
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3C:
System Programming Guide, Part 3

NOTE: The Intel® 64 and IA-32 Architectures Software Developer's Manual
consists of seven volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-L, Order Number 253666; Instruction Set
Reference M-Z, Order Number 253667; Instruction Set Reference, Order
Number 326018; System Programming Guide, Part 1, Order Number
253668; System Programming Guide, Part 2, Order Number 253669;
System Programming Guide, Part 3, Order Number 326019. Refer to all
seven volumes when evaluating your design needs.

Order Number: 326019-043US
May 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUB-
CONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING
OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARIS-
ING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUB-
CONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR
ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software
to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For
availability, consult your reseller or system manufacturer. For more information, see http://software.in-
tel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors.
Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary
depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and
virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hard-
ware and software configurations. Software applications may not be compatible with all operating systems.
Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Per-
formance will vary depending on the specific hardware and software you use. Consult your PC manufacturer
for more information. For more information, visit http://www.intel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core
2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation. All rights reserved.
ii Vol. 3C

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system
programming considerations are described in chapters of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

23.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on
IA-32 processors. Two principal classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control

of the processor(s) and other platform hardware. A VMM presents guest software
(see next paragraph) with an abstraction of a virtual processor and allows it to
execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment
that supports a stack consisting of operating system (OS) and application
software. Each operates independently of other virtual machines and uses on the
same interface to processor(s), memory, storage, graphics, and I/O provided by
a physical platform. The software stack acts as if it were running on a platform
with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

23.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation
called VMX operation. There are two kinds of VMX operation: VMX root operation and
VMX non-root operation. In general, a VMM will run in VMX root operation and guest
software will run in VMX non-root operation. Transitions between VMX root operation
and VMX non-root operation are called VMX transitions. There are two kinds of VMX
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.
Vol. 3C 23-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
Processor behavior in VMX root operation is very much as it is outside VMX operation.
The principal differences are that a set of new instructions (the VMX instructions) is
available and that the values that can be loaded into certain control registers are
limited (see Section 23.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate
virtualization. Instead of their ordinary operation, certain instructions (including the
new VMCALL instruction) and events cause VM exits to the VMM. Because these
VM exits replace ordinary behavior, the functionality of software in VMX non-root
operation is limited. It is this limitation that allows the VMM to retain control of
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is
in VMX non-root operation. This fact may allow a VMM to prevent guest software from
determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current
privilege level (CPL) 0, guest software can run at the privilege level for which it was
originally designed. This capability may simplify the development of a VMM.

23.4 LIFE CYCLE OF VMM SOFTWARE
Figure 23-1 illustrates the life cycle of a VMM and its guest software as well as the
interactions between them. The following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a

time). The VMM effects a VM entry using instructions VMLAUNCH and
VMRESUME; it regains control using VM exits.

• VM exits transfer control to an entry point specified by the VMM. The VMM can
take action appropriate to the cause of the VM exit and can then return to the
virtual machine using a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It
does so by executing the VMXOFF instruction.
23-2 Vol. 3C

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
23.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit
address of the VMCS. The VMCS pointer is read and written using the instructions
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE,
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM could
use a different VMCS for each virtual processor.

23.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of
VMX support in the processor. System software can determine whether a processor
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX
operation is supported. See Chapter 3, “Instruction Set Reference, A-L” of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is
reported to software using a set of VMX capability MSRs (see Appendix A, “VMX
Capability Reporting Facility”).

Figure 23-1. Interaction of a Virtual-Machine Monitor and Guests

VM Monitor

Guest 0 Guest 1

VM Exit VM ExitVM Entry

VMXOFFVMXON
Vol. 3C 23-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
23.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see
Section 23.8). System software leaves VMX operation by executing the VMXOFF
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH).
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the
MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection

exception. If the lock bit is set, WRMSR to this MSR causes a general-protection
exception; the MSR cannot be modified until a power-up reset condition. System
BIOS can use this bit to provide a setup option for BIOS to disable support for
VMX. To enable VMX support in a platform, BIOS must set bit 1, bit 2, or both
(see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of
VMXON in SMX operation causes a general-protection exception. Attempts to set
this bit on logical processors that do not support both VMX operation (see Section
23.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B)
cause general-protection exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of
VMXON outside SMX operation causes a general-protection exception. Attempts
to set this bit on logical processors that do not support VMX operation (see
Section 23.6) cause general-protection exceptions.

NOTE
A logical processor is in SMX operation if GETSEC[SEXIT] has not
been executed since the last execution of GETSEC[SENTER]. A logical
processor is outside SMX operation if GETSEC[SENTER] has not been
executed or if GETSEC[SEXIT] was executed after the last execution
of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region
of memory that a logical processor may use to support VMX operation.1 This region
is called the VMXON region. The address of the VMXON region (the VMXON pointer)

1. Future processors may require that a different amount of memory be reserved. If so, this fact is
reported to software using the VMX capability-reporting mechanism.
23-4 Vol. 3C

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
is provided in an operand to VMXON. Section 24.10.5, “VMXON Region,” details how
software should initialize and access the VMXON region.

23.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific

values and not support other values. VMXON fails if any of these bits contains an
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 29 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
Any attempt to set one of these bits to an unsupported value while in VMX
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV
CR instructions causes a general-protection exception. VM entry or VM exit
cannot set any of these bits to an unsupported value.2

NOTES
The first processors to support VMX operation require that the
following bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and
CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX
operation is supported only in paged protected mode (including
IA-32e mode). Therefore, guest software cannot be run in unpaged
protected mode or in real-address mode. See Section 30.2,
“Supporting Processor Operating Modes in Guest Environments,” for
a discussion of how a VMM might support guest software that expects
to run in unpaged protected mode or in real-address mode.
Later processors support a VM-execution control called “unrestricted
guest” (see Section 24.6.2). If this control is 1, CR0.PE and CR0.PG
may be 0 in VMX non-root operation (even if the capability MSR
IA32_VMX_CR0_FIXED0 reports otherwise).3 Such processors allow
guest software to run in unpaged protected mode or in real-address
mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” in Chapter 29 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C). Once the processor is in VMX operation, A20M

2. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and
IA32_VMX_CR0_FIXED1 to determine how bits in CR0 are set. (see Appendix A.7). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 (see Appendix A.8).

3. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 23-5

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX
operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation.
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see
Section 25.3, “Other Causes of VM Exits”).
23-6 Vol. 3C

CHAPTER 24
VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while
it is in VMX operation. These manage transitions into and out of VMX non-root oper-
ation (VM entries and VM exits) as well as processor behavior in VMX non-root oper-
ation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD,
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM can
use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is
called the VMCS region.1 Software references a specific VMCS using the 64-bit
physical address of the region (a VMCS pointer). VMCS pointers must be aligned on
a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits
beyond the processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor
may optimize VMX operation by maintaining the state of an active VMCS in memory,
on the processor, or both. At any given time, at most one of the active VMCSs is the
current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions
operate only on the current VMCS.

The following items describe how a logical processor determines which VMCSs are
active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After

execution of the instruction, that VMCS is both active and current on the logical
processor. Any other VMCS that had been active remains so, but no other VMCS
is current.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS.
After execution of the instruction, that VMCS is neither active nor current on the

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see
Appendix A.1.
Vol. 3C 24-1

VIRTUAL-MACHINE CONTROL STRUCTURES
logical processor. If the VMCS had been current on the logical processor, the
logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is
no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used
with that VMCS: the VMLAUNCH instruction requires a VMCS whose launch state is
“clear”; the VMRESUME instruction requires a VMCS whose launch state is
“launched”. A logical processor maintains a VMCS’s launch state in the corresponding
VMCS region. The following items describe how a logical processor manages the
launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the

VMLAUNCH instruction changes the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After

execution of the instruction, the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be

modified using VMWRITE) and there is no direct way to discover it (it cannot be
read using VMREAD).

Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS
and “Y” to refer to any other VMCS. Thus: “VMPTRLD X” always makes X current and
active; “VMPTRLD Y” always makes X not current (because it makes Y current);
VMLAUNCH makes the launch state of X “launched” if X was current and its launch
state was “clear”; and VMCLEAR X always makes X inactive and not current and
makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative
to these parameters (e.g., execution of VMPTRLD X when X is already current). Note
that VMCLEAR X makes X “inactive, not current, and clear,” even if X’s current state
is not defined (e.g., even if X has not yet been initialized). See Section 24.10.3.
24-2 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
24.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in
Table 24-1.

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS

Figure 24-1. States of VMCS X

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

Table 24-1. Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

Active
Not Current

Clear

Active
Current
Clear

Inactive
Not Current

Clear

Active
Not Current
Launched

Active
Current

Launched

VM
PTRLD X

VM
CLEAR X

VMLAUNCH

VM
CLEAR X

VMCLEAR XVMCLEAR X

VMCLEAR X

Anything
Else

V
M

P
T

R
L

D
 X

V
M

P
T

R
L

D
 Y

V
M

P
T

R
L

D
 X

V
M

P
T

R
L

D
 Y
Vol. 3C 24-3

VIRTUAL-MACHINE CONTROL STRUCTURES
revision identifiers. These identifiers enable software to avoid using a VMCS region
formatted for one processor on a processor that uses a different format.1

Software should write the VMCS revision identifier to the VMCS region before using
that region for a VMCS. The VMCS revision identifier is never written by the
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS
revision identifier differs from that used by the processor. Software can discover the
VMCS revision identifier that a processor uses by reading the VMX capability MSR
IA32_VMX_BASIC (see Appendix A, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The
contents of these bits do not control processor operation in any way. A logical
processor writes a non-zero value into these bits if a VMX abort occurs (see Section
27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS
that control VMX non-root operation and the VMX transitions). The format of these
data is implementation-specific. VMCS data are discussed in Section 24.3 through
Section 24.9. To ensure proper behavior in VMX operation, software should maintain
the VMCS region and related structures (enumerated in Section 24.10.4) in
writeback cacheable memory. Future implementations may allow or require a
different memory type2. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on

VM exits and loaded from there on VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX

non-root operation. They determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and

describe the cause and the nature of VM exits. They are read-only.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS
regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type.
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions
using those structures to suffer significantly. In addition, the processor will continue to use the
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in
Appendix A.1.
24-4 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
The VM-execution control fields, the VM-exit control fields, and the VM-entry control
fields are sometimes referred to collectively as VMX controls.

24.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM entry (see Section
26.3.2) and stored into these fields on every VM exit (see Section 27.3).

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do

not support Intel 64 architecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64

architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support

Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture). The base-address fields for CS, SS, DS, and ES have only 32
architecturally-defined bits; nevertheless, the corresponding VMCS fields
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and
detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit
segment descriptor. While bits 19:16 of code-segment and data-segment
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
Vol. 3C 24-5

VIRTUAL-MACHINE CONTROL STRUCTURES
• Bit 16 indicates an unusable segment. Attempts to use such a segment
fault except in 64-bit mode. In general, a segment register is unusable if
it has been loaded with a null selector.1

• Bits 31:17 are reserved.

The base address, segment limit, and access rights compose the “hidden” part
(or “descriptor cache”) of each segment register. These data are included in the
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT)
referenced by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current
privilege level (CPL).2

• The following fields for each of the registers GDTR and IDTR:

1. There are a few exceptions to this statement. For example, a segment with a non-null selector
may be unusable following a task switch that fails after its commit point; see “Interrupt
10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt Handling in 64-bit
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In
contrast, the TR register is usable after processor reset despite having a null selector; see Table
10-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved
24-6 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are
specified as only 16 bits in the architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL”
VM-entry control.

— IA32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-entry control or that
of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_EFER” VM-entry control or that
of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the
logical processor’s SMRAM image.

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state.

When a logical processor is executing instructions normally, it is in the active
state. Execution of certain instructions and the occurrence of certain events may
cause a logical processor to transition to an inactive state in which it ceases to
execute instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT
instruction.

2. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL
fields are not meaningful in real-address mode or in virtual-8086 mode.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However,
this VMCS field never reflects this state. See Section 27.1.
Vol. 3C 24-7

VIRTUAL-MACHINE CONTROL STRUCTURES
— 2: Shutdown. The logical processor is inactive because it incurred a triple
fault1 or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a
startup-IPI (SIPI).

Future processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine
what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that
permit certain events to be blocked for a period of time. This field contains
information about such blocking. Details and the format of this field are given in
Table 24-3.

1. A triple fault occurs when a logical processor encounters an exception while attempting to
deliver a double fault.

Table 24-3. Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and,
optionally, other events) for one instruction after its
execution. Setting this bit indicates that this blocking is in
effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop
a Value from the Stack” sections in Chapter 4 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual,
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that
the blocking of all these events is in effect. This document
uses the term “blocking by MOV SS,” but it applies equally to
POP SS.

2 Blocking by SMI See Section 33.2. System-management interrupts (SMIs) are
disabled while the processor is in system-management mode
(SMM). Setting this bit indicates that blocking of SMIs is in
effect.
24-8 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
• Pending debug exceptions (64 bits; 32 bits on processors that do not support
Intel 64 architecture). IA-32 processors may recognize one or more debug
exceptions without immediately delivering them.1 This field contains information
about such exceptions. This field is described in Table 24-4.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A and Section 33.8.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until the
next execution of IRET. See Section 25.4 for how this
behavior of IRET may change in VMX non-root operation.
Setting this bit indicates that blocking of NMIs is in effect.
Clearing this bit does not imply that NMIs are not
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section
24.6.1) is 1, this bit does not control the blocking of NMIs.
Instead, it refers to “virtual-NMI blocking” (the fact that guest
software is not ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one
instruction. See Section 6.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may
take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4. Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O
breakpoint was met and was enabled in DR7.

Table 24-3. Format of Interruptibility State (Contd.)

Bit
Position(s)

Bit Name Notes
Vol. 3C 24-9

VIRTUAL-MACHINE CONTROL STRUCTURES
• VMCS link pointer (64 bits). This field is included for future expansion. Software
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see
Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on logical
processors that support the 1-setting of the “activate VMX-preemption timer”
VM-execution control. This field contains the value that the VMX-preemption
timer will use following the next VM entry with that setting. See Section 25.7.1
and Section 26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4)
fields (PDPTE0, PDPTE1, PDPTE2, and PDPTE3) are supported only on logical
processors that support the 1-setting of the “enable EPT” VM-execution control.
They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A). They are used only if the “enable EPT” VM-execution control
is 1.

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM exit (see Section
27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel

64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64

architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS,

and TR. There is no field in the host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on

processors that do not support Intel 64 architecture).

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.
Bits 63:32 exist only on processors that support Intel 64
architecture.

Table 24-4. Format of Pending-Debug-Exceptions (Contd.)

Bit
Position(s)

Bit Name Notes
24-10 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL”
VM-exit control.

— IA32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded
with fixed values on every VM exit; there are no fields corresponding to these compo-
nents in the host-state area. See Section 27.5 for details of how state is loaded on
VM exits.

24.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described
in Section 24.6.1 through Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the
handling of asynchronous events (for example: interrupts).1 Table 24-5 lists the
controls. See Chapter 25 for how these controls affect processor behavior in VMX
non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 25.3).
Vol. 3C 24-11

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PINBASED_CTLS and
IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 2, and 4. The VMX capability MSR IA32_VMX_PINBASED_CTLS will
always report that these bits must be 1. Logical processors that support the 0-
settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to
discover support for the 0-settings of these bits. Software that is not aware of the
functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that
govern the handling of synchronous events, mainly those caused by the execution of
specific instructions.1 These are the primary processor-based VM-execution
controls and the secondary processor-based VM-execution controls.

Table 24-5. Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits.
Otherwise, they are delivered normally through the guest
interrupt-descriptor table (IDT). If this control is 1, the value
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause
VM exits. Otherwise, they are delivered normally using
descriptor 2 of the IDT. This control also determines
interactions between IRET and blocking by NMI (see Section
25.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking
by NMI” bit (bit 3) in the interruptibility-state field indicates
“virtual-NMI blocking” (see Table 24-3). This control also
interacts with the “NMI-window exiting” VM-execution
control (see Section 24.6.2).

This control can be set only if the “NMI exiting” VM-execution
control (above) is 1.

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in
VMX non-root operation; see Section 25.7.1. A VM exit occurs
when the timer counts down to zero; see Section 25.3.
24-12 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25
for more details of how these controls affect processor behavior in VMX non-root
operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 25.1.2), as do task switches (see Section 25.3).

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking
of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC,
executions of RDTSCP, and executions of RDMSR that read
from the IA32_TIME_STAMP_COUNTER MSR return a value
modified by the TSC offset field (see Section 24.6.5 and
Section 25.4).

7 HLT exiting This control determines whether executions of HLT cause
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and
RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section
24.6.7), this control determines whether executions of MOV
to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

16 CR3-store exiting This control determines whether executions of MOV from
CR3 cause VM exits.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8
cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.
Vol. 3C 24-13

VIRTUAL-MACHINE CONTROL STRUCTURES
20 CR8-store exiting This control determines whether executions of MOV from
CR8 cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-
APIC address. See Section 25.4.

This control must be 0 on processors that do not support
Intel 64 architecture.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if there is no virtual-NMI blocking (see Section
24.4.2).

This control can be set only if the “virtual NMIs” VM-execution
control (see Section 24.6.1) is 1.

23 MOV-DR exiting This control determines whether executions of MOV DR
cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O
instructions (IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use I/O bitmaps” control is 1.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to
restrict executions of I/O instructions (see Section 24.6.4 and
Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1”
means “use I/O bitmaps.” If the I/O bitmaps are used, the
setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is
enabled. See Section 25.7.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions (see
Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used,
all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR
cause VM exits.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
24-14 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and
IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 4–6, 8, 13–16, and 26. The VMX capability MSR
IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. Logical
processors that support the 0-settings of any of these bits will support the VMX capa-
bility MSR IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult
this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether
the secondary processor-based VM-execution controls are used. If that bit is 0,
VM entry and VMX non-root operation function as if all the secondary processor-
based VM-execution controls were 0. Processors that support only the 0-setting of
bit 31 of the primary processor-based VM-execution controls do not support the
secondary processor-based VM-execution controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter
25 for more details of how these controls affect processor behavior in VMX non-root
operation.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-
based VM-execution controls are used. If this control is 0, the
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, a VM exit occurs on any attempt to access
data on the page with the APIC-access address. See Section
25.2.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled.
See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT,
LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-
opcode exception (#UD).

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
Vol. 3C 24-15

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which
bits may be set to 1. Failure to clear reserved bits causes subsequent VM entries to
fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception.
When an exception occurs, its vector is used to select a bit in this field. If the bit is 1,
the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by
bit 14 in the exception bitmap as well as the error code produced by the page fault
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 25.3 for details.

24.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O
bitmaps A and B (each of which are 4 KBytes in size). I/O bitmap A contains one bit

4 Virtualize x2APIC
mode

Setting this control to 1 causes RDMSR and WRMSR to MSR
808H to use the TPR shadow, which is maintained on the
virtual-APIC page. See Section 25.4.

5 Enable VPID If this control is 1, cached translations of linear addresses are
associated with a virtual-processor identifier (VPID). See
Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD
cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in
unpaged protected mode or in real-address mode.

10 PAUSE-loop exiting This control determines whether a series of executions of
PAUSE can cause a VM exit (see Section 24.6.13 and Section
25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND
cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes an
invalid-opcode exception (#UD).

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC
instruction in VMX non-root operation. See Section 25.7.4.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
24-16 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
for each I/O port in the range 0000H through 7FFFH; I/O bitmap B contains bits for
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is
1. If the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit
in the I/O bitmaps corresponding to a port it accesses is 1. See Section 25.1.3 for
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting”
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of
the RDTSC and RDTSCP instructions. It also controls executions of the RDMSR
instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these,
the signed value of the TSC offset is combined with the contents of the time-stamp
counter (using signed addition) and the sum is reported to guest software in
EDX:EAX. See Chapter 25 for a detailed treatment of the behavior of RDTSC,
RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the
CR0 and CR4 registers. These fields control executions of instructions that access
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing

from the corresponding bits in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the

corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify
them succeed and guest reads return values for these bits from the control register
itself.

See Chapter 25 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its
source operand matches one of these values. If the CR3-target count is n, only the
Vol. 3C 24-17

VIRTUAL-MACHINE CONTROL STRUCTURES
first n CR3-target values are considered; if the CR3-target count is 0, MOV to CR3
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values.
VM entry fails (see Section 26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software
should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to deter-
mine the number of values supported.

24.6.8 Controls for APIC Accesses
There are three mechanisms by which software accesses registers of the logical
processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to

addresses in the 4-KByte page referenced by the physical address in the
IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A
and Intel® 64 Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers
using the RDMSR and WRMSR instructions (see Intel® 64 Architecture Processor
Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using
the MOV CR8 instruction.

There are three processor-based VM-execution controls (see Section 24.6.2) that
control such accesses. There are “use TPR shadow”, “virtualize APIC accesses”, and
“virtualize x2APIC mode”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the

4-KByte APIC-access page. If the “virtualize APIC accesses” VM-execution
control is 1, operations that access this page may cause VM exits. See Section
25.2 and Section 25.5.
The APIC-access address exists only on processors that support the 1-setting of
the “virtualize APIC accesses” VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the
4-KByte virtual-APIC page.
If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
be 4-KByte aligned. The virtual-APIC page is accessed by the following
operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CR8 instructions (see Section 25.1.3 and Section 25.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize
APIC accesses” VM-execution control is 1 (see Section 25.5.3).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
24-18 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— The RDMSR and WRMSR instructions if, in addition, the value of ECX is 808H
(indicating the TPR MSR) and the “virtualize x2APIC mode” VM-execution
control is 1 (see Section 25.4).

The virtual-APIC address exists only on processors that support the 1-setting of
the “use TPR shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below
which the TPR shadow (bits 7:4 of byte 80H of the virtual-APIC page) cannot fall.
A VM exit occurs after an operation (e.g., an execution of MOV to CR8) that
reduces the TPR shadow below this value. See Section 25.4 and Section 25.5.3.
The TPR threshold exists only on processors that support the 1-setting of the
“use TPR shadow” VM-execution control.

24.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution
control, the VM-execution control fields include the 64-bit physical address of four
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist
on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains

one bit for each MSR address in the range 00000000H to 00001FFFH. The bit
determines whether an execution of RDMSR applied to that MSR causes a
VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024).
This contains one bit for each MSR address in the range C0000000H
toC0001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048).
This contains one bit for each MSR address in the range 00000000H to
00001FFFH. The bit determines whether an execution of WRMSR applied to that
MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072).
This contains one bit for each MSR address in the range C0000000H
toC0001FFFH. The bit determines whether an execution of WRMSR applied to
that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is
1. See Section 25.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.
Vol. 3C 24-19

VIRTUAL-MACHINE CONTROL STRUCTURES
24.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of
system-management interrupts (SMIs) and system-management mode (SMM). SMM
VM exits save this field as described in Section 33.15.2. VM entries that return from
SMM use this field as described in Section 33.15.4.

24.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT
PML4 table (see Section 28.2.2), as well as other EPT configuration information. The
format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT”
VM-execution control.

Table 24-8. Format of Extended-Page-Table Pointer

Bit Position(s) Field

2:0 EPT paging-structure memory type (see Section 28.2.5):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to

determine what EPT paging-structure memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section
28.2.4)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capa-
bility MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor
supports this feature.

11:7 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table3

3. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

63:N Reserved
24-20 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
24.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on proces-
sors that support the 1-setting of the “enable VPID” VM-execution control. See
Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution
control, the VM-execution control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of

time between two successive executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the

amount of time a guest is allowed to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the
timestamp counter (TSC). See Section 25.1.3 for more details regarding PAUSE-loop
exiting.

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the
VMFUNC instruction in VMX non-root operation. This field is supported only on
processors that support the 1-settings of both the “activate secondary controls”
primary processor-based VM-execution control and the “enable VM functions”
secondary processor-based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.7.4 for more details of how
these controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_VMFUNC (see Appendix A.11) to determine which bits are
reserved. Failure to clear reserved bits causes subsequent VM entries to fail (see
Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control
also support a 64-bit field called the EPTP-list address. This field contains the phys-
ical address of the 4-KByte EPTP list. The EPTP list comprises 512 8-Byte entries
(each an EPTP value) and is used by the EPTP-switching VM function (see Section
25.7.4.3).

Table 24-9. Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to
a value chosen from the EPTP list. See Section 25.7.4.3.
Vol. 3C 24-21

VIRTUAL-MACHINE CONTROL STRUCTURES
24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in
Section 24.7.1 and Section 24.7.2.

24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of
VM exits. Table 24-10 lists the controls supported. See Chapter 27 for complete
details of how these controls affect VM exits.

Table 24-10. Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug
controls

This control determines whether DR7 and the
IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this
control determines whether a logical processor is in 64-bit
mode after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support
Intel 64 architecture.

12 Load
IA32_PERF_GLOB
AL_CTRL

This control determines whether the
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical
processor acknowledges the interrupt controller,
acquiring the interrupt’s vector. The vector is stored in
the VM-exit interruption-information field, which is
marked valid.

• If such a VM exit occurs and this control is 0, the
interrupt is not acknowledged and the VM-exit
interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is
saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is
loaded on VM exit.
24-22 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_EXIT_CTLS and
IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8, 10, 11, 13, 14, 16, and 17. The VMX capability MSR
IA32_VMX_EXIT_CTLS always reports that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover
support for the 0-settings of these bits. Software that is not aware of the functionality
of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following
VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to
be stored on VM exit. It is recommended that this count not exceed 512 bytes.1
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-store count. The format

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is
saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM exit.

22 Save VMX-
preemption timer
value

This control determines whether the value of the VMX-
preemption timer is saved on VM exit.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is
always identical to IA32_EFER.LME in VMX operation.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-10. Definitions of VM-Exit Controls (Contd.)

Bit Position(s) Name Description
Vol. 3C 24-23

VIRTUAL-MACHINE CONTROL STRUCTURES
of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero,
the address must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to

be loaded on VM exit. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.1

• VM-exit MSR-load address (64 bits). This field contains the physical address of
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-load count (see
Table 24-11). If the VM-exit MSR-load count is not zero, the address must be
16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in
Sections 24.8.1 through 24.8.3.

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation
of VM entries. Table 24-12 lists the controls supported. See Chapter 26 for how these

Table 24-11. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).
24-24 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_ENTRY_CTLS and
IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8 and 12. The VMX capability MSR IA32_VMX_ENTRY_CTLS always
reports that these bits must be 1. Logical processors that support the 0-settings of
any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the 0-settings of

Table 24-12. Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug
controls

This control determines whether DR7 and the
IA32_DEBUGCTL MSR are loaded on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control
determines whether the logical processor is in IA-32e mode
after VM entry. Its value is loaded into IA32_EFER.LMA as
part of VM entry.1

This control must be 0 on processors that do not support
Intel 64 architecture.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting

of the “unrestricted guest” VM-execution control. If it is read as 1, every VM exit stores the value of
IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control (see Section 27.2).

10 Entry to SMM This control determines whether the logical processor is in
system-management mode (SMM) after VM entry. This
control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect
after the VM entry (see Section 33.15.7). This control must
be 0 for any VM entry from outside SMM.

13 Load
IA32_PERF_GLOBA
L_CTRL

This control determines whether the
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded
on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM entry.
Vol. 3C 24-25

VIRTUAL-MACHINE CONTROL STRUCTURES
these bits. Software that is not aware of the functionality of any one of these bits
should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to

be loaded on VM entry. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-entry MSR-load count. The
format of entries is described in Table 24-11. If the VM-entry MSR-load count is
not zero, the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after
all guest state and MSRs have been loaded). This process is called event injection
and is controlled by the following three VM-entry control fields:
• VM-entry interruption-information field (32 bits). This field provides details

about the event to be injected. Table 24-13 describes the field.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-13. Format of the VM-Entry Interruption-Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event
24-26 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— The vector (bits 7:0) determines which entry in the IDT is used or which
other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for
all exceptions other than breakpoint exceptions (#BP; generated by INT3)
and overflow exceptions (#OF; generated by INTO); it should use the type
software exception for #BP and #OF. The type other event is used for
injection of events that are not delivered through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether
delivery pushes an error code on the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit
in this field is cleared on every VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the
VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is
software interrupt, software exception, or privileged software exception, this
field is used to determine the value of RIP that is pushed on the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

24.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 29 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

Table 24-13. Format of the VM-Entry Interruption-Information Field (Contd.)
Bit
Position(s)

Content
Vol. 3C 24-27

VIRTUAL-MACHINE CONTROL STRUCTURES
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the
structure given in Table 24-14.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is
clear) or of the VM-entry failure (if bit 31 is set). Appendix C enumerates the
basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 33.15.2) that took priority
over an MTF VM exit (see Section 25.7.2) that would have occurred had the
SMM VM exit not occurred. See Section 33.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time
the VM exit occurred. This can happen only for SMM VM exits. See Section
33.15.2.

— Because some VM-entry failures load processor state from the host-state
area (see Section 26.7), software must be able to distinguish such cases from
true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64
architecture). This field contains additional information about the cause of
VM exits due to the following: debug exceptions; page-fault exceptions; start-up
IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE;
VMXON; control-register accesses; MOV DR; I/O instructions; and MWAIT. The
format of the field depends on the cause of the VM exit. See Section 27.2.1 for
details.

• Guest-linear address (64 bits; 32 bits on processors that do not support
Intel 64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

Table 24-14. Format of Exit Reason

Bit
Position(s)

Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
24-28 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 33.15.2.3 for details of when and how this field is
used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT
violations and EPT misconfigurations. See Section 27.2.1 for details of when and
how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information
is provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic

information associated with the event causing the VM exit. Table 24-15 describes
this field.

• VM-exit interruption error code (32 bits). For VM exits caused by hardware
exceptions that would have delivered an error code on the stack, this field
receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

Table 24-15. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid
Vol. 3C 24-29

VIRTUAL-MACHINE CONTROL STRUCTURES
24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in
VMX non-root operation.1 This information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information

associated with the event that was being delivered when the VM exit occurred.
Table 24-16 describes this field.

• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of
hardware exceptions that would have delivered an error code on the stack, this
field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain
instructions in VMX non-root operation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction

execution, this field receives the length in bytes of the instruction whose
execution led to the VM exit.2 See Section 27.2.4 for details of when and how this
field is used.

1. This includes cases in which the event delivery was caused by event injection as part of
VM entry; see Section 26.5.1.2.

Table 24-16. Format of the IDT-Vectoring Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid
24-30 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
• VM-exit instruction information (32 bits). This field is used for VM exits due
to attempts to execute INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS,
SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or
VMXON.1 The format of the field depends on the cause of the VM exit. See
Section 27.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64
architecture) are used only for VM exits due to SMIs that arrive immediately after
retirement of I/O instructions. They provide information about that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that

addressed the I/O instruction).

24.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information
about errors encountered by a non-faulting execution of one of the VMX instructions.

24.10 SOFTWARE USE OF THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when using a VMCS and
related structures. It also provides descriptions of consequences for failing to follow
guidelines.

24.10.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines
when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be
“migrated” from one logical processor to another, the first logical processor should
execute VMCLEAR for the VMCS (to make it inactive on that logical processor and to

2. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.

1. Whether the processor provides this information on VM exits due to attempts to execute INS or
OUTS can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix
A.1).
Vol. 3C 24-31

VIRTUAL-MACHINE CONTROL STRUCTURES
ensure that all VMCS data are in memory) before the other logical processor
executes VMPTRLD for the VMCS (to make it active on the second logical processor).
A VMCS that is made active on more than one logical processor may become
corrupted (see below).

Software should use the VMREAD and VMWRITE instructions to access the different
fields in the current VMCS (see Section 24.10.2). Software should never access or
modify the VMCS data of an active VMCS using ordinary memory operations, in part
because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some
VMCS data of an active VMCS on the processor and not in the VMCS region. The
following items detail some of the hazards of accessing VMCS data using ordinary
memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably

reflect the state of the VMCS. Results may vary from time to time or from logical
processor to logical processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a
deterministic effect on the VMCS. Doing so may cause the VMCS to become
corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a
VMCS region before executing a VMPTRLD for that region and by not remapping it
until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical
processor may be corrupted (see below). To prevent such corruption of a VMCS that
may be used either after a return to VMX operation or on another logical processor,
software should VMCLEAR that VMCS before executing the VMXOFF instruction or
removing power from the processor (e.g., as part of a transition to the S3 and S4
power states).

This section has identified operations that may cause a VMCS to become corrupted.
These operations may cause the VMCS’s data to become undefined. Behavior may be
unpredictable if that VMCS used subsequently on any logical processor. The following
items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor

state.
• The processor may not correctly support VMX non-root operation as documented

in Chapter 25 and may generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS,

or cause the logical processor to transition to a shutdown state.

24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The
encoding is provided in an operand to VMREAD and VMWRITE when software wishes
to read or write that field. These instructions fail if given, in 64-bit mode, an operand
24-32 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
that sets an encoding bit beyond bit 32. See Chapter 29 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C, for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 24-17.

The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software
access to all 64 bits of the field. Such access is allowed by defining, for each such
field, an encoding that allows direct access to the high 32 bits of the field. See
below.

Table 24-17. Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields

9:1 Index

11:10 Type:

0: control
1: read-only data
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)
Vol. 3C 24-33

VIRTUAL-MACHINE CONTROL STRUCTURES
• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields
and the VM-instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with

field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit
cleared to 0 accesses the entire field. For a 64-bit field with field-width 1, a
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the
high 32 bits of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor
mode, VMCS-field width, and access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination
operand; other bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS
field; other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS
field; in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination
operand; bits 63:32 of the field are ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and
clears bits 63:32 of the field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS
field.

• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the
destination operand; in 64-bit mode, bits 63:32 of the destination operand
are cleared to 0.
24-34 Vol. 3C

VIRTUAL-MACHINE CONTROL STRUCTURES
— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with
the full access type (reading bits 31:0 of the field) and VMREAD with the high access
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not
important. Software seeking to modify a 64-bit field outside IA-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while
clearing bits 63:32) and then use VMWRITE with the high access type (establishing
bits 63:32 of the field).

24.10.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS
for VM entry. Failure to do so may result in unpredictable behavior; for example, a
VM entry may fail for unexplained reasons, or a successful transition (VM entry or
VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For
example, it is not necessary to unitize the MSR-bitmap address if the “use MSR
bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the
VMWRITE instruction; this includes a VMCS’s launch state (see Section 24.1). Such
information may be stored in the VMCS data portion of a VMCS region. Because the
format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the
processor will determine this information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid
the uncertainties of implementation-specific behavior, software should execute
VMCLEAR on a VMCS region before making the corresponding VMCS active with
VMPTRLD for the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts
a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the

first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR

has been executed for that VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the

next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH.
Since “migrating” a VMCS from one logical processor to another requires use of
VMCLEAR (see Section 24.10.1), which sets the launch state of the VMCS to “clear”,
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
Vol. 3C 24-35

VIRTUAL-MACHINE CONTROL STRUCTURES
ware developers can avoid the performance cost of increased VM-entry latency by
avoiding unnecessary migration of a VMCS from one logical processor to another.

24.10.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be
controlled by data structures that are referenced by pointers in a VMCS (for example,
the I/O bitmaps). While the pointers to these data structures are parts of the VMCS,
the data structures themselves are not. They are not accessible using VMREAD and
VMWRITE but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no
logical processor with a current VMCS that references it is in VMX non-root operation.
Doing otherwise may lead to unpredictable behavior (including behaviors identified in
Section 24.10.1).

24.10.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON
region)1 that the logical processor uses to support VMX operation. The physical
address of this region (the VMXON pointer) is provided in an operand to VMXON. The
VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-

address width.2,3

Before executing VMXON, software should write the VMCS revision identifier (see
Section 24.2) to the VMXON region. It need not initialize the VMXON region in any
other way. Software should use a separate region for each logical processor and
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to
unpredictable behavior (including behaviors identified in Section 24.10.1).

1. The amount of memory required for the VMXON region is the same as that required for a VMCS
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range
63:32; see Appendix A.1.
24-36 Vol. 3C

CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a
logical processor in VMX non-root operation. This mode of operation is similar to that
of ordinary processor operation outside of the virtualized environment. This chapter
describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits (which bring a logical processor
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following
sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “APIC-Access VM Exits”
• Section 25.3, “Other Causes of VM Exits”
• Section 25.4, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.5, “APIC Accesses That Do Not Cause VM Exits”
• Section 25.6, “Other Changes in VMX Non-Root Operation”
• Section 25.7, “Features Specific to VMX Non-Root Operation”

Chapter 24, “Virtual-Machine Control Structures,” describes the data control struc-
tures that govern VMX non-root operation. Chapter 26, “VM Entries,” describes the
operation of VM entries by which the processor transitions from VMX root operation
to VMX non-root operation. Chapter 27, “VM Exits,” describes the operation of
VM exits by which the processor transitions from VMX non-root operation to VMX root
operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation.
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the
instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions
subject to both. Section 25.1.2 identifies instructions that cause VM exits whenever
they are executed in VMX non-root operation (and thus can never be executed in
VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 24.6).
Vol. 3C 25-1

VMX NON-ROOT OPERATION
25.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode

exceptions, faults based on privilege level,1 and general-protection exceptions
that are based on checking I/O permission bits in the task-state segment (TSS).
For example, execution of RDMSR with CPL = 3 generates a general-protection
exception and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits
that are conditioned based on the contents of those operands (see LMSW in
Section 25.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either
because the “unconditional I/O exiting” VM-execution control is 1 or because the
“use I/O bitmaps control is 1) have priority over the following faults:

— A general-protection fault due to the relevant segment (ES for INS; DS for
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant
segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned

above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a
VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that
may lead to a VM exit, it is assumed that the instruction does not incur a fault that
takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root
operation: CPUID, GETSEC,3 INVD, and XSETBV.4 This is also true of instructions
introduced with VMX, which include: INVEPT, INVVPID, VMCALL,5 VMCLEAR,

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instruc-
tions that are not recognized in that mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.

3. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1
regardless of the value of CPL or RAX. An execution of GETSEC causes an invalid-opcode excep-
tion (#UD) if CR4.SMXE[Bit 14] = 0.

4. An execution of XSETBV in VMX non-root operation causes a VM exit if CR4.OSXSAVE[Bit 18] =
1 regardless of the value of CPL, RAX, RCX, or RDX. An execution of XSETBV causes an invalid-
opcode exception (#UD) if CR4.OSXSAVE[Bit 18] = 0.
25-2 Vol. 3C

VMX NON-ROOT OPERATION
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and
VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the
setting of the VM-execution controls. The following instructions can cause “fault-like”
VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-

sponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 read
shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution
control is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The
behavior of each of these instructions is determined by the settings of the
“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in
the appropriate I/O bitmap (see Section 24.6.4). If an I/O operation “wraps
around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O
instruction causes a VM exit (the “unconditional I/O exiting” VM-execution
control is ignored if the “use I/O bitmaps” VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to
faults that may be caused by the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting”
VM-execution control is 1.

• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and
“enable INVPCID” VM-execution controls are both 1.1

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause
VM exits if the “descriptor-table exiting” VM-execution control is 1.2

5. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits
in VMX root operation outside SMM. See Section 33.15.2.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
INVPCID” VM-execution control were 0. See Section 24.6.2.

2. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“descriptor-table exiting” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-3

VMX NON-ROOT OPERATION
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for
any bit set in the low 4 bits of the CR0 guest/host mask, a value different than the
corresponding bit in the CR0 read shadow. LMSW never clears bit 0 of CR0
(CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0
guest/mask and the source operand, and the bit in position 0 is clear in the
CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0
guest/mask and the values of the corresponding bits in the source operand
and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-
store exiting” VM-execution control is 1. The first processors to support the
virtual-machine extensions supported only the 1-setting of this control.

• MOV from CR8. The MOV from CR8 instruction (which can be executed only in
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is
1. If this control is 0, the behavior of the MOV from CR8 instruction is modified if
the “use TPR shadow” VM-execution control is 1 (see Section 25.4).

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR0 guest/host
mask, the corresponding bit in the CR0 read shadow. (If every bit is clear in the
CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load
exiting” VM-execution control is 0 or the value of its source operand is equal to
one of the CR3-target values specified in the VMCS. If the CR3-target count in n,
only the first n CR3-target values are considered; if the CR3-target count is 0,
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “CR3-load exiting” VM-execution control. These processors
always consult the CR3-target controls to determine whether an execution of
MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host
mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. If this
control is 0, the behavior of the MOV to CR8 instruction is modified if the “use TPR
shadow” VM-execution control is 1 (see Section 25.4) and it may cause a trap-
like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 25.1.1 in that they take priority over the following: general-
25-4 Vol. 3C

VMX NON-ROOT OPERATION
protection exceptions based on privilege level; and invalid-opcode exceptions
that occur because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting”
VM-execution control is 1. If this control is 0, the behavior of the MWAIT
instruction may be modified (see Section 25.4).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings
of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls:1

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls
are both 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit (the “PAUSE-loop exiting” VM-execution control is
ignored if CPL = 0 and the “PAUSE exiting” VM-execution control is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop
exiting” VM-execution control is 1, the following treatment applies.

The logical processor determines the amount of time between this
execution of PAUSE and the previous execution of PAUSE at CPL 0. If this
amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution
of PAUSE in a loop. (It also does so for the first execution of PAUSE at CPL
0 after VM entry.)

Otherwise, the logical processor determines the amount of time since the
most recent execution of PAUSE that was considered to be the first in a
loop. If this amount of time exceeds the value of the VM-execution control
field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter
that runs at the same rate as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction
executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

1. “PAUSE-loop exiting” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“PAUSE-loop exiting” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-5

VMX NON-ROOT OPERATION
— The value of ECX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting”

VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting”

VM-execution control is 1.1

• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting”
VM-execution control is 1.

• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and
“enable RDTSCP” VM-execution controls are both 1.2

• RSM. The RSM instruction causes a VM exit if executed in system-management
mode (SMM).3

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting”
VM-execution control is 1.4

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

1. “RDRAND exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“RDRAND exiting” VM-execution control were 0. See Section 24.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
RDTSCP” VM-execution control were 0. See Section 24.6.2.

3. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see
Section 33.15.3.

4. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“WBINVD exiting” VM-execution control were 0. See Section 24.6.2.
25-6 Vol. 3C

VMX NON-ROOT OPERATION
See Section 24.6.9 for details regarding how these bitmaps are identified.
If an execution of WRMSR does not cause a VM exit as specified above and
ECX = 808H (indicating the TPR MSR), instruction behavior is modified if the
“virtualize x2APIC mode” VM-execution control is 1 (see Section 25.4) and it
may cause a trap-like VM exit (see below).1

The MOV to CR8 and WRMSR instructions may cause “trap-like” VM exits. In such a
case, the instruction completes before the VM exit occurs and that processor state is
updated by the instruction (for example, the value of CS:RIP saved in the guest-state
area of the VMCS references the next instruction).

Specifically, a trap-like VM exit occurs following either instruction if the execution
reduces the value of the TPR shadow below that of the TPR threshold VM-execution
control field (see Section 24.6.8 and Section 25.4) and the following hold:
• For MOV to CR8:

— The “CR8-load exiting” VM-execution control is 0.

— The “use TPR shadow” VM-execution control is 1.
• For WRMSR:

— The “use MSR bitmaps” VM-execution control is 1, the value of ECX is 808H,
and bit 808H in write bitmap for low MSRs is 0 (see above).

— The “virtualize x2APIC mode” VM-execution control is 1.

25.2 APIC-ACCESS VM EXITS
If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access
memory using a physical address on the APIC-access page (see Section 24.6.8)
causes a VM exit.2,3 Such a VM exit is called an APIC-access VM exit.

Whether an operation that attempts to access memory with a physical address on the
APIC-access page causes an APIC-access VM exit may be qualified based on the type
of access. Section 25.2.1 describes the treatment of linear accesses, while Section
25.2.3 describes that of physical accesses. Section 25.2.4 discusses accesses to the
TPR field on the APIC-access page (called VTPR accesses), which do not, if the “use
TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize x2APIC mode” VM-execution control were 0. See Section 24.6.2.

2. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

3. Even when addresses are translated using EPT (see Section 28.2), the determination of whether
an APIC-access VM exit occurs depends on an access’s physical address, not its guest-physical
address.
Vol. 3C 25-7

VMX NON-ROOT OPERATION
25.2.1 Linear Accesses to the APIC-Access Page
An access to the APIC-access page is called a linear access if (1) it results from a
memory access using a linear address; and (2) the access’s physical address is the
translation of that linear address. Section 25.2.1.1 specifies which linear accesses to
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is
similar to that of page faults and EPT violations. Based upon this treatment, Section
25.2.1.2 specifies the priority of such VM exits with respect to other events, while
Section 25.2.1.3 discusses instructions that may cause page faults without accessing
memory and the treatment when they access the APIC-access page.

25.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:
• If the linear access uses a translation with a 4-KByte page, it causes an APIC-

access VM exit.
• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or

1-GByte), the access may or may not cause an APIC-access VM exit. Section
25.5.1 describes the treatment of such accesses that do not cause an APIC-
access VM exits.
If CR0.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified
by both the guest paging structures and the EPT paging structures.1

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable EPT” VM-execution control is 1 and software has not properly invalidate
information cached from the EPT paging structures:
• At time t1, EPT was in use, the EPTP value was X, and some guest-physical

address Y translated to an address that was not on the APIC-access page at that
time. (This might be because the “virtualize APIC accesses” VM-execution control
was 0.)

• At later time t2, EPT is in use, the EPTP value is X, and a memory access uses a
linear address that translates to Y, which now translates to an address on the

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based
VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX
non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section
24.6.2.
25-8 Vol. 3C

VMX NON-ROOT OPERATION
APIC-access page. (This implies that the “virtualize APIC accesses” VM-execution
control is 1 at this time.)

• Software did not execute the INVEPT instruction between times t1 and t2, either
with the all-context INVEPT type or with the single-context INVEPT type and X as
the INVEPT descriptor.

In this case, the linear access at time t2 might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 28.3.3.4.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable VPID” VM-execution control is 1 and software has not properly invali-
dated the TLBs and paging-structure caches:
• At time t1, the processor was in VMX non-root operation with non-zero VPID X,

and some linear address Y translated to an address that was not on the APIC-
access page at that time. (This might be because the “virtualize APIC accesses”
VM-execution control was 0.)

• At later time t2, the processor was again in VMX non-root operation with VPID X,
and a memory access uses linear address, which now translates to an address on
the APIC-access page. (This implies that the “virtualize APIC accesses” VM-
execution control is 1 at this time.)

• Software did not execute the INVVPID instruction in any of the following ways
between times t1 and t2:

— With the individual-address INVVPID type and an INVVPID descriptor
specifying VPID X and linear address Y.

— With the single-context INVVPID type and an INVVPID descriptor specifying
VPID X.

— With the all-context INVEPT type.

— With the single-context-retaining-globals INVVPID type and an INVVPID
descriptor specifying VPID X (assuming that, at time t1, the translation for Y
was global; see Section 4.10, “Caching Translation Information” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A for details
regarding global translations).

In this case, the linear access at time t2 might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVVPID instruction;
see Section 28.3.3.3.

25.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
The following items specify the priority relative to other events of APIC-access
VM exits caused by linear accesses.
Vol. 3C 25-9

VMX NON-ROOT OPERATION
• The priority of an APIC-access VM exit on a linear access to memory is below that
of any page fault or EPT violation that that access may incur. That is, a linear
access does not cause an APIC-access VM exit if it would cause a page fault or an
EPT violation.

• A linear access does not cause an APIC-access VM exit until after the accessed
bits are set in the paging structures.

• A linear write access will not cause an APIC-access VM exit until after the dirty bit
is set in the appropriate paging structure.

• With respect to all other events, any APIC-access VM exit due to a linear access
has the same priority as any page fault or EPT violation that the linear access
could cause. (This item applies to other events that the linear access may
generate as well as events that may be generated by other accesses by the same
instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur
during the execution of a repeated string instruction (including INS and OUTS).
Suppose, for example, that the first n iterations (n may be 0) of such an instruction
do not access the APIC-access page and that the next iteration does access that
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.

25.2.1.3 Instructions That May Cause Page Faults or EPT Violations
Without Accessing Memory

APIC-access VM exits may occur as a result of executing an instruction that can
cause a page fault or an EPT violation even if that instruction would not access the
APIC-access page. The following are some examples:
• The CLFLUSH instruction is considered to read from the linear address in its

source operand. If that address translates to one on the APIC-access page, the
instruction causes an APIC-access VM exit.

• The ENTER instruction causes a page fault if the byte referenced by the final
value of the stack pointer is not writable (even though ENTER does not write to
that byte if its size operand is non-zero). If that byte is writable but is on the
APIC-access page, ENTER causes an APIC-access VM exit.1

• An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask
may or may not cause a page fault or an EPT violation if the destination page is
unwritable (the behavior is implementation-specific). An execution with a zero
mask causes an APIC-access VM exit only on processors for which it could cause
a page fault or an EPT violation.

1. The ENTER instruction may also cause page faults due to the memory accesses that it actually
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any
other instruction.
25-10 Vol. 3C

VMX NON-ROOT OPERATION
• The MONITOR instruction is considered to read from the effective address in RAX.
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.1

• An execution of the PREFETCH instruction that would result in an access to the
APIC-access page does not cause an APIC-access VM exit.

25.2.2 Guest-Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a guest-physical access if
(1) CR0.PG = 1;2 (2) the “enable EPT” VM-execution control is 1;3 (3) the access’s
physical address is the result of an EPT translation; and (4) either (a) the access was
not generated by a linear address; or (b) the access’s guest-physical address is not
the translation of the access’s linear address. Guest-physical accesses include the
following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such

an access uses a guest-physical address that is not the translation of that linear
address).

• Loads of the page-directory-pointer-table entries by MOV to CR when the logical
processor is using (or that causes the logical processor to use) PAE paging.4

• Updates to the accessed and dirty bits in the guest paging structures when using
a linear address (such an access uses a guest-physical address that is not the
translation of that linear address).

Section 25.2.2.1 specifies when guest-physical accesses to the APIC-access page
might not cause APIC-access VM exits. In general, the treatment of APIC-access
VM exits caused by guest-physical accesses is similar to that of EPT violations. Based
upon this treatment, Section 25.2.2.2 specifies the priority of such VM exits with
respect to other events.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-
ter.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT” VM-execution control were 0. See Section 24.6.2.

4. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 25-11

VMX NON-ROOT OPERATION
25.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access
VM Exits

Whether a guest-physical access to the APIC-access page causes an APIC-access
VM exit depends on the nature of the EPT translation used by the guest-physical
address and on how software is managing information cached from the EPT paging
structures. The following items detail cases in which a guest-physical access to the
APIC-access page might not cause an APIC-access VM exit:
• If the access uses a guest-physical address whose translation to the APIC-access

page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT
PDPTE is 1).

• If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE
is 1).

• Software has not properly invalidated information cached from the EPT paging
structures:

— At time t1, EPT was in use, the EPTP value was X, and some guest-physical
address Y translated to an address that was not on the APIC-access page at
that time. (This might be because the “virtualize APIC accesses” VM-
execution control was 0.)

— At later time t2, the EPTP value is X and a memory access uses guest-physical
address Y, which now translates to an address on the APIC-access page. (This
implies that the “virtualize APIC accesses” VM-execution control is 1 at this
time.)

— Software did not execute the INVEPT instruction, either with the all-context
INVEPT type or with the single-context INVEPT type and X as the INVEPT
descriptor, between times t1 and t2.

In any of the above cases, the guest-physical access at time t2 might or might not an
APIC-access VM exit. If it does not, the access operates on memory on the APIC-
access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 28.3.3.4.

25.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical
Accesses

The following items specify the priority relative to other events of APIC-access
VM exits caused by guest-physical accesses.
• The priority of an APIC-access VM exit caused by a guest-physical access to

memory is below that of any EPT violation that that access may incur. That is, a
guest-physical access does not cause an APIC-access VM exit if it would cause an
EPT violation.
25-12 Vol. 3C

VMX NON-ROOT OPERATION
• With respect to all other events, any APIC-access VM exit caused by a guest-
physical access has the same priority as any EPT violation that the guest-physical
access could cause.

25.2.3 Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a physical access if (1) either (a) the
“enable EPT” VM-execution control is 0;1 or (b) the access’s physical address is not
the result of a translation through the EPT paging structures; and (2) either (a) the
access is not generated by a linear address; or (b) the access’s physical address is
not the translation of its linear address.

Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the
logical processor is using (or that causes the logical processor to use) PAE
paging.2

— Updates to the accessed and dirty bits in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging

structures.
• Any of the following accesses made by the processor to support VMX non-root

operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical
addresses in VM-execution control fields in the VMCS. These include the I/O
bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.3 These include the
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during
VM entries that return from SMM.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

3. Technically, these accesses do not occur in VMX non-root operation. They are included here for
clarity.
Vol. 3C 25-13

VMX NON-ROOT OPERATION
A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. (A physical write to the APIC-access page may write to memory as specified
in Section 25.5.2 before causing the APIC-access VM exit.) The priority of an APIC-
access VM exit caused by physical access is not defined relative to other events that
the access may cause. Section 25.5.2 describes the treatment of physical accesses to
the APIC-access page that do not cause APIC-access VM exits.

It is recommended that software not set the APIC-access address to any of those
used by physical memory accesses (identified above). For example, it should not set
the APIC-access address to the physical address of any of the active paging struc-
tures if the “enable EPT” VM-execution control is 0.

25.2.4 VTPR Accesses
A memory access is a VTPR access if all of the following hold: (1) the “use TPR
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch;
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range
80H–83H on the APIC-access page) if any of the following hold: (1) the “use TPR
shadow” VM-execution control is 0; (2) the access is for an instruction fetch; (3) the
access is more than 32 bits in width; or (4) the access is to some offset is on the
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution
control is 1.

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are
treated as described in Section 25.5.3. Physical VTPR accesses (see Section 25.2.3)
may or may not cause APIC-access VM exits; see Section 25.5.2.

25.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can
cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the

exception bitmap (see Section 24.6.3). If an exception occurs, its vector (in the
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a
VM exit occurs; if the bit is 0, the exception is delivered normally through the
guest IDT. This use of the exception bitmap applies also to exceptions generated
by the instructions INT3, INTO, BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the
error code produced with the page fault [PFEC]; (3) the page-fault error-code
mask field [PFEC_MASK]; and (4) the page-fault error-code match field
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is
25-14 Vol. 3C

VMX NON-ROOT OPERATION
equality, the specification of bit 14 in the exception bitmap is followed (for
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of
that bit is reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the
exception bitmap to 1 and set the page-fault error-code mask and match fields
each to 00000000H. If software desires VM exits on no page faults, it can set bit
14 in the exception bitmap to 1, the page-fault error-code mask field to
00000000H, and the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception
while attempting to call the double-fault handler and that exception itself does
not cause a VM exit due to the exception bitmap. This applies to the case in which
the double-fault exception was generated within VMX non-root operation, the
case in which the double-fault exception was generated during event injection by
VM entry, and to the case in which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered
normally through the IDT. (If a logical processor is in the shutdown state or the
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of
the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The
NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of
the operations normally associated with these events. Such exits do not modify
register state or clear pending events as they would outside of VMX operation. (If
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal
operations associated with those events: they do not modify register state as
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any
attempt to effect a task switch in VMX non-root operation causes a VM exit. See
Section 25.6.2.

• System-management interrupts (SMIs). If the logical processor is using the
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs
cause SMM VM exits. See Section 33.15.2.1

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur
in VMX root operation outside SMM. If the processor is using the default treatment of SMIs and
SMM, SMIs are delivered as described in Section 33.14.1.
Vol. 3C 25-15

VMX NON-ROOT OPERATION
• VMX-preemption timer. A VM exit occurs when the timer counts down to zero.
See Section 25.7.1 for details of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits
caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
timer take priority over VM exits caused by the “NMI-window exiting”
VM-execution control and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
a non-maskable interrupt. Specifically, they wake a logical processor from the
shutdown state and from the states entered using the HLT and MWAIT instruc-
tions. These VM exits do not occur if the logical processor is in the wait-for-SIPI
state.

In addition, there are controls that cause VM exits based on the readiness of guest
software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs

before execution of any instruction if RFLAGS.IF = 1 and there is no blocking of
events by STI or by MOV SS (see Table 24-3). Such a VM exit occurs immediately
after VM entry if the above conditions are true (see Section 26.6.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
an external interrupt. Specifically, they wake a logical processor from the states
entered using the HLT and MWAIT instructions. These VM exits do not occur if the
logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if there is no virtual-NMI blocking and there is no
blocking of events by MOV SS (see Table 24-3). (A logical processor may also
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section
26.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
an NMI. Specifically, they wake a logical processor from the shutdown state and
from the states entered using the HLT and MWAIT instructions. These VM exits do
not occur if the logical processor is in the wait-for-SIPI state.
25-16 Vol. 3C

VMX NON-ROOT OPERATION
25.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of
these changes are determined by the settings of certain VM-execution control fields.
The following items detail such changes:
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3

(corresponding to CR0.TS) in the CR0 guest/host mask and the CR0 read
shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the
value of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS
is fixed to 1 in VMX operation (see Section 23.8), in which case CLTS causes
a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0,
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow
are both 1, CLTS causes a VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting
of the “enable INVPCID” VM-execution control:1

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an
invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the
setting of the “INVLPG exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates
normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a
VM exit.

• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution
controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and
unblocks NMIs. (If the “NMI exiting” VM-execution control is 0, the “virtual
NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking
of NMIs. If, in addition, the “virtual NMIs” VM-execution control is 1, the
logical processor tracks virtual-NMI blocking. In this case, IRET removes any
virtual-NMI blocking.

1. “Enable INVPCID” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
INVPCID” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-17

VMX NON-ROOT OPERATION
The unblocking of NMIs or virtual NMIs specified above occurs even if IRET
causes a fault.

• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into
CR0[3:0], but it does not clear CR0.PE if that bit is set. In VMX non-root
operation, an execution of LMSW that does not cause a VM exit (see Section
25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the
CR0 guest/host mask. An attempt to set any other bit in CR0[3:0] to a value not
supported in VMX operation (see Section 23.8) causes a general-protection
exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0
guest/host mask and the CR0 read shadow. For each position corresponding to a
bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set
in the CR0 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR0 read shadow. Thus, if every bit is cleared in the
CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set
in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution
of MOV from CR3 does not cause a VM exit (see Section 25.1.3), the value loaded
from CR3 is a guest-physical address; see Section 28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4
guest/host mask and the CR4 read shadow. For each position corresponding to a
bit clear in the CR4 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR4. For each position corresponding to a bit set
in the CR4 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read
shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR4.

• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be
executed only in 64-bit mode) is determined by the settings of the “CR8-store
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR
shadow. Specifically, it loads bits 3:0 of its destination operand with the value
25-18 Vol. 3C

VMX NON-ROOT OPERATION
of bits 7:4 of byte 80H of the virtual-APIC page (see Section 24.6.8). Bits
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see
Section 25.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the
CR0 guest/host mask. Treatment of attempts to modify other bits in CR0 depends
on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CR0 causes a general-protection exception if it
attempts to set any bit in CR0 to a value not supported in VMX operation (see
Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it
attempts to set any bit in CR0 other than bit 0 (PE) or bit 31 (PG) to a value
not supported in VMX operation. It remains the case, however, that MOV to
CR0 causes a general-protection exception if it would result in CR0.PE = 0
and CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and
IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of
MOV to CR3 does not cause a VM exit (see Section 25.1.3), the value loaded into
CR3 is treated as a guest-physical address; see Section 28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-
physical address to access memory and it does not cause it to be translated
through EPT.2

— If PAE paging is being used, the instruction translates the guest-physical
address through EPT and uses the result to load the four (4) page-directory-
pointer-table entries (PDPTEs). The instruction does not use the guest-
physical addresses the PDPTEs to access memory and it does not cause them
to be translated through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see
Section 25.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the
CR4 guest/host mask. Such an execution causes a general-protection exception
if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and
“use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 25-19

VMX NON-ROOT OPERATION
— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically,
it stores bits 3:0 of its source operand into bits 7:4 of byte 80H of the virtual-
APIC page (see Section 24.6.8); bits 3:0 of that byte and bytes 129-131 of
that page are cleared. Such a store may cause a VM exit to occur after it
completes (see Section 25.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a
VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-
opcode exception—#UD—if CPL > 0) is determined by the setting of the “MWAIT
exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if
any of the following is true: (1) the “interrupt-window exiting” VM-execution
control is 0; (2) ECX[0] is 0; or (3) RFLAGS.IF = 1.

— If the “MWAIT exiting” VM-execution control is 0, the “interrupt-window
exiting” VM-execution control is 1, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT
does not cause the processor to enter an implementation-dependent
optimized state; instead, control passes to the instruction following the
MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction
cause VM exits. If such an execution causes neither a fault due to CPL > 0 nor a
VM exit, the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the
value returned by the instruction is determined by the setting of the “use TSC
offsetting” VM-execution control as well as the TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX
with the value of the IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using
signed addition) of the value of the IA32_TIME_STAMP_COUNTER MSR
and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of RDMSR if ECX contains 6E0H (indicating the
IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX contains 808H (indicating the TPR MSR), instruction behavior is
determined by the setting of the “virtualize x2APIC mode” VM-execution
control:1

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize x2APIC mode” VM-execution control were 0. See Section 24.6.2.
25-20 Vol. 3C

VMX NON-ROOT OPERATION
• If the control is 0, the instruction operates normally. If the local APIC is in
x2APIC mode, EAX[7:0] is loaded with the value of the APIC’s task-
priority register (EDX and EAX[31:8] are cleared to 0). If the local APIC is
not in x2APIC mode, a general-protection fault occurs.

• If the control is 1, the instruction loads EAX:EDX with the value of
bytes 87H:80H of the virtual-APIC page. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the
local APIC is not x2APIC mode).

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the
TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of

the “enable RDTSCP” VM-execution control:1

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-
opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the
settings of the “RDTSC exiting” and “use TSC offsetting” VM-execution
controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC
offsetting” VM-execution control is 1, RDTSCP loads EAX:EDX with the
sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (inter-
preted as a signed value); it also loads ECX with the value of bits 31:0 of
the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a
VM exit.

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and
the CR0 read shadow. For each position corresponding to a bit clear in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-

1. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
RDTSCP” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-21

VMX NON-ROOT OPERATION
sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0
guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.
Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0
read shadow are used (bits 63:32 of the destination are cleared); and
(3) depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction
cause VM exits. If such an execution neither a fault due to CPL > 0 nor a VM exit,
the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode
update is loaded, and control passes to the next instruction. This implies that
microcode updates cannot be loaded in VMX non-root operation.

— If ECX contains 808H (indicating the TPR MSR) and either EDX or EAX[31:8]
is non-zero, a general-protection fault occurs (this is true even if the logical
processor is not in VMX non-root operation). Otherwise, instruction behavior
is determined by the setting of the “virtualize x2APIC mode” VM-execution
control and the value of the TPR-threshold VM-execution control field:

• If the control is 0, the instruction operates normally. If the local APIC is in
x2APIC mode, the value of EAX[7:0] is written to the APIC’s task-priority
register. If the local APIC is not in x2APIC mode, a general-protection
fault occurs.

• If the control is 1, the instruction stores the value of EAX:EDX to
bytes 87H:80H of the virtual-APIC page. This store occurs even if the
local APIC is not in x2APIC mode (no general-protection fault occurs
because the local APIC is not x2APIC mode). The store may cause a
VM exit to occur after the instruction completes (see Section 25.1.3).

• The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of WRMSR if ECX contains 10H (indicating the
IA32_TIME_STAMP_COUNTER MSR). Such executions modify the actual
timestamp counter without regard to the TSC offset.

• The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of WRMSR if ECX contains 6E0H (indicating the
IA32_TSC_DEADLINE MSR). Such executions modify the APIC-timer
deadline relative to the actual timestamp counter without regard to the
TSC offset.
25-22 Vol. 3C

VMX NON-ROOT OPERATION
25.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS
As noted in Section 25.2, if the “virtualize APIC accesses” VM-execution control is 1,
most memory accesses to the APIC-access page (see Section 24.6.2) cause APIC-
access VM exits.1 Section 25.2 identifies potential exceptions. These are covered in
Section 25.5.1 through Section 25.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted
to an access to the virtual-APIC page (see Section 24.6.8). In these cases, the access
uses the memory type reported in bit 53:50 of the IA32_VMX_BASIC MSR (see
Appendix A.1).

25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page
Translations

As noted in Section 25.2.1, a linear access to the APIC-access page using translation
with a large page (2-MByte, 4-MByte, or 1-GByte) may or may not cause an APIC-
access VM exit. If it does not and the access is not a VTPR access (see Section
25.2.4), the access operates on memory on the APIC-access page. Section 25.5.3
describes the treatment if there is no APIC-access VM exit and the access is a VTPR
access.

25.5.2 Physical Accesses to the APIC-Access Page
A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. If it does not and the access is not a VTPR access (see Section 25.2.4), the
access operates on memory on the APIC-access page (this may happen if the access
causes an APIC-access VM exit). Section 25.5.3 describes the treatment if there is no
APIC-access VM exit and the access is a VTPR access.

25.5.3 VTPR Accesses
As noted in Section 25.2.4, a memory access is a VTPR access if all of the following
hold: (1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for
an instruction fetch; (3) the access is at most 32 bits in width; and (4) the access is
to offset 80H on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:
• A linear VTPR access using a translation with a 4-KByte page does not cause an

APIC-access VM exit. Instead, it is converted so that, instead of accessing offset

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-23

VMX NON-ROOT OPERATION
80H on the APIC-access page, it accesses offset 80H on the virtual-APIC page.
Further details are provided in Section 25.5.3.1 to Section 25.5.3.3.

• A linear VTPR access using a translation with a large page (2-MByte, 4-MByte, or
1-GByte) may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section
25.5.3.1 to Section 25.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 25.5.3.1 to Section 25.5.3.3.

• A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 25.5.3.1 to
Section 25.5.3.3 do not apply.

— It may operate on memory on the APIC-access page (and possibly then cause
an APIC-access VM exit). The details in Section 25.5.3.1 to Section 25.5.3.3
do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 25.5.3.1 to Section 25.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a
VTPR access only if the “use TPR shadow” VM-execution control is 1).

25.5.3.1 Treatment of Individual VTPR Accesses
The following items detail the treatment of VTPR accesses:
• VTPR read accesses. Such an access completes normally (reading data from the

field at offset 80H on the virtual-APIC page).
The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:

— A VTPR access using the CLFLUSH instruction flushes data for offset 80H on
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the
CR0 guest/host mask and the CR0 read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to
monitor offset 80H on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is
from offset 80H on the virtual-APIC page.

• VTPR write accesses. Such an access completes normally (writing data to the
field at offset 80H on the virtual-APIC page) and causes a TPR-shadow update
(see Section 25.5.3.3).
25-24 Vol. 3C

VMX NON-ROOT OPERATION
The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by
the final value of the stack pointer is at offset 80H on the APIC-access page
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the
current CR0 contents, the CR0 guest/host mask, and the CR0 read shadow.
The instruction is followed by a TPR-shadow update.

25.5.3.2 Operations with Multiple Accesses
Some operations may access multiple addresses. These operations include the
execution of some instructions and the delivery of events through the IDT (including
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the
ordering of these memory accesses. The following items describe the treatment of
VTPR accesses that are part of such multi-access operations:
• Read-modify-write instructions may first perform a VTPR read access and then a

VTPR write access. Both accesses complete normally (as described in Section
25.5.3.1). The instruction is followed by a TPR-shadow update (see Section
25.5.3.3).

• Some operations may perform a VTPR write access and subsequently cause a
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault
delivery completes and before execution of the fault handler.

• If an operation includes a VTPR access and an access to some other field on the
APIC-access page, the latter access causes an APIC-access VM exit as described
in Section 25.2.
If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.

• Suppose that the first iteration of a repeated string instruction (including OUTS)
that accesses the APIC-access page performs a VTPR read access and that the
next iteration would read from the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully,
reading data from offset 80H on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access
VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers are such
that iteration would be repeated if the instruction were restarted.
Vol. 3C 25-25

VMX NON-ROOT OPERATION
• Suppose that the first iteration of a repeated string instruction (including INS)
that accesses the APIC-access page performs a VTPR write access and that the
next iteration would write to the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR write access writes data to offset 80H on
the virtual-APIC page. The write is followed by a TPR-shadow update, which
may cause a VM exit (see Section 25.5.3.3).

— If the TPR-shadow update does cause a VM exit, the instruction pointer saved
in the VMCS references the repeated string instruction and the values of the
general-purpose registers are such that the next iteration would be
performed if the instruction were restarted.

— If the TPR-shadow update does not cause a VM exit, the iteration that would
write to the other offset causes an APIC-access VM exit. The instruction
pointer saved in the VMCS references the repeated string instruction and the
values of the general-purpose registers are such that that iteration would be
repeated if the instruction were restarted.

• Suppose that the last iteration of a repeated string instruction (including INS)
performs a VTPR write access. The iteration writes data to offset 80H on the
virtual-APIC page. The write is followed by a TPR-shadow update, which may
cause a VM exit (see Section 25.5.3.3). If it does, the instruction pointer saved in
the VMCS references the instruction after the string instruction and the values of
the general-purpose registers reflect completion of the string instruction.

25.5.3.3 TPR-Shadow Updates
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a logical processor performs certain actions after any operation (or iteration
of a repeated string instruction) with a VTPR write access. These actions are called a
TPR-shadow update. (As noted in Section 25.5.3.2, a TPR-shadow update does not
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:

1. Bits 31:8 at offset 80H on the virtual-APIC page are cleared.

2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater
than the value of bits 7:4 at offset 80H on the virtual-APIC page, a VM exit will
occur.

TPR-shadow updates take priority over system-management interrupts (SMIs), INIT
signals, and lower priority events. A TPR-shadow update thus has priority over any
debug exceptions that may have been triggered by the operation causing the TPR-
shadow update. TPR-shadow updates (and any VM exits they cause) are not blocked
if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.
25-26 Vol. 3C

VMX NON-ROOT OPERATION
25.6 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

25.6.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not

control the blocking of external interrupts. In this case, an external interrupt that
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs)
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

25.6.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a
task switch in VMX non-root operation causes a VM exit. However, the following
checks are performed (in the order indicated), possibly resulting in a fault, before
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the
proper values of the relevant privilege fields. The following cases detail the
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode,
privilege-levels checks are performed on the task gate but, if they pass,
privilege levels are not checked on the referenced task-state segment (TSS)
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode,
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt
accesses a task gate in the IDT in IA-32e mode, a general-protection
exception occurs.
Vol. 3C 25-27

VMX NON-ROOT OPERATION
f. If a non-maskable interrupt (NMI), an exception other than breakpoint
exceptions (#BP) and overflow exceptions (#OF), or an external interrupt
accesses a task gate in the IDT outside IA-32e mode, no privilege checks are
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task
switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However,
the ordering between a VM exit due to a task switch and a page fault resulting from
accessing the old TSS or the new TSS is implementation-specific. Some logical
processors may generate a page fault (instead of a VM exit due to a task switch) if
accessing either TSS would cause a page fault. Other logical processors may
generate a VM exit due to a task switch even if accessing either TSS would cause a
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception
(before generating a VM exit due to the task switch) and that exception causes a
VM exit, information about the event whose delivery that accessed the task gate is
recorded in the IDT-vectoring information fields and information about the exception
that caused the VM exit is recorded in the VM-exit interruption-information fields.
See Section 27.2. The fact that a task gate was being accessed is not recorded in the
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to
the task switch, information about the event whose delivery accessed the task gate
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit
is a task switch and not an interruption, the valid bit for the VM-exit interruption
information field is 0. See Section 27.2.

25.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls support features that are specific to VMX non-root oper-
ation. These are the VMX-preemption timer (Section 25.7.1) and the monitor trap
flag (Section 25.7.2), translation of guest-physical addresses (Section 25.7.3), and
VM functions (Section 25.7.4).
25-28 Vol. 3C

VMX NON-ROOT OPERATION
25.7.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption
timer” VM-execution control, the VMX-preemption timer counts down (from the
value loaded by VM entry; see Section 26.6.4) in VMX non-root operation. When the
timer counts down to zero, it stops counting down and a VM exit occurs (see Section
25.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC
changes due to a TSC increment. The value of X is in the range 0–31 and can be
determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix
A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates
in the shutdown and wait-for-SIPI states. If the timer counts down to zero in any
state other than the wait-for SIPI state, the logical processor transitions to the C0 C-
state and causes a VM exit; the timer does not cause a VM exit if it counts down to
zero in the wait-for-SIPI state. The timer is not decremented in C-states deeper than
C2.

Treatment of the timer in the case of system management interrupts (SMIs) and
system-management mode (SMM) depends on whether the treatment of SMIs and
SMM:
• If the default treatment of SMIs and SMM (see Section 33.14) is active, the VMX-

preemption timer counts across an SMI to VMX non-root operation, subsequent
execution in SMM, and the return from SMM via the RSM instruction. However,
the timer can cause a VM exit only from VMX non-root operation. If the timer
expires during SMI, in SMM, or during RSM, a timer-induced VM exit occurs
immediately after RSM with its normal priority unless it is blocked based on
activity state (Section 25.3).

• If the dual-monitor treatment of SMIs and SMM (see Section 33.15) is active,
transitions into and out of SMM are VM exits and VM entries, respectively. The
treatment of the VMX-preemption timer by those transitions is mostly the same
as for ordinary VM exits and VM entries; Section 33.15.2 and Section 33.15.4
detail some differences.

25.7.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on
certain instruction boundaries in VMX non-root operation. Such VM exits are called
MTF VM exits. An MTF VM exit may occur on an instruction boundary in VMX non-
root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a

vectored event (see Section 26.5.1), an MTF VM exit is pending on the instruction
boundary before the first instruction following the VM entry.
Vol. 3C 25-29

VMX NON-ROOT OPERATION
• If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF
VM exit is pending on the instruction boundary before the first instruction
following the VM entry. This is the case even if the “monitor trap flag” VM-
execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an
event, and a pending event (e.g., debug exception or interrupt) is delivered
before an instruction can execute, an MTF VM exit is pending on the instruction
boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is a REP-prefixed
string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is
pending on the instruction boundary following delivery of the fault (or any
nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit
is pending on the instruction boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is not a REP-
prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction
boundary following delivery of the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the
instruction boundary following execution of that instruction. If the instruction
is INT3 or INTO, this boundary follows delivery of any software exception. If
the instruction is INT n, this boundary follows delivery of a software interrupt.
If the instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction
boundary on which an MTF VM exit would be pending (e.g., due to an exception or
triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a
higher priority event takes precedence or the MTF VM exit is blocked due to the
activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over MTF VM exits. MTF VM exits take priority over debug-trap
exceptions and lower priority events.

• No MTF VM exit occurs if the processor is in either the shutdown activity state or
wait-for-SIPI activity state. If a non-maskable interrupt subsequently takes the

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2
instruction and a BOUND-range exceeded exception—#BR—generated by the BOUND instruc-
tion.
25-30 Vol. 3C

VMX NON-ROOT OPERATION
logical processor out of the shutdown activity state without causing a VM exit, an
MTF VM exit is pending after delivery of that interrupt.

25.7.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain physical addresses
are treated as guest-physical addresses and are not used to access memory directly.
Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Section 28.2.

25.7.4 VM Functions
A VM function is an operation provided by the processor that can be invoked from
VMX non-root operation without a VM exit. VM functions are enabled and configured
by the settings of different fields in the VMCS. Software in VMX non-root operation
invokes a VM function with the VMFUNC instruction; the value of EAX selects the
specific VM function being invoked.

Section 25.7.4.1 explains how VM functions are enabled. Section 25.7.4.2 specifies
the behavior of the VMFUNC instruction. Section 25.7.4.3 describes a specific
VM function called EPTP switching.

25.7.4.1 Enabling VM Functions
Software enables VM functions generally by setting the “enable VM functions” VM-
execution control. A specific VM function is enabled by setting the corresponding VM-
function control.

Suppose, for example, that software wants to enable EPTP switching (VM function 0;
see Section 24.6.14).To do so, it must set the “activate secondary controls” VM-
execution control (bit 31 of the primary processor-based VM-execution controls), the
“enable VM functions” VM-execution control (bit 13 of the secondary processor-
based VM-execution controls) and the “EPTP switching” VM-function control (bit 0 of
the VM-function controls).

25.7.4.2 General Operation of the VMFUNC Instruction
The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable
VM functions” VM-execution controls is 01 or the value of EAX is greater than 63 (only

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“enable VM functions” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 25-31

VMX NON-ROOT OPERATION
VM functions 0–63 can be enable). Otherwise, the instruction causes a VM exit if the
bit at position EAX is 0 in the VM-function controls (the selected VM function is not
enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating
“VMFUNC”, and the length of the VMFUNC instruction is saved into the VM-exit
instruction-length field. If the instruction causes neither an invalid-opcode exception
nor a VM exit due to a disabled VM function, it performs the functionality of the
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause
a general-protection exception if CPL > 0). In addition, specific VM functions may
include checks that might result in a VM exit. If such a VM exit occurs, VM-exit infor-
mation is saved as described in the previous paragraph. The specification of a
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result
in VM exits) is given in Section 25.7.4.3.

25.7.4.3 EPTP Switching
EPTP switching is VM function 0. This VM function allows software in VMX non-root
operation to load a new value for the EPT pointer (EPTP), thereby establishing a
different EPT paging-structure hierarchy (see Section 28.2 for details of the opera-
tion of EPT). Software is limited to selecting from a list of potential EPTP values
configured in advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-
KByte structure referenced by the EPTP-list address (see Section 24.6.14; because
this structure contains 512 8-Byte entries, VMFUNC causes a VM exit if ECX ≥ 512).
If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see
Section 26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for
subsequent accesses using guest-physical addresses. The following pseudocode
provides details:

IF ECX ≥ 512
THEN VM exit;
ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VMexit;
ELSE

write tent_EPTP to the EPTP field in the current VMCS;
start using tent_EPTP as the new EPTP value for address translation;

FI;
FI;

Execution of the EPTP-switching VM function does not modify the state of any regis-
ters; no flags are modified.
25-32 Vol. 3C

VMX NON-ROOT OPERATION
As noted in Section 25.7.4.2, an execution of the EPTP-switching VM function that
causes a VM exit (as specified above), uses the basic exit reason 59, indicating
“VMFUNC”. The length of the VMFUNC instruction is saved into the VM-exit instruc-
tion-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a
fault or VM exit) is called an EPTP-switching VMFUNC. After an EPTP-switching
VMFUNC, control passes to the next instruction. The logical processor starts creating
and using guest-physical and combined mappings associated with the new value of
bits 51:12 of EPTP; the combined mappings created and used are associated with the
current VPID and PCID (these are not changed by VMFUNC).1 If the “enable VPID”
VM-execution control is 0, an EPTP-switching VMFUNC invalidates combined
mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where
EP4TA is the value of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical
addresses, it may affect use of the guest-physical address in CR3. The EPTP-
switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT
misconfiguration due to the translation of that guest-physical address through the
new EPT paging structures. The following items provide details that apply if
CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or

IA32_EFER.LMA = 1), the next memory access with a linear address uses the
translation of the guest-physical address in CR3 through the new EPT paging
structures. As a result, this access may cause a VM exit due to an EPT violation or
an EPT misconfiguration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-
switching VMFUNC does not load the four page-directory-pointer-table entries
(PDPTEs) from the guest-physical address in CR3. The logical processor
continues to use the four guest-physical addresses already present in the
PDPTEs. The guest-physical address in CR3 is not translated through the new EPT
paging structures (until some operation that would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during the translation of a
guest-physical address in any of the PDPTEs. A subsequent memory access with
a linear address uses the translation of the guest-physical address in the
appropriate PDPTE through the new EPT paging structures. As a result, such an
access may cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during that translation.

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the
current PCID is 000H.
Vol. 3C 25-33

VMX NON-ROOT OPERATION
25.8 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in
VMX operation (see Section 23.8). This restriction implies that guest software cannot
be run in unpaged protected mode or in real-address mode. Later processors support
a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software
to run in unpaged protected mode or in real-address mode. The following items
describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply

because it would set either CR0.PE and CR0.PG to 0. See Section 25.4 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root

operation just as it does outside VMX operation. Thus, if CR0.PE = 0, the
processor operates as it does normally in real-address mode (for example, it uses
the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0,
the processor operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root
operation and by the settings of the VM-execution controls just as it is in
protected mode or when paging is enabled. Instructions, interrupts, and
exceptions that cause VM exits in protected mode or when paging is enabled also
do so in real-address mode or when paging is disabled. The following examples
should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause
VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and
do not cause VM exits: INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF,
and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for
translation to a physical address.2 The guest memory type passed on to the EPT
mechanism is WB (writeback).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. As noted in Section 26.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unre-
stricted guest” VM-execution control is 1.
25-34 Vol. 3C

CHAPTER 26
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state
is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are
proper for supporting VMX non-root operation and that the VMCS is correctly
configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

• The guest-state area of the VMCS is checked to ensure that, after the
VM entry completes, the state of the logical processor is consistent with
IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in
the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to
“launched.”

6. An event may be injected in the guest context (Section 26.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur
in one of the following three ways:
• Some of the checks in Section 26.1 may generate ordinary faults (for example,

an invalid-opcode exception). Such faults are delivered normally.
• Some of the checks in Section 26.1 and all the checks in Section 26.2 cause

control to pass to the instruction following the VM-entry instruction. The failure is
indicated by setting RFLAGS.ZF1 (if there is a current VMCS) or RFLAGS.CF (if
there is no current VMCS). If there is a current VMCS, an error number indicating
the cause of the failure is stored in the VM-instruction error field. See Chapter 29

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
Vol. 3C 26-1

VM ENTRIES
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C for the error numbers.

• The checks in Section 26.3 and Section 26.4 cause processor state to be loaded
from the host-state area of the VMCS (as would be done on a VM exit).
Information about the failure is stored in the VM-exit information fields. See
Section 26.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 26.1 and Section 26.2 causes
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a
fault; (2) failure of one of the checks in Section 26.3 or in loading MSRs causes
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 26.1, Section 26.2, and Section 26.3 and there is no
failure in loading MSRs.

Section 33.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code
running in SMM returns using VM entries instead of the RSM instruction. A VM entry
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that
are detailed in Section 33.15.4.

26.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is
generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the
26-2 Vol. 3C

VM ENTRIES
VM-instruction error field. See Chapter 29 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C for the error numbers.

26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state
areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation, that the VMCS is correctly configured to support the next
VM exit, and that, after the next VM exit, the processor’s state is consistent with the
Intel 64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the
VM-instruction error field is loaded with an error number that indicates whether the
failure was due to the controls or the host-state area (see Chapter 29 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

These checks may be performed in any order. Thus, an indication by error number of
one cause (for example, host state) does not imply that there are not also other
errors. Different processors may thus give different error numbers for the same
VMCS. Some checks prevent establishment of settings (or combinations of settings)
that are currently reserved. Future processors may allow such settings (or combina-
tions) and may not perform the corresponding checks. The correctness of software
should not rely on VM-entry failures resulting from the checks documented in this
section.

The checks on the controls and the host-state area are presented in Section 26.2.1
through Section 26.2.4. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

26.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly.
Software may consult the VMX capability MSRs to determine the proper settings
(see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry
operates as if each secondary processor-based VM-execution control were 0.
Vol. 3C 26-3

VM ENTRIES
• Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSRs to determine the proper
settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution
control is 1, reserved bits in the secondary processor-based VM-execution
controls must be cleared. Software may consult the VMX capability MSRs to
determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution
control is 0 (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support
a different number of CR3-target values. Software should read the VMX capability
MSR IA32_VMX_MISC to determine the number of values supported (see
Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. Neither address should set any bits beyond the processor’s
physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap
address must be 0. The address should not set any bits beyond the processor’s
physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution
control is 1, bytes 81H-83H on the virtual-APIC page (see Section 24.6.8) may
be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true
either if the failure causes control to pass to the instruction following the VM-

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32;
see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.
26-4 Vol. 3C

VM ENTRIES
entry instruction or if it causes processor state to be loaded from the host-state
area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is
1 and the “virtualize APIC accesses” VM-execution control is 0: the value of
bits 3:0 of the TPR threshold VM-execution control field should not be greater
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section
24.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access
address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.1

• If the “virtualize x2APIC mode” VM-execution control is 1, the “use TPR shadow”
VM-execution control must be 1 and the “virtualize APIC accesses” VM-execution
control must be 0.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-
execution control field must not be 0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field
(see Table 24-8 in Section 24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the processor
as indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT
page-walk length of 4; see Section 28.2.2.

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix A.1.

2. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize
x2APIC mode” VM-execution control were 0. See Section 24.6.2.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable VPID” VM-execu-
tion control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 24.6.2.
Vol. 3C 26-5

VM ENTRIES
— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10) is read as 0, indicating
that the processor does not support accessed and dirty flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address
width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

• If the “enable VM functions” processor-based VM-execution control is 1, reserved
bits in the VM-function controls must be clear.2 Software may consult the VMX
capability MSRs to determine which bits are reserved (see Appendix A.11). In
addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution
control must also 1. In addition, the EPTP-list address must satisfy the
following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-
address width.

If the “enable VM functions” processor-based VM-execution control is 0, no
checks are performed on the VM-function controls.

26.2.1.2 VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult

the VMX capability MSRs to determine the proper settings (see Appendix A.4).
• If “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-

preemption timer value” VM-exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the

VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address
should not set any bits beyond the processor’s physical-address width.3

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution con-
trols. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as
if both these controls were 0. See Section 24.6.2.

2. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “enable
VM functions” VM-execution control were 0. See Section 24.6.2.

3. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
26-6 Vol. 3C

VM ENTRIES
— The address of the last byte in the VM-exit MSR-store area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

• The following checks are performed for the VM-exit MSR-load address if the
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address
should not set any bits beyond the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-exit MSR-load address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

26.2.1.3 VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may

consult the VMX capability MSRs to determine the proper settings (see Appendix
A.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are
the VM-entry interruption-information field (see Table 24-13 in Section 24.8.3),
the VM-entry exception error code, and the VM-entry instruction length. If the
valid bit (bit 31) in the VM-entry interruption-information field is 1, the following
must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1
is reserved on all logical processors; value 7 (other event) is reserved on
logical processors that do not support the 1-setting of the “monitor trap flag”
VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF
VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the
"unrestricted guest" VM-execution control is 0; or (b) bit 0 (corresponding to
Vol. 3C 26-7

VM ENTRIES
CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption
type is hardware exception; and (3) the vector indicates an exception that
would normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 =
#SS; 13 = #GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry
exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or
privileged software exception, the VM-entry instruction-length field is in the
range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the
VM-entry MSR-load count field is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address
should not set any bits beyond the processor’s physical-address width.1

— The address of the last byte in the VM-entry MSR-load area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-entry MSR-load address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor
treatment” VM-entry controls must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
cannot both be 1.

26.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond
to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see

Section 23.8).2

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 23.8).

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the
values of these bits are not changed by VM exit; see Section 27.5.1.
26-8 Vol. 3C

VM ENTRIES
• On processors that support Intel 64 architecture, the CR3 field must be such that
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address
width must be 0.1,2

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 18-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT
MSR must be one that could be written by WRMSR without fault at CPL 0. Specif-
ically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC),
4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR
must be 0 in the field for that register. In addition, the values of the LMA and LME
bits in the field must each be that of the “host address-space size” VM-exit
control.

26.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond
to segment and descriptor-table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0)

and the TI flag (bit 2) must be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit

control is 0.
• On processors that support Intel 64 architecture, the base-address fields for FS,

GS, GDTR, IDTR, and TR must contain canonical addresses.

26.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to
address-space size are performed on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the

time of VM entry, the following must hold:

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE =
1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation
information is invalidated.
Vol. 3C 26-9

VM ENTRIES
— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of

VM entry, the “host address-space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to
ensure that the “IA-32e mode guest” VM-entry control and the “host address-space
size” VM-exit control are both 0.

26.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 26.2), the
following operations take place concurrently: (1) the guest-state area of the VMCS is
checked to ensure that, after the VM entry completes, the state of the logical
processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is
loaded from the guest-state area or as specified by the VM-entry control fields; and
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor
responds to such failures by loading state from the host-state area, as it would for a
VM exit. See Section 26.7.

26.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These
checks may be performed in any order. Some checks prevent establishment of
settings (or combinations of settings) that are currently reserved. Future processors
may allow such settings (or combinations) and may not perform the corresponding
checks. The correctness of software should not rely on VM-entry failures resulting
from the checks documented in this section.

The following subsections reference fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the guest-state area.
26-10 Vol. 3C

VM ENTRIES
26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to
control registers, debug registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation

(see Section 23.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked
because the values of these bits are not changed by VM entry; see Section
26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must
also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation
(see Section 23.8).

• If the “load debug controls” VM-entry control is 1, bits reserved in the
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors
to support the virtual-machine extensions supported only the 1-setting of this
control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field
(corresponding to CR0.PG) and bit 5 in the CR4 field (corresponding to
CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field
(corresponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32
beyond the processor’s physical-address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field
must be 0. The first processors to support the virtual-machine extensions

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3C 26-11

VM ENTRIES
supported only the 1-setting of this control and thus performed this check
unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each
contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 18-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the
IA32_PAT MSR must be one that could be written by WRMSR without fault at CPL
0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC),
1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed
on the field for the IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the
“IA-32e mode guest” VM-exit control. It must also be identical to bit 8 (LME)
if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1

26.3.1.2 Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and
LDTR. The following terms are used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in

the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1.

(This is possible only on processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in

the access-rights field for that register.

The following are the checks on these fields:
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If
CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached
translation information is invalidated.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.
26-12 Vol. 3C

VM ENTRIES
— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-
execution control is 0, the RPL (bits 1:0) must equal the RPL of the selector
field for CS.1

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be
the selector field shifted left 4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 archi-
tecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be
zero.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field
must be 0000FFFFH.

• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This
implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are
considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the
“unrestricted guest” VM-execution control:

— If the control is 0, the Type must be 9, 11, 13, or 15
(accessed code segment).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 26-13

VM ENTRIES
— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and
15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data
segment), the DPL must be 0. The Type can be 3 only if the
“unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the
DPL must equal the DPL in the access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for
SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL
must equal the RPL from the selector field.

— The DPL must be 0 either if the Type in the access-rights field
for CS is 3 (read/write accessed expand-up data segment) or
if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the
selector field if (1) the “unrestricted guest” VM-execution control
is 0; (2) the register is usable; and (3) the Type in the access-
rights field is in the range 0 – 11 (data segment or non-
conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the pri-
mary processor-based VM-execution controls is 0: (1) bit 0 in the CR0 field must be 1 if the capa-
bility MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation; and (2) the
Type in the access-rights field for CS cannot be 3.
26-14 Vol. 3C

VM ENTRIES
— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy
TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is
usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.
Vol. 3C 26-15

VM ENTRIES
26.3.1.3 Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must

contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

26.3.1.4 Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:
• RIP. The following checks are performed on processors that support Intel 64

architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if
the L bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the
access-rights field for CS is 1.1 (No check applies if the processor supports 64
linear-address bits.)

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1
must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry
control is 1 or if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.2

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is
external interrupt.

26.3.1.5 Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to
non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an
activity state supported by the implementation (see Section 24.4.2). Future

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.
26-16 Vol. 3C

VM ENTRIES
processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to
determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in
the access-rights field for SS is not 0.1

— The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit 0 or
bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the
interruption to be delivered (as defined by interruption type and vector) must
not be one that would normally be blocked while a logical processor is in the
activity state corresponding to the contents of the activity-state field. The
following items enumerate the interruptions (as specified in the VM-entry
interruption-information field) whose injection is allowed for the different
activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable
interrupt (NMI).

— Those with interruption type hardware exception and vector 1
(debug exception) or vector 18 (machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF
VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the
VM-entry interruption-information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry
to SMM” VM-entry control is 1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1
cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the

1. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level
(CPL).
Vol. 3C 26-17

VM ENTRIES
interruption type (bits 10:8) in that field has value 0, indicating external
interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) in that
field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31)
in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not
make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1,
and the interruption type (bits 10:8) in that field has value 2 (indicating
NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no
requirement that bit 3 be 0 if the valid bit in the VM-entry
interruption-information field is 1 and the interruption type in that
field has value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not
support Intel 64 architecture) must be 0.

— The following checks are performed if any of the following holds: (1) the
interruptibility-state field indicates blocking by STI (bit 0 in that field is 1);
(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that
field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
26-18 Vol. 3C

VM ENTRIES
— The 32 bits located in memory referenced by the value of the field (as a
physical address) must contain the processor’s VMCS revision identifier (see
Section 24.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the
field must not contain the VMXON pointer.

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor also uses
PAE paging (see Section 4.4 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).1 When PAE paging is in use, the physical address in
CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV
to CR3 when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG)
is set in the CR0 field in the guest-state area; (2) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field; and (3) the “IA-32e mode guest” VM-entry control is 0. Such a
VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the

PDPTEs referenced by the CR3 field in the guest-state area if either (1) PAE
paging was not in use before the VM entry; or (2) the value of CR3 is changing as
a result of the VM entry. VM entry may check their validity even if neither (1) nor
(2) hold.2

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the
PDPTE fields in the guest-state area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any
PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use.3 If MOV to CR3

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see
Appendix A.1.

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine the number physical-address bits
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned
in bits 7:0 of EAX.

2. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 24.6.2.

3. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one
of the PDPTEs, bits 63:1 of that PDPTE are ignored.
Vol. 3C 26-19

VM ENTRIES
would cause a general-protection exception due to the PDPTEs that would be loaded
(e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control

registers.

This loading may be performed in any order and in parallel with the checking of VMCS
contents (see Section 26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs
from the VM-entry MSR-load area (see Section 26.4). This loading occurs only after
the state loading described in this section and the checking of VMCS contents
described in Section 26.3.1.

26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs
are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which

are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19;
NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 field are
ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the

DR7 field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is
always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “load debug controls” VM-execution control and thus always
loaded DR7 from the DR7 field.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.
26-20 Vol. 3C

VM ENTRIES
• The following describes how some MSRs are loaded using fields in the guest-state
area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL
MSR is loaded from the IA32_DEBUGCTL field. The first processors to support
the virtual-machine extensions supported only the 1-setting of this control
and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL
field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR
are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode
guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “IA-32e mode guest” VM-entry
control.1 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is
1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded
from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded
from the IA32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return
from SMM.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
VM entry must be loading CR0 so that CR0.PG = 1 unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
Vol. 3C 26-21

VM ENTRIES
26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set
for TR (see Section 26.3.1.2). If it is set for one of the other registers, the
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults
(general-protection exception or stack-fault exception) outside 64-bit mode,
just as they would had the segment been loaded using a null selector. This bit
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined

after VM entry.
• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field

is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields
are loaded.

• If the unusable bit is 1, the base address, the segment limit, and the
remainder of the access rights are undefined after VM entry with the
following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corre-
sponding fields in the VMCS. On processors that support Intel 64
26-22 Vol. 3C

VM ENTRIES
architecture, the values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address
for LDTR is set to an undefined but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the
base addresses for SS, DS, and ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3 Loading Guest RIP, RSP, and RFLAGS
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS
field, respectively. The following items regard the upper 32 bits of these fields on
VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor

may ignore the contents of bits 63:32 of the RSP field on VM entries that are not
to 64-bit mode.

• As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0
on VM entries that are not to 64-bit mode.

26.3.2.4 Loading Page-Directory-Pointer-Table Entries
As noted in Section 26.3.1.6, the logical processor uses PAE paging if bit 5 in CR4
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging
loads the PDPTEs into internal, non-architectural registers based on the setting of the
“enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table

referenced by the physical address in the value of CR3 being loaded by the
VM entry (see Section 26.3.2.1). The values loaded are treated as physical
addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-
state area (see Section 24.4.2). The values loaded are treated as guest-physical
addresses in VMX non-root operation.

26.3.2.5 Updating Non-Register State
Section 28.3 describe how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates

linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).
Vol. 3C 26-23

VM ENTRIES
• VM entries are not required to invalidate any guest-physical mappings, nor are
they required to invalidate any linear mappings or combined mappings if the
“enable VPID” VM-execution control is 1.

26.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM entries
clear any address-range monitoring that may be in effect.

26.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2).
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.1

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or

C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM entry did not commence in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for
model-specific reasons. A processor may prevent loading of certain MSRs even if
they can normally be written by WRMSR. Such model-specific behavior is
documented in Chapter 34.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry

would cause a general-protection exception if executed via WRMSR with
CPL = 0.2

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to
modify it using the VM-entry MSR-load area are also ignored.

2. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would
modify the LME bit. If VM entry has established CR0.PG = 1, the IA32_EFER MSR should not be
included in the VM-entry MSR-load area for the purpose of modifying the LME bit.
26-24 Vol. 3C

VM ENTRIES
The VM entry fails if processing fails for any entry. The logical processor responds to
such failures by loading state from the host-state area, as it would for a VM exit. See
Section 26.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM entry, the logical processor will not use
any translations that were cached before the transition.

26.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is
1, VM entry causes an event to be delivered (or made pending) after all components
of guest state have been loaded (including MSRs) and after the VM-execution control
fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable

interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged software
exception), or 6 (software exception), the event is delivered as described in
Section 26.5.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an
MTF VM exit is pending after VM entry. See Section 26.5.2.

26.5.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by
VM entry. This means that delivery occurs after all components of guest state have
been loaded (including MSRs) and after the VM-execution control fields have been
established.1 The event is delivered using the vector in that field to select a
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

Section 26.5.1.1 provides details of vectored-event injection. In general, the event is
delivered exactly as if it had been generated normally.

If event delivery encounters a nested exception (for example, a general-protection
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is 0, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 26.5.1.2
details cases in which event injection causes a VM exit.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the set-
tings of VM-execution control fields (such as the exception bitmap) that would cause a VM exit if
the event had occurred in VMX non-root operation. In contrast, a nested exception encountered
during event delivery may cause a VM exit; see Section 26.5.1.1.
Vol. 3C 26-25

VM ENTRIES
26.5.1.1 Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption
information field (format given in Table 24-13), the VM-entry exception error-code
field, and the VM-entry instruction-length field. The following items provide details of
the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded

from the guest-state area. The value pushed for the RF flag is not modified based
on the type of event being delivered. However, the pushed value of RFLAGS may
be modified if a software interrupt is being injected into a guest that will be in
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value
in the RFLAGS register is modified as is done normally when delivering an event
through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event
and whether nested exceptions occur during its delivery. The term current
guest RIP refers to the value to be loaded from the guest-state area. The value
pushed is determined as follows:1

— If VM entry successfully injects (with no nested exception) an event with
interruption type external interrupt, NMI, or hardware exception, the current
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with
interruption type software interrupt, privileged software exception, or
software exception, the current guest RIP is incremented by the VM-entry
instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that
exception does not cause a VM exit, the current guest RIP is pushed on the
stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is
current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is
pushed on the stack as an error code would be pushed during delivery of an
exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection,
even if the event has vector 1 (normal deliveries of debug exceptions, which have
vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode (RFLAGS.VM = 1), no general-protection exception can occur due to
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting
such an event and, if desired, inject a general-protection exception instead of a
software interrupt.

1. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is
determined normally.
26-26 Vol. 3C

VM ENTRIES
• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event
delivery is subject to VME-based interrupt redirection based on the software
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software
interrupt), the interrupt is directed to an 8086 program interrupt handler: the
processor uses a 16-bit interrupt-vector table (IVT) located at linear address
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt),
the interrupt is directed to a protected-mode interrupt handler. (In other
words, the injection is treated as described in the next item.) In this case, the
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a
general-protection exception occurs instead). However, as noted above,
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a
exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above)

or software exception, privilege checking is performed on the IDT descriptor
being accessed as would be the case for executions of INT n, INT3, or INTO (the
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL,
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a
nested exception. Injection of an event with interruption type external interrupt,
NMI, hardware exception, and privileged software exception, or with interruption
type software interrupt and being redirected as described above, do not perform
these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs”
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions,
which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which
normally clear the LBR bit before they are delivered, and therefore do not
normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a
VM exit, the value of the EXT bit (bit 0) in any error code pushed on the stack is
determined as follows:

— If event being injected has interruption type external interrupt, NMI,
hardware exception, or privileged software exception and encounters a
nested exception (but does not produce a double fault), the error code for the
first such exception encountered sets the EXT bit.
Vol. 3C 26-27

VM ENTRIES
— If event being injected is a software interrupt or an software exception and
encounters a nested exception (but does not produce a double fault), the
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that
exception encounters another exception (but does not produce a double
fault), the error code for that exception sets the EXT bit. If a double fault is
produced, the error code for the double fault is 0000H (the EXT bit is clear).

26.5.1.2 VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of
the VM-execution controls. For example, setting the “NMI exiting” VM-execution
control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate

in the IDT, the attempted task switch may cause a VM exit just as it would had
the injected event occurred during normal execution in VMX non-root operation
(see Section 25.6.2).

• If event delivery encounters a nested exception, a VM exit may occur depending
on the contents of the exception bitmap (see Section 25.3).

• If event delivery generates a double-fault exception (due to a nested exception);
the logical processor encounters another nested exception while attempting to
call the double-fault handler; and that exception does not cause a VM exit due to
the exception bitmap; then a VM exit occurs due to triple fault (see Section
25.3).

• If event delivery injects a double-fault exception and encounters a nested
exception that does not cause a VM exit due to the exception bitmap, then a
VM exit occurs due to triple fault (see Section 25.3).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 25.2) or, if the access is a VTPR access, be treated as
specified in Section 25.5.3.1

If the event-delivery process does cause a VM exit, the processor state before the
VM exit is determined just as it would be had the injected event occurred during
normal execution in VMX non-root operation. If the injected event directly accesses a
task gate that cause a VM exit or if the first nested exception encountered causes a
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 27.2.3).

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 24.6.2.
26-28 Vol. 3C

VM ENTRIES
26.5.1.3 Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as
would normally be done in real-address mode.1 Specifically, VM entry uses the vector
provided in the VM-entry interruption-information field to select a 4-byte entry from
an interrupt-vector table at the linear address in IDTR.base. Further details are
provided in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software
Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field
must be 0 if CR0.PE will be 0 after VM entry (see Section 26.2.1.3), vectored events
injected with CR0.PE = 0 do not push an error code on the stack. This is consistent
with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit),
the fault is treated as if it had occurred during event delivery in VMX non-root opera-
tion. Such a fault may lead to a VM exit as discussed in Section 26.5.1.2.

26.5.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other
event) and the vector field is 0, VM entry causes an MTF VM exit to be pending on the
instruction boundary following VM entry. This is the case even if the “monitor trap
flag” VM-execution control is 0. See Section 25.7.2 for the treatment of pending MTF
VM exits.

26.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is vectoring if the valid bit (bit 31) of the VM-entry interruption
information field is 1 and the interruption type in the field is 0 (external interrupt), 2
(non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privi-
leged software exception), or 6 (software exception).

26.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 24-3) contains bits
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field
impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following

the VM entry, regardless of the contents of the interruptibility-state field.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
VM entry must be loading CR0.PE with 1 unless the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
Vol. 3C 26-29

VM ENTRIES
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field
is 1. This blocking is cleared after the guest executes one instruction or incurs
an exception (including a debug exception made pending by VM entry; see
Section 26.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state
field is 1. This may affect the treatment of pending debug exceptions; see
Section 26.6.3. This blocking is cleared after the guest executes one
instruction or incurs an exception (including a debug exception made pending
by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if
bit 3 (blocking by NMI) in the interruptibility-state field is 1. If the “NMI
exiting” VM-execution control is 0, execution of the IRET instruction removes
this blocking (even if the instruction generates a fault). If the “NMI exiting”
control is 1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs
are not blocked in VMX non-root operation (except for ordinary blocking
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI
state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If
the bit is 0, there is no virtual-NMI blocking after VM entry unless the
VM entry is injecting an NMI (see Section 26.5.1.1). Execution of IRET
removes virtual-NMI blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must
be 0; see Section 26.2.1.1.

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and
only if the bit 2 in the interruptibility-state field is 1.

26.6.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the
logical processor is active or in one of the inactive states identified in Section 24.4.2.
The use of this field is determined as follows:
26-30 Vol. 3C

VM ENTRIES
• If the VM entry is vectoring, the logical processor is in the active state after
VM entry. While the consistency checks described in Section 26.3.1.5 on the
activity-state field do apply in this case, the contents of the activity-state field do
not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the
activity state specified in the guest-state area. If VM entry ends with the logical
processor in an inactive activity state, the VM entry generates any special bus
cycle that is normally generated when that activity state is entered from the
active state. If VM entry would end with the logical processor in the shutdown
state and the logical processor is in SMX operation,1 an Intel® TXT shutdown
condition occurs. The error code used is 0000H, indicating “legacy shutdown.”
See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the active state and in VMX non-root operation are discarded
and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the HLT state and in VMX non-root operation are discarded and
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting”
VM-execution control is 1. SIPIs that arrive while a logical processor is in the
shutdown state and in VMX non-root operation are discarded and do not
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts
(NMIs), INIT signals, and system-management interrupts (SMIs). Such
events do not cause VM exits if they arrive while a logical processor is in the
wait-for-SIPI state and in VMX non-root operation do not cause VM exits
regardless of the settings of the pin-based VM-execution controls.

26.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there
are debug exceptions that have not yet been delivered (see Section 24.4.2). This
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are
true:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
Vol. 3C 26-31

VM ENTRIES
• The VM entry is vectoring with one of the following interruption types: external
interrupt, non-maskable interrupt (NMI), hardware exception, or privileged
software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the
VM entry is vectoring with either of the following interruption type: software
interrupt or software exception.

• The VM entry is not vectoring and the activity-state field indicates either
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there
are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as

they would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered
after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by
MOV SS), the pending debug exceptions are held pending or lost as would
normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3
(#BP) or vector 4 (#OF), the pending debug exceptions are treated as they
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that
encountered a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the
pending debug exceptions may be lost or they may be delivered after
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps
on the previous instruction” (see Section 6.9 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-
management interrupts (SMIs) take priority of such an exception, as do VM exits
induced by the TPR shadow (see Section 26.6.7) and pending MTF VM exits (see
Section 26.6.8. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt and also over VM exits due to the 1-settings of the
“interrupt-window exiting” and “NMI-window exiting” VM-execution controls.
26-32 Vol. 3C

VM ENTRIES
A pending debug exception delivered after VM entry causes a VM exit if the bit 1
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6
normally.

26.6.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts
the VMX-preemption timer with the unsigned value in the VMX-preemption timer-
value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the
value in the VMX-preemption timer-value field is zero). If this happens (and if the VM
entry was not to the wait-for-SIPI state), a VM exit occurs with its normal priority
after any event injection and before execution of any instruction following VM entry.
For example, any pending debug exceptions established by VM entry (see Section
26.6.3) take priority over a timer-induced VM exit. (The timer-induced VM exit will
occur after delivery of the debug exception, unless that exception or its delivery
causes a different VM exit.)

See Section 25.7.1 for details of the operation of the VMX-preemption timer in VMX
non-root operation, including the blocking and priority of the VM exits that it causes.

26.6.5 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur
immediately after VM entry (see Section 25.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over

VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered the
HLT state because of a VM entry (see Section 26.6.2). They do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 25.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
Vol. 3C 26-33

VM ENTRIES
• Debug-trap exceptions (see Section 26.6.3) and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered either
the HLT state or the shutdown state because of a VM entry (see Section 26.6.2).
They do not occur if the logical processor just entered the wait-for-SIPI state.

26.6.7 VM Exits Induced by the TPR Shadow
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 in byte 80H
on the virtual-APIC page (see Section 24.6.8).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the

interruptibility-state field in guest-state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts

(SMIs), INIT signals, and lower priority events. They thus have priority over the
VM exits described in Section 26.6.5, Section 26.6.6, and Section 26.6.8, as well
as any interrupts or debug exceptions that may be pending at the time of
VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part
of a VM entry (see Section 26.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical
processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

• The basic exit reason is “TPR below threshold.”

26.6.8 Pending MTF VM Exits
As noted in Section 26.5.2, VM entry may cause an MTF VM exit to be pending imme-
diately after VM entry. The following items detail the treatment of these VM exits:

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 24.6.2.
26-34 Vol. 3C

VM ENTRIES
• System-management interrupts (SMIs), INIT signals, and higher priority events
take priority over these VM exits. These VM exits take priority over debug-trap
exceptions and lower priority events.

• These VM exits wake the logical processor if it just entered the HLT state because
of a VM entry (see Section 26.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.

26.6.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING
GUEST STATE

VM-entry failures due to the checks identified in Section 26.3.1 and failures during
the MSR loading identified in Section 26.4 are treated differently from those that
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a
number indicating the general cause of the VM-entry failure. The
following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of
the checks identified in Section 26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt
to load MSRs (see Section 26.4).

41. VM-entry failure due to machine-check event. A machine-check event
occurred during VM entry (see Section 26.8).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section
26.3.1.6).
Vol. 3C 26-35

VM ENTRIES
3. Failure was due to an attempt to inject a non-maskable interrupt
(NMI) into a guest that is blocking events through the STI blocking bit
in the interruptibility-state field. Such failures are implementation-
specific (see Section 26.3.1.5).

4. Failure was due to an invalid VMCS link pointer (see Section
26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to
indicate which entry in the VM-entry MSR-load area caused the problem
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 27.5). If
this results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-
pointer-table entries (PDPTEs) may be checked and loaded (see Section 27.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit
do not occur for these VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

26.8 MACHINE-CHECK EVENTS DURING VM ENTRY
If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:1

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
26-36 Vol. 3C

VM ENTRIES
• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the
IDT.

• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor
depends on whether the logical processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs with error code 000CH (unrecoverable machine-check
condition).

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is
generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered
through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 26.7. The basic exit reason is

41, for “VM-entry failure due to machine-check event.”

The first option is not used if the machine-check event occurs after any guest state
has been loaded. The second option is used only if VM entry is able to load all guest
state.
Vol. 3C 26-37

VM ENTRIES
26-38 Vol. 3C

CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion as detailed in Section 25.1 through Section 25.3. VM exits perform the following
operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information
fields and VM-entry control fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4).

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some
VM-exit controls. This step is not performed for SMM VM exits that activate
the dual-monitor treatment of SMIs and SMM. See Section 33.15.6 for
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is
not performed for SMM VM exits that activate the dual-monitor treatment of
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins.
The steps described above are detailed in Section 27.2 through Section 27.6.

Section 33.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are
detailed in Section 33.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially
for VM exits caused by events that would normally be delivered through the IDT.
Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception

is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit
directly if the “NMI exiting” VM-execution control is 1. An external interrupt
Vol. 3C 27-1

VM EXITS
causes a VM exit directly if the “external-interrupt exiting” VM-execution control
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the
processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit
indirectly if it does not do so directly but delivery of the event causes a nested
exception, double fault, task switch, APIC access (see Section 25.2), EPT
violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response
to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it

would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault
is saved in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit
completes.

— An external interrupt does not acknowledge the interrupt controller and the
interrupt remains pending, unless the “acknowledge interrupt on exit”
VM-exit control is 1. In such a case, the interrupt controller is acknowledged
and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new
TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes
a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent
machine-check MSRs from being updated. These are updated by the
machine-check event itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
27-2 Vol. 3C

VM EXITS
— If the logical processor is in an inactive state (see Section 24.4.2) and not
executing instructions, some events may be blocked but others may return
the logical processor to the active state. Unblocked events may cause
VM exits.1 If an unblocked event causes a VM exit directly, a return to the
active state occurs only after the VM exit completes.2 The VM exit generates
any special bus cycle that is normally generated when the active state is
entered from that activity state.

MTF VM exits (see Section 25.7.2 and Section 26.6.8) are not blocked in the
HLT activity state. If an MTF VM exit occurs in the HLT activity state, the
logical processor returns to the active state only after the VM exit completes.
MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No
debug exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit
commences.

— An external interrupt acknowledges the interrupt controller and the interrupt
is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state
and, before the VM exit commences, generates any special bus cycle that is
normally generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery
of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the
delivery of an event through the IDT (before it can encounter a nested
exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case
where nested exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event
delivery has reached some event handler successfully (perhaps after one
or more nested exceptions). Such processors do not update the last-

1. If a VM exit takes the processor from an inactive state resulting from execution of a specific
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following
instruction.

2. An exception is made if the logical processor had been inactive due to execution of MWAIT; in
this case, it is considered to have become active before the VM exit.
Vol. 3C 27-3

VM EXITS
exception record if a VM exit or triple fault occurs before an event handler
is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and
delivery of the NMI causes a nested exception, double fault, task switch, or APIC
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit
commences.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “NMI exiting” VM-execution
control is 0, any blocking by NMI is cleared before the VM exit commences.
However, the previous state of blocking by NMI may be recorded in the VM-exit
interruption-information field; see Section 27.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “virtual NMIs” VM-execution
control is 1, virtual-NMI blocking is cleared before the VM exit commences.
However, the previous state of virtual-NMI blocking may be recorded in the
VM-exit interruption-information field; see Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error
(#MF) or by any of the following events if the event was unblocked due to (and
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there
is no blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through
the IDT. However, if such an event results in a VM exit before delivery is
complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and
may result in suspect state being saved to the guest-state area. A VM monitor
should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault, APIC access (see Section 25.2), EPT violation, or
EPT misconfiguration encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information
about them may be saved in the pending debug exceptions field (see Section
27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution
27-4 Vol. 3C

VM EXITS
control is 1. (Such VM exits can occur only from 64-bit mode and thus only on
processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps”
VM-execution control is 1, the value of ECX is 808H, bit 808H in write bitmap
for low MSRs is 0, and the “virtualize x2APIC mode” VM-execution control is
1. See Section 25.1.3.

— VM exits caused by TPR-shadow updates (see Section 25.5.3.3) that result
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete
before the VM exit occurs. Such modifications include those to the logical
processor’s interruptibility state (see Table 24-3). If there had been blocking by
MOV SS, POP SS, or STI before the instruction executed, such blocking is no
longer in effect.

27.2 RECORDING VM-EXIT INFORMATION AND UPDATING
VM-ENTRY CONTROL FIELDS

VM exits begin by recording information about the nature of and reason for the
VM exit in the VM-exit information fields. Section 27.2.1 to Section 27.2.4 detail the
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared
in the VM-entry interruption-information field. If bit 5 of the IA32_VMX_MISC MSR
(index 485H) is read as 1 (see Appendix A.6), the value of IA32_EFER.LMA is stored
into the “IA-32e mode guest” VM-entry control.1

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail
their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix C lists the numbers
used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits
may set some of these bits; see Section 33.15.2.3).2

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-set-
ting of the “unrestricted guest” VM-execution control.

2. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.
Vol. 3C 27-5

VM EXITS
• Exit qualification. This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of
I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT;
LIDT; LLDT; LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST;
VMREAD; VMWRITE; VMXON; control-register accesses; MOV DR; I/O instruc-
tions; MWAIT; accesses to the APIC-access page (see Section 25.2); and EPT
violations. For all other VM exits, this field is cleared. The following items provide
details:

— For a debug exception, the exit qualification contains information about the
debug exception. The information has the format given in Table 27-1.

— For a page-fault exception, the exit qualification contains the linear address
that caused the page fault. On processors that support Intel 64 architecture,
bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector
information in bits 7:0. Bits 63:8 of the exit qualification are cleared to 0.

Table 27-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if its
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is
either the execution of a single instruction (if RFLAGS.TF = 1 and
IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that
support Intel 64 architecture.
27-6 Vol. 3C

VM EXITS
— For a task switch, the exit qualification contains details about the task switch,
encoded as shown in Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the
instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if
the logical processor was not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear
address specified in the exit qualification will match the linear address
that the INVLPG would have used if no VM exit occurred. This address is
not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT,
STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON, the
exit qualification receives the value of the instruction’s displacement field,
which is sign-extended to 64 bits if necessary (32 bits on processors that do
not support Intel 64 architecture). If the instruction has no displacement (for
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for
RIP-relative addressing (used only in 64-bit mode). Such addressing causes
an instruction to use an address that is the sum of the displacement field
and the value of RIP that references the following instruction. In this case,
the exit qualification is loaded with the sum of the displacement field and
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are
undefined. For example, suppose that the address-size field in the VM-exit
instruction-information field (see Section 24.9.4 and Section 27.2.4) reports
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not
support Intel 64 architecture) of the instruction displacement are undefined.

Table 27-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.
Vol. 3C 27-7

VM EXITS
— For a control-register access, the exit qualification contains information about
the access and has the format given in Table 27-3.

Table 27-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.
27-8 Vol. 3C

VM EXITS
— For MOV DR, the exit qualification contains information about the instruction
and has the format given in Table 27-4.

— For an I/O instruction, the exit qualification contains information about the
instruction and has the format given in Table 27-5.

Table 27-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)
Vol. 3C 27-9

VM EXITS
— For MWAIT, the exit qualification contains a value that indicates whether
address-range monitoring hardware was armed. The exit qualification is set
either to 0 (if address-range monitoring hardware is not armed) or to 1 (if
address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical
access to the APIC-access page (see Section 25.2.1 and Section 25.2.2), the
exit qualification contains information about the access and has the format
given in Table 27-6.1

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and
Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access
within the APIC page.

• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction
execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support
Intel 64 architecture.

Table 27-5. Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents
27-10 Vol. 3C

VM EXITS
Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data
read during instruction execution) or 0001b (data write during instruction
execution) set bit 12—which distinguishes data read from data write—to that
which would have been stored in bit 1—W/R—of the page-fault error code had
the access caused a page fault instead of an APIC-access VM exit. This
implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the
access type is “data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access
type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the
MASKMOVDQU instruction, the access type is “data write during
instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the
access type is “data read during instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see
Section 27.2.3) if and only if it sets bits 15:12 of the exit qualification to
0011b (linear access during event delivery) or 1010b (guest-physical access
during event delivery).

See Section 25.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access
page (see Section 25.2.3), the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the
access causing the EPT violation and has the format given in Table 27-5.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an
address on the APIC-access page.

Table 27-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.
Vol. 3C 27-11

VM EXITS
An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write). Whether it also sets bit 0 (data read)
is implementation-specific and, for a given implementation, may differ for
different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those
resulting from an attempt to load the guest PDPTEs as part of the execution of
the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address
that is the translation of a linear address.

• Clear if the access causing the EPT violation is to a paging-structure entry
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure

entries are treated as writes with regard to EPT violations (see Section 28.2.3.2). If such an access
causes an EPT violation, the processor sets both bit 0 and bit 1 of the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physi-
cal address of the access causing the EPT violation is not present (see Section 28.2.2).

Table 27-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
27-12 Vol. 3C

VM EXITS
• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and blocking by NMI (see Table 24-3) was in effect before execution of
IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and virtual-NMI blocking was in effect before execution of IRET, bit 12 is
set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.
• Guest-linear address. For some VM exits, this field receives a linear address

that pertains to the VM exit. The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these
cases, this field receives the linear address of that operand. Bits 63:32 are
cleared if the logical processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant
segment is usable (if the relevant segment is not usable, the value is
undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear
address is the base address of relevant segment plus (E)DI (for INS) or (E)SI
(for OUTS). Bits 63:32 are cleared if the logical processor was not in 64-bit
mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see
Table 27-7; these are all EPT violations except those resulting from an
attempt to load the PDPTEs as of execution of the MOV CR instruction). The
linear address may translate to the guest-physical address whose access
caused the EPT violation. Alternatively, translation of the linear address may
reference a paging-structure entry whose access caused the EPT violation.
Bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT

misconfiguration, this field receives the guest-physical address that caused the
EPT violation or EPT misconfiguration. For all other VM exits, the field is
undefined.
Vol. 3C 27-13

VM EXITS
27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits
include those that occur on an attempt at a task switch that causes an exception
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-15). The following

items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the
interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), or 6 (software exception). Hardware exceptions
comprise all exceptions except breakpoint exceptions (#BP; generated by
INT3) and overflow exceptions (#OF; generated by INTO); these are
software exceptions. BOUND-range exceeded exceptions (#BR; generated by
BOUND) and invalid opcode exceptions (#UD) generated by UD2 are
hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would
have delivered an error code on the stack. This bit is always 0 if the VM exit
occurred while the logical processor was in real-address mode (CR0.PE=0).1
If bit 11 is set to 1, the error code is placed in the VM-exit interruption error
code (see below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 27.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an
instruction breakpoint), and blocking by NMI (see Table 24-3) was in
effect before execution of IRET, bit 12 is set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
27-14 Vol. 3C

VM EXITS
• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an
instruction breakpoint), and virtual-NMI blocking was in effect before
execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.1

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid
(by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
VM-exit interruption-information field, this field receives the error code that
would have been pushed on the stack had the event causing the VM exit been
delivered normally through the IDT. The EXT bit is set in this field exactly
when it would be set normally. For exceptions that occur during the delivery
of double fault (if the IDT-vectoring information field indicates a double fault),
the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while
delivering an event through the IDT and as a result of any of the following cases:2

• A fault occurs during event delivery and causes a VM exit (because the bit
associated with the fault is set to 1 in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to
the task switch only after the initial checks of the task switch pass (see Section
25.6.2).

• Event delivery causes an APIC-access VM exit (see Section 25.2).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as
part of VM entry (see Section 26.5.1.2).

1. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-
execution control is 1, bit 12 is always cleared to 0 by VM exits due to debug exceptions.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n)
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).
Vol. 3C 27-15

VM EXITS
A VM exit is not considered to occur during event delivery in any of the following
circumstances:
• The original event causes the VM exit directly (for example, because the original

event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution
control is 1).

• The original event results in a double-fault exception that causes the VM exit
directly.

• The VM exit occurred as a result of fetching the first instruction of the handler
invoked by the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-16). The following items

detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the
exception vector (at most 31). If the VM exit occurred during delivery of an
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when
the VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), 4 (software interrupt), 5 (privileged software
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by
INTO); these are software exceptions. BOUND-range exceeded exceptions
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated
by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware
exception that would have delivered an error code on the stack. This bit is
always 0 if the VM exit occurred while the logical processor was in real-
address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in
the IDT-vectoring error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
27-16 Vol. 3C

VM EXITS
For other VM exits, the field is marked invalid (by clearing bit 31) and the
remainder of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
IDT-vectoring information field, this field receives the error code that would
have been pushed on the stack by the event that was being delivered through
the IDT at the time of the VM exit. The EXT bit is set in this field when it would
be set normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to
instruction execution. (The VM-exit instruction length is also used for VM exits that
occur during the delivery of a software interrupt or software exception.) The
following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following
instructions that cause VM exits unconditionally (see Section 25.1.2) or
based on the settings of VM-execution controls (see Section 25.1.3): CLTS,
CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID,
LGDT, LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT,
OUTS, PAUSE, RDMSR, RDPMC, RDRAND, RDTSC, RDTSCP, RSM, SGDT, SIDT,
SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.1

— For VM exits due to software exceptions (those generated by executions of
INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software
interrupt, privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution.
These are VM exits that produce an exit reason indicating task switch and
either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP
instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1 or
to those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-
execution control is 1.
Vol. 3C 27-17

VM EXITS
delivery of a software interrupt, privileged software exception, or
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 25.2.1)
and encountered during delivery of a software interrupt, privileged software
exception, or software exception.1

— For VM exits due executions of VMFUNC that fail because one of the following
is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is
0 in the VM-function controls; see Section 25.7.4.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid
tentative EPTP value (see Section 25.7.4.3).

In all the above cases, this field receives the length in bytes (1–15) of the
instruction (including any instruction prefixes) whose execution led to the
VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt,
privileged software exception, or software exception include those encountered
during delivery of events injected as part of VM entry (see Section 26.5.1.2). If
the original event was injected as part of VM entry, this field receives the value of
the VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute
INS, INVEPT, INVPCID, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, SIDT,
SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or
VMXON, this field receives information about the instruction that caused the
VM exit. The format of the field depends on the identity of the instruction causing
the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format
is given in Table 27-8.2

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from
physical accesses (see Section 25.2.3) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS

Bit Position(s) Content

6:0 Undefined.

2. The format of the field was undefined for these VM exits on the first processors to support the
virtual-machine extensions. Software can determine whether the format specified in Table 27-8
is used by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
27-18 Vol. 3C

VM EXITS
— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the
field has the format is given in Table 27-9.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT,
INVPCID, and INVVPID

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS (Contd.)

Bit Position(s) Content
Vol. 3C 27-19

VM EXITS
— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field
has the format is given in Table 27-10.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT,
INVPCID, and INVVPID (Contd.)

Bit Position(s) Content
27-20 Vol. 3C

VM EXITS
6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
Vol. 3C 27-21

VM EXITS
— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has
the format is given in Table 27-11.

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
27-22 Vol. 3C

VM EXITS
— For VM exits due to attempts to execute RDRAND, the field has the format is
given in Table 27-12.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for
RDRAND

Bit Position(s) Content

2:0 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR (Contd.)

Bit Position(s) Content
Vol. 3C 27-23

VM EXITS
— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, or
VMXON, the field has the format is given in Table 27-13.

6:3 Destination register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for
RDRAND (Contd.)

Bit Position(s) Content
27-24 Vol. 3C

VM EXITS
— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has
the format is given in Table 27-14.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, and VMXON (Contd.)

Bit Position(s) Content
Vol. 3C 27-25

VM EXITS
Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).
27-26 Vol. 3C

VM EXITS
For all other VM exits, the field is undefined.
• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for

SMM VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions. See Section 33.15.2.3.

27.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 24.4) is written with the
corresponding component of processor state. On processors that support Intel 64
architecture, the full values of each natural-width field (see Section 24.10.2) is saved
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the
VM exit commences. See Section 27.1 for a discussion of which architectural updates
occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how certain components of
processor state are saved. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS,

IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corre-
sponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
Vol. 3C 27-27

VM EXITS
• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the
IA32_DEBUGCTL MSR are saved into the corresponding fields. The first
processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR
are saved into the corresponding field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR
are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM
VM exits. See Section 33.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved
for the base-address, segment-limit, and access rights are based on whether the
register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are

undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12
in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are

those which were in the register before the VM exit: (1) base address;
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.
27-28 Vol. 3C

VM EXITS
27.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the

VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that
causes VM exits unconditionally or that has been configured to cause a
VM exit via the VM-execution controls, the value saved references that
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI
(SIPI), or system-management interrupt (SMI), the value saved is that which
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window
exiting” VM-execution control or the “NMI-window exiting” VM-execution
control, the value saved is that which would be in the register had the VM exit
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI),
or hardware exception (as defined in Section 27.2.2), the value saved is the
return pointer that would have been saved (either on the stack had the event
been delivered through a trap or interrupt gate,1 or into the old task-state
segment had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that
would have been saved (either on the stack had the event been delivered
through a trap or interrupt gate, or into the old task-state segment had the
event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or
INTO), the value saved references the INT3 or INTO instruction that caused
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or
software exception (due to execution of INT3 or INTO) that encountered a
task gate in the IDT. The value saved references the instruction that caused
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task
gate in the IDT that was encountered for any reason except the direct access
by a software interrupt or software exception. The value saved is that which
would have been saved in the old task-state segment had the task switch
completed normally.

1. The reference here is to the full value of RIP before any truncation that would occur had the
stack width been only 32 bits or 16 bits.
Vol. 3C 27-29

VM EXITS
— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced
the value of the TPR shadow1 below that of TPR threshold VM-execution
control field, the value saved references the instruction following the MOV to
CR8 or WRMSR.

— If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3)
that results from an APIC access as part of instruction execution, the value
saved references the instruction following the one whose execution caused
the VTPR access.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS

register is saved into the RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered
through the IDT, the value saved is that which would appear in the saved
RFLAGS image (either that which would be saved on the stack had the event
been delivered through a trap or interrupt gate2 or into the old task-state
segment had the event been delivered through a task gate) had the event
been delivered through the IDT. See below for VM exits due to task switches
caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the
logical processor would have in RF in the RFLAGS register had the triple fault
taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate
in the IDT), the value saved is that which would have been saved in the
RFLAGS image in the old task-state segment (TSS) had the task switch
completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution
control, the value saved is 0.3

— For APIC-access VM exits and for VM exits caused by EPT violations and EPT
misconfigurations, the value saved depends on whether the VM exit occurred
during delivery of an event through the IDT:

1. The TPR shadow is bits 7:4 of the byte at offset 80H of the virtual-APIC page (see Section
24.6.8).

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the
stack width been only 32 bits or 16 bits.

3. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the
VM exit (for example, after clearing the VM-execution control that caused the VM exit), the
instruction may encounter a code breakpoint that has already been processed. A VM monitor can
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.
27-30 Vol. 3C

VM EXITS
• If the VM exit stored 0 for bit 31 for IDT-vectoring information field
(because the VM exit did not occur during delivery of an event through
the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field
(because the VM exit did occur during delivery of an event through the
IDT), the value saved is the value that would have appeared in the saved
RFLAGS image had the event been delivered through the IDT (see
above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the
VM exit occurred.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before

the VM exit.1 See Section 27.1 for details of how events leading to a VM exit may
affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 27.1 for details of how events leading to a
VM exit may affect this state. VM exits that end outside system-management
mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such
blocking before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution
control is 1. In this case, the value saved for this field does not indicate the
blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI).

— A VM exit with basic exit reason either “TPR below threshold.”2

— A VM exit with basic exit reason “monitor trap flag.”

— VM exits that are not caused by debug exceptions and that occur while there
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This
may be true even if the corresponding breakpoint is not enabled in DR7.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.

2. This item includes VM exits that occur after executions of MOV to CR8 or WRMSR (Section
25.1.3), TPR-shadow updates (Section 25.5.3.3), and certain VM entries (Section 26.6.7).
Vol. 3C 27-31

VM EXITS
— Suppose that a VM exit is due to an INIT signal, a machine-check exception,
or an SMI; or that a VM exit has basic exit reason “TPR below threshold” or
“monitor trap flag.” In this case, the value saved sets bits corresponding to
the causes of any debug exceptions that were pending at the time of the
VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match
that which was loaded on VM entry (see Section 26.6.3). Otherwise, the
following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 26.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug
exception was the execution of a single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception)
and occurs while there is MOV-SS blocking of debug exceptions. In this case,
the value saved sets bits corresponding to the causes of any debug
exceptions that were pending at the time of the VM exit. If the VM exit occurs
immediately after VM entry (no instructions were executed in VMX non-root
operation), the value saved may match that which was loaded on VM entry
(see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 26.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer

is saved into the VMX-preemption timer-value field. This is the value loaded from
this field on VM entry as subsequently decremented (see Section 25.7.1). VM
exits due to timer expiration save the value 0. Other VM exits may also save the
value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer
value” VM-exit control is 0, VM exit does not modify the value of the VMX-
preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control, values are saved into the four (4) PDPTE fields as follows:
27-32 Vol. 3C

VM EXITS
— If the “enable EPT” VM-execution control is 1 and the logical processor was
using PAE paging at the time of the VM exit, the PDPTE values currently in use
are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value
saved into bits 63:1 of that field is undefined. That value need not
correspond to the value that was loaded by VM entry or to any value that
might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value
saved into bits 63:12 of the field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not
using PAE paging at the time of the VM exit, the values saved are undefined.

27.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored
into the VM-exit MSR-store area (see Section 24.7.2). Specifically each entry in that
area (up to the number specified in the VM-exit MSR-store count) is processed in
order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be read only in system-

management mode (SMM) and the VM exit will not end in SMM.
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for

model-specific reasons. A processor may prevent certain MSRs (based on the
value of bits 31:0) from being stored on VM exits, even if they can normally be
read by RDMSR. Such model-specific behavior is documented in Chapter 34.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-

protection exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
“Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution
control were 0. See Section 24.6.2.
Vol. 3C 27-33

VM EXITS
27.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-

state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control

registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field
loaded (for example, the base address for GDTR) is loaded regardless of the mode of
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space
size” VM-exit control is 1. If the logical processor was in IA-32e mode before the
VM exit and this control is 0, a VMX abort occurs. See Section 27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section
27.5.6).

After the state loading described in this section, VM exits may load MSRs from the
VM-exit MSR-load area (see Section 27.6). This loading occurs only after the state
loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4

field, respectively, with the following exceptions:

— The following bits are not modified:
27-34 Vol. 3C

VM EXITS
• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX
operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).2 (This item applies only to
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively.

If the processor does not support the Intel 64 architecture, these fields have
only 32 bits; bits 63:32 of the MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of
bit N–1.3

— The following steps are performed on processors that support Intel 64 archi-
tecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the
setting of the “host address-space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are
maintained with their reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET
is always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
Vol. 3C 27-35

VM EXITS
— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from
the IA32_PAT field. Bits that are reserved in that MSR are maintained with
their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded
from the IA32_EFER field. Bits that are reserved in that MSR are maintained
with their reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below
for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its

selector is loaded with zero. The checks specified Section 26.3.1.2 limit the
selector values that may be loaded. In particular, CS and TR are never loaded
with zero and are thus never unusable. SS can be loaded with zero only on
processors that support Intel 64 architecture and only if the VM exit is to 64-bit
mode (64-bit mode allows use of segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to
zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture,
canonical) if the segment is unusable and the VM exit is not to 64-bit mode;
otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of
bit N–1.1 The values loaded for base addresses for FS and GS are also
manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of
bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to FFFFFFFFH.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
27-36 Vol. 3C

VM EXITS
— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise,
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting
of the “host address-space size” VM-exit control. Because the value of this
control is also loaded into IA32_EFER.LMA (see Section 27.5.1), no VM exit is
ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size”
VM-exit control. For example, if that control is 0, indicating a 32-bit guest,
CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as
follows on all VM exits: the selector is cleared to 0000H, the segment is marked
unusable and is otherwise undefined (although the base address is always canon-
ical).
Vol. 3C 27-37

VM EXITS
The base addresses for GDTR and IDTR are loaded from the GDTR base-address field
and the IDTR base-address field, respectively. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of bits 63:N
of each base address is set to the value of bit N–1 of that base address. The GDTR
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is
cleared, except bit 1, which is always set.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table
Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses
PAE paging. See Section 4.4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address
in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A
MOV to CR3 when PAE paging is in use checks the validity of the PDPTEs and, if they
are valid, loads them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTEs
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must
check their validity if either (1) PAE paging was not in use before the VM exit; or
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that
does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would
cause a general-protection exception due to the PDPTEs that would be loaded (e.g.,
because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a VM exit to
a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine a processor’s physical-address
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in
bits 7:0 of EAX.
27-38 Vol. 3C

VM EXITS
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking
by NMI (see Table 24-3). Other VM exits do not affect blocking by NMI. (See
Section 27.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates

linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they
required to invalidate any linear mappings or combined mappings if the “enable
VPID” VM-execution control is 1.

27.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear
any address-range monitoring that may be in effect.

27.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2).
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or

C0000101H (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM exit will not end in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for
model-specific reasons. A processor may prevent loading of certain MSRs even if
Vol. 3C 27-39

VM EXITS
they can normally be written by WRMSR. Such model-specific behavior is
documented in Chapter 34.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry

would cause a general-protection exception if executed via WRMSR with
CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM exit, the logical processor does not use
any translations that were cached before the transition.

27.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a
logical processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS.
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the
failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see
Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding
VMCS region) in such a way that the logical processor cannot complete the
VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host
address-space size” VM-entry control was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the
host-state area. Because the loading of such state may be done in any order (see
Section 27.5) a VM exit that might lead to a VMX abort for multiple reasons (for
example, the current VMCS may be corrupt and the host PDPTEs might not be prop-

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit
MSR-load area for the purpose of modifying the LME bit.
27-40 Vol. 3C

VM EXITS
erly configured). In such cases, the VMX-abort indicator could correspond to any one
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes
it only with one of the non-zero values mentioned above. The VMX-abort indicator
allows software on one logical processor to diagnose the VMX-abort on another. For
this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a
VMX abort depends on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition
occurs. The error code used is 000DH, indicating “VMX abort.” See Intel® Trusted
Execution Technology Measured Launched Environment Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to
notify the chipset) and enters the VMX-abort shutdown state. RESET is the
only event that wakes a logical processor from the VMX-abort shutdown state.
The following events do not affect a logical processor in this state: machine-
check events; INIT signals; external interrupts; non-maskable interrupts (NMIs);
start-up IPIs (SIPIs); and system-management interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT
If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
Vol. 3C 27-41

VM EXITS
— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered
through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor
depends on whether the logical processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs with error code 000CH (unrecoverable machine-check
condition).

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is
delivered through the host IDT.

• A VMX abort is generated (see Section 27.7). The logical processor blocks events
as done normally in VMX abort. The VMX abort indicator is 5, for “machine-check
event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has
been loaded. The second option is used only if VM entry is able to load all host state.
27-42 Vol. 3C

CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address trans-
lation: virtual-processor identifiers (VPIDs) and the extended page-table mechanism
(EPT). VPIDs are a mechanism for managing translations of linear addresses. EPT
defines a layer of address translation that augments the translation of linear
addresses.

Section 28.1 details the architecture of VPIDs. Section 28.2 provides the details of
EPT. Section 28.3 explains how a logical processor may cache information from the
paging structures, how it may use that cached information, and how software can
managed the cached information.

28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which
a logical processor may cache information for multiple linear-address spaces. When
VPIDs are used, VMX transitions may retain cached information and the logical
processor switches to a different linear-address space.

Section 28.3 details the mechanisms by which a logical processor manages informa-
tion cached for multiple address spaces. A logical processor may tag some cached
information with a 16-bit VPID. This section specifies how the current VPID is deter-
mined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management
mode under the default treatment of SMIs and SMM with VMX operation; see
Section 33.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-

execution control is 1, the current VPID is the value of the VPID VM-execution
control field in the VMCS. (VM entry ensures that this value is never 0000H; see
Section 26.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done,
the processor associates cached information with both a VPID and a PCID. Such
Vol. 3C 28-1

VMX SUPPORT FOR ADDRESS TRANSLATION
information is used only if the current VPID and PCID both match those associated
with the cached information.

28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain addresses that
would normally be treated as physical addresses (and used to access memory) are
instead treated as guest-physical addresses. Guest-physical addresses are trans-
lated by traversing a set of EPT paging structures to produce physical addresses
that are used to access memory.
• Section 28.2.1 gives an overview of EPT.
• Section 28.2.2 describes operation of EPT-based address translation.
• Section 28.2.3 discusses VM exits that may be caused by EPT.
• Section 28.2.5 describes interactions between EPT and memory typing.

28.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the
guest-physical addresses used in VMX non-root operation and those used by
VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined
by a set of EPT paging structures. The EPT paging structures are similar to those
used to translate linear addresses while the processor is in IA-32e mode. Section
28.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced
through control register CR3 . While the “enable EPT” VM-execution control is 1,
these are called guest paging structures. There are no guest paging structures if
CR0.PG = 0.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, the logical processor operates as if the “enable EPT”
VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
28-2 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
When the “enable EPT” VM-execution control is 1, the identity of guest-physical
addresses depends on the value of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of

control register CR3 and the guest paging structures. (This includes the values of
the PDPTEs, which logical processors store in internal, non-architectural
registers.) The latter includes (in page-table entries and in other paging-
structure entries for which bit 7—PS—is 1) the addresses to which linear
addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires
multiple translations of guest-physical addresses using EPT. Assume, for example,
that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear address then oper-
ates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory

located at the guest-physical address in CR3. The guest-physical address of the
guest page-directory entry (PDE) is translated through EPT to determine the
guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at
the guest-physical address in the guest PDE. The guest-physical address of the
guest page-table entry (PTE) is translated through EPT to determine the guest
PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the
guest-physical address in the guest PTE. The guest-physical address determined
by this offset is translated through EPT to determine the physical address to
which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT speci-
fies the privileges that software is allowed when accessing the address. Attempts at
disallowed accesses are called EPT violations and cause VM exits. See Section
28.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those
addresses are used to access memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether

that address is translated through EPT depends on whether PAE paging is being
used.1

— If PAE paging is not being used, the instruction does not use that address to
access memory and does not cause it to be translated through EPT. (If
CR0.PG = 1, the address will be translated through EPT on the next memory
accessing using a linear address.)

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 28-3

VMX SUPPORT FOR ADDRESS TRANSLATION
— If PAE paging is being used, the instruction loads the four (4) page-directory-
pointer-table entries (PDPTEs) from that address and it does cause the
address to be translated through EPT.

• Section 4.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the
PDPTEs from the guest-physical address in CR3. Such executions cause that
address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the
PDPTEs (see above) do not use those addresses to access memory and do not
cause them to be translated through EPT. The address in a PDPTE will be
translated through EPT on the next memory accessing using a linear address that
uses that PDPTE.

28.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1
It uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries
are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging
structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address

specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 24-8 in Section 24.6.11). An EPT PML4 table
comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the
physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical
address, it controls access to a 512-GByte region of the guest-physical-address
space.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the
physical address specified in bits 51:12 of the EPT PML4E (see Table 28-1). An

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits.
Thus, no such processor can produce a guest-physical address with more than 48 bits. An
attempt to use such an address causes a page fault. An attempt to load CR3 with such an
address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3
that would load a PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read
the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT
page-walk lengths are supported.
28-4 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
EPT page-directory-pointer table comprises 512 64-bit entries (PDPTEs). An EPT
PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it
controls access to a 1-GByte region of the guest-physical-address space. Use of the
PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see
Table 28-2). The final physical address is computed as follows:

— Bits 63:52 are all 0.

Table 28-1. Format of an EPT PML4 Entry (PML4E)

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 512-GByte region controlled by this entry (see Section 28.2.4).
Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced
by this entry1

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s

physical-address width by executing CPUID with 80000008H in EAX. The physical-address width
is returned in bits 7:0 of EAX.

51:N Reserved (must be 0)

63:52 Ignored
Vol. 3C 28-5

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is

located at the physical address specified in bits 51:12 of the EPT PDPTE (see

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX
capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is
allowed.

Table 28-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps
a 1-GByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page directory)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 1-GByte page referenced by this entry (see Section 28.2.4). Ignored
if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to
the 1-GByte page referenced by this entry (see Section 28.2.4). Ignored if bit 6 of
EPTP is 0

11:10 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
28-6 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
Table 28-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT
PDE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it
controls access to a 2-MByte region of the guest-physical-address space. Use of the
EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 28-4).

The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that
References an EPT Page Directory

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 1-GByte region controlled by this entry (see Section 28.2.4). Ignored
if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

63:52 Ignored
Vol. 3C 28-7

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 20:0 are from the original guest-physical address.
• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located

at the physical address specified in bits 51:12 of the EPT PDE (see Table 28-5).
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected
using a physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

Table 28-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page table)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 2-MByte page referenced by this entry (see Section 28.2.4). Ignored
if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to
the 2-MByte page referenced by this entry (see Section 28.2.4). Ignored if bit 6 of
EPTP is 0

11:10 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
28-8 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address,

every EPT PTE maps a 4-KByte page (see Table 28-6). The final physical address
is computed as follows:

• Bits 63:52 are all 0.

• Bits 51:12 are from the EPT PTE.

• Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The
processor ignores bits 63:3 and does uses the entry neither to reference another EPT
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not
present causes an EPT violation (see Section 28.2.3.2).

Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT
Page Table

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 2-MByte region controlled by this entry (see Section 28.2.4). Ignored
if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
Vol. 3C 28-9

VMX SUPPORT FOR ADDRESS TRANSLATION
The discussion above describes how the EPT paging structures reference each other
and how the logical processor traverses those structures when translating a guest-
physical address. It does not cover all details of the translation process. Additional
details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes

before the process completes) are described in Section 28.2.3.
• Interactions between the EPT translation mechanism and memory typing are

described in Section 28.2.5.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-struc-
ture entries. For the EPT paging structure entries, it identifies separately the format

Table 28-6. Format of an EPT Page-Table Entry

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.5)

7 Ignored

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has
accessed the 4-KByte page referenced by this entry (see Section 28.2.4). Ignored
if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to
the 4-KByte page referenced by this entry (see Section 28.2.4). Ignored if bit 6 of
EPTP is 0

11:10 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
28-10 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
of entries that map pages, those that reference other EPT paging structures, and
those that do neither because they are “not present”; bits 2:0 and bit 7 are high-
lighted because they determine how a paging-structure entry is used.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1

NOTES:
1. M is an abbreviation for MAXPHYADDR.

M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Address of EPT PML4 table Rsvd.
A
/
D

EPT
PWL–

1

EPT
PS
MT

EPTP2

2. See Section 24.6.11 for details of the EPTP.

Ignored Rsvd. Address of EPT page-directory-pointer table Ign. A Reserved XW R PML4E:
present

Ignored 0 0 0
PML4E:

not
present

Ignored Rsvd.
Physical

address of
1GB page

Reserved Ign. D A 1

I
P
A
T

EPT
MT XW R

PDPTE:
1GB
page

Ignored Rsvd. Address of EPT page directory Ign. A 0 Rsvd. XW R
PDPTE:
page

directory

Ignored 0 0 0
PDTPE:

not
present

Ignored Rsvd. Physical address
of 2MB page Reserved Ign. D A 1

I
P
A
T

EPT
MT XW R

PDE:
2MB
page

Ignored Rsvd. Address of EPT page table Ign. A 0 Rsvd. XW R
PDE:
page
table

Ignored 0 0 0
PDE:
not

present

Ignored Rsvd. Physical address of 4KB page Ign. D A
I
g
n

I
P
A
T

EPT
MT XW R

PTE:
4KB
page

Ignored 0 0 0
PTE:
not

present

Figure 28-1. Formats of EPTP and EPT Paging-Structure Entries
Vol. 3C 28-11

VMX SUPPORT FOR ADDRESS TRANSLATION
28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT miscon-
figurations and EPT violations. An EPT misconfiguration occurs when, in the
course of translation a guest-physical address, the logical processor encounters an
EPT paging-structure entry that contains an unsupported value. An EPT violation
occurs when there is no EPT misconfiguration but the EPT paging-structure entries
disallow an access using the guest-physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access
memory with a guest-physical address. Loading CR3 with a guest-physical address
with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT
violation until that address is used to access a paging structure.1

28.2.3.1 EPT Misconfigurations
AN EPT misconfiguration occurs if any of the following is identified while translating a
guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only)

or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and

this value is not supported by the logical processor. Software should read the
VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether this value
is supported (see Appendix A.10).

• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is
present) and one of the following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that
is beyond the logical processor’s physical-address width.2 See Section 28.2.2
for details of which bits are reserved in which EPT paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an
EPT PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT
memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with
settings reserved for future functionality. Software developers should be aware that
such settings may be used in the future and that an EPT paging-structure entry that
causes an EPT misconfiguration on one processor might not do so in the future.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and
IA32_EFER.LMA = 0—the MOV to CR3 instruction loads the PDPTEs from memory using the
guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 instruction
may cause an EPT misconfiguration or an EPT violation.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
28-12 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
28.2.3.2 EPT Violations
An EPT violation may occur during an access using a guest-physical address whose
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of
the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure

entry that is not present (see Section 28.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure

entries used to translate the guest-physical address. Reads by the logical
processor of guest paging structures to translate a linear address are considered
to be data reads.

• The access is a data write and bit 1 was clear in any of the EPT paging-structure
entries used to translate the guest-physical address. Writes by the logical
processor to guest paging structures to update accessed and dirty flags are
considered to be data writes.
If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT),
processor accesses to guest paging-structure entries are treated as writes with
regard to EPT violations. Thus, if bit 1 is clear in any of the EPT paging-structure
entries used to translate the guest-physical address of a guest paging-structure
entry, an attempt to use that entry to translate a linear address causes an EPT
violation.
(This does not apply to loads of the PDPTE registers by the MOV to CR instruction
for PAE paging; see Section 4.4.1. Those loads of guest PDPTEs are treated as
reads and do not cause EPT violations due to a guest-physical address not being
writable.)

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

28.2.3.3 Prioritization of EPT-Induced VM Exits
The translation of a linear address to a physical address requires one or more trans-
lations of guest-physical addresses using EPT (see Section 28.2.1). This section
specifies the relative priority of EPT-induced VM exits with respect to each other and
to other events that may be encountered when accessing memory using a linear
address.

For an access to a guest-physical address, determination of whether an EPT miscon-
figuration or an EPT violation occurs is based on an iterative process:1

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see
Section 28.2.3.1), an EPT misconfiguration occurs.

1. This is a simplification of the more detailed description given in Section 28.2.2.
Vol. 3C 28-13

VMX SUPPORT FOR ADDRESS TRANSLATION
c. If the entry is present and its contents are configured properly, operation
depends on whether the entry references another EPT paging structure
(whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from
that structure is accessed; step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address
(the translation of the original guest-physical address); step 2 is
executed.

2. Once the ultimate physical address is determined, the privileges determined by
the EPT paging-structure entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges
(see Section 28.2.3.2), an EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges,
memory is accessed using the ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the
processor first accessing an entry in the guest paging structure referenced by the
guest-physical address in CR3 (or, if PAE paging is in use, the guest-physical address
in the appropriate PDPTE register), then accessing an entry in another guest paging
structure referenced by the guest-physical address in the first guest paging-structure
entry, etc. Each guest-physical address is itself translated using EPT and may cause
an EPT-induced VM exit. The following items detail how page faults and EPT-induced
VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-
physical address (initially, the address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see
above), an EPT-induced VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag)
of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on
whether the entry references another guest paging structure (whether it
is a guest PDE with PS = 1 or a guest PTE):

• If the entry does reference another guest paging structure, an entry
from that structure is accessed; step 1 is executed for that other
entry.

• Otherwise, the entry is used to produce the ultimate guest-physical
address (the translation of the original linear address); step 2 is
executed.

2. Once the ultimate guest-physical address is determined, the privileges
determined by the guest paging-structure entries are evaluated:
28-14 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
a. If the access to the linear address is not allowed by these privileges (e.g., it
was a write to a read-only page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt
is made to access memory at the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation
(see above), an EPT-induced VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed
using the ultimate physical address (the translation, using EPT, of the
ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is trans-
lated using EPT (see above). This process, if it completes without an EPT violation or
EPT misconfiguration, produces a physical address and determines the privileges
allowed by the EPT paging-structure entries. If these privileges do not allow the
access to the physical address (see Section 28.2.3.2), an EPT violation occurs.
Otherwise, memory is accessed using the physical address.

28.2.4 Accessed and Dirty Flags for EPT
The Intel 64 architecture supports accessed and dirty flags in ordinary paging-
structure entries (see Section 4.8). Some processors also support corresponding
flags in EPT paging-structure entries. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor
supports this feature.

Software can enable accessed and dirty flags for EPT using bit 6 of the extended-
page-table pointer (EPTP), a VM-execution control field (see Table 24-8 in Section
24.6.11). If this bit is 1, the processor will set the accessed and dirty flags for EPT as
described below. In addition, setting this flag causes processor accesses to guest
paging-structure entries to be treated as writes (see below and Section 28.2.3.2).

For any EPT paging-structure entry that is used during guest-physical-address trans-
lation, bit 8 is the accessed flag. For a EPT paging-structure entry that maps a page
(as opposed to referencing another EPT paging structure), bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of guest-phys-
ical-address translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a guest-physical address, the processor sets the dirty
flag (if it is not already set) in the EPT paging-structure entry that identifies the final
physical address for the guest-physical address (either an EPT PTE or an EPT paging-
structure entry in which bit 7 is 1).

When accessed and dirty flags for EPT are enabled, processor accesses to guest
paging-structure entries are treated as writes (see Section 28.2.3.2). Thus, such an
access will cause the processor to set the dirty flag in the EPT paging-structure entry
that identifies the final physical address of the guest paging-structure entry.
Vol. 3C 28-15

VMX SUPPORT FOR ADDRESS TRANSLATION
(This does not apply to loads of the PDPTE registers for PAE paging by the MOV to CR
instruction; see Section 4.4.1. Those loads of guest PDPTEs are treated as reads and
do not cause the processor to set the dirty flag in any EPT paging-structure entry.)

These flags are “sticky,” meaning that, once set, the processor does not clear them;
only software can clear them.

A processor may cache information from the EPT paging-structure entries in TLBs
and paging-structure caches (see Section 28.3). This fact implies that, if software
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the
corresponding bit in memory on a subsequent access using an affected guest-phys-
ical address.

28.2.5 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a
memory access while EPT is in use. (See Chapter 11, “Memory Cache Control” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for
details of memory typing in the Intel 64 architecture.) Section 28.2.5.1 explains how
the memory type is determined for accesses to the EPT paging structures. Section
28.2.5.2 explains how the memory type is determined for an access using a guest-
physical address that is translated using EPT.

28.2.5.1 Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT
paging structures. The determination is based first on the value of bit 30 (cache
disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-

structure memory type, which is specified in bits 2:0 of the extended-page-table
pointer (EPTP), a VM-execution control field (see Section 24.6.11). A value of 0
indicates the uncacheable type (UC), while a value of 6 indicates the write-back
type (WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable
(UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging
structure.

28.2.5.2 Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an
access that is translated using EPT) is the memory type that is used to access
memory. The effective memory type is based on the value of bit 30 (cache
disable—CD) in control register CR0; the last EPT paging-structure entry used to
translate the guest-physical address (either an EPT PDE with bit 7 set to 1 or an EPT
PTE); and the PAT memory type (see below):
28-16 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type
from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure
entry: 0 = UC; 1 = WC; 4 = WT; 5 = WP; and 6 = WB. Other values are reserved
and cause EPT misconfigurations (see Section 28.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the
last EPT paging-structure entry:

— If the value is 0, the effective memory type is the combination of the EPT
memory type and the PAT memory type specified in Table 11-7 in Section
11.5.2.2, using the EPT memory type in place of the MTRR memory type.

— If the value is 1, the memory type used for the access is the EPT memory
type. The PAT memory type is ignored.

• If CR0.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical
address.

28.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the
address-translation process by caching on the processor data from the structures in
memory that control that process. Such caching is discussed in Section 4.10,
“Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A. The current section describes how this caching
interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this
caching architecture. EPT defines the guest-physical address space and defines
translations to that address space (from the linear-address space) and from that
address space (to the physical-address space). Both features control the ways in

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry
(or page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT
memory type is selected from the table by using a value of 0 for the PAT bit with the values of
PCD and PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root
paging structure). With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.
Vol. 3C 28-17

VMX SUPPORT FOR ADDRESS TRANSLATION
which a logical processor may create and use information cached from the paging
structures.

Section 28.3.1 describes the different kinds of information that may be cached.
Section 28.3.2 specifies when such information may be cached and how it may be
used. Section 28.3.3 details how software can invalidate cached information.

28.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A identifies two kinds of translation-related
information that may be cached by a logical processor: translations, which are
mappings from linear page numbers to physical page frames, and paging-structure
caches, which map the upper bits of a linear page number to information from the
paging-structure entries used to translate linear addresses matching those upper
bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A
logical processor may cache and use such information based on its function. Informa-
tion with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to
the physical page frame to which it translates, along with information about
access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the
upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address
space, along with information about access privileges. For example,
bits 47:39 of a linear address would map to the address of the relevant page-
directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.2 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical
page number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping
from the upper portion of a guest-physical address to the physical address of
the EPT paging structure used to translate the corresponding region of the
guest-physical address space, along with information about access
privileges.

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.

2. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.
28-18 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
The information in guest-physical mappings about access privileges and memory
typing is derived from EPT paging structures.

• Combined mappings.1 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number
to the physical page frame to which it translates, along with information
about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from
the upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address
space, along with information about access privileges.

The information in combined mappings about access privileges and memory
typing is derived from both guest paging structures and EPT paging structures.

28.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous
section:2

• The following items describe the creation of mappings while EPT is not in use
(including execution outside VMX non-root operation):

— Linear mappings may be created. They are derived from the paging
structures referenced (directly or indirectly) by the current value of CR3 and
are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-
structure entries that are not present (bit 0 is 0) or that set reserved bits. For
example, if a PTE is not present, no linear mapping are created for any linear
page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT
paging structures referenced (directly or indirectly) by bits 51:12 of the
current EPTP. These 40 bits contain the address of the EPT-PML4-table. (the
notation EP4TA refers to those 40 bits). Newly created guest-physical
mappings are associated with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by the current EP4TA. If

1. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

2. This section associated cached information with the current VPID and PCID. If PCIDs are not sup-
ported or are not being used (e.g., because CR4.PCIDE = 0), all the information is implicitly associ-
ated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers (PCIDs),” in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 28-19

VMX SUPPORT FOR ADDRESS TRANSLATION
CR0.PG = 1, they are also derived from the paging structures referenced
(directly or indirectly) by the current value of CR3. They are associated with
the current VPID, the current PCID, and the current EP4TA.1 No combined
paging-structure-cache entries are created if CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with
information derived from EPT paging-structure entries that are not present
(bits 2:0 are all 0) or that are misconfigured (see Section 28.2.3.1).

— No combined mappings are created with information derived from guest
paging-structure entries that are not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical

processor may use cached mappings as follows:

— For accesses using linear addresses, it may use linear mappings associated
with the current VPID and the current PCID. It may also use global TLB
entries (linear mappings) associated with the current VPID and any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings
associated with the current VPID, the current PCID, and the current EP4TA. It
may also use global TLB entries (combined mappings) associated with the
current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

28.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may
result in inconsistencies between those structures and the mappings cached by a
logical processor. Certain operations invalidate information cached by a logical
processor and can be used to eliminate such inconsistencies.

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID
that are associated with different EP4TAs. Similarly, it may be caching combined mappings for an
EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
28-20 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
28.3.3.1 Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure

caches independent of VMX operation (e.g., the INVLPG and INVPCID instruc-
tions) invalidate linear mappings and combined mappings.1 They are required to
do so only for the current VPID (but, for combined mappings, all EP4TAs). Linear
mappings for the current VPID are invalidated even if EPT is in use.2 Combined
mappings for the current VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the
current EP4TA) that would be used to translate the guest-physical address that
caused the EPT violation. If that guest-physical address was the translation of a
linear address, the EPT violation also invalidates any combined mappings for that
linear address associated with the current PCID, the current VPID and the current
EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits
invalidate linear mappings and combined mappings associated with VPID 0000H
(for all PCIDs). Combined mappings for VPID 0000H are invalidated for all
EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined
mappings. Invalidation is based on instruction operands, called the INVVPID type
and the INVVPID descriptor. Four INVVPID types are currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor
invalidates linear mappings and combined mappings associated with the
VPID specified in the INVVPID descriptor and that would be used to translate
the linear address specified in of the INVVPID descriptor. Linear mappings
and combined mappings for that VPID and linear address are invalidated for
all PCIDs and, for combined mappings, all EP4TAs. (The instruction may also
invalidate mappings associated with other VPIDs and for other linear
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all
linear mappings and combined mappings associated with the VPID specified
in the INVVPID descriptor. Linear mappings and combined mappings for that

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for an enumeration of operations that
architecturally invalidate entries in the TLBs and paging-structure caches independent of VMX
operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while
EPT is in use, linear mappings (for the same VPID as the current one) there were created earlier,
when EPT was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain,
while EPT is in not use, combined mappings (for the same VPID as the current one) there were
created earlier, when EPT was in use.
Vol. 3C 28-21

VMX SUPPORT FOR ADDRESS TRANSLATION
VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs.
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear
mappings and combined mappings associated with all VPIDs except VPID
0000H and with all PCIDs. (The instruction may also invalidate linear
mappings with VPID 0000H.) Combined mappings are invalidated for all
EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical
processor invalidates linear mappings and combined mappings associated
with the VPID specified in the INVVPID descriptor. Linear mappings and
combined mappings for that VPID are invalidated for all PCIDs and, for
combined mappings, all EP4TAs. The logical processor is not required to
invalidate information that was used for global translations (although it may
do so). See Section 4.10, “Caching Translation Information” for details
regarding global translations. (The instruction may also invalidate mappings
associated with other VPIDs.)

See Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C for details of the INVVPID instruction. See Section 28.3.3.3
for guidelines regarding use of this instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and
combined mappings. Invalidation is based on instruction operands, called the
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all
guest-physical mappings and combined mappings associated with the EP4TA
specified in the INVEPT descriptor. Combined mappings for that EP4TA are
invalidated for all VPIDs and all PCIDs. (The instruction may invalidate
mappings associated with other EP4TAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-
physical mappings and combined mappings associated with all EP4TAs (and,
for combined mappings, for all VPIDs and PCIDs).

See Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C for details of the INVEPT instruction. See Section 28.3.3.4 for
guidelines regarding use of this instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings,
and combined mappings.

28.3.3.2 Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate
certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure

caches independent of VMX operation are not required to invalidate any guest-
physical mappings.
28-22 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
• The INVVPID instruction is not required to invalidate any guest-physical
mappings.

• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If

the “enable VPID” VM-execution control is 1, VMX transitions are not required to
invalidate any linear mappings or combined mappings.

• The VMXOFF and VMXON instructions are not required to invalidate any linear
mappings, guest-physical mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason,
the operations identified above may invalidate the indicated mappings despite the
fact that doing so is not required.

28.3.3.3 Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that soft-
ware is virtualizing memory (e.g., see Section 31.3, “Memory Virtualization”).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures.
Such a VMM may configure the VMCS so that all or some of the operations that inval-
idate entries the TLBs and the paging-structure caches (e.g., the INVLPG instruction)
cause VM exits. If VMM software is emulating these operations, it may be necessary
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the
paging-structure caches are appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the
specific algorithm being used for page-table virtualization. The following items
provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID

instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the
INVLPG instruction being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure
caches—except for global translations. An example is the MOV to CR3 instruction.
(See Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for details regarding
global translations.) Emulation of such an instruction may require execution of
the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.
Vol. 3C 28-23

VMX SUPPORT FOR ADDRESS TRANSLATION
• Some instructions invalidate all entries in the TLBs and paging-structure
caches—including for global translations. An example is the MOV to CR4
instruction if the value of value of bit 4 (page global enable—PGE) is changing.
Emulation of such an instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the
current VPID, and it will use such mappings to translate linear addresses. For that
reason, a VMM should not use the same VPID for different non-EPT guests that use
different page tables. Doing so may result in one guest using translations that pertain
to the other.

If EPT is in use, the instructions enumerated above might not be configured to cause
VM exits and the VMM might not be emulating them. In that case, executions of the
instructions by guest software properly invalidate the required entries in the TLBs
and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID
instruction is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value
of bits 51:12 of current EPTP. If a VMM uses different EPTP values for different guests,
it may use the same VPID for those guests. Doing so cannot result in one guest using
translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in
use:
• As detailed in Section 25.2.1.1, an access to the APIC-access page might not

cause an APIC-access VM exit if software does not properly invalidate information
that may be cached from the paging structures. If, at one time, the current VPID
on a logical processor was a non-zero value X, it is recommended that software
use the INVVPID instruction with the “single-context” INVVPID type and with
VPID X in the INVVPID descriptor before a VM entry on the same logical
processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-
access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from paging structures between separate uses of
VMX operation.

28.3.3.4 Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate
information cached from the EPT paging structures.
28-24 Vol. 3C

VMX SUPPORT FOR ADDRESS TRANSLATION
• Software should use the INVEPT instruction with the “single-context” INVEPT
type after making any of the following changes to an EPT paging-structure entry
(the INVEPT descriptor should contain an EPTP value that references — directly
or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether
the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either
bits 5:3 or bit 6. (These bits determine the effective memory type of
accesses using that EPT paging-structure entry; see Section 28.2.5.)

• Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from 0 to 1. Failure to do
so may cause an EPT violation that would not otherwise occur. Because an EPT
violation invalidates any mappings that would be used by the access that caused
the EPT violation (see Section 28.3.3.1), an EPT violation will not recur if the
original access is performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT
paging-structure entries that are not present or misconfigured (see Section
28.2.3.1), it is not necessary to execute INVEPT following modification of an EPT
paging-structure entry that had been not present or misconfigured.

• As detailed in Section 25.2.1.1 and Section 25.2.2.1, an access to the APIC-
access page might not cause an APIC-access VM exit if software does not
properly invalidate information that may be cached from the EPT paging
structures. If EPT was in use on a logical processor at one time with EPTP X, it is
recommended that software use the INVEPT instruction with the “single-context”
INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry on the
same logical processor that enables EPT with EPTP X and either (a) the “virtualize
APIC accesses” VM-execution control was changed from 0 to 1; or (b) the value
of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from EPT paging structures between separate
uses of VMX operation.

In a system containing more than one logical processor, software must account for
the fact that information from an EPT paging-structure entry may be cached on
logical processors other than the one that modifies that entry. The process of propa-
gating the changes to a paging-structure entry is commonly referred to as “TLB
shootdown.” A discussion of TLB shootdown appears in Section 4.10.5, “Propagation
of Paging-Structure Changes to Multiple Processors,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
Vol. 3C 28-25

VMX SUPPORT FOR ADDRESS TRANSLATION
28-26 Vol. 3C

CHAPTER 29
VMX INSTRUCTION REFERENCE

NOTE
This chapter was previously located in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B as chapter 5.

29.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and
IA-32 architectures. VMX is intended to support virtualization of processor hardware
and a system software layer acting as a host to multiple guest software environ-
ments. The virtual-machine extensions (VMX) includes five instructions that manage
the virtual-machine control structure (VMCS), four instructions that manage VMX
operation, two TLB-management instructions, and two instructions for use by guest
software. Additional details of VMX are described in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C.

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in

memory. It makes the referenced VMCS active and current, loading the current-
VMCS pointer with this operand and establishes the current VMCS based on the
contents of VMCS-data area in the referenced VMCS region. Because this makes
the referenced VMCS active, a logical processor may start maintaining on the
processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory.
The instruction sets the launch state of the VMCS referenced by the operand to
“clear”, renders that VMCS inactive, and ensures that data for the VMCS have
been written to the VMCS-data area in the referenced VMCS region. If the
operand is the same as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from the VMCS (the encoding of
that field is given in a register operand) and stores it into a destination operand
that may be a register or in memory.

• VMWRITE — This instruction writes a component to the VMCS (the encoding of
that field is given in a register operand) from a source operand that may be a
register or in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the

VMCS. A VM entry occurs, transferring control to the VM.
Vol. 3C 29-1

VMX INSTRUCTION REFERENCE
• VMRESUME — This instruction resumes a virtual machine managed by the
VMCS. A VM entry occurs, transferring control to the VM.

• VMXOFF — This instruction causes the processor to leave VMX operation.
• VMXON — This instruction takes a single 64-bit source operand that is in

memory. It causes a logical processor to enter VMX root operation and to use the
memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized
below:
• INVEPT — This instruction invalidates entries in the TLBs and paging-structure

caches that were derived from extended page tables (EPT).
• INVVPID — This instruction invalidates entries in the TLBs and paging-structure

caches based on a Virtual-Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate
invalid-opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the

VMM for service. A VM exit occurs, transferring control to the VMM.
• VMFUNC — This instruction allows software in VMX non-root operation to invoke

a VM function (processor functionality enabled and configured by software in
VMX root operation) without a VM exit.

29.2 CONVENTIONS
The operation sections for the VMX instructions in Section 29.3 use the pseudo-func-
tion VMexit, which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail,
VMfailInvalid, and VMfailValid. These pseudo-functions signal instruction success or
failure by setting or clearing bits in RFLAGS and, in some cases, by writing the
VM-instruction error field. The following pseudocode fragments detail these func-
tions:

VMsucceed:
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid
29-2 Vol. 3C

VMX INSTRUCTION REFERENCE
THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF ← 1;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 1;
SF ← 0;
OF ← 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 29.4, “VM
Instruction Error Numbers”.

29.3 VMX INSTRUCTIONS
This section provides detailed descriptions of the VMX instructions.
Vol. 3C 29-3

VMX INSTRUCTION REFERENCE
INVEPT— Invalidate Translations Derived from EPT

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches that were derived from extended page tables (EPT). (See Chapter 28,
“VMX Support for Address Translation” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C.) Invalidation is based on the INVEPT type
specified in the register operand and the INVEPT descriptor specified in the
memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D; in 64-bit mode, the register operand has 64 bits (the instruction cannot be
executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A, “VMX Capability Reporting Facility”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
There are two INVEPT types currently defined:
• Single-context invalidation. If the INVEPT type is 1, the logical processor

invalidates all mappings associated with bits 51:12 of the EPT pointer (EPTP)
specified in the INVEPT descriptor. It may invalidate other mappings as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates
mappings associated with all EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of
the VPID and PCID values with which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in
bits 63:0 (see Figure 29-1).

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (in 64-bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (outside 64-bit mode)

Figure 29-1. INVEPT Descriptor

127 64 63 0

Reserved (must be zero) EPT pointer (EPTP)
29-4 Vol. 3C INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE
Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;
EPTP ← INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.
Vol. 3C 29-5INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.
If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVEPT instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory

address is in a non-canonical form.
#UD If not in VMX operation.

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).
29-6 Vol. 3C INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE
INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches based on virtual-processor identifier (VPID). (See Chapter 28, “VMX
Support for Address Translation” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C.) Invalidation is based on the INVVPID type speci-
fied in the register operand and the INVVPID descriptor specified in the memory
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D; in 64-bit mode, the register operand has 64 bits (the instruction cannot be
executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A, “VMX Capability Reporting Facility”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
There are four INVVPID types currently defined:
• Individual-address invalidation: If the INVVPID type is 0, the logical processor

invalidates mappings for the linear address and VPID specified in the INVVPID
descriptor. In some cases, it may invalidate mappings for other linear addresses
(or other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor
invalidates all mappings tagged with the VPID specified in the INVVPID
descriptor. In some cases, it may invalidate mappings for other VPIDs as well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor
invalidates all mappings tagged with all VPIDs except VPID 0000H. In some
cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is
3, the logical processor invalidates all mappings tagged with the VPID specified in
the INVVPID descriptor except global translations. In some cases, it may
invalidate global translations (and mappings with other VPIDs) as well. See the
“Caching Translation Information” section in Chapter 4 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volumes 3A for information about global
translations.

If an unsupported INVVPID type is specified, the instruction fails.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (in 64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (outside 64-bit mode)
Vol. 3C 29-7INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless
of the EPTP and PCID values with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear
address as shown in Figure 29-2.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR ← INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Figure 29-2. INVVPID Descriptor

127 64 63 01516

Reserved (must be zero)Linear Address VPID
29-8 Vol. 3C INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
Invalidate mappings for GL_ADDR tagged
with VPID;

VMsucceed;
FI;

FI;
BREAK;

1: // single-context invalidation
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except
global translations;

VMsucceed;
FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
Vol. 3C 29-9INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.
If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVVPID instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the

memory address is in a non-canonical form.
#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
29-10 Vol. 3C INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE
VMCALL—Call to VM Monitor

Description

This instruction allows guest software can make a call for service into an underlying
VM monitor. The details of the programming interface for such calls are VMM-specific;
this instruction does nothing more than cause a VM exit, registering the appropriate
exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section
33.15.2 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C). This invocation will activate the dual-monitor treatment of system-
management interrupts (SMIs) and system-management mode (SMM) if it is not
already active (see Section 33.15.6 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3C).

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and
SMM or the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 33.15.2
 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 33.15.6.1 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.
Vol. 3C 29-11VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 33.15.6.2,
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 33.15.6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3C);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is

in VMX root operation.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX non-root operation.
29-12 Vol. 3C VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
VMCLEAR—Clear Virtual-Machine Control Structure

Description

This instruction applies to the VMCS whose VMCS region resides at the physical
address contained in the instruction operand. The instruction ensures that VMCS
data for that VMCS (some of these data may be currently maintained on the
processor) are copied to the VMCS region in memory. It also initializes parts of the
VMCS region (for example, it sets the launch state of that VMCS to clear). See
Chapter 24, “Virtual-Machine Control Structures,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C.

The operand of this instruction is always 64 bits and is always in memory. If the
operand is the current-VMCS pointer, then that pointer is made invalid (set to
FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to
memory; the data may be already resident in memory before the VMCLEAR is
executed.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width1

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

1. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see
Appendix A.1.
Vol. 3C 29-13VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
launch state of VMCS referenced by the operand ← “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMCLEAR instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.
29-14 Vol. 3C VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the source operand is in the SS segment and the memory

address is in a non-canonical form.
#UD If operand is a register.

If not in VMX operation.
Vol. 3C 29-15VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMFUNC—Invoke VM function

Description

This instruction allows software in VMX non-root operation to invoke a VM function,
which is processor functionality enabled and configured by software in VMX root oper-
ation. The value of EAX selects the specific VM function being invoked.

The behavior of each VM function (including any additional fault checking) is specified
in Section 25.7.4, “VM Functions,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C.

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 25.7.4, “VM Functions,” in
Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 3C.

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction Description

0F 01 D4 VMFUNC Invoke VM function specified in EAX.
29-16 Vol. 3C VMFUNC—Invoke VM function

VMX INSTRUCTION REFERENCE
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the

instruction is successful, it sets the launch state to “launched.”
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency
checks as detailed in Chapter 26, “VM Entries,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C. Failure to pass checks on the VMX
controls or on the host-state area passes control to the instruction following the
VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state
area fail, the logical processor loads state from the host-state area of the VMCS,
passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or
POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
Vol. 3C 29-17VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 26.7, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 26.7, in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C);

ELSE
IF VMLAUNCH

THEN launch state of VMCS ← “launched”;
FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;
29-18 Vol. 3C VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
Further details of the operation of the VM-entry appear in Chapter 26 of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMLAUNCH and VMRESUME instructions are
not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.
Vol. 3C 29-19VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the
instruction operand. The instruction fails if its operand is not properly aligned, sets
unsupported physical-address bits, or is equal to the VMXON pointer. In addition, the
instruction fails if the 32 bits in memory referenced by the operand do not match the
VMCS revision identifier supported by this processor.2

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width3

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

2. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision iden-
tifier supported by this processor (see Appendix A, “VMX Capability Reporting Facility,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).

3. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see
Appendix A.1.
29-20 Vol. 3C VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
FI;
FI;

FI;

Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the

SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMPTRLD instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
Vol. 3C 29-21VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
#SS(0) If the source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.
29-22 Vol. 3C VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description

Stores the current-VMCS pointer into a specified memory address. The operand of
this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside
the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the memory destination operand effective address is outside
the SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If not in VMX operation.

Opcode Instruction Description

0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.
Vol. 3C 29-23VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMPTRST instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the destination operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.
29-24 Vol. 3C VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from the VMCS and stores it into a specified destination
operand (register or memory).

The specific VMCS field is identified by the VMCS-field encoding contained in the
register source operand. Outside IA-32e mode, the source operand has 32 bits,
regardless of the value of CS.D. In 64-bit mode, the source operand has 64 bits;
however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an
attempt to access an unsupported VMCS component (see operation section).

The effective size of the destination operand, which may be a register or in memory,
is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with respect to
operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the source
operand is shorter than this effective operand size, the high bits of the destination
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are
not read.

Note that any faults resulting from accessing a memory destination operand can
occur only after determining, in the operation section below, that the VMCS pointer is
valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

DEST ← contents of VMCS field indexed by register source operand;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).
Vol. 3C 29-25VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If a memory destination operand effective address is outside the
SS segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMREAD instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or
GS segments and the memory address is in a non-canonical
form.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.
29-26 Vol. 3C VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
Vol. 3C 29-27VMRESUME—Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes to a specified field in the VMCS specified by a secondary source operand
(register only) using the contents of a primary source operand (register or memory).

The VMCS field is identified by the VMCS-field encoding contained in the register
secondary source operand. Outside IA-32e mode, the secondary source operand is
always 32 bits, regardless of the value of CS.D. In 64-bit mode, the secondary source
operand has 64 bits; however, if bits 63:32 of the secondary source operand are not
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS compo-
nent (see operation section).

The effective size of the primary source operand, which may be a register or in
memory, is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with
respect to operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the
secondary source operand is shorter than this effective operand size, the high bits of
the primary source operand are ignored. If the VMCS field is longer, then the high bits
of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after
determining, in the operation section below, that the VMCS pointer is valid but before
determining if the destination VMCS field is supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand ← SRC;
VMsucceed;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)
29-28 Vol. 3C VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS,
DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS

segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMWRITE instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If the memory source operand is in the SS segment and the

memory address is in a non-canonical form.
#UD If not in VMX operation.
Vol. 3C 29-29VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMXOFF—Leave VMX Operation

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally
re-enables A20M, and clears any address-range monitoring.4

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
IF IA32_SMM_MONITOR_CTL[2] = 05

THEN unblock SMIs;
IF outside SMX operation6

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

4. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

5. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless
of the value of the register’s value bit (bit 0). Not all processors allow this bit to be set to 1. Soft-
ware should consult the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine
whether this is allowed.

6. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if
GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See Chapter 6, “Safer
Mode Extensions Reference.”
29-30 Vol. 3C VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE
Flags Affected

See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMXOFF instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.
Vol. 3C 29-31VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE
VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT
signals, disables A20M, and clears any address-range monitoring established by the
MONITOR instruction.7

The operand of this instruction is a 4KB-aligned physical address (the VMXON
pointer) that references the VMXON region, which the logical processor may use to
support VMX operation. This operand is always 64 bits and is always in memory.

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1
and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation8) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation9 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
addr sets any bits beyond the physical-address width10

THEN VMfailInvalid;

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

7. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

8. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B.

9. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

10. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32;
see Appendix A.1.
29-32 Vol. 3C VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
ELSE
rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 29.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid

CR0 or CR4 fixed bits.
If executed in A20M mode.
If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the

SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.
If executed with CR4.VMXE = 0.
Vol. 3C 29-33VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid

CR0 or CR4 fixed bits.
If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory

address is in a non-canonical form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.
29-34 Vol. 3C

VMX INSTRUCTION REFERENCE
29.4 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error
number to indicate the source of the error. Table 29-1 lists VM-instruction error
numbers.

Table 29-1. VM-Instruction Error Numbers
Error
Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)a

7 VM entry with invalid control field(s)b,c

8 VM entry with invalid host-state field(s)b

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointerb

17 VM entry with non-launched executive VMCSb

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to
deactivate the dual-monitor treatment of SMIs and SMM)b

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment
of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-
monitor treatment of SMIs and SMM)
Vol. 3C 29-35

VMX INSTRUCTION REFERENCE
25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to
return from SMM)b,c

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

NOTES:
a. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
b. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an

indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

c. Error number 7 is not used for VM entries that return from SMM that fail due to invalid
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

Table 29-1. VM-Instruction Error Numbers (Contd.)
Error
Number Description
29-36 Vol. 3C

CHAPTER 30
VIRTUAL-MACHINE MONITOR PROGRAMMING

CONSIDERATIONS

30.1 VMX SYSTEM PROGRAMMING OVERVIEW
The Virtual Machine Monitor (VMM) is a software class used to manage virtual
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system
(OS) and applications. The VMM software layer runs at the most privileged level and
has complete ownership of the underlying system hardware. The VMM controls
creation of a VM, transfers control to a VM, and manages situations that can cause
transitions between the guest VMs and host VMM. The VMM allows the VMs to share
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred
between the VM and its host.

30.2 SUPPORTING PROCESSOR OPERATING MODES IN
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS).

As noted in Section 23.8, processors may fix certain bits in CR0 and CR4 to specific
values and not support other values. The first processors to support VMX operation
require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, a VM entry is allowed
only to guests with paging enabled that are in protected mode or in virtual-8086
mode. Guest execution in other processor operating modes need to be specially
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could
support guest real-mode execution using at least two approaches:
• By using a fast instruction set emulator in the VMM.
• By using the similarity between real-mode and virtual-8086 mode to support

real-mode guest execution in a virtual-8086 container. The virtual-8086
container may be implemented as a virtual-8086 container task within a monitor
that emulates real-mode guest state and instructions, or by running the guest VM
as the virtual-8086 container (by entering the guest with RFLAGS.VM1 set).
Attempts by real-mode code to access privileged state outside the virtual-8086
container would trap to the VMM and would also need to be emulated.
Vol. 3C 30-1

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Another example of such a condition is guest execution in protected mode with
paging disabled. A VMM could support such guest execution by using “identity” page
tables to emulate unpaged protected mode.

30.2.1 Using Unrestricted Guest Mode
Processors which support the “unrestricted guest” VM-execution control allow VM
software to run in real-address mode and unpaged protected mode. Since these
modes do not use paging, VMM software must virtualize guest memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest”
VM-execution control:
• It is recommended that 64-bit VMM software use the 1-settings of the "load

IA32_EFER" VM entry control and the "save IA32_EFER" VM-exit control. If VM
entry is establishing CR0.PG=0 and if the "IA-32e mode guest" and "load
IA32_EFER" VM entry controls are both 0, VM entry leaves IA32_EFER.LME
unmodified (i.e., the host value will persist in the guest).

• It is not necessary for VMM software to track guest transitions into and out of IA-
32e mode for the purpose of maintaining the correct setting of the "IA-32e mode
guest" VM entry control. This is because VM exits on processors supporting the
1-setting of the "unrestricted guest" VM-execution control save the (guest) value
of IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

30.3 MANAGING VMCS REGIONS AND POINTERS
A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache.

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can
host several virtual machines and have many VMCSs active under its management.
A unique VMCS region is required for each virtual machine; a VMXON region is
required for the VMM itself.

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory.
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte
offset 0) identical to the revision reported by the processor in the VMX capability
MSR.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
30-2 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
NOTE
Software must not read or write directly to the VMCS data region as
the format is not architecturally defined. Consequently, Intel
recommends that the VMM remove any linear-address mappings to
VMCS regions before loading.

System software does not need to do special preparation to the VMXON region before
entering into VMX operation. The address of the VMXON region for the VMM is
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM
needs to prepare data fields in the VMCS that control the execution of a VM upon a
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD
instruction. VMCS data fields must be read or written only through VMREAD and
VMWRITE commands respectively.

Every component of the VMCS is identified by a 32-bit encoding that is provided as
an operand to VMREAD and VMWRITE. Appendix B provides the encodings. A VMM
must properly initialize all fields in a VMCS before using the current VMCS for VM
entry.

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical
processor in VMX non-root operation. A current VMCS for controlling a logical
processor in VMX non-root operation may be referred to as a working VMCS if the
logical processor is not in VMX non-root operation. The relationship of active, current
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 30-1.

NOTE
As noted in Section 24.1, the processor may optimize VMX operation
by maintaining the state of an active VMCS (one for which VMPTRLD
has been executed) on the processor. Before relinquishing control to
other system software that may, without informing the VMM, remove
power from the processor (e.g., for transitions to S3 or S4) or leave
VMX operation, a VMM must VMCLEAR all active VMCSs. This ensures
that all VMCS data cached by the processor are flushed to memory
and that no other software can corrupt the current VMM’s VMCS data.
It is also recommended that the VMM execute VMXOFF after such
executions of VMCLEAR.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the
processor for accessing a VMCS or any data structures referenced through pointers in
the VMCS. Software must maintain the VMCS structures in cache-coherent memory.
Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory
type is supported, but strongly discouraged due to negative impact on performance.
Vol. 3C 30-3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a
VMX instruction in VMX non-root operation causes a VM exit.

Figure 30-1. VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation

Processor
Operation

VMXON

VM Entry VM Entry VM Entry VM Entry

VM Exit VM Exit
VM Exit

VM Exit

VMXOFF

Outside
VMX

Operation

VMX Root
Operation

VMX
Non-Root
Operation

Legend:

Legend:
Inactive
VMCS

Current VMCS
(working)

Active VMCS
(not current)

Current VMCS
(controlling)

VMCS B

VMCS A

VMLAUNCH
VMRESUME

VMPTRLD B

VMCLEAR B

VM Exit VM Exit

VMPTRLD A VMPTRLD A

VMCLEAR A

VM Exit VM Exit

VMLAUNCH VMRESUME
30-4 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Processors perform various checks while executing any VMX instruction. They follow
well-defined error handling on failures. VMX instruction execution failures detected
before loading of a guest state are handled by the processor as follows:
• If the working-VMCS pointer is not valid, the instruction fails by setting

RFLAGS.CF to 1.
• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-

code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or
failure of VMX instruction executions.

The following items provide details regarding use of the VM-entry instructions
(VMLAUNCH and VMRESUME):
• If the working-VMCS pointer is valid, the state of the working VMCS may cause

the VM-entry instruction to fail. RFLAGS.ZF is set to 1 and one of the following
values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

— 6: VMRESUME after VMXOFF.1
If this error occurs, software can avoid the error by executing the following
sequence of instructions:

VMPTRST working-VMCS pointer
VMCLEAR working-VMCS pointer
VMPTRLD working-VMCS pointer
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-
VMCS pointer.)

• If none of the above errors occur, the processor checks on the VMX controls and
host-state area. If any of these checks fail, the VM-entry instruction fails.
RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control field(s)) or 8
(VM entry with invalid host-state field(s)) is saved in the VM-instruction error
field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes
the general checks and checks on VMX controls and the host-state area (see
Section 26.2), any errors encountered while loading of guest-state (due to bad
guest-state or bad MSR loading) causes the processor to load state from the
host-state area of the working VMCS as if a VM exit had occurred (see Section
30.7).

1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
Vol. 3C 30-5

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
This failure behavior differs from that of VM exits in that no guest-state is saved
to the guest-state area. A VMM can detect its VM-exit handler was invoked by
such a failure by checking bit 31 (for 1) in the exit reason field of the working
VMCS and further identify the failure by using the exit qualification field.

See Chapter 26 for more details about the VM-entry instructions.

30.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging
before entering VMX operation. The following list describes the minimal steps
required to enter VMX root operation with a VMM running at CPL = 0.
• Check VMX support in processor using CPUID.
• Determine the VMX capabilities supported by the processor through the VMX

capability MSRs. See Section 30.5.1 and Appendix A.
• Create a VMXON region in non-pageable memory of a size specified by

IA32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for the VMXON region and ensure the entire VMXON region can be
addressed by addresses with that width. Also, software must ensure that the
VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 32 bits) with the
VMCS revision identifier reported by capability MSRs.

• Ensure the current processor operating mode meets the required CR0 fixed bits
(CR0.PE = 1, CR0.PG = 1). Other required CR0 fixed bits can be detected
through the IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value
supports all the CR4 fixed bits reported in the IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally
configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand.
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation.

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0
and RFLAGS.ZF = 0.

If an SMM monitor has been configured to service SMIs while in VMX operation (see
Section 33.15), the SMM monitor needs to be torn down before the executive
monitor can leave VMX operation (see Section 33.15.7). VMXOFF fails for the execu-
30-6 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
tive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM
monitor is configured.

30.5.1 Algorithms for Determining VMX Capabilities
As noted earlier, a VMM should determine the VMX capabilities supported by the
processor by reading the VMX capability MSRs. The architecture for these MSRs is
detailed in Appendix A.

As noted in Chapter 24, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.
Most controls have a default setting of 0; Appendix A.2 identifies those controls that
have a default setting of 1. The term default1 describes the class of controls whose
default setting is 1. The are controls in this class from the pin-based VM-execution
controls, the primary processor-based VM-execution controls, the VM-exit controls,
and the VM-entry controls. There are no secondary processor-based VM-execution
controls in the default1 class.

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to 0 or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting.

The capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS report, respectively, on the
allowed settings of most of the pin-based VM-execution controls, the primary
processor-based VM-execution controls, the VM-exit controls, and the VM-entry
controls. However, they will always report that any control in the default1 class must
be 1. If a logical processor allows any control in the default1 class to be 0, it indicates
this fact by returning 1 for the value of bit 55 of the IA32_VMX_BASIC MSR. If this bit
is 1, the logical processor supports the capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS,
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. These capability
MSRs report, respectively, on the allowed settings of all of the pin-based VM-execu-
tion controls, the primary processor-based VM-execution controls, the VM-exit
controls, and the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct
default control settings:1

1. The following algorithm does not use the details given in Appendix A.2:

a. Ignore bit 55 of the IA32_VMX_BASIC MSR.

1. These algorithms apply only to the pin-based VM-execution controls, the primary processor-
based VM-execution controls, the VM-exit controls, and the VM-entry controls. Because there are
no secondary processor-based VM-execution controls in the default1 class, a VMM can always
set to 0 any such control whose meaning is unknown to it.
Vol. 3C 30-7

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
b. Using RDMSR, read the VMX capability MSRs IA32_VMX_PINBASED_CTLS,
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and
IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to 0.

A VMM using this algorithm will set to 1 all controls in the default1 class (in
step (c)(i)). It will operate correctly even on processors that allow some
controls in the default1 class to be 0. However, such a VMM will not be able to
use the new features enabled by the 0-setting of such controls. For that reason,
this algorithm is not recommended.

2. The following algorithm uses the details given in Appendix A.2. This algorithm
requires software to know the identity of the controls in the default1 class:

a. Using RDMSR, read the IA32_VMX_BASIC MSR.

b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is not in the default1 class; then set the control to 0.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is in the default1 class; then set the control to 1.
30-8 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM using this algorithm will set to 1 all controls in default1 class whose
meaning it does not know (either in step (c)(i) or step (c)(iv)). It will operate
correctly even on processors that allow some controls in the default1 class to be
0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use
the new features enabled by the 0-setting of such controls.

3. The following algorithm uses the details given in Appendix A.2. This algorithm
does not require software to know the identity of the controls in the default1
class:

a. Using RDMSR, read the VMX capability MSRs IA32_VMX_BASIC,
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to 0.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX
capability MSRs IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a
single setting, use that setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; and (2) the control’s meaning is known to the VMM; then
set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control can be set to 0; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the default1 class whose
meaning it does not know (in step (b)(i), step (c)(i), or step (c)(iv)). It will
operate correctly even on processors that allow some controls in the default1
class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be
able to use the new features enabled by the 0-setting of such controls. Unlike a
Vol. 3C 30-9

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMM using Algorithm 2, a VMM using Algorithm 3 need not know the identities
of the controls in the default1 class.

30.6 PREPARATION AND LAUNCHING A VIRTUAL
MACHINE

The following list describes the minimal steps required by the VMM to set up and
launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX

capability MSR IA32_VMX_BASIC and aligned to 4-KBytes. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for a VMCS region and ensure the entire VMCS region can be addressed by
addresses with that width. The term “guest-VMCS address” refers to the physical
address of the new VMCS region for the following steps.

• Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision
identifier reported by the VMX capability MSR IA32_VMX_BASIC.

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will
initialize the new VMCS region in memory and set the launch state of the VMCS
to “clear”. This action also invalidates the working-VMCS pointer register to
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This
initializes the working-VMCS pointer with the new VMCS region’s physical
address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the
working VMCS. The initialization sets up the context and entry-points to the VMM
upon subsequent VM exits from the guest. Host-state fields include control
registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS,
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR;
RSP, RIP and the MSRs that control fast system calls).
Chapter 25 describes the host-state consistency checking done by the processor
for VM entries. The VMM is required to set up host-state that comply with these
consistency checks. For example, VMX requires the host-area to have a task
register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control
fields, and VM-execution control fields in the VMCS. Care should be taken to
make sure the settings of individual fields match the allowed 0 and 1 settings for
the respective controls as reported by the VMX capability MSRs (see Appendix A).
Any settings inconsistent with the settings reported by the capability MSRs will
cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS.
This sets up the context and entry-point for guest execution upon VM entry.
30-10 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Chapter 25 describes the guest-state loading and checking done by the processor
for VM entries to protected and virtual-8086 guest execution.

• The VMM is required to set up guest-state that complies with these consistency
checks:

— If the VMM design requires the initial VM launch to cause guest software
(typically the guest virtual BIOS) execution from the guest’s reset vector, it
may need to initialize the guest execution state to reflect the state of a
physical processor at power-on reset (described in Chapter 9, Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A).

— The VMM may need to initialize additional guest execution state that is not
captured in the VMCS guest-state area by loading them directly on the
respective processor registers. Examples include general purpose registers,
the CR2 control register, debug registers, floating point registers and so forth.
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with
CR0.TS = 1 (described in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be
set and the VM-instruction error field (see Section 24.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the
processor loads state from the host-state area as if a VM exit had occurred (see
Section 30.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer
and saves the old value of controlling-VMCS as the parent pointer. In addition, the
launch state of the guest VMCS is changed to “launched” from “clear”. Any
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM
should execute VMRESUME instruction for subsequent VM entries to guests in a
“launched” state.

30.7 HANDLING OF VM EXITS
This section provides examples of software steps involved in a VMM’s handling of VM-
exit conditions:
• Determine the exit reason through a VMREAD of the exit-reason field in the

working-VMCS. Appendix C describes exit reasons and their encodings.
• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a

valid qualification. The exit-qualification field provides additional details on the
VM-exit condition. For example, in case of page faults, the exit-qualification field
provides the guest linear address that caused the page fault.

• Depending on the exit reason, fetch other relevant fields from the VMCS.
Appendix C lists the various exit reasons.
Vol. 3C 30-11

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Handle the VM-exit condition appropriately in the VMM. This may involve the
VMM emulating one or more guest instructions, programming the underlying
host hardware resources, and then re-entering the VM to continue execution.

30.7.1 Handling VM Exits Due to Exceptions
As noted in Section 25.3, an exception causes a VM exit if the bit corresponding to
the exception’s vector is set in the exception bitmap. (For page faults, the error code
also determines whether a VM exit occurs.) This section provide some guidelines of
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may
be the case that the condition was caused by the guest software. For example, a
guest application may attempt to access a page that is restricted to supervisor
access. Alternatively, the condition causing the exception may have been established
by the VMM. For example, a guest OS may attempt to access a page that the VMM
has chosen to make not present.

When the condition causing an exception was established by guest software, the
VMM may choose to reflect the exception to guest software. When the condition was
established by the VMM itself, the VMM may choose to resume guest software after
removing the condition.

30.7.1.1 Reflecting Exceptions to Guest Software
If the VMM determines that a VM exit was caused by an exception due to a condition
established by guest software, it may reflect that exception to guest software. The
VMM would cause the exception to be delivered to guest software, where it can be
handled as it would be if the guest were running on a physical machine. This section
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry
event injection as described in Section 26.5. The VMM can copy (using VMREAD and
VMWRITE) the contents of the VM-exit interruption-information field (which is valid,
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11
(error code valid) is clear in the VM-exit interruption-information field. After this, the
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:
• Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-

ruption-information field are 0. In particular, some VM exits may set bit 12 in the
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If
this bit is copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because that bit should be 0.
30-12 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. If this is the case, it may not be appropriate simply to reflect
that exception to guest software. To provide proper virtualization of the exception
architecture, a VMM should handle nested events as a physical processor would.
Processor handling is described in Chapter 6, “Interrupt 8—Double Fault
Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software
in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring
information field is anything other than 3 (hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field
indicates a benign exception (1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field
indicates a benign exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception), the VMM should reflect a double-fault exception to guest software
in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value
of bits 7:0 of the VM-exit interruption-information field each indicates a
contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.

A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8
(#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information
field to 3 (hardware exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information
field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.
Vol. 3C 30-13

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception) and the value of bits 7:0 is 8 (#DF), guest software would have
encountered a triple fault. Event injection should not be used in this case. The
VMM may choose to terminate the guest, or it might choose to enter the
guest in the shutdown activity state.

30.7.1.2 Resuming Guest Software after Handling an Exception
If the VMM determines that a VM exit was caused by an exception due to a condition
established by the VMM itself, it may choose to resume guest software after
removing the condition. The approach for removing the condition may be specific to
the VMM’s software architecture. and algorithms This section describes how guest
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The
following items provide details of cases that may require special handling:
• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-

information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that unblocked non-maskable interrupts
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs
were blocked before guest software executed the IRET instruction that caused
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in
the interruptibility-state field (using VMREAD and VMWRITE) before resuming
guest software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that removed virtual-NMI blocking. In
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there
was virtual-NMI blocking before guest software executed the IRET instruction
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before
resuming guest software.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. The VMM should ensure that the other event is delivered when
30-14 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
guest software is resumed. It can do so using the VM-entry event injection
described in Section 26.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be
delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is
copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8
(interruption type) in the IDT-vectoring information field is 2 (indicating
NMI), the VM exit occurred during delivery of an NMI that had been
injected as part of the previous VM entry. In this case, bit 3 (blocking by
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM
should clear this bit; otherwise, the next VM entry will fail (see Section
26.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to
the VM-entry exception error-code field. This need not be done if bit 11 (error
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to
the VM-entry instruction-length field. This need be done only if bits 10:8
(interruption type) in the IDT-vectoring information field indicate either
software interrupt, privileged software exception, or software exception.

30.8 MULTI-PROCESSOR CONSIDERATIONS
The most common VMM design will be the symmetric VMM. This type of VMM runs the
same VMM binary on all logical processors. Like a symmetric operating system, the
symmetric VMM is written to ensure all critical data is updated by only one processor
at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM
designs are possible. For example, an asymmetric VMM may run its scheduler on one
processor and run just enough of the VMM on other processors to allow the correct
execution of guest VMs. The remainder of this section focuses on the multi-processor
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For
example, a symmetric VMM can support asymmetric allocation of logical processor
resources to guests. Multiple logical processors can be brought into a single guest
environment to support an MP-aware guest OS. Because an active VMCS can not
control more than one logical processor simultaneously, a symmetric VMM must
make copies of its VMCS to control the VM allocated to support an MP-aware guest
Vol. 3C 30-15

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
OS. Care must be taken when accessing data structures shared between these
VMCSs. See Section 30.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of
hardware capabilities (with all processors supporting the same processor feature
sets, including the same revision of VMX), there are advantages in developing a VMM
that comprehends different levels of VMX capability (reported by VMX capability
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without
requiring software upgrades to the VMM, when the software installation is upgraded
to run on hardware with enhancements in the processor’s VMX capabilities. Another
advantage could be that a single software installation image, consisting of a VMM and
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features
supported by all VMX revisions, or choose to understand the asymmetry of the VMX
capabilities and assign VMs accordingly.

This section outlines some of the considerations to keep in mind when developing an
MP-aware VMM.

30.8.1 Initialization
Before enabling VMX, an MP-aware VMM must check to make sure that all processors
in the system are compatible and support features required. This can be done by:
• Checking the CPUID on each logical processor to ensure VMX is supported and

that the overall feature set of each logical processor is compatible.
• Checking VMCS revision identifiers on each logical processor.
• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability

MSR’s on each processor.

30.8.2 Moving a VMCS Between Processors
An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor.

The reasons are:
• To restart a guest on the same logical processor, a VMM can use VMRESUME.

VMRESUME is expected to be faster than VMLAUNCH in general.
• To migrate a VMCS to another logical processor, a VMM must use the sequence of

VMCLEAR, VMPTRLD and VMLAUNCH.
• Operations involving VMCLEAR can impact performance negatively. See

Section 24.10.3.
30-16 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM scheduler should make an effort to schedule a guest VMCS to run on the
logical processor where it last ran. Such a scheduler might also benefit from doing
lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only when the scheduler
knows the VMCS is being moved to a new logical processor). The remainder of this
section describes the steps a VMM must take to move a VMCS from one processor to
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR
IA32_VMX_BASIC to determine if the VMCS regions are identical between all logical
processors. If the VMCS regions are identical (same revision ID) the following
sequence can be used to move or copy the VMCS from one logical processor to
another:
• Perform a VMCLEAR operation on the source logical processor. This ensures that

all VMCS data that may be cached by the processor are flushed to memory.
• Copy the VMCS region from one memory location to another location. This is an

optional step assuming the VMM wishes to relocate the VMCS or move the VMCS
to another system.

• Perform a VMPTRLD of the physical address of VMCS region on the destination
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate
structure using individual reads (VMREAD) from the source fields and writes
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to
certain values on some processor implementations.

30.8.3 Paired Index-Data Registers
A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8,
CFC), require special treatment in cases where a VM performing writes to these pairs
can be moved during execution. In this case, the index (e.g. CF8) should be part of
the virtualized state. If the VM is moved during execution, writes to the index should
be redone so subsequent data reads/writes go to the right location.

30.8.4 External Data Structures
Certain fields in the VMCS point to external data structures (for example: the MSR
bitmap, the I/O bitmaps). If a logical processor is in VMX non-root operation, none of
the external structures referenced by that logical processor's current VMCS should be
modified by any logical processor or DMA. Before updating one of these structures,
the VMM must ensure that no logical processor whose current VMCS references the
structure is in VMX non-root operation.

If a VMM uses multiple VMCS with each VMCS using separate external structures,
and these structures must be kept synchronized, the VMM must apply the same care
to updating these structures.
Vol. 3C 30-17

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.8.5 CPUID Emulation
CPUID reports information that is used by OS and applications to detect hardware
features. It also provides multi-threading/multi-core configuration information. For
example, MP-aware OSs rely on data reported by CPUID to discover the topology of
logical processors in a platform (see Section 8.9, “Programming Considerations for
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A).

If a VMM is to support asymmetric allocation of logical processor resources to guest
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

30.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS
For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations
that impact VMM designs. These are described in the following subsections.

30.9.1 Operating Modes of Guest Environments
For Intel 64 processors, VMX operation supports host and guest environments that
run in IA-32e mode or without IA-32e mode. VMX operation also supports host and
guest environments on IA-32 processors.

A VMM entering VMX operation while IA-32e mode is active is considered to be an
IA-32e mode host. A VMM entering VMX operation while IA-32e mode is not activated
or not available is referred to as a 32-bit VMM. The type of guest operations such
VMMs support are summarized in Table 30-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of IA-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an IA-32e mode guest resumes VMX non-root operation is determined
by the attributes of the code segment which experienced the VM exit. If CS.L = 1,
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 30.9.5).

Table 30-1. Operating Modes for Host and Guest Environments
Capability Guest Operation

in IA-32e mode
Guest Operation
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
30-18 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an
IA-32e mode VMM must run in 64-bit mode, there are only a few restrictions
preventing a VMM from executing in compatibility mode. The most notable restriction
is that most VMX instructions cause exceptions when executed in compatibility mode.

30.9.2 Handling Widths of VMCS Fields
Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The
widths of VMCS control fields may vary depending on whether a processor supports
Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether
the processor supports Intel 64 architecture or is in IA-32e mode.

30.9.2.1 Natural-Width VMCS Fields
Many VMCS fields operate using natural width. Such fields return (on reads) and set
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in
64-bit mode. For the most part, these fields return the naturally expected data
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type
of field.

30.9.2.2 64-Bit VMCS Fields
Unlike natural width fields, these fields are fixed to 64-bit width on all processors.
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to
these fields write 64-bits. When outside of 64-bit mode, reads of these fields return
the low 32-bits and writes to these fields write the low 32-bits and zero the upper
32-bits. Should a non-IA-32e mode host require access to the upper 32-bits of these
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of
a region of memory which specifies which MSR accesses should generate VM-exits) is
an example of this type of field. Specifying encoding 00002004H to VMREAD returns
the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. The
separate encoding 00002005H returns only the upper 32-bits.

30.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because acti-
vating IA-32e mode currently requires that paging be disabled temporarily and VMX
entry requires paging to be enabled, IA-32e mode must be enabled before entering
Vol. 3C 30-19

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode
in a VMM.

Section 30.5 describes the steps required to launch a VMM. An IA-32e mode host is
also required to set the “host address-space size” VMCS VM-exit control to 1. The
value of this control is then loaded in the IA32_EFER.LME/LMA and CS.L bits on each
VM exit. This establishes a 64-bit host environment as execution transfers to the
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility
mode on a code-segment basis (see Section 30.9.1). Note, however, that VMX
instructions other than VMCALL are not supported in compatibility mode; they
generate an invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit
occurs: the “host address-space size” control (described above), the “load
IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-exit MSR-
load address” (see Section 27.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the
IA32_EFER field in the host-state area must be the value of the “host address-space
size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-
space size” control precede any loading of the IA32_EFER MSR due from the VM-exit
MSR-load area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of
the LME bit in the load image of IA32_EFER should match the setting of the “host
address-space size” control. Otherwise the attempt to modify the LME bit (while
paging is enabled) will lead to a VMX-abort. However, IA32_EFER.LMA is always set
by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in
the load image of the IA32_EFER MSR is ignored. For these and performance
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas
for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e
mode if the latter is required.

30.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode
hosts. A 64-bit guests can only be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 30.6, VMM writers need to:
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure

VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit
compatible) guest operating environment.

• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit
guest will succeed.
30-20 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1)
and the setting of the VM-exit “host address-space size” control bit in the VMCS
must also be set to 1.

If each of the above conditions holds true, then VM-entry will copy the value of the
VM-entry “IA-32e-mode guest” control bit into the guests IA32_EFER.LME bit, which
will result in subsequent activation of IA-32e mode. If any of the above conditions is
false, the VM-entry will fail and load state from the host-state area of the working
VMCS as if a VM exit had occurred (see Section 26.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the
“IA-32e-mode guest” VM-entry control (described above), the “load IA32_EFER” VM-
entry control, the “VM-entry MSR-load count,” and the “VM-entry MSR-load address”
(see Section 26.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in
the IA32_EFER field in the guest-state area must be the value of the “IA-32e-mode
guest” VM-exit control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the
IA32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the
load image should be match the setting of the “IA-32e-mode guest” VM-entry
control. Otherwise, the attempt to modify the LME bit (while paging is enabled)
results in a failed VM entry. However, IA32_EFER.LMA is always set by the processor
to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in the load image of
the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers
may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring
control to a VM. VMM writers may choose to launch guests in protected mode and
subsequently allow the guest to activate IA-32e mode or they may allow guests to
toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify
the VM-entry “IA-32e-mode guest” control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit.

30.9.5 32-Bit Guests
To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in
Section 30.6, making sure that the “IA-32e-mode guest” VM-entry control bit is set
to 0. Then the “IA-32e-mode guest” control bit is copied into the guest
IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0.
Vol. 3C 30-21

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.10 HANDLING MODEL SPECIFIC REGISTERS
Model specific registers (MSR) provide a wide range of functionality. They affect
processor features, control the programming interfaces, or are used in conjunction
with specific instructions. As part of processor virtualization, a VMM may wish to
protect some or all MSR resources from direct guest access.

VMX operation provides the following features to virtualize processor MSRs.

30.10.1 Using VM-Execution Controls
Processor-based VM-execution controls provide two levels of support for handling
guest access to processor MSRs using RDMSR and WRMSR:
• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix

A) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in
the guest VMCS can be programmed by VMM to point to a bitmap region which
specifies VM-exit behavior when reading and writing individual MSRs.
MSR bitmaps form a 4-KByte region in physical memory and are required to be
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers
read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps
for write control of these MSRs are located in the 2-KByte region immediately
following the read control bitmaps. While the MSR bitmap address is part of
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not
accessible through VMREAD and VMWRITE instructions but rather by using
ordinary memory writes. Also, they are not specially cached by the processor and
may be placed in normal cache-coherent memory by the VMM.
When MSR bitmap addresses are properly programmed and the use-MSR-bitmap
control (see Section 24.6.2) is set, the processor consults the associated bit in
the appropriate bitmap on guest MSR accesses to the corresponding MSR and
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted
to proceed. This level of protection may be utilized by VMMs to selectively allow
guest access to some MSRs while virtualizing others.

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt
by a guest to access any MSR causes a VM exit. This also occurs for any attempt
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit
reason codes. The MSR-read exit reason implies guest software attempted to read an
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the
guest MSR access through emulation of RDMSR/WRMSR.
30-22 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.10.2 Using VM-Exit Controls for MSRs
If a VMM allows its guest to access MSRs directly, the VMM may need to store guest
MSR values and load host MSR values for these MSRs on VM exits. This is especially
true if the VMM uses the same MSRs while in VMX root operation.

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit
control fields (see Section 24.7.2) to manage how MSRs are stored on VM exits. The
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs.

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the
contents of the MSR indexed by bits 31:0.

30.10.3 Using VM-Entry Controls for MSRs
A VMM may require specific MSRs to be loaded explicitly on VM entries while
launching or resuming guest execution. The VM-entry MSR-load-address and
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure
and function to the VM-exit MSR-load address and count fields, except the MSR
loading is done on VM-entries.

30.10.4 Handling Special-Case MSRs and Instructions
A number of instructions make use of designated MSRs in their operation. The VMM
may need to consider saving the states of those MSRs. Instructions that merit such
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS.

30.10.4.1 Handling IA32_EFER MSR
The IA32_EFER MSR includes bit fields that allow system software to enable
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE
bit enables the execute-disable bits in the paging-structure entries.

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and
to save it on VM exits. Because of this, VMM software need not use the RDMSR and
WRMSR instruction to give the register different values during host and guest execu-
tion.
Vol. 3C 30-23

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
The SYSENTER and SYSEXIT instructions use three dedicated MSRs
(IA32_SYSENTER_CS, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to
manage system calls in VMX root operation and VMX non-root operation respectively.

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits
save the values of these MSRs into those fields and loads the MSRs from fields in the
host-state area.

30.10.4.3 Handling the SYSCALL and SYSRET Instructions
The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set.
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need
to save the guest state of the above registers on VM exit, load the host state, and
restore the guest state on VM entry. One possible approach is to use the VM-exit
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls
in the VMCS. A disadvantage to this approach, however, is that the approach results
in the unconditional saving, loading, and restoring of MSR registers on each VM exit
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no
fast system call support but the VMM will be burdened with the additional overhead
of saving and restoring MSRs if the VMM chooses to support fast system call
uniformly. Further, even if the host intends to support fast system calls during a
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER)
may not require modification as they may already be set to the appropriate value in
the guest.

For performance reasons, a VMM may perform lazy save, load, and restore of these
MSR values on certain VM exits when it is determined that this is acceptable. The
lazy-save-load-restore operation can be carried out “manually” using RDMSR and
WRMSR.

30.10.4.4 Handling the SWAPGS Instruction
The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of
two specific MSRs (IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE
MSR shadows the base address portion of the GS descriptor register; the
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast
30-24 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
system calls when in 64-bit mode to allow immediate access to kernel structures on
transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may
need to save, load, and restore these MSR registers on VM exit and VM entry using
the guidelines discussed in previous paragraphs.

30.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs
As noted in Section 26.4 and Section 27.4, a processor may prevent writing to
certain MSRs when loading guest states on VM entries or storing guest states on VM
exits. This is done to ensure consistent operation. The subset and number of MSRs
subject to restrictions are implementation specific. For initial VMX implementations,
there are two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see Chapter
34).

30.10.5 Handling Accesses to Reserved MSR Addresses
Privileged software (either a VMM or a guest OS) can access a model specific register
by specifying addresses in MSR address space. VMMs, however, must prevent a guest
from accessing reserved MSR addresses in MSR address space.

Consult Chapter 34 for lists of supported MSRs and their usage. Use the MSR bitmap
control to cause a VM exit when a guest attempts to access a reserved MSR address.
The response to such a VM exit should be to reflect #GP(0) back to the guest.

30.11 HANDLING ACCESSES TO CONTROL REGISTERS
Bit fields in control registers (CR0, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CR0 or CR4 that are
reserved at the time the VMM is written.

Guest/host masks should be used by the VMM to cause VM exits when a guest
attempts to modify reserved bits. Read shadows should be used to ensure that the
guest always reads the reserved value (usually 0) for such bits. The VMM response to
VM exits due to attempts from a guest to modify reserved bits should be to emulate
the response which the processor would have normally produced (usually a #GP(0)).

30.12 PERFORMANCE CONSIDERATIONS
VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic
idea behind most of these performance optimizations of the VMM is to reduce the
number of VM exits while executing a guest VM.
Vol. 3C 30-25

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
This section lists ways that VMMs can take advantage of the performance enhancing
features in VMX.
• Read Access to Control Registers. Analysis of common client workloads with

common PC operating systems in a virtual machine shows a large number of
VM-exits are caused by control register read accesses (particularly CR0). Reads
of CR0 and CR4 does not cause VM exits. Instead, they return values from the
CR0/CR4 read-shadows configured by the VMM in the guest controlling-VMCS
with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits
of the control registers to be protected from direct guest access. Write access to
CR0/CR4 registers can be reduced by defining the host-owned and guest-owned
bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause
changes to host-owned bits cause VM exits and need to be handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement
access-rights-based page table protection, the VMCS provides a CR3 target value
list that can be consulted by the processor to determine if a VM exit is required.
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed
to proceed without VM exits. The VMM can utilize the CR3 target-list to save
page-table hierarchies whose state is previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults
induced by guest address remapping done through virtual memory virtualization.
VMX provides page-fault error-code mask and match fields in the VMCS to filter
VM exits due to page-faults based on their cause (reflected in the error-code).

30.13 USE OF THE VMX-PREEMPTION TIMER
The VMX-preemption timer allows VMM software to preempt guest VM execution
after a specified amount of time. Typical VMX-preemption timer usage is to program
the initial VM quantum into the timer, save the timer value on each successive VM-
exit (using the VM-exit control “save preemption timer value”) and run the VM until
the timer expires.

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track
the amount of time the VM has run while still using the VMX-preemption timer for VM
preemption. In this scenario the VMM would not save the VMX-preemption timer on
each VM-exit but instead would reload the VMX-preemption timer with initial VM
quantum less the time the VM has already run. This scenario includes all the VM-
entry and VM-exit latencies in the VM run time.

In both scenarios, on each successive VM-entry the VMX-preemption timer contains
a smaller value until the VM quantum ends. If the VMX-preemption timer is loaded
with a value smaller than the VM-entry latency then the VM will not execute any
30-26 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
instructions before the timer expires. The VMM must ensure the initial VM quantum is
greater than the VM-entry latency; otherwise the VM will make no forward progress.
Vol. 3C 30-27

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
30-28 Vol. 3C

CHAPTER 31
VIRTUALIZATION OF SYSTEM RESOURCES

31.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential
interactions between software components using the same system resources. These
interactions can require the virtualization of resources. This chapter describes the
virtualization of system resources. These include: debugging facilities, address
translation, physical memory, and microcode update facilities.

31.2 VIRTUALIZATION SUPPORT FOR DEBUGGING
FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 17) provide breakpoint
instructions, exception conditions, register flags, debug registers, control registers
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging
facilities. The following list describes features relevant to virtualizing these facilities.
• The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it

gets control on debug functions (like breakpoint exceptions occurring while
executing guest code such as INT3 instructions). Normally, debug exceptions
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug
exceptions cause VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section
26.5 to inject debug or breakpoint exceptions to the guest. See Section 31.2.1
for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field
(see Section 24.6.2) can be enabled by the VMM to cause VM exits on explicit
guest access of various processor debug registers (for example, MOV to/from
DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches
cause VM exits, a VMM can control any indirect guest access or modification of
debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 30.10 for details on MSR virtualization.
Vol. 3C 31-1

VIRTUALIZATION OF SYSTEM RESOURCES
• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly
modified by the guest (through MOV-DR or WRMSR instructions) or modified
implicitly by the processor as part of generating debug exceptions. The current
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are
recognized by the processor but not yet delivered. See Section 26.6.3 for details
on pending debug exceptions.

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug
registers when injecting debug exceptions to guest. Similarly, the RFLAGS1
register is loaded on every VM entry (or pushed to stack if injecting a virtual
event) from guest-state area of the VMCS. Pending debug exceptions are also
loaded from guest-state area of VMCS so that they may be delivered after VM
entry is completed.

31.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step
or data or I/O breakpoint), it should cause that trap to be delivered. The VMM should
not inject the debug exception using VM-entry event injection, but should set the
appropriate bits in the pending debug exceptions field. This method will give the trap
the right priority with respect to other events. (If the exception bitmap was
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do
not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR)
to IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a
MOV SS or POP SS instruction (for example: while debug exceptions are blocked).
Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions

blocked, a single-step trap will occur after WRMSR. A VMM emulating such an
instruction should set the BS bit (see Table 24-4) in the pending debug
exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, neither a single-step trap nor a taken-branch trap can occur after
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table
24-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
31-2 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
31.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest
OSs’ expectation to manage memory address translation.

31.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor
operating modes. This includes: protected mode with paging, protected mode with
no paging, real-mode and any other transient execution modes. VMX allows guest
operation in protected-mode with paging enabled and in virtual-8086 mode (with
paging enabled) to support guest real-mode execution. Guest execution in transient
operating modes (such as in real mode with one or more segment limits greater than
64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging
(through CR0 and CR4 fixed bits), the VMM may utilize paging structures to support
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping.
Memory virtualization algorithms may also need to capture other guest operating
conditions (such as guest performing A20M# address masking) to map the resulting
20-bit effective guest physical addresses.

31.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical
address space starting zero and extending to the maximum address supported by
the guest virtual processor’s physical address width. The VMM utilizes guest physical
to host physical address mapping to locate all or portions of the guest physical
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical
memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest
memory uses (such as: accessing DRAM, accessing memory-mapped registers of
virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest

physical addresses to host-DRAM regions. The VMM also requires the guest to
host memory mapping to be at page granularity.

• Virtual devices (I/O devices or platform core logic) emulated by the VMM may
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to
cause page-fault induced VM-exits by marking these regions as always not
Vol. 3C 31-3

VIRTUALIZATION OF SYSTEM RESOURCES
present. The VMM may handle these VM exits by invoking appropriate virtual
device emulation code.

31.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the
VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control
over the processor’s address-translation mechanisms. Specifically, this means that
only the VMM can access CR3 (which contains the base of the page directory) and can
execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating
system will also expect to perform normal memory management functions. It will
access CR3, execute INVLPG, and modify (what it believes to be) page directories
and page tables. Virtualization of address translation must tolerate and support
guest attempts to control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access
address-translation hardware trap to the VMM where such operations can be properly
emulated. It must ensure that accesses to page directories and page tables also get
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page
directory because its base address is in CR3 and the VMM receives control on any
change to CR3; it can locate the page tables because their base addresses are in the
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to
these reads. There must also be traps on modifications to these structures even if the
translations they effect are never used. All this implies considerable overhead that
should be avoided.

31.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without
causing traps to the VMM. Because of this, the active page-table hierarchy might not
always be consistent with the guest hierarchy. Any potential problems arising from
31-4 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely
access page directories and page tables. Traps occur on CR3 accesses and executions
of INVLPG. They also occur when necessary to ensure that guest modifications to the
translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB.
While the page-table hierarchy defines the relationship between physical to linear
address, it does not directly control the address translation of each memory access.
Instead, translation is controlled by the TLB, which is occasionally filled by the
processor with translations derived from the page-table hierarchy. With a virtual TLB,
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead,
translation is controlled by the processor (through its TLB) and by the VMM (through
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively
caches translations derived from the hierarchy maintained by guest software. The
remainder of this document refers to the former as the active page-table hierarchy
(because it is referenced by CR3 and may be used by the processor to load its TLB)
and the latter as the guest page-table hierarchy (because it is maintained by guest
software). The entries in the active hierarchy may resemble the corresponding
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without
causing VM exits to the VMM. Because of this, the active page-table hierarchy might
not always be consistent with the guest hierarchy. Any potential problems arising
from any inconsistencies can be solved using techniques analogous to those used by
the processor and its TLB. Note the following:
• Suppose the guest page-table hierarchy allows more access than active hierarchy

(for example: there is a translation for a linear address in the guest hierarchy but
not in the active hierarchy); this is analogous to a situation in which the TLB
allows less access than the page-table hierarchy. If an access occurs that would
be allowed by the guest hierarchy but not the active one, a page fault occurs; this
is analogous to a TLB miss. The VMM gains control (as it handles all page faults)
and can update the active page-table hierarchy appropriately; this corresponds
to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active
hierarchy; this is analogous to a situation in which the TLB allows more access
than the page-table hierarchy. This situation can occur only if the guest operating
system has modified a page-table entry to reduce access (for example: by
marking it not-present). Because the older, more permissive translation may
have been cached in the TLB, the processor is architecturally permitted to use the
older translation and allow more access. Thus, the VMM may (through the active
page-table hierarchy) also allow greater access. For the new, less permissive
Vol. 3C 31-5

VIRTUALIZATION OF SYSTEM RESOURCES
translation to take effect, guest software should flush any older translations from
the TLB either by executing INVLPG or by loading CR3. Because both these
operations will cause a trap to the VMM, the VMM will gain control and can
remove from the active page-table hierarchy the translations indicated by guest
software (the translation of a specific linear address for INVLPG or all translations
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D)
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE

(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor (the same is true for PDEs when active page tables are accessed by the
processor). For guest software to operate properly, the VMM should update the A
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked not-present until it has set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor. For guest software to operate properly, the VMM should update the D
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked read-only until it has set the D bit in the guest entry. This
solution is valid for guest software running at privilege level 3; support for more
privileged guest software is described in Section 31.3.5.

31.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It
explains how an active page-table hierarchy is initialized and how it is maintained in
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms
described here are the minimum necessary. They may not result in the best perfor-
mance.
31-6 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
As noted above, the VMM maintains an active page-table hierarchy for each virtual
machine that it supports. It also maintains, for each machine, values that the
machine expects for control registers CR0, CR2, CR3, and CR4 (they control address
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest
software. The term guest address refers to an address installed by guest software in
the guest CR3, in a guest PDE (as a page table base address or a page base address),
or in a guest PTE (as a page base address). While guest software considers these to
be specific physical addresses, the VMM may map them differently.

31.3.5.1 Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in

CR0 and CR4 (using the CR0 and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

Figure 31-1. Virtual TLB Scheme

refill on
TLB miss

CR3

PD

PT

PT

F

F

F

F

PD

"Virtual TLB"

Active Guest

INVLPG
MOV to CR3
task switch

refill on
page fault

set accessed
and dirty bits

TLB

PD = page directory
PT = page table
F = page frame

INVLPG
MOV to

CR3
task switch

Active Page-Table Hierarchy Guest Page-Table Hierarchy

PT

PT

F

F

F

F

CR3

set dirty
accessed

OM19040
Vol. 3C 31-7

VIRTUALIZATION OF SYSTEM RESOURCES
When guest software first enables paging, the VMM creates an aligned 4-KByte active
page directory that is invalid (all entries marked not-present). This invalid directory
is analogous to an empty TLB.

31.3.5.2 Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the
VMM to an inconsistency between the active and guest page-table hierarchy. In such
cases, the VMM can update the former and re-execute the faulting instruction. In
other cases, the hierarchies are already consistent and the fault should be handled
by the guest operating system. The VMM can detect this and use an established
mechanism for raising a page fault to guest software.

The VMM can handle a page fault by following these steps (The steps below assume
the guest is operating in a paging mode without PAE. Analogous steps to handle
address translation using PAE or four-level paging mechanisms can be derived by
VMM developers according to the paging behavior defined in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the
faulting address and the current value of CR3. The active PDE is the source of the
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with
the attempted guest access (the guest privilege level and the values of CR0.WP
and CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE
using the same 10 bits from the faulting address and the physical address that
corresponds to the guest address in the guest CR3. If the guest PDE would cause
a page fault (for example: it is marked not present), then raise a page fault to the
guest operating system.
The following steps assume that the guest PDE would not have caused a page
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address
that the VMM has chosen not to support; then raise a machine check (or some
other abort) to the guest operating system.
The following steps assume that the guest address in the guest PDE is supported
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then
allocate an aligned 4-KByte active page table marked completely invalid and
set the page-table base address in the active PDE to be the physical address
of the newly allocated page table.
31-8 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
b. If the active PDE contains a page base address (if PS = 1), then set the page
base address in the active PDE to be the physical page base address that
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the
guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted
access is a write; then set R/W in the active PDE as in the guest PDE and set
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write;
then set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction.
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte
page (PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the
active PDE has caused a fault solely because it has R/W = 0; then set R/W in the
active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the
faulting instruction.

6. If the active PDE is the source of the fault and none of the above cases apply,
then raise a page fault of the guest operating system.
The remaining steps assume that the source of the original page fault is not the
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even
though the guest PDE would not. However, this can happen only if the
guest operating system increased access in the guest PDE and did
not take action to ensure that older translations were flushed from
the TLB. Such translations might have caused a page fault if the
guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the
fault, then the fault resulted from an inconsistency between the active page-table
hierarchy and the processor’s TLB. Since the transition to the VMM caused an
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction.
The remaining steps assume that PS = 0 in the active and guest PDEs.
Vol. 3C 31-9

VIRTUALIZATION OF SYSTEM RESOURCES
8. Consult the active PTE, which can be located using the next 10 bits of the faulting
address (bits 21–12) and the physical page-table base address in the active PDE.
The active PTE is the source of the fault if it is marked not-present or if its R/W bit
and U/S bits are inconsistent with the attempted guest access (the guest
privilege level and the values of CR0.WP and CR4.SMEP should also be taken into
account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an
inconsistency between the active page-table hierarchy and the processor’s TLB.
Since the transition to the VMM caused an address-space change and flushed the
processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting
address and the physical address that correspond to the guest page-table base
address in the guest PDE. If the guest PTE would cause a page fault (it is marked
not-present), the raise a page fault to the guest operating system.
The following steps assume that the guest PTE would not have caused a page
fault.

11. If the guest PTE contains, as page base address, a physical address that is not
valid for the virtual machine being supported; then raise a machine check (or
some other abort) to the guest operating system.
The following steps assume that the address in the guest PTE is valid for the
virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to
guest PTE:

a. Set the page base address in the active PTE to be the physical address that
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the
guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the
guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in
the active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set
R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction.
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the
active PTE has caused a fault solely because it has R/W = 0 (read-only); then set
31-10 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
R/W in the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-
execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating
system.

31.3.5.3 Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction
takes a linear address as an operand and software expects any cached translations
for the address to be flushed. A VMM should set the processor-based VM-execution
control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute
INVLPG will trap to the VMM. The VMM can then modify the active page-table hier-
archy to emulate the desired effect of the INVLPG.

The following steps are performed. Note that these steps are performed only if the
guest invocation of INVLPG would not fault and only if the guest software is running
at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address
and the current value of CR3. If the PDE refers to a 4-MByte page (PS = 1), then
set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the
relevant active PTE using the next 10 bits of the operand address (bits 21–12)
and the page-table base address in the PDE. Set P = 0 in the PTE. Examine all
PTEs in the page table; if they are now all marked not-present, de-allocate the
page table and set P = 0 in the PDE (this step may be optional).

31.3.5.4 Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a
TLB flush and a possible page table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and
emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance
reasons.

31.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the oper-
ation of a platform. Typically, the BIOS invokes the facility on all processors during
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a
Vol. 3C 31-11

VIRTUALIZATION OF SYSTEM RESOURCES
microcode update more current than the system BIOS may be available, system soft-
ware should provide another mechanism for invoking the microcode update facility.
The implications of the microcode update mechanism on the design of the VMM are
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root
operation. Updates performed in VMX non-root operation may result
in unpredictable system behavior.

31.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot
process. Loading the microcode update early provides the opportunity to correct
errata affecting the boot process but the technique generally requires a reboot of the
software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such
image loaders do not run on every logical processor, so this method effects only one
logical processor. Later in the VMM or OS boot process, after bringing all application
processors on-line, the VMM or OS needs to invoke the microcode update facility for
all application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update
facility may be invoked by the VMM or the guest OS. For example, if the guest OS
boots first and then loads the VMM, the guest OS may invoke the microcode update
facility on all the logical processors. If a VMM boots before its guests, then the VMM
may invoke the microcode update facility during its boot process. In both cases, the
VMM or OS should invoke the microcode update facilities soon after performing the
multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS
image or, the VMM or OS may manage a separate database or file of microcode
updates. Maintaining a separate microcode update image database has the advan-
tage of reducing the number of required VMM or OS releases as a result of microcode
update releases.

31.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows
system software to activate the microcode update at anytime without requiring a
system reboot. This scenario does not allow the microcode update to correct errata
which affect the processor’s boot process but does allow high-availability systems to
activate microcode updates without interrupting the availability of the system. In this
late load scenario, either the VMM or a designated guest may load the microcode
update. If the guest is loading the microcode update, the VMM must make sure that
31-12 Vol. 3C

VIRTUALIZATION OF SYSTEM RESOURCES
the entire guest memory buffer (which contains the microcode update image) will not
cause a page fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the
current set of microcode updates. These updates could be part of the VMM image or
could be contained in a separate microcode update image database (for example: a
database file on disk or in memory). Again, maintaining a separate microcode update
image database has the advantage of reducing the number of required VMM or OS
releases as a result of microcode update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish
to support the microcode update requested by a guest using emulation (without
actually loading the microcode update). To prevent microcode update loading, the
VMM may return a microcode update signature value greater than the value of
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older
microcode update. The VMM may also drop the guest attempts to write to
IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any microcode
updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could
emulate the microcode update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of
features that may be enhanced by a microcode update.
Vol. 3C 31-13

VIRTUALIZATION OF SYSTEM RESOURCES
31-14 Vol. 3C

CHAPTER 32
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL

MACHINE MONITOR

32.1 OVERVIEW
This chapter describes what a VMM must consider when handling exceptions, inter-
rupts, error conditions, and transitions between activity states.

32.2 INTERRUPT HANDLING IN VMX OPERATION
The following bullets summarize VMX support for handling interrupts:
• Control of processor exceptions. The VMM can get control on specific guest

exceptions through the exception-bitmap in the guest controlling VMCS. The
exception bitmap is a 32-bit field that allows the VMM to specify processor
behavior on specific exceptions (including traps, faults, and aborts). Setting a
specific bit in the exception bitmap implies VM exits will be generated when the
corresponding exception occurs. Any exceptions that are programmed not to
cause VM exits are delivered directly to the guest through the guest IDT. The
exception bitmap also controls execution of relevant instructions such as BOUND,
INTO and INT3. VM exits on page-faults are treated in such a way the page-fault
error code is qualified through the page-fault-error-code mask and match fields
in the VMCS.

• Control over triple faults. If a fault occurs while attempting to call a double-
fault handler in the guest and that fault is not configured to cause a VM exit in the
exception bitmap, the resulting triple fault causes a VM exit.

• Control of external interrupts. VMX allows both host and guest control of
external interrupts through the “external-interrupt exiting” VM execution control.
If the control is 0, external-interrupts do not cause VM exits and the interrupt
delivery is masked by the guest programmed RFLAGS.IF value.1 If the control is
1, external-interrupts causes VM exits and are not masked by RFLAGS.IF. The
VMM can identify VM exits due to external interrupts by checking the exit reason
for an “external interrupt” (value = 1).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
Vol. 3C 32-1

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Control of other events. There is a pin-based VM-execution control that
controls system behavior (exit or no-exit) for NMI events. Most VMM usages will
need handling of NMI external events in the VMM and hence will specify host
control of these events.
Some processors also support a pin-based VM-execution control called “virtual
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks
guest readiness for virtual NMIs. This control interacts with the “NMI-window
exiting” VM-execution control (see below).
INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit
control in the controlling VMCS controls processor behavior for external interrupt
acknowledgement. If the control is 1, the processor acknowledges the interrupt
controller to acquire the interrupt vector upon VM exit, and stores the vector in
the VM-exit interruption-information field. If the control is 0, the external
interrupt is not acknowledged during VM exit. Since RFLAGS.IF is automatically
cleared on VM exits due to external interrupts, VMM re-enabling of interrupts
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and
vectoring of the external interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific
events while in VMX non-root operation through the interruptibility-state field in
the guest-state area of the VMCS.
This feature allows proper virtualization of various interrupt blocking states, such
as: (a) blocking of external interrupts for the instruction following STI; (b)
blocking of interrupts for the instruction following a MOV-SS or POP-SS
instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM;
and (d) NMI/SMI blocking of NMIs until the next execution of IRET or RSM.
INIT and SIPI events are treated specially. INIT assertions are always blocked in
VMX root operation and while in SMM, and unblocked otherwise. SIPI events are
always blocked in VMX root operation.
The interruptibility state is loaded from the VMCS guest-state area on every
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual
machine through the use of VM-entry interrupt-information field in VMCS.
Injectable interruptions include external interrupts, NMI, processor exceptions,
software generated interrupts, and software traps. If the interrupt-information
field indicates a valid interrupt, exception or trap event upon the next VM entry;
the processor will use the information in the field to vector a virtual interruption
through the guest IDT after all guest state and MSRs are loaded. Delivery
through the guest IDT emulates vectoring in non-VMX operation by doing the
normal privilege checks and pushing appropriate entries to the guest stack
(entries may include RFLAGS, EIP and exception error code). A VMM with host
control of NMI and external interrupts can use the event-injection facility to
forward virtual interruptions to various guest virtual machines.
32-2 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-
execution control (Section 24.6.2) causes VM exits when guest RFLAGS.IF is 1
and no other conditions block external interrupts. A VM exit occurs at the
beginning of any instruction at which RFLAGS.IF = 1 and on which the interrupt-
ibility state of the guest would allow delivery of an interrupt. For example: when
the guest executes an STI instruction, RFLAGS = 1, and if at the completion of
next instruction the interruptibility state masking due to STI is removed; a
VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This
feature allows a VMM to queue a virtual interrupt to the guest when the guest is
not in an interruptible state. The VMM can set the “interrupt-window exiting” VM-
execution control for the guest and depend on a VM exit to know when the guest
becomes interruptible (and, therefore, when it can inject a virtual interrupt). The
VMM can detect such VM exits by checking for the basic exit reason “interrupt-
window” (value = 7). If this feature is not used, the VMM will need to poll and
check the interruptibility state of the guest to deliver virtual interrupts.

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor
tracks virtual-NMI blocking. The “NMI-window exiting” VM-execution control
(Section 24.6.2) causes VM exits when there is no virtual-NMI blocking. For
example, after execution of the IRET instruction, a VM exit occurs if the “NMI-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a
virtual NMI to a guest when the guest is not ready to receive NMIs. The VMM can
set the “NMI-window exiting” VM-execution control for the guest and depend on
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when
it can inject a virtual NMI). The VMM can detect such VM exits by checking for the
basic exit reason “NMI window” (value = 8). If this feature is not used, the VMM
will need to poll and check the interruptibility state of the guest to deliver virtual
NMIs.

• VM-exit information. The VM-exit information fields provide details on VM exits
due to exceptions and interrupts. This information is provided through the exit-
qualification, VM-exit-interruption-information, instruction-length and inter-
ruption-error-code fields. Also, for VM exits that occur in the course of vectoring
through the guest IDT, information about the event that was being vectored
through the guest IDT is provided in the IDT-vectoring-information and IDT-
vectoring-error-code fields. These information fields allow the VMM to identify
the exception cause and to handle it properly.

32.3 EXTERNAL INTERRUPT VIRTUALIZATION
VMX operation allows both host and guest control of external interrupts. While guest
control of external interrupts might be suitable for partitioned usages (different CPU
cores/threads and I/O devices partitioned to independent virtual machines), most
VMMs built upon VMX are expected to utilize host control of external interrupts. The
rest of this section describes a general host-controlled interrupt virtualization archi-
tecture for standard PC platforms through the use of VMX supported features.
Vol. 3C 32-3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
With host control of external interrupts, the VMM (or the host OS in a hosted VMM
model) manages the physical interrupt controllers in the platform and the interrupts
generated through them. The VMM exposes software-emulated virtual interrupt
controller devices (such as PIC and APIC) to each guest virtual machine instance.

32.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 224 (20H – FFH) are
available for external interrupts. Vectors are used to select the appropriate entry in
the interrupt descriptor table (IDT). VMX operation allows each guest to control its
own IDT. Host vectors refer to vectors delivered by the platform to the processor
during the interrupt acknowledgement cycle. Guest vectors refer to vectors
programmed by a guest to select an entry in its guest IDT. Depending on the I/O
resource management models supported by the VMM design, the guest vector space
may or may not overlap with the underlying host vector space.
• Interrupts from virtual devices: Guest vector numbers for virtual interrupts

delivered to guests on behalf of emulated virtual devices have no direct relation
to the host vector numbers of interrupts from physical devices on which they are
emulated. A guest-vector assigned for a virtual device by the guest operating
environment is saved by the VMM and utilized when injecting virtual interrupts on
behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device
assignment allows physical I/O devices in the host platform to be assigned
(direct-mapped) to VMs. Guest vectors for interrupts from direct-mapped
physical devices take up equivalent space from the host vector space, and
require the VMM to perform host-vector to guest-vector mapping for interrupts.

Figure 32-1 illustrates the functional relationship between host external interrupts
and guest virtual external interrupts. Device A is owned by the host and generates
external interrupts with host vector X. The host IDT is set up such that the interrupt
service routine (ISR) for device driver A is hooked to host vector X as normal. VMM
emulates (over device A) virtual device C in software which generates virtual inter-
rupts to the VM with guest expected vector P. Device B is assigned to a VM and gener-
ates external interrupts with host vector Y. The host IDT is programmed to hook the
VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM
handler injects virtual interrupt with guest vector Q to the VM. The guest operating
system programs the guest to hook appropriate guest driver’s ISR to vectors P
and Q.
32-4 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.3.2 Control of Platform Interrupts
To meet the interrupt virtualization requirements, the VMM needs to take ownership
of the physical interrupts and the various interrupt controllers in the platform. VMM
control of physical interrupts may be enabled through the host-control settings of the
“external-interrupt exiting” VM-execution control. To take ownership of the platform
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices
to the virtual machines and restrict guest access to the platform interrupt controllers.

Intel 64 and IA-32 platforms can support three types of external interrupt control
mechanisms: Programmable Interrupt Controllers (PIC), Advanced Programmable

Figure 32-1. Host External Interrupts and Guest Virtual Interrupts

Device Driver B

Device Driver C

Virtual Device C
Emulation

Device Driver A

Monitor Handler

Host IDTR

Device A Device B

Hardware

Platform Interrupt Platform Interrupt

Virtual Machine Monitor (VMM)

Host IDT

H
os

t

H
o

st

V
ec

to
r

X

V
e

ct
or

 Y

Guest IDTR

Guest IDT

Guest
Vector P

VM

Virtual Interrupt Virtual Interrupt

Guest
Vector Q

OM19041
Vol. 3C 32-5

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Interrupt Controllers (APIC), and Message Signaled Interrupts (MSI). The following
sections provide information on the virtualization of each of these mechanisms.

32.3.2.1 PIC Virtualization
Typical PIC-enabled platform implementations support dual 8259 interrupt control-
lers cascaded as master and slave controllers. They supporting up to 15 possible
interrupt inputs. The 8259 controllers are programmed through initialization
command words (ICWx) and operation command words (OCWx) accessed through
specific I/O ports. The various interrupt line states are captured in the PIC through
interrupt requests, interrupt service routines and interrupt mask registers.

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the
guest controlling-VMCS (activate-I/O-bitmap bit in VM-execution control field set
to 1) and pointing the I/O-bitmap physical addresses to valid bitmap regions. Bits
corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access
to these ports.

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the
unconditional-I/O-exiting in the VM-execution control field instead of activating I/O
bitmaps. The exit-reason field in VM-exit information allows identification of VM exits
due to I/O access and can provide an exit-qualification to identify details about the
guest I/O operation that caused the VM exit.

The VMM PIC virtualization needs to emulate the platform PIC functionality including
interrupt priority, mask, request and service states, and specific guest programmed
modes of PIC operation.

32.3.2.2 xAPIC Virtualization
Most modern Intel 64 and IA-32 platforms include support for an APIC. While the
standard PIC is intended for use on uniprocessor systems, APIC can be used in either
uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt
acceptance unit (Local APIC) which is integrated with the processor, and the interrupt
delivery unit (I/O APIC) which is part of the I/O subsystem. APIC virtualization
involves protecting the platform’s local and I/O APICs and emulating them for the
guest.

32.3.2.3 Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance,
dispensing interrupts to the logical processor, and generating inter-processor inter-
rupts. Software interacts with the local APIC by reading and writing its memory-
mapped registers residing within a 4-KByte uncached memory region with base
address stored in the IA32_APIC_BASE MSR. Since the local APIC registers are
memory-mapped, the VMM can utilize memory virtualization techniques (such as
32-6 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
page-table virtualization) to trap guest accesses to the page frame hosting the
virtual local APIC registers.

Local APIC virtualization in the VMM needs to emulate the various local APIC opera-
tions and registers, such as: APIC identification/format registers, the local vector
table (LVT), the interrupt command register (ICR), interrupt capture registers (TMR,
IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and
the APIC-timer register. Since local APICs are designed to operate with non-specific
EOI, local APIC emulation also needs to emulate broadcast of EOI to the guest’s
virtual I/O APICs for level triggered virtual interrupts.

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector
table entry for local interrupts and (2) raising processor priority through the TPR
registers for masking lower priority external interrupts. The VMM needs to compre-
hend these virtual local APIC mask settings as programmed by the guest in addition
to the guest virtual processor interruptibility state (when injecting APIC routed
external virtual interrupts to a guest VM).

VMX provides several features which help the VMM to virtualize the local APIC. These
features allow many of guest TPR accesses (using CR8 only) to occur without VM
exits to the VMM:
• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical

address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-APIC
page contains a TPR shadow, which is accessed by the MOV CR8 instruction. The
TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below
which the TPR shadow cannot fall. A VM exit will occur after an execution of MOV
CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit
and a “CR8-store exiting” bit. If the “use TPR shadow” VM-execution control is 1
and the “CR8-store exiting” VM-execution control is 0, then a MOV from CR8
reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1,
then MOV from CR8 causes a VM exit; the “use TPR shadow” VM-execution
control is ignored in this case.

• The processor-based VM-execution controls field contains a “CR8-load exiting”
bit. If the “use TPR shadow” VM-execution control is set and the “CR8-load
exiting” VM-execution control is clear, then MOV to CR8 writes to the “TPR
shadow”. A VM exit will occur after this write if the value written is below the TPR
threshold. If the “CR8-load exiting” VM-execution control is set, then MOV to CR8
causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this
case.

32.3.2.4 I/O APIC Virtualization
The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC
is allocated a 4K address window within this range. The VMM may utilize physical
memory virtualization to trap guest accesses to the virtual I/O APIC memory-
Vol. 3C 32-7

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC
operations and registers such as identification/version registers, indirect-I/O-access
registers, EOI register, and the I/O redirection table. I/O APIC virtualization also
need to emulate various redirection table entry settings such as delivery mode,
destination mode, delivery status, polarity, masking, and trigger mode programmed
by the guest and track remote-IRR state on guest EOI writes to various virtual local
APICs.

32.3.2.5 Virtualization of Message Signaled Interrupts
The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message
signaled interrupts (MSI). MSI enable PCI devices to request service by writing a
system-specified message to a system specified address. The transaction address
specifies the message destination while the transaction data specifies the interrupt
vector, trigger mode and delivery mode. System software is expected to configure
the message data and address during MSI device configuration, allocating one or
more no-shared messages to MSI capable devices. Chapter 10, “Advanced Program-
mable Interrupt Controller (APIC),” specifies the MSI message address and data
register formats to be followed on Intel 64 and IA-32 platforms. While MSI is optional
for conventional PCI devices, it is the preferred interrupt mechanism for PCI-Express
devices.

Since the MSI address and data are configured through PCI configuration space, to
control these physical interrupts the VMM needs to assume ownership of PCI config-
uration space. This allows the VMM to capture the guest configuration of message
address and data for MSI-capable virtual and assigned guest devices. PCI configura-
tion transactions on PC-compatible systems are generated by software through two
different methods:

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism
(CFCH/CF8H ports) as defined in the PCI Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as
defined in the PCI-Express Base Specification (Rev. 1.0a.).

The CFCH/CF8H configuration access from guests can be trapped by the VMM
through use of I/O-bitmap VM-execution controls. The memory-mapped PCI-Express
MEMCFG guest configuration accesses can be trapped by VMM through physical
memory virtualization.

32.3.3 Examples of Handling of External Interrupts
The following sections illustrate interrupt processing in a VMM (when used to support
the external interrupt virtualization requirements).
32-8 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.3.3.1 Guest Setup
The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This
is done by setting the “external-interrupt exiting” VM-execution control in the guest
controlling-VMCS.

32.3.3.2 Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by
clearing RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external
interrupt as the exit reason.

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge
interrupt on exit” VM-exit control), the processor acknowledges the interrupt,
retrieves the host vector, and saves the interrupt in the VM-exit-interruption-infor-
mation field (in the VM-exit information region of the VMCS) before transitioning
control to the VMM.

32.3.3.3 Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by
checking the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-
exit control (see Section 24.7.1) is enabled, the VMM can use the saved host vector
(in the exit-interruption-information field) to switch to the appropriate interrupt
handler. If the “acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-
enable interrupts (by setting RFLAGS.IF) to allow vectoring of external interrupts
through the monitor/host IDT.

The following steps may need to be performed by the VMM to process an external
interrupt:
• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device

is owned by the VMM (or hosting OS in a hosted VMM). In this model, the
interrupt service routine in the VMM/host driver is invoked and, upon ISR
completion, the appropriate write sequences (TPR updates, EOI etc.) to
respective interrupt controllers are performed as normal. If the work completion
indicated by the driver implies virtual device activity, the VMM runs the virtual
device emulation. Depending on the device class, physical device activity could
imply activity by multiple virtual devices mapped over the device. For each
affected virtual device, the VMM injects a virtual external interrupt event to
respective guest virtual machines. The guest driver interacts with the emulated
virtual device to process the virtual interrupt. The interrupt controller emulation
in the VMM supports various guest accesses to the VMM’s virtual interrupt
controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a
software proxy or it can directly map the physical device to the assigned VM. In
both cases, servicing of the interrupt condition on the physical device is initiated
by the driver running inside the guest VM. With host control of external
Vol. 3C 32-9

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
interrupts, interrupts from assigned physical devices cause VM exits to the VMM
and vectoring through the host IDT to the registered VMM interrupt handler. To
unblock delivery of other low priority platform interrupts, the VMM interrupt
handler must mask the interrupt source (for level triggered interrupts) and issue
the appropriate EOI write sequences.

Once the physical interrupt source is masked and the platform EOI generated, the
VMM can map the host vector to its corresponding guest vector to inject the virtual
interrupt into the assigned VM. The guest software does EOI write sequences to its
virtual interrupt controller after completing interrupt processing. For level triggered
interrupts, these EOI writes to the virtual interrupt controller may be trapped by the
VMM which may in turn unmask the previously masked interrupt source.

32.3.3.4 Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM
designs when generating virtual interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility
state is reflected in the guest RFLAGS.IF flag and the processor interruptibility-
state saved in the guest state area of the controlling-VMCS. If RFLAGS.IF is set
and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual
processor is ready to take external interrupts. If the VMM design supports non-
active guest sleep states, the VMM needs to make sure the current guest sleep
state allows injection of external interrupt events.

2. If the guest virtual processor state is currently not interruptible, a VMM may
utilize the “interrupt-window exiting” VM-execution to notify the VM (through a
VM exit) when the virtual processor state changes to interruptible state.

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local
APIC, the current value of its processor priority register specifies if guest
software allows dispensing an external virtual interrupt with a specific priority to
the virtual processor. If the virtual interrupt is routed through the local vector
table (LVT) entry of the local APIC, the mask bits in the corresponding LVT entry
specifies if the interrupt is currently masked. Similarly, the virtual interrupt
controller’s current mask (IO-APIC or PIC) and priority settings reflect guest
state to accept specific external interrupts. The VMM needs to check both the
virtual processor and interrupt controller states to verify its guest interruptibility
state. If the guest is currently interruptible, the VMM can inject the virtual
interrupt. If the current guest state does not allow injecting a virtual interrupt,
the interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event
injection to deliver various virtual events (such as external interrupts,
exceptions, traps, and so forth). VMM designs may prioritize use of virtual-
interrupt injection between these event types. Since each VM entry allows
injection of one event, depending on the VMM event priority policies, the VMM
may need to queue the external virtual interrupt if a higher priority event is to be
32-10 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
delivered on the next VM entry. Since the VMM has masked this particular
interrupt source (if it was level triggered) and done EOI to the platform interrupt
controller, other platform interrupts can be serviced while this virtual interrupt
event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have
passed, before generating the virtual interrupt to the guest, the VMM updates the
virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) to reflect
assertion of the virtual interrupt. This involves updating the various interrupt
capture registers, and priority registers as done by the respective hardware
interrupt controllers. Updating the virtual interrupt controller state is required for
proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a
guest VM, the VMM sets up the VM-entry interruption-information field in the
guest controlling-VMCS before entry to guest using VMRESUME. Upon VM entry,
the processor will use this vector to access the gate in guest’s IDT and the value
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the
guest stack. If the guest RFLAGS.IF is clear, the STI-masking bit is set, or the
MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the processor will
load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 26.7).

32.4 ERROR HANDLING BY VMM
Error conditions may occur during VM entries and VM exits and a few other situa-
tions. This section describes how VMM should handle these error conditions,
including triple faults and machine-check exceptions.

32.4.1 VM-Exit Failures
All VM exits load processor state from the host-state area of the VMCS that was the
controlling VMCS before the VM exit. This state is checked for consistency while being
loaded. Because the host-state is checked on VM entry, these checks will generally
succeed. Failure is possible only if host software is incorrect or if VMCS data in the
VMCS region in memory has been written by guest software (or by I/O DMA) since
the last VM entry. VM exits may fail for the following reasons:
• There was a failure on storing guest MSRs.
• There was failure in loading a PDPTR.
• The controlling VMCS has been corrupted (through writes to the corresponding

VMCS region) in such a way that the implementation cannot complete the VM
exit.

• There was a failure on loading host MSRs.
• A machine-check event occurred.
Vol. 3C 32-11

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
If one of these problems occurs on a VM exit, a VMX abort results.

32.4.2 Machine-Check Considerations
The following sequence determine how machine-check events are handled during
VMXON, VMXOFF, VM entries, and VM exits:
• VMXOFF and VMXON:

If a machine-check event occurs during VMXOFF or VMXON and CR4.MCE = 1, a
machine-check exception (#MC) is generated. If CR4.MCE = 0, the processor
goes to shutdown state.

• VM entry:
If a machine-check event occurs during VM entry, one of the following three
treatments must occur:

a. Normal delivery before VM entry. If CR4.MCE = 1 before VM entry, delivery of
a machine-check exception (#MC) through the host IDT occurs. If
CR4.MCE = 0, the processor goes to shutdown state.

b. Normal delivery after VM entry. If CR4.MCE = 1 after VM entry, delivery of a
machine-check exception (#MC) through the guest IDT occurs (alternatively,
this exception may cause a VM exit). If CR4.MCE = 0, the processor goes to
shutdown state.

c. Load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 26.7). The basic exit reason will be “VM-entry failure
due to machine-check event.”

If the machine-check event occurs after any guest state has been loaded, option
a above will not be used; it may be used if the machine-check event occurs while
checking host state and VMX controls (or while reporting a failure due to such
checks). An implementation may use option b only if all guest state has been
loaded properly.

• VM exit:
If a machine-check event occurs during VM exit, one of the following three
treatments must occur:

a. Normal delivery before VM exit. If CR4.MCE = 1 before the VM exit, delivery
of a machine-check exception (#MC) through the guest IDT (alternatively,
this may cause a VM exit). If CR4.MCE = 0, the processor goes to shutdown
state.

b. Normal delivery after VM exit. If CR4.MCE = 1 after the VM exit, delivery of a
machine-check exception (#MC) through the host IDT. If CR4.MCE = 0, the
processor goes to shutdown state.

c. Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will
result; it will block events as done normally in VMX abort. The VMX abort
indicator will show that a machine-check event induced the abort operation.
32-12 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
If a machine-check event is induced by an action in VMX non-root operation
before any determination is made that the inducing action may cause a VM exit,
that machine-check event should be considered as happening during guest
execution in VMX non-root operation. This is the case even if the part of the
action that caused the machine-check event was VMX-specific (for example, the
processor’s consulting an I/O bitmap). If a machine-check exception occurs and
if bit 12H of the exception bitmap is cleared to 0, the exception is delivered to the
guest through gate 12H of its IDT; if the bit is set to 1, the machine-check
exception causes a VM exit.

NOTE
The state saved in the guest-state area on VM exits due to machine-
check exceptions should be considered suspect. A VMM should
consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit due to a machine-check
exception.

32.4.3 MCA Error Handling Guidelines for VMM
Section 32.4.2 covers general requirements for VMMs to handle machine-check
exceptions, when normal operation of the guest machine and/or the VMM is no
longer possible. enhancements of machine-check architecture in newer processors
may support software recovery of uncorrected MC errors (UCR) signaled through
either machine-check exceptions or corrected machine-check interrupt (CMCI).
Section 15.5 and Section 15.6 describes details of these more recent enhancements
of machine-check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recom-
mendations for OS error handling described in Section 15.3, Section 15.6, Section
15.9, and Section 15.10. This section describes additional guidelines for hosted and
native hypervisor-based VMM implementations to support corrected MC errors and
recoverable uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing
standard host OS, the host OS controls platform hardware through the host OS
services such as the standard OS device drivers. In hosted VMMs. MCA errors will be
handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only
a limited set of platform services for guest VMs. Most platform services may instead
be provided by a “control OS”. In hypervisor-based VMMs, MCA errors will either be
delivered directly to the VMM MCA handler (when the error is signaled while in the
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA inter-
cept handler. There are two general approaches the hypervisor can use to handle the
MCA error: either within the hypervisor itself or by forwarding the error to the control
OS.
Vol. 3C 32-13

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
32.4.3.1 VMM Error Handling Strategies
Broadly speaking, there are two strategies that VMMs may take for error handling:
• Basic error handling: in this approach the guest VM is treated as any other thread

of execution. If the error recovery action does not support restarting the thread
after handling the error, the guest VM should be terminated.

• MCA virtualization: in this approach, the VMM virtualizes the MCA events and
hardware. This enables the VMM to intercept MCA events and inject an MCA into
the guest VM. The guest VM then has the opportunity to attempt error recovery
actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native
VMMs are discussed below.

32.4.3.2 Basic VMM MCA error recovery handling
The simplest approach is for the VMM to treat the guest VM as any other thread of
execution:
• MCE's that occur outside the stream of execution of a virtual machine guest will

cause an MCE abort and may be handled by the MCA error handler following the
recovery actions and guidelines described in Section 15.9, and Section 15.10.
This includes logging the error and taking appropriate recovery actions when
necessary. The VMM must not resume the interrupted thread of execution or
another VM until it has taken the appropriate recovery action or, in the case of
fatal MCAs, reset the system.

• MCE's that occur while executing in the context of a virtual machine will be
intercepted by the VMM. The MCA intercept handler may follow the error handling
guidelines listed in Section 15.9 and Section 15.10 for SRAO and SRAR errors.
For SRAR errors, terminating the thread of execution will involve terminating the
affected guest VM. For fatal errors the MCA handler should log the error and reset
the system -- the VMM should not resume execution of the interrupted VM.

32.4.3.3 Implementation Considerations for the Basic Model
For hosted VMMs, the host OS MCA error handling code will perform error analysis
and initiate the appropriate recovery actions. For the basic model this flow does not
change when terminating a guest VM although the specific actions needed to termi-
nate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the
VMM MCA handler (when the error is signaled while in the VMM context) or cause a
VM exit from a guest VM or be delivered to the MCA intercept handler. There are two
general approaches the hypervisor can use to handle the MCA error: either by
forwarding the error to the control OS or within the hypervisor itself. These
approaches are described in the following paragraphs.
32-14 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
The hypervisor may forward the error to the control OS for handling errors. This
approach simplifies the hypervisor error handling since it relies on the control OS to
implement the basic error handling model. The control OS error handling code will be
similar to the error handling code in the hosted VMM. Errors can be forwarded to the
control OS via an OS callback or by injecting an MCE event into the control OS.
Injecting an MCE will cause the control OS MCA error handler to be invoked. The
control OS is responsible for terminating the affected guest VM, if necessary, which
may require cooperation from the hypervisor.

Alternatively, the error may be handled completely in the hypervisor. The hypervisor
error handler is enhanced to implement the basic error handling model and the
hypervisor error handler has the capability to fully analyze the error information and
take recovery actions based on the guidelines. In this case error handling steps in the
hypervisor are similar to those for the hosted VMM described above (where the
hypervisor replaces the host OS actions). The hypervisor is responsible for termi-
nating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and
reset the system. The VMM error handler must ensure that guest VMs are not
resumed after a fatal error is detected to ensure error containment is maintained.

32.4.3.4 MCA Virtualization
A more sophisticated approach for handling errors is to virtualize the MCA. This
involves virtualizing the MCA hardware and intercepting the MCA event in the VMM
when a guest VM is interrupted by an MCA. After analyzing the error, the VMM error
handler may then decide to inject an MCE abort into the guest VM for attempted
guest VM error recovery. This would enable the guest OS the opportunity to take
recovery actions specific to that guest.

For MCA virtualization, the VMM must provide the guest physical address for memory
errors instead of the system physical address when reporting the errors to the guest
VM. To compute the guest physical address, the VMM needs to maintain a reverse
mapping of system physical page addresses to guest physical page addresses.

When the MCE is injected into the guest VM, the guest OS MCA handler would be
invoked. The guest OS implements the MCA handling guidelines and it could poten-
tially terminate the interrupted thread of execution within the guest instead of termi-
nating the VM. The guest OS may also disable use of the affected page by the guest.
When disabling the page the VMM error handler may handle the case where a page is
shared by the VMM and a guest or by two guests. In these cases the page use must
be disabled in both contexts to ensure no subsequent consumption errors are gener-
ated.

32.4.3.5 Implementation Considerations for the MCA Virtualization Model
MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs.
The error handling flow is similar to the flow described in the basic handling case. The
major difference is that the recovery action includes injecting the MCE abort into the
Vol. 3C 32-15

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
guest VM to enable recovery by the guest OS when the MCA interrupts the execution
of a guest VM.

32.5 HANDLING ACTIVITY STATES BY VMM
A VMM might place a logic processor in the wait-for-SIPI activity state if supporting
certain guest operating system using the multi-processor (MP) start-up algorithm. A
guest with direct access to the physical local APIC and using the MP start-up algo-
rithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In
order to trap the SIPIs, the VMM must start the logic processor which is the target of
the SIPIs in wait-for-SIPI mode.
32-16 Vol. 3C

CHAPTER 33
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and
manage various system resources for more efficient energy usage, to control system
hardware, and/or to run proprietary code. It was introduced into the IA-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and
Pentium and Intel486 processors (beginning with the enhanced versions of the
Intel486 SL and Intel486 processors).

33.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications
software or general-purpose systems software. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor
saves the current state of the processor (the processor’s context), then switches to a
separate operating environment contained in system management RAM (SMRAM).
While in SMM, the processor executes SMI handler code to perform operations such
as powering down unused disk drives or monitors, executing proprietary code, or
placing the whole system in a suspended state. When the SMI handler has completed
its operations, it executes a resume (RSM) instruction. This instruction causes the
processor to reload the saved context of the processor, switch back to protected or
real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and
operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space (SMRAM) that can

be made inaccessible from the other operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program

or task.
Vol. 3C 33-1

SYSTEM MANAGEMENT MODE
• All interrupts normally handled by the operating system are disabled upon entry
into SMM.

• The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address
mapping. An SMM program can address up to 4 GBytes of memory and can execute
all I/O and applicable system instructions. See Section 33.5 for more information
about the SMM execution environment.

NOTES
Software developers should be aware that, even if a logical processor
was using the physical-address extension (PAE) mechanism
(introduced in the P6 family processors) or was in IA-32e mode
before an SMI, this will not be the case after the SMI is delivered. This
is because delivery of an SMI disables paging (see Table 33-4). (This
does not apply if the dual-monitor treatment of SMIs and SMM is
active; see Section 33.15.)

33.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 33.2 through Section 33.13).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual
machines and each virtual machine can support its own software stack of executive
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management
mode (SMM) in one of two ways:
• Default treatment. System firmware handles SMIs. The processor saves archi-

tectural states and critical states relevant to VMX operation upon entering SMM.
When the firmware completes servicing SMIs, it uses RSM to resume VMX
operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing
of SMIs: one VMM operates outside of SMM to provide basic virtualization in
support for guests; the other VMM operates inside SMM (while in VMX operation)
to support system-management functions. The former is referred to as
executive monitor, the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 33.14, “Default Treatment of SMIs and
SMM with VMX Operation and SMX Operation”. Dual-monitor treatment of SMM is
described in Section 33.15, “Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the
VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.
33-2 Vol. 3C

SYSTEM MANAGEMENT MODE
33.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the
processor or through an SMI message received through the APIC bus. The SMI is a
nonmaskable external interrupt that operates independently from the processor’s
interrupt- and exception-handling mechanism and the local APIC. The SMI takes
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the
SMI is disabled while the processor is in SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a
processor that is designated as an application processor during an MP
initialization sequence is waiting for a startup IPI (SIPI), it is in a
mode where SMIs are masked. However if a SMI is received while an
application processor is in the wait for SIPI mode, the SMI will be
pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before
handling the SIPI.
An SMI may be blocked for one instruction following execution of STI,
MOV to SS, or POP into SS.

33.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while
the processor is in real-address, protected, or virtual-8086 modes always causes the
processor to switch to SMM. Upon execution of the RSM instruction, the processor
always returns to the mode it was in when the SMI occurred.

33.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible”
point in program execution (which is commonly at an IA-32 architecture instruction
boundary). When the processor receives an SMI, it waits for all instructions to retire
and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 33.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has
begun. The signaling mechanism used is implementation dependent. For the P6
family processors, an SMI acknowledge transaction is generated on the system bus
and the multiplexed status signal EXF4 is asserted each time a bus transaction is
generated while the processor is in SMM. For the Pentium and Intel486 processors,
the SMIACT# pin is asserted.
Vol. 3C 33-3

SYSTEM MANAGEMENT MODE
An SMI has a greater priority than debug exceptions and external interrupts. Thus, if
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are
not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to
external hardware) is latched and serviced when the processor exits SMM with the
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 33.5 for a detailed description of the execution environment when in
SMM.

33.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is
only available to the SMI handler; if the processor is not in SMM, attempts to execute
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image
from SMRAM back into the processor’s registers. The processor then returns an
SMIACK transaction on the system bus and returns program control back to the
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors,
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the
shutdown state and generates a special bus cycle to indicate it has entered shutdown
state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error

should not happen unless SMI handler code modifies reserved areas of the
SMRAM saved state map (see Section 33.4.1). CR4 is saved in the state map in a
reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG
set to 1 and PE set to 0, or NW set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the

SMBASE register when an RSM instruction is executed is not aligned on a
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#,
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI#
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not
support using SMI# to recover from shutdown states for any processor family; the
response of processors in this circumstance is not well defined. On Pentium 4 and
later processors, shutdown will inhibit INTR and A20M but will not change any of the
33-4 Vol. 3C

SYSTEM MANAGEMENT MODE
other inhibits. On these processors, NMIs will be inhibited if no action is taken in the
SMM handler to uninhibit them (see Section 33.8).

If the processor is in the HALT state when the SMI is received, the processor handles
the return from SMM slightly differently (see Section 33.10). Also, the SMBASE
address can be changed on a return from SMM (see Section 33.11).

33.4 SMRAM
While in SMM, the processor executes code and stores data in the SMRAM space. The
SMRAM space is mapped to the physical address space of the processor and can be
up to 4 GBytes in size. The processor uses this space to save the context of the
processor and to store the SMI handler code, data and stack. It can also be used to
store system management information (such as the system configuration and
specific information about powered-down devices) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical
memory called the SMBASE (see Figure 33-1). The SMBASE default value following a
hardware reset is 30000H. The processor looks for the first instruction of the SMI
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 33.4.1 for a description
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see
Section 33.11). It should be noted that all processors in a multiple-processor system
are initialized with the same SMBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its SMBASE so that it does not
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate
RAM memory. The processor generates an SMI acknowledge transaction (P6 family
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the
processor receives an SMI (see Section 33.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic
should provide a programmable method of mapping the SMRAM into system memory
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing
the SMI handler during SMM.
Vol. 3C 33-5

SYSTEM MANAGEMENT MODE
33.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters
SMM, it writes its state to the state save area of the SMRAM. The state save area
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H +
7E00H]. Table 33-1 shows the state save map. The offset in column 1 is relative to
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may
be read and changed by the SMI handler, with the changed values restored to the
processor registers by the RSM instruction. Some register images are read-only, and
must not be modified (modifying these registers will result in unpredictable
behavior). An SMI handler should not rely on any values stored in an area that is
marked as reserved.

Figure 33-1. SMRAM Usage

Table 33-1. SMRAM State Save Map

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
33-6 Vol. 3C

SYSTEM MANAGEMENT MODE
The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS,

ES, FS, GS, and SS.

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 33.7 No

7FA0H I/O Memory Address Field, see Section 33.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3C 33-7

SYSTEM MANAGEMENT MODE
If an SMI request is issued for the purpose of powering down the processor, the
values of all reserved locations in the SMM state save must be saved to nonvolatile
memory.

The following state is not automatically saved and restored following an SMI and the
RSM instruction, respectively:
• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test

registers TR3 through TR7 (for the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required
before returning to SMM, which will reset much of this state back to its default
values. So an SMI handler that is going to trigger power down should first read these
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should
restore these values, along with the rest of the system's state. Anytime the SMI
handler changes these registers in the processor, it must also save and restore them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and
therefore cannot be saved and restored. SMM-based power-down
and restoration should only be performed with operating systems
that do not use or rely on the values of these registers.
Operating system developers should be aware of this fact and insure
that their operating-system assisted power-down and restoration
software is immune to unexpected changes in these register values.

33.4.1.1 SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of
the SMRAM. The state save area on an Intel 64 processor at [SMBASE + 8000H +
7FFFH] and extends to [SMBASE + 8000H + 7C00H].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The
layout of the SMRAM state save map is shown in Table 33-3.
33-8 Vol. 3C

SYSTEM MANAGEMENT MODE
Additionally, the SMRAM state save map shown in Table 33-3 also applies to proces-
sors with the following CPUID signatures listed in Table 33-2, irrespective of the value
in CPUID.80000001:EDX[29].

Table 33-2. Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processor Q9xxx, Intel Core 2 Duo processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors,
Intel Pentium dual-core processors

06_1CH Intel® Atom™ processors

Table 33-3. SMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No
Vol. 3C 33-9

SYSTEM MANAGEMENT MODE
7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

Table 33-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
33-10 Vol. 3C

SYSTEM MANAGEMENT MODE
33.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before
entering SMM or before exiting SMM. Because of this behavior, care must be taken in
the placement of the SMRAM in system memory and in the caching of the SMRAM to
prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Either of the following three methods of locating the
SMRAM in system memory will guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating

system and applications are prevented from accessing. Here, the SRAM can be
designated as cacheable (WB, WT, or WC) for optimum processor performance,
without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the
operating system (such as the video memory), but designate the SMRAM as
uncacheable (UC). This method prevents cache access when in SMM to maintain
cache coherency, but the use of uncacheable memory reduces the performance
of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the
operating system and/or application code, but explicitly flush (write back and
invalidate) the caches upon entering and exiting SMM mode. This method
maintains cache coherency, but incurs the overhead of two complete cache
flushes.

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_EIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 33-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3C 33-11

SYSTEM MANAGEMENT MODE
For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two
methods of locating the SMRAM is recommended. Here the SMRAM is split between
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM
space that is accessed overlaps video memory (typically located in low memory).
This SMRAM section is designated as UC memory. The initial SMM code then jumps to
a second SMRAM section that is located in a dedicated region of system memory
(typically in high memory). This SMRAM section can be cached for optimum
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method
described above), the cache flush can be accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM (generally initiated by asserting the
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is
serviced first. To guarantee this behavior, the processor requires that the following
constraints on the interaction of FLUSH# and SMI# be met. In a system where the
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to
guarantee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin
to write back and invalidate cache contents before entering SMM, the
processor will prefetch at least one cache line in between when the
Flush Acknowledge cycle is run and the subsequent recognition of
SMI# and the assertion of SMIACT#.
It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive to the Pentium processor.

33.4.2.1 System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR inter-
face is an enhancement in Intel 64 architecture to limit cacheable reference of
addresses in SMRAM to code running in SMM. The SMRR interface can be configured
only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

33.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core
registers to the values shown in Table 33-4. Upon entering SMM, the PE and PG flags
in control register CR0 are cleared, which places the processor in an environment
similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:
33-12 Vol. 3C

SYSTEM MANAGEMENT MODE
• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes).
(The physical address extension — enabled with the PAE flag in control register
CR4 — is not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to
4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the
addressable SMRAM address space to the 1-MByte real-address mode limit for
native real-address-mode code. However, operand-size and address-size
override prefixes can be used to access the address space beyond the 1-MByte.

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a
32-bit operand-size override prefix is used. Due to the real-address-mode style
of base-address formation, a far call or jump cannot transfer control to a
segment with a base address of more than 20 bits (1 MByte). However, since the
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any
program control transfer that does not have a 32-bit operand-size override prefix
truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but
can be accessed only with a 32-bit address-size override if they are located above
1 MByte. As with the code segment, the base address for a data or stack segment
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H.
When the EIP value is added to shifted CS value (the SMBASE), the resulting linear
address points to the first instruction of the SMI handler.

Table 33-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
Vol. 3C 33-13

SYSTEM MANAGEMENT MODE
The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be
treated as a single flat 4-GByte linear address space. If a segment register is loaded
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the
segment base (hidden part of the segment register). The limits and attributes are not
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and
exception handlers (see Section 33.6).

33.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following
manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware

interrupts from being generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action

prevents a debugger from accidentally breaking into an SMM handler if a debug
breakpoint is set in normal address space that overlays code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section
33.8 for more information about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3,
or BOUND instructions) or generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table
and the necessary exception and interrupt handlers must be created and initialized
from within SMM. Until the interrupt table is correctly initialized (using the LIDT
instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-

address mode style interrupt vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or

exception cannot transfer control to a segment with a base address of more that
20 bits.
33-14 Vol. 3C

SYSTEM MANAGEMENT MODE
• An interrupt or exception cannot transfer control to a segment offset of more
than 16 bits (64 KBytes).

• When an exception or interrupt occurs, only the 16 least-significant bits of the
return address (EIP) are pushed onto the stack. If the offset of the interrupted
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception
handler to return control to that procedure. (One solution to this problem is for a
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an
interrupt or exception generated while the SMI handler is executing. For
example, if the SMBASE is relocated to above 1 MByte, but the exception
handlers are below 1 MByte, a normal return to the SMI handler is not possible.
One solution is to provide the exception handler with a mechanism for calculating
a return address above 1 MByte from the 16-bit return address on the stack, then
use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an
SMM accessible debug handler is available and save the current contents of
debug registers DR0 through DR3 (for later restoration). Debug registers DR0
through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that
an SMM accessible single-step handler is available, and then set the TF flag in the
EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware
interrupts or software-generated interrupts while in SMM, it must ensure that
SMM accessible interrupt handlers are available and then set the IF flag in the
EFLAGS register (using the STI instruction). Software interrupts are not blocked
upon entry to SMM, so they do not need to be enabled.

33.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it
was not always possible for an SMI handler to distinguish between a synchronous
SMI (triggered during an I/O instruction) and an asynchronous SMI. To facilitate the
discrimination of these two events, incremental state information has been added to
the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental
state information described below.

33.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only
when an SMI is either taken immediately after a successful I/O instruction or is taken
Vol. 3C 33-15

SYSTEM MANAGEMENT MODE
after a successful iteration of a REP I/O instruction (the successful notion pertains to
the processor point of view; not necessarily to the corresponding platform function).
When set, the IO_SMI bit provides a strong indication that the corresponding SMI
was synchronous. In this case, the SMM State Save Map also supplies the port
address of the I/O operation. The IO_SMI bit and the I/O Port Address may be used
in conjunction with the information logged by the platform to confirm that the SMI
was indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is
synchronous. This is because an asynchronous SMI might coincidentally be taken
after an I/O instruction. In such a case, the IO_SMI bit would still be set in the SMM
state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM
State Save Map (Table 33-5). The IO_SMI bit also serves as a valid bit for the rest of
the I/O information fields. The contents of these I/O information fields are not
defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 33-6)

Table 33-5. I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 33-6. I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
33-16 Vol. 3C

SYSTEM MANAGEMENT MODE
33.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs
during the SMI handler, it is latched and serviced after the processor exits SMM. Only
one NMI request will be latched during the SMI handler. If an NMI request is pending
when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be
enabled through software by executing an IRET instruction. If the SMM handler
requires the use of NMI interrupts, it should invoke a dummy interrupt service
routine for the purpose of executing an IRET instruction. Once an IRET instruction is
executed, NMI interrupt requests are serviced in the same “real mode” manner in
which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so
normally NMI interrupts are serviced and completed with an IRET instruction one at
a time. When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the attribute to keep
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon
exit) and serviced upon exit of SMM even though the previous NMI handler has still
not completed. One or more NMIs could thus be nested inside the first NMI handler.
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will
enable NMI interrupts from inside of SMM. This behavior is implementation specific
for the Pentium processor and is not part of the IA-32 architecture.

33.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM
extensions that are supported by the processor (see Figure 33-2). The SMM revision
identifier is written during SMM entry and can be examined in SMRAM space at offset

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Table 33-6. I/O Instruction Type Encodings (Contd.)
Instruction Encoding
Vol. 3C 33-17

SYSTEM MANAGEMENT MODE
7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If
the I/O instruction restart flag (bit 16) is set, the processor supports the I/O instruc-
tion restart (see Section 33.12); if the SMBASE relocation flag (bit 17) is set, SMRAM
base address relocation is supported (see Section 33.11).

33.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction)
when it receives an SMI, the processor records the fact in the auto HALT restart flag
in the saved processor state (see Figure 33-3). (This flag is located at offset 7F02H
and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that
the SMI occurred when the processor was in the HALT state), the SMI handler has
two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to

return program control to the HLT instruction. This option in effect causes the
processor to re-enter the HALT state after handling the SMI. (This is the default
operation.)

• It can clear the auto HALT restart flag, with instructs the RSM instruction to
return program control to the instruction following the HLT instruction.

Figure 33-2. SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH

31 0

Reserved

18 17 16 15
33-18 Vol. 3C

SYSTEM MANAGEMENT MODE
These options are summarized in Table 33-7. If the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to
1 will cause unpredictable behavior when the RSM instruction is executed.

If the HLT instruction is restarted, the processor will generate a memory access to
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus
transaction. This behavior results in multiple HLT bus transactions for the same HLT
instruction.

33.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in
SMM, the only event that can remove the processor from this state is a maskable
hardware interrupt or a hardware reset.

33.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an
internal processor register called the SMBASE register. The operating system or
executive can relocate the SMRAM by setting the SMBASE field in the saved state
map (at offset 7EF8H) to a new value (see Figure 33-4). The RSM instruction reloads
the internal SMBASE register with the value in the SMBASE field each time it exits
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting

Figure 33-3. Auto HALT Restart Field

Table 33-7. Auto HALT Restart Flag Values

Value of Flag
After Entry to
SMM

Value of Flag
When Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015

Reserved
Register Offset
7F02H

1

Vol. 3C 33-19

SYSTEM MANAGEMENT MODE
address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area
(from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.)

In multiple-processor systems, initialization software must adjust the SMBASE value
for each processor so that the SMRAM state save areas for each processor do not
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the
ability to relocate the SMBASE (see Section 33.9).

33.11.1 Relocating SMRAM to an Address Above 1 MByte
In SMM, the segment base registers can only be updated by changing the value in the
segment registers. The segment registers contain only 16 bits, which allows only 20
bits to be used for a segment base address (the segment register is shifted left 4 bits
to determine the segment base address). If SMRAM is relocated to an address above
1 MByte, software operating in real-address mode can no longer initialize the
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS,
and GS registers are still initialized to 0H, data in SMRAM can be accessed by using
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

33.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section
33.9), the I/O instruction restart mechanism is present on the processor. This mech-
anism allows an interrupted I/O instruction to be re-executed upon returning from

Figure 33-4. SMBASE Relocation Field

031

SMM Base
Register Offset
7EF8H
33-20 Vol. 3C

SYSTEM MANAGEMENT MODE
SMM mode. For example, if an I/O instruction is used to access a powered-down I/O
device, a chip set supporting this device can intercept the access and respond by
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon
returning from the SMI handler, the I/O instruction restart mechanism can be used to
re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see
Figure 33-5) controls I/O instruction restart. When an RSM instruction is executed, if
this field contains the value FFH, then the EIP register is modified to point to the I/O
instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary
machine state to insure that re-execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is
executed, then the processor begins program execution with the instruction following
the I/O instruction. (When a repeat prefix is being used, the next instruction may be
the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O
instruction is the default behavior; the processor automatically initializes the I/O
instruction restart field to 00H upon entering SMM. Table 33-8 summarizes the states
of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is
the responsibility of the SMI handler to examine the state of the processor to deter-
mine the cause of the SMI and to determine if an I/O instruction was interrupted and
should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O
instruction boundary, setting the I/O instruction restart field to FFH prior to executing
the RSM instruction will likely result in a program error.

Figure 33-5. I/O Instruction Restart Field

Table 33-8. I/O Instruction Restart Field Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

015

I/O Instruction Restart Field Register Offset
7F00H
Vol. 3C 33-21

SYSTEM MANAGEMENT MODE
33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that
occurred on an I/O instruction boundary, the processor will service the new SMI
request before restarting the originally interrupted I/O instruction. If the I/O instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP
will point to an address different from the originally interrupted I/O instruction, which
will likely lead to a program error. To avoid this situation, the SMI handler must be
able to recognize the occurrence of back-to-back SMI interrupts when I/O instruction
restart is being used and insure that the handler sets the I/O instruction restart field
to 00H prior to returning from the second invocation of the SMI handler.

33.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system

memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory

space. The only stipulation is that each processor needs its own state save area
and its own dynamic data storage area. (Also, for the Pentium and Intel486
processors, the SMBASE address must be located on a 32-KByte boundary.) Code
and static data can be shared among processors. Overlapping SMRAM spaces can
be done more efficiently with the P6 family processors because they do not
require that the SMBASE address be on a 32-KByte boundary.

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received

through the APIC interface. The APIC interface can distribute SMIs to different
processors.

• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT#

pin is driven only by the MRM processor and should be sampled with ADS#. For
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual,
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the
SMBASE. If there is a need to support two or more processors in SMM mode at the
same time then each processor should have dedicated SMRAM spaces. This can be
done by using the SMBASE Relocation feature (see Section 33.11).
33-22 Vol. 3C

SYSTEM MANAGEMENT MODE
33.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX
OPERATION AND SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation
are few. This section details those interactions. It also explains how this treatment
affects SMX operation.

33.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based
on architectural definitions. Under the default treatment, processors that support
VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space

is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs);
combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits
51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This
state consists of the following: (1) SS.DPL (the current privilege level);
(2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see Table 24-3 in

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.
Vol. 3C 33-23

SYSTEM MANAGEMENT MODE
Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX
non-root operation and the “virtual NMIs” VM-execution control is 1); and (5) an
indication of whether an MTF VM exit is pending (see Section 25.7.2). These data
may be saved internal to the processor or in the VMCS region of the current VMCS.
Processors that do not support SMI recognition while there is blocking by STI or by
MOV SS need not save the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control and the logical processor was in VMX non-root operation at the time of an
SMI, it saves the value of that control into bit 0 of the 32-bit field at offset SMBASE +
8000H + 7EE0H (SMBASE + FEE0H; see Table 33-3).1 If the logical processor was
not in VMX non-root operation at the time of the SMI, it saves 0 into that bit. If the
logical processor saves 1 into that bit (it was in VMX non-root operation and the
“enable EPT” VM-execution control was 1), it saves the value of the EPT pointer
(EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the
controls associated with VMX non-root operation are disabled in SMM and thus
cannot cause VM exits while the logical processor in SMM.

33.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs;

combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP;
see Section 28.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was
unlocked at the time of the last SMI (as saved)

THEN unlock the TXT private space;
FI;
CR4.VMXE ← value stored internally;

2. Section 33.14 and Section 33.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture.
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to
refer specifically to the lower 32 bits of the register.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, SMI functions as the “enable EPT” VM-execution control
were 0. See Section 24.6.2.
33-24 Vol. 3C

SYSTEM MANAGEMENT MODE
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 33.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in

VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in
Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution

control will be 0, the state of NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution

control will be 1, NMIs are not blocked after RSM. The state of virtual-NMI
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX
root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the
controls associated with the current VMCS. If the “interrupt-window exiting”
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling
conditions apply. The same is true for the “NMI-window exiting” VM-execution
control. Such VM exits occur with their normal priority. See Section 25.3.

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls will be 1, CR0.PE and CR0.PG
retain the values that were loaded from SMRAM regardless of what is reported in the capability
MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 24.6.2.
Vol. 3C 33-25

SYSTEM MANAGEMENT MODE
If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is
pending on the instruction boundary following execution of RSM. The following items
detail the treatment of MTF VM exits that may be pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over these MTF VM exits. These MTF VM exits take priority over
debug-trap exceptions and lower priority events.

• These MTF VM exits wake the logical processor if RSM caused the logical
processor to enter the HLT state (see Section 33.10). They do not occur if the
logical processor just entered the shutdown state.

33.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical
processor is in SMM. Any attempt by software running in SMM to set this bit causes a
general-protection exception. In addition, software cannot use VMX instructions or
enter VMX operation while in SMM.

33.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section
33.15.1) and only outside SMM. If SMIs are blocked when VMXOFF is executed,
VMXOFF unblocks them unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section
33.15.5 for details regarding this MSR).1 Section 33.15.7 identifies a case in which
SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capa-
bility MSR IA32_VMX_MISC (see Appendix A.6) to determine whether this is allowed.

33.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive
monitor (the VMM that operates outside of SMM to provide basic virtualization) and
the SMM-transfer monitor (STM; the VMM that operates inside SMM—while in VMX
operation—to support system-management functions). Control is transferred to the
STM through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should
consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine
whether it is supported.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless
of the value of the register’s valid bit (bit 0).
33-26 Vol. 3C

SYSTEM MANAGEMENT MODE
33.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor
(STM). Transitions from the executive monitor or its guests to the STM are called
SMM VM exits and are discussed in Section 33.15.2. SMM VM exits are caused by
SMIs as well as executions of VMCALL in VMX root operation. The latter allow the
executive monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS
and perform VM entries to its own guests. This is done all inside SMM (see Section
33.15.3). The STM returns from SMM, not by using the RSM instruction, but by using
a VM entry that returns from SMM. Such VM entries are described in Section 33.15.4.

Initially, there is no STM and the default treatment (Section 33.14) is used. The dual-
monitor treatment is not used until it is enabled and activated. The steps to do this
are described in Section 33.15.5 and Section 33.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF
will fail if executed. The dual-monitor treatment must be deactivated first. The STM
deactivates dual-monitor treatment using a VM entry that returns from SMM with the
“deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 33.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive
monitor. SMM VM exits, which transfer control to the STM, use a different VMCS.
Under the dual-monitor treatment, each logical processor uses a separate VMCS
called the SMM-transfer VMCS. When the dual-monitor treatment is active, the
logical processor maintains another VMCS pointer called the SMM-transfer VMCS
pointer. The SMM-transfer VMCS pointer is established when the dual-monitor treat-
ment is activated.

33.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX
root operation outside SMM. Execution of VMCALL in VMX root operation causes an
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see
Section 33.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the
default treatment. This SMM VM exit activates the dual-monitor treatment (see
Section 33.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections
33.15.2.1 through 33.15.2.5. Differences between SMM VM exits that activate the
dual-monitor treatment and other SMM VM exits are described in Section 33.15.6.
Vol. 3C 33-27

SYSTEM MANAGEMENT MODE
33.15.2.1 Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so
directly. They do not save state to SMRAM as they do under the default treatment.

33.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS
pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit
information is recorded in that VMCS, and VM-entry control fields in that VMCS are
updated. State is saved into the guest-state area of that VMCS. The VM-exit controls
and host-state area of that VMCS determine how the VM exit operates.

33.15.2.3 Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit
information. The differences follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with
the reason for the SMM VM exit: I/O SMI (an SMI arrived immediately after
retirement of an I/O instruction), other SMI, or VMCALL. See Appendix C,
“VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation.
Because the SMM-transfer monitor may need to know whether it was invoked
from VMX root or VMX non-root operation, this information is stored in bit 29
of the exit-reason field (see Table 24-14 in Section 24.9.1). The bit is set by
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit
was pending, bit 28 of the exit-reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately

after the retirement of an I/O instruction, the exit qualification contains
information about the I/O instruction that retired immediately before the SMI.It
has the format given in Table 33-9.
33-28 Vol. 3C

SYSTEM MANAGEMENT MODE
• Guest linear address. This field is used for VM exits due to SMIs that arrive
immediately after the retirement of an INS or OUTS instruction for which the
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction
prefix) is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but
can be overridden by a segment override prefix) at the time the instruction
started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical
processor was not in 64-bit mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI
that arrives immediately after the retirement of an I/O instruction, these fields
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the
I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O
instruction.

33.15.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area.

Table 33-9. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.
Vol. 3C 33-29

SYSTEM MANAGEMENT MODE
The value of the VMX-preemption timer is saved into the corresponding field in the
guest-state area if the “save VMX-preemption timer value” VM-exit control is 1. That
field becomes undefined if, in addition, either the SMM VM exit is from VMX root
operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

33.15.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be

unblocked through execution of IRET or through a VM entry (depending on the
value loaded for the interruptibility state and the setting of the “virtual NMIs”
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry
that returns from SMM (see Section 33.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with
VPID 0000H for all PCIDs. Combined mappings for VPID 0000H are invalidated for all
EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3). (Ordinary
VM exits are not required to perform such invalidation if the “enable VPID” VM-
execution control is 1; see Section 27.5.5.)

33.15.3 Operation of the SMM-Transfer Monitor
Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use
VMX instructions to configure VMCSs and to cause VM entries to virtual machines
supported by those structures. As noted in Section 33.15.1, the VMXOFF instruction
cannot be used under the dual-monitor treatment and thus cannot be used by the
STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted
in Section 25.1.3, it causes a VM exit if executed in SMM in VMX non-root operation.
If executed in VMX root operation, it causes an invalid-opcode exception. The STM
uses VM entries to return from SMM (see Section 33.15.4).

33.15.4 VM Entries that Return from SMM
The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry
to SMM” VM-entry control clear. VM entries that return from SMM reverse the effects
of an SMM VM exit (see Section 33.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the
current VMCS contains the VMXON pointer, the logical processor remains in VMX root
operation after VM entry.
33-30 Vol. 3C

SYSTEM MANAGEMENT MODE
For differences between VM entries that return from SMM and other VM entries see
Sections 33.15.4.1 through 33.15.4.10.

33.15.4.1 Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address

width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer
must contain the processor’s VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 33.15.4.2
and before any of the following checks:
• 'If the "deactivate dual-monitor treatment" VM-entry control is 0 and the

executive-VMCS pointer field does not contain the VMXON pointer, the launch
state of the executive VMCS (the VMCS referenced by the executive-VMCS
pointer field) must be launched (see Section 24.10.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 33.15.7).3

33.15.4.2 Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-execution control fields specified in Section 26.2.1.1.
They do not apply the checks to the current VMCS. Instead, VM-entry behavior
depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry

remains in VMX root operation), the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the

VM entry enters VMX non-root operation), the checks are performed on the
VM-execution control fields in the executive VMCS (the VMCS referenced by the
executive-VMCS pointer field in the current VMCS). These checks are performed
after checking the executive-VMCS pointer field itself (for proper alignment).

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see
Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the
current VMCS after the SMM VM exit that activates the dual-monitor treatment.
Vol. 3C 33-31

SYSTEM MANAGEMENT MODE
Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution
control is 0, the “save VMX-preemption timer value” VM-exit control is also 0. This
check is not performed by VM entries that return from SMM.

33.15.4.3 Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-entry control fields specified in Section 26.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the
VM entry remains in VMX root operation), the following must not all hold for the
VM-entry interruption-information field:
• the valid bit (bit 31) in the VM-entry interruption-information field is 1
• the interruption type (bits 10:8) is not 7 (other event); and
• the vector (bits 7:0) is not 0 (pending MTF VM exit).

33.15.4.4 Checks on the Guest State Area
Section 26.3.1 specifies checks performed on fields in the guest-state area of the
VMCS. Some of these checks are conditioned on the settings of certain VM-execution
controls (e.g., “virtual NMIs” or “unrestricted guest”). VM entries that return from
SMM modify these checks based on whether the executive-VMCS pointer field
contains the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the checks are performed as all relevant VM-
execution controls were 0. (As a result, some checks may not be performed at
all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), this check is performed based on the
settings of the VM-execution controls in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer
(the VM entry is to VMX root operation).

33.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings
associated with all VPIDs. Combined mappings are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP; see Section 28.3). (Ordinary VM entries

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the
current VMCS after the SMM VM exit that activates the dual-monitor treatment.
33-32 Vol. 3C

SYSTEM MANAGEMENT MODE
are required to perform such invalidation only for VPID 0000H and are not required
to do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

33.15.4.6 VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the
executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation) and the “activate VMX-preemption timer” VM-execu-
tion control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS
pointer field). In this case, VM entry starts the VMX-preemption timer with the value
in the VMX-preemption timer-value field in the current VMCS.

33.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer
with the current-VMCS pointer. Following this, they load the current-VMCS pointer
from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry

remains in VMX root operation), the current-VMCS pointer is loaded from the
VMCS-link pointer field.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution
controls in effect after the VM entry are those from the new current VMCS. This
includes any structures external to the VMCS referenced by VM-execution control
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is
determined, however, by the VM-entry control fields in the VMCS that was current
when the VM entry commenced.

33.15.4.8 VM Exits Induced by VM Entry
Section 26.5.1.2 describes how the event-delivery process invoked by event injec-
tion may lead to a VM exit. Section 26.6.3 to Section 26.6.7 describe other situations
that may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS
that is current after the VM entry. This is the VMCS referenced by the value of the
executive-VMCS pointer field at the time of the VM entry (see Section 33.15.4.7).
Vol. 3C 33-33

SYSTEM MANAGEMENT MODE
This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the STM.

33.15.4.9 SMI Blocking
VM entries that return from SMM determine the blocking of system-management
interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are

blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of

SMIs depends on whether the logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow the STM to invoke func-
tionality outside of SMM without unblocking SMIs.

33.15.4.10 Failures of VM Entries That Return from SMM
Section 26.7 describes the treatment of VM entries that fail during or after loading
guest state. Such failures record information in the VM-exit information fields and
load processor state as would be done on a VM exit. The VMCS used is the one that
was current before the VM entry commenced. Control is thus transferred to the STM
and the logical processor remains in SMM.

33.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM
called the monitor segment (MSEG). Code running in SMM determines the location
of MSEG and establishes its content. This code is also responsible for enabling the
dual-monitor treatment.

SMM code enables the dual-monitor treatment and determines the location of MSEG
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following
format:

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
33-34 Vol. 3C

SYSTEM MANAGEMENT MODE
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this
bit is 1. Because VMCALL is used to activate the dual-monitor treatment (see
Section 33.15.6), the dual-monitor treatment cannot be activated if the bit is 0.
This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default

treatment of SMIs and SMM. Executions of VMXOFF unblock SMIs unless bit 2 is
1 (the value of bit 0 is irrelevant). See Section 33.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 5,
“Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2C)

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address

of MSEG (the MSEG base address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support

the dual-monitor treatment.1 On other processors, accesses to the MSR using
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is
made to set any reserved bit. An attempt to write to IA32_SMM_MONITOR_CTL
MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

• Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time
RDMSR is allowed. The MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The
format of the MSEG header is given in Table 33-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to deter-
mine whether the dual-monitor treatment is supported.

Table 33-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit
Vol. 3C 33-35

SYSTEM MANAGEMENT MODE
To ensure proper behavior in VMX operation, software should maintain the MSEG
header in writeback cacheable memory. Future implementations may allow or
require a different memory type.1 Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG
header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use

different MSEG revision identifiers. These identifiers enable software to avoid
using an MSEG header formatted for one processor on a processor that uses a
different format. Software can discover the MSEG revision identifier that a
processor uses by reading the VMX capability MSR IA32_VMX_MISC (see
Appendix A.6).

• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this
field are reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM
feature bit. It indicates whether the logical processor will be in IA-32e mode
after the STM is activated (see Section 33.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the
STM is activated (see Section 33.15.6.4). SMM code should establish these fields
so that activating of the STM invokes the STM’s initialization code.

33.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section
33.15.5. The dual-monitor treatment is activated only if it is enabled and only by the

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary
as it will cause the performance of transitions using those structures to suffer significantly. In
addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix A.1.

Table 33-10. Format of MSEG Header (Contd.)

Byte Offset Field
33-36 Vol. 3C

SYSTEM MANAGEMENT MODE
executive monitor. The executive monitor activates the dual-monitor treatment by
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit.
Differences between this SMM VM exit and other SMM VM exits are discussed in
Sections 33.15.6.1 through 33.15.6.5. See also “VMCALL—Call to VM Monitor” in
Chapter 29 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C.

33.15.6.1 Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the
processor supports the dual-monitor treatment;1 (2) the logical processor is in VMX
root operation; (3) the logical processor is outside SMM and the valid bit is set in the
IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS
established by the executive monitor. The VMCALL performs the following checks on
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may
consult the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the
proper settings (see Appendix A.4).

— The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

• The lower 4 bits of the VM-exit MSR-store address must be 0. The address
should not set any bits beyond the processor’s physical-address width.2

• The address of the last byte in the VM-exit MSR-store area should not set
any bits beyond the processor’s physical-address width. The address of
this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The
arithmetic used for the computation uses more bits than the processor’s
physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in
the range 63:32; see Appendix A.1.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to deter-
mine whether the dual-monitor treatment is supported.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3C 33-37

SYSTEM MANAGEMENT MODE
If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR
to determine the base address of MSEG. The following checks are performed in the
order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them
to the processor’s MSEG revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether
the logical processor will be in IA-32e mode after the SMM-transfer monitor
(STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64
architecture, the IA-32e mode SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

33.15.6.2 MSEG Checking
SMM VM exits that activate the dual-monitor treatment check the following before
updating the current-VMCS pointer and the executive-VMCS pointer field (see
Section 33.15.2.2):
• The 32 bits at the MSEG base address (used as a physical address) must contain

the processor’s MSEG revision identifier.
• Bits 31:1 of the SMM-transfer monitor features field in the MSEG header (see

Table 33-10) must be 0. Bit 0 of the field (the IA-32e mode SMM feature bit)
must be 0 if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

33.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 33.15.2.2, SMM VM exits that activate the
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the
value of the current-VMCS pointer.

33.15.6.4 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor
treatment was established by the executive monitor. It does not contain the VM-exit
controls and host state required to initialize the STM. For this reason, such SMM
VM exits do not load processor state as described in Section 27.5. Instead, state is
33-38 Vol. 3C

SYSTEM MANAGEMENT MODE
set to fixed values or loaded based on the content of the MSEG header (see
Table 33-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the
high 16 bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H,
CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the
result is 0000H (if the CS selector was 0xFFF8), these selectors are instead
set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code
segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed,
expand-up data segment).
Vol. 3C 33-39

SYSTEM MANAGEMENT MODE
• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the
value of the IA-32e mode SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM
feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is

otherwise undefined (although the base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset

field in the MSEG header (bits 63:32 are always cleared on processors that
supports IA-32e mode). GDTR.limit is set to the corresponding field in the MSEG
header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset

field in the MSEG header (bits 63:32 are always cleared on logical processors
that support IA-32e mode).

• RSP is set to the sum of the MSEG base address and the value of the RSP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processor that
supports IA-32e mode).

• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that

LME and LMA both contain the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, the logical processor does not use translations that
were cached before the transition. This is not necessary for changes that would not
affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).
33-40 Vol. 3C

SYSTEM MANAGEMENT MODE
33.15.6.5 Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.

33.15.7 Deactivating the Dual-Monitor Treatment
The SMM-transfer monitor may deactivate the dual-monitor treatment and return
the processor to default treatment of SMIs and SMM (see Section 33.14). It does this
by executing a VM entry with the “deactivate dual-monitor treatment” VM-entry
control set to 1.

As noted in Section 26.2.1.3 and Section 33.15.4.1, an attempt to deactivate the
dual-monitor treatment fails in the following situations: (1) the processor is not in
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 33.15.4.9, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area.
Instead, the blocking of SMIs following such a VM entry depends on whether the
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry.
SMIs may later be unblocked by the VMXOFF instruction (see Section 33.14.4) or
by certain leaf functions of the GETSEC instruction (see Chapter 5, “Safer Mode
Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2C).

• If the logical processor is outside SMX operation, SMIs are unblocked after
VM entry.

33.16 SMI AND PROCESSOR EXTENDED STATE
MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see
Chapter 13, “System Programming for Instruction Set Extensions and Processor
Extended States”), the processor does not save any XSAVE/XRSTOR related state on
an SMI. It is the responsibility of the SMM handler code to properly preserve the state
information (including CR4.OSXSAVE, XCR0, and possibly processor extended states

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
Vol. 3C 33-41

SYSTEM MANAGEMENT MODE
using XSAVE/XRSTOR). Therefore, the SMM handler must follow the rules described
in Chapter 13.
33-42 Vol. 3C

CHAPTER 34
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in Tables 34-14, 34-19, and 34-20,
respectively. All MSRs listed can be read with the RDMSR and written with the
WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is
the mnemonic register name and the bit description describes individual bits in
registers.

Model specific registers and its bit-fields may be supported for a finite range of
processor families/models. To distinguish between different processor family and/or
models, software must use CPUID.01H leaf function to query the combination of
DisplayFamily and DisplayModel to determine model-specific availability of MSRs
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A). Table 34-1 lists
the signature values of DisplayFamily and DisplayModel for various processor fami-
lies or processor number series.

Table 34-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_3AH Third Generation Intel Core processor family based on Intel
microarchitecture Ivy Bridge

06_2DH Intel Xeon processor E5 family

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5,
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2
Quad processors 8000, 9000 series
Vol. 3C 34-1

MODEL-SPECIFIC REGISTERS (MSRS)
34.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next
and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not
change on future processor generations, are now considered architectural MSRs. For
historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 34-2 lists the architectural MSRs, their
addresses, their current names, their names in previous IA-32 processors, and bit
fields that are considered architectural. MSR addresses outside Table 34-2 and
certain bitfields in an MSR address that may overlap with architectural MSR
addresses are model-specific. Code that accesses a machine specified MSR and that
is executed on a processor that does not support that MSR will generate an excep-
tion.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors,
Intel Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP,
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4,
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX
Technology

Table 34-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
34-2 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
Architectural MSR or individual bit fields in an architectural MSR may be introduced or
transitioned at the granularity of certain processor family/model or the presence of
certain CPUID feature flags. The right-most column of Table 34-2 provides informa-
tion on the introduction of each architectural MSR or its individual fields. This infor-
mation is expressed either as signature values of “DF_DM“ (see Table 34-1) or via
CPUID flags.

Certain bit field position may be related to the maximum physical address width, the
value of which is expressed as “MAXPHYWID“ in Table 34-2. “MAXPHYWID“ is reported by
CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially
reserved range. All existing and future processors will not implement any features
using any MSR in this range.

Table 34-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal

0H 0 IA32_P5_MC_ADDR
(P5_MC_ADDR)

See Section 34.13, “MSRs in
Pentium Processors.”

Pentium
Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE
(P5_MC_TYPE)

See Section 34.13, “MSRs in
Pentium Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_S
IZE

See Section 8.10.5,
“Monitor/Mwait Address
Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.12, “Time-
Stamp Counter.”

05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID. (RO)
The operating system can use
this MSR to determine “slot”
information for the processor
and the proper microcode
update to load.

06_01H

49:0 Reserved.
Vol. 3C 34-3

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 Platform Id. (RO)

Contains information
concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE
(APIC_BASE)

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64
Processor. (R/W)

If CPUID.01H:
ECX[bit 5 or bit 6]
= 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-4 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Lock bit (R/WO): (1 = locked).
When set, locks this MSR from
being written, writes to this
bit will result in GP(0).

Note: Once the Lock bit is set,
the contents of this register
cannot be modified.
Therefore the lock bit must
be set after configuring
support

for Intel Virtualization
Technology and prior to
transferring control to an
option ROM or the OS. Hence,
once the Lock bit is set, the
entire

IA32_FEATURE_CONTROL_M
SR contents are preserved
across RESET when
PWRGOOD is not deasserted.

If
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

1 Enable VMX inside SMX
operation (R/WL): This bit
enables a system executive
to use VMX in conjunction
with SMX to support Intel®
Trusted Execution
Technology.

BIOS must set this bit only
when the CPUID function 1
returns VMX feature flag and
SMX feature flag set (ECX bits
5 and 6 respectively).

If
CPUID.01H:ECX[bi
t 5 and bit 6] are
set to 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-5

MODEL-SPECIFIC REGISTERS (MSRS)
2 Enable VMX outside SMX
operation (R/WL): This bit
enables VMX for system
executive that do not require
SMX.

BIOS must set this bit only
when the CPUID function 1
returns VMX feature flag set
(ECX bit 5).

If
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function
Enables (R/WL): When set,
each bit in the field
represents an enable control
for a corresponding SENTER
function. This bit is supported
only if CPUID.1:ECX.[bit 6] is
set

If
CPUID.01H:ECX[bi
t 6] = 1

15 SENTER Global Enable (R/WL):
This bit must be set to enable
SENTER leaf functions. This
bit is supported only if
CPUID.1:ECX.[bit 6] is set

If
CPUID.01H:ECX[bi
t 6] = 1

63:16 Reserved

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR
instruction to this MSR causes
a microcode update to be
loaded into the processor. See
Section 9.11.6, “Microcode
Update Loader.”

A processor may prevent
writing to this MSR when
loading guest states on VM
entries or saving guest states
on VM exits.

06_01H

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-6 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR
_D3)

BIOS Update Signature (RO)

Returns the microcode update
signature following the
execution of CPUID.01H.

A processor may prevent
writing to this MSR when
loading guest states on VM
entries or saving guest states
on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this
field be pre-loaded with 0
prior to executing CPUID.

If the field remains 0
following the execution of
CPUID; this indicates that no
microcode update is loaded.
Any non-zero value is the
microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration
(R/W)

If CPUID.01H:
ECX[bit 5 or bit 6]
= 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by
VMXOFF (see Section
33.14.4)

If
IA32_VMX_MISC[
bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter
0 (R/W)

If CPUID.0AH:
EAX[15:8] > 0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter
1 (R/W)

If CPUID.0AH:
EAX[15:8] > 1

C3H 195 IA32_PMC2 General Performance Counter
2 (R/W)

If CPUID.0AH:
EAX[15:8] > 2

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-7

MODEL-SPECIFIC REGISTERS (MSRS)
C4H 196 IA32_PMC3 General Performance Counter
3 (R/W)

If CPUID.0AH:
EAX[15:8] > 3

C5H 197 IA32_PMC4 General Performance Counter
4 (R/W)

If CPUID.0AH:
EAX[15:8] > 4

C6H 198 IA32_PMC5 General Performance Counter
5 (R/W)

If CPUID.0AH:
EAX[15:8] > 5

C7H 199 IA32_PMC6 General Performance Counter
6 (R/W)

If CPUID.0AH:
EAX[15:8] > 6

C8H 200 IA32_PMC7 General Performance Counter
7 (R/W)

If CPUID.0AH:
EAX[15:8] > 7

E7H 231 IA32_MPERF Maximum Qualified
Performance Clock Counter
(R/Write to clear)

If CPUID.06H:
ECX[0] = 1

63:0 C0_MCNT: C0 Maximum
Frequency Clock Count.

Increments at fixed interval
(relative to TSC freq.) when
the logical processor is in C0.

Cleared upon overflow /
wrap-around of IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock
Counter (R/Write to clear)

If CPUID.06H:
ECX[0] = 1

63:0 C0_ACNT: C0 Actual
Frequency Clock Count.

Accumulates core clock
counts at the coordinated
clock frequency, when the
logical processor is in C0.

Cleared upon overflow /
wrap-around of IA32_MPERF.

FEH 254 IA32_MTRRCAP
(MTRRcap)

MTRR Capability (RO) Section
11.11.2.1,
“IA32_MTRR_DEF_TYPE
MSR.”

06_01H

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-8 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
7:0 VCNT: The number of variable
memory type ranges in the
processor.

8 Fixed range MTRRs are
supported when set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP
(MCG_CAP)

Global Machine Check
Capability (RO)

06_01H

7:0 Count: Number of reporting
banks.

8 MCG_CTL_P: IA32_MCG_CTL
is present if this bit is set

9 MCG_EXT_P: Extended
machine check state registers
are present if this bit is set

10 MCP_CMCI_P: Support for
corrected MC error event is
present.

06_1AH

11 MCG_TES_P: Threshold-based
error status register are
present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of
extended machine check
state registers present.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-9

MODEL-SPECIFIC REGISTERS (MSRS)
24 MCG_SER_P: The processor
supports software error
recovery if this bit is set.

63:25 Reserved.

17AH 378 IA32_MCG_STATUS
(MCG_STATUS)

Global Machine Check Status
(RO)

06_01H

17BH 379 IA32_MCG_CTL
(MCG_CTL)

Global Machine Check Control
(R/W)

06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0
(PERFEVTSEL0)

Performance Event Select
Register 0 (R/W)

If CPUID.0AH:
EAX[15:8] > 0

7:0 Event Select: Selects a
performance event logic unit.

15:8 UMask: Qualifies the
microarchitectural condition
to detect on the selected
event logic.

16 USR: Counts while in privilege
level is not ring 0.

17 OS: Counts while in privilege
level is ring 0.

18 Edge: Enables edge detection
if set.

19 PC: enables pin control.

20 INT: enables interrupt on
counter overflow.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-10 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
21 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

22 EN: enables the
corresponding performance
counter to commence
counting when this bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not
zero, the corresponding
performance counter
increments each cycle if the
event count is greater than or
equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1
(PERFEVTSEL1)

Performance Event Select
Register 1 (R/W)

If CPUID.0AH:
EAX[15:8] > 1

188H 392 IA32_PERFEVTSEL2 Performance Event Select
Register 2 (R/W)

If CPUID.0AH:
EAX[15:8] > 2

189H 393 IA32_PERFEVTSEL3 Performance Event Select
Register 3 (R/W)

If CPUID.0AH:
EAX[15:8] > 3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State
Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-11

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Target performance State
Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages
IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATIO
N

Clock Modulation Control
(R/W)

See Section 14.5.3, “Software
Controlled Clock Modulation.”

0F_0H

0 Extended On-Demand Clock
Modulation Duty Cycle:

If
CPUID.06H:EAX[5]
= 1

3:1 On-Demand Clock Modulation
Duty Cycle: Specific encoded
values for target duty cycle
modulation.

4 On-Demand Clock Modulation
Enable: Set 1 to enable
modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt on
temperature transitions
detected with the processor’s
thermal sensors and thermal
monitor.

See Section 14.5.2, “Thermal
Monitor.”

0F_0H

0 High-Temperature Interrupt
Enable

1 Low-Temperature Interrupt
Enable

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-12 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt
Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt
Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt
Enable

24 Power Limit Notification
Enable

If
CPUID.06H:EAX[4]
= 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information
(RO)

Contains status information
about the processor’s thermal
sensor and automatic thermal
monitoring facilities.

See Section 14.5.2, “Thermal
Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR#
event (RO)

3 PROCHOT # or FORCEPR# log
(R/WC0)

4 Critical Temperature Status
(RO)

5 Critical Temperature Status
log (R/WC0)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-13

MODEL-SPECIFIC REGISTERS (MSRS)
6 Thermal Threshold #1 Status
(RO)

If
CPUID.01H:ECX[8]
= 1

7 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8]
= 1

8 Thermal Threshold #2 Status
(RO)

If
CPUID.01H:ECX[8]
= 1

9 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8]
= 1

10 Power Limitation Status (RO) If
CPUID.06H:EAX[4]
= 1

11 Power Limitation log (R/WC0) If
CPUID.06H:EAX[4]
= 1

15:12 Reserved.

22:16 Digital Readout (RO) If
CPUID.06H:EAX[0]
= 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius
(RO)

If
CPUID.06H:EAX[0]
= 1

31 Reading Valid (RO) If
CPUID.06H:EAX[0]
= 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor
Features. (R/W)

Allows a variety of processor
functions to be enabled and
disabled.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-14 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Fast-Strings Enable.

When set, the fast-strings
feature (for REP MOVS and
REP STORS) is enabled
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control
Circuit Enable. (R/W)

1 = Setting this bit enables
the thermal control
circuit (TCC) portion of
the Intel Thermal
Monitor feature. This
allows the processor to
automatically reduce
power consumption in
response to TCC
activation.

0 = Disabled (default).
Note: In some products
clearing this bit might be
ignored in critical thermal
conditions, and TM1, TM2 and
adaptive thermal throttling
will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring
Available. (R)

1 = Performance monitoring
enabled

0 = Performance monitoring
disabled

0F_0H

10:8 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-15

MODEL-SPECIFIC REGISTERS (MSRS)
11 Branch Trace Storage
Unavailable. (RO)

1 = Processor doesn’t
support branch trace
storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based
Sampling (PEBS)
Unavailable. (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep
Technology Enable. (R/W)

0= Enhanced Intel
SpeedStep Technology
disabled

1 = Enhanced Intel
SpeedStep Technology
enabled

06_0DH

17 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-16 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
18 ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the
MONITOR feature flag is not
set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not
supported.

Software attempts to
execute MONITOR/MWAIT will
cause #UD when this bit is 0.

When this bit is set to 1
(default), MONITOR/MWAIT
are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag
ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0),
the OS must not attempt to
alter this bit. BIOS must leave
it in the default state. Writing
this bit when the SSE3
feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-17

MODEL-SPECIFIC REGISTERS (MSRS)
22 Limit CPUID Maxval. (R/W)

When this bit is set to 1,
CPUID.00H returns a
maximum value in EAX[7:0] of
3.

BIOS should contain a setup
question that allows users to
specify when the installed OS
does not support CPUID
functions greater than 3.

Before setting this bit, BIOS
must execute the CPUID.0H
and examine the maximum
value returned in EAX[7:0]. If
the maximum value is greater
than 3, the bit is supported.

Otherwise, the bit is not
supported. Writing to this bit
when the maximum value is
greater than 3 may generate
a #GP exception.

Setting this bit may cause
unexpected behavior in
software that depends on the
availability of CPUID leaves
greater than 3.

0F_03H

23 xTPR Message Disable.
(R/W)

When set to 1, xTPR
messages are disabled. xTPR
messages are optional
messages that allow the
processor to inform the
chipset of its priority.

if
CPUID.01H:ECX[1
4] = 1

33:24 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-18 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34 XD Bit Disable. (R/W)

When set to 1, the Execute
Disable Bit feature (XD Bit) is
disabled and the XD Bit
extended feature flag will be
clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default), the
Execute Disable Bit feature (if
available) allows the OS to
enable PAE paging and take
advantage of data only pages.

BIOS must not alter the
contents of this bit location, if
XD bit is not supported..
Writing this bit to 1 when the
XD Bit extended feature flag
is set to 0 may generate a
#GP exception.

if
CPUID.80000001
H:EDX[20] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIA
S

Performance Energy Bias Hint
(R/W)

if
CPUID.6H:ECX[3]
= 1

3:0 Power Policy Preference:

0 indicates preference to
highest performance.

15 indicates preference to
maximize energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_S
TATUS

Package Thermal Status
Information (RO)

Contains status information
about the package’s thermal
sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-19

MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log
(R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature
Status (RO)

5 Pkg Critical Temperature
Status log (R/WC0)

6 Pkg Thermal Threshold #1
Status (RO)

7 Pkg Thermal Threshold #1 log
(R/WC0)

8 Pkg Thermal Threshold #2
Status (RO)

9 Pkg Thermal Threshold #1 log
(R/WC0)

10 Pkg Power Limitation Status
(RO)

11 Pkg Power Limitation log
(R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_I
NTERRUPT

Pkg Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt on
temperature transitions
detected with the package’s
thermal sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-20 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg High-Temperature
Interrupt Enable

1 Pkg Low-Temperature
Interrupt Enable

2 Pkg PROCHOT# Interrupt
Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt
Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt
Enable

24 Pkg Power Limit Notification
Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL
(MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource
Control (R/W)

06_0EH

0 LBR: Setting this bit to 1
enables the processor to
record a running trace of the
most recent branches taken
by the processor in the LBR
stack.

06_01H

1 BTF: Setting this bit to 1
enables the processor to
treat EFLAGS.TF as single-
step on branches instead of
single-step on instructions.

06_01H

5:2 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-21

MODEL-SPECIFIC REGISTERS (MSRS)
6 TR: Setting this bit to 1
enables branch trace
messages to be sent.

06_0EH

7 BTS: Setting this bit enables
branch trace messages
(BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are
logged in a BTS buffer in
circular fashion. When this bit
is set, an interrupt is
generated by the BTS facility
when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set,
BTS or BTM is skipped if
CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS
or BTM is skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When
set, the LBR stack is frozen on
a PMI request.

If CPUID.01H:
ECX[15] = 1 and
CPUID.0AH:
EAX[7:0] > 1

12 FREEZE_PERFMON_ON_PMI:
When set, each ENABLE bit of
the global counter control
MSR are frozen (address
3BFH) on a PMI request

If CPUID.01H:
ECX[15] = 1 and
CPUID.0AH:
EAX[7:0] > 1

13 ENABLE_UNCORE_PMI: When
set, enables the logical
processor to receive and
generate PMI on behalf of the
uncore.

06_1AH

14 FREEZE_WHILE_SMM: When
set, freezes perfmon and
trace messages while in SMM.

if
IA32_PERF_CAPA
BILITIES[12] = '1

63:15 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-22 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address.
(Writeable only in SMM)

Base address of SMM memory
range.

06_1AH

7:0 Type. Specifies memory type
of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask.
(Writeable only in SMM)

Range Mask of SMM memory
range.

06_1AH

10:0 Reserved.

11 Valid.

Enable range mask

31:12 PhysMask.

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CA
P

DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-
Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and
Control register.

06_2EH

0 DCA_ACTIVE: Set by HW
when DCA is fuse-enabled
and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-23

MODEL-SPECIFIC REGISTERS (MSRS)
16:13 DCA_DELAY: Writes will
update the register but have
no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request
DCA block by setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is
blocked by HW (e.g. CR0.CD =
1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3,
“Variable Range MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if
IA32_MTRR_CAP[
7:0] > 8

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-24 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if
IA32_MTRR_CAP[
7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if
IA32_MTRR_CAP[
7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if
IA32_MTRR_CAP[
7:0] > 9

250H 592 IA32_MTRR_FIX64K_000
00

MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_800
00

MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A00
00

MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C000
0 (MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed
Range MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C800
0

MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D000
0

MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D800
0

MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E000
0

MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E800
0

MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F000
0

MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F800
0

MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-25

MODEL-SPECIFIC REGISTERS (MSRS)
10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count
threshold

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-26 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
286H 646 IA32_MC6_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-27

MODEL-SPECIFIC REGISTERS (MSRS)
9:3 Reserved

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance
Counter 0 (R/W): Counts
Instr_Retired.Any

If CPUID.0AH:
EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance
Counter 1 0 (R/W): Counts
CPU_CLK_Unhalted.Core

If CPUID.0AH:
EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance
Counter 0 0 (R/W): Counts
CPU_CLK_Unhalted.Ref

If CPUID.0AH:
EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H:
ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is
supported

13 1: Full width of counter
writable via IA32_A_PMCx

63:14 Reserved

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_C
TRL)

Fixed-Function Performance
Counter Control (R/W)

Counter increments while the
results of ANDing respective
enable bit in
IA32_PERF_GLOBAL_CTRL
with the corresponding OS or
USR bits in this MSR is true.

If CPUID.0AH:
EAX[7:0] > 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-28 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 EN0_OS: Enable Fixed
Counter 0 to count while CPL
= 0

1 EN0_Usr: Enable Fixed
Counter 0 to count while CPL
> 0

2 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when
fixed counter 0 overflows

4 EN1_OS: Enable Fixed
Counter 1to count while CPL
= 0

5 EN1_Usr: Enable Fixed
Counter 1to count while CPL
> 0

6 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when
fixed counter 1 overflows

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-29

MODEL-SPECIFIC REGISTERS (MSRS)
8 EN2_OS: Enable Fixed
Counter 2 to count while CPL
= 0

9 EN2_Usr: Enable Fixed
Counter 2 to count while CPL
> 0

10 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when
fixed counter 2 overflows

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STA
TUS
(MSR_PERF_GLOBAL_STA
TUS)

Global Performance Counter
Status (RO)

If CPUID.0AH:
EAX[7:0] > 0

0 Ovf_PMC0: Overflow status
of IA32_PMC0

If CPUID.0AH:
EAX[7:0] > 0

1 Ovf_PMC1: Overflow status
of IA32_PMC1

If CPUID.0AH:
EAX[7:0] > 0

2 Ovf_PMC2: Overflow status
of IA32_PMC2

06_2EH

3 Ovf_PMC3: Overflow status
of IA32_PMC3

06_2EH

31:4 Reserved

32 Ovf_FixedCtr0: Overflow
status of IA32_FIXED_CTR0

If CPUID.0AH:
EAX[7:0] > 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-30 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
33 Ovf_FixedCtr1: Overflow
status of IA32_FIXED_CTR1

If CPUID.0AH:
EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow
status of IA32_FIXED_CTR2

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Ovf_Uncore: Uncore counter
overflow status

If CPUID.0AH:
EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer
overflow status

If CPUID.0AH:
EAX[7:0] > 0

63 CondChg: status bits of this
register has changed

If CPUID.0AH:
EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTR
L
(MSR_PERF_GLOBAL_CTR
L)

Global Performance Counter
Control (R/W)

Counter increments while the
result of ANDing respective
enable bit in this MSR with
the corresponding OS or USR
bits in the general-purpose or
fixed counter control MSR is
true.

If CPUID.0AH:
EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH:
EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH:
EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH:
EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH:
EAX[7:0] > 1

63:35 Reserved

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-31

MODEL-SPECIFIC REGISTERS (MSRS)
390H 912 IA32_PERF_GLOBAL_OVF
_CTRL
(MSR_PERF_GLOBAL_OVF
_CTRL)

Global Performance Counter
Overflow Control (R/W)

If CPUID.0AH:
EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit If CPUID.0AH:
EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 Set 1 to Clear
Ovf_FIXED_CTR0 bit

If CPUID.0AH:
EAX[7:0] > 1

33 Set 1 to Clear
Ovf_FIXED_CTR1 bit

If CPUID.0AH:
EAX[7:0] > 1

34 Set 1 to Clear
Ovf_FIXED_CTR2 bit

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Set 1 to Clear Ovf_Uncore: bit 06_2EH

62 Set 1 to Clear OvfBuf: bit If CPUID.0AH:
EAX[7:0] > 0

63 Set to 1to clear CondChg: bit If CPUID.0AH:
EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1-3 Reserved or Model specific

31:4 Reserved

35-32 Reserved or Model specific

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family
Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family
Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family
Processors

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-32 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
403H 1027 IA32_MC0_MISC MC0_MISC P6 Family
Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family
Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family
Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family
Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family
Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family
Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family
Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family
Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family
Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family
Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family
Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family
Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family
Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family
Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family
Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family
Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family
Processors

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-33

MODEL-SPECIFIC REGISTERS (MSRS)
414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-34 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-35

MODEL-SPECIFIC REGISTERS (MSRS)
44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic
VMX Capabilities. (R/O)

See Appendix A.1, “Basic VMX
Information.”

If
CPUID.01H:ECX.[bi
t 5] = 1

481H 1153 IA32_VMX_PINBASED_CT
LS

Capability Reporting
Register of Pin-based
VM-execution Controls.
(R/O)

See Appendix A.3.1, “Pin-
Based VM-Execution
Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

482H 1154 IA32_VMX_PROCBASED_
CTLS

Capability Reporting
Register of Primary
Processor-based
VM-execution Controls.
(R/O)

See Appendix A.3.2, “Primary
Processor-Based VM-
Execution Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting
Register of VM-exit
Controls. (R/O)

See Appendix A.4, “VM-Exit
Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-36 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting
Register of VM-entry
Controls. (R/O)

See Appendix A.5, “VM-Entry
Controls.”

If
CPUID.01H:ECX.[bi
t 5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of
Miscellaneous VMX
Capabilities. (R/O)

See Appendix A.6,
“Miscellaneous Data.”

If
CPUID.01H:ECX.[bi
t 5] = 1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting
Register of CR0 Bits Fixed
to 0. (R/O)

See Appendix A.7, “VMX-
Fixed Bits in CR0.”

If
CPUID.01H:ECX.[bi
t 5] = 1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting
Register of CR0 Bits Fixed
to 1. (R/O)

See Appendix A.7, “VMX-
Fixed Bits in CR0.”

If
CPUID.01H:ECX.[bi
t 5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting
Register of CR4 Bits Fixed
to 0. (R/O)

See Appendix A.8, “VMX-
Fixed Bits in CR4.”

If
CPUID.01H:ECX.[bi
t 5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting
Register of CR4 Bits Fixed
to 1. (R/O)

See Appendix A.8, “VMX-
Fixed Bits in CR4.”

If
CPUID.01H:ECX.[bi
t 5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting
Register of VMCS Field
Enumeration. (R/O).

See Appendix A.9, “VMCS
Enumeration.”

If
CPUID.01H:ECX.[bi
t 5] = 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-37

MODEL-SPECIFIC REGISTERS (MSRS)
48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Capability Reporting
Register of Secondary
Processor-based
VM-execution Controls.
(R/O)

See Appendix A.3.3,
“Secondary Processor-Based
VM-Execution Controls.”

If (
CPUID.01H:ECX.[bi
t 5] and
IA32_VMX_PROC
BASED_CTLS[bit 6
3])

48CH 1164 IA32_VMX_EPT_VPID_CA
P

Capability Reporting
Register of EPT and VPID.
(R/O)

See Appendix A.10, “VPID and
EPT Capabilities.”

If (
CPUID.01H:ECX.[bi
t 5],
IA32_VMX_PROC
BASED_CTLS[bit 6
3], and either
IA32_VMX_PROC
BASED_CTLS2[bit
33] or
IA32_VMX_PROC
BASED_CTLS2[bit
37])

48DH 1165 IA32_VMX_TRUE_PINBAS
ED_CTLS

Capability Reporting
Register of Pin-based
VM-execution Flex Controls.
(R/O)

See Appendix A.3.1, “Pin-
Based VM-Execution
Controls.”

If (
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCB
ASED_CTLS

Capability Reporting
Register of Primary
Processor-based
VM-execution Flex Controls.
(R/O)

See Appendix A.3.2, “Primary
Processor-Based VM-
Execution Controls.”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-38 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
48FH 1167 IA32_VMX_TRUE_EXIT_C
TLS

Capability Reporting
Register of VM-exit Flex
Controls. (R/O)

See Appendix A.4, “VM-Exit
Controls.”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY
_CTLS

Capability Reporting
Register of VM-entry Flex
Controls. (R/O)

See Appendix A.5, “VM-Entry
Controls.”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable
IA32_PMC0 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 0) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable
IA32_PMC1 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 1) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable
IA32_PMC2 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 2) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable
IA32_PMC3 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 3) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable
IA32_PMC4 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 4) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable
IA32_PMC5 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 5) &

IA32_PERF_CAPA
BILITIES[13] = 1

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-39

MODEL-SPECIFIC REGISTERS (MSRS)
4C7H 1223 IA32_A_PMC6 Full Width Writable
IA32_PMC6 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 6) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable
IA32_PMC7 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 7) &

IA32_PERF_CAPA
BILITIES[13] = 1

600H 1536 IA32_DS_AREA DS Save Area. (R/W)

Points to the linear address of
the first byte of the DS buffer
management area, which is
used to manage the BTS and
PEBS buffers.

See Section 18.10.4, “Debug
Store (DS) Mechanism.”

0F_0H

63:0 The linear address of the first
byte of the DS buffer
management area, if IA-32e
mode is active.

31:0 The linear address of the first
byte of the DS buffer
management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e
mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s
TSC Deadline Mode. (R/W)

If(
CPUID.01H:ECX.[bi
t 25] = 1

802H 2050 IA32_X2APIC_APICID x2APIC ID Register. (R/O)

See x2APIC Specification

If (
CPUID.01H:ECX.[bi
t 21] = 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-40 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
808H 2056 IA32_X2APIC_TPR x2APIC Task Priority
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register. (W/O) If (
CPUID.01H:ECX.[bi
t 21] = 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt
Vector Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register
Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register
Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register
Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register
Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register
Bits 159:128. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register
Bits 191:160. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register
Bits 223:192. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-41

MODEL-SPECIFIC REGISTERS (MSRS)
817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register
Bits 255:224. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode
Register Bits 159:128 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode
Register Bits 191:160 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode
Register Bits 223:192 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode
Register Bits 255:224 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-42 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request
Register Bits 159:128.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request
Register Bits 191:160.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request
Register Bits 223:192.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request
Register Bits 255:224.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected
Machine Check Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

833H 2099 IA32_X2APIC_LVT_THER
MAL

x2APIC LVT Thermal Sensor
Interrupt Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance
Monitor Interrupt Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-43

MODEL-SPECIFIC REGISTERS (MSRS)
836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

837H 2103 IA32_X2APIC_LVT_ERRO
R

x2APIC LVT Error Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

838H 2104 IA32_X2APIC_INIT_COUN
T

x2APIC Initial Count
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

839H 2105 IA32_X2APIC_CUR_COUN
T

x2APIC Current Count
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register.
(W/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

4000_
0000H
-
4000_
00FFH

Reserved MSR Address
Space

All existing and future
processors will not
implement MSR in this
range.

C000_
0080H

IA32_EFER Extended Feature Enables. If (
CPUID.80000001.
EDX.[bit 20] or
CPUID.80000001.
EDX.[bit29])

0 SYSCALL Enable. (R/W)

Enables SYSCALL/SYSRET
instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W)

Enables IA-32e mode
operation.

9 Reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
34-44 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
10 IA-32e Mode Active. (R)

Indicates IA-32e mode is
active when set.

11 Execute Disable Bit Enable.
(R)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call
Target Address. (R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE
Address of GS. (R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If
CPUID.80000001
H: EDX[27] = 1

31:0 AUX: Auxiliary signature of
TSC

63:32 Reserved.

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are sup-

ported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR
addresses 180H-185H, 188H-197H are reserved.

Table 34-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3C 34-45

MODEL-SPECIFIC REGISTERS (MSRS)
34.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 34-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and
for Intel Xeon processors based on Intel Core microarchitecture, architectural MSR
addresses are also included in Table 34-3. These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_0FH, see Table 34-1.

MSRs listed in Table 34-2 and Table 34-3 are also supported by processors based on
the Enhanced Intel Core microarchitecture. Processors based on the Enhanced Intel
Core microarchitecture have the CPUID signature DisplayFamily_DisplayModel of
06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core
microarchitecture. “Unique” means each processor core has a separate MSR, or a bit
field in an MSR governs only a core independently. “Shared” means the MSR or the
bit field in an MSR address governs the operation of both processor cores.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS.
See Section 15.3.2.3 and Section 15.3.2.4 for more information.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Unique See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Unique See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable 34-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R)
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)

The maximum allowed bus ratio.

49:13 Reserved.
34-46 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 See Table 34-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location.” and Table 34-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-47

MODEL-SPECIFIC REGISTERS (MSRS)
10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID. (R/O)

18 N/2 Non-Integer Bus Ratio. (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

3 Unique SMRR Enable. (R/WL).

When this bit is set and the lock bit is set
makes the SMRR_PHYS_BASE and
SMRR_PHYS_MASK registers read visible and
writeable while in SMM.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-48 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-49

MODEL-SPECIFIC REGISTERS (MSRS)
63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

See Table 34-2.

A0H 160 MSR_SMRR_PHYS
BASE

Unique System Management Mode Base Address
register. (WO in SMM)

Model-specific implementation of SMRR-like
interface, read visible and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYS
MASK

Unique System Management Mode Physical
Address Mask register. (WO in SMM)

Model-specific implementation of SMRR-like
interface, read visible and write only in SMM..

10:0 Reserved.

11 Valid. Physical address base and range mask
are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Unique Performance counter register. See
Table 34-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Intel Core
microarchitecture:

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-50 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 000B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Enhanced
Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-51

MODEL-SPECIFIC REGISTERS (MSRS)
266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 110B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW) see Table 34-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Unique See Table 34-2.

11 Unique SMRR Capability Using MSR 0A0H and
0A1H. (R)

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-52 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_C
S

Unique See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Unique See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Unique See Table 34-2.

179H 377 IA32_MCG_CAP Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted.

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-53

MODEL-SPECIFIC REGISTERS (MSRS)
198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is
cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled.
Applies processors based on Enhanced Intel
Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

See Table 34-2.

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

See Table 34-2.

19DH 413 MSR_THERM2_
CTL

Unique

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-54 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W) See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) See
Table 34-2.

8 Reserved.

9 Hardware Prefetcher Disable. (R/W)

When set, disables the hardware prefetcher
operation on streams of data. When clear
(default), enables the prefetch queue.

Disabling of the hardware prefetcher may
impact processor performance.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-55

MODEL-SPECIFIC REGISTERS (MSRS)
10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Shared Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Shared ENABLE MONITOR FSM. (R/W) See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-56 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
19 Shared Adjacent Cache Line Prefetch Disable.
(R/W)

When set to 1, the processor fetches the
cache line that contains data currently
required by the processor. When set to 0, the
processor fetches cache lines that comprise a
cache line pair (128 bytes).

Single processor platforms should not set this
bit. Server platforms should set or clear this
bit based on platform performance observed
in validation and testing.

BIOS may contain a setup option that controls
the setting of this bit.

20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval. (R/W) See Table 34-2.

23 Shared xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) See Table 34-2.

36:35 Reserved.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-57

MODEL-SPECIFIC REGISTERS (MSRS)
37 Unique DCU Prefetcher Disable. (R/W)

When set to 1, The DCU L1 data cache
prefetcher is disabled. The default value after
reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache
prefetcher. When the DCU prefetcher detects
multiple loads from the same line done within
a time limit, the DCU prefetcher assumes the
next line will be required. The next line is
prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable. (R/W)

When set to 1 on processors that support IDA,
the Intel Dynamic Acceleration feature (IDA) is
disabled and the IDA_Enable feature flag will
be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of IDA is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of IDA. If
power-on default value is 1, IDA is available in
the processor. If power-on default value is 0,
IDA is not available.

39 Unique IP Prefetcher Disable. (R/W)

When set to 1, The IP prefetcher is disabled.
The default value after reset is 0. BIOS may
write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache
prefetcher. The IP prefetcher looks for
sequential load history to determine whether
to prefetch the next expected data into the
L1 cache from memory or L2.

63:40 Reserved.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-58 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table 34-2

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 IA32_MTRR_PHYS
BASE0

Unique See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Unique See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Unique See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Unique See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Unique See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Unique See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Unique See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Unique See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-59

MODEL-SPECIFIC REGISTERS (MSRS)
208H 520 IA32_MTRR_PHYS
BASE4

Unique See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Unique See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Unique See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Unique See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Unique See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Unique See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Unique See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Unique See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Unique See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Unique See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Unique See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Unique See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Unique See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Unique See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Unique See Table 34-2.

26CH 620 IA32_MTRR_FIX4
K_E0000

Unique See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-60 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26DH 621 IA32_MTRR_FIX4
K_E8000

Unique See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Unique See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Unique See Table 34-2.

277H 631 IA32_PAT Unique See Table 34-2.

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W) See
Table 34-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

309H 777 MSR_PERF_FIXED
_CTR0

Unique Fixed-Function Performance Counter
Register 0. (R/W)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30AH 778 MSR_PERF_FIXED
_CTR1

Unique Fixed-Function Performance Counter
Register 1. (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

30BH 779 MSR_PERF_FIXED
_CTR2

Unique Fixed-Function Performance Counter
Register 2. (R/W)

345H 837 IA32_PERF_CAPA
BILITIES

Unique See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPAB
ILITIES

Unique RO. This applies to processors that do not
support architectural perfmon version 2.

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 34-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-61

MODEL-SPECIFIC REGISTERS (MSRS)
38DH 909 MSR_PERF_FIXED
_CTR_CTRL

Unique Fixed-Function-Counter Control Register.
(R/W)

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Unique See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38FH 911 MSR_PERF_
GLOBAL_CTRL

Unique See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique See Table 34-2. See Section 18.4.4, “Precise
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-62 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-63

MODEL-SPECIFIC REGISTERS (MSRS)
412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_
STATUS

Unique Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-64 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

107CC
H

MSR_EMON_L3_C
TR_CTL0

Unique GBUSQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-65

MODEL-SPECIFIC REGISTERS (MSRS)
107CD
H

MSR_EMON_L3_C
TR_CTL1

Unique GBUSQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107CE
H

MSR_EMON_L3_C
TR_CTL2

Unique GSNPQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107CF
H

MSR_EMON_L3_C
TR_CTL3

Unique GSNPQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D0
H

MSR_EMON_L3_C
TR_CTL4

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D1
H

MSR_EMON_L3_C
TR_CTL5

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D2
H

MSR_EMON_L3_C
TR_CTL6

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

107D3
H

MSR_EMON_L3_C
TR_CTL7

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-66 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 34-4 lists model-specific registers (MSRs) for Intel Atom processor family,
architectural MSR addresses are also included in Table 34-4. These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_1CH, see Table 34-1.

The column “Shared/Unique” applies to logical processors sharing the same core in
processors based on the Intel Atom microarchitecture. “Unique” means each logical
processor has a separate MSR, or a bit field in an MSR governs only a logical
processor. “Shared” means the MSR or the bit field in an MSR address governs the
operation of both logical processors in the same core.

107D8
H

MSR_EMON_L3
_GL_CTL

Unique L3/FSB Common Control Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

Table 34-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-67

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-4. MSRs in Intel Atom Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Shared See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Shared See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable 34-2

10H 16 IA32_TIME_
STAMP_COUNTER

Shared See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R)
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location,” and Table 34-2.

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Always 0.
34-68 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
4 BERR# Enable for initiator bus requests.
(R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio. (R/O)

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-69

MODEL-SPECIFIC REGISTERS (MSRS)
3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of eight pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last eight
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_F
ROM_IP

Unique Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_F
ROM_IP

Unique Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_F
ROM_IP

Unique Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_F
ROM_IP

Unique Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-70 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of eight pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
eight branches, exceptions, or interrupts
taken by the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

64H 100 MSR_
LASTBRANCH_4_
TO_LIP

Unique Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

65H 101 MSR_
LASTBRANCH_5_
TO_LIP

Unique Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

66H 102 MSR_
LASTBRANCH_6_
TO_LIP

Unique Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

67H 103 MSR_
LASTBRANCH_7_
TO_LIP

Unique Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Unique Performance counter register. See
Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-71

MODEL-SPECIFIC REGISTERS (MSRS)
C2H 194 IA32_PMC1 Unique Performance counter register. See
Table 34-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Intel
Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register. (R) See
Table 34-2.

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-72 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Unique See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-73

MODEL-SPECIFIC REGISTERS (MSRS)
187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

See Table 34-2.

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

See Table 34-2.

19DH 413 MSR_THERM2_
CTL

Shared

15:0 Reserved.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-74 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_
ENABLE

Unique Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W) See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) See
Table 34-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Shared Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-75

MODEL-SPECIFIC REGISTERS (MSRS)
13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Shared ENABLE MONITOR FSM. (R/W) See Table 34-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-76 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
22 Unique Limit CPUID Maxval. (R/W) See Table 34-2.

23 Shared xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) See Table 34-2.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-2) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) See Table 34-2.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 IA32_MTRR_PHYS
BASE0

Shared See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Shared See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Shared See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Shared See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Shared See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Shared See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-77

MODEL-SPECIFIC REGISTERS (MSRS)
206H 518 IA32_MTRR_PHYS
BASE3

Shared See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Shared See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Shared See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Shared See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Shared See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Shared See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Shared See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Shared See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Shared See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Shared See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Shared See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Shared See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Shared See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Shared See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Shared See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Shared See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Shared See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-78 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26CH 620 IA32_MTRR_FIX4
K_E0000

Shared See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Shared See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Shared See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Shared See Table 34-2.

277H 631 IA32_PAT Unique See Table 34-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Shared See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique See Table 34-2. See Section 18.4.4, “Precise
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-79

MODEL-SPECIFIC REGISTERS (MSRS)
402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-80 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-81

MODEL-SPECIFIC REGISTERS (MSRS)
488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

Table 34-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-82 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE
NAME NEHALEM

Table 34-5 lists model-specific registers (MSRs) that are common for Intel® microar-
chitecture code name Nehalem. These include Intel Core i7 and i5 processor family.
Architectural MSR addresses are also included in Table 34-5. These processors have
a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH,
06_2EH, see Table 34-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are
listed in Table 34-6. Some MSRs listed in these tables are used by BIOS. More infor-
mation about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field
of an MSR. “Thread” means this bit field must be programmed on each logical
processor independently. “Core” means the bit field must be programmed on each
processor core independently, logical processors in the same core will be affected by
change of this bit on the other logical processor in the same core. “Package“ means
the bit field must be programmed once for each physical package. Change of a bit
filed with a package scope will affect all logical processors in that physical package.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address
Range Determination,” and Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R)
See Table 34-2.

17H 23 MSR_PLATFORM_I
D

Package Model Specific Platform ID. (R)

49:0 Reserved.

52:50 See Table 34-2.

63:53 Reserved.
Vol. 3C 34-83

MODEL-SPECIFIC REGISTERS (MSRS)
1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and
Location,” and Table 34-2.

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O)

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Thread Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Thread Performance counter register. See
Table 34-2.

C3H 195 IA32_PMC2 Thread Performance counter register. See
Table 34-2.

C4H 196 IA32_PMC3 Thread Performance counter register. See
Table 34-2.

CEH 206 MSR_PLATFORM_I
NFO

Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. The invariant TSC frequency can
be computed by multiplying this ratio by
133.33 MHz.

27:16 Reserved.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-84 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo
Mode. (R/O)

When set to 1, indicates that TDC/TDP Limits
for Turbo mode are programmable, and when
set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States. See http://biosbits.org.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-85

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions.

14:11 Reserved.

15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset.

23:16 Reserved.

24 Interrupt filtering enable. (R/W)

When set, processor cores in a deep C-State
will wake only when the event message is
destined for that core. When 0, all processor
cores in a deep C-State will wake for an event
message.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-86 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information.

26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-87

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_C
S

Thread See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Thread See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Thread See Table 34-2.

179H 377 IA32_MCG_CAP Thread See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted.

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-88 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
188H 392 IA32_
PERFEVTSEL2

Thread See Table 34-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 34-2.

198H 408 IA32_PERF_STAT
US

Core See Table 34-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W)

See Table 34-2.

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W).

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W)

See Table 34-2.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Thread Fast-Strings Enable. See Table 34-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable.
(R/W) See Table 34-2.

6:4 Reserved.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-89

MODEL-SPECIFIC REGISTERS (MSRS)
7 Thread Performance Monitoring Available. (R) See
Table 34-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Thread Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 34-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) See Table 34-2.

23 Thread xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) See Table 34-2.

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel
Turbo Boost Technology, the turbo mode
feature is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of turbo
mode. If power-on default value is 1, turbo
mode is available in the processor. If power-on
default value is 0, turbo mode is not available.

63:39 Reserved.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-90 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1A2H 418 MSR_
TEMPERATURE_TA
RGET

Thread

15:0 Reserved.

23:16 Temperature Target. (R)

The minimum temperature at which
PROCHOT# will be asserted. The value is
degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W).

When 0, enables hardware coordination of
EIST request from processor cores; When 1,
disables hardware coordination of EIST
requests.

1 Thread Energy/Performance Bias Enable. (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS
register (MSR 1B0h) visible to software with
Ring 0 privileges. This bit’s status (1 or 0) is
also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ADH 428 MSR_TURBO_POW
ER_CURRENT_LIMI
T

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-91

MODEL-SPECIFIC REGISTERS (MSRS)
30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register
(R/W) see Section 17.6.2, “Filtering of Last
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-92 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1DDH 477 MSR_LER_FROM_
LIP

Thread Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1F2H 498 IA32_SMRR_PHYS
BASE

Core See Table 34-2.

1F3H 499 IA32_SMRR_PHYS
MASK

Core See Table 34-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See
http://biosbits.org.

0 Reserved.

1 Package C1E Enable. (R/W)

When set to ‘1’, will enable the CPU to switch
to the Minimum Enhanced Intel SpeedStep
Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYS
BASE0

Thread See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Thread See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Thread See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-93

MODEL-SPECIFIC REGISTERS (MSRS)
204H 516 IA32_MTRR_PHYS
BASE2

Thread See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Thread See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Thread See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Thread See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Thread See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Thread See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Thread See Table 34-2.

20BH 523 IA32_MTRR_PHYS
MASK5

Thread See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Thread See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Thread See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Thread See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Thread See Table 34-2.

210H 528 IA32_MTRR_PHYS
BASE8

Thread See Table 34-2.

211H 529 IA32_MTRR_PHYS
MASK8

Thread See Table 34-2.

212H 530 IA32_MTRR_PHYS
BASE9

Thread See Table 34-2.

213H 531 IA32_MTRR_PHYS
MASK9

Thread See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-94 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 IA32_MTRR_FIX6
4K_00000

Thread See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Thread See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Thread See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Thread See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread See Table 34-2.

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread See Table 34-2.

277H 631 IA32_PAT Thread See Table 34-2.

280H 640 IA32_MC0_CTL2 Package See Table 34-2.

281H 641 IA32_MC1_CTL2 Package See Table 34-2.

282H 642 IA32_MC2_CTL2 Core See Table 34-2.

283H 643 IA32_MC3_CTL2 Core See Table 34-2.

284H 644 IA32_MC4_CTL2 Core See Table 34-2.

285H 645 IA32_MC5_CTL2 Core See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-95

MODEL-SPECIFIC REGISTERS (MSRS)
288H 648 IA32_MC8_CTL2 Package See Table 34-2.

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) See
Table 34-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Thread See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 34-2.

11:8 PEBS_REC_FORMAT. See Table 34-2.

12 SMM_FREEZE. See Table 34-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Thread (RO)

61 UNC_Ovf. Uncore overflowed if 1.

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-96 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf. Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_
ENABLE

Thread See Section 18.6.1.1, “Precise Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_
LD_LAT

Thread See Section 18.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-97

MODEL-SPECIFIC REGISTERS (MSRS)
3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-98 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
401H 1025 IA32_MC0_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-99

MODEL-SPECIFIC REGISTERS (MSRS)
40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-100 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-101

MODEL-SPECIFIC REGISTERS (MSRS)
485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-102 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last sixteen
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-103

MODEL-SPECIFIC REGISTERS (MSRS)
689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
sixteen branches, exceptions, or interrupts
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-104 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-105

MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

802H 2050 IA32_X2APIC_API
CID

Thread x2APIC ID register (R/O) See x2APIC
Specification.

803H 2051 IA32_X2APIC_VER
SION

Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIV
R

Thread x2APIC Spurious Interrupt Vector register
(R/W)

810H 2064 IA32_X2APIC_ISR
0

Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR
1

Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR
2

Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR
3

Thread x2APIC In-Service register bits [127:96] (R/O)

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-106 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
814H 2068 IA32_X2APIC_ISR
4

Thread x2APIC In-Service register bits [159:128]
(R/O)

815H 2069 IA32_X2APIC_ISR
5

Thread x2APIC In-Service register bits [191:160]
(R/O)

816H 2070 IA32_X2APIC_ISR
6

Thread x2APIC In-Service register bits [223:192]
(R/O)

817H 2071 IA32_X2APIC_ISR
7

Thread x2APIC In-Service register bits [255:224]
(R/O)

818H 2072 IA32_X2APIC_TM
R0

Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TM
R1

Thread x2APIC Trigger Mode register bits [63:32]
(R/O)

81AH 2074 IA32_X2APIC_TM
R2

Thread x2APIC Trigger Mode register bits [95:64]
(R/O)

81BH 2075 IA32_X2APIC_TM
R3

Thread x2APIC Trigger Mode register bits [127:96]
(R/O)

81CH 2076 IA32_X2APIC_TM
R4

Thread x2APIC Trigger Mode register bits [159:128]
(R/O)

81DH 2077 IA32_X2APIC_TM
R5

Thread x2APIC Trigger Mode register bits [191:160]
(R/O)

81EH 2078 IA32_X2APIC_TM
R6

Thread x2APIC Trigger Mode register bits [223:192]
(R/O)

81FH 2079 IA32_X2APIC_TM
R7

Thread x2APIC Trigger Mode register bits [255:224]
(R/O)

820H 2080 IA32_X2APIC_IRR
0

Thread x2APIC Interrupt Request register bits [31:0]
(R/O)

821H 2081 IA32_X2APIC_IRR
1

Thread x2APIC Interrupt Request register bits [63:32]
(R/O)

822H 2082 IA32_X2APIC_IRR
2

Thread x2APIC Interrupt Request register bits [95:64]
(R/O)

823H 2083 IA32_X2APIC_IRR
3

Thread x2APIC Interrupt Request register bits
[127:96] (R/O)

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-107

MODEL-SPECIFIC REGISTERS (MSRS)
824H 2084 IA32_X2APIC_IRR
4

Thread x2APIC Interrupt Request register bits
[159:128] (R/O)

825H 2085 IA32_X2APIC_IRR
5

Thread x2APIC Interrupt Request register bits
[191:160] (R/O)

826H 2086 IA32_X2APIC_IRR
6

Thread x2APIC Interrupt Request register bits
[223:192] (R/O)

827H 2087 IA32_X2APIC_IRR
7

Thread x2APIC Interrupt Request register bits
[255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT
_CMCI

Thread x2APIC LVT Corrected Machine Check
Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT
_TIMER

Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT
_THERMAL

Thread x2APIC LVT Thermal Sensor Interrupt register
(R/W)

834H 2100 IA32_X2APIC_LVT
_PMI

Thread x2APIC LVT Performance Monitor register
(R/W)

835H 2101 IA32_X2APIC_LVT
_LINT0

Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT
_LINT1

Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT
_ERROR

Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT
_COUNT

Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR
_COUNT

Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV
_CONF

Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SEL
F_IPI

Thread x2APIC Self IPI register (W/O)

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-108 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and
3400 Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific regis-
ters listed in Table 34-6. These MSRs also apply to Intel Core i7 and i5 processor
family CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH and
06_1FH, see Table 34-1.

C000_
0080H

IA32_EFER Thread Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). See
Table 34-2 and Section 17.12.2,
“IA32_TSC_AUX Register and RDTSCP
Support.”

Table 34-5. MSRs in Processors Based on Intel Microarchitecture Code Name
Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-109

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Actual maximum turbo frequency is multiplied
by 133.33MHz. (not available to model
06_2EH)

7:0 Maximum Turbo Ratio Limit 1C. (R/O)

maximum Turbo mode ratio limit with 1 core
active.

15:8 Maximum Turbo Ratio Limit 2C. (R/O)

maximum Turbo mode ratio limit with 2cores
active.

23:16 Maximum Turbo Ratio Limit 3C. (R/O)

maximum Turbo mode ratio limit with 3cores
active.

31:24 Maximum Turbo Ratio Limit 4C. (R/O)

maximum Turbo mode ratio limit with 4 cores
active.

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_
MESF

Package

0 From M to S (R/W).

1 From E to S (R/W).

2 From S to S (R/W).

3 From F to S (R/W).

4 From M to I (R/W).

5 From E to I (R/W).

6 From S to I (R/W).

7 From F to I (R/W).

63:8 Reserved.

391H 913 MSR_UNCORE_PE
RF_GLOBAL_CTRL

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PE
RF_GLOBAL_STAT
US

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”
34-110 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
393H 915 MSR_UNCORE_PE
RF_GLOBAL_OVF_
CTRL

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIX
ED_CTR0

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIX
ED_CTR_CTRL

Package See Section 18.6.2.1, “Uncore Performance
Monitoring Management Facility.”

396H 918 MSR_UNCORE_AD
DR_OPCODE_MAT
CH

Package See Section 18.6.2.3, “Uncore Address/Opcode
Match MSR.”

3B0H 960 MSR_UNCORE_PM
C0

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B1H 961 MSR_UNCORE_PM
C1

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B2H 962 MSR_UNCORE_PM
C2

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B3H 963 MSR_UNCORE_PM
C3

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B4H 964 MSR_UNCORE_PM
C4

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B6H 966 MSR_UNCORE_PM
C6

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B7H 967 MSR_UNCORE_PM
C7

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C0H 944 MSR_UNCORE_PE
RFEVTSEL0

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C1H 945 MSR_UNCORE_PE
RFEVTSEL1

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C2H 946 MSR_UNCORE_PE
RFEVTSEL2

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C3H 947 MSR_UNCORE_PE
RFEVTSEL3

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-111

MODEL-SPECIFIC REGISTERS (MSRS)
34.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 34-5 (except MSR
address 1ADH) and additional model-specific registers listed in Table 34-7.

3C4H 948 MSR_UNCORE_PE
RFEVTSEL4

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C5H 949 MSR_UNCORE_PE
RFEVTSEL5

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C6H 950 MSR_UNCORE_PE
RFEVTSEL6

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C7H 951 MSR_UNCORE_PE
RFEVTSEL7

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved.

Attempt to read/write will cause #UD

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.

292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

294H 660 IA32_MC20_CTL2 Package See Table 34-2.

Table 34-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-112 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
295H 661 IA32_MC21_CTL2 Package See Table 34-2.

394H 816 MSR_W_PMON_FI
XED_CTR

Package Uncore W-box perfmon fixed counter

395H 817 MSR_W_PMON_FI
XED_CTR_CTL

Package Uncore U-box perfmon fixed counter control
MSR

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-113

MODEL-SPECIFIC REGISTERS (MSRS)
439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-114 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
451H 1105 MSR_MC20_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GL
OBAL_CTRL

Package Uncore U-box perfmon global control MSR

C01H 3073 MSR_U_PMON_GL
OBAL_STATUS

Package Uncore U-box perfmon global status MSR

C02H 3074 MSR_U_PMON_GL
OBAL_OVF_CTRL

Package Uncore U-box perfmon global overflow control
MSR

C10H 3088 MSR_U_PMON_EV
NT_SEL

Package Uncore U-box perfmon event select MSR

C11H 3089 MSR_U_PMON_CT
R

Package Uncore U-box perfmon counter MSR

C20H 3104 MSR_B0_PMON_B
OX_CTRL

Package Uncore B-box 0 perfmon local box control MSR

C21H 3105 MSR_B0_PMON_B
OX_STATUS

Package Uncore B-box 0 perfmon local box status MSR

C22H 3106 MSR_B0_PMON_B
OX_OVF_CTRL

Package Uncore B-box 0 perfmon local box overflow
control MSR

C30H 3120 MSR_B0_PMON_E
VNT_SEL0

Package Uncore B-box 0 perfmon event select MSR

C31H 3121 MSR_B0_PMON_C
TR0

Package Uncore B-box 0 perfmon counter MSR

C32H 3122 MSR_B0_PMON_E
VNT_SEL1

Package Uncore B-box 0 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-115

MODEL-SPECIFIC REGISTERS (MSRS)
C33H 3123 MSR_B0_PMON_C
TR1

Package Uncore B-box 0 perfmon counter MSR

C34H 3124 MSR_B0_PMON_E
VNT_SEL2

Package Uncore B-box 0 perfmon event select MSR

C35H 3125 MSR_B0_PMON_C
TR2

Package Uncore B-box 0 perfmon counter MSR

C36H 3126 MSR_B0_PMON_E
VNT_SEL3

Package Uncore B-box 0 perfmon event select MSR

C37H 3127 MSR_B0_PMON_C
TR3

Package Uncore B-box 0 perfmon counter MSR

C40H 3136 MSR_S0_PMON_B
OX_CTRL

Package Uncore S-box 0 perfmon local box control MSR

C41H 3137 MSR_S0_PMON_B
OX_STATUS

Package Uncore S-box 0 perfmon local box status MSR

C42H 3138 MSR_S0_PMON_B
OX_OVF_CTRL

Package Uncore S-box 0 perfmon local box overflow
control MSR

C50H 3152 MSR_S0_PMON_E
VNT_SEL0

Package Uncore S-box 0 perfmon event select MSR

C51H 3153 MSR_S0_PMON_C
TR0

Package Uncore S-box 0 perfmon counter MSR

C52H 3154 MSR_S0_PMON_E
VNT_SEL1

Package Uncore S-box 0 perfmon event select MSR

C53H 3155 MSR_S0_PMON_C
TR1

Package Uncore S-box 0 perfmon counter MSR

C54H 3156 MSR_S0_PMON_E
VNT_SEL2

Package Uncore S-box 0 perfmon event select MSR

C55H 3157 MSR_S0_PMON_C
TR2

Package Uncore S-box 0 perfmon counter MSR

C56H 3158 MSR_S0_PMON_E
VNT_SEL3

Package Uncore S-box 0 perfmon event select MSR

C57H 3159 MSR_S0_PMON_C
TR3

Package Uncore S-box 0 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-116 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
C60H 3168 MSR_B1_PMON_B
OX_CTRL

Package Uncore B-box 1 perfmon local box control MSR

C61H 3169 MSR_B1_PMON_B
OX_STATUS

Package Uncore B-box 1 perfmon local box status MSR

C62H 3170 MSR_B1_PMON_B
OX_OVF_CTRL

Package Uncore B-box 1 perfmon local box overflow
control MSR

C70H 3184 MSR_B1_PMON_E
VNT_SEL0

Package Uncore B-box 1 perfmon event select MSR

C71H 3185 MSR_B1_PMON_C
TR0

Package Uncore B-box 1 perfmon counter MSR

C72H 3186 MSR_B1_PMON_E
VNT_SEL1

Package Uncore B-box 1 perfmon event select MSR

C73H 3187 MSR_B1_PMON_C
TR1

Package Uncore B-box 1 perfmon counter MSR

C74H 3188 MSR_B1_PMON_E
VNT_SEL2

Package Uncore B-box 1 perfmon event select MSR

C75H 3189 MSR_B1_PMON_C
TR2

Package Uncore B-box 1 perfmon counter MSR

C76H 3190 MSR_B1_PMON_E
VNT_SEL3

Package Uncore B-box 1vperfmon event select MSR

C77H 3191 MSR_B1_PMON_C
TR3

Package Uncore B-box 1 perfmon counter MSR

C80H 3120 MSR_W_PMON_BO
X_CTRL

Package Uncore W-box perfmon local box control MSR

C81H 3121 MSR_W_PMON_BO
X_STATUS

Package Uncore W-box perfmon local box status MSR

C82H 3122 MSR_W_PMON_BO
X_OVF_CTRL

Package Uncore W-box perfmon local box overflow
control MSR

C90H 3136 MSR_W_PMON_EV
NT_SEL0

Package Uncore W-box perfmon event select MSR

C91H 3137 MSR_W_PMON_CT
R0

Package Uncore W-box perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-117

MODEL-SPECIFIC REGISTERS (MSRS)
C92H 3138 MSR_W_PMON_EV
NT_SEL1

Package Uncore W-box perfmon event select MSR

C93H 3139 MSR_W_PMON_CT
R1

Package Uncore W-box perfmon counter MSR

C94H 3140 MSR_W_PMON_EV
NT_SEL2

Package Uncore W-box perfmon event select MSR

C95H 3141 MSR_W_PMON_CT
R2

Package Uncore W-box perfmon counter MSR

C96H 3142 MSR_W_PMON_EV
NT_SEL3

Package Uncore W-box perfmon event select MSR

C97H 3143 MSR_W_PMON_CT
R3

Package Uncore W-box perfmon counter MSR

CA0H 3232 MSR_M0_PMON_B
OX_CTRL

Package Uncore M-box 0 perfmon local box control MSR

CA1H 3233 MSR_M0_PMON_B
OX_STATUS

Package Uncore M-box 0 perfmon local box status MSR

CA2H 3234 MSR_M0_PMON_B
OX_OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow
control MSR

CA4H 3236 MSR_M0_PMON_T
IMESTAMP

Package Uncore M-box 0 perfmon time stamp unit
select MSR

CA5H 3237 MSR_M0_PMON_D
SP

Package Uncore M-box 0 perfmon DSP unit select MSR

CA6H 3238 MSR_M0_PMON_I
SS

Package Uncore M-box 0 perfmon ISS unit select MSR

CA7H 3239 MSR_M0_PMON_M
AP

Package Uncore M-box 0 perfmon MAP unit select MSR

CA8H 3240 MSR_M0_PMON_M
SC_THR

Package Uncore M-box 0 perfmon MIC THR select MSR

CA9H 3241 MSR_M0_PMON_P
GT

Package Uncore M-box 0 perfmon PGT unit select MSR

CAAH 3242 MSR_M0_PMON_P
LD

Package Uncore M-box 0 perfmon PLD unit select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-118 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
CABH 3243 MSR_M0_PMON_Z
DP

Package Uncore M-box 0 perfmon ZDP unit select MSR

CB0H 3248 MSR_M0_PMON_E
VNT_SEL0

Package Uncore M-box 0 perfmon event select MSR

CB1H 3249 MSR_M0_PMON_C
TR0

Package Uncore M-box 0 perfmon counter MSR

CB2H 3250 MSR_M0_PMON_E
VNT_SEL1

Package Uncore M-box 0 perfmon event select MSR

CB3H 3251 MSR_M0_PMON_C
TR1

Package Uncore M-box 0 perfmon counter MSR

CB4H 3252 MSR_M0_PMON_E
VNT_SEL2

Package Uncore M-box 0 perfmon event select MSR

CB5H 3253 MSR_M0_PMON_C
TR2

Package Uncore M-box 0 perfmon counter MSR

CB6H 3254 MSR_M0_PMON_E
VNT_SEL3

Package Uncore M-box 0 perfmon event select MSR

CB7H 3255 MSR_M0_PMON_C
TR3

Package Uncore M-box 0 perfmon counter MSR

CB8H 3256 MSR_M0_PMON_E
VNT_SEL4

Package Uncore M-box 0 perfmon event select MSR

CB9H 3257 MSR_M0_PMON_C
TR4

Package Uncore M-box 0 perfmon counter MSR

CBAH 3258 MSR_M0_PMON_E
VNT_SEL5

Package Uncore M-box 0 perfmon event select MSR

CBBH 3259 MSR_M0_PMON_C
TR5

Package Uncore M-box 0 perfmon counter MSR

CC0H 3264 MSR_S1_PMON_B
OX_CTRL

Package Uncore S-box 1 perfmon local box control MSR

CC1H 3265 MSR_S1_PMON_B
OX_STATUS

Package Uncore S-box 1 perfmon local box status MSR

CC2H 3266 MSR_S1_PMON_B
OX_OVF_CTRL

Package Uncore S-box 1 perfmon local box overflow
control MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-119

MODEL-SPECIFIC REGISTERS (MSRS)
CD0H 3280 MSR_S1_PMON_E
VNT_SEL0

Package Uncore S-box 1 perfmon event select MSR

CD1H 3281 MSR_S1_PMON_C
TR0

Package Uncore S-box 1 perfmon counter MSR

CD2H 3282 MSR_S1_PMON_E
VNT_SEL1

Package Uncore S-box 1 perfmon event select MSR

CD3H 3283 MSR_S1_PMON_C
TR1

Package Uncore S-box 1 perfmon counter MSR

CD4H 3284 MSR_S1_PMON_E
VNT_SEL2

Package Uncore S-box 1 perfmon event select MSR

CD5H 3285 MSR_S1_PMON_C
TR2

Package Uncore S-box 1 perfmon counter MSR

CD6H 3286 MSR_S1_PMON_E
VNT_SEL3

Package Uncore S-box 1 perfmon event select MSR

CD7H 3287 MSR_S1_PMON_C
TR3

Package Uncore S-box 1 perfmon counter MSR

CE0H 3296 MSR_M1_PMON_B
OX_CTRL

Package Uncore M-box 1 perfmon local box control MSR

CE1H 3297 MSR_M1_PMON_B
OX_STATUS

Package Uncore M-box 1 perfmon local box status MSR

CE2H 3298 MSR_M1_PMON_B
OX_OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow
control MSR

CE4H 3300 MSR_M1_PMON_T
IMESTAMP

Package Uncore M-box 1 perfmon time stamp unit
select MSR

CE5H 3301 MSR_M1_PMON_D
SP

Package Uncore M-box 1 perfmon DSP unit select MSR

CE6H 3302 MSR_M1_PMON_I
SS

Package Uncore M-box 1 perfmon ISS unit select MSR

CE7H 3303 MSR_M1_PMON_M
AP

Package Uncore M-box 1 perfmon MAP unit select MSR

CE8H 3304 MSR_M1_PMON_M
SC_THR

Package Uncore M-box 1 perfmon MIC THR select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-120 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
CE9H 3305 MSR_M1_PMON_P
GT

Package Uncore M-box 1 perfmon PGT unit select MSR

CEAH 3306 MSR_M1_PMON_P
LD

Package Uncore M-box 1 perfmon PLD unit select MSR

CEBH 3307 MSR_M1_PMON_Z
DP

Package Uncore M-box 1 perfmon ZDP unit select MSR

CF0H 3312 MSR_M1_PMON_E
VNT_SEL0

Package Uncore M-box 1 perfmon event select MSR

CF1H 3313 MSR_M1_PMON_C
TR0

Package Uncore M-box 1 perfmon counter MSR

CF2H 3314 MSR_M1_PMON_E
VNT_SEL1

Package Uncore M-box 1 perfmon event select MSR

CF3H 3315 MSR_M1_PMON_C
TR1

Package Uncore M-box 1 perfmon counter MSR

CF4H 3316 MSR_M1_PMON_E
VNT_SEL2

Package Uncore M-box 1 perfmon event select MSR

CF5H 3317 MSR_M1_PMON_C
TR2

Package Uncore M-box 1 perfmon counter MSR

CF6H 3318 MSR_M1_PMON_E
VNT_SEL3

Package Uncore M-box 1 perfmon event select MSR

CF7H 3319 MSR_M1_PMON_C
TR3

Package Uncore M-box 1 perfmon counter MSR

CF8H 3320 MSR_M1_PMON_E
VNT_SEL4

Package Uncore M-box 1 perfmon event select MSR

CF9H 3321 MSR_M1_PMON_C
TR4

Package Uncore M-box 1 perfmon counter MSR

CFAH 3322 MSR_M1_PMON_E
VNT_SEL5

Package Uncore M-box 1 perfmon event select MSR

CFBH 3323 MSR_M1_PMON_C
TR5

Package Uncore M-box 1 perfmon counter MSR

D00H 3328 MSR_C0_PMON_B
OX_CTRL

Package Uncore C-box 0 perfmon local box control MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-121

MODEL-SPECIFIC REGISTERS (MSRS)
D01H 3329 MSR_C0_PMON_B
OX_STATUS

Package Uncore C-box 0 perfmon local box status MSR

D02H 3330 MSR_C0_PMON_B
OX_OVF_CTRL

Package Uncore C-box 0 perfmon local box overflow
control MSR

D10H 3344 MSR_C0_PMON_E
VNT_SEL0

Package Uncore C-box 0 perfmon event select MSR

D11H 3345 MSR_C0_PMON_C
TR0

Package Uncore C-box 0 perfmon counter MSR

D12H 3346 MSR_C0_PMON_E
VNT_SEL1

Package Uncore C-box 0 perfmon event select MSR

D13H 3347 MSR_C0_PMON_C
TR1

Package Uncore C-box 0 perfmon counter MSR

D14H 3348 MSR_C0_PMON_E
VNT_SEL2

Package Uncore C-box 0 perfmon event select MSR

D15H 3349 MSR_C0_PMON_C
TR2

Package Uncore C-box 0 perfmon counter MSR

D16H 3350 MSR_C0_PMON_E
VNT_SEL3

Package Uncore C-box 0 perfmon event select MSR

D17H 3351 MSR_C0_PMON_C
TR3

Package Uncore C-box 0 perfmon counter MSR

D18H 3352 MSR_C0_PMON_E
VNT_SEL4

Package Uncore C-box 0 perfmon event select MSR

D19H 3353 MSR_C0_PMON_C
TR4

Package Uncore C-box 0 perfmon counter MSR

D1AH 3354 MSR_C0_PMON_E
VNT_SEL5

Package Uncore C-box 0 perfmon event select MSR

D1BH 3355 MSR_C0_PMON_C
TR5

Package Uncore C-box 0 perfmon counter MSR

D20H 3360 MSR_C4_PMON_B
OX_CTRL

Package Uncore C-box 4 perfmon local box control MSR

D21H 3361 MSR_C4_PMON_B
OX_STATUS

Package Uncore C-box 4 perfmon local box status MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-122 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
D22H 3362 MSR_C4_PMON_B
OX_OVF_CTRL

Package Uncore C-box 4 perfmon local box overflow
control MSR

D30H 3376 MSR_C4_PMON_E
VNT_SEL0

Package Uncore C-box 4 perfmon event select MSR

D31H 3377 MSR_C4_PMON_C
TR0

Package Uncore C-box 4 perfmon counter MSR

D32H 3378 MSR_C4_PMON_E
VNT_SEL1

Package Uncore C-box 4 perfmon event select MSR

D33H 3379 MSR_C4_PMON_C
TR1

Package Uncore C-box 4 perfmon counter MSR

D34H 3380 MSR_C4_PMON_E
VNT_SEL2

Package Uncore C-box 4 perfmon event select MSR

D35H 3381 MSR_C4_PMON_C
TR2

Package Uncore C-box 4 perfmon counter MSR

D36H 3382 MSR_C4_PMON_E
VNT_SEL3

Package Uncore C-box 4 perfmon event select MSR

D37H 3383 MSR_C4_PMON_C
TR3

Package Uncore C-box 4 perfmon counter MSR

D38H 3384 MSR_C4_PMON_E
VNT_SEL4

Package Uncore C-box 4 perfmon event select MSR

D39H 3385 MSR_C4_PMON_C
TR4

Package Uncore C-box 4 perfmon counter MSR

D3AH 3386 MSR_C4_PMON_E
VNT_SEL5

Package Uncore C-box 4 perfmon event select MSR

D3BH 3387 MSR_C4_PMON_C
TR5

Package Uncore C-box 4 perfmon counter MSR

D40H 3392 MSR_C2_PMON_B
OX_CTRL

Package Uncore C-box 2 perfmon local box control MSR

D41H 3393 MSR_C2_PMON_B
OX_STATUS

Package Uncore C-box 2 perfmon local box status MSR

D42H 3394 MSR_C2_PMON_B
OX_OVF_CTRL

Package Uncore C-box 2 perfmon local box overflow
control MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-123

MODEL-SPECIFIC REGISTERS (MSRS)
D50H 3408 MSR_C2_PMON_E
VNT_SEL0

Package Uncore C-box 2 perfmon event select MSR

D51H 3409 MSR_C2_PMON_C
TR0

Package Uncore C-box 2 perfmon counter MSR

D52H 3410 MSR_C2_PMON_E
VNT_SEL1

Package Uncore C-box 2 perfmon event select MSR

D53H 3411 MSR_C2_PMON_C
TR1

Package Uncore C-box 2 perfmon counter MSR

D54H 3412 MSR_C2_PMON_E
VNT_SEL2

Package Uncore C-box 2 perfmon event select MSR

D55H 3413 MSR_C2_PMON_C
TR2

Package Uncore C-box 2 perfmon counter MSR

D56H 3414 MSR_C2_PMON_E
VNT_SEL3

Package Uncore C-box 2 perfmon event select MSR

D57H 3415 MSR_C2_PMON_C
TR3

Package Uncore C-box 2 perfmon counter MSR

D58H 3416 MSR_C2_PMON_E
VNT_SEL4

Package Uncore C-box 2 perfmon event select MSR

D59H 3417 MSR_C2_PMON_C
TR4

Package Uncore C-box 2 perfmon counter MSR

D5AH 3418 MSR_C2_PMON_E
VNT_SEL5

Package Uncore C-box 2 perfmon event select MSR

D5BH 3419 MSR_C2_PMON_C
TR5

Package Uncore C-box 2 perfmon counter MSR

D60H 3424 MSR_C6_PMON_B
OX_CTRL

Package Uncore C-box 6 perfmon local box control MSR

D61H 3425 MSR_C6_PMON_B
OX_STATUS

Package Uncore C-box 6 perfmon local box status MSR

D62H 3426 MSR_C6_PMON_B
OX_OVF_CTRL

Package Uncore C-box 6 perfmon local box overflow
control MSR

D70H 3440 MSR_C6_PMON_E
VNT_SEL0

Package Uncore C-box 6 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-124 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
D71H 3441 MSR_C6_PMON_C
TR0

Package Uncore C-box 6 perfmon counter MSR

D72H 3442 MSR_C6_PMON_E
VNT_SEL1

Package Uncore C-box 6 perfmon event select MSR

D73H 3443 MSR_C6_PMON_C
TR1

Package Uncore C-box 6 perfmon counter MSR

D74H 3444 MSR_C6_PMON_E
VNT_SEL2

Package Uncore C-box 6 perfmon event select MSR

D75H 3445 MSR_C6_PMON_C
TR2

Package Uncore C-box 6 perfmon counter MSR

D76H 3446 MSR_C6_PMON_E
VNT_SEL3

Package Uncore C-box 6 perfmon event select MSR

D77H 3447 MSR_C6_PMON_C
TR3

Package Uncore C-box 6 perfmon counter MSR

D78H 3448 MSR_C6_PMON_E
VNT_SEL4

Package Uncore C-box 6 perfmon event select MSR

D79H 3449 MSR_C6_PMON_C
TR4

Package Uncore C-box 6 perfmon counter MSR

D7AH 3450 MSR_C6_PMON_E
VNT_SEL5

Package Uncore C-box 6 perfmon event select MSR

D7BH 3451 MSR_C6_PMON_C
TR5

Package Uncore C-box 6 perfmon counter MSR

D80H 3456 MSR_C1_PMON_B
OX_CTRL

Package Uncore C-box 1 perfmon local box control MSR

D81H 3457 MSR_C1_PMON_B
OX_STATUS

Package Uncore C-box 1 perfmon local box status MSR

D82H 3458 MSR_C1_PMON_B
OX_OVF_CTRL

Package Uncore C-box 1 perfmon local box overflow
control MSR

D90H 3472 MSR_C1_PMON_E
VNT_SEL0

Package Uncore C-box 1 perfmon event select MSR

D91H 3473 MSR_C1_PMON_C
TR0

Package Uncore C-box 1 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-125

MODEL-SPECIFIC REGISTERS (MSRS)
D92H 3474 MSR_C1_PMON_E
VNT_SEL1

Package Uncore C-box 1 perfmon event select MSR

D93H 3475 MSR_C1_PMON_C
TR1

Package Uncore C-box 1 perfmon counter MSR

D94H 3476 MSR_C1_PMON_E
VNT_SEL2

Package Uncore C-box 1 perfmon event select MSR

D95H 3477 MSR_C1_PMON_C
TR2

Package Uncore C-box 1 perfmon counter MSR

D96H 3478 MSR_C1_PMON_E
VNT_SEL3

Package Uncore C-box 1 perfmon event select MSR

D97H 3479 MSR_C1_PMON_C
TR3

Package Uncore C-box 1 perfmon counter MSR

D98H 3480 MSR_C1_PMON_E
VNT_SEL4

Package Uncore C-box 1 perfmon event select MSR

D99H 3481 MSR_C1_PMON_C
TR4

Package Uncore C-box 1 perfmon counter MSR

D9AH 3482 MSR_C1_PMON_E
VNT_SEL5

Package Uncore C-box 1 perfmon event select MSR

D9BH 3483 MSR_C1_PMON_C
TR5

Package Uncore C-box 1 perfmon counter MSR

DA0H 3488 MSR_C5_PMON_B
OX_CTRL

Package Uncore C-box 5 perfmon local box control MSR

DA1H 3489 MSR_C5_PMON_B
OX_STATUS

Package Uncore C-box 5 perfmon local box status MSR

DA2H 3490 MSR_C5_PMON_B
OX_OVF_CTRL

Package Uncore C-box 5 perfmon local box overflow
control MSR

DB0H 3504 MSR_C5_PMON_E
VNT_SEL0

Package Uncore C-box 5 perfmon event select MSR

DB1H 3505 MSR_C5_PMON_C
TR0

Package Uncore C-box 5 perfmon counter MSR

DB2H 3506 MSR_C5_PMON_E
VNT_SEL1

Package Uncore C-box 5 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-126 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
DB3H 3507 MSR_C5_PMON_C
TR1

Package Uncore C-box 5 perfmon counter MSR

DB4H 3508 MSR_C5_PMON_E
VNT_SEL2

Package Uncore C-box 5 perfmon event select MSR

DB5H 3509 MSR_C5_PMON_C
TR2

Package Uncore C-box 5 perfmon counter MSR

DB6H 3510 MSR_C5_PMON_E
VNT_SEL3

Package Uncore C-box 5 perfmon event select MSR

DB7H 3511 MSR_C5_PMON_C
TR3

Package Uncore C-box 5 perfmon counter MSR

DB8H 3512 MSR_C5_PMON_E
VNT_SEL4

Package Uncore C-box 5 perfmon event select MSR

DB9H 3513 MSR_C5_PMON_C
TR4

Package Uncore C-box 5 perfmon counter MSR

DBAH 3514 MSR_C5_PMON_E
VNT_SEL5

Package Uncore C-box 5 perfmon event select MSR

DBBH 3515 MSR_C5_PMON_C
TR5

Package Uncore C-box 5 perfmon counter MSR

DC0H 3520 MSR_C3_PMON_B
OX_CTRL

Package Uncore C-box 3 perfmon local box control MSR

DC1H 3521 MSR_C3_PMON_B
OX_STATUS

Package Uncore C-box 3 perfmon local box status MSR

DC2H 3522 MSR_C3_PMON_B
OX_OVF_CTRL

Package Uncore C-box 3 perfmon local box overflow
control MSR

DD0H 3536 MSR_C3_PMON_E
VNT_SEL0

Package Uncore C-box 3 perfmon event select MSR

DD1H 3537 MSR_C3_PMON_C
TR0

Package Uncore C-box 3 perfmon counter MSR

DD2H 3538 MSR_C3_PMON_E
VNT_SEL1

Package Uncore C-box 3 perfmon event select MSR

DD3H 3539 MSR_C3_PMON_C
TR1

Package Uncore C-box 3 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-127

MODEL-SPECIFIC REGISTERS (MSRS)
DD4H 3540 MSR_C3_PMON_E
VNT_SEL2

Package Uncore C-box 3 perfmon event select MSR

DD5H 3541 MSR_C3_PMON_C
TR2

Package Uncore C-box 3 perfmon counter MSR

DD6H 3542 MSR_C3_PMON_E
VNT_SEL3

Package Uncore C-box 3 perfmon event select MSR

DD7H 3543 MSR_C3_PMON_C
TR3

Package Uncore C-box 3 perfmon counter MSR

DD8H 3544 MSR_C3_PMON_E
VNT_SEL4

Package Uncore C-box 3 perfmon event select MSR

DD9H 3545 MSR_C3_PMON_C
TR4

Package Uncore C-box 3 perfmon counter MSR

DDAH 3546 MSR_C3_PMON_E
VNT_SEL5

Package Uncore C-box 3 perfmon event select MSR

DDBH 3547 MSR_C3_PMON_C
TR5

Package Uncore C-box 3 perfmon counter MSR

DE0H 3552 MSR_C7_PMON_B
OX_CTRL

Package Uncore C-box 7 perfmon local box control MSR

DE1H 3553 MSR_C7_PMON_B
OX_STATUS

Package Uncore C-box 7 perfmon local box status MSR

DE2H 3554 MSR_C7_PMON_B
OX_OVF_CTRL

Package Uncore C-box 7 perfmon local box overflow
control MSR

DF0H 3568 MSR_C7_PMON_E
VNT_SEL0

Package Uncore C-box 7 perfmon event select MSR

DF1H 3569 MSR_C7_PMON_C
TR0

Package Uncore C-box 7 perfmon counter MSR

DF2H 3570 MSR_C7_PMON_E
VNT_SEL1

Package Uncore C-box 7 perfmon event select MSR

DF3H 3571 MSR_C7_PMON_C
TR1

Package Uncore C-box 7 perfmon counter MSR

DF4H 3572 MSR_C7_PMON_E
VNT_SEL2

Package Uncore C-box 7 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-128 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
DF5H 3573 MSR_C7_PMON_C
TR2

Package Uncore C-box 7 perfmon counter MSR

DF6H 3574 MSR_C7_PMON_E
VNT_SEL3

Package Uncore C-box 7 perfmon event select MSR

DF7H 3575 MSR_C7_PMON_C
TR3

Package Uncore C-box 7 perfmon counter MSR

DF8H 3576 MSR_C7_PMON_E
VNT_SEL4

Package Uncore C-box 7 perfmon event select MSR

DF9H 3577 MSR_C7_PMON_C
TR4

Package Uncore C-box 7 perfmon counter MSR

DFAH 3578 MSR_C7_PMON_E
VNT_SEL5

Package Uncore C-box 7 perfmon event select MSR

DFBH 3579 MSR_C7_PMON_C
TR5

Package Uncore C-box 7 perfmon counter MSR

E00H 3584 MSR_R0_PMON_B
OX_CTRL

Package Uncore R-box 0 perfmon local box control MSR

E01H 3585 MSR_R0_PMON_B
OX_STATUS

Package Uncore R-box 0 perfmon local box status MSR

E02H 3586 MSR_R0_PMON_B
OX_OVF_CTRL

Package Uncore R-box 0 perfmon local box overflow
control MSR

E04H 3588 MSR_R0_PMON_IP
ERF0_P0

Package Uncore R-box 0 perfmon IPERF0 unit Port 0
select MSR

E05H 3589 MSR_R0_PMON_IP
ERF0_P1

Package Uncore R-box 0 perfmon IPERF0 unit Port 1
select MSR

E06H 3590 MSR_R0_PMON_IP
ERF0_P2

Package Uncore R-box 0 perfmon IPERF0 unit Port 2
select MSR

E07H 3591 MSR_R0_PMON_IP
ERF0_P3

Package Uncore R-box 0 perfmon IPERF0 unit Port 3
select MSR

E08H 3592 MSR_R0_PMON_IP
ERF0_P4

Package Uncore R-box 0 perfmon IPERF0 unit Port 4
select MSR

E09H 3593 MSR_R0_PMON_IP
ERF0_P5

Package Uncore R-box 0 perfmon IPERF0 unit Port 5
select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-129

MODEL-SPECIFIC REGISTERS (MSRS)
E0AH 3594 MSR_R0_PMON_IP
ERF0_P6

Package Uncore R-box 0 perfmon IPERF0 unit Port 6
select MSR

E0BH 3595 MSR_R0_PMON_IP
ERF0_P7

Package Uncore R-box 0 perfmon IPERF0 unit Port 7
select MSR

E0CH 3596 MSR_R0_PMON_Q
LX_P0

Package Uncore R-box 0 perfmon QLX unit Port 0
select MSR

E0DH 3597 MSR_R0_PMON_Q
LX_P1

Package Uncore R-box 0 perfmon QLX unit Port 1
select MSR

E0EH 3598 MSR_R0_PMON_Q
LX_P2

Package Uncore R-box 0 perfmon QLX unit Port 2
select MSR

E0FH 3599 MSR_R0_PMON_Q
LX_P3

Package Uncore R-box 0 perfmon QLX unit Port 3
select MSR

E10H 3600 MSR_R0_PMON_E
VNT_SEL0

Package Uncore R-box 0 perfmon event select MSR

E11H 3601 MSR_R0_PMON_C
TR0

Package Uncore R-box 0 perfmon counter MSR

E12H 3602 MSR_R0_PMON_E
VNT_SEL1

Package Uncore R-box 0 perfmon event select MSR

E13H 3603 MSR_R0_PMON_C
TR1

Package Uncore R-box 0 perfmon counter MSR

E14H 3604 MSR_R0_PMON_E
VNT_SEL2

Package Uncore R-box 0 perfmon event select MSR

E15H 3605 MSR_R0_PMON_C
TR2

Package Uncore R-box 0 perfmon counter MSR

E16H 3606 MSR_R0_PMON_E
VNT_SEL3

Package Uncore R-box 0 perfmon event select MSR

E17H 3607 MSR_R0_PMON_C
TR3

Package Uncore R-box 0 perfmon counter MSR

E18H 3608 MSR_R0_PMON_E
VNT_SEL4

Package Uncore R-box 0 perfmon event select MSR

E19H 3609 MSR_R0_PMON_C
TR4

Package Uncore R-box 0 perfmon counter MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-130 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
E1AH 3610 MSR_R0_PMON_E
VNT_SEL5

Package Uncore R-box 0 perfmon event select MSR

E1BH 3611 MSR_R0_PMON_C
TR5

Package Uncore R-box 0 perfmon counter MSR

E1CH 3612 MSR_R0_PMON_E
VNT_SEL6

Package Uncore R-box 0 perfmon event select MSR

E1DH 3613 MSR_R0_PMON_C
TR6

Package Uncore R-box 0 perfmon counter MSR

E1EH 3614 MSR_R0_PMON_E
VNT_SEL7

Package Uncore R-box 0 perfmon event select MSR

E1FH 3615 MSR_R0_PMON_C
TR7

Package Uncore R-box 0 perfmon counter MSR

E20H 3616 MSR_R1_PMON_B
OX_CTRL

Package Uncore R-box 1 perfmon local box control MSR

E21H 3617 MSR_R1_PMON_B
OX_STATUS

Package Uncore R-box 1 perfmon local box status MSR

E22H 3618 MSR_R1_PMON_B
OX_OVF_CTRL

Package Uncore R-box 1 perfmon local box overflow
control MSR

E24H 3620 MSR_R1_PMON_IP
ERF1_P8

Package Uncore R-box 1 perfmon IPERF1 unit Port 8
select MSR

E25H 3621 MSR_R1_PMON_IP
ERF1_P9

Package Uncore R-box 1 perfmon IPERF1 unit Port 9
select MSR

E26H 3622 MSR_R1_PMON_IP
ERF1_P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10
select MSR

E27H 3623 MSR_R1_PMON_IP
ERF1_P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11
select MSR

E28H 3624 MSR_R1_PMON_IP
ERF1_P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12
select MSR

E29H 3625 MSR_R1_PMON_IP
ERF1_P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13
select MSR

E2AH 3626 MSR_R1_PMON_IP
ERF1_P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14
select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-131

MODEL-SPECIFIC REGISTERS (MSRS)
E2BH 3627 MSR_R1_PMON_IP
ERF1_P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15
select MSR

E2CH 3628 MSR_R1_PMON_Q
LX_P4

Package Uncore R-box 1 perfmon QLX unit Port 4
select MSR

E2DH 3629 MSR_R1_PMON_Q
LX_P5

Package Uncore R-box 1 perfmon QLX unit Port 5
select MSR

E2EH 3630 MSR_R1_PMON_Q
LX_P6

Package Uncore R-box 1 perfmon QLX unit Port 6
select MSR

E2FH 3631 MSR_R1_PMON_Q
LX_P7

Package Uncore R-box 1 perfmon QLX unit Port 7
select MSR

E30H 3632 MSR_R1_PMON_E
VNT_SEL8

Package Uncore R-box 1 perfmon event select MSR

E31H 3633 MSR_R1_PMON_C
TR8

Package Uncore R-box 1 perfmon counter MSR

E32H 3634 MSR_R1_PMON_E
VNT_SEL9

Package Uncore R-box 1 perfmon event select MSR

E33H 3635 MSR_R1_PMON_C
TR9

Package Uncore R-box 1 perfmon counter MSR

E34H 3636 MSR_R1_PMON_E
VNT_SEL10

Package Uncore R-box 1 perfmon event select MSR

E35H 3637 MSR_R1_PMON_C
TR10

Package Uncore R-box 1 perfmon counter MSR

E36H 3638 MSR_R1_PMON_E
VNT_SEL11

Package Uncore R-box 1 perfmon event select MSR

E37H 3639 MSR_R1_PMON_C
TR11

Package Uncore R-box 1 perfmon counter MSR

E38H 3640 MSR_R1_PMON_E
VNT_SEL12

Package Uncore R-box 1 perfmon event select MSR

E39H 3641 MSR_R1_PMON_C
TR12

Package Uncore R-box 1 perfmon counter MSR

E3AH 3642 MSR_R1_PMON_E
VNT_SEL13

Package Uncore R-box 1 perfmon event select MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-132 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
E3BH 3643 MSR_R1_PMON_C
TR13

Package Uncore R-box 1perfmon counter MSR

E3CH 3644 MSR_R1_PMON_E
VNT_SEL14

Package Uncore R-box 1 perfmon event select MSR

E3DH 3645 MSR_R1_PMON_C
TR14

Package Uncore R-box 1 perfmon counter MSR

E3EH 3646 MSR_R1_PMON_E
VNT_SEL15

Package Uncore R-box 1 perfmon event select MSR

E3FH 3647 MSR_R1_PMON_C
TR15

Package Uncore R-box 1 perfmon counter MSR

E45H 3653 MSR_B0_PMON_M
ATCH

Package Uncore B-box 0 perfmon local box match MSR

E46H 3654 MSR_B0_PMON_M
ASK

Package Uncore B-box 0 perfmon local box mask MSR

E49H 3657 MSR_S0_PMON_M
ATCH

Package Uncore S-box 0 perfmon local box match MSR

E4AH 3658 MSR_S0_PMON_M
ASK

Package Uncore S-box 0 perfmon local box mask MSR

E4DH 3661 MSR_B1_PMON_M
ATCH

Package Uncore B-box 1 perfmon local box match MSR

E4EH 3662 MSR_B1_PMON_M
ASK

Package Uncore B-box 1 perfmon local box mask MSR

E54H 3668 MSR_M0_PMON_M
M_CONFIG

Package Uncore M-box 0 perfmon local box address
match/mask config MSR

E55H 3669 MSR_M0_PMON_A
DDR_MATCH

Package Uncore M-box 0 perfmon local box address
match MSR

E56H 3670 MSR_M0_PMON_A
DDR_MASK

Package Uncore M-box 0 perfmon local box address
mask MSR

E59H 3673 MSR_S1_PMON_M
ATCH

Package Uncore S-box 1 perfmon local box match MSR

E5AH 3674 MSR_S1_PMON_M
ASK

Package Uncore S-box 1 perfmon local box mask MSR

E5CH 3676 MSR_M1_PMON_M
M_CONFIG

Package Uncore M-box 1 perfmon local box address
match/mask config MSR

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-133

MODEL-SPECIFIC REGISTERS (MSRS)
34.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES
(INTEL® MICROARCHITECTURE CODE NAME
WESTMERE)

Intel Xeon processor 5600 series (Intel® microarchitecture code name Westmere)
supports the MSR interfaces listed in Table 34-5, Table 34-6, plus additional MSR
listed in Table 34-8. These MSRs also apply to Intel Core i7, i5 and i3 processor family
with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table
34-1.

E5DH 3677 MSR_M1_PMON_A
DDR_MATCH

Package Uncore M-box 1 perfmon local box address
match MSR

E5EH 3678 MSR_M1_PMON_A
DDR_MASK

Package Uncore M-box 1 perfmon local box address
mask MSR

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 18.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table 34-8. Additional MSRs Supported by Intel Processors (Intel Microarchitecture
Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

Table 34-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-134 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY
(INTEL® MICROARCHITECTURE CODE NAME
WESTMERE)

Intel Xeon processor E7 family (Intel® microarchitecture code name Westmere)
supports the MSR interfaces listed in Table 34-5 (except MSR address 1ADH), Table
34-6, plus additional MSR listed in Table 34-9.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C.

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C.

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved.

Attempt to read/write will cause #UD

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

F40H 3904 MSR_C8_PMON_B
OX_CTRL

Package Uncore C-box 8 perfmon local box control MSR

Table 34-8. Additional MSRs Supported by Intel Processors (Contd.)(Intel
Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-135

MODEL-SPECIFIC REGISTERS (MSRS)
F41H 3905 MSR_C8_PMON_B
OX_STATUS

Package Uncore C-box 8 perfmon local box status MSR

F42H 3906 MSR_C8_PMON_B
OX_OVF_CTRL

Package Uncore C-box 8 perfmon local box overflow
control MSR

F50H 3920 MSR_C8_PMON_E
VNT_SEL0

Package Uncore C-box 8 perfmon event select MSR

F51H 3921 MSR_C8_PMON_C
TR0

Package Uncore C-box 8 perfmon counter MSR

F52H 3922 MSR_C8_PMON_E
VNT_SEL1

Package Uncore C-box 8 perfmon event select MSR

F53H 3923 MSR_C8_PMON_C
TR1

Package Uncore C-box 8 perfmon counter MSR

F54H 3924 MSR_C8_PMON_E
VNT_SEL2

Package Uncore C-box 8 perfmon event select MSR

F55H 3925 MSR_C8_PMON_C
TR2

Package Uncore C-box 8 perfmon counter MSR

F56H 3926 MSR_C8_PMON_E
VNT_SEL3

Package Uncore C-box 8 perfmon event select MSR

F57H 3927 MSR_C8_PMON_C
TR3

Package Uncore C-box 8 perfmon counter MSR

F58H 3928 MSR_C8_PMON_E
VNT_SEL4

Package Uncore C-box 8 perfmon event select MSR

F59H 3929 MSR_C8_PMON_C
TR4

Package Uncore C-box 8 perfmon counter MSR

F5AH 3930 MSR_C8_PMON_E
VNT_SEL5

Package Uncore C-box 8 perfmon event select MSR

F5BH 3931 MSR_C8_PMON_C
TR5

Package Uncore C-box 8 perfmon counter MSR

FC0H 4032 MSR_C9_PMON_B
OX_CTRL

Package Uncore C-box 9 perfmon local box control MSR

FC1H 4033 MSR_C9_PMON_B
OX_STATUS

Package Uncore C-box 9 perfmon local box status MSR

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-136 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE)

Table 34-10 lists model-specific registers (MSRs) that are common to Intel®
processor family based on Intel® microarchitecture (Sandy Bridge). All architectural
MSRs listed in Table 34-2 are supported. These processors have a CPUID signature

FC2H 4034 MSR_C9_PMON_B
OX_OVF_CTRL

Package Uncore C-box 9 perfmon local box overflow
control MSR

FD0H 4048 MSR_C9_PMON_E
VNT_SEL0

Package Uncore C-box 9 perfmon event select MSR

FD1H 4049 MSR_C9_PMON_C
TR0

Package Uncore C-box 9 perfmon counter MSR

FD2H 4050 MSR_C9_PMON_E
VNT_SEL1

Package Uncore C-box 9 perfmon event select MSR

FD3H 4051 MSR_C9_PMON_C
TR1

Package Uncore C-box 9 perfmon counter MSR

FD4H 4052 MSR_C9_PMON_E
VNT_SEL2

Package Uncore C-box 9 perfmon event select MSR

FD5H 4053 MSR_C9_PMON_C
TR2

Package Uncore C-box 9 perfmon counter MSR

FD6H 4054 MSR_C9_PMON_E
VNT_SEL3

Package Uncore C-box 9 perfmon event select MSR

FD7H 4055 MSR_C9_PMON_C
TR3

Package Uncore C-box 9 perfmon counter MSR

FD8H 4056 MSR_C9_PMON_E
VNT_SEL4

Package Uncore C-box 9 perfmon event select MSR

FD9H 4057 MSR_C9_PMON_C
TR4

Package Uncore C-box 9 perfmon counter MSR

FDAH 4058 MSR_C9_PMON_E
VNT_SEL5

Package Uncore C-box 9 perfmon event select MSR

FDBH 4059 MSR_C9_PMON_C
TR5

Package Uncore C-box 9 perfmon counter MSR

Table 34-9. Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-137

MODEL-SPECIFIC REGISTERS (MSRS)
with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 34-1. Additional
MSRs specific to 06_2AH are listed in Table 34-11.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Section 34.13, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Section 34.13, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address
Range Determination,” and Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R)
See Table 34-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and
Location,” and Table 34-2.

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O)

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor.
(R/W).

See Table 34-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W)

See Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

See Table 34-2.

C1H 193 IA32_PMC0 Thread Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Thread Performance counter register. See
Table 34-2.
34-138 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
C3H 195 IA32_PMC2 Thread Performance counter register. See
Table 34-2.

C4H 196 IA32_PMC3 Thread Performance counter register. See
Table 34-2.

C5H 197 IA32_PMC4 Core Performance counter register. See
Table 34-2.

C6H 198 IA32_PMC5 Core Performance counter register. See
Table 34-2.

C7H 199 IA32_PMC6 Core Performance counter register. See
Table 34-2.

C8H 200 IA32_PMC7 Core Performance counter register. See
Table 34-2.

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode.
(R/O)

When set to 1, indicates that TDP Limits for
Turbo mode are programmable, and when set
to 0, indicates TDP Limit for Turbo mode is not
programmable.

39:30 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-139

MODEL-SPECIFIC REGISTERS (MSRS)
47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions

14:11 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-140 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset.

24:16 Reserved.

25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information.

26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted
C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted
C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-141

MODEL-SPECIFIC REGISTERS (MSRS)
18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock
Count. (RW) See Table 34-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count.
(RW) See Table 34-2.

FEH 254 IA32_MTRRCAP Thread See Table 34-2.

174H 372 IA32_SYSENTER_C
S

Thread See Table 34-2.

175H 373 IA32_SYSENTER_E
SP

Thread See Table 34-2.

176H 374 IA32_SYSENTER_E
IP

Thread See Table 34-2.

179H 377 IA32_MCG_CAP Thread See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-142 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 34-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 34-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 34-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 34-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 34-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STAT
US

Package See Table 34-2.

15:0 Current Performance State Value.

63:16 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-143

MODEL-SPECIFIC REGISTERS (MSRS)
198H 408 MSR_PERF_STATU
S

Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W)

see Table 34-2

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W).

In 6.25% increment

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W)

See Table 34-2.

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W)

See Table 34-2.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Thread Fast-Strings Enable. See Table 34-2

6:1 Reserved.

7 Thread Performance Monitoring Available. (R) See
Table 34-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) See
Table 34-2.

12 Thread Precise Event Based Sampling Unavailable.
(RO) See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-144 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology
Enable. (R/W) See Table 34-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 34-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) See Table 34-2.

23 Thread xTPR Message Disable. (R/W) See
Table 34-2.

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) See Table 34-2.

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel
Turbo Boost Technology, the turbo mode
feature is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of turbo
mode. If power-on default value is 1, turbo
mode is available in the processor. If power-on
default value is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Unique

15:0 Reserved.

23:16 Temperature Target. (R)

The minimum temperature at which
PROCHOT# will be asserted. The value is
degree C.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-145

MODEL-SPECIFIC REGISTERS (MSRS)
63:24 Reserved.

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

1ADH 428 MSR_TURBO_PWR
_CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package See Table 34-2.

1B1H 433 IA32_PACKAGE_T
HERM_STATUS

Package See Table 34-2.

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package See Table 34-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register
(R/W) See Section 17.6.2, “Filtering of Last
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) See Table 34-2.

1DDH 477 MSR_LER_FROM_
LIP

Thread Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-146 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1F2H 498 IA32_SMRR_PHYS
BASE

Core See Table 34-2.

1F3H 499 IA32_SMRR_PHYS
MASK

Core See Table 34-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYS
BASE0

Thread See Table 34-2.

201H 513 IA32_MTRR_PHYS
MASK0

Thread See Table 34-2.

202H 514 IA32_MTRR_PHYS
BASE1

Thread See Table 34-2.

203H 515 IA32_MTRR_PHYS
MASK1

Thread See Table 34-2.

204H 516 IA32_MTRR_PHYS
BASE2

Thread See Table 34-2.

205H 517 IA32_MTRR_PHYS
MASK2

Thread See Table 34-2.

206H 518 IA32_MTRR_PHYS
BASE3

Thread See Table 34-2.

207H 519 IA32_MTRR_PHYS
MASK3

Thread See Table 34-2.

208H 520 IA32_MTRR_PHYS
BASE4

Thread See Table 34-2.

209H 521 IA32_MTRR_PHYS
MASK4

Thread See Table 34-2.

20AH 522 IA32_MTRR_PHYS
BASE5

Thread See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-147

MODEL-SPECIFIC REGISTERS (MSRS)
20BH 523 IA32_MTRR_PHYS
MASK5

Thread See Table 34-2.

20CH 524 IA32_MTRR_PHYS
BASE6

Thread See Table 34-2.

20DH 525 IA32_MTRR_PHYS
MASK6

Thread See Table 34-2.

20EH 526 IA32_MTRR_PHYS
BASE7

Thread See Table 34-2.

20FH 527 IA32_MTRR_PHYS
MASK7

Thread See Table 34-2.

210H 528 IA32_MTRR_PHYS
BASE8

Thread See Table 34-2.

211H 529 IA32_MTRR_PHYS
MASK8

Thread See Table 34-2.

212H 530 IA32_MTRR_PHYS
BASE9

Thread See Table 34-2.

213H 531 IA32_MTRR_PHYS
MASK9

Thread See Table 34-2.

250H 592 IA32_MTRR_FIX6
4K_00000

Thread See Table 34-2.

258H 600 IA32_MTRR_FIX1
6K_80000

Thread See Table 34-2.

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread See Table 34-2.

268H 616 IA32_MTRR_FIX4
K_C0000

Thread See Table 34-2.

269H 617 IA32_MTRR_FIX4
K_C8000

Thread See Table 34-2.

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread See Table 34-2.

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-148 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
26CH 620 IA32_MTRR_FIX4
K_E0000

Thread See Table 34-2.

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread See Table 34-2.

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread See Table 34-2.

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread See Table 34-2.

277H 631 IA32_PAT Thread See Table 34-2.

280H 640 IA32_MC0_CTL2 Core See Table 34-2.

281H 641 IA32_MC1_CTL2 Core See Table 34-2.

282H 642 IA32_MC2_CTL2 Core See Table 34-2.

283H 643 IA32_MC3_CTL2 Core See Table 34-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) See
Table 34-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter
Register 0. (R/W) See Table 34-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter
Register 1. (R/W) See Table 34-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter
Register 2. (R/W) See Table 34-2.

345H 837 IA32_PERF_CAPA
BILITIES

Thread See Table 34-2. See Section 17.4.1,
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 34-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 34-2.

11:8 PEBS_REC_FORMAT. See Table 34-2.

12 SMM_FREEZE. See Table 34-2.

63:13 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-149

MODEL-SPECIFIC REGISTERS (MSRS)
38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register.
(R/W) See Table 34-2.

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread See Table 34-2. See Section 18.4.2, “Global
Counter Control Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Thread See Section 18.6.1.1, “Precise Event Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 18.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-150 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-151

MODEL-SPECIFIC REGISTERS (MSRS)
3FEH 1022 MSR_CORE_C7_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C7 states. Count at the
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error. (R/W)

When set, enables signaling of PCU hardware
detected errors.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-152 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1 PCU Controller Error. (R/W)

When set, enables signaling of PCU controller
detected errors

2 PCU Firmware Error. (R/W)

When set, enables signaling of PCU firmware
detected errors

63:2 Reserved.

411H 1041 IA32_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) See
Table 34-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit
Controls. (R/O) See Table 34-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry
Controls. (R/O) See Table 34-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX
Capabilities. (R/O) See Table 34-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-153

MODEL-SPECIFIC REGISTERS (MSRS)
487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) See Table 34-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field
Enumeration. (R/O). See Table 34-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls.”

4C1H 1217 IA32_A_PMC0 Thread See Table 34-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 34-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 34-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 34-2.

4C5H 1221 IA32_A_PMC4 Core See Table 34-2.

4C6H 1222 IA32_A_PMC5 Core See Table 34-2.

4C7H 1223 IA32_A_PMC6 Core See Table 34-2.

C8H 200 IA32_A_PMC7 Core See Table 34-2.

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O)
See Section 14.7.1, “RAPL Interfaces.”

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-154 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C3 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-155

MODEL-SPECIFIC REGISTERS (MSRS)
60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C6 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C6 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-156 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C7 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C7 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-157

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C2 states. Count at the
same frequency as the TSC.

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3,
“Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last sixteen
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-158 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-159

MODEL-SPECIFIC REGISTERS (MSRS)
68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
sixteen branches, exceptions, or interrupts
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-160 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6E0H 1760 IA32_TSC_DEADLI
NE

Thread See Table 34-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables. See Table 34-2.

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). See
Table 34-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address.
(R/W). See Table 34-2.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-161

MODEL-SPECIFIC REGISTERS (MSRS)
34.7.1 MSRs In Second Generation Intel® Core Processor Family
(Intel® Microarchitecture Code Name Sandy Bridge)

Table 34-11 lists model-specific registers (MSRs) that are specific to second genera-
tion for Intel® Core processor family (Intel® microarchitecture code name Sandy
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2AH, see Table 34-1.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). See
Table 34-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). See
Table 34-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). See
Table 34-2.

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W).
See Table 34-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). See
Table 34-2 and Section 17.12.2,
“IA32_TSC_AUX Register and RDTSCP
Support.”

Table 34-11. MSRs Supported by Second Generation Intel Core Processors (Intel
Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

Table 34-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-162 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_
GLOBAL_CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_
GLOBAL_STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_
FIXED_CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

Table 34-11. MSRs Supported by Second Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-163

MODEL-SPECIFIC REGISTERS (MSRS)
63:23 Reserved.

395H 917 MSR_UNC_PERF_
FIXED_CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_C
ONFIG

Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_P
ER_CTR0

Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_P
ER_CTR1

Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_P
ERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_P
ERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_
PER_CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_
PER_CTR1

Package Uncore C-Box 0, performance counter 1

Table 34-11. MSRs Supported by Second Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-164 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.7.2 MSRs In Intel® Xeon Processor E5 Family (Intel®
Microarchitecture Code Name Sandy Bridge)

Table 34-12 lists selected model-specific registers (MSRs) that are specific to the
Intel® Xeon processor E5 family (Intel® microarchitecture code name Sandy Bridge).
These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_2DH, see Table 34-1.

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_
PER_CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_
PER_CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_
PER_CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_
PER_CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR

736H 1846 MSR_UNC_CBO_3_
PER_CTR0

Package Uncore C-Box 3, performance counter 0

737H 1847 MSR_UNC_CBO_3_
PER_CTR1

Package Uncore C-Box 3, performance counter 1

Table 34-11. MSRs Supported by Second Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-165

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-12. Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

285H 645 IA32_MC5_CTL2 Package See Table 34-2.

286H 646 IA32_MC6_CTL2 Package See Table 34-2.

287H 647 IA32_MC7_CTL2 Package See Table 34-2.

288H 648 IA32_MC8_CTL2 Package See Table 34-2.

289H 649 IA32_MC9_CTL2 Package See Table 34-2.

28AH 650 IA32_MC10_CTL2 Package See Table 34-2.

28BH 651 IA32_MC11_CTL2 Package See Table 34-2.

28CH 652 IA32_MC12_CTL2 Package See Table 34-2.

28DH 653 IA32_MC13_CTL2 Package See Table 34-2.

28EH 654 IA32_MC14_CTL2 Package See Table 34-2.

28FH 655 IA32_MC15_CTL2 Package See Table 34-2.

290H 656 IA32_MC16_CTL2 Package See Table 34-2.

291H 657 IA32_MC17_CTL2 Package See Table 34-2.

292H 658 IA32_MC18_CTL2 Package See Table 34-2.

293H 659 IA32_MC19_CTL2 Package See Table 34-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.
34-166 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

Table 34-12. Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-167

MODEL-SPECIFIC REGISTERS (MSRS)
436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS,” and Chapter 16.

Table 34-12. Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-168 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.8 MSRS IN THE THIRD GENERATION INTEL CORE
PROCESSOR FAMILY (INTEL® MICROARCHITECTURE
CODE NAME IVY BRIDGE)

The third generation Intel Core processor family (Intel® microarchitecture code
name Ivy Bridge) supports the MSR interfaces listed in Table 34-10, Table 34-11 and
Table 34-13.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_RAPL_PERF_
STATUS

Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O)
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section
14.7.5, “DRAM RAPL Domain.”

Table 34-13. Additional MSRs Supported by Third Generation Intel Core Processors
(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. Frequency = ratio * 100 MHz.

Table 34-12. Selected MSRs Supported by Intel Xeon Processors E5 Family (Intel
Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-169

MODEL-SPECIFIC REGISTERS (MSRS)
27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode.
(R/O)

When set to 1, indicates that TDP Limits for
Turbo mode are programmable, and when set
to 0, indicates TDP Limit for Turbo mode is not
programmable.

31:30 Reserved

32 Package Low Power Mode Support (LPM). (R/O)

When set to 1, indicates that LPM is
supported, and when set to 0, indicates LPM is
not supported.

34:33 Package Number of ConfigTDP Levels. (R/O)

00: Only nominal TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 100MHz.

55:48 Package Minimum Operating Ratio. (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

Table 34-13. Additional MSRs Supported by Third Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-170 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
648H 1608 MSR_CONFIG_TDP
_NOMINAL

Package Nominal TDP Ratio. (R/O)

7:0 Config_TDP_Nominal.

Nominal TDP level ratio to be used for this
specific processor (in units of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP
_LEVEL1

Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP
Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1
ratio to be used for this specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting
allowed for ConfigTDP Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting
allowed for ConfigTDP Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP
_LEVEL2

Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP
Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2
ratio to be used for this specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting
allowed for ConfigTDP Level 2.

47 Reserved

Table 34-13. Additional MSRs Supported by Third Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3C 34-171

MODEL-SPECIFIC REGISTERS (MSRS)
34.9 MSRS IN THE PENTIUM® 4 AND INTEL® XEON®
PROCESSORS

Table 34-14 lists MSRs (architectural and model-specific) that are defined across
processor generations based on Intel NetBurst microarchitecture. The processor can
be identified by its CPUID signatures of DisplayFamily encoding of 0FH, see
Table 34-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that

the functions of these MSRs and their addresses remain the same for succeeding
families of IA-32 processors.

62:48 PKG_MIN_PWR_LVL2. MIN Power setting
allowed for ConfigTDP Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP
_CONTROL

Package ConfigTDP Control. (R/W)

1:0 TDP_LEVEL (RW/L).

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L).

When this bit is set, the content of this
register is locked until a reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTI
VATION_RATIO

Package ConfigTDP Control. (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L).

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L).

When this bit is set, the content of this
register is locked until a reset.

63:32 Reserved.

Table 34-13. Additional MSRs Supported by Third Generation Intel Core Processors
(Contd.)(Intel Microarchitecture Code Name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
34-172 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
• MSRs with an “MSR_” prefix are model specific with respect to address function-
alities. The column “Model Availability” lists the model encoding value(s) within
the Pentium 4 and Intel Xeon processor family at the specified register address.
The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 34.13, “MSRs in
Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2,
3, 4, 6

Shared See Section 34.13, “MSRs in
Pentium Processors.”

6H 6 IA32_MONITOR_
FILTER_LINE_SIZE

3, 4, 6 Shared See Section 8.10.5,
“Monitor/Mwait Address Range
Determination.”

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2,
3, 4, 6

Unique Time Stamp Counter.

See Table 34-2.

On earlier processors, only the
lower 32 bits are writable. On any
write to the lower 32 bits, the
upper 32 bits are cleared. For
processor family 0FH, models 3
and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2,
3, 4, 6

Shared Platform ID. (R). See Table 34-2.

The operating system can use this
MSR to determine “slot”
information for the processor and
the proper microcode update to
load.

1BH 27 IA32_APIC_BASE 0, 1, 2,
3, 4, 6

Unique APIC Location and Status. (R/W)

See Table 34-2. See Section
10.4.4, “Local APIC Status and
Location.”

2AH 42 MSR_EBC_HARD_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Hard Power-On
Configuration.

(R/W) Enables and disables
processor features; (R) indicates
current processor configuration.
Vol. 3C 34-173

MODEL-SPECIFIC REGISTERS (MSRS)
0 Output Tri-state Enabled. (R)

Indicates whether tri-state output
is enabled (1) or disabled (0) as set
by the strapping of SMI#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

1 Execute BIST. (R)

Indicates whether the execution
of the BIST is enabled (1) or
disabled (0) as set by the
strapping of INIT#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

2 In Order Queue Depth. (R)

Indicates whether the in order
queue depth for the system bus is
1 (1) or up to 12 (0) as set by the
strapping of A7#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

3 MCERR# Observation Disabled.
(R)

Indicates whether MCERR#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A9#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-174 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
4 BINIT# Observation Enabled. (R)

Indicates whether BINIT#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A10#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

6:5 APIC Cluster ID. (R)

Contains the logical APIC cluster ID
value as set by the strapping of
A12# and A11#. The logical
cluster ID value is written into the
field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

7 Bus Park Disable. (R)

Indicates whether bus park is
enabled (0) or disabled (1) as set
by the strapping of A15#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

11:8 Reserved.

13:12 Agent ID. (R)

Contains the logical agent ID value
as set by the strapping of BR[3:0].
The logical ID value is written into
the field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Soft Power-On
Configuration. (R/W)

Enables and disables processor
features.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-175

MODEL-SPECIFIC REGISTERS (MSRS)
0 RCNT/SCNT On Request
Encoding Enable. (R/W)

Controls the driving of RCNT/SCNT
on the request encoding. Set to
enable (1); clear to disabled (0,
default).

1 Data Error Checking Disable.
(R/W)

Set to disable system data bus
parity checking; clear to enable
parity checking.

2 Response Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

3 Address/Request Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

4 Initiator MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator bus requests (default);
clear to enable.

5 Internal MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator internal errors (default);
clear to enable.

6 BINIT# Driver Disable. (R/W)

Set to disable BINIT# driver
(default); clear to enable driver.

63:7 Reserved.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-176 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2CH 44 MSR_EBC_
FREQUENCY_ID

2,3, 4,
6

Shared Processor Frequency
Configuration.

The bit field layout of this MSR
varies according to the MODEL
value in the CPUID version
information. The following bit field
layout applies to Pentium 4 and
Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current
processor frequency configuration.

15:0 Reserved.

18:16 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 011B.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-177

MODEL-SPECIFIC REGISTERS (MSRS)
266.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 000B and model encoding = 3
or 4.

333.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System
Bus Frequency Ratio. (R)

The processor core clock
frequency to system bus
frequency ratio observed at the
de-assertion of the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_
FREQUENCY_ID

0, 1 Shared Processor Frequency
Configuration. (R)

The bit field layout of this MSR
varies according to the MODEL
value of the CPUID version
information. This bit field layout
applies to Pentium 4 and Xeon
Processors with MODEL encoding
less than 2.

Indicates current processor
frequency configuration.

20:0 Reserved.

23:21 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-178 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63:24 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

3, 4, 6 Unique Control Features in IA-32
Processor. (R/W). See Table 34-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2,
3, 4, 6

Shared BIOS Update Trigger Register.
(W) See Table 34-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2,
3, 4, 6

Unique BIOS Update Signature ID. (R/W)

See Table 34-2.

9BH 155 IA32_SMM_MONITOR_
CTL

3, 4, 6 Unique SMM Monitor Configuration.
(R/W). See Table 34-2.

FEH 254 IA32_MTRRCAP 0, 1, 2,
3, 4, 6

Unique MTRR Information.

See Section 11.11.1, “MTRR
Feature Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2,
3, 4, 6

Unique CS register target for CPL 0
code. (R/W). See Table 34-2.

See Section 5.8.7, “Performing
Fast Calls to System Procedures
with the SYSENTER and SYSEXIT
Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2,
3, 4, 6

Unique Stack pointer for CPL 0 stack.
(R/W). See Table 34-2.

See Section 5.8.7, “Performing
Fast Calls to System Procedures
with the SYSENTER and SYSEXIT
Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2,
3, 4, 6

Unique CPL 0 code entry point. (R/W).

See Table 34-2. See Section 5.8.7,
“Performing Fast Calls to System
Procedures with the SYSENTER
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2,
3, 4, 6

Unique Machine Check Capabilities. (R)

See Table 34-2. See Section
15.3.1.1, “IA32_MCG_CAP MSR.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-179

MODEL-SPECIFIC REGISTERS (MSRS)
17AH 378 IA32_MCG_STATUS 0, 1, 2,
3, 4, 6

Unique Machine Check Status. (R). See
Table 34-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable.
(R/W). See Table 34-2.

See Section 15.3.1.3,
“IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2,
3, 4, 6

Unique Machine Check EAX/RAX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

181H 385 MSR_MCG_RBX 0, 1, 2,
3, 4, 6

Unique Machine Check EBX/RBX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

182H 386 MSR_MCG_RCX 0, 1, 2,
3, 4, 6

Unique Machine Check ECX/RCX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-180 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
183H 387 MSR_MCG_RDX 0, 1, 2,
3, 4, 6

Unique Machine Check EDX/RDX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

184H 388 MSR_MCG_RSI 0, 1, 2,
3, 4, 6

Unique Machine Check ESI/RSI Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

185H 389 MSR_MCG_RDI 0, 1, 2,
3, 4, 6

Unique Machine Check EDI/RDI Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

186H 390 MSR_MCG_RBP 0, 1, 2,
3, 4, 6

Unique Machine Check EBP/RBP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-181

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

187H 391 MSR_MCG_RSP 0, 1, 2,
3, 4, 6

Unique Machine Check ESP/RSP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2,
3, 4, 6

Unique Machine Check EFLAGS/RFLAG
Save State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

189H 393 MSR_MCG_RIP 0, 1, 2,
3, 4, 6

Unique Machine Check EIP/RIP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-182 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
18AH 394 MSR_MCG_MISC 0, 1, 2,
3, 4, 6

Unique Machine Check Miscellaneous.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

0 DS.

When set, the bit indicates that a
page assist or page fault occurred
during DS normal operation. The
processors response is to shut
down.

The bit is used as an aid for
debugging DS handling code. It is
the responsibility of the user (BIOS
or operating system) to clear this
bit for normal operation.

63:1 Reserved.

18BH -
18FH

395 MSR_MCG_
RESERVED1 -
MSR_MCG_
RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2,
3, 4, 6

Unique Machine Check R8.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2,
3, 4, 6

Unique Machine Check R9D/R9.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-183

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2,
3, 4, 6

Unique Machine Check R10.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

193H 403 MSR_MCG_R11 0, 1, 2,
3, 4, 6

Unique Machine Check R11.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2,
3, 4, 6

Unique Machine Check R12.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-184 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2,
3, 4, 6

Unique Machine Check R13.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2,
3, 4, 6

Unique Machine Check R14.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2,
3, 4, 6

Unique Machine Check R15.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-185

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 34-2. See Section 14.1,
“Enhanced Intel Speedstep®
Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 34-2. See Section 14.1,
“Enhanced Intel Speedstep®
Technology.”

19AH 410 IA32_CLOCK_
MODULATION

0, 1, 2,
3, 4, 6

Unique Thermal Monitor Control. (R/W)

See Table 34-2.

See Section 14.5.3, “Software
Controlled Clock Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

0, 1, 2,
3, 4, 6

Unique Thermal Interrupt Control. (R/W)

See Section 14.5.2, “Thermal
Monitor,” and see Table 34-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2,
3, 4, 6

Shared Thermal Monitor Status. (R/W)

See Section 14.5.2, “Thermal
Monitor,” and see Table 34-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors:
When read, specifies the value of
the target TM2 transition last
written. When set, it sets the next
target value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6
processors: When read, specifies
the value of the target TM2
transition last written. Writes may
cause #GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2,
3, 4, 6

Shared Enable Miscellaneous Processor
Features. (R/W)

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-186 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
0 Fast-Strings Enable. See
Table 34-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility
Mode Enable.

3 Thermal Monitor 1 Enable.

See Section 14.5.2, “Thermal
Monitor,” and see Table 34-2.

4 Split-Lock Disable.

When set, the bit causes an #AC
exception to be issued instead of a
split-lock cycle. Operating systems
that set this bit must align system
structures to avoid split-lock
scenarios.

When the bit is clear (default),
normal split-locks are issued to the
bus.

This debug feature is specific to
the Pentium 4 processor.

5 Reserved.

6 Third-Level Cache Disable. (R/W)

When set, the third-level cache is
disabled; when clear (default) the
third-level cache is enabled. This
flag is reserved for processors
that do not have a third-level
cache.

Note that the bit controls only the
third-level cache; and only if
overall caching is enabled through
the CD flag of control register CR0,
the page-level cache controls,
and/or the MTRRs.

See Section 11.5.4, “Disabling and
Enabling the L3 Cache.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-187

MODEL-SPECIFIC REGISTERS (MSRS)
7 Performance Monitoring
Available. (R). See Table 34-2.

8 Suppress Lock Enable.

When set, assertion of LOCK on
the bus is suppressed during a
Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable.

When set, disables the prefetch
queue. When clear (default),
enables the prefetch queue.

10 FERR# Interrupt Reporting
Enable. (R/W)

When set, interrupt reporting
through the FERR# pin is enabled;
when clear, this interrupt
reporting function is disabled.

When this flag is set and the
processor is in the stop-clock state
(STPCLK# is asserted), asserting
the FERR# pin signals to the
processor that an interrupt (such
as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that
the processor should return to
normal operation to handle the
interrupt.

This flag does not affect the
normal operation of the FERR# pin
(to indicate an unmasked floating-
point error) when the STPCLK#
pin is not asserted.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-188 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
11 Branch Trace Storage
Unavailable (BTS_UNAVILABLE).
(R). See Table 34-2.

When set, the processor does not
support branch trace storage
(BTS); when clear, BTS is
supported.

12 PEBS_UNAVILABLE: Precise
Event Based Sampling
Unavailable. (R). See Table 34-2.

When set, the processor does not
support precise event-based
sampling (PEBS); when clear, PEBS
is supported.

13 3 TM2 Enable. (R/W)

When this bit is set (1) and the
thermal sensor indicates that the
die temperature is at the pre-
determined threshold, the
Thermal Monitor 2 mechanism is
engaged. TM2 will reduce the bus
to core ratio and voltage according
to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default),
the processor does not change the
VID signals or the bus to core ratio
when the processor enters a
thermal managed state.

If the TM2 feature flag (ECX[8]) is
not set to 1 after executing CPUID
with EAX = 1, then this feature is
not supported and BIOS must not
alter the contents of this bit
location. The processor is
operating out of spec if both this
bit and the TM1 bit are set to
disabled states.

17:14 Reserved.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-189

MODEL-SPECIFIC REGISTERS (MSRS)
18 3, 4, 6 ENABLE MONITOR FSM. (R/W)

See Table 34-2.

19 Adjacent Cache Line Prefetch
Disable. (R/W)

When set to 1, the processor
fetches the cache line of the 128-
byte sector containing currently
required data. When set to 0, the
processor fetches both cache lines
in the sector.

Single processor platforms should
not set this bit. Server platforms
should set or clear this bit based
on platform performance
observed in validation and testing.

BIOS may contain a setup option
that controls the setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL. (R/W)

See Table 34-2.

Setting this can cause unexpected
behavior to software that
depends on the availability of
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

See Table 34-2.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-190 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
24 L1 Data Cache Context Mode.
(R/W)

When set, the L1 data cache is
placed in shared mode; when clear
(default), the cache is placed in
adaptive mode. This bit is only
enabled for IA-32 processors that
support Intel Hyper-Threading
Technology. See Section 11.5.6,
“L1 Data Cache Context Mode.”

When L1 is running in adaptive
mode and CR3s are identical, data
in L1 is shared across logical
processors. Otherwise, L1 is not
shared and cache use is
competitive.

If the Context ID feature flag
(ECX[10]) is set to 0 after
executing CPUID with EAX = 1, the
ability to switch modes is not
supported. BIOS must not alter the
contents of
IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable. (R/W)

See Table 34-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements.
(R)

17:0 Reserved.

18 PLATFORM Requirements.

When set to 1, indicates the
processor has specific platform
requirements. The details of the
platform requirements are listed in
the respective data sheets of the
processor.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-191

MODEL-SPECIFIC REGISTERS (MSRS)
63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record From
Linear IP. (R)

Contains a pointer to the last
branch instruction that the
processor executed prior to the
last exception that was generated
or the last interrupt that was
handled.

See Section 17.8.3, “Last
Exception Records.”

31:0 From Linear IP.

Linear address of the last branch
instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP.

Linear address of the last branch
instruction (If IA-32e mode is
active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record To Linear
IP. (R)

This area contains a pointer to the
target of the last branch
instruction that the processor
executed prior to the last
exception that was generated or
the last interrupt that was
handled.

See Section 17.8.3, “Last
Exception Records.”

31:0 From Linear IP.

Linear address of the target of the
last branch instruction.

63:32 Reserved.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-192 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1D8H 472 63:0 Unique From Linear IP.

Linear address of the target of the
last branch instruction (If IA-32e
mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2,
3, 4, 6

Unique Debug Control. (R/W)

Controls how several debug
features are used. Bit definitions
are discussed in the referenced
section.

See Section 17.8.1,
“MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2,
3, 4, 6

Unique Last Branch Record Stack TOS.
(R)

Contains an index (0-3 or 0-15)
that points to the top of the last
branch record stack (that is, that
points the index of the MSR
containing the most recent branch
record).

See Section 17.8.2, “LBR Stack for
Processors Based on Intel
NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-
68FH.

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0. (R/W)

One of four last branch record
registers on the last branch record
stack. It contains pointers to the
source and destination instruction
for one of the last four branches,
exceptions, or interrupts that the
processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-
1DEH are available only on family
0FH, models 0H-02H. They have
been replaced by the MSRs at
680H-68FH and 6C0H-6CFH.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-193

MODEL-SPECIFIC REGISTERS (MSRS)
See Section 17.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

200H 512 IA32_MTRR_PHYS
BASE0

0, 1, 2,
3, 4, 6

Shared Variable Range Base MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

201H 513 IA32_MTRR_
PHYSMASK0

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

202H 514 IA32_MTRR_
PHYSBASE1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

203H 515 IA32_MTRR_
PHYSMASK1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

204H 516 IA32_MTRR_
PHYSBASE2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

205H 517 IA32_MTRR_
PHYSMASK2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs”.

206H 518 IA32_MTRR_
PHYSBASE3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-194 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
207H 519 IA32_MTRR_
PHYSMASK3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

208H 520 IA32_MTRR_
PHYSBASE4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

209H 521 IA32_MTRR_
PHYSMASK4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20AH 522 IA32_MTRR_
PHYSBASE5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20BH 523 IA32_MTRR_
PHYSMASK5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20CH 524 IA32_MTRR_
PHYSBASE6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20DH 525 IA32_MTRR_
PHYSMASK6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20EH 526 IA32_MTRR_
PHYSBASE7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20FH 527 IA32_MTRR_
PHYSMASK7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_
00000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_
80000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-195

MODEL-SPECIFIC REGISTERS (MSRS)
259H 601 IA32_MTRR_FIX16K_
A0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_
C0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_
C8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_
D0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_
D8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_
E0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_
E8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_
F0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_
F8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2,
3, 4, 6

Unique Page Attribute Table.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

0, 1, 2,
3, 4, 6

Shared Default Memory Types. (R/W)

see Table 34-2

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-196 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
300H 768 MSR_BPU_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

308H 776 MSR_FLAME_
COUNTER0

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

309H 777 MSR_FLAME_
COUNTER1

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

30AH 778 MSR_FLAME_
COUNTER2

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

30BH 779 MSR_FLAME_
COUNTER3

0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-197

MODEL-SPECIFIC REGISTERS (MSRS)
311H 785 MSR_IQ_COUNTER5 0, 1, 2,
3, 4, 6

Shared See Section 18.10.2,
“Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-198 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
370H 880 MSR_IQ_CCCR4 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2,
3, 4, 6

Shared See Section 18.10.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-199

MODEL-SPECIFIC REGISTERS (MSRS)
3AFH 943 MSR_SAAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.10.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.10.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-200 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
3BDH 957 MSR_RAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CAH 970 MSR_ALF_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE
_EVENT

0, 1, 2,
3, 4, 6

Shared See Section 18.10.1, “ESCR MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-201

MODEL-SPECIFIC REGISTERS (MSRS)
3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2,
3, 4, 6

Shared Precise Event-Based Sampling
(PEBS). (R/W)

Controls the enabling of precise
event sampling and replay tagging.

12:0 See Table 19-21.

23:13 Reserved.

24 UOP Tag.

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 18.11.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is called ENABLE_PEBS in
IA-32 processors that do not
support Intel Hyper-Threading
Technology.

26 ENABLE_PEBS_OTH_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 18.11.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is reserved for IA-32
processors that do not support
Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX
_VERT

0, 1, 2,
3, 4, 6

Shared See Table 19-21.

400H 1024 IA32_MC0_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-202 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
401H 1025 IA32_MC0_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC0_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-203

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC1_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC2_STATUS
register is clear. When not
implemented in the processor, all
reads and writes to this MSR will
cause a general-protection
exception.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-204 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
40BH 1035 IA32_MC2_MISC See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC2_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC3_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-205

MODEL-SPECIFIC REGISTERS (MSRS)
40FH 1039 IA32_MC3_MISC 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC3_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC4_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC4_STATUS register is
clear.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-206 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX
Capabilities. (R/O). See
Table 34-2.

See Appendix A.1, “Basic VMX
Information.”

481H 1153 IA32_VMX_PINBASED
_CTLS

3, 4, 6 Unique Capability Reporting Register of
Pin-based VM-execution
Controls. (R/O). See Table 34-2.

See Appendix A.3, “VM-Execution
Controls.”

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of
Primary Processor-based
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution
Controls,” and see Table 34-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of
VM-exit Controls. (R/O)

See Appendix A.4, “VM-Exit
Controls,” and see Table 34-2.

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of
VM-entry Controls. (R/O)

See Appendix A.5, “VM-Entry
Controls,” and see Table 34-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of
Miscellaneous VMX Capabilities.
(R/O)

See Appendix A.6, “Miscellaneous
Data,” and see Table 34-2.

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 0. (R/O)

See Appendix A.7, “VMX-Fixed Bits
in CR0,” and see Table 34-2.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-207

MODEL-SPECIFIC REGISTERS (MSRS)
487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 1. (R/O)

See Appendix A.7, “VMX-Fixed Bits
in CR0,” and see Table 34-2.

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 0. (R/O)

See Appendix A.8, “VMX-Fixed Bits
in CR4,” and see Table 34-2.

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 1. (R/O)

See Appendix A.8, “VMX-Fixed Bits
in CR4,” and see Table 34-2.

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of
VMCS Field Enumeration. (R/O).

See Appendix A.9, “VMCS
Enumeration,” and see Table 34-2.

48BH 1163 IA32_VMX_
PROCBASED_CTLS2

3, 4, 6 Unique Capability Reporting Register of
Secondary Processor-based
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution
Controls,” and see Table 34-2.

600H 1536 IA32_DS_AREA 0, 1, 2,
3, 4, 6

Unique DS Save Area. (R/W). See
Table 34-2.

See Section 18.10.4, “Debug Store
(DS) Mechanism.”

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (680H-68FH). This
part of the stack contains pointers
to the source instruction for one
of the last 16 branches,
exceptions, or interrupts taken by
the processor.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-208 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs at 680H-68FH, 6C0H-
6CfH are not available in processor
releases before family 0FH, model
03H. These MSRs replace MSRs
previously located at 1DBH-
1DEH.which performed the same
function for early releases.

See Section 17.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 680H.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-209

MODEL-SPECIFIC REGISTERS (MSRS)
689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (6C0H-6CFH). This
part of the stack contains pointers
to the destination instruction for
one of the last 16 branches,
exceptions, or interrupts that the
processor took.

See Section 17.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-210 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 6C0H.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-211

MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables. See
Table 34-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address.
(R/W)

See Table 34-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target
Address. (R/W)

See Table 34-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask. (R/W)

See Table 34-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS.
(R/W)

See Table 34-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS.
(R/W)

See Table 34-2.

C000_
0102H

IA32_KERNEL_
GSBASE

3, 4, 6 Unique Swap Target of BASE Address of
GS. (R/W)

See Table 34-2.

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
34-212 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.9.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache
The MSRs listed in Table 34-15 apply to Intel Xeon Processor MP with up to 8MB level
three cache. These processors can be detected by enumerating the deterministic
cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the pres-
ence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (see CPUID instruction for more details).

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If

an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is
unique, this means that each logical processor has its own MSR.

Table 34-15. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table 34-14. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3C 34-213

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs listed in Table 34-16 apply to Intel Xeon Processor 7100 series. These
processors can be detected by enumerating the deterministic cache parameter leaf of
CPUID instruction (with EAX = 4 as input) to detect the presence of the third level
cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in
Table 34-16 are shared between logical processors in the same core, but are repli-
cated for each core.

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control
Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table 34-15. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache (Contd.)

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description
34-214 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-16. MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_C
TL0

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_EMON_L3_CTR_C
TL1

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

107CEH MSR_EMON_L3_CTR_C
TL2

6 Shared GSNPQ Event Control and
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CFH MSR_EMON_L3_CTR_C
TL3

6 Shared GSNPQ Event Control and
Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_C
TL4

6 Shared FSB Event Control and
Counter Register. (R/W)

See Section 18.15,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EMON_L3_CTR_C
TL5

6 Shared FSB Event Control and
Counter Register. (R/W)

107D2H MSR_EMON_L3_CTR_C
TL6

6 Shared FSB Event Control and
Counter Register. (R/W)

107D3H MSR_EMON_L3_CTR_C
TL7

6 Shared FSB Event Control and
Counter Register. (R/W)
Vol. 3C 34-215

MODEL-SPECIFIC REGISTERS (MSRS)
34.10 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™

DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and
Dual-core Intel Xeon processor LV are listed in Table 34-17. The column
“Shared/Unique” applies to Intel Core Duo processor. “Unique” means each
processor core has a separate MSR, or a bit field in an MSR governs only a core inde-
pendently. “Shared” means the MSR or the bit field in an MSR address governs the
operation of both processor cores.

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Section 34.13, “MSRs in Pentium
Processors,” and see Table 34-2.

1H 1 P5_MC_TYPE Unique See Section 34.13, “MSRs in Pentium
Processors,” and see Table 34-2.

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination,” and see Table 34-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 17.12, “Time-Stamp Counter,” and
see Table 34-2.

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R) See Table 34-2.

The operating system can use this MSR to
determine “slot” information for the processor
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location,” and see Table 34-2.

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.
34-216 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
3 MCERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Clock Frequency Ratio. (R/O)

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-217

MODEL-SPECIFIC REGISTERS (MSRS)
3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W)

See Table 34-2.

40H 64 MSR_
LASTBRANCH_0

Unique Last Branch Record 0. (R/W)

One of 8 last branch record registers on the
last branch record stack: bits 31-0 hold the
‘from’ address and bits 63-32 hold the ‘to’
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1

Unique Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_
LASTBRANCH_2

Unique Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_
LASTBRANCH_3

Unique Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_
LASTBRANCH_4

Unique Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_
LASTBRANCH_5

Unique Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_
LASTBRANCH_6

Unique Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_
LASTBRANCH_7

Unique Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (W). See
Table 34-2.

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID (RO). See
Table 34-2.

C1H 193 IA32_PMC0 Unique Performance counter register. See
Table 34-2.

C2H 194 IA32_PMC1 Unique Performance counter register. See
Table 34-2.

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-218 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed. (RO)

This field indicates the scaleable bus clock
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 101B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW). See Table 34-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW). See Table 34-2.

FEH 254 IA32_MTRRCAP Unique See Table 34-2.

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-219

MODEL-SPECIFIC REGISTERS (MSRS)
23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER
_CS

Unique See Table 34-2.

175H 373 IA32_SYSENTER
_ESP

Unique See Table 34-2.

176H 374 IA32_SYSENTER
_EIP

Unique See Table 34-2.

179H 377 IA32_MCG_CAP Unique See Table 34-2.

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) can be used to
restart the program. If this bit is cleared, the
program cannot be reliably restarted.

1 EIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) is directly
associated with the error.

2 MCIP.

When set, this bit indicates that a machine
check has been generated. If a second
machine check is detected while this bit is still
set, the processor enters a shutdown state.
Software should write this bit to 0 after
processing a machine check exception.

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-220 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique See Table 34-2 .

187H 391 IA32_
PERFEVTSEL1

Unique See Table 34-2.

198H 408 IA32_PERF_STAT
US

Shared See Table 34-2.

199H 409 IA32_PERF_CTL Unique See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

See Table 34-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

See Table 34-2 .

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

See Table 34-2.

See Section 14.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features.

(R/W) Allows a variety of processor functions
to be enabled and disabled.

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-221

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W)

See Table 34-2.

6:4 Reserved.

7 Shared Performance Monitoring Available. (R). See
Table 34-2.

9:8 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO). See
Table 34-2.

12 Reserved.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-222 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not
alter the contents of this bit location. The
processor is operating out of spec if both this
bit and the TM1 bit are set to disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W)

1 = Enhanced Intel SpeedStep Technology
enabled

18 Shared ENABLE MONITOR FSM. (R/W)

See Table 34-2.

19 Reserved.

22 Shared Limit CPUID Maxval. (R/W)

See Table 34-2.

Setting this bit may cause behavior in
software that depends on the availability of
CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable. (R/W)

See Table 34-2.

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-223

MODEL-SPECIFIC REGISTERS (MSRS)
1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W)

Controls how several debug features are used.
Bit definitions are discussed in the referenced
section.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved.

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-224 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W). see
Table 34-2.

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-225

MODEL-SPECIFIC REGISTERS (MSRS)
401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-226 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O). See Table 34-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-227

MODEL-SPECIFIC REGISTERS (MSRS)
482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
34-228 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.11 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those
described in Section 34.12 for P6 family processors. The following table describes
new MSRs and MSRs whose behavior has changed on the Pentium M processor.

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O).

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W)

See Table 34-2.

See Section 18.10.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 34-2.

10:0 Reserved.

11 Execute Disable Bit Enable.

63:12 Reserved

Table 34-17. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3C 34-229

MODEL-SPECIFIC REGISTERS (MSRS)
Table 34-18. MSRs in Pentium M Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 34.13, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 34.13, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_
COUNTER

See Section 17.12, “Time-Stamp Counter,” and see
Table 34-2.

17H 23 IA32_PLATFORM_ID Platform ID. (R). See Table 34-2.

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration.

(R/W) Enables and disables processor features. (R)
Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable. (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled
34-230 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0. (R/W)

One of 8 last branch record registers on the last
branch record stack: bits 31-0 hold the ‘from’
address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-231

MODEL-SPECIFIC REGISTERS (MSRS)
42H 66 MSR_LASTBRANCH_2 Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache data
bus. ECC is always generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the
cache data bus is always enabled.

7:6 Reserved.

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-232 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond
to the WBINVD instruction or the assertion of the
FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count. (RO)

Indicates the number of hardware unit error
reporting banks available in the processor.

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements the
MSR_MCG_CTL register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) can be used to restart the program. If
this bit is cleared, the program cannot be reliably
restarted.

1 EIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) is directly associated with the error.

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-233

MODEL-SPECIFIC REGISTERS (MSRS)
2 MCIP.

When set, this bit indicates that a machine check
has been generated. If a second machine check is
detected while this bit is still set, the processor
enters a shutdown state. Software should write
this bit to 0 after processing a machine check
exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 34-2.

199H 409 IA32_PERF_CTL See Table 34-2.

19AH 410 IA32_CLOCK_
MODULATION

Clock Modulation. (R/W). See Table 34-2.

See Section 14.5.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

Thermal Interrupt Control. (R/W). See
Table 34-2.

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Thermal Monitor Status. (R/W). See Table 34-2.

See Section 14.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die
modulation of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither TM1
nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features.
(R/W)

Allows a variety of processor functions to be
enabled and disabled.

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-234 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Reserved.

3 Automatic Thermal Control Circuit Enable. (R/W)

1 = Setting this bit enables the thermal control
circuit (TCC) portion of the Intel Thermal
Monitor feature. This allows processor clocks
to be automatically modulated based on the
processor's thermal sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit
determines if the thermal control circuit (TCC) will
be activated when the processor's internal
thermal sensor determines the processor is about
to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the
processors clocks will be forced to a 50% duty
cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available. (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to indicate
a pending break event within the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace
storage (BTS)

0 = BTS is supported

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-235

MODEL-SPECIFIC REGISTERS (MSRS)
12 Precise Event Based Sampling Unavailable. (RO)

1 = Processor does not support precise event-
based sampling (PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable.
(R/W)

1 = Enhanced Intel SpeedStep Technology
enabled.

On the Pentium M processor, this bit may be
configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled. xTPR
messages are optional messages that allow the
processor to inform the chipset of its priority. The
default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control. (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced section.

See Section 17.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors).”

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-236 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 17.11.2, “Last Branch and Last Exception
MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 17.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 17.11.2, “Last Branch and Last Exception
MSRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

Default Memory Types. (R/W)

Sets the memory type for the regions of physical
memory that are not mapped by the MTRRs.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-237

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-238 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.12 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table
that are shaded are available only in the Pentium II and Pentium III processors.
Beginning with the Pentium 4 processor, some of the MSRs in this list have been
designated as “architectural” and have had their names changed. See Table 34-2 for
a list of the architectural MSRs.

600H 1536 IA32_DS_AREA DS Save Area. (R/W). See Table 34-2.

Points to the DS buffer management area, which is
used to manage the BTS and PEBS buffers. See
Section 18.10.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS buffer
management area.

63:32 Reserved.

Table 34-19. MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 34.13, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 34.13, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.12, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R)

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

49:0 Reserved.

Table 34-18. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-239

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit.

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset.

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration. (R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-240 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
2 Response Error Checking Enable FRCERR
Observation Enable. (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled

4 BERR# Enable for Initiator Bus Requests. (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors.
(R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled. (R)

1 = Enabled
0 = Disabled

9 Execute BIST. (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled. (R)

1 = Enabled
0 = Disabled

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-241

MODEL-SPECIFIC REGISTERS (MSRS)
13 In Order Queue Depth. (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector. (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable. (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID. (R)

19:18 System Bus Frequency. (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID. (R)

25:22 Clock Frequency Ratio. (R)

26 Low Power Mode Enable. (R/W)

27 Clock Frequency Ratio.

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register.

29:0 Reserved.

30 Streaming Buffer Disable.

31 Disable LOCK#.

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and
read from the L2

 89 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and
read from the L2

 8A 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and
read from the L2

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-242 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 BIOS_SIGN/BBL_CR_D3[6
3:0]

BIOS Update Signature Register or Chunk 3 data
register D[63:0].

Used to write to and read from the L2 depending
on the usage model.

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

 116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address
(A31-A3) to L2 during cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and
read ECC to/from L2

 119 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to
be issued via cache configuration accesses
mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid -
00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-243

MODEL-SPECIFIC REGISTERS (MSRS)
BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11A 282 BBL_CR_TRIG Trigger register: used to initiate a cache
configuration accesses access, Write only with Data
= 0.

 11B 283 BBL_CR_BUSY Busy register: indicates when a cache configuration
accesses L2 command is in progress. D[0] = 1 =
BUSY

11E 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-244 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-245

MODEL-SPECIFIC REGISTERS (MSRS)
16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0.

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

22 ENABLE.

Enables the counting of performance events in
both counters

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-246 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin.

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-247

MODEL-SPECIFIC REGISTERS (MSRS)
2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-248 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this
bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3C 34-249

MODEL-SPECIFIC REGISTERS (MSRS)
404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0,
4, 57, and 61 are hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented
in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented
in the P6 family processors.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family

processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR

(model-specific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be
cleared. This bit is write-once. The processor number feature will be disabled until the processor
is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mecha-
nism. If the FSB frequency selected is greater than the internal FSB frequency the processor will
shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to
use bit 11 to implement its own shutdown policy.

Table 34-19. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
34-250 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)
34.13 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR,
P5_MC_TYPE, and TSC MSRs (named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and
IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) are architectural; that is,
code that accesses these registers will run on Pentium 4 and P6 family processors
without generating exceptions (see Section 34.1, “Architectural MSRs”). The CESR,
CTR0, and CTR1 MSRs are unique to Pentium processors; code that accesses these
registers will generate exceptions on Pentium 4 and P6 family processors.

Table 34-20. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check
Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check
Exception Handling.”

10H 16 TSC See Section 17.12, “Time-Stamp Counter.”

11H 17 CESR See Section 18.18.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.18.3, “Events Counted.”

13H 19 CTR1 Section 18.18.3, “Events Counted.”
Vol. 3C 34-251

MODEL-SPECIFIC REGISTERS (MSRS)
34-252 Vol. 3C

APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indi-
cated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX
features.

Support for specific features detailed in Chapter 24 and other VMX chapters is deter-
mined by reading values from a set of capability MSRs. These MSRs are indexed
starting at MSR address 480H. VMX capability MSRs are read-only; an attempt to
write them (with WRMSR) produces a general-protection exception (#GP(0)). They
do not exist on processors that do not support VMX operation; an attempt to read
them (with RDMSR) on such processors produces a general-protection exception
(#GP(0)).

A.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor.

Logical processors that use the same VMCS revision identifier use the same size
for VMCS regions (see next item)

• Bits 44:32 report the number of bytes that software should allocate for the
VMXON region and any VMCS region. It is a value greater than 0 and at most
4096 (bit 44 is set if and only if bits 43:32 are clear).

• Bit 48 indicates the width of the physical addresses that may be used for the
VMXON region, each VMCS, and data structures referenced by pointers in a VMCS
(I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0,
these addresses are limited to the processor’s physical-address width.1 If the bit
is 1, these addresses are limited to 32 bits. This bit is always 0 for processors that
support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment
of system-management interrupts and system-management mode. See Section
33.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the
VMCS for VMREAD and VMWRITE and to access the VMCS, data structures
referenced by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas
for VMX transitions), and the MSEG header during VM entries, VM exits, and in
VMX non-root operation.2

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the pro-
cessor's physical address width.
Vol. 3C A-1

VMX CAPABILITY REPORTING FACILITY
The first processors to support VMX operation use the write-back type. The
values used are given in Table A-1.

If software needs to access these data structures (e.g., to modify the contents of
the MSR bitmaps), it can configure the paging structures to map them into the
linear-address space. If it does so, it should establish mappings that use the
memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit
instruction-information field on VM exits due to execution of the INS and OUTS
instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See
Appendix A.2 for details. It also reports support for the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS,
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See
Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 24, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.

2. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the
logical processor uses the UC memory type to access the indicated data structures, regardless of
the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The processor will also use the UC
memory type if the setting of CR0.CD on this logical processor (or another logical processor on
the same physical processor) would cause it to do so for all memory accesses. The values of
IA32_MTRR_DEF_TYPE.E and CR0.CD do not affect the value reported in
IA32_VMX_BASIC[53:50].

Table A-1. Memory Types Used For VMCS Access
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

1. Alternatively, software may map any of these regions or structures with the UC memory type.
(This may be necessary for the MSEG header.) Doing so is discouraged unless necessary as it will
cause the performance of software accesses to those structures to suffer. The processor will
continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the
exceptions noted.
A-2 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
Software can discover the default setting of a reserved control by consulting the
appropriate VMX capability MSR (see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to 0 or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting. For that reason, it is useful for software to know the default
settings of the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the
IA32_VMX_BASIC MSR to indicate whether any of the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are

reserved and must be 1. VM entry will fail if any of these controls are 1 (see
Section 26.2.1).

• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls
are reserved, and some (but not necessarily all) may be 0. The CPU supports four
(4) new VMX capability MSRs: IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for
details. (These MSRs are not supported if bit 55 of the IA32_VMX_BASIC MSR is
read as 0.)

See Section 30.5.1 for recommended software algorithms for proper capability
detection of the default1 controls.

A.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the
primary processor-based VM-execution controls, and the secondary processor-based
VM-execution controls. These are described in Appendix A.3.1, Appendix A.3.2, and
Appendix A.3.3, respectively.

A.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings
of most of the pin-based VM-execution controls (see Section 24.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the pin-based VM-execution controls) to be 0 if bit X in the MSR
is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Vol. 3C A-3

VMX CAPABILITY REPORTING FACILITY
Exceptions are made for the pin-based VM-execution controls in the default1
class (see Appendix A.2). These are bits 1, 2, and 4; the corresponding bits of the
IA32_VMX_PINBASED_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-
based VM-execution control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PINBASED_CTLS MSR (see below) reports which of the
pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) reports on the allowed
settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the pin-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the pin-based VM-execution controls is contained in
the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PINBASED_CTLS
MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the pin-based VM-execution controls is contained in
the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software knows that
the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4,
there is no need for software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed
settings of most of the primary processor-based VM-execution controls (see Section
24.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the primary processor-based VM-execution controls) to be 0 if
bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if
control X is 0.
A-4 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
Exceptions are made for the primary processor-based VM-execution controls in
the default1 class (see Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26;
the corresponding bits of the IA32_VMX_PROCBASED_CTLS MSR are always read
as 1. The treatment of these controls by VM entry is determined by bit 55 in the
IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the
primary processor-based VM-execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PROCBASED_CTLS MSR (see below) reports which of the
primary processor-based VM-execution controls in the default1 class can be 0
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) reports on the allowed
settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the primary processor-based VM-execution controls is
contained in the IA32_VMX_PROCBASED_CTLS MSR. (The
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the processor-based VM-execution controls is contained in the
IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that software knows that
the default1 class of processor-based VM-execution controls contains bits 1, 4–6,
8, 13–16, and 26, there is no need for software to consult the
IA32_VMX_PROCBASED_CTLS MSR.

A.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed
settings of the secondary processor-based VM-execution controls (see Section
24.6.2). VM entries perform the following checks:
Vol. 3C A-5

VMX CAPABILITY REPORTING FACILITY
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always
0. This fact indicates that VM entry allows each bit of the secondary processor-
based VM-execution controls to be 0 (reserved bits must be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not
allowed for any reserved bit. VM entry allows control X (bit X of the secondary
processor-based VM-execution controls) to be 1 if bit 32+X in the MSR is set to 1;
if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate
secondary controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the
1-setting of the “activate secondary controls” VM-execution control (only if bit 63 of
the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of
most of the VM-exit controls (see Section 24.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the VM-exit controls) to be 0 if bit X in the MSR is cleared to 0;
if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix
A.2). These are bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of
the IA32_VMX_EXIT_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any
VM-exit control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_EXIT_CTLS MSR (see below) reports which of the VM-exit
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS
MSR (index 48FH) reports on the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the VM-exit controls:
A-6 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the
allowed settings of the VM-exit controls is contained in the
IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the VM-exit controls is contained in the
IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the
default1 class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17,
there is no need for software to consult the IA32_VMX_EXIT_CTLS MSR.

A.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of
most of the VM-entry controls (see Section 24.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the VM-entry controls) to be 0 if bit X in the MSR is cleared to
0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see
Appendix A.2). These are bits 0–8 and 12; the corresponding bits of the
IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any
VM-entry control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) reports which of the
VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X
is 1 in the VM-entry controls and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports on the allowed
settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the VM-entry controls is contained in the
Vol. 3C A-7

VMX CAPABILITY REPORTING FACILITY
IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the VM-entry controls is contained in the
IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for
software to consult the IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the

VMX-preemption timer and that of the timestamp counter (TSC). Specifically, the
VMX-preemption timer (if it is active) counts down by 1 every time bit X in the
TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e
mode guest” VM-entry control; see Section 27.2 for more details. This bit is read
as 1 on any logical processor that supports the 1-setting of the “unrestricted
guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-
tation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail
if it attempts to establish that activity state. All implementations support
VM entry to activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor.
This number is a value between 0 and 256, inclusive (bit 24 is set if and only if
bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that
should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the
VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is
N, then 512 * (N + 1) is the recommended maximum number of MSRs to be
included in each list. If the limit is exceeded, undefined processor behavior may
result (including a machine check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1.
VMXOFF unblocks SMIs unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section
33.14.4).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 15:9 and bits 31:29 are reserved and are read as 0.
A-8 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
A.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR
(index 487H) indicate how bits in CR0 may be set in VMX operation. They report on
bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX operation. If
bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX opera-
tion. Similarly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to
0 in VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR0_FIXED0,
then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus,
each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both
MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR
(index 489H) indicate how bits in CR4 may be set in VMX operation. They report on
bits in CR4 that are allowed to be 0 and 1, respectively, in VMX operation. If bit X is 1
in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX
operation. It is always the case that, if bit X is 1 in IA32_VMX_CR4_FIXED0, then
that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in IA32_VMX_CR4_FIXED1,
then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed
to 0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in
IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX_CR4_FIXED1).

A.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist soft-
ware in enumerating fields in the VMCS.

As noted in Section 24.10.2, each field in the VMCS is associated with a 32-bit
encoding which is structured as follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width

and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the
encoding of any field supported by the processor:
Vol. 3C A-9

VMX CAPABILITY REPORTING FACILITY
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the
capabilities of the logical processor with regard to virtual-processor identifiers
(VPIDs, Section 28.1) and extended page tables (EPT, Section 28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT

paging-structure entries in which bits 2:0 have value 100b (indicating an
execute-only translation).

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE

to map a 2-Mbyte page (by setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT

PDPTE to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 29 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section

28.2.4).
• Support for the INVVPID instruction (see Chapter 29 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3C and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is
supported.

• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33,
and bits 63:44 are reserved and are read as 0.
A-10 Vol. 3C

VMX CAPABILITY REPORTING FACILITY
The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-
setting of the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the
“enable EPT” VM-execution control (only if bit 33 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the “enable VPID” VM-
execution control (only if bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).

A.11 VM FUNCTIONS
The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the
VM-function controls (see Section 24.6.14). VM entry allows bit X of the VM-function
controls to be 1 if bit X in the MSR is set to 1; if bit X in the MSR is cleared to 0,
VM entry fails if bit X of the VM-function controls, the “activate secondary controls”
primary processor-based VM-execution control, and the “enable VM functions”
secondary processor-based VM-execution control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of
the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of the “enable VM func-
tions” secondary processor-based VM-execution control (only if bit 45 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1).
Vol. 3C A-11

VMX CAPABILITY REPORTING FACILITY
A-12 Vol. 3C

APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by
VMREAD and VMWRITE. Section 24.10.2 describes the structure of the encoding
space (the meanings of the bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

B.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state
areas and the host-state area contain 16-bit fields. As noted in Section 24.10.2, each
16-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such
encoding is thus an even number.

B.1.1 16-Bit Control Field
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. There is only one such 16-bit field as
given in Table B-1.

B.1.2 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-2 enumerates
16-bit guest-state fields.

Table B-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution

control.

000000000B 00000000H

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H
Vol. 3C B-1

FIELD ENCODING IN VMCS
B.1.3 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table B-3 enumerates
the 16-bit host-state fields.

B.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit
fields only for controls and for guest state. As noted in Section 24.10.2, every 64-bit
field has two encodings, which differ on bit 0, the access type. Thus, each such field
has an even encoding for full access and an odd encoding for high access.

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Table B-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding
B-2 Vol. 3C

FIELD ENCODING IN VMCS
B.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table B-4 enumerates the 64-bit
control fields.

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full) 000000000B 00002000H

Address of I/O bitmap A (high) 000000000B 00002001H

Address of I/O bitmap B (full) 000000001B 00002002H

Address of I/O bitmap B (high) 000000001B 00002003H

Address of MSR bitmaps (full)1 000000010B 00002004H

Address of MSR bitmaps (high)1 000000010B 00002005H

VM-exit MSR-store address (full) 000000011B 00002006H

VM-exit MSR-store address (high) 000000011B 00002007H

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

Executive-VMCS pointer (full) 000000110B 0000200CH

Executive-VMCS pointer (high) 000000110B 0000200DH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC address (full)2 000001001B 00002012H

Virtual-APIC address (high)2 000001001B 00002013H

APIC-access address (full)3 000001010B 00002014H

APIC-access address (high)3 000001010B 00002015H

VM-function controls (full)4 000001100B 00002018H

VM-function controls (high)4 000001100B 00002019H

EPT pointer (EPTP; full)5 000001101B 0000201AH

EPT pointer (EPTP; high)5 000001101B 0000201BH

EPTP-list address (full)6 000010010B 00002024H

EPTP-list address (high)6 000010010B 00002025H
Vol. 3C B-3

FIELD ENCODING IN VMCS
B.2.2 64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. There is only one such 64-bit field
as given in Table B-5.(As with other 64-bit fields, this one has two encodings.)

B.2.3 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-6 enumerates
the 64-bit guest-state fields.

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”

VM-execution control.
2. This field exists only on processors that support either the 1-setting of the “use TPR shadow”

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses”

VM-execution control.
4. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-

execution control.
5. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution

control.
6. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-func-

tion control.

Table B-5. Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution

control.

000000000B 00002400H

Guest-physical address (high)1 000000000B 00002401H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H
B-4 Vol. 3C

FIELD ENCODING IN VMCS
B.2.4 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table B-7 enumerates
the 64-bit control fields.

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Guest IA32_PAT (full)1 000000010B 00002804H

Guest IA32_PAT (high)1 000000010B 00002805H

Guest IA32_EFER (full)2 000000011B 00002806H

Guest IA32_EFER (high)2 000000011B 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3 000000100B 00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 000000100B 00002809H

Guest PDPTE0 (full)4 000000101B 0000280AH

Guest PDPTE0 (high)4 000000101B 0000280BH

Guest PDPTE1 (full)4 000000110B 0000280CH

Guest PDPTE1 (high)4 000000110B 0000280DH

Guest PDPTE2 (full)4 000000111B 0000280EH

Guest PDPTE2 (high)4 000000111B 0000280FH

Guest PDPTE3 (full)4 000001000B 00002810H

Guest PDPTE3 (high)4 000001000B 00002811H

NOTES:
1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-

entry control or that of the "save IA32_PAT" VM-exit control.
2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-

entry control or that of the "save IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load

IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution

control.

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1 000000000B 00002C00H

Table B-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding
Vol. 3C B-5

FIELD ENCODING IN VMCS
B.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section
24.10.2, each 32-bit field allows only full access, meaning that bit 0 of its encoding
is 0. Each such encoding is thus an even number.

B.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table B-8 enumerates the 32-bit
control fields.

Host IA32_PAT (high)1 000000000B 00002C01H

Host IA32_EFER (full)2 000000001B 00002C02H

Host IA32_EFER (high)2 000000001B 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3 000000010B 00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 000000010B 00002C05H

NOTES:
1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit

control.
2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit

control.
3. This field exists only on processors that support the 1-setting of the "load

IA32_PERF_GLOBAL_CTRL" VM-exit control.

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

Table B-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding
B-6 Vol. 3C

FIELD ENCODING IN VMCS
B.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table B-9 enumerates the 32-bit
read-only data fields.

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111b 0000401EH

PLE_Gap3 000010000b 00004020H

PLE_Window3 000010001b 00004022H

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-exe-

cution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls”

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting”

VM-execution control.

Table B-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table B-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) (Contd.)
Field Name Index Encoding
Vol. 3C B-7

FIELD ENCODING IN VMCS
B.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-10 enumerates
the 32-bit guest-state fields.

Table B-10. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1

NOTES:
1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption

timer" VM-execution control.

000010111B 0000482EH
B-8 Vol. 3C

FIELD ENCODING IN VMCS
The limit fields for GDTR and IDTR are defined to be 32 bits in width even though
these fields are only 16-bits wide in the Intel 64 and IA-32 architectures. VM entry
ensures that the high 16 bits of both these fields are cleared to 0.

B.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
There is only one such 32-bit field as given in Table B-11.

B.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in
Section 24.10.2, each of these fields allows only full access, meaning that bit 0 of its
encoding is 0. Each such encoding is thus an even number.

B.4.1 Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table B-12 enumerates the natural-
width control fields.

Table B-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table B-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31 000000111B 0000600EH
Vol. 3C B-9

FIELD ENCODING IN VMCS
B.4.2 Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table B-13 enumerates the natural-
width read-only data fields.

B.4.3 Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table B-14 enumerates
the natural-width guest-state fields.

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consec-

utively following the 4 encodings given here.

Table B-13. Encodings for Natural-Width Read-Only Data Fields
(0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table B-14. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH
B-10 Vol. 3C

FIELD ENCODING IN VMCS
The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to
be natural-width (with 64 bits on processors supporting Intel 64 architecture) even
though these fields are only 32-bits wide in the Intel 64 architecture. VM entry
ensures that the high 32 bits of these fields are cleared to 0.

B.4.4 Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table B-15 enumerates
the natural-width host-state fields.

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table B-15. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Table B-14. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
Vol. 3C B-11

FIELD ENCODING IN VMCS
Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Table B-15. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
B-12 Vol. 3C

APPENDIX C
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain
VM-entry failures also do this (see Section 26.7). The low 16 bits of the exit-reason
field form the basic exit reason which provides basic information about the cause of
the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply
to VM exits, unless otherwise noted.

Table C-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap
associated with exception’s vector was 1.

2: An NMI was delivered to the logical processor and the “NMI exiting”
VM-execution control was 1. This case includes executions of BOUND that cause
#BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt
exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to
call the double-fault handler and that exception did not itself cause a VM exit due
to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-
SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after
retirement of an I/O instruction and caused an SMM VM exit (see Section 33.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 33.15.2) but
not immediately after retirement of an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events
were not blocked by STI or by MOV SS; and the “interrupt-window exiting”
VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking;
events were not blocked by MOV SS; and the “NMI-window exiting” VM-execution
control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.
Vol. 3C C-1

VMX BASIC EXIT REASONS
11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting”
VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting”
VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting”
VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting”
VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an
ordinary VM exit) or by the executive monitor (causing an SMM VM exit; see
Section 33.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or
CR8 using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate
that a VM exit should occur (see Section 25.1 for details). This basic exit reason is
not used for trap-like VM exits following executions of the MOV to CR8 instruction
when the “use TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the
“MOV-DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O
exiting” VM-execution control was 1.

2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap
associated with one of the ports accessed by the I/O instruction was 1.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-2 Vol. 3C

VMX BASIC EXIT REASONS
31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

read bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

write bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks
identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load
MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting”
VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap
flag” VM-execution control and injection of an MTF VM exit as part of VM entry.
See Section 25.7.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR
exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE
exiting” VM-execution control was 1 or the “PAUSE-loop exiting” VM-execution
control was 1 and guest software executed a PAUSE loop with execution time
exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred
during VM entry (see Section 26.8).

43 TPR below threshold. The logical processor determined that the value of the TPR
shadow was below that of the TPR threshold VM-execution control field while the
“use TPR shadow” VM-execution control was 1 in one of the following cases:

• After guest software executed MOV to CR8 (see Section 25.1.3).
• As part of a TPR-shadow update (see Section 25.5.3.3).
• After VM entry with the 1-setting of the “virtualize APIC accesses” VM-

execution control (see Section 26.6.7).

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
Vol. 3C C-3

VMX BASIC EXIT REASONS
44 APIC access. Guest software attempted to access memory at a physical address on
the APIC-access page and the “virtualize APIC accesses” VM-execution control was
1 (see Section 25.2).

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT,
or SIDT and the “descriptor-table exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or
STR and the “descriptor-table exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was
disallowed by the configuration of the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address
encountered a misconfigured EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP”
and “RDTSC exiting” VM-execution controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting”
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND
exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID”
and “INVLPG exiting” VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and
the VM function either was not enabled or generated a function-specific condition
causing a VM exit.

Table C-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
C-4 Vol. 3C

INDEX FOR VOLUMES 3A, 3B & 3C
Numerics
16-bit code, mixing with 32-bit code, 21-1
32-bit code, mixing with 16-bit code, 21-1
32-bit physical addressing

overview, 3-7
36-bit physical addressing

overview, 3-7
64-bit mode

call gates, 5-20
code segment descriptors, 5-5, 9-16
control registers, 2-17
CR8 register, 2-18
D flag, 5-5
debug registers, 2-9
descriptors, 5-5, 5-7
DPL field, 5-5
exception handling, 6-22
external interrupts, 10-45
fast system calls, 5-32
GDTR register, 2-16, 2-17
GP faults, causes of, 6-52
IDTR register, 2-17
initialization process, 2-12, 9-14
interrupt and trap gates, 6-23
interrupt controller, 10-45
interrupt descriptors, 2-7
interrupt handling, 6-22
interrupt stack table, 6-26
IRET instruction, 6-25
L flag, 3-16, 5-5
logical address translation, 3-9
MOV CRn, 2-17, 10-45
null segment checking, 5-9
paging, 2-8
reading counters, 2-34
reading & writing MSRs, 2-34
registers and mode changes, 9-16
RFLAGS register, 2-15
segment descriptor tables, 3-22, 5-5
segment loading instructions, 3-12
segments, 3-6
stack switching, 5-28, 6-25
SYSCALL and SYSRET, 2-10, 5-32
SYSENTER and SYSEXIT, 5-31
system registers, 2-9
task gate, 7-22
task priority, 2-25, 10-45
task register, 2-17
TSS

stack pointers, 7-23
See also: IA-32e mode, compatibility mode

8086
emulation, support for, 20-1

processor, exceptions and interrupts, 20-8
8086/8088 processor, 22-8
8087 math coprocessor, 22-9
82489DX, 22-37

Local APIC and I/O APICs, 10-5

A
A20M# signal, 20-4, 22-46, 23-5
Aborts

description of, 6-7
restarting a program or task after, 6-8

AC (alignment check) flag, EFLAGS register, 2-14,
6-61, 22-8

Access rights
checking, 2-30
checking caller privileges, 5-37
description of, 5-35
invalid values, 22-26

ADC instruction, 8-5
ADD instruction, 8-5
Address

size prefix, 21-2
space, of task, 7-19

Address translation
in real-address mode, 20-3
logical to linear, 3-9
overview, 3-8

Addressing, segments, 1-9
Advanced power management

C-state and Sub C-state, 14-9
MWAIT extensions, 14-9
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O
APIC or Local APIC)

Alignment
check exception, 2-14, 6-60, 22-16, 22-29
checking, 5-39

AM (alignment mask) flag
CR0 control register, 2-14, 2-20, 22-25

AND instruction, 8-5
APIC, 10-57, 10-58, 10-59
APIC bus

arbitration mechanism and protocol, 10-37, 10-47
bus message format, 10-49, 10-68
diagram of, 10-3, 10-4
EOI message format, 10-20, 10-68
nonfocused lowest priority message, 10-70
short message format, 10-69
SMI message, 33-3
status cycles, 10-72
structure of, 10-5
See also

local APIC
Vol. 3C Index -1

INDEX
APIC flag, CPUID instruction, 10-10
APIC ID, 10-57, 10-63, 10-66
APIC (see I/O APIC or Local APIC)
ARPL instruction, 2-30, 5-38

not supported in 64-bit mode, 2-30
Atomic operations

automatic bus locking, 8-4
effects of a locked operation on internal processor

caches, 8-7
guaranteed, description of, 8-3
overview of, 8-2, 8-4
software-controlled bus locking, 8-5

At-retirement
counting, 18-23, 18-89
events, 18-23, 18-73, 18-74, 18-89, 18-96

Auto HALT restart
field, SMM, 33-18
SMM, 33-18

Automatic bus locking, 8-4
Automatic thermal monitoring mechanism, 14-10

B
B (busy) flag

TSS descriptor, 7-7, 7-13, 7-14, 7-18, 8-4
B (default stack size) flag

segment descriptor, 21-2, 22-45
B0-B3 (BP condition detected) flags

DR6 register, 17-4
Backlink (see Previous task link)
Base address fields, segment descriptor, 3-14
BD (debug register access detected) flag, DR6

register, 17-4, 17-13
Binary numbers, 1-9
BINIT# signal, 2-32
BIOS role in microcode updates, 9-49
Bit order, 1-7
BOUND instruction, 2-7, 6-6, 6-33
BOUND range exceeded exception (#BR), 6-33
BP0#, BP1#, BP2#, and BP3# pins, 17-45, 17-48
Branch record

branch trace message, 17-17
IA-32e mode, 17-27
saving, 17-19, 17-34, 17-41
saving as a branch trace message, 17-18
structure, 17-42
structure of in BTS buffer, 17-25

Branch trace message (see BTM)
Branch trace store (see BTS)
Breakpoint exception (#BP), 6-6, 6-31, 17-14
Breakpoints

data breakpoint, 17-7
data breakpoint exception conditions, 17-12
description of, 17-1
DR0-DR3 debug registers, 17-4
example, 17-7
exception, 6-31
field recognition, 17-6, 17-8

general-detect exception condition, 17-13
instruction breakpoint, 17-7
instruction breakpoint exception condition, 17-11
I/O breakpoint exception conditions, 17-12
LEN0 - LEN3 (Length) fields

DR7 register, 17-6
R/W0-R/W3 (read/write) fields

DR7 register, 17-5
single-step exception condition, 17-13
task-switch exception condition, 17-14

BS (single step) flag, DR6 register, 17-4
BSP flag, IA32_APIC_BASE MSR, 10-11
BSWAP instruction, 22-6
BT (task switch) flag, DR6 register, 17-4, 17-14
BTC instruction, 8-5
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, 17-48
BTMs (branch trace messages)

description of, 17-17
enabling, 17-15, 17-30, 17-31, 17-40, 17-43,

17-46
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, 17-40
MSR_DEBUGCTLB MSR, 17-15, 17-43, 17-46

BTR instruction, 8-5
BTS, 17-22
BTS buffer

description of, 17-23
introduction to, 17-14, 17-18
records in, 17-25
setting up, 17-30
structure of, 17-24, 17-27, 18-33

BTS instruction, 8-5
BTS (branch trace store) facilities

availability of, 17-39
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, 17-22, 34-189
introduction to, 17-14
setting up BTS buffer, 17-30
writing an interrupt service routine for, 17-32

Built-in self-test (BIST)
description of, 9-1
performing, 9-2

Bus
errors detected with MCA, 15-35
hold, 22-48
locking, 8-4, 22-48

Byte order, 1-7

C
C (conforming) flag, segment descriptor, 5-16
C1 flag, x87 FPU status word, 22-10, 22-20
C2 flag, x87 FPU status word, 22-11
Cache control, 11-30

adaptive mode, L1 Data Cache, 11-26
cache management instructions, 11-25, 11-26
cache mechanisms in IA-32 processors, 22-40
Index-2 Vol. 3C

INDEX
caching terminology, 11-7
CD flag, CR0 control register, 11-15, 22-26
choosing a memory type, 11-12
CPUID feature flag, 11-26
flags and fields, 11-14
flushing TLBs, 11-29
G (global) flag

page-directory entries, 11-19
page-table entries, 11-19

internal caches, 11-1
MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
MESI protocol, 11-7, 11-13
methods of caching available, 11-8
MTRR initialization, 11-41
MTRR precedences, 11-41
MTRRs, description of, 11-30
multiple-processor considerations, 11-46
NW flag, CR0 control register, 11-18, 22-26
operating modes, 11-17
overview of, 11-1
page attribute table (PAT), 11-48
PCD flag

CR3 control register, 11-19
page-directory entries, 11-19, 11-47
page-table entries, 11-19, 11-47

PGE (page global enable) flag, CR4 control register
, 11-19

precedence of controls, 11-19
preventing caching, 11-24
protocol, 11-13
PWT flag

CR3 control register, 11-19
page-directory entries, 11-47
page-table entries, 11-47

remapping memory types, 11-42
setting up memory ranges with MTRRs, 11-33
shared mode, L1 Data Cache, 11-26
variable-range MTRRs, 11-34, 11-37

Caches, 2-10
cache hit, 11-7
cache line, 11-7
cache line fill, 11-7
cache write hit, 11-7
description of, 11-1
effects of a locked operation on internal processor

caches, 8-7
enabling, 9-8
management, instructions, 2-31, 11-25

Caching
cache control protocol, 11-13
cache line, 11-7
cache management instructions, 11-25
cache mechanisms in IA-32 processors, 22-40
caching terminology, 11-7
choosing a memory type, 11-12
flushing TLBs, 11-29
implicit caching, 11-27

internal caches, 11-1
L1 (level 1) cache, 11-5
L2 (level 2) cache, 11-5
L3 (level 3) cache, 11-5
methods of caching available, 11-8
MTRRs, description of, 11-30
operating modes, 11-17
overview of, 11-1
self-modifying code, effect on, 11-27, 22-41
snooping, 11-8
store buffer, 11-29
TLBs, 11-6
UC (strong uncacheable) memory type, 11-8
UC- (uncacheable) memory type, 11-9
WB (write back) memory type, 11-10
WC (write combining) memory type, 11-9
WP (write protected) memory type, 11-10
write-back caching, 11-8
WT (write through) memory type, 11-10

Call gates
16-bit, interlevel return from, 22-44
accessing a code segment through, 5-22
description of, 5-19
for 16-bit and 32-bit code modules, 21-2
IA-32e mode, 5-20
introduction to, 2-5
mechanism, 5-22
privilege level checking rules, 5-23

CALL instruction, 2-6, 3-11, 5-15, 5-22, 5-29, 7-3,
7-12, 7-13, 21-7

Caller access privileges, checking, 5-37
Calls

16 and 32-bit code segments, 21-4
controlling operand-size attribute, 21-7
returning from, 5-28

Capability MSRs
See VMX capability MSRs

Catastrophic shutdown detector
Thermal monitoring

catastrophic shutdown detector, 14-12
catastrophic shutdown detector, 14-10
CC0 and CC1 (counter control) fields, CESR MSR

(Pentium processor), 18-125
CD (cache disable) flag, CR0 control register, 2-19,

9-8, 11-15, 11-17, 11-19, 11-24, 11-46,
11-47, 22-25, 22-26, 22-40

CESR (control and event select) MSR (Pentium
processor), 18-124

CLFLSH feature flag, CPUID instruction, 9-10
CLFLUSH instruction, 2-21, 8-9, 9-10, 11-26
CLI instruction, 6-10
Clocks

counting processor clocks, 18-100
Hyper-Threading Technology, 18-100
nominal CPI, 18-100
non-halted clockticks, 18-100
non-halted CPI, 18-100
non-sleep Clockticks, 18-100
Vol. 3C Index -3

INDEX
time stamp counter, 18-100
CLTS instruction, 2-29, 5-34, 25-3, 25-17
Cluster model, local APIC, 10-34
CMOVcc instructions, 22-6
CMPXCHG instruction, 8-5, 22-6
CMPXCHG8B instruction, 8-5, 22-6
Code modules

16 bit vs. 32 bit, 21-2
mixing 16-bit and 32-bit code, 21-1
sharing data, mixed-size code segs, 21-4
transferring control, mixed-size code segs, 21-4

Code segments
accessing data in, 5-14
accessing through a call gate, 5-22
description of, 3-16
descriptor format, 5-3
descriptor layout, 5-3
direct calls or jumps to, 5-15
paging of, 2-8
pointer size, 21-5
privilege level checks

transferring control between code segs, 5-14
Compatibility

IA-32 architecture, 22-1
software, 1-7

Compatibility mode
code segment descriptor, 5-5
code segment descriptors, 9-16
control registers, 2-17
CS.L and CS.D, 9-16
debug registers, 2-31
EFLAGS register, 2-15
exception handling, 2-7
gates, 2-6
GDTR register, 2-16, 2-17
global and local descriptor tables, 2-5
IDTR register, 2-17
interrupt handling, 2-7
L flag, 3-16, 5-5
memory management, 2-8
operation, 9-16
segment loading instructions, 3-12
segments, 3-6
switching to, 9-16
SYSCALL and SYSRET, 5-32
SYSENTER and SYSEXIT, 5-31
system flags, 2-15
system registers, 2-9
task register, 2-17
See also: 64-bit mode, IA-32e mode

Condition code flags, x87 FPU status word
compatibility information, 22-10

Conforming code segments
accessing, 5-17
C (conforming) flag, 5-16
description of, 3-18

Context, task (see Task state)
Control registers

64-bit mode, 2-17
CR0, 2-17
CR1 (reserved), 2-17
CR2, 2-17
CR3 (PDBR), 2-8, 2-17
CR4, 2-17
description of, 2-17
introduction to, 2-9
VMX operation, 30-25

Coprocessor segment
overrun exception, 6-41, 22-16

Counter mask field
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 18-6, 18-122
CPL

description of, 5-10
field, CS segment selector, 5-2

CPUID instruction
AP-485, 1-11
availability, 22-6
control register flags, 2-26
detecting features, 22-3
serializing instructions, 8-25
syntax for data, 1-9

CR0 control register, 22-9
description of, 2-17
introduction to, 2-9
state following processor reset, 9-2

CR1 control register (reserved), 2-17
CR2 control register

description of, 2-17
introduction to, 2-9

CR3 control register (PDBR)
associated with a task, 7-1, 7-3
description of, 2-17
in TSS, 7-5, 7-19
introduction to, 2-9
loading during initialization, 9-13
memory management, 2-8
page directory base address, 2-8
page table base address, 2-7

CR4 control register
description of, 2-17
enabling control functions, 22-2
inclusion in IA-32 architecture, 22-24
introduction to, 2-9
VMX usage of, 23-4

CR8 register, 2-9
64-bit mode, 2-18
compatibility mode, 2-18
description of, 2-18
task priority level bits, 2-25
when available, 2-18

CS register, 22-14
state following initialization, 9-6

C-state, 14-9
CTR0 and CTR1 (performance counters) MSRs

(Pentium processor), 18-124, 18-126
Index-4 Vol. 3C

INDEX
Current privilege level (see CPL)

D
D (default operation size) flag

segment descriptor, 21-2, 22-45
Data breakpoint exception conditions, 17-12
Data segments

description of, 3-16
descriptor layout, 5-3
expand-down type, 3-15
paging of, 2-8
privilege level checking when accessing, 5-12

DE (debugging extensions) flag, CR4 control register,
2-23, 22-24, 22-27, 22-28

Debug exception (#DB), 6-10, 6-29, 7-6, 17-10,
17-17, 17-49

Debug store (see DS)
DEBUGCTLMSR MSR, 17-47, 17-49, 34-247
Debugging facilities

breakpoint exception (#BP), 17-1
debug exception (#DB), 17-1
DR6 debug status register, 17-1
DR7 debug control register, 17-1
exceptions, 17-10
INT3 instruction, 17-1
last branch, interrupt, and exception recording,

17-2, 17-14
masking debug exceptions, 6-10
overview of, 17-1
performance-monitoring counters, 18-1
registers

description of, 17-2
introduction to, 2-9
loading, 2-30

RF (resume) flag, EFLAGS, 17-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, 17-1
TF (trap) flag, EFLAGS, 17-1
virtualization, 31-1
VMX operation, 31-2

DEC instruction, 8-5
Denormal operand exception (#D), 22-13
Denormalized operand, 22-17
Device-not-available exception (#NM), 2-21, 2-30,

6-36, 9-8, 22-15, 22-16
DFR

Destination Format Register, 10-54, 10-60, 10-66
Digital readout bits, 14-21, 14-25
DIV instruction, 6-28
Divide configuration register, local APIC, 10-23
Divide-error exception (#DE), 6-28, 22-29
Double-fault exception (#DF), 6-38, 22-37
DPL (descriptor privilege level) field, segment

descriptor, 3-14, 5-2, 5-5, 5-10
DR0-DR3 breakpoint-address registers, 17-1, 17-4,

17-45, 17-48, 17-49
DR4-DR5 debug registers, 17-4, 22-27

DR6 debug status register, 17-4
B0-B3 (BP detected) flags, 17-4
BD (debug register access detected) flag, 17-4
BS (single step) flag, 17-4
BT (task switch) flag, 17-4
debug exception (#DB), 6-29
reserved bits, 22-27

DR7 debug control register, 17-5
G0-G3 (global breakpoint enable) flags, 17-5
GD (general detect enable) flag, 17-5
GE (global exact breakpoint enable) flag, 17-5
L0-L3 (local breakpoint enable) flags, 17-5
LE local exact breakpoint enable) flag, 17-5
LEN0-LEN3 (Length) fields, 17-6
R/W0-R/W3 (read/write) fields, 17-5, 22-27

DS feature flag, CPUID instruction, 17-22, 17-39,
17-44, 17-46

DS save area, 17-24, 17-26, 17-27
DS (debug store) mechanism

availability of, 18-79
description of, 18-79
DS feature flag, CPUID instruction, 18-79
DS save area, 17-22, 17-26
IA-32e mode, 17-26
interrupt service routine (DS ISR), 17-32
setting up, 17-29

Dual-core technology
architecture, 8-47
logical processors supported, 8-36
MTRR memory map, 8-48
multi-threading feature flag, 8-36
performance monitoring, 18-105
specific features, 22-5

Dual-monitor treatment, 33-27
D/B (default operation size/default stack pointer size

and/or upper bound) flag, segment
descriptor, 3-15, 5-6

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family),
18-5

E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors), 18-121

E (expansion direction) flag
segment descriptor, 5-2, 5-6

E (MTRRs enabled) flag
IA32_MTRR_DEF_TYPE MSR, 11-33

EFLAGS register
identifying 32-bit processors, 22-8
introduction to, 2-9
new flags, 22-7
saved in TSS, 7-5
system flags, 2-12
VMX operation, 30-4

EIP register, 22-14
saved in TSS, 7-6
Vol. 3C Index -5

INDEX
state following initialization, 9-6
EM (emulation) flag

CR0 control register, 2-21, 2-22, 6-36, 9-6, 9-8,
12-1, 13-3

EMMS instruction, 12-3
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, 14-2
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
introduction, 14-1
multiple processor cores, 14-2
performance transitions, 14-1
P-state coordination, 14-2
See also: thermal monitoring

EOI
End Of Interrupt register, 10-55

Error code, 16-5, 16-11, 16-15, 16-18
architectural MCA, 16-1, 16-5, 16-11, 16-15,

16-18
decoding IA32_MCi_STATUS, 16-1, 16-5, 16-11,

16-15, 16-18
exception, description of, 6-20
external bus, 16-1, 16-5, 16-11, 16-15, 16-18
memory hierarchy, 16-5, 16-11, 16-15, 16-18
pushing on stack, 22-44
watchdog timer, 16-1, 16-5, 16-11, 16-15, 16-18

Error numbers
VM-instruction error field, 29-35

Error signals, 22-14, 22-15
Error-reporting bank registers, 15-3
ERROR#

input, 22-22
output, 22-22

ES0 and ES1 (event select) fields, CESR MSR (Pentium
processor), 18-124

ESR
Error Status Register, 10-56

ET (extension type) flag, CR0 control register, 2-20,
22-9

Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 18-4, 18-20,
18-120

Events
at-retirement, 18-89
at-retirement (Pentium 4 processor), 18-73
non-retirement (Pentium 4 processor), 18-73,

19-221
P6 family processors, 19-272
Pentium processor, 19-290

Exception handler
calling, 6-15
defined, 6-1
flag usage by handler procedure, 6-19
machine-check exception handler, 15-35
machine-check exceptions (#MC), 15-35
machine-error logging utility, 15-35

procedures, 6-16
protection of handler procedures, 6-18
task, 6-20, 7-3

Exceptions
alignment check, 22-16
classifications, 6-6
compound error codes, 15-27
conditions checked during a task switch, 7-15
coprocessor segment overrun, 22-16
description of, 2-7, 6-1
device not available, 22-16
double fault, 6-38
error code, 6-20
exception bitmap, 31-2
execute-disable bit, 5-47
floating-point error, 22-16
general protection, 22-16
handler mechanism, 6-16
handler procedures, 6-16
handling, 6-15
handling in real-address mode, 20-6
handling in SMM, 33-14
handling in virtual-8086 mode, 20-16
handling through a task gate in virtual-8086 mode

, 20-21
handling through a trap or interrupt gate in

virtual-8086 mode, 20-18
IA-32e mode, 2-7
IDT, 6-12
initializing for protected-mode operation, 9-13
invalid-opcode, 22-7
masking debug exceptions, 6-10
masking when switching stack segments, 6-11
MCA error codes, 15-26
MMX instructions, 12-1
notation, 1-10
overview of, 6-1
priorities among simultaneous exceptions and

interrupts, 6-11
priority of, 22-30
priority of, x87 FPU exceptions, 22-14
reference information on all exceptions, 6-27
reference information, 64-bit mode, 6-22
restarting a task or program, 6-7
segment not present, 22-16
simple error codes, 15-26
sources of, 6-5
summary of, 6-3
vectors, 6-2

Executable, 3-15
Execute-disable bit capability

conditions for, 5-43
CPUID flag, 5-43
detecting and enabling, 5-43
exception handling, 5-47
page-fault exceptions, 6-54
paging data structures, 13-14
protection matrix for IA-32e mode, 5-44
Index-6 Vol. 3C

INDEX
protection matrix for legacy modes, 5-45
reserved bit checking, 5-45

Execution events, 19-260
Exit-reason numbers

VM entries & exits, C-1
Expand-down data segment type, 3-15
Extended signature table, 9-41
extended signature table, 9-41
External bus errors, detected with machine-check

architecture, 15-35

F
F2XM1 instruction, 22-18
Family 06H, 16-1
Family 0FH, 16-1

microcode update facilities, 9-37
Faults

description of, 6-6
restarting a program or task after, 6-7

FCMOVcc instructions, 22-6
FCOMI instruction, 22-6
FCOMIP instruction, 22-6
FCOS instruction, 22-18
FDISI instruction (obsolete), 22-20
FDIV instruction, 22-15, 22-17
FE (fixed MTRRs enabled) flag,

IA32_MTRR_DEF_TYPE MSR, 11-33
Feature

determination, of processor, 22-3
information, processor, 22-3

FENI instruction (obsolete), 22-20
FINIT/FNINIT instructions, 22-10, 22-22
FIX (fixed range registers supported) flag,

IA32_MTRRCAPMSR, 11-32
Fixed-range MTRRs

description of, 11-34
Flat segmentation model, 3-3, 3-4
FLD instruction, 22-18
FLDENV instruction, 22-16
FLDL2E instruction, 22-19
FLDL2T instruction, 22-19
FLDLG2 instruction, 22-19
FLDLN2 instruction, 22-19
FLDPI instruction, 22-19
Floating-point error exception (#MF), 22-16
Floating-point exceptions

denormal operand exception (#D), 22-13
invalid operation (#I), 22-19
numeric overflow (#O), 22-13
numeric underflow (#U), 22-14
saved CS and EIP values, 22-14

FLUSH# pin, 6-4
FNSAVE instruction, 12-4
Focus processor, local APIC, 10-37
FORCEPR# log, 14-20, 14-25
FORCPR# interrupt enable bit, 14-22
FPATAN instruction, 22-18

FPREM instruction, 22-10, 22-15, 22-17
FPREM1 instruction, 22-10, 22-17
FPTAN instruction, 22-11, 22-18
Front_end events, 19-260
FRSTOR instruction, 12-4, 22-16
FSAVE instruction, 12-3, 12-4
FSAVE/FNSAVE instructions, 22-16, 22-20
FSCALE instruction, 22-17
FSIN instruction, 22-18
FSINCOS instruction, 22-18
FSQRT instruction, 22-15, 22-17
FSTENV instruction, 12-3
FSTENV/FNSTENV instructions, 22-20
FTAN instruction, 22-11
FUCOM instruction, 22-17
FUCOMI instruction, 22-6
FUCOMIP instruction, 22-6
FUCOMP instruction, 22-17
FUCOMPP instruction, 22-17
FWAIT instruction, 6-36
FXAM instruction, 22-19, 22-20
FXRSTOR instruction, 2-24, 2-25, 9-10, 12-3, 12-4,

12-5, 13-1, 13-3, 13-8
FXSAVE instruction, 2-24, 2-25, 9-10, 12-3, 12-4,

12-5, 13-1, 13-3, 13-8
FXSR feature flag, CPUID instruction, 9-10
FXTRACT instruction, 22-13, 22-19

G
G (global) flag

page-directory entries, 11-19
page-table entries, 11-19

G (granularity) flag
segment descriptor, 3-13, 3-15, 5-2, 5-6

G0-G3 (global breakpoint enable) flags
DR7 register, 17-5

Gate descriptors
call gates, 5-19
description of, 5-18
IA-32e mode, 5-20

Gates, 2-5
IA-32e mode, 2-6

GD (general detect enable) flag
DR7 register, 17-5, 17-13

GDT
description of, 2-5, 3-21
IA-32e mode, 2-5
index field of segment selector, 3-9
initializing, 9-12
paging of, 2-8
pointers to exception/interrupt handlers, 6-16
segment descriptors in, 3-13
selecting with TI flag of segment selector, 3-10
task switching, 7-12
task-gate descriptor, 7-11
TSS descriptors, 7-7
use in address translation, 3-8
Vol. 3C Index -7

INDEX
GDTR register
description of, 2-5, 2-9, 2-16, 3-21
IA-32e mode, 2-5, 2-16
limit, 5-7
loading during initialization, 9-12
storing, 3-21

GE (global exact breakpoint enable) flag
DR7 register, 17-5, 17-12

General-detect exception condition, 17-13
General-protection exception (#GP), 3-17, 5-9, 5-10,

5-16, 5-17, 6-13, 6-19, 6-50, 7-7, 17-2,
22-16, 22-29, 22-46, 22-48

General-purpose registers, saved in TSS, 7-5
Global control MSRs, 15-3
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)

H
HALT state

relationship to SMI interrupt, 33-5, 33-18
Hardware reset

description of, 9-1
processor state after reset, 9-2
state of MTRRs following, 11-30
value of SMBASE following, 33-5

Hexadecimal numbers, 1-9
high-temperature interrupt enable bit, 14-22, 14-26
HITM# line, 11-8
HLT instruction, 2-32, 5-34, 6-39, 25-3, 33-18, 33-19
Hyper-Threading Technology

architectural state of a logical processor, 8-47
architecture description, 8-39
caches, 8-44
counting clockticks, 18-102
debug registers, 8-42
description of, 8-35, 22-5
detecting, 8-51, 8-52, 8-57, 8-58
executing multiple threads, 8-38
execution-based timing loops, 8-73
external signal compatibility, 8-46
halting logical processors, 8-72
handling interrupts, 8-38
HLT instruction, 8-65
IA32_MISC_ENABLE MSR, 8-43, 8-48
initializing IA-32 processors with, 8-37
introduction of into the IA-32 architecture, 22-5
local a, 8-40
local APIC

functionality in logical processor, 8-41
logical processors, identifying, 8-52
machine check architecture, 8-42
managing idle and blocked conditions, 8-65
mapping resources, 8-49
memory ordering, 8-43
microcode update resources, 8-44, 8-48, 9-46
MP systems, 8-39
MTRRs, 8-41, 8-47

multi-threading feature flag, 8-36
multi-threading support, 8-35
PAT, 8-42
PAUSE instruction, 8-66, 8-67
performance monitoring, 18-94, 18-105
performance monitoring counters, 8-43, 8-48
placement of locks and semaphores, 8-74
required operating system support, 8-69
scheduling multiple threads, 8-73
self modifying code, 8-44
serializing instructions, 8-43
spin-wait loops

PAUSE instructions in, 8-69, 8-70, 8-72
thermal monitor, 8-45
TLBs, 8-45

I
IA32, 15-5
IA-32 Intel architecture

compatibility, 22-1
processors, 22-1

IA32e mode
registers and mode changes, 9-16

IA-32e mode
call gates, 5-20
code segment descriptor, 5-5
D flag, 5-5
data structures and initialization, 9-15
debug registers, 2-9
debug store area, 17-26
descriptors, 2-6
DPL field, 5-5
exceptions during initialization, 9-15
feature-enable register, 2-10
gates, 2-6
global and local descriptor tables, 2-5
IA32_EFER MSR, 2-10, 5-43
initialization process, 9-14
interrupt stack table, 6-26
interrupts and exceptions, 2-7
IRET instruction, 6-25
L flag, 3-16, 5-5
logical address, 3-9
MOV CRn, 9-14
MTRR calculations, 11-40
NXE bit, 5-43
page level protection, 5-43
paging, 2-8
PDE tables, 5-44
PDP tables, 5-44
PML4 tables, 5-44
PTE tables, 5-44
registers and data structures, 2-2
segment descriptor tables, 3-22, 5-5
segment descriptors, 3-13
segment loading instructions, 3-12
segmentation, 3-6
Index-8 Vol. 3C

INDEX
stack switching, 5-28, 6-25
SYSCALL and SYSRET, 5-32
SYSENTER and SYSEXIT, 5-31
system descriptors, 3-19
system registers, 2-9
task switching, 7-22
task-state segments, 2-7
terminating mode operation, 9-16
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, 14-2
IA32_APIC_BASE MSR, 8-27, 8-29, 10-8, 10-11,

34-173
IA32_BIOS_SIGN_ID MSR, 34-179
IA32_BIOS_UPDT_TRIG MSR, 31-13, 34-179
IA32_BISO_SIGN_ID MSR, 31-13
IA32_CLOCK_MODULATION MSR, 8-46, 14-16,

14-17, 14-18, 14-21, 14-32, 14-33,
14-35, 14-36, 14-37, 14-38, 34-54,
34-74, 34-89, 34-144, 34-186, 34-221,
34-234

IA32_CTL MSR, 34-180
IA32_DEBUGCTL MSR, 27-35, 34-193
IA32_DS_AREA MSR, 17-22, 17-23, 17-26, 17-29,

18-70, 18-93, 34-208
IA32_EFER MSR, 2-10, 2-12, 5-43, 27-35, 30-23
IA32_FEATURE_CONTROL MSR, 23-4
IA32_KernelGSbase MSR, 2-10
IA32_LSTAR MSR, 2-10, 5-32
IA32_MCG_CAP MSR, 15-3, 15-36, 34-179
IA32_MCG_CTL MSR, 15-3, 15-5
IA32_MCG_EAX MSR, 15-13
IA32_MCG_EBP MSR, 15-13
IA32_MCG_EBX MSR, 15-13
IA32_MCG_ECX MSR, 15-13
IA32_MCG_EDI MSR, 15-13
IA32_MCG_EDX MSR, 15-13
IA32_MCG_EFLAGS MSR, 15-13
IA32_MCG_EIP MSR, 15-13
IA32_MCG_ESI MSR, 15-13
IA32_MCG_ESP MSR, 15-13
IA32_MCG_MISC MSR, 15-13, 15-14, 34-183
IA32_MCG_R10 MSR, 15-14, 34-184
IA32_MCG_R11 MSR, 15-15, 34-184
IA32_MCG_R12 MSR, 15-15
IA32_MCG_R13 MSR, 15-15
IA32_MCG_R14 MSR, 15-15
IA32_MCG_R15 MSR, 15-15, 34-185
IA32_MCG_R8 MSR, 15-14
IA32_MCG_R9 MSR, 15-14
IA32_MCG_RAX MSR, 15-14, 34-180
IA32_MCG_RBP MSR, 15-14
IA32_MCG_RBX MSR, 15-14, 34-180
IA32_MCG_RCX MSR, 15-14
IA32_MCG_RDI MSR, 15-14
IA32_MCG_RDX MSR, 15-14
IA32_MCG_RESERVEDn, 34-183
IA32_MCG_RESERVEDn MSR, 15-14
IA32_MCG_RFLAGS MSR, 15-14, 34-182

IA32_MCG_RIP MSR, 15-14, 34-182
IA32_MCG_RSI MSR, 15-14
IA32_MCG_RSP MSR, 15-14
IA32_MCG_STATUS MSR, 15-3, 15-4, 15-36, 15-38,

27-4
IA32_MCi_ADDR MSR, 15-10, 15-38, 34-203
IA32_MCi_CTL MSR, 15-5, 34-202
IA32_MCi_MISC MSR, 15-11, 15-12, 15-13, 15-38,

34-203
IA32_MCi_STATUS MSR, 15-6, 15-36, 15-38, 34-203

decoding for Family 06H, 16-1
decoding for Family 0FH, 16-1, 16-5, 16-11,

16-15, 16-18
IA32_MISC_ENABLE MSR, 14-1, 14-12, 17-23, 17-39,

18-70, 34-186
IA32_MPERF MSR, 14-2
IA32_MTRRCAP MSR, 11-32, 11-33, 34-179
IA32_MTRR_DEF_TYPE MSR, 11-33
IA32_MTRR_FIXn, fixed ranger MTRRs, 11-34
IA32_MTRR_PHYS BASEn MTRR, 34-194
IA32_MTRR_PHYSBASEn MTRR, 34-194
IA32_MTRR_PHYSMASKn MTRR, 34-194
IA32_P5_MC_ADDR MSR, 34-173
IA32_P5_MC_TYPE MSR, 34-173
IA32_PAT_CR MSR, 11-49
IA32_PEBS_ENABLE MSR, 18-24, 18-70, 18-93,

19-261, 34-202
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
IA32_PLATFORM_ID, 34-46, 34-68, 34-83, 34-138,

34-173, 34-216, 34-230, 34-239
IA32_STAR MSR, 5-32
IA32_STAR_CS MSR, 2-10
IA32_STATUS MSR, 34-180
IA32_SYSCALL_FLAG_MASK MSR, 2-10
IA32_SYSENTER_CS MSR, 5-31, 5-32, 27-27, 34-179
IA32_SYSENTER_EIP MSR, 5-31, 27-35, 34-179
IA32_SYSENTER_ESP MSR, 5-31, 27-35, 34-179
IA32_TERM_CONTROL MSR, 34-54, 34-74, 34-89,

34-144
IA32_THERM_INTERRUPT MSR, 14-15, 14-18,

14-19, 14-22, 34-186
FORCPR# interrupt enable bit, 14-22
high-temperature interrupt enable bit, 14-22,

14-26
low-temperature interrupt enable bit, 14-22,

14-26
overheat interrupt enable bit, 14-22, 14-26
THERMTRIP# interrupt enable bit, 14-22, 14-26
threshold #1 interrupt enable bit, 14-23, 14-27
threshold #1 value, 14-22, 14-26
threshold #2 interrupt enable, 14-23, 14-27
threshold #2 value, 14-23, 14-27

IA32_THERM_STATUS MSR, 14-18, 14-19, 34-186
digital readout bits, 14-21, 14-25
out-of-spec status bit, 14-20, 14-25
out-of-spec status log, 14-20, 14-25
Vol. 3C Index -9

INDEX
PROCHOT# or FORCEPR# event bit, 14-20,
14-24, 14-25

PROCHOT# or FORCEPR# log, 14-20, 14-25
resolution in degrees, 14-21
thermal status bit, 14-19, 14-24
thermal status log, 14-19, 14-24
thermal threshold #1 log, 14-20, 14-25
thermal threshold #1 status, 14-20, 14-25
thermal threshold #2 log, 14-21, 14-25
thermal threshold #2 status, 14-21, 14-25
validation bit, 14-21

IA32_TIME_STAMP_COUNTER MSR, 34-173
IA32_VMX_BASIC MSR, 24-4, 30-2, 30-7, 30-8, 30-9,

30-17, 34-64, 34-81, 34-101, 34-153,
34-207, 34-227, A-1, A-3

IA32_VMX_CR0_FIXED0 MSR, 23-5, 30-6, 34-65,
34-81, 34-102, 34-153, 34-207, 34-228,
A-9

IA32_VMX_CR0_FIXED1 MSR, 23-5, 30-6, 34-65,
34-81, 34-102, 34-154, 34-208, 34-228,
A-9

IA32_VMX_CR4_FIXED0 MSR, 23-5, 30-6, 34-65,
34-82, 34-102, 34-154, 34-208, 34-228,
A-9

IA32_VMX_CR4_FIXED1 MSR, 23-5, 30-6, 34-65,
34-82, 34-102, 34-154, 34-208, 34-228,
34-229, A-9

IA32_VMX_ENTRY_CTLS MSR, 30-7, 30-8, 30-9,
34-65, 34-81, 34-101, 34-153, 34-207,
34-228, A-3, A-7, A-8

IA32_VMX_EXIT_CTLS MSR, 30-7, 30-8, 30-9, 34-64,
34-81, 34-101, 34-153, 34-207, 34-228,
A-3, A-6, A-7

IA32_VMX_MISC MSR, 24-8, 26-4, 26-17, 33-36,
34-65, 34-81, 34-102, 34-153, 34-207,
34-228, A-8

IA32_VMX_PINBASED_CTLS MSR, 30-7, 30-8, 30-9,
34-64, 34-81, 34-101, 34-153, 34-207,
34-227, A-3, A-4

IA32_VMX_PROCBASED_CTLS MSR, 24-12, 30-7,
30-8, 30-9, 34-64, 34-65, 34-81, 34-82,
34-101, 34-102, 34-153, 34-154, 34-207,
34-228, 34-229, A-3, A-4, A-5, A-6, A-11

IA32_VMX_VMCS_ENUM MSR, 34-208, A-9
ICR

Interrupt Command Register, 10-54, 10-60,
10-67

ID (identification) flag
EFLAGS register, 2-15, 22-8

IDIV instruction, 6-28, 22-29
IDT

64-bit mode, 6-23
call interrupt & exception-handlers from, 6-15
change base & limit in real-address mode, 20-7
description of, 6-12
handling NMIs during initialization, 9-11
initializing protected-mode operation, 9-13
initializing real-address mode operation, 9-11

introduction to, 2-7
limit, 22-37
paging of, 2-8
structure in real-address mode, 20-7
task switching, 7-13
task-gate descriptor, 7-11
types of descriptors allowed, 6-14
use in real-address mode, 20-6

IDTR register
description of, 2-17, 6-13
IA-32e mode, 2-17
introduction to, 2-7
limit, 5-7
loading in real-address mode, 20-7
storing, 3-21

IE (invalid operation exception) flag
x87 FPU status word, 22-11

IEEE Standard 754 for Binary Floating-Point
Arithmetic, 22-11, 22-12, 22-13, 22-14,
22-17, 22-19

IF (interrupt enable) flag
EFLAGS register, 2-13, 2-14, 6-9, 6-14, 6-19,

20-6, 20-29, 33-14
IN instruction, 8-22, 22-47, 25-3
INC instruction, 8-5
Index field, segment selector, 3-9
INIT interrupt, 10-5
Initial-count register, local APIC, 10-22, 10-23
Initialization

built-in self-test (BIST), 9-1, 9-2
CS register state following, 9-6
EIP register state following, 9-6
example, 9-19
first instruction executed, 9-6
hardware reset, 9-1
IA-32e mode, 9-14
IDT, protected mode, 9-13
IDT, real-address mode, 9-11
Intel486 SX processor and Intel 487 SX math

coprocessor, 22-22
location of software-initialization code, 9-6
machine-check initialization, 15-24
model and stepping information, 9-5
multitasking environment, 9-14
overview, 9-1
paging, 9-13
processor state after reset, 9-2
protected mode, 9-11
real-address mode, 9-10
RESET# pin, 9-1
setting up exception- and interrupt-handling

facilities, 9-13
x87 FPU, 9-6

INIT# pin, 6-4, 9-2
INIT# signal, 2-32, 23-6
INS instruction, 17-12
Instruction operands, 1-8
Instruction-breakpoint exception condition, 17-11
Index-10 Vol. 3C

INDEX
Instructions
new instructions, 22-5
obsolete instructions, 22-7
privileged, 5-33
serializing, 8-24, 8-43, 22-21
supported in real-address mode, 20-4
system, 2-10, 2-27

INS/INSB/INSW/INSD instruction, 25-3
INT 3 instruction, 2-7, 6-31
INT instruction, 2-7, 5-15
INT n instruction, 3-11, 6-1, 6-5, 6-6, 17-13
INT (APIC interrupt enable) flag, PerfEvtSel0 and

PerfEvtSel1 MSRs (P6 family processors),
18-6, 18-121

INT15 and microcode updates, 9-55
INT3 instruction, 3-11, 6-6
Intel 287 math coprocessor, 22-9
Intel 387 math coprocessor system, 22-9
Intel 487 SX math coprocessor, 22-9, 22-22
Intel 64 architecture

definition of, 1-3
relation to IA-32, 1-3

Intel 8086 processor, 22-9
Intel Core Solo and Duo processors

model-specific registers, 34-216
Intel Core Solo and Intel Core Duo processors

Enhanced Intel SpeedStep technology, 14-1
event mask (Umask), 18-16, 18-18
last branch, interrupt, exception recording, 17-43
notes on P-state transitions, 14-2
performance monitoring, 18-16, 18-18
performance monitoring events, 19-2, 19-15,

19-38, 19-144, 19-188
sub-fields layouts, 18-16, 18-18
time stamp counters, 17-50

Intel developer link, 1-12
Intel NetBurst microarchitecture, 1-2
Intel software network link, 1-12
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, 1-11
Intel Xeon processor, 1-2

last branch, interrupt, and exception recording,
17-38

time-stamp counter, 17-50
Intel Xeon processor MP

with 8MB L3 cache, 18-105, 18-110
Intel286 processor, 22-9
Intel386 DX processor, 22-9
Intel386 SL processor, 2-10
Intel486 DX processor, 22-9
Intel486 SX processor, 22-9, 22-22
Interprivilege level calls

call mechanism, 5-22
stack switching, 5-25

Interprocessor interrupt (IPIs), 10-2
Interprocessor interrupt (IPI)

in MP systems, 10-1
interrupt, 6-17
Interrupt Command Register, 10-54
Interrupt command register (ICR), local APIC, 10-26
Interrupt gates

16-bit, interlevel return from, 22-44
clearing IF flag, 6-10, 6-19
difference between interrupt and trap gates,

6-19
for 16-bit and 32-bit code modules, 21-2
handling a virtual-8086 mode interrupt or

exception through, 20-18
in IDT, 6-14
introduction to, 2-5, 2-7
layout of, 6-14

Interrupt handler
calling, 6-15
defined, 6-1
flag usage by handler procedure, 6-19
procedures, 6-16
protection of handler procedures, 6-18
task, 6-20, 7-3

Interrupts
automatic bus locking, 22-48
control transfers between 16- and 32-bit code

modules, 21-8
description of, 2-7, 6-1
destination, 10-38
distribution mechanism, local APIC, 10-36
enabling and disabling, 6-9
handling, 6-15
handling in real-address mode, 20-6
handling in SMM, 33-14
handling in virtual-8086 mode, 20-16
handling multiple NMIs, 6-9
handling through a task gate in virtual-8086 mode

, 20-21
handling through a trap or interrupt gate in

virtual-8086 mode, 20-18
IA-32e mode, 2-7, 2-17
IDT, 6-12
IDTR, 2-17
initializing for protected-mode operation, 9-13
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, 6-3, 20-8
local APIC, 10-1
maskable hardware interrupts, 2-13
masking maskable hardware interrupts, 6-9
masking when switching stack segments, 6-11
message signalled interrupts, 10-49
on-die sensors for, 14-11
overview of, 6-1
priorities among simultaneous exceptions and

interrupts, 6-11
priority, 10-40
propagation delay, 22-36
real-address mode, 20-8
Vol. 3C Index -11

INDEX
restarting a task or program, 6-7
software, 6-68
sources of, 10-1
summary of, 6-3
thermal monitoring, 14-11
user defined, 6-2, 6-68
valid APIC interrupts, 10-20
vectors, 6-2
virtual-8086 mode, 20-8

INTO instruction, 2-7, 3-11, 6-6, 6-32, 17-13
INTR# pin, 6-2, 6-9
Invalid opcode exception (#UD), 2-22, 6-34, 6-65,

12-1, 17-4, 22-7, 22-15, 22-28, 22-29,
33-4

Invalid TSS exception (#TS), 6-42, 7-8
Invalid-operation exception, x87 FPU, 22-15, 22-19
INVD instruction, 2-31, 5-34, 11-25, 22-6
INVLPG instruction, 2-31, 5-34, 22-6, 25-3, 31-5,

31-6
IOPL (I/O privilege level) field, EFLAGS register

description of, 2-13
on return from exception, interrupt handler, 6-18
sensitive instructions in virtual-8086 mode,

20-15
virtual interrupt, 2-14, 2-15

IPI (see interprocessor interrupt)
IRET instruction, 3-11, 6-9, 6-10, 6-18, 6-19, 6-25,

7-13, 8-25, 20-6, 20-29, 25-17
IRETD instruction, 2-14, 8-25
IRR

Interrupt Request Register, 10-56, 10-60, 10-67
IRR (interrupt request register), local APIC, 10-43
ISR

In Service Register, 10-55, 10-60, 10-67
I/O

breakpoint exception conditions, 17-12
in virtual-8086 mode, 20-15
instruction restart flag

SMM revision identifier field, 33-20
instruction restart flag, SMM revision identifier

field, 33-21
IO_SMI bit, 33-15
I/O permission bit map, TSS, 7-6
map base address field, TSS, 7-6
restarting following SMI interrupt, 33-20
saving I/O state, 33-15
SMM state save map, 33-15

I/O APIC, 10-38
bus arbitration, 10-37
description of, 10-1
external interrupts, 6-4
information about, 10-1
interrupt sources, 10-2
local APIC and I/O APIC, 10-3, 10-4
overview of, 10-1
valid interrupts, 10-20
See also: local APIC

J
JMP instruction, 2-6, 3-11, 5-15, 5-22, 7-3, 7-12,

7-13

K
KEN# pin, 11-19, 22-50

L
L0-L3 (local breakpoint enable) flags

DR7 register, 17-5
L1 (level 1) cache

caching methods, 11-8
CPUID feature flag, 11-26
description of, 11-5
effect of using write-through memory, 11-12
introduction of, 22-40
invalidating and flushing, 11-25
MESI cache protocol, 11-13
shared and adaptive mode, 11-26

L2 (level 2) cache
caching methods, 11-8
description of, 11-5
disabling, 11-25
effect of using write-through memory, 11-12
introduction of, 22-40
invalidating and flushing, 11-25
MESI cache protocol, 11-13

L3 (level 3) cache
caching methods, 11-8
description of, 11-5
disabling and enabling, 11-19, 11-25
effect of using write-through memory, 11-12
introduction of, 22-42
invalidating and flushing, 11-25
MESI cache protocol, 11-13

LAR instruction, 2-30, 5-35
Larger page sizes

introduction of, 22-42
support for, 22-26

Last branch
interrupt & exception recording

description of, 17-14, 17-33, 17-34, 17-38,
17-40, 17-43, 17-45, 17-47

record stack, 17-20, 17-21, 17-34, 17-39, 17-41,
17-44, 17-46, 34-193, 34-208

record top-of-stack pointer, 17-20, 17-34, 17-39,
17-44, 17-46

LastBranchFromIP MSR, 17-48, 17-49
LastBranchToIP MSR, 17-48, 17-49
LastExceptionFromIP MSR, 17-34, 17-43, 17-44,

17-48, 17-49
LastExceptionToIP MSR, 17-34, 17-43, 17-44, 17-48,

17-49
LBR (last branch/interrupt/exception) flag,

DEBUGCTLMSR MSR, 17-17, 17-40, 17-47,
17-49
Index-12 Vol. 3C

INDEX
LDR
Logical Destination Register, 10-60, 10-64, 10-66

LDS instruction, 3-11, 5-12
LDT

associated with a task, 7-3
description of, 2-5, 2-6, 3-21
index into with index field of segment selector,

3-9
pointer to in TSS, 7-6
pointers to exception and interrupt handlers, 6-16
segment descriptors in, 3-13
segment selector field, TSS, 7-19
selecting with TI (table indicator) flag of segment

selector, 3-10
setting up during initialization, 9-12
task switching, 7-12
task-gate descriptor, 7-11
use in address translation, 3-8

LDTR register
description of, 2-5, 2-6, 2-9, 2-16, 3-21
IA-32e mode, 2-16
limit, 5-7
storing, 3-21

LE (local exact breakpoint enable) flag, DR7 register,
17-5, 17-12

LEN0-LEN3 (Length) fields, DR7 register, 17-6
LES instruction, 3-11, 5-12, 6-34
LFENCE instruction, 2-21, 8-9, 8-22, 8-23, 8-25
LFS instruction, 3-11, 5-12
LGDT instruction, 2-29, 5-34, 8-25, 9-12, 22-28
LGS instruction, 3-11, 5-12
LIDT instruction, 2-29, 5-34, 6-13, 8-25, 9-11, 20-7,

22-37
Limit checking

description of, 5-6
pointer offsets are within limits, 5-36

Limit field, segment descriptor, 5-2, 5-6
Linear address

description of, 3-8
IA-32e mode, 3-9
introduction to, 2-8

Linear address space, 3-8
defined, 3-1
of task, 7-19

Link (to previous task) field, TSS, 6-20
Linking tasks

mechanism, 7-16
modifying task linkages, 7-18

LINT pins
function of, 6-2

LLDT instruction, 2-29, 5-34, 8-25
LMSW instruction, 2-29, 5-34, 25-4, 25-18
Local APIC, 10-55

64-bit mode, 10-46
APIC_ID value, 8-49
arbitration over the APIC bus, 10-37
arbitration over the system bus, 10-37
block diagram, 10-6

cluster model, 10-34
CR8 usage, 10-46
current-count register, 10-23
description of, 10-1
detecting with CPUID, 10-10
DFR (destination format register), 10-34
divide configuration register, 10-23
enabling and disabling, 10-10
external interrupts, 6-2
features

Pentium 4 and Intel Xeon, 22-38
Pentium and P6, 22-38

focus processor, 10-37
global enable flag, 10-12
IA32_APIC_BASE MSR, 10-11
initial-count register, 10-22, 10-23
internal error interrupts, 10-2
interrupt command register (ICR), 10-26
interrupt destination, 10-38
interrupt distribution mechanism, 10-36
interrupt sources, 10-2
IRR (interrupt request register), 10-43
I/O APIC, 10-1
local APIC and 82489DX, 22-37
local APIC and I/O APIC, 10-3, 10-4
local vector table (LVT), 10-16
logical destination mode, 10-33
LVT (local-APIC version register), 10-15
mapping of resources, 8-49
MDA (message destination address), 10-33
overview of, 10-1
performance-monitoring counter, 18-123
physical destination mode, 10-33
receiving external interrupts, 6-2
register address map, 10-8, 10-55
shared resources, 8-49
SMI interrupt, 33-3
spurious interrupt, 10-46
spurious-interrupt vector register, 10-11
state after a software (INIT) reset, 10-15
state after INIT-deassert message, 10-15
state after power-up reset, 10-14
state of, 10-47
SVR (spurious-interrupt vector register), 10-11
timer, 10-22
timer generated interrupts, 10-2
TMR (trigger mode register), 10-43
valid interrupts, 10-20
version register, 10-15

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, 10-16
thermal entry, 14-15

Local x2APIC, 10-45, 10-59, 10-66
Local xAPIC ID, 10-59
LOCK prefix, 2-32, 6-34, 8-2, 8-4, 8-5, 8-22, 22-48
Locked (atomic) operations
Vol. 3C Index -13

INDEX
automatic bus locking, 8-4
bus locking, 8-4
effects on caches, 8-7
loading a segment descriptor, 22-27
on IA-32 processors, 22-48
overview of, 8-2
software-controlled bus locking, 8-5

LOCK# signal, 2-32, 8-2, 8-4, 8-5, 8-8
Logical address

description of, 3-8
IA-32e mode, 3-9

Logical address space, of task, 7-20
Logical destination mode, local APIC, 10-33
Logical processors

per physical package, 8-36
Logical x2APIC ID, 10-66
low-temperature interrupt enable bit, 14-22, 14-26
LSL instruction, 2-30, 5-36
LSS instruction, 3-11, 5-12
LTR instruction, 2-29, 5-34, 7-9, 8-25, 9-14
LVT (see Local vector table)

M
Machine check architecture

VMX considerations, 32-16
Machine-check architecture

availability of MCA and exception, 15-24
compatibility with Pentium processor, 15-1
compound error codes, 15-27
CPUID flags, 15-24
error codes, 15-26, 15-27
error-reporting bank registers, 15-2
error-reporting MSRs, 15-5
extended machine check state MSRs, 15-13
external bus errors, 15-35
first introduced, 22-30
global MSRs, 15-2, 15-3
initialization of, 15-24
introduction of in IA-32 processors, 22-50
logging correctable errors, 15-37, 15-39, 15-45
machine-check exception handler, 15-35
machine-check exception (#MC), 15-1
MSRs, 15-2
overview of MCA, 15-1
Pentium processor exception handling, 15-37
Pentium processor style error reporting, 15-15
simple error codes, 15-26
VMX considerations, 32-12, 32-13
writing machine-check software, 15-35

Machine-check exception (#MC), 6-63, 15-1, 15-24,
15-35, 22-28, 22-50

Mapping of shared resources, 8-49
Maskable hardware interrupts

description of, 6-5
handling with virtual interrupt mechanism, 20-22
masking, 2-13, 6-9

MCA flag, CPUID instruction, 15-24

MCE flag, CPUID instruction, 15-24
MCE (machine-check enable) flag

CR4 control register, 2-23, 22-24
MDA (message destination address)

local APIC, 10-33
Memory, 11-1
Memory management

introduction to, 2-8
overview, 3-1
paging, 3-1, 3-2
registers, 2-15
segments, 3-1, 3-2, 3-3, 3-9
virtualization of, 31-3

Memory ordering
in IA-32 processors, 22-46
overview, 8-8
processor ordering, 8-8
strengthening or weakening, 8-22
write ordering, 8-8

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, 11-8
choosing, 11-12
MTRR types, 11-30
selecting for Pentium III and Pentium 4 processors

, 11-21
selecting for Pentium Pro and Pentium II

processors, 11-20
UC (strong uncacheable), 11-8
UC- (uncacheable), 11-9
WB (write back), 11-10
WC (write combining), 11-9
WP (write protected), 11-10
writing values across pages with different

memory types, 11-23
WT (write through), 11-10

MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
MESI cache protocol, 11-7, 11-13
Message address register, 10-49
Message data register format, 10-51
Message signalled interrupts

message address register, 10-49
message data register format, 10-49

MFENCE instruction, 2-21, 8-9, 8-22, 8-23, 8-25
Microcode update facilities

authenticating an update, 9-48
BIOS responsibilities, 9-49
calling program responsibilities, 9-52
checksum, 9-44
extended signature table, 9-41
family 0FH processors, 9-37
field definitions, 9-37
format of update, 9-37
function 00H presence test, 9-56
function 01H write microcode update data, 9-57
function 02H microcode update control, 9-62
function 03H read microcode update data, 9-63
Index-14 Vol. 3C

INDEX
general description, 9-37
HT Technology, 9-46
INT 15H-based interface, 9-55
overview, 9-36
process description, 9-37
processor identification, 9-41
processor signature, 9-41
return codes, 9-64
update loader, 9-45
update signature and verification, 9-47
update specifications, 9-49
VMX non-root operation, 25-22, 31-12
VMX support

early loading, 31-12
late loading, 31-12
virtualization issues, 31-11

Mixing 16-bit and 32-bit code
in IA-32 processors, 22-45
overview, 21-1

MMX technology
debugging MMX code, 12-6
effect of MMX instructions on pending x87

floating-point exceptions, 12-6
emulation of the MMX instruction set, 12-1
exceptions that can occur when executing MMX

instructions, 12-1
introduction of into the IA-32 architecture, 22-3
register aliasing, 12-1
state, 12-1
state, saving and restoring, 12-4
system programming, 12-1
task or context switches, 12-5
using TS flag to control saving of MMX state,

13-10
Mode switching

example, 9-19
real-address and protected mode, 9-17
to SMM, 33-3

Model and stepping information, following processor
initialization or reset, 9-5

Model-specific registers (see MSRs)
Modes of operation (see Operating modes)
MONITOR instruction, 25-4
MOV instruction, 3-11, 5-12
MOV (control registers) instructions, 2-29, 2-30,

5-34, 8-25, 9-17
MOV (debug registers) instructions, 2-30, 5-34, 8-25,

17-13
MOVNTDQ instruction, 8-9, 11-7, 11-26
MOVNTI instruction, 2-21, 8-9, 11-7, 11-26
MOVNTPD instruction, 8-9, 11-7, 11-26
MOVNTPS instruction, 8-9, 11-7, 11-26
MOVNTQ instruction, 8-9, 11-7, 11-26
MP (monitor coprocessor) flag

CR0 control register, 2-21, 2-22, 6-36, 9-6, 9-8,
12-1, 22-10

MSR, 34-210
Model Specific Register, 10-53, 10-54

MSRs
architectural, 34-2
description of, 9-9
introduction of in IA-32 processors, 22-49
introduction to, 2-9
list of, 34-1
machine-check architecture, 15-3
P6 family processors, 34-239
Pentium 4 processor, 34-46, 34-67, 34-169,

34-173, 34-213
Pentium processors, 34-251
reading and writing, 2-26, 2-34
reading & writing in 64-bit mode, 2-34
virtualization support, 30-22
VMX support, 30-22

MSR_ TC_PRECISE_EVENT MSR, 19-260
MSR_DEBUBCTLB MSR, 17-16, 17-36, 17-44, 17-46
MSR_DEBUGCTLA MSR, 17-15, 17-22, 17-30, 17-32,

17-39, 18-14, 18-19, 18-23, 18-24,
18-56, 34-193

MSR_DEBUGCTLB MSR, 17-15, 17-43, 17-45, 34-59,
34-77, 34-92, 34-146, 34-224, 34-236

MSR_EBC_FREQUENCY_ID MSR, 34-177, 34-178
MSR_EBC_HARD_POWERON MSR, 34-173
MSR_EBC_SOFT_POWERON MSR, 34-175
MSR_IFSB_CNTR7 MSR, 18-109
MSR_IFSB_CTRL6 MSR, 18-109
MSR_IFSB_DRDY0 MSR, 18-108
MSR_IFSB_DRDY1 MSR, 18-108
MSR_IFSB_IBUSQ0 MSR, 18-106
MSR_IFSB_IBUSQ1 MSR, 18-106
MSR_IFSB_ISNPQ0 MSR, 18-107
MSR_IFSB_ISNPQ1 MSR, 18-107
MSR_LASTBRANCH _TOS, 34-193
MSR_LASTBRANCH_n MSR, 17-20, 17-21, 17-41,

17-42, 34-193
MSR_LASTBRANCH_n_FROM_LIP MSR, 17-20, 17-21,

17-41, 17-42, 34-208
MSR_LASTBRANCH_n_TO_LIP MSR, 17-20, 17-21,

17-41, 17-42, 34-210
MSR_LASTBRANCH_TOS MSR, 17-41
MSR_LER_FROM_LIP MSR, 17-34, 17-43, 17-44,

34-192
MSR_LER_TO_LIP MSR, 17-34, 17-43, 17-44, 34-192
MSR_PEBS_ MATRIX_VERT MSR, 19-261
MSR_PEBS_MATRIX_VERT MSR, 34-202
MSR_PLATFORM_BRV, 34-191
MTRR feature flag, CPUID instruction, 11-32
MTRRcap MSR, 11-32
MTRRfix MSR, 11-34
MTRRs, 8-22

base & mask calculations, 11-38, 11-40
cache control, 11-19
description of, 9-9, 11-30
dual-core processors, 8-48
enabling caching, 9-8
feature identification, 11-32
fixed-range registers, 11-34
Vol. 3C Index -15

INDEX
IA32_MTRRCAP MSR, 11-32
IA32_MTRR_DEF_TYPE MSR, 11-33
initialization of, 11-41
introduction of in IA-32 processors, 22-49
introduction to, 2-9
large page size considerations, 11-47
logical processors, 8-48
mapping physical memory with, 11-31
memory types and their properties, 11-30
MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
multiple-processor considerations, 11-46
precedence of cache controls, 11-19
precedences, 11-41
programming interface, 11-42
remapping memory types, 11-42
state of following a hardware reset, 11-30
variable-range registers, 11-34, 11-37

Multi-core technology
See multi-threading support

Multiple-processor management
bus locking, 8-4
guaranteed atomic operations, 8-3
initialization

MP protocol, 8-26
procedure, 8-75

local APIC, 10-1
memory ordering, 8-8
MP protocol, 8-26
overview of, 8-1
SMM considerations, 33-22
VMM design, 30-15

asymmetric, 30-15
CPUID emulation, 30-18
external data structures, 30-17
index-data registers, 30-17
initialization, 30-16
moving between processors, 30-16
symmetric, 30-15

Multiple-processor system
local APIC and I/O APICs, Pentium 4, 10-4
local APIC and I/O APIC, P6 family, 10-4

Multisegment model, 3-5
Multitasking

initialization for, 9-14
initializing IA-32e mode, 9-14
linking tasks, 7-16
mechanism, description of, 7-3
overview, 7-1
setting up TSS, 9-14
setting up TSS descriptor, 9-14

Multi-threading support
executing multiple threads, 8-38
handling interrupts, 8-38
logical processors per package, 8-36
mapping resources, 8-49
microcode updates, 8-48
performance monitoring counters, 8-48

programming considerations, 8-49
See also: Hyper-Threading Technology and

dual-core technology
MWAIT instruction, 25-5

power management extensions, 14-9
MXCSR register, 6-65, 9-10, 13-8

N
NaN, compatibility, IA-32 processors, 22-12
NE (numeric error) flag

CR0 control register, 2-20, 6-58, 9-6, 9-8, 22-10,
22-25

NEG instruction, 8-5
NetBurst microarchitecture (see Intel NetBurst

microarchitecture)
NMI interrupt, 2-32, 10-5

description of, 6-2
handling during initialization, 9-11
handling in SMM, 33-14
handling multiple NMIs, 6-9
masking, 22-36
receiving when processor is shutdown, 6-39
reference information, 6-30
vector, 6-2

NMI# pin, 6-2, 6-30
Nominal CPI method, 18-101
Nonconforming code segments

accessing, 5-16
C (conforming) flag, 5-16
description of, 3-18

Non-halted clockticks, 18-101
setting up counters, 18-101

Non-Halted CPI method, 18-101
Nonmaskable interrupt (see NMI)
Non-precise event-based sampling

defined, 18-73
used for at-retirement counting, 18-90
writing an interrupt service routine for, 17-32

Non-retirement events, 18-73, 19-221
Non-sleep clockticks, 18-101

setting up counters, 18-101
NOT instruction, 8-5
Notation

bit and byte order, 1-7
conventions, 1-7
exceptions, 1-10
hexadecimal and binary numbers, 1-9
Instructions

operands, 1-8
reserved bits, 1-7
segmented addressing, 1-9

NT (nested task) flag
EFLAGS register, 2-13, 7-13, 7-16

Null segment selector, checking for, 5-9
Numeric overflow exception (#O), 22-13
Numeric underflow exception (#U), 22-14
NV (invert) flag, PerfEvtSel0 MSR
Index-16 Vol. 3C

INDEX
(P6 family processors), 18-6, 18-121
NW (not write-through) flag

CR0 control register, 2-20, 9-8, 11-17, 11-18,
11-24, 11-46, 11-47, 22-25, 22-26, 22-40

NXE bit, 5-43

O
Obsolete instructions, 22-7, 22-20
OF flag, EFLAGS register, 6-32
On die digital thermal sensor, 14-19

relevant MSRs, 14-19
sensor enumeration, 14-19

On-Demand
clock modulation enable bits, 14-17

On-demand
clock modulation duty cycle bits, 14-17

On-die sensors, 14-11
Opcodes

undefined, 22-7
Operands

instruction, 1-8
operand-size prefix, 21-2

Operating modes
64-bit mode, 2-10
compatibility mode, 2-10
IA-32e mode, 2-10, 2-11
introduction to, 2-10
protected mode, 2-10
SMM (system management mode), 2-10
transitions between, 2-11, 13-17
virtual-8086 mode, 2-11
VMX operation

enabling and entering, 23-4
guest environments, 30-1

OR instruction, 8-5
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only),
18-5, 18-121

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, 2-24, 9-10, 13-3

OSXMMEXCPT (SIMD floating-point exception
support) flag, CR4 control register, 2-25,
6-65, 9-10, 13-3

OUT instruction, 8-22, 25-3
Out-of-spec status bit, 14-20, 14-25
Out-of-spec status log, 14-20, 14-25
OUTS/OUTSB/OUTSW/OUTSD instruction, 17-12,

25-3
Overflow exception (#OF), 6-32
Overheat interrupt enable bit, 14-22, 14-26

P
P (present) flag

page-directory entry, 6-54
page-table entry, 6-54
segment descriptor, 3-14

P5_MC_ADDR MSR, 15-15, 15-37, 34-46, 34-68,
34-83, 34-138, 34-216, 34-230, 34-239,
34-251

P5_MC_TYPE MSR, 15-15, 15-37, 34-46, 34-68,
34-83, 34-138, 34-216, 34-230, 34-239,
34-251

P6 family processors
compatibility with FP software, 22-9
description of, 1-1
last branch, interrupt, and exception recording,

17-47
list of performance-monitoring events, 19-272
MSR supported by, 34-239

PAE paging
feature flag, CR4 register, 2-23
flag, CR4 control register, 3-7, 22-24, 22-25

Page attribute table (PAT)
compatibility with earlier IA-32 processors, 11-52
detecting support for, 11-48
IA32_CR_PAT MSR, 11-49
introduction to, 11-48
memory types that can be encoded with, 11-49
MSR, 11-19
precedence of cache controls, 11-20
programming, 11-50
selecting a memory type with, 11-50

Page directories, 2-8
Page directory

base address (PDBR), 7-6
introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page directory pointers, 2-8
Page frame (see Page)
Page tables, 2-8

introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page-directory entries, 8-5, 11-6
Page-fault exception (#PF), 4-64, 6-54, 22-29
Pages

disabling protection of, 5-1
enabling protection of, 5-1
introduction to, 2-8
overview, 3-2
PG flag, CR0 control register, 5-2
split, 22-21

Page-table entries, 8-5, 11-6, 11-27
Paging

combining segment and page-level protection,
5-41

combining with segmentation, 3-7
defined, 3-1
IA-32e mode, 2-8
initializing, 9-13
introduction to, 2-8
large page size MTRR considerations, 11-47
mapping segments to pages, 4-64
Vol. 3C Index -17

INDEX
page boundaries regarding TSS, 7-6
page-fault exception, 6-54
page-level protection, 5-2, 5-5, 5-39
page-level protection flags, 5-40
virtual-8086 tasks, 20-10

Parameter
passing, between 16- and 32-bit call gates, 21-8
translation, between 16- and 32-bit code

segments, 21-8
PAUSE instruction, 2-21, 25-5
PBi (performance monitoring/breakpoint pins) flags,

DEBUGCTLMSR MSR, 17-45, 17-48
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 18-6, 18-121
PC0 and PC1 (pin control) fields, CESR MSR (Pentium

processor), 18-125
PCD pin (Pentium processor), 11-19
PCD (page-level cache disable) flag

CR3 control register, 2-22, 11-19, 22-25, 22-41
page-directory entries, 9-8, 11-19, 11-47
page-table entries, 9-8, 11-19, 11-47, 22-42

PCE (performance monitoring counter enable) flag,
CR4 control register, 2-24, 5-34, 18-76,
18-122

PCE (performance-monitoring counter enable) flag,
CR4 control register, 22-24

PDBR (see CR3 control register)
PE (protection enable) flag, CR0 control register,

2-22, 5-1, 9-13, 9-17, 33-12
PEBS records, 17-27
PEBS (precise event-based sampling) facilities

availability of, 18-93
description of, 18-73, 18-92
DS save area, 17-22
IA-32e mode, 17-27
PEBS buffer, 17-23, 18-93
PEBS records, 17-22, 17-25
writing a PEBS interrupt service routine, 18-93
writing interrupt service routine, 17-32

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, 17-22, 34-189

Pentium 4 processor, 1-2
compatibility with FP software, 22-9
last branch, interrupt, and exception recording,

17-38
list of performance-monitoring events, 19-1,

19-220
MSRs supported, 34-46, 34-67, 34-172, 34-173,

34-213
time-stamp counter, 17-50

Pentium II processor, 1-2
Pentium III processor, 1-2
Pentium M processor

last branch, interrupt, and exception recording,
17-45

MSRs supported by, 34-229
time-stamp counter, 17-50

Pentium Pro processor, 1-2

Pentium processor, 1-1, 22-9
compatibility with MCA, 15-1
list of performance-monitoring events, 19-290
MSR supported by, 34-251
performance-monitoring counters, 18-124

PerfCtr0 and PerfCtr1 MSRs
(P6 family processors), 18-120, 18-122

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 18-120

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors), 18-120

Performance events
architectural, 18-1
Intel Core Solo and Intel Core Duo processors,

18-1
non-architectural, 18-1
non-retirement events (Pentium 4 processor),

19-221
P6 family processors, 19-272
Pentium 4 and Intel Xeon processors, 17-38
Pentium M processors, 17-45
Pentium processor, 19-290

Performance state, 14-2
Performance-monitoring counters

counted events (P6 family processors), 19-272
counted events (Pentium 4 processor), 19-1,

19-220
counted events (Pentium processors), 18-126
description of, 18-1, 18-2
events that can be counted (Pentium processors),

19-290
interrupt, 10-2
introduction of in IA-32 processors, 22-50
monitoring counter overflow (P6 family

processors), 18-123
overflow, monitoring (P6 family processors),

18-123
overview of, 2-10
P6 family processors, 18-119
Pentium II processor, 18-119
Pentium Pro processor, 18-119
Pentium processor, 18-124
reading, 2-33, 18-122
setting up (P6 family processors), 18-120
software drivers for, 18-123
starting and stopping, 18-122

PG (paging) flag
CR0 control register, 2-19, 5-2

PG (paging) flag, CR0 control register, 9-13, 9-17,
22-43, 33-12

PGE (page global enable) flag, CR4 control register,
2-24, 11-19, 22-24, 22-26

PhysBase field, IA32_MTRR_PHYSBASEn MTRR,
11-35, 11-37

Physical address extension
introduction to, 3-7

Physical address space
4 GBytes, 3-7
Index-18 Vol. 3C

INDEX
64 GBytes, 3-7
addressing, 2-8
defined, 3-1
description of, 3-7
guest and host spaces, 31-3
IA-32e mode, 3-8
mapped to a task, 7-19
mapping with variable-range MTRRs, 11-34,

11-37
memory virtualization, 31-3
See also: VMM, VMX

Physical destination mode, local APIC, 10-33
PhysMask

IA32_MTRR_PHYSMASKn MTRR, 11-35, 11-37
PM0/BP0 and PM1/BP1 (performance-monitor) pins

(Pentium processor), 18-124, 18-126
PML4 tables, 2-8
Pointers

code-segment pointer size, 21-5
limit checking, 5-36
validation, 5-34

POP instruction, 3-11
POPF instruction, 6-10, 17-13
Power consumption

software controlled clock, 14-11, 14-16
Precise event-based sampling (see PEBS)
PREFETCHh instruction, 2-21, 11-7, 11-25
Previous task link field, TSS, 7-6, 7-16, 7-18
Privilege levels

checking when accessing data segments, 5-12
checking, for call gates, 5-22
checking, when transferring program control

between code segments, 5-14
description of, 5-9
protection rings, 5-11

Privileged instructions, 5-33
Processor families

06H, 16-1
0FH, 16-1

Processor management
initialization, 9-1
local APIC, 10-1
microcode update facilities, 9-36
overview of, 8-1
See also: multiple-processor management

Processor ordering, description of, 8-8
PROCHOT# log, 14-20, 14-25
PROCHOT# or FORCEPR# event bit, 14-20, 14-24,

14-25
Protected mode

IDT initialization, 9-13
initialization for, 9-11
mixing 16-bit and 32-bit code modules, 21-2
mode switching, 9-17
PE flag, CR0 register, 5-1
switching to, 5-1, 9-17
system data structures required during

initialization, 9-11, 9-12

Protection
combining segment & page-level, 5-41
disabling, 5-1
enabling, 5-1
flags used for page-level protection, 5-2, 5-5
flags used for segment-level protection, 5-2
IA-32e mode, 5-5
of exception, interrupt-handler procedures, 6-18
overview of, 5-1
page level, 5-1, 5-39, 5-41, 5-43
page level, overriding, 5-41
page-level protection flags, 5-40
read/write, page level, 5-40
segment level, 5-1
user/supervisor type, 5-40

Protection rings, 5-11
PSE (page size extension) flag

CR4 control register, 2-23, 11-29, 22-24, 22-26
PSE-36 page size extension, 3-7
Pseudo-functions

VMfail, 29-2
VMfailInvalid, 29-2
VMfailValid, 29-2
VMsucceed, 29-2

Pseudo-infinity, 22-12
Pseudo-NaN, 22-12
Pseudo-zero, 22-12
P-state, 14-2
PUSH instruction, 22-8
PUSHF instruction, 6-10, 22-9
PVI (protected-mode virtual interrupts) flag

CR4 control register, 2-14, 2-15, 2-23, 22-24
PWT pin (Pentium processor), 11-19
PWT (page-level write-through) flag

CR3 control register, 2-23, 11-19, 22-25, 22-41
page-directory entries, 9-8, 11-19, 11-47
page-table entries, 9-8, 11-47, 22-42

Q
QNaN, compatibility, IA-32 processors, 22-12

R
RDMSR instruction, 2-26, 2-34, 5-34, 17-41, 17-49,

17-51, 18-76, 18-120, 18-122, 18-124,
22-6, 22-49, 25-5, 25-20

RDPMC instruction, 2-33, 5-34, 18-76, 18-120,
18-122, 22-6, 22-24, 22-50, 25-6

in 64-bit mode, 2-34
RDTSC instruction, 2-33, 5-34, 17-51, 22-6, 25-6,

25-21
in 64-bit mode, 2-34

reading sensors, 14-19
Read/write

protection, page level, 5-40
rights, checking, 5-36

Real-address mode
Vol. 3C Index -19

INDEX
8086 emulation, 20-1
address translation in, 20-3
description of, 20-1
exceptions and interrupts, 20-8
IDT initialization, 9-11
IDT, changing base and limit of, 20-7
IDT, structure of, 20-7
IDT, use of, 20-6
initialization, 9-10
instructions supported, 20-4
interrupt and exception handling, 20-6
interrupts, 20-8
introduction to, 2-10
mode switching, 9-17
native 16-bit mode, 21-1
overview of, 20-1
registers supported, 20-4
switching to, 9-18

Recursive task switching, 7-18
Related literature, 1-11
Replay events, 19-261
Requested privilege level (see RPL)
Reserved bits, 1-7, 22-2
RESET# pin, 6-4, 22-22
RESET# signal, 2-32
Resolution in degrees, 14-21
Restarting program or task, following an exception or

interrupt, 6-7
Restricting addressable domain, 5-40
RET instruction, 5-15, 5-28, 21-7
Returning

from a called procedure, 5-28
from an interrupt or exception handler, 6-18

RF (resume) flag
EFLAGS register, 2-14, 6-10

RPL
description of, 3-10, 5-11
field, segment selector, 5-2

RSM instruction, 2-32, 8-25, 22-7, 25-6, 33-1, 33-3,
33-4, 33-17, 33-21, 33-25

RsvdZ, 10-57
R/S# pin, 6-4
R/W (read/write) flag

page-directory entry, 5-2, 5-3, 5-40
page-table entry, 5-2, 5-3, 5-40

R/W0-R/W3 (read/write) fields
DR7 register, 17-5, 22-27

S
S (descriptor type) flag

segment descriptor, 3-14, 3-16, 5-2, 5-7
SBB instruction, 8-5
Segment descriptors

access rights, 5-35
access rights, invalid values, 22-26
automatic bus locking while updating, 8-4
base address fields, 3-14

code type, 5-3
data type, 5-3
description of, 2-5, 3-13
DPL (descriptor privilege level) field, 3-14, 5-2
D/B (default operation size/default stack pointer

size and/or upper bound) flag, 3-15, 5-6
E (expansion direction) flag, 5-2, 5-6
G (granularity) flag, 3-15, 5-2, 5-6
limit field, 5-2, 5-6
loading, 22-27
P (segment-present) flag, 3-14
S (descriptor type) flag, 3-14, 3-16, 5-2, 5-7
segment limit field, 3-13
system type, 5-3
tables, 3-20
TSS descriptor, 7-7, 7-8
type field, 3-14, 3-16, 5-2, 5-7
type field, encoding, 3-19
when P (segment-present) flag is clear, 3-15

Segment limit
checking, 2-30
field, segment descriptor, 3-13

Segment not present exception (#NP), 3-14
Segment registers

description of, 3-10
IA-32e mode, 3-12
saved in TSS, 7-5

Segment selectors
description of, 3-9
index field, 3-9
null, 5-9
null in 64-bit mode, 5-9
RPL field, 3-10, 5-2
TI (table indicator) flag, 3-10

Segmented addressing, 1-9
Segment-not-present exception (#NP), 6-46
Segments

64-bit mode, 3-6
basic flat model, 3-3
code type, 3-16
combining segment, page-level protection, 5-41
combining with paging, 3-7
compatibility mode, 3-6
data type, 3-16
defined, 3-1
disabling protection of, 5-1
enabling protection of, 5-1
mapping to pages, 4-64
multisegment usage model, 3-5
protected flat model, 3-4
segment-level protection, 5-2, 5-5
segment-not-present exception, 6-46
system, 2-5
types, checking access rights, 5-35
typing, 5-7
using, 3-3
wraparound, 22-46

SELF IPI register, 10-54
Index-20 Vol. 3C

INDEX
Self-modifying code, effect on caches, 11-27
Serializing, 8-24
Serializing instructions

CPUID, 8-24
HT technology, 8-43
non-privileged, 8-24
privileged, 8-24

SF (stack fault) flag, x87 FPU status word, 22-11
SFENCE instruction, 2-21, 8-9, 8-22, 8-23, 8-25
SGDT instruction, 2-29, 3-21
Shared resources

mapping of, 8-49
Shutdown

resulting from double fault, 6-39
resulting from out of IDT limit condition, 6-39

SIDT instruction, 2-29, 3-21, 6-13
SIMD floating-point exception (#XF), 2-25, 6-65, 9-10
SIMD floating-point exceptions

description of, 6-65, 13-7
handler, 13-3
support for, 2-25

Single-stepping
breakpoint exception condition, 17-13
on branches, 17-17
on exceptions, 17-17
on interrupts, 17-17
TF (trap) flag, EFLAGS register, 17-13

SLDT instruction, 2-29
SLTR instruction, 3-21
SMBASE

default value, 33-5
relocation of, 33-19

SMI handler
description of, 33-1
execution environment for, 33-12
exiting from, 33-4
location in SMRAM, 33-5
VMX treatment of, 33-23

SMI interrupt, 2-32, 10-5
description of, 33-1, 33-3
IO_SMI bit, 33-15
priority, 33-4
switching to SMM, 33-3
synchronous and asynchronous, 33-15
VMX treatment of, 33-23

SMI# pin, 6-4, 33-3, 33-21
SMM

asynchronous SMI, 33-15
auto halt restart, 33-18
executing the HLT instruction in, 33-19
exiting from, 33-4
handling exceptions and interrupts, 33-14
introduction to, 2-10
I/O instruction restart, 33-20
I/O state implementation, 33-15
native 16-bit mode, 21-1
overview of, 33-1
revision identifier, 33-17

revision identifier field, 33-17
switching to, 33-3
switching to from other operating modes, 33-3
synchronous SMI, 33-15
VMX operation

default RSM treatment, 33-24
default SMI delivery, 33-23
dual-monitor treatment, 33-27
overview, 33-2
protecting CR4.VMXE, 33-26
RSM instruction, 33-25
SMM monitor, 33-2
SMM VM exits, 27-1, 33-27
SMM-transfer VMCS, 33-27
SMM-transfer VMCS pointer, 33-27
VMCS pointer preservation, 33-23
VMX-critical state, 33-23

SMRAM
caching, 33-11
description of, 33-1
state save map, 33-6
structure of, 33-5

SMSW instruction, 2-29, 25-21
SNaN, compatibility, IA-32 processors, 22-12, 22-19
Snooping mechanism, 11-8
Software controlled clock

modulation control bits, 14-17
power consumption, 14-11, 14-16

Software interrupts, 6-5
Software-controlled bus locking, 8-5
Split pages, 22-21
Spurious interrupt, local APIC, 10-46
SSE extensions

checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-3
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
facilities for automatic saving of state, 13-9,

13-12
initialization, 9-10
introduction of into the IA-32 architecture, 22-3
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
SIMD Floating-point exception (#XF), 6-65
system programming, 13-1
using TS flag to control saving of state, 13-10

SSE feature flag
CPUID instruction, 13-2

SSE2 extensions
checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-3
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
Vol. 3C Index -21

INDEX
facilities for automatic saving of state, 13-9,
13-12

initialization, 9-10
introduction of into the IA-32 architecture, 22-4
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
SIMD Floating-point exception (#XF), 6-65
system programming, 13-1
using TS flag to control saving state, 13-10

SSE2 feature flag
CPUID instruction, 13-2

SSE3 extensions
checking for with CPUID, 13-2
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
example verifying SS3 support, 8-62, 8-66, 14-3
facilities for automatic saving of state, 13-9,

13-12
initialization, 9-10
introduction of into the IA-32 architecture, 22-4
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
system programming, 13-1
using TS flag to control saving of state, 13-10

SSE3 feature flag
CPUID instruction, 13-2

Stack fault exception (#SS), 6-48
Stack fault, x87 FPU, 22-11, 22-18
Stack pointers

privilege level 0, 1, and 2 stacks, 7-6
size of, 3-15

Stack segments
paging of, 2-8
privilege level check when loading SS register,

5-14
size of stack pointer, 3-15

Stack switching
exceptions/interrupts when switching stacks,

6-11
IA-32e mode, 6-25
inter-privilege level calls, 5-25

Stack-fault exception (#SS), 22-46
Stacks

error code pushes, 22-44
faults, 6-48
for privilege levels 0, 1, and 2, 5-26
interlevel RET/IRET

from a 16-bit interrupt or call gate, 22-44
interrupt stack table, 64-bit mode, 6-26
management of control transfers for

16- and 32-bit procedure calls, 21-5
operation on pushes and pops, 22-43
pointers to in TSS, 7-6

stack switching, 5-25, 6-25
usage on call to exception

or interrupt handler, 22-44
Stepping information, following processor

initialization or reset, 9-5
STI instruction, 6-10
Store buffer

caching terminology, 11-8
characteristics of, 11-5
description of, 11-7, 11-29
in IA-32 processors, 22-46
location of, 11-1
operation of, 11-29

STPCLK# pin, 6-4
STR instruction, 2-29, 3-21, 7-9
Strong uncached (UC) memory type

description of, 11-8
effect on memory ordering, 8-23
use of, 9-10, 11-12

Sub C-state, 14-9
SUB instruction, 8-5
Supervisor mode

description of, 5-40
U/S (user/supervisor) flag, 5-40

SVR (spurious-interrupt vector register), local APIC,
10-11, 22-37

SWAPGS instruction, 2-10, 30-23
SYSCALL instruction, 2-10, 5-32, 30-23
SYSENTER instruction, 3-11, 5-15, 5-30, 5-31,

30-23, 30-24
SYSENTER_CS_MSR, 5-30
SYSENTER_EIP_MSR, 5-30
SYSENTER_ESP_MSR, 5-30
SYSEXIT instruction, 3-11, 5-15, 5-30, 5-31, 30-23,

30-24
SYSRET instruction, 2-10, 5-32, 30-23
System

architecture, 2-2, 2-3
data structures, 2-3
instructions, 2-10, 2-27
registers in IA-32e mode, 2-9
registers, introduction to, 2-9
segment descriptor, layout of, 5-3
segments, paging of, 2-8

System programming
MMX technology, 12-1
SSE/SSE2/SSE3 extensions, 13-1
virtualization of resources, 31-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, 7-6
Task gates

descriptor, 7-11
executing a task, 7-3
handling a virtual-8086 mode interrupt or

exception through, 20-21
Index-22 Vol. 3C

INDEX
IA-32e mode, 2-7
in IDT, 6-14
introduction for IA-32e, 2-6
introduction to, 2-5, 2-6, 2-7
layout of, 6-14
referencing of TSS descriptor, 6-20

Task management, 7-1
data structures, 7-4
mechanism, description of, 7-3

Task register, 3-21
description of, 2-17, 7-1, 7-9
IA-32e mode, 2-17
initializing, 9-14
introduction to, 2-9

Task switching
description of, 7-3
exception condition, 17-14
operation, 7-13
preventing recursive task switching, 7-18
saving MMX state on, 12-5
saving SSE/SSE2/SSE3 state

on task or context switches, 13-9
T (debug trap) flag, 7-6

Tasks
address space, 7-19
description of, 7-1
exception-handler task, 6-16
executing, 7-3
Intel 286 processor tasks, 22-51
interrupt-handler task, 6-16
interrupts and exceptions, 6-20
linking, 7-16
logical address space, 7-20
management, 7-1
mapping linear and physical address space, 7-19
restart following an exception or interrupt, 6-7
state (context), 7-2, 7-3
structure, 7-1
switching, 7-3
task management data structures, 7-4

TF (trap) flag, EFLAGS register, 2-12, 6-19, 17-13,
17-15, 17-40, 17-43, 17-45, 17-48, 20-6,
20-29, 33-14

Thermal monitoring
advanced power management, 14-9
automatic, 14-12
automatic thermal monitoring, 14-10
catastrophic shutdown detector, 14-10, 14-12
clock-modulation bits, 14-17
C-state, 14-9
detection of facilities, 14-18
Enhanced Intel SpeedStep Technology, 14-1
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_THERM_INTERRUPT MSR, 14-19
IA32_THERM_STATUS MSR, 14-19
interrupt enable/disable flags, 14-15
interrupt mechanisms, 14-11

MWAIT extensions for, 14-9
on die sensors, 14-11, 14-19
overview of, 14-1, 14-10
performance state transitions, 14-14
sensor interrupt, 10-2
setting thermal thresholds, 14-19
software controlled clock modulation, 14-11,

14-16
status flags, 14-14
status information, 14-14, 14-16
stop clock mechanism, 14-11
thermal monitor 1 (TM1), 14-12
thermal monitor 2 (TM2), 14-12
TM flag, CPUID instruction, 14-18

Thermal status bit, 14-19, 14-24
Thermal status log bit, 14-19, 14-24
Thermal threshold #1 log, 14-20, 14-25
Thermal threshold #1 status, 14-20, 14-25
Thermal threshold #2 log, 14-21, 14-25
Thermal threshold #2 status, 14-21, 14-25
THERMTRIP# interrupt enable bit, 14-22, 14-26
thread timeout indicator, 16-5, 16-11, 16-15, 16-18
Threshold #1 interrupt enable bit, 14-23, 14-27
Threshold #1 value, 14-22, 14-26
Threshold #2 interrupt enable, 14-23, 14-27
Threshold #2 value, 14-23, 14-27
TI (table indicator) flag, segment selector, 3-10
Timer, local APIC, 10-22
Time-stamp counter

counting clockticks, 18-101
description of, 17-50
IA32_TIME_STAMP_COUNTER MSR, 17-50
RDTSC instruction, 17-50
reading, 2-33
software drivers for, 18-123
TSC flag, 17-50
TSD flag, 17-50

TLBs
description of, 11-1, 11-6
flushing, 11-29
invalidating (flushing), 2-31
relationship to PGE flag, 22-26
relationship to PSE flag, 11-29
virtual TLBs, 31-5

TM1 and TM2
See: thermal monitoring, 14-12

TMR
Trigger Mode Register, 10-44, 10-55, 10-60,

10-67
TMR (Trigger Mode Register), local APIC, 10-43
TPR

Task Priority Register, 10-55, 10-60
TR (trace message enable) flag

DEBUGCTLMSR MSR, 17-15, 17-40, 17-43, 17-46,
17-48

Trace cache, 11-6
Transcendental instruction accuracy, 22-10, 22-20
Translation lookaside buffer (see TLB)
Vol. 3C Index -23

INDEX
Trap gates
difference between interrupt and trap gates,

6-19
for 16-bit and 32-bit code modules, 21-2
handling a virtual-8086 mode interrupt or

exception through, 20-18
in IDT, 6-14
introduction for IA-32e, 2-6
introduction to, 2-5, 2-7
layout of, 6-14

Traps
description of, 6-6
restarting a program or task after, 6-7

TS (task switched) flag
CR0 control register, 2-20, 2-30, 6-36, 12-1,

13-4, 13-10
TSD (time-stamp counter disable) flag

CR4 control register, 2-23, 5-34, 17-51, 22-24
TSS

16-bit TSS, structure of, 7-21
32-bit TSS, structure of, 7-4
64-bit mode, 7-22
CR3 control register (PDBR), 7-5, 7-19
description of, 2-5, 2-6, 7-1, 7-4
EFLAGS register, 7-5
EFLAGS.NT, 7-16
EIP, 7-6
executing a task, 7-3
floating-point save area, 22-16
format in 64-bit mode, 7-22
general-purpose registers, 7-5
IA-32e mode, 2-7
initialization for multitasking, 9-14
interrupt stack table, 7-23
invalid TSS exception, 6-42
IRET instruction, 7-16
I/O map base address field, 7-6, 22-39
I/O permission bit map, 7-6, 7-23
LDT segment selector field, 7-6, 7-19
link field, 6-20
order of reads/writes to, 22-39
pointed to by task-gate descriptor, 7-11
previous task link field, 7-6, 7-16, 7-18
privilege-level 0, 1, and 2 stacks, 5-26
referenced by task gate, 6-20
segment registers, 7-5
T (debug trap) flag, 7-6
task register, 7-9
using 16-bit TSSs in a 32-bit environment, 22-39
virtual-mode extensions, 22-39

TSS descriptor
B (busy) flag, 7-7
busy flag, 7-18
initialization for multitasking, 9-14
structure of, 7-7, 7-8

TSS segment selector
field, task-gate descriptor, 7-11
writes, 22-39

Type
checking, 5-7
field, IA32_MTRR_DEF_TYPE MSR, 11-33
field, IA32_MTRR_PHYSBASEn MTRR, 11-35,

11-37
field, segment descriptor, 3-14, 3-16, 3-19, 5-2,

5-7
of segment, 5-7

U
UC- (uncacheable) memory type, 11-9
UD2 instruction, 22-6
Uncached (UC-) memory type, 11-12
Uncached (UC) memory type (see Strong uncached

(UC) memory type)
Undefined opcodes, 22-7
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors), 18-5, 18-7, 18-8,
18-9, 18-10, 18-11, 18-12, 18-13, 18-20,
18-21, 18-22, 18-23, 18-38, 18-41,
18-51, 18-52, 18-53, 18-121

Un-normal number, 22-12
User mode

description of, 5-40
U/S (user/supervisor) flag, 5-40

User-defined interrupts, 6-2, 6-68
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 18-5, 18-7,
18-8, 18-9, 18-11, 18-12, 18-13, 18-20,
18-21, 18-22, 18-23, 18-38, 18-41,
18-51, 18-52, 18-53, 18-121

U/S (user/supervisor) flag
page-directory entry, 5-2, 5-3, 5-40
page-table entries, 20-11
page-table entry, 5-2, 5-3, 5-40

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, 11-36, 11-37
Variable-range MTRRs, description of, 11-34, 11-37
VCNT (variable range registers count) field,

IA32_MTRRCAP MSR, 11-32
Vectors

exceptions, 6-2
interrupts, 6-2

VERR instruction, 2-30, 5-36
VERW instruction, 2-30, 5-36
VIF (virtual interrupt) flag

EFLAGS register, 2-14, 2-15, 22-8
VIP (virtual interrupt pending) flag

EFLAGS register, 2-14, 2-15, 22-8
Virtual memory, 2-8, 3-1, 3-2
Virtual-8086 mode

8086 emulation, 20-1
description of, 20-8
emulating 8086 operating system calls, 20-27
Index-24 Vol. 3C

INDEX
enabling, 20-9
entering, 20-11
exception and interrupt handling overview, 20-16
exceptions and interrupts, handling through a task

gate, 20-20
exceptions and interrupts, handling through a trap

or interrupt gate, 20-18
handling exceptions and interrupts through a task

gate, 20-21
interrupts, 20-8
introduction to, 2-11
IOPL sensitive instructions, 20-15
I/O-port-mapped I/O, 20-15
leaving, 20-14
memory mapped I/O, 20-16
native 16-bit mode, 21-1
overview of, 20-1
paging of virtual-8086 tasks, 20-10
protection within a virtual-8086 task, 20-11
special I/O buffers, 20-16
structure of a virtual-8086 task, 20-9
virtual I/O, 20-15
VM flag, EFLAGS register, 2-14

Virtual-8086 tasks
paging of, 20-10
protection within, 20-11
structure of, 20-9

Virtualization
debugging facilities, 31-1
interrupt vector space, 32-4
memory, 31-3
microcode update facilities, 31-11
operating modes, 31-3
page faults, 31-8
system resources, 31-1
TLBs, 31-5

VM
OSs and application software, 30-1
programming considerations, 30-1

VM entries
basic VM-entry checks, 26-2
checking guest state

control registers, 26-11
debug registers, 26-11
descriptor-table registers, 26-16
MSRs, 26-11
non-register state, 26-16
RIP and RFLAGS, 26-16
segment registers, 26-12

checks on controls, host-state area, 26-3
registers and MSRs, 26-8
segment and descriptor-table registers, 26-9
VMX control checks, 26-3

exit-reason numbers, C-1
loading guest state, 26-20

control and debug registers, MSRs, 26-20
RIP, RSP, RFLAGS, 26-23
segment & descriptor-table registers, 26-22

loading MSRs, 26-24
failure cases, 26-24
VM-entry MSR-load area, 26-24

overview of failure conditions, 26-1
overview of steps, 26-1
VMLAUNCH and VMRESUME, 26-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, 27-1
updating state before exit, 27-2

basic VM-exit information fields, 27-5
basic exit reasons, 27-5
exit qualification, 27-6

exception bitmap, 27-1
exceptions (faults, traps, and aborts), 25-14
exit-reason numbers, C-1
external interrupts, 25-15
handling of exits due to exceptions, 30-12
IA-32 faults and VM exits, 25-2
INITs, 25-15
instructions that cause:

conditional exits, 25-3
unconditional exits, 25-2

interrupt-window exiting, 25-16
non-maskable interrupts (NMIs), 25-15
page faults, 25-14
reflecting exceptions to guest, 30-12
resuming guest after exception handling, 30-14
start-up IPIs (SIPIs), 25-15
task switches, 25-15
See also: VMCS, VMM, VM entries

VM (virtual-8086 mode) flag
EFLAGS register, 2-12, 2-14

VMCALL instruction, 29-2
VMCLEAR instruction, 29-1, 30-10
VMCS

error numbers, 29-35
field encodings, 1-6, B-1

16-bit guest-state fields, B-1
16-bit host-state fields, B-2
32-bit control fields, B-1, B-6
32-bit guest-state fields, B-8
32-bit read-only data fields, B-7
64-bit control fields, B-3
64-bit guest-state fields, B-4, B-5
natural-width control fields, B-9
natural-width guest-state fields, B-10
natural-width host-state fields, B-11
natural-width read-only data fields, B-10

format of VMCS region, 24-3
guest-state area, 24-4, 24-5

guest non-register state, 24-7
guest register state, 24-5

host-state area, 24-4, 24-10
introduction, 24-1
migrating between processors, 24-31
software access to, 24-31
Vol. 3C Index -25

INDEX
VMCS data, 24-3
VMCS pointer, 24-1, 30-2
VMCS region, 24-1, 30-2
VMCS revision identifier, 24-3
VM-entry control fields, 24-4, 24-24

entry controls, 24-24
entry controls for event injection, 24-26
entry controls for MSRs, 24-26

VM-execution control fields, 24-4, 24-11
controls for CR8 accesses, 24-18
CR3-target controls, 24-17
exception bitmap, 24-16
I/O bitmaps, 24-16
masks & read shadows CR0 & CR4, 24-17
pin-based controls, 24-11
processor-based controls, 24-12
time-stamp counter offset, 24-17

VM-exit control fields, 24-4, 24-22
exit controls, 24-22
exit controls for MSRs, 24-23

VM-exit information fields, 24-4, 24-27
basic exit information, 24-27, C-1
basic VM-exit information, 24-27
exits due to instruction execution, 24-30
exits due to vectored events, 24-29
exits occurring during event delivery, 24-30
VM-instruction error field, 24-31

VM-instruction error field, 26-1, 29-35
VMREAD instruction, 30-2

field encodings, 1-6, B-1
VMWRITE instruction, 30-2

field encodings, 1-6, B-1
VMX-abort indicator, 24-3
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control
register, 2-14, 2-15, 2-23, 22-24

VMLAUNCH instruction, 29-1, 30-11
VMM

asymmetric design, 30-15
control registers, 30-25
CPUID instruction emulation, 30-18
debug exceptions, 31-2
debugging facilities, 31-1, 31-2
entering VMX root operation, 30-6
error handling, 30-4
exception bitmap, 31-2
external interrupts, 32-1
fast instruction set emulator, 30-1
index data pairs, usage of, 30-17
interrupt handling, 32-1
interrupt vectors, 32-4
leaving VMX operation, 30-6
machine checks, 32-12, 32-13, 32-16
memory virtualization, 31-3
microcode update facilities, 31-11
multi-processor considerations, 30-15
operating modes, 30-18
programming considerations, 30-1

response to page faults, 31-8
root VMCS, 30-2
SMI transfer monitor, 30-6
steps for launching VMs, 30-10
SWAPGS instruction, 30-23
symmetric design, 30-15
SYSCALL/SYSRET instructions, 30-23
SYSENTER/SYSEXIT instructions, 30-23
triple faults, 32-1
virtual TLBs, 31-5
virtual-8086 container, 30-1
virtualization of system resources, 31-1
VM exits, 27-1
VM exits, handling of, 30-11
VMCLEAR instruction, 30-10
VMCS field width, 30-19
VMCS pointer, 30-2
VMCS region, 30-2
VMCS revision identifier, 30-2
VMCS, writing/reading fields, 30-3
VM-exit failures, 32-11
VMLAUNCH instruction, 30-11
VMREAD instruction, 30-3
VMRESUME instruction, 30-11
VMWRITE instruction, 30-3, 30-10
VMXOFF instruction, 30-6
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, 32-1
VMPTRLD instruction, 29-1
VMPTRST instruction, 29-1
VMREAD instruction, 29-1, 30-2, 30-3

field encodings, B-1
VMRESUME instruction, 29-2, 30-11
VMWRITE instruction, 29-1, 30-2, 30-3, 30-10

field encodings, B-1
VMX

A20M# signal, 23-5
capability MSRs

overview, 23-3, A-1
IA32_VMX_BASIC MSR, 24-4, 30-2, 30-7,

30-8, 30-9, 30-17, 34-64, 34-81, 34-101,
34-153, 34-207, 34-227, A-1, A-3

IA32_VMX_CR0_FIXED0 MSR, 23-5, 30-6,
34-65, 34-81, 34-102, 34-153, 34-207,
34-228, A-9

IA32_VMX_CR0_FIXED1 MSR, 23-5, 30-6,
34-65, 34-81, 34-102, 34-154, 34-208,
34-228, A-9

IA32_VMX_CR4_FIXED0 MSR, 23-5, 30-6,
34-65, 34-82, 34-102, 34-154, 34-208,
34-228

IA32_VMX_CR4_FIXED1 MSR, 23-5, 30-6,
34-65, 34-82, 34-102, 34-154, 34-208,
34-228, 34-229

IA32_VMX_ENTRY_CTLS MSR, 30-7, 30-8,
30-9, 34-65, 34-81, 34-101, 34-153,
34-207, 34-228, A-3, A-7, A-8
Index-26 Vol. 3C

INDEX
IA32_VMX_EXIT_CTLS MSR, 30-7, 30-8, 30-9,
34-64, 34-81, 34-101, 34-153, 34-207,
34-228, A-3, A-6, A-7

IA32_VMX_MISC MSR, 24-8, 26-4, 26-17,
33-36, 34-65, 34-81, 34-102, 34-153,
34-207, 34-228, A-8

IA32_VMX_PINBASED_CTLS MSR, 30-7, 30-8,
30-9, 34-64, 34-81, 34-101, 34-153,
34-207, 34-227, A-3, A-4

IA32_VMX_PROCBASED_CTLS MSR, 24-12,
30-7, 30-8, 30-9, 34-64, 34-65, 34-81,
34-82, 34-101, 34-102, 34-153, 34-154,
34-207, 34-228, 34-229, A-3, A-4, A-5,
A-6, A-11

IA32_VMX_VMCS_ENUM MSR, 34-208
CPUID instruction, 23-3, A-1
CR4 control register, 23-4
CR4 fixed bits, A-9
debugging facilities, 31-1
EFLAGS, 30-4
entering operation, 23-4
entering root operation, 30-6
error handling, 30-4
guest software, 23-1
IA32_FEATURE_CONTROL MSR, 23-4
INIT# signal, 23-6
instruction set, 23-3
introduction, 23-1
memory virtualization, 31-3
microcode update facilities, 25-22, 31-11, 31-12
non-root operation, 23-1

event blocking, 25-27
instruction changes, 25-17
overview, 25-1
task switches not allowed, 25-27
see VM exits

operation restrictions, 23-5
root operation, 23-1
SMM

CR4.VMXE reserved, 33-26
overview, 33-2
RSM instruction, 33-25
VMCS pointer, 33-23
VMX-critical state, 33-23

testing for support, 23-3
virtual TLBs, 31-5
virtual-machine control structure (VMCS), 23-3
virtual-machine monitor (VMM), 23-1
vitualization of system resources, 31-1
VM entries and exits, 23-1
VM exits, 27-1
VMCS pointer, 23-3
VMM life cycle, 23-2
VMXOFF instruction, 23-4
VMXON instruction, 23-4
VMXON pointer, 23-4
VMXON region, 23-4
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, 23-4, 29-2
VMXON instruction, 23-4, 29-2

W
WAIT/FWAIT instructions, 6-36, 22-10, 22-21
WB (write back) memory type, 8-24, 11-10, 11-12
WB (write-back) pin (Pentium processor), 11-19
WBINVD instruction, 2-31, 5-34, 11-24, 11-25, 22-6
WB/WT# pins, 11-19
WC buffer (see Write combining (WC) buffer)
WC (write combining)

flag, IA32_MTRRCAP MSR, 11-32
memory type, 11-9, 11-12

WP (write protected) memory type, 11-10
WP (write protect) flag

CR0 control register, 2-20, 5-41, 22-25
Write

hit, 11-7
Write combining (WC) buffer, 11-5, 11-11
Write-back caching, 11-8
WRMSR instruction, 2-26, 2-33, 2-34, 5-34, 8-25,

17-39, 17-47, 17-51, 18-76, 18-120,
18-122, 18-124, 22-6, 22-49, 25-22

WT (write through) memory type, 11-10, 11-12
WT# (write-through) pin (Pentium processor), 11-19

X
x2APIC ID, 10-58, 10-59, 10-63, 10-66
x2APIC Mode, 10-45, 10-54, 10-57, 10-58, 10-59,

10-63, 10-64, 10-66
x87 FPU

compatibility with IA-32 x87 FPUs and math
coprocessors, 22-9

configuring the x87 FPU environment, 9-6
device-not-available exception, 6-36
effect of MMX instructions on pending x87

floating-point exceptions, 12-6
effects of MMX instructions on x87 FPU state,

12-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR

instructions on x87 FPU tag word, 12-3
error signals, 22-14, 22-15
initialization, 9-6
instruction synchronization, 22-21
register stack, aliasing with MMX registers, 12-2
setting up for software emulation of x87 FPU

functions, 9-7
using TS flag to control saving of x87 FPU state,

13-10
x87 floating-point error exception (#MF), 6-58

x87 FPU control word
compatibility, IA-32 processors, 22-11

x87 FPU floating-point error exception (#MF), 6-58
x87 FPU status word

condition code flags, 22-10
x87 FPU tag word, 22-11
Vol. 3C Index -27

INDEX
XADD instruction, 8-5, 22-6
xAPIC, 10-54, 10-58

determining lowest priority processor, 10-36
interrupt control register, 10-30
introduction to, 10-5
message passing protocol on system bus, 10-47
new features, 22-38
spurious vector, 10-47
using system bus, 10-5

xAPIC Mode, 10-45, 10-53, 10-59, 10-64, 10-66
XCHG instruction, 8-4, 8-5, 8-23
XFEATURE_ENABLED_MASK, 2-25, 13-13, 13-14,

13-15, 13-17, 13-18
XGETBV, 2-25, 2-28, 2-29, 13-13, 13-18
XMM registers, saving, 13-8
XOR instruction, 8-5
XSAVE, 2-25, 13-1, 13-12, 13-13, 13-14, 13-15,

13-16, 13-17, 13-18
XSETBV, 2-25, 2-26, 2-28, 2-34, 13-1, 13-13, 13-17

Z
ZF flag, EFLAGS register, 5-36
-, 34-216
Index-28 Vol. 3C

	Chapter 23 Introduction to Virtual-Machine Extensions
	23.1 Overview
	23.2 Virtual Machine Architecture
	23.3 Introduction to VMX Operation
	23.4 Life Cycle of VMM Software
	23.5 Virtual-Machine Control Structure
	23.6 Discovering Support for VMX
	23.7 Enabling and Entering VMX Operation
	23.8 Restrictions on VMX Operation

	Chapter 24 Virtual-Machine Control Structures
	24.1 Overview
	24.2 Format of the VMCS Region
	24.3 Organization of VMCS Data
	24.4 Guest-State Area
	24.4.1 Guest Register State
	24.4.2 Guest Non-Register State

	24.5 Host-State Area
	24.6 VM-Execution Control Fields
	24.6.1 Pin-Based VM-Execution Controls
	24.6.2 Processor-Based VM-Execution Controls
	24.6.3 Exception Bitmap
	24.6.4 I/O-Bitmap Addresses
	24.6.5 Time-Stamp Counter Offset
	24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
	24.6.7 CR3-Target Controls
	24.6.8 Controls for APIC Accesses
	24.6.9 MSR-Bitmap Address
	24.6.10 Executive-VMCS Pointer
	24.6.11 Extended-Page-Table Pointer (EPTP)
	24.6.12 Virtual-Processor Identifier (VPID)
	24.6.13 Controls for PAUSE-Loop Exiting
	24.6.14 VM-Function Controls

	24.7 VM-Exit Control Fields
	24.7.1 VM-Exit Controls
	24.7.2 VM-Exit Controls for MSRs

	24.8 VM-Entry Control Fields
	24.8.1 VM-Entry Controls
	24.8.2 VM-Entry Controls for MSRs
	24.8.3 VM-Entry Controls for Event Injection

	24.9 VM-Exit Information Fields
	24.9.1 Basic VM-Exit Information
	24.9.2 Information for VM Exits Due to Vectored Events
	24.9.3 Information for VM Exits That Occur During Event Delivery
	24.9.4 Information for VM Exits Due to Instruction Execution
	24.9.5 VM-Instruction Error Field

	24.10 Software Use of the VMCS and Related Structures
	24.10.1 Software Use of Virtual-Machine Control Structures
	24.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
	24.10.3 Initializing a VMCS
	24.10.4 Software Access to Related Structures
	24.10.5 VMXON Region

	Chapter 25 VMX Non-Root Operation
	25.1 Instructions That Cause VM Exits
	25.1.1 Relative Priority of Faults and VM Exits
	25.1.2 Instructions That Cause VM Exits Unconditionally
	25.1.3 Instructions That Cause VM Exits Conditionally

	25.2 APIC-Access VM Exits
	25.2.1 Linear Accesses to the APIC-Access Page
	25.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
	25.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
	25.2.1.3 Instructions That May Cause Page Faults or EPT Violations Without Accessing Memory

	25.2.2 Guest-Physical Accesses to the APIC-Access Page
	25.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits
	25.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses

	25.2.3 Physical Accesses to the APIC-Access Page
	25.2.4 VTPR Accesses

	25.3 Other Causes of VM Exits
	25.4 Changes to Instruction Behavior in VMX Non- Root Operation
	25.5 APIC Accesses That Do Not Cause VM Exits
	25.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations
	25.5.2 Physical Accesses to the APIC-Access Page
	25.5.3 VTPR Accesses
	25.5.3.1 Treatment of Individual VTPR Accesses
	25.5.3.2 Operations with Multiple Accesses
	25.5.3.3 TPR-Shadow Updates

	25.6 Other Changes in VMX Non-Root Operation
	25.6.1 Event Blocking
	25.6.2 Treatment of Task Switches

	25.7 Features Specific to VMX Non-Root Operation
	25.7.1 VMX-Preemption Timer
	25.7.2 Monitor Trap Flag
	25.7.3 Translation of Guest-Physical Addresses Using EPT
	25.7.4 VM Functions
	25.7.4.1 Enabling VM Functions
	25.7.4.2 General Operation of the VMFUNC Instruction
	25.7.4.3 EPTP Switching

	25.8 Unrestricted Guests

	Chapter 26 VM Entries
	26.1 Basic VM-Entry Checks
	26.2 Checks on VMX Controls and Host-State Area
	26.2.1 Checks on VMX Controls
	26.2.1.1 VM-Execution Control Fields
	26.2.1.2 VM-Exit Control Fields
	26.2.1.3 VM-Entry Control Fields

	26.2.2 Checks on Host Control Registers and MSRs
	26.2.3 Checks on Host Segment and Descriptor-Table Registers
	26.2.4 Checks Related to Address-Space Size

	26.3 Checking and Loading Guest State
	26.3.1 Checks on the Guest State Area
	26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
	26.3.1.2 Checks on Guest Segment Registers
	26.3.1.3 Checks on Guest Descriptor-Table Registers
	26.3.1.4 Checks on Guest RIP and RFLAGS
	26.3.1.5 Checks on Guest Non-Register State
	26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

	26.3.2 Loading Guest State
	26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
	26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
	26.3.2.3 Loading Guest RIP, RSP, and RFLAGS
	26.3.2.4 Loading Page-Directory-Pointer-Table Entries
	26.3.2.5 Updating Non-Register State

	26.3.3 Clearing Address-Range Monitoring

	26.4 Loading MSRs
	26.5 Event Injection
	26.5.1 Vectored-Event Injection
	26.5.1.1 Details of Vectored-Event Injection
	26.5.1.2 VM Exits During Event Injection
	26.5.1.3 Event Injection for VM Entries to Real-Address Mode

	26.5.2 Injection of Pending MTF VM Exits

	26.6 Special Features of VM Entry
	26.6.1 Interruptibility State
	26.6.2 Activity State
	26.6.3 Delivery of Pending Debug Exceptions after VM Entry
	26.6.4 VMX-Preemption Timer
	26.6.5 Interrupt-Window Exiting
	26.6.6 NMI-Window Exiting
	26.6.7 VM Exits Induced by the TPR Shadow
	26.6.8 Pending MTF VM Exits
	26.6.9 VM Entries and Advanced Debugging Features

	26.7 VM-Entry Failures During or After Loading Guest State
	26.8 Machine-Check Events During VM Entry

	Chapter 27 VM Exits
	27.1 Architectural State Before a VM Exit
	27.2 Recording VM-Exit Information and Updating VM-Entry Control Fields
	27.2.1 Basic VM-Exit Information
	27.2.2 Information for VM Exits Due to Vectored Events
	27.2.3 Information for VM Exits During Event Delivery
	27.2.4 Information for VM Exits Due to Instruction Execution

	27.3 Saving Guest State
	27.3.1 Saving Control Registers, Debug Registers, and MSRs
	27.3.2 Saving Segment Registers and Descriptor-Table Registers
	27.3.3 Saving RIP, RSP, and RFLAGS
	27.3.4 Saving Non-Register State

	27.4 Saving MSRs
	27.5 Loading Host State
	27.5.1 Loading Host Control Registers, Debug Registers, MSRs
	27.5.2 Loading Host Segment and Descriptor-Table Registers
	27.5.3 Loading Host RIP, RSP, and RFLAGS
	27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries
	27.5.5 Updating Non-Register State
	27.5.6 Clearing Address-Range Monitoring

	27.6 Loading MSRs
	27.7 VMX Aborts
	27.8 Machine-Check Events During VM Exit

	Chapter 28 VMX Support for Address Translation
	28.1 Virtual Processor Identifiers (VPIDs)
	28.2 The Extended Page Table Mechanism (EPT)
	28.2.1 EPT Overview
	28.2.2 EPT Translation Mechanism
	28.2.3 EPT-Induced VM Exits
	28.2.3.1 EPT Misconfigurations
	28.2.3.2 EPT Violations
	28.2.3.3 Prioritization of EPT-Induced VM Exits

	28.2.4 Accessed and Dirty Flags for EPT
	28.2.5 EPT and Memory Typing
	28.2.5.1 Memory Type Used for Accessing EPT Paging Structures
	28.2.5.2 Memory Type Used for Translated Guest-Physical Addresses

	28.3 Caching Translation Information
	28.3.1 Information That May Be Cached
	28.3.2 Creating and Using Cached Translation Information
	28.3.3 Invalidating Cached Translation Information
	28.3.3.1 Operations that Invalidate Cached Mappings
	28.3.3.2 Operations that Need Not Invalidate Cached Mappings
	28.3.3.3 Guidelines for Use of the INVVPID Instruction
	28.3.3.4 Guidelines for Use of the INVEPT Instruction

	Chapter 29 VMX Instruction Reference
	29.1 Overview
	29.2 Conventions
	29.3 VMX Instructions
	INVEPT- Invalidate Translations Derived from EPT
	INVVPID- Invalidate Translations Based on VPID
	VMCALL-Call to VM Monitor
	VMCLEAR-Clear Virtual-Machine Control Structure
	VMFUNC-Invoke VM function
	VMLAUNCH/VMRESUME-Launch/Resume Virtual Machine
	VMPTRLD-Load Pointer to Virtual-Machine Control Structure
	VMPTRST-Store Pointer to Virtual-Machine Control Structure
	VMREAD-Read Field from Virtual-Machine Control Structure
	VMRESUME-Resume Virtual Machine
	VMWRITE-Write Field to Virtual-Machine Control Structure
	VMXOFF-Leave VMX Operation
	VMXON-Enter VMX Operation

	29.4 VM Instruction Error Numbers

	Chapter 30 Virtual-Machine Monitor Programming Considerations
	30.1 VMX System Programming Overview
	30.2 Supporting Processor Operating Modes in Guest Environments
	30.2.1 Using Unrestricted Guest Mode

	30.3 Managing VMCS Regions and Pointers
	30.4 Using VMX Instructions
	30.5 VMM Setup & Tear Down
	30.5.1 Algorithms for Determining VMX Capabilities

	30.6 Preparation and Launching a Virtual Machine
	30.7 Handling of VM Exits
	30.7.1 Handling VM Exits Due to Exceptions
	30.7.1.1 Reflecting Exceptions to Guest Software
	30.7.1.2 Resuming Guest Software after Handling an Exception

	30.8 Multi-Processor Considerations
	30.8.1 Initialization
	30.8.2 Moving a VMCS Between Processors
	30.8.3 Paired Index-Data Registers
	30.8.4 External Data Structures
	30.8.5 CPUID Emulation

	30.9 32-Bit and 64-Bit Guest Environments
	30.9.1 Operating Modes of Guest Environments
	30.9.2 Handling Widths of VMCS Fields
	30.9.2.1 Natural-Width VMCS Fields
	30.9.2.2 64-Bit VMCS Fields

	30.9.3 IA-32e Mode Hosts
	30.9.4 IA-32e Mode Guests
	30.9.5 32-Bit Guests

	30.10 Handling Model Specific Registers
	30.10.1 Using VM-Execution Controls
	30.10.2 Using VM-Exit Controls for MSRs
	30.10.3 Using VM-Entry Controls for MSRs
	30.10.4 Handling Special-Case MSRs and Instructions
	30.10.4.1 Handling IA32_EFER MSR
	30.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
	30.10.4.3 Handling the SYSCALL and SYSRET Instructions
	30.10.4.4 Handling the SWAPGS Instruction
	30.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs

	30.10.5 Handling Accesses to Reserved MSR Addresses

	30.11 Handling Accesses to Control Registers
	30.12 Performance Considerations
	30.13 Use of The VMX-Preemption Timer

	Chapter 31 Virtualization of System Resources
	31.1 Overview
	31.2 Virtualization Support for Debugging Facilities
	31.2.1 Debug Exceptions

	31.3 Memory Virtualization
	31.3.1 Processor Operating Modes & Memory Virtualization
	31.3.2 Guest & Host Physical Address Spaces
	31.3.3 Virtualizing Virtual Memory by Brute Force
	31.3.4 Alternate Approach to Memory Virtualization
	31.3.5 Details of Virtual TLB Operation
	31.3.5.1 Initialization of Virtual TLB
	31.3.5.2 Response to Page Faults
	31.3.5.3 Response to Uses of INVLPG
	31.3.5.4 Response to CR3 Writes

	31.4 Microcode Update Facility
	31.4.1 Early Load of Microcode Updates
	31.4.2 Late Load of Microcode Updates

	Chapter 32 Handling Boundary Conditions in a Virtual Machine Monitor
	32.1 Overview
	32.2 Interrupt Handling in VMX Operation
	32.3 External Interrupt Virtualization
	32.3.1 Virtualization of Interrupt Vector Space
	32.3.2 Control of Platform Interrupts
	32.3.2.1 PIC Virtualization
	32.3.2.2 xAPIC Virtualization
	32.3.2.3 Local APIC Virtualization
	32.3.2.4 I/O APIC Virtualization
	32.3.2.5 Virtualization of Message Signaled Interrupts

	32.3.3 Examples of Handling of External Interrupts
	32.3.3.1 Guest Setup
	32.3.3.2 Processor Treatment of External Interrupt
	32.3.3.3 Processing of External Interrupts by VMM
	32.3.3.4 Generation of Virtual Interrupt Events by VMM

	32.4 Error Handling by VMM
	32.4.1 VM-Exit Failures
	32.4.2 Machine-Check Considerations
	32.4.3 MCA Error Handling Guidelines for VMM
	32.4.3.1 VMM Error Handling Strategies
	32.4.3.2 Basic VMM MCA error recovery handling
	32.4.3.3 Implementation Considerations for the Basic Model
	32.4.3.4 MCA Virtualization
	32.4.3.5 Implementation Considerations for the MCA Virtualization Model

	32.5 Handling Activity States by VMM

	Chapter 33 System Management Mode
	33.1 System Management Mode Overview
	33.1.1 System Management Mode and VMX Operation

	33.2 System Management Interrupt (SMI)
	33.3 Switching Between SMM and the Other Processor Operating Modes
	33.3.1 Entering SMM
	33.3.2 Exiting From SMM

	33.4 SMRAM
	33.4.1 SMRAM State Save Map
	33.4.1.1 SMRAM State Save Map and Intel 64 Architecture

	33.4.2 SMRAM Caching
	33.4.2.1 System Management Range Registers (SMRR)

	33.5 SMI Handler Execution Environment
	33.6 Exceptions and Interrupts Within SMM
	33.7 Managing Synchronous and Asynchronous System Management Interrupts
	33.7.1 I/O State Implementation

	33.8 NMI Handling While in SMM
	33.9 SMM Revision Identifier
	33.10 Auto HALT Restart
	33.10.1 Executing the HLT Instruction in SMM

	33.11 SMBASE Relocation
	33.11.1 Relocating SMRAM to an Address Above 1 MByte

	33.12 I/O Instruction Restart
	33.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

	33.13 SMM Multiple-Processor Considerations
	33.14 Default Treatment of SMIs and SMM with VMX Operation and SMX Operation
	33.14.1 Default Treatment of SMI Delivery
	33.14.2 Default Treatment of RSM
	33.14.3 Protection of CR4.VMXE in SMM
	33.14.4 VMXOFF and SMI Unblocking

	33.15 Dual-Monitor Treatment of SMIs and SMM
	33.15.1 Dual-Monitor Treatment Overview
	33.15.2 SMM VM Exits
	33.15.2.1 Architectural State Before a VM Exit
	33.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
	33.15.2.3 Recording VM-Exit Information
	33.15.2.4 Saving Guest State
	33.15.2.5 Updating Non-Register State

	33.15.3 Operation of the SMM-Transfer Monitor
	33.15.4 VM Entries that Return from SMM
	33.15.4.1 Checks on the Executive-VMCS Pointer Field
	33.15.4.2 Checks on VM-Execution Control Fields
	33.15.4.3 Checks on VM-Entry Control Fields
	33.15.4.4 Checks on the Guest State Area
	33.15.4.5 Loading Guest State
	33.15.4.6 VMX-Preemption Timer
	33.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
	33.15.4.8 VM Exits Induced by VM Entry
	33.15.4.9 SMI Blocking
	33.15.4.10 Failures of VM Entries That Return from SMM

	33.15.5 Enabling the Dual-Monitor Treatment
	33.15.6 Activating the Dual-Monitor Treatment
	33.15.6.1 Initial Checks
	33.15.6.2 MSEG Checking
	33.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
	33.15.6.4 Loading Host State
	33.15.6.5 Loading MSRs

	33.15.7 Deactivating the Dual-Monitor Treatment

	33.16 SMI and Processor Extended State Management

	Chapter 34 Model-Specific Registers (MSRs)
	34.1 Architectural MSRs
	34.2 MSRs In the Intel® Core™ 2 Processor Family
	34.3 MSRs In the Intel® Atom™ Processor Family
	34.4 MSRs In the Intel® Microarchitecture Code Name Nehalem
	34.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
	34.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

	34.5 MSRs In the Intel Xeon Processor 5600 Series (Intel® Microarchitecture Code Name Westmere)
	34.6 MSRs In the Intel Xeon Processor E7 Family (Intel® Microarchitecture Code Name Westmere)
	34.7 MSRs In Intel® Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)
	34.7.1 MSRs In Second Generation Intel® Core Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)
	34.7.2 MSRs In Intel® Xeon Processor E5 Family (Intel® Microarchitecture Code Name Sandy Bridge)

	34.8 MSRs In the Third Generation Intel Core Processor Family (Intel® Microarchitecture Code Name Ivy Bridge)
	34.9 MSRs In the Pentium® 4 and Intel® Xeon® Processors
	34.9.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache

	34.10 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
	34.11 MSRs In the Pentium M Processor
	34.12 MSRs In the P6 Family Processors
	34.13 MSRs in Pentium Processors

	Appendix A VMX Capability Reporting Facility
	A.1 Basic VMX Information
	A.2 Reserved Controls and Default Settings
	A.3 VM-Execution Controls
	A.3.1 Pin-Based VM-Execution Controls
	A.3.2 Primary Processor-Based VM-Execution Controls
	A.3.3 Secondary Processor-Based VM-Execution Controls

	A.4 VM-Exit Controls
	A.5 VM-Entry Controls
	A.6 Miscellaneous Data
	A.7 VMX-Fixed Bits in CR0
	A.8 VMX-Fixed Bits in CR4
	A.9 VMCS Enumeration
	A.10 VPID and EPT Capabilities
	A.11 VM Functions

	Appendix B Field Encoding in VMCS
	B.1 16-Bit Fields
	B.1.1 16-Bit Control Field
	B.1.2 16-Bit Guest-State Fields
	B.1.3 16-Bit Host-State Fields

	B.2 64-Bit Fields
	B.2.1 64-Bit Control Fields
	B.2.2 64-Bit Read-Only Data Field
	B.2.3 64-Bit Guest-State Fields
	B.2.4 64-Bit Host-State Fields

	B.3 32-Bit Fields
	B.3.1 32-Bit Control Fields
	B.3.2 32-Bit Read-Only Data Fields
	B.3.3 32-Bit Guest-State Fields
	B.3.4 32-Bit Host-State Field

	B.4 Natural-Width Fields
	B.4.1 Natural-Width Control Fields
	B.4.2 Natural-Width Read-Only Data Fields
	B.4.3 Natural-Width Guest-State Fields
	B.4.4 Natural-Width Host-State Fields

	Appendix C VMX Basic Exit Reasons

