intel.

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2C:
Instruction Set Reference

NOTE: The Intef® 64 and IA-32 Architectures Software Developer's Manual consists of eight volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; Instruction Set Reference, Order Number
326018; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part
2, Order Number 253669; System Programming Guide, Part 3, Order Number 326019; System
Programming Guide, Part 4, Order Number 332831. Refer to all eight volumes when evaluating your
design needs.

Order Number: 326018-057US
December 2015

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CHAPTER 5
SAFER MODE EXTENSIONS REFERENCE

5.1 OVERVIEW

This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 architectures. Safer Mode
Extensions (SMX) provide a programming interface for system software to establish a measured environment
within the platform to support trust decisions by end users. The measured environment includes:

® Measured launch of a system executive, referred to as a Measured Launched Environment (MLE)!. The system
executive may be based on a Virtual Machine Monitor (VMM), a measured VMM is referred to as MVMM?2,

® Mechanisms to ensure the above measurement is protected and stored in a secure location in the platform.
® Protection mechanisms that allow the VMM to control attempts to modify the VMM

The measurement and protection mechanisms used by a measured environment are supported by the capabilities
of an Intel® Trusted Execution Technology (Intel® TXT) platform:

® The SMX are the processor’s programming interface in an Intel TXT platform;
® The chipset in an Intel TXT platform provides enforcement of the protection mechanisms;

® Trusted Platform Module (TPM) 1.2 in the platform provides platform configuration registers (PCRs) to store
software measurement values.

5.2 SMX FUNCTIONALITY

SMX functionality is provided in an Intel 64 processor through the GETSEC instruction via leaf functions. The
GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time
GETSEC is executed. Each GETSEC leaf function is documented separately in the reference pages with a unique
mnemonic (even though these mnemonics share the same opcode, OF 37).

5.2.1 Detecting and Enabling SMX

Software can detect support for SMX operation using the CPUID instruction. If software executes CPUID with 1 in
EAX, a value of 1 in bit 6 of ECX indicates support for SMX operation (GETSEC is available), see CPUID instruction
for the layout of feature flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before attempting to execute GETSEC.
Otherwise, execution of GETSEC results in the processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set CR4.SMXE[Bit 14] results in
a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits that configure operation of
VMX and SMX. These bits are documented in Table 5-1.

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel® Trusted Execution Technology Measured
Launched Environment Programming Guide

Vol.2C 5-1

SAFER MODE EXTENSIONS REFERENCE

Table 5-1. Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (O = unlocked, 1 = locked). When set to "1’ further writes to this MSR are blocked.

1 Enable VMX in SMX operation

2 Enable VMX outside SMX operation

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an enable control for a corresponding
SENTER function.

15 SENTER Global Enable: Must be set to "1’ to enable operation of GETSEC[SENTER]

63:16 Reserved

® Bit0is alock bit. If the lock bit is clear, an attempt to execute VMXON will cause a general-protection exception.
Attempting to execute GETSEC[SENTER] when the lock bit is clear will also cause a general-protection
exception. If the lock bit is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-protection
exception. Once the lock bit is set, the MSR cannot be modified until a power-on reset. System BIOS can use
this bit to provide a setup option for BIOS to disable support for VMX, SMX or both VMX and SMX.

® Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT leaves of GETSEC). If this bit is
clear, an attempt to execute VMXON in SMX will cause a general-protection exception if executed in SMX
operation. Attempts to set this bit on logical processors that do not support both VMX operation (Chapter 5,
“Safer Mode Extensions Reference”) and SMX operation cause general-protection exceptions.

® Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to execute VMXON will cause a general-
protection exception if executed outside SMX operation. Attempts to set this bit on logical processors that do
not support VMX operation cause general-protection exceptions.

® Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each bit in the field represents an
enable control for a corresponding SENTER function. Only enabled SENTER leaf functionality can be used when
executing SENTER.

® Bits 15 specify global enable of all SENTER functionalities.

5.2.2 SMX Instruction Summary

System software must first query for available GETSEC leaf functions by executing GETSEC[CAPABILITIES]. The
CAPABILITIES leaf function returns a bit map of available GETSEC leaves. An attempt to execute an unsupported
leaf index results in an undefined opcode (#UD) exception.

5.2.2.1 GETSEC[CAPABILITIES]

The SMX functionality provides an architectural interface for newer processor generations to extend SMX capabili-
ties. Specifically, the GETSEC instruction provides a capability leaf function for system software to discover the
available GETSEC leaf functions that are supported in a processor. Table 5-2 lists the currently available GETSEC
leaf functions.

5-2 Vol.2C

SAFER MODE EXTENSIONS REFERENCE

Table 5-2. GETSEC Leaf Functions

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC instruction
1 Undefined Reserved

2 ENTERACCS Enter

3 EXITAC Exit

4 SENTER Launch an MLE

5 SEXIT Exit the MLE

6 PARAMETERS Return SMX related parameter information
7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in safer mode
9-(4G-1) Undefined Reserved

5.2.2.2 GETSEC[ENTERACCS]

The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The ENTERACCS leaf function
performs an authenticated code module load using the chipset public key as the signature verification. ENTERACCS
requires the existence of an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset
private configuration register space after successful authentication of the loaded module. The physical base
address and size of the authenticated code module are specified as input register values in EBX and ECX, respec-
tively.

While in the authenticated code execution mode, certain processor state properties change. For this reason, the
time in which the processor operates in authenticated code execution mode should be limited to minimize impact
on external system events.

Upon entry into , the previous paging context is disabled (since the authenticated code module image is specified
with physical addresses and can no longer rely upon external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the logical processor issuing
GETSEC[ENTERACCS] is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP = 1. System soft-
ware must ensure other logical processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different authenticated code modules to
perform functions related to different aspects of a measured environment, for example system software and
Intel® TXT enabled BIOS may use more than one authenticated code modules.

5.2.2.3 GETSEC[EXITAC]

GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed, the contents of the authenti-
cated code execution area are scrubbed and control is transferred to the non-authenticated context defined by a
near pointer passed with the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of GETSEC[EXITAC]. RBX (or EBX)
holds the address of the near absolute indirect target to be taken.

5.2.24 GETSEC[SENTER]

The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to launch an MLE.
GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf, because it enters as part of the measured
environment launch.

Measured environment startup consists of the following steps:

Vol.2C 5-3

SAFER MODE EXTENSIONS REFERENCE

® the ILP rendezvous the responding logical processors (RLPs) in the platform into a controlled state (At the
completion of this handshake, all the RLPs except for the ILP initiating the measured environment launch are
placed in a newly defined SENTER sleep state).

® Load and authenticate the authenticated code module required by the measured environment, and enter
authenticated code execution mode.

® Verify and lock certain system configuration parameters.
® Measure the dynamic root of trust and store into the PCRs in TPM.
® Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the platform’s TPM is ready for access
and the ILP is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP. System software must ensure
other logical processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing a proper authenticate code
module address when executing GETSEC[SENTER]. The AC module responsible for the launch of a measured envi-
ronment and loaded by GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide for additional information on system software requirements
prior to executing GETSEC[SENTER].

5.2.2.5 GETSEC[SEXIT]

System software exits the measured environment by executing the instruction GETSEC[SEXIT] on the ILP. This
instruction rendezvous the responding logical processors in the platform for exiting from the measured environ-
ment. External events (if left masked) are unmasked and Intel® TXT-capable chipset’s private configuration space
is re-locked.

5.2.2.6 GETSEC[PARAMETERS]

The GETSEC[PARAMETERS] leaf function is used to report attributes, options and limitations of SMX operation.
Software uses this leaf to identify operating limits or additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf multiple times using EBX as an
index. If the GETSEC[PARAMETERS] instruction leaf or if a specific parameter field is not available, then SMX oper-
ation should be interpreted to use the default limits of respective GETSEC leaves or parameter fields defined in the
GETSEC[PARAMETERS] leaf.

5.2.2.7 GETSEC[SMCTRL]

The GETSEC[SMCTRL] leaf function is used for providing additional control over specific conditions associated with
the SMX architecture. An input register is supported for selecting the control operation to be performed. See the
specific leaf description for details on the type of control provided.

5.2.2.8 GETSEC[WAKEUP]

Responding logical processors (RLPs) are placed in the SENTER sleep state after the initiating logical processor
executes GETSEC[SENTER]. The ILP can wake up RLPs to join the measured environment by using
GETSEC[WAKEUP].When the RLPs in SENTER sleep state wake up, these logical processors begin execution at the
entry point defined in a data structure held in system memory (pointed to by an chipset register LT.MLE.JOIN) in
TXT configuration space.

5.2.3 Measured Environment and SMX

This section gives a simplified view of a representative life cycle of a measured environment that is launched by a
system executive using SMX leaf functions. Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide provides more detailed examples of using SMX and chipset resources (including chipset regis-
ters, Trusted Platform Module) to launch an MVMM.

5-4 Vol.2C

SAFER MODE EXTENSIONS REFERENCE

The life cycle starts with the system executive (an OS, an OS loader, and so forth) loading the MLE and SINIT AC
module into available system memory. The system executive must validate and prepare the platform for the
measured launch. When the platform is properly configured, the system executive executes GETSEC[SENTER] on
the initiating logical processor (ILP) to rendezvous the responding logical processors into an SENTER sleep state,
the ILP then enters into using the SINIT AC module. In a multi-threaded or multi-processing environment, the
system executive must ensure that other logical processors are already in an idle loop, or asleep (such as after
executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical processors in the platform, the
ILP loads the chipset authenticated code module (SINIT) and performs an authentication check. If the check
passes, the processor hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches execu-
tion context to the SINIT AC module. The SINIT AC module will perform a number of platform operations,
including: verifying the system configuration, protecting the system memory used by the MLE from I/O devices
capable of DMA, producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other operations.
When SINIT completes execution, it executes the GETSEC[EXITAC] instruction and transfers control the MLE at the
designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protection and isolation controls
before enabling DMA and interrupts and transferring control to other software modules. It must also wakeup the
RLPs from their SENTER sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection and
isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Platform Module (TPM) in locality 2.
The MVMM has complete access to all TPM commands and may use the TPM to report current measurement values
or use the measurement values to protect information such that only when the platform configuration registers
(PCRs) contain the same value is the information released from the TPM. This protection mechanism is known as
sealing.

A measured environment shutdown is ultimately completed by executing GETSEC[SEXIT]. Prior to this step system
software is responsible for scrubbing sensitive information left in the processor caches, system memory.

5.3 GETSEC LEAF FUNCTIONS

This section provides detailed descriptions of each leaf function of the GETSEC instruction. GETSEC is available only
if CPUID.01H:ECX[Bit 6] = 1. This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can
be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the GETSEC[CAPABILITIES] function.
Attempts to access a GETSEC leaf index not supported by the processor, or if CR4.SMXE is 0, results in the signaling
of an undefined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility sub-mode of IA-32e mode
and the 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of all GETSEC functions and inter-
actions related to the measured environment are independent of IA-32e mode. This also applies to the interpreta-
tion of register widths! passed as input parameters to GETSEC functions and to register results returned as output
parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel® TXT capable-chipset to be
present in the platform. The GETSEC[CAPABILITIES] returned bit vector in position 0 indicates an Intel® TXT-
capable chipset has been sampled present? by the processor.

The processor's operating mode also affects the execution of the following GETSEC leaf functions: SMCTRL, ENTER-
ACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These functions are only allowed in protected mode at CPL = 0. They

1. This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because processors that support SMX also
support Intel 64 Architecture. The MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor
registers also refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as EAX is used to refer
specifically to lower 32 bits of the indicated register

2. Sampled present means that the processor sent a message to the chipset and the chipset responded that it (a) knows about the
message and (b) is capable of executing SENTER. This means that the chipset CAN support Intel® TXT, and is configured and WILLING
to support it.

Vol.2C 5-5

SAFER MODE EXTENSIONS REFERENCE

are not allowed while in SMM in order to prevent potential intra-mode conflicts. Further execution qualifications
exist to prevent potential architectural conflicts (for example: nesting of the measured environment or authenti-
cated code execution mode). See the definitions of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions is counted as a single instruc-
tion with respect to retired instructions. The response by a responding logical processor (RLP) to messages associ-
ated with GETSEC[SENTER] or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

5-6 Vol.2C

SAFER MODE EXTENSIONS REFERENCE

GETSEC[CAPABILITIES] - Report the SMX Capabilities

Opcode Instruction Description

OF 37 GETSEC[CAPABILITIES] Report the SMX capabilities.

(EAX =0) The capabilities index is input in EBX with the result returned in EAX.
Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf functions. The CAPABILITIES
leaf of GETSEC is selected with EAX set to 0 at entry. EBX is used as the selector for returning the bit vector field in
EAX. GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an unde-
fined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector representing status on the
presence of a Intel® TXT-capable chipset and the first 30 available GETSEC leaf functions. The format of the
returned bit vector is provided in Table 5-3.

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by the processor. If bits in the
range of 1-30 are set, then the corresponding GETSEC leaf function is available. If the bit value at a given bit index
is 0, then the GETSEC leaf function corresponding to that index is unsupported and attempted execution results in
a #UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 31 is set, then additional leaf
functions are accessed by repeating GETSEC[CAPABILITIES] with EBX incremented by one. When the most signifi-
cant bit of EAX is not set, then additional GETSEC leaf functions are not supported; indexing EBX to a higher value
results in EAX returning zero.

Table 5-3. Getsec Capability Result Encoding (EBX = 0)

Field Bit position Description
Chipset Present 0 Intel® TXT-capable chipset is present
Undefined 1 Reserved
ENTERACCS 2 GETSEC[ENTERACCS] is available
EXITAC 3 GETSEC[EXITAC] is available
SENTER 4 GETSEC[SENTER] is available
SEXIT 5 GETSEC[SEXIT] is available
PARAMETERS 6 GETSEC[PARAMETERS] is available
SMCTRL 7 GETSEC[SMCTRL] is available
WAKEUP 8 GETSEC[WAKEUP] is available
Undefined 309 Reserved
Extended Leafs 31 Reserved for extended information reporting of GETSEC capabilities
Operation
IF (CR4.SMXE=0)
THEN #UD;

ELSIF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
IF (EBX=0) THEN
BitVector« O;

GETSEC[CAPABILITIES] - Report the SMX Capabilities Vol.2C 5-7

SAFER MODE EXTENSIONS REFERENCE

IF (TXT chipset present)
BitVector[Chipset present]« 1;
IF (ENTERACCS Available)
THEN BitVector[ENTERACCS]« 1;
IF (EXITAC Available)
THEN BitVector[EXITAC]« 1;
IF (SENTER Available)
THEN BitVector[SENTER]« 1;
IF (SEXIT Available)
THEN BitVector[SEXIT]« 1;
IF (PARAMETERS Available)
THEN BitVector[PARAMETERS]« 1;
IF (SMCTRL Available)
THEN BitVector[SMCTRL]« 1;
IF (WAKEUP Available)
THEN BitVector[WAKEUP]« 1;
EAX<« BitVector;
ELSE
EAX< O;
END;;

Flags Affected
None

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD IF CR4.SMXE = 0.

64-Bit Mode Exceptions
#UD IF CR4.SMXE = 0.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.

5-8 Vol.2C

GETSEC[CAPABILITIES] - Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Opcode Instruction Description

OF 37 GETSEC[ENTERACCS] | Enter authenticated code execution mode.

(EAX =2) EBX holds the authenticated code module physical base address. ECX holds the authenticated
code module size (bytes).

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction:

® Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and
EFLAGS.VM = 0.

® Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0.

® For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency
between enabled logical processors.

® For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CRO.NE must be
set.

® An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on
configuration capability field after reset.

® The processor can not already be in authenticated code execution mode as launched by a previous
GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]).

® To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction
if it currently is in SMM or VMX operation.

® To insure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction
must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general protection exception.
Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the platform must be:

® idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated
processors), or

® in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP).

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of
the same package do not have CR0O.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to
reaching this point, the processor performs several checks. These include:

® Establish and check the location and size of the specified authenticated code module to be executed by the
processor.

® Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
® Broadcast a message to enable protection of memory and I/O from other processor agents.
® Load the designated code module into an authenticated code execution area.

® Isolate the contents of the authenticated code execution area from further state modification by external
agents.

® Authenticate the authenticated code module.

® Initialize the initiating logical processor state based on information contained in the authenticated code module
header.

® Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code Vol.2C 5-9

SAFER MODE EXTENSIONS REFERENCE

® Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and
size are used to retrieve the code module from system memory and load it into the internal authenticated code
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error
condition results in an abort of the authenticated code execution launch and the signaling of a general protection
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no
machine check exception processing is currently in progress. These checks are performed prior to initiating the load
of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present in
these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to
prevent exposure to existing external event handlers that may not be under the control of the authenticated code
module.

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized
during authenticated code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) access and I/0 originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by
executing GETSEC[EXITAC]. The protection of memory and I/0 activities remains in effect until the ILP executes
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the
processor’'s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel®
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header SegSel
field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0,
LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The processor
begins the authenticated code module execution with the EIP set to the AC module header EntryPoint field +
module base address (EBX). The AC module based fields used for initializing the processor state are checked for
consistency and any failure results in a shutdown condition.

5-10 Vol.2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the
processor in Table 5-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base
physical address for initial execution in the authenticated environment. As a result, the authenticated code can
reference EBP for relative address based references, given that the authenticated code module must be position
independent.

Table 5-4. Register State Initialization after GETSEC[ENTERACCS]

Register State Initialization Status Comment
CRO PG«0, AM«0, WP<«0: Others unchanged Paging, Alignment Check, Write-protection are
disabled

CR4 MCE«0: Others unchanged Machine Check Exceptions Disabled

EFLAGS 00000002H

IA32_EFER OH IA-32e mode disabled

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS]

[EIRIBX Pre-ENTERACCS state: Next [E|R]IP prior to Carry forward 64-bit processor state across
GETSEC[ENTERACCS] GETSEC[ENTERACCS]

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit; Carry forward processor state across
[15:0]=CS.sel GETSEC[ENTERACCS]

[EJRIDX Pre-ENTERACCS state: Carry forward 64-bit processor state across
GDTR base GETSEC[ENTERACCS]

EBP ACbase

cS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1,
AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1,
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr],
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL OH

IA32_MISC_ENABLE | see Table 5-5 for example The number of initialized fields may change due.to

processor implementation

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by
resetting DR7, TF in EFLAGSs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code Vol.2C 5-11

SAFER MODE EXTENSIONS REFERENCE

entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared
upon entry into this mode.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR
are preserved because preserving these bits may be important to maintain previously established platform settings
(See the footnote for Table 5-5.). The remaining bits are cleared for the purpose of establishing a more consistent
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any
previous condition established by the MONITOR instruction will be cleared.

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS],
certain critical processor state is captured and stored in the general- purpose registers at instruction completion.
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

Table 5-5. IA32_MISC_ENABLE MSR Initialization by ENTERACCS and SENTER

Field Bit position Description
Fast strings enable 0 Clearto 0
FOPCODE compatibility mode 2 Clearto O
enable
Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2
Split-lock disable 4 Clearto 0
Bus lock on cache line splits 8 Clear to O
disable
Hardware prefetch disable 9 Clearto 0
GV1/2 legacy enable 15 Clear to O
MONITOR/MWAIT s/m enable 18 Clearto O
Adjacent sector prefetch disable | 19 Clearto 0
NOTES:

1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode,
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended
that a new IDT context be established before this point. Until such a new IDT context is established, the
programmer must take care in not executing an INT n instruction or any other operation that would result in an
exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module,
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain
access to this normally restricted chipset state for the purpose of securing the platform.

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

5-12 Vol.2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)
THEN #UD;
ELSIF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)
THEN #UD;
ELSIF ((in VMX operation) or
(CRO.PE=0) or (CRO.CD=1) or (CRO.NW=1) or (CRO.NE=0) or
CPL>0) or (EFLAGS.VM=1) or
IA32_APIC_BASE.BSP=0) or
TXT chipset not present) or
ACMODEFLAG=1) or (IN_SMM=1))
THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF (IA32_MC[I]_STATUS = uncorrectable error)
THEN #GP(0);

— o~ p—

0D;
Fl;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
THEN #GP(0);
ACBASE« EBX;
ACSIZE«+ ECX;
IF (((ACBASE MOD 4096) # 0) or ((ACSIZE MOD 64) # 0) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM
capacity)) or (ACBASE+ACSIZE) > (2732 -1)))
THEN #GP(0);
IF (secondary thread(s) CRO.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and
(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);
Mask SM|, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE« (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M« 0;
IA32_DEBUGCTL« O;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG« T;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type # WB)
THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] # 2)
THEN TXT-SHUTDOWN(#UnsupportedACM);
(* Authenticate the AC Module and shutdown with an error if it fails *)
KEY« GETKEY(ACRAM, ACBASE);
KEYHASH« HASH(KEY);
CSKEYHASH« READ(TXT.PUBLICKEY);
IF (KEYHASH # CSKEYHASH)
THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE« DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code Vol.2C 5-13

SAFER MODE EXTENSIONS REFERENCE

FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.I]«— SIGNATURE([I];
COMPUTEDSIGNATURE« HASH(ACRAM, ACBASE, ACSIZE);
FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.SIGNATURE_LEN_CONST+IJ«~ COMPUTEDSIGNATURETI];
IF (SIGNATURE # COMPUTEDSIGNATURE)
THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL« ACRAM[CodeControl];

IF ((ACMCONTROL.O = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)
THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTBasePtr] < (ACRAM[HeaderlLen] * 4 + Scratch_size)) OR
((ACRAM[GDTBaseP1tr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.O = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN ACEntryPoint«<— ACBASE+ACRAM[ErrorEntryPoint];

ELSE

ACEntryPoint« ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderlLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[GDTLimit] & FFFFO000h)
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL#0))
THEN TXT-SHUTDOWN(#BadACMFormat);

CRO.[PGAMWP]« 0;
CR4.MCE« 0;
EFLAGS<« 00000002h;
IA32_EFER« Oh;

[EIR]BX« [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX« Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[EIR]DX« Pre-GETSEC[ENTERACCS] GDT.base;

EBP« ACBASE;

GDTR.BASE« ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT« ACRAM[GDTLimit];

CS.SEL« ACRAM[SegSel];
CS.BASE« O;

CS.UMIT« FFFFFh;
CS.Ge1;

CS.D«1;

CS.AR«+ 9Bh;

DS.SEL« ACRAM[SegSel]+8;
DS.BASE« 0;

DS.UMIT« FFFFFh;

DS.G T;

DSD« 1;

DS.AR«+ 93h;

DR7« 00000400h;
IA32_DEBUGCTL« O;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
ElIP<«— ACEntryPoint;

END;

5-14 Vol.2C

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Flags Affected
All flags are cleared.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.CD = 1 or CRO.NW = 1 or CRO.NE = 0 or CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.
If in VMX root operation.

If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.

If the processor is already in authenticated code execution mode.

If the processor is in SMM.

If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.

If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.

If other enabled logical processor(s) of the same package CR0.CD = 1.

If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or
SENTER sleep state.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2732 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2732 -1.

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code Vol.2C 5-15

SAFER MODE EXTENSIONS REFERENCE

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

5-16 Vol.2C GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

GETSEC[EXITAC]—EXit Authenticated Code Execution Mode

Opcode Instruction Description

OF 37 GETSECIEXITAC] Exit authenticated code execution mode.

(EAX=3) RBX holds the Near Absolute Indirect jump target and EDX hold the exit parameter flags
Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution mode established by
GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of GETSEC is selected with EAX set to 3 at entry. EBX
(or RBX, if in 64-bit mode) holds the near jump target offset for where the processor execution resumes upon
exiting authenticated code execution mode. EDX contains additional parameter control information. Currently only
an input value of 0 in EDX is supported. All other EDX settings are considered reserved and result in a general
protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. The
processor must also be in authenticated code execution mode. To avoid potential operability conflicts between
modes, the processor is not allowed to execute this instruction if it is in SMM or in VMX operation. A violation of
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses to external event signals
INIT#, NMI#, and SMI#. This unmasking is performed conditionally, based on whether the authenticated code
execution mode was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the processor is in
authenticated code execution mode due to the execution of GETSEC[SENTER], then these external event signals
will remain masked. In this case, A20M is kept disabled in the measured environment until the measured environ-
ment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events that are
pending, but have been blocked while in authenticated code execution mode, will be recognized at the completion
of the GETSEC[EXITAC] instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# masked is to support the
completion of a measured environment bring-up that makes use of VMX. In this envisioned security usage
scenario, these events will remain masked until an appropriate virtual machine has been established in order to
field servicing of these events in a safer manner. Details on when and how events are masked and unmasked in
VMX operation are described in Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C. It
should be cautioned that if no VMX environment is to be activated following GETSEC[EXITAC], that these events
will remain masked until the measured environment is exited with GETSEC[SEXIT]. If this is not desired then the
GETSEC function SMCTRL(0) can be used for unmasking SMI# in this context. NMI# can be correspondingly
unmasked by execution of IRET.

A successful exit of the authenticated code execution mode requires the ILP to perform additional steps as outlined
below:

® Invalidate the contents of the internal authenticated code execution area.
® Invalidate processor TLBs.

® C(Clear the internal processor AC Mode indicator flag.

® Re-lock the TPM locality 3 space.

® Unlock the Intel® TXT-capable chipset memory and I/0 protections to allow memory and I/O activity by other
processor agents.

® Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in order to protect it from further
use or visibility. This internal processor storage area can no longer be used or relied upon after GETSEC[EXITAC].
Data structures need to be re-established outside of the authenticated code execution area if they are to be refer-
enced after EXITAC. Since addressed memory content formerly mapped to the authenticated code execution area
may no longer be coherent with external system memory after EXITAC, processor TLBs in support of linear to phys-
ical address translation are also invalidated.

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed with EIP loaded with the
contents of EBX (based on the current operating mode size). In 64-bit mode, all 64 bits of RBX are loaded into RIP

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode Vol.2C 5-17

SAFER MODE EXTENSIONS REFERENCE

if REX.W precedes GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. Conventional
CS limit checking is performed as part of this control transfer. Any exception conditions generated as part of this
control transfer will be directed to the existing IDT; thus it is recommended that an IDTR should also be established
prior to execution of the EXITAC function if there is a need for fault handling. In addition, any segmentation related
(and paging) data structures to be used after EXITAC should be re-established or validated by the authenticated
code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after EXITAC need to be re-estab-
lished and mapped outside of the authenticated RAM designated area by the authenticated code prior to EXITAC.
Any data structure held within the authenticated RAM allocated area will no longer be accessible after completion
by EXITAC.

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSIF (in VMX non-root operation)

THEN VM Exit (reason="GETSEC instruction”);

ELSIF (GETSEC leaf unsupported)

THEN #UD;

ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical))
(CRO.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX # 0))
THEN #GP(0);

IF (OperandSize = 32)

THEN tempEIP« EBX;

ELSIF (OperandSize = 64)
THEN tempEIP« RBX;

ELSE
tempEIP« EBX AND O00OFFFFH;

IF (tempEIP > code segment limit)

THEN #GP(0);

Invalidate ACRAM contents;

Invalidate processor TLB(s);

Drain outgoing messages;

SignalTXTMsg(Closelocality3);

SignalTXTMsg(LockSMRAM);

SignalTXTMsg(ProcessorRelease);

Unmask INIT;

IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;

ELSEIF (IA32_SMM_MONITOR_CTL[O] = 0)

THEN Unmask SMI pin event;

ACMODEFLAG«+ 0;

EIP« tempEIP;

END;

Flags Affected
None.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD

5-18 Vol.2C GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

Segment overrides Ignored
Address size Ignored
REX.W Sets 64-bit mode Operand size attribute

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CRO.PE = 0 or CPL>0 or EFLAGS.VM =1.

If in VMX root operation.

If the processor is not currently in authenticated code execution mode.
If the processor is in SMM.

If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode Vol.2C 5-19

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

Opcode Instruction Description
OF 37 GETSEC[SENTER] Launch a measured environment
(EAX=4) EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).
EDX controls the level of functionality supported by the measured environment launch.

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX.
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for the
AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activelLocality bit is clear before executing the
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction:

® Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and
EFLAGS.VM = 0.

® Processor cache must be available and not disabled using the CR0.CD and NW bits.

® For enforcing consistency of operation with humeric exception reporting using Interrupt 16, CRO.NE must be
set.

® An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on
configuration capability field after reset.

® The processor can not be in authenticated code execution mode or already in a measured environment (as
launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction).

® To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction
if it currently is in SMM or VMX operation.

® Toinsure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction must
also be designated the BSP (boot-strap processor) as defined by A32_APIC_BASE.BSP (Bit 8).

® EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-
ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all logical
processors in the platform. The rendezvous sequence involves the initiating logical processor sending a message
(by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the message, thus
synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator flag
(IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor condi-
tion while waiting to be activated after a measured environment has been established by the system executive.
RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured environ-
ment.

A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally:

® Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.

5-20 Vol.2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

® Establish and check the location and size of the authenticated code module to be executed by the ILP.

® Check for the existence of an Intel® TXT-capable chipset.

® Verify the current power management configuration is acceptable.

® Broadcast a message to enable protection of memory and I/0 from activities from other processor agents.
® Load the designated AC module into authenticated code execution area.

¢ Isolate the content of authenticated code execution area from further state modification by external agents.
® Authenticate the AC module.

® Updated the Trusted Platform Module (TPM) with the authenticated code module's hash.

® Initialize processor state based on the authenticated code module header information.

® Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space.

® Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the
rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine
check status registers at the first check point will result in the ILP signaling a general protection violation. If an
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will
result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error code
of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER.
The measured environment software may need to take responsibility for restoring such settings that are deemed
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range setting
is discovered, then the processor will abort the measured launch. This may be the case for chipset controlled
settings of these values or if the controllability is not enabled on the processor. In this case it is the responsibility
of the external software to program the chipset voltage ID and/or bus ratio select settings to known good values
recognized by the processor, prior to executing SENTER.

NOTE

For a mobile processor, an adjustment can be made according to the thermal monitor operating
target. For a quad-core processor the SENTER adjustment mechanism may result in a more conser-
vative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The
purpose of this masking control is to prevent exposure to existing external event handlers until a protected handler
has been put in place to directly handle these events. Masked external pin events may be unmasked conditionally
or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related opera-
tions such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3C for more details).The state of the A20M pin is masked and
forced internally to a de-asserted state so that external assertion is not recognized. A20M masking as set by
GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of system soft-
ware to control the processor response to INTR through appropriate management of EFLAGS.

GETSEC[SENTER]—Enter a Measured Environment Vol.2C 5-21

SAFER MODE EXTENSIONS REFERENCE

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode,
memory (excluding implicit write-back transactions) and I/0 activities originating from other processor agents are
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by

executing GETSEC[EXITAC]. The protection of memory and I/0 activities remains in effect until the ILP executes

GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected
against further modification from external bus snoops. There is also a requirement that the memory type for the
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset
condition. It is performed when it is considered unreliable to signal an error through the conventional exception
reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can
it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage
facility in the platform. The following trusted storage facility are supported:

® If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM
at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration of
code and data modules.

® If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17.

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the
measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset is
unlocked so that the authenticated code module and measured environment software can gain access to this
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later by
software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT]
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX + [GDTBa-
sePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module header
field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized
implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES, while
execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set to
EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with a
failure resulting in an TXT-shutdown condition.

Table 5-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion of
GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is up to
the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection requirements
established during the launch of the measured environment. RLP state initialization is not completed until a subse-
guent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.

5-22 Vol.2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Table 5-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CRO PG«0, AM«0, WP<«0; Others unchanged PG«0, CD«0, NW«—0, AM«0, WP<«-0; PE«—1, NE«1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER OH 0

EIP [EntryPoint from MLE header1] [LT.MLEJOIN +12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1, Sel = [LT.MLEJOIN + 8], base = 0, limit = FFFFFH, G =
D=1, AR=9BH 1,D=1,AR=9BH

DS, €S, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1, | Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH,
D=1, AR=93H G=1,D=1,AR=93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr], Base = [LT.MLEJOIN + 4], Limit = [LT.MLE.JOIN]
Limit=[SINIT.GDTLimit]

DR7 00000400H 00000400H

IA32_DEBUGCTL OH OH

Performance OH OH

counters and counter

control registers

IA32_MISC_ENABLE See Table 5-5 See Table 5-5

IA32_SMM_MONITOR | Bit 2<-0 Bit 2<-0

_CTL

NOTES:

1.See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header
format.

Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate
initialization before use. Since a new GDT context has been established, the previous state of the segment selector
values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a new IDT
context after launching the measured environment before exceptions or the external interrupts INTR and NMI can
be handled. In the meantime, the programmer must take care in not executing an INT n instruction or any other
condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is
achieved by clearing DR7, TF in EFLAGs, and the MSR 1A32_DEBUGCTL as defined in Table 5-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-initial-
ized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of SENTER for
both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both the
ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. To
reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of SENTER
processing, any enabled machine check error condition that occurs will result in the processor performing the TXT-

GETSEC[SENTER]—Enter a Measured Environment Vol.2C 5-23

SAFER MODE EXTENSIONS REFERENCE

shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor CR4.MCE
must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shutdown under
such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both the
ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging environment
will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code execution
mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 5-5 The remaining bits are cleared for the purpose
of establishing a more consistent environment for the execution of authenticated code modules. Among the impact
of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared.

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of two
fields:

® Bit 15: a global enable control for execution of SENTER.

® Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of
functionality specified with corresponding EDX parameter bits 6:0.

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 5-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The
IA32_FEATURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization.
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is
treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides additional details and
requirements for programming measured environment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)
THEN #UD;
ELSE IF (in VMX non-root operation)
THEN VM Exit (reason="GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)
THEN #UD;
ELSE IF ((in VMX root operation) or
(CRO.PE=0) or (CRO.CD=1) or (CRO.NW=1) or (CRO.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX # (SENTER_EDX_support_mask & EDX)) or
(IA32_FEATURE_CONTROL[0]=0) or (IA32_FEATURE_CONTROL[15]=0) or
((IA32_FEATURE_CONTROL[14:8] & EDX[6:0]) # EDX[6:0]))
THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)
FOR | = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error
THEN #GP(0);
Fl;
OD;

5-24 Vol.2C GETSEC[SENTER]—Enter a Measured Environment

Fl;

IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
THEN #GP(0);

ACBASE« EBX;

ACSIZE«+ ECX;

IF ((ACBASE MOD 4096) # 0) or ((ACSIZE MOD 64) # 0) or (ACSIZE < minimum
module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2732 -1)))

THEN #GP(0);

Mask SM|, INIT, A20M, and NMI external pin events;

SignalTXTMsg(SENTER);

DO

WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)
THEN TXT-SHUTDOWN(#lllegal€vent);
FOR 1 =0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);
Fl;
0D;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)
THEN IF (Voltage select and bus ratio are internally adjustable)
THEN
Make product-specific adjustment on operating parameters;
ELSE
TXT-SHUTDOWN(#lllegalVIDBRatio);
Fl;

IA32_MISC_ENABLE« (IA32_MISC_ENABLE & MASK_CONST*)

(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)

A20M« 0;

IA32_DEBUGCTL« O;

Invalidate processor TLB(s);

Drain outgoing transactions;

Clear performance monitor counters and control;

SENTERFLAG« 1;

SignalTXTMsg(SENTERACk);

IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;

(* ILP waits for all logical processors to ACK *)

DO
DONE« TXT.READ(LT.STS);

WHILE (not DONE);

SignalTXTMsg(SENTERContinue);

SignalTXTMsg(ProcessorHold);

FOR I=ACBASE to ACBASE+ACSIZE-1 DO
ACRAM[I-ACBASE].ADDR« I;
ACRAM[I-ACBASE].DATA« LOAD(l);

0D;

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Vol.2C 5-25

SAFER MODE EXTENSIONS REFERENCE

IF (ACRAM memory type # WB)
THEN TXT-SHUTDOWN(#BadACMMType);

IF (AC module header version is not supported) OR (ACRAM[ModuleType] # 2)
THEN TXT-SHUTDOWN(#UnsupportedACM);

KEY« GETKEY(ACRAM, ACBASE);

KEYHASH« HASH(KEY);

CSKEYHASH« LT.READ(LT.PUBLICKEY);

IF (KEYHASH # CSKEYHASH)
THEN TXT-SHUTDOWN(#AuthenticateFail);

SIGNATURE« DECRYPT(ACRAM, ACBASE, KEY);

(* The value of SIGNATURE_LEN_CONST is implementation-specific*)

FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.I]«— SIGNATURE([I];

COMPUTEDSIGNATURE« HASH(ACRAM, ACBASE, ACSIZE);

FOR 1=0 to SIGNATURE_LEN_CONST - 1 DO
ACRAM[SCRATCH.SIGNATURE_LEN_CONST+IJ«~ COMPUTEDSIGNATURE(I];

IF (SIGNATURE # COMPUTEDSIGNATURE)
THEN TXT-SHUTDOWN(#AuthenticateFail);

ACMCONTROL« ACRAM[CodeControl];

IF ((ACMCONTROL.O = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
THEN TXT-SHUTDOWN(#UnexpectedHITM);

IF (ACMCONTROL reserved bits are set)
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[GDTBasePtr] < (ACRAM[HeaderlLen] * 4 + Scratch_size)) OR
((ACRAM[GDTBaseP1tr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.O = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint«<— ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint« ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderlLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[SegSel] > (ACRAM[GDTLImit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL+0))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1) (* Alternate FTM Interface has been enabled *)
THEN (* TPM_LOC_CTRL_4 is located at OFED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)
WRITE(TPM_LOC_CTRL_4) «— OTH; (* Modified HASH.START protocol *)
(* Write to firmware storage *)
WRITE(TPM_DATA_BUFFER_4) « SIGNATURE_LEN_CONST + 4;
FOR |1=0 to SIGNATURE_LEN_CONST - 1 DO
WRITE(TPM_DATA_BUFFER_4 + 2 + |)<~ ACRAM[SCRATCH.I];
WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) « EDX;
WRITE(FTM.LOC_CTRL) « 06H; (* Modified protocol combining HASH.DATA and HASH.END *)
ELSE IF (FTM_INTERFACE_ID.[3:0] = 0) (* Use standard TPM Interface *)
ACRAM[SCRATCH.SIGNATURE_LEN_CONST]« EDX;
WRITE(TPM.HASH.START)« 0;
FOR 1=0 to SIGNATURE_LEN_CONST + 3 DO
WRITE(TPM.HASH.DATA)« ACRAM[SCRATCH.IJ;
WRITE(TPM.HASH.END)« O;
Fl;

5-26 Vol.2C GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

ACMODEFLAG«+ T;
CRO.[PG.AM.WP]« O;

CR4« 00004000h;
EFLAGS« 00000002h;
IA32_EFER« O;

EBP« ACBASE;

GDTR.BASE« ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT« ACRAM[GDTLimit];
CS.SEL« ACRAM[SegSel];
CS.BASE« Q;

CS.LIMIT« FFFFFh;

CS.G1;

CS.D«1;

CS.AR« 9Bh;

DS.SEL« ACRAM[SegSel]+8;
DS.BASE« 0;

DS.UMIT« FFFFFh;

DS.G« T;

DSD« 1;

DS.AR«+ 93h;

SS« DS;

€S« DS;

DR7« 00000400h;
IA32_DEBUGCTL« O;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
ElIP« ACEntryPoint;

END;

RLP_SENTER_ROUTINE: (RLP only)

Mask SM|, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;

Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP« 0;

GOTO SENTER sleep state;

END;

Flags Affected

All flags are cleared.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].

GETSEC[SENTER]—Enter a Measured Environment Vol.2C 5-27

SAFER MODE EXTENSIONS REFERENCE

#GP(0)

If CRO.CD = 1 or CRO.NW = 1 or CRO.NE = 0 or CRO.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.

If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.

If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.

If a protected partition is already active or the processor is already in authenticated code
mode.

If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor's authenticated code execution area storage
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions

#UD

#GP(0)

If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

#GP(0)

If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

#GP

IF AC code module does not reside in physical address below 2732 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.

#GP

VM-Exit Condition
Reason (GETSEC)

5-28 Vol.2C

IF AC code module does not reside in physical address below 2732 -1.

IF in VMX non-root operation.

GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SEXIT]—EXit Measured Environment

Opcode Instruction Description

OF 37 GETSEC[SEXIT] Exit measured environment
(EAX=5)

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment established by GETSEC[SENTER]. The
SEXIT leaf of GETSEC is selected with EAX set to 5 at execution. This instruction leaf sends a message to all logical
processors in the platform to signal the measured environment exit.

There are restrictions enforced by the processor for the execution of the GETSEC[SEXIT] instruction:

® Execution is not allowed unless the processor is in protected mode (CRO.PE = 1) with CPL = 0 and EFLAGS.VM
= 0.

® The processor must be in a measured environment as launched by a previous GETSEC[SENTER] instruction,
but not still in authenticated code execution mode.

® To avoid potential inter-operability conflicts between modes, the processor is not allowed to execute this
instruction if it currently is in SMM or in VMX operation.

® To insure consistent handling of SIPI messages, the processor executing the GETSEC[SEXIT] instruction must
also be designated the BSP (bootstrap processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8).

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then clears the internal processor flag
indicating the processor is operating in a measured environment.

In response to a message signaling the completion of rendezvous, all RLPs restart execution with the instruction
that was to be executed at the time GETSEC[SEXIT] was recognized. This applies to all processor conditions, with
the following exceptions:

® If an RLP executed HLT and was in this halt state at the time of the message initiated by GETSEC[SEXIT], then
execution resumes in the halt state.

® If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] causes an exit of the MWAIT
state, falling through to the next instruction.

® If an RLP was executing an intermediate iteration of a string instruction, then the processor resumes execution
of the string instruction at the point which the message initiated by GETSEC[SEXIT] was recognized.

® Ifan RLPis still in the SENTER sleep state (never awakened with GETSEC[WAKEUP]), it will be sent to the wait-
for-SIPI state after first clearing the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any
pending SIPI state. In this case, such RLPs are initialized to an architectural state consistent with having taken
a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLPs unmask the response