	37.7.2 Intel® SGX Resource Enumeration Leaves

	Chapter 38 Enclave Access Control and Data Structures
	38.1 Overview of Enclave Execution Environment
	38.2 Terminology
	38.3 Access-control Requirements
	38.4 Segment-based Access Control
	38.5 Page-based Access Control
	38.5.1 Access-control for Accesses that Originate from non-SGX Instructions
	38.5.2 Memory Accesses that Split across ELRANGE
	38.5.3 Implicit vs. Explicit Accesses
	38.5.3.1 Explicit Accesses
	38.5.3.2 Implicit Accesses

	38.6 Intel® SGX Data Structures Overview
	38.7 SGX Enclave Control Structure (SECS)
	38.7.1 ATTRIBUTES
	38.7.2 SECS.MISCSELECT Field

	38.8 Thread Control Structure (TCS)
	38.8.1 TCS.FLAGS
	38.8.2 State Save Area Offset (OSSA)
	38.8.3 Current State Save Area Frame (CSSA)
	38.8.4 Number of State Save Area Frames (NSSA)

	38.9 State Save Area (SSA) Frame
	38.9.1 GPRSGX Region
	38.9.1.1 EXITINFO
	38.9.1.2 VECTOR Field Definition

	38.9.2 MISC Region
	38.9.2.1 EXINFO Structure
	38.9.2.2 Page Fault Error Codes

	38.10 Page Information (PAGEINFO)
	38.11 Security Information (SECINFO)
	38.11.1 SECINFO.FLAGS
	38.11.2 PAGE_TYPE Field Definition

	38.12 Paging Crypto MetaData (PCMD)
	38.13 Enclave Signature Structure (SIGSTRUCT)
	38.14 EINIT Token Structure (EINITTOKEN)
	38.15 Report (REPORT)
	38.15.1 REPORTDATA

	38.16 Report Target Info (TARGETINFO)
	38.17 Key Request (KEYREQUEST)
	38.17.1 KEY REQUEST KeyNames
	38.17.2 Key Request Policy Structure

	38.18 Version Array (VA)
	38.19 Enclave Page Cache Map (EPCM)

	Chapter 39 Enclave Operation
	39.1 Constructing an Enclave
	1. The application hands over the enclave content along with additional information required by the enclave creation API to the enclave creation service running at ring-0.
	39.1.1 ECREATE
	39.1.2 EADD and EEXTEND Interaction
	39.1.3 EINIT Interaction

	39.2 Enclave Entry and Exiting
	39.2.1 Synchronous Entry and Exit
	1. Check that TCS is not busy and flush all caching forms of linear-to-physical mappings.
	1. Clear enclave mode and TLB entries for enclave addresses.

	39.2.2 Asynchronous Enclave Exit (AEX)
	39.2.3 Resuming Execution after AEX
	39.2.3.1 ERESUME Interaction

	39.3 Calling Enclave Procedures
	39.3.1 Calling Convention
	39.3.2 Register Preservation
	39.3.3 Returning to Caller

	39.4 Intel® SGX Key and Attestation
	39.4.1 Enclave Measurement
	39.4.1.1 MRENCLAVE
	39.4.1.2 MRSIGNER

	39.4.2 Security Version Numbers (SVN)
	39.4.2.1 Enclave Security Version
	39.4.2.2 Hardware Security Version

	39.4.3 Keys
	39.4.3.1 Sealing Enclave Data
	39.4.3.2 Using REPORTs for Local Attestation
	1. The source enclave determines the identity of the target enclave to populate TARGETINFO.

	39.5 EPC and Management of EPC Pages
	39.5.1 EPC Implementation
	39.5.2 OS Management of EPC Pages
	39.5.2.1 Enhancement to Managing EPC Pages

	39.5.3 Eviction of Enclave Pages
	1. For each page to be evicted from the EPC:
	a. Select an empty slot in a Version Array (VA) page.

	39.5.4 Loading an Enclave Page
	1. Execute ELDB/ELDU (depending on the desired BLOCKED state for the page)), passing as parameters: the EPC page linear address, the VA slot, the encrypted page, and the page metadata.

	39.5.5 Eviction of an SECS Page
	1. Ensure all pages are evicted from enclave.

	39.5.6 Eviction of a Version Array Page
	1. Select a slot in a Version Array page other than the page being evicted.

	39.5.7 Allocating a Regular Page
	1. Enclave requests additional memory from OS when the current allocation becomes insufficient.
	a. EAUG may only be called on an invalid page.

	39.5.8 Allocating a TCS Page
	1. Enclave requests an additional page from the OS.
	a. EAUG may only be called on an invalid page.
	a. The parameters to EMODT indicate that the regular page should be converted into a TCS.

	39.5.9 Trimming a Page
	1. Enclave signals OS that a particular page is no longer in use.
	a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or PT_TCS.

	39.5.10 Restricting the EPCM Permissions of a Page
	1. Enclave requests that the OS to restrict the permissions of an EPC page.
	a. Invokes the EMODPR leaf function to restrict permissions (EMODPR may only be called on VALID pages).
	a. Enclave may access the page throughout the entire process.

	39.5.11 Extending the EPCM Permissions of a Page
	1. Enclave invokes EMODPE to extend the EPCM permissions associated with an EPC page (EMODPE may only be called on VALID pages).
	a. If TLB mappings are present to the more restrictive permissions, the enclave thread will page fault. The SGX2-aware OS will see that the page tables permit the access and resume the thread, which can now successfully access the page because exitin...

	39.6 Changes to Instruction Behavior Inside an Enclave
	39.6.1 Illegal Instructions
	39.6.2 RDRAND and RDSEED Instructions
	39.6.3 PAUSE Instruction
	39.6.4 INT 3 Behavior Inside an Enclave
	39.6.5 INVD Handling when Enclaves Are Enabled

	Chapter 40 Enclave Exiting Events
	40.1 Compatible Switch to the Exiting Stack of AEX
	40.2 State Saving by AEX
	40.3 Synthetic State on Asynchronous Enclave Exit
	40.3.1 Processor Synthetic State on Asynchronous Enclave Exit
	40.3.2 Synthetic State for Extended Features
	40.3.3 Synthetic State for MISC Features
	40.3.4 VMCS Synthetic State on Asynchronous Enclave Exit

	40.4 AEX Flow
	1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a 64- bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI,...
	40.4.1 AEX Operational Detail

	Chapter 41 SGX Instruction References
	41.1 Intel® SGX InstructIon Syntax and Operation
	41.1.1 ENCLS Register Usage Summary
	41.1.2 ENCLU Register Usage Summary
	41.1.3 Information and Error Codes
	41.1.4 Internal CREGs
	41.1.5 Concurrent Operation Restrictions
	41.1.5.1 Concurrency Table of Intel® SGX Instructions

	41.2 Intel® SGX InstructIon Reference
	ENCLS—Execute an Enclave System Function of Specified Leaf Number
	ENCLU—Execute an Enclave User Function of Specified Leaf Number

	41.3 Intel® SGX System Leaf Function Reference
	EADD—Add a Page to an Uninitialized Enclave
	EAUG—Add a Page to an Initialized Enclave
	EBLOCK—Mark a page in EPC as Blocked
	ECREATE—Create an SECS page in the Enclave Page Cache
	EDBGRD—Read From a Debug Enclave
	EDBGWR—Write to a Debug Enclave
	EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes
	EINIT—Initialize an Enclave for Execution
	ELDB/ELDU—Load an EPC page and Marked its State
	EMODPR—Restrict the Permissions of an EPC Page
	EMODT—Change the Type of an EPC Page
	EPA—Add Version Array
	EREMOVE—Remove a page from the EPC
	ETRACK—Activates EBLOCK Checks
	EWB—Invalidate an EPC Page and Write out to Main Memory

	41.4 Intel® SGX User Leaf Function Reference
	41.4.1 Instruction Column in the Instruction Summary Table
	EACCEPT—Accept Changes to an EPC Page
	EACCEPTCOPY—Initialize a Pending Page
	EENTER—Enters an Enclave
	EEXIT—Exits an Enclave
	EGETKEY—Retrieves a Cryptographic Key
	EMODPE—Extend an EPC Page Permissions
	EREPORT—Create a Cryptographic Report of the Enclave
	1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

	ERESUME—Re-Enters an Enclave

	Chapter 42 Intel® SGX Interactions with IA32 and Intel® 64 Architecture
	42.1 Intel® SGX Availability in Various Processor Modes
	42.2 IA32_FEATURE_CONTROL
	42.3 Interactions with Segmentation
	42.3.1 Scope of Interaction
	42.3.2 Interactions of Intel® SGX Instructions with Segment, Operand, and Addressing Prefixes
	42.3.3 Interaction of Intel® SGX Instructions with Segmentation
	42.3.4 Interactions of Enclave Execution with Segmentation

	42.4 Interactions with Paging
	42.5 Interactions with VMX
	42.5.1 VMM Controls to Configure Guest Support of Intel® SGX
	42.5.1.1 Guest State Area - Guest Non-Register State
	42.5.1.2 VM-Execution Controls
	42.5.1.3 Basic VM-Exit Information

	42.5.2 VM Exits While Inside an Enclave
	42.5.3 VM Entry Consistency Checks and Intel® SGX
	42.5.3.1 VM-Entry Instruction-Length Field
	42.5.3.2 VM Execution Control Setting Checks
	42.5.3.3 Guest Interruptibility State Checks

	42.5.4 Interaction of Intel® SGX with Various VMMs
	42.5.5 Interactions with EPTs
	42.5.6 Interactions with APIC Virtualization
	42.5.7 Interactions with Monitor Trap Flag
	42.5.8 Interactions with Interrupt-Virtualization Features and Events

	42.6 Intel® SGX Interactions with Architecturally-visible Events
	42.7 Interactions with the Processor Extended State and Miscellaneous State
	42.7.1 Requirements and Architecture Overview
	42.7.2 Relevant Fields in Various Data Structures
	42.7.2.1 SECS.ATTRIBUTES.XFRM
	42.7.2.2 SECS.SSAFRAMESIZE
	42.7.2.3 XSAVE Area in SSA

	42.7.3 Processor Extended States and ENCLS[ECREATE]
	42.7.4 Processor Extended States and ENCLU[EENTER]
	42.7.4.1 Fault Checking
	42.7.4.2 State Loading

	42.7.5 Processor Extended States and AEX
	42.7.5.1 State Saving
	42.7.5.2 State Synthesis

	42.7.6 Processor Extended States and ENCLU[ERESUME]
	42.7.6.1 Fault Checking
	42.7.6.2 State Loading

	42.7.7 Processor Extended States and ENCLU[EEXIT]

	42.8 Interactions with SMM
	42.8.1 Availability of Intel® SGX instructions in SMM
	42.8.2 SMI while Inside an Enclave
	42.8.3 SMRAM Synthetic State of AEX Triggered by SMI

	42.9 Interactions of INIT, SIPI, and Wait-for-SIPI with Intel® SGX
	42.10 Interactions with DMA
	42.11 Interactions with Memory Configuration and Various Memory Ranges
	42.11.1 Interactions of Intel® SGX with APIC Access Address

	42.12 Interactions with TXT
	42.12.1 Enclaves Created Prior to Execution of GETSEC
	42.12.2 Interaction of GETSEC with Intel® SGX
	42.12.3 Interactions with Authenticated Code Modules (ACMs)

	42.13 Interactions with Caching of Linear-address Translations
	42.14 Interactions with Intel® Transactional Synchronization Extensions (Intel® TSX)
	42.14.1 HLE and RTM Debug

	42.15 Intel® SGX Interactions with S states
	42.16 Intel® SGX Interactions with Machine Check Architecture (MCA)
	42.16.1 Interactions with MCA Events
	42.16.2 Machine Check Enables (IA32_MCi_CTL)
	42.16.3 CR4.MCE

	42.17 Intel® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL INTERRUPTS
	42.18 Intel SGX Interaction with Protection Keys

	Chapter 43 Enclave Code Debug and Profiling
	43.1 Configuration and Controls
	43.1.1 Debug Enclave vs. Production Enclave
	43.1.2 Tool-chain Opt-in

	43.2 Single Step Debug
	43.2.1 Single Stepping ENCLS Instruction Leafs
	43.2.2 Single Stepping ENCLU Instruction Leafs
	43.2.3 Single-stepping Enclave Entry with Opt-out Entry
	43.2.3.1 Single Stepping without AEX
	43.2.3.2 Single Step Preempted by AEX due to Non-SMI Event

	43.2.4 RFLAGS.TF Treatment on AEX
	43.2.5 Restriction on Setting of TF after an Opt-out Entry
	43.2.6 Trampoline Code Considerations

	43.3 Code and Data Breakpoints
	43.3.1 Breakpoint Suppression
	43.3.2 Breakpoint Match Reporting during Enclave Execution
	43.3.3 Reporting of Code Breakpoint on Next Instruction on a Debug Trap
	43.3.4 RFLAGS.RF Treatment on AEX
	43.3.5 Breakpoint Matching in Intel® SGX Instruction Flows

	43.4 INT3 Consideration
	43.4.1 Behavior of INT3 inside an Enclave
	43.4.2 Debugger Considerations
	43.4.3 VMM Considerations

	43.5 Branch Tracing
	43.5.1 BTF Treatment
	43.5.2 LBR Treatment
	43.5.2.1 LBR Stack on Opt-in Entry
	43.5.2.2 LBR Stack on Opt-out Entry
	43.5.2.3 Mispredict Bit, Record Type, and Filtering

	43.6 Interaction with Performance Monitoring
	43.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
	43.6.2 Performance Monitoring with Opt-in Entry
	43.6.3 Performance Monitoring with Opt-out Entry
	43.6.4 Enclave Exit and Performance Monitoring
	43.6.5 PEBS Record Generation on Intel® SGX Instructions
	43.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
	43.6.6.1 Other Interactions with Performance Monitoring

	Appendix A VMX Capability Reporting Facility
	A.1 Basic VMX Information
	A.2 Reserved Controls and Default Settings
	A.3 VM-Execution Controls
	A.3.1 Pin-Based VM-Execution Controls
	A.3.2 Primary Processor-Based VM-Execution Controls
	A.3.3 Secondary Processor-Based VM-Execution Controls

	A.4 VM-Exit Controls
	A.5 VM-Entry Controls
	A.6 Miscellaneous Data
	A.7 VMX-Fixed Bits in CR0
	A.8 VMX-Fixed Bits in CR4
	A.9 VMCS Enumeration
	A.10 VPID and EPT Capabilities
	A.11 VM Functions

	Appendix B Field Encoding in VMCS
	B.1 16-Bit Fields
	B.1.1 16-Bit Control Fields
	B.1.2 16-Bit Guest-State Fields
	B.1.3 16-Bit Host-State Fields

	B.2 64-Bit Fields
	B.2.1 64-Bit Control Fields
	B.2.2 64-Bit Read-Only Data Field
	B.2.3 64-Bit Guest-State Fields
	B.2.4 64-Bit Host-State Fields

	B.3 32-Bit Fields
	B.3.1 32-Bit Control Fields
	B.3.2 32-Bit Read-Only Data Fields
	B.3.3 32-Bit Guest-State Fields
	B.3.4 32-Bit Host-State Field

	B.4 Natural-Width Fields
	B.4.1 Natural-Width Control Fields
	B.4.2 Natural-Width Read-Only Data Fields
	B.4.3 Natural-Width Guest-State Fields
	B.4.4 Natural-Width Host-State Fields

	Appendix C VMX Basic Exit Reasons

