intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3C:
System Programming Guide, Part 3

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual consists of seven volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; Instruction Set Reference, Order Number
326018; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part
2, Order Number 253669; System Programming Guide, Part 3, Order Number 3260189. Refer to all seven
volumes when evaluating your design needs.

Order Number: 326019-048US
September 2013

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTIC-
ULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or char-
acteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsi-
bility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice.
Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the
correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more in-
formation, see http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT Technology-
enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more infor-
mation including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Func-
tionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be com-
patible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the
specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.in-
tel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system.
Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel
Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2013 Intel Corporation. All rights reserved.

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.1 OVERVIEW

This chapter describes the basics of virtual machine architecture and an overview of the virtual-machine extensions
(VMX) that support virtualization of processor hardware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2B. Other aspects of VMX and system programming considerations are described in chapters of Intel® 64
and 1A-32 Architectures Software Developer’'s Manual, Volume 3B.

23.2 VIRTUAL MACHINE ARCHITECTURE

Virtual-machine extensions define processor-level support for virtual machines on 1A-32 processors. Two principal
classes of software are supported:

® Virtual-machine monitors (VMM) — A VMM acts as a host and has full control of the processor(s) and other
platform hardware. A VMM presents guest software (see next paragraph) with an abstraction of a virtual
processor and allows it to execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and 1/0.

® Guest software — Each virtual machine (VM) is a guest software environment that supports a stack consisting
of operating system (OS) and application software. Each operates independently of other virtual machines and
uses on the same interface to processor(s), memory, storage, graphics, and 1/0 provided by a physical
platform. The software stack acts as if it were running on a platform with no VMM. Software executing in a
virtual machine must operate with reduced privilege so that the VMM can retain control of platform resources.

23.3 INTRODUCTION TO VMX OPERATION

Processor support for virtualization is provided by a form of processor operation called VMX operation. There are
two kinds of VMX operation: VMX root operation and VMX non-root operation. In general, a VMM will run in VMX
root operation and guest software will run in VMX non-root operation. Transitions between VMX root operation and
VMX non-root operation are called VMX transitions. There are two kinds of VMX transitions. Transitions into VMX
non-root operation are called VM entries. Transitions from VMX non-root operation to VMX root operation are called
VM exits.

Processor behavior in VMX root operation is very much as it is outside VMX operation. The principal differences are
that a set of new instructions (the VMX instructions) is available and that the values that can be loaded into certain
control registers are limited (see Section 23.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate virtualization. Instead of their
ordinary operation, certain instructions (including the new VMCALL instruction) and events cause VM exits to the

VMM. Because these VM exits replace ordinary behavior, the functionality of software in VMX non-root operation is
limited. It is this limitation that allows the VMM to retain control of processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is in VMX non-root operation.
This fact may allow a VMM to prevent guest software from determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current privilege level (CPL) O, guest
software can run at the privilege level for which it was originally designed. This capability may simplify the devel-
opment of a VMM.

Vol. 3C 23-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.4 LIFE CYCLE OF VMM SOFTWARE

Figure 23-1 illustrates the life cycle of a VMM and its guest software as well as the interactions between them. The
following items summarize that life cycle:

® Software enters VMX operation by executing a VMXON instruction.

® Using VM entries, a VMM can then enter guests into virtual machines (one at a time). The VMM effects a
VM entry using instructions VMLAUNCH and VMRESUME; it regains control using VM exits.

® VM exits transfer control to an entry point specified by the VMM. The VMM can take action appropriate to the
cause of the VM exit and can then return to the virtual machine using a VM entry.

¢ Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so by executing the
VMXOFF instruction.

Guest 0 Guest 1

VM NVM Entr)% Exit

VMXON — VM Monitor p—— VMXOFF

Figure 23-1. Interaction of a Virtual-Machine Monitor and Guests

23.5 VIRTUAL-MACHINE CONTROL STRUCTURE

VMX non-root operation and VMX transitions are controlled by a data structure called a virtual-machine control
structure (VMCS).

Access to the VMCS is managed through a component of processor state called the VMCS pointer (one per logical
processor). The value of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and written
using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, and
VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple
logical processors (virtual processors), the VMM could use a different VMCS for each virtual processor.

23.6 DISCOVERING SUPPORT FOR VMX

Before system software enters into VMX operation, it must discover the presence of VMX support in the processor.
System software can determine whether a processor supports VMX operation using CPUID. If
CPUID.1:ECX.VMX[bit 5] = 1, then VMX operation is supported. See Chapter 3, “Instruction Set Reference, A-M” of
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX operation can support addi-
tional features not present in first-generation implementations of the VMX architecture. The availability of exten-
sible VMX features is reported to software using a set of VMX capability MSRs (see Appendix A, “VMX Capability
Reporting Facility”).

23-2 Vol.3C

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.7 ENABLING AND ENTERING VMX OPERATION

Before system software can enter VMX operation, it enables VMX by setting CR4.VMXE[bit 13] = 1. VMX operation
is then entered by executing the VMXON instruction. VMXON causes an invalid-opcode exception (#UD) if executed
with CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see Section 23.8). System soft-
ware leaves VMX operation by executing the VMXOFF instruction. CR4.VMXE can be cleared outside of VMX opera-
tion after executing of VMXOFF.

VMXON is also controlled by the 1A32_FEATURE_CONTROL MSR (MSR address 3AH). This MSR is cleared to zero
when a logical processor is reset. The relevant bits of the MSR are:

® Bit O is the lock bit. If this bit is clear, VMXON causes a general-protection exception. If the lock bit is set,
WRMSR to this MSR causes a general-protection exception; the MSR cannot be modified until a power-up reset
condition. System BIOS can use this bit to provide a setup option for BIOS to disable support for VMX. To
enable VMX support in a platform, BIOS must set bit 1, bit 2, or both (see below), as well as the lock bit.

® Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of VMXON in SMX operation causes a
general-protection exception. Attempts to set this bit on logical processors that do not support both VMX
operation (see Section 23.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B) cause general-protection exceptions.

® Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of VMXON outside SMX
operation causes a general-protection exception. Attempts to set this bit on logical processors that do not
support VMX operation (see Section 23.6) cause general-protection exceptions.

NOTE

A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of
GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region of memory that a logical
processor may use to support VMX operation.! This region is called the VMXON region. The address of the VMXON
region (the VMXON pointer) is provided in an operand to VMXON. Section 24.11.5, “VMXON Region,” details how
software should initialize and access the VMXON region.

23.8 RESTRICTIONS ON VMX OPERATION

VMX operation places restrictions on processor operation. These are detailed below:

® In VMX operation, processors may fix certain bits in CRO and CR4 to specific values and not support other
values. VMXON fails if any of these bits contains an unsupported value (see “VMXON—Enter VMX Operation” in
Chapter 30). Any attempt to set one of these bits to an unsupported value while in VMX operation (including
VMX root operation) using any of the CLTS, LMSW, or MOV CR instructions causes a general-protection
exception. VM entry or VM exit cannot set any of these bits to an unsupported value.?

NOTES

The first processors to support VMX operation require that the following bits be 1 in VMX operation:
CRO.PE, CRO.NE, CRO.PG, and CR4.VMXE. The restrictions on CRO.PE and CRO.PG imply that VMX
operation is supported only in paged protected mode (including 1A-32e mode). Therefore, guest
software cannot be run in unpaged protected mode or in real-address mode. See Section 31.2,

1. Future processors may require that a different amount of memory be reserved. If so, this fact is reported to software using the
VMX capability-reporting mechanism.

2. Software should consult the VMX capability MSRs IA32_VMX_CRO_FIXEDO and IA32_VMX_CRO_FIXED1 to determine how bits in
CRO are set. (see Appendix A.7). For CR4, software should consult the VMX capability MSRs IA32_VMX_CR4_FIXEDO and
IA32_VMX_CR4_FIXED1 (see Appendix A.8).

Vol.3C 23-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

“Supporting Processor Operating Modes in Guest Environments,” for a discussion of how a VMM
might support guest software that expects to run in unpaged protected mode or in real-address
mode.

Later processors support a VM-execution control called “unrestricted guest” (see Section 24.6.2).
If this control is 1, CRO.PE and CRO.PG may be 0 in VMX non-root operation (even if the capability
MSR 1A32_VMX_CRO_FIXEDO reports otherwise).3 Such processors allow guest software to run in
unpaged protected mode or in real-address mode.

® VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX Operation” in Chapter 30). Once
the processor is in VMX operation, A20M interrupts are blocked. Thus, it is impossible to be in A20M mode in
VMX operation.

® The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not blocked in VMX non-
root operation. Instead, INITs cause VM exits (see Section 25.2, “Other Causes of VM EXxits”).

3. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

23-4 Vol.3C

CHAPTER 24
VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OVERVIEW

A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD,
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the
processor’s physical-address width.2:3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:

® The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction,
that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so,
but no other VMCS is current.

® The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If VM entry
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current
VMCS does not change.

® The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS
whose launch state is “launched”. A logical processor maintains a VMCS'’s launch state in the corresponding VMCS
region. The following items describe how a logical processor manages the launch state of a VMCS:

® If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes
the launch state to “launched”.

® The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction,
the launch state of that VMCS is “clear”.

® There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there
is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.

Vol. 3C 24-1

VIRTUAL-MACHINE CONTROL STRUCTURES

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g.,
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Active
Not Current
Launched

Inactive
Not Current
Clear

Active
Not Current

< < 44 VMCLEAR X < <
< < Q4 b,,f 2 <
T T Q7 & e T T
= NP)4 4 4
T T Q L« & T T
~ ~ S % ~ ~
O O ~ Anvihi + O O
x < nything x <

Else
Active Active
Current VMLAUNCH: > Current
Clear Launched

Figure 24-1. States of VMCS X

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

24.2 FORMAT OF THE VMCS REGION

A VMCS region comprises up to 4-KBytes.! The format of a VMCS region is given in Table 24-1.

Table 24-1. Format of the VMCS Region

Byte Offset Contents
0 Bits 30:0: VMCS revision identifier
Bit 31: shadow-VMCS indicator (see Section 24.10)
4 VMX-abort indicator
8 VMCS data (implementation-specific format)

The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.2 Processors that maintain
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).

24-2 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.! Bit 31
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see
Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR 1A32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for
this setting by reading the VMX capability MSR 1A32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not
control processor operation in any way. A logical processor writes a hon-zero value into these bits if a VMX abort
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future
implementations may allow or require a different memory typez. Software should consult the VMX capability MSR
1A32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA

The VMCS data are organized into six logical groups:

® Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on
VM entries.

® Host-state area. Processor state is loaded from the host-state area on VM exits.

® VM-execution control fields. These fields control processor behavior in VMX non-root operation. They
determine in part the causes of VM exits.

® VM-exit control fields. These fields control VM exits.
® VM-entry control fields. These fields control VM entries.

® VM-exit information fields. These fields receive information on VM exits and describe the cause and the
nature of VM exits. On some processors, these fields are read-only.3

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred
to collectively as VMX controls.

2. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this
change, bit 31 of the VMCS revision identifier was O.

Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

3. Software can discover whether these fields can be written by reading the VMX capability MSR I1A32_VMX_MISC (see Appendix A.6).

Vol.3C 24-3

VIRTUAL-MACHINE CONTROL STRUCTURES

24.4 GUEST-STATE AREA

This section describes fields contained in the guest-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM entry (see Section 26.3.2) and stored into these fields on every VM exit (see
Section 27.3).

24.4.1 Guest Register State

The following fields in the guest-state area correspond to processor registers:

Control registers CRO, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-
tecture).

Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).

RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).t
The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.
— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

® The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

®* Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode.
In general, a segment register is unusable if it has been loaded with a null selector.?

®* Bits 31:17 are reserved.

Table 24-2. Format of Access Rights

Bit Position(s) Field

3.0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)
6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

1.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)" in Section 6.14, “Exception and Interrupt
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

24-4 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-2. Format of Access Rights (Contd.)

Bit Position(s) Field
13 Reserved (except for CS)
L — 64-bit mode active (for CS only)
14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
15 G — Granularity
16 Segment unusable (O = usable; 1 = unusable)
31:17 Reserved

The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the
segment register’s selector.

The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).*
The following fields for each of the registers GDTR and IDTR:
— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the
architecture.

The following MSRs:
— 1A32_DEBUGCTL (64 bits)
— 1A32_SYSENTER_CS (32 hits)

— 1A32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture)

— |A32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load 1IA32_PERF_GLOBAL_CTRL” VM-entry control.

— 1A32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-entry control or that of the “save 1A32_PAT” VM-exit control.

— 1A32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_EFER” VM-entry control or that of the “save 1A32_EFER” VM-exit control.

The register SMBASE (32 bits). This register contains the base address of the logical processor’'s SMRAM image.

24.4.2 Guest Non-Register State

In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:

Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is
executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.

The following activity states are defined:2

— O: Active. The logical processor is executing instructions normally.

In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

Vol.3C 24-5

VIRTUAL-MACHINE CONTROL STRUCTURES

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault® or some other serious

error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-1P1 (SIPI).

Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

® Interruptibility state (32 bits). The 1A-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this

field are given in Table 24-3.

Table 24-3. Format of Interruptibility State

Bit
Position(s)

Bit Name

Notes

0

Blocking by STI

See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = O blocks interrupts (and, optionally, other events) for one
instruction after its execution. Setting this bit indicates that this blocking is in effect.

Blocking by
MOV SS

See the “"MOV—Move a Value from the Stack” from Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, and “POP—Pop a Value from the
Stack” from Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer's Manual,
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its

execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

Blocking by SMI

See Section 34.2. System-management interrupts (SMis) are disabled while the processor is in
system-management mode (SMM). Setting this bit indicates that blocking of SMis is in effect.

Blocking by NMI

See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer's Manual,
Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMiIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMiIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMiIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

31:4

Reserved

VM entry will fail if these bits are not 0. See Section 26.3.1.5.

® Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). 1A-32
processors may recognize one or more debug exceptions without immediately delivering them.? This field
contains information about such exceptions. This field is described in Table 24-4.

1. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

2. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction (for
example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and IA-32
Architectures Software Developer's Manual, Volume 3A.

24-6 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-4. Format of Pending-Debug-Exceptions

Bit Bit Name Notes

Position(s)

3.0 B3 -B0O When set, each of these bits indicates that the corresponding breakpoint condition was met.

Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled When set, this bit indicates that at least one data or I/0 breakpoint was met and was enabled in
breakpoint DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step

execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

® VMCS link pointer (64 bits). This field is included for future expansion. Software should set this field to
FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

®* VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section 26.6.4.

® Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTEO, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

® Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RV1). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies
that there is no such interrupt.)

See Chapter 29 for more information on the use of this field.

24.5 HOST-STATE AREA

This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
® CRO, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
® RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).

® Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the
host-state area for the LDTR selector.

® Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support
Intel 64 architecture).

® The following MSRs:

Vol.3C 24-7

VIRTUAL-MACHINE CONTROL STRUCTURES

— 1A32_SYSENTER_CS (32 bits)

— 1A32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— 1A32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting of
the “load 1A32_PERF_GLOBAL_CTRL” VM-exit control.

— 1A32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-exit control.

— 1A32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded with fixed values on every
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for details
of how state is loaded on VM exits.

246 VM-EXECUTION CONTROL FIELDS

The VM-execution control fields govern VMX non-root operation. These are described in Section 24.6.1 through
Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls

The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events
(for example: interrupts).1 Table 24-5 lists the controls. See Chapter 27 for how these controls affect processor
behavior in VMX non-root operation.

Table 24-5. Definitions of Pin-Based VM-Execution Controls

Bit Position(s) | Name Description
0 External-interrupt | If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally
exiting through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF

does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMls) cause VM exits. Otherwise, they are
delivered normally using descriptor 2 of the IDT. This control also determines interactions
between IRET and blocking by NMI (see Section 25.3).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI” bit (bit 3) in the
interruptibility-state field indicates “virtual-NMI blocking” (see Table 24-3). This control also
interacts with the “NMI-window exiting” VM-execution control (see Section 24.6.2).

6 Activate VMX- If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see
preemption timer | Section 25.5.1. A VM exit occurs when the timer counts down to zero; see Section 25.2.
7 Process posted If this control is 1, the processor treats interrupts with the posted-interrupt notification vector
interrupts (see Section 24.6.8) specially, updating the virtual-APIC page with posted-interrupt requests
(see Section 29.6).

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
1A32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4. The
VMX capability MSR 1A32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 25.2).

24-8 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

1IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the O-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bitto 1.

24.6.2

Processor-Based VM-Execution Controls

The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchronous
events, mainly those caused by the execution of specific instructions.? These are the primary processor-based
VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 27 for more details of how these
controls affect processor behavior in VMX non-root operation.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description
2 Interrupt-window | If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
exiting there are no other blocking of interrupts (see Section 24.4.2).
3 Use TSC offsetting | This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).
7 HLT exiting This control determines whether executions of HLT cause VM exits.
9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.
10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.
11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.
12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.
15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.
The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
16 CR3-store exiting | This control determines whether executions of MOV from CR3 cause VM exits.
The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.
20 CR8-store exiting | This control determines whether executions of MOV from CR8 cause VM exits.
21 Use TPR shadow | Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.
22 NMI-window If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
exiting NMI blocking (see Section 24.4.2).
23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.
24 Unconditional I/0 | This control determines whether executions of I/0 instructions (IN, INS/INSB/INSW/INSD, OUT,
exiting and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.
25 Use I/0 bitmaps This control determines whether 1/0 bitmaps are used to restrict executions of I/0 instructions
(see Section 24.6.4 and Section 25.1.3).
For this control, “0" means “do not use I/0 bitmaps” and “1” means “use I/0 bitmaps.” If the I/0
bitmaps are used, the setting of the “unconditional I/0 exiting” control is ignored.
27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as

do task switches (see Section 25.2).

Vol. 3C 24-9

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) | Name Description

28 Use MSR bitmaps | This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).
For this control, “0” means “do not use MSR bitmaps” and “1"” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting | This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary | This control determines whether the secondary processor-based VM-execution controls are

controls used. If this control is O, the logical processor operates as if all the secondary processor-based

VM-execution controls were also 0.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
1A32_VMX_PROCBASED_CTLS and I1A32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section

26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4-6, 8, 13—
16, and 26. The VMX capability MSR 1A32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
1A32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the O-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the

secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution

controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 27 for more details of how
these controls affect processor behavior in VMX non-root operation.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description
0 Virtualize APIC If this control is 1, the logical processor treats specially accesses to the page with the APIC-
accesses access address. See Section 29.4.
Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.
2 Descriptor-table This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
exiting STR cause VM exits.
3 Enable RDTSCP If this control is O, any execution of RDTSCP causes an invalid-opcode exception (#UD).
Virtualize x2APIC | If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
mode the range 800H-8FFH). See Section 29.5.
5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.
6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.
7 Unrestricted guest | This control determines whether guest software may run in unpaged protected mode or in real-
address mode.
8 APIC-register If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
virtualization Section 29.5.
9 Virtual-interrupt This controls enables the evaluation and delivery of pending virtual interrupts as well as the
delivery emulation of writes to the APIC registers that control interrupt prioritization.
10 PAUSE-loop exiting | This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).

24-10 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) | Name Description

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is O, any execution of INVPCID causes an invalid-opcode exception (#UD).

13 Enable Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See

VM functions Section 25.5.5.

14 VMCS shadowing | If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

18 EPT-violation #VE | If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.6.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
1IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap

The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code
mask and page-fault error-code match). See Section 25.2 for details.

24.6.4 1/0-Bitmap Addresses

The VM-execution control fields include the 64-bit physical addresses of 1/0 bitmaps A and B (each of which are
4 KBytes in size). I/0 bitmap A contains one bit for each 1/0 port in the range 0000H through 7FFFH; 1/0 bitmap B
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use 1/0 bitmaps” control is 1. If the bitmaps are used,
execution of an 1/0 instruction causes a VM exit if any bit in the 1/0 bitmaps corresponding to a port it accesses is
1. See Section 25.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset

VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is O and the “use TSC
offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls execu-
tions of the RDMSR instruction that read from the 1A32_TIME_STAMP_COUNTER MSR. For all of these, the signed
value of the TSC offset is combined with the contents of the time-stamp counter (using signed addition) and the
sum is reported to guest software in EDX:EAX. See Chapter 27 for a detailed treatment of the behavior of RDTSC,
RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

VM-execution control fields include guest/host masks and read shadows for the CRO and CRA4 registers. These
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW).
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

® Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits
in the corresponding read shadow cause VM exits.

® Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Vol. 3C 24-11

VIRTUAL-MACHINE CONTROL STRUCTURES

Bits cleared to O correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads
return values for these bits from the control register itself.

See Chapter 27 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls

The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not. The
CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target
count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section
26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability
MSR 1A32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

24.6.8 Controls for APIC Virtualization

There are three mechanisms by which software accesses registers of the logical processor’s local APIC:

® If the local APIC is in XAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page
referenced by the physical address in the 1A32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and
Location” in the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual, Volume 3A and Intel® 64
Architecture Processor Topology Enumeration).t

® If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

® In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are
“use TPR shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:

® APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page.
If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be
virtualized by the processor. See Section 29.4.

The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses”
VM-execution control.

® Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page.
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual
interrupts; see Chapter 29.

Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the
following operations:

— The MOV CR8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H—8FFH (indicating
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow”
VM-execution control.

1. If the local APIC does not support x2APIC mode, it is always in XAPIC mode.

24-12 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

® TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold.
See Section 29.1.2.

The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution
control.

¢ EOIl-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized
writes to the APIC’s EOI register cause VM exits:

— EOI_EXITO contains bits for vectors from O (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).
— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).
— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

® Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that
is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more
information on the use of this field.

® Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the
1-setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte
aligned posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

24.6.9 MSR-Bitmap Address

On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:

® Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address
in the range O0O000000H to O0O001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

® Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each
MSR address in the range COO0O0000H toCO001FFFH. The bit determines whether an execution of RDMSR
applied to that MSR causes a VM exit.

® Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each
MSR address in the range 00000000H to O0O001FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

® Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each
MSR address in the range COO00000H toCOO01FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See
Section 25.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.

24.6.10 Executive-VMCS Pointer

The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts
(SMlIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 34.15.2.
VM entries that return from SMM use this field as described in Section 34.15.4.

Vol. 3C 24-13

VIRTUAL-MACHINE CONTROL STRUCTURES

24.6.11 Extended-Page-Table Pointer (EPTP)

The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section
28.2.2), as well as other EPT configuration information. The format of this field is shown in Table 24-8.

Table 24-8. Format of Extended-Page-Table Pointer

Bit Field
Position(s)
2.0 EPT paging-structure memory type (see Section 28.2.5):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.!

53 This value is 1 less than the EPT page-walk length (see Section 28.2.2)
6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 28.2.4)2
11:7 Reserved
N-1:12 Bits N-1:12 of the physical address of the 4-KByte aligned EPT PML4 table3
63N Reserved
NOTES:

1. Software should read the VMX capability MSR 1A32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-
ture memory types are supported.

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

3. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)

The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting of
the “enable VPID” VM-execution control. See Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting

On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution
control fields include the following 32-bit fields:

® PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive
executions of PAUSE in a loop.

® PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to
execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See
Section 25.1.3 for more details regarding PAUSE-loop exiting.

24.6.14 VM-Function Controls

The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary

24-14 \Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.5 for more details of how these controls affect
processor behavior in VMX non-root operation.

Table 24-9. Definitions of VM-Function Controls

Bit Position(s) | Name Description
0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list.
See Section 25.5.5.3.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 1A32_VMX_VMFUNC
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.5.3).

24.6.15 VMCS Shadowing Bitmap Addresses

On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VYMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these
bitmaps (see Section 24.10 and Section 30.3).

24.6.16 Controls for Virtualization Exceptions

On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution
control fields include the following:

® Virtualization-exception information address (64 bits). This field contains the physical address of the
virtualization-exception information area. When a logical processor encounters a virtualization exception,
it saves virtualization-exception information at the virtualization-exception information address; see Section
25.5.6.2.

® EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field
(see Section 25.5.5.3).

24.7 VM-EXIT CONTROL FIELDS

The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section
24.7.2.

24.7.1 VM-Exit Controls

The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-10 lists the
controls supported. See Chapter 27 for complete details of how these controls affect VM exits.

All other bits in this field are reserved, some to O and some to 1. Software should consult the VMX capability MSRs

1IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

Vol. 3C 24-15

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-10. Definitions of VM-Exit Controls

Bit Position(s) | Name Description
2 Save debug This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.
controls The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
9 Host address- On processors that support Intel 64 architecture, this control determines whether a logical
space size processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L,

IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.!
This control must be O on processors that do not support Intel 64 architecture.

12 Load This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.
IA32_PERF_GLOB
AL_CTRL

15 Acknowledge This control affects VM exits due to external interrupts:

interrupt on exit = |f such a VM exit occurs and this control is 1, the logical processor acknowledges the
interrupt controller, acquiring the interrupt's vector. The vector is stored in the VM-exit
interruption-information field, which is marked valid.

= |f such a VM exit occurs and this control is O, the interrupt is not acknowledged and the
VVM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX- This control determines whether the value of the VMX-preemption timer is saved on VM exit.
preemption timer
value

NOTES:

1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CRO.PG and IA32_EFER.LME, and since
CRO.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX operation.

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0-8, 10, 11,
13, 14, 16, and 17. The VMX capability MSR 1A32_VMX_EXIT_CTLS always reports that these bits must be 1.
Logical processors that support the O-settings of any of these bits will support the VMX capability MSR
1A32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs

A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

® VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is
recommended that this count not exceed 512 bytes.! Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.

® VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-store
count. The format of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero, the address

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

24-16 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

must be 16-byte aligned.
Table 24-11. Format of an MSR Entry

Bit Position(s) Contents
31:.0 MSR index
63:32 Reserved
127:64 MSR data

See Section 27.4 for how this area is used on VM exits.
The following VM-exit control fields determine how MSRs are loaded on VM exits:

® VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is
recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.!

® VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load
count (see Table 24-11). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS

The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 24.8.1 through
24.8.3.

24.8.1 VM-Entry Controls

The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12 lists
the controls supported. See Chapter 24 for how these controls affect VM entries.

Table 24-12. Definitions of VM-Entry Controls

Bit Position(s) | Name Description
2 Load debug This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM exit.
controls The first processors to support the virtual-machine extensions supported only the 1-setting of
this control.
9 IA-32e mode guest | On processors that support Intel 64 architecture, this control determines whether the logical
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of
VM entry.1
This control must be 0 on processors that do not support Intel 64 architecture.
10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM)
after VM entry. This control must be O for any VM entry from outside SMM.
11 Deactivate dual- If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section
monitor treatment | 34.15.7). This control must be O for any VM entry from outside SMM.
13 Load This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.
IA32_PERF_GLOBA
L_CTRL
14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.
15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Vol. 3C 24-17

VIRTUAL-MACHINE CONTROL STRUCTURES

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “|A-32e mode guest” VM-entry control
(see Section 27.2).

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
1A32_VMX_ENTRY_CTLS and 1A32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0—-8 and 12.
The VMX capability MSR 1A32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that
support the 0-settings of any of these bits will support the VMX capability MSR 1A32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs

A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this
functionality:

® VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. It is
recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM entry.1

® VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry
MSR-load count. The format of entries is described in Table 24-11. If the VM-entry MSR-load count is not zero,
the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection

VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have
been loaded). This process is called event injection and is controlled by the following three VM-entry control
fields:

® VM-entry interruption-information field (32 bits). This field provides details about the event to be injected.
Table 24-13 describes the field.

Table 24-13. Format of the VM-Entry Interruption-Information Field
Bit Position(s) | Content

7.0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Reserved

2: Non-maskable interrupt (NMI)
3: Hardware exception

4: Software interrupt

5: Privileged software exception
6: Software exception

7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)
30:12 Reserved

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

24-18 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-13. Format of the VM-Entry Interruption-Information Field (Contd.)
Bit Position(s) | Content

31 Valid

— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM
should use the type hardware exception for all exceptions other than breakpoint exceptions (#BP;
generated by INT3) and overflow exceptions (#0OF; generated by INTO); it should use the type software
exception for #BP and #OF. The type other event is used for injection of events that are not delivered
through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on
every VM exit (see Section 27.2).

® VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

® VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on
the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the use of the interruption type
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

249 VM-eXIT INFORMATION FIELDS

The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30).1

24.9.1 Basic VM-Exit Information

The following VM-exit information fields provide basic information about a VM exit:
® Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-14.

Table 24-14. Format of Exit Reason

Bit Position(s) Contents

15:.0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

1. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

Vol. 3C 24-19

VIRTUAL-MACHINE CONTROL STRUCTURES

Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can
happen only for SMM VM exits. See Section 34.15.2.

Because some VM-entry failures load processor state from the host-state area (see Section 26.7), software
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

® Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains
additional information about the cause of VM exits due to the following: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT;
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register accesses;
MOV DR; I/0 instructions; and MWAIT. The format of the field depends on the cause of the VM exit. See Section
27.2.1 for details.

® Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is
used in the following cases:

VM exits due to attempts to execute LMSW with a memory operand.
VM exits due to attempts to execute INS or OUTS.

VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of 1/0
instructions.

Certain VM exits due to EPT violations

See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

® Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigurations.
See Section 27.2.1 for details of when and how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events

Event-specific information is provided for VM exits due to the following vectored events: exceptions (including
those generated by the instructions INT3, INTO, BOUND, and UD2); external interrupts that occur while the
“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information is
provided in the following fields:

® VM-exit interruption information (32 bits). This field receives basic information associated with the event
causing the VM exit. Table 24-15 describes this field.

Table 24-15. Format of the VM-Exit Interruption-Information Field

Bit Position(s) |Content

7.0

Vector of interrupt or exception

108

Interruption type:

0: External interrupt

1: Not used

2: Non-maskable interrupt (NMI)
3: Hardware exception

4 - 5: Not used

6: Software exception

7: Not used

11

Error code valid (0 = invalid; 1 = valid)

12

NMI unblocking due to IRET

30:13

Reserved (cleared to 0)

31

Valid

24-20 Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

® VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have
delivered an error code on the stack, this field receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery

Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.l This
information is provided in the following fields:

® IDT-vectoring information (32 bits). This field receives basic information associated with the event that was
being delivered when the VM exit occurred. Table 24-16 describes this field.

Table 24-16. Format of the IDT-Vectoring Information Field

Bit Position(s) | Content

7.0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Not used

2: Non-maskable interrupt (NMI)
3: Hardware exception

4 Software interrupt

5: Privileged software exception
6: Software exception

7: Not used
11 Error code valid (0 = invalid; 1 = valid)
12 Undefined
30:13 Reserved (cleared to 0)
31 Valid

® IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would
have delivered an error code on the stack, this field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution

The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:

® VM-exitinstruction length (32 bits). For VM exits resulting from instruction execution, this field receives the
length in bytes of the instruction whose execution led to the VM exit.2 See Section 27.2.4 for details of when
and how this field is used.

® VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS,
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section
27.2.4 for details.

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 26.5.1.2.
2. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

3. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

Vol. 3C 24-21

VIRTUAL-MACHINE CONTROL STRUCTURES

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for
VM exits due to SMIs that arrive immediately after retirement of 1/0 instructions. They provide information about
that 1/0 instruction:

® 1/0 RCX. The value of RCX before the 1/0 instruction started.

® 1/0 RSI. The value of RSI before the 1/0 instruction started.

® 1/0 RDI. The value of RDI before the 1/0 instruction started.

® 1/0 RIP. The value of RIP before the 1/0 instruction started (the RIP that addressed the 1/0 instruction).

24.9.5 VM-Instruction Error Field

The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of
one of the VMX instructions.

24.10 VMCS TYPES: ORDINARY AND SHADOW

Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS'’s type is determined by the shadow-VMCS
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): O
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:

® An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when
the current VMCS is a shadow VMCS fail (see Section 26.1).

® The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but
not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

24.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES

This section details guidelines that software should observe when using a VMCS and related structures. It also
provides descriptions of consequences for failing to follow guidelines.

24.11.1 Software Use of Virtual-Machine Control Structures

To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more
than one logical processor may become corrupted (see below).

24-22 \Vol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see
Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary
memory operations, in part because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data
using ordinary memory operations:

® Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS.
Results may vary from time to time or from logical processor to logical processor.

® Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS.
Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause
the VMCS'’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any
logical processor. The following items detail some hazards of VMCS corruption:

® VM entries may fail for unexplained reasons or may load undesired processor state.

® The processor may not correctly support VMX non-root operation as documented in Chapter 27 and may
generate unexpected VM exits.

® VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor
to transition to a shutdown state.

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields

Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given,
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields
and their function in the VMCS. See Table 24-17.

Table 24-17. Structure of VMCS Component Encoding

Bit Position(s) Contents
0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields
9:1 Index
11:10 Type:
0: control
1: VM-exit information
2: guest state
3: host state

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.

Vol. 3C 24-23

VIRTUAL-MACHINE CONTROL STRUCTURES

Table 24-17. Structure of VMCS Component Encoding (Contd.)

Bit Position(s) Contents
12 Reserved (must be Q)
14:13 Width:

0: 16-bit

1: 64-bit

2: 32-bit

3: natural-width
31:15 Reserved (must be 0)

The following items detail the meaning of the bits in each encoding:

Field width. Bits 14:13 encode the width of the field.
— A value of 0 indicates a 16-bit field.
— Avalue of 1 indicates a 64-bit field.
— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high
32 bits of the field. See below.

Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information.
(The last category also includes the VM-instruction error field.)

Index. Bits 9:1 distinguish components with the same field width and type.

Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A
VMREAD or VMWRITE using an encoding with this bit cleared to O accesses the entire field. For a 64-bit field
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and
access type:

16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination
operand are cleared to O.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source
operand are not used.

32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32
of the destination operand are cleared to O.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode,
bits 63:32 of the source operand are not used.

64-bit fields and natural-width fields using the full access type outside 1A-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.

64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support
Intel 64 architecture).

24-24 \ol.3C

VIRTUAL-MACHINE CONTROL STRUCTURES

— A VMREAD returns the value of the field in bits 63:0 of the destination operand
— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
® 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit
mode, bits 63:32 of the destination operand are cleared to O.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode,
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside 1A-32e mode can use VMREAD with the full access type (reading
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two
VMREAD executions is not important. Software seeking to modify a 64-bit field outside 1A-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use
VMWRITE with the high access type (establishing bits 63:32 of the field).

24.11.3 Initializing a VMCS

Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to
unitize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this
includes a VMCS’s launch state (see Section 24.1). Such information may be stored in the VMCS data portion of a
VMCS region. Because the format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the processor will determine this
information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in
the VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, soft-
ware should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for
the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
® VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.

® VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that
VMCS.

® VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR
for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from
one logical processor to another requires use of VMCLEAR (see Section 24.11.1), which sets the launch state of the
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS
from one logical processor to another.

24.11.4 Software Access to Related Structures

In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are
referenced by pointers in a VMCS (for example, the 1/0 bitmaps). While the pointers to these data structures are
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior
(including behaviors identified in Section 24.11.1).

Vol. 3C 24-25

VIRTUAL-MACHINE CONTROL STRUCTURES

24.11.5 VMXON Region

Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:

® The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
®* The VMXON pointer must not set any bits beyond the processor’s physical-address width.2-3

Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the VMXON
region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software should
use a separate region for each logical processor and should not access or modify the VMXON region of a logical
processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to unpre-
dictable behavior (including behaviors identified in Section 24.11.1).

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. IfIA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.

24-26 Vol.3C

CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized
environment. This chapter describes the differences between VMX non-root operation and ordinary processor oper-
ation with special attention to causes of VM exits (which bring a logical processor from VMX non-root operation to
root operation). The differences between VMX non-root operation and ordinary processor operation are described
in the following sections:

® Section 25.1, “Instructions That Cause VM Exits”

® Section 25.2, “Other Causes of VM Exits”

® Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
® Section 25.4, “Other Changes in VMX Non-Root Operation”

® Section 25.5, “Features Specific to VMX Non-Root Operation”

® Section 25.6, “Unrestricted Guests”

Chapter 26, “VM Entries,” describes the data control structures that govern VMX non-root operation. Chapter 26,
“VM Entries,” describes the operation of VM entries by which the processor transitions from VMX root operation to
VMX non-root operation. Chapter 25, “VMX Non-Root Operation,” describes the operation of VM exits by which the
processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in VMX
non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that support virtu-
alization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS

Certain instructions may cause VM exits if executed in VMX non-root operation. Unless otherwise specified, such
VM exits are “fault-like,” meaning that the instruction causing the VM exit does not execute and no processor state
is updated by the instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions subject to both. Section
25.1.2 identifies instructions that cause VM exits whenever they are executed in VMX non-root operation (and thus
can never be executed in VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 24.6).

25.1.1 Relative Priority of Faults and VM Exits

The following principles describe the ordering between existing faults and VM exits:

® Certain exceptions have priority over VM exits. These include invalid-opcode exceptions, faults based on
privilege level,! and general-protection exceptions that are based on checking 1/0 permission bits in the task-
state segment (TSS). For example, execution of RDMSR with CPL = 3 generates a general-protection exception
and not a VM exit.?

® Faults incurred while fetching instruction operands have priority over VM exits that are conditioned based on
the contents of those operands (see LMSW in Section 25.1.3).

® VM exits caused by execution of the INS and OUTS instructions (resulting either because the “unconditional 1/0
exiting” VM-execution control is 1 or because the “use 1/0 bitmaps control is 1) have priority over the following
faults:

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instructions that are not recognized in that
mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.

Vol. 3C 25-1

VMX NON-ROOT OPERATION

— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS unless overridden by an
instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment
— An alignment-check exception

® Fault-like VM exits have priority over exceptions other than those mentioned above. For example, RDMSR of a
non-existent MSR with CPL = O generates a VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that may lead to a VM exit, it is
assumed that the instruction does not incur a fault that takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally

The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,t
INVD, and XSETBYV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID,
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally

Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:

® CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CRO.TS) are set in both
the CRO guest/host mask and the CRO read shadow.

® HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.

® IN, INS/INSB/INSW/INSD, OUT, OUTS/0UTSB/0OUTSW/OUTSD. The behavior of each of these instruc-
tions is determined by the settings of the “unconditional 1/0 exiting” and “use 1/0 bitmaps” VM-execution
controls:

— If both controls are O, the instruction executes normally.

— If the “unconditional 1/0 exiting” VM-execution control is 1 and the “use 1/0 bitmaps” VM-execution control
is 0, the instruction causes a VM exit.

— If the “use 1/0 bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access
an 1/0 port corresponding to a bit set to 1 in the appropriate 1/0 bitmap (see Section 24.6.4). If an 1/0
operation “wraps around” the 16-bit 1/0-port space (accesses ports FFFFH and O000H), the 1/0 instruction
causes a VM exit (the “unconditional 1/0 exiting” VM-execution control is ignored if the “use 1/0 bitmaps”
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by
the INS and OUTS instructions.

® INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.

® INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID”
VM-execution controls are both 1.3

® LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-table
exiting” VM-execution control is 1.4

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or RAX.
An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside SMM.
See Section 34.15.2.

3. “Enable INVPCID" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VMX non-root operation functions as if the “enable INVPCID” VM-execution control were 0. See Section 24.6.2.

4, "Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the pr