intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3B:
System Programming Guide, Part 2

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual consists of seven volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-M, Order Number 253666;
Instruction Set Reference N-Z, Order Number 253667; Instruction Set Reference, Order Number
326018; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part
2, Order Number 253669; System Programming Guide, Part 3, Order Number 3260189. Refer to all seven
volumes when evaluating your design needs.

Order Number: 253669-047US
June 2013

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTIC-
ULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application™ is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or char-
acteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsi-
bility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice.
Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the
correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more in-
formation, see http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT Technology-
enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more infor-
mation including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Func-
tionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be com-
patible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the
specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.in-
tel.com/info/em64t.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system.
Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel
Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2013 Intel Corporation. All rights reserved.

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.intel.com/info/hyperthreading
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and 1A-32 architecture used for power management and thermal moni-
toring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY

Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor; it is available in Pentium 4,
Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Atom™ and Intel® Core™2 Duo processors. The tech-
nology manages processor power consumption using performance state transitions. These states are defined as
discrete operating points associated with different frequencies.

Enhanced Intel SpeedStep Technology differs from previous generations of Intel SpeedStep Technology in two
ways:

® Centralization of the control mechanism and software interface in the processor by using model-specific
registers.

® Reduced hardware overhead; this permits more frequent performance state transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep state, holding off bus
master transfers for the duration of a performance state transition. Performance state transitions under the
Enhanced Intel SpeedStep Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Technology is enabled by
setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of IA32_MISC_ENABLE MSR is cleared.

14.1.1 Software Interface For Initiating Performance State Transitions

State transitions are initiated by writing a 16-bit value to the 1A32_PERF_CTL register, see Figure 14-2. If a transi-
tion is already in progress, transition to a new value will subsequently take effect.

Reads of IA32_PERF_CTL determine the last targeted operating point. The current operating point can be read from
IA32_PERF_STATUS. 1A32_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and performance tools are
not expected to use either IA32_PERF_CTL or IA32_PERF_STATUS and should treat both as reserved. Performance
monitoring tools can access model-specific events and report the occurrences of state transitions.

14.2 P-STATE HARDWARE COORDINATION

The Advanced Configuration and Power Interface (ACPI) defines performance states (P-state) that are used facili-
tate system software’s ability to manage processor power consumption. Different P-state correspond to different
performance levels that are applied while the processor is actively executing instructions. Enhanced Intel Speed-
Step Technology supports P-state by providing software interfaces that control the operating frequency and voltage
of a processor.

With multiple processor cores residing in the same physical package, hardware dependencies may exist for a
subset of logical processors on a platform. These dependencies may impose requirements that impact coordination
of P-state transitions. As a result, multi-core processors may require an OS to provide additional software support
for coordinating P-state transitions for those subsets of logical processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent and hardware-coordinated to
OS power management (OSPM) policy. To support OSPMs, multi-core processors must have additional built-in
support for P-state hardware coordination and feedback.

Vol.3B 14-1

POWER AND THERMAL MANAGEMENT

Intel 64 and 1A-32 processors with dependent P-state amongst a subset of logical processors permit hardware
coordination of P-state and provide a hardware-coordination feedback mechanism using 1A32_MPERF MSR and
IA32_APERF MSR. See Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a detailed
description:

63 0 63 0

IA32_MPERF (Addr: E7H) IA32_APERF (Addr: E8H)

Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

® Use CPUID to check the P-State hardware coordination feedback capability bit. CPUID.0O6H.ECX[Bit 0] = 1
indicates 1A32_MPERF MSR and IA32_APERF MSR are present.

® |1A32_MPERF MSR (OXE7) increments in proportion to a fixed frequency, which is configured when the processor

is booted.

® 1A32_APERF MSR (0OxXE8) increments in proportion to actual performance, while accounting for hardware
coordination of P-state and TM1/TM2; or software initiated throttling.

® The MSRs are per logical processor; they measure performance only when the targeted processor is in the CO

State.

® Only the 1A32_APERF/IA32_MPERF ratio is architecturally defined; software should not attach meaning to the

content of the individual of IA32_APERF or IA32_MPERF MSRs.
® When either MSR overflows, both MSRs are reset to zero and continue to increment.

® Both MSRs are full 64-bits counters. Each MSR can be written to independently. However, software should
follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected to confirm processor support

for P-state hardware coordination feedback and use the feedback mechanism to make P-state decisions. The OSPM
is expected to either save away the current MSR values (for determination of the delta of the counter ratio at a later
time) or reset both MSRs (execute WRMSR with O to these MSRs individually) at the start of the time window used
for making the P-state decision. When not resetting the values, overflow of the MSRs can be detected by checking

whether the new values read are less than the previously saved values.

Example 14-1 demonstrates steps for using the hardware feedback mechanism provided by 1A32_APERF MSR and

IA32_MPERF MSR to determine a target P-state.

Example 14-1. Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure "PercentBusy” during previous sampling window.
// Typically, “PercentBusy” is measure over a time scale suitable for
// power management decisions
/!
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor

// that is in use. The calculation is based on the PercentBusy,
// that is the percentage of processor time not idle and the P-state

14-2 Vol. 3B

POWER AND THERMAL MANAGEMENT

// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same
/1 time window.

PercentPerformance = PercentBusy * (ACNT/MCNT);

// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate = currentPstate) {
SetPState(TargetPstate);
}
// WRMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
/1 the two WRMSRs (for example, interrupts).
WRMSR(IA32_MPEREF, 0);
WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR
PERFORMANCE OPERATION

An Intel 64 processor may support a form of processor operation that takes advantage of design headroom to
opportunistically increase performance. In Intel Core i7 processors, Intel Turbo Boost Technology can convert
thermal headroom into higher performance across multi-threaded and single-threaded workloads. In Intel Core 2
processors, Intel Dynamic Acceleration can convert thermal headroom into higher performance if only one thread
is active.

14.3.1 Intel Dynamic Acceleration

Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA takes advantage of thermal
design headroom and opportunistically allows a single core to operate at a higher performance level when the
operating system requests increased performance.

14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel Turbo Boost Technology, has
the following characteristics:

® A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged) to a target state is not
guaranteed, but may occur opportunistically after the corresponding enable mechanism is activated, the
headroom is available and certain criteria are met.

® The opportunistic processor performance operation is generally transparent to most application software.

® System software (BIOS and Operating system) must be aware of hardware support for opportunistic processor
performance operation and may need to temporarily disengage opportunistic processor performance operation
when it requires more predictable processor operation.

® When opportunistic processor performance operation is engaged, the OS should use hardware coordination
feedback mechanisms to prevent un-intended policy effects if it is activated during inappropriate situations.

Vol.3B 14-3

POWER AND THERMAL MANAGEMENT

14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor performance operation, the power-on
default state of IA32_MISC_ENABLE[38] indicates the presence of such hardware support. For Intel 64 processors
that support opportunistic processor performance operation, the default value is 1, indicating its presence. For
processors that do not support opportunistic processor performance operation, the default value is 0. The power-
on default value of IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of opportu-
nistic processor performance operation.

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical package. It is written by BIOS during
platform initiation to enable/disable opportunistic processor operation in conjunction of OS power management
capabilities, see Section 14.3.2.2. BIOS can set I1A32_MISC_ENABLE[38] with 1 to disable opportunistic processor
performance operation; it must clear the default value of 1A32_MISC_ENABLE[38] to O to enable opportunistic
processor performance operation. OS and applications must use CPUID leaf O6H if it needs to detect processors
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. CPUID.0O6H:EAX[1]) indicates
opportunistic processor performance operation, such as IDA, has been enabled by BIOS.

Opportunistic processor performance operation can be disabled by setting bit 38 of IA32_MISC_ENABLE. This
mechanism is intended for BIOS only. If IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return O.

14.3.2.2 0S Control of Opportunistic Processor Performance Operation

There may be phases of software execution in which system software cannot tolerate the non-deterministic aspects
of opportunistic processor performance operation. For example, when calibrating a real-time workload to make a
CPU reservation request to the OS, it may be undesirable to allow the possibility of the processor delivering
increased performance that cannot be sustained after the calibration phase.

System software can temporarily disengage opportunistic processor performance operation by setting bit 32 of the
IA32_PERF_CTL MSR (0199H), using a read-modify-write sequence on the MSR. The opportunistic processor
performance operation can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-modify-write
sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 32 of the IA32_PERF_STATUS MSR (0198H),
and it is not shared between logical processors in a physical package. In order for OS to engage IDA/Turbo mode,
the BIOS must

® enable opportunistic processor performance operation, as described in Section 14.3.2.1,
® expose the operating points associated with IDA/Turbo mode to the OS.

63 333231 16 15 0

Reserved

IDA/Turbo DISENGAGE4

Enhanced Intel Speedstep Technology Transition Target

Figure 14-2. IA32_PERF_CTL Register

14.3.2.3 Required Changes to OS Power Management P-state Policy

Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide opportunistic performance greater
than the performance level corresponding to the maximum qualified frequency of the processor (see CPUID’s brand
string information). System software can use a pair of MSRs to observe performance feedback. Software must
query for the presence of IA32_APERF and IA32_MPERF (see Section 14.2). The ratio between 1A32_APERF and
IA32_MPERF is architecturally defined and a value greater than unity indicates performance increase occurred
during the observation period due to IDA. Without incorporating such performance feedback, the target P-state
evaluation algorithm can result in a non-optimal P-state target.

14-4 Vol.3B

POWER AND THERMAL MANAGEMENT

There are other scenarios under which OS power management may want to disable IDA, some of these are listed
below:

® When engaging ACPI defined passive thermal management, it may be more effective to disable IDA for the
duration of passive thermal management.

® When the user has indicated a policy preference of power savings over performance, OS power management
may want to disable IDA while that policy is in effect.

14.3.2.4 Application Awareness of Opportunistic Processor Operation (Optional)

There may be situations that an end user or application software wishes to be aware of turbo mode activity. It is
possible for an application-level utility to periodically check the occurrences of opportunistic processor operation.
The basic elements of an algorithm is described below, using the characteristics of Intel Turbo Boost Technology as
example.

Using an OS-provided timer service, application software can periodically calculate the ratio between unhalted-
core-clockticks (UCC) relative to the unhalted-reference-clockticks (URC) on each logical processor to determine if
that logical processor had been requested by OS to run at some frequency higher than the invariant TSC frequency,
or the OS has determined system-level demand has reduced sufficiently to put that logical processor into a lower-
performance p-state or even lower-activity state.

If an application software have access to information of the base operating ratio between the invariant TSC
frequency and the base clock (133.33 MHz), it can convert the sampled ratio into a dynamic frequency estimate for
each prior sampling period. The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

Sample period n-1 n n+l n+2 n+3

Unhalted core clockticks

FixedCtrl —_—
FixedCtr2) —— |

Unhalted reference
clockticks

Logical Processor i Turbo Activity Ratio = (UCC,44 ;- UCC,,)/ (URC,3 j- URC,)

Figure 14-3. Periodic Query of Activity Ratio of Opportunistic Processor Operation

® The sampling period chosen by the application (to program an OS timer service) should be sufficiently large to
avoid excessive polling overhead to other applications or tasks managed by the OS.

® When the OS timer service transfers control, the application can use RDPMC (with ECX = 4000_0001H) to read
IA32_PERF_FIXED_CTR1 (MSR address 30AH) to record the unhalted core clocktick (UCC) value; followed by
RDPMC (ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to record the unhalted
reference clocktick (URC) value. This pair of values is needed for each logical processor for each sampling
period.

® The application can calculate the Turbo activity ratio based on the difference of UCC between each sample
period, over the difference of URC difference. The effective frequency of each sample period of the logical
processor, i, can be estimated by:

(UCCp4q, i -UCC D/(URC 4 - URC ,)™ Base_operating_ratio* 133.33MHz

Vol.3B 14-5

POWER AND THERMAL MANAGEMENT

It is possible that the OS had requested a lower-performance P-state during a sampling period. Thus the ratio
(UCCp4q - UCC , D/(URCh4q, i - URC 4 ;) can reflect the average of Turbo activity (driving the ratio above unity)
and some lower P-state transitions (causing the ratio to be < 1).

It is also possible that the OS might requested C-state transitions when the demand is low. The above ratio gener-
ally does not account for cycles any logical processor was idle. On Intel Core i7 processors, an application can make
use of the time stamp counter (IA-32_TSC) running at a constant frequency (i.e. Base_operating_ratio*
133.33MHz) during C-states. Thus software can calculate ratios that can indicate fractions of sample period spent
in the CO state, using the unhalted reference clockticks and the invariant TSC. Note the estimate of fraction spent
in CO may be affected by SMM handler if the system software makes use of the “FREEZE_WHILE_SMM_EN" capa-
bility to freeze performance counter values while the SMM handler is servicing an SMI (see Chapter 23, “Introduc-
tion to Virtual-Machine Extensions”).

14.3.3 Intel Turbo Boost Technology

Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon processors based on Intel®
microarchitecture code name Nehalem. It uses the same principle of leveraging thermal headroom to dynamically
increase processor performance for single-threaded and multi-threaded/multi-tasking environment. The program-
ming interface described in Section 14.3.2 also applies to Intel Turbo Boost Technology.

14.3.4 Performance and Energy Bias Hint support

Intel 64 processors may support additional software hint to guide the hardware heuristic of power management
features to favor increasing dynamic performance or conserve energy consumption.

Software can detect processor's capability to support performance-energy bias preference hint by examining bit 3
of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also
implies the presence of a new architectural MSR called 1A32_ENERGY_PERF_BIAS (1BOH).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from O - 15. The values
represent a sliding scale, where a value of O (the default reset value) corresponds to a hint preference for highest
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into a
hint to balance performance with energy consumption

63 4 3 0

Reserved

Energy Policy Preference Hint

Figure 14-4. IA32_ENERGY_PERF_BIAS Register

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of IA32_ENERGY_PERF_BIAS is per
logical processor, which means that each of the logical processors in the package can be programmed with a
different value. This may be especially important in virtualization scenarios, where the performance / energy
requirements of one logical processor may differ from the other. Conflicting "hints" from various logical processors
at higher hierarchy level will be resolved in favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with the appropriate value. However, the value
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

14-6 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.4 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT

IA-32 processors may support a number of C-states® that reduce power consumption for inactive states. Intel Core
Solo and Intel Core Duo processors support both deeper C-state and MWAIT extensions that can be used by OS to
implement power management policy.

Software should use CPUID to discover if a target processor supports the enumeration of MWAIT extensions. If
CPUID.0O5H.ECX[Bit 0] = 1, the target processor supports MWAIT extensions and their enumeration (see Chapter
3, “Instruction Set Reference, A-M,” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A).

If CPUID.O5H.ECX[Bit 1] = 1, the target processor supports using interrupts as break-events for MWAIT, even
when interrupts are disabled. Use this feature to measure C-state residency as follows:

® Software can write to bit O in the MWAIT Extensions register (ECX) when issuing an MWAIT to enter into a
processor-specific C-state or sub C-state.

® When a processor comes out of an inactive C-state or sub C-state, software can read a timestamp before an
interrupt service routine (ISR) is potentially executed.

CPUID.0O5H.EDX allows software to enumerate processor-specific C-states and sub C-states available for use with
MWAIT extensions. 1A-32 processors may support more than one C-state of a given C-state type. These are called
sub C-states. Numerically higher C-state have higher power savings and latency (upon entering and exiting) than
lower-numbered C-state.

At CPL = 0, system software can specify desired C-state and sub C-state by using the MWAIT hints register (EAX).
Processors will not go to C-state and sub C-state deeper than what is specified by the hint register. If CPL > 0 and
if MONITOR/MWAIT is supported at CPL > 0, the processor will only enter C1-state (regardless of the C-state
request in the hints register).

Executing MWAIT generates an exception on processors operating at a privilege level where MONITOR/MWAIT are
not supported.

NOTE

If MWAIT is used to enter a C-state (including sub C-state) that is numerically higher than C1, a
store to the address range armed by MONITOR instruction will cause the processor to exit MWAIT if
the store was originated by other processor agents. A store from non-processor agent may not
cause the processor to exit MWAIT.

14.5 THERMAL MONITORING AND PROTECTION

The 1A-32 architecture provides the following mechanisms for monitoring temperature and controlling thermal
power:

1. The catastrophic shutdown detector forces processor execution to stop if the processor’s core temperature
rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the processor to reduce it's power
consumption in order to operate within predetermined temperature limits.

3. The software controlled clock modulation mechanism permits operating systems to implement power
management policies that reduce power consumption; this is in addition to the reduction offered by automatic
thermal monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to manage thermal conditions
natively without relying on BIOS or other system board components.

The first mechanism is not visible to software. The other three mechanisms are visible to software using processor
feature information returned by executing CPUID with EAX = 1.

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state types (CO, C1, C2, C3). The mapping
relationship depends on the definition of a C-state by processor implementation and is exposed to OSPM by the BIOS using the ACPI
defined _CST table.

Vol.3B 14-7

POWER AND THERMAL MANAGEMENT

The second mechanism includes:

¢ Automatic thermal monitoring provides two modes of operation. One mode modulates the clock duty cycle;
the second mode changes the processor’s frequency. Both modes are used to control the core temperature of
the processor.

® Adaptive thermal monitoring can provide flexible thermal management on processors made of multiple
cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 14-5, the phrase ‘duty
cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers to the time period during which the
clock signal is allowed to drive the processor chip. By using the stop clock mechanism to control how often the
processor is clocked, processor power consumption can be modulated.

Clock Applied to Processor

U UOIL

Stop-Clock Duty Cycle

25% Duty Cycle (example only)

Figure 14-5. Processor Modulation Through Stop-Clock Mechanism

For previous automatic thermal monitoring mechanisms, software controlled mechanisms that changed processor
operating parameters to impact changes in thermal conditions. Software did not have native access to the native
thermal condition of the processor; nor could software alter the trigger condition that initiated software program

control.

The fourth mechanism (listed above) provides access to an on-die digital thermal sensor using a model-specific
register and uses an interrupt mechanism to alert software to initiate digital thermal monitoring.

14.5.1 Catastrophic Shutdown Detector

P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector. This catastrophic
shutdown detector was also implemented in Pentium 4, Intel Xeon and Pentium M processors. It is always enabled.
When processor core temperature reaches a factory preset level, the sensor trips and processor execution is halted
until after the next reset cycle.

14.5.2 Thermal Monitor

Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is factory-calibrated
to trip when the processor’s core temperature crosses a level corresponding to the recommended thermal design
envelop. The trip-temperature of the second sensor is calibrated below the temperature assigned to the cata-
strophic shutdown detector.

14.5.2.1 Thermal Monitor 1

The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism called Thermal
Monitor 1 (TM1) to control the core temperature of the processor. TM1 controls the processor’s temperature by
modulating the duty cycle of the processor clock. Modulation of duty cycles is processor model specific. Note that
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE [see Chapter 35, “Model-
Specific Registers (MSRs),”]. Following a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to

14-8 Vol.3B

POWER AND THERMAL MANAGEMENT

enable only one automatic thermal monitoring modes. Operating systems and applications must not disable the
operation of these mechanisms.

14.5.2.2 Thermal Monitor 2

An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was introduced in the
Intel Pentium M processor and also incorporated in newer models of the Pentium 4 processor family. Intel Core Duo
and Solo processors, and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the core
temperature of the processor by reducing the operating frequency and voltage of the processor and offers a higher
performance level for a given level of power reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be implemented
differently across various 1A-32 processor families with different CPUID signatures in the family encoding value,
but will be uniform within an 1A-32 processor family.

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.5.2.3 Two Methods for Enabling TM2

On processors with CPUID family/model/stepping signature encoded as 0x69n or Ox6Dn (early Pentium M proces-
sors), TM2 is enabled if the TM_SELECT flag (bit 16) of the MSR_THERMZ2_CTL register is set to 1 (Figure 14-6) and
bit 3 of the 1A32_MISC_ENABLE register is set to 1.

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required to enable either TM1 or TM2.
Operating systems and applications must not disable mechanisms that enable TM1 or TM2. If bit 3 of the
IA32_MISC_ENABLE register is set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is
enabled.

31 16 0
Reserved Reserved

TM_SELECT

Figure 14-6. MSR_THERMZ2_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded as
0x69n or 0x6Dn

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors), the method
used to enable TM2 is different. TM2 is enable by setting bit 13 of IA32_MISC_ENABLE register to 1. This applies to
Intel Core Duo, Core Solo, and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified by the value
written to MSR_THERM2_CTL, bits 15:0 (Figure 14-7). Following a power-up or reset, BIOS is required to enable
at least one of these two thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may choose
to enable TM2 instead of TM1. Operating systems and applications must not disable the mechanisms that enable
TMlor TM2; and they must not alter the value in bits 15:0 of the MSR_THERM2_CTL register.

Vol.3B 14-9

POWER AND THERMAL MANAGEMENT

63 15 0

Reserved

TM2 Transition Target

Figure 14-7. MSR_THERM2_CTL Register for Supporting TM2

14.5.2.4 Performance State Transitions and Thermal Monitoring

If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the 1A32_PERF_CTL will

effect a new target operating point as follows:

® If TM1 is enabled and the TCC is engaged, the performance state transition can commence before the TCC is
disengaged.

® If TM2 is enabled and the TCC is engaged, the performance state transition specified by a write to the
IA32_PERF_CTL will commence after the TCC has disengaged.

14.5.2.5 Thermal Status Information

The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated through the thermal
status flag and thermal status log flag in the 1A32_THERM_STATUS MSR (see Figure 14-8).

The functions of these flags are:

® Thermal Status flag, bit 0 — When set, indicates that the processor core temperature is currently at the trip
temperature of the thermal monitor and that the processor power consumption is being reduced via either TM1
or TM2, depending on which is enabled. When clear, the flag indicates that the core temperature is below the
thermal monitor trip temperature. This flag is read only.

® Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor has tripped since the last
power-up or reset or since the last time that software cleared this flag. This flag is a sticky bit; once set it
remains set until cleared by software or until a power-up or reset of the processor. The default state is clear.

63 210

Reserved

Thermal Status LogJ

Thermal Status

Figure 14-8. IA32_THERM_STATUS MSR

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain engaged for a
minimum time period (on the order of 1 ms). The thermal monitor will remain engaged until the processor core
temperature drops below the preset trip temperature of the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the processor. This holding
off of interrupts increases the interrupt latency, but does not cause interrupts to be lost. Outstanding interrupts
remain pending until clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor when the thermal sensor is
tripped. The delivery mode, mask and vector for this interrupt can be programmed through the thermal entry in the
local APIC’s LVT (see Section 10.5.1, “Local Vector Table). The low-temperature interrupt enable and high-temper-
ature interrupt enable flags in the 1A32_THERM_INTERRUPT MSR (see Figure 14-9) control when the interrupt is
generated; that is, on a transition from a temperature below the trip point to above and/or vice-versa.

14-10 Vol. 3B

POWER AND THERMAL MANAGEMENT

63 210

Reserved

Low-Temperature Interrupt Enable 4
High-Temperature Interrupt Enable

Figure 14-9. IA32_THERM_INTERRUPT MSR

¢ High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be generated on the transition
from a low-temperature to a high-temperature when set; disables the interrupt when clear.(R/W).

® Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be generated on the transition
from a high-temperature to a low-temperature when set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a power-up or reset, the low-temper-
ature interrupt enable and high-temperature interrupt enable flags in the 1A32_THERM_INTERRUPT MSR are
cleared (interrupts are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt should be
handled either by the operating system or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate of the processor's
internal high-resolution timer (time stamp counter).

14.5.2.6 Adaptive Thermal Monitor

The Intel Core 2 Duo processor family supports enhanced thermal management mechanism, referred to as Adap-
tive Thermal Monitor (Adaptive TM).

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal trip event, Adaptive TM (if
enabled) selects an optimal target operating point based on whether or not the current operating point has effec-
tively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 and TM2 feature flags and
enable all available thermal control mechanisms (including Adaptive TM) at platform initiation.

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal sensor that triggers independently.
These thermal sensor can trigger TM1 or TM2 transitions in the same manner as described in Section 14.5.2.1 and
Section 14.5.2.2. The trip point of the thermal sensor is not programmable by software since it is set during the
fabrication of the processor.

Each thermal sensor in a processor core may be triggered independently to engage thermal management features.
In Adaptive TM, both cores will transition to a lower frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in the local APIC of a given core.

14.5.3 Software Controlled Clock Modulation

Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides
a means for operating systems to implement a power management policy to reduce the power consumption of the
processor. Here, the stop-clock duty cycle is controlled by software through the 1A32_CLOCK_MODULATION MSR
(see Figure 14-10).

Vol.3B 14-11

POWER AND THERMAL MANAGEMENT

63 543 10

Reserved

On-Demand Clock Modulation Enable J
On-Demand Clock Modulation Duty Cycle ——

D Reserved
Figure 14-10. 1A32_CLOCK_MODULATION MSR

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled clock
modulation and to select the clock modulation duty cycle:

® On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation
when set; disables software-controlled clock modulation when clear.

® On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation
duty cycle (see Table 14-1). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

Table 14-1. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle
000B Reserved
001B 12.5% (Default)
010B 25.0%
011B 37.5%
1008B 50.0%
101B 63.5%
1108B 75%
111B 87.5%

The on-demand clock modulation mechanism can be used to control processor power consumption. Power
management software can write to the 1A32_CLOCK_MODULATION MSR to enable clock modulation and to select
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the
processor is hot (bit O of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the 1A32_CLOCK_MODULATION register is duplicated for
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must be
enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical for
all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for proces-
sors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in Chapter3,
“Instruction Set Reference, A-L” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, and OF_xx. For all
other processors, if the programmed duty cycle is not identical for all logical processors in the same core, the
processor core will modulate at the lowest programmed duty cycle.

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which controlled
clock modulation through the processor’s STPCLK# pin.

14-12 Vol. 3B

POWER AND THERMAL MANAGEMENT

14.5.3.1 Extension of Software Controlled Clock Modulation

Extension of the software controlled clock modulation facility supports on-demand clock modulation duty cycle with
4-bit dynamic range (increased from 3-bit range). Granularity of clock modulation duty cycle is increased to 6.25%
(compared to 12.5%).

Four bit dynamic range control is provided by using bit O in conjunction with bits 3:1 of the
IA32_CLOCK_MODULATION MSR (see Figure 14-11).

63 543 0

Reserved

On-Demand Clock Modulation Enable J
Extended On-Demand Clock Modulation Duty Cycle ——

|:| Reserved
Figure 14-11. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

Extension to software controlled clock modulation is supported only if CPUID.06H:EAX[Bit 5] = 1. If
CPUID.06H:EAX[Bit 5] = 0O, then bit O of IA32_CLOCK_MODULATION is reserved.

14.5.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the IA32_THERM_STATUS,
IA32_THERM_INTERRUPT, 1A32_CLOCK_MODULATION MSRs, and the xAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal monitoring facili-
ties that modulate clock duty cycles.

14.5.4.1 Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by CPUID.06H:EAX[Bit 5] = 1.

14.5.5 On Die Digital Thermal Sensors

On die digital thermal sensor can be read using an MSR (no 1/0 interface). In Intel Core Duo processors, each core
has a unique digital sensor whose temperature is accessible using an MSR. The digital thermal sensor is the
preferred method for reading the die temperature because (a) it is located closer to the hottest portions of the die,
(b) it enables software to accurately track the die temperature and the potential activation of thermal throttling.

14.5.5.1 Digital Thermal Sensor Enumeration

The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the processor supports digital thermal
sensor, EBX[bits 3:0] determine the number of thermal thresholds that are available for use.

Software sets thermal thresholds by using the 1A32_THERM_INTERRUPT MSR. Software reads output of the digital
thermal sensor using the IA32_THERM_STATUS MSR.

14.5.5.2 Reading the Digital Sensor

Unlike traditional analog thermal devices, the output of the digital thermal sensor is a temperature relative to the
maximum supported operating temperature of the processor.

Temperature measurements returned by digital thermal sensors are always at or below TCC activation tempera-
ture. Critical temperature conditions are detected using the “Critical Temperature Status” bit. When this bit is set,

Vol. 3B 14-13

POWER AND THERMAL MANAGEMENT

the processor is operating at a critical temperature and immediate shutdown of the system should occur. Once the
“Critical Temperature Status” bit is set, reliable operation is not guaranteed.

See Figure 14-12 for the layout of IA32_THERM_STATUS MSR. Bit fields include:

Thermal Status (bit O, RO) — This bit indicates whether the digital thermal sensor high-temperature output
signal (PROCHOT#) is currently active. Bit O = 1 indicates the feature is active. This bit may not be written by
software; it reflects the state of the digital thermal sensor.

Thermal Status Log (bit 1, R/ZWCO0) — This is a sticky bit that indicates the history of the thermal sensor
high temperature output signal (PROCHOT#). Bit 1 = 1 if PROCHOT# has been asserted since a previous
RESET or the last time software cleared the bit. Software may clear this bit by writing a zero.

PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# or FORCEPR# is being
asserted by another agent on the platform.

63 32 31 27 2322 1615 10987 6543 210

Reserved

Reading Valid
Resolution in Deg. Celsius
Digital Readout
Power Limit Notification Log
Power Limit Notification Status
Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log

Thermal Threshold #1 Status
Critical Temperature Log
Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

Figure 14-12. IA32_THERM_STATUS Register

PROCHOT# or FORCEPR# Log (bit 3, RZWCO0) — Sticky bit that indicates whether PROCHOT# or
FORCEPR# has been asserted by another agent on the platform since the last clearing of this bit or a reset. If
bit 3 = 1, PROCHOT# or FORCEPR# has been externally asserted. Software may clear this bit by writing a zero.
External PROCHOT# assertions are only acknowledged if the Bidirectional Prochot feature is enabled.

Critical Temperature Status (bit 4, RO) — Indicates whether the critical temperature detector output signal
is currently active. If bit 4 = 1, the critical temperature detector output signal is currently active.

Critical Temperature Log (bit 5, R/WCO0) — Sticky bit that indicates whether the critical temperature
detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the output
signal has been asserted. Software may clear this bit by writing a zero.

Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual temperature is currently higher
than or equal to the value set in Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If

bit 6 = 1, the actual temperature is greater than or equal to TT#1. Quantitative information of actual
temperature can be inferred from Digital Readout, bits 22:16.

Thermal Threshold #1 Log (bit 7, R/ZWCO0) — Sticky bit that indicates whether the Thermal Threshold #1
has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached.
Software may clear this bit by writing a zero.

Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual temperature is currently higher than
or equal to the value set in Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to TT#2. Quantitative information of actual temperature can be
inferred from Digital Readout, bits 22:16.

14-14 Vol. 3B

POWER AND THERMAL MANAGEMENT

Thermal Threshold #2 Log (bit 9, R/WCO0) — Sticky bit that indicates whether the Thermal Threshold #2
has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been
reached. Software may clear this bit by writing a zero.

Power Limitation Status (bit 10, RO) — Indicates whether the processor is currently operating below OS-
requested P-state (specified in IA32_PERF_CTL) or OS-requested clock modulation duty cycle (specified in
1IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power
limit notification can be delivered independently to 1A32_PACKAGE_THERM_STATUS MSR.

Power Notification Log (bit 11, R/WCQO) — Sticky bit that indicates the processor went below OS-
requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or RESET. This
field is supported only if CPUID.06H:EAX][bit 4] = 1. Package level power limit notification is indicated indepen-
dently in 1A32_PACKAGE_THERM_STATUS MSR.

Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree Celsius relative to the TCC
activation temperature.

0: TCC Activation temperature,
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual temperature.

Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution (or tolerance) of the digital
thermal sensor. The value is in degrees Celsius. It is recommended that new threshold values be offset from the
current temperature by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is valid. The readout is valid if
bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-13); one is set above and the other
below the current temperature. These thresholds have the capability of generating interrupts using the core's local
APIC which software must then service. Note that the local APIC entries used by these thresholds are also used by
the Intel® Thermal Monitor; it is up to software to determine the source of a specific interrupt.

63 5 U B N 16 15 4 8 5 4 3210

Reserved

Power Limit Notification Enable4|

Threshold #2 Interrupt Enable
Threshold #2 Value
Threshold #1 Interrupt Enable
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable
PROCHOT# Interrupt Enable
Low Temp. Interrupt Enable
High Temp. Interrupt Enable

Figure 14-13. IA32_THERM_INTERRUPT Register

See Figure 14-13 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:

High-Temperature Interrupt Enable (bit O, R/W) — This bit allows the BIOS to enable the generation of
an interrupt on the transition from low-temperature to a high-temperature threshold. Bit 0 = 0 (default)
disables interrupts; bit 0 = 1 enables interrupts.

Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the generation of an
interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). Bit 1 = O (default)
disables interrupts; bit 1 = 1 enables interrupts.

Vol. 3B 14-15

POWER AND THERMAL MANAGEMENT

¢ PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when PROCHOT# has been asserted by another agent on the platform and the Bidirectional Prochot
feature is enabled. Bit 2 = O disables the interrupt; bit 2 = 1 enables the interrupt.

® FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to enable the generation of an
interrupt when FORCEPR# has been asserted by another agent on the platform. Bit 3 = O disables the
interrupt; bit 3 = 1 enables the interrupt.

® Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt when the
Critical Temperature Detector has detected a critical thermal condition. The recommended response to this
condition is a system shutdown. Bit 4 = O disables the interrupt; bit 4 = 1 enables the interrupt.

® Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #1 Status and Log bits as well as the Threshold #1
thermal interrupt delivery.

® Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #1 setting in any direction. Bit 15 = 1 enables the interrupt; bit 15 =0
disables the interrupt.

® Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the TCC Activation
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital
Readout and is used to generate the Thermal Threshold #2 Status and Log bits as well as the Threshold #2
thermal interrupt delivery.

® Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the actual
temperature crosses the Threshold #2 setting in any direction. Bit 23 = lenables the interrupt; bit 23 =0
disables the interrupt.

® Power Limit Notification Enable (bit 24, R/W) — Enables the generation of power notification events when
the processor went below OS-requested P-state or OS-requested clock modulation duty cycle. This field is
supported only if CPUID.0O6H:EAX[bit 4] = 1. Package level power limit notification can be enabled indepen-
dently by 1A32_PACKAGE_THERM_INTERRUPT MSR.

14.5.6 Power Limit Notification

Platform firmware may be capable of specifying a power limit to restrict power delivered to a platform component,
such as a physical processor package. This constraint imposed by platform firmware may occasionally cause the
processor to operate below OS-requested P or T-state. A power limit notification event can be delivered using the
existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit notification by verifying
CPUID.O6H:EAX[bit 4] = 1.

If CPUID.O6H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS provides the following

facility to manage power limit notification:

® Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of processor operating below OS-
requested P-state or clock modulation duty cycle setting (see Figure 14-12).

® Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event when the processor went
below OS-requested P-state or clock modulation duty cycle setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT

The thermal management facilities like 1A32_THERM_INTERRUPT and IA32_THERM_STATUS are often imple-
mented with a processor core granularity. To facilitate software manage thermal events from a package level gran-
ularity, two architectural MSR is provided for package level thermal management. The
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use similar interfaces as
IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are shared in each physical processor package.

14-16 Vol. 3B

POWER AND THERMAL MANAGEMENT

Software can enumerate the presence of the processor’s support for package level thermal management facility
(IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] =

1.

The layout of 1A32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

63 32 31 27 2322 1615 110987 6543 210

Reserved

PKG Digital Readout
PKG Power Limit Notification Log
PKG Power Limit Notification Status
PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log
PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

Figure 14-14. IA32_PACKAGE_THERM_STATUS Register

Package Thermal Status (bit O, RO) — This bit indicates whether the digital thermal sensor high-
temperature output signal (PROCHOT#) for the package is currently active. Bit O = 1 indicates the feature is
active. This bit may not be written by software; it reflects the state of the digital thermal sensor.

Package Thermal Status Log (bit 1, R/ZWCOQ0) — This is a sticky bit that indicates the history of the thermal
sensor high temperature output signal (PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been
asserted since a previous RESET or the last time software cleared the bit. Software may clear this bit by writing
a zero.

Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT# is being asserted by
another agent on the platform.

Package PROCHOT# Log (bit 3, R/ZWCO0) — Sticky bit that indicates whether package PROCHOT# has been
asserted by another agent on the platform since the last clearing of this bit or a reset. If bit 3 = 1, package
PROCHOT# has been externally asserted. Software may clear this bit by writing a zero.

Package Critical Temperature Status (bit 4, RO) — Indicates whether the package critical temperature
detector output signal is currently active. If bit 4 = 1, the package critical temperature detector output signal
is currently active.

Package Critical Temperature Log (bit 5, R/WCO0) — Sticky bit that indicates whether the package critical
temperature detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the
output signal has been asserted. Software may clear this bit by writing a zero.

Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #1. If bit 6 = 0, the actual
temperature is lower. If bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital Readout, bits 22:16.

Package Thermal Threshold #1 Log (bit 7, R/ZWCO0) — Sticky bit that indicates whether the Package
Thermal Threshold #1 has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Package
Threshold #1 has been reached. Software may clear this bit by writing a zero.

Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual package temperature is
currently higher than or equal to the value set in Package Thermal Threshold #2. If bit 8 = 0, the actual

Vol. 3B 14-17

POWER AND THERMAL MANAGEMENT

temperature is lower. If bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative
information of actual temperature can be inferred from Package Digital Readout, bits 22:16.

® Package Thermal Threshold #2 Log (bit 9, R/ZWCQ0) — Sticky bit that indicates whether the Package
Thermal Threshold #2 has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Package
Thermal Threshold #2 has been reached. Software may clear this bit by writing a zero.

® Package Power Limitation Status (bit 10, RO) — Indicates package power limit is forcing one ore more
processors to operate below OS-requested P-state. Note that package power limit violation may be caused by
processor cores or by devices residing in the uncore. Software can examine IA32_THERM_STATUS to
determine if the cause originates from a processor core (see Figure 14-12).

® Package Power Notification Log (bit 11, R/ZWCO) — Sticky bit that indicates any processor in the package
went below OS-requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or
RESET.

® Package Digital Readout (bits 22:16, RO) — Package digital temperature reading in 1 degree Celsius
relative to the package TCC activation temperature.

0: Package TCC Activation temperature,

1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding PTCC activation.

A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher actual temperature.
The layout of 1A32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

63 5 U B N 6 15 14 8 5 4 3210

Reserved

Pkg Power Limit Notification EnabIeJ
Pkg Threshold #2 Interrupt Enable
Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

Figure 14-15. IA32_PACKAGE_THERM_INTERRUPT Register

® Package High-Temperature Interrupt Enable (bit O, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from low-temperature to a package high-temperature threshold.
Bit O = O (default) disables interrupts; bit O = 1 enables interrupts.

® Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the
generation of an interrupt on the transition from high-temperature to a low-temperature (TCC de-activation).
Bit 1 = O (default) disables interrupts; bit 1 = 1 enables interrupts.

® Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the
generation of an interrupt when Package PROCHOT# has been asserted by another agent on the platform and
the Bidirectional Prochot feature is enabled. Bit 2 = O disables the interrupt; bit 2 = 1 enables the interrupt.

® Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt
when the Package Critical Temperature Detector has detected a critical thermal condition. The recommended
response to this condition is a system shutdown. Bit 4 = O disables the interrupt; bit 4 = 1 enables the
interrupt.

® Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the
Package TCC Activation temperature (using the same format as the Digital Readout). This threshold is
compared against the Package Digital Readout and is used to generate the Package Thermal Threshold #1
Status and Log bits as well as the Package Threshold #1 thermal interrupt delivery.

14-18 Vol. 3B

POWER AND THERMAL MANAGEMENT

® Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #1 setting in any direction. Bit 15 = 1 enables the
interrupt; bit 15 = O disables the interrupt.

® Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the PTCC
Activation temperature (using the same format as the Package Digital Readout). This threshold is compared
against the Package Digital Readout and is used to generate the Package Thermal Threshold #2 Status and Log
bits as well as the Package Threshold #2 thermal interrupt delivery.

® Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the
actual temperature crosses the Package Threshold #2 setting in any direction. Bit 23 = 1 enables the
interrupt; bit 23 = 0 disables the interrupt.

® Package Power Limit Notification Enable (bit 24, R/W) — Enables the generation of package power
notification events.

14.6.1 Support for Passive and Active cooling

Passive and active cooling may be controlled by the OS power management agent through ACPI control methods.
On platforms providing package level thermal management facility described in the previous section, it is recom-
mended that active cooling (FAN control) should be driven by measuring the package temperature using the
IA32_PACKAGE_THERM_INTERRUPT MSR.

Passive cooling (frequency throttling) should be driven by measuring (a) the core and package temperatures, or
(b) only the package temperature. If measured package temperature led the power management agent to choose
which core to execute passive cooling, then all cores need to execute passive cooling. Core temperature is
measured using the 1A32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact implementation
details depend on the platform firmware and possible solutions include defining two different thermal zones (one
for core temperature and passive cooling and the other for package temperature and active cooling).

14.7 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT

This section covers power management interfaces that are not architectural but addresses the power management
needs of several platform specific components. Specifically, RAPL (Running Average Power Limit) interfaces
provide mechanisms to enforce power consumption limit. Power limiting usages have specific usages in client and
server platforms.

For client platform power limit control and for server platforms used in a data center, the following power and
thermal related usages are desirable:

® Platform Thermal Management: Robust mechanisms to manage component, platform, and group-level
thermals, either proactively or reactively (e.g., in response to a platform-level thermal trip point).

® Platform Power Limiting: More deterministic control over the system's power consumption, for example to
meet battery life targets on rack- or container-level power consumption goals within a datacenter.

® Power/Performance Budgeting: Efficient means to control the power consumed (and therefore the sustained
performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes multiple domains of power
rationing within each processor socket. Generally, these RAPL domains may be viewed to include hierarchically:

® Package domain is the processor die.

¢ Memory domain include the directly-attached DRAM; additional power plane may constitutes a separate
domain.

In order to manage the power consumed across multiple sockets via RAPL, individual limits must be programmed
for each processor complex. Programming specific RAPL domain across multiple sockets is not supported.

Vol. 3B 14-19

POWER AND THERMAL MANAGEMENT

14.7.1 RAPL Interfaces

RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the following set of capabilities,
some of which are optional as stated below.

® Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit etc.
® Energy Status - Power metering interface providing energy consumption information.

® Perf Status (Optional) - Interface providing information on the performance effects (regression) due to power
limits. It is defined as a duration metric that measures the power limit effect in the respective domain. The
meaning of duration is domain specific.

® Power Info (Optional) - Interface providing information on the range of parameters for a given domain,
minimum power, maximum power etc.

® Policy (Optional) - 4-bit priority information which is a hint to hardware for dividing budget between sub-
domains in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in Watts, Time
is expressed in Seconds and Energy is expressed in Joules. Scaling factors are supplied to each unit to make the
information presented meaningful in a finite number of bits. Units for power, energy and time are exposed in the
read-only MSR_RAPL_POWER_UNIT MSR.

63 2019 1615 3 1 8 17 43 0

Reserved
Time units
Energy status units
Power units

Figure 14-16. MSR_RAPL_POWER_UNIT Register

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across all RAPL domains:

® Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/ 2~PU; where PU is
an unsigned integer represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts
increment.

® Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2~ESU;
where ESU is an unsigned integer represented by bits 12:8. Default value is 10000b, indicating energy status
unit is in 15.3 micro-Joules increment.

® Time Units (bits 19:16): Time related information (in Seconds) is based on the muiltiplier, 1/ 2~TU; where TU
is an unsigned integer represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 micro-
seconds increment.

14.7.2 RAPL Domains and Platform Specificity

The specific RAPL domains available in a platform varies across product segments. Platforms targeting client
segment support the following RAPL domain hierarchy:

® Package

® Two power planes: PPO and PP1 (PP1 may reflect to uncore devices)
Platforms targeting server segment support the following RAPL domain hierarchy:
® Package

® Power plane: PPO

* DRAM

14-20 Vol. 3B

POWER AND THERMAL MANAGEMENT

Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. Table 14-2 lists the RAPL MSR
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset O relative
to an MSR base address which is non-architectural (see Chapter 35). The energy status MSR of each domain is
located at offset 1 relative to the MSR base address of respective domain.

Table 14-2. RAPL MSR Interfaces and RAPL Domains

Domain Power Limit Energy Status (Offset Policy Perf Status Power Info
(Offset 0) 1) (Offset 2) (Offset 3) (Offset 4)
PKG MSR_PKG_POWER_ | MSR_PKG_ENERGY_STA | RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_I
uMmIT TUS NFO
DRAM MSR_DRAM_POWER | MSR_DRAM_ENERGY_S | RESERVED MSR_DRAM_PERF_STATUS | MSR_DRAM_POWER
_uMmiT TATUS _INFO
PPO MSR_PPO_POWER_ | MSR_PPO_ENERGY_STA | MSR_PPO_POLICY | MSR_PPO_PERF_STATUS RESERVED
uMmIT TUS
PP1 MSR_PP1_POWER_ | MSR_PP1_ENERGY_STA | MSR_PP1_POLICY | RESERVED RESERVED
uMmIT TUS

The presence of the optional MSR interfaces (the three right-most columns of Table 14-2) may be model-specific.
See Chapter 35 for detail.

14.7.3 Package RAPL Domain

The MSR interfaces defined for the package RAPL domain are:

® MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes
associated with each limit,

® MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
® MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

6362 5655 49 48 47 46 3231 24 23 171615 14 0
L

(e} Time window e Time window .

C Power Limit #2 Pkg Power Limit #2 Power Limit #1 Pkg Power Limit #1
K

L Enable limit #1

Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

Figure 14-17. MSR_PKG_POWER_LIMIT Register

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT.
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides
independent clamping control that would permit the processor cores to go below OS-requested state to meet the
power limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set,
the power limit settings are static and un-modifiable until next RESET.

Vol. 3B 14-21

POWER AND THERMAL MANAGEMENT

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:

® Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-
sponding to time window # 1. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

® Enable Power Limit #1(bit 15): O = disabled; 1 = enabled.

¢ Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time
window specified by bits 23:17.

® Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1
Time limit = 2°Y * (1.0 + Z/4.0) * Time_Unit

Here “Y” is the unsigned integer value represented. by bits 21:17, “Z” is an unsigned integer represented by
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

® Package Power Limit #2(bits 46:32): Sets the average power usage limit of the package domain corre-
sponding to time window # 2. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

¢ Enable Power Limit #2(bit 47): O = disabled; 1 = enabled.

¢ Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T state setting during time
window specified by bits 23:17.

® Time Window for Power Limit #2 (bits 55:49): Indicates the time window for power limit #2
Time limit = 27°Y * (1.0 + Z/4.0) * Time_Unit
Here “Y” is the unsigned integer value represented. by bits 53:49, “Z” is an unsigned integer represented by

bits 55:54. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field may have
a hard-coded value in hardware and ignores values written by software.

® Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain. This MSR
is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption is high, and may
be longer otherwise.

63 3231 0

]

Reserved

Total Energy Consumed

|:| Reserved
Figure 14-18. MSR_PKG_ENERGY_STATUS MSR

® Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the
package domain. It also provides the largest possible time window for software to program the RAPL interface.

63 54 53 48 47 46 3231 30 1615 14 0

Maximum Time window Maximum Power Minimum Power Thermal Spec Power

Figure 14-19. MSR_PKG_POWER_INFO Register

14-22 Vol. 3B

POWER AND THERMAL MANAGEMENT

® Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power
of the package domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

® Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

® Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from
the electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

®* Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It
has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 35).

63 3231 0

Reserved

Accumulated pkg throttled time ;

D Reserved
Figure 14-20. MSR_PKG_PERF_STATUS MSR

¢ Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the package has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

14.7.4 PPO/PP1 RAPL Domains

The MSR interfaces defined for the PPO and PP1 domains are identical in layout. Generally, PPO refers to the
processor cores. The availability of PP1 RAPL domain interface is platform-specific. For a client platform, PP1
domain refers to the power plane of a specific device in the uncore. For server platforms, PP1 domain is not
supported, but its PPO domain supports the MSR_PPO_PERF_STATUS interface.

® MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power limits for the respective power
plane domain.

® MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage on a power plane.
® MSR_PPO_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective power plane.

MSR_PPO_PERF_STATUS can report the performance impact of power limiting, but it is not available in client plat-
form.

% 323130 24 23 171615 14 0
L
c Plgqm?e\;vgm?tw Power Limit
K

L Enable limit

Clamping limit

Figure 14-21. MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

Vol. 3B 14-23

POWER AND THERMAL MANAGEMENT

MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define power limitation for the
respective power plane domain. A lock mechanism in each power plane domain allow the software agent to enforce
power limit settings independently. Once a lock bit is set, the power limit settings in that power plane are static and
un-modifiable until next RESET.

The bit fields of MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21) are:

® Power Limit (bits 14:0): Sets the average power usage limit of the respective power plane domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

¢ Enable Power Limit (bit 15): O = disabled; 1 = enabled.

® Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting during time window specified
by bits 23:17.

® Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit
#1 The numeric value encoded by bits 23:17 is represented by the product of 2Y *F; where F is a single-digit
decimal floating-point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time Units” field of
MSR_RAPL_POWER_UNIT.

® Lock (bit 31): If set, all write attempts to the MSR and corresponding policy
MSR_PPO_POLICY/MSR_PP1_POLICY are ignored until next RESET.

MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for
the respective power plane domain. This MSR is updated every ~1msec.

63 3231 0

Reserved

]

Total Energy Consumed

|:| Reserved
Figure 14-22. MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

® Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PPO_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by providing
inputs to the power budgeting management algorithm. On the platform that supports PPO (IA cores) and PP1
(uncore graphic device), the default value give priority to the non-1A power plane. These MSRs enable the PCU to
balance power consumption between the 1A cores and uncore graphic device.

63 5 4 0

Priority Level

Figure 14-23. MSR_PPO_POLICY/MSR_PP1_POLICY Register

® Priority Level (bits 4:0): Priority level input to the PCU for respective power plane. PPO covers the IA
processor cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PPO_PERF_STATUS is a read-only MSR. It reports the total time for which the PPO domain was throttled due
to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as going
below the OS-requested P-state or T-state.

14-24 Vol. 3B

POWER AND THERMAL MANAGEMENT

63 3231 0

Reserved

Accumulated PPO throttled time Q

I:l Reserved
Figure 14-24. MSR_PPO_PERF_STATUS MSR

Accumulated PPO Throttled Time (bits 31:0): The unsigned integer value represents the cumulative time

(since the last time this register is cleared) that the PPO domain has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

14.7.5 DRAM RAPL Domain

The MSR interfaces defined for the DRAM domain is supported only in the server platform. The MSR interfaces are:

MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement
attributes associated with each limit,

MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.

= 323130 24 23 171615 14 0
T
0o Time window .
¢ Power Limit Power Limit
K
L Enable limit
Clamping limit

Figure 14-25. MSR_DRAM_POWER_LIMIT Register

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in
MSR_DRAM_POWER_LIMIT. A power limit can be specified along with a time window. A lock mechanism allow the
software agent to enforce power limit settings. Once the lock bit is set, the power limit settings are static and un-
modifiable until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-25) are:

DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM domain corresponding to
time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Enable Power Limit #1(bit 15): O = disabled; 1 = enabled.

Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit
The numeric value encoded by bits 23:17 is represented by the product of 2Y *F; where F is a single-digit
decimal floating-point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an
unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time Units” field of
MSR_RAPL_POWER_UNIT.

Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

Vol. 3B 14-25

POWER AND THERMAL MANAGEMENT

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain. This MSR
is updated every ~1msec.

63 32 31 0

Reserved

]

Total Energy Consumed

D Reserved
Figure 14-26. MSR_DRAM_ENERGY_STATUS MSR

® Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the
DRAM domain. It also provides the largest possible time window for software to program the RAPL interface.

63 54 53 48 47 46 3231 30 1615 14 0

Maximum Time window Maximum Power Minimum Power Thermal Spec Power

Figure 14-27. MSR_DRAM_POWER_INFO Register

® Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power
of the DRAM domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

® Minimum Powver (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from
the electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

¢ Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It
has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 35).

63 3231 0

Reserved

Accumulated DRAM throttled time—‘

D Reserved
Figure 14-28. MSR_DRAM_PERF_STATUS MSR

14-26 Vol. 3B

POWER AND THERMAL MANAGEMENT

¢ Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

Vol. 3B 14-27

POWER AND THERMAL MANAGEMENT

14-28 Vol. 3B

CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception mechanism found in the
Pentium 4, Intel Xeon, and P6 family processors. See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC),”
for more information on machine-check exceptions. A brief description of the Pentium processor’s machine check
capability is also given.

Additionally, a signaling mechanism for software to respond to hardware corrected machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE

The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check architecture that provides a
mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC errors, parity
errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are used to set up
machine checking and additional banks of MSRs used for recording errors that are detected.

The processor signals the detection of an uncorrected machine-check error by generating a machine-check excep-
tion (#MC), which is an abort class exception. The implementation of the machine-check architecture does not
ordinarily permit the processor to be restarted reliably after generating a machine-check exception. However, the
machine-check-exception handler can collect information about the machine-check error from the machine-check
MSRs.

Starting with 45nm Intel 64 processor on which CPUID reports DisplayFamily DisplayModel as 06H_1AH (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software
Developer’'s Manual, Volume 2A), the processor can report information on corrected machine-check errors and
deliver a programmable interrupt for software to respond to MC errors, referred to as corrected machine-check
error interrupt (CMCI). See Section 15.5 for detail.

Intel 64 processors supporting machine-check architecture and CMCI may also support an additional enhance-
ment, namely, support for software recovery from certain uncorrected recoverable machine check errors. See
Section 15.6 for detail.

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR

The Pentium 4, Intel Xeon, and P6 family processors support and extend the machine-check exception mechanism
introduced in the Pentium processor. The Pentium processor reports the following machine-check errors:

® data parity errors during read cycles
® unsuccessful completion of a bus cycle

The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs (implementation specific for the
Pentium processor). Use the RDMSR instruction to read these MSRs. See Chapter 35, “Model-Specific Registers
(MSRs),” for the addresses.

The machine-check error reporting mechanism that Pentium processors use is similar to that used in Pentium 4,
Intel Xeon, and P6 family processors. When an error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR;
the processor then generates a machine-check exception (#MC).

See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture,”
and Section 15.10.2, “Pentium Processor Machine-Check Exception Handling,” for information on compatibility
between machine-check code written to run on the Pentium processors and code written to run on P6 family
processors.

Vol.3B 15-1

MACHINE-CHECK ARCHITECTURE

15.3 MACHINE-CHECK MSRS

Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist of a set of global control and
status registers and several error-reporting register banks. See Figure 15-1.

Global Control MSRs Error-Reporting Bank Registers
(One Set for Each Hardware Unit)
63 0 63 0
IA32_MCG_CAP MSR IA32_MCi_CTL MSR
63 0 63 0
IA32_MCG_STATUS MSR IA32_MCi_STATUS MSR
63 0 63 0
IA32_MCG_CTL MSR IA32_MCi_ADDR MSR
63 0
IA32_MCi_MISC MSR
63 0
IA32_MCi_CTL2 MSR

Figure 15-1. Machine-Check MSRs

Each error-reporting bank is associated with a specific hardware unit (or group of hardware units) in the processor.
Use RDMSR and WRMSR to read and to write these registers.

15.3.1 Machine-Check Global Control MSRs

The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS, and IA32_MCG_CTL. See
Chapter 35, “Model-Specific Registers (MSRs),” for the addresses of these registers.

15.3.1.1 1A32_MCG_CAP MSR

The 1A32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture of
the processor. Figure 15-2 shows the structure of the register in Pentium 4, Intel Xeon, and P6 family processors.

63 2726 252423 1615 1211109 8 7 0

Reserved Count

MCG_ELOG_P[26] Q

MCG_SER_P[24]
MCG_EXT_CNT[23:16]
MCG_TES_P[11]
MCG_CMCI_P[10]
MCG_EXT_P[9]
MCG_CTL_P[8]

Figure 15-2. IA32_MCG_CAP Register

15-2 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Where:

Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular
processor implementation.

MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the
IA32_MCG_CTL MSR when set; this register is absent when clear.

MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the extended
machine-check state registers found starting at MSR address 180H; these registers are absent when clear.

MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates
(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it does
not imply this feature is supported across all banks. Software should check the availability of the necessary
logic on a bank by bank basis when using this signaling capability (i.e. bit 30 settable in individual
IA32_MCi_CTL2 register).

MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53
of the 1A32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the
1IA32_MCi_STATUS MSR are model-specific.

MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present. This
field is meaningful only when the MCG_EXT_P flag is set.

MCG_SER_P (software error recovery support present) flag, bit 24— Indicates (when set) that the
processor supports software error recovery (see Section 15.6), and 1A32_MCi_STATUS MSR bits 56:55 are
used to report the signaling of uncorrected recoverable errors and whether software must take recovery
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS MSR
are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

MCG_ELOG_P, bits 26 — Indicates that the processor allows platform firmware to be invoked when an error
is detected so that it may provide additional platform specific information in an ACPI format "Generic Error Data
Entry" that augments the data included in machine check bank registers.

The effect of writing to the 1A32_MCG_CAP MSR is undefined.

15.3.1.2 1A32_MCG_STATUS MSR

The 1A32_MCG_STATUS MSR describes the current state of the processor after a machine-check exception has
occurred (see Figure 15-3).

63 3

Reserved

MCIP—Machine check in progress flagQ

EIPV—Error IP valid flag
RIPV—Restart IP valid flag

T—0Z|N
<T—m |+
<v—7|O

Figure 15-3. IA32_MCG_STATUS Register

Where:

RIPV (restart IP valid) flag, bit O — Indicates (when set) that program execution can be restarted reliably
at the instruction pointed to by the instruction pointer pushed on the stack when the machine-check exception
is generated. When clear, the program cannot be reliably restarted at the pushed instruction pointer.

EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction pointed to by the instruction
pointer pushed onto the stack when the machine-check exception is generated is directly associated with the
error. When this flag is cleared, the instruction pointed to may not be associated with the error.

Vol.3B 15-3

MACHINE-CHECK ARCHITECTURE

® MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a machine-check exception was
generated. Software can set or clear this flag. The occurrence of a second Machine-Check Event while MCIP is
set will cause the processor to enter a shutdown state. For information on processor behavior in the shutdown
state, please refer to the description in Chapter 6, “Interrupt and Exception Handling”: “Interrupt 8—Double
Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved.

15.3.1.3 1A32_MCG_CTL MSR
The 1IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the IA32_MCG_CAP MSR.

1A32_MCG_CTL controls the reporting of machine-check exceptions. If present, writing 1s to this register enables
machine-check features and writing all Os disables machine-check features. All other values are undefined and/or
implementation specific.

15.3.2 Error-Reporting Register Banks

Each error-reporting register bank can contain the 1A32_MCi_CTL, IA32_MCi_STATUS, 1A32_MCi_ADDR, and
IA32_MCi_MISC MSRs. The number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address
0179H). The first error-reporting register (1A32_MCO_CTL) always starts at address 400H.

See Chapter 35, “Model-Specific Registers (MSRs),” for addresses of the error-reporting registers in the Pentium 4
and Intel Xeon processors; and for addresses of the error-reporting registers P6 family processors.

15.3.2.1 1A32_MCi_CTL MSRs

The 1A32_MCi_CTL MSR controls error reporting for errors produced by a particular hardware unit (or group of
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EE]j flag enables reporting of the
associated error and clearing it disables reporting of the error. The processor does not write changes to bits that are
not implemented. Figure 15-4 shows the bit fields of IA32_MCi_CTL.

(%]
w
[
N
[}
[ty
w

womm
Nomm
R omm

-

-

-

-

-
nomm (N
RrOMM |
comm|O

EEj—Error reporting enable flag
(where j is 00 through 63)

Figure 15-4. IA32_MCj_CTL Register

NOTE

For P6 family processors, processors based on Intel Core microarchitecture (excluding those on
which on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH and onward): the
operating system or executive software must not modify the contents of the 1A32_MCO_CTL MSR.
This MSR is internally aliased to the EBL_CR_POWERON MSR and controls platform-specific error
handling features. System specific firmware (the BIOS) is responsible for the appropriate initial-
ization of the 1A32_MCO_CTL MSR. P6 family processors only allow the writing of all 1s or all Os to
the 1A32_MCi_CTL MSR.

15.3.2.2 1A32_MCi_STATUS MSRS

Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set (see
Figure 15-5). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing Os to them; writing
1s to them causes a general-protection exception.

15-4 Vol. 3B

MACHINE-CHECK ARCHITECTURE

NOTE

Figure 15-5 depicts the 1A32_MCi_STATUS MSR when 1A32_MCG_CAP[24] = 1,
IA32_MCG_CAP[11] = 1 and I1A32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error reporting.
When 1A32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The use of bits
54:53 for threshold-based error reporting began with Intel Core Duo processors, and is currently
used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more information.
When 1A32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field. The use of bits
52:38 for corrected MC error count is introduced with Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH.

63626160595857 5655545352 3837 32 31 1615 0
V|O|U|E P| S|A Other MSCOD Model
ﬁ \E/ c|N cl |r gg[{ﬁf ted Error Info Specific Error Code | MCA Error Code
c
R

L Threshold-based error status (54:53)*

AR — Recovery action required for UCR error (55)**

S — Signaling an uncorrected recoverable (UCR) error (56)**
PCC — Processor context corrupted (57)

ADDRV — MCi_ADDR register valid (58)

MISCV — MCi_MISC register valid (59)

EN — Error reporting enabled (60)

UC — Uncorrected error (61)

OVER — Error overflow (62)

VAL — MCi_STATUS register valid (63)

* When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific

(part of “Other Information”).
** When I1A32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
model-specific (part of “Other Information”).

Figure 15-5. IA32_MCj_STATUS Register

Where:

MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-
tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all 1A-32 processors that implement the machine-check
architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes.

Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among 1A-32
processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error
Codes”for information on model-specific error codes.

Reserved, Error Status, and Other Information fields, bits 56:32 —

* Bits 37:32 always contain “Other Information” that is implementation-specific and is not part of the
machine-check architecture. Software that is intended to be portable among IA-32 processors should
not rely on these values.

e |If IA32_MCG_CAP[10] is O, bits 52:38 also contain “Other Information” (in the same sense as bits
37:32).

* If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the MCA
recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

e If IA32_MCG_CAP[11] is 0O, bits 56:53 also contain “Other Information” (in the same sense).

Vol.3B 15-5

MACHINE-CHECK ARCHITECTURE

* If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

. If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.
° If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

®* S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2
for additional detail.

° AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery action
must be performed by system software at the time this error was signaled. See Section 15.6.2 for
additional detail.

* If the UC bit (Figure 15-5) is 1, bits 54:53 are undefined.

° If the UC bit (Figure 15-5) is 0, bits 54:53 indicate the status of the hardware structure that
reported the threshold-based error. See Table 15-1.

Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs
when IA32_MCG_CAP[11]=1andUC=0

Bits 54:53 | Meaning
00 No tracking - No hardware status tracking is provided for the structure reporting this event.

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

11 Reserved

® PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state. Software restarting
might be possible.

¢ ADDRYV (1A32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the 1A32_MCi_ADDR
register contains the address where the error occurred (see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When
clear, this flag indicates that the 1A32_MCi_ADDR register is either not implemented or does not contain the
address where the error occurred. Do not read these registers if they are not implemented in the processor.

® MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the 1A32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the
error. Do not read these registers if they are not implemented in the processor.

® EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

® UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

® OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible for
clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written over
corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

® VAL (1A32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within the
IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the OVER flag
in the 1A32_MCi_STATUS register when overwriting previously valid entries. The processor sets the VAL flag
and software is responsible for clearing it.

15-6 Vol.3B

MACHINE-CHECK ARCHITECTURE

15.3.2.2.1 Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has already posted an event to
the MC bank — that is, what to do if the valid bit for an MC bank already is set to 1. When more than one structure
posts events in a given bank, these rules specify whether a new event will overwrite a previous posting or not.
These rules define a priority for uncorrected (highest priority), yellow, and green/unmonitored (lowest priority)
status.

In Table 15-2, the values in the two left-most columns are 1A32_MCi_STATUS[54:53].
Table 15-2. Overwrite Rules for Enabled Errors

First Event Second Event UC bit Color MCA Info
00/green 00/green 0 00/green second
00/green yellow 0 yellow second error
yellow 00/green 0 yellow first error
yellow yellow 0 yellow either
00/green/yellow uc 1 undefined second

uc 00/green/yellow 1 undefined first

If a second event overwrites a previously posted event, the information (as guarded by individual valid bits) in the
MCi bank is entirely from the second event. Similarly, if a first event is retained, all of the information previously
posted for that event is retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an overflow.

After software polls a posting and clears the register, the valid bit is no longer set and therefore the meaning of the
rest of the bits, including the yellow/green/00 status field in bits 54:53, is undefined. The yellow/green indication
will only be posted for events associated with monitored structures — otherwise the unmonitored (00) code will be
posted in MCi_Status[54:53].

15.3.2.3 1A32_MCi_ADDR MSRs

The 1A32_MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-
check error if the ADDRYV flag in the 1A32_MCi_STATUS register is set (see Section 15-6, “IA32_MCi_ADDR MSR”).
The 1A32_MCi_ADDR register is either not implemented or contains no address if the ADDRYV flag in the
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will
cause a general protection exception.

The address returned is an offset into a segment, linear address, or physical address. This depends on the error

encountered. When these registers are implemented, these registers can be cleared by explicitly writing Os to
these registers. Writing 1s to these registers will cause a general-protection exception. See Figure 15-6.

Processor Without Support For Intel 64 Architecture
63 36 35 0

Reserved Address

Processor With Support for Intel 64 Architecture
63 0

Address”

* Useful bits in this field depend on the address methodology in use when the
the register state is saved.

Figure 15-6. IA32_MCi_ADDR MSR

Vol.3B 15-7

MACHINE-CHECK ARCHITECTURE

15.3.2.4 1A32_MCi_MISC MSRs

The 1A32_MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in
the 1A32_MCi_STATUS register is set. The 1A32_MCi_MISC_MSR is either not implemented or does not contain
additional information if the MISCV flag in the 1A32_MCi_STATUS register is clear.

When not implemented in the processor, all reads and writes to this MSR will cause a general protection exception.
When implemented in a processor, these registers can be cleared by explicitly writing all Os to them; writing 1s to
them causes a general-protection exception to be generated. This register is not implemented in any of the error-
reporting register banks for the P6 family processors.

If both MISCV and 1A32_MCG_CAP[24] are set, the 1A32_MCi_MISC_MSR is defined according to Figure 15-7 to
support software recovery of uncorrected errors (see Section 15.6):

63 98 65 0

Model Specific Information

Address Mode
Recoverable Address LSB

Figure 15-7. UCR Support in IA32_MCi_MISC Register

® Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. Indicates the position of the least
significant bit (LSB) of the recoverable error address. For example, if the processor logs bits [43:9] of the
address, the LSB sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] of the
recoverable error address in 1A32_MCi_ADDR should be ignored.

® Address Mode (bits 8:6): Address mode for the address logged in I1A32_MCi_ADDR. The supported address
modes are given in Table 15-3.

Table 15-3. Address Mode in IA32_MCi_MISC[8:6]

IA32_MCi_MISC[8:6] Encoding Definition
000 Segment Offset
001 Linear Address
010 Physical Address
011 Memory Address
100to 110 Reserved
111 Generic

® Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5 1A32_MCi_CTL2 MSRs

The 1A32_MCi_CTL2 MSR provides the programming interface to use corrected MC error signaling capability that is
indicated by 1A32_MCG_CAP[10] = 1. Software must check for the presence of IA32_MCi_CTL2 on a per-bank
basis.

When I1A32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. reads and writes to these MSR
are supported. However, signaling interface for corrected MC errors may not be supported in all banks.

The layout of IA32_MCi_CTL2 is shown in Figure 15-8:

15-8 Vol.3B

MACHINE-CHECK ARCHITECTURE

63

3130 29 15 14 0

Reserved

Reserved

CMCI_EN—Enable/disable CMCI J
Corrected error count threshold

Figure 15-8. IA32_MCi_CTLZ2 Register

® Corrected error count threshold, bits 14:0 — Software must initialize this field. The value is compared with
the corrected error count field in IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the
CMCI LVT entry (see Table 10-1) in the APIC when the count value equals the threshold value. The new LVT
entry in the APIC is at 02FOH offset from the APIC_BASE. If CMCI interface is not supported for a particular
bank (but IA32_MCG_CAP[10] = 1), this field will always read O.

® CMCI_EN-Corrected error interrupt enable/disable/indicator, bits 30 — Software sets this bit to
enable the generation of corrected machine-check error interrupt (CMCI). If CMCI interface is not supported for
a particular bank (but IA32_MCG_CAP[10] = 1), this bit is writeable but will always return O for that bank. This
bit also indicates CMCI is supported or not supported in the corresponding bank. See Section 15.5 for details of
software detection of CMCI facility.

Some microarchitectural sub-systems that are the source of corrected MC errors may be shared by more than one
logical processors. Consequently, the facilities for reporting MC errors and controlling mechanisms may be shared
by more than one logical processors. For example, the 1A32_MCi_CTL2 MSR is shared between logical processors
sharing a processor core. Software is responsible to program 1A32_MCi_CTL2 MSR in a consistent manner with

CMCI delivery and usage.

After processor reset, 1A32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6 1A32_MCG Extended Machine Check State MSRs

The Pentium 4 and Intel Xeon processors implement a variable number of extended machine-check state MSRs.
The MCG_EXT_P flag in the IA32_MCG_CAP MSR indicates the presence of these extended registers, and the
MCG_EXT_CNT field indicates the number of these registers actually implemented. See Section 15.3.1.1,
“l1A32_MCG_CAP MSR.” Also see Table 15-4.

Table 15-4. Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-check error.
IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-check error.
IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-check error.
IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-check error.
IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-check error.
IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-check error.
IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-check error.
IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-check error.
IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the machine-check error.

Vol.3B 15-9

MACHINE-CHECK ARCHITECTURE

Table 15-4. Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal
operation.

In processors with support for Intel 64 architecture, 64-bit machine check state MSRs are aliased to the legacy
MSRs. In addition, there may be registers beyond I1A32_MCG_MISC. These may include up to five reserved MSRs
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit mode. See Table 15-5.

Table 15-5. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture

MSR Address Description
IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-check error.
IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-check error.
IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-check error.
IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-check error.
IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-check error.
1A32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-check error.
IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-check error.
IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-check error.
IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the machine-check error.
IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-check error.
IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal
operation.
IA32_MCG_ 18BH- These registers, if present, are reserved.
RSERVED[1:5] 18FH
IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-check error.
IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-check error.
IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-check error.
IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-check error.
IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-check error.
IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-check error.
IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-check error.
IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-check error.

When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the processor saves the state of
the general-purpose registers, the R/EFLAGS register, and the R/EIP in these extended machine-check state MSRs.
This information can be used by a debugger to analyze the error.

These registers are read/write to zero registers. This means software can read them; but if software writes to
them, only all zeros is allowed. If software attempts to write a non-zero value into one of these registers, a general-
protection (#GP) exception is generated. These registers are cleared on a hardware reset (power-up or RESET),
but maintain their contents following a soft reset (INIT reset).

15-10 Vol. 3B

MACHINE-CHECK ARCHITECTURE

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and P5_MC_ADDR. The
Pentium 4, Intel Xeon, and P6 family processors map these registers to the 1A32_MCi_STATUS and
1IA32_MCi_ADDR in the error-reporting register bank. This bank reports on the same type of external bus errors
reported in P5_MC_TYPE and P5_MC_ADDR.

The information in these registers can then be accessed in two ways:

® By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general machine-check exception
handler written for Pentium 4 and P6 family processors.

® By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR instruction.

The second capability permits a machine-check exception handler written to run on a Pentium processor to be run
on a Pentium 4, Intel Xeon, or P6 family processor. There is a limitation in that information returned by the Pentium
4, Intel Xeon, and P6 family processors is encoded differently than information returned by the Pentium processor.
To run a Pentium processor machine-check exception handler on a Pentium 4, Intel Xeon, or P6 family processor;
the handler must be written to interpret P5_MC_TYPE encodings correctly.

15.4 ENHANCED CACHE ERROR REPORTING

Starting with Intel Core Duo processors, cache error reporting was enhanced. In earlier Intel processors, cache
status was based on the number of correction events that occurred in a cache. In the new paradigm, called
“threshold-based error status”, cache status is based on the number of lines (ECC blocks) in a cache that incur
repeated corrections. The threshold is chosen by Intel, based on various factors. If a processor supports threshold-
based error status, it sets IA32_MCG_CAP[11] (MCG_TES_P) to 1; if not, to O.

A processor that supports enhanced cache error reporting contains hardware that tracks the operating status of
certain caches and provides an indicator of their “health”. The hardware reports a “green” status when the number
of lines that incur repeated corrections is at or below a pre-defined threshold, and a “yellow” status when the
number of affected lines exceeds the threshold. Yellow status means that the cache reporting the event is oper-
ating correctly, but you should schedule the system for servicing within a few weeks.

Intel recommends that you rely on this mechanism for structures supported by threshold-base error reporting.

The CPU/system/platform response to a yellow event should be less severe than its response to an uncorrected
error. An uncorrected error means that a serious error has actually occurred, whereas the yellow condition is a
warning that the number of affected lines has exceeded the threshold but is not, in itself, a serious event: the error
was corrected and system state was not compromised.

The green/yellow status indicator is not a foolproof early warning for an uncorrected error resulting from the failure
of two bits in the same ECC block. Such a failure can occur and cause an uncorrected error before the yellow
threshold is reached. However, the chance of an uncorrected error increases as the number of affected lines
increases.

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT

Corrected machine-check error interrupt (CMCI) is an architectural enhancement to the machine-check architec-
ture. It provides capabilities beyond those of threshold-based error reporting (Section 15.4). With threshold-based
error reporting, software is limited to use periodic polling to query the status of hardware corrected MC errors.
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold values that software can
program using the 1A32_MCi_CTL2 MSRs.

CMCI is disabled by default. System software is required to enable CMCI for each 1A32_MCi bank that support the
reporting of hardware corrected errors if IA32_MCG_CAP[10] = 1.

System software use I1A32_MCi_CTL2 MSR to enable/disable the CMCI capability for each bank and program
threshold values into 1A32_MCi_CTL2 MSR. CMCI is not affected by the CR4.MCE bit, and it is not affected by the
1IA32_MCi_CTL MSR’s.

Vol.3B 15-11

MACHINE-CHECK ARCHITECTURE

To detect the existence of thresholding for a given bank, software writes only bits 14:0 with the threshold value. If
the bits persist, then thresholding is available (and CMCI is available). If the bits are all 0's, then no thresholding
exists. To detect that CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon subsequent
read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-9.

Software write 1 to enable
3130 29 14 0

MCi_CTL2 * ‘ ‘ Error threshold

~ Count overflow threshold -> CMCI LVT in local APIC
= »
APIC_BASE + 2F0H

53 52 38 37 0
T
MCi_STATUS ‘ Errolr count ’
|

Figure 15-9. CMCI Behavior

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the local APIC register space at
default address of APIC_BASE + 2FOH. A CMCI interrupt can be delivered to more than one logical processors if
multiple logical processors are affected by the associated MC errors. For example, if a corrected bit error in a cache
shared by two logical processors caused a CMCI, the interrupt will be delivered to both logical processors sharing
that microarchitectural sub-system. Similarly, package level errors may cause CMCI to be delivered to all logical
processors within the package. However, system level errors will not be handled by CMCI.

See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service CMCI interrupts delivered to
affected logical processors, program CMCI LVT entry, and query machine check banks that are shared by more than
one logical processors.

This section describes techniques system software can implement to manage CMCI initialization, service CMCI
interrupts in a efficient manner to minimize contentions to access shared MSR resources.

15.5.2.1 CMCI Initialization

Although a CMCI interrupt may be delivered to more than one logical processors depending on the nature of the
corrected MC error, only one instance of the interrupt service routine needs to perform the necessary service and
make queries to the machine-check banks. The following steps describes a technique that limits the amount of
work the system has to do in response to a CMCI.

® To provide maximum flexibility, system software should define per-thread data structure for each logical
processor to allow equal-opportunity and efficient response to interrupt delivery. Specifically, the per-thread
data structure should include a set of per-bank fields to track which machine check bank it needs to access in
response to a delivered CMCI interrupt. The number of banks that needs to be tracked is determined by
IA32_MCG_CAP[7:0].

® Initialization of per-thread data structure. The initialization of per-thread data structure must be done serially
on each logical processor in the system. The sequencing order to start the per-thread initialization between

15-12 Vol. 3B

MACHINE-CHECK ARCHITECTURE

different logical processor is arbitrary. But it must observe the following specific detail to satisfy the shared
nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to determine if another thread has
already claimed ownership of that bank.

e |If IA32_MCi_CTL2[30] had been set by another thread. This thread can not own bank i and should
proceed to step b. and examine the next machine check bank until all of the machine check banks are
exhausted.

e If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into 1A32_MCi_CTL2[30] can return with 1 on a subsequent read to determine
this bank can support CMCI.

e If1A32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread can not own bank i and should
proceed to step b. and examine the next machine check bank until all of the machine check banks are
exhausted.

e If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to indicate this thread claims
ownership to the MC bank; proceed to initialize the error threshold count (bits 15:0) of that bank as
described in Chapter 15, “CMCI Threshold Management”. Then proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

® After the thread has examined all of the machine check banks, it sees if it owns any MC banks to service CMCI.
If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in Chapter 15, “CMCI Interrupt
Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread owns. This will allow new
errors to be logged.

15.5.2.2 CMCI Threshold Management

The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally defined. Specifically, all these bits
are writable by software, but different processor implementations may choose to implement less than 15 bits as
threshold for the overflow comparison with 1A32_MCi_STATUS[52:38]. The following describes techniques that
software can manage CMCI threshold to be compatible with changes in implementation characteristics:

® Software can set the initial threshold value to 1 by writing 1 to 1A32_MCi_CTL2[15:0]. This will cause overflow
condition on every corrected MC error and generates a CMCI interrupt.

® To increase the threshold and reduce the frequency of CMCI servicing:
a. Find the maximum threshold value a given processor implementation supports. The steps are:
® Write 7FFFH to 1IA32_MCi_CTL2[15:0],

* Read back 1A32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the maximum threshold supported by the
processor.

b. Increase the threshold to a value below the maximum value discovered using step a.

15.5.2.3 CMCI Interrupt Handler
The following describes techniques system software may consider to implement a CMCI service routine:

® The service routine examines its private per-thread data structure to check which set of MC banks it has
ownership. If the thread does not have ownership of a given MC bank, proceed to the next MC bank. Ownership
is determined at initialization time which is described in Section [Cross Reference to 14.5.2.1].

® If the thread had claimed ownership to an MC bank,
— Check for valid MC errors by testing 1A32_MCi_STATUS.VALID[63],

Vol. 3B 15-13

MACHINE-CHECK ARCHITECTURE

®* Log MC errors,
® Clear the MSRs of this MC bank.
— If no valid error, proceed to next MC bank.
® When all MC banks have been processed, exit service routine and return to original program execution.

This technique will allow each logical processors to handle corrected MC errors independently and requires no
synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS

Recovery of uncorrected recoverable machine check errors is an enhancement in machine-check architecture. The
first processor that supports this feature is 45nm Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_2EH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in
the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 2A). This allow system software to
perform recovery action on certain class of uncorrected errors and continue execution.

15.6.1 Detection of Software Error Recovery Support

Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of software error recovery
support (see Figure 15-2). When I1A32_MCG_CAP[24] is set, this indicates that the processor supports software
error recovery. When this bit is clear, this indicates that there is no support for error recovery from the processor
and the primary responsibility of the machine check handler is logging the machine check error information and
shutting down the system.

The new class of architectural MCA errors from which system software can attempt recovery is called Uncorrected
Recoverable (UCR) Errors. UCR errors are uncorrected errors that have been detected and signaled but have not
corrupted the processor context. For certain UCR errors, this means that once system software has performed a
certain recovery action, it is possible to continue execution on this processor. UCR error reporting provides an error
containment mechanism for data poisoning. The machine check handler will use the error log information from the
error reporting registers to analyze and implement specific error recovery actions for UCR errors.

15.6.2 UCR Error Reporting and Logging

IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or uncorrected errors. The defini-
tions of 1A32_MCi_STATUS, including bit fields to identify UCR errors, is shown in Figure 15-5. UCR errors can be
signaled through either the corrected machine check interrupt (CMCI) or machine check exception (MCE) path
depending on the type of the UCR error.

When 1A32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings in the 1A32_MCi_STATUS
register:

® Valid (bit63) =1

® UC(bit6l) =1

® PCC (bit57) =0

Additional information from the 1A32_MCi_MISC and the IA32_MCi_ADDR registers for the UCR error are available
when the ADDRYV and the MISCV flags in the 1A32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA

error code field of the 1A32_MCi_STATUS register indicates the type of UCR error. System software can interpret
the MCA error code field to analyze and identify the necessary recovery action for the given UCR error.

In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see Figure 15-5) to provide addi-
tional information to help system software to properly identify the necessary recovery action for the UCR error:

® S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception was generated for the UCR
error reported in this MC bank and system software needs to check the AR flag and the MCA error code fields in
the 1A32_MCi_STATUS register to identify the necessary recovery action for this error. When the S flag in the
IA32_MCi_STATUS register is clear, this UCR error was not signaled via a machine check exception and instead

15-14 Vol. 3B

MACHINE-CHECK ARCHITECTURE

was reported as a corrected machine check (CMC). System software is not required to take any recovery action
when the S flag in the 1A32_MCi_STATUS register is clear.

AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery action must be
performed by system software at the time this error was signaled. This recovery action must be completed
successfully before any additional work is scheduled for this processor When the RIPV flag in the
IA32_MCG_STATUS is clear, an alternative execution stream needs to be provided; when the MCA error code
specific recovery specific recovery action cannot be successfully completed, system software must shut down
the system. When the AR flag in the 1A32_MCi_STATUS register is clear, system software may still take MCA
error code specific recovery action but this is optional; system software can safely resume program execution
at the instruction pointer saved on the stack from the machine check exception when the RIPV flag in the
IA32_MCG_STATUS register is set.

Both the S and the AR flags in the 1A32_MCi_STATUS register are defined to be sticky bits, which mean that once
set, the processor does not clear them. Only software and good power-on reset can clear the S and the AR-flags.
Both the S and the AR flags are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:

Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception and,
instead, is reported to system software as a corrected machine check error. UCNA errors indicate that some
data in the system is corrupted, but the data has not been consumed and the processor state is valid and you
may continue execution on this processor. UCNA errors require no action from system software to continue
execution. A UNCA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the 1A32_MCi_STATUS register.

Software recoverable action optional (SRAO) - a UCR error is signaled via a machine check exception and a
system software recovery action is optional and not required to continue execution from this machine check
exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been consumed
and the processor state is valid. SRAO errors provide the additional error information for system software to
perform a recovery action. An SRAO error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code specific. The MISCV and the
ADDRYV flags in the 1A32_MCi_STATUS register are set when the additional error information is available from
the 1A32_MCi_MISC and the IA32_MCi_ADDR registers. System software needs to inspect the MCA error code
fields in the IA32_MCi_STATUS register to identify the specific recovery action for a given SRAO error. If MISCV
and ADDRYV are not set, it is recommended that no system software error recovery be performed however, you
can resume execution.

Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate
that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are
MCA error code specific. The MISCV and the ADDRYV flags in the 1A32_MCi_STATUS register are set when the
additional error information is available from the 1A32_MCi_MISC and the 1A32_MCi_ADDR registers. System
software needs to inspect the MCA error code fields in the 1A32_MCi_STATUS register to identify the specific
recovery action for a given SRAR error. If MISCV and ADDRYV are not set, it is recommended that system
software shutdown the system.

Table 15-6 summarizes UCR, corrected, and uncorrected errors.

Vol. 3B 15-15

MACHINE-CHECK ARCHITECTURE

Table 15-6. MC Error Classifications

Type of Error’ UC ([(PCC |S |AR |Signaling Software Action Example

Uncorrected Error (UC) 1 1 X |x MCE Reset the system

SRAR 1 0 1 |1 MCE For known MCACQD, take specific | Cache to processor load
recovery action; error
For unknown MCACOD, must
bugcheck

SRAO 1 0 1 10 MCE For known MCACOD, take specific | Patrol scrub and explicit
recovery action; writeback poison errors

For unknown MCACOD, OK to keep
the system running

UCNA 1 0 0 |0 CMC Log the error and Ok to keep the | Poison detection error
system running

Corrected Error (CE) 0 0 X |X CMC Log the error and no corrective €CC in caches and
action required memory

NOTES:

1.VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors are supported by the processor only
when IA32_MCG_CAP[24] (MCG_SER_P) is set.

15.6.4 UCR Error Overwrite Rules

In general, the overwrite rules are as follows:

® UCR errors will overwrite corrected errors.

® Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.
® UCR errors are not written over previous UCR errors.

® Corrected errors do not write over previous UCR errors.

Regardless of whether the 1st error is retained or the 2nd error is overwritten over the 1st error, the OVER flag in
the 1A32_MCi_STATUS register will be set to indicate an overflow condition. As the S flag and AR flag in the
IA32_MCIi_STATUS register are defined to be sticky flags, a second event cannot clear these 2 flags once set,
however the MC bank information may be filled in for the 2nd error. The table below shows the overwrite rules and
how to treat a second error if the first event is already logged in a MC bank along with the resulting bit setting of
the UC, PCC, and AR flags in the 1A32_MCi_STATUS register. As UCNA and SRAO errors do not require recovery
action from system software to continue program execution, a system reset by system software is not required
unless the AR flag or PCC flag is set for the UCR overflow case (OVER=1, VAL=1, UC=1, PCC=0).

Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncorrected recoverable errors.
Table 15-7. Overwrite Rules for UC, CE, and UCR Errors

First Event Second Event uc PCC |[S AR MCA Bank Reset System
CE UCR 1 0 OifUCNA, else 1 |1if SRAR, else 0 |second yes, if AR=1
UCR Ce 1 0 0if UCNA, else 1 | 1if SRAR, else 0 | first yes, if AR=1
UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

15-16 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Table 15-7. Overwrite Rules for UC, CE, and UCR Errors

First Event Second Event uc PCC |S AR MCA Bank Reset System
UCR uc 1 1 undefined undefined second yes

uc UCR 1 1 undefined undefined first yes

15.7 MACHINE-CHECK AVAILABILITY

The machine-check architecture and machine-check exception (#MC) are model-specific features. Software can
execute the CPUID instruction to determine whether a processor implements these features. Following the execu-
tion of the CPUID instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate whether the
processor implements the machine-check architecture and machine-check exception.

15.8 MACHINE-CHECK INITIALIZATION

To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism.

Example 15-1 gives pseudocode for performing this initialization. This pseudocode checks for the existence of the
machine-check architecture and exception; it then enables machine-check exception and the error-reporting
register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, P6 family, and Pentium

processors.

Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until after
they are initially cleared to zero by software (as shown in the initialization pseudocode in Example 15-1). In addi-
tion, when using P6 family processors, software must set MCi_STATUS registers to zero when doing a soft-reset.

Example 15-1. Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN
IF CPU supports MCA
THEN
IF (IA32_MCG_CAP.MCG_CTL_P =1)
(* IA32_MCG_CTL register is present *)
THEN
IA32_MCG_CTL ¢— FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)
Fl

(* Determine number of error-reporting banks supported *)
COUNT« IA32_MCG_CAP.Count;
MAX_BANK_NUMBER <— COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN
(* Enable logging of all errors except for MCO_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO
IA32_MCi_CTL ¢ OFFFFFFFFFFFFFFFFH;
oD

ELSE
(* Enable logging of all errors including MCO_CTL register *)
FOR error-reporting banks (O through MAX_BANK_NUMBER)
DO
IA32_MCi_CTL ¢ OFFFFFFFFFFFFFFFFH;
oD
FI

Vol.3B 15-17

MACHINE-CHECK ARCHITECTURE

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO
IA32_MCi_STATUS « 0;
oD
ELSE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO
(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS « 0;
oD

Fl
Fl

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
Fl

15.9 INTERPRETING THE MCA ERROR CODES

When the processor detects a machine-check error condition, it writes a 16-bit error code to the MCA error code
field of one of the 1A32_MCi_STATUS registers and sets the VAL (valid) flag in that register. The processor may also
write a 16-bit model-specific error code in the 1A32_MCi_STATUS register depending on the implementation of the
machine-check architecture of the processor.

The MCA error codes are architecturally defined for Intel 64 and I1A-32 processors. To determine the cause of a
machine-check exception, the machine-check exception handler must read the VAL flag for each
IA32_MCIi_STATUS register. If the flag is set, the machine check-exception handler must then read the MCA error
code field of the register. It is the encoding of the MCA error code field [15:0] that determines the type of error
being reported and not the register bank reporting it.

There are two types of MCA error codes: simple error codes and compound error codes.

15.9.1 Simple Error Codes

Table 15-8 shows the simple error codes. These unique codes indicate global error information.

Table 15-8. I1A32_MCi_Status [15:0] Simple Error Code Encoding

Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of error-reporting
registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the MCA error classes.

Microcode ROM Parity Error 0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused this processor to
enter machine check.!

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

1/0 Error 000011100000 1011 generic I/0 error.

15-18 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding (Contd.)
Internal Unclassified 0000 0TXX XXXX XXXX ‘ Internal unclassified errors. 2

NOTES:

1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same external bus) has BINIT#
observation enabled during power-on configuration (hardware strapping) and if machine check exceptions are enabled (by setting
CR4MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified.

15.9.2 Compound Error Codes

Compound error codes describe errors related to the TLBs, memory, caches, bus and interconnect logic, and
internal timer. A set of sub-fields is common to all of compound errors. These sub-fields describe the type of
access, level in the cache hierarchy, and type of request. Table 15-9 shows the general form of the compound error
codes.

Table 15-9. IA32_MCi_Status [15:0] Compound Error Code Encoding

Type Form Interpretation

Generic Cache Hierarchy 00O0F 0000 0000 T1LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TTITLB{LL} ERR

Memory Controller Errors 000F 0000 TMMM CCCC {MMM}_CHANNEL{CCCC}_ERR
Cache Hierarchy Errors 000F 0001 RRRR TTLL {TTICACHE{LL}_{RRRR} ERR

Bus and Interconnect Errors 000F TPPT RRRR IILL BUS{LL}_{PP}_{RRRR} {II}_{T} _ERR

The “Interpretation” column in the table indicates the name of a compound error. The name is constructed by
substituting mnemonics for the sub-field names given within curly braces. For example, the error code
ICACHEL1_RD_ERR is constructed from the form:

{TTICACHE{LL}_{RRRR]_ERR,

where {TT}is replaced by |, {LL} is replaced by L1, and {RRRR} is replaced by RD.
For more information on the “Form” and “Interpretation” columns, see Sections Section 15.9.2.1, “Correction
Report Filtering (F) Bit” through Section 15.9.2.5, “Bus and Interconnect Errors”.

15.9.2.1 Correction Report Filtering (F) Bit

Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:

® 0in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor meaning).

® 1inbit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering means
that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The enhanced
error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected by
repeated corrections (see Section 15.4, “Enhanced Cache Error reporting”). This capability is indicated by
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant
correction events to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific.

15.9.2.2 Transaction Type (TT) Sub-Field

The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruction, or generic). The sub-field
applies to the TLB, cache, and interconnect error conditions. Note that interconnect error conditions are primarily
associated with P6 family and Pentium processors, which utilize an external APIC bus separate from the system
bus. The generic type is reported when the processor cannot determine the transaction type.

Vol. 3B 15-19

MACHINE-CHECK ARCHITECTURE

Table 15-10. Encoding for TT (Transaction Type) Sub-Field

Transaction Type Mnemonic Binary Encoding
Instruction I 00
Data D 01
Generic G 10
15.9.2.3 Level (LL) Sub-Field

The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy where the error occurred (level
0, level 1, level 2, or generic). The LL sub-field also applies to the TLB, cache, and interconnect error conditions.
The Pentium 4, Intel Xeon, and P6 family processors support two levels in the cache hierarchy and one level in the
TLBs. Again, the generic type is reported when the processor cannot determine the hierarchy level.

Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field

Hierarchy Level Mnemonic Binary Encoding
Level 0 Lo 00
Level 1 L1 01
Level 2 L2 10
Generic LG 11

15.9.2.4 Request (RRRR) Sub-Field

The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated with the error. Actions include
read and write operations, prefetches, cache evictions, and snoops. Generic error is returned when the type of
error cannot be determined. Generic read and generic write are returned when the processor cannot determine the
type of instruction or data request that caused the error. Eviction and snoop requests apply only to the caches. All
of the other requests apply to TLBs, caches and interconnects.

Table 15-12. Encoding of Request (RRRR) Sub-Field

Request Type Mnemonic Binary Encoding
Generic Error ERR 0000
Generic Read RD 0001
Generic Write WR 0010
Data Read DRD 0011
Data Write DWR 0100
Instruction Fetch IRD 0101
Prefetch PREFETCH 0110
Eviction EVICT 0111
Snoop SNOOP 1000

15.9.2.5 Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out), and 2-bit 11

(memory or 1/0) sub-fields, in addition to the LL and RRRR sub-fields (see Table 15-13). The bus error conditions
are implementation dependent and related to the type of bus implemented by the processor. Likewise, the inter-
connect error conditions are predicated on a specific implementation-dependent interconnect model that describes
the connections between the different levels of the storage hierarchy. The type of bus is implementation depen-
dent, and as such is not specified in this document. A bus or interconnect transaction consists of a request involving
an address and a response.

15-20 Vol. 3B

Table 15-13. Encodings of PP, T, and Il Sub-Fields

MACHINE-CHECK ARCHITECTURE

Sub-Field Transaction Mnemonic Binary Encoding
PP (Participation) Local processor* originated request SRC 00
Local processor* responded to request RES 01
Local processor* observed error as third party 0BS 10
Generic 11
T (Time-out) Request timed out TIMEOUT 1
Request did not time out NOTIMEQUT 0
Il (Memory or I/0) Memory Access M 00
Reserved 01
1/0 [0] 10
Other transaction 11

NOTE:

* Local processor differentiates the processor reporting the error from other system components (including the APIC, other proces-

sors, etc.).

15.9.2.6 Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction type), and 4-bit CCCC

(channel) sub-fields. The encodings for MMM and CCCC are defined in Table 15-14.

Table 15-14. Encodings of MMM and CCCC Sub-Fields

Sub-Field Transaction Mnemonic Binary Encoding
MMM Generic undefined request GEN 000
Memory read error RD 001
Memory write error WR 010
Address/Command Error AC 011
Memory Scrubbing Error MS 100
Reserved 101-111
Cccc Channel number CHN 0000-1110
Channel not specified 1111

15.9.3 Architecturally Defined UCR Errors

Software recoverable compound error code are defined in this section.

15.9.3.1 Architecturally Defined SRAO Errors

The following two SRAO errors are architecturally defined.

® UCR Errors detected by memory controller scrubbing; and

® UCR Errors detected during L3 cache (L3) explicit writebacks.

The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table

15-15.

Vol. 3B 15-21

MACHINE-CHECK ARCHITECTURE

Table 15-15. MCA Compound Error Code Encoding for SRAO Errors

Type MCACOD Value |MCA Error Code Encoding’

Memory Scrubbing | 0xCO - OxCF 0000_0000_1100_cccc
000F 0000 1TMMM CCCC (Memory Controller Error), where
Memory subfield MMM = 100B (memory scrubbing)
Channel subfield CCCC = channel # or generic

L3 Explicit Writeback | 0x17A 0000_0001_0111_1010

00O0F 0001 RRRR TTLL (Cache Hierarchy Error) where
Request subfields RRRR = 0111B (Eviction)
Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is O, indicating "normal” filtering.

Table 15-16 lists values of relevant bit fields of 1A32_MCi_STATUS for architecturally defined SRAO errors.
Table 15-16. IA32_MCi_STATUS Values for SRAO Errors

SRAOQ Error Valid OVER UC |[EN |MISCV ADDRV PCC S |AR |MCACOD
Memory Scrubbing 1 0 1 1 1 1 0 1 |0 0xCO-0xCF
L3 Explicit Writeback 1 0 1 1 1 1 0 1 |0 Ox17A

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the
IA32_MCi_STATUS register are set to indicate that the offending physical address information is available from the
IA32_MCi_MISC and the 1A32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors,
the address mode in the 1A32_MCi_MISC register should be set as physical address mode (010b) and the address
LSB information in the 1A32_MCi_MISC register should indicate the lowest valid address bit in the address informa-
tion provided from the 1A32_MCi_ADDR register.

An MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported.
MCi_STATUS banks can be shared by logical processors within a core or within the same package. So several logical
processors may find an SRAO error in the shared 1A32_MCi_STATUS bank but other processors do not find it in any
of the 1A32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication in the 1A32_MCG_STATUS
register for the memory scrubbing and L3 explicit writeback errors on both the reporting and non-reporting logical
processors.

Table 15-17. IA32_MCG_STATUS Flag Indication for SRAO Errors

SRAO Type Reporting Logical Processors Non-reporting Logical Processors
RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

15.9.3.2 Architecturally Defined SRAR Errors

The following two SRAR errors are architecturally defined.
® UCR Errors detected on data load; and

® UCR Errors detected on instruction fetch.

The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table
15-18.

15-22 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Table 15-18. MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value |MCA Error Code Encoding’
Data Load 0x134 0000_0001_0011_0100
00O0F 0001 RRRR TTLL (Cache Hierarchy Error), where
Request subfield RRRR = 001 1B (Data Load)
Transaction Type subfield TT= 01B (Data)
Level subfield LL = 00B (Level 0)
Instruction Fetch 0x150 0000_0001_0101_0000
00O0F 0001 RRRR TTLL (Cache Hierarchy Error), where
Request subfield RRRR = 0101B (Instruction Fetch)
Transaction Type subfield TT= 00B (Instruction)
Level subfield LL = 00B (Level 0)

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is O, indicating "normal” filtering.

Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors.
Table 15-19. IA32_MCi_STATUS Values for SRAR Errors

SRAR Error Valid OVER UC |EN [MISCV ADDRV PCC S |AR |MCACOD
Data Load 1 0 1 1 1 1 0 1 1 0x134
Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the 1A32_MCi_STATUS register
are set to indicate that the offending physical address information is available from the 1A32_MCi_MISC and the
IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors, the address mode in the
1IA32_MCi_MISC register should be set as physical address mode (010b) and the address LSB information in the
1IA32_MCi_MISC register should indicate the lowest valid address bit in the address information provided from the
IA32_MCi_ADDR register.

An MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported. The
IA32_MCG_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error
amongst logical processors that observed SRAR via a shared MCi_STATUS bank.

Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS register for the data load and
instruction fetch errors on both the reporting and non-reporting logical processors. The recoverable SRAR error
reported by a processor may be continuable, where the system software can interpret the context of continuable
as follows: the error was isolated, contained. If software can rectify the error condition in the current instruction
stream, the execution context on that logical processor can be continued without loss of information.

Table 15-20. IA32_MCG_STATUS Flag Indication for SRAR Errors

SRAR Type Affected Logical Processor Non-Affected Logical Processors

RIPV EIPV Continuable RIPV EIPV Continuable
Recoverable- 1 1 Yes!
continuable
Recoverable-not- 0 X No 1 0 Yes
continuable
NOTES:

1. see the definition of the context of “continuable” above and additional detail below.

SRAR Error And Affected Logical Processors

The affected logical processor is the one that has detected and raised an SRAR error at the point of the consump-
tion in the execution flow. The affected logical processor should find the Data Load or the Instruction Fetch error
information in the 1A32_MCi_STATUS register that is reporting the SRAR error.

Vol. 3B 15-23

MACHINE-CHECK ARCHITECTURE

Table 15-20 list the actionable scenarios that system software can respond to an SRAR error on an affected logical
processor according to RIPV and EIPV values:

® Recoverable-Continuable SRAR Error (RIPV=1, EIPV=1):

For Recoverable-Continuable SRAR errors, the affected logical processor should find that both the
IA32_MCG_STATUS.RIPV and the IA32_MCG_STATUS.EIPV flags are set, indicating that system software may
be able to restart execution from the interrupted context if it is able to rectify the error condition. If system
software cannot rectify the error condition then it must treat the error as a recoverable error where restarting
execution with the interrupted context is not possible. Restarting without rectifying the error condition will
result in most cases with another SRAR error on the same instruction.

® Recoverable-not-continuable SRAR Error (RIPV=0, EIPV=X):
For Recoverable-not-continuable errors, the affected logical processor should find that either
— 1A32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=1, or
— 1A32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=0.

In either case, this indicates that the error is detected at the instruction pointer saved on the stack for this
machine check exception and restarting execution with the interrupted context is not possible. System
software may take the following recovery actions for the affected logical processor:

®* The current executing thread cannot be continued. System software must terminate the interrupted
stream of execution and provide a new stream of execution on return from the machine check handler
for the affected logical processor.

SRAR Error And Non-Affected Logical Processors

The logical processors that observed but not affected by an SRAR error should find that the RIPV flag in the
IA32_MCG_STATUS register is set and the EIPV flag in the IA32_MCG_STATUS register is cleared, indicating that it
is safe to restart the execution at the instruction saved on the stack for the machine check exception on these
processors after the recovery action is successfully taken by system software.

15.9.4 Multiple MCA Errors

When multiple MCA errors are detected within a certain detection window, the processor may aggregate the
reporting of these errors together as a single event, i.e. a single machine exception condition. If this occurs,
system software may find multiple MCA errors logged in different MC banks on one logical processor or find multiple
MCA errors logged across different processors for a single machine check broadcast event. In order to handle
multiple UCR errors reported from a single machine check event and possibly recover from multiple errors, system
software may consider the following:

® Whether it can recover from multiple errors is determined by the most severe error reported on the system. If
the most severe error is found to be an unrecoverable error (VAL=1, UC=1, PCC=1 and EN=1) after system
software examines the MC banks of all processors to which the MCA signal is broadcast, recovery from the
multiple errors is not possible and system software needs to reset the system.

® When multiple recoverable errors are reported and no other fatal condition (e.g.. overflowed condition for SRAR
error) is found for the reported recoverable errors, it is possible for system software to recover from the
multiple recoverable errors by taking necessary recovery action for each individual recoverable error. However,
system software can no longer expect one to one relationship with the error information recorded in the
IA32_MCi_STATUS register and the states of the RIPV and EIPV flags in the IA32_MCG_STATUS register as the
states of the RIPV and the EIPV flags in the 1A32_MCG_STATUS register may indicate the information for the
most severe error recorded on the processor. System software is required to use the RIPV flag indication in the
IA32_MCG_STATUS register to make a final decision of recoverability of the errors and find the restart-ability
requirement after examining each 1A32_MCi_STATUS register error information in the MC banks.

15.9.5 Machine-Check Error Codes Interpretation

Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on interpreting the MCA error code,
model-specific error code, and other information error code fields. For P6 family processors, information has been

15-24 Vol. 3B

MACHINE-CHECK ARCHITECTURE

included on decoding external bus errors. For Pentium 4 and Intel Xeon processors; information is included on
external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE

The machine-check architecture and error logging can be used in three different ways:
® To detect machine errors during normal instruction execution, using the machine-check exception (#¥MC).
® To periodically check and log machine errors.

® To examine recoverable UCR errors, determine software recoverability and perform recovery actions via a
machine-check exception handler or a corrected machine-check interrupt handler.

To use the machine-check exception, the operating system or executive software must provide a machine-check
exception handler. This handler may need to be designed specifically for each family of processors.

A special program or utility is required to log machine errors.

Guidelines for writing a machine-check exception handler or a machine-error logging utility are given in the
following sections.

15.10.1 Machine-Check Exception Handler

The machine-check exception (#¥MC) corresponds to vector 18. To service machine-check exceptions, a trap gate
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down the
system.

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and
restart the processor.

For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-check conditions cannot be
corrected (they result in abort-type exceptions). The logging of status and error information is therefore a baseline
implementation requirement.

When recovery from a machine-check error may be possible, consider the following when writing a machine-check
exception handler:

® To determine the nature of the error, the handler must read each of the error-reporting register banks. The
count field in the 1A32_MCG_CAP register gives number of register banks. The first register of register bank O
is at address 400H.

® The VAL (valid) flag in each 1A32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to
be checked.

® To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should be
checked. See Section 15.9, “Interpreting the MCA Error Codes,” for information that can be used to write an
algorithm to interpret this field.

® The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error is
possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be
restarted reliably. When recovery is not possible, the handler typically records the error information and signals
an abort to the operating system.

® Correctable errors are corrected automatically by the processor. The UC flag in each 1A32_MCi_STATUS register
indicates whether the processor automatically corrected an error.

® The RIPV flag in the 1A32_MCG_STATUS register indicates whether the program can be restarted at the
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the
exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging
purposes) but not without loss of program continuity.

Vol. 3B 15-25

MACHINE-CHECK ARCHITECTURE

® For unrecoverable errors, the EIPV flag in the 1A32_MCG_STATUS register indicates whether the instruction
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the
error. If the flag is clear, the pushed instruction may not be related to the error.

® The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated.
Before returning from the machine-check exception handler, software should clear this flag so that it can be
used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check architecture
does not support recursion. When the processor detects machine-check recursion, it enters the shutdown
state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
THEN
IF CPU supports MCA
THEN
call errorlogging routine; (* returns restartability *)
Fl;
ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;
Fl;
IF error is not restartable
THEN
report RESTARTABILITY to console;
abort system;
Fl;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling

Machine-check exception handler on P6 family and later processor families, should follow the guidelines described
in Section 15.10.1 and Example 15-2 that check the processor’s support of MCA.

NOTE

On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the P5_MC_TYPE and
P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in control register CR4),
the machine-check exception handler uses the RDMSR instruction to read the error type from the P5_MC_TYPE
register and the machine check address from the P5_MC_ADDR register. The handler then normally reports these
register values to the system console before aborting execution (see Example 15-2).

15.10.3 Logging Correctable Machine-Check Errors

The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected
errors.

If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.

® A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.

® A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling
service is provided by an operating-system driver or through the system call interface.

® An interrupt service routine servicing CMCI can read the MC banks and log the error.

15-26 Vol. 3B

MACHINE-CHECK ARCHITECTURE

Example 15-3 gives pseudocode for an error logging utility.

Example 15-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA
THEN
FOR each bank of machine-check registers
DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS =1
THEN
IF ADDRV flagin IA32_MCi_STATUS =1
THEN READ IA32_MCi_ADDR;
Fl;
IF MISCV flag in IA32_MCi_STATUS =1
THEN READ IA32_MCi_MISC;
Fl;
IF MCIP flag in IA32_MCG_STATUS = 1
(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCj_STATUS =1
ORRIPV flag in IA32_MCG_STATUS =0
(* execution is not restartable *)
THEN
RESTARTABILITY = FALSE;
return RESTARTABIUITY to calling procedure;
Fl;
Save time-stamp counter and processor ID;
Set 1A32_MCi_STATUS to all Os;
Execute serializing instruction (i.e., CPUID);
Fl;
0D;
Fl;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting
registers looking for valid register entries. It then saves the values of the 1A32_MCi_STATUS, 1A32_MCi_ADDR,
1A32_MCi_MISC and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling.
User utilities analyze the collected data in an off-line environment.

When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the
machine-check exception handler has called the exception logging routine.

Once the logging process has been completed the exception-handling routine must determine whether execution
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the
IA32_MCi_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is
set in the 1A32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the
exception-handling routine should signal the console appropriately before returning the error status to the Oper-
ating System kernel for subsequent shutdown.

The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the
Pentium 4, Intel Xeon, and P6 family processors do not implement this feature. The error logging routine should
provide compatibility with future processors by reading each hardware error-reporting bank's 1A32_MCi_STATUS
register and then writing Os to clear the OVER and VAL flags in this register. The error logging utility should re-read
the 1A32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The processor will write the next
error into the register bank and set the VAL flags.

Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating
system stores the identity of the processor node incurring the exception using a unique identifier, such as the
processor’s APIC ID (see Section 10.8, “Handling Interrupts”).

The basic algorithm given in Example 15-3 can be modified to provide more robust recovery techniques. For
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when

Vol. 3B 15-27

MACHINE-CHECK ARCHITECTURE

the error-logging routine reports an error that does not allow execution to be restarted. These recovery techniques
can use external bus related model-specific information provided with the error report to localize the source of the
error within the system and determine the appropriate recovery strategy.

15.10.4 Machine-Check Software Handler Guidelines for Error Recovery

15.10.4.1 Machine-Check Exception Handler for Error Recovery

When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following:

When I1A32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal
exceptions. The logging of status and error information is therefore a baseline implementation requirement.

When 1A32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may be
software recoverable. The handler can analyze the reported error information, and in some cases attempt to
recover from the uncorrected error and continue execution.

For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_OEH and onward, an MCA signal is
broadcast to all logical processors in the system (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume 2A). Due to
the potentially shared machine check MSR resources among the logical processors on the same package/core,
the MCE handler may be required to synchronize with the other processors that received a machine check error
and serialize access to the machine check registers when analyzing, logging and clearing the information in the
machine check registers.

The VAL (valid) flag in each 1A32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be
checked.

The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1).
The MCE handler can optionally log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling handler.

For uncorrectable errors, the EIPV flag in the 1A32_MCG_STATUS register indicates (when set) that the
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be
associated with the error.

The MCIP flag in the 1A32_MCG_STATUS register indicates whether a machine-check exception was generated.
When a machine check exception is generated, it is expected that the MCIP flag in the 1A32_MCG_STATUS
register is set to 1. If it is not set, this machine check was generated by either an INT 18 instruction or some
piece of hardware signaling an interrupt with vector 18.

When I1A32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE)
handler to support software recovery:

The PCC flag in each 1A32_MCi_STATUS register indicates whether recovery from the error is possible for
uncorrected errors (UC=1). If the PCC flag is set for uncorrected errors (UC=1), recovery is not possible.
When recovery is not possible, the MCE handler typically records the error information and signals the
operating system to reset the system.

The RIPV flag in the 1A32_MCG_STATUS register indicates whether restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set,
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the current
program execution and resuming an alternate thread of execution upon return from the machine check handler
when recovery is possible. When recovery is not possible, the MCE handler signals the operating system to
reset the system.

When the EN flag is zero but the VAL and UC flags are one in the 1A32_MCi_STATUS register, the reported
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = O are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and

15-28 Vol. 3B

MACHINE-CHECK ARCHITECTURE

should continue searching for enabled errors from the other 1A32_MCi_STATUS registers. Note that when
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that
do not generate machine check exceptions, the EN flag has no meaning. See Chapter 19: Table 19-15 to find
the errors that do not generate machine check exceptions.

® When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the
IA32_MCi_STATUS register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler
needs to examine the S flag and the AR flag to find the type of the UCR error for software recovery and
determine if software error recovery is possible.

® When both the S and the AR flags are clear in the 1A32_MCi_STATUS register for the UCR error (VAL=1, UC=1,
EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA errors are
uncorrected but do not require any OS recovery action to continue execution. These errors indicate that some
data in the system is corrupt, but that data has not been consumed and may not be consumed. If that data is
consumed a non-UNCA machine check exception will be generated. UCNA errors are signaled in the same way
as corrected machine check errors and the CMCI and CMC polling handler is primarily responsible for handling
UCNA errors. Like corrected errors, the MCA handler can optionally log and clear UCNA errors as long as it can
avoid the undesired race condition with the CMCI or CMC polling handler. As UCNA errors are not the source of
machine check exceptions, the MCA handler should continue searching for uncorrected or software recoverable
errors in all other MC banks.

® When the S flag in the 1A32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0),
the error in this bank is software recoverable and it was signaled through a machine-check exception. The AR
flag in the 1A32_MCIi_STATUS register further clarifies the type of the software recoverable errors.

® When the AR flag in the 1A32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The MCE
handler and the operating system can analyze the 1A32_MCi_STATUS [15:0] to implement MCA error code
specific optional recovery action, but this recovery action is optional. System software can resume the program
execution from the instruction pointer saved on the stack for the machine check exception when the RIPV flag
in the 1A32_MCG_STATUS register is set.

® When the OVER flag in the 1A32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=0), the MCE handler cannot take recovery action as the information of the SRAO error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAO errors is optional, restarting the program execution from the instruction pointer saved on the stack for
the machine check exception is still possible for the overflowed SRAO error if the RIPV flag in the
IA32_MCG_STATUS is set.

® When the AR flag in the 1A32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The MCE
handler and the operating system must take recovery action in order to continue execution after the machine-
check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS [15:0] to
determine the MCA error code specific recovery action. If no recovery action can be performed, the operating
system must reset the system.

® When the OVER flag in the 1A32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system.

® When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an
unexpected condition for the MCE handler and the handler should signal the operating system to reset the
system.

® Before returning from the machine-check exception handler, software must clear the MCIP flag in the
IA32_MCG_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does
not support recursion. When the processor receives a machine check when MCIP is set, it automatically enters
the shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery of UCR.

Vol. 3B 15-29

MACHINE-CHECK ARCHITECTURE

Example 15-4. Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA
THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel > OEH) OR (Processor Family > 6)
THEN
MCA_BROADCAST = TRUE;
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)
ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;
FI;
ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;
Fl;

IF NOERROR = TRUE
THEN
IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN
RESTARTABILITY = FALSE;
Fl
FI;

IF RESTARTABILITY = FALSE
THEN
Report RESTARTABILITY to console;
Reset system;
Fl;

IF MCA_BROADCAST = TRUE
THEN
IF ProcessorCount = MAX_PROCESSORS
AND NOERROR = TRUE
THEN
Report RESTARTABILITY to console;
Reset system;
Fl;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)
Fl;
CLEAR MCIP flag in IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS =0
THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;
Fl;
FOR each bank of machine-check registers
DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;

15-30 Vol. 3B

IF VAL Flag in IA32_MCi_STATUS =1
THEN
IF UC Flag in IA32_MCi_STATUS =1
THEN
IF Bit 24 in IA32_MCG_CAP =0
THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;
Fl;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0
THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;
Fl;
IF PCC Flag in IA32_MCi_STATUS =1
THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;
ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flagin IA32_MCi_STATUS =0
THEN
IF AR Flag in IA32_MCi_STATUS =0
THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)
ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)
FI
Fl;
IF RESTARTABILITY = FALSE
THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;
Fl;
(*Sin1A32_MCi_STATUS = 1 %)
IF AR Flag in IA32_MCi_STATUS = 1
THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS =1
THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;
Fl
IF MCACOD Value in IA32_MCi_STATUS is recognized
AND Current Processor is an Affected Processor
THEN
Implement MCACQD specific recovery action;
CLEAR_MC_BANK = TURE;
ELSE
RESTARTABILITY = FALSE;
Fl;
ELSE (* It is a software recoverable and action optional (SRAO) error *)
IF OVER Flag in IA32_MCi_STATUS = 0 AND
MCACOD in IA32_MCi_STATUS is recognized
THEN
Implement MCACQOD specific recovery action;
Fl;
CLEAR_MC_BANK = TRUE;
FI; AR
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;
ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)
GOTO CONTINUE;
FI; UC

MACHINE-CHECK ARCHITECTURE

Vol. 3B 15-31

MACHINE-CHECK ARCHITECTURE

Fl; VAL
LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS
THEN
SAVE IA32_MCi_MISC;
Fl;
IF ADDRV in IA32_MCi_STATUS
THEN
SAVE IA32_MCi_ADDR;
Fl;
IF CLEAR_MC_BANK = TRUE
THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS
THEN
SET all 0 to IA32_MCi_MISC;
Fl;
IF ADDRV in IA32_MCi_STATUS
THEN
SET all 0 to IA32_MCi_ADDR;
Fl;
Fl;
CONTINUE:
0D;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2 Corrected Machine-Check Handler for Error Recovery

When writing a corrected machine check handler, which is invoked as a result of CMCI or called from an OS CMC
Polling dispatcher, consider the following:

® The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank does not contain valid error information and does not need
to be checked.

® The CMCI or CMC polling handler is responsible for logging and clearing corrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or not (UC=1).

® When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for logging and clearing uncorrected no-
action required (UCNA) errors. When the UC flag is one but the PCC, S, and AR flags are zero in the
1A32_MCi_STATUS register, the reported error in this bank is an uncorrected no-action required (UCNA) error.

® In addition to corrected errors and UCNA errors, the CMC handler optionally logs uncorrected (UC=1 and
PCC=1), software recoverable machine check errors (UC=1, PCC=0 and S=1), but should avoid clearing those
errors from the MC banks. Clearing these errors may result in accidentally removing these errors before these
errors are actually handled and processed by the MCE handler for attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5. Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER: (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA
THEN
FOR each bank of machine-check registers
DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS =1
THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)
THEN
GOTO LOG CMC ERROR;

15-32 Vol. 3B

MACHINE-CHECK ARCHITECTURE

ELSE
IF Bit 24 in IA32_MCG_CAP =0
THEN
GOTO CONTINUE;
Fl;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS =0
THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR
Fl
IF EN Flag in IA32_MCi_STATUS =0
THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR
Fl;
Fl;
Fl;
GOTO CONTINUE;
LOG CMC ERROR:
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS
THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;
Fl;
IF ADDRV Flag in IA32_MCi_STATUS
THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR
Fl;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:
0D;
(*END FOR *)
Fl;

Vol. 3B 15-33

MACHINE-CHECK ARCHITECTURE

15-34 Vol. 3B

CHAPTER 16
INTERPRETING MACHINE-CHECK
ERROR CODES

Encoding of the model-specific and other information fields is different across processor families. The differences
are documented in the following sections.

16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H
MACHINE ERROR CODES FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for external bus errors relating to
processor family 06H. The references to processor family O6H refers to only 1A-32 processors with CPUID signa-

tures listed in Table 16-1.

Table 16-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H

DisplayFamily_DisplayModel

Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors
06_0ODH Intel Pentium M processor
06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 06_0BH

Intel Pentium IIl Xeon Processor, Intel Pentium 111 Processor

06_03H, 06_05H

Intel Pentium Il Xeon Processor, Intel Pentium Il Processor

06_01H

Intel Pentium Pro Processor

These errors are reported in the 1A32_MCi_STATUS MSRs. They are reported architecturally) as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the
interpretation of compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

errors

Type BitNo. | Bit Function Bit Description
MCA error 0-15

codes’

Model specific | 16-18 | Reserved Reserved

Model specific | 19-24 | Bus queue request
errors type

000000 for BQ_DCU_READ_TYPE error
000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

Vol.3B 16-1

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-2

. Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type

BitNo.

Bit Function

Bit Description

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error
010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific
errors

27-25

Bus queue error type

000 for BQ_ERR_HARD_TYPE error
001 for BQ_ERR_DOUBLE_TYPE error
010 for BQ_ERR_AERRZ_TYPE error
100 for BQ_ERR_SINGLE_TYPE error
101 for BQ_ERR_AERR1_TYPE error

Model specific
errors

28

FRC error

1 if FRC error active

29

BERR

1 if BERR is driven

30

Internal BINIT

1 if BINIT driven for this processor

31

Reserved

Reserved

Other
information

32-34

Reserved

Reserved

35

External BINIT

1 if BINIT is received from external bus.

36

Response parity error

This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.

37

Bus BINIT

This bit is asserted in IA32_MCi_STATUS if this component has received a hard
error response on a split transaction one access that has needed to be split across
the 64-bit external bus interface into two accesses).

38

39-41

Timeout BINIT

Reserved

This bit is asserted in IA32_MCj_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its
high order bit. 2 The timer is cleared when a micro-instruction retires, an exception
is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit
is asserted, it cannot be overwritten by another error.

Reserved

42

Hard error

This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus
transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

16-2 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check
Type BitNo. | Bit Function Bit Description

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this component has initiated 2 failing
bus transactions which have failed due to Address Parity Errors AERR asserted).
While this bit is asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in IA32_MCi_STATUS for uncorrected
€CC errors. While this bit is asserted, the ECC syndrome field will not be
overwritten.

46 Cecc The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC
errors.

47-54 | ECC syndrome The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only

if the error was a correctable/uncorrectable ECC error and there wasn't a previous
valid ECC error syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS is indicated by
IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After
processing an ECC error, machine-check handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.

55-56 | Reserved Reserved.
Status register | 57-63
validity
indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its
high order bit.

16.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR
FAMILY MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-4 provides information for interpreting additional model-specific fields for external bus errors relating to
processor based on Intel Core microarchitecture, which implements the P4 bus specification. Table 16-3 lists the
CPUID signatures for Intel 64 processors that are covered by Table 16-4. These errors are reported in the
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors with a general form of

0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the interpretation of
compound error codes.

Table 16-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core Microarchitecture

DisplayFamily_DisplayModel | Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.
06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9650.
06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme,

Intel Core 2 Duo processors, Intel Pentium dual-core processors

Vol.3B 16-3

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-4. Incremental Bus Error Codes of Machine Check for Processors

Based on Intel Core Microarchitecture

Type BitNo.

Bit Function

Bit Description

MCA error
codes’

0-15

Model specific | 16-18

errors

Reserved

Reserved

Model specific | 19-24

errors

Bus queue request
type

‘000001 for BQ_PREF_READ_TYPE error
000000 for BQ_DCU_READ_TYPE error
000010 for BQ_IFU_DEMAND_TYPE error
000011 for BQ_IFU_DEMAND_NC_TYPE error
000100 for BQ_DCU_RFO_TYPE error
000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error
001000 for BQ_DCU_WB_TYPE error
001010 for BQ_DCU_WCEVICT_TYPE error
001011 for BQ_DCU_WCLINE_TYPE error
001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error
001110 for BQ_DCU_INVALL2_TYPE error
001111 for BQ_DCU_FLUSHL2_TYPE error
010000 for BQ_DCU_PART_RD_TYPE error
010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error
011000 for BQ_DCU_IO_RD_TYPE error
011001 for BQ_DCU_IO_WR_TYPE error
011100 for BQ_DCU_LOCK_RD_TYPE error
011110 for BQ_DCU_SPLOCK_RD_TYPE error
011101 for BQ_DCU_LOCK_WR_TYPE error
100100 for BQ_L2_WI_RFO_TYPE error
100110 for BQ_L2_WI_ITOM_TYPE error

Model specific | 27-25

errors

Bus queue error type

‘001 for Address Parity Error
‘010 for Response Hard Error
‘011 for Response Parity Error

Model specific | 28
errors

MCE Driven

1 if MCE is driven

29

MCE Observed

1 if MCE is observed

30

Internal BINIT

1 if BINIT driven for this processor

31

BINIT Observed

1 if BINIT is observed for this processor

Other
information

32-33

Reserved

Reserved

34

PIC and FSB data
parity

Data Parity detected on either PIC or FSB access

35

Reserved

Reserved

16-4 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-4. Incremental Bus Error Codes of Machine Check for Processors
Based on Intel Core Microarchitecture (Contd.)

Type BitNo. | Bit Function Bit Description

36 Response parity error | This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCj_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its
high order bit. The timer is cleared when a micro-instruction retires, an exception is
detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.
The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit
is asserted, it cannot be overwritten by another error.

39-41 | Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus
transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 | Reserved Reserved

55-56 | Reserved Reserved.

Status register | 57-63
validity

indicators®

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally follows the description of
Chapter 15 and Section 16.2. Additional error codes specific to Intel Xeon processor 7400 series is describe in this

section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side bus errors for Intel Xeon
processor 7400 series. It supports the L3 Errors, Bus and Interconnect Errors Compound Error Codes in the MCA
Error Code Field.

Vol.3B 16-5

INTERPRETING MACHINE-CHECK ERROR CODES

16.2.1.1 Processor Machine Check Status Register
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus internal machine check
errors, L3 Errors, and Bus/Interconnect Errors. It defines incremental Machine Check error types
(IA32_MC6_STATUS[15:0]) beyond those defined in Chapter 15. Table 16-5 lists these incremental MCA error
code types that apply to 1A32_MC6_STATUS. Error code details are specified in MC6_STATUS [31:16] (see
Section 16.2.2), the "Model Specific Error Code™" field. The information in the "Other_Info" field
(MC4_STATUS[56:32]) is common to the three processor error types and contains a correctable event count and
specifies the MC6_MISC register format.

Table 16-5. Incremental MCA Error Code Types for Intel Xeon Processor 7400

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type | Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 | Internal Error Type Code

B Bus and 0000 100x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA
Interconnect implementations
Error 0000 101x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA

implementations

0000 110x 0000 1111 | Not used but this encoding is reserved for compatibility with other MCA
implementations

0000 11100000 1111 | Bus and Interconnection Error Type Code

0000 11110000 1111 | Not used but this encoding is reserved for compatibility with other MCA
implementations

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

16.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field

16.2.2.1 Processor Model Specific Error Code Field
Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

Table 16-6. Type B Bus and Interconnect Error Codes

Bit Num | Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail Response “Hard Failure” response received for a local transaction
21 FSB Response Parity Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 Reserved

16-6 Vol. 3B

16.2.2.2 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-7. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value

Error Description

0000_0000_0000_0001 0x0001

Inclusion Error from Core O

0000_0000_0000_0010 0x0002

Inclusion Error from Core 1

0000_0000_0000_0011 0x0003

Write Exclusive Error from Core O

0000_0000_0000_0100 0x0004

Write Exclusive Error from Core 1

0000_0000_0000_0101 0x0005

Inclusion Error from FSB

0000_0000_0000_0110 0x0006

SNP Stall Error from FSB

0000_0000_0000_0111 0x0007

Write Stall Error from FSB

0000_0000_0000_1000 0x0008

FSB Arb Timeout Error

0000_0000_0000_1010 0OxO00A

Inclusion Error from Core 2

0000_0000_0000_1011 0x000B

Write Exclusive Error from Core 2

0000_0010_0000_0000 0x0200

Internal Timeout error

0000_0011_0000_0000 0x0300

Internal Timeout Error

0000_0100_0000_0000 0x0400

Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

0000_0101_0000_0000 0x0500

Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010 0xC002

Correctable ECC event on outgoing Core O data

1100_0000_0000_0100 0xC004

Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000 0xC008

Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010 0xE002

Uncorrectable ECC error on outgoing Core O data

1110_0000_0000_0100 0xE004

Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000 0OxEO08

Uncorrectable ECC error on outgoing Core 2 data

— all other encodings —

Reserved

16.3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_1AH, MACHINE
ERROR CODES FOR MACHINE CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional model-specific fields for memory
controller errors relating to the processor family with CPUID DisplayFamily_DisplaySignature 06_1AH, which
supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI links are reported
in the register banks 1A32_MCO and 1A32_MC1, incremental error codes for internal machine check is reported in
the register bank 1A32_MC7, and incremental error codes for the memory controller unit is reported in the register

banks IA32_MC8.

Vol.3B 16-7

INTERPRETING MACHINE-CHECK ERROR CODES

16.3.1 Intel QPI Machine Check Errors
Table 16-8. Intel QPI Machine Check Error Codes for IA32_MCO_STATUS and IA32_MC1_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes’ 0-15 MCACOD Bus error format: 1TPPTRRRRIILL
Model specific errors
16 Header Parity if 1, QPI Header had bad parity
17 Data Parity If 1, QPI Data packet had bad parity
18 Retries Exceeded If 1, number of QPI retries was exceeded
19 Received Poison if 1, Received a data packet that was marked as poisoned by the sender
21-20 | Reserved Reserved
22 Unsupported If 1, QPI received a message encoding it does not support
Message
23 Unsupported Credit If 1, QPI credit type is not supported.
24 Receive Flit Overrun | If 1, Sender sent too many QPI flits to the receiver.
25 Received Failed If 1, Indicates that sender sent a failed response to receiver.
Response

26 Receiver Clock Jitter | If 1, clock jitter detected in the internal QPI clocking
56-27 | Reserved Reserved

Status register 57-63

validity indicators®

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-9. Intel QPI Machine Check Error Codes for IA32_MCO_MISC and IA32_MC1_MISC

Type BitNo. | Bit Function Bit Description
Model specific errors’
7-0 QP! Opcode Message class and opcode from the packet with the error
13-8 RTId QPI Request Transaction ID
15-14 | Reserved Reserved
18-16 | RHNID QPI Requestor/Home Node ID
23-19 | Reserved Reserved
24 1B QP! Interleave/Head Indication Bit

NOTES:

1. Which of these fields are valid depends on the error type.

16.3.2 Internal Machine Check Errors

Table 16-10. Machine Check Error Codes for IA32_MC7_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes' 0-15 MCACOD

Model specific errors

16-8 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Type BitNo. | Bit Function Bit Description
23-16 | Reserved Reserved
31-24 | Reserved except for | 00h - No Error
the following 03h - Reset firmware did not complete
08h - Received an invalid CMPD
0Ah - Invalid Power Management Request
ODh - Invalid S-state transition
11h - VID controller does not match POC controller selected
1Ah - MSID from POC does not match CPU MSID
56-32 | Reserved Reserved
Status register validity | 57-63
indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.3.3 Memory Controller Errors
Table 16-11. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS
Type BitNo. | Bit Function Bit Description
MCA error codes’ 0-15 MCACOD Memory error format: 1MMMCCCC
Model specific errors
16 Read ECC error if 1, ECC occurred on a read
17 RAS ECC error If 1, ECC occurred on a scrub
18 Write parity error If 1, bad parity on a write
19 Redundancy loss if 1, Error in half of redundant memory
20 Reserved Reserved
21 Memory range error | If 1, Memory access out of range
22 RTID out of range If 1, Internal ID invalid
23 Address parity error | If 1, bad address parity
24 Byte enable parity If 1, bad enable parity
error
Other information 37-25 | Reserved Reserved
52:38 | CORE_ERR_CNT Corrected error count
56-53 | Reserved Reserved
Status register validity | 57-63
indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Vol.3B 16-9

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-12. Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC

Type BitNo. | Bit Function Bit Description

Model specific errors’
7-0 RTId Transaction Tracker ID
15-8 | Reserved Reserved
17-16 | DIMM DIMM ID which got the error
19-18 | Channel Channel ID which got the error
31-20 | Reserved Reserved
63-32 | Syndrome €CC Syndrome

NOTES:
1. Which of these fields are valid depends on the error type.

16.4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE ERROR
CODES FOR MACHINE CHECK

Table 16-13 through Table 16-15 provide information for interpreting additional model-specific fields for memory
controller errors relating to the processor family with CPUID DisplayFamily_DisplaySignature 06_2DH, which
supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI links are reported
in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine check error from PCU
controller is reported in the register bank 1A32_MC4, and incremental error codes for the memory controller unit is
reported in the register banks 1A32_MC8-1A32_MC11.

16.4.1 Internal Machine Check Errors

Table 16-13. Machine Check Error Codes for IA32_MC4_STATUS

Type BitNo. | Bit Function Bit Description
MCA error 0-15 MCACOD
codes’

Model specific | 19:16 | Reserved except for | 0000b - No Error

errors the following 0001b - Non_IMem_Sel
0010b - I_Parity_Error
0011b - Bad_OpCode
0100b - I_Stack_Underflow
0101b - I_Stack_Overflow
0110b - D_Stack_Underflow
0111b - D_Stack_Overflow
1000b - Non-DMem_Sel
1001b - D_Parity_Error

16-10 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Type

BitNo.

Bit Function

Bit Description

23-20

Reserved

Reserved

31-24

Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

O€h - MC_CPD_UNCPD_ST_TIMOUT

OFh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT
5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE
71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER
72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER
7ah - MC_HA_FAILSTS_CHANGE_DETECTED
81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32

Reserved

Reserved

Status register
validity
indicators?

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.4.2 Intel QPI Machine Check Errors

Table 16-14. Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS
Type BitNo. | Bit Function Bit Description
MCA error 0-15 MCACOD Bus error format: TPPTRRRRIILL
codes’
Model specific
errors

56-16 | Reserved Reserved

Status register | 57-63
validity
indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.4.3

Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs 1A32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type 1IMMMCCCC
(see Chapter 15, “Machine-Check Architecture,”). MSR_ERROR_CONTROL.[bit 1] can enable additional informa-

Vol.3B 16-11

INTERPRETING MACHINE-CHECK ERROR CODES

tion logging of the IMC. The additional error information logged by the IMC is stored in 1A32_MCi_STATUS and
IA32_MCi_MISC; (i = 8, 11).

Table 16-15. Intel IMC MC Error Codes for IA32_MCi_STATUS (i=8, 11)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 0-15 MCACOD Bus error format: TPPTRRRRIILL
Model specific 31:16 | Reserved except for | O0x001 - Address parity error
errors the following 0x002 - HA Wrt buffer Data parity error
0x004 - HA Wrt byte enable parity error
0x008 - Corrected patrol scrub error
0x010 - Uncorrected patrol scrub error
0x020 - Corrected spare error
0x040 - Uncorrected spare error
Model specific 36-32 | Other info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device
errors error when corrected error is detected during normal read.
37 Reserved Reserved
56-38 See Chapter 15, “Machine-Check Architecture,’
Status register 57-63
validity indicators®

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-16. Intel IMC MC Error Codes for IA32_MCi_MISC (i=8, 11)

Type BitNo. | Bit Function Bit Description
MCA addrinfo! | 0-8 See Chapter 15, “Machine-Check Architecture,”
Model specific | 13:9 = When MSR_ERROR_CONTROL[1] is set, allows the iMC to log second device
errors error when corrected error is detected during normal read.
= Otherwise contain parity error if MCi_Status indicates HA_WB_Data or
HA_W_BE parity error.
Model specific | 29-14 | ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
errors mask.
Model specific | 45-30 | ErrMask_2nderrDev | When MSR_ERROR_CONTROL[1] is set, allows the iMC to log second-device error
errors bit mask.
50:46 | FailRank_1stErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.
55:51 | FailRank_2nderrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.
58:56 | FailSlot_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing DIMM slot.
61-59 | FailSlot_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing DIMM slot.
62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from the first correctable error in a memory device.
63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due
to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

16-12 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3€EH, MACHINE
ERROR CODES FOR MACHINE CHECK

Next generation Intel Xeon processor based on Intel microarchitecture codenamed lvy Bridge can be identified
with CPUID DisplayFamily_DisplaySignature 06_3EH. Incremental error codes for internal machine check error
from PCU controller is reported in the register bank 1A32_MC4, Table 16-17 lists model-specific fields to interpret
error codes applicable to 1A32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC5. Information listed in Table 16-14 for QPI MC error code apply to
IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the register banks
1IA32_MC9-1A32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

16.5.1 Internal Machine Check Errors

Table 16-17. Machine Check Error Codes for IA32_MC4_STATUS
Type BitNo. | Bit Function Bit Description

MCA error codes’ 0-15 MCACOD

Model specific errors | 19:16 | Reserved except for | 0000b - No Error

the following 0001b - Non_IMem_Sel
0010Db - |_Parity_Error

0011b - Bad_OpCode
0100b - I_Stack_Underflow
0101b - |_Stack_Overflow
0110b - D_Stack_Underflow
0111b - D_Stack_Overflow
1000b - Non-DMem_Sel
1001b - D_Parity_Error

23-20 | Reserved Reserved
31-24 | Reserved except for | 00h - No Error
the following 0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

O€Eh - MC_CPD_UNCPD_ST_TIMOUT

OFh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT
44h - MC_CRITICAL_VR_FAILED

45h - MC_ICC_MAX-NOTSUPPORTED

5Ch - MC_MORE_THAN_ONE_LT_AGENT

Vol.3B 16-13

INTERPRETING MACHINE-CHECK ERROR CODES

Type BitNo. | Bit Function Bit Description

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QP!I

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER
72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER
7Ah - MC_HA_FAILSTS_CHANGE_DETECTED

7Bh - MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT
81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 | Reserved Reserved
Status register 57-63
validity indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.5.2 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs 1A32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type 1IMMMCCCC
(see Chapter 15, “Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i =9, 16).

16-14 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-18. Intel IMC MC Error Codes for IA32-MCi_STATUS (i= 9, 16)

Type BitNo. | Bit Function Bit Description
MCA error codes' 0-15 MCACOD Bus error format: 1PPTRRRRIILL
Model specific 31:16 | Reserved except for | 0x001 - Address parity error
errors the following 0x002 - HA Wrt buffer Data parity error
0x004 - HA Wrt byte enable parity error
0x008 - Corrected patrol scrub error
0x010 - Uncorrected patrol scrub error
0x020 - Corrected spare error
0x040 - Uncorrected spare error
0x100 - iMC, WDB, parity errors
36-32 | Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.
37 Reserved Reserved
56-38 See Chapter 15, “Machine-Check Architecture,’
Status register 57-63
validity indicators®

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-19. Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9, 16)

Type BitNo. | Bit Function Bit Description
MCA addrinfo! | 0-8 See Chapter 15, “Machine-Check Architecture,”
Model specific | 13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB
errors ID that has the parity error. OR if the second error logged is a correctable read
error, MC logs the second error device in this field.
Model specific | 29-14 | ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
errors mask.
Model specific | 45-30 | ErrMask_2nd€rrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
errors bit mask.
50:46 | FailRank_1stErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.
55:51 | FailRank_2ndErrDev | When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.
61:56 Reserved
62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from a correctable error from memory read associated with first error device.
63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due

to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Vol. 3B 16-15

INTERPRETING MACHINE-CHECK ERROR CODES

INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH
MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-20 provides information for interpreting additional family OFH model-specific fields for external bus errors.
These errors are reported in the 1A32_MCi_STATUS MSRs. They are reported architecturally) as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the
interpretation of compound error codes.

16.6

Table 16-20. Incremental Decoding Information: Processor Family OFH Machine Error Codes For Machine Check

Type BitNo. | Bit Function Bit Description
MCA error 0-15
codes’
Model-specific | 16 FSB address parity Address parity error detected:
error codes 1 = Address parity error detected
0 = No address parity error
17 Response hard fail Hardware failure detected on response
18 Response parity Parity error detected on response
19 PIC and FSB data parity Data Parity detected on either PIC or FSB access
20 Processor Signature = Processor Signature = 00000F04H. Indicates error due to an invalid PIC
00000FQ4H: Invalid PIC request access was made to PIC space with WB memory):
request 1 = Invalid PIC request error
0 = No Invalid PIC request error
Reserved
All other processors:
Reserved
21 Pad state machine The state machine that tracks P and N data-strobe relative timing has
become unsynchronized or a glitch has been detected.
22 Pad strobe glitch Data strobe glitch
Type Bit No. | Bit Function Bit Description
23 Pad address glitch Address strobe glitch
Other 24-56 |Reserved Reserved
Information
Status register | 57-63
validity
indicators?
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture,” for more information.

Table 16-10 provides information on interpreting additional family OFH, model specific fields for cache hierarchy
errors. These errors are reported in one of the IA32_MCi_STATUS MSRs. These errors are reported, architecturally,
as compound errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See Chapter 15 for
how to interpret the compound error code.

16.6.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information related to Machine Check
Errors. MCi_STATUS[63:0] refers to all 5 register banks. MCO_STATUS[63:0] through MC3_STATUS[63:0] is the
same as on previous generation of Intel Xeon processors within Family OFH. MC4_STATUS[63:0] is the main error

16-16 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus and Interconnect Errors
Compound Error Codes in the MCA Error Code Field.

Table 16-21. MCi_STATUS Register Bit Definition

Bit Field Name

Bits

Description

MCA_Error_Code

150

Specifies the machine check architecture defined error code for the machine check error condition
detected. The machine check architecture defined error codes are guaranteed to be the same for all
Intel Architecture processors that implement the machine check architecture. See tables below

Model_Specific_E
rror_Code

31:16

Specifies the model specific error code that uniquely identifies the machine check error condition
detected. The model specific error codes may differ among Intel Architecture processors for the same
Machine Check Error condition. See tables below

Other_Info

56:32

The functions of the bits in this field are implementation specific and are not part of the machine check
architecture. Software that is intended to be portable among Intel Architecture processors should not
rely on the values in this field.

PCC

57

Processor Context Corrupt flag indicates that the state of the processor might have been corrupted by
the error condition detected and that reliable restarting of the processor may not be possible. When
clear, this flag indicates that the error did not affect the processor’s state. This bit will always be set for
MC errors which are not corrected.

ADDRV

58

MC_ADDR register valid flag indicates that the MC_ADDR register contains the address where the error
occurred. When clear, this flag indicates that the MC_ADDR register does not contain the address where
the error occurred. The MC_ADDR register should not be read if the ADDRV bit is clear.

MISCV

59

MC_MISC register valid flag indicates that the MC_MISC register contains additional

information regarding the error. When clear, this flag indicates that the MC_MISC register does not
contain additional information regarding the error. MC_MISC should not be read if the MISCV bit is not
set.

EN

60

Error enabled flag indicates that reporting of the machine check exception for this error was enabled by
the associated flag bit of the MC_CTL register. Note that correctable errors do not have associated
enable bits in the MC_CTL register so the EN bit should be clear when a correctable error is logged.

uc

61

Error uncorrected flag indicates that the processor did not correct the error condition. When clear, this
flag indicates that the processor was able to correct the event condition.

OVER

62

Machine check overflow flag indicates that a machine check error occurred while the results of a
previous error were still in the register bank (i.e., the VAL bit was already set in the

MC_STATUS register). The processor sets the OVER flag and software is responsible for clearing it.
Enabled errors are written over disabled errors, and uncorrected errors are written over corrected
events. Uncorrected errors are not written over previous valid uncorrected errors.

VAL

63

MC_STATUS register valid flag indicates that the information within the MC_STATUS register is valid.
When this flag is set, the processor follows the rules given for the OVER flag in the MC_STATUS register
when overwriting previously valid entries. The processor sets the VAL flag and software is responsible
for clearing it.

16.6.1.1

Processor Machine Check Status Register

MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its CBC internal machine check
errors, L3 Errors, and Bus/Interconnect Errors. It defines additional Machine Check error types
(IA32_MC4_STATUS[15:0]) beyond those defined in Chapter 15. Table 16-22 lists these model-specific MCA error
codes. Error code details are specified in MC4_STATUS [31:16] (see Section 16.6.3), the "Model Specific Error
Code" field. The information in the "Other_Info" field (MC4_STATUS[56:32]) is common to the three processor
error types and contains a correctable event count and specifies the MC4_MISC register format.

Vol.3B 16-17

INTERPRETING MACHINE-CHECK ERROR CODES

Table 16-22. Incremental MCA Error Code for Intel Xeon Processor MP 7100
Processor MCA_Error_Code (MC4_STATUS[15:0])
Type | Error Code Binary Encoding Meaning
C Internal Error 0000 0100 0000 0000 | Internal Error Type Code

A L3 Tag Error

0000 0001 0000 1011

L3 Tag Error Type Code

B Bus and

Error

Interconnect

0000 100x 0000 1111

Not used but this encoding is reserved for compatibility with other MCA
implementations

0000 101x 0000 1111

Not used but this encoding is reserved for compatibility with other MCA
implementations

0000 110x 0000 1111

Not used but this encoding is reserved for compatibility with other MCA
implementations

000011100000 1111

Bus and Interconnection Error Type Code

000011110000 1111

Not used but this encoding is reserved for compatibility with other MCA
implementations

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

16.6.2

Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types (A, B & C):

Table 16-23. Other Information Field Bit Definition

Bit Field Name | Bits Description
39:32 8-bit Correctable | Holds a count of the number of correctable events since cold reset. This is a saturating counter;
Event Count the counter begins at 1 (with the first error) and saturates at a count of 255.
41:40 MC4_MISC The value in this field specifies the format of information in the MC4_MISC register. Currently,
format type only two values are defined. Valid only when MISCV is asserted.
43:42 - Reserved
5144 ECC syndrome ECC syndrome value for a correctable ECC event when the “Valid ECC syndrome” bit is asserted
52 Valid ECC Set when correctable ECC event supplies the ECC syndrome
syndrome
54:53 Threshold-Based | 00: No tracking - No hardware status tracking is provided for the structure reporting this event.
Error Status 01: Green - Status tracking is provided for the structure posting the event; the current status is
green (below threshold).
10: Yellow - Status tracking is provided for the structure posting the event; the current status is
vellow (above threshold).
11: Reserved for future use
Valid only if Valid bit (bit 63) is set
Undefined if the UC bit (bit 61) is set
56:55 - Reserved

16-18 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

16.6.3 Processor Model Specific Error Code Field
16.6.3.1 MCA Error Type A: L3 Error
Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)
Table 16-24. Type A: L3 Error Codes
Bit Sub-Field | Description Legal Value(s)
Num Name
18:16 L3 Error Describes the L3 | 000 - No error
Code error 001 - More than one way reporting a correctable event
encountered 010 - More than one way reporting an uncorrectable error
011 - More than one way reporting a tag hit
100 - No error
101 - One way reporting a correctable event
110 - One way reporting an uncorrectable error
111 - One or more ways reporting a correctable event while one or more ways are
reporting an uncorrectable error
2019 |- Reserved 00
31:21 - Fixed pattern 0010_0000_000

16.6.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)
Table 16-25. Type B Bus and Interconnect Error Codes
Bit Num | Sub-Field Name Description
16 FSB Request Parity Parity error detected during FSB request phase
17 CoreQ Addr Parity Parity error detected on Core O request’s address field
18 Core1 Addr Parity Parity error detected on Core 1 request’s address field
19 Reserved
20 FSB Response Parity Parity error on FSB response field detected
21 FSB Data Parity FSB data parity error on inbound data detected
22 Core0 Data Parity Data parity error on data received from Core O detected
23 Core1 Data Parity Data parity error on data received from Core 1 detected
24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)
25 FSB Inbound Data ECC | Data ECC event to error on inbound data (correctable or uncorrectable)
26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)
27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing error)
31:28 Reserved

Exactly one of the bits defined in the preceding table will be set for a Bus and Interconnect Error. The Data ECC can
be correctable or uncorrectable (the MC4_STATUS.UC bit, of course, distinguishes between correctable and uncor-
rectable cases with the Other_Info field possibly providing the ECC Syndrome for correctable errors). All other
errors for this processor MCA Error Type are uncorrectable.

Vol.3B 16-19

INTERPRETING MACHINE-CHECK ERROR CODES

16.6.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

Table 16-26. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value

Error Description

0000_0000_0000_0001 0x0001 Inclusion Error from Core O

0000_0000_0000_0010 0x0002 Inclusion Error from Core 1

0000_0000_0000_0011 0x0003 Write Exclusive Error from Core O
0000_0000_0000_0100 0x0004 Write Exclusive Error from Core 1
0000_0000_0000_0101 0x0005 Inclusion Error from FSB

0000_0000_0000_0110 0x0006 SNP Stall Error from FSB

0000_0000_0000_0111 0x0007 Write Stall Error from FSB

0000_0000_0000_1000 0x0008 FSB Arb Timeout Error

0000_0000_0000_1001 0x0009 CBC 00D Queue Underflow/overflow
0000_0001_0000_0000 0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error
0000_0010_0000_0000 0x0200 Internal Timeout error

0000_0011_0000_0000 0x0300 Internal Timeout Error

0000_0100_0000_0000 0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow
1100_0000_0000_0001 0xC001 Correctable ECC event on outgoing FSB data
1100_0000_0000_0010 0xC002 Correctable ECC event on outgoing Core O data
1100_0000_0000_0100 0xcCo04 Correctable ECC event on outgoing Core 1 data
1110_0000_0000_0001 0xE0O01 Uncorrectable ECC error on outgoing FSB data
1110_0000_0000_0010 0xE002 Uncorrectable ECC error on outgoing Core O data
1110_0000_0000_0100 0xE004 Uncorrectable ECC error on outgoing Core 1 data

— all other encodings —

Reserved

16-20 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES

All errors - except for the correctable ECC types - in this table are uncorrectable. The correctable ECC events may
supply the ECC syndrome in the Other_Info field of the MC4_STATUS MSR..

Table 16-27. Decoding Family OFH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. | Bit Function Bit Description
MCA error 0-15
codes’
Model 16-17 | Tag Error Code Contains the tag error code for this machine check error;
specific error 00 = No error detected
codes 01 = Parity error on tag miss with a clean line
10 = Parity error/multiple tag match on tag hit
11 = Parity error/multiple tag match on tag miss
18-19 | Data Error Code Contains the data error code for this machine check error:
00 = No error detected
01 = Single bit error
10 = Double bit error on a clean line
11 = Double bit error on a modified line
20 L3 Error This bit is set if the machine check error originated in the L3 it can be ignored for
invalid PIC request errors):
1 =13 error
0= L2 error
21 Invalid PIC Request | Indicates error due to invalid PIC request access was made to PIC space with WB
memory):
1 = Invalid PIC request error
0 = No invalid PIC request error
22-31 | Reserved Reserved
Other 32-39 | 8-bit Error Count Holds a count of the number of errors since reset. The counter begins at O for the
Information first error and saturates at a count of 255.
40-56 | Reserved Reserved
Status 57-63
register
validity
indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Vol. 3B 16-21

INTERPRETING MACHINE-CHECK ERROR CODES

16-22 Vol. 3B

CHAPTER 17
DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

Intel 64 and 1A-32 architectures provide debug facilities for use in debugging code and monitoring performance.
These facilities are valuable for debugging application software, system software, and multitasking operating
systems. Debug support is accessed using debug registers (DRO through DR7) and model-specific registers
(MSRs):

Debug registers hold the addresses of memory and 1/0 locations called breakpoints. Breakpoints are user-
selected locations in a program, a data-storage area in memory, or specific 1/0 ports. They are set where a
programmer or system designer wishes to halt execution of a program and examine the state of the processor
by invoking debugger software. A debug exception (#DB) is generated when a memory or 1/0 access is made
to a breakpoint address.

MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or
exception taken and the last branch taken before an interrupt or exception.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event
occurs.

Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
Breakpoint-address registers (DRO through DR3) — Specifies the addresses of up to 4 breakpoints.

Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint
exception was generated.

Debug control register (DR7) — Specifies the forms of memory or 1/0 access that cause breakpoints to be
generated.

T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with
the T flag set in its TSS.

RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.

TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an
instruction.

Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) that transfers program control to
the debugger procedure or task. This instruction is an alternative way to set code breakpoints. It is especially
useful when more than four breakpoints are desired, or when breakpoints are being placed in the source code.

Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current
program or task. The following conditions can be used to invoke the debugger:

Task switch to a specific task.

Execution of the breakpoint instruction.

Execution of any instruction.

Execution of an instruction at a specified address.
Read or write to a specified memory address/range.
Write to a specified memory address/range.

Input from a specified 1/0 address/range.

Vol.3B 17-1

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

® Output to a specified 1/0 address/range.
® Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS

Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the debug
operation of the processor. These registers can be written to and read using the move to/from debug register form
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions.

31302928 272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
LEN|R/W|LEN|R/W/|LEN|R/W|LEN|R/W|0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7

3 3 2 2 1 1 0 0 D E|E|3|3|2|2|1|1|0|0

31 161514131211109 8 7 6 54 3 2 1 0
Reserved (set to 1) B|B|Bj011 111 111|B/BB|B|ppg

T|S|D 3|2(1|0

31 0
DR5

31 0
DR4

31 0
Breakpoint 3 Linear Address DR3

31 0
Breakpoint 2 Linear Address DR2

31 0
Breakpoint 1 Linear Address DR1

31 0
Breakpoint O Linear Address DRO

I:l Reserved

Figure 17-1. Debug Registers

Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers from
any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though
3. For each breakpoint, the following information can be specified:

® The linear address where the breakpoint is to occur.

17-2 Vol.3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

® The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
® The operation that must be performed at the address for a debug exception to be generated.

® Whether the breakpoint is enabled.

® Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug
registers.

17.2.1 Debug Address Registers (DRO-DR3)

Each of the debug-address registers (DRO through DR3) holds the 32-bit linear address of a breakpoint (see
Figure 17-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug
register DR7 further specifies breakpoint conditions.

17.2.2 Debug Registers DR4 and DR5

Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD).
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers
DR6 and DR7.

17.2.3 Debug Status Register (DR6)

The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:

¢ BO through B3 (breakpoint condition detected) flags (bits O through 3) — Indicates (when set) that its
associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true.
They may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore
on a #DB, a debug handler should check only those BO-B3 bits which correspond to an enabled breakpoint.

¢ BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DRO through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

® BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

® BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this
exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register before
returning to the interrupted task.

17.2.4 Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-1).
The flags and fields in this register control the following things:

Vol.3B 17-3

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

¢ LO through L3 (local breakpoint enable) flags (bits O, 2, 4, and 6) — Enables (when set) the breakpoint
condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

® GO through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task
switch, allowing a breakpoint to be enabled for all tasks.

® LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in
the P6 family processors, later 1A-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

® GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.

When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.

The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

¢ R/WO through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Break on 1/0 reads or writes.

11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Undefined.

11 — Break on data reads or writes but not instruction fetches.

® LENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the
memory location at the address specified in the corresponding breakpoint address register (DRO through DR3).
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00.
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES

For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with
an of encoding 10B in the LENnN field.

Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume

17-4 Vol.3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 28. The encoding 10B is undefined for other
processors.

17.2.5 Breakpoint Field Recognition

Breakpoint address registers (debug registers DRO through DR3) and the LENnN fields for each breakpoint define a
range of sequential byte addresses for a data or 1/0 breakpoint. The LENn fields permit specification of a 1-, 2-, 4-
, or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries. 1/0
addresses are zero-extended (from 16 to 32 bits, for comparison with the breakpoint address in the selected debug
register). These requirements are enforced by the processor; it uses LENN field bits to mask the lower address bits
in the debug registers. Unaligned data or 1/0 breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the
range defined by a breakpoint address register and its LENn field. Table 17-1 provides an example setup of debug
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Code
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address
only when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must
point to the first prefix.

Table 17-1. Breakpoint Examples
Debug Register Setup

Debug Register R/Wn Breakpoint Address LENN
DRO R/WO =11 (Read/Write) AOOOTH LENO =00 (1 byte)
DR1 R/W1 =01 (Write) AOOO02H LEN1T =00 (1 byte)
DR2 R/W2 =11 (Read/Write) BO0OOZ2H LENZ = 01) (2 bytes)
DR3 R/W3 =01 (Write) COOO0OH LEN3 =11 (4 bytes)
Data Accesses
Operation Address Access Length
(In Bytes)
Data operations that trap
- Read or write AOOOTH 1
- Read or write AOOO1TH 2
- Write AOOO02H 1
- Write AOOO2H 2
- Read or write BOOOTH 4
- Read or write BOOO2H 1
- Read or write BOOO2H 2
- Write COOO0OH 4
- Write CO001H 2
- Write CO003H 1
Data operations that do not trap
- Read or write AOOOOQH 1
- Read AOOO02H 1
- Read or write AOOO3H 4
- Read or write BOOOOH 2
- Read COOO0OH 2
- Read or write C0004H 4

Vol.3B 17-5

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.2.6 Debug Registers and Intel® 64 Processors

For Intel 64 architecture processors, debug registers DRO—DR7 are 64 bits. In 16-bit or 32-bit modes (protected
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size
prefixes are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of
the upper 32 bits results in a #GP(0) exception (see Figure 17-2). All 64 bits of DRO—DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DRO—DR3 are in the linear-address limits of
the processor implementation (address matching is supported only on valid addresses generated by the processor
implementation). Break point conditions for 8-byte memory read/writes are supported in all modes.

63 32

DR7

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

LEN|R/W|LEN|R/W|LEN|R/W|LEN|R/W|0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7

3 3 2 2 1 1 0 0 D E|E|3|3|2|2|1|1|0(0

63 32
DR6

31 161514131211109 8 7 6 5 4 3 2 1 0
Reserved (set to 1) BBBOlllllllllBBBBDR6

T|S|D 3/2(1(0

63 0
DR5

63 0
DR4

63 0
Breakpoint 3 Linear Address DR3

63 0
Breakpoint 2 Linear Address DR2

63 0
Breakpoint 1 Linear Address DR1

63 0
Breakpoint O Linear Address DRO

|:| Reserved
Figure 17-2. DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture

17-6 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

173 DEBUG EXCEPTIONS

The Intel 64 and 1A-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions
are generated and typical exception handler operations.

17.3.1 Debug Exception (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or part of a larger software system. The processor
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers
to determine which condition caused the exception and which other conditions might apply. Table 17-2 shows the
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-Detect Exception Condition™)
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at
one time. The following sections describe each class of debug exception.

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and 1A-32 Architectures Software
Developer’'s Manual, Volume 3A.

Table 17-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR?7 Flags Tested Exception Class

Single-step trap BS=1 Trap

Instruction breakpoint, at addresses defined by DRnand | Bn=1 and R/Wn =0 Fault

LENN (GnorLn=1)

Data write breakpoint, at addresses defined by DRn and Bn=1and R/Wwn =1 Trap

LENn (GnorLn=1)

I/0 read or write breakpoint, at addresses defined by DRn | Bn =1 and R/Wn =2 Trap

and LENn (Gnorln=1)

Data read or write (but not instruction fetches), at Bn=1and R/Wn =3 Trap

addresses defined by DRnand LENn (Gnorln=1)

General detect fault, resulting from an attempt to modify | BD =1 Fault

debug registers (usually in conjunction with in-circuit

emulation)

Task switch BT =1 Trap
17.3.1.1 Instruction-Breakpoint Exception Condition

The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified
in a breakpoint-address register (DRO through DR3) that has been set up to detect instruction execution (R/W flag
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception
(#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions
detected during the decoding or execution of an instruction. However, if a code instruction breakpoint is placed on
an instruction located immediately after a POP SS/MOV SS instruction, the breakpoint may not be triggered. In
most situations, POP SS/MOV SS will inhibit such interrupts (see “MOV—Move” and “POP—Pop a Value from the
Stack” in Chapter 4 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction
breakpoint, the Intel 64 and 1A-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and I1A-32 Architectures Software
Developer’'s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

Vol.3B 17-7

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

All Intel 64 and 1A-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction
after the check for code breakpoint, CS limit violation and FP exceptions. Task Switches and IRETD/IRETQ instruc-
tions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and 1A-32 processors establish the value of the RF flag in the EFLAGS image
pushed on the stack:

® For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the
value pushed for RF is 1.

® For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value
pushed for RF is 1.

® For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration,
the value pushed for RF is 1.

® For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was
called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those arriving after the last
iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including those generated after the last
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as,
1/0 or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a
page fault), the processor may generate one spurious debug exception after the second exception has been
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

17.3.1.2 Data Memory and I/0 Breakpoint Exception Conditions

Data memory and 1/0 breakpoints are reported when the processor attempts to access a memory or 1/0 address
specified in a breakpoint-address register (DRO through DR3) that has been set up to detect data or 1/0 accesses
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the
access, so these breakpoint condition causes a trap-class exception to be generated.

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see
Section 7.3.9.3 of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1), delivery of the
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint
matching does not occur unless it is enabled by setting the LE and/or the GE flags.

For repeated INS and OUTS instructions that generate an 1/0-breakpoint debug exception, the processor generates
the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

17-8 Vol.3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.3.1.3 General-Detect Exception Condition

When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any
of the debug registers (DRO through DR7) at the same time they are being used by another application, such as an
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The
debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The
processor generates the exception before it executes the MOV instruction that accesses a debug register, which
causes a fault-class exception to be generated.

17.3.1.4 Single-Step Exception Condition

The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated

after the instruction is executed. The processor will not generate this exception after the instruction that sets the
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after
the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and INTO instructions, however,
do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n or INTO
instructions rather than executing them directly. To maintain protection, the operating system should check the
CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an
external interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This oper-
ation clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler,
single step an INT n instruction that calls the interrupt handler.

17.3.1.5 Task-Switch Exception Condition

The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe
this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. See Chapter 6, “Interrupt
3—Breakpoint Exception (#BP).” Debuggers use break exceptions in the same way that they use the breakpoint
registers; that is, as a mechanism for suspending program execution to examine registers and memory locations.
With earlier 1A-32 processors, breakpoint exceptions are used extensively for setting instruction breakpoints.

With the Intel386 and later 1A-32 processors, it is more convenient to set breakpoints with the breakpoint-address
registers (DRO through DR3). However, the breakpoint exception still is useful for breakpointing debuggers,
because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the
source code of a program under development.

174 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel

Vol.3B 17-9

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, interrupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™
Processor Family)”

— Section 17.6, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Nehalem”

— Section 17.7, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Sandy Bridge”

— Section 17.8, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Intel®
Microarchitecture code name Haswell”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst®
Microarchitecture)”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™
Duo Processors)”

— Section 17.11, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”
— Section 17.12, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are
generally enabled using the 1A32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

174.1 1A32_DEBUGCTL MSR

The 1A32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H.

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:

¢ LBR (last branch/interrupt/exception) flag (bit O) — When set, the processor records a running trace of
the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.6.1, “LBR Stack” (processors
based on Intel® Microarchitecture code name Nehalem).

® BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,”
for more information about the BTF flag.

® TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about the
TR flag.

® BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

® BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch
Trace Store (BTS),” for a description of this mechanism.

17-10 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

31 14 121110987 6543210
Reserved
FREEZE_WHILE_SMM_EN 1 LJ

FREEZE_PERFMON_ON_PMI
FREEZE_LBRS_ON_PMI
BTS_OFF_USR — BTS off in user code
BTS_OFF_OS — BTS off in OS
BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
Reserved
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 17-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

® BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL
is 0. See Section 17.9.2.

® BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is
greater than 0. See Section 17.9.2.

® FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g.
when a counter overflows and is configured to trigger PMI).

® FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears each of the “ENABLE” field of
MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3) to disable all the counters.

® FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all
the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR,
BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently, the
enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored, after the SMI handler issues RSM to complete its service. Note that system software
must check 1A32_DEBUGCTL. to determine if the processor supports the FREEZE_WHILE_SMM_EN control bit.
FREEZE_WHILE_SMM_EN is supported if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting
1. See Section 18.14 for details of detecting the presence of IA32_PERF_CAPABILITIES MSR.

17.4.2 Monitoring Branches, Exceptions, and Interrupts

When the LBR flag (bit O) in the 1A32_DEBUGCTL MSR is set, the processor automatically begins recording branch
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler. This action does not clear previously stored LBR stack MSRs. The branch record for the last four
taken branches, interrupts and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers
(DRO through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the 1A32_DEBUGCTL MSR remains set, the processor will continue to update
LBR stack MSRs. This is because BTM information must be generated from entries in the LBR stack. A #DB does not
automatically clear the TR flag.

Vol.3B 17-11

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.4.3 Single-Stepping on Branches

When software sets both the BTF flag (bit 1) in the 1A32_DEBUGCTL MSR and the TF flag in the EFLAGS register,
the processor generates a single-step debug exception only after instructions that cause a branch.® This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before
resuming program execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages

Setting the TR flag (bit 6) in the 1A32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM.
A debugging device that is monitoring the system bus can read these messages and synchronize operations with
taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus,
as described in Section 17.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core microarchitecture, TR and LBR
bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined when TR is
set.

For 1A processor families based on Intel NetBurst microarchitecture, Intel microarchitecture code name Nehalem
and Intel Atom processor family, the processor can collect branch records in the LBR stack and at the same time
send/store BTMs when both the TR and LBR flags are set in the 1A32_DEBUGCTL MSR (or the equivalent
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:

¢ BTM may not be observable on Intel Atom processor family processors that do not provide an externally visible
system bus.

17.4.4.1 Branch Trace Message Visibility

Branch trace message (BTM) visibility is implementation specific and limited to systems with a front side bus
(FSB). BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional
FSB.

17.4.5 Branch Trace Store (BTS)

A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit O) of IA32_DEBUGCTL provides
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most
recent branch records are always available or it can be configured to generate an interrupt when the buffer is nearly
full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation of inter-
rupt when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task.
See Section 7.2.1, “Task-State Segment (TSS).

17-12 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.4.6 CPL-Qualified Branch Trace Mechanism

CPL-qualified branch trace mechanism is available to a subset of Intel 64 and 1A-32 processors that support the
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if
CPUID.O1H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System software can selectively
specify CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two
bit fields, BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the
CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI

Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and
performance monitoring are:

® Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request by clearing the LBR bit (bit 0)
in IA32_DEBUGCTL. Software must then re-enable 1A32_DEBUGCTL.[0] to continue monitoring branches.
When using this feature, software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling LBRs
by accident if they were just disabled.

® Freezing PMCs on PMI (bit 12) — The processor freezes the performance counters on a PMI request by
clearing the MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3). The PMCs affected include both general-
purpose counters and fixed-function counters (see Section 18.4.1, “Fixed-function Performance Counters”).
Software must re-enable counts by writing 1s to the corresponding enable bits in MSR_PERF_GLOBAL_CTRL
before leaving a PMI service routine to continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
® A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.
— For the general-purpose counters; this is done by setting bit 20 of the 1A32_PERFEVTSELX register.

— For the fixed-function counters; this is done by setting the 3rd bit in the corresponding 4-bit control field of
the MSR_PERF_FIXED_CTR_CTRL register (see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR (see Figure
18-2).

® The PEBS buffer is almost full and reaches the interrupt threshold.
® The BTS buffer is almost full and reaches the interrupt threshold.

17.4.8 LBR Stack

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and 1A-32
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can
vary between different processor families. Table 17-3 lists the LBR stack size and TOS pointer range for several
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID instruc-
tion in Chapter 3 of Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 2A).

Table 17-3. LBR Stack Size and TOS Pointer Range

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer
06_3CH, 06_45H, 06_46H, 06_3FH 16 0to15

06_2AH, 06_2DH, 06_3AH, 06_3EH 16 0to15

06_1AH, 06_1€H, 06_1FH, 06_2EH, 16 0to15

06_25H, 06_2CH, 06_2FH

06_17H, 06_1DH 4 Oto3

06_0FH 4 Oto3

06_1CH 8 Oto7

Vol.3B 17-13

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR)
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 35, “Model-Specific
Registers (MSRs)” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C for model-
specific MSR addresses).

® Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size
column of Table 17-3) that store source and destination address of recent branches (see Figure 17-3):

— MSR_LASTBRANCH_O_FROM_IP (address is model specific) through the next consecutive (N-1) MSR
address store source addresses

— MSR_LASTBRANCH_O_TO_IP (address is model specific) through the next consecutive (N-1) MSR address
store destination addresses.
® Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is
given in Table 17-3.

17.4.8.1 LBR Stack and Intel® 64 Processors

LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is recorded. If IA-32e mode
is enabled, the processor writes 64-bit values into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, the upper 32-bits of last branch
records are cleared.

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP
63 0

Source Address

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1) TO_IP
63 0

Destination Address

Figure 17-4. 64-bit Address Layout of LBR MSR

Software should query an architectural MSR 1A32_PERF_CAPABILITIES[5:0] about the format of the address that
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,
— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective
source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR stack. See LBR
stack details below for flag support and definition.

— 000011B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of
respective source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR stack.
TSX fields are also supported.

Processor’s support for the architectural MSR 1A32_PERF_CAPABILITIES is provided by
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

17-14 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.4.8.2 LBR Stack and IA-32 Processors

The LBR MSRs in 1A-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and
“From Linear Address” using the high and low half of each 64-bit MSR.

17.4.8.3 Last Exception Records and Intel 64 Architecture

Intel 64 and 1A-32 processors also provide MSRs that store the branch record for the last branch taken prior to an
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is

recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

17.4.9 BTS and DS Save Area

The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates that the processor provides
the debug store (DS) mechanism. This mechanism allows BTMs to be stored in a memory-resident BTS buffer. See
Section 17.4.5, “Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section 18.4.4, “Precise
Event Based Sampling (PEBS),”) also uses the DS save area provided by debug store mechanism. When
CPUID.1:EDX[21] is set, the following BTS facilities are available:

® The BTS_UNAVAILABLE flag in the 1A32_MISC_ENABLE MSR indicates (when clear) the availability of the BTS
facilities, including the ability to set the BTS and BTINT bits in the MSR_DEBUGCTLA MSR.

® The IA32_DS_AREA MSR can be programmed to point to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two
types of information:

® Branch records — When the BTS flag in the 1A32_DEBUGCTL MSR is set, a branch record is stored in the BTS
buffer in the DS save area whenever a taken branch, interrupt, or exception is detected.

® PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS
buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence
of the PEBS event that caused the counter to overflow. When the state information has been logged, the
counter is automatically reset to a preselected value, and event counting begins again.

NOTE

On processors based on Intel Core microarchitecture and for Intel Atom processor family, PEBS is
supported only for a subset of the performance events.

NOTES

DS save area and recording mechanism is not available in the SMM. The feature is disabled on
transition to the SMM mode. Similarly DS recording is disabled on the generation of a machine
check exception and is cleared on processor RESET and INIT. DS recording is available in real
address mode.

The BTS and PEBS facilities may not be available on all processors. The availability of these facilities
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the
IA32_MISC_ENABLE MSR (see Chapter 35).

The DS save area is divided into three parts (see Figure 17-5): buffer management area, branch trace store (BTS)
buffer, and PEBS buffer. The buffer management area is used to define the location and size of the BTS and PEBS
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in
their respective buffers and to record the performance counter reset value. The linear address of the first byte of
the DS buffer management area is specified with the 1A32_DS_AREA MSR.

The fields in the buffer management area are as follows:

Vol.3B 17-15

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

® BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural
doubleword boundary.

® BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address
should be the same as the address in the BTS buffer base field.

® BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address should
be a multiple of the BTS record size (12 bytes) plus 1.

¢ BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This
address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior
to processor writing the BTS absolute maximum record.

® PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural
doubleword boundary.

® PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address
should be the same as the address in the PEBS buffer base field.

IA32_DS_AREA MSR
DS Buffer Management Area BTS Buffer

BTS Buffer Base | OH———»
Branch Record 0
BTS Index 4H
BTS Absolute 8H
Maximum h
BTS Interrupt Branch Record 1
Threshold CH
PEBS Buffer Base| 10H
PEBS Index 14H —
PEBS Absolute
Maximum 18H—
Branch Record n
PEBS Interrupt 1CH
Threshold L
20H
PEBS
Counter Reset 24H PEBS Buffer
L
Reserved | 30H PEBS Record 0
PEBS Record 1
PEBS Record n
—_—

Figure 17-5. DS Save Area

® PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address
should be a multiple of the PEBS record size (40 bytes) plus 1.

® PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it

17-16 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be
handled prior to processor writing the PEBS absolute maximum record.

PEBS counter reset value — A 40-bit value that the counter is to be reset to after state information has
collected following counter overflow. This value allows state information to be collected after a preset number
of events have been counted.

Figures 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as
follows:

Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was
taken.

Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception
service routine.

Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not
predicted (clear).

31 4 0
Last Branch From OH
Last Branch To 4H
8H
Branch Predicted 44

Figure 17-6. 32-bit Branch Trace Record Format

Figures 17-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the
beginning of the instruction that caused the event. However, there are cases where the registers may be logged in
a partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the
current code segment to a linear address.

31 0
EFLAGS OH
Linear IP 4H

EAX 8H
EBX CH
ECX 10H
EDX 14H
ESI 18H
EDI 1CH
EBP 20H
ESP 24H

Figure 17-7. PEBS Record Format

17.4.9.1 DS Save Area and IA-32e Mode Operation

When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area is shown in Figure 17-8. The
organization of each field in 1A-32e mode operation is similar to that of non-1A-32e mode operation. However, each

Vol.3B 17-17

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

field now stores a 64-bit address. The 1A32_DS_AREA MSR holds the 64-bit linear address of the first byte of the
DS buffer management area.

IA32_DS_AREA MSR
DS Buffer Management Area BTS Buffer

BTS Buffer Base OH——>»
Branch Record 0

BTS Index 8H
BTS Absolute
Maximum 10H h d
BTS Interrupt Branch Record 1
Threshold 18H
PEBS Buffer Base| 20H
PEBS Index 28H —
PEBS Absolute
Maximum S0H—)
Branch Record n
PEBS Interrupt | 3gy
Threshold —
40H
PEBS
Counter Reset 48H PEBS Buffer
—
Reserved | 50H PEBS Record 0
PEBS Record 1
PEBS Record n
L

Figure 17-8. IA-32e Mode DS Save Area

When 1A-32e mode is active, the structure of a branch trace record is similar to that shown in Figure 17-6, but each
field is 8 bytes in length. This makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record is
similar to that shown in Figure 17-7, but each field is 8 bytes in length and architectural states include register R8
through R15. This makes the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

63 4 0
Last Branch From OH
Last Branch To 8SH
10H
Branch Predicted 44

Figure 17-9. 64-bit Branch Trace Record Format

17-18 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

63 0

RFLAGS OH
RIP 8H
RAX 10H
RBX 18H
RCX 20H
RDX 28H
RSI 30H
RDI 38H
RBP 40H
RSP 48H
R8 50H
R15 88H

Figure 17-10. 64-bit PEBS Record Format

Fields in the buffer management area of a DS save area are described in Section 17.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures
17-9 and Figures 17-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all
operating modes.

The procedures used to program I1A32_DEBUG_CTRL MSR to set up a BTS buffer or a CPL-qualified BTS are
described in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors based on Intel Core
or Intel Atom microarchitecture should:

® Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.

® Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is
changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or
general-purpose counting (specifically: bits O or 1; see Figures 18-3).

17.4.9.2 Setting Up the DS Save Area

To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the
following procedure (See Section 18.4.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 17.4.9, “BTS and DS Save Area,”
and Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation”). Also see the additional notes in this
section.

Write the base linear address of the DS buffer management area into the 1A32_DS_AREA MSR.

Set up the performance counter entry in the XAPIC LVT for fixed delivery and edge sensitive. See Section
10.5.1, “Local Vector Table.”

Vol.3B 17-19

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the
XAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, “Writing the DS Interrupt
Service Routine.”

The following restrictions should be applied to the DS save area.

® The three DS save area sections should be allocated from a non-paged pool, and marked accessed and dirty. It
is the responsibility of the operating system to keep the pages that contain the buffer present and to mark them
accessed and dirty. The implication is that the operating system cannot do “lazy” page-table entry propagation
for these pages.

® The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses.
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary.

® Itis recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the
corresponding record sizes.

® The precise event records buffer should be large enough to hold the number of precise event records that can
occur while waiting for the interrupt to be serviced.

® The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

® There are no memory type restrictions on the buffers, although it is recommended that the buffers be
designated as WB memory type for performance considerations.

® Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all
addresses within buffer bounds must be 0.

® Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any
change to control register CR3 will not change the DS addresses.

® The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

17.4.9.3 Setting Up the BTS Buffer

Three flags in the MSR_DEBUGCTLA MSR (see Table 17-4), IA32_DEBUGCTL (see Figure 17-3), or
MSR_DEBUGCTLB (see Figure 17-16) control the generation of branch records and storing of them in the BTS
buffer; these are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines
whether the BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simul-
taneously sent to the system bus and logged in the BTS buffer. The BTINT flag enables the generation of an inter-
rupt when the BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

Table 17-4. 1A32_DEBUGCTL Flag Encodings

TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of
the DS buffer management area to set up the BTS buffer in memory.

2. Setthe TR and BTS flags in the 1A32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or
MSR_DEBUGCTLB for Pentium M processors).

3. Clear the BTINT flag in the corresponding 1A32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB)
if a circular BTS buffer is desired.

17-20 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

NOTES

If the buffer size is set to less than the minimum allowable value (i.e. BTS absolute maximum < 1
+ size of BTS record), the results of BTS is undefined.

In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

17.4.9.4 Setting Up CPL-Qualified BTS

If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The
encoding of these five bits are shown in Table 17-5.

Table 17-5. CPL-Qualified Branch Trace Store Encodings

TR BTS BTS_OFF_OS |BTS_OFF_USR |BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > O in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > O in the BTS buffer; generate an interrupt
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt
when the buffer is nearly full

17.4.9.5 Writing the DS Interrupt Service Routine

The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.

® The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of
0 to secure the buffer storage area.

® Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the
DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the
appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is
accomplished by checking for counter overflow.

® There must be separate save areas, buffers, and state for each processor in an MP system.

® Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during
access to the DS save area. This is done by clearing TR flag in the 1A32_DEBUGCTL (or MSR_DEBUGCTLA MSR)
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be
restored to their original values when exiting the ISR.

® The processor will not disable the DS save area when the buffer is full and the circular mode has not been
selected. The current DS setting must be retained and restored by the ISR on exit.

Vol. 3B 17-21

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

® After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like
new entries upon the next invocation of the ISR.

® The ISR must clear the mask bit in the performance counter LVT entry.

® The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL
if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst
microarchitecture).

® The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition
before leaving the interrupt handler.

175 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2
DUO AND INTEL° ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities
described in this section also apply to Intel Atom processor family. These capabilities are similar to those found in
Pentium 4 processors, including support for the following facilities:

® Debug Trace and Branch Recording Control — The 1A32_DEBUGCTL MSR provide bit fields for software to
configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

® Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination
addresses related to recently executed branches. See Section 17.5.1.

® Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is
available.

— The Intel Atom processor family clears the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
® Branch trace messages — See Section 17.4.4.
® Last exception records — See Section 17.9.3.
® Branch trace store and CPL-qualified BTS — See Section 17.4.5.
® FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7.
® FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7.

®* FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1 LBR Stack

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Xeon and
Intel Atom processor families.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon processor families:
® Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_O_FROM_IP (address 40H) through MSR_LASTBRANCH_3 FROM_IP (address 43H)
store source addresses

— MSR_LASTBRANCH_O_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store
destination addresses

® Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded.

17-22 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
® Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_O0O_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H)
store source addresses

— MSR_LASTBRANCH_O_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store
destination addresses

® Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) duplicate functions of the LastExcep-
tionTolP and LastExceptionFromIP MSRs found in P6 family processors.

176 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® microarchitecture code name
Westmere support last branch interrupt and exception recording. These capabilities are similar to those found in
Intel Core 2 processors and adds additional capabilities:

¢ Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to
configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout.

® Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses
related to recently executed branches. See Section 17.6.1.

® Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 17.4.2 and
Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.

® Branch trace messages — The 1A32_DEBUGCTL MSR provides bit fields for software to enable each logical
processor to generate branch trace messages. See Section 17.4.4. However, not all BTM messages are
observable using the Intel® QPI link.

® Last exception records — See Section 17.9.3.

® Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 17.4.5.
® FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7.

® FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7.

¢ UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow
interrupt form the uncore.

® FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[BIt 12] is reporting 1. See Section 17.4.1.
Processors based on Intel microarchitecture code name Nehalem provide additional capabilities:

® Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 17-11) for
software to enable each logical processor to receive an uncore counter overflow interrupt.

® LBR filtering — Processors based on Intel microarchitecture code name Nehalem support filtering of LBR
based on combination of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only
captures the subset of branches that are specified by MSR_LBR_SELECT.

Vol.3B 17-23

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

31 141312111098 7654321 0

Reserved

FREEZE_WHILE_SMM_EN] I\J

UNCORE_PMI_EN
FREEZE_PERFMON_ON_PMI
FREEZE_LBRS_ON_PMI
BTS_OFF_USR — BTS off in user code
BTS_OFF_OS — BTS off in OS
BTINT — Branch trace interrupt
BTS — Branch trace store

TR — Trace messages enable
Reserved
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 17-11. 1A32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalem

17.6.1 LBR Stack

Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is shown in Table 17-6 and Table 17-7.

Table 17-6. 1A32_LASTBRANCH_x_FROM_IP

Bit Field Bit Offset |Access |Description

Data 47:.0 R/0 The linear address of the branch instruction itself, this is the “branch from” address.

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register.

MISPRED 63 R/0 When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Table 17-7. 1A32_LASTBRANCH_x_TO_IP

Bit Field Bit Offset |Access |Description

Data 47:0 R/0 The linear address of the target of the branch instruction itself, this is the “branch to”
address.

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register.

Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-8.

Table 17-8. LBR Stack Size and TOS Pointer Range

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer
06_1AH 16 0to15

17-24 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.6.2 Filtering of Last Branch Records

MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all branches will be captured.
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in
the LBR. The layout of MSR_LBR_SELECT is shown in Table 17-9.

Table 17-9. MSR_LBR_SELECT for Intel microarchitecture code name Nehalem

Bit Field Bit Offset |Access |Description

CPL_EQO 0 R/W When set, do not capture branches occurring in ring 0
CPL_NEQ O 1 R/W When set, do not capture branches occurring in ring >0
JcC 2 R/W When set, do not capture conditional branches
NEAR_REL_CALL |3 R/W When set, do not capture near relative calls
NEAR_IND_CALL |4 R/W When set, do not capture near indirect calls
NEAR_RET 5 R/W When set, do not capture near returns
NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps
NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps
FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME SANDY
BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.6, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name
Nehalem”, apply to processors based on Intel® microarchitecture code name Sandy Bridge. For processors based
on Intel® microarchitecture code name lvy Bridge, the same holds true.

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In Intel
microarchitecture code name Sandy Bridge, each logical processor has its own MSR_LBR_SELECT. The filtering
semantics for “Near_ind_jmp* and “Near_rel_jmp* has been enhanced, see Table 17-10.

Table 17-10. MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge

Bit Field Bit Offset |Access |Description

CPL_EQO 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ O 1 R/wW When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL |3 R/W When set, do not capture near relative calls

NEAR_IND_CALL (4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns
NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.
FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Vol.3B 17-25

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
HASWELL

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.7, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy
Bridge”, apply to next generation processors based on Intel® Microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-11. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
17.7.

Table 17-11. MSR_LBR_SELECT for Intel microarchitecture code name Haswell

Bit Field Bit Offset |Access |Description

CPL_EQO 0 R/W When set, do not capture branches occurring in ring O

CPL_NEQ O 1 R/W When set, do not capture branches occurring in ring >0

JcC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL |3 R/W When set, do not capture near relative calls

NEAR_IND_CALL |4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns
NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.
FAR_BRANCH 8 R/WwW When set, do not capture far branches

EN_CALLSTACK' |9 Enable LBR stack to use LIFO filtering to capture Call stack profile
Reserved 63:10 Must be zero

NOTES:

1. Must set valid combination of bits 0-8 in conjunction with bit 9, otherwise the counter result is undefined.

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become
less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution flow is
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list
of parameters for the main execution function call. A long list of such parameters returned by the leaf functions
would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:

® Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target
addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.

® Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by
1, modulo 16, before recording the next pair of addresses.

® Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
® Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

17-26 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

— At most one of CPL_EQ_0O, CPL_NEQ_O is set.

Note that when call stack profiling is enabled, "zero length calls" are excluded from writing into the LBRs. (A "zero
length call" uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and
then pops off that address into a register. This is accomplished without any matching return on the call.)

17.8.1 LBR Stack Enhancement

Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is enumerated by 1A32_PERF_CAPABILITIES[5:0] = 04H, and is
shown in Table 17-12 and Table 17-7.

Table 17-12. 1A32_LASTBRANCH_x_FROM_IP with TSX Information

Bit Field Bit Offset |Access |Description

Data 47.0 R/0 The linear address of the branch instruction itself, this is the “branch from” address.
SIGN_EXT 60:48 R/0 Signed extension of bit 47 of this register.

TSX_ABORT 61 R/0 When set, indicates a TSX Abort entry

LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/0 When set, indicates the entry occurred in a TSX region

MISPRED 63 R/0 When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

179 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for

recording taken branches, interrupts and exceptions:

® Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches,
interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction
address.

® Send the branch records out on the system bus as branch trace messages (BTMs).
® Log BTMs in a memory-resident branch trace store (BTS) buffer.
To support these functions, the processor provides the following MSRs and related facilities:

® MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken
branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtIMSR
in the P6 family processors.

® Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

¢ CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS
buffer.

® 1A32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.

® Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs
(MSR_LASTBRANCH_O through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family
[CPUID family OFH, models OH-02H]. The LBR stack consists of 16 MSR pairs
(MSR_LASTBRANCH_0O_FROM_IP through MSR_LASTBRANCH_15_FROM_IP and

Vol. 3B 17-27

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

MSR_LASTBRANCH_O_TO_IP through MSR_LASTBRANCH_15_TO_IP) for the Pentium 4 and Intel Xeon
processor family [CPUID family OFH, model O3H].

Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the Pentium
4 and Intel Xeon processor family [CPUID family OFH, models OH-02H]. This pointer becomes a 4-bit pointer
(0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family OFH, model 03H]. See also: Table
17-13, Figure 17-12, and Section 17.9.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchi-
tecture.”

Last exception record — See Section 17.9.3, “Last Exception Records.”

179.1 MSR_DEBUGCTLA MSR

The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to
this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as
follows:

LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of
the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example,
when an instruction or data breakpoint or a single-step trap occurs). See Section 17.9.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches.”

TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages.”

31 76 543210

Reserved

BTS_OFF_USR — Disable storing non-CPL_0 BTS J
BTS_OFF_OS — Disable storing CPL_0 BTS

BTINT — Branch trace interrupt
BTS — Branch trace store
TR — Trace messages enable
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 17-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch
Trace Store (BTS).”

BTS_OFF_OS (disable ring O branch trace store) flag (bit 5) — When set, enables the BTS facilities to
skip sending/logging CPL_0O BTMs to the memory-resident BTS buffer. See Section 17.9.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

17-28 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

® BTS_OFF_USR (disable ring O branch trace store) flag (bit 6) — When set, enables the BTS facilities to
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.9.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

NOTE

The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in
Figure 17-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 35, “Model-Specific Registers (MSRs),” for a detailed description of each of the last branch recording
MSRs.

17.9.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last)
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1.
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-13 and Figure 17-12.

Table 17-13. LBR MSR Stack Size and TOS Pointer Range for the Pentium’ 4 and the Intel’ Xeon® Processor Family

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer
Family OFH, Models OH-02H; MSRs at locations 1DBH-1DEH. 4 Oto3

Family OFH, Models; MSRs at locations 680H-68FH. 16 Oto15

Family OFH, Model 03H; MSRs at locations 6COH-6CFH. 16 Oto15

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the
RDMSR instruction.

Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The
contents of the from and to addresses differ, depending on the source of the branch:

® Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction
and the “to” address is the target instruction of the branch.

® Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for
the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

® Exception — If the record is for an exception, the “from” address is the linear address of the instruction that
caused the exception to be generated and the “to” address is the address of the first instruction in the
exception handler routine.

Vol. 3B 17-29

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

CPUID Family OFH, Models OH-02H
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
63 32-31 0

To Linear Address From Linear Address

CPUID Family OFH, Model 03H-04H
MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP

63 32-31 0

Reserved From Linear Address

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP
63 32-31 0

Reserved To Linear Address

Figure 17-13. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch record
for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the
branch instruction followed by a record for the interrupt.

17.9.3 Last Exception Records

The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7
and Intel® Atom™ processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that
duplicate the functions of the LastExceptionTolP and LastExceptionFromIP MSRs found in the P6 family processors.
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the
processor took prior to an exception or interrupt being generated.

17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™
SOLO AND INTEL® CORE™DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in
some MSR names and locations.

Note the following:

® 1A32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable,
performance monitoring breakpoint flags, single stepping on branches, and last branch. 1A32_DEBUGCTL MSR
is located at register address 01D9H.

See Figure 17-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism

17-30 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a
memory-resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

31 876543210
Reserved
BTINT — Branch trace interrupt ‘ LJ
BTS — Branch trace store

TR — Trace messages enable
Reserved
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 17-14. 1A32_DEBUGCTL MSR for Intel Core Solo
and Intel Core Duo Processors

® Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

¢ Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_O through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start
at 40H). See Figure 17-15.

® Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel
Core Solo and Intel Core Duo processors, this MSR is located at register address 0O1C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionTolP and
LastExceptionFromIP MSRs found in P6 family processors.

For details, see Section 17.9, “Last Branch, Interrupt, and Exception Recording (Processors based on Intel
NetBurst® Microarchitecture),” and Section 35.12, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors”

MSR_LASTBRANCH_O through MSR_LASTBRANCH_7

63 32-31 0
To Linear Address From Linear Address

Figure 17-15. LBR Branch Record Layout for the Intel Core Solo
and Intel Core Duo Processor

Vol. 3B 17-31

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors.
There are differences in the shape of the stack and in some MSR names and locations. Note the following:

¢® MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable,
performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M
processors, this MSR is located at register address 01D9H. See Figure 17-16 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the
performance monitoring/breakpoint pins on the processor (BPO#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DRO through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

31 876543210
Reserved
BTINT — Branch trace interrupt | LJ
BTS — Branch trace store

TR — Trace messages enable
PB3/2/1/0 — Performance monitoring breakpoint flags
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 17-16. MSR_DEBUGCTLB MSR for Pentium M Processors

® Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

17-32 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

¢ Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_O through
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M
Processors, these pairs are located at register addresses 040H-047H. See Figure 17-17.

® Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-
0) to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For
Pentium M Processors, this MSR is located at register address 01C9H.

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7

63 32-31 0
To Linear Address From Linear Address

Figure 17-17. LBR Branch Record Layout for the Pentium M Processor

For more detail on these capabilities, see Section 17.9.3, “Last Exception Records,” and Section 35.13, “MSRs In
the Pentium M Processor.”

17.12 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the
processor: DEBUGCTLMSR, LastBranchTolP, LastBranchFromIP, LastExceptionTolP, and LastExceptionFromIP.
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 35, “Model-Specific Registers (MSRs),” for a detailed description of each of the last branch recording
MSRs.

17.12.1 DEBUGCTLMSR Register

The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register
can be written to using the WRMSR instruction, when operating at privilege level O or when in real-address mode.
A protected-mode operating system procedure is required to provide user access to this register. Figure 17-18
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as
follows:
¢ LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and
target addresses (in the LastBranchTolP, LastBranchFromIP, LastExceptionTolP, and LastExceptionFromIP
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data
breakpoint or single-step trap occurs.

Vol.3B 17-33

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

31 76543210

plP(P|lP|B|L
Reserved Tis|B|B|B|T|B
Riz|2|1]0|F|R

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Figure 17-18. DEBUGCTLMSR Register (P6 Family Processors)

¢ BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag. See Section 17.4.3, “Single-Stepping on Branches.”

® PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set,
the performance monitoring/breakpoint pins on the processor (BPO#, BP1#, BP2#, and BP3#) report
breakpoint matches in the corresponding breakpoint-address registers (DRO through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear,
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by
reporting performance events.

® TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section
17.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When
trace messages are enabled, the values stored in the LastBranchTolP, LastBranchFromIP, LastExceptionTolP,
and LastExceptionFromIP MSRs are undefined.

17.12.2 Last Branch and Last Exception MSRs

The LastBranchTolP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads
the target address for the branch into the LastBranchTolP MSR.

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the exception
or interrupt handler that is called is loaded into the LastBranchTolP MSR.

The LastExceptionTolP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for the
last branch that the processor took prior to an exception or interrupt being generated. When an exception or inter-
rupt occurs, the contents of the LastBranchTolP and LastBranchFromIP MSRs are copied into these registers before
the to and from addresses of the exception or interrupt are recorded in the LastBranchTolP and LastBranchFromIP
MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchTolP, LastBranchFromlIP, LastExceptionTolP, and LastExceptionFromIP
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch
records for the Pentium 4 and Intel Xeon processors.

17.12.3 Monitoring Branches, Exceptions, and Interrupts

When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches that
it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each time
a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the Last-
BranchTolP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the
contents of the LastBranchTolP and LastBranchFromIP MSRs into the LastExceptionTolP and LastExceptionFromIP
MSRs prior to recording the to and from addresses of the interrupt or exception.

17-34 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch,
interrupt, or exception taken are thus retained in the LastBranchTolP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionTolP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DRO through DR3),
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction
pointers recorded in the LastBranchTolP, LastBranchFromIP, LastExceptionTolP, and LastExceptionFromIP MSRs
are offsets into a code segment, software must determine the segment base address of the code segment associ-
ated with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The
segment base address can be determined by reading the segment selector for the code segment from the stack
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

1713 TIME-STAMP COUNTER

The Intel 64 and 1A-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:

® TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an
if the function CPUID.1:EDX.TSC[bit 4] = 1.

® JA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used
as the counter.

¢ RDTSC instruction — An instruction used to read the time-stamp counter.

® TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if
CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to O following a RESET of
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp
counter to stop.

Processor families increment the time-stamp counter differently:

® For Pentium M processors (family [06H], models [09H, ODH]); for Pentium 4 processors, Intel Xeon processors
(family [OFH], models [OOH, O1H, or 02H]); and for P6 family processors: the time-stamp counter increments
with every internal processor clock cycle.

The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel®
SpeedStep® technology transitions may also impact the processor clock.

® For Pentium 4 processors, Intel Xeon processors (family [OFH], models [0O3H and higher]); for Intel Core Solo
and Intel Core Duo processors (family [06H], model [OEH]); for the Intel Xeon processor 5100 series and Intel
Core 2 Duo processors (family [06H], model [OFH]); for Intel Core 2 and Intel Xeon processors (family [06H],
DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That rate may be set by the
maximum core-clock to bus-clock ratio of the processor or may be set by the maximum resolved frequency at
which the processor is booted. The maximum resolved frequency may differ from the maximum qualified
frequency of the processor, see Section 18.13.5 for more detail. On certain processors, the TSC frequency may
not be the same as the frequency in the brand string.

The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core
changes frequency. This is the architectural behavior moving forward.

Vol.3B 17-35

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

NOTE

To determine average processor clock frequency, Intel recommends the use of performance
monitoring logic to count processor core clocks over the period of time for which the average is
required. See Section 18.13, “Counting Clocks,” and Chapter 19, “Performance-Monitoring Events,”
for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4,
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as an
ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-stamp
counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter on
processors before family [OFH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can be
written (the high-order 32 bits are cleared to 0). For family [OFH], models [03H, 04H, 06H]; for family [0O6H]],
model [OEH, OFH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.13.1 Invariant TSC

The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC.
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with
a ring transition or access to a platform resource.

17.13.2 1A32_TSC_AUX Register and RDTSCP Support

Processors based on Intel microarchitecture code name Nehalem provide an auxiliary TSC register, IA32_TSC_AUX
that is designed to be used in conjunction with 1A32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized
by privileged software with a signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with 1A32_TSC is to allow software to read the 64-bit time
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation.
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring O access is
controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC.
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.

17.13.3 Time-Stamp Counter Adjustment

Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that

17-36 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these
writes on each logical processor. It may be difficult for software to do this in a way than ensures that all logical
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each
logical processor. A logical processor maintains and uses the I1A32_TSC_ADJUST MSR as follows:

® On RESET, the value of the IA32_TSC_ADJUST MSR is O.

® If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC,
the logical processor also adds (or subtracts) value X from the 1A32_TSC_ADJUST MSR.

® If an execution of WRMSR to the 1A32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical
processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR
itself, or to the 1A32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software
seeking to adjust the TSC can do so by using WRMSR to write the same value to the I1A32_TSC_ADJUST MSR on
each logical processor.

Processor support for the 1A32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST
(bit 1).

1714 CACHE QUALITY-OF-SERVICE (QOS) MONITORING

Future generations of Intel Xeon processor may offer monitoring capability in each logical processor to measure
specific quality-of-service metric, for example, L3 cache occupancy. The programming interface for this capability
is described in the rest of this chapter.

17.14.1 Overview of Cache QoS Monitoring

Cache QoS Monitoring provides a layer of abstraction between applications and logical processors through the
use of Resource Monitoring 1Ds (RMIDs). Each logical processor in the system can be assigned an RMID inde-
pendently, or multiple logical processors can be assigned to the same RMID value (e.g., to track an application with
multiple threads). For each logical processor, only one RMID value is active at a time. This is enforced by the
1IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. Writing to this MSR by software
changes the active RMID of the logical processor from an old value to a new value.

The Cache QoS Hardware tracks cache utilization of memory accesses according to the RMIDs and reports moni-
tored data via a counter register (IA32_QM_CTR). Software must also configure an event selection MSR
(IA32_QM_EVTSEL) to specify which QOS metric is to be reported.

Processor support of the QoS Monitoring framework is reported via CPUID instruction. The resource type available
to the QoS Monitoring framework is enumerated via a new leaf unction in CPUID. Reading and writing to the QoS
MSRs require RDMSR and WRMSR instructions.

17.14.2 Enumeration and Detection Support of Cache QoS Monitoring

Software can query processor support of QoS capabilities by executing CPUID instruction with EAX = 07H, ECX =
OH as input. If CPUID.(EAX=07H, ECX=0):EBX.QOS[bit 12] reports 1, the processor provides the following
programming interfaces for QoS monitoring:

® One or more sub-leaves in CPUID leaf function OFH (QoS Enumeration leaf):

— QoS leaf sub-function O enumerates available resources that support QoS monitoring, i.e. executing CPUID
with EAX=0FH and ECX=0H. In the initial implementation, L3 cache QoS is the only resource type available.
Each supported resource type is represented by a bit field in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit
position corresponds the sub-leaf index that software must use to query details of the QoS monitoring
capability of that resource type. Reserved bit fields of CPUID.(EAX=0FH, ECX=0):EDX[31:2] corresponds
to unsupported sub-leaves of the CPUID.OFH leaf (see Figure 17-19 and Figure 17-20). Additionally,

Vol. 3B 17-37

DEBUGGING, BRANCH

PROFILING, AND TIME-STAMP COUNTER

CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports QoS

monitoring

in the processor.

CPUID.(EAX=0FH, ECX=0H) Output: (EAX: Reserved; ECX: Reserved)

31

2

EDX

Reserved

wWr |

31

EBX

Highest RMID Value of Any Resource Type (Zero-Based)

Figure 17-19. CPUID.(EAX=0FH, ECX=0H) QoS Resource Type Enumeration

— Additional sub-leaves of CPUID.EAX=0FH enumerate the specific details for software to program QoS
monitoring MSRs. Software must query the capability of each available resource type that supports QoS
monitoring from a sub-leaf of leaf OFH using the sub-leaf index reported by the corresponding non-zero bit
in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. Cache QoS monitoring capability for L3 is enumerated by
CPUID.(EAX=0FH, ECX=1H), see Figure 17-19. For each supported QoS monitoring resource type,
hardware supports only a finite number of RMIDs. CPUID.(EAX=0FH, ECX=1H).ECX enumerates the
highest RMID value that can be monitored with this resource type. CPUID.(EAX=0FH, ECX=1H).ECX
specifies a bit vector that is used to look up the eventlID (See Table 17-14) that software must program with
IA32_QM_EVTSEL. After software configures 1A32_QMEVTSEL with the desired RMID and eventID, it can
read QoS data from I1A32_QM_CTR. The raw numerical value reported from IA32_QM_CTR can be
converted to occupancy metric by multiplying from CPUID.(EAX=0FH, ECX=1H).EBX, see Figure 17-20.

EBX

ECX

EDX

CPUID.(EAX=0FH, ECX=1H) Output: (EAX: Reserved)

31

Upscaling Factor to Total Occupancy (Bytes)

Upscaling Factor

31

Highest RMID Value of This Resource Type (Zero-Based)

MaxRMID

31 21

Reserved

EventTypeBitMask

Figure 17-20. L3 Cache QoS Monitoring Capability Enumeration (CPUID.(EAX=0FH, ECX=1H))

Table 17-14. Cache QoS Supported Event IDs

Event Type Event ID
L3 Cache Occupancy 1
Reserved All other event codes

17-38 Vol. 3B

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

IA32_PQR_ASSOC: This MSR specifies the active RMID that QoS monitoring hardware will use to tag internal
operations, such as L3 cache request. The layout of the MSR is shown in Figure 17-21. Software specifies the
active RMID to monitor in the 1A32_PQR_ASSOC.RMID field. The width of the RMID field can vary from one
implementation to another, and is derived from LOG, (1 + CPUID.(EAX=0FH, ECX=0):EBX[31:0]). In the
initial implementation, the width of the RMID field is 10 bits. The value of this MSR after power-on is O.

1IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance
monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-21. Bits
1IA32_QM_EVTSEL.EvtID (bits 7:0) specifies an event code of a supported resource type for hardware to report
QoS monitored data associated with 1A32_QM_EVTSEL.RMID (bits 41:32). Software can configure
1IA32_QM_EVTSEL.RMID with any RMID that are active within the physical processor. The width of
1IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the
IA32_QM_EVTSEL register are shown in Table 17-14. Note that valid event codes may not necessarily map
directly to the bit position used to enumerate support for the resource via CPUID

IA32_QM_CTR: This MSR reports monitored QoS data when available. It contains three bit fields. If software
configures an unsupported RMID or event type in 1A32_QM_EVTSEL, then 1A32_QM_CTR.Error (bit 63) will be
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates QoS
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore,
IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 32 are both clear. For Cache QoS monitoring, software
can convert 1A32_QM_CTR.data into cache occupancy metric by multiplying with CPUID.(EAX=0FH,
ECX=1H).EBX.

Width of IA32_PQR_ASSOC.RMID field: Log, (CPUID.(EAX=0FH, ECX=0H).EBX[31:0] +1)
63 10 9 0
Reserved RMID IA32_PQR_ASSOC
63 4241 3231 87 0
Reserved RMID Reserved EvtiD IA32_QM_EVTSEL
63 61 0
E|U Resource Monitoring Data IA32_QM_CTR

Figure 17-21. IA32_PQR_ASSOC, IA32_QM_EVTSEL and IA32_QM_CTR MSRs

Software must follow the following sequence of enumeration to discover Cache QoS Monitoring capabilities:

1.
2.

Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H,
ECX=0):EBX.QOS[bit 12] is set;

If CPUID.(EAX=07H, ECX=0):EBX.QOS[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query
available resource types that support QoS monitoring;

If CPUID.(EAX=0FH, ECX=0):EBX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the
capability of L3 Cache QoS monitoring.

If CPUID.(EAX=0FH, ECX=0):EBX reports additional resource types supporting QoS monitoring, then execute
CPUID with EAX=0FH, ECX set to a corresponding resource type ID as enumerated by the bit position of
CPUID.(EAX=0FH, ECX=0):EBX.

Vol. 3B 17-39

DEBUGGING, BRANCH PROFILING, AND TIME-STAMP COUNTER

17-40 Vol. 3B

CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and I1A-32 architectures provide facilities for monitoring performance.

18.1 PERFORMANCE MONITORING OVERVIEW

Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection
of events to be monitored and to allow greater control events to be monitored. Next, Pentium 4 and Intel Xeon
processors introduced a new performance monitoring mechanism and new set of performance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, Pentium 4,
and Intel Xeon processors are not architectural. They are all model specific (not compatible among processor fami-
lies). Intel Core Solo and Intel Core Duo processors support a set of architectural performance events and a set of
non-architectural performance events. Processors based on Intel Core microarchitecture and Intel® Atom™

microarchitecture support enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or sampling usage. These events
are non-architectural and vary from one processor model to another. They are similar to those available in Pentium
M processors. These non-architectural performance monitoring events are specific to the microarchitecture and
may change with enhancements. They are discussed in Section 18.3, “Performance Monitoring (Intel® Core™ Solo
and Intel® Core™ Duo Processors).” Non-architectural events for a given microarchitecture can not be enumerated
using CPUID; and they are listed in Chapter 19, “Performance-Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and sampling usages, with a smaller set of available events. The visible
behavior of architectural performance events is consistent across processor implementations. Availability of archi-
tectural performance monitoring capabilities is enumerated using the CPUID.OAH. These events are discussed in
Section 18.2.

See also:
— Section 18.2, “Architectural Performance Monitoring”
— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”
— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”
— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)”

— Section 18.6, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Sandy
Bridge”

— Section 18.8.8, “Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility”
— Section 18.9, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”
— Section 18.10, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.11, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

Vol.3B 18-1

PERFORMANCE MONITORING

— Section 18.12, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel
NetBurst® Microarchitecture”

— Section 18.15, “Performance Monitoring and Dual-Core Technology”
— Section 18.16, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache”
— Section 18.18, “Performance Monitoring (P6 Family Processor)”

— Section 18.19, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING

Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a
mechanism for software to enumerate performance events and provides configuration and counting facilities for
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The
CPUID.OAH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and
enhanced architectural performance monitoring identified by version ID of 2.

Intel Atom processor family supports the base level functionality, enhanced architectural performance monitoring
identified by version ID of 2 and version ID of 3 (including two general-purpose performance counters, 1A32_PMCO,
1A32_PMC1). Intel Core i7 processor family supports the base level functionality, enhanced architectural perfor-
mance monitoring identified by version ID of 2 and version ID of 3, (including four general-purpose performance
counters, 1A32_PMCO-1A32_PMC3).

18.2.1 Architectural Performance Monitoring Version 1

Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
® Bit field layout of IA32_PERFEVTSELX is consistent across microarchitectures.

® Addresses of IA32_PERFEVTSELXx MSRs remain the same across microarchitectures.

® Addresses of IA32_PMC MSRs remain the same across microarchitectures.

® Each logical processor has its own set of IA32_PERFEVTSELx and 1A32_PMCx MSRs. Configuration facilities and
counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:

® Number of performance monitoring counters available in a logical processor (each 1A32_PERFEVTSELX MSR is
paired to the corresponding IA32_PMCx MSR)

® Number of bits supported in each 1A32_PMCx
® Number of architectural performance monitoring events supported in a logical processor

Software can use CPUID to discover architectural performance monitoring availability (CPUID.OAH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.OAH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version
identifier is greater than zero, architectural performance monitoring capability is supported. Software queries the

18-2 Vol.3B

PERFORMANCE MONITORING

CPUID.OAH for the version identifier first; it then analyzes the value returned in CPUID.OAH.EAX, CPUID.OAH.EBX
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many
IA32_PERFEVTSELX/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

18.2.1.1 Architectural Performance Monitoring Version 1 Facilities

Architectural performance monitoring facilities include a set of performance monitoring counters and performance
event select registers. These MSRs have the following properties:

IA32_PMCx MSRs start at address OC1H and occupy a contiguous block of MSR address space; the number of
MSRs per logical processor is reported using CPUID.OAH:EAX[15:8].

IA32_PERFEVTSELX MSRs start at address 186H and occupy a contiguous block of MSR address space. Each
performance event select register is paired with a corresponding performance counter in the OC1H address
block.

The bit width of an IA32_PMCx MSR is reported using the CPUID.OAH:EAX[23:16]. This the number of valid bits
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and
the high-order bits are sign-extended from the value of bit 31.

Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:

Event select field (bits O through 7) — Selects the event logic unit used to detect microarchitectural
conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this field
is defined architecturally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using CPUID.OAH:EAX. A processor may
support only a subset of pre-defined values.

63 31 24232221201918171615 8 7 0

Counter Mask | | | g
(CMASK) |/ [N

INV—Invert counter malskJ

EN—Enable counters

INT—APIC interrupt enable
PC—Pin control
E—Edge detect
0OS—Operating system mode ——— |:| Reserved
USR—User Mode

z—

|
Pl |O
iR

Inc

Unit Mask (UMASK) Event Select

Figure 18-1. Layout of IA32_PERFEVTSELX MSRs

Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural
performance event, its corresponding UMASK value defines a specific microarchitectural condition.

A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using
CPUID.OAH:EBX. Architectural performance events available in the initial implementation are listed in Table
19-1.

USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted only
when the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

Vol.3B 18-3

PERFORMANCE MONITORING

OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is
counted only when the logical processor is operating at privilege level 0. This flag can be used with the USR
flag.

E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished.

This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be
serviced).

PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and increments the
counter when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the
counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by
deassertion.

INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception
through its local APIC on counter overflow.

EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a
UMASK must be disabled by setting 1A32_PERFEVTSELXx[bit 22] = 0O, before writing to IA32_PMCXx.

INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison when set, so that both
greater than and less than comparisons can be made.

Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter
is not incremented.

This mask is intended for software to characterize microarchitectural conditions that can count multiple
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If
the counter-mask field is O, then the counter is incremented each cycle by the event count associated with
multiple occurrences.

18.2.2 Additional Architectural Performance Monitoring Extensions

The enhanced features provided by architectural performance monitoring version 2 include the following:

Fixed-function performance counter register and associated control register — Three of the architec-
tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTRO through
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event.

Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK
field in (IA32_PERFEVTSELX), configuring, programming I1A32_FIXED_CTR_CTRL for fixed-function PMCs do
not require any UMASK.

Simplified event programming — Most frequent operation in programming performance events are
enabling/disabling event counting and checking the status of counter overflows. Architectural performance
event version 2 provides three architectural MSRs:

— I1A32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of
fixed-function PMCs (IA32_FIXED_CTRXx) or any general-purpose PMCs via a single WRMSR.

— 1A32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— I1A32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single WRMSR.

18-4 Vol.3B

PERFORMANCE MONITORING

18.2.2.1 Architectural Performance Monitoring Version 2 Facilities

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf OAH by
examining the content of register EDX:

Bits O through 4 of CPUID.OAH.EDX indicates the number of fixed-function performance counters available per
core,

Bits 5 through 12 of CPUID.OAH.EDX indicates the bit-width of fixed-function performance counters. Bits
beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE

Early generation of processors based on Intel Core microarchitecture may report in
CPUID.OAH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The 1A32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a
fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function PMC.
Two sub-fields are currently defined within each control. The definitions of the bit fields are:

63 1211 98 543210

E
"N

Cntr2 — Controls for IA32_FIXED_CTR2 —L,_‘

Cntrl — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTRO
ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

|:| Reserved

Figure 18-2. Layout of IA32_FIXED_CTR_CTRL MSR

7
P

E
Mo N

Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is
enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting
is enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring greater than 0. Writing O to both bits stops
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege
levels.

PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter.
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective 1A32_PERFEVTSELX or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the
AND’ed results is true; counting is disabled when the result is false.

Vol.3B 18-5

PERFORMANCE MONITORING

63 3534333231 210

I1A32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTRO enable
1A32_PMC1 enable
1A32_PMCO enable

I:l Reserved

Figure 18-3. Layout of IA32_PERF_GLOBAL_CTRL MSR

The fixed-function performance counters supported by architectural performance version 2 is listed in Table 18-8,
the pairing between each fixed-function performance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each
performance counter. The MSR also provides additional status bit to indicate overflow conditions when counters are
programmed for precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also provides a sticky
bit to indicate changes to the state of performance monitoring hardware. Figure 18-4 shows the layout of
IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 1, 32 through 34 indicates a counter overflow condition has
occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

6362 3534333231 210

[
CondChgd
OvfBuffer

IA32_FIXED_CTR2 Overflow:
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTRO Overflow
IA32_PMC1 Overflow
IA32_PMCO Overflow

D Reserved

Figure 18-4. Layout of IA32_PERF_GLOBAL_STATUS MSR

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when

® Setting up new values in the event select and/or UMASK field for counting or sampling
® Reloading counter values to continue sampling

® Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

18-6 Vol.3B

PERFORMANCE MONITORING

6362 3534333231 210

\
ClrCondChgd
ClrOvfBuffer

IA32_FIXED_CTR2 CIrOverflow ———
IA32_FIXED_CTR1 CirOverflow

IA32_FIXED_CTRO CIrOverflow ———
IA32_PMC1 CIrOverflow
1A32_PMCO ClIrOverflow

D Reserved
Figure 18-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

18.2.2.2 Architectural Performance Monitoring Version 3 Facilities

The facilities provided by architectural performance monitoring version 1 and 2 are also supported by architectural
performance monitoring version 3. Additionally version 3 provides enhancements to support a processor core
comprising of more than one logical processor, i.e. a processor core supporting Intel Hyper-Threading Technology
or simultaneous multi-threading capability. Specifically,

CPUID leaf OAH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCXx) is reported in CPUID.OAH:EAX[15:8],
the bit width of general-purpose performance counters (see also Section 18.2.1.1) is reported in
CPUID.OAH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring events supported (see Section
18.2.3)

— The number of fixed-function performance counters, the bit width of fixed-function performance counters
(see also Section 18.2.2.1).

Each general-purpose performance counter 1A32_PMCx (starting at MSR address OC1H) is associated with a
corresponding IA32_PERFEVTSELx MSR (starting at MSR address 186H). The Bit field layout of
IA32_PERFEVTSELX MSRs is defined architecturally in Figure 18-6.

63 31 242322212019181716 15 87 0
Counter Mask | | {g|A] ! vl
N P o
(CMASK) \N/ NV ¥ c E S g Unit Mask (UMASK) Event Select

INV—Invert counter maskJ

EN—Enable counters
ANY—Any Thread

INT—APIC interrupt enable ——
PC—Pin control
E—Edge detect
OS—Operating system mode ——— \:’ Reserved
USR—User Mode

Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Bit 21 (AnyThread) of IA32_PERFEVTSELX is supported in architectural performance monitoring version 3.
When set to 1, it enables counting the associated event conditions (including matching the thread’s CPL with
the OS/USR setting of 1A32_PERFEVTSELX) occurring across all logical processors sharing a processor core.
When bit 21 is 0, the counter only increments the associated event conditions (including matching the thread’s
CPL with the OS/USR setting of IA32_PERFEVTSELX) occurring in the logical processor which programmed the
IA32_PERFEVTSELX MSR.

Vol.3B 18-7

PERFORMANCE MONITORING

Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured by a
4-bit control block in the 1A32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-specificity
configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is shown.

63 1211 987 543210
P A P|A P|A
MIN[E MmN E[MN| |
¢ Iy 1|y

Cntr2 — Controls for IA32_FIXED_CTR2 —L’J

Cntrl — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTRO
AnyThread — AnyThread for IA32_FIXED_CTRO
ENABLE — IA32_FIXED_CTRO. 0: disable; 1: OS; 2: User; 3: All ring levels

I:l Reserved

Figure 18-7. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

Each control block for a fixed-function performance counter provides a AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is O in
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event
conditions occurring in the logical processor which programmed the 1A32_PERF_FIXED_CTR_CTRL MSR.

® The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 18-8 and
Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported
by CPUID.OAH:EAX[15:8]) and three fixed-function counters.

Note: The Intel Atom processor family supports two general-purpose performance monitoring counters (i.e. N
=2 in Figure 18-9), other processor families in Intel 64 architecture may support a different value of N in Figure
18-9. The number N is reported by CPUID.OAH:EAX[15:8]. The Intel Core i7 processor supports four general-
purpose performance monitoring counters (i.e. N =4 in Figure 18-9).

Global Enable Controls IA32_PERF_GLOBAL_CTRL
63 3534333231 N. .10

D Reserved

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable ——
IA32_FIXED_CTRO enable

1A32_PMC(N-1) enable
.................... enable
1A32_PMC1 enable
1A32_PMCO enable

Figure 18-8. Layout of Global Performance Monitoring Control MSR

18-8 Vol.3B

PERFORMANCE MONITORING

Global Overflow Status IA32_PERF_GLOBAL_STATUS
6362 3534333231 N. .10

\
CondChgd
OvfBuffer

IA32_FIXED_CTR2 Overflow——m—
IA32_FIXED_CTR1 Overflow ————— IA32_PMC(N-1) Overflo———
IA32_FIXED_CTRO Overflow——— i Overflow——m————
IA32_PMC1 Overflow
IA32_PMCO Overflow

Global Overflow Status I1A32_PERF_GLOBAL_OVF_CTRL
6362 3534333231 N. .10

|
ClrCondChgd
ClrOvfBuffer

1A32_FIXED_CTR2 CIrOverflow
IA32_FIXED_CTR1 ClrOverflow———— |A32_PMC(N-1) ClIrOverflow
1A32_FIXED_CTRO CIrOverflow —————— ..., ClrOverflow——7mM——
1A32_PMC1 CIrOverflow
1A32_PMCO ClrOverflow

Figure 18-9. Global Performance Monitoring Overflow Status and Control MSRs

18.2.2.3 Full-Width Writes to Performance Counter Registers

The general-purpose performance counter registers I1A32_PMCx are writable via WRMSR instruction. However, the
value written into 1A32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by
CPUID.OAH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See
Figure 18-41.

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each 1A32_PMCi is accompanied by a corresponding alias
address starting at 4C1H for IA32_A_PMCO.

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to 1A32_A_PMCi will cause 1A32_PMCi to
be updated by:

IA32_PMCi[63:32] « SignExtend(EDX[N-32:01);
IA32_PMCi[31:0] « EAX[31:0];

18.2.3 Pre-defined Architectural Performance Events

Table 18-1 lists architecturally defined events.

Table 18-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

Bit Position Event Name UMask Event Select
CPUID.AH.EBX

0 UnHalted Core Cycles OOH 3CH

1 Instruction Retired OOH COH

2 UnHalted Reference Cycles O1H 3CH

3 LLC Reference 4FH 2EH

Vol.3B 18-9

PERFORMANCE MONITORING

Table 18-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance Events

4 LLC Misses 41H 2EH
Branch Instruction Retired OOH C4H
6 Branch Misses Retired OOH C5H

A processor that supports architectural performance monitoring may not support all the predefined architectural
performance events (Table 18-1). The non-zero bits in CPUID.OAH:EBX indicate the events that are not available.

The behavior of each architectural performance event is expected to be consistent on all processors that support
that event. Minor variations between microarchitectures are noted below:

UnHalted Core Cycles — Event select 3CH, Umask O0OH

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter
does not advance in the following conditions:

— an ACPI C-state other than CO for normal operation
— HLT

— STPCLK# pin asserted

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see Chapter 14, “Power and
Thermal Management”)

The performance counter for this event counts across performance state transitions using different core clock
frequencies

Instructions Retired — Event select COH, Umask O0H

This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction
are not counted.

This event does not increment under VM-exit conditions. Counters continue counting during hardware
interrupts, traps, and inside interrupt handlers.

UnHalted Reference Cycles — Event select 3CH, Umask 01H

This event counts reference clock cycles while the clock signal on the core is running. The reference clock
operates at a fixed frequency, irrespective of core frequency changes due to performance state transitions.
Processors may implement this behavior differently. See Table 19-17 and Table 19-19 in Chapter 19, “Perfor-
mance-Monitoring Events.”

Last Level Cache References — Event select 2EH, Umask 4FH

This event counts requests originating from the core that reference a cache line in the last level cache. The
event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but may
exclude cache line fills due to other hardware-prefetchers.

Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

Last Level Cache Misses — Event select 2EH, Umask 41H

This event counts each cache miss condition for references to the last level cache. The event count may include
speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache line fills
due to other hardware-prefetchers.

Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to
estimate performance differences is not recommended.

Branch Instructions Retired — Event select C4H, Umask OOH

This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch
instruction.

All Branch Mispredict Retired — Event select C5H, Umask OOH

18-10 Vol. 3B

PERFORMANCE MONITORING

This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op
of a branch instruction in the architectural path of execution and experienced misprediction in the branch
prediction hardware.

Branch prediction hardware is implementation-specific across microarchitectures; value comparison to
estimate performance differences is not recommended.

NOTE

Programming decisions or software precisians on functionality should not be based on the event
values or dependent on the existence of performance monitoring events.

18.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO AND INTEL® CORE™ DUO
PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are
programmed using the same facilities (see Figure 18-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have
specificity related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading Support and
Topology,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit
mask field (for example, 1A32_PERFEVTSELXx[bits 15:8]) may contain sub-fields that specify topology information
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a
microarchitectural condition and the originating core. This data is shown in Table 18-2. The two-bit encoding for
core-specificity is only supported for a subset of Umask values (see Chapter 19, “Performance Monitoring Events”)
and for Intel Core Duo processors. Such events are referred to as core-specific events.

Table 18-2. Core Specificity Encoding within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit 15:14 Encoding Description
11B All cores
10B Reserved
01B This core
00B Reserved

Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some
bus events belong to this category, providing specificity between the originating physical processor (a bus agent)
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 18-3.

Table 18-3. Agent Specificity Encoding within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 18-4.

Vol.3B 18-11

PERFORMANCE MONITORING

Table 18-4. HW Prefetch Qualification Encoding within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit 13:12 Encoding Description

11B All'inclusive

10B Reserved

01B Hardware prefetch only
00B Exclude hardware prefetch

Some performance events may (a) support none of the three event-specific qualification encodings (b) may
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for
cache coherency state qualification is shown in Table 18-5. If no bits in the MESI qualification sub-field are set for
an event that requires setting MESI qualification bits, the event count will not increment.

Table 18-5. MESI Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state
Bit 10 Counts exclusive state
Bit9 Counts shared state
Bit 8 Counts Invalid state

18.4 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE™
MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural
performance events can be collected using general-purpose performance counters (coupled with two
IA32_PERFEVTSELXx MSRs for detailed event configurations), or fixed-function performance counters (see Section
18.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 18-1. Starting with Intel Core
2 processor T 7700, fixed-function performance counters and associated counter control and status MSR becomes
part of architectural performance monitoring version 2 facilities (see also Section 18.2.2).

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values
that are model-specific. Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-
fields identical to those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of these sub-
fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-17 in Chapter 19,
“Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop
responses. Bits of the snoop response qualification sub-field are defined in Table 18-6.
Table 18-6. Bus Snoop Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit Position 11:8 Description
Bit 11 HITM response
Bit 10 Reserved

18-12 Vol. 3B

PERFORMANCE MONITORING

Table 18-6. Bus Snoop Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit Position 11:8 Description
Bit9 HIT response
Bit 8 CLEAN response

There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 18-7.

Table 18-7. Snoop Type Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELX MSRs

Bit Position 9:8 Description
Bit9 CMP2I snoops
Bit 8 CMP2S snoops

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a
performance event.

NOTE

Software must write known values to the performance counters prior to enabling the counters. The
content of general-purpose counters and fixed-function counters are undefined after INIT or
RESET.

18.4.1 Fixed-function Performance Counters

Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function perfor-
mance counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. The perfor-
mance monitoring events associated with fixed-function counters and the addresses of these counters are listed in
Table 18-8.

Table 18-8. Association of Fixed-Function Performance Counters with Architectural Performance Events

Event Name Fixed-Function PMC PMC Address
INST_RETIRED.ANY MSR_PERF_FIXED_CTRO/IA32_FIXED_CTRO | 309H
CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//IA32_FIXED_CTR1 | 30AH
CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//1IA32_FIXED_CTR2 | 30BH

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and
does not require specifying any event masks. Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple
sets of 4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See
Figures 18-10. Two sub-fields are defined for each control. See Figure 18-10; bit fields are:

® Enable field (low 2 bits in each 4-bit control) — When bit O is set, performance counting is enabled in the
corresponding fixed-function performance counter to increment when the target condition associated with the
architecture performance event occurs at ring O.

When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to
increment when the target condition associated with the architecture performance event occurs at ring greater
than O.

Vol.3B 18-13

PERFORMANCE MONITORING

Writing O to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective
of privilege levels.

63 121 987 54321 0
P P P
M E m E | E
| N N N

Cntr2 — Controls for MSR_PERF_FIXED_CTR2 —L’J

Cntrl — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTRO
ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

D Reserved
Figure 18-10. Layout of MSR_PERF_FIXED_CTR_CTRL MSR

® PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception
through its local APIC on overflow condition of the respective fixed-function counter.

18.4.2 Global Counter Control Facilities

Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and
checking the status of counter overflows. This is done by the following three MSRs:

® MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs
(MSR_PERF_FIXED_CTRX) or general-purpose PMCs via a single WRMSR.

® MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of
fixed-function PMCs (MSR_PERF_FIXED_CTRXx) or general-purpose PMCs via a single RDMSR.

® MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of
fixed-function PMCs (MSR_PERF_FIXED_CTRXx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see
Figure 18-11). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in
the respective 1A32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

63 3534333231 210

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTRO enable
PMC1 enable
PMCO enable

|:| Reserved
Figure 18-11. Layout of MSR_PERF_GLOBAL_CTRL MSR

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when

18-14 Vol. 3B

PERFORMANCE MONITORING

counters are programmed for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR also
provides a ‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see Figure 18-12). A
value of 1 in bits 34:32, 1, O indicates an overflow condition has occurred in the associated counter.

6362 3534333231 210

|
CondChgd
OvfBuffer

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTRO Overflow
PMC1 Overflow
PMCO0 Overflow

D Reserved
Figure 18-12. Layout of MSR_PERF_GLOBAL_STATUS MSR

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-13). Clear overflow indications when:

® Setting up new values in the event select and/or UMASK field for counting or sampling
® Reloading counter values to continue sampling
¢ Disabling event counting or sampling

6362 3534333231 210

|
ClrCondChgd
ClrOvfBuffer

FIXED_CTR2 ClIrOverflow
FIXED_CTR1 ClIrOverflow
FIXED_CTRO ClrOverflow
PMC1 CirOverflow
PMCO ClrOverflow

|:| Reserved
Figure 18-13. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

18.4.3 At-Retirement Events

Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions
that arise from speculative execution. The at-retirement events available in processors based on Intel Core
microarchitecture does not require special MSR programming control (see Section 18.11.6, “At-Retirement

Vol.3B 18-15

PERFORMANCE MONITORING

Counting”), but is limited to 1A32_PMCO. See Table 18-9 for a list of events available to processors based on Intel
Core microarchitecture.

Table 18-9. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select
ITLB_MISS_RETIRED 00H C9H
MEM_LOAD_RETIRED.L1D_MISS 01H CBH
MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH
MEM_LOAD_RETIRED.L2_MISS 04H CBH
MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH
MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

18.4.4 Precise Event Based Sampling (PEBS)

Processors based on Intel Core microarchitecture also support precise event based sampling (PEBS). This feature
was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state
information for the processor. The information provides architectural state of the instruction executed after the
instruction that caused the event (See Section 18.4.4.2).

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise sampling are listed in
Table 18-10. The procedure for detecting availability of PEBS is the same as described in Section 18.11.7.1.

Table 18-10. PEBS Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select
INSTR_RETIRED.ANY_P OOH COH
X87_0PS_RETIRED.ANY FeEH C1H
BR_INST_RETIRED.MISPRED OOH C5H
SIMD_INST_RETIRED.ANY 1FH C7H
MEM_LOAD_RETIRED.L1D_MISS 01H CBH
MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH
MEM_LOAD_RETIRED.L2_MISS 04H CBH
MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH
MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

18.4.4.1 Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using 1A32_PMCO only. Use the following
procedure to set up the processor and 1A32_PMCO counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index,
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of
64-bit address entries. See Figure 17-8 to set up the precise event records buffer in memory.

Enable PEBS. Set the Enable PEBS on PMCO flag (bit 0) in IA32_PEBS_ENABLE MSR.
Set up the 1A32_PMCO performance counter and IA32_PERFEVTSELO for an event listed in Table 18-10.

18-16 Vol. 3B

18.4.4.2 PEBS Record Format

The PEBS record format may be extended across different processor implementations. The
IA32_PERF_CAPABILITES MSR defines a mechanism for software to handle the evolution of PEBS record format in
processors that support architectural performance monitoring with version id equals 2 or higher. The bit fields of
IA32_PERF_CAPABILITES are defined in Table 35-2 of Chapter 35, “Model-Specific Registers (MSRs)”. The relevant

bit fields that governs PEBS are:

PERFORMANCE MONITORING

® PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS
record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction

causing the PEBS event.

® PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to
the encoded value of the PEBSRecordFormat field. On processors based on Intel Core microarchitecture, this bit

is always 1

¢ PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS
record (seeSection 18.11.7).

18.4.4.3 Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in
the DS ISR. See Section 17.4.9.1, “DS Save Area and 1A-32e Mode Operation,” for guidelines when writing the DS

ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel
NetBurst microarchitectures is listed in Table 18-11.

Table 18-11. Requirements to Program PEBS

For Processors based on Intel Core
microarchitecture

For Processors based on Intel NetBurst
microarchitecture

Verify PEBS support of
processor/0S

= 1A32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
= |A32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled

On initial set up or changing event
configurations, write
MSR_PERF_GLOBAL_CTRL MSR (0x38F) with
0.

On subsequent entries:

= (lear all counters if “Counter Freeze on PMI”
is not enabled.

= IfIA32_DebugCTL.Freeze is enabled,
counters are automatically disabled.

Counters MUST be stopped before writing.1

Optional

Disable PEBS.

Clear ENABLE PMCO bit in IA32_PEBS_ENABLE
MSR (0x3F1).

Optional

Check overflow conditions.

Check MSR_PERF_GLOBAL_STATUS MSR (0x
38€) handle any overflow conditions.

Check OVF flag of each CCCR for overflow
condition

Clear overflow status.

Clear MSR_PERF_GLOBAL_STATUS MSR (0x
38E) using IA32_PERF_GLOBAL_OVF_CTRL
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after” values.

Configure the counter(s) with the sample after value.

Vol.3B 18-17

PERFORMANCE MONITORING

Table 18-11. Requirements to Program PEBS (Contd.)

For Processors based on Intel Core For Processors based on Intel NetBurst
microarchitecture microarchitecture
Configure specific counter = Set local enable bit 22 - 1. = Set appropriate OVF_PMI bits - 1.
configuration MSR. = Do NOT set local counter PMI/INT bit, bit 20 | = Only CCCR for MSR_IQ_COUNTER4 support
-0. PEBS.
= Event programmed must be PEBS capable.
Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.
Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.
Configure the PEBS buffer Configure the PEBS buffer management records in the DS buffer management area.
management records.
Configure/Enable PEBS. Set Enable PMCO bit in IA32_PEBS_ENABLE Configure MSR_PEBS_ENABLE,
MSR (0x3F1). MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as needed.
Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL Set each CCCR enable bit 12 - 1.
MSR (Ox38F).
NOTES:

1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

18.4.4.4 Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records
to complete its capture at their previously specified buffer address (provided by 1A32_DS_AREA).

18.5 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® ATOM™
MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.2.2) and a host of non-architectural monitoring capabilities. The initial implementation of Intel Atom
processor family provides two general-purpose performance counters (IA32_PMCO, 1IA32_PMC1) and three fixed-
function performance counters (IA32_FIXED_CTRO, IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in Intel Atom processor family uses the 1A32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-18.

Architectural and non-architectural performance monitoring events in Intel Atom processor family support thread
qualification using bit 21 of IA32_PERFEVTSELx MSR.

The bit fields within each 1A32_PERFEVTSELX MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.2.2.

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-fields that provide the
same qualifying actions like those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of
these sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-18 in
Chapter 19, “Performance-Monitoring Events.” Precise Event Based Monitoring is supported using 1A32_PMCO (see
also Section 17.4.9, “BTS and DS Save Area”).

18-18 Vol. 3B

PERFORMANCE MONITORING

18.6 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®
MICROARCHITECTURE CODE NAME NEHALEM

Intel Core i7 processor family! supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.2.2) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is
based on Intel® microarchitecture code name Nehalem, and provides four general-purpose performance counters
(IA32_PMCO, 1A32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters
(IA32_FIXED_CTRO, IA32_FIXED_CTR1, IA32_FIXED_CTR2) in the processor core.

Non-architectural performance monitoring in Intel Core i7 processor family uses the 1A32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-18.
Non-architectural performance monitoring events fall into two broad categories:

® Performance monitoring events in the processor core: These include many events that are similar to

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally,
there are several enhancements in the performance monitoring capability for detecting microarchitectural
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the

physical processor package. The off-core sub-systems in the physical processor package is loosely referred to
as “uncore”.

Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor
cores in the physical processor package. It provides additional performance monitoring facility outside of
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread
qualification using bit 21 of 1A32_PERFEVTSELx MSR.

The bit fields within each I1A32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and
Section 18.2.2.2.

63 62 6160 3534333231 876 54321 0

n
CHG (RIW)
OVF_PMI (R/W)
OVF_FC2 (RIO)
OVF_FC1 (R/O)
OVF_FCO (R/O)
OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PCO (R/O)

[| Reserved RESET Value — 0x00000000_00000000 CCNT: CPUID.AH:EAX[15:8]

Figure 18-14. IA32_PERF_GLOBAL_STATUS MSR

18.6.1 Enhancements of Performance Monitoring in the Processor Core

The notable enhancements in the monitoring of performance events in the processor core include:

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code name Nehalem, so the perfor-
mance monitoring facilities described in this section generally also apply.

Vol. 3B 18-19

PERFORMANCE MONITORING

® Four general purpose performance counters, 1A32_PMCx, associated counter configuration MSRs,
IA32_PERFEVTSELX, and global counter control MSR supporting simplified control of four counters. Each of the
four performance counter can support precise event based sampling (PEBS) and thread-qualification of archi-
tectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been
increased. The width of counter reported by CPUID.OAH:EAX[23:16] is 48 bits. The PEBS facility in Intel
microarchitecture code name Nehalem has been enhanced to include new data format to capture additional
information, such as load latency.

® Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency
facility in processors based on Intel microarchitecture code name Nehalem. The facility can measure average
latency of load micro-operations from dispatch to when data is globally observable (GO). This facility is used in
conjunction with the PEBS facility.

® Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELXx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with 1A32_PERFEVTSELX.

18.6.1.1 Precise Event Based Sampling (PEBS)

All four general-purpose performance counters, 1A32_PMCx, can be used for PEBS if the performance event
supports PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the perfor-
mance monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE
provides 4 bits that software must use to enable which 1A32_PMCx overflow condition will cause the PEBS record
to be captured.

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS
record upon the respective 1A32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based
on Intel microarchitecture code name Nehalem is shown in Figure 18-15.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state
information to a memory buffer specified by software as detailed below. When the counter 1A32_PMCx overflows
from maximum count to zero, the PEBS hardware is armed.

63 363534 33 3231 876 54321 0

LL_EN_PMC3 (R/W) Q

LL_EN_PMC2 (R/W)
LL_EN_PMC1 (R/W)
LL_EN_PMCO (RIW)
PEBS_EN_PMC3 (RIW)
PEBS_EN_PMC2 (RIW)
PEBS_EN_PMC1 (RIW)
PEBS_EN_PMCO (R/W)

|:| Reserved RESET Value — 0x00000000_00000000

Figure 18-15. Layout of IA32_PEBS_ENABLE MSR

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see
Figure 18-41).

The behavior of PEBS assists is reported by 1A32_PERF_CAPABILITIES[6] (see Figure 18-41). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the

18-20 Vol. 3B

PERFORMANCE MONITORING

PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist
nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-12, and each field in the PEBS record is 64 bits long. The PEBS record
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

Table 18-12. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS
0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP OxAO Data Source Encoding
0x50 R8 OxA8 Latency value (core cycles)

In 1A-32e mode, the full 64-bit value is written to the register. If the processor is not operating in 1A-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in 1A-32e
mode are written to zero.

Bytes OxAF:0x90 are enhancement to the PEBS record format. Support for this enhanced PEBS record format is
indicated by 1A32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the I1A32_PERF_GLOBAL_STATUS register before the PEBS
assist occurred. This value is written so software can determine which counters overflowed when this PEBS record
was written. Note that this field indicates the overflow status for all counters, regardless of whether they were
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events
are listed in Table 18-10. In addition to using IA32_PERFEVTSELX to specify event unit/mask settings and setting
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events.

NOTE

PEBS events are only valid when the following fields of IA32_PERFEVTSELX are all zero: AnyThread,
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-16.

Vol. 3B 18-21

PERFORMANCE MONITORING

PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer
allocated by software. The processor reads this field to determine the base address of the PEBS buffer. Software
should allocate this memory from the non-paged pool.

IA32_DS_AREA MSR
DS Buffer Management Area BTS Buffer

BTS Buffer Base | OH——— »

Branch Record 0

BTS Index 8H
BTS Absolute
Maximum 10t 7]
BTS Interrupt Branch Record 1
Threshold 18H
PEBS Buffer Base| 20H——
PEBS Index 28H —
PE'aS Absolute 30H—
aximum
Branch Record n
PEBS Interrupt | 3gy
Threshold L
PEBS 40H
CounterO Reset PEBS Buffer
48H
PEBS L
Counterl Reset PEBS Record 0
50H
PEBS
Counter2 Reset
PEBS Record 1
58H
PEBS
Counter3 Reset >
Reserved 60H
PEBS Record n

Figure 18-16. PEBS Programming Environment

PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the
beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the first
PEBS record is written.

PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond
the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to
continue capturing PEBS records.

PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the
IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

18-22 Vol. 3B

PERFORMANCE MONITORING

® PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management
Area. For example, if counter IA32_PMCO caused a PEBS record to be written, then the value of “PEBS Counter
0 Reset” would be written to counter 1A32_PMCO. If a counter is not enabled for PEBS, its value will not be
modified by the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero
(assuming 1A32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger.
PEBS hardware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a0 to 1
transition of the counter). At this point, a PEBS assist will be undertaken by the processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMCO takes
precedence over all other counters. Counter 1A32_PMC1 takes precedence over counters IA32_PMC2 and
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 18.6.2). It is possible
for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the
processor core. Software must check core and uncore status registers to determine the exact origin of counter
overflow interrupts.

18.6.1.2 Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS
buffer, see Table 18-12. The facility measures latency from micro-operation (uop) dispatch to when data is globally
observable (GO).

To use this feature software must assure:

® One of the IA32_PERFEVTSELX MSR is programmed to specify the event unit MEM_INST_RETIRED, and the
LATENCY_ABOVE_THRESHOLD event mask must be specified (I1A32_PerfEvtSelX[15:0] = Ox100H). The corre-
sponding counter 1A32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the 1A32_PerfEvtSelX register used for counting load latency must be
0. Writing other values will result in undefined behavior.

® The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

® The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding 1A32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMCO, the IA32_PEBS_ENABLE register must be
programmed with the 64-bit value 0x00000001.00000001.

Vol. 3B 18-23

PERFORMANCE MONITORING

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists.
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before
the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 18-12, bytes AFH:98H) consists of:
® Data Linear Address: This is the linear address of the target of the load operation.

® Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in
processor core clock domain.

® Data Source : The encoded value indicates the origin of the data obtained by the load instruction. The
encoding is shown in Table 18-13. In the descriptions local memory refers to system memory physically
attached to a processor package, and remote memory referrals to system memory physically attached to
another processor package.

Table 18-13. Data Source Encoding for Load Latency Record

Encoding Description
0x0 Unknown L3 cache miss
Ox1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.
0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.
0x3 This data request was satisfied by the L2.
0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).
0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross
core snoop where no modified copies were found. (clean).
0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross
core snoop where modified copies were found. (HITM).
0x7! Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and was serviced by another
core with a cross core snoop where modified copies found
0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by forwarded data following a cross
package snoop where no modified copies found. (Remote home requests are not counted).
0x9 Reserved
OxA L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to shared state).
0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to shared state).
0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to exclusive state).
0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to exclusive state).
OxE 1/0, Request of input/output operation
OxF The request was to un-cacheable memory.
NOTES:

1. Bit 7 is supported only for processor with CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is
reserved.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-17.

18-24 Vol. 3B

PERFORMANCE MONITORING

63 1615 0

THRHLD - Load latency threshold

[| Reserved RESET Value — 0x00000000_00000000

Figure 18-17. Layout of MSR_PEBS_LD_LAT MSR

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they
are ignored. The minimum value that may be programmed in this field is 3.

18.6.1.3 Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four
1IA32_PERFEVTSELXx MSR with specific event codes and predefine mask bit value. Each event code for off-core
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_O. There is
only one off-core response configuration MSR. Table 18-14 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using 1A32_PMCx.

Table 18-14. Off-Core Response Event Encoding

Event code in Mask Value in
1A32_PERFEVTSELX IA32_PERFEVTSELX Required Off-core Response MSR
0xB7 0x01 MSR_OFFCORE_RSP_O (address 0x1A6)

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-18. Bits 7:0 specifies the request type of a transaction
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

63 151413121110 98 76 543 21 0

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (RW) ~ —
RESPONSE TYPE — REMOTE_DRAM (R/W) —_
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)
RESPONSE TYPE — RESERVED

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

[| Reserved RESET Value — 0x00000000_00000000

Figure 18-18. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

Vol. 3B 18-25

PERFORMANCE MONITORING

Table 18-15. MSR_OFFCORE_RSP_O0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset | Description
DMND_DATA_RD |0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well
as demand data page table entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.
DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO.
DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.
WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.
PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.
PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.
PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.
OTHER 7 (R/W). Counts one of the following transaction types, including L3 invalidate, I/0, full or partial writes,
WC or non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.
UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions
required (snooping).
OTHER_CORE_HI |9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by
T_SNP another core with a cross core snoop where no modified copies were found (clean).
OTHER_CORE_HI | 10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by
™ another core with a cross core snoop where modified copies were found (HITM).
Reserved 11 Reserved
REMOTE_CACHE_ | 12 (R/W). L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data
FWD following a cross package snoop where no modified copies found. (Remote home requests are not
counted)
REMOTE_DRAM | 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.
LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.
NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.
18.6.2 Performance Monitoring Facility in the Uncore

The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in the physical processor
package that are shared by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache,
Intel QuickPath Interconnect link logic, and integrated memory controller. The performance monitoring facilities
inside the uncore operates in the same clock domain as the uncore (U-clock domain), which is usually different
from the processor core clock domain. The uncore performance monitoring facilities described in this section apply
to Intel Xeon processor 5500 series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH
(see Chapter 35). An overview of the uncore performance monitoring facilities is described separately.

The performance monitoring facilities available in the U-clock domain consist of:

® Eight General-purpose counters (MSR_UNCORE_PerfCntrO through MSR_UNCORE_PerfCntr7). The counters
are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify
event code, event mask and other event qualification fields. A set of global uncore performance counter
enabling/overflow/status control MSRs are also provided for software.

® Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification
control based on address value or QPI command opcode.

® One fixed-function counter, MSR_UNCORE_FixedCntrO. The fixed-function uncore counter increments at the
rate of the U-clock when enabled.

18-26 Vol. 3B

PERFORMANCE MONITORING

The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in
the PCI configuration space register at offset COH under device number 0 and Function O.

18.6.2.1 Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function
counters in the uncore. Figure 18-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is
shared by four processor cores in a physical package.

¢ EN_PCn (bitn, n = 0, 7): When set, enables counting for the general-purpose uncore counter
MSR_UNCORE_PerfCntr n.

® EN_FCO (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntrO.

® EN_PMI_COREN (bit n, n =0, 3 if four cores are present): When set, processor core n is programmed to receive
an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow
is enabled by setting 1A32_DEBUG_CTL.Offcore_PMI_EN to 1.

® PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in
MSR_UNCORE_PERF_GLOBAL_CTRL upon exit from the ISR.

63 62 51 504948 32 31 876 54321 0

|
PMI_FRZ (R/W)
EN_PMI_CORES3 (R/W
EN_PMI_CORE2 (R/W)

EN_PMI_CORE1 (R/W)
EN_PMI_COREO (R/W)
EN_FCO (R/W)
EN_PC7 (RIW)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (RIW)
EN_PC3 (RIW)
EN_PC2 (RIW)
EN_PC1 (RIW)
EN_PCO (R/W)

[| Reserved RESET Value — 0x00000000_00000000

Figure 18-19. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 18-20 shows the
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.

® OVF_PCn (bitn, n =0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_ PerfCntr n has
overflowed.

® OVF_FCO (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_ FixedCntrO has
overflowed.

® OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request.

® CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register
has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the
UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global

Vol. 3B 18-27

PERFORMANCE MONITORING

status register are cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit
position in this register has no effect on the uncore PMU hardware.

63 62 6160 32 31 876 54321 0

I

CHG (RIW) J
OVF_PMI (RIW

OVF_FCO (R/O)

OVF_PC7 (R/O)
OVF_PCB6 (R/O)
OVF_PCS5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PCO (R/O)

[] Reserved RESET Value — 0x00000000_00000000

Figure 18-20. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR

Figure 18-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

63 62 6160 32 31 876 543210

|

CLR_CHG (WO1)

CLR_OVF_PMI (WO1)
CLR_OVF_FCO (WO1)
CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PCO (WO1)

[] Reserved RESET Value — 0x00000000_00000000

Figure 18-21. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR

® CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

® CLR_OVF_FCO (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter
MSR_UNCORE_FixedCntrO. Writing a value other than 1 is ignored.

® CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing
a value other than 1 is ignored.

® CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing
a value other than 1 is ignored.

18-28 Vol. 3B

PERFORMANCE MONITORING

18.6.2.2 Uncore Performance Event Configuration Facility

MSR_UNCORE_ PerfEvtSelO through MSR_UNCORE_PerfEvtSel7 are used to select performance event and
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in
MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-22 shows the layout of MSR_UNCORE_PERFEVTSELX.

63 31 24232221201918171615 87 0

CC(DET':AIGXS’\I/'(?SK Unit Mask (UMASK) Event Select

INV—Invert counter maskJ

EN—Enable counters
PMI—Enable PMI on overflow ——
E—Edge detect
OCC_CTR_RST—Rest Queue Occ

[| Reserved RESET Value — 0x00000000_00000000

Figure 18-22. Layout of MSR_UNCORE_PERFEVTSELXx MSRs

® Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
® Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.

® OCC_CTR_RST (bitl7): When set causes the queue occupancy counter associated with this event to be cleared
(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero.

® Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition
occurs for the conditions that can be expressed by any of the fields in this register.

® PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This
request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREX) in the
register MSR_UNCORE_PERF_GLOBAL_CTRL.

® EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

® INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the
Counter Mask field is interpreted as less than.

® Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 18-23 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

63 876 54321 0

PMI - Generate PMI on overflow
EN - Enable

|| Reserved RESET Value — 0x00000000_00000000

Figure 18-23. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR

Vol. 3B 18-29

PERFORMANCE MONITORING

® EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and
counting starts when the EN_FCO bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

® PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits
(EN_PMI_COREX) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter
(MSR_UNCORE_FixedCntr0Q) are 48 bits wide. They support both counting and sampling usages. The event logic
unit can filter event counts to specific regions of code or transaction types incoming to the home node logic.

18.6.2.3 Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELX is used to select different uncore event logic unit.
When the event “ADDR_OPCODE_MATCH" is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in
Figure 18-24.

63 60 4847 4039

Opcode ADDR

MatchSel—Select addr/Opcode
Opcode—Opcode and Message
ADDR—BiIts 39:4 of physical address

|:| Reserved

Figure 18-24. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR

RESET Value — 0x00000000_00000000

® Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select address match. The uncore
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a
transaction request matches bits 39:3.

® Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,
— Bits 47:44 specify the QPI message classes.
Table 18-16 lists the encodings supported in the opcode field.

Table 18-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class
Home Request Snoop Response Data Response
[47:44] = 0000B [47:44] = 0001B [47:44]1=1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

18-30 Vol. 3B

PERFORMANCE MONITORING

Table 18-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH (Contd.)

Opcode [43:40] QPI Message Class
OTHER 7 7
NON_DRAM 15 15

® MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:
— 000B: Disable addr_opcode match hardware
— 100B: Count if only the address field matches,
— 0108B: Count if only the opcode field matches
— 110B: Count if either opcode field matches or the address field matches
— 001B: Count only if both opcode and address field match

— Other encoding are reserved

18.6.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility

The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series
are significantly different The uncore performance monitoring facility consist of many distributed units associated
with individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of
the various box units of the uncore is shown in Figure 18-25.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple
counters within each box.

L3 Cache

CBox CBox CBox CBox CBox CBox CBox CBox

SBox SBox
SMI Channels
- g
PBox MBox BBox RBoOx BBox MBox PBox
- -
SMI Channels
WBox PBox PBox PBox PBox UBox

IR AR AR

4 Intel QPI Links

Figure 18-25. Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Vol. 3B 18-31

PERFORMANCE MONITORING

Table 18-17 summarizes the number MSRs for uncore PMU for each box.

Table 18-17. Uncore PMU MSR Summary

Counter General Global

Box # of Boxes | Counters per Box Width Purpose Enable Sub-control MSRs
C-Box 8 6 48 Yes per-box None
S-Box 2 4 48 Yes per-box Match/Mask
B-Box 2 4 48 Yes per-box Match/Mask
M-Box 2 6 48 Yes per-box Yes
R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes
W-Box 1 4 48 Yes per-box None

1 48 No per-box None
U-Box 1 1 48 Yes uncore None

The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the
uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple
counters within the same box, this is somewhat similar the “global control“ programming interface,
IA32_PERF_GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for
multiple counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 35, Table 35-8 under the general
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:

® Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_SO_PMON_BOX_CTL,
MSR_C7_PMON_BOX_CTL, etc.

® Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_SO_PMON_BOX_STATUS,
MSR_C7_PMON_BOX_STATUS, etc.

® Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_SO_PMON_BOX_OVF_CTL,
MSR_C7_PMON_BOX_OVF_CTL, etc.

® Performance counters MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_CTR,
MSR_SO_PMON_CTRO, MSR_C7_PMON_CTRS5, etc

® Event select MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_EVNT_SEL,
MSR_SO_PMON_EVNT_SELO, MSR_C7_PMON_EVNT_SEL5, etc

® Sub-control MSRs: the scope is implicitly per-box